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Abstract

A two-level optimal coordination control approach for energy storage and conventional gener-

ation consisting of advanced frequency control and stochastic optimal dispatch is proposed to

deal with the real power balancing control problem introduced by variable renewable energy

sources (RESs) in power systems. In the proposed approach, the power and energy con-

straints on energy storage are taken into account in addition to the traditional power system

operational constraints such as generator output limits and power network constraints.

The advanced frequency control level which is based on the robust control theory and the

decentralized static output feedback design is responsible for the system frequency stabiliza-

tion and restoration, whereas the stochastic optimal dispatch level which is based on the

concept of stochastic model predictive control (SMPC) determines the optimal dispatch of

generation resources and energy storage under uncertainties introduced by RESs as well as

demand. In the advanced frequency control level, low-order decentralized robust frequency

controllers for energy storage and conventional generation are simultaneously designed based

on a state-space structure-preserving model of the power system and the optimal controller

gains are solved via an improved linear matrix inequality algorithm. In the stochastic opti-

mal dispatch level, various optimization decomposition techniques including both primal and

dual decompositions together with two different decomposition schemes (i.e. scenario-based

decomposition and temporal-based decomposition) are extensively investigated in terms of

convergence speed due to the resulting large-scale and computationally demanding SMPC

optimization problem. A two-stage mixed decomposition method is conceived to achieve

the maximum speedup of the SMPC optimization solution process. The underlying control

design philosophy across the entire work is the so-called time-scale matching principle, i.e.

the conventional generators are mainly responsible to balance the low frequency components

of the power variations whereas the energy storage devices because of their fast response

capability are employed to alleviate the relatively high frequency components. The perfor-

mance of the proposed approach is tested and evaluated by numerical simulations on both

the WECC 9-bus system and the IEEE New England 39-bus system.

iv



Acknowledgements

First of all, I would like to express my deepest gratitude to my advisor Prof. Gabriela Hug for

the immeasurable amount of support, guidance and encouragement she has provided since

the first day of my Ph.D. study in the Department of Electrical and Computer Engineering

(ECE) at Carnegie Mellon University (CMU). It is her passion and enthusiasm that have been

encouraging me to devote myself to research; it is her guidance and advice that have been

pointing me to the in-depth thinking of my research topics; it is her insight and inspiration

that have been enlightening my deep understanding of the field of electric energy systems.

The training I received from her on professional skills such as writing, presentation, time

management and leadership is going to have a profound influence on my life. The opportunity

of working with Gabriela has been my greatest fortune and privilege.

Sincere gratitude is extended to my dissertation committee members – Prof. Bruce H.

Krogh, Dr. Daniel F. Opila, Dr. Xiaoming Feng, and Prof. Zhi-Hong Mao for their generous

time, invaluable advice, and insightful comments.

I would also like to show my appreciation toward other faculty members in the ECE and

CS departments, including Prof. Marija D. Ilić, Prof. Xin Li, Dr. Jovan Ilić, Prof. Bruno

Sinopoli, Prof. Soummya Kar, Prof. Ozan Tonguz, Prof. Franz Franchetti, Prof. Jian-Gang

(Jimmy) Zhu, Prof. Hui Zhang, Prof. J. Zico Kolter, and Prof. David R. O’Hallaron. The

constructive discussions with them not only helped me become a mature and qualified Ph.D.

candidate but also assisted me to plan my future career development path.

Special thanks go to Ms. Claire E. Bauerle, and Ms. Carolyn Patterson. They made the

Porter Hall B-Level a warm and pleasant place for me to work and study. I am also grateful

to Ms. Samantha Goldstein and Ms. Elaine Lawrence in the ECE Graduate Programs Office.

They are very knowledgable about the Ph.D. programs at CMU and always ready to help,

which made each of my steps toward the degree easy to follow.

I am also so thankful to have a large group of excellent colleagues and friends who brought

me lots of support, comfort, and fun along the stressful journey of my Ph.D. study, in-

v



cluding Prof. Le Xie, Prof. Nermeen Mahmoud, Dr. Qixing Liu, Dr. Tao Cui, Dr. Juhua

Liu, Dr. Chenye Wu, Dr. Mohsen Rahmani, Dr. Sanja Civić, Dr. Jhi-Young Joo, Dr. Milos

Cvetković, Dr. Congzhong Guo, Dr. Can Ye, Dr. João Mota, Dr. Qiao Li, Dr. Yilin Mo, Rui

Yang, Kyri Baker, Todd Ryan, Hameed Safiullah, Javad Mohammadi, Andrew Hamann,

Xiao Zhang, Dmitry Shchetinin, Junyao Guo, Zhe Yu, Harald Franchetti, Hao Ming, Yang

Weng, Jonathan Donadee, Joya Deri, Nipun Popli, Xia Miao, Kevin Bachovchin, Xiaoqi Yin,

Andrew Hsu, Stefanos Baros, Nikos Aréchiga, Sérgio Pequito, Jiawei Shi, Yisu Nie, Yizhi

Zheng, Liangyan Gui, Yue Ding, and others too numerous to name.

In addition, I would like to thank those people who led me into the wonderland of

the electric power engineering during my undergraduate studies, including Prof. Yijia Cao,

Prof. Quanyuan Jiang, and Prof. Chuangxin Guo of Zhejiang University and Prof. Alex Q.

Huang of North Carolina State University.

However, no single piece of this dissertation would be possible without the solid support

of my family. I want to express my profound thanks to my parents Yungen Ding and Dian

Zhu for always standing by my side and encouraging me to pursue my dreams, no matter

how far apart we are. I also want to thank my wife Lingling Xu for her enormous love and

unwavering support for me. I very much appreciated her great effort to ensure a healthy and

energetic me during my writing of this dissertation. My life becomes wonderful and full of

miracles because of her!

The research work presented in this dissertation was supported by the following funding

sources: the National Energy Technology Laboratory, the Philip and Marsha Dowd En-

gineering Seed Fund, Innovation Works, the Keystone Innovation Starter Kit grant from

Pennsylvania’s Department of Community and Economic Development, the National Sci-

ence Foundation Grant ECCS-1027576, and the Department of Electrical and Computer

Engineering at Carnegie Mellon University. I gratefully appreciate the financial support.

To close, earning the Ph.D. degree from CMU is a significant milestone for me and it also

means a brand new start in my life. The spirit of CMU – “My heart is in the work” has been

and will always be part of my DNA wherever I am and whatever I do.

vi



Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Proposed Two-Level Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Relation between the Two Levels . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 Power System Frequency Control Basics . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Primal Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Secondary Frequency Control . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Tertiary Frequency Control . . . . . . . . . . . . . . . . . . . . . . . 13

vii



2.2 Energy Storage Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Battery Energy Storage Systems (BESSs) . . . . . . . . . . . . . . . 13

2.2.2 Flywheel Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Supercapacitor Storage . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Superconducting Magnetic Energy Storage (SMES) . . . . . . . . . . 14

2.2.5 Pneumatic Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.6 Pumped Hydro Storage . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Advanced Frequency Control 17

3.1 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Feasibility of Decentralized PI Frequency Control . . . . . . . . . . . . . . . 19

3.3 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Conventional Generator . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Energy Storage Device . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 RES Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.4 Frequency at Load Buses . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.5 Overall System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 H∞ Control Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 H∞-based Controller Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Optimal Gain Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Practical Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.1 WECC 9-Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



3.8.2 IEEE New England 39-Bus System . . . . . . . . . . . . . . . . . . . 49

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Stochastic Optimal Dispatch 59

4.1 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 SMPC Basics and Problem Formulation . . . . . . . . . . . . . . . . . . . . 62

4.3 Scenario Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Classical Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Primal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Dual Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 OCD based Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Unlimited Point Method . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.2 Optimality Condition Decomposition (OCD) . . . . . . . . . . . . . . 83

4.5.3 Generalized Minimal Residual Method . . . . . . . . . . . . . . . . . 87

4.5.4 Globally Convergent Modifications . . . . . . . . . . . . . . . . . . . 87

4.5.5 Application of OCD in SMPC based SCED Problem . . . . . . . . . 89

4.6 OCD based Two-Stage Decomposition . . . . . . . . . . . . . . . . . . . . . 90

4.6.1 Temporal-based Decomposition . . . . . . . . . . . . . . . . . . . . . 93

4.6.2 Singularity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Improved Two-Stage Decomposition . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8.1 WECC 9-Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8.2 IEEE New England 39-Bus System . . . . . . . . . . . . . . . . . . . 107

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



5 Conclusions and Future Work 115

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix A WECC 9-Bus Test System 121

A.1 Dynamic and Static Generator Parameters . . . . . . . . . . . . . . . . . . . 121

A.2 Parameters of Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix B IEEE New England 39-Bus Test System 123

B.1 Dynamic and Static Generator Parameters . . . . . . . . . . . . . . . . . . . 123

B.2 Parameters of Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 125

x



List of Tables

4.1 Numerical results for the WECC 9-bus system . . . . . . . . . . . . . . . . . 103

4.2 Results for the two-stage OCD with different numbers of time blocks . . . . 104

4.3 Results for MD with different numbers of time blocks . . . . . . . . . . . . . 105

4.4 Numerical results for the IEEE New England 39-bus system . . . . . . . . . 109

4.5 Results for the two-stage OCD with different numbers of time blocks . . . . 110

4.6 Results for MD with different numbers of time blocks . . . . . . . . . . . . . 110

A.1 Generator parameters of the WECC 9-bus system. . . . . . . . . . . . . . . . 121

A.2 Transmission line parameters of the WECC 9-bus system. . . . . . . . . . . 122

B.1 Generator parameters of the IEEE New England 39-bus system. . . . . . . . 123

B.2 Transmission line parameters of the IEEE New England 39-bus system. . . . 124

xi



xii



List of Figures

1.1 Interaction among the two control levels and the physical power system. . . . 6

2.1 Basic structure of power systems frequency control (modified from [1]). . . . 10

2.2 Conceptual control block diagram for generators with hydro-mechanical gov-

ernors (modified from [2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Conceptual control block diagram for generators with hydro-electronic gover-

nors (modified from [3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Conceptual control block diagram for secondary control (modified from [4]). . 12

3.1 Standard H∞ problem configuration. . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Example of WGi(s),WSi(s) with design variables fc = 0.016Hz, n = 1, mGi =

33%, mSi = 100%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 WECC 9-bus test system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 RES variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Real power output in the frequency domain. . . . . . . . . . . . . . . . . . . 46

3.6 Frequency deviations at Bus 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Power output deviations of Generator 3 from its operating point. . . . . . . . 48

3.8 Time domain storage response under AFC. . . . . . . . . . . . . . . . . . . . 48

3.9 Bode magnitude diagram of the transfer function from w to ∆SOC. . . . . . 49

xiii



3.10 IEEE New England 39-bus test system [5]. . . . . . . . . . . . . . . . . . . . 50

3.11 Wind power variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Frequency dependent weighting functions with design variables fc = 0.0016Hz,

n = 1, mGi = 10% ∀ i ∈ G, mS1 = 100%. . . . . . . . . . . . . . . . . . . . . 52

3.13 Real power output under AFC in the frequency domain. . . . . . . . . . . . 53

3.14 Real power output under CFC in the frequency domain. . . . . . . . . . . . 53

3.15 Frequency deviations at Bus 37. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16 Power output deviations of Generator 8 from its operating point. . . . . . . . 55

3.17 Power output from Generator 8 in the frequency domain. . . . . . . . . . . . 55

3.18 Time domain storage response under AFC. . . . . . . . . . . . . . . . . . . . 56

3.19 Bode magnitude diagram of the transfer function from w to ∆SOC. . . . . . 56

3.20 Comparison between estimated frequency and actual frequency at Bus 27. . 57

3.21 Frequencies at all the ten generator buses in the CFC case. . . . . . . . . . . 58

4.1 Flow chart of the iterative update using BD. . . . . . . . . . . . . . . . . . . 75

4.2 Flow chart of the iterative update using LRD. . . . . . . . . . . . . . . . . . 78

4.3 Flow chart of the iterative update using OCD. . . . . . . . . . . . . . . . . . 91

4.4 Conceptual sketch of the two-stage decomposition. . . . . . . . . . . . . . . . 92

4.5 Two-stage decomposition: a detailed view. . . . . . . . . . . . . . . . . . . . 92

4.6 Flow chart of the iterative update using two-stage OCD. . . . . . . . . . . . 96

4.7 Flow chart of the iterative update using MD. . . . . . . . . . . . . . . . . . . 100

4.8 Evolution of objective function values for the WECC 9-bus system. . . . . . 104

4.9 Evolution of the preconditioned residual norm before and after GMRES steps

for OCD based methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiv



4.10 Evolution of the KKT norm for OCD based methods. . . . . . . . . . . . . . 106

4.11 Scaling performance for OCD and MD. . . . . . . . . . . . . . . . . . . . . . 107

4.12 Evolution of objective function values for the IEEE New England 39-bus system.109

4.13 Evolution of the preconditioned residual norm before and after GMRES steps

for OCD based methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.14 Evolution of the KKT norm for OCD based methods. . . . . . . . . . . . . . 112

4.15 Scaling performance for OCD and MD. . . . . . . . . . . . . . . . . . . . . . 113

xv



xvi



Chapter 1

Introduction

The work of this dissertation is essentially motivated by the fact that more and more variable

renewable energy sources (RESs) such as wind and solar generators are added to the legacy

electric power system, introducing large uncertainties and variations in the power supply side.

This section briefly reviews the current industry practice of real power balancing control and

further describes the motivation behind the development of the proposed control approach.

In addition, the formal problem statement is given and the technical contributions made in

this dissertation are stated.

1.1 Motivation

One of the main drivers for the transition to the smart grid is to enable a higher penetration

level of renewable energy sources with the intention to gradually transform the current power

grid into a green and sustainable energy ecosystem. The main difficulty of accommodating

considerable amounts of RESs is that they introduce large variations and uncertainties in

the power supply side. The RES generation cannot be dispatched like conventional gener-

ators because its power output is highly dependent on environmental factors such as wind

speed and solar irradiation. Furthermore, the prediction accuracy of the output power from
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RESs is significantly lower than the accuracy of load forecasts resulting in inefficient or even

infeasible day-ahead scheduling of generation resources [6, 7]. As a result, the chance of

having large power mismatches which have to be balanced in real time increases drastically.

Ultimately, this increased imbalance between active power supply and consumption in power

systems leads to increased frequency deviations from the nominal value. Large unattended

frequency deviations could impede the performance of generating units by influencing the

performance of their auxiliary electric motor drives and even lead to severe consequences

such as blackouts [4]. Fortunately, the variability and intermittency introduced by RESs

can be overcome by finding means to counterbalance the power output such as using storage

devices, demand side management or flexible dispatchable generation resources [8, 9]. This

dissertation concentrates on providing real power balancing control solutions in terms of

energy storage devices. The large-scale energy storage is identified as a key enabler for a

future with high penetration of renewable generation [10–12]. Energy storage devices such as

flywheels, supercapacitors and batteries are suitable for real power balancing control because

of their fast response capabilities and the breakthroughs in the area of power electronics [13].

However, the question of how to optimally and safely integrate energy storage into the power

grid remains open.

As the current industry practice, a hierarchical real power balancing and frequency regula-

tion mechanism consisting of primary, secondary and tertiary frequency control is employed

to maintain the system frequency within specified limits. Primary control is based on speed

droop controllers (proportional controllers) used locally by the generators to stabilize the

frequency in the system whereas the centrally organized secondary control (a.k.a. automatic

generation control or AGC) based on area control error (ACE) brings the frequency back to

its nominal value and re-establishes the tie-line flows across control areas to the agreed val-

ues. The ACE is defined as a linear combination of the average frequency deviation from the

nominal value and the net deviation of tie-line flows from their scheduled quantities, which

is intended to be an indication of real power imbalance in a particular control area. Tertiary

control is an optimization based generation resource dispatching task involving economic

2



dispatch which is performed at every 5 to 15 minutes depending on the specific real-time

electricity markets.

In the future with increased amounts of variable and intermittent resources, the afore-

mentioned scheme may need to be revisited for three main reasons/issues: 1) it leads to

increased fast ramping of conventional generators while still not being able to sufficiently

reduce the frequency deviations because the traditional primary control is of proportional

feedback type and the traditional secondary control is not designed to quickly respond to

power imbalance; 2) it does not take into account the increased uncertainty caused by RESs

at the tertiary level, very likely resulting in economically inefficient dispatch of generation

resources; 3) it is not suitable for the integration of energy storage devices as not only the

power output (MW) but also the provided energy (MWh) is limited.

1.2 Problem Statement

Before stating the problem itself, a few terms that appear in the dissertation and may lead

to confusing if not properly defined are clarified first. The term “frequency control” in the

remaining of this dissertation refers to the sole task of maintaining frequency in a tight band,

while the meaning of the term “secondary control” or “secondary frequency control” includes

the tie-line flow regulation task in addition to frequency control by following the current

industry convention.

Given an interconnected power system (possibly consisting of multiple control areas) with

high penetration of variable renewable energy sources and reasonable amount of installed

energy storage capacity, the problem is to develop a systematic approach for real power

balancing control under uncertainties for the entire system, which maintains a tight band

of frequency deviations, ensures the safe operation of energy storage devices, and minimizes

the total cost of providing energy for the system including the generation and ramping costs

of generators subject to relevant physical constraints such as transmission line limits.
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We restrict ourselves to the realtime and near realtime control aspects of the real power

balancing task in power systems, i.e. the day-ahead unit commitment is out of scope of

this dissertation. In addition, we assume that the interconnected power system consisting of

multiple control areas can be treated as a single consolidated system and that the parame-

ters for modeling the entire interconnected power system is available to the control design

engineers.

1.3 Proposed Two-Level Approach

As previously mentioned, this dissertation is dedicated to developing a systematic control

and optimization framework for real power balancing and frequency regulation in a new

environment with variable renewable generation and energy storage. The traditional three-

level framework is restructured and redesigned to address all of the three aforementioned

issues. The redesigned framework consists of two levels, including the advanced frequency

control (AFC) and the stochastic optimal dispatch. Advanced frequency control incorporates

the primary control and the frequency regulation task in the secondary control. The level

of stochastic optimal dispatch which is specifically based on the stochastic model predictive

control (SMPC) method takes into consideration not only the uncertainty introduced by

RESs and demand but also multiple time steps in a look-ahead horizon. We use the term

“stochastic model predictive control based optimal dispatch” (short for “SMPC based optimal

dispatch”) and the term “stochastic optimal dispatch” interchangeably to refer to this level.

In addition, the power and energy constraints associated with energy storage devices are

taken into account in both of the two levels.

1.3.1 Design Philosophy

In the proposed framework, the coordination between conventional generation and energy

storage is achieved by assigning the power balancing responsibilities to these resources ac-

4



cording to their capabilities. The conventional generators are mainly responsible to balance

the low frequency components of the power variations whereas the energy storage devices be-

cause of their fast response capability are employed to alleviate the relatively high frequency

components. This is the underlying design philosophy across the entire work, which we term

as the time-scale matching. The wear and tear effect of conventional generators caused by

frequent high ramping operations is therefore reduced by smoothing out their power output

[14].

1.3.2 Relation between the Two Levels

The relation between the two control levels shown in Fig. 1.1 follows the basic paradigm

of hierarchical control. The stochastic optimal dispatch level collects all the relevant data

from the physical power system to perform the stochastic optimization every 5 to 15 min-

utes, yielding the optimal generator and storage settings to be implemented by the advanced

frequency control level for the current time interval. The advanced frequency control level

adjusts the generator and storage power output set points once it is instructed by the stochas-

tic optimal dispatch level and continuously takes the responsibility of maintaining frequency

within a tight band by imposing physical control actions. Overall, the two-level control keeps

the physical power system operating in a safe and most economical manner.

1.4 Contributions of this Dissertation

The technical contributions of this dissertation are as follows:

• Development of a systematic approach for real power balancing control

with safe and optimal integration of energy storage devices: A two-level con-

trol approach including advanced frequency control and stochastic optimal dispatch

is proposed. The control actions of both the two levels are determined through opti-

mization processes with consideration of the power and energy limits of energy storage
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Two-Level Control

Stochastic Model Predictive Control
based Optimal Dispatch

Advanced Frequency Control

Physical Power System
Information flow

Physical control action

Figure 1.1: Interaction among the two control levels and the physical power system.

devices.

• Introduction and implementation of the concept of time-scale matching

for coordination between conventional generation and energy storage in

real power balancing responsibilities: The proposed time-scale matching princi-

ple states that the conventional generators are mainly responsible to balance the low

frequency components of the power variations whereas the energy storage devices be-

cause of their fast response capability are employed to alleviate the relatively high

frequency components. The time-scale matching is ensured in the advanced frequency

control level via frequency dependent weighting functions and the stochastic optimal

dispatch level achieves the principle by including quadratic ramping cost terms.

• Development of an H∞ optimization approach for enhanced frequency con-

trol with energy storage: The problem of integrating energy storage and renewable

generation with respect to real power balancing is constructed as a multi-objective

H∞ optimization problem. In addition to frequency dependent weighting functions,
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the decentralized static output feedback is applied to achieve task-specific but easily-

implementable controllers. We also show that this H∞-based frequency control ap-

proach provides a promising means to design and coordinate decentralized proportional-

integral (PI) controllers for multiple conventional generators which enables the return

to the nominal frequency.

• Development of a structure-preserving dynamic model for interconnected

power systems: The state-space model of an interconnected power system is system-

atically derived based on component-level models and the DC power flow model for the

control design. In addition, a model to estimate the local frequency at non-generator

buses is developed to facilitate the decentralized control scheme for advanced frequency

control in the design stage.

• Improvement of an existing iterative linear matrix inequality algorithm for

optimal H∞ controller gain calculation: The existing linear matrix inequality

algorithm involves a non-convex generalized eigenvalue minimization problem. We im-

prove the existing algorithm by convexifying this minimization problem via heuristics.

• Proposal of the use of stochastic model predictive control for optimal dis-

patch considering energy storage in the future power systems: The stochastic

model predictive control is adopted to optimally and safely dispatch energy storage

and conventional dispatchable generation under uncertainties for a certain period of

look-ahead horizon.

• Analysis of both primal and dual optimization decomposition techniques

for solving the stochastic model predictive control based optimal dispatch

in terms of speed and convergence: Both the primal based (Benders decomposi-

tion) and dual based (Lagrangian relaxation decomposition and augmented Lagrangian

decomposition) decomposition techniques are analyzed for the considered stochastic

model predictive control problem in terms of problem formulation and convergence

speed. The value of decomposition is demonstrated using the WECC 9-bus system
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and the IEEE New England 39-bus system.

• Development and evaluation of three decomposition approaches for solving

the stochastic model predictive control based optimal dispatch: A temporal-

based decomposition is introduced to achieve the tradeoff between convergence speed

and subproblem size for the considered stochastic model predictive control problem.

Simulation results indicate that the two-stage mixed decomposition scheme among the

three proposed approaches has the best performance record in terms of convergence

speed. To the best of our knowledge, this is the first time the mixed decomposition

is proposed for two-stage stochastic model predictive control problems. Under such a

two-stage decomposition, each subproblem in the first stage is associated with a specific

scenario for the stochastic process. The second stage further decomposes each of the

scenario-based subproblems into even smaller subproblems where each corresponds to

a set of time steps in the optimization horizon. In addition, we resolve the singularity

issues that arise in the three proposed decomposition approaches, which is applicable

to the decomposition of general model predictive control problems.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews some basic concepts

about real power balancing and frequency control in power systems and briefly introduces

various important energy storage technologies. The advanced frequency control in the pro-

posed two-level approach is throughly investigated in Chapter 3 whereas the stochastic op-

timal dispatch level is described in Chapter 4. Numerical simulation results of both the

two control levels on the WECC 9-bus test system and the IEEE New England 39-bus test

system are given in the end of those two chapters. Chapter 5 concludes this dissertation and

points out some future directions.
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Chapter 2

Background

This chapter reviews some basic concepts about power systems including an overview on the

basics of real power balancing and frequency control in power systems and a brief introduction

of various important energy storage technologies, in order for readers to better understand

this dissertation.

2.1 Power System Frequency Control Basics

As briefly mentioned in Chapter 1, the real power balancing and frequency control in the

current power industry follows the paradigm of hierarchical control consisting of three levels

– primary, secondary and tertiary frequency control levels to regulate the system frequency

within a tight band and provide electric energy for demands in a safe and most economical

manner. The basic structure of this control scheme is visualized in Fig. 2.1. This section

provides a more detailed introduction about each control level, serving as the background

knowledge of the dissertation.
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Other system data
e.g. load forecasts

Tertiary
Control

Current operating point
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Power and
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Gates

Turbine Generator

Speed

(Primary control loop)

Figure 2.1: Basic structure of power systems frequency control (modified from [1]).

2.1.1 Primal Frequency Control

The primary control loop in Fig. 2.1 is a local control implemented by each generator in a

power system to stabilize its rotating speed, which is the local frequency at that bus. The

time scale of this level is on the order of seconds. If there is a sudden increase or decrease

in the electric loads of the system, the kinetic energy stored in the rotating mass of each

generator compensates for this change at the first place causing a frequency deviation from

the nominal value. Without considering the load damping effect, the frequency deviation

would keep increasing if no actions are taken by the generators. The primary control is used

to adjust the mechanical power input of the generator based on a speed droop to arrest the

frequency, avoiding large frequency deviations to occur due to such a load change. The static

speed droop states a linear relation between the increased (or decreased) generator power

output and the decrease (or increase) in the system frequency in steady state, allowing each
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generator to share the power balancing responsibility in a system.

The aforementioned speed droop is implemented by the turbine governor within a genera-

tor set (see Fig. 2.1). There are two common types of turbine governors – hydro-mechanical

governor and hydro-electronic governor. The conceptual control block diagrams for genera-

tors equipped with the two types of governors are shown in Fig. 2.2 and Fig. 2.3, respectively.

Due to the integral control behavior of the hydraulic servo actuators, a feedback is needed

to transform it to a first order lag in order to implement the speed droop. R in both figures

represents the speed droop coefficient, whose typical value is 5% in North America. Both

types of governors employ hydraulic servo actuators to physically change the opening of the

valves or gates associated with the turbine. The main difference between the two is the

way how they sense the rotating speed of the generator. Hydro-mechanical governors use

flyweights to determine the speed at which the shaft is spinning while hydro-electronic gover-

nors utilize a magnetic pickup sensor to sense the speed. Because of this difference, the speed

setpoints in hydro-mechanical governors are set via the speed adjusting screw position (see

Fig. 2.2) compared to the hydro-electronic governors where speed signals are represented by

electrical quantities such as voltages and currents. The speed setpoints are manipulated in

the secondary frequency control to restore the system frequency back to its nominal value.

-

+

-

-

Governor

R

Speed adjusting
screw position

Hydraulic Servo
Actuator Valve/gate

position

Turbine
Pmech

Generator

Speed

Figure 2.2: Conceptual control block diagram for generators with hydro-mechanical gover-
nors (modified from [2]).
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Governor

R

Speed
setpoint Hydraulic Servo

Actuator Valve/gate
position

Turbine
Pmech

Generator

Speed

Figure 2.3: Conceptual control block diagram for generators with hydro-electronic governors
(modified from [3]).

2.1.2 Secondary Frequency Control

The secondary frequency control (a.k.a. automatic generation control or AGC) is designed

to bring the system frequency back to its nominal value and re-establish the tie-line flows

across control areas to the agreed values. The time scale of this level is on the order of several

seconds to several minutes. The conceptual control block diagram for this level is depicted

in Fig. 2.4. This control level is centrally organized in the viewpoint of each control area.

The control actions are determined based on the concept of area control error (ACE), which

is intended to be an indication of real power imbalance in a particular control area. The

ACE is defined as a linear combination of the average frequency deviation from the nominal

value and the net deviation of tie-line flows from their scheduled quantities. As can be seen

from Fig. 2.4, the centrally calculated control actions are distributed to each participating

generators via a so-called participation factor αi. In addition, it is evident that the secondary

control level is indeed an integral control.

.
.
.

.
.
.

Power
System

Tie line flows

Frequency

ACE
k
s

Integrator

α1

αN

Generator 1
Speed Setpoint

Generator N

Speed Setpoint

Figure 2.4: Conceptual control block diagram for secondary control (modified from [4]).
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2.1.3 Tertiary Frequency Control

The tertiary control level is an optimization based generation resource dispatching task

involving economic dispatch which is typically performed at every 5 to 15 minutes depending

on the specific real-time electricity markets. Economic dispatch is aimed at optimizing the

power output of the generating units to serve the forecasted system demand in the next

time step in the most economical manner subject to constraints on the power balance and

the transmission line limits. Based on that, the security constrained economic dispatch

additionally takes into account the generation resource limits such as ramp rate limits in

making resource dispatch decisions.

2.2 Energy Storage Technologies

This section provides a short overview over various energy storage technologies, including

battery energy storage systems (BESSs), flywheel storage, supercapacitor storage, super-

conducting magnetic energy storage (SMES), pneumatic storage and pumped hydro storage

[15–19].

2.2.1 Battery Energy Storage Systems (BESSs)

BESSs use electrochemical reactions to convert electrical energy into chemical energy when

charging and vice versa. There are mainly five types of battery storage technologies at the

moment: lead-acid batteries, nickel-based batteries, lithium-based batteries, sodium-based

batteries and flow batteries [17, 18]. All the types of batteries above have been commercially

deployed in power systems for various applications, such as frequency regulation, load leveling

(peak load shaving) and voltage support [17]. Generally, the round trip efficiency for BESSs

is in the range of 60% to 90% depending on the specific battery technology. The self-discharge

rates (standby losses) are between 0% and 5% of rated capacity per month (except the nickel-

based type with a minimum rate of 10%) [15, 17, 18]. The relatively low self-discharge rates
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make BESSs suitable for long-term energy applications.

2.2.2 Flywheel Storage

Flywheels store energy in the form of rotating kinetic energy which is enabled by their

inertia. A typical flywheel storage system consists of three components: the flywheel, the

rotor bearings and the power interface [18]. Flywheels can be accelerated to high velocities via

the power interface in charging mode and slowed down to generate electricity in discharging

mode. The overall round trip efficiency is between 80% and 85% [16]. The characteristics of

the high charge/discharge rates and the long lifetime make flywheel storage appropriate for

power applications such as frequency regulation. However, one main drawback is the large

standby loss, which is reported as higher than 20% of the capacity per hour [18].

2.2.3 Supercapacitor Storage

Supercapacitors (ultracapacitors) are similar to regular capacitors but with significantly

larger capacitance. Because there are no chemical reactions involved in charging and dis-

charging these storage devices, supercapacitors have not only a fast response time but also

great tolerance with respect to overcharging and deep discharging [18]. Their round trip effi-

ciency is with 84−95% quite high while the self-discharge rate is approximately equal to 14%

of the nominal capacity per month [16, 18]. Due to the high power density of supercapacitors,

they are capable of providing power quality control [19].

2.2.4 Superconducting Magnetic Energy Storage (SMES)

SMES systems store energy in the form of electromagnetic energy which is induced by the

direct current flowing in the cooled superconducting coils [19]. The direct current is converted

back to AC electricity via an inverter if power is needed in the grid. The round trip efficiency

is extremely high, in the range of 95% to 98% [16]. However, they are still impractical for
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the industry sector due to the expensive superconducting coils as well as the uneconomical

refrigeration system.

2.2.5 Pneumatic Storage

In pneumatic storage technologies, electrical energy is stored as compressed air or as com-

pressed gas. The corresponding technologies include compressed air energy storage (CAES)

technology and liquid-piston technology where the first one has already been employed in

large-scale energy applications such as load leveling while the second one is not yet applied

in the commercial sector [16, 18]. The round trip efficiencies for CAES and liquid-piston

technology are around 85% and 73%, respectively [16, 18]. As a result of the required large

air-tight underground caverns, CAES is severely dependent on geographical conditions, which

greatly restricts the utilization of this technology. The main disadvantages for liquid-piston

storage are the low energy density and significant self-discharge rate[18].

2.2.6 Pumped Hydro Storage

This type of storage has been widely used in the application of load leveling for a long time.

Electrical energy in pumped hydro storage is transformed into potential energy by pumping

water from a reservoir with a lower elevation to one with a higher elevation. The pumped

hydro plant acts as a generator returning electricity back to the grid when needed. The round

trip efficiency is reported as approximately 70− 85% [18]. Similar to CAES technology, the

main drawback of pumped hydro storage is the special geographical requirements.

2.3 Summary

This chapter provides an overview on the current power system frequency control basics

as well as various energy storage technologies that are suitable or promising for large-scale

power and/or energy applications.
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Chapter 3

Advanced Frequency Control

The advanced frequency control (AFC) is responsible for the system frequency stabilization

and restoration, which addresses the first and the third issues mentioned in Chapter 1, i.e.

the current frequency control scheme fails to quickly respond to power imbalance and it is not

suitable for the integration of energy storage devices as not only the power output but also

the provided energy is limited. The design of AFC aims to make full use of both the generator

and energy storage assets according to their different capabilities in counteracting real power

mismatches of the system. In essence, AFC is a unified control that integrates both the

primary and secondary frequency controls of the hierarchy described in Chapter 2. The two

most desirable properties – the paradigm of decentralized control in the traditional primary

frequency control and the functionality of frequency restoration in the secondary frequency

control are preserved in the proposed AFC. This level of control operates continuously in

real time. The robust control theory and the decentralized static output feedback design are

adopted in order to achieve the robustness and stability of the considered power system as

well as the simplicity of the controllers. Another big advantage of robust control is that it

allows the synthesis of frequency dependent weighting functions into the objective function

facilitating the implementation of the time-scale matching objective. The objectives of this

control level are threefold: 1) to minimize frequency deviations from the nominal value for

all generator buses; 2) to minimize the use of energy storage devices in terms of state of
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charge; 3) to minimize the ramping required from conventional generators.

3.1 Background and Literature Review

Energy storage does not naturally fit into the conventional frequency control framework

mentioned in Chapter 1, as not only the power output but also the energy capacity is limited

for energy storage devices. In terms of frequency control, the energy storage devices in the

current pilot projects are simply employed to follow the AGC signal [20, 21]. The physical

limits on the state of charge (SOC) are ignored and consequently the storage devices are

prone to hit their upper and lower limits.

The H∞-based robust control theory has recently attracted great attention in the power

engineering community to counteract the frequency deviations because it can simultaneously

achieve robustness and stability in a dynamic system subject to model uncertainties and/or

bounded disturbances [22, 23]. Previous work such as [24–26] successfully applied H∞ control

theory to power system frequency control problems but without consideration of energy

storage. Essentially, the idea is to render the conventional generators much more responsive

to the RES disturbances via either high-gain or dynamic controllers. However, this leads to

an even higher burden on conventional generators equipped with the new controllers than

with traditional controllers due to the increased ramping to follow the RES disturbances.

High ramp rates are usually harmful to the lifetime of generators and could also cause a

significant increase in air emissions [27]. In contrast, energy storage devices are taken into

account in [28–31] for various other applications of H∞ control in electric energy systems

such as tie-line flow control, inter-area damping control and transient stability improvement.

However, none of these papers consider the limits on the SOC of storage devices. In addition,

the main drawback of H∞ control is that the order of the yielding dynamic controllers is

typically as high as that of the system model, which makes the controller implementation

impractical especially with the increase of the system complexity. To deal with this issue,

the decentralized static output feedback and the iterative linear matrix inequality (ILMI)
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approach are adopted in AFC design.

3.2 Feasibility of Decentralized PI Frequency Control

As mentioned in Chapter 2, decentralized control merely exists in the primary level of the cur-

rent hierarchical frequency control framework in terms of each control area. In other words,

there only exist decentralized proportional controllers (P controllers) in current power sys-

tems. As we learned from Chapter 2, the combination of the primary control and secondary

control actually exhibits the behavior of proportional-integral controllers (PI controllers).

We are thus wondering whether it is viable to integrate the primary and secondary control

levels and design a unified decentralized PI frequency control scheme.

The two main technical barriers that currently hinder the application of decentralized

PI control in power system frequency regulation are that 1) local frequency controllers are

mostly designed based on the sole knowledge of the corresponding local generating unit

model; 2) power sharing among generators in responding frequency deviations is not clear

when multiple PI controllers are placed in the system even if the system stability is ensured.

Due to the first barrier, multiple PI controllers designed in that way would very likely fight

against each other and each tries to gain the dominance in regulating system frequency when

they are interconnected, causing instability of the system. With respect to the second barrier,

the underlying reason is because there is no precise time synchronization scheme implemented

among different frequency controllers of different generators in a control area. The integration

in all the PI controllers must start at the same time in order for the decentralized PI control

to function properly. Otherwise, the power output of each generator depends on not only the

power mismatches and the controller settings but also the time when the controller starts

its integration process. The generators with the integral control part kicking in early might

take more responsibility in balancing power mismatches.

In order to deal with the first barrier, a structure-preserving approach needs to be con-

ceived where the interactions among generators via power transmission networks should be
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explicitly taken into account. Based on such a system-wide model, it is of more confidence

that the yielding PI controllers are able to cooperate with each other to stabilize the system

and bring the frequency back to its nominal value. On the other hand, the second barrier can

be easily solved by employing the mature technology of phasor measurement units (PMUs)

because of their embedded function of Global Positioning System (GPS) based time syn-

chronization. Voltage angle information that is indeed the integral of the local frequency is

directly measured with a precise GPS time stamp by PMUs so that a common time reference

among generators that might be located far way from each other can be established.

Definition 1 (Synchronization for PI Controllers). Multiple PI controllers in a network are

said to be synchronized if and only if the integral control part of each controller starts at

the same time.

In terms of the voltage angle which is the integral of the frequency, the time synchro-

nization of PI controllers ensures that the reference values for voltage angles at each bus are

measured at the same time. For example, consider two voltage angles at two buses at time

t denoted by θt1 and θt2. If PI controllers are placed at these two buses, the control inputs at

time t in terms of deviations from their nominal values are given by

∆P t
1 = −k1∆ω

t
1 − k2

(

θt1 − θt11
)

∆P t
2 = −k3∆ω

t
2 − k4

(

θt2 − θt22
)

, (3.1)

where superscripts t1 and t2 are the time instances when the two corresponding angle refer-

ence values were measured, respectively; ∆ωt
1 and ∆ωt

2 are the frequency deviations at time

t from the nominal value for Bus 1 and Bus 2, respectively; k1, k2, k3, k4 are positive control

gains. In such a setting, the two controllers are said to be synchronized if and only if the

condition t1 = t2 holds.

Before we develop the structure-preserving approach for system modeling, we first provide

a theorem in the following to establish the uniqueness of the generator power sharing with

synchronized multiple PI frequency controllers in a power network represented by the DC

power flow model.
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Definition 2 (Uniqueness of Generator Power Sharing). The steady-state generator power

sharing for frequency control in a given power network is said to be unique if and only if the

power output of each generator merely depends on the power mismatches of the system and

the parameters of frequency controllers.

Theorem 1 (Uniqueness Theorem of Generator Power Sharing under Decentralized PI

Frequency Control). In a power network represented by the DC power flow model, the steady-

state power sharing among generators in responding frequency deviations is unique under

negative feedbacks via synchronized decentralized PI frequency controllers given that the closed

loop system is stable.

Proof. Without loss of generality, we assume that there are (n + m) buses in the network

and the first n buses are generator buses and the remaining m buses are load buses.

The DC power flow model which is widely adopted in the power system steady-state

analysis yields the following relation between bus power injections and bus voltage angles:
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where ∆P i
G,∆P

j
L are the generator power output deviation at Bus i and the load power

deviation at Bus (n + j), respectively; ∆θk is the voltage angle deviation at Bus k with

respect to its reference value, i.e. ∆θk = θk − θt0k with t0 being the initial time when

the controller synchronization was done; the matrix H is known as the admittance matrix.

Three important properties associated with H are that 1) it is structurally singular; 2) it is

diagonally dominant with positive diagonal elements; 3) its first minors associated with the

diagonal elements Mi,i are positive.
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Since the closed loop system is stable, the power output of the generator with negative

feedback PI control at Bus i in steady state is proportional to the local voltage angle devi-

ation, i.e. ∆P i
G = −ki · ∆θi with ki > 0. We therefore prove the theorem by proving the

uniqueness of the vector for voltage angle deviations given deterministic load changes. The

following two cases cover all the possibilities.

1. One single PI controller is installed.

Without loss of generality, we assume that the first generator adopts the PI control.

Thus, rearranging (3.2) gives us
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We denote the modified admittance matrix as H̄. Next, we are going to prove that

H̄ is nonsingular. On the one hand, the Laplace expansion along the first row of the

original admittance matrix H yields

0 = det(H) =
n+m
∑

j=1

(−1)1+jH1,jM1,j = H1,1M1,1 +
n+m
∑

j=1,j 6=1

(−1)1+jH1,jM1,j . (3.4)

On the other hand, the determinant of H̄ can also be calculated by the Laplace ex-

pansion along its first row:

det(H̄) =
n+m
∑

j=1

(−1)1+jH̄1,jM1,j = H̄1,1M1,1 +
n+m
∑

j=1,j 6=1

(−1)1+jH1,jM1,j

= k1M1,1 + det(H) = k1M1,1 > 0. (3.5)
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From the third property of the admittance matrix and the condition of ki > 0, H̄ is

indeed nonsingular and more precisely positive definite so that the vector of voltage

angle deviations is uniquely determined given deterministic load changes.

2. Multiple PI controllers are installed.

We prove this case following the same idea in Case 1. Without loss of generality, we

further assume that PI control is applied to the ith generator. Now, rearranging (3.2)

gives us
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Denote the newly modified admittance matrix as H̃. On the one hand, the Laplace

expansion along the ith row of H̄ in (3.3) gives:

0 < det(H̄) =

n+m
∑

j=1

(−1)i+jH̄i,jM̄i,j = H̄i,iM̄i,i +

n+m
∑

j=1,j 6=i

(−1)i+jH̄i,jM̄i,j . (3.7)

On the other hand, the determinant of H̃ can be calculated as

det(H̃) =

n+m
∑

j=1

(−1)i+jH̃i,jM̄i,j = H̃i,iM̄i,i +

n+m
∑

j=1,j 6=i

(−1)i+jH̄i,jM̄i,j

= kiM̄i,i + det(H̄) > 0. (3.8)

The positiveness of M̄i,i can be established from the positiveness of Mi,i and k1. There-

fore, H̃ is indeed nonsingular and more precisely positive definite so that the vector of

voltage angle deviations is uniquely determined given deterministic load changes.
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Based on the foregoing proof, it is trivial to see that the theorem holds for the general

case of multiple PI controllers by using mathematical induction.

For both the two cases, it can be shown that the vector of voltage angle deviations is uniquely

determined by the power mismatches of the system and the parameters of PI frequency

controllers. Therefore, the steady-state generator power sharing is unique as the steady-

state power outputs of generators are proportional to local voltage angle deviations. This

concludes the complete proof of the theorem.

As long as the two aforementioned barriers are overcome and additionally the stability

of the system is guaranteed, there should be no problems in implementing decentralized

PI frequency controllers in power systems. In the following sections, we will develop the

proposed AFC scheme step by step beginning with the system modeling.

3.3 System Modeling

Unlike the traditional frequency control investigation method where a uniformed frequency

is assumed within each control area, a structure-preserving approach is developed in this

section, which utilizes the DC power flow model to connect different components in the

considered system retaining the frequency information at each individual generator bus.

Following the general practice in power system analysis, all the following models are linearized

around the operating point. Unless otherwise specified, all units are in per unit with respect

to the power network base.

3.3.1 Conventional Generator

The conventional generators are assumed to be of non-reheat thermal type for illustration

purpose, which is a fourth order governor-turbine-generator model including the dynamics
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of the speed droop governor and the turbine [4] and is given by
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[ ∆Pe ] . (3.9)

The parameters and variables in this model are:

SN : power network VA base S: generator VA base

H : inertia constant based on S ω: rotor speed

∆: deviations from operating point θ: voltage angle in radians

Pm: mechanical power Pe: electrical power

kD: damping factor TCH : turbine time constant

Y : turbine valve position TG: governor time constant

P ref
G : control input ω0: nominal speed in rad/sec

R: speed droop coefficient

We denote the state space model (3.9) of the ith conventional generator in a compact form

as

ẋG,i = AG,i · xG,i +BG,i · uG,i + EG,i · Pe,i. (3.10)

If the traditional secondary control is in place in addition to the existing primary control

loop, the control input is set to ∆P ref
G = PAGC where PAGC is the AGC signal of the

secondary control loop.

3.3.2 Energy Storage Device

The storage device consists of the actual storage and the power electronic inverter connecting

the device to the grid. The model for the storage captures the relationship between charg-
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ing/discharging power and the energy level. The dynamics of the inverter can be modeled

using a first order model with time constant TS capturing the response of the inverter to the

control signal. Hence, the model for the storage device results in the second order model

[32] given by

[

∆ ˙SOC

∆ṖS

]

=

[

0 −1
Ecap

0 −1
TS

]

[

∆SOC

∆PS

]

+

[

0

1
TS

]

[

∆P ref
S

]

, (3.11)

where the parameters and variables are:

Ecap: energy capacity in p.u.sec TS: inverter time constant

∆: deviations from operating point SOC: state of charge

PS: storage power injection P ref
S : control input

However, due to the fact that the time constant TS is typically on the order of millisec-

onds and is negligibly small relative to the time constants associated with the conventional

generator, it is reasonable to use a reduced order model by neglecting the dynamics of the

power electronics inverter [33]. In other words, the power injection ∆PS can be changed

instantaneously in the reduced order model resulting in

[ ∆ ˙SOC ] = [ 0 ][ ∆SOC ] +
[

−1
Ecap

]

[

∆P ref
S

]

. (3.12)

We further denote this reduced order model of the ith storage device in a compact form as

ẋS,i = AS,i · xS,i +BS,i · uS,i. (3.13)

3.3.3 RES Generator

The main focus with regards to renewable energy sources is on wind and solar generation.

Most of the modern wind and solar generation types such as doubly fed induction generator

and photovoltaic generator are connected to the grid via power electronics [13, 34]. Typically,

these power electronic devices are controlled by the maximum power point tracking algorithm
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to maximize the RES power output. In addition, usually wind and solar generators do not

participate in frequency control. Hence, the RES generators are modeled as negative loads.

3.3.4 Frequency at Load Buses

The challenge which arises in AFC design if the storage is placed at a non-generator bus is

that the local frequency is not part of the state variables in the traditional power system

model. While measuring the frequency in operation is straightforward, a model of the local

frequency needs to be derived for the design stage. Hence, a mathematical model is developed

to estimate the local frequency at load buses as a function of the frequencies at generator

buses. The modeling of the frequency at load or generally non-generator buses is crucial

for the decentralized control design in situations where the storage device is located at a

non-generator bus.

Recall the DC power flow model, which gives the relationship between the power injections

and the voltage angles, i.e.

[

∆PG

∆PL

]

= H

[

∆θG

∆θL

]

,

[

HGGHGL

HLG HLL

]

[

∆θG

∆θL

]

, (3.14)

where ∆PG and ∆PL are vectors for power injections at generator buses and non-generator

buses; ∆θG and ∆θL are vectors for voltage angles at generator buses and non-generator

buses; H is the bus admittance matrix. Now making the assumption that the power injections

at non-generator buses are differentiable, the load frequency can be expressed as

∆ωL = −H−1
LLHLG∆ωG +

1

ω0
H−1

LL∆ṖL, (3.15)

where ∆ωL and ∆ωG are vectors for the load frequencies and generator frequencies, respec-

tively. Since (3.15) contains the differentiation of ∆PL which is a disturbance input to the

system, further simplification is needed. It is reasonable to assume that the frequency at

load buses is mainly determined by the frequencies of the terminal voltages of synchronous
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generators in the grid [35]. Hence, the mathematical model to estimate the local frequency

at load buses is given by

∆ωL = −H−1
LLHLG∆ωG, (3.16)

where ∆ωL is the vector for the estimated load frequencies. This estimation model is used

in the controller design stage in case the storage is located at a non-generator bus.

3.3.5 Overall System

By stacking all the states of the dynamic components represented by (3.10) and (3.13), we

obtain the following preliminary model for the entire system:

ẋ = A0x+B0u+ E0h, (3.17)

where

x = [xTG,1, · · · , x
T
G,NG

, xTS,1 · · · , x
T
S,NS

]T ,

u = [uG,1, · · · , uG,NG
, uS,1 · · · , uS,NS

]T ,

h = [Pe,1, · · · , Pe,NG
]T ,

A0 = diag(AG,1, · · · , AG,NG
, AS,1, · · · , AS,NS

),

B0 = diag(BG,1, · · · , BG,NG
, BS,1, · · · , BS,NS

),

E0 = [F T
0 0NG×NS

]T , F0 = diag(EG,1, · · · , EG,NG
),

NG and NS are the number of conventional generators and the number of energy storage

devices, respectively.

Based on the DC power flow model, the electric power h in (3.17) produced by generators

can be given as a linear function of the states x, control inputs u and RES disturbances w,
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i.e.

h = G0x+H0u+ J0w, (3.18)

where G0, H0, J0 are coefficient matrices derived from the DC power flow model.

Hence, the structure-preserving state-space model of the entire system is derived by sub-

stituting (3.18) into (3.17) resulting in

ẋ = Ax+B1w +B2u, (3.19)

where A = A0 + E0G0, B1 = E0J0, B2 = B0 + E0H0. The model is consistent with the

standard H∞ problem formulation, which is described in the following subsection.

3.4 H∞ Control Basics

The standard configuration of the H∞ control problem is depicted in Fig. 3.1, where G(s)

is the transfer function of the plant, K(s) is the transfer function of the controller, w is the

exogenous input including disturbances, references and measurement noise, u is the control

input, z is the performance vector that we want to minimize to satisfy the control objective

and y is the measurement vector [23, 36].

w

u

z

y

K(s)

G(s)

Figure 3.1: Standard H∞ problem configuration.

The corresponding state space model of the standard H∞ control problem in Fig. 3.1 is
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given as:

ẋ = Ax+B1w +B2u (3.20)

z = C1x+D11w +D12u (3.21)

y = C2x+D21w +D22u (3.22)

where x is the vector of internal states of G(s). There exist two standard assumptions

associated with the model [37]: 1) (A,B2, C2) is stabilizable and detectable; 2) D22 = 0. The

first assumption guarantees the existence of a solution to the H∞ control problem while the

second one is typically made to simplify calculations without the loss of generality.

The objective of H∞ control is to find the optimal stabilizing controller K(s) that mini-

mizes the H∞ norm of the transfer function from w to z, which is defined as the peak of the

maximum singular value of the complex matrix Tzw(jω) over all frequencies ω, i.e.

‖Tzw(s)‖∞ , sup
ω
σ(Tzw(jω)), (3.23)

where Tzw(s) is the closed loop transfer function from w to z. It can also be proven that this

H∞ norm ‖Tzw(s)‖∞ is equivalent to the supremum of the quotient of the 2-norm of z(t)

and w(t) in the time domain [36], i.e.

sup
ω
σ(Tzw(jω)) = sup

‖w(t)‖2 6=0

‖z(t)‖2
‖w(t)‖2

. (3.24)

The equivalence above can be interpreted as that H∞ control gives a guaranteed bound

on the performance vector z for any bounded exogenous input w. In other words, the H∞

control design is independent of the size (norm) of the exogenous signal and instead to

minimize the “amplification” effect of the closed loop transfer function from the exogenous

input to the performance vector. Thus, H∞ control is widely applied to disturbance rejection

problems. For the general closed form of the transfer function Tzw(s) in terms of the system

model (3.20)-(3.22), interested readers are referred to [37]. The feasible set of K(s) may be
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restricted as well due to the specific control design requirements on the controller structure,

e.g. the order of the resulting controller should be limited.

Consequently, H∞ control gives a guaranteed bound on the performance vector z for any

bounded exogenous input w, e.g. for wind power with given maximal root-mean-square

(RMS) variations the resulting controller guarantees a bounded deviation in the energy level

of the storage from its target value.

In order to achieve specific design requirements on control performance and to characterize

the exogenous input signals based on their frequency spectrums, weighting functions are

typically assigned to the performance vector z and the exogenous input w. Thus, the resulting

weighted H∞ control problem becomes

min
K(s)

‖Wz(s)Tzw(s)Ww(s)‖∞, (3.25)

where Wz(s),Ww(s) are matrix valued weighting functions for z and w, respectively. The

matrices allow defining the importance of the individual control objectives.

In summary, the general procedure of H∞-based robust control design includes:

• state space modeling of the system according to (3.20);

• selection of the performance vector z with respect to disturbance attenuation in the

form of (3.21);

• selection of the measurements y in the form of (3.22);

• decision on the type and structure of the control law, e.g. the order of the resulting

controller;

• determination of frequency dependent weighting functions in (3.25) based on control

design objectives;

• solving the resulting optimization problem (3.25) to obtain the optimal controller

K∗(s).
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3.5 H∞-based Controller Synthesis

There are three objectives in the proposed AFC design:

• to minimize the influence of RES variations on frequency deviations from the nominal

value for all generator buses;

• to minimize the state of charge deviations of the storage devices in order to minimize

the wear and tear effect due to deep cycling of SOC;

• to achieve the time-scale matching principle so that the ramp rates required from

conventional generators are minimized for the purpose of minimizing the generator

wear and tear effect caused by frequent high-ramping operations.

According to the aforementioned control objectives, the performance vector z in (3.21)

consists of the deviations in the local frequencies of the conventional generators, the SOCs

of the energy storage devices and the power output of the two types of resources, i.e.

z = [∆ω1, · · · ,∆ωNG
,∆SOC1, · · · ,∆SOCNS

,

∆Pm,1, · · · ,∆Pm,NG
,∆PS,1, · · · ,∆PS,NS ]

T . (3.26)

For each of the elements in the performance vector, a frequency dependent weighting

function Wz(s) as defined in (3.25) needs to be chosen. These weighting functions are

design parameters and reflect the importance of each of the objectives along the frequency

spectrum of the respective performance element. The weighting functions for the frequency

deviations ∆ωi and the state of charge deviations ∆SOCi are chosen to be constant values,

i.e. not frequency dependent. The values of these constants reflect the trade-off between

tightly regulating the frequencies to their nominal values and to keep the SOCs of the energy

storage devices close to a predefined value and away from the upper and lower limits of the

storage devices.
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The time-scale matching is achieved by choosing frequency dependent weighting func-

tions for the power output of the two types of resources. For the power output from the

conventional generators, higher penalties are put onto the high frequency region so that

by minimizing the weighted power output the generators are less responsive to the high

frequency components of the RES disturbances. For the power injection of the storage de-

vices, higher weights are put on the low frequency region, which forces the storage to be less

sensitive to the low frequency components in RES fluctuations. The general forms of the

weighting functions for the ith conventional generator and the ith storage device under AFC

are mathematically formulated as

WG,i(s) =
(10s+ 20πfc)

n

mG,i(s + 20πfc)n
(3.27)

WS,i(s) =
(s+ 2πfc)

n

mS,i(s+ 0.2πfc)n
(3.28)

where fc is the cut-off frequency in time-scale matching, n is the order of the weighting

function, mG,i, mS,i are the participation factors of the ith generator and the ith storage

device under AFC, respectively. These variables are all design variables, which can be

adjusted per specific control requirements. The participation factors are constrained by

∑

i∈G

mG,i = 1,
∑

i∈S

mS,i = 1, (3.29)

where G and S are the sets of the generators and storage devices in AFC, respectively. Under

the deregulated electricity market environment such as the PJM ancillary service market,

the participation factors are determined according to the bids submitted by generators and

storages. An example of weighting functions for conventional generator WG,i(s) and storage

device WS,i(s) with design variables fc = 0.016Hz, n = 1, mG,i = 33%, mS,i = 100% is

depicted in Fig. 3.2.
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Figure 3.2: Example of WGi(s),WSi(s) with design variables fc = 0.016Hz, n = 1, mGi =
33%, mSi = 100%.

Therefore, the weighting function Wz(s) in (3.25) is given by

Wz(s) = diag{ ηG,1, · · · , ηG,NG
, ηS,1, · · · , ηS,NS

,WG,1(s),

· · · ,WG,NG
(s),WS,1(s), · · · ,WS,NS

(s) }, (3.30)

where ηG,i and ηS,i are the constant weights for ∆ωi and ∆SOCi in the performance vector

z, respectively.

In addition, the weighting function Ww(s) in (3.25) needs to reflect the expected frequency

spectrum of the exogenous input. Hence, this could correspond to the frequency spectrum

of the RES generation in AFC. More generally, Ww(s) is chosen to represent the designer’s

focus of the exogenous signal.

The resulting matrix valued weighting functions are then realized and integrated into the

state space model of the entire system. Let the realizations ofWz(s),Ww(s) be (Az, Bz, Cz, Dz)

and (Aw, Bw, Cw, Dw), respectively. Together with (3.20)-(3.22), the augmented state space
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model for AFC design including dynamics of weighting functions is
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z̄ = [DzC1 Cz 0 ]
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+DzD12u , C̄1x̄+ D̄12u (3.32)

y = [C2 0 0 ]


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

x

xz

xw


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
, C̄2x̄ (3.33)

where xz, xw are states associated with Wz(s),Ww(s); w̄, z̄ are the weighted exogenous input

and performance vector. The yielding weighted transfer function from w̄ to z̄ is given by

Tz̄w̄(s) = (C̄1 + D̄12KC̄2)(sI − Ā− B̄2KC̄2)
−1B̄1. (3.34)

As mentioned in the literature review section, when solving the optimization problem

(3.25), usually the controller K(s) is of the same order as the system with full state feed-

back, i.e. a centralized high-order controller. In AFC, we design decentralized controllers

each located at either a generator or a storage device, having access only to local measure-

ments. Hence, the decentralized static output feedback is adopted to obtain suboptimal but

decentralized and low order controllers. Once the controllers are designed only local infor-

mation is used as control input. For the conventional generator, this is the local frequency

and the rotor angle which could also be derived as the integral of the local frequency. It

can be easily recognized that such a robust controller is of proportional-integral type, which

plays a critical role in restoring the frequency. For the storage device, the measured values

are the local frequency and the SOC of the storage device. Due to the time-scale matching

objective, voltage angles are not included in the storage controller inputs. Otherwise, there

will be a constant steady-state power inflow/outflow from the storage devices. In summary,
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the control law for the ith generator and ith storage device under AFC is mathematically

defined by

∆P ref
Gi = −k1i∆ωGi − k2i∆θGi

∆P ref
Si = −k3i∆ωSi + k4i∆SOCSi

, (3.35)

where the subscripts Gi and Si denote the local information of the ith generator and the ith

storage device, respectively. Eq. (3.16) is used to estimate the local frequency ∆ωSi in the

design stage when the ith storage is located at a load bus.

Hence, the measurement vector y in (3.22) includes the local frequencies and voltage

angles of the conventional generators, and the local frequency and the SOCs of the energy

storage devices, i.e.

y=[∆ωG,1,∆θG,1, · · · ,∆ωG,NG
,∆θG,NG

,∆ωS,1,∆SOC1, · · · ,∆ωS,NS
,∆SOCNS ]

T .(3.36)

It can be recognized that D21 = 0 according to the form of (3.22) as the RES disturbance

w is not included in the measurement vector y. In a compact matrix form, the control input

u is represented in terms of the measurement vector y as u = Ky, where the constant matrix

K only has non-zero elements in the columns corresponding to the respective local variables.

3.6 Optimal Gain Calculation

Having now set up the optimization problem given by (3.25) with Tzw(s) corresponding

to the transfer function from RES disturbances w in (3.19) to the performance vector z

given by (3.26) and the weighting functions as defined, the next step is to solve this problem

constraining the resulting controllers to have the form (3.35). Since the available commercial

H∞ solvers such as Matlab routine hinfsyn do not allow to specify the yielding H∞ controller

to be static and decentralized, a customized solver has to be developed in order to obtain the

H∞ control gains. Based on two theorems in [37, 38] and the bisection method, an improved
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iterative linear matrix inequality (ILMI) algorithm is developed and tailored to solve the

involved H∞ problem to provide the parameters k1i, k2i, k3i, k4i for the low order controllers

in (3.35). The CVX software package [39] is used as a numerical tool.

Theorem 2 (Bounded Real Lemma [37, 38]). Consider the linear time invariant contin-

uous time (LTI-CT) system with the following state space representation and assume that

(A,B2, C2) is stabilizable and detectable.

ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w

The following three statements are equivalent:

1. There exists a static output feedback u = Ky such that the closed-loop system is

asymptotically stable and ‖Tzw‖∞ < γ;

2. There exists a positive definite solution P to the LMI:




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CL

CCL DCL −γI
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where ACL = A+B2KC2, BCL = B1 +B2KD21, CCL = C1 +D12KC2,

DCL = D11 +D12KD21;

3. There exists a P̃ ≻ 0 in the form of

P̃ ,


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
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P 0 0

0 I 0

0 0 I








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such that P̃ B̄KC̄ + (P̃ B̄KC̄)T + ĀT P̃ + P̃ Ā ≺ 0, where

Ā =







A, B1, 0

0, −γI/2, D11/2

C1, D11/2, −γI/2






, B̄ =







B2

0

D12






, C̄ =







CT
2

DT
21

0







T

.

The proof of the equivalence between 1) and 2) is given in [22, 23]. The equivalence

between 2) and 3) can be verified by plugging coefficient matrices into the respective LMIs.

Theorem 2 transforms the original H∞ problem in the frequency domain into a nonlinear

matrix inequality problem that can be further transformed to a convex programming prob-

lem.

Remark 1. We introduce the following variation to the third statement in Theorem 2:

There exists a P̄ ≻ 0 in the form of

P̄ ,









P 0 0

0 qI 0

0 0 qI









such that P̄ B̄KC̄ + (P̄ B̄KC̄)T + ĀT P̄ + P̄ Ā ≺ 0.

Compared to the third statement in Theorem 2, Remark 1 enlarges the feasible set in

terms of the unknown variable P , improving the convergence performance of Algorithm 1

described below.

The second theorem which is used to solve the problem is the stabilization lemma via

static output feedback. This theorem essentially facilitates an iterative approach to solve

the stabilization problem with static output feedback which is nonlinear and non-convex.

Theorem 3 (Stabilization Lemma via Static Output Feedback [38]). Consider the LTI-CT

system ẋ = Ax+Bu, y = Cx. The following two statements are equivalent:
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1. There exist P ≻ 0 and K such that

(A+BKC)TP + P (A+BKC) ≺ 0;

2. There exist P ≻ 0, X ≻ 0 and K such that













ATP + PA−XBBTP

−PBBTX +XBBTX
(BTP +KC)T

(BTP +KC) −I













≺ 0.

Remark 2. We add an extra constraint P ∈ Ψ on the positive definite matrix P to Theorem

3 with Ψ being a convex cone. The proof including this additional constraint is essentially

the same as the proof of Theorem 3 in [38]. Theorem 3 plus the additional constraint links

the static output feedback stabilization problem to a linear matrix inequality problem for a

fixed positive definite matrix X.

Based on the two theorems and Remark 1 and Remark 2, the existing ILMI algorithm

given in [38] is improved as outlined below and employed to solve the involved H∞ problem

with decentralized static output feedback. The notations are consistent with the standard

H∞ problem formulation and Theorem 2.

Algorithm 1 (Improved ILMI Algorithm).

1. Initialize the upper and lower bounds of ‖Tzw‖∞ as γmax and γmin, where γmax is a

sufficiently large number and γmin is typically set to be 0.

2. If γmax − γmin < ǫ, where ǫ is a preset tolerance, then γmax is the minimum value of

‖Tzw‖∞. Stop. Otherwise, set γ = (γmax + γmin)/2.

3. Select a constant matrix Q ≻ 0 and solve P̄ from the following algebraic Riccati
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equation:

ĀT P̄ + P̄ ĀT − P̄ B̄B̄T P̄ +Q = 0.

Set i = 1 and initialize X1 by setting X1 = P̄ .

4. Solve the following optimization problem OP1 in terms of decision variables P̄i, Ki, αi

using CVX:

min
P̄i,Ki,αi

αi

s.t.













ĀT P̄i + P̄iĀ−XiB̄B̄
T P̄i

−P̄iB̄B̄
TXi +XiB̄B̄

TXi − αiI

(B̄T P̄i +KiC̄)

(B̄T P̄i +KiC̄)
T

−I













� 0 (3.37)

P̄i =







Pi 0 0

0 qiI 0

0 0 qiI






� 0 (3.38)

Ki ∈ Ω (3.39)

−β ≤ [Ki]jk ≤ β ∀j, k (3.40)

P̄i � βI (3.41)

where β is a large positive constant and Ω is a special set according to the

decentralized control structure defined in (3.35). Note that Xi is a parameter of OP1.

Denote α∗
i as the minimum value of αi. Pick one pair (P̄ ∗

i , K
∗
i ) that achieves the

minimum of αi.

5. If α∗
i < 0, then K∗

i is a stabilizing gain with ‖Tzw‖∞ < γ. Set γmax = γ and go to 2).

Otherwise, go to 6).
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6. If ‖Xi − P̄ ∗
i ‖ < δ or i exceeds a preset iteration limit, where δ is a prescribed

tolerance, set γmin = γ and go to 2); else, set i = i+ 1 and Xi = P̄ ∗
i−1, then go to 4).

Remark 3. Constraint (3.37) in OP1 corresponds to an improved relaxation formulation of

the second theorem resulting in a convex problem. The original relaxation formulation of the

existing ILMI algorithm in [38] is related to a generalized eigenvalue minimization problem,

which is non-convex. Constraint (3.38) is included based on Remark 1 and the additional

constraint (3.39) ensures the decentralized control design as defined in (3.35). The extra

constraints (3.40)-(3.41) guarantee the solvability of OP1 (see Remark 4 below). Algorithm

1 reduces the number of optimization problems from two to one in each iteration compared

to the algorithm presented in [38].

Remark 4. We now show that the optimization problem OP1 in Algorithm 1 is solvable.

OP1 is equivalent to:

min
P̄i,Ki

λmax[fi(P̄i, Ki)] s.t.(P̄i, Ki) ∈ Σ

where λmax(·) denotes the maximum eigenvalue of a square matrix, Σ is the compact set

defined by (3.38)-(3.41), and

fi(P̄i, Ki) = ĀT P̄i + P̄iĀ−XiB̄B̄
T P̄i − P̄iB̄B̄

TXi +XiB̄B̄
TXi

+(B̄T P̄i +KiC̄)
T (B̄T P̄i +KiC̄). (3.42)

λmax[fi(P̄i, Ki)] is a continuous function because of the continuity of eigenvalue functions.

According to the extreme value theorem, we know that a real-valued continuous function f

over a compact set V must attain its minimum value at least once in V . Therefore, OP1 is

solvable.

Remark 5. The optimization problem OP1 is of the semi-definite programming (SDP) type

and can be efficiently handled by convex optimization solvers. It should be noted that the

performance of such an ILMI algorithm is dependent on the initial condition. Therefore, a

different initial matrix Q may be selected if necessary.
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3.7 Practical Implementation Issues

The possible issues associated with each step in practical implementation of the AFC ap-

proach are analyzed in this section. The steps of the AFC design are summarized below.

1. Derive the system model;

2. Identify the conventional generators and energy storage devices that are willing to

participate in the AFC framework;

3. Determine the participation factors for all the participating generators and storages

according to their willingness to provide frequency regulation and their physical capa-

bilities;

4. Calculate the frequency dependent weighting functions based on the participation fac-

tors and the desired cut-off frequency;

5. Calculate the controller gains by solving the resulting minimization problem.

Among the steps above, the most difficult and challenging step is to obtain a system

model with reasonable accuracy, especially when dealing with very large scale power systems.

In case that the system model is inaccurate, additional trial-and-error based fine tuning

procedures for the yielding robust controllers are needed in order to achieve the desired

control performance. However, this is out of scope of this dissertation. The practice in power

system analysis with respect to the application of robust control in frequency regulation

assumes that the system model is trustworthy, such as in [24, 25].

In terms of steps 2) and 3), no critical issues are involved in implementing them. These

steps fit well into the current deregulated electricity market, specifically the ancillary ser-

vices market. The participation factors can be determined according to the bids submitted

by generators and storages. The concept of participation factors is also adopted in the afore-

mentioned previous work [24, 25]. One possible issue associated with step 4) is the choice

of a proper cut-off frequency fc, which is a design variable to reflect the trade-off between
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the usage of conventional generators and the usage of storage devices in balancing the RES

variations. A lower value of fc in the controller design stage indicates that an increased

usage of the storage participating in frequency regulation is desired. Finally, step 5) can be

easily carried out based on the description in Section 3.6.

If AFC is integrated into the electricity markets, the frequency of re-performing the con-

troller design steps above depends on the specific ancillary services market. For example,

the current PJM ancillary services market clears its regulation market on an hourly basis

[40, 41]. PJM would have to redo the AFC design process every hour if they would adopt the

proposed AFC approach. Two separate bidding pools need to be set up in order to accom-

modate the two types of resources – the generator pool for slow responding resources and the

storage pool for fast responding resources. Based on the bids from generators and storages

together with the anticipated regulation requirement of the system, the participation factors

in (3.29) can be calculated and therefore the frequency dependent weighting functions in

(3.27)-(3.28) are determined given a prescribed cut-off frequency. Once the controller gains

are computed, they are sent to the corresponding resources to adjust their governor/power

electronics controller settings. The entire process of AFC design in a market environment

can be implemented using computer programs and automatic control equipments.

3.8 Case Studies

In this section, we apply the proposed AFC approach to two widely used test systems in

power system dynamic studies – the Western Electricity Coordinating Council (WECC)

9-bus system and the IEEE New England 39-bus system.

3.8.1 WECC 9-Bus System

The WECC 9-bus test system shown in Fig. 3.3 is used to illustrate the performance of

the AFC level control of the proposed two-level control approach. The RES generator is
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installed at Bus 9 and the energy storage device is placed at Bus 8, which is a load bus. The

parameters of the test system that are taken from [2, 42] are given in the Appendix A.

Bus 1

Bus 4

Gen 1

Gen 2
Bus 2

Gen 3
Bus 3

RES

Bus 7

Bus 5 Bus 6

Bus 8 Bus 9

PL5 PL6

PL8

PR9

PG1

PG2 PG3

Storage

PS8

Figure 3.3: WECC 9-bus test system.

The system power base is 100 MVA. The capacity of the storage device is 2 MWh with

50 MW maximum power input/output capability, reflecting the fact that the energy storage

application in frequency regulation is a high power application. The RES variations (Fig.

3.4) are within about ±5% [42] around the average value of 600 MW and the RES generator

capacity is 800 MW. In case that the amount of the high frequency components in RES

variations is greater than the power rating of the storage device, conventional generators

will kick in to help to balance the fast RES fluctuations leading to the consequence that

the time-scale matching objective may not be achieved as designed. The load is assumed

to be constant with a total of 1, 000 MW for the considered time frame. The foregoing

numeric values associated with RES and load are chosen such that a scenario with very high

penetration of renewable generation is considered in the simulation.

The base case corresponds to the situation where all the three generators are equipped
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Figure 3.4: RES variations.

with governors with droop coefficient R and the secondary AGC control is in place with

the frequency sensor located at Bus 1. The parameters of the proportional-integral AGC

controller are tuned by the trial and error method. The resulting AGC control signal is

set to be equally assigned to each conventional generator and the storage device. The base

case is termed as CFC, i.e. conventional frequency control. Under the proposed AFC, new

decentralized controllers are designed for all the three generators and the storage device. The

design variables are chosen as follows: fc = 0.016Hz, n = 1, mG,1 = mG,2 = mG,3 = 33%,

mS,1 = 100%. The corresponding frequency dependent weighting functions for generator

and storage power output are shown in Fig. 3.2. For illustration purposes, the weighting

function Ww(s) in (3.25) for the exogenous input is chosen to be a low pass filter with cut-off

frequency at 1 Hz, roughly reflecting the fact that the majority of frequency components in

RES variations such as wind and solar generation is below 1 Hz. Thus, the yielding AFC

controllers after H∞ minimization are obtained:

∆P ref
G1 = −22.1391∆ω1 − 0.0852∆θ1

∆P ref
G2 = −7.7482∆ω2 − 0.0870∆θ2

∆P ref
G3 = −1.7399∆ω3 − 0.0857∆θ3

∆P ref
S1 = −806.8710∆ω8 + 1.3995∆SOC1.
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Time-Scale Matching Objective

The Bode magnitude diagram of the transfer functions from the RES disturbance w to the

real power output of the three generators and the storage device is depicted in Fig. 3.5. As

can be seen from Fig. 3.5, the time-scale matching objective in the AFC design is successfully

achieved, i.e. all the three generators are mainly responsible to balance the low frequency

components of the RES variations below 0.1 rad/sec (∼ 0.016 Hz) while the storage device

takes care of the high frequency components above 0.1 rad/sec. In contrast, the generators

in the base case tend to pick up the RES disturbances with the frequency spectrum up to 3

rad/sec. Moreover, the storage device in the base case acts like a conventional generator as

it is simply requested to follow the AGC signal. It is noted that the curves corresponding

to the generator power output under AFC overlap with each other because the participation

factors are chosen to be identical for all the three generators.
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Figure 3.5: Real power output in the frequency domain.

Frequency Response

Fig. 3.6 shows the comparison of frequency deviations at Bus 3 between AFC and CFC in

the presence of the aforementioned RES variations. Similar frequency deviation curves are
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observed at the other two generator buses. The frequency deviations under AFC are further

reduced and narrowed within a tighter band than the base case.
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Figure 3.6: Frequency deviations at Bus 3.

Generator Response

The power output deviations of Generator 3 from its operating point are plotted in Fig. 3.7.

Similar power output deviation curves are observed for the other two generators. Compared

to the base case, the power output of the three generators under AFC is smoothed out and

high frequency fluctuations in the power output are greatly attenuated. The reason is that

the burden on conventional generators to follow the RES variations is shared by the energy

storage device according to the time-scale matching objective.

Storage Response

Fig. 3.8 shows the power injection deviations and the SOC deviations of the storage device

under AFC. The storage device is sensitive to the high frequency component of the RES

variations and therefore ramps up and down very heavily and frequently. On the other hand,

the SOC deviations are well maintained within the ±2% range by the AFC storage controller.
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Figure 3.7: Power output deviations of Generator 3 from its operating point.

With the SOC close to its predefined level, the storage device is able to participate in other

power or energy applications maximizing its economic value. However, if an increased usage

of the storage participating in frequency control is desired, the corresponding weighting

functions can be adjusted accordingly.
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Figure 3.8: Time domain storage response under AFC.

In addition, the comparison of SOC between AFC and CFC in the frequency domain is

plotted in Fig. 3.9, showing the magnitudes of the transfer functions from the RES dis-
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turbance w to SOC deviations under AFC and CFC over the entire frequency spectrum.

According to Fig. 3.9, the peak magnitude of the closed loop transfer function from distur-

bance w to SOC deviations under AFC is approximately −20 dB, which implies that the

root-mean-square (RMS) SOC deviations are guaranteed to be bounded in the ±3% range

for any bounded disturbance input with RMS smaller than 0.3 p.u. in the test system. In

contrast, there is no upper bound on the peak magnitude of the same transfer function under

CFC. The SOC under CFC is prone to exceed its limit with the increase of the low frequency

components in RES variations.
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Figure 3.9: Bode magnitude diagram of the transfer function from w to ∆SOC.

3.8.2 IEEE New England 39-Bus System

The IEEE New England 39-bus test system shown in Fig. 3.10 is used to further illustrate

the performance of the proposed AFC approach. The original test system is modified by

connecting a storage device to Bus 27 and a wind generator to Bus 26. The parameters of

the test system that are taken from [5, 42] are given in the Appendix B.

The system power base is 100 MVA. As for the storage device, the capacity is set to 5

MWh (0.05 p.u.h) and the maximum input/output power is symmetric and set to 100 MW
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W

S

Figure 3.10: IEEE New England 39-bus test system [5].

(1 p.u.). In terms of the wind generator, the rated capacity is assumed to be 1, 000 MVA

(10 p.u.), which takes up about 12.5% of the total generation capacity of the system. The

wind power variations (Fig. 3.11) are within about ±15% around the average value of 800

MW. The load is assumed to be constant for the considered time frame.

The base case denoted by CFC corresponds to the situation where all the ten generators

are equipped with governors with droop coefficient R and the secondary control is in place
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Figure 3.11: Wind power variations.

with the frequency sensor located at Bus 31 (the slack bus specified in [5]). The parameters

of the proportional-integral AGC controller are tuned by the trial and error method. The

AGC control signal is set to be equally assigned to each conventional generator and the

storage device in CFC. In contrast, new decentralized controllers are designed for all the ten

generators and the storage device under AFC. The design variables are chosen as follows:

fc = 0.0016Hz, n = 1, mG,i = 10% ∀ i ∈ G, mS,1 = 100%. The selected cut-off frequency

fc here is smaller than that in the simulation of the WECC 9-bus system because genera-

tors with higher power ratings typically have larger inertia constants leading to relatively

slower responses. The corresponding frequency dependent weighting functions for generator

and storage power output are shown in Fig. 3.12. The weighting function Ww(s) for the

exogenous input is chosen to be a low pass filter with cut-off frequency at 1 Hz.

By following the solution procedure of the decentralized static output feedback based H∞

minimization in Section 3.6, the yielding AFC controller gains are calculated:

∆P ref
G1 = −45.82∆ω39 − 0.02187∆θ39

∆P ref
G2 = −28.26∆ω31 − 0.02347∆θ31

∆P ref
G3 = −26.65∆ω32 − 0.02346∆θ32
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Figure 3.12: Frequency dependent weighting functions with design variables fc = 0.0016Hz,
n = 1, mGi = 10% ∀ i ∈ G, mS1 = 100%.

∆P ref
G4 = −19.78∆ω33 − 0.02347∆θ33

∆P ref
G5 = −20.80∆ω34 − 0.02315∆θ34

∆P ref
G6 = −22.47∆ω35 − 0.02348∆θ35

∆P ref
G7 = −24.57∆ω36 − 0.02338∆θ36

∆P ref
G8 = −23.11∆ω37 − 0.02373∆θ37

∆P ref
G9 = −47.38∆ω38 − 0.02351∆θ38

∆P ref
G10 = −22.69∆ω30 − 0.02372∆θ30

∆P ref
S1 = −7579.20∆ω27 + 0.09227∆SOC1.

Time-Scale Matching Objective

The Bode magnitude diagram of the transfer functions from the wind power disturbance w

to the real power output of the ten generators and the storage device under AFC is depicted

in Fig. 3.13. As can be seen from Fig. 3.13, the time-scale matching objective in the AFC

design is successfully achieved, i.e. all the ten generators are mainly responsible to balance

the low frequency components of the wind power variations below 0.01 rad/sec (∼ 0.0016
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Hz) while the storage device takes care of the high frequency components above 0.01 rad/sec.

The curves corresponding to the generator power output under AFC overlap with each other

because the participation factors are chosen to be identical for all the ten generators. In

contrast, the bode magnitude diagram of the same set of transfer functions under CFC is

shown in Fig. 3.14. The generators in the base case tend to pick up disturbances with

the frequency spectrum up to 0.2 rad/sec and the storage device acts like a conventional

generator as it is simply requested to follow the AGC signal.
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Figure 3.13: Real power output under AFC in the frequency domain.
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Figure 3.14: Real power output under CFC in the frequency domain.
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Frequency Response

Fig. 3.15 shows the comparison of frequency deviations at Bus 37 (Generator 8) between AFC

and CFC in the presence of the aforementioned wind power variations. Similar frequency

deviation curves are observed at the other nine generator buses. The frequency deviations

under AFC are further reduced and narrowed within a tighter band than the base case.
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Figure 3.15: Frequency deviations at Bus 37.

Generator Response

The power output deviations of Generator 8 from its operating point are plotted in Fig. 3.16.

Similar power output deviation curves are observed for the other nine generators. Compared

to the base case, the power output of the ten generators under AFC is smoothed out and high

frequency fluctuations in the power output are greatly attenuated. To better understand the

reduced burden on generator ramping, real power output from Generator 8 in the frequency

domain is shown in 3.17. It is evident that the generator under AFC is mainly in charge of

wind power variations below 0.01 rad/sec compared to its responsibility of up to 0.2 rad/sec

under CFC.
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Figure 3.16: Power output deviations of Generator 8 from its operating point.
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Figure 3.17: Power output from Generator 8 in the frequency domain.

Storage Response

Fig. 3.18 shows the power injection deviations and the SOC deviations of the storage device

under AFC. The storage device ramps up and down very heavily and frequently to compen-

sate the high frequency component of the wind power variations whereas the SOC deviations

are well maintained within the ±5% range by the AFC storage controller.

In addition, the comparison of SOC between AFC and CFC in the frequency domain

55



0 20 40 60 80 100 120 140 160 180
−1

0

1

S
to

ra
ge

 p
ow

er
 in

je
ct

io
n 

de
vi

at
io

ns
 (

p.
u.

)

Time (sec)
0 20 40 60 80 100 120 140 160 180

−0.05

0

0.05

S
O

C
 d

ev
ia

tio
ns

 

 

SOC deviations
Storage power injection deviations (p.u.)

Figure 3.18: Time domain storage response under AFC.

is plotted in Fig. 3.19, showing the magnitudes of the transfer functions from the RES

disturbance w to SOC deviations under AFC and CFC over the entire frequency spectrum.

The magnitude of the closed loop transfer function from disturbance w to SOC deviations

under AFC is bounded while there is no upper bound on the peak magnitude of the same

transfer function under CFC. The possibility for the storage device under CFC to hit the

SOC limit grows with the increase of low frequency components in wind power variations.
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Figure 3.19: Bode magnitude diagram of the transfer function from w to ∆SOC.
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Performance of the Frequency Estimation Model

Fig. 3.20 shows the comparison between the estimated frequency and the actual frequency at

Bus 27 in the AFC case. The actual frequency in the simulation is calculated by numerically

differentiating the voltage angle signal. The fact that the two curves in Fig. 3.20 almost

overlap with each other indicates the good performance of the frequency estimation model

for non-generator buses derived in Section 3.3.
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Figure 3.20: Comparison between estimated frequency and actual frequency at Bus 27.

Importance of the Structure-Preserving Approach

Fig. 3.21 shows the frequencies at all the ten generator buses in the base case using the

structure-preserving model. It is apparent that the traditional model for power system

frequency control analysis where a uniformed frequency is assumed for each control area is

inaccurate as the frequencies at different generator buses actually differ from each other.

3.9 Summary

Based on the decentralized static output feedback, a new H∞-based and structure-preserving

approach to redesign the frequency control framework in power systems with significant
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Figure 3.21: Frequencies at all the ten generator buses in the CFC case.

amounts of RESs is proposed in this chapter. A proof of concept is given for the AFC design

using the WECC 9-bus test system and the IEEE New England 39-bus test system. Under

the proposed AFC framework, conventional generators and energy storage devices are coor-

dinated to take the responsibility of power balancing according to the spectrum of the RES

variations, i.e. high frequency RES variations are balanced by the storage devices while low

frequency RES deviations are balanced by the conventional generators reducing the required

ramping of the conventional generators. Consequently, the AFC design enables the incor-

poration of energy storage devices in frequency control taking into account their limitations

with regards to provided energy. In addition, the proposed AFC approach provides a means

to design and coordinate decentralized PI controllers for multiple conventional generators

which enables the return to the nominal frequency.

In terms of modeling and control, a mathematical model is developed to estimate the local

frequency at non-generator buses to facilitate the proposed decentralized control scheme and

an existing ILMI algorithm is improved to solve the involved H∞ problem. More importantly,

the AFC applies the decentralized static output feedback technique to achieve the time-scale

matching objective, resulting in task-specific but easily-implementable controllers.
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Chapter 4

Stochastic Optimal Dispatch

This level aims to deal with the second and the third issues mentioned in Chapter 1, i.e.

the current frequency control scheme does not take into account the increased uncertainty

caused by RESs at the tertiary level and in addition, it is not suitable for the integration of

energy storage devices as not only the power output but also the provided energy is limited.

Based on the concept of stochastic model predictive control (SMPC), the level of stochastic

optimal dispatch solves a two-stage stochastic version of the traditional security constrained

economic dispatch (SCED) problem in power systems. As economic dispatch is the core

part of real time electricity markets, the solution process of this level must be done within

the time frame of 5 to 15 minutes depending on the specific market. The proposed SMPC

based stochastic optimal dispatch optimizes over a look-ahead horizon with knowledge of the

system model and various constraints while explicitly taking into account the uncertainties as

scenarios in order to dispatch power resources including both energy storage and conventional

generation in the most economic and safe manner. The uncertainties here correspond to the

power output of RES generators as well as the demand at load buses. The objective is to

minimize the expectation of the sum of the generation and ramping costs for conventional

generators and the costs associated with storage conversion losses while satisfying all the

system constraints. The time-scale matching principle is achieved by using the quadratic

ramping cost terms associated with conventional generation in the objective function. Due
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to the large size of the resulting SMPC optimization problem, optimization decomposition

techniques are employed to decompose the overall problem into subproblems which can be

solved in parallel thereby reducing the computation time. In addition, scenario reduction

techniques are adopted to reduce the number of scenarios, further relieving the computational

burden.

The goal of this chapter is to provide an approach which efficiently solves the proposed

SMPC based SCED problem. The focuses of this chapter are therefore twofold: 1) problem

formulation for the SMPC based SCED problem, and 2) investigation of the influences of dif-

ferent decomposition methods as well as different decomposition schemes on the convergence

speed. Energy storage devices with operational constraints are incorporated in the proposed

stochastic SCED formulation acting as an energy buffer to counterbalance the fluctuations

in the power output of RES generators. With respect to the optimization decomposition

methods, both the primal decomposition and the dual decomposition will be investigated.

In terms of the way how the overall problem is decomposed, both the scenario based and the

temporal based decompositions will be looked into in order to achieve a trade-off between

convergence speed and the number of subproblems.

4.1 Background and Literature Review

The two key characteristics which make a large scale integration of renewable resources

challenging are: (1) their variable and intermittent power output and (2) the difficulty to

accurately predict that output [6, 7]. To resolve this challenge, a rethinking of how decisions

are currently made in electric power systems is required; deterministic decision making needs

to be replaced by stochastic decision making which explicitly takes into account the increased

uncertainty in the system [43]. Multiple papers such as [44–46] have demonstrated the

advantage of stochastic optimization over deterministic optimization with respect to cost

reduction in unit commitment, economic dispatch, and electric vehicle charging management.

The counterpart of the proposed stochastic optimal dispatch in today’s deterministic decision
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making power industry is economic dispatch. The traditional economic dispatch optimizes

only for the current time interval and does not take into account predicted future conditions

of the grid. The uncertainties in this case correspond to the power output of the non-

dispatchable generation resources. A dispatchable generator should ramp up in advance

if a sudden drop in wind generation is foreseen. For this reason, model predictive control

(MPC) based economic dispatch was proposed by researchers, such as the work in [47–49].

However, the stochastic variables in those papers are either assumed to be perfectly predicted

or represented by their corresponding expected values.

Recently, the stochastic model predictive control (SMPC) method where the uncertain

variables are treated as random processes is applied to the economic dispatch problem un-

der uncertainties, such as in [45, 50–52]. In stochastic optimization, the objective is to

minimize the expected value for a given objective function taking into account a range of

possible scenarios for the random processes and the probabilities for these scenarios to occur.

If stochastic optimization is combined with model predictive control, then, the size of the

optimization problem very rapidly grows to a scale which becomes hard to solve and to man-

age. Optimization decomposition and parallelization based solution methods are therefore in

high demand to reduce the computation time. In [45, 50], the involved SMPC problems are

solved without parallelization, i.e. either directly by general commercial optimization solvers

or via dynamic programming. As a result, it will not be possible to solve the problem for

a larger system without the usage of methods which improve the computational efficiency.

In addition, the power network constraints are neglected causing risks of overloading the

power transmission lines. In [51], the Lagrangian relaxation decomposition is adopted to

tackle the SMPC problem. However, such a method requires careful tuning of parameters as

well as a scheme for multiplier update. Alternatively, the authors of [52] applied the Schur-

complement decomposition method to decompose the Jacobian matrix associated with the

nonlinear equation system generated by the interior point method. The underlying assump-

tion is that a customized solver of the interior point method is developed and available.

Besides, neither [51] nor [52] include energy storage devices in their problem formulation.
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4.2 SMPC Basics and Problem Formulation

In this section, we first briefly describe the concept of stochastic model predictive control

together with its general formulation and then the specific problem formulation for the SMPC

based SCED problem will be given.

Stochastic model predictive control is an advanced control technology that integrates the

advantage of explicit inclusion of uncertainties in stochastic programming and the capability

of anticipating the future behavior of the target system when making control decisions in

model predictive control. A two-stage problem is typically considered in practical applica-

tions. The SMPC controller merely implements the first-stage control action of a two-stage

problem at each time step. The second-stage decision in theory of stochastic programming

is a collection of recourse actions that need to be taken in response to each random outcome

for the considered uncertainties. However, these recourse decisions are never implemented

under the SMPC setup because a new two-stage SMPC problem incorporating the new in-

formation regarding uncertainties and system states will be formulated and solved at the

next time step according to the spirit of model predictive control. The reason for this is that

there are always errors in predictions and mathematical models, e.g. the prediction of the

wind power output is inaccurate, or losses of the storage devices are not exactly modeled.

The general mathematical formulation for a two-stage stochastic model predictive control

problem at each time step (denoted by time step t) is given by

min
us

∑

s∈N

πs

[

∑

k∈T

lk(x
s(t+ k), us(t + k)) + lK(x

s(t +K))

]

(4.1)

s.t. xs(t+ k + 1) = Axs(t+ k) +Bus(t+ k) ∀s ∈ N , k ∈ T (4.2a)

xmin ≤ xs(t + k + 1) ≤ xmax ∀s ∈ N , k ∈ T (4.2b)

umin ≤ us(t+ k) ≤ umax ∀s ∈ N , k ∈ T (4.2c)

h(xs(t+ k),us(t+ k), ds(t+ k)) ≤ 0 ∀s ∈ N , k ∈ T (4.2d)

us(t) = us+1(t) ∀s ∈ {1, . . . , N − 1} (4.2e)
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where the parameters and variables are given as:

N : set of all scenarios, N , {1, · · · , N},

T : set of the receding horizon, T , {0, · · · , K − 1},

K : optimization horizon,

πs : probability associated with Scenario s,

xs(t+ k) : system states for scenario s at time step t+ k,

us(t+ k) : control input for scenario s at time step t+ k,

ds(t+ k) : disturbances for scenario s at time step t+ k,

lk(·) : cost function for scenario s at time step t + k,

lK(·) : cost function for scenario s at final step t+K.

This formulation captures inter-temporal constraints in (4.2a) and upper and lower limits

on state and control variables in (4.2b) and (4.2c). Constraint (4.2d) accounts for intra-

temporal constraints. The last constraint (4.2e) is known as the so-called nonanticipativity

constraint in the stochastic programming community, stating that the first stage decisions

should not be dependent on future observations of the random disturbances.

In terms of the general SMPC formulation, the complete procedure of implementing SMPC

is the following:

• At time step t, the optimization problem (4.1)-(4.2) is solved in order to find the values

for the first-stage and second-stage control decisions;

• The first-stage control decision us(t) is applied to the physical system;

• The state of the system at the following time step is determined by measurements,

e.g. actual energy level of storage devices, actual power supply level of dispatchable

generators, etc.;

• The horizon is moved by one, i.e. t becomes t + 1 and the optimization is redone at

this next time step for the shifted horizon.
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The specific problem we consider in this chapter is the two-stage SMPC based SCED

problem in a setting that consists of dispatchable generators, variable renewable energy

sources, energy storage devices, and demands. For simplicity, we let the current time step

t = 0 in the rest of this chapter. The SMPC based SCED problem formulation is given by

min
∆P s

G
,P s

Si
,P s

So

∑

s∈N

πs

[

∑

k∈T

∑

i∈ΩG

CGi

(

P s
Gi
(k),∆P s

Gi
(k)
)

+
∑

k∈T

∑

i∈ΩS

CSi

(

P s
Sii

(k), P s
Soi

(k)
)

+
∑

i∈ΩG

CGi

(

P s
Gi
(K)

)

]

(4.3)

s.t.∀s ∈ N , k ∈T :

Es
Si
(k + 1) = ηiE

s
Si
(k) + αiT · P s

Sii
(k)

−
1

αi
T · P s

Soi
(k), ∀i ∈ ΩS (4.4a)

P s
Gi
(k + 1) = P s

Gi
(k) + ∆P s

Gi
(k), ∀i ∈ ΩG (4.4b)

Emin
Si

≤ Es
Si
(k + 1) ≤ Emax

Si
, ∀i ∈ ΩS (4.4c)

0 ≤ P s
Sii

(k) ≤ Pmax
Si

, ∀i ∈ ΩS (4.4d)

0 ≤ P s
Soi

(k) ≤ Pmax
Si

, ∀i ∈ ΩS (4.4e)

Pmin
Gi

≤ P s
Gi
(k + 1) ≤ Pmax

Gi
, ∀i ∈ ΩG (4.4f)

∆Pmin
Gi

≤ ∆P s
Gi
(k) ≤ ∆Pmax

Gi
, ∀i ∈ ΩG (4.4g)

∑

i∈ΩG

(P s
Gi
(k) + ∆P s

Gi
(k)) +

∑

i∈ΩR

P s
Ri
(k)

−
∑

i∈ΩD

P s
Di
(k)−

∑

i∈ΩS

(P s
Sii

(k)− P s
Soi

(k)) = 0 (4.4h)

−Pmax
ij ≤ DFij · P

s(k) ≤ Pmax
ij , ∀ij ∈ ΩL (4.4i)

∀s ∈ {2, . . ., N} :

∆P 1
Gi
(0) = ∆P s

Gi
(0), ∀i ∈ ΩG (4.4j)

P 1
Sii

(0) = P s
Sii

(0), ∀i ∈ ΩS (4.4k)

P 1
Soi

(0) = P s
Soi

(0), ∀i ∈ ΩS (4.4l)
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where the parameters and variables are given as1:

N : set of all scenarios, N , {1, · · · , N},

T : set of the receding horizon, T , {0, · · · , K − 1},

K : optimization horizon,

πs : probability associated with Scenario s,

ΩG : buses to which a generator is connected

ΩS : buses to which a storage is connected,

ΩR : buses to which a non-dispatchable renewable generator is connected,

ΩD : buses to which demand is connected,

ΩL : set of lines in the system,

Es
Si

: energy level for storage at bus i for scenario s,

P s
Sii

: charging of storage at bus i for scenario s,

P s
Soi

: discharging of storage at bus i for scenario s,

ηi : standby loss coefficient of storage at bus i,

αi : conversion loss coefficient of storage at bus i,

T : time between two time steps,

P s
Gi

: output of generator at bus i for scenario s,

∆P s
Gi

: change in power output of generator at bus i for scenario s,

P s
Ri

: output of non-dispatchable renewable generator at bus i for scenario s,

P s
Di

: demand at bus i for scenario s,

CGi
(·) : quadratic cost function for generator at bus i, including power generation cost and ramp-

ing cost,

CSi
(·) : linear cost function associated with conversion losses for storage device at bus i,

DFij : row for line ij in the distribution factor matrix,

P s : vector of power injections at buses in scenario s.

The goal is to supply the demand in the most economic and safe manner by dispatching

the available power resources, achieving optimal coordination between generators and storage

1for simplicity the indication of the time step, i.e. (k) is omitted;
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devices with respect to real power balancing. The uncertainties in the output from the non-

dispatchable generation resources and in the demand consumption are captured in the set

of considered scenarios with corresponding probabilities. Constraints on line flows are taken

into account using a DC power flow model. The system states include the energy level in

the storage and the power supply level of the dispatchable generators, the control variables

correspond to the dispatchable generator ramp settings and the charging/discharging power

of the energy storage, and the disturbances include demand and non-dispatchable generation.

The energy level Es
Si
(0) is not a variable but a fixed value, namely the current energy

level of the storage at bus i at the beginning of the optimization horizon, whereas P s
Gi
(0) is

the fixed generation output of the generator at bus i during the time step right before the

optimization horizon, which is treated as the initial state of the generator. Consequently,

the power output of generator at bus i in time step k is represented by the state variable

P s
Gi
(k+1). This notation might not be intuitive but it makes the generator model consistent

with the state space modeling convention.

The objective function is the expectation of the sum of the electric power generation cost,

generator ramping cost, and the cost associated with storage conversion losses considering

the range of scenarios N and probabilities π of these scenarios, which is a convex function

in our case. The cost term for the final time step K is separated from the cost terms for

other time steps in the objective function because there are no control inputs associated with

time step K in such a finite horizon problem but there is a cost associated with this step.

The inter-temporal dependencies of the energy levels and of the generator power outputs are

modeled by (4.4a) and (4.4b). Limitations on energy levels, power outputs from generators

and storage devices, and ramp rates of generators are taken into account by (4.4c)–(4.4g).

The overall power balance is kept in (4.4h) and line flow constraints are taken into account

in (4.4i) where the distribution factor matrix DF is calculated based on the DC power flow

model. Equations (4.4j)–(4.4l) correspond to the nonanticipativity for generation ramp and

storage charging/discharging settings.
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4.3 Scenario Reduction

In order to keep the complexity of the two-stage SMPC based SCED problem manageable,

scenario reduction techniques are needed to reduce the number of scenarios. The Kan-

torovich metric based scenario reduction method that was first developed and introduced

in [53, 54] is adopted in this dissertation. The Kantorovich method is a universal scenario

reduction method as there are no requirements posted on the properties of the considered

stochastic process such as the time dependance structure or the dimension of the process.

In addition, the Kantorovich method is independent of the structure of the scenarios, e.g.

tree-structured or fan-structured. Compared to the traditional scenario reduction methods

such as k-means clustering, one advantage of the Kantorovich method is that there is no

need to select/generate the representative scenario for each yielding cluster.

The key ingredient in the Kantorovich method is the Kantorovich distance, which quan-

titatively measures the “distance” between two probability distributions. Let P and Q be

discrete probability distributions of two n-dimensional stochastic processes of horizon length

K with finite scenarios {ξ1, . . . , ξN} and {ξ̃1, . . . , ξ̃M}, and probability weights {p1, . . . , pN}

and {q1, . . . , qM}, respectively. The Kantorovich distance denoted by DK(·, ·) between P

and Q is defined by the optimal value of the following linear program.

DK(P,Q) , min
τij

N
∑

i=1

M
∑

j=1

τij · c(ξ
i, ξ̃j) (4.5)

s.t. τij ≥ 0, ∀i, j (4.5a)
N
∑

i=1

τij = qj , ∀j (4.5b)

M
∑

j=1

τij = pi, ∀i (4.5c)

where c(ξi, ξ̃j) , ‖ξi − ξ̃j‖ which measures the distance between two scenarios on the entire

time horizon and ‖ · ‖ denotes some matrix norm on R
n×K .

Let an index set J ⊂ {1, . . . , N} and consider Q be a reduced probability distribution of
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P, i.e. Q has scenarios ξj with probabilities qj where j ∈ {1, . . . , N}\J . In other words,

Q is obtained from P by deleting all scenarios ξj, j ∈ J and by assigning new probability

weights to each preserved scenarios ξj, j /∈ J . According to the optimal weights theorem

in [53], the minimum Kantorovich distance DK(P,Q) is attained by the following optimal

redistribution rule for probability weights:

qj , pj +
∑

i∈Jj

pi, ∀j /∈ J , (4.6)

where Jj , argmini∈J c(ξ
i, ξj) for each j /∈ J . Moreover, the minimum Kantorovich dis-

tance has the following explicit representation:

D∗
K(P,Q) =

∑

i∈J

pi min
j /∈J

c(ξi, ξj). (4.7)

The interpretation of (4.6) is that the new probability of a preserved scenario in the reduced

distribution is the sum of its original probability and all the probabilities of the deleted

scenarios that are “closest” to it in terms of scenario distance measure c(·, ·).

Thus, the Kantorovich metric based optimal scenario reduction problem with a given

cardinality m of the index set J is given by:

min
J

∑

i∈J

pi min
j /∈J

c(ξi, ξj) (4.8)

s.t. J ⊂ {1, . . . , N} (4.8a)

card(J ) = m (4.8b)

It is evident that the number of preserved scenarios after scenario reduction is N − m.

However, it can be shown that the problem (4.8) actually corresponds to a set covering

problem that is NP-hard. A common heuristic algorithm called backward reduction for the

Kantorovich metric based optimal scenario reduction problem was therefore proposed in [54]

to achieve a suboptimal solution but with much less computational effort. The main idea of
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backward reduction is to iteratively eliminate one scenario until the requested cardinality of

J is reached based on the fact that the special case of deleting one scenario of (4.8) can be

relatively easy to solve. The backward Kantorovich reduction algorithm is given below.

Algorithm 2 (Backward Kantorovich Scenario Reduction [54]).

1. Set J [0] = ∅ and let the index set associated with the original scenarios be

N , {1, . . . , N}.

2. Set i = 0. Compute the N ×N distance matrix of scenario pairs as

C = {ci,j = c(ξi, ξj), ∀ i, j ∈ N}.

3. For each l ∈ N\J [i], compute z
[i]
l = minj 6=l,j∈N\J [i] cl,j.

4. Find l
[i]
∗ ∈ argminl∈N\J [i] p

[i]
l · z[i]l . Set J [i+1] = J [i] ∪ {l[i]∗ }.

5. Find j
[i]
∗ ∈ argminj 6=li

∗
,j∈N\J [i] cli

∗
,j. Set p

[i+1]

j
[i]
∗

= p
[i]

j
[i]
∗

+ p
[i]

l
[i]
∗

.

6. Set i = i+ 1. If i < m where m is the predetermined cardinality of J , go to Step 3.

Else, stop and the index set associated with the reduced scenarios is N\J [i] with

probabilities p
[i]
j where j ∈ N\J [i].

4.4 Classical Solution Methods

The structure of the considered two-stage SMPC based SCED problem which is essentially an

SMPC problem lends itself to employ optimization decomposition techniques to decompose

the overall problem into subproblems which are solved in a parallel but coordinated manner.

The expectation is that the reduced size of the subproblems and the fact that they can be

solved in parallel allows for an improvement in computational efficiency for the considered

stochastic model predictive control problem.

In this section, we provide an overview over the two fundamental classes of decomposi-

tion methods that serve as the classical solution methods for solving SMPC problems and,
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more generally, stochastic programs. These decomposition methods are then applied to the

considered two-stage SMPC based SCED problem. In particular, two well-known decompo-

sition methods in stochastic programming – Benders decomposition and progressive hedging

algorithm are emphasized in this section. In addition, we follow the classical assumption

that the optimization problems we are considering are convex.

4.4.1 Primal Decomposition

Consider the following optimization problem in the form of

min
x1,...,xM ,y

M
∑

m=1

fm(xm, y) (4.9)

s.t. gm(xm, y) ≤ 0, m = 1, . . . ,M (4.9a)

h(y) ≤ 0 (4.9b)

where M is the total number of subproblems and the decision variables x1, . . . , xM , y are all

vectors and y is known as the complicating variable because the overall problem becomes

trivially decomposable if it is fixed and y complicates the overall problem. Following this

idea, we can formulate the subproblems of (4.9) where each subproblem is separable from

each other and can be solved independently and in parallel.

Subproblem m : φm(ȳ
(j)) = min

xm

fm(xm, ȳ
(j)) (4.10)

s.t. gm(xm, ȳ
(j)) ≤ 0 (4.10a)

where φm(y) denotes the optimal value of (4.10) and the superscript j stands for the itera-

tion index and the overhead bar indicates fixed values. Then the original problem (4.9) is
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equivalent to the following problem which is called the master problem.

Master problem : min
y(j+1)

M
∑

m=1

φm(y
(j+1)) (4.11)

s.t. h(y(j+1)) ≤ 0 (4.11a)

The master problem provides an update for the complicating variable y for the next iteration

and it can be solved by traditional methods such as subgradient or cutting-plane methods

[55–57]. This decomposition method is termed primal decomposition because we directly

decompose the original primal problem and part of the primal variables – complicating vari-

ables are manipulated by the master problem. The general primal decomposition algorithm

is described below.

Algorithm 3 (General Primal Decomposition Algorithm).

1. Set j = 1. Find feasible complicating variables y(j) such that h(y(j)) ≤ 0.

2. Solve each subproblem defined in (4.10) in parallel.

3. If stopping criteria are fulfilled, stop. Else, continue.

4. Solve the master problem defined in (4.11) to update complicating variables y(j+1).

5. Set j = j + 1. Go to Step 2.

Benders Decomposition

Benders decomposition (BD) is named after the Dutch mathematician Jacques F. Benders

due to his work of [58], which was originally developed for mixed integer linear programming

and was later generalized to nonlinear programming by other researchers in [59, 60]. Theoret-

ically, Benders decomposition is in the class of primal decomposition with the cutting-plane

method. In terms of the general problem in the form of (4.9), the subproblems and the
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master problem in BD are formulated as:

Subproblem m : φm(ȳ
(j)) = min

xm

fm(xm, y) (4.12)

s.t. gm(xm, y) ≤ 0 (4.12a)

y = ȳ(j) · · · · · · · · · · · ·λ(j)m (4.12b)

Master problem : min
γ(j+1),y(j+1)

γ(j+1) (4.13)

s.t. γ(j+1) ≥
M
∑

m=1

φm(ȳ
(ν))

−
M
∑

m=1

λ(ν)m

T
(y(j+1) − ȳ(ν)) ∀ ν = 1, . . . , j (4.13a)

h(y(j+1)) ≤ 0 (4.13b)

where λ
(j)
m is the Lagrangian multiplier vector associated with (4.12b) at the jth iteration.

The newly introduced variable γ(j+1) is used to approximate the original objective function
∑M

m=1 φm(y
(j+1)) in (4.11) by multiple so-called Benders cuts in the form of (4.13a). This

is also why we mentioned earlier that BD is essentially a primal decomposition with the

cutting-plane method. It is noted that the size of the master problem grows as the iteration

process progresses, which is one disadvantage of BD in certain cases where the problem takes

many iterations to converge.

There might be cases where the solution of the master problem results in an infeasible

subproblem. In such a situation, nonnegative slack variables are added to the infeasible

subproblem and its objective function is modified accordingly by including a large penalty

term for the slack variables. The detailed Benders decomposition algorithm is given below.

Algorithm 4 (Benders Decomposition Algorithm).

1. Set j = 1, γ(j) = −∞. Find feasible complicating variables y(j) such that h(y(j)) ≤ 0.

2. Solve each subproblem defined in (4.12) in parallel.
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3. Resolve the infeasibility issue for certain subproblems by adding slack variables.

4. If |
∑M

m=1 φm(y
(j))−γ(j)|/|γ(j)| ≤ ε where ε is the error tolerance, stop. Else, continue.

5. Solve the master problem defined in (4.13) to update complicating variables y(j+1).

6. Set j = j + 1. Go to Step 2.

In terms of two-stage stochastic optimization, the basic idea of BD is to decompose the

overall problem into subproblems by fixing the first stage variables and then to add the

resulting sensitivity information in the form known as Benders cuts with respect to the first

stage variables to a master problem. Such a process iterates until convergence is reached. The

complicating variables here correspond to the first stage decision variables. The sensitivity

information is essentially represented by the Lagrangian multipliers of the subproblems.

The subproblems give an upper bound of the original problem in each iteration whereas the

master problem yields a lower bound.

In order to utilize Benders decomposition for the considered two-stage SMPC based SCED

problem, the original problem formulation (4.3)-(4.4) needs to be modified by only keeping

one copy of the variables for each equation of (4.4j)–(4.4l) among all the subproblems.

By applying BD to the modified SMPC based SCED problem, subproblems for s ∈ N

are mathematically formulated as

min
∆P s

G
,P s

Si
,P s

So

πs





∑

k∈T̃

∑

i∈ΩG

CGi

(

P s
Gi
(k),∆P s

Gi
(k)
)

+
∑

k∈T̃

∑

i∈ΩS

CSi

(

P s
Sii

(k), P s
Soi

(k)
)

+
∑

i∈ΩG

CGi

(

P s
Gi
(K)

)



 (4.14)

s.t. (4.4a)− (4.4i)

∆PGi
(0) = ∆P

(j)

Gi
(0), ∀i ∈ ΩG (4.15a)

PSii(0) = P
(j)

Sii
(0), ∀i ∈ ΩS (4.15b)

PSoi(0) = P
(j)

Soi
(0), ∀i ∈ ΩS (4.15c)
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where T̃ = T \{0} and the values of the first stage variables ∆PGi
(0), PSii(0) and PSoi(0) are

provided by the master problem at the (j − 1)th iteration. The master problem formulation

at the jth iteration is given by

min
∆P

(j+1)
G

(0),P
(j+1)
Si

(0),P
(j+1)
So

(0)

∑

i∈ΩG

CGi

(

P
(j+1)
Gi

(0),∆P
(j+1)
Gi

(0)
)

+
∑

i∈ΩS

CSi

(

P
(j+1)
Sii

(0), P
(j+1)
Soi

(0)
)

+ γ(j+1) (4.16)

s.t. (4.4d), (4.4e), (4.4g)− (4.4i), ∀k = 0

γ(j+1) ≥ θ
(ν)

−
∑

i∈ΩG

µ
(ν)
G,i

(

∆P
(j+1)
Gi

(0)−∆P
(ν)

Gi
(0)
)

−
∑

i∈ΩS

µ
(ν)
Si,i

(

P
(j+1)
Sii

(0)− P
(ν)

Sii
(0)
)

−
∑

i∈ΩS

µ
(ν)
So,i

(

P
(j+1)
Soi

(0)− P
(ν)

Soi
(0)
)

∀ ν = 1, · · · , j (4.17a)

The Benders cuts are represented in (4.17a) and ν is the iteration index. µ
(ν)
G,i, µ

(ν)
Si,i and

µ
(ν)
So,i are Lagrangian multipliers associated with (4.15a)-(4.15c) at the νth iteration. θ

(ν)
is

the sum of objective function values of all the N subproblems at the νth iteration and the

variable γ(j+1) is used to approximate the subproblem objective functions as a single function

solely dependent on the first stage variables. The flowchart of the iterative update for the

considered SMPC problem using BD is visualized in Fig. 4.1.

4.4.2 Dual Decomposition

The primal decomposition described previously is mainly used to tackle problems with com-

plicating variables. The other class of decomposition methods – dual decomposition that we

will introduce in this subsection deals with problems with so-called complicating constraints.

In fact, a problem with complicating variables can be easily reformulated as a problem with

complicating constraints by duplicating the complicating variables for each subproblem and
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Figure 4.1: Flow chart of the iterative update using BD.

enforcing the equality among all the copies. These equality constraints are actually compli-

cating constraints. Let us consider the following optimization problem in the form of

min
x1,...,xM

M
∑

m=1

fm(xm) (4.18)

s.t. gm(xm) ≤ 0, m = 1, . . . ,M (4.18a)
M
∑

m=1

hm(xm) ≤ 0 · · · · · · · · · · · ·λ (4.18b)

where M is the number of subproblems and (4.18b) is known as complicating constraint

because if it is relaxed the overall problem becomes trivially separable. We can achieve

this relaxation by dualizing the original problem (4.18) with respect to (4.18b). Thus, the

subproblems of (4.18) using dual decomposition are

Subproblem m : φm(λ̄
(j)) = min

xm

fm(xm) + λ̄(j)
T

hm(xm) (4.19)

s.t. gm(xm) ≤ 0 (4.19a)
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where φm(λ) denotes the optimal value of (4.19) and the superscript j stands for the iteration

index and the overhead bar indicates fixed values. λ̄(j) is the Lagrangian multipliers vector

associated with (4.18b) at the jth iteration and is fixed in subproblems. Under the convexity

assumption, the original problem (4.18) is equivalent to the following dual problem which is

called the master problem.

Master problem : max
λ(j+1)

M
∑

m=1

φm(λ
(j+1)) (4.20)

s.t. λ(j+1) ≥ 0 (4.20a)

The master problem provides an update for the dual variable λ for the next iteration and

similar to the situation in the primal decomposition it can be solved by traditional meth-

ods such as subgradient or cutting-plane methods. This class of decomposition methods is

termed dual decomposition because we decompose the dual problem into subproblems and

the dual variables corresponding to complicating constraints that are used to achieve prob-

lem separability are manipulated by the master problem. The general dual decomposition

algorithm is described below.

Algorithm 5 (General Dual Decomposition Algorithm).

1. Set j = 1. Initialize dual variables vector λ(j).

2. Solve each subproblem defined in (4.19) in parallel.

3. Solve the master problem defined in (4.20) to update dual variables λ(j+1).

4. If stopping criteria are fulfilled, stop. Else, set j = j + 1 and go to Step 2.

Lagrangian Relaxation Decomposition

The Lagrangian relaxation decomposition (LRD) method is typically referred to as the dual

decomposition with the subgradient multiplier update method. In terms of the general

problem in the form of (4.18), the subproblems in LRD are exactly the same as (4.19). The
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master problem in (4.20) is solved using the subgradient method which is stated below to

update Lagrangian multipliers vector λ(j+1). Under the subgradient method, the multipliers

are updated according to the following rule [61].

λ(j+1) = λ(j) + κ(j) ·

∑M
m=1 hm(x

(j)
m )

‖
∑M

m=1 hm(x
(j)
m )‖

(4.21)

where κ(j) is the step size at the jth iteration and it should satisfy the conditions limj→∞ κ(j) =

0 and
∑∞

j=1 κ
(j) = ∞. In addition, λ(j+1) should be kept nonnegative at all times. The vector

∑M
m=1 hm(x

(j)
m ) is indeed a subgradient of the dual function at λ(j). A typical selection of

the step size sequence is κ(j) = 1
a+b·j where a and b are positive constants [61]. Although the

subgradient method is easy to implement, it tends to exhibit slow and oscillating converg-

ing behaviors due to the non-differentiability of the dual function. The detailed Lagrangian

relaxation decomposition algorithm is described below.

Algorithm 6 (Lagrangian Relaxation Decomposition Algorithm).

Replace Step 3 in Algorithm 5 by: Use (4.21) to update multipliers λ(j+1).

By applying LRD to the considered problem (4.3)-(4.4), the yielding subproblems for

s ∈ {2, . . . , N} are given as

min
∆P s

G
,P s

Si
,P s

So

πs

[

∑

k∈T

∑

i∈ΩG

CGi

(

P s
Gi
(k),∆P s

Gi
(k)
)

+
∑

k∈T

∑

i∈ΩS

CSi

(

P s
Sii

(k), P s
Soi

(k)
)

+
∑

i∈ΩG

CGi

(

P s
Gi
(K)

)

]

−
∑

i∈ΩG

λ̄sG,i ·∆P
s
Gi
(0)−

∑

i∈ΩS

λ̄sSi,i · P
s
Sii

(0)−
∑

i∈ΩS

λ̄sSo,i · P
s
Soi

(0) (4.22)

s.t.(4.4a)− (4.4i)

where λ̄sG,i, λ̄
s
Si,i, λ̄

s
So,i are Lagrangian multipliers associated with (4.4j)-(4.4l). The first sub-

problem corresponding to s = 1 is a little special and is given below due to the way in which
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the nonanticipativity constraints are formulated in the original problem.

min
∆P 1

G
,P 1

Si
,P 1

So

π1

[

∑

k∈T

∑

i∈ΩG

CGi

(

P 1
Gi
(k),∆P 1

Gi
(k)
)

+
∑

k∈T

∑

i∈ΩS

CSi

(

P 1
Sii

(k), P 1
Soi

(k)
)

+
∑

i∈ΩG

CGi

(

P 1
Gi
(K)

)

]

+

N
∑

s=2

(

∑

i∈ΩG

λ̄sG,i ·∆P
1
Gi
(0) +

∑

i∈ΩS

λ̄sSi,i · P
1
Sii

(0) +
∑

i∈ΩS

λ̄sSo,i · P
1
Soi

(0)

)

(4.23)

s.t.(4.4a)− (4.4i)

Following Algorithm 6, the flowchart of the iterative update for the considered SMPC

problem using LRD is shown in Fig. 4.2.

Subproblem for
Scenario 1

Subproblem for
Scenario N

Convergence reached?

yesno

Update Lagrangian multipliers

Figure 4.2: Flow chart of the iterative update using LRD.
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Augmented Lagrangian Decomposition

The augmented Lagrangian decomposition (ALD) is developed based on the Lagrangian

relaxation decomposition to improve convergence by introducing an additional quadratic

term associated with the complicating constraints to the Lagrangian function. For simplicity,

we consider the following case where there are merely equality complicating constraints in

the problem. For the detailed algorithm derivation of the general case, please refer to [61].

min
x1,...,xM

M
∑

m=1

fm(xm) (4.24)

s.t. gm(xm) ≤ 0, m = 1, . . . ,M (4.24a)
M
∑

m=1

hm(xm) = 0 · · · · · · · · · · · ·λ (4.24b)

The augmented Lagrangian function with respect to complicating constraints is defined as

LA ,

M
∑

m=1

fm(xm) + λT
M
∑

m=1

hm(xm) +
1

2
ρ‖

M
∑

m=1

hm(xm)‖
2 (4.25)

where ρ is a large penalty associated with the additional quadratic term and goes to infinity

in theory with the progress of the iteration process. Due to this quadratic term, the dual

function is no longer trivially separable. Two common approaches can be employed to achieve

subproblem separability – one is to linearize the quadratic term and fix a minimum number

of variables in the linearized augmented Lagrangian [62] and the other is to directly fix a

minimum number of variables in the augmented Lagrangian. For illustration purposes, the

subproblems in ALD using the foregoing second separation approach are given below.

Subproblem m : φm(λ̄
(j)) = min

xm

fm(xm) + λ̄(j)
T

hm(xm)

+
1

2
ρ(j)‖h(x̄1, . . . , xm, . . . , x̄M)‖2 (4.26)

s.t. gm(xm) ≤ 0 (4.26a)
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Here, we use h(x1, . . . , xM) to denote the original complicating constraint (4.24b) for concise-

ness. In terms of the multiplier update, the so-called multiplier method with the following

update rule is typically adopted [63, 64].

λ(j+1) = λ(j) + ρ(j)h(x
(j)
1 , . . . , x

(j)
M ) (4.27)

To see the reasoning behind, we take partial derivative of the augmented Lagrangian with

respect to the entire variable set x = [xT1 , . . . , x
T
M ]T , yielding

∇xL
(j)
A = ∇x

(

M
∑

m=1

fm(x
(j)
m )

)

+∇T
xh(x

(j)) · λ(j) +∇T
xh(x

(j)) · ρ(j) · h(x(j)). (4.28)

On the other hand, the partial derivative of LA with respect to x at the optimal point x∗

given the fact that limj→∞ ρ(j) = ∞ is

lim
j→∞

∇xL
(j)
A = ∇x

(

M
∑

m=1

fm(x
∗
m)

)

+∇T
xh(x

∗) · λ∗. (4.29)

By comparing (4.28) and (4.29), we conclude that

lim
j→∞

(

λ(j) + ρ(j) · h(x(j))
)

= λ∗. (4.30)

In terms of the update of the penalty term ρ, it is increasing with the progress of the iteration

steps but it has to be chosen in such a way that no ill-conditioning takes place due to too large

penalties [64]. Therefore, careful tuning of parameters is critical to the success in applying

ALD to attain optimality of an optimization problem. The detailed augmented Lagrangian

decomposition algorithm is described below.

Algorithm 7 (Augmented Lagrangian Decomposition Algorithm).

Replace Step 3 in Algorithm 5 by: Use (4.27) to update multipliers λ(j+1) and

properly update the penalty term ρ(j+1).

The application of ALD to the considered SMPC problem is very similar to the case for
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LRD but merely with an additional quadratic term. Hence, we will not provide the de-

tailed subproblem formulations for the SMPC problem using ALD. Instead, in the following,

we will briefly describe a well-known decomposition algorithm in the stochastic program-

ming community which is essentially an augmented Lagrangian decomposition method – the

progressive hedging algorithm.

The progressive hedging algorithm was first introduced in [65] and is well applicable

to the two-stage stochastic optimization problems. In terms of the considered two-stage

SMPC based SCED problem, the progressive hedging algorithm is nothing but Algorithm

7 (augmented Lagrangian decomposition algorithm) applied to the original problem (4.3)-

(4.4) with a slight modification of the formulation for the nonanticipativity constraints at

each iteration. The original nonanticipativity constraints (4.4j)–(4.4l) at the jth iteration

are replaced by

∀ s ∈ N

∆P
s(j)
Gi

(0) = ∆P̄
(j)
Gi

(0), ∀i ∈ ΩG (4.30a)

P
s(j)
Sii

(0) = P̄
(j)
Sii

(0), ∀i ∈ ΩS (4.30b)

P
s(j)
Soi

(0) = P̄
(j)
Soi

(0), ∀i ∈ ΩS (4.30c)

with the following right hand side values

∆P̄
(j)
Gi

(0) =

N
∑

s=1

πs∆P̄
s(j−1)
Gi

(0), ∀i ∈ ΩG

P̄
(j)
Sii

(0) =
N
∑

s=1

πsP̄
s(j−1)
Sii

(0), ∀i ∈ ΩS

P̄
(j)
Soi

(0) =

N
∑

s=1

πsP̄
s(j−1)
Soi

(0), ∀i ∈ ΩS

where the overhead bars indicate fixed values. The interpretation is that the first stage vari-

ables at the current iteration try to agree to their corresponding probability weighed values

of all the scenarios obtained from the previous iteration. Compared to the direct applica-
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tion of ALD to the original problem, the progressive hedging algorithm achieves a trivially

separable augmented Lagrangian function so that subproblems are directly decoupled.

4.5 OCD based Solution Approach

Although the classical solution methods discussed in the previous section are considered ef-

fective and efficient, there are weaknesses associated with them. For example, the bottleneck

of Benders decomposition lies in the master problem in the sense that on the one hand de-

composition cannot progress until the master problem is solved during each iteration and on

the other hand the size of the master problem increases as the iterative process goes. The

downside of progress hedging or more generally the augmented Lagrangian decomposition or

even Lagrangian relaxation decomposition is the difficulty in well tuning the penalty param-

eters associated with the quadratic augmented term in the Lagrangian dual function and/or

properly updating Lagrangian dual variables in each iteration.

To overcome the foregoing shortcomings, we instead propose the application of the so-

called optimality condition decomposition (OCD) (first introduced in [66]) to the SMPC

based SCED problem. Neither parameter tuning nor master problem are needed in the OCD

algorithm and multiplier update is done automatically. In this section, we first describe the

concept of the unlimited point method [67] which is used to eliminate inequalities in the

first order optimality conditions as the Newton-Raphson method is typically bundled with

the OCD implementation.Then we provide an overview over the OCD which is employed

to solve the resulting first order optimality conditions in parallel. Possible communication

issues related to OCD are then discussed. The advantages provided by OCD over the other

primal/dual decomposition techniques are given as well. In addition, several measures such

as generalized minimal residual and line search algorithms that are used to improve the

convergence performance of OCD are briefly described.
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4.5.1 Unlimited Point Method

The unlimited point method is used to accomplish the step of transforming inequality con-

straints into equality ones, which is required by the Newton-Raphson based OCD method.

Consider the following general optimization problem:

min
x

f(x) (4.31)

s.t. h(x) = 0 (4.31a)

g(x) ≤ 0 (4.31b)

According to the unlimited point method, the modified Karush-Kuhn-Tucker (KKT) con-

ditions are given by

KKT =
[

∇T
xL, hT , (g + ǫ2)T , (diag{µ} · ǫ)T

]T
(4.32)

where L is the modified Lagrangian function

L = f(x) + λT · h(x) + (µ2)T · g(x) (4.33)

and λ, µ2 are the Lagrangian multipliers and ǫ2 is the vector of squared slack variables for

inequalities. Due to the fact that there are no limits imposed on slack variables or Lagrange

multipliers, the method is named as “unlimited point method”. For the complete algorithm,

readers are referred to [67]. Compared to the interior point method which could be used al-

ternatively, the main difference is that the unlimited point method does not require variables

to stay within a feasible region during iterations and is considered easily-implementable.

4.5.2 Optimality Condition Decomposition (OCD)

The optimality condition decomposition (OCD) is an extension to Lagrangian relaxation

decomposition [61]. Assuming that state and control variables are all included in a single
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variable vector z which is composed of M subsets of variables zm, m = 1, . . . ,M of which

each will be assigned to a specific subproblem m, the general overall optimization problem

formulation is given by

min
z1,··· ,zM

f(z1, · · · , zM) (4.34)

s.t. gm(zm) ≤ 0, m = 1, · · · ,M (4.34a)

hm(z1, · · · , zM) ≤ 0, m = 1, · · · ,M (4.34b)

Constraints (4.34a) correspond to non-coupling constraints which can directly be included in

subproblem m. However, the complicating constraints (4.34b) are functions of decision vari-

ables from multiple variable sets and these variables involved in complicating constraints are

called coupling variables. Each of these complicating constraints is assigned to a subprob-

lem m (as indicated by the index m in (4.34b)) whose variables appear in that constraint.

However, this constraint also needs to be taken into account in the other subproblems whose

variables appear in that constraint. This is done by adding them as relaxed constraint to

the objective function weighted by a Lagrange multiplier λm.

Hence, the mth subproblem using OCD is formulated as:

min
zm

f(z̄1, · · · , z̄m−1, zm, z̄m+1, · · · , z̄M)

+
M
∑

p=1,p 6=m

λ̄Tp hp(z̄1, · · · , z̄m−1, zm, z̄m+1, · · · , z̄M) (4.35)

s.t. gm(zm) ≤ 0 (4.35a)

hm(z̄1, · · · , z̄m−1, zm, z̄m+1, · · · , z̄M) ≤ 0 (4.35b)

where z̄p, λ̄p are determined by the pth subproblem and fixed in the mth subproblem. By

including (4.35b) in the mth subproblem as a hard constraint, the corresponding Lagrangian

multiplier vector λm is obtained by solving the subproblem. This provides an automatic

update for the multipliers in the objective function in the next iteration.
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Once the subproblems have been formulated, the following iterative procedure is carried

out to obtain the solution to the overall optimization problem:

Algorithm 8 (Optimality Condition Decomposition Algorithm).

1. Initialize all variables z̄m and Lagrangian multipliers λ̄m, m = 1, . . . ,M .

2. Carry out one or multiple Newton Raphson steps on the first order optimality

conditions for subproblems defined by (4.35) and (4.36).

3. Update z̄m, λ̄m for all M subproblems by the values obtained in Step 2.

4. If stopping criteria are fulfilled, stop. Else, go to Step 2.

As can be seen from Algorithm 8, necessary data communication among subproblems is

required in each iteration. The influence caused by communication networks such as com-

munication bandwidth and latency (delays) constraints on the performance of the OCD

algorithm depends on the specific application. Generally speaking, the communication la-

tency in the parallel computing setup is small and can be neglected in the development of

parallel algorithms as the computation nodes (processors) are typically placed in very close

proximity to each other and connected by high speed data links. In contrast, communi-

cation delays could be significant in the application area of distributed control where the

distributed controllers that need to communicate with each other might be geographically

scattered hundreds of miles apart. On the other hand, the total amount of data that need

to be exchanged in each iteration of the OCD algorithm for both cases is identical and

proportional to the number of coupling variables and complicating constraints. Commu-

nication bandwidth limits are usually not concerned in OCD given the fact that there are

not many coupling variables and complicating constraints for most practical problems with

decomposable structures [61, 66].

The advantages provided by OCD over the other primal/dual decomposition techniques

are that: 1) no master problem is needed and all the subproblems are peer problems; 2) the

update for the Lagrangian multipliers is implicitly given by each subproblem; 3) there is no
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need for parameter tuning; 4) the subproblems can be solved either until optimality or just

one single Newton-Raphson iteration is applied to the first order optimality conditions, i.e.

KKT conditions [61].

If a single Newton Raphson step is applied, an iteration of the distributed approach

corresponds to calculating the update ∆̃ for the variables according to

∆̃ = −J̃−1 ·KKT (4.36)

where J̃ is the block-diagonal Jacobian matrix of the combined first order optimality con-

ditions over all subproblems and each block corresponds to the Jacobian matrix of the first

order optimality conditions for a specific subproblem. A Newton-Raphson step applied to

the overall optimization problem is thereby given by

∆ = −J−1 ·KKT (4.37)

where J corresponds to the Jacobian matrix of the KKT conditions for the overall optimiza-

tion problem. If the order of the associated variables and constraints is the same in J and

J̃ , the difference between the two matrices is that J has some off block-diagonal elements

which are non-zero. Hence, computational efficiency in OCD is basically gained by being

able to parallelize (4.36) due to the block diagonal structure of J̃ .

Like any other KKT based methods, conclusions from duality theory hold for the OCD

algorithm. If the OCD algorithm converges, the yielding solution is the global optimum for

convex problems whereas for general non-convex problems only local optimum can be found.

The convergence condition for OCD will be discussed in the next subsection.
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4.5.3 Generalized Minimal Residual Method

The condition for the iterative procedure of the optimality condition decomposition to con-

verge is given by

ρ(I − J̃−1
∗ · J∗) < 1 (4.38)

where ρ(A) is the spectral radius of matrix A and J̃∗ and J∗ are the Jacobian matrices at

the optimal solution. If (4.38) is not fulfilled, then, a pre-conditioned Generalized Minimal

Residual (GMRES) method with J̃ being the pre-conditioner matrix can be used to make it

converge. Derivation, explanation and pseudo codes for that method can be found, e.g. in

[68, 69].

Hence, within each iteration described in Algorithm 8 an additional limited number of

iterations for the GMRES method are carried out. The entering conditions of the GMRES

iterations adopted in this dissertation is based on [66]. With regards to the computational

aspect, the most important fact is that these iterations will require using J̃−1. However,

given that the Newton-Raphson step in Algorithm 8 corresponds to (4.36), the resulting LU

factorization determined to solve (4.36) can be stored and reused in the GMRES steps. This

tremendously speeds up the computation process of each GMRES step.

4.5.4 Globally Convergent Modifications

To ensure global convergence of the algorithm, certain modifications have to be made to the

Newton-Raphson based decomposition solution approach as the Newton-Raphson method is

only proved to be locally q-quadratically convergent [70]. Two classical approaches, namely

the trust region approach and the line search approach, are discussed in this subsection in

terms of their compatibility with the decomposition scheme. In either of the two approaches,

a merit function ψ(·) is constructed in order to measure the progress contributed by the

current move. Such a function for the considered problem can be defined as

ψ(y) =
1

2
KKT T (y) ·KKT (y) (4.39)
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where y is the vector of all variables including decision variables, Lagrangian multipliers and

slack variables. A good step results in a sufficient decrease in the merit function value.

Trust Region Approach

The trust region approach models the merit function as a quadratic function with respect to

the search step within a small region around the current point. The goal is to find the best

search step within that region where the approximate model is considered trustworthy. The

resulting optimization problem is given by [70]

min
p

ψ(yc) + (JTKKT )Tp+
1

2
pT (JTJ)p (4.40)

s.t. ‖p‖2 ≤ δc (4.41)

where yc is the current point and p is the search step. J is the same Jacobian of the overall

problem as in (4.37). δc defines the trust region size which is updated at every iteration.

Due to the term JTJ in (4.40) which mixes all the information of subproblems, the trust

region approach is not compatible with the decomposition scheme.

Line Search Approach

Another classical approach to attempt global convergence is the line search approach. The

basic idea is to backtrack along the search direction generated by the Newton-Raphson

iteration until an acceptable reduction in (4.39) is achieved. Quadratic or cubic models

are used to approximate the merit function (4.39) based on merit function values evaluated

at several points. For the detailed derivation and description of the line search algorithm,

readers are referred to [71]. Unlike the trust region approach, only merit function evaluations

that can be done distributedly are required in the line search method, implying that the

line search can be implemented in a distributed manner with limited coordination among

subproblems. Therefore, the line search approach is adopted to gain global convergence of

the OCD based decomposition framework described in this section.
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4.5.5 Application of OCD in SMPC based SCED Problem

We use OCD to achieve a scenario-based decomposition for the considered SMPC based

SCED problem. We take advantage of the fact that if the nonanticipativity constraints

(4.4j)–(4.4l) are neglected, the problem becomes decomposable into subproblems where each

subproblem corresponds to a specific scenario for the disturbances, i.e. variable generation

and load. Consequently, (4.4j)–(4.4l) are the coupling constraints in this scenario-based

decomposition. Each coupling constraint is assigned to a specific subproblem to be taken into

account as hard constraint and as soft constraint in the objective function in the subproblem

whose variables are part of that particular coupling constraint. The decision variables in a

subproblem are all the variables for the scenario associated with that subproblem.

The subproblem SPs for scenarios s ∈ {2, . . . , N} is therefore given by

min
∆P s

G
,P s

Si
,P s

So

πs

[

∑

k∈T

∑

i∈ΩG

CGi

(

P s
Gi
(k),∆P s

Gi
(k)
)

+
∑

k∈T

∑

i∈ΩS

CSi

(

P s
Sii

(k), P s
Soi

(k)
)

+
∑

i∈ΩG

CGi

(

P s
Gi
(K)

)

]

(4.42)

s.t. (4.4a)− (4.4i)

∆P̄ 1
Gi
(0) = ∆P s

Gi
(0), ∀i ∈ ΩG (4.43a)

P̄ 1
Sii

(0) = P s
Sii

(0), ∀i ∈ ΩS (4.43b)

P̄ 1
Soi

(0) = P s
Soi

(0), ∀i ∈ ΩS (4.43c)

whereas for scenario s = 1, the hard constraints (4.43a)–(4.43c) are omitted but additional

soft constraints are added in the objective function. The bar over a variable indicates that

this is a fixed value given from another subproblem at a previous iteration. The formulation
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of the subproblem corresponding to s = 1 is given by

min
∆P 1

G
,P 1

Si
,P 1

So

π1

[

∑

k∈T

∑

i∈ΩG

CGi

(

P 1
Gi
(k),∆P 1

Gi
(k)
)

+
∑

k∈T

∑

i∈ΩS

CSi

(

P 1
Sii

(k), P 1
Soi

(k)
)

+
∑

i∈ΩG

CGi

(

P 1
Gi
(K)

)

]

+

N
∑

s=2

(

∑

i∈ΩG

λ̄sG,i ·∆P
1
Gi
(0) +

∑

i∈ΩS

λ̄sSi,i · P
1
Sii

(0) +
∑

i∈ΩS

λ̄sSo,i · P
1
Soi

(0)

)

−
N
∑

s=2

(

∑

i∈ΩG

λ̄sG,i ·∆P̄
s
Gi
(0) +

∑

i∈ΩS

λ̄sSi,i · P̄
s
Sii

(0) +
∑

i∈ΩS

λ̄sSo,i · P̄
s
Soi

(0)

)

(4.44)

s.t.(4.4a)− (4.4i)

It is noted that ∆P̄ s
Gi
(0), P̄ s

Sii
(0), P̄ s

Soi
(0) are actually not needed as they form a term that is

constant in the objective function of (4.44).

The flow chart of the iterative update for the considered SMPC problem using OCD is

depicted in Fig. 4.3. As indicated in Fig. 4.3, NR-steps are carried out first and then based

on an entering condition for the GMRES algorithm additional GMRES steps are carried out

which requires information exchange among the relevant subproblems of different scenarios

due to the coupling imposed by the nonanticipativity constraints. In addition, line search

with limited information exchange is conducted for each subproblem based on the search

direction obtained by the NR-step together with necessary GMRES iterations. The foregoing

iterative procedure continues until final convergence or maximum number of iterations is

reached. A major iteration includes steps from “NR-step” to “Update variables”.

4.6 OCD based Two-Stage Decomposition

With the hope of further improving the computational efficiency for the SMPC based SCED

problem, we propose an OCD based two-stage decomposition approach. The conceptual

sketch of the two-stage decomposition is depicted in Fig. 4.4. The first stage corresponds
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Figure 4.3: Flow chart of the iterative update using OCD.

to the scenario-based decomposition in the previous section. Each of the resulting subprob-

lems (SPs) of that stage is further decomposed into even smaller subsubproblems (SSPs,Qs
)

corresponding to subsets of time steps in the optimization horizon for the second stage

decomposition. The coupling of these subsubproblems in the second stage is present due

to the inter-temporal energy storage equations and the limited ramp rates of dispatchable

generation resources. Hence, the second stage decomposition is termed as temporal-based

decomposition. Figure 4.5 provides a more detailed visualization of how we propose to

decompose the overall optimization problem into subproblems and indicates the resulting

coupling constraints between the subproblems.
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Figure 4.5: Two-stage decomposition: a detailed view.

As visualized in Fig. 4.5, a subsubproblem s, q for scenario s corresponds to the opti-

mization of specific time steps within the optimization horizon. The number of time steps

included in each subsubproblem may range from just one to all K + 1 steps (in the latter

the subsubproblem s, q is the same as subproblem s).
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4.6.1 Temporal-based Decomposition

We again use the OCD algorithm to achieve the temporal-based decomposition. The com-

plicating constraints in this stage of decomposition correspond to the inter-temporal con-

straints for the energy level (4.4a) and the generation outputs (4.4b). Depending on the

choice of whether to assign the complicating constraints to the lower indexed subsubproblem

or the higher indexed one, two different subsubproblem formulations are conceivable for the

temporal-based decomposition.

Subsubproblem Formulation A

Formulation A corresponds to the choice of assigning the inter-temporal complicating con-

straints to the lower indexed subsubproblems. Subsubproblem SSPs,q for q ∈ {2, . . . , Qs−1}

where Qs is the number of subsubproblems in scenario s ∈ N is therefore given by

min πs





∑

k∈Ts,q

∑

i∈ΩG

CGi

(

P s
Gi
(k),∆P s

Gi
(k)
)

+
∑

k∈Ts,q

∑

i∈ΩS

CSi

(

P s
Sii

(k),∆P s
Soi

(k)
)





+
∑

i∈ΩG

νs,q−1
G,i

(

P s
Gi
(kq1)− P

s

Gi
(kq−1

F )−∆P
s

Gi
(kq−1

F )
)

+
∑

i∈ΩS

νs,q−1
S,i

(

Es
Si
(kq1)− ηiE

s

Si
(kq−1

F )− αiTP
s

Sii
(kq−1

F ) +
1

αi

TP
s

Soi
(kq−1

F )

)

(4.45)

s.t. P
s

Gi
(kq+1

1 )=P s
Gi
(kqF ) + ∆P s

Gi
(kqF ), ∀i ∈ ΩG (4.46a)

E
s

Si
(kq+1

1 )=ηiE
s
Si
(kqF ) + αiTP

s
Sii

(kqF )−
1

αi
TP s

Soi
(kqF ), ∀i ∈ ΩS (4.46b)

∀k ∈ Ts,q : (4.4c)− (4.4i)

∀k= [kq1, . . . , k
q
F − 1] : (4.4a)− (4.4b)

where Ts,q = {kq1, . . . , k
q
F} is a subset of T ∪{K} with the time steps included in subsubprob-

lem SSPs,q, i.e. the combination of Ts,q, q ∈ {1, . . . , Qs} is equal to T ∪ {K}. For subsub-

problem SSPs,Qs
, no hard constraints (4.46a) and (4.46b) for any complicating constraints

are included and for SSPs,1 no relaxed constraints for the complicating constraints are added
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in the objective function (4.45) but temporal-based complicating constraints appear only as

hard constraints in the constraint set; as opposed to the other subsubproblems, subsubprob-

lems SSPs,1 include time step k = 0 which means that nonanticipativity constraints become

part of these subsubproblems. As described in Section 4.5.5, these complicating constraints

appear in the objective function as well as in the constraint set or just as relaxed constraints

in the objective function or only as hard constraints in the constraint set.

Subsubproblem Formulation B

Formulation B corresponds to the choice of assigning the inter-temporal complicating con-

straints to the higher indexed subsubproblems. Using the same notations in Formulation A,

subsubproblem SSPs,q for q ∈ {2, . . . , Qs − 1} and s ∈ N is given by

min πs





∑

k∈Ts,q

∑

i∈ΩG

CGi
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P s
Gi
(k),∆P s

Gi
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)

+
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P s
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(k),∆P s
Soi

(k)
)





+
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1 )− P s
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Gi
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)

+
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E
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1 )− ηiE
s
Si
(kqF )− αiTP

s
Sii
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1

αi
TP s

Soi
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(4.47)

s.t. P s
Gi
(kq1)=P

s

Gi
(kq−1

F ) + ∆P
s

Gi
(kq−1

F ), ∀i ∈ ΩG (4.48a)

Es
Si
(kq1)=ηiE

s

Si
(kq−1

F ) + αiTP
s

Sii
(kq−1

F )−
1

αi

TP
s

Soi
(kq−1

F ), ∀i ∈ ΩS (4.48b)

∀k ∈ Ts,q : (4.4c)− (4.4i)

∀k= [kq1, . . . , k
q
F − 1] : (4.4a)− (4.4b)

For subsubproblem SSPs,1, no hard constraints (4.48a) and (4.48b) are included but the

relaxed inter-temporal complicating constraints appear in the objective function (4.47). For

subsubproblem SSPs,Qs
, no relaxed constraints for the complicating constraints are added

in the objective function whereas the corresponding inter-temporal complicating constraints

appear as hard constraints in the constraint set. Regarding the subsubproblems including
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time step k = 0, the same modification rule as in Formulation A is applied.

By carefully examining the two subsubproblem formulations, it is simple to infer that

Formulation A is to outperform Formulation B in terms of convergence speed. The reason

is that fewer variables are fixed in the constraints of subsubproblems in Formulation A

compared to the situation in Formulation B. In other words, the coupling strength among

subsubproblems in Formulation A is less than the coupling strength in Formulation B. Hence,

we will adopt Formulation A for the subsubproblem formulations in the proposed two-stage

decomposition.

The flow chart of the iterative update for the two-stage decomposition scheme for the

considered SMPC problem is shown in Fig. 4.6, which is similar to the case of OCD based

scenario decomposition in the previous section. The major difference is that there are now

multiple parallel processes for each scenario compared to Fig. 4.3 where there is just one

process for one scenario. With more parallel processes in the two-stage decomposition, the

hope is to reduce the computation time for solving the overall problem by being able to use

more computational resources simultaneously.

4.6.2 Singularity Issues

There exist situations where the resulting Jacobian matrices are singular at the optimal

solution for both the scenario- and temporal-based decompositions. This needs to be resolved

in order to ensure convergence of the algorithm.

Scenario-based Decomposition

The Jacobian matrices for the scenario-based decomposition become singular when any of the

variables in the nonanticipativity constraints (4.4j)–(4.4l) hit either the lower or upper limits

at the optimal solution, leading to the situation where the number of binding constraints

is greater than the number of variables. An easy fix is to remove constraints (4.4c)–(4.4i)

corresponding to k = 0 for all the subproblems s ∈ N\{N}.
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Figure 4.6: Flow chart of the iterative update using two-stage OCD.

Temporal-based Decomposition with Formulation A

The Jacobian matrices in this case become singular as long as ∃ i ∈ ΩG : P s
Gi
(kqF ),∆P

s
Gi
(kqF )

are both at their limits or/and ∃ i ∈ ΩS : Es
Si
(kqF ), P

s
Sii

(kqF ), P
s
Soi

(kqF ) all hit their bounds at

the optimal solution. The rationale behind this is again the fact that the Jacobian becomes

singular when the number of variables is less than the number of binding constraints.

Temporal-based Decomposition with Formulation B

Via the same reasoning, the Jacobian matrices in this case become singular when ∃ i ∈ ΩG :

P s
Gi
(kq1) is at its limit or/and ∃ i ∈ ΩS : Es

Si
(kq1) hits the bound at the optimal solution.
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Solution for Temporal-based Decomposition

Due to the difficulty in predicting whether or not any of the aforementioned conditions are

fulfilled without knowing the optimal solution, special measures have to be taken to overcome

the singular issue for temporal-based decomposition. The solution is as follows. Assume that

the Jacobian J̃s,q associated with subsubproblem SSPs,q is singular at iteration step j. We

first do the LU factorization for J̃s,q, which is given by

Ps,q · J̃s,q ·Qs,q = Ls,q · Us,q (4.49)

where Ps,q, Qs,q are permutation matrices; Ls,q is a unit lower triangular matrix; Us,q is an

upper triangular matrix. By inspecting the absolute values of the diagonal elements in Us,q,

singular J̃s,q is easily detected. Then we generate a nonsingular matrix J̄s,q to replace J̃s,q

by perturbing Us,q as

Ps,q · J̄s,q ·Qs,q = Ls,q · (Us,q + τI) (4.50)

where I is the identity matrix and τ is a small number such that J̄s,q is nonsingular. According

to our experience, the default value for τ is set to be 10−5. J̄s,q also plays the role of pre-

conditioner for the corresponding GMRES iterations. In some cases, the singularity issues

can be completely removed for certain subsubproblems by perturbing the way of dividing

the time blocks in the look-ahead horizon, i.e. by perturbing the kq1 or kqF of the relevant

subsubproblems.

4.7 Improved Two-Stage Decomposition

There exists one disadvantage in the OCD method, which lies in the involved GMRES

steps. The computational complexity in terms of each GMRES step in OCD is of positive

correlation with the size of the overall problem before decomposition. In addition, the
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number of GMRES steps required in each major iteration grows with the increase of the

number of subproblems under OCD. Therefore, we propose a mixed two-stage decomposition

for the considered SMPC problem, consisting of a Benders decomposition for the first-stage

scenario-based decomposition and an optimality condition decomposition for the second-

stage temporal-based decomposition. We term this mixed two-stage decomposition scheme

simply as mixed decomposition (MD). The improvement gained from the proposed MD

compared to the two-stage OCD approach in Section 4.6 is that the computational complexity

associated with the GMRES steps in OCD is now limited by limiting the size of the problem

for which we apply OCD. Each optimization problem in which OCD is applied under MD

is an MPC problem corresponding to each scenario. In other words, we only apply OCD

to each independent subproblem decomposed by BD. The proposed mixed decomposition

scheme should work very well especially when the number of iterations for the BD loop is

relatively small so that the bottleneck effect of the BD algorithm mentioned in the beginning

of Section 4.5 can be neglected.

In terms of the subsubproblem formulations, subsubproblems SSPs,q for q ∈ {2, . . . , Qs}

and s ∈ N under MD for the considered SMPC based SCED problem are identical to those in

the OCD based two-stage decomposition given by (4.45)-(4.46). In contrast, subsubproblems

SSPs,1 for s ∈ N in MD and two-stage OCD are different due to the different formulations

in the scenario-based decomposition between BD and OCD. The subsubproblem SSPs,1 for

s ∈ N in MD is given by

min πs





∑

k∈T̃s,1

(

∑

i∈ΩG

CGi

(

P s
Gi
(k),∆P s

Gi
(k)
)

+
∑

i∈ΩS

CSi

(

P s
Sii

(k),∆P s
Soi

(k)
)

)



(4.51)
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s.t. P
s

Gi
(k21) =P

s
Gi
(k1F ) + ∆P s

Gi
(k1F ), ∀i ∈ ΩG (4.52a)

E
s

Si
(k21) =ηiE

s
Si
(k1F ) + αiTP

s
Sii

(k1F )−
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αi
TP s

Soi
(k1F ), ∀i ∈ ΩS (4.52b)

∆PGi
(0)=∆P

(j)

Gi
(0), ∀i ∈ ΩG (4.52c)

PSii(0)=P
(j)

Sii
(0), ∀i ∈ ΩS (4.52d)

PSoi(0)=P
(j)

Soi
(0), ∀i ∈ ΩS (4.52e)

∀k ∈ T̃s,1 : (4.4c)− (4.4i)

∀k= [k11, . . . , k
1
F − 1] : (4.4a)− (4.4b)

where T̃s,1 = Ts,1\{0} and subscript j is the current iteration for the BD loop.

On the other hand, the master problem for the first-stage BD is exactly the same as the

problem in (4.16)-(4.17). The flow chart of the iterative update for the improved two-stage

decomposition scheme for the considered SMPC problem is given in Fig. 4.7. As can be

seen from Fig. 4.7, the number of parallel processes is the same as that number in the OCD

based two-stage decomposition given the same partitioning of the time horizon. However, the

information exchange associated with both the GMRES steps and the line search steps is now

restricted within each scenario, greatly reducing the computational burden on calculating

the correction in search direction of each iteration. The only drawback of MD is the existence

of a master problem whose size increases with the progress of the iteration process. Under

the condition where there are only few iterations in the BD loop, the proposed MD scheme

has a clear advantage over the two-stage OCD in terms of computational efficiency.

4.8 Case Studies

In this section, the WECC 9-bus test system in Fig. 3.3 and the IEEE New England 39-

bus test system in Fig. 3.10 are used to investigate the performance of the three proposed

decomposition schemes – the OCD based scenario decomposition (Section 4.5), the OCD

based two-stage decomposition (Section 4.6) and the mixed decomposition (Section 4.7) for
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Figure 4.7: Flow chart of the iterative update using MD.

the SMPC based SCED problem in the stochastic optimal dispatch level in terms of speed

and convergence. In addition, Benders decomposition as a classical solution method for

two-stage stochastic optimization problems is compared with the three proposed methods in

the simulation. The reason why we only pick Benders decomposition rather than the other

classical solution methods is because the work in [61, 72] suggested that both OCD and

BD tend to have much better convergence performance than both the Lagrangian relaxation

decomposition and the augmented Lagrangian decomposition. However, the comparison

between OCD and BD in terms of convergence performance is yet unclear.
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The problem we focus on in the simulation is a single two-stage SMPC problem with the

overall problem formulation given by (4.3)-(4.4) to investigate the convergence performance

of various decomposition methods. All the test cases are implemented in Matlab R2013a

and run on a personal computer with a 2.80GHz CPU and a 16GB RAM.

4.8.1 WECC 9-Bus System

The basic system setup is stated in Section 3.8.1. The parameters of the energy storage device

are modified to reflect the fact that the storage application in the stochastic optimal dispatch

level is a high energy application. The capacity of the storage device is set to 100 MWh (1

p.u.h) and the maximum input/output power is symmetric and set to 100 MW (1 p.u.). The

standby loss coefficient η is 99% and the round trip efficiency α2 is 81%. The storage device

is also assumed to be required to operate within the range of 0.1% to 100% in terms of state-

of-charge (SOC). No ramp rate limits are imposed on the storage device as the associated

power electronic inverter can typically respond to power requests almost instantaneously.

In addition, parameters for conventional generators including minimum/maximum power

output and ramp rate limits are given in the Appendix A. The flow limits for all the

transmission lines are set to 2.5 p.u.

Due to the emphasis on testing the feasibility and efficiency of the three proposed ap-

proaches to solve the SMPC problem, fifty scenarios corresponding to fifty realizations of

the wind power generation for a look-ahead horizon of 4 hours (48 time steps with 5-min

interval) are generated by randomly perturbing a 4-hour time series of historical wind power

data within a reasonable error bound. For the same reason, the probability of each scenario

in the simulation is assumed to be identical, i.e. 0.02 for each scenario. The load profile is

assumed to be deterministic over the horizon for simplicity purpose. The yielding two-stage

SMPC problem is considerable in size including 21, 600 decision variables, 12, 196 equality

constraints and 84, 636 inequality constraints.

The following five test cases are considered in the simulation. In the first case which serves
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as the benchmark, the overall SMPC problem is directly solved by using the Newton-Raphson

method. The first case is therefore termed as BF, i.e. brute force method. The subproblems

in Case BD are also solved using the Newton-Raphson method. Each scenario in the two-

stage OCD case is identically decomposed into three time blocks while each scenario in the

mixed decomposition case is identically decomposed into six time blocks. For example, the

time blocks within each scenario in the two-stage OCD start with time steps k = 0, 16, 32,

respectively. The forgoing specific numbers of time blocks actually correspond to the best

trade-off between convergence speed and the size of subsubproblems for cases where the

temporal-based decomposition is implemented, which will be numerically investigated in the

following. The equally divided time blocks ensure a load balance among all subsubproblems

with respect to computational burdens. In summary, there are 150 subsubproblems for the

two-stage OCD case whereas the mixed decomposition case has 300 subsubproblems. There

are 50 subproblems in all scenario-based decomposition cases.

• Case “BF”: The overall SMPC problem is directly solved w/o line search.

• Case “BD”: Benders decomposition is applied.

• Case “OCD”: The OCD based scenario decomposition w/ line search is applied.

• Case “2OCD”: The OCD based two-stage decomposition w/ line search is applied.

• Case “MD”: The mixed decomposition is applied.

Main Results

Table 4.1 shows the numerical results including the number of iterations, wall-clock time

(actual time difference measured from the start of a computer program until the end), and

estimated running time in a parallel computing environment using the five different methods.

“-” means not applicable. The wall-clock time in Table 4.1 is the actual time observed for

each case to run in the sequential computing environment. The estimated time in a parallel

computing environment is calculated by dividing the corresponding wall-clock time by the
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number of subproblems (subsubproblems). The assumption here is that the overhead of

communication either between subproblems or between subproblems and the master problem

is relatively small in terms of the amount of actual computing jobs and that the master

problem in BD is much easier to solve than subproblems. As with numbers of iterations,

each major iteration refers to the outmost iteration loop and each minor iteration in the BD

based methods corresponds to the inner loop for iteratively solving each of the scenario-based

subproblems.

Table 4.1: Numerical results for the WECC 9-bus system

Cases Total # of Total # of Total # of Wall Time Est. Time in sec.
Major Iter. Minor Iter. GMRES Iter. in sec. for Par. Computing

BF 84 - - 62.52 62.52
BD 4 8, 637 - 185.14 3.70

OCD 79 - 342 69.55 1.39
2OCD 78 - 5, 813 664.48 4.43
MD 4 11, 587 72, 661 375.07 1.25

In terms of the estimated time for the parallel implementation, the proposed MD performs

best with about 50 times faster than the base case without any decomposition. The second

best method is the proposed OCD based scenario decomposition with speedup of about 45

times. In addition, MD is almost 3 times faster compared to the classical BD method. The

reason why the two-stage OCD does not perform well with respect to the scenario-based

OCD is because way too many GMRES steps are required in the two-stage OCD.

In order to verify the accuracy of the decomposed solutions, the evolution of the objective

function values under the direct solution method (Case BF) and the four decomposition

solution methods is shown in Fig. 4.8. The final objective function values for the four

decomposition cases are exactly the same as the final objective function value obtained from

the direct method. The reason for this converging behavior of the decomposed methods is

because the considered problem defined by (4.3)-(4.4) is a convex optimization problem.
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Figure 4.8: Evolution of objective function values for the WECC 9-bus system.

Trade-Off between Convergence Speed and Subsubproblem Size

For cases where the temporal-based decomposition is implemented, a trade-off between con-

vergence speed and subsubproblem size needs to be achieved. Table 4.2 lists the convergence

results for the two-stage OCD method with numbers of time blocks of each scenario ranging

from 2 to 6. The more the number of time blocks is, the smaller the size of subsubproblems

becomes. As can be seen from Table 4.2, the optimal number of time blocks within each

scenario for the two-stage OCD is three.

Table 4.2: Results for the two-stage OCD with different numbers of time blocks

Number of Total # of Total # of Wall Time Est. Time in sec.
Time Blocks Major Iter. GMRES Iter. in sec. for Par. Computing

2 92 5,000 453.44 4.53
3 78 5, 813 664.48 4.43
4 84 8, 544 1, 165.20 5.83
6 77 11, 423 2, 496.20 8.32

Similarly, Table 4.3 shows the numerical results using MD with different numbers of time

blocks in each scenario ranging from 2 to 8. As indicated in Table 4.3, the optimal number

of time blocks within each scenario for MD is six.
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Table 4.3: Results for MD with different numbers of time blocks

Number of Total # of Total # of Total # of Wall Time Est. Time in sec.
Time Blocks Major Iter. Minor Iter. GMRES Iter. in sec. for Par. Computing

2 4 8, 754 37, 174 228.33 2.28
3 4 8, 709 45, 147 260.11 1.73
4 4 10, 268 59, 922 295.76 1.48
6 4 11, 587 72, 661 375.07 1.25
8 4 18, 003 155, 814 731.70 1.83

Importance of GMRES in OCD based Methods

Fig. 4.9 shows the evolution of the preconditioned residual norm before and after GMRES

steps, implying the important role of the GMRES in the OCD based approaches (Case OCD

and Case 2OCD). The preconditioned residual norm before GMRES steps in each major

iteration is defined as ‖J̃−1(J · ∆̃ + KKT )‖2. A refined search step ∆̄ via GMRES steps

replaces the step ∆̃ in calculating the post-GMRES preconditioned residual norm. It can

be seen from Fig. 4.9 that the pre-GMRES preconditioned residual norm in Case 2OCD is

larger than that in Case OCD. Therefore, the two-stage OCD is more difficult to converge

and requires more GMRES iterations, which is consistent with the result in Table 4.1.
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Figure 4.9: Evolution of the preconditioned residual norm before and after GMRES steps
for OCD based methods.
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Importance of Line Search in OCD based Methods

The importance of line search in the OCD based methods is evaluated in terms of the

evolution of the KKT norm (see Fig. 4.10). By examining the curves of the two pairs of

with and without line search for the two OCD based cases (Case OCD and Case 2OCD), it is

clear that the KKT norm increases rapidly for the cases without line search implementation

as the iteration process goes, which in turn demonstrates that line search is one of the

most critical measures for ensuring the convergence of the proposed OCD based methods.

However, it can also be observed from Fig. 4.10 that the base case without line search still

manages to converge. One possible explanation is that the search direction is always exact in

the base case compared to the situation of the decomposition cases where only approximated

search directions are available.
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Figure 4.10: Evolution of the KKT norm for OCD based methods.

Scaling Performance in terms of Number of Scenarios

The scaling performance of the top two proposed decomposition approaches (OCD and MD)

is evaluated by measuring the wall-clock time with respect to the change in the number of

scenarios in the stochastic SCED problem. The problems with reduced numbers of scenarios
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are obtained by using Algorithm 2 described in Section 4.3. The number of scenarios in OCD

is equal to the number of parallelizable subproblems whereas the number of subsubproblems

in MD is six times more than the number of scenarios. Fig. 4.11 shows the wall-clock time as

a function of the number of scenarios using OCD and MD. Both the two approaches exhibit

a near linear scaling property, which is desired in parallel computing.
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Figure 4.11: Scaling performance for OCD and MD.

4.8.2 IEEE New England 39-Bus System

The basic system setup of the IEEE New England 39-bus test system is stated in Section

3.8.2. The parameters and operational limits of the energy storage device are identical to

the case in the WECC 9-bus system. The parameters for conventional generators including

minimum/maximum power output and ramp rate limits are given in the Appendix B. The

flow limits for all the transmission lines are set to 11 p.u.

Similar to the simulation for the WECC 9-bus system, fifty scenarios corresponding to fifty

realizations of the wind power generation at Bus 26 for a look-ahead horizon of 4 hours (48

time steps with 5-min interval) are generated by randomly perturbing a 4-hour time series of

historical wind power data within a reasonable error bound. Each scenario in the simulation

is assigned an equal probability and the load profile is assumed to be deterministic over the
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horizon for illustration purposes. The yielding two-stage SMPC problem is considerable in

size including 55, 200 decision variables, 29, 339 equality constraints and 324, 438 inequality

constraints.

The same five test cases as in the WECC 9-bus system are considered in the simulation.

For cases where the temporal-based decomposition is implemented, the optimal numbers of

time blocks in each scenario in Case 2OCD and Case MD happen to be identical to those

numbers in the 9-bus system test. Hence, there are 150 equally sized subsubproblems for Case

2OCD while Case MD has 300. There are 50 subproblems in the other two scenario-based

decomposition cases.

• Case “BF”: The overall SMPC problem is directly solved w/o line search.

• Case “BD”: Benders decomposition is applied.

• Case “OCD”: The OCD based scenario decomposition w/ line search is applied.

• Case “2OCD”: The OCD based two-stage decomposition w/ line search is applied.

• Case “MD”: The mixed decomposition is applied.

Main Results

Table 4.4 shows the numerical results including the number of iterations, wall-clock time,

and estimated running time in a parallel computing environment using the five different

methods. The wall-clock time in Table 4.4 is the actual time measured for each case to

run in the sequential computing environment. The estimated time in a parallel computing

environment is calculated by dividing the corresponding wall-clock time by the number of

subproblems (subsubproblems). Each major iteration refers to the outmost iteration loop

and each minor iteration which is only applicable in the BD based methods corresponds to

the inner loop for iteratively solving each of the scenario-based subproblems.

In terms of the estimated time for the parallel implementation, the proposed MD again

performs best with over 170 times faster than the base case without any decomposition.
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Table 4.4: Numerical results for the IEEE New England 39-bus system

Cases Total # of Total # of Total # of Wall Time Est. Time in sec.
Major Iter. Minor Iter. GMRES Iter. in sec. for Par. Computing

BF 262 - - 1, 864.32 1, 864.32
BD 3 12, 720 - 2, 856.07 57.12

OCD 234 - 1, 780 1, 901.33 38.03
2OCD 193 - 20, 159 8, 079.91 53.87
MD 3 14, 848 110, 802 3, 228.37 10.76

The second best method is the proposed OCD based scenario decomposition with speedup

of about 49 times. In addition, MD is over 5 times faster compared to the classical BD

method. Due to the computational burden on GMRES steps, the two-stage OCD fails to

outperform the scenario-based OCD.

In order to verify the accuracy of the decomposed solutions, the evolution of the objective

function values under the direct solution method (Case BF) and the four decomposition

solution methods is shown in Fig. 4.12. The final objective function values for the four

decomposition cases are exactly the same as the final objective function value obtained from

the direct method. This is due to the fact that the considered problem defined by (4.3)-(4.4)

is a convex problem.
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Figure 4.12: Evolution of objective function values for the IEEE New England 39-bus system.
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Trade-Off between Convergence Speed and Subsubproblem Size

For cases where the temporal-based decomposition is implemented, a trade-off between con-

vergence speed and subsubproblem size needs to be achieved. Table 4.5 shows the numerical

results for the two-stage OCD method with numbers of time blocks of each scenario ranging

from 2 to 6. It can be determined that the optimal number of time blocks within each

scenario for the two-stage OCD is three.

Table 4.5: Results for the two-stage OCD with different numbers of time blocks

Number of Total # of Total # of Wall Time Est. Time in sec.
Time Blocks Major Iter. GMRES Iter. in sec. for Par. Computing

2 230 15,801 5, 967.20 59.67
3 193 20, 159 8, 079.91 53.87
4 216 39, 194 20, 160.59 100.80
6 230 47, 746 28, 721.56 95.74

Similarly, the numerical results using MD with different numbers of time blocks in each

scenario ranging from 2 to 8 are listed in Table 4.6. The estimated parallel computing time

in the case with 6 time blocks is very close to the case with 8 time blocks. Given the result

that the number of GMRES steps in the case with 6 time blocks is merely 40% of that

number in the case with 8 time blocks but the increase in the number of minor iterations for

the case with 6 time blocks is less than 15%, we conclude that the optimal number of time

blocks within each scenario for MD is six.

Table 4.6: Results for MD with different numbers of time blocks

Number of Total # of Total # of Total # of Wall Time Est. Time in sec.
Time Blocks Major Iter. Minor Iter. GMRES Iter. in sec. for Par. Computing

2 3 12, 757 70, 642 2, 734.98 27.35
3 3 12, 665 85, 029 2, 754.69 18.36
4 3 14, 326 103, 802 3, 083.87 15.42
6 3 14, 848 110, 802 3, 228.37 10.76
8 3 12, 948 283, 050 4, 252.78 10.63
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Importance of GMRES in OCD based Methods

Fig. 4.13 shows the evolution of the preconditioned residual norm before and after GMRES

steps, implying the important role that the GMRES measure plays in the OCD based ap-

proaches (Case OCD and Case 2OCD). It can be seen from Fig. 4.13 that the pre-GMRES

preconditioned residual norm in Case 2OCD is larger than that in Case OCD, verifying the

slow converging behavior of the two-stage OCD we observed in Table 4.4.
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Figure 4.13: Evolution of the preconditioned residual norm before and after GMRES steps
for OCD based methods.

Importance of Line Search in OCD based Methods

The evolution of the KKT norm shown in Fig. 4.14 implies the importance of line search in

the OCD based methods. By examining the curves of the two pairs of with and without line

search for the two OCD based cases (Case OCD and Case 2OCD), it is evident that with

the progress of the iteration process the KKT norm increases rapidly in the cases without

line search implementation, which in turn demonstrates that line search is one of the most

critical measures for ensuring the convergence of the proposed OCD based methods. It is

interesting to observe from Fig. 4.14 that the base case without line search still manages to

converge. The possible reason behind this is that the search direction is always exact in the
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base case compared to the situation of the decomposition cases where only approximated

search directions are available.
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Figure 4.14: Evolution of the KKT norm for OCD based methods.

Scaling Performance in terms of Number of Scenarios

The scaling performance of the top two proposed decomposition approaches (OCD and MD)

is evaluated by measuring the wall-clock time with respect to the change in the number

of scenarios in the SMPC based SCED problem. The problems with reduced numbers of

scenarios are obtained by using Algorithm 2 (backward Kantorovich scenario reduction)

described in Section 4.3. Fig. 4.15 shows the wall-clock time as a function of the number of

scenarios using OCD and MD. The number of scenarios in OCD is equal to the number of

parallelizable subproblems whereas the number of subsubproblems in MD is six times more

than the number of scenarios. As can be seen in Fig. 4.15, both the two approaches exhibit

a near linear scaling property, which is desired in parallel computing.

112



5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

Number of scenarios

W
al

l−
cl

oc
k 

tim
e 

(s
ec

.)

 

 

OCD
MD

Figure 4.15: Scaling performance for OCD and MD.

4.9 Summary

This chapter proposes a stochastic model predictive control approach to control energy stor-

age in power systems under increasing uncertainties introduced by variable generation re-

sources and demand. In order to efficiently solve the resulting computationally demanding

SMPC problem, three optimization decomposition schemes – OCD based scenario decom-

position, OCD based two-stage decomposition, and two-stage mixed decomposition are pro-

posed to decompose the overall problem into several subproblems, which makes the parallel

implementation possible thereby reducing the computation time. Two fundamental classes

of decomposition methods are briefly introduced and compared with the three proposed ap-

proaches in terms of convergence. The proposed mixed decomposition approach consisting of

a Benders decomposition for the first-stage scenario-based decomposition and an optimality

condition decomposition for the second-stage temporal-based decomposition outperforms all

the other considered methods in the simulation.

In terms of the two OCD based methods, numerical results from both the WECC 9-bus

system and the IEEE New England 39-bus system indicate that the scenario-based decompo-

sition achieves a better trade-off between convergence speed and the number of subproblems

for the considered optimal dispatch problem. The importance of line search on ensuring the
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convergence of those two methods is also highlighted via the simulation. In addition, we re-

solve the singularity issues that arise in the proposed OCD based decomposition approaches,

which is applicable to the decomposition of general model predictive control problems.
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Chapter 5

Conclusions and Future Work

In this closing chapter, the work of the dissertation is summarized and concluded, and

possible directions of future work are pointed out.

5.1 Conclusions

This dissertation explains the basic problem of real power balancing control in power sys-

tems with high penetration of variable generation and proposes a two-level control approach

consisting of advanced frequency control and stochastic optimal dispatch to tackle the prob-

lem with the objective of safe and optimal integration of energy storage devices in real

power balancing control. The control actions of both the two levels are determined through

optimization processes with consideration of the power and energy limits of energy storage

devices. Extensive simulations on both the WECC 9-bus system and the IEEE New England

39-bus system verify the feasibility of the proposed approach.

The concept of time-scale matching for coordination between conventional generation and

energy storage in real power balancing responsibilities is introduced and implemented. The

proposed time-scale matching principle states that the conventional generators are mainly

responsible to balance the low frequency components of the power variations whereas the
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energy storage devices because of their fast response capability are employed to alleviate the

relatively high frequency components. The time-scale matching is ensured in the advanced

frequency control level via frequency dependent weighting functions and the stochastic op-

timal dispatch level achieves the principle by including quadratic ramping cost terms.

In terms of the advanced frequency control level, a structure-preserving dynamic model

for interconnected power systems is systematically derived based on component-level models

and the DC power flow model for the control design. In addition, a model to estimate the

local frequency at non-generator buses is developed to facilitate the decentralized control

scheme for advanced frequency control in the design stage.

An H∞ optimization approach for enhanced frequency control with energy storage is then

proposed. The problem of integrating energy storage and renewable generation with respect

to real power balancing is constructed as a multi-objective H∞ optimization problem. In ad-

dition to frequency dependent weighting functions, the decentralized static output feedback

is applied to achieve task-specific but easily-implementable controllers. We also show in the

simulations that this H∞-based frequency control approach provides a promising means to

design and coordinate decentralized proportional-integral (PI) controllers for multiple con-

ventional generators which enables the return to the nominal frequency. As for the optimal

H∞ controller gain calculation, an existing iterative linear matrix inequality algorithm involv-

ing a non-convex generalized eigenvalue minimization problem is improved by convexifying

this minimization problem via heuristics.

In terms of the stochastic optimal dispatch level, the use of stochastic model predic-

tive control for optimal dispatch considering energy storage in the future power systems

is proposed to optimally and safely dispatch energy storage and conventional dispatchable

generation under uncertainties for a certain period of look-ahead horizon. Due to the re-

sulting large-scale and computationally demanding SMPC optimization problem, both the

primal based (Benders decomposition) and dual based (Lagrangian relaxation decomposi-

tion and augmented Lagrangian decomposition) optimization decomposition techniques are

extensively analyzed in terms of problem formulation and convergence speed. The value of
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decomposition is demonstrated in the simulations using the two test systems.

In order to speed up the process of solving the stochastic model predictive control based

optimal dispatch problem, three decomposition approaches built upon the optimality condi-

tion decomposition are proposed and evaluated via numerical simulations. A temporal-based

decomposition is introduced to achieve the tradeoff between convergence speed and subprob-

lem size for the considered SMPC problem. Simulation results indicate that, among the three

proposed approaches, the two-stage mixed decomposition scheme has the best performance

record in terms of convergence speed. To the best of our knowledge, this is the first time

the mixed decomposition algorithm is proposed for two-stage stochastic model predictive

control problems. Under such a two-stage decomposition, each subproblem in the first stage

is associated with a specific scenario for the stochastic process. The second stage further

decomposes each of the scenario-based subproblems into even smaller subproblems where

each corresponds to a set of time steps in the optimization horizon. In addition, we resolve

the singularity issues that arise in the three proposed decomposition approaches, which is

applicable to the decomposition of general model predictive control problems.

5.2 Future Work

In terms of the advanced frequency control level, one major concern is the increasing compu-

tational complexity in calculating the optimal controller gains for very large power systems.

It is therefore worthwhile to investigate model reduction techniques to reduce the order of the

system model. The caveat of using general model reduction techniques is that the stability

of the original system may not be ensured. The yielding robust controllers computed based

on the reduced system model must be plugged into the original model to check stability.

Under certain conditions, the passivity control theory [73–75] could be employed to achieve

such a goal where it is guaranteed that the calculated controllers based on the reduced model

also stabilize the original system. However, this theory is not directly applicable to our case

because the considered power system model including governor dynamics is not a passive
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network. Further research on developing model reduction techniques with stability guarantee

for the decentralized static output feedback robust control is in high demand.

In addition, more research is needed to deal with the issue of network topology changes.

Different network topologies are very likely to result in very different optimal controller gains

for the same set of generating units, storage devices, and demands. Offline simulation and

machine learning can be utilized in order for the proposed advanced frequency control to

quickly adapt to the possible network topology changes. Offline simulation is used to gener-

ate training data including optimal controller gains with respect to various power network

topologies whereas machine learning is employed to learn and predict the intrinsic relation

between network topologies and optimal controller gains.

More importantly, the uncertainties in the parameters of the structure-preserving power

system model need to be taken into consideration because in reality the task to obtain

a system model with reasonable accuracy for a very large scale power network is quite

challenging. One possible solution is to use the Small Gain Theorem [22] in the robust control

theory to deal with the model inaccuracy where the model uncertainties are represented by

an unstructured model set, which is typically a norm bounded disk uncertainty around the

nominal system model.

As for the stochastic optimal dispatch level, the proposed mixed decomposition method

with the best performance in terms of convergence speed needs to be further tested under a

more realistic environment by implementing the algorithm on a computer cluster via message

passing. In addition, while the focus of this dissertation is on the convergence aspect of the

resulting computationally demanding SMPC problem at a specific time step, future work

needs to evaluate the value of stochastic solution as well as the value of energy storage in

terms of actual monetary cost savings by using more realistic system data and implementing

the receding horizon concept, i.e. repeatedly solving the SMPC problem with a prediction

horizon which keeps being shifted forward over a certain period of time.

The scaling performance of the proposed decomposition approaches with respect to the

power system size is also worthwhile to investigate for the purpose of testing and anticipating
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their performance for very large power systems. The three proposed approaches need to be

run and tested on multiple systems with different sizes so that the regression methods can

then be applied to numerically determine their computational complexities in terms of the

big O notation.

Last but not least, the interaction between the two proposed levels needs to be investi-

gated. One possible way of doing this is to build a co-simulation platform that combines the

stochastic decision making process and the real time frequency control so that the interaction

can be numerically evaluated. The difficulty lies in the time scale difference between these

two levels, which might result in a very slow simulation.
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Appendix A

WECC 9-Bus Test System

A.1 Dynamic and Static Generator Parameters

The dynamic and static generator parameters of the WECC 9-bus system in the simulations

are modified based on [2, 42] and given in Table A.1. All the values are p.u. values, unless

otherwise stated. Note that the ramp rate limits ∆Pmin
G and ∆Pmax

G shown below are in p.u.

per minute. In addition, the nominal frequency f0 is 60 Hz and the power base SN is 100

MVA and the droop coefficient R for all the three generators is set to be 5%.

Table A.1: Generator parameters of the WECC 9-bus system.

Gen Bus
S

H
kD

TCH TG Pmin
G Pmax

G ∆Pmin
G ∆Pmax

G# # (sec.) (sec.) (sec.)

1 1 2.475 9.5515 2.9040 0.3 0.2 0.6 2.4 −0.4 0.4
2 2 1.920 3.3333 2.3352 0.3 0.2 0.5 2.0 −0.5 0.5
3 3 1.280 2.3516 2.1137 0.2 0.2 0.4 1.5 −0.6 0.6
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A.2 Parameters of Transmission Lines

The transmission line parameters of the WECC 9-bus system are listed in Table A.2 [2]. All

the values in Table A.2 are p.u. values.

Table A.2: Transmission line parameters of the WECC 9-bus system.

From Bus# To Bus# X From Bus# To Bus# X

1 4 0.0576 5 7 0.1610
2 7 0.0625 6 9 0.1700
3 9 0.0586 7 8 0.0720
4 5 0.0850 8 9 0.1008
4 6 0.0920
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Appendix B

IEEE New England 39-Bus Test System

B.1 Dynamic and Static Generator Parameters

The dynamic and static generator parameters of the IEEE New England 39-bus system in

the simulations are modified based on [5, 42] and given in Table B.1. All the values are p.u.

values, unless otherwise stated. Note that the ramp rate limits ∆Pmin
G and ∆Pmax

G shown

below are in p.u. per minute. In addition, the nominal frequency f0 is 60 Hz and the power

base SN is 100 MVA and the droop coefficient R for all the ten generators is set to be 5%.

Table B.1: Generator parameters of the IEEE New England 39-bus system.

Gen Bus
S

H
kD

TCH TG Pmin
G Pmax

G ∆Pmin
G ∆Pmax

G# # (sec.) (sec.) (sec.)

1 39 10.0 500.0 100.02 0.3 0.2 7.0 10.0 −0.06 0.06
2 31 7.0 30.3 6.07 0.3 0.2 4.0 7.0 −0.34 0.34
3 32 7.0 35.8 7.16 0.3 0.2 4.0 7.0 −0.34 0.34
4 33 7.0 28.6 5.73 0.3 0.2 4.0 7.0 −0.32 0.32
5 34 6.0 26.0 5.20 0.3 0.2 3.0 6.0 −0.28 0.28
6 35 7.0 34.8 6.97 0.3 0.2 4.0 7.0 −0.32 0.32
7 36 6.0 26.4 5.28 0.3 0.2 3.0 6.0 −0.28 0.28
8 37 6.0 24.3 4.86 0.3 0.2 3.0 6.0 −0.26 0.26
9 38 9.0 34.5 6.90 0.3 0.2 6.0 9.0 −0.28 0.28
10 30 4.0 42.0 8.41 0.3 0.2 2.0 4.0 −0.18 0.18

123



B.2 Parameters of Transmission Lines

The transmission line parameters of the IEEE New England 39-bus system are listed in

Table B.2 [5]. All the values in Table B.2 are p.u. values.

Table B.2: Transmission line parameters of the IEEE New England 39-bus system.

From Bus# To Bus# X From Bus# To Bus# X

1 2 0.0411 14 15 0.0217
1 39 0.0250 15 16 0.0094
2 3 0.0151 16 17 0.0089
2 25 0.0086 16 19 0.0195
2 30 0.0181 16 21 0.0135
3 4 0.0213 16 24 0.0059
3 18 0.0133 17 18 0.0082
4 5 0.0128 17 27 0.0173
4 14 0.0129 19 20 0.0138
5 6 0.0026 19 33 0.0142
5 8 0.0112 20 34 0.0180
6 7 0.0092 21 22 0.0140
6 11 0.0082 22 23 0.0096
6 31 0.0250 22 35 0.0143
7 8 0.0046 23 24 0.0350
8 9 0.0363 23 36 0.0272
9 39 0.0250 25 26 0.0323
10 11 0.0043 25 37 0.0232
10 13 0.0043 26 27 0.0147
10 32 0.0200 26 28 0.0474
11 12 0.0435 26 29 0.0625
12 13 0.0435 28 29 0.0151
13 14 0.0101 29 38 0.0156
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