
Multi-agent Pickup and Delivery Planning
with Transfers

Brian Coltin

CMU-RI-TR-14-05

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

May 2014

Thesis Committee:
Manuela M. Veloso, Chair

Howie Choset
Stephen Smith

Daniele Nardi (Sapienza University of Rome)

Copyright c© 2014 Brian Coltin. All rights reserved.

Thesis

Multi-agent Pickup and Delivery Planning
with Transfers

Brian Coltin

Submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the field of Robotics

ACCEPTED:

Manuela Veloso May 10, 2014
Thesis Committee Chair Date

Reid G. Simmons May 14, 2014
Program Chair Date

APPROVED:

Randal E. Bryant May 15, 2014
Dean Date

To my parents

Abstract

In Pickup and Delivery Problems (PDPs), mobile vehicles retrieve and deliver a set of items. The
PDP is a well-studied, NP-hard problem. Examples of the PDP include mail and courier services,
taxis, ridesharing services, and robots such as our own CoBots and CreBots, which retrieve and
deliver items for the occupants of a building, and are the motivation for this thesis. The goal of
the PDP is to find a schedule that delivers as many items as possible at the lowest cost, under
various constraints such as time windows and vehicle capacities.

We augment the PDP with transfers to form the PDP with Transfers (PDP-T). Instead of
having a single vehicle retrieve and deliver each item, vehicles can transfer items to other vehicles
(or chains of vehicles) for delivery. Allowing transfers makes lower cost solutions feasible, but
increases the number of possible schedules exponentially.

In this thesis, we contribute a series of algorithms to form schedules for variants of the PDP-T.
We introduce the Very Large Neighborhood Search with Transfers (VLNS-T) algorithm to plan
schedules for the most general version of the PDP-T, with constraints including time windows,
capacities, vehicle start and end locations, maximum item transport times, and maximum vehicle
route durations. We also contribute algorithms for simplified variants of the PDP-T, which take
advantage of the problem structure to find solutions more quickly and more effectively than the
general algorithm for specific PDP-T variants, some with provable guarantees. We also study the
challenges of deploying PDP-T schedules on physical robots, and execute PDP-T schedules on
the CoBots. The robots reschedule their tasks in response to new requests, delays, failures, and
shared information from other robots. We also introduce the CreBots, which transfer items fully
autonomously. Our PDP-T algorithms are evaluated on benchmark problems, on the CoBots,
and on problems on city maps sampled from real world taxi data, demonstrating that lower cost
schedules can be found with transfers.

i

ii

Acknowledgements

First and foremost, I would like to thank my advisor, Manuela Veloso, for everything she has
done. Her enthusiasm is contagious, and it has been a joy to work with her for the past seven
years.

I would also like to thank Howie Choset, Stephen Smith, and Daniele Nardi, for serving on
my thesis committee. Their advice and support has been invaluable. I would especially like to
thank Howie, whom I worked with as an undergraduate and who helped convince me to pursue
a PhD in the first place.

My family has always supported me, for which I am constantly grateful, especially for my
mother, father, and brother.

I am grateful for the help and support of my many friends and colleagues who have been part
of the CORAL group over the years. I should especially thank Joydeep Biswas and Stephanie
Rosenthal. Without their work on the CoBots this thesis could not have been possible. I am also
thankful for the many wonderful experiences I had with my RoboCup teammates, especially
Ryan Cahoon, Somchaya Liemhetcharat, Jinsu Liu, Çetin Meriçli, Misha Novitzky, Junyun Tay,
Mike Phillips, Doug Vail, and Feng Xue. Thank you to the other members of the CORAL group
who have enriched my life as well, particularly Aijun Bai, Susana Brandão, Tom Charley, Ben
Choi, Fatma Faruq, Tom Kollar, Max Korein, JP Mendoza, Tekin Meriçli, Michael Murphy,
Vittorio Perera, Prashant Reddy, Mehdi Samadi, Yichao Sun, Rodrigo Ventura, Richard Wang,
and Danny Zhu. Thanks as well to the participants in the NSF CoBot group.

I am grateful for the many people I have had the pleasure of working with outside of CMU. I
would particularly like to thank everyone I worked with at my internships at Aldebaran in Boston,
at Intel Research Pittsburgh, and at the NASA Ames Intelligent Robotics Group. Special thanks
go to Dean Pomerleau and Ara Nefian. I am also thankful for the many people I have met at
RoboCup and at conferences.

I would like to thank my many other friends who made my time working on my PhD in-
finitely more enjoyable, including, but not only: Pranay Agrawal, Jeevan Bandreddi, Austin
Buchan, Justin Chang, Tai Chen, Nam-Phuong Cong-Huyen, Felix Duvallet, Aram Ebtekar,

iii

Siyuan Feng, Rushane Hua, Rich Hong, Junchen Jiang, Andrew Ko, Nan Li, Mun-Thye Mak,
Chris Mar, Matthew Marge, Eugene Marinelli, Shelah Moreno, David Mowrey, Thorvald Natvig,
Brad Neuman, Mark Qiao, Tamir Sen, Mark Shim, Jane Sun, Ming Sun, Glenn Wagner, Xuezhi
Wang, Kevin Woo, Andrew Yeager, Kaya Yuki, Jason Zaman, Fan Zhang, and Kevin Zhao.

I am also grateful for everyone in the Kiltie Band and at the LUC, who made my time in
Pittsburgh much more pleasant. Thank you as well to my many other friends in Pittsburgh, in
Austin (especially my friends from TLLC) and elsewhere. I could not have made it alone.

iv

Contents

1 Introduction 1
1.1 Thesis Approach . 3

1.2 Contributions . 4

1.3 Evaluation . 5

1.4 Document Outline . 5

2 Pickup and Delivery Problems with Transfers 7
2.1 Background: The Pickup and Delivery Problem 7

2.1.1 PDP Properties and Constraints . 7

2.1.2 Actions in a Schedule . 10

2.1.3 Determining Schedule Validity . 11

2.1.4 Objective Function . 12

2.1.5 Example PDP and Solution . 14

2.1.6 Difficulty of the PDP . 15

2.2 The PDP with Transfers . 16

2.2.1 Additional Transfer Actions . 16

2.2.2 Schedule Validity with Transfers . 17

2.2.3 The Cost of Transfers . 20

2.2.4 Example PDP-T Solution . 21

2.2.5 The Benefit of Transfers . 21

2.3 Variations on the PDP-T . 25

2.4 Online and Distributed PDP-T . 27

2.5 Chapter Summary . 27

3 Task Scheduling and Execution on the CoBot Robots 29
3.1 The CoBot Robots . 30

3.2 Tasks for the CoBots . 31

v

3.3 Requesting Tasks . 32

3.4 Scheduling Tasks . 36

3.4.1 MIP Scheduling . 37

3.4.2 Illustrative Scheduling Example . 40

3.5 Executing and Managing Schedules . 41

3.5.1 Executing a Schedule . 41

3.5.2 Managing Task Lists with Interruptible Autonomy 42

3.6 Monitoring Schedule Execution . 43

3.6.1 The Telepresence Interface . 45

3.6.2 Monitoring Multiple CoBots . 48

3.7 Selected Deployment Results . 48

3.8 Chapter Summary . 50

4 The Pickup and Single Delivery Problem with Transfers 51
4.1 The PSDP-T Problem . 52

4.2 PSDP-T Algorithms . 54

4.2.1 Optimal Approach . 54

4.2.2 Minimum Length Approximation . 56

4.2.3 Improvement with Local Search . 58

4.3 Transfers at Any Location . 60

4.4 Experimental Results . 61

4.4.1 Simulation Results . 61

4.4.2 Illustrative Deployments on CoBots . 63

4.4.3 Autonomous Transfers with CreBots . 63

4.5 Chapter Summary . 65

5 Heuristics for the nTPDP-T 67
5.1 Heuristics for the nTPDP without Transfers . 68

5.1.1 The Greedy Approach . 68

5.1.2 The Auction Approach . 69

5.2 Heuristics with Transfers for the nTPDP-T . 70

5.2.1 Finding a Transfer Point . 70

5.2.2 Splitting an Item’s Route . 71

5.2.3 Greedy Transfer Insertion . 73

5.2.4 Transfer Insertion with Auctions . 74

5.2.5 Graph Search . 75

vi

5.3 Selected Experimental Results . 78

5.3.1 The Euclidean Plane . 78

5.3.2 San Francisco . 80

5.4 Chapter Summary . 81

6 Online Rescheduling with Transfers 85
6.1 Auctions to Revise Schedules with Transfers Online 86

6.1.1 The Online Auction Algorithm . 86

6.1.2 Online Scheduling and Rescheduling 90

6.1.3 Experiments in Online Rescheduling . 91

6.2 Rescheduling with Shared Information . 94

6.2.1 Multi-Agent Rescheduling with Rationale Graphs 95

6.2.2 Multi-Agent Rationale Sharing . 97

6.2.3 Multi-Agent Rescheduling . 98

6.2.4 Rescheduling on the CoBot Robots . 99

6.3 Chapter Summary . 102

7 Very Large Neighborhood Search with Transfers 105
7.1 The VLNS-T Algorithm . 106

7.1.1 Very Large Neighborhood Search . 106

7.1.2 Greedy Insertion with Transfers . 109

7.1.3 Determining Action Execution Times 113

7.2 Experiments . 116

7.2.1 Example Problems . 116

7.2.2 Benchmark Problems . 117

7.2.3 New York Taxi Problems . 118

7.3 Chapter Summary . 119

8 Background and Related Work 121
8.1 Scheduling: The Vehicle Routing Problem . 121

8.1.1 The Traveling Salesman Problem . 121

8.1.2 The Vehicle Routing Problem with Backhauls 122

8.1.3 The Pickup and Delivery Problem . 123

8.1.4 Dynamic Pickup and Delivery Problems 124

8.1.5 Pickup and Delivery Problems with Transfers 124

8.2 Related Robotics Research . 125

vii

8.2.1 Pickup and Delivery Robots . 125
8.2.2 Task Allocation . 126
8.2.3 Ridesharing . 126
8.2.4 Robot Rendezvous . 127
8.2.5 Distributed Algorithms . 127

9 Conclusion 129
9.1 Contributions . 129
9.2 Future Research Directions . 130
9.3 Concluding Remarks . 132

viii

List of Figures

1.1 An example PDP-T problem, in which robots pick up and deliver items, using (a)

a single robot, (b) two robots without transfers, and (c) two robots with transfers.
Using transfers lowers both the total distance travelled by the robots and the
delivery time. 2

1.2 We evaluate PDP-T solutions in three main domains: on simulated benchmark
problems, (a) on the roads, with autonomous taxis and ridesharing; and (b) in the
office, delivering items with the CoBot and CreBot robots. 5

2.1 An example PDP problem with five locations connected by corridors of length
1. The squares represent vehicles, and the circles represent items. 14

2.2 The paths taken by the vehicles in the optimal schedule given in Table 2.3. 16

2.3 The paths taken by the vehicles in the optimal schedule given in Table 2.5. 22

2.4 A hub and spoke PDP. All n items start at the same location as the vehicle v0,
and end at the locations shown. The distance D >> 1. 25

3.1 CoBot-1, CoBot-2, and CoBot-4: Collaborative service robots deployed in our
buildings. (An additional CoBot-3 is deployed off campus.) 30

3.2 In a pickup and delivery task, (a) one user places an item in CoBot’s basket and
(b) another user removes it when the item is delivered. In (c), CoBot finds and
retrieves a cup of coffee from the kitchen. 31

3.3 The system architecture of the CoBots. Users place requests through the dialog
manager or a graphical UI on the robots, or directly to the web scheduler, which
forms schedules for all the robots. 33

3.4 Users schedule tasks for CoBot on CoBot’s web site. The user inputs correspond
to the task request parameters in Table 3.1. 34

3.5 Users schedule tasks for CoBot on CoBot’s touchscreen. The user inputs corre-
spond to the task request parameters in Table 3.1. 35

ix

3.6 Robot starting positions, task locations, and the generated plan. While execut-
ing the plan, CoBot-2 (d) retrieves an envelope, (b) delivers a spoken message,
and (a) delivers the envelope. CoBot-1 c escorts a visitor to an office before
delivering a message. 41

3.7 A CoBot robot was interrupted by a passerby while executing a visit a room task.
A new task is assigned to the CoBot and successfully scheduled for immediate
execution. CoBot begins executing the new task and resumes the previous task
when the new one is finished. 44

3.8 CoBot’s web interface, with the Control and Map tabs visible. In the map tab,
CoBot’s current position, path and LIDAR readings are shown. Users may click
on the map to set CoBot’s localization position or travel to a point. 46

3.9 At left, CoBot-2 views a scene at the default zoom level. At right, the user
zooms in to the boxed area at the maximum level of 18X. The powerful zoom
functionality of the robot allows users to inspect small or distant objects, and
even read text remotely. Only CoBot-2 possesses such a powerful camera. 47

3.10 Execution times for, from left to right, Deliver Message tasks, Go to Room tasks,
and Transport tasks. The breakdown includes 1) waiting for help to start the task,
2) riding the elevator, 3) navigating (not including time blocked by obstacles), 4)
waiting blocked by an obstacle, and 5) waiting for help to end the task. 50

4.1 Two vehicles collect letters and deliver them, minimizing the total distance trav-
elled to conserve energy. Each corridor has length c. a Without transfers, the
optimal solution has cost 4c. b With transfers, the optimal cost is 3c. 52

4.2 The optimal solution to the PSDP-T can be formulated as a delivery tree. Edges
represent the motion of a single vehicle. Where the tree branches, all the vehicles
at that branch point transfer their entire load to a single vehicle which continues
alone. 54

4.3 Robots and items are situated at the end of n hallways of length one emanating
from the delivery point f . On = n, where every vehicle travels to f . O1 = 2n−1,
where one vehicle retrieves every item. 56

4.4 An example of the approximation algorithm. Solid black lines indicate edges on
the minimum spanning tree, and dashed lines show the generated delivery tree. . 58

4.5 (a) The initial state. (b) A neighbor found by swapping l1 and l2 (the edges
linking them to other nodes are different). (c) A neighbor with l2 grafted from l1

to l3. 59

x

4.6 Results for the PSDP-T algorithms with (a) three robots and up to twenty items
to retrieve under the total distance objective function in the planar domain, and
(b) 25 robots and up to 175 items to retrieve under the mixed objective function in
the office building domain. Lines indicate the mean objective function cost, and
the filled area shows the standard deviation across trials. Darker areas indicate
overlap. 62

4.7 The paths planned by the approximation algorithm and taken by the robots, with
and without transfers, for a Scenario 1, b Scenario 2, and c Scenario 3. 64

4.8 a A CreBot robot, with a Create base, laptop computer, Kinect RGB-D camera,
tilting tray, and QR code for alignment. b One CreBot transfers an item to another
during a collection and delivery task. 64

5.1 The solution cost for each method in the Euclidean domain with |V | = 20,
cap(v) = 5, mni (v) = 7, bud (v) = 6, and ct (m, v1, v2) = 0. 79

5.2 The computation time for each method in the Euclidean domain with |V | = 20,
cap(v) = 5, mni (v) = 7, bud (v) = 6, and ct (m, v1, v2) = 0. 79

5.3 The number of transfers found for each method in the Euclidean domain with
|V | = 20, cap(v) = 5, mni (v) = 7, bud (v) = 6, and ct (m, v1, v2) = 0. 80

5.4 The solution cost found for each method in the Euclidean domain with |M | = 10,
cap(v) = 5, mni (v) = 7, bud (v) = 6, and ct (m, v1, v2) = 0. 81

5.5 An example solution with transfers for a problem in San Francisco. Two passen-
gers are transferred to other vehicles. 82

5.6 The solution cost found for each method in San Francisco with |V | = 18,Cv = 4,
Mv = 7, Bv = 1.5 km, and cT = 0. 82

6.1 Vehicle r’s pickup and delivery of itemm is split with vehicle s using insert transfer.
First, a transfer point is chosen between two subsequent tasks on each vehicle’s
plan. Then the delivery point is removed from r’s plan and inserted into s’s,
lowering the delivery cost. 88

6.2 An example temporal network with two vehicles, three items and a single trans-
fer. The feasible time windows for each action are computed based on the item
time windows and the edge durations. 90

6.3 Planned schedules to deliver four items, scheduled with the (a) MIP without
transfers, and (b) auction with transfers. Items 1 and 2 are requested at time 0,
Item 3 is requested after 150 s, and Item 4 is requested after 200 s. See Fig. 6.1
for symbol meanings. 92

xi

6.4 (a) Deliveries are scheduled with three robots (including two transfers). (b)

When one of the robots dies and fails to respond, the tasks are rescheduled. See
Fig. 6.1 for symbol meanings. 93

6.5 The mean cost of the generated schedules to the number of items. The shaded
regions depict the standard deviation across the fifty trials. 94

6.6 a CoBot-2 heads to Office A to make a delivery. b CoBot-4 passes Office A and
observes the door is closed. It notifies the server. The server sees a violation in
CoBot-2’s rationale graph and reschedules its tasks. c CoBot-2 is scheduled to
complete a task at Office B first, and turns around. d CoBot-2 completes its task
at Office B. e CoBot-4 returns from its previous task and observes that the door
to Office A is now open. f CoBot-2 completes its original task at Office A. 101

6.7 a CoBot-2 heads towards an office to make a delivery. b CoBot-4 detects that
a hallway is blocked, and tells the server. The server realizes that CoBot-2’s
rationale has been violated and communicates this information to CoBot-2. c
CoBot-2 uses the information to change its plan. d CoBot-2 takes an alternate
round to avoid the blocked hallway. 102

6.8 CoBot-2 replans its route after CoBot-4 reports that a hallway is blocked. 103

7.1 a The cost to deliver the items is 800 without transfers. b The cost is halved
to 400 if transfers are allowed. Note that the order of the Transfer and Receive

actions are arranged such that no deadlocking cycles are formed. 117

xii

List of Tables

2.1 PDP Notation . 8
2.2 Notation for Action a . 10
2.3 An Optimal PDP Schedule, c (S) = 8 . 15
2.4 PDP-T Notation (New Notation is Bolded) . 18
2.5 An Optimal PDP Schedule, c (S) = 4 . 22
2.6 Variations on the PDP . 26

3.1 The fields in a task request. 33
3.2 An example specification of a Pickup and Delivery Request. 33
3.3 An example schedule. 40
3.4 Total number of task requests per task type and the respective number that used

the elevator. 49

4.1 Deployment Results for Selected Scenarios . 63

5.1 Schedule Before Route Splitting . 71
5.2 Schedule After Route Splitting, b Executes Action R 72
5.3 Schedule After Route Splitting, b Executes Action D 72

7.1 VLNS Parameters . 108
7.2 Cordeau benchmark results. All times are in hours. The “Tabu” column gives

the best results for Tabu search [33], the “VLNS” section for one run of VLNS
[93], and the “VLNS-T” section for one run of our algorithm. The “Tr.” column
is the number of transfers. Computation times are in hours. 118

7.3 New York City Taxi Experiment Results . 119

8.1 Selected variants of the Vehicle Routing Problem. 122
8.2 Selected variants of the Pickup and Delivery Problem (PDP). 123

xiii

xiv

Chapter 1

Introduction

Many types of logistics problems require mobile vehicles to retrieve and deliver a set of objects.
For example, taxis pick up and drop off passengers, mail services retrieve and deliver letters and
packages, and airplanes deliver passengers and freight. All of these problems are instances of the
Pickup and Delivery Problem (PDP), in which a set of mobile vehicles services a set of spatially-
located requests. Given a set of object pickup and dropoff locations, along with a set of mobile
vehicles, the goal is to find a schedule for the vehicles to minimize energy consumed or delivery
time, under constrains such as time windows and vehicle capacities. The PDP is a well-studied,
NP-hard problem, so approximation algorithms and heuristics have been developed to address
variants of the PDP.

As autonomous mobile robots become increasingly capable and available, they offer new
applications of the PDP. Our multiple CoBot robots currently deliver items, such as mail, au-
tonomously to occupants of an office building in response to user requests. To deliver items as
effectively as possible, algorithms are needed to address the PDP and form schedules of tasks
for the robots. These schedules must account for robot capacities, time constraints, as well as
additional constraints, and plans must be created and modified online in response to delays, can-
cellations, and new task requests.

While deploying the CoBots to pick up and deliver items for users, we realized that the
robots’ schedules could be improved if the robots transferred items between one another. For
example, two robots could be assigned to pick up items from opposite ends of the seventh floor,
and deliver them to the eighth floor. Both would have to go wait at the elevator before delivering
their items on the eighth floor. But the schedule could be much more efficient if one robot passed
its item to the other at the elevator, a single robot delivered both the items, and the other robot
was free to do other tasks.

Inspired by the CoBots, we introduce and examine a novel extension to the PDP: allowing

1

2 CHAPTER 1: INTRODUCTION

B

C

A

D

A

D

C

B

A

Robot

A

Item A Pickup

Item A Dropoff

(a) Distance: 8, Time: 8

B

C

A

D

A

D

C

B

(b) Distance: 12, Time: 6

B

C

A

D

A

D

C

B

TRANSFER

A

B C

D

(c) Distance: 4, Time: 4

Figure 1.1: An example PDP-T problem, in which robots pick up and deliver items, using (a) a
single robot, (b) two robots without transfers, and (c) two robots with transfers. Using transfers
lowers both the total distance travelled by the robots and the delivery time.

vehicles to transfer items to other vehicles before delivery. We call this problem the Pickup
and Delivery Problem with Transfers (PDP-T). With transfers, one robot may pick up an object
and transfer it a different robot (or a chain of robots) for delivery. Transferring items enables a
reduction in fuel cost and delivery time for many problem instances.

Figure 1.1 shows an example of the benefits of transferring items. In Figure 1.1a, one robot
picks up and then delivers all the items A, B, C and D. The robot travels six corridors of distance
over a corresponding six units of time. In Figure 1.1b, a second robot is introduced. With two
robots delivering the items, each picks up the items near its starting position and delivers one to
each of the two delivery points. An increased eight units of distance are travelled, but delivery
now only takes four units of time. Next, in Figure 1.1c we consider two robots that can transfer
items. At the intersection of the two corridors, the robots swap items B and C. Now, each robot
only needs to travel to the end of a single corridor to deliver both of its items. By transferring
items, we reduce the total distance travelled to four units and the delivery time to two units,
assuming the transfer itself takes negligible time. Transferring empowers us to make deliveries
more efficiently because items heading in the same direction can be routed to the same vehicle,
dividing the transportation cost between the items. While this simple example demonstrates the
benefits of transferring items in the PDP-T, there are many algorithmic challenges that must be
addressed to effectively plan for deliveries with transfers.

The principal question addressed in this thesis is:

How can transfers be incorporated to improve schedules generated to solve Pickup
and Delivery Problems, both offline and online, with multiple constraints, particu-

1.1 THESIS APPROACH 3

larly for deployment on robots?

This thesis builds upon the work of both the robotics community and the scheduling commu-
nity, as we devise schedules with transfers and deploy them on actual robots. From a robotics
perspective, the problem of transfers is especially interesting because, unlike in traditional multi-
robot task allocation, the individual tasks are tightly coupled. The cost of a schedule with trans-
fers depends highly on the combination of tasks assigned to all of the robots. Planning for
transfers requires multi-robot coordination and cooperation in the fullest sense, rather than sim-
ply the execution of tasks independently in parallel. From a scheduling perspective, allowing
transfers increases the space of possible schedules exponentially, but may lower the costs of the
best solutions.

1.1 Thesis Approach

In practice in large scale logistics systems, such as the airline or shipping industries, items are
transferred at central hubs which they are routed through in “hub and spoke” networks [24].
Our work differs in that we plan routes for each individual package rather than making use of
fixed routes in economies of scale. Some previous approaches in the scheduling community
have considered transferring items at a set of fixed “transshipment” points specified beforehand
(e.g., [34, 80, 82, 78]). We allow individual items to be transferred multiple times at arbitrary
locations generated based on the vehicles’ routes, which increases the size of the search space
but may allow for better solutions.

We contribute multiple novel algorithms to solve variants of the PDP-T, with numerous con-
straints, including capacities, time windows, maximum item transport times, and maximum ve-
hicle route durations. We begin with simplifications of the full problem and develop heuristics,
approximation algorithms and metaheuristics to solve the simplified problems. By developing
specific algorithms for simplified problems, we are able to develop faster and more effective
algorithms for the specific problems these algorithms address than the general algorithm which
could solve any PDP-T which we do ultimately introduce. We build upon the earlier approaches
to develop algorithms of increasing complexity and generality.

Since our work is motivated by a desire to execute schedules on robots, we address issues
inherent to executing schedules on robots in the real world, which will inevitably differ from
simulation. In most scheduling problems, it is assumed that a function exists which estimates
the time taken to travel between two locations. In the real world, such a function is likely to
both overestimate and underestimate the time in different situations, and exact execution of the
schedule is not possible. Hence, we develop algorithms to replan with transfers in response

4 CHAPTER 1: INTRODUCTION

to delays. Vehicles will also sometimes fail, and our algorithms are able to reschedule failed
vehicles items for delivery by other vehicles, with transfers. We also reschedule in response
to shared information from other robots about traffic conditions and expected feasibility of task
completion.

In this thesis, we mainly develop centralized algorithms, which rely on communication with a
centralized server. We introduce a backup approach such that the robots can still execute locally
requested tasks when communication fails. We also discuss distributed approaches which do not
rely on a centralized server.

1.2 Contributions

Concretely, the main contributions of this thesis are:

• A formal definition of the PDP-T.

• An analysis of the potential benefits of transfers, including proofs bounding the maximum
improvement in the objective function from transfers in certain cases.

• The online scheduling and execution of tasks on the CoBot robots, including interrupting
the robots to modify schedules, and the remote monitoring and management of schedule
execution.

• The introduction and implementation of the CreBot robots which autonomously transfer
items.

• A two-approximate heuristic and a metaheuristic for the Pickup and Single Delivery Prob-
lem with Transfers (a simplified PDP-T variant), as well as a proven bound on the im-
provement from allowing transfers at any location.

• The introduction and comparison of multiple heuristics for a variant of the PDP-T without
time windows.

• An auction-based heuristic to schedule PDP-Ts online. The heuristic reschedules in re-
sponse to new requests, delays, and failures, and could be implemented in a distributed
manner.

• The novel idea of multi-robot rescheduling by one robot from information observed and
shared from other robots, and an algorithm to implement this idea.

• A metaheuristic to solve the general PDP-T, which outperforms state of the art PDP algo-
rithms on benchmark problems.

1.3 EVALUATION 5

(a) On the Roads (b) In the Office

Figure 1.2: We evaluate PDP-T solutions in three main domains: on simulated benchmark prob-
lems, (a) on the roads, with autonomous taxis and ridesharing; and (b) in the office, delivering
items with the CoBot and CreBot robots.

1.3 Evaluation

We evaluate our algorithms for scheduling with transfers in three main domains:

1. In simulation. We evaluate our algorithms on generated problems with both Euclidean
and Manhattan geometries. We show an improvement from using transfers on the Cordeau
benchmark problems [33], which use Euclidean distance.

2. On the roads. Using maps of cities and publicly available taxi-cab data, we can recreate
passenger demands in the city. With this data, we construct PDP-T problems and evaluate
the effectiveness of solutions generated by our algorithms. On city maps, we have two
particular use cases in mind: fleets of autonomous taxis without their own destinations, and
a ridesharing service, such as Lyft [43], in which vehicles are driven by non-professional
drivers with their own starting points and destinations who offer to pick up passengers
along the way (see Fig. 1.2a).

3. In the office. We will deploy the CoBot and CreBot robots to execute schedules delivering
mail or other items in the Gates-Hillman Center, and demonstrate that transferring items
leads to faster delivery times at lower cost.

In each domain, we compare solutions with transfers to solutions without transfers, and demon-
strate that our algorithms with transfers find better solutions.

1.4 Document Outline

The thesis is organized as follows:

6 CHAPTER 1: INTRODUCTION

• Chapter 2 formally defines and introduces all aspects of the Pickup and Delivery Problem
with Transfers, including our notation, the constraints and objectives of the PDP-T, and the
actions and requirements of a valid schedule. The potential benefits of transfers and the
difficulty of the PDP-T are analyzed. The variants of the PDP-T examined in this thesis
our discussed.

• Chapter 3 discusses how tasks are requested and executed on the CoBot robots. The idea
of interruptible autonomy is introduced, with which the robots can be interrupted and new
requests scheduled. This chapter also discusses how schedule execution can be monitored
over the web and presents results from a public deployment of the CoBots.

• Chapter 4 examines a simplified variant of the PDP-T, in which there are no time windows
or capacities and all items are delivered to the same central location. A two-approximate
heuristic and a metaheuristic are presented to solve this version of the problem, and results
are presented from the CoBot and CreBot robots.

• Chapter 5 presents three heuristics for a PDP-T with capacities and distinct item destina-
tions but without time windows. The heuristics are compared on problems generated from
taxi data on maps of San Francisco.

• Chapter 6 examines the online PDP-T with time windows. An auction-based heuristic is
introduced and evaluated on the CoBot robots. The heuristic is used to replan in response
to new requests, delays, and robot failures, as well as shared information from other robots.
The implementation of the heuristic in a distributed manner is discussed.

• Chapter 7 presents a metaheuristic, VLNS-T, to solve the full PDP-T with all allowed
constraints. The algorithm is shown to improve upon the best known results for PDP
benchmark problems, and outperforms state-of-the-art PDP algorithms on problems gen-
erated from New York City taxi data.

• Chapter 8 discusses areas of related research, including from the scheduling and robotics
communities, and places this thesis into the context of that work.

• Chapter 9 summarizes our major findings and suggests potential lines of future research.

Chapter 2

Pickup and Delivery Problems with
Transfers

In this chapter, we contribute a formulation of the Pickup and Delivery Problem with Transfers
(PDP-T), a novel generalization of the PDP. To do so, we first extensively discuss the space
of pickup and delivery problems without transfers, explaining the many variants of PDPs and
their different constraints. We specify how a solution to the PDP is formulated as a schedule,
and discuss the objective functions a solution could seek to optimize. Then, we explain how
adding transfers changes the problem and makes it more challenging. In this chapter, we do not
introduce any algorithms or discuss how to solve the problem, we only describe the problem
itself. The rest of the thesis discusses how to solve the problem.

2.1 Background: The Pickup and Delivery Problem

The goal in a PDP is to form a schedule for a set of vehicles V to pickup and deliver a set of items
M while satisfying a set of constraints and minimizing an objective function. The constraints
and objective function rely on a distance function which is estimated based on a map of the
environment.

2.1.1 PDP Properties and Constraints

A PDP has numerous properties and constraints, both for the items and for the vehicles. A handy
reference for our notation is given in Table 2.1.

7

8 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

Vehicle v Properties Item m Properties

Notation Description
start(v) Start Location
end(v) End Location
cap(v) Capacity
Wa (v) Availability Window
mrd (v) Max. Route Duration
dv (a, b) Distance Metric

Notation Description
start(m) Start Location
end(m) End Location

dem(m) Demand
Wp (m) Pickup Time Window
Wd (m) Delivery Time Window
δp (m) Pickup Duration
δd (m) Delivery Duration

mtt(m) Max. Transport Time
AV(m) Allowed Vehicles
pri (m) Priority

Table 2.1: PDP Notation

Vehicle Properties and Constraints

For each vehicle v ∈ V , we are given a:

• Start Location: Vehicle v must start at the location start(v). This location may be a
centralized depot shared by multiple vehicles, such as a charging station or taxi stand. Or
the vehicles could each have different starting locations, such as vehicle drivers’ homes or
the current position of vehicles during operation.

• End Location: Vehicle v must end at the location end(v). End locations end(v) always
exist, but may be either a normal location or a special “wildcard” location ∅, in which
case the vehicle may end at any location. The ending location may be a central depot the
vehicle must start from and return to, or a different location than its starting point, such as
the destination of the vehicle’s driver.

• Capacity: Vehicle v has capacity cap(v). At any time, the sum of the demand from all
items the vehicle is currently carrying cannot exceed cap(v). Note that we can model
uncapacitated problem formulations by setting cap(v) =∞.

• Vehicle Availability Time Window Vehicle v is only available for use during the specified
time window Wa (v). No actions may be scheduled outside this window. If the problem
specifies no window and the vehicle is always available, then Wa (v) = [−∞,∞].

• Maximum Vehicle Route Duration The maximum length of vehicle v’s route, from when
it leaves its starting point until it returns to its ending point, cannot exceed the maximum
route duration mrd (v). This constraint could represent limited energy supply of a car or
robot, or a limited availability of the vehicle’s driver. If the constraint does not apply to a

2.1 BACKGROUND: THE PICKUP AND DELIVERY PROBLEM 9

problem, then mrd (v) =∞.

Item Properties and Constraints

The vehicles pickup and deliver a set of items M . Each item m ∈M is given a:

• Pickup and Dropoff Location: Item m must be retrieved from the location start(m) and
delivered to the location end(m).

• Demand: Item m has demand dem(m), which represents the amount of a vehicle’s ca-
pacity taken up by an item. The sum of the demands of all items carried by the vehicle v
cannot exceed the capacity cap(v) of the vehicle at any time. For example, in a transporta-
tion domain, an individual could have dem(m) = 1, while a family of four could have
dem(m) = 4.

• Pickup and Delivery Time Window: Item m must be delivered within the time window
Wp (m) and delivered within the time window Wd (m). For time windows, we use the
notation Wp (m) = [ep (m) , lp (m)]. This time window means that item m cannot be
delivered before the time ep (m) or delivered after the time lp (m). The time windows
may either be hard or soft. Hard time windows may never be violated, but for soft time
windows, the delivery can take place after the deadline with a cost. In either case, if the
vehicle arrives before ep (m), it must wait until ep (m) to make the delivery. For the
remainder of this document, hard time windows are assumed unless stated otherwise.

• Item Management Time: Item m has an associated pickup duration δp (m) and delivery
duration δd (m). These are the times it takes to load and unload the item, respectively.

• Maximum Item Transport Time: The time between when the item m is picked up and
when it is delivered cannot exceed the maximum transportation time mtt(m). This con-
straint could represent couriers delivering packages with deadlines, or human passengers
with limited patience. If an item does not have a maximum transportation time, then
mtt(m) =∞.

• Allowed Item Transport Vehicles: The item m can only be transported by vehicles in
the set AV(m). This constraint applies if any passengers or items have specific delivery
requirements that can only be fulfilled by certain vehicles. If item m can be transported by
any vehicle, then AV(m) = V .

• Priority: The item m has an associated delivery priority pri (m), where the delivery of
items with higher priority is prioritized. The priority will later be included in the objective
function. In this thesis, unless otherwise specified, all items are assumed to have equal

10 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

priority.

In addition, a PDP must specify a distance metric dv (a, b) that returns an estimate of the
time vehicle v takes to travel from location a to location b, where locations a and b are any
locations on a map. The distance function may be Euclidean distance, Manhattan distance, or
taken from a city street map. It can be estimated based purely on physical distance or learned
from experience. The distance function is utilized both to determine the time vehicles take to
travel between locations and to determine the cost of that motion in the objective function.

2.1.2 Actions in a Schedule

The goal of the PDP is to form a schedule, S, where S = ∪v∈V Sv is a set of schedules for all
the vehicles. For each vehicle v ∈ V Sv = (Sv1 , S

v
2 , . . . , S

v
n) is the sequence of actions Svi ∈ A

executed in order by vehicle v in schedule S.
Every action a ∈ A occurs at a location loc(a). The vehicle arrives at loc(a) at time b (a),

and executes a at time t (a). The action takes time δ (a) to execute. Note that the arrival time and
execution time are not necessarily the same, and the vehicle may wait at the destination. Waiting
is often necessary to satisfy time window constraints. For convenience, we say that t (a) must
fall within the time interval W (a) = [e (a) , l (a)], which is the appropriate time window for the
given action type. If no time window constrains a given action, the window may be (−∞,∞).
The notation for actions in a schedule is presented in Table 2.2.

Notation Description
loc(a) Location

b (a) Arrival Time
t (a) Execution Time
δ (a) Execution Duration

W (a) = [e (a) , l (a)] Allowed Time Window

Table 2.2: Notation for Action a

The possible action types in A are:
• START: The first action of every plan. If a = Svi = START, then loc(a) = start(v),
W (a) = W (v), and δ (a) = 0.

• END: The final action of every plan. If a = Svi = END, then loc(a) = end(v), W (a) =

W (v), and δ (a) = 0. If end(v) = ∅, then loc(a) is the same as the previous action.

• PICKUP (m): Pick up item m. If a = Svi = PICKUP (m), then loc(a) = start(m),
W (a) = Wp (m), and δ (a) = δp (m). However, when using soft time windows, W (a) =

[ep (m) ,∞).

2.1 BACKGROUND: THE PICKUP AND DELIVERY PROBLEM 11

• DELIVER(m): Deliver item m. If a = Svi = DELIVER(m), then loc(a) = end(m),
W (a) = Wd (m), δ (a) = δd (m).

The START and END actions are not strictly necessary, since they are the same in every valid
schedule. However, their inclusion makes the problem and various algorithms easier to formu-
late.

2.1.3 Determining Schedule Validity

To be considered valid, a schedule S must contain only the action types mentioned above, and
satisfy the following conditions:

1. Start and End Actions: Every vehicle’s schedule must begin with a START action and
end with an END action.

∀v ∈ V : Sv1 = START, Sv|Sv | = END (2.1)

2. Single Pickup and Delivery: Every item is picked up and delivered at most once. How-
ever, the schedule is still valid if some items are not delivered at all.

∀m ∈M : |{Svi ∈ S : Svi = PICKUP (m)}| = |{Svi ∈ S : Svi = DELIVER(m)}| ≤ 1

(2.2)

3. Delivery After Pickup: Every item that is picked up must be delivered later by the same
vehicle.

∀Svi ∈ S s.t. Svi = PICKUP (m) : ∃j > i s.t. Svj = DELIVER(m) (2.3)

4. Feasible Travel Times: It must be possible for a vehicle to arrive in time to execute each
action according to the estimated distance function.

∀v ∈ V, 1 ≤ i < |Sv| : t (Svi) + δ (Svi) + dv
(
loc(Svi), loc(Svi+1)

)
≤ b

(
Svi+1

)
≤ t
(
Svi+1

)
(2.4)

5. Time Constraints: Each action must be executed in the specified time window. These
ensure that all pickup and delivery time window constraints as well as vehicle availability
time windows are satisfied, since these time windows are both encoded in the actions’ time
windows W (Svi). Each action must begin execution within the requested time window,
but is not necessarily required to finish within that time window since each action may

12 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

have a non-zero duration.
∀Svi ∈ S : t (Svi) ∈W (Svi) (2.5)

6. Capacity Constraints: The demand of the items inside a vehicle may never exceed the
vehicle’s capacity.

∀v ∈ V, 1 ≤ i < |Sv| :
i∑

j=1

ad
(
Svj
)
≤ cap(v) (2.6)

where ad(a) =

dem(m) if a = PICKUP (m)

−dem(m) if a = DELIVER(m)

0 otherwise

7. Maximum Vehicle Route Duration Constraints: The length between each vehicle’s
START and END actions cannot exceed the maximum route duration.

∀v ∈ V : t
(
Sv|Sv |

)
− t (Sv1) ≤ mrd (v) (2.7)

8. Maximum Item Transportation Time Constraints: An item cannot be in transport for
more than the maximum transportation time.

∀Svi , Svj ∈ S s.t. Svi = PICKUP (m) , Svj = DELIVER(m) : t
(
Svj
)
− t (Svi) ≤ mtt(m)

(2.8)

9. Allowed Vehicle Constraints: Each item can only be transported by vehicles in its allowed
vehicle set.

∀Svi ∈ S s.t. Svi = PICKUP (m) : v ∈ AV(m) (2.9)

2.1.4 Objective Function

The goal when solving a PDP is not simply to find any valid schedule, but to find the schedule that
minimizes some objective function. In this thesis, we consider minimizing four main objectives:

• Total Distance Traveled: The total distance travelled by all the vehicles roughly cor-
responds to the energy required to complete the pickup and delivery tasks. We wish to
minimize energy usage to conserve vehicle fuel or robot battery life:

TD(S) =
∑
v∈V

|Sv |−1∑
i=1

dv
(
Svi , S

v
i+1

)
.

2.1 BACKGROUND: THE PICKUP AND DELIVERY PROBLEM 13

• Total Vehicle Operation Time: The total distance travelled metric does not give any cost
to the time a vehicle spends idling. In reality, the time vehicles spend idling incurs costs
as well, since the vehicle’s driver must still be paid and robots will still consume battery
life. To account for these costs, a second objective weighs the total time the vehicles are in
operating, between the initial START action and the final END action:

OT (S) =
∑
v∈V

(
t
(
Sv|Sv |

)
− t (Sv1)

)
.

• Undelivered Items Penalty: A schedule may be valid even if it doesn’t deliver every item
inM . For some problems, there may even be no valid solution which delivers all the items.
So rather than requiring that all items be delivered, we set a penalty for undelivered items
in the objective function. This penalty is the item’s priority, pri (m). We define the set of
undelivered items in the schedule S as

UND(S) = {m ∈M : 6 ∃DELIVER(m) ∈ S} .

• Soft Time Window Violation: If the time windows are soft, they may be violated at a
cost. In this thesis, when dealing with soft time windows, we apply a linear late delivery
fee,

LD(S,m) =

{
0 if m ∈ UND(S)

min (0, t (PICKUP (m))− ld (m)) otherwise
,

however, a different late delivery fee could be applied instead. For example, a quadratic
late fee would apply a hefty cost to individual items which are delivered especially late, as
this could be considered worse than many items being delivered a little bit late. The total
soft time window violation cost is

SW (S) =
∑
m∈M

LD(S,m).

The final cost function to minimize is the weighted sum of all the objectives,

c (S) = αTD(S) + βOT (S) + γ
∑

m∈UND(S)

pri (m) + δSW (S).

Typically γ will be set to a high value, such that delivering as many items as possible is
prioritized over the other objectives. If the time windows are hard, then δ = 0.

14 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

There are other objectives which could be used for the PDP. For example, we could try to
complete schedule execution as quickly as possible by minimizing the makespan of the schedule,

max
v∈V

t
(
Sv|Sv |

)
−min

v∈V
t (Sv1) .

Or, if the items should not be in the vehicle for long (e.g., delivering hot pizza, impatient passen-
gers) a term could be added to minimize the time the items spend in the vehicles,∑

m∈M\UND(S)

(t (DELIVER(m))− t (PICKUP (m)))2 .

However, in this thesis our main focus is minimizing the objectives in c (S).

2.1.5 Example PDP and Solution

In this section, we give an example of a PDP problem and show the optimal solution. We have
two vehicles, V = {v1, v2}, and four items, M = {m1,m2,m3,m4}. The map contains five
locations, N , E, S, W and O, connected in a cross by corridors of length 1 which defines the
distance functions dv(a, b).

The two vehicles start at the N and S locations (start(v1) = N, start(v2) = S), and end at
the E and W locations (end(v1) = E, end(v2) = W). Two items start at each of the vehicle
start locations (start(m1) = start(m2) = N , start(m3) = start(m4) = S. For two items with the
same starting location, one has a destination at W and one has a destination at E (end(m1) =

end(m3) = W , end(m2) = end(m4) = E). See Figure 2.1 for the problem setup.

x x x

x

x

O

N

S

W E

v1

v2

���m1

���m2

���m3

���m4

(a) Starting State

x x x

x

x

O

N

S

W E

v1v2

���m1���m3 ���m2���m4

(b) Goal State

Figure 2.1: An example PDP problem with five locations connected by corridors of length 1.
The squares represent vehicles, and the circles represent items.

2.1 BACKGROUND: THE PICKUP AND DELIVERY PROBLEM 15

We are given the hard time windows ∀m ∈ M Wp (m) = [0, 5), Wd (m1) = Wd (m4) =

[3, 12], Wd (m2) = Wd (m3) = [8, 12]. Picking up and delivering objects each take one unit of
time, and ∀m ∈M δp (m) = δd (m) = 1. In this simple example, no other constraints are given:
∀v ∈ V cap(v) =∞, Wa (v) = [0,∞), mrd (v) =∞, and ∀m ∈M mtt(m) =∞,AV(m) = V .
The goal is to minimize the total distance travelled by the vehicles, so α = 1, β = 0, γ = 106

(and since the time windows are hard, δ = 0).
Table 2.3 shows one example of an optimal schedule for this problem, illustrated in Fig-

ure 2.2. Each vehicle picks up the items nearest to its starting location, and delivers them both,
while delivering the item nearest to its destination last. Note that the optimal solution to this
problem is not unique. Another possible solution has v1 pick up m2, then m4, and deliver both,
while v2 picks up m3, then m1 and deliver both. This schedule also has cost 8.

S Action a loc(a) b (a) t (a) δ (a)
Sv11 START N 0 0 0
Sv12 PICKUP (m1) N 0 0 1
Sv13 PICKUP (m2) N 1 1 1
Sv14 DELIVER(m1) W 4 4 1
Sv15 DELIVER(m2) E 7 8 1
Sv16 END E 9 9 0
Sv21 START S 0 0 0
Sv22 PICKUP (m3) S 0 0 1
Sv23 PICKUP (m4) S 1 1 1
Sv24 DELIVER(m4) E 4 4 1
Sv25 DELIVER(m3) W 7 8 1
Sv26 END W 9 9 0

Table 2.3: An Optimal PDP Schedule, c (S) = 8

2.1.6 Difficulty of the PDP

Theorem 1. The PDP is NP-hard.

Proof. We prove that the PDP is NP-hard by reduction of the Traveling Salesman Problem
(TSP) to the PDP. In the TSP, a single salesman begins at a location l0, travels to a set of locations
l1, l2, . . . , ln to sell items, and finally returns to his starting location l0. The goal is to find the
ordering of locations to visit which minimizes the distance travelled by the salesman.

We construct a PDP with a single vehicle v and a set of n itemsM = {m1,m2, . . . ,mn}. The
vehicle must start and end at l0, so start(v) = end(v) = l0. All items are picked up from s and
delivered to the locations l1, l2, . . . , ln, so ∀mi ∈M : start(mi) = s, end(mi) = li. The objective

16 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

x x x

x

x

O

N

S

W E

v1v2

���m1

���m2 ���m3

���m4

6
-

1

1

?�

1

1

(a) Making First Deliveries

x x x

x

x

O

N

S

W E

v1v2

���m1���m3 ���m2���m4

- -1 1
� �

1 1

(b) Making Final Deliveries

Figure 2.2: The paths taken by the vehicles in the optimal schedule given in Table 2.3.

is to minimize the distance (α = 1, β = 0, γ → ∞) and there are no capacities (cap(v) = ∞),
time windows (∀m ∈ M Wp (m) = Wd (m) = [0,∞)) nor any other constraints. The optimal
solution to this PDP gives the optimal solution to the TSP. Thus, the TSP reduces to the PDP in
polynomial time, and since the TSP is NP-hard, the PDP is also NP-hard.

Since the PDP is NP-hard, solving large PDPs optimally is impractical. Therefore a large
body of research, including much of this thesis, focuses on developing approximation algorithms,
heuristics, and metaheuristics for the PDP.

2.2 The PDP with Transfers

The main contribution of this thesis is the introduction of transfers to the Pickup and Delivery
Problem. We call this the Pickup and Delivery Problem with Transfers, or the PDP-T. In this
section, we present exactly how the PDP-T is different from the PDP. To incorporate transfers,
we introduce two additional actions to the schedule, and an extra term to the objective function.
As before, we only discuss the problem itself, not any algorithms to find solutions.

2.2.1 Additional Transfer Actions

Previously, in the PDP, a single vehicle picked up an item and transported it all the way to its
destination. Now, one vehicle may pick up an item, meet up with another vehicle, and transfer
the item to that vehicle to complete the delivery.

We include transfers in the schedule by defining two additional actions:

2.2 THE PDP WITH TRANSFERS 17

Definition 1. A transfer is a tuple (T,R) of two paired actions in S, where T = TRANSFER(v2,m, l),

R = RECEIVE(v1,m, l)), and T ∈ Sv1 , R ∈ Sv2 . In this transfer, vehicle v1 transfers the item

m to vehicle v2 at location l. For every transfer pair, loc(T) = loc(R) = l, W (T) = W (R) =

[ep (m) , ld (m)], and δ (T) = δt (m, v1, v2). For convenience, to denote paired actions in a

single transfer, we define pair (T) = R and pair (R) = T .

An item may be transferred multiple times through a chain of transfers. When two vehicles
meet up for a transfer, they may also transfer or exchange multiple items. These multiple transfers
are modeled by multiple sequential RECEIVE and TRANSFER actions at the same location.

Unlike in hub and spoke networks, vehicles may not drop off the item and leave, but must
be physically present when the vehicle receiving the item arrives in order to transfer the item.
So for a TRANSFER or RECEIVE action a (henceforth referred to simply as ‘a transfer action’),
t (a) = t (pair (a)), but it is not necessarily the case that b (a) = b (pair (a)). The PDP-T is a
fundamentally different problem than hub and spoke networks, since each item must be planned
for individually and the vehicles must be tightly coordinated.

Adding two possible actions to the vehicles’ plans greatly increases the size of the search
space. Furthermore, the transfer actions are parameterized with the location, and are not limited
to pre-specified locations as with item pickups and deliveries, but can potentially take place at
any location. The potential transfer locations depend on the problem domain. There may be
a fixed set of locations where transfers can occur, or transfers can take place at any point in a
region on a map.

For convenience, the notation for PDP-T problems is given in Table 2.4.

2.2.2 Schedule Validity with Transfers

When transfers are added, the constraints to determine a valid schedule also change. To be
considered valid, a schedule S must contain only the action types specified, and satisfy the fol-
lowing conditions. Conditions (2.3) and (2.6) from Section 2.1.3 are replaced, while the rest of
the constraints from Section 2.1.3 still apply.

1. Delivery After Pickup: Every item that is picked up must be delivered. These constraints
replace the constraints from (2.3) in the earlier section. It may be delivered by a different
vehicle after a sequence of transfers. Each PICKUP or RECEIVE action must be followed
by a DELIVER or TRANSFER action and vice-versa. In our formulation, an item may be
transferred to the same vehicle at most once. Typically, transferring back and forth to the
same vehicle multiple times would be inefficient, however, there could be unusual cases
where such a behavior would be useful, for example, in order to obey capacity constraints

18 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

Vehicle v Properties Item m Properties

Notation Description
start(v) Start Location
end(v) End Location
cap(v) Capacity
Wa (v) Availability Window
mrd (v) Max. Route Duration
dv (a, b) Distance Metric

Notation Description
start(m) Start Location
end(m) End Location

dem(m) Demand
Wp (m) Pickup Time Window
Wd (m) Delivery Time Window
δp (m) Pickup Duration
δd (m) Delivery Duration

δt (m, v1, v2) Transfer Duration
mnt (m) Maximum Transfers
mtt(m) Max. Transport Time
AV(m) Allowed Vehicles
pri (m) Priority

Action a Notation Action Types
Notation Description

loc(a) Location
b (a) Arrival Time
t (a) Execution Time
δ (a) Execution Duration

W (a) Allowed Time Window
e (a) Earliest Time
l (a) Latest Time

pair (a) Paired Transfer Action

Name Description
START Start Vehicle Operation

END End Vehicle Execution
PICKUP (m) Pickup Item

DELIVER(m) DeliverItem
TRANSFER(m, v, l) Transfer m to v at l

RECEIVE(m, v, l) Receive m from v at l

Table 2.4: PDP-T Notation (New Notation is Bolded)

2.2 THE PDP WITH TRANSFERS 19

by temporarily exchanging an item with another vehicle.

∀Svi ∈ Ss.t. Svi = PICKUP (m) or Svi = RECEIVE(v1,m, l1) :

∃ a unique j > i s.t. Svj = DELIVER(m) or Svj = TRANSFER(v2,m, l2) (2.10)

∀Svi ∈ Ss.t. Svi = DELIVER(m) or Svi = TRANSFER(v1,m, l1) :

∃ a unique j < i s.t. Svj = PICKUP (m) or Svj = RECEIVE(v2,m, l2) (2.11)

2. Capacity Constraints: The demand of the items inside a vehicle may never exceed the
vehicle’s capacity. These constraints replace constraint (2.6) from the previous section to
incorporate the change in available capacity from transfer actions.

∀v ∈ V, 1 ≤ i < |Sv| :
i∑

j=1

ad
(
Svj
)
≤ cap(v) (2.12)

where ad(a) =

dem(m) if a = PICKUP (m) or a = RECEIVE(v,m, l)

−dem(m) if a = DELIVER(m) or a = TRANSFER(v,m, l)

0 otherwise

3. Paired Transfer Actions: Every RECEIVE action is paired with a TRANSFER action with
the same time, vehicles, and location.

∀Sv1i ∈ S s.t. S
v1
i = TRANSFER(v2,m, l) : ∃Sv2j = RECEIVE(v1,m, l) s.t.

pair (Sv1i) = Sv2j , pair
(
Sv2j
)

= Sv1i , and t (Sv1i) = t
(
Sv2j
)

(2.13)

∀Sv1i ∈ S s.t. S
v1
i = RECEIVE(v2,m, l) : ∃Sv2j = TRANSFER(v1,m, l) s.t.

pair (Sv1i) = Sv2j , pair
(
Sv2j
)

= Sv1i , and t (Sv1i) = t
(
Sv2j
)

(2.14)

4. No Deadlock: Since each vehicle must execute the actions in its schedule in order, it is
possible for a schedule to have deadlocks with cycles of transfer actions. For example, con-
sider a schedule with the actions Svi = TRANSFER(v′,m, l), Svi+1 = RECEIVE(v′,m′, l),
Sv
′
j = RECEIVE(v,m′, l), Sv′j+1l. When this schedule is executed, vehicle v will attempt

to send item m to v′, while v′ attempts to receive item m′ from v. Both vehicles will wait
on the other forever to do so, and the schedule deadlocks. Deadlocks are not only possible
pairwise between vehicles, but also may occur if there is a cycle of dependencies between
multiple vehicles.

To detect deadlock, we define a directed graph, G(S), with its node set N(G(S)) and edge

20 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

set E(G(S)), representing the schedule S. Every action in S is a node in G(S). The graph
contains an edge from every action in the schedule to its successor, i.e. edges from Svi to
Svi+1. In addition, G(S) contains an edge from every TRANSFER action to its pair, and
from every RECEIVE action to its pair.

N(G(S)) =
⋃
v∈V

{a ∈ Sv}

E(G(S)) =

(⋃
v∈V

{
(Svi , S

v
i+1) : 1 ≤ i < |Sv|

})
∪{

(Svi , S
v′

j) : Svi = TRANSFER(v′,m, l), Sv
′

j = pair (Svi)
}
∪{

(Svi , S
v′

j) : Svi = RECEIVE(v′,m, l), Sv
′

j = pair (Svi)
}

There is a deadlock in S iff G(S) has a cycle of length greater than two. Cycles of length
two are discounted because every pair of transfer actions forms a cycle of length two,
which does not cause deadlock.

G(S) has no cycles of length greater than two. (2.15)

5. Maximum Number of Transfers: For certain types of problems (i.e., with human pas-
sengers) transfers may be very inconvenient and so the maximum number of transfers for
any given item m is limited to be at most mnt (m). Unless otherwise stated, in this thesis
we assume that mnt (m) =∞.

|{Svi ∈ S : Svi = TRANSFER(v′,m, l)}| ≤ mnt (m)

With these few modified and additional constraints, we are equipped to determine whether a
schedule with transfers is valid.

2.2.3 The Cost of Transfers

Adding transfers can reduce the distance travelled by the vehicles and the time taken to deliver
the items. However, each transfer has a cost to perform, both in time and in energy.

To account for the cost in time, we set a time taken to make a transfer for an item m, as
δt (m, v1, v2). This duration is the time taken to perform the transfer, which is a function of the
item and the vehicles performing the transfer.

Furthermore, there is a cost in energy and labor from transferring items. Fuel may be con-

2.2 THE PDP WITH TRANSFERS 21

sumed while the vehicles are idling, the drivers must physically labor to transfer the items, pas-
sengers may be inconvenienced, or transferring may drain a robot’s battery. To account for these
costs, we add a new term to the objective function. If ct (m, v1, v2) is the cost of transferring
item m from v1 to v2, then the new term in the objective function is

TC(S) =
∑
v1∈V

 ∑
TRANSFER(v2,m,l)∈Sv1

ct (m, v1, v2)

and the final objective is

c (S) = αTD(S) + βOT (S) + γ |UND(S)|+ δSW (S) + TC(S).

The final term for the cost of transfers does not require a weighting factor since this can be
incorporated into the ct (m, v1, v2) function.

2.2.4 Example PDP-T Solution

As a running example, we return to the example problem from Section 2.1.5. However, this
time we allow transfers. For this example, we set the cost of transfers to 0 and the duration of
transfers, δt (m, v1, v2), to 1 for all items and vehicles.

One optimal solution for this problem is given in Table 2.5 and illustrated in Figure 2.3. Here,
both vehicles pick up both of the items at their starting location, exchange the items so that each
carries the items intended for delivery at its own destination, and then delivers the items. The
cost of this schedule is 4, which is half the cost of 8 for the optimal solution of the same problem
without transfers. By transferring items, we are able to gain a factor of two reduction in the total
distance travelled.

2.2.5 The Benefit of Transfers

In the previous example, optimal solution cost for the PDP-T was half the cost of the optimal
solution to the PDP. What is the maximum savings we can hope to achieve from transfers?

Theorem 2. Let R be the optimal schedule for any given PDP-T, and S be the optimal solution

for the same problem as a PDP, without transfers. Then c (R) ≤ c (S).

Proof. S is also a valid solution to the PDP-T, although it has no transfers. Therefore c (R) ≤
c (S).

22 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

S Action a loc(a) b (a) t (a) δ (a)
Sv11 START N 0 0 0
Sv12 PICKUP (m1) N 0 0 1
Sv13 PICKUP (m2) N 1 1 1
Sv14 TRANSFER(m2, v2,O) O 3 3 1
Sv15 RECEIVE(m3, v2,O) O 4 4 1
Sv16 DELIVER(m1) W 6 6 1
Sv17 DELIVER(m3) W 7 8 1
Sv18 END E 9 9 0
Sv21 START S 0 0 0
Sv22 PICKUP (m3) S 0 0 1
Sv23 PICKUP (m4) S 1 1 1
Sv14 RECEIVE(m2, v2,O) O 3 3 1
Sv15 TRANSFER(m3, v2,O) O 4 4 1
Sv26 DELIVER(m4) E 6 6 1
Sv27 DELIVER(m2) E 7 8 1
Sv28 END W 9 9 0

Table 2.5: An Optimal PDP Schedule, c (S) = 4

x x x

x

x

O

N

S

W E

v1

v2

���m1

���m2

���m3

���m4

(a) Initial State

x x x

x

x

O

N

S

W E

v1

v2

���m1���m2

���m3
���m4

6

1

?

1

(b) Before Transfers

x x x

x

x

O

N

S

W E

v1

v2

���m4���m2

���m3
���m1

�
�
�
���
�
��	

Transfer

(c) After Transfers

x x x

x

x

O

N

S

W E

v1v2

���m1���m3 ���m2���m4

-1� 1

(d) Final State

Figure 2.3: The paths taken by the vehicles in the optimal schedule given in Table 2.5.

2.2 THE PDP WITH TRANSFERS 23

Theorem 3. For a PDP-T without time windows, capacities, or any other optional constraints,

with the objective of minimize distance travelled (α = 1, β = 0), let R be the optimal solution to

the PDP-T. Then there exists a schedule S without transfers, such that

c (S) ≤ 2c (R) +
∑
v∈V

dv(start(v), end(v)).

Proof. Let R be the optimal solution to a PDP-T problem. With the following algorithm, we
construct a new schedule S and show that c (S) ≤ 2c (R).

1. Remove the START and END actions from R.

2. Construct S, such that ∀v ∈ V Sv = [], a schedule with no actions. Set the variables
v ← v1, a ← Rv

1, and q ← [] (an empty stack). We will iterate over the actions in R to
construct S, with v as the vehicle we are currently constructing a schedule for, a is the
current action in the iteration, and q as a stack used for backtracking in our search. Also,
mark all actions in R as unvisited (∀a ∈ R visited(a)← False).

3. Set visited(a) ← True. If a is not a TRANSFER or RECEIVE action, append a to Sv and
skip to Step 5.

4. Action a is a TRANSFER or RECEIVE action. Let v′ be the action that executes pair (a), and
let a′ be the first action in Rv′ preceding the action pair (a), such that visited(a′) = False.
If no such action a′ exists, do nothing, skipping the transfer action. Otherwise, if a′ does
exist, push a to q, mark visited(pair (a)) = True, set a ← a′, and go to Step 3. We will
insert the actions in the other vehicle’s schedule in place of the transfer.

5. If a is not the last action in v’s schedule, skip this step. Otherwise, we attempt to backtrack.
If q is not empty, pop the action Rv′

i from q, set a ← Rv′
i+1 and go to Step 3. Otherwise, if

q is empty, select a new vehicle v to construct a schedule for. Choose any vehicle v′ ∈ V
with visited(Rv′

1) = False, set v ← v′, a ← Rv′
1 , and go to Step 3. If no vehicle v′ with

unvisited actions in Rv′ exists we are done. Set ∀v ∈ V Sv ← [START] + Sv + [END] and
terminate.

6. If a = Rv′
i , set a← Rv′

i+1. If visited(a) and q contains an action from v′ schedule, pop an
action Rv′′

j from q, set a← Rv′′
j+1, and go to Step 3.

7. If visited(a), go to Step 6. Otherwise, go to Step 3.

This algorithm creates a valid schedule without transfers that delivers all items. From Sec-
tion 2.1.3, on the conditions for a valid schedule, conditions (2.1), (2.4), (2.5), (2.6), (2.7), (2.8),
and (2.9) are trivially satisfied since there are no constraints. Condition (2.2) is satisfied, since
every non-transfer action in R is marked as visited exactly once, when it is inserted into S (Step

24 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

3), and therefore all items are picked up and delivered. It remains to be shown that condition
(2.3) is satisfied, that is, that every item is picked up and later delivered by the same vehicle. We
can see this is the case by considering the transfer graph G(R) introduced in Section 2.2.2. For
any pickup action a and delivery action b, such that a path exists from a to b in G(R), a will
be executed before b in some robot’s schedule in S. The actions a and b will not necessarily be
executed by the same robot(s) as in R, because we include the actions in the schedules of all
robots v transfers to or from, directly or indirectly, into Sv, and guarantee that in S, any action
that takes place before a transfer in R precedes any action that took place after that same transfer
in R. So S is a valid schedule without transfers.

To show that c (S) ≤ 2c (R) +
∑

v∈V dv(start(v), end(v)), again consider the transfer graph
G(R) and how we traverse the graph with the action a. In Step 6, each edge in G(R) is traversed
exactly once. In Steps 4 and 5, we backtrack over edges in G(R). In the first step, we backtrack
over edges before a transfer, and in the second step, we backtrack over edges after a transfer.
These backtracking steps do not overlap. Therefore we traverse every edge in G(R) at most
twice. This traversal does not include the edges to START and END edges, which we insert later,
adding the term

∑
v∈V dv(start(v), end(v)). The condition for popping from q in Step 6 ensures

that the original final ending action for a vehicle still precedes the END action, so the additional
term really only applies to vehicles which do no pickups or deliveries in S.

So if vehicles start and end at the same location or have unspecified ending locations, transfers
will at most give a factor of two improvement for the total distance travelled metric. And, as we
showed in the previous example, PDP-Ts do indeed exist which give this factor of two cost
improvement.

However, take note of the assumptions behind this theorem: the proof breaks down when
constraints are added to the problem. Given additional constraints, such as time windows and
capacities, there are problems for which we can do better than a factor of two improvement for
the objective function, and even deliver more items if transfers are allowed.

As an example, consider the problem in Figure 2.4 with n items and n + 1 vehicles. One
vehicle starts with all of the items at a location a distance D from a central hub, where n other
vehicles begin. All vehicles have infinite capacity. All items must be delivered to distinct lo-
cations a distance 1 from the central hub within the time window [0, D + 1]. All actions have
duration 0, and α = 1, β = 0.

For the PDP, only a single item can be delivered within the time windows by v0. For the PDP-
T, v0 picks up all the items, transfers them to v1 through vn at the central hub, and these vehicles
deliver the items simultaneously. All n items are delivered, giving an enormous improvement in
the objective function, from D + 1 + γ(n− 1) for the PDP to D + n for the PDP-T.

2.3 VARIATIONS ON THE PDP-T 25

v0
D

uu A
A
A
A
A
A
A
A
u���m1

1

u�
��
m2

1

�
�
�
�
�
�
�
�
u���m3

1

u���mn

1

...

v1 v2 ... vn

Figure 2.4: A hub and spoke PDP. All n items start at the same location as the vehicle v0, and
end at the locations shown. The distance D >> 1.

Furthermore, consider the same problem without time windows, but with the minimum
makespan objective (to finish delivering all the items as quickly as possible). For the PDP, one
vehicle can deliver all the items, giving a makespan of D+n, or n vehicles can each pick up and
deliver one item, giving a makespan of 2D+ 1. For the PDP-T, with the same solution as before,
the makespan is D + 1.

By allowing transfers, we can reduce the distance travelled by at most a factor of two in un-
constrained problems. In more complex problem domains, transferring may enable us to deliver
items we wouldn’t be able to without transfers.

2.3 Variations on the PDP-T

The PDP without transfers has been studied extensively by many previous researchers (which we
detail extensively in Section 8). However, the naming scheme in the literature is inconsistent, and
it is often the case that when two researchers refer to a “PDP” they mean quite different things.
Here, we seek to establish a consistent notation that will be used for the remainder of the thesis
document.

In the scheduling literature, there are many variations on the specification for what is called
a “PDP” problem. For example, sometimes when time windows are included, the problem is
called a PDP with Time Windows (PDPTW) as opposed to a PDP which is assumed to not have
time windows. Or a PDP is assumed to not have capacities, as opposed to a Capacitated PDP
(CPDP) which does. Then there is the CPDPTW which includes capacities or time windows. In
other work, each of these problems are referred to as simply the “PDP.”

In this thesis, when we refer to the “PDP” we mean the most general version of the problem,
which includes all of the constraints mentioned earlier in this section. We also consider two spe-
cialized, less general variants of the problem with fewer or slightly different constraints, which

26 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

we name:

• Pickup and Single Delivery Problem (PSDP) All the items are collected from different
locations and then delivered to the same location. The vehicles do not have destinations
specified, have unlimited capacities, and there are no time windows.

• No Capacities Pickup and Delivery Problem (nCPDP) A PDP with time windows but
unlimited capacities and without vehicle destinations.

• No Times Pickup and Delivery Problem (nTPDP) A PDP in which there are capacities,
but no time windows. The vehicles may deliver the items at any time.

Table 2.6 lists some properties and constraints of the problem, and shows how they differ
in the PDP variants. In this thesis, we will begin with how to solve the simpler problems and
progress to the more complex problems, building on previous work. Note that algorithms to
solve the more general problems can also be used to solve the more specific problems. However,
we can take advantage of the structure in simpler problems to create faster and better algorithms,
particularly in the case of the PSDP, for which we are even able to provide theoretical guarantees
of solution quality.

Name PSDP nCPDP nTPDP PDP
Vehicle Starting Locations X X X X
Vehicle Ending Locations X X
Item Pickup Locations X X X X
Item Delivery Locations Single X X X
Capacities and Demands X X
Time Windows X X
Max. Route Durations X
Max. Transport Times X

Table 2.6: Variations on the PDP

All of the variants of the PDP we examine are NP-hard, as they can be reduced to the TSP.
Additional constraints reduce the size of the search space, and one would expect they would
make the PDP easier to solve. However, in practice, for time window, maximum route duration,
and maximum transportation time constraints, the additional computation time required to check
the constraint’s violation often outweighs the savings from the reduction in the size of the search
space, making these more constrained problems more computationally expensive.

2.4 ONLINE AND DISTRIBUTED PDP-T 27

2.4 Online and Distributed PDP-T

Until this point, the PDP-T and PDP have been presented as static problems: all of the vehicles,
items and constraints are known up front, and solved by a centralized algorithm. However, in
real-world applications of the PDP-T, we often do not know all of this information beforehand,
and must address the Online PDP-T.

In the Online PDP-T, the entire set of items is not known beforehand. New requests for item
deliveries come in on the fly, and the new items must be added into the schedule, if possible. Each
item m ∈ M is associated with a request time rt(m), at which point the request to pickup and
deliver item m is known. At a given time t, the known set of items is M = {m ∈ M : rt(m) ≤
t}. Only these items are incorporated into the schedule at time t, not items that are announced
later. Algorithms for the online PDP-T will need to replan as new information about the problem
comes in, after part of a previous schedule has already been executed. When replanning, a valid
schedule must consider whether any items have already been picked up, and the current locations
of the vehicles. For the online PDP-T, it is impossible to always find the optimal solution in the
same sense as for the offline PDP-T, since part of the schedule must be executed before the entire
problem is known.

Additionally, in the online PDP-T, vehicle distance estimates may be incorrect, and vehicles
may be delayed or fail entirely. Requests may also be cancelled or modified. The scheduler must
replan to handle all of these changes inherent in a dynamic world.

A second variant on the PDP-T is the Distributed PDP-T, in which there is no central con-
troller to form a schedule for all of the vehicles. In the distributed PDP-T, vehicles negotiate
among themselves to form a schedule. Requests may also come in an online fashion for the
distributed PDP-T.

We fully address the Online PDP-T, and discuss and consider the Distributed PDP-T in addi-
tion to the Static PDP-T in this thesis.

2.5 Chapter Summary

In this chapter, we formally introduced the PDP, along with the PDP-T and the idea of trans-
fers. We established the notation for the remainder of this thesis, as well as what makes a valid
schedule. Furthermore, we analyzed and discussed the potential benefits arising from allowing
transfers.

28 CHAPTER 2: PICKUP AND DELIVERY PROBLEMS WITH TRANSFERS

Chapter 3

Task Scheduling and Execution on the
CoBot Robots

The motivation for this thesis stems from the CoBot robots, which we have developed and de-
ployed to fulfill user-requested tasks in a multi-story building. The robots autonomously navigate
anywhere in the building, and pickup and deliver items. New tasks, which are requested by users
in an online manner, must be incorporated into the schedule immediately so that the requester
can be informed about whether their task will be executed. The CoBots have been deployed for
nearly four years, and are very robust and reliable.

Originally, the robots were scheduled by solving a Mixed Integer Program (MIP) optimally
[32]. However, this approach scales poorly with the number of robots and the number of tasks.
Furthermore, we realized that the schedules could be improved if the robots were to transfer

items, which became the main focus of this thesis. For example, if two robots were going to
deliver an item to the same floor, one robot could transfer its item to the other, and only a single
robot would need to take the elevator. Transfers could also reduce the duplicated distance taken
by multiple robots down the same hallways, while allowing the robots to complete their tasks
faster.

In this chapter, we present the CoBot robots and the tasks they can perform. We discuss how
these tasks are scheduled optimally without transfers using an MIP, show how the robots execute
tasks and how the task execution can be monitored and interrupted. Finally, we present results
from deploying CoBot in the building to actual users for a two week study. Here we discuss
scheduling without transfers, and in later chapters we discuss specific algorithms for scheduling
pickup and delivery problems with transfers, including on the CoBots.

29

30 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

3.1 The CoBot Robots

Figure 3.1: CoBot-1, CoBot-2, and CoBot-4: Collaborative service robots deployed in our build-
ings. (An additional CoBot-3 is deployed off campus.)

We have deployed three robots in the Gates Hillman Center (see Figure 3.1). The robots
navigate smoothly and quickly due to their omnidirectional bases.1 All computation is done on
an onboard tablet or laptop computer. For sensing, the robots use either a combination of planar
LIDAR and an RGB-D camera, or multiple RGB-D cameras. The CoBots autonomously localize
and navigate using depth-camera and LIDAR-based localization and navigation algorithms [16,
18, 17, 19]. The CoBots autonomously avoid obstacles by moving to the side of the hallway,
but if they cannot avoid an obstacle, they stop and say “Please excuse me.” until the obstacle is
moved.

Part of the secret to getting the robots to run robustly and reliably every day is that we rec-
ognize that the robots currently cannot do everything we would like them to. For the things they
cannot do, the robots ask humans in the building for help. For example, the CoBots do not have
arms, so they ask humans to press the elevator buttons for them. We call this idea symbiotic

autonomy [95].

The maps the CoBots use are extracted from floor plans of the building. A separate navigation
map is a graph in which the edges are the corridors the CoBots can travel through. Dijkstra’s

1Many thanks to Mike Licitra for designing and building the CoBot robots.

3.2 TASKS FOR THE COBOTS 31

algorithm is applied to the navigation map to find the shortest path between any two locations
in the building. These distances are divided by robot velocity estimates and added to a constant
cost for elevator usage in order to estimate the time taken between any two locations for the
scheduler’s distance function d(a, b). Positions and orientations are manually annotated on the
maps for each room in the building, giving the location CoBot heads to to fulfill tasks requested
at those locations.

The CoBots make use of the underlying abilities to move to any point in the building and to
ask for human assistance to complete all of their tasks.

3.2 Tasks for the CoBots

The CoBots are deployed to complete user tasks. The tasks that users may request include:

1. Visit a Room: CoBot goes to a room to introduce itself.

2. Deliver a Spoken Message: CoBot travels to a room and speaks a message entered by the
task solicitor to a room’s occupant.

3. Escort a Visitor: CoBot meets a visitor at the elevator and leads them to a room.

4. Pickup and Delivery: CoBot goes to one room, asks a user to place a specified item in its
basket, and delivers that item to a different room (see Figure 3.2).

(a) Pickup (b) Delivery (c) Find Object

Figure 3.2: In a pickup and delivery task, (a) one user places an item in CoBot’s basket and (b)
another user removes it when the item is delivered. In (c), CoBot finds and retrieves a cup of
coffee from the kitchen.

32 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

5. Telepresence: CoBot goes to a room and makes its telepresence interface available for
trusted users to attend a meeting. Users can control CoBot over the web and communicate
via videoconferencing [29].

6. Multi-Object Delivery: CoBot retrieves a set of items from a single location and delivers
them to multiple locations. Examples include delivering candy and mail.

7. Multi-Object Retrieval: CoBot retrieves a set of items from multiple locations and deliv-
ers them all to a single location. Examples include picking up mail from assistants’ offices
and delivering it to a central office, delivering coffee and returning to a central location
with payments, or delivering business cards and returning what is left over.

8. Find and Retrieve an Object: The user tells CoBot to find an item by name, such as
“towel,” “pen,” or “coffee,” and the robot queries OpenEval [99] to decide whether to go
selected types of locations, e.g., an office, kitchen, common area, or restroom (see Figure
3.2c).

Although only task #4 is called a “Pickup and Delivery” task, all of the tasks can be modeled
as tasks with a pickup and delivery and the problem can be formulated as an online nC-PDP,
as described in Chapter 2. To do so, for tasks #1, #2, #5, and #8, we define an item m with
start(m) = end(m), and with δp (m) corresponding to the expected duration of the task. Task
#3 is already a pickup and delivery task, except with robot dialogue that fits the transport of a
person. Tasks #6 and #7 correspond to multiple pickup and delivery tasks which share a start or
ending location.

3.3 Requesting Tasks

Figure 3.3 shows the high level architecture for task scheduling and execution on the CoBot
robots. Users place task requests through one of three interfaces: a graphical UI on a CoBot,
spoken dialogue on CoBot, or on a website. The requests are all sent to a centralized scheduler,
which then immediately constructs and sends a schedule for each of the robots. The server must
form a schedule within seconds so that the user can be informed of whether the new task was
accepted. The robots inform the centralized server of their positions as they move, and send a
message to the server when they complete or abort a scheduled task.

Each task request contains a number of fields, listed in Table 3.1. These include the location
of the task, a time window in which the task should be executed, and any other task specific
information. An example Pickup and Delivery task is shown in Table 3.2.

Each task request maps to one or multiple item requests m in the PDP. The fields determine

3.3 REQUESTING TASKS 33

Users

-
�

Feedback
Speech

-
�

State
Requests

CoBot-2
Dialog

Manager

Graphical
UI

Task
Executor

? ?Requests
Scheduler

-Requests

-Requests

� Schedule

CoBot-1

?

6

?

6

...

Figure 3.3: The system architecture of the CoBots. Users place requests through the dialog
manager or a graphical UI on the robots, or directly to the web scheduler, which forms schedules
for all the robots.

Parameter Description
ID The unique id number of the task.
Type Type of the task, e.g., Visit a Room, Pickup and Delivery, etc.
Time Window The time interval in which the task should be completed.
Location(s) A single room location or multiple room locations, depending on the task type.
Robot(s) A list of robots the task may be executed on (default is any).
Object Name Name of the object to be retrieved / delivered (if required).
Message A spoken message to deliver (for message delivery tasks only).
Owner Name and email address of the user who booked the task.

Table 3.1: The fields in a task request.

Parameter Value
ID 1107
Type Pickup and Delivery
Time Window May 2, 3:00 PM - 4:00 PM
Location(s) GHC 7008 to GHC 7412
Robot(s) Any
Object Name Robot Parts
Owner Christina

Table 3.2: An example specification of a Pickup and Delivery Request.

34 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

the task time windows Wp (m) and Wd (m), as well as the locations start(m) and end(m).

Task solicitors may place a request with a variety of methods, including by visiting CoBot’s
website, or by interacting directly with the robots via speech or a touch screen interface. Task
requests can also be placed autonomously by the robots themselves [67].

When users visit CoBot’s website (see Figure 3.4), users select the task type and locations
from drop down lists. They specify either “as soon as possible,” choose a specific time, or enter
a time window. The first two options are converted in the scheduler to a fifteen minute time
window. Depending on the task type, users may enter additional parameters, such as pickup or
dropoff locations, item or person names, or a message to deliver.

Figure 3.4: Users schedule tasks for CoBot on CoBot’s web site. The user inputs correspond to
the task request parameters in Table 3.1.

The touch screen interface, shown in Figure 3.5, is similar to the website, with drop down
boxes to specify the tasks. We also have a speech interface, in which the user presses a button
to speak to CoBot [66]. The robot listens to the user, responds, and the user presses the ”speak”
button once again to continue dialogue.2 All three interfaces allow a user to fill out the parameters
in Table 3.1 required for a task request. For convenience, in addition to specifying a window of

2Special thanks to Michael Murphy for designing CoBot’s touch screen interface, and to Tom Kollar, Vittorio
Perera, Robin Soetens, and Yichao Sun for developing CoBot’s speech interface.

3.3 REQUESTING TASKS 35

Figure 3.5: Users schedule tasks for CoBot on CoBot’s touchscreen. The user inputs correspond
to the task request parameters in Table 3.1.

time, users may request that a task be executed “as soon as possible,” which attempts to schedule
the task within the next fifteen minutes.

Task requests are submitted to a centralized scheduler running on the server. The scheduler
may either accept the request or reject it. If the task is accepted, the user is not informed of
the scheduled execution time, only that the request has been accepted, because the task may
be delayed or rescheduled based on new incoming requests. The scheduler should quickly add
tasks to the schedule, within a period of several seconds, so that the user may be immediately
informed whether the task was accepted. Once a task is accepted, the user is able to cancel it
from the website.

One difficulty in using a centralized scheduler arises from the fact that the robots move around
in the building and may not always have internet access. This is especially true near the elevators
and when the robots switch wireless access points. As a fallback method, if a robot cannot
contact the scheduler, the robot inserts new requests into its own, separate, local task list. Tasks
on the local task list are given precedence, and executed before tasks on the robot’s schedule. The
robot stores multiple actions on the server’s schedule for it, so when an action is completed, the
robot can proceed to the next action even without communication from the server. When network
connectivity is regained, the server sends any updated schedules to the robot, and the robot alerts
the server of any completed tasks. This way the robots remain fully functional even if the server
or the network connection fails, although it will likely execute a lower quality schedule. There

36 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

may be situations where tasks are rescheduled to other robots when a new task comes in, and
a robot that cannot communicate still executes a task that has been reassigned to another robot.
However, this is rare, as communication failures are typically temporary.

CoBot is unfortunately not always available to execute tasks, because it needs to be switched
on and unplugged from its charging by a human. To make the CoBots available as frequently as
possible, administrators schedule time windows of several hours when a robot is available to the
public. Upcoming publicly available timeslots for the next week are displayed on the scheduling
requests page. Users can always schedule tasks on the robots, regardless of available timeslots.
For testing purposes, administrators may also make privately available timeslots which are avail-
able only to trusted users. The public and private time windows correspond to the availability
windows Wa (v) in the PDP formulation (see Chapter 2). Requests m ∈M placed by the public
have their allowed vehicles AV(m) set to include only public timeslots.

Users often have tasks they wish the robots to do outside scheduled hours, particularly es-
corting visitors through the building and going to classrooms for demos. In these cases, users
can check a ”special request” box on the task request submission form and include a descriptive
message. An email is sent to the administrator responsible for the CoBot robots on that day (a
rolling schedule including the members of our group is available on the website to the admin-
istrators). The administrator clicks a link in the email to either accept the request, or deny the
request with an optional explanation or suggestion for an alternative time.

3.4 Scheduling Tasks

The task requests are sent to a centralized server, which first converts all the user requests into
a set of component actions A from Chapter 2. In this step, a single request may be converted
into multiple actions: for example, a Pickup and Delivery task becomes a PICKUP action and a
DELIVERY action; a Visit a Room task becomes a single DELIVERY action; and a Multi-object
Delivery task becomes a single PICKUP action and multiple DELIVERY actions. Although the
problem can be formulated as an nC-PDP with a one-to-one matching of PICKUP to DELIVERY

actions, as explained in Section 3.2, to simplify the solution method, here we allow one-to-
multiple mappings (i.e., one DELIVERY action may correspond to multiple PICKUP actions, for
the Multi-Object Retrieval, or to no PICKUP actions, for the Visit a Room task. However
all pickups must still precede all associated deliveries, and all these associated actions must be
executed by the same vehicle.

The central server attempts to fit all the requested actions into a schedule. The scheduler
chooses the ordering of the actions and their assignment to robots, while a separate path planner

3.4 SCHEDULING TASKS 37

onboard the robot chooses which path the robot will take to go from place to place. In this chapter
we present an initial approach based on Mixed Integer Programming (MIP) to schedule tasks. In
later chapters we replace the MIP approach with more sophisticated algorithms which scale to
larger problem instances and schedule transfers between robots. The infrastructure to request
and execute tasks on the CoBots is independent of the specific scheduling algorithm used.

3.4.1 MIP Scheduling

We find a schedule by formulating and solving a MIP for the variables ta and rva, where for each
action a, ta = t (a) and rva is an indicator variable indicating whether or not vehicle v ∈ V

executes the action a ∈ A. From the times and vehicles of the actions, we are able to construct
the schedule as formulated in the previous chapter. We add a DELIVER action in A for each
robot of duration 0, the location set to the robot’s current location, and with the time window
only containing the current time, so that the schedule models the robots’ starting positions (recall
that for this MIP formulation, DELIVER actions do not require corresponding PICKUP actions).
In this problem, the vehicles in V represent availability windows rather than robots, so each
physical robot may have multiple entries in V for different availability windows.

Single Vehicle MIP

To find the optimal schedule, we solve an MIP. If there is only a single vehicle / interval v, we
define the following MIP for the variables ta and pa,a′ , where pa,a′ is an indicator variable to
indicate that action a precedes action a′. Recall from Chapter 2 that [e (a) , l (a)] is the time
window for task a, δ (a) is the task’s duration, and loc(a) is the task’s location. The window
[ev, lv] = Wa (v) is the availability window for vehicle v.

min
∑
a∈A

ta (3.1)

∀a ∈ A e (a) ≤ ta ≤ l (a) (3.2)

∀a ∈ A ev(a) ≤ ta ≤ lv(a) (3.3)

∀a, a′ ∈ A s.t. a = PICKUP (m) , a′ = DELIVER(m) ta ≤ ta′ (3.4)

∀a, a′ ∈ A 0 ≤ pa,a′ ≤ 1 int (3.5)

∀a, a′ ∈ A ta + δ (a) + d(loc(a), loc(a′))− ta′ ≤ |l (a′)− e (a) |(1− pa,a′) (3.6)

∀a, a′ ∈ A, v ∈ V t′a + δ (a′) + d(loc(a′), loc(a))− ta ≤ |l (a)− e (a′) |pa,a′ (3.7)

The objective is to execute all actions as early as possible (Equation 3.1). Equation 3.2

38 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

enforces all the task time constraints, while Equation 3.3 ensures that the action is scheduled
during the single availability window. In Equation 3.4, the precedence constraints are enforced,
that all pickup actions must occur before any corresponding delivery actions with the same item.
In Equation 3.5 the variables pa,a′ are defined as indicator variables, whose values must be either
zero or one, indicating whether or not action a is executed before action a′. Then Equations 3.6
and 3.7 ensure that the travel times between every pair of actions are feasible, that is, that ta +

δ (a) + d(loc(a), loc(a′)) ≤ ta′ , and after every action there is sufficient time to execute the
action and travel to the location of the next action, assuming that the estimated robot travel time
is correct. On the right hand side of Equation 3.6, the value is zero if pa,a′ = 1, i.e., action a
precedes action a′, and the equation applies. If pa,a′ = 0, then the right side of the equation is
greater than the left hand side can possibly be, and the equation is always satisfied. Equation 3.7
has the same idea but applies when action a′ precedes action a.

With this MIP formulation, we are able to solve the single vehicle scheduling problem op-
timally with commercial MIP solvers. It should be noted that unlike our formulation in the
previous chapter, here the scheduling fails unless all tasks can be scheduled. This behavior is
desirable for the CoBots, since we are committing to human users that we will complete their
requested tasks. We do not want to commit to a task we cannot complete. If the scheduling fails,
then we tell the user who requested the latest task that we cannot fulfill their request, and revert
to the previous schedule.

Multi-Vehicle MIP

Next, we extend the MIP to multiple vehicles by introducing indicator variables rva which indicate
whether action a is executed by vehicle v. We provide the full MIP for multiple vehicles:

min
∑
a∈A

ta (3.8)

∀a ∈ A e (a) ≤ ta ≤ l (a) (3.9)

∀a, a′ ∈ A s.t. a = PICKUP (m) , a′ = DELIVER(m) ta ≤ ta′ (3.10)

∀a, a′ ∈ A 0 ≤ pa,a′ ≤ 1 int (3.11)

∀a ∈ A, v ∈ V 0 ≤ rva ≤ 1 int (3.12)

∀a ∈ A
∑
v∈V

rva = 1 (3.13)

∀a ∈ A, v 6∈ AV(a) rva = 0 (3.14)

3.4 SCHEDULING TASKS 39

∀v ∈ V, a, a′ ∈ A s.t. a = PICKUP (m) , a′ = DELIVER(m) rva = rva′ (3.15)

∀a ∈ A, v ∈ V ev(a)rva ≤ ta ≤ lv(a) + l (a) (1− rva) (3.16)

∀a, a′ ∈ A, a 6= a′, v ∈ V ta + δ (a) + d(loc(a), loc(a′))− ta′ ≤
|l (a′)− e (a) |(1− pa,a′ + 2− rva − rva′)

(3.17)

∀a, a′ ∈ A, a 6= a′, v ∈ V ta′ + δ (a′) + d(loc(a′), loc(a))− ta ≤
|l (a)− e (a′) |(pa,a′ + 2− rva − rva′)

(3.18)

Equations 3.8, 3.9, 3.10, and 3.11 are identical to the single vehicle MIP. Equation 3.12
defines the variables rva as indicator variables, Equation 3.13 ensures that each action is assigned
to exactly one vehicle, and Equation 3.14 ensures that actions are only assigned to the allowed
vehicles, which the user may specify. Equation 3.15 requires that all actions involving the same
item be executed on the same vehicle. Equation 3.16 replaces Equation 3.3 from the single
vehicle MIP, and ensures that actions fall within the schedule vehicle time window. If action a
is not scheduled for vehicle v, then rva = 0 and the equation reduces to 0 ≤ ta ≤ l (a), which is
always satisfied. Finally, Equations 3.17 and 3.18 replace Equations 3.6 and 3.7, ensuring that
the travel times between actions are feasible, but now the change to the right side of the equation
means that these equations only apply to actions executed on the same vehicle.

Solving the MIP

We construct and solve a new MIP every time a new request comes in or a request is cancelled
or modified. When rescheduling, if a PICKUP action has already been executed by a robot, that
action is removed from the set of actions A and not rescheduled, but additional constraints are
added such that any corresponding DELIVERY actions are be executed on the same robot. Since
the MIP is solved online when a new request is placed, it needs to be solved quickly, so that we
can immediately inform the user that the task was accepted, or reject the task and ask the user to
relax their constraints.

Although solving the MIP is an NP-hard problem, we have found that in practice it can be
solved quickly for certain problems. We generated a thousand random problem instances, each
of 15 tasks with two minutes to half an hour durations, with time windows over the course of
four hours, and a single availability window. This is the type of input we expect the robot to
receive in typical usage. The scheduler solved (either found a schedule or found that no schedule
existed) 99% of the problems in under two seconds using the lp solve MIP solver [14]. We
also experimented with the CPLEX solver [57] and found that the performance was slightly
better, but on the same order of magnitude.

As the MIP finds the optimal solution, it does not scale well to larger problem instances.

40 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

We have developed additional scheduling algorithms, which do not find the optimal solution but
which find a solution more quickly and scale to much larger problem instances, which we present
in the later chapters of this thesis.

3.4.2 Illustrative Scheduling Example

As an example, consider that four tasks are requested, which are divided into six component
actions:

• A PICKUP action a1 and a DELIVER action a2 to pickup a paper with revisions from room
7205 and deliver it to room 7127. For both tasks, W (a1) = W (a2) = [3:00 PM, 3:30
PM].

• An action a3 to deliver a message to the occupant of office 7110, with W (a3) = [3:10
PM, 3:20 PM].

• An action a4 to pick up a visitor from the elevator and an action a5 to deliver the visitor to
room room 7213, with W (a4) = W (a5) = [3:00 PM, 3:10 PM].

• An action a6 to deliver a message to the occupant of office 7801, with W (a6) = [3:10
PM, 3:15 PM].

The set of available vehicles is V = {CoBot-1, CoBot-2}, and all actions are allowed on any
vehicle.

The task locations and the robots’ initial positions are shown in Figure 3.6.

One potential schedule would be:

CoBot-1 CoBot-2
Time (ta) Task Time (ta) Task
3:00 PM a4: Meet visitor at elevator. 3:00 PM a1 : Pick up paper.
3:07 PM a5: Deliver visitor. 3:10 PM a3 : Deliver message
3:12 PM a6: Deliver message. 3:15 PM a2 : Deliver paper.

Table 3.3: An example schedule.

The tasks are divided between the robots to complete more tasks more quickly. When this prob-
lem is input into the MIP scheduler, the output is the times ta as shown in the table, as well as
the robot assignments rva.

3.5 EXECUTING AND MANAGING SCHEDULES 41

CoBot-1

a6

CoBot-2

a2

a3

a1

a4

a5
a

b

c

d

Figure 3.6: Robot starting positions, task locations, and the generated plan. While executing
the plan, CoBot-2 (d) retrieves an envelope, (b) delivers a spoken message, and (a) delivers the
envelope. CoBot-1 c escorts a visitor to an office before delivering a message.

3.5 Executing and Managing Schedules

Once the full schedule S is formed, the server sends each robot v a copy of its own schedule Sv

over the wireless network. Each robot then autonomously executes its own schedule. However,
the robots may be interrupted by the users, who input new requests and modify or cancel existing
requests. A new schedule is sent to each robot whenever the schedule changes.

3.5.1 Executing a Schedule

Given a non-empty schedule Sv, the robot immediately heads to the location loc(Sv0), and waits
at this location until the time e (Sv0) when it begins executing the action Sv0 . We begin execution
at e (Sv0) rather than the scheduled starting time t (Sv0) in case the previous action was finished
early. The robot may still need to wait for a time at the location of the next action if it arrives too
early. If the robot has no actions in its schedule, it remains in place until a new task is requested.

The task executor component handles execution of the task. This component instructs the
robot where to go and what to say, using a finite state machine for each task type. The states of
this finite state machine often consist of executing another finite state machine, such as sub-tasks

42 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

to travel to a location or to ask a human a question.
A waypoint path planner, given the robot’s current location and destination, plans a path for

the robot to arrive at the destination. This path is executed by a lower level navigation component,
which takes the shortest path between points on the same floor. The way point path planner plans
not only to arrive at the destination, but also to take the elevator and seek human help if necessary.
Since CoBot does not have arms, it relies on human help to press the elevator buttons, and may
even actively seek humans to help it.

The distance function d(a, b) estimates the time to travel between two points based on the
distance and the measured average velocity of the robot. More advanced distance functions could
learn the time taken to travel different corridors, or even consider the time of day and traffic
conditions (e.g., when students are released from class the hallways become very crowded).
There may be a large variance in the time taken to complete a task since execution relies on
finding human help. For this reason, our distance function d(a, b) overestimates the time to
receive an item, deliver an item, and take the elevator, so that the robots are unlikely to complete
tasks late, but may finish ahead of schedule. In practice, humans typically show up at the elevator
every several minutes, and are likely to help the robot. If a human does not offer to help within
a few minutes, an email is sent to a list of the robots maintainers within the building, and one
of them goes to help the robot. However, the distance function is still often incorrect, and to
account for this we replan for delays in Chapter 6. For retrieval and delivery tasks, if a human
does not appear after several minutes, the task is aborted and marked as failed.

Once a robot completes its task, it reports the completion status to the centralized server.
The task may either succeed or fail. For example, a task to deliver a message will fail if no one
presses the button to hear the message after a certain time. Once the task is complete, the robot
removes the task Sv0 from its schedule and begins to execute the next task in the schedule.

3.5.2 Managing Task Lists with Interruptible Autonomy

When deploying CoBot, we ran into the unexpected problem that the robots were too autonomous.
Once they began a task we had no way to stop them. Tasks can be cancelled and new requests
placed from CoBot’s website, but a method was needed to modify the robots’ schedules on the
fly, in person. For example, if CoBot was delivering a package, there was no way for the recipient
to stop CoBot in the middle of the hall and cancel the rest of the delivery trip, or to give CoBot
another task.

To make the robots more responsive to users in the building, passerby can request a task
from a CoBot robot as it moves, either through the touch-screen interface or through spoken
interaction. Users stand in front of the robot to block its motion, then press a button to stop the

3.6 MONITORING SCHEDULE EXECUTION 43

robot and either open the touch screen interface or initiate dialogue. In addition to assigning new
tasks, users can also inquire about what the robot is doing and cancel tasks. We call this concept
interruptible autonomy, where users can interrupt the robot’s autonomous tasks and influence the
robot’s plan [107].

The interruption procedure through dialogue consists of three parts. First is the dialog parser,
a dialog management module that interacts with the human user through speech. The dialog
parser listens to a user’s speech command and converts the speech into text candidates. Using a
knowledge base to form a probabilistic model [66], we ground the user’s speech command into
actions the CoBots are capable of. The dialog parser first extracts linguistic constituents of the
speech text, then parses the action and arguments for a task request. If the dialog parser does not
understand the user’s speech command, it further interacts with the user by prompting possible
candidate options the user can choose from. It also updates its knowledge about the mapping
relation between the speech text and the actual actions, locations and objects through the results
of dialog so that they can be used for future interactions.

There are several possible actions for users to choose from when giving speech commands:

• Inquire: A user asks a CoBot about its current status. The CoBot responds by describing
its current task type and destination.

• Request Task: A user requests a new task for a CoBot to execute. The request is passed
on to the scheduler, and it may be scheduled either for immediate execution, scheduled for
future execution, or rejected. If the task is rejected, the user is informed through dialogue
and can adjust the time constraints so that the task can be executed. Figure 3.7 provides
an example of an interruption to request a new task, which is scheduled for immediate
execution.

• Cancel Task: A user cancels CoBot’s current task. Only the owner of the task or the
administrators are authorized to do this. Once a task is cancelled, the owner of the task
receives an email notice of the cancellation.

So in addition to requesting tasks online, users can place requests, inquire about CoBot’s
status, and cancel existing requests in person, while the robot is moving.

3.6 Monitoring Schedule Execution

Although CoBot robustly and reliably executes its schedules autonomously, for ease of deploy-
ment, we found it essential to be able to monitor the execution of schedules remotely when
necessary. We have developed a fully featured telepresence system for the CoBots, and users

44 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

Figure 3.7: A CoBot robot was interrupted by a passerby while executing a visit a room task. A
new task is assigned to the CoBot and successfully scheduled for immediate execution. CoBot
begins executing the new task and resumes the previous task when the new one is finished.

3.6 MONITORING SCHEDULE EXECUTION 45

may schedule tasks to attend meetings or poster sessions via CoBot. This telepresence system
doubles as a way of monitoring the robot’s execution for administrative users. For example,
CoBot will sometimes be waiting for important visitors by the elevator to escort them to the lab,
and we can easily check if the visitor has arrived yet. Or if CoBot is blocked for several min-
utes and sends the group an email, we can log in to check if someone has left a new obstacle
in the hallway, or if CoBot’s localization has become lost. In the rare case that the localization
has failed we are then able to correct it via the same interface. Furthermore, the telepresence
interface has been extremely useful for debugging new features for CoBot.

3.6.1 The Telepresence Interface

Users may interact with CoBot through a web-based browser interface. With the web-based inter-
face, no special software needs to be installed to interact with CoBot. Furthermore, the software
runs on multiple devices— desktop computers, and also mobile devices such as smartphones.
The web client repeatedly requests robot state information ten times per second, and requests
new images from the robot’s camera five times per second. To enable voice communication and
show the user’s face on the screen, users can call the robot on Skype.

Users may switch between two tabs in the web interface: the Control tab, which contains
buttons to control the camera and drive the robot, and the Map tab, which shows the map of the
environment and the robot’s position (see Figure 3.8). The image from the robot’s camera is
always displayed above the two tabs in the remote interface.

The Control Tab

From the control tab, users can control the robot’s camera. There are arrow keys to move the
camera, surrounding a “home” button which returns the camera to a forward facing position
suitable for driving. Next to these arrows is a slider with which the user can set the zoom level
of the camera. The rate of the camera’s motion when using the arrow keys depends on the level
of the camera’s zoom— at higher zoom levels the camera moves more slowly to allow more
precise control. All of these commands have visual icons representing their function (such as
magnifying glasses with “+” and “-” for zooming, a picture of a house for the home button)
and are associated with keyboard shortcuts. When the user clicks on an arrow or presses the
associated keyboard shortcut, the arrow button on the screen becomes pressed, providing visual
feedback.

Next to arrows for controlling the camera are arrows for steering CoBot. Although CoBot is
capable of omnidirectional motion, these arrows only allow turning in place and moving directly

46 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

(a) The Control Tab

Figure 3.8: CoBot’s web interface, with the Control and Map tabs visible. In the map tab,
CoBot’s current position, path and LIDAR readings are shown. Users may click on the map to
set CoBot’s localization position or travel to a point.

forwards. This is the type of interface we believed would be most familiar to users, and which
would also cause the least confusion in conjunction with the movable camera. In the center of
the arrows is an emergency stop button. The robot can also be moved with the arrow keys on
the keyboard, and can be stopped by pressing space. CoBot autonomously performs obstacle
avoidance while controlled with the arrow keys, adjusting its velocity to avoid obstacles.

On the right side of the Control tab is a compass-like object which displays the relative orien-
tation of CoBot and its camera, each with a colored “compass needle”. The needle representing
CoBot’s camera always points “north” on the compass, and the needle representing the orien-
tation of the robot’s base moves relative to this based on the current value of the camera’s pan
angle. The LIDAR readings are displayed on the compass so that the user can visualize objects
in the immediate vicinity of CoBot. The compass is intended to provide situational awareness to
a user who has moved the camera, so that they can tell which way the camera is facing, which
is essential when driving with the arrow keys. It also allows an experience user to predict which
obstacles CoBot will avoid automatically via the LIDAR readings. By clicking on the compass,
users can turn CoBot precisely.

3.6 MONITORING SCHEDULE EXECUTION 47

The Camera Image: Visualization and Control

A 320x240 image from CoBot’s camera is displayed at the top of the display, and refreshed every
fifth of a second. Network latency is manageable enough that overseas users can control CoBot
without difficulty.

In addition to displaying the environment, the image is used for control. When a user clicks
on the image, the camera moves to center on the selected point, providing more precise control
than the arrow keys. Additionally, by scrolling the mouse wheel with the cursor over the image,
the camera zooms in or out (see Figure 3.9). By clicking on the ground plane in the image while
holding the shift key, the user can also move CoBot to a specific spot on the floor. With this
control scheme, it is irrelevant which direction the camera is facing, and lack of awareness of
the robot’s camera and orientation is not an issue. Furthermore, moving the robot by clicking
on the image does not suffer from the latency problems of the arrow keys. Administrators may
move the camera freely to inspect the robot’s surroundings without interfering with CoBot’s task
execution.

Figure 3.9: At left, CoBot-2 views a scene at the default zoom level. At right, the user zooms
in to the boxed area at the maximum level of 18X. The powerful zoom functionality of the robot
allows users to inspect small or distant objects, and even read text remotely. Only CoBot-2
possesses such a powerful camera.

The Map Tab

The map is shown as a separate tab so that the user need not scroll the browser window to view
the entire interface. It displays a visualization of CoBot’s environment, position and orientation.
While CoBot moves to a point chosen by the user, the path to its’ destination is displayed.

Users set a destination for CoBot to travel to by clicking on the map, then dragging and
releasing the mouse button to set the orientation. Additionally, by holding the shift key while

48 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

choosing a location, the user can set CoBot’s localization position from the Map tab. This feature
is useful in the rare event that CoBot’s localization becomes lost.

In the Map tab, users may still access much of the functionality from the Control tab, such as
driving, emergency stop, and moving the camera, through keyboard shortcuts. The image from
the robot’s camera remains visible.

3.6.2 Monitoring Multiple CoBots

CoBot’s interface is excellent for telepresence, but it also is very convenient to monitor the robots.
We have another page, available only to administrators, which shows the positions and current
tasks of all the robots currently running on a map of the building. To check that newly developed
features are working as intended, administrators can view CoBot’s progress remotely through the
web site and easily detect, stop and fix the robot if something goes wrong.

One unexpected benefit of the telepresence interface is that often, when deploying CoBot, we
will have no idea where or even on which floor of the building a robot is on. We can easily check
the website, look at the map and locate CoBot while it performs tasks for users.

In addition to monitoring the robot’s state from the website, administrators may also view the
robot’s complete schedule and can cancel any task remotely. They may also create and modify
public availability windows to schedule tasks in. Non-administrative users may view the list of
public availability slots, and view and cancel the tasks they have requested. Users may also view
previous tasks they scheduled, whether the tasks succeeded, failed or were cancelled, and the
time the task finished.

3.7 Selected Deployment Results

We deployed CoBot on the upper four floors of an office building for a two week period. CoBot
was deployed for two hours every weekday and made available to the building occupants. Oc-
cupants were alerted of CoBot’s availability through email and physical signs posted on bulletin
boards and on the robot itself. The deployment times varied each day, and were announced
beforehand on CoBot’s website.

The response to CoBot’s deployment was positive: over one hundred building occupants reg-
istered to use CoBot on the website. Users found creative ways to exploit the robot’s capabilities,
including, but not limited to:

• Sending messages to friends.

• Reminding occupants of meetings.

3.7 SELECTED DEPLOYMENT RESULTS 49

• Escorting visitors between offices.

• Delivering printouts, paper revisions, inter-office mail, USB sticks, snacks, owed money,
and beverages to other building occupants.

Particularly in the first couple days of deployment, we found building occupants following the
robot around to see where it was going and how it worked. Task solicitors have used this task to
send various items including printouts, paper revisions, USB keys, money owed for lunch, mail
received by assistants, and snacks.

We found that occupants scheduled the robot to transport objects between multiple floors of
the building more often than they used the multi-floor functionality for other tasks (see Table
3.4). In particular, the transport task saved the task solicitors time because they did not have to
travel between floors themselves. However, even the other scheduled tasks utilized the elevator
40% of the time.

Table 3.4: Total number of task requests per task type and the respective number that used the
elevator.

Task Type Total Requests # Multi-floor
Escort 3 2
GoToRoom 52 22
DeliverMessage 56 20
Transport 29 22

In fulfillment of the user requested tasks, CoBot travelled a total of 8.7 km, which covered
most of the building. CoBot spent
• 6 hours and 17 minutes navigating this distance,

• 36 minutes with a blocked path waiting for a person to move out of its way,

• 1 hour and 2 minutes waiting for help with the elevator,

• 1 hour and 18 minutes waiting for task solicitor help to complete its tasks.

Figure 3.10 shows how much time CoBot took to execute each task, and how that time was
apportioned. A total of 140 tasks were completed during the two week deployment, which took
9 hours and 13 minutes. Based on these times, we find that task solicitors quickly responded
to the robot’s request for help at the start and end of tasks. Building occupants (even those that
had never scheduled a task) were willing and able to help the robot in and out of the elevator.
This finding supports our model of symbiotic autonomy— humans are willing to help a robot
complete its tasks so that the robot is available and capable of performing tasks for them as well.

Although CoBot could be required to wait for human help indefinitely, the task execution
times are limited. In general, little more than five minutes per task was spent in the elevator. This

50 CHAPTER 3: TASK SCHEDULING AND EXECUTION ON THE COBOT ROBOTS

Figure 3.10: Execution times for, from left to right, Deliver Message tasks, Go to Room tasks,
and Transport tasks. The breakdown includes 1) waiting for help to start the task, 2) riding
the elevator, 3) navigating (not including time blocked by obstacles), 4) waiting blocked by an
obstacle, and 5) waiting for help to end the task.

is because if CoBot spends more than five minutes waiting for human help, it sends an email to
our research group asking for assistance. Typically, however, occupants helped CoBot and there
was no need to do so. Furthermore, if at the end of a task no human pressed the button to indicate
that the task was complete, CoBot marked the task as complete and moved on to the next task.

3.8 Chapter Summary

The CoBots robustly and reliably complete a variety of tasks in a multi-story building. Users
can schedule tasks over the web or on CoBot directly through a graphical UI or through spoken
dialogue. The tasks are scheduled on a central server by solving an MIP, and executed by the
robot’s task execution component. Users can interrupt the robots while they execute tasks to
modify their schedules. We have deployed CoBot over multiple years to perform many tasks
requested by users.

Chapter 4

The Pickup and Single Delivery Problem
with Transfers

We begin our treatment of algorithms to solve the PDP-T by addressing a simplified version of
the problem, the Pickup and Single Delivery Problem with Transfers (PSDP-T). 1 In the PSDP-
T, the multiple vehicles retrieve a set of items from multiple locations and deliver them to a
single central location. There are no capacity constraints, time constraints, or any other special
constraints. We allow transfers to occur only at pickup locations. This makes sense in domains
such as the CoBots, where human help is needed to transfer items.

The motivation for examining this particular problem stems from user requests for the CoBots,
in particular, for multi-object retrieval tasks, as discussed in the previous chapter. In our build-
ing, popular requests include retrieving mail from the secretaries’ offices and delivering it to the
central office, as well as delivering business cards, fliers or candy to many offices and returning
the leftovers. All these problems are instances of the PSDP-T.

The PSDP-T, like the general PDP-T, is NP-hard, so we introduce algorithms both to solve
it optimally and approximately. In later chapters of the thesis, we introduce algorithms for more
general versions of the PDP-T, which also can find solutions for the PSDP-T. However, due to the
simplifications in the PSDP-T problem, we are able to construct faster heuristics with theoretical
guarantees which only apply to this specific variant of the PDP-T.

In this chapter, we introduce the PSDP-T and formulate the problem as a delivery tree. We
propose a two-approximate polynomial time algorithm for the PSDP-T, and a metaheuristic to
improve on this solution. We further consider the PSDP with transfers anywhere (PSDP-TA),
where transfers are not limited to pickup locations, and show that the optimal solution to the
PSDP-T costs at most twice that of the PSDP-TA. We show the effectiveness of these algo-

1We previously referred to this problem as the Collection and Delivery Problem with Transfers [31].

51

52 CHAPTER 4: THE PICKUP AND SINGLE DELIVERY PROBLEM WITH TRANSFERS

(a) Without Transfers (b) With Transfers

Figure 4.1: Two vehicles collect letters and deliver them, minimizing the total distance travelled
to conserve energy. Each corridor has length c. a Without transfers, the optimal solution has cost
4c. b With transfers, the optimal cost is 3c.

rithms in simulation and on physical robots, and demonstrate an approach for two robots to
autonomously transfer objects. To our knowledge, this is the first time multiple robots have
created and executed a schedule with transfers.

4.1 The PSDP-T Problem

As detailed in Chapter 2, we are given a set of vehicles V and items M , and the goal is to form a
schedule S that minimizes an objective function. For the PSDP-T, we have the further restrictions
that all items are delivered to the same location, that is, ∀m ∈ M end(m) = f for some final
delivery location f . Furthermore, vehicles do not have ending locations, and ∀v ∈ V end(v) = ∅.
All vehicles have infinite capacities, and there are no time windows. All vehicles share a single
distance metric d(a, b).

For the PSDP-T, we introduce a graph-based problem representation as an alternative to
thinking directly in the space of schedules and actions. We construct the complete weighted
graph G = (N,E) where

N = V ∪ L ∪ {f}

L = {start(m) : m ∈M},

and the edge weights are defined by the metric d. Then, the goal is to find a path Pv onG for each
vehicle v such that all the objects are delivered. In a valid solution, the endpoint of every path
Pv is either f or, in the case of a transfer, an intermediate node in another vehicle’s path. Every
vertex corresponding to start(m) for some m ∈ M is part of at least one path Pv since every
item is delivered (as there are no constraints, time or otherwise, delivering all items is always

4.1 THE PSDP-T PROBLEM 53

feasible). Given the set of paths Pv, we can construct a schedule with the actions START, END,
PICKUP, etc. as formulated in the earlier chapter.

Many valid sets of paths exist, and we consider two objectives to distinguish between them: a)
minimize the total movement energy of the vehicles, corresponding to the sum of edge weights,
and b) minimize the completion time, corresponding to the length of the longest path from any
vehicle to the destination.

Next, consider the directed graph T which is the union of all the paths of used vehicles
Pv, where the paths are chosen to either minimize the total distance travelled or the maximum
distance travelled to deliver any object. Note that some vehicles may not pickup any items, and
these vehicles are not part of T .

Theorem 4. There exists an optimal directed graph T that is a tree.

Proof. T is a tree iff it is connected and has |E| = |N | − 1 edges. T is connected, since every
pickup location and used vehicle is part of a path to f . Every vehicle route Pv either ends at
f or at a transfer point. If not, travelling to the final location on the path is either needless or
retrieves an item that is not delivered to f . Furthermore, every route Pv contains f or a transfer
point where items are given to a different vehicle nowhere else in the path. If these points do
exist elsewhere, a solution of less than or equal cost can be constructed by removing the points
due to the triangle inequality. Any items transferred earlier can still be delivered by transferring
them at the route’s final point instead. Hence, there is an optimal set of paths where each vehicle
transfers or delivers items exactly once at the end of its path. Furthermore, there is an optimal
solution where each node corresponding to an item pickup is not the endpoint of exactly one path
Pv, as otherwise a point could be omitted from one of the paths to construct a solution with no
worse cost. So there exists a set of paths T which has |E| = |M |+ |V ∩T | edges, as each vertex
aside from f is not the endpoint of exactly one path Pv. T has |V | = |M |+ |V ∩T |+ 1 vertices,
and is hence a tree.

An equivalent formulation for the PSDP-T is to construct a delivery treeD with the following
properties (see Fig. 4.2):

1. The interior nodes are the pickup locations and the final delivery point f .

2. The leaf nodes are a subset of V , the starting locations of the used vehicles.

3. Branch points represent transfers of one vehicle’s load to another. All but one vehicle at a
transfer point remain behind and are not used again.

Our goal is to either find the delivery tree of minimum weight w(D) (minimum movement
cost), of minimum weighted depth depth(d) (minimum delivery time), or to minimize a linear
combination αw(D) + (1− α)depth(D) where 0 ≤ α ≤ 1.

54 CHAPTER 4: THE PICKUP AND SINGLE DELIVERY PROBLEM WITH TRANSFERS

Figure 4.2: The optimal solution to the PSDP-T can be formulated as a delivery tree. Edges
represent the motion of a single vehicle. Where the tree branches, all the vehicles at that branch
point transfer their entire load to a single vehicle which continues alone.

We show that the PSDP-T problem is NP-hard by reducing the TSP to the PSDP-T. In the
TSP, a salesman aims to find the minimum distance Hamiltonian tour that visits every city in a
set V exactly once, and return to the initial city. The TSP can be reduced to the PSDP-T problem
by setting the cities V as the item pickup locations. We have one vehicle r, which begins at the
same location as the travelling salesman. We set the dropoff location f to be the same location,
r. So if the PSDP-T can be solved in polynomial time, so can the TSP. Hence the PSDP-T is
NP-hard.

4.2 PSDP-T Algorithms

We present algorithms to solve the PSDP-T optimally using mixed integer programming, and
approximately using a minimum spanning tree.

4.2.1 Optimal Approach

We formulate the PSDP-T as a mixed integer program.

4.2 PSDP-T ALGORITHMS 55

∀a, b ∈ N a 6= b, 0 ≤ xa,b ≤ 1, int (4.1)∑
n∈N xf,n = 0 (4.2)

∀l ∈ L
∑

n∈N xl,n = 1 (4.3)

∀v ∈ V
∑

n∈N xv,n ≤ 1,
∑

n∈N xn,v = 0 (4.4)

∀n ∈ (L ∪ {f})
∑

n∈N xn,n ≥ 1 (4.5)

∀U ⊂ N U 6= ∅
∑

e∈δ(U) xe ≥ 1 (4.6)

∀a, b ∈ N, v ∈ V, a 6= b 0 ≤ pea,b,v ≤ 1, int (4.7)

∀v ∈ V, l ∈ L pev,l,v = xv,l, pel,v ,v = 0, pef,l,v = 0 (4.8)

∀v1, v2 ∈ V, l ∈ L ∪ {f} pev2,l,v1 = 0 (4.9)

∀l1, l2 ∈ L ∪ {f}, l1 6= l2
∑

v∈V pel1,l2 ,v ≥ xl1,l2 (4.10)

∀l1 ∈ L, l2 ∈ L ∪ {f} \ l1, v ∈ V xl1,l2 − 1 +
∑

l3∈L\l1,l2∪{f} pel3,l1 ,v ≤ pel1,l2 ,v (4.11)

∀v ∈ V
∑

e∈E pe,vd(e) ≤ G (4.12)

Objective: minα

(∑
a,b∈N, a6=b

xa,bd(a, b)

)
+ (1− α)G (4.13)

We solve for binary variables xa,b, which indicate whether the directed edge from node a to
node b is in the solution (Eq. 4.1). The final destination f has zero outgoing edges (Eq. 4.2),
each location l ∈ L has exactly one outgoing edge (Eq. 4.3), and each vehicle v ∈ V has zero
incoming edges and at most one outgoing edge, but may have zero (Eq. 4.4). The vertex f and
each point l ∈ L have at least one incoming edge (Eq. 4.5)

The formulation as it stands still allows subtrees, in which the delivery tree is not connected.
To address this, we introduce constraints similar to the subtour elimination constraints that are
used to formulate the TSP as an MIP (Eq. 4.6), where δ(U) is the set of edges which link U and
N \ U .

This MIP formulation gives paths which solve the PSDP-T. The graph is connected (aside
from unused vehicles), so every item is part of a vehicle’s path to f . The graph has |V | + |L| =
|N | − 1 edges since each used vehicle and item has exactly one outgoing edge, and is hence a
tree. The vehicles are the only leaf nodes in the tree, since they have one edge while the items
have at least two. We minimize the total distance D =

∑
e∈E d(e) travelled by all the vehicles.

Alternatively, to minimize the time taken to deliver all items (the length of the longest path
from a vehicle to the goal) we define binary variables pe,r which indicate whether the directed

56 CHAPTER 4: THE PICKUP AND SINGLE DELIVERY PROBLEM WITH TRANSFERS

edge e is part of the path from r to f (Eq. 4.7). Edges from vehicles are part of that vehicle’s path
if the edge exists. No edges exist to vehicles, and f has no outgoing edges (Eq. 4.8). Edges with
vehicles as nodes are not part of another vehicle’s extended path (Eq. 4.9). Each edge between
retrieval and delivery points that is in the solution is part of the path for at least one vehicle (or
more, with transfers) (Eq. 4.10). Finally, edges between two retrieval or delivery locations are
only on a vehicle’s path to f if an incoming node was also on the extended path (Eq. 4.11).

We define a variableG to be the length of the longest extended path. Then we add constraints
so that G is greater than the length of every vehicle’s extended path (Eq. 4.12). Our objective
function is then minG, or a weighted sum of the two objectives, minαD+ (1−α)G (Eq. 4.13).

4.2.2 Minimum Length Approximation

Computing the exact solution to the PSDP-T is difficult since the problem is NP-hard. Hence we
are interested in approximation algorithms, which find a solution in polynomial time that is not
optimal, but provably close to optimal.

The approximation algorithm we introduce generates two-approximate solutions in terms of
total distance to the PSDP-T using only a single vehicle. In fact, a two-approximate solution to
the PSDP-T is the best guarantee we can possibly make with only a single vehicle. If On is the
optimal solution with n vehicles, andO1 the optimal solution with any one of those vehicles, Fig.
4.3 shows a case where w(O1) approaches arbitrarily close to 2w(On). With multiple vehicles,
the heuristic further reduces both the distance travelled and the delivery time.

Figure 4.3: Robots and items are situated at the end of n hallways of length one emanating from
the delivery point f . On = n, where every vehicle travels to f . O1 = 2n− 1, where one vehicle
retrieves every item.

Our approximation is based on the minimum spanning tree two-approximate heuristic for the
TSP, but is a generalization for multiple vehicles that transfer items. In this approximation, the
minimum spanning tree MST over all the vertices is generated. Since any solution to the TSP
must visit all vertices and return to the original solution, w(MST) ≤ w(OTSP), where OTSP is
the optimal solution to the TSP. Then, a tour T is constructed that visits all the vertices and returns
to the starting point while traversing each edge ofMST at most twice. So w(T) ≤ 2w(MST) ≤
2w(OTSP). The algorithm is shown in Algorithm 1. First, we construct the complete graph G

4.2 PSDP-T ALGORITHMS 57

with pickup locations L and drop-off location f with edge lengths determined by the distance
metric d, and its minimum spanning tree T . Next, choose the edge e of lowest weight from a
node in T to a node in v ∈ V , and add e and v to T to construct T ′.

Algorithm 1 psdp t(L, f, V): Construct a delivery tree given the set of pickup points L, the
dropoff point f , and vehicles V . NT (n) gives the set of neighbors of n in T .
G← complete graph(L ∪ {f}, d)
T ← mst(G)
s, n← argmins∈V,n∈N(G) d(s, n)
T ′ ← deliv tree(V, L, f, T ∪ edge(s, n))
for v ∈ V, v 6∈ T ′ do
n← argminn∈N(G),NT ′ (n)∩V=∅ d(v, n)
T ′′ ← deliv tree(V, L, f, T ′ ∪ edge(v, n))
if cost(T ′′) < cost(T ′) then
T ′ ← T ′′

end if
end for
return T ′

If O is the delivery tree for the optimal solution, then w(T) ≤ w(O \ V), since T is the
minimum spanning tree over the same nodes. Since a valid delivery tree must have at least one
edge connected to a vehicle , and we chose the minimum one, w(T ′) ≤ w(O). We call T ′ an
intermediate delivery tree, since it can be used to construct a delivery tree but not all leaf nodes
are vehicles.

We then construct a tour P , starting at v and ending at f , which visits each vertex in T ′ at
least once with the procedure deliv tree (see Alg. 2). When T ′ contains only a single vehicle, this
algorithm is equivalent to the two-approximate TSP approximation, which traverses each edge
at most twice. The deliv tree(T) algorithm extends this heuristic to multiple vehicles which
can transfer items, and creates a valid delivery tree with weight at most 2w(T). Thus, w(P) ≤
2w(T) + w(e) ≤ 2w(O \ V) + w(e) ≤ 2w(O \ R). So our single vehicle algorithm is two-
approximate to the optimal multi-vehicle solution in terms of total distance.

We can lower the cost further with multiple vehicles, although no better guarantees on the
approximation bound are obtained. We begin with the constructed intermediate delivery tree for
a single vehicle, T ′, and for each vehicle v, greedily add the shortest edge from v to a node in
T to the tree T ′. We construct a new delivery tree from T ′ with deliv tree, and keep the edge
and vehicle in the intermediate delivery tree T ′ if and only if the delivery tree’s cost decreases
according to our objective function. We then attempt to add the next vehicle to the updated T ′,
iterating through every vehicle. This procedure still gives a two-approximation to the PSDP,
and additional vehicles will sometimes decrease both the total distance travelled and the time to

58 CHAPTER 4: THE PICKUP AND SINGLE DELIVERY PROBLEM WITH TRANSFERS

Algorithm 2 deliv tree(V, L, f, T): Construct a delivery tree given the set of pickup points L,
the dropoff point f , vehicles V , and an intermediate delivery tree T .
A = {l ∈ L : ∃v ∈ V s.t. l ∈ path(v, f)}
T ′ = Null Graph
for v ∈ V do
n = v, P = []
while n 6∈ T ′ do

Append n to P
If n = f , break
Choose n′ = x ∈ NT (n) s.t. x 6∈ P and x 6∈ A
If 6 ∃n′, n′ = x ∈ NT (n) s.t. x 6∈ P and x ∈ A
n = n′

end while
P ′ = P with duplicate vertices removed
T ′ = T ′ ∪ P

end for
return T ′

completion, depending on the problem instance. See Fig. 4.4 for an example of the algorithm’s
results.

Figure 4.4: An example of the approximation algorithm. Solid black lines indicate edges on the
minimum spanning tree, and dashed lines show the generated delivery tree.

We have constructed a two-approximate delivery tree in polynomial time that uses multiple
vehicles, since the cost of the multi-vehicle heuristic is at most the cost of the single-vehicle
heuristic which is two-approximate.

4.2.3 Improvement with Local Search

Next, we introduce a metaheuristic to improve upon the two-approximate solution with local
search techniques. Specifically, we make use of simulated annealing [63]. Simulated annealing
is a metaheuristic that begins at some state, and chooses a random “neighbor” of that state. With
probability accept(e, e′, t) the new state is accepted as the current state, where e is the “energy”

4.2 PSDP-T ALGORITHMS 59

f l1

l2

l3 r2

r1

(a)

f l2

l1

l3 r2

r1

(b)

f l1

l2

l3 r2

r1

(c)

Figure 4.5: (a) The initial state. (b) A neighbor found by swapping l1 and l2 (the edges linking
them to other nodes are different). (c) A neighbor with l2 grafted from l1 to l3.

(in our case, the cost) of the current state, e′ is the energy of the new state, and t is the temperature,
or the fraction of iterations of the algorithm currently completed. If the new state is rejected we
remain at the current state and repeat with a new neighbor. The algorithm continues either for a
fixed number of iterations or until the energy crosses some threshold, when the best solution that
has been encountered thus far is returned.

To apply simulated annealing to the PSDP, we must define a starting point, an energy func-
tion, an acceptance probability, and a function to return random neighbors of a state. We search
over the underconstrained intermediate delivery trees rather than strict delivery trees, as this al-
lows us to develop a broader concept of neighboring solutions that is more closely tied to the
approximation heuristic. We use as a starting point the tree generated by our fast multi-vehicle
heuristic.

The energy function is the cost function of the delivery tree constructed with deliv tree, and
it incorporates both the total weight and depth of the tree as a function of α. The acceptance
probability is 1 if e′ < e, and e

e−e′
t otherwise, a standard acceptance function frequently used in

the literature.

Neighboring states are found either by swapping two non-vehicle, non-destination nodes on
the intermediate delivery tree (that are not vehicles or f), swapping their neighbor sets, or by
grafting one branch of the tree at a transfer point onto a neighboring node, replacing a single
edge. See Fig. 4.5 for examples.

We run the simulated annealing algorithm for a thousand iterations. Every hundred iterations
we restart from the best solution found thus far to explore the most promising regions more
thoroughly. In practice, simulated annealing improves upon the solutions of the two-approximate
heuristic, as we demonstrate later through experimental results.

60 CHAPTER 4: THE PICKUP AND SINGLE DELIVERY PROBLEM WITH TRANSFERS

4.3 Transfers at Any Location

Next, we consider the general case of PSDP-TA, where items can be transferred anywhere, rather
than only at vertices in L as in the PSDP-T. We show that the optimal solution for the metric
PSDP-T, Ov, is within a factor of two of the cost of the optimal solution to the PSDP-TA, Oa,
when minimizing total distance travelled.

The PSDP-TA is closely related to the Steiner tree problem, in which a set of points must be
connected by the shortest possible set of edges. “Helper” points may be added (transfer points)
to construct a solution. The PSDP-TA is different in that all the leaf nodes of a valid delivery tree
must be vehicles or the final destination.

Theorem 5. Ov ≤ 2Oa

The full proof is presented in our previous work [31] and relies on the properties of Steiner
trees. In the case where our metric is Euclidean, we prove the stronger claim that Ov ≤ 2√

3
Oa,

given that an open conjecture regarding the Steiner ratio holds [58].

Proof. Given a delivery tree T with optimal cost Oa with transfers at any point (the transfer
points are separate nodes in the tree), we construct a delivery tree T ′ with transfers only at
vertices and cost Ov ≤ 2Oa. Let X be the set of transfer points in T .

First, construct the forest F with vertices X ∪N(X), where N(X) is the set of neighboring
vertices toX in T . Add all edges between the vertices of F in T to F as well. For each connected
component Fi of F (which may include multiple transfer points), define Si to be the complete
graph with vertices Fi \ X . Then w(Fi) = w(steiner(Si)), where steiner gives the minimum
Steiner tree. If this were not the case, then either the minimum Steiner tree could be used to
construct a delivery tree of lower cost, or we do not have the minimum Steiner tree.

Let S = ∪Si. Construct T ′ = (T \ X) ∪ msf(S), where msf(S) = ∪imst(Si). T ′ is a valid
delivery tree where the items are transferred at retrieval or dropoff points.

Then Oa = w(T) = w(T \ X) + w(F), since T = (T \ X) ∪ F . Furthermore, w(F) =∑
w(Fi) =

∑
w(steiner(Fi \X)). Similarly, Ov ≤ w(T ′) = w(T \X) + w(msf(S)) = w(T \

X)+
∑

iw(mst(Fi\X)). The weight of a minimum spanning tree is bounded by the Steiner ratio
κ such that w(mst(G)) ≤ κw(steiner(G)). Hence, Ov ≤ w(T \E) + κ

∑
iRisteiner(Ri \E) ≤

κOa.

If our distance function is a metric, than κ = 2 [108], and the optimal solution to the PSDP-T
is two-approximate to the PSDP-TA. If the distance function is Euclidean, κ is conjectured to be
2√
3
≈ 1.1547. This conjecture is believed to be true, but is still open and unproven [58]. If it

holds, then for the Euclidean case PSDP-T is a 2√
3
-approximation to PSDP-TA. Hence, our two-

approximate heuristic for the PSDP-T provides a four-approximate heuristic for metric PSDP-TA

4.4 EXPERIMENTAL RESULTS 61

and a 4√
3
≈ 2.31-approximate for the Euclidean PSDP-TA, assuming the conjecture regarding

the Euclidean Steiner ratio holds.

4.4 Experimental Results

We tested our algorithms in simulation to demonstrate the effects of transfers and our algorithms
on large problems, as well as on the CoBot robots. We also developed the CreBot robots which
autonomously transfer items.

4.4.1 Simulation Results

To validate our approach, we tested the algorithms in two scenarios. We varied the number of
items to retrieve, and created 50 random problem instances for each set of parameters. We solved
each problem optimally (when feasible), with the single and multi-robot two-approximation al-
gorithms, and with simulated annealing.

In the first scenario, we chose random pickup, delivery, and starting points from a plane,
using a Euclidean distance function. Figure 4.6a shows results for three robots and up to twenty
items. Each phase of the algorithm gives an improvement. The simulated annealing solution is
near-optimal, when the optimal solution is found.

In the second scenario, points were chosen randomly from four floors of an office building in
a simulation of the mail collection task. The distance function was an empirical estimate of robot
travel times. The objective was to minimize a weighted sum of the moment energy cost and the
delivery time (α = 0.5). Figure 4.6b shows the results with 25 robots and up to 175 items. Each
level of the algorithm offers a significant improvement, particularly the multi-vehicle heuristic,
since it achieves much better depths than the single robot approximation. We are unable to find
the optimal solutions for problems of this size. Note that a uniform distribution among rooms in
the building may not be a realistic representation of some scenarios, and results for these other
scenarios may differ.

On an Intel 2.83 GHz Core2 Quad CPU, the two heuristics ran in under a second for all in-
stances of up to 500 vertices (these instances are not shown). Simulated annealing ran in under
fifteen seconds for every instance. The optimal MIP formulations were solved with lpsolve,
with each attempt aborted after thirty seconds. These results show that the approximation algo-
rithms can solve large problems quickly, and provide near-optimal solutions when comparison is
possible.

62 CHAPTER 4: THE PICKUP AND SINGLE DELIVERY PROBLEM WITH TRANSFERS

2 4 6 8 10 12 14 16 18
Number of Items

5

10

15

20

25

30

35

40

45

50
To

ta
l D

is
ta

nc
e

Tr
av

el
le

d
Planar CDP-T with Total Distance Objective

Single-vehicle Heuristic
Multi-vehicle Heuristic
Simulated Annealing
Optimal

(a)

20 40 60 80 100 120 140 160
Number of Items

0

200

400

600

800

1000

1200

1400

1600

1800

M
ix

ed
 O

bj
ec

tiv
e

Co
st

Office Building CDP-T with Mixed Objective

Single-vehicle Heuristic
Multi-vehicle Heuristic
Simulated Annealing

(b)

Figure 4.6: Results for the PSDP-T algorithms with (a) three robots and up to twenty items to
retrieve under the total distance objective function in the planar domain, and (b) 25 robots and up
to 175 items to retrieve under the mixed objective function in the office building domain. Lines
indicate the mean objective function cost, and the filled area shows the standard deviation across
trials. Darker areas indicate overlap.

4.4 EXPERIMENTAL RESULTS 63

4.4.2 Illustrative Deployments on CoBots

We have deployed our PSDP-T heuristic on the CoBot robots (as introduced in Chapter 3), and
with them we show that transferring items can reduce energy consumption and delivery time.
The CoBots cannot physically transfer items, and so they ask humans to help. The previously
introduced centralized web server accepts user requests and sends schedules to the CoBots. The
CoBots pickup and deliver items by arriving at an office and asking a human to place or remove
the items.

We examine three scenarios where two CoBots were deployed to collect and deliver objects
in an office building. The problem setups and the planned paths, both with transfers and without,
are shown in Fig. 4.7. For each scenario, we recorded the time it took the robot(s) to complete
the task and the total combined distance travelled by all of the robots. To reduce the variance in
our experiments, we assumed that humans were always immediately available to place items in
the CoBots’ baskets and to help transfer items. However, the times recorded with transfers do
include the time to ask and thank a human for their help, and are shown in Table 4.1.

With Transfers Single Robot
Scenario Time (min.) Dist.(m) Time (min.) Dist. (m)

1 4:22 229.35 8:18 287.12
2 5:52 220.68 7:55 238.66
3 7:00 230.56 9:36 272.37

Table 4.1: Deployment Results for Selected Scenarios

In all three scenarios, using multiple robots with transfers reduced both the time to complete
the task and the total distance travelled. This may not be the case in all scenarios, depending on
the problem setup. However, we have demonstrated that in many scenarios, transferring items
between robots can and does reduce the energy consumed and the time taken to complete the
task.

4.4.3 Autonomous Transfers with CreBots

We have designed the CreBots to transfer items autonomously. They consist of an iRobot Create
as a base, with Willow Garage Turtlebot shelves, a laptop, Kinect RGB-D camera, and a custom-
built tilting tray on top to transfer items (see Fig. 4.8a).

Unlike the CoBots, the CreBots transfer items autonomously. To do so, two CreBots head
towards the same location based on their localization information. The robots stop either when
they reach the destination, or are blocked within two meters of the destination (presumably by

64 CHAPTER 4: THE PICKUP AND SINGLE DELIVERY PROBLEM WITH TRANSFERS

(a) (b) (c)

Figure 4.7: The paths planned by the approximation algorithm and taken by the robots, with and
without transfers, for a Scenario 1, b Scenario 2, and c Scenario 3.

(a) (b)

Figure 4.8: a A CreBot robot, with a Create base, laptop computer, Kinect RGB-D camera, tilting
tray, and QR code for alignment. b One CreBot transfers an item to another during a collection
and delivery task.

4.5 CHAPTER SUMMARY 65

the other robot). Next, the robots send each other their localization positions wirelessly and turn
to face each other.

Localization is accurate and robust enough for a rough alignment, but not precise enough to
transfer objects based solely on localization. For fine alignment, the robots are each equipped
with a QR code which is detected by the Kinect and used for precise docking. The transferrer
advances slowly until it comes within the range it can detect the QR code using an off the shelf
library, which measures the QR code’s bounding box. The transferrer computes the distance and
angle to the QR code from its known size and camera parameters, then rotates in place to align
with the QR code. The transferrer continues to move forwards until its bump sensor is triggered,
and dumps its load. When dumping, the tilting tray shakes back and forth to ensure that all the
objects are dislodged. The CreBots have successfully executed collection and delivery tasks with
transfers.2

4.5 Chapter Summary

We introduced the Collection and Delivery Problem with Transfers, and showed that the solution
comes in the form of a delivery tree. We solved the PSDP-T optimally with an MIP, and bound
the cost with transfers anywhere in terms of the cost when transfers occur only at vertices. We
introduced a two-approximate algorithm under the minimum length objective, and proposed a
heuristic and metaheuristic to find solutions of lower depth while maintaining the bound on total
length. We bounded the benefit from transferring items at any location rather than only at pickup
locations. Furthermore, we demonstrated the effectiveness of our heuristics on large real-world
problem instances, and showed the feasibility of transfers between physical robots.

2Video available at http://youtu.be/pzXv7p aZhE.

66 CHAPTER 4: THE PICKUP AND SINGLE DELIVERY PROBLEM WITH TRANSFERS

Chapter 5

Heuristics for the nTPDP-T

In this chapter, we address the No Times Pickup and Delivery Problem with Transfers (nTPDP-
T). The nTPDP-T differs from the previous chapter’s PSDP-T in the following three ways:

1. In the PSDP-T all items have the same destination, in the nTPDP-T items may have distinct
destinations.

2. In the nTPDP-T, vehicles may have their own destinations in addition to starting positions.

3. Vehicles in the nTPDP-T have limited capacities.

4. Vehicles may have a maximum total number of items they may transport during the entirety
of their route, mni (v). Once mni (v) items are picked up or received, no more items may
be transported by that vehicle, even if it delivers the other items. This particular constraint
is considered only in this chapter of the thesis.

As in the PSDP-T, in the nTPDP-T we do not consider time constraints.

We present three heuristics to plan routes for items and vehicles for the nTPDP-T which
incorporate transfers: 1) a greedy heuristic, 2) an auction algorithm, and 3) an approach based on
graph search. Each algorithm involves a trade-off between solution quality and computational
cost. Here we set aside time constraints to focus only on minimizing fuel usage. We assume that
assignments are made centrally by an agent with full information.

We test these three algorithms extensively in simulation, and show that in certain cases, trans-
ferring items gives a significant improvement over not transferring items. We also demonstrate
the heuristics’ effectiveness in the real world, on a physical map using the trips of taxi passengers.

As this problem is more general than the PSDP-T, we cannot provide theoretical guarantees
as we were able to in the previous chapter. In later chapters we build upon the heuristics for the
nTPDP-T to create algorithms for still more general PDP-Ts.

67

68 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

5.1 Heuristics for the nTPDP without Transfers

We present two algorithms which take a set of routes without transfers as input, and output a
modified schedule to deliver all items with transfers. Hence, we first introduce two algorithms
to form schedules without transfers, a greedy approach and an auction approach. The auction
approach is similar to [1] and [64]. An alternative algorithm, such as set cover [61], could be
used instead.

5.1.1 The Greedy Approach

In the greedy approach, we iterate through every itemm and vehicle v, insert the PICKUP (m) and
DELIVER(m) actions into Sv at the points of lowest cost without rearranging the other actions.
We then choose the vehicle / item pair (v, m) which increases the cost c (S) the least, and assign
item m to vehicle v with the previously discovered best action insertion points. We repeat the
process of greedily assigning items to vehicles until no unassigned items remain.

Algorithm 3 greedy nt(V, P): greedily form schedules Sv for vehicles v ∈ V to delivery all
items m ∈M .

for v ∈ V do
Sv ← 〈START, END〉

end for
A = ∅
while |A| < |M | do

v,m← argminm∈M\A,v∈V c (route insert(S, v, 〈PICKUP (m) , DELIVER(m)〉)
S ← route insert(S, v, 〈PICKUP (m) , DELIVER(m)〉
A← A ∪ {m}

end while

The details are presented in Algorithm 3. The procedure route insert(S, v, a) uses brute
force search to find the optimal placement to insert the actions in a into the schedule Sv, while
maintaining the new actions’ ordering, and v’s capacity and maximum item number constraints.
The function returns the resulting schedule, or returns failure if no route is available. We assume
the distance function d returns ∞ for an invalid schedule. We assume that a valid schedule
always exists to transport all the items for the nTPDP-T. Since there are no time constraints,
this is the case as long as the maximum number of item constraints can be satisfied: that is,∑

v∈V mni (v) ≥ |M |.
As specified in Algorithm 3, the greedy algorithm’s runtime is O (|M |2|V |I2) where I =

maxv∈V mni (v). However, calls to route insert will not change across iterations of the
while loop, except for vehicles which were assigned an item in the previous iteration of the loop.

5.1 HEURISTICS FOR THE NTPDP WITHOUT TRANSFERS 69

By caching these values, the algorithm’s complexity becomes O(|M ||V |I2).

5.1.2 The Auction Approach

Next, we present an auction approach to solve the rideshare problem without transfers. The auc-
tion consists of rounds, in which each vehicle places a single bid for the item that it can transport
at lowest additional cost. For each item, the vehicle that can transport it at lowest additional
cost is declared the winner, and the item’s pickup and delivery are inserted into that vehicle’s
schedule. Rounds of the auction continue until all items are assigned to vehicles. See Algorithm
4 for the full algorithm. The auction algortihm is less greedy than the previous algorithm in the
sense that it does not depend on the order the items or vehicles are examined in.

Algorithm 4 auction nt(V,M): form a schedule S for vehicles V to deliver all items in M
via auction

for v ∈ V do
Sv ← 〈START, END〉

end for
A = ∅
while M \ A 6= ∅ do
∀v ∈ V bidv ←∞, bestv ← ∅
for m ∈M \ A do
v ← argminv∈V route insert cost(S, v, 〈PICKUP (m) ,DELIVER(m)〉)
c← route insert cost(S, v, 〈PICKUP (m) ,DELIVER(m)〉)
if c < bidv then
bidv ← c, bestv ← r

end if
end for
for v ∈ V do

if bestv 6= ∅ then
S ← route insert(S, bestv, 〈PICKUP (m) ,DELIVER(m)〉)
A← A ∪ {bestv}

end if
end for

end while

The worst-case runtime complexity of the auction is O(|P |2|V |M2). However, since many
items will be assigned to vehicles in the same round, in practice it often runs faster than the
greedy algorithm.

One benefit of the auction algorithm is that it easily lends itself to a distributed implementa-
tion. Requests could be entered for items and sent to many vehicles. Then the vehicles could, in

70 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

a distributed manner, determine the costs to add the various items to their routes and place bids.
The item senders could then select the lowest bidder to transport the item.

5.2 Heuristics with Transfers for the nTPDP-T

Next, we present three heuristics for solving the ridesharing problem with transfers: a greedy
approach, an auction approach, and a graph-based approach. The greedy and auction algorithms
take as input a solution to the rideshare problem without transfers, while the graph-based ap-
proach constructs a solution from scratch.

However, before presenting these algorithms in detail, we look at the problem of how to
select a geometric transfer point at which two vehicles can transfer items. Each of the algorithms
for ridesharing with transfers must solve this subproblem.

5.2.1 Finding a Transfer Point

Given an edge on vehicle va’s route between the locations 〈a1, a2〉, and an edge on vehicle vb’s
route between two locations 〈b1, b2〉, our goal is to select a transfer point p such that

∑
v∈a1,a2,b1,b2 d(p, v)

is minimized.

The point p is known as the optimal meeting point. In the case where the map is Euclidean,
this is called the Weber problem and the point p is called the geometric mean. Although the idea
of the optimal meeting point is quite simple, it is difficult to compute. In fact, it has been shown
that no closed form solution exists. However, numerous algorithms have been developed to find
the optimal meeting point with gradient descent and other techniques, including a near-optimal
solution for general maps [117].

We introduce a function tpoint(a1, a2, b1, b2) which returns a proposed transfer point. Our
focus is not on finding the individual transfer points, but on finding the overall schedule of when
the vehicles should transfer. To be able to evaluate many transfer points efficiently, we use a fast
heuristic rather than the computationally expensive near-optimal methods. We simply consider
each of the three possible pairings of the points a1, a2, b1, and b2, and find the intersection points
of the shortest paths between each set of paired points. We choose the point which creates the
lowest edge cost as a proposed transfer point. On a general map, none of the shortest paths may
intersect, in which case we do not place a transfer point between these line segments.

Although we choose a non-optimal approach for selecting a transfer point, it should be noted
that any other approach from the literature could be substituted to find a better solution at a cost
of additional computation.

5.2 HEURISTICS WITH TRANSFERS FOR THE NTPDP-T 71

5.2.2 Splitting an Item’s Route

In addition to the tpoint function, we introduce a helper routine, split route(S,m, a, b),
which adds a transfer of the item m between vehicle a and vehicle b in the schedule S. Initially,
item m is already transported all or in part by vehicle a, and b does not transport item m. This
means there is some action R in Sa where item m is picked up or received from another vehicle,
and an action D where m is delivered or transferred to another vehicle. Table 5.1 shows an
example initial schedule.

Sa Sb

Name Action Name Action
Sa1 START Sb1 START
...

...
...

...

R PICKUP (m) or RECEIVE(m, c, l1)
...

...
...

...
...

...

D DELIVER(m) or TRANSFER(m, d, l2)
...

...
...

...
...

...
Sa|Sa| END Sb|Sb| END

Table 5.1: Schedule Before Route Splitting

The function split route modifies the schedule such that vehicle bwill transport the item
for part of the way. Vehicle b could execute the receiving action R and then transfer the item to
vehicle a, as in Table 5.2. Alternatively, a could execute action R, then transfer the item to b, and
b could execute the delivery action D, as in Table 5.3.

The split route algorithm effectively divides an item’s transport between two vehicles,
and can do so recursively. The full procedure is described in Algorithm 5. We first select a
transfer point. Then, similar to the insertion heuristics presented in the previous section, we do
a brute force search over insertion points for the new transfer actions into the schedule, without
modifying the ordering of the other actions in the schedule. The function split route cost

is the same as split route, except it does not modify the schedule and returns only the
change in cost. The function ni (Sv) returns the total number of items transported in the schedule
Sv.

The function best transfer searches through every feasible pair of edges on the routes
of a and b and finds the transfer point of least cost which obeys the capacity constraints. We
introduce a budgetary heuristic in the best transfer function. If the start and ending points
of item m, R and D, in Sa, are both a greater distance than a budget bud (a) from any edge in Sb,

72 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

Sa Sb

Name Action Name Action
Sa1 START Sb1 START
...

...
...

...
...

... R PICKUP (m) or RECEIVE(m, c, l1)
...

...
...

...
Ta RECEIVE(m, b, l3) Tb TRANSFER(m, a, l3)
...

...
...

...

D DELIVER(m) or TRANSFER(m, d, l2)
...

...
...

...
...

...
Sa|Sa| END Sb|Sb| END

Table 5.2: Schedule After Route Splitting, b Executes Action R

Sa Sb

Name Action Name Action
Sa1 START Sb1 START
...

...
...

...

R PICKUP (m) or RECEIVE(m, c, l1)
...

...
...

...
...

...
Ta TRANSFER(m, b, l3) Tb RECEIVE(m, a, l3)
...

...
...

...
...

... D DELIVER(m) or TRANSFER(m, d, l2)
...

...
...

...
Sa|Sa| END Sb|Sb| END

Table 5.3: Schedule After Route Splitting, b Executes Action D

5.2 HEURISTICS WITH TRANSFERS FOR THE NTPDP-T 73

Algorithm 5 split route nt(S,m, a, b) splits an item m’s transport between vehicles a and
b in schedule S.
R← PICKUP (m) or RECEIVE(m, c, l) in Sa

D ← DELIVER(m) or TRANSFER(m, c, l) in Sa

if ni
(
Sb
)
≥ mni (b) then

return ∞
end if
loc← best transfer(S,m, a, b)
w11 ← route insert cost(Sa \ {R,D}, 〈R, TRANSFER(m, b, loc)〉)
w12 ← route insert cost(Sb, 〈RECEIVE(m, a, loc), D〉)
w21 ← route insert cost(Sa \ {R,D}, 〈RECEIVE(m, b, loc), D〉)
w22 ← route insert cost(Sb, 〈R, TRANSFER(m, a, loc)〉)
if w11 + w12 =∞ and w21 + w22 =∞ then

return ∞
end if
if w11 + w12 < w21 + w22 then
Sa ← route insert(Sa \ {R,D}, 〈R, TRANSFER(m, b, loc)〉)
Sb ← route insert(Sb, 〈RECEIVE(m, a, loc), D〉)
return w11 + w12

else
Sa ← route insert(Sa \ {R,D}, 〈RECEIVE(m, b, loc), D〉)
Sb ← route insert(Sb, 〈R, TRANSFER(m, a, loc)〉)
return w21 + w22

end if

then that potential transfer point is skipped over. With this heuristic, transfer points between ve-
hicles that do not cross near each other are not considered. This helps alleviate the computational
load of iterating through O(|V |2) potential transfer points.

Additionally, The route insert function, when a transfer action is inserted, checks for
cycles. Cycles are detected by following the edges of the transfer graph (introduced in Chapter 2)
beginning at the new transfer point and checking if we return to the starting point.

5.2.3 Greedy Transfer Insertion

The first approach we propose greedily adds transfer points to an existing solution without trans-
fer points. We form a queue q containing items and the vehicles that are transporting them. For
each item and vehicle in the queue, we iterate through the other vehicles and check if a different
vehicle could take the item part of the way at a lower cost, using the split route heuristic. If
such a transfer exists, we find the other vehicle which would lower the cost the most, and apply
the transfer to the schedule. We then add both halves of the split route back into the queue q,

74 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

where we may later add additional transfers to subdivide the route further. The full details of the
greedy approach are presented in Algorithm 6.

Algorithm 6 greedy transfer nt(S): greedily add transfers to the schedule S.
q ← empty queue
for m ∈M, v ∈ {v : m transported in Sv} do
enqueue(q, (m, v))

end for
while q not empty do

(m, a)← dequeue(q)
bestc ←∞, bestv ← ∅
for b ∈ V, b 6= a do

if in budget(Sb, start(m)) or in budget(Sb, end(m)) then
c← split route cost(S,m, a, b)
if c < bestc then
bestc ← c, bestv ← b

end if
end if

end for
if bestc 6=∞ then
split route(S,m, a, bestv)
enqueue(q, (m, a)), enqueue(q, (m, b))

end if
end while

The effectiveness of this algorithm, as with many greedy algorithms, is dependent on the
order in which we iterate over the item and vehicle pairs. Furthermore, we only consider transfers
between pairs of vehicles at a time, ignoring better routes which could be obtained by transferring
between multiple vehicles. However, routes which transfer to multiple vehicles may be obtained
when the greedy algorithm is applied recursively to partial routes of items on individual vehicles.

5.2.4 Transfer Insertion with Auctions

Our second approach is an auction, similar to the auction without transfers. In this auction, the
items place bids for vehicles. In one round of the auction, each item finds the single transfer
point which could be added to obtain the greatest cost decrease, by applying the split route

function. Each item places a bid for each vehicle. Then, each vehicle accepts the item with
the lowest bid which will decrease the total cost the most. If no assignments were made the
auction ends; otherwise we repeat the auction for another round. The full auction algorithm with
transfers is shown in Algorithm 7.

5.2 HEURISTICS WITH TRANSFERS FOR THE NTPDP-T 75

Algorithm 7 auction transfer nt(S): add transfers to the schedule S with an auction.
for v ∈ V do
bidv ←∞

end for
for m ∈M do
a, b← argmina6=b∈V,m transported in Sa split route cost(S,m, a, b)
c← split route cost(S,m, a, b)
if c 6=∞ and bidb > c then
bidb ← c, bidpb ← m, bidvb ← a)

end if
end for
done← true
for v ∈ V do

if bidv 6=∞ then
split route(S, bidpv, bidvv, v)
done← false

end if
end for
if not done then

repeat auction
end if

Like the greedy approach, the auction algorithm has the shortcoming that it only considers
a single transfer at a time. However, the auction approach is less greedy in the sense that the
assignment does not depend on the ordering the items or vehicles are examined in.

5.2.5 Graph Search

Our final algorithm for solving the ridesharing with transfers problem differs from the first two in
that it does not begin with a solution for ridesharing without transfers. Instead, it plans for trans-
fers from the beginning. This allows the algorithm to find better solutions. However, because
it searches for routes in an exponentially larger space which includes transfers, this algorithm is
significantly slower to execute than the previous two approaches. It is still much faster than any
optimal approach, but there is a tradeoff between solution quality and computation time.

The graph search algorithm is greedy in the sense that we iterate through each item, and plan
the best path for that individual item. To do so, we construct a directed multi-graph representing
all the vehicles’ current schedules and potential transfer points. Each vehicle’s initial schedule
Sv is set to contain only a STARTand ENDaction. The edges on the graph represent segments
of robots’ existing routes or transfers that an item could make on its route. The weights of the

76 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

edges represent the additional cost to the vehicles of using that means of transportation for the
item. Then, the shortest path on the graph gives the route of least cost for the item. The actions
found in that path are added to the schedule. The algorithm is outlined in Algorithm 8.

Algorithm 8 graph schedule nt(V,M): Form a schedule by searching on a graph.
∀v ∈ V Sv ← 〈START, END〉
for m ∈M do
G← graph constructed from S for m
P ← shortest path in G from PICKUP (m) to DELIVER(m)
S ← S with PICKUP (m), DELIVER(m), TRANSFER and RECEIVE actions added from P

end for
return S

The graph G constructed from S to insert the item m into the schedule contains the following
nodes:

• ∀v ∈ V, ∀a ∈ Sv a, every action in S;

• PICKUP (m) and DELIVER(m), the starting and ending actions on the item m’s route; and

• ∀v1 6= v2 ∈ V, 1 ≤ i < |Sv1|, 1 ≤ j < |Sv2 | Tm,v1,v2,i,j . For each pair of edges on two
robots’ paths, we add a node Tm,v1,v2,i,j representing the transfer point tpoint(Sv1i , S

v1
i+1, S

v2
j , S

v2
j+1).

Transfer points are not added if they would cause a cycle or if reaching them would exceed
one of the two vehicles’ budgets.

These nodes are connected by directed edges representing possible routes involving transfers
taken by the item m, with the edge weights representing the change in the distance travelled if
these routes were taken:
• ∀v ∈ V, ∀1 ≤ i < |Sv| the edge from Svi to Svi+1 with weight 0, representing the paths the

vehicles already plan to travel (hence no additional cost);

• ∀v ∈ V, ∀1 ≤ i < |Sv| the edge from PICKUP (m) to Svi with weight d(Svi , PICKUP (m))+

d(PICKUP (m) , Svi+1)− d(Svi , S
v
i+1)

1 representing the item being picked up on an edge of
the original path;

• ∀v ∈ V, ∀1 ≤ i < |Sv| the edge from DELIVER(m) to Svi+1 with weight d(Svi ,DELIVER(m))+

d(DELIVER(m), Svi+1) − d(Svi , S
v
i+1), representing the item being dropped off on an edge

of the original path;

• ∀v ∈ V, ∀1 ≤ i < |Sv| an edge from PICKUP (m) to DELIVER(m) with weight d(Svi , PICKUP (m))+

d(PICKUP (m) ,DELIVER(m)) + d(DELIVER(m), Svi+1) − d(Svi , S
v
i+1), representing the

1Note on notation: when actions a and b are passed to the distance function d(a, b), which takes locations as
arguments, this is equivalent to d(loc(a), loc(b)).

5.2 HEURISTICS WITH TRANSFERS FOR THE NTPDP-T 77

item being both picked up and dropped off on a single edge of the original path; and

• for each transfer point newly added as a node X = tpoint(piv1 , p
i+1
v1
, pjv2 , p

j+1
v2

):

an edge from PICKUP (m) toX with weight d(Sv1i , PICKUP (m))+d(PICKUP (m) , X)+

d(Sv2j , X)− d(Sv1i , S
v1
i+1)− d(Sv2j , S

v2
j+1) + ct (m, v1, v2) + ε;

an edge from Sv1i toX with weight d(Sv1i , X)+d(Sv2j , X)−d(Sv1i , S
v1
i+1)−d(Sv2j , S

v2
j+1)+

ct (m, v1, v2) + ε;

an edge fromX to DELIVER(m) with weight d(X,DELIVER(m))+d(DELIVER(m), Sv2j+1)+

d(X,Sv1i+1);

an edge from X to Sv2j+1 with weight d(X,Sv2j+1) + d(X,Sv1i+1); and, finally,

for every other additional node inG that is a transfer point Y = tpoint(Sv2j , S
v2
j+1, S

v3
k , S

v3
k+1),

an additional edge from X to Y with weight d(X, Y) + d(X,Sv1i+1) + d(Sv3k , Y) −
d(Sv3k , S

v3
k+1). These edges allow a robot to receive an item and transfer it to another

robot along the same edge in the original path, although it may not find the best
transfer locations as if we were to construct additional transfer points recursively.

An edge is not added to the graph if that edge would cause a robot to exceed its capacity or
maximum rider constraint.

Once a graph G is constructed for an item m, we use the Bellman-Ford algorithm to find the
shortest path on G from PICKUP (m) to DELIVER(m). Dijkstra’s algorithm cannot be used since
the edge lengths may be negative. From the shortest path, we construct the route taken by the
item, and modify the schedules Sv of the appropriate vehicles to accommodate the items, insert
the PICKUP (m) and DELIVER(m) actions as well as any necessary TRANSFER and RECEIVE

actions into the appropriate places in the schedule. Then, we repeat the algorithm and find a
route for the next item.

It should be noted that the resulting schedule found for an item may induce a cyclical de-
pendency by passing through multiple transfer points. If this is the case, we remove the transfer
points that caused cycles from the graph and try again.

This approach is significantly slower than the greedy and auction approaches, since the num-
ber of exchange points and the size of the graph increases quadratically with the number of
edges in the vehicles’ paths. However, there is substantial room for speed-ups if the graph is
constructed incrementally. The cost in extra time provides a tradeoff with the higher solution
quality the algorithm finds.

78 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

5.3 Selected Experimental Results

To verify the effectiveness of these three heuristics, we compared them in simulation and on a
dataset of item routes in a city. We demonstrate that by considering transfers, we can solve many
problems more efficiently compared to similar heuristics without transfers. We also show how
the algorithms scale with more vehicles and items.

For each experiment, we set the number of vehicles and items |V | and |M |. For every vehicle
v ∈ V , the capacity cap(v), the maximum number of riders mni (v), and the budget bud (v) is
fixed. The starting and ending points for vehicles and items are selected randomly.

5.3.1 The Euclidean Plane

The first set of experiments were performed on a 10 by 10 unit Euclidean plane, where the ve-
hicles travel in straight lines. The class of problems we examine is constrained to longer item
routes of length at least 10 units, and medium-length vehicle routes of length 5 to 7 units. Prob-
lems with longer item routes than vehicle routes can benefit greatly from transfers. One example
application of this class of problem is hitchhiking, where passengers travel long distances by
catching rides with multiple drivers.

Figure 5.1 shows the costs of the solutions found by each of the algorithms in this scenario.
The shaded regions denote the standard deviation across the fifty trials, and the “base cost” is
what the cost in fuel would be if this were a ridesharing problem and all of the passengers and
drivers drove themselves in their own vehicles directly to their destinations. In this particular do-
main, the greedy algorithm without transfers performs worse than the base cost, and the auction
algorithm finds solutions of approximately equal cost to the base cost.

However, with transfers, we can outperform both the algorithms without transfers and the
case when everyone drives themselves, reducing fuel usage. The greedy transfer algorithm, the
auction transfer algorithm, and the graph-based algorithm each offer a successive improvement.
With the graph-based algorithm, transfers reduce the distance travelled by nearly 30% when there
are 18 passengers.

Although the graph-based method finds the best solutions, its effectiveness compared to the
auction and greedy approaches comes at a significant computational cost (see Figure 5.2. There
is significant room for further optimization in each algorithm’s implementation, particularly by
constructing the graph used to find the route for each passenger incrementally based on the
previous graphs.

The number of transfers proposed by each algorithm is shown in Figure 5.3. The number of
transfers found can be lowered by increasing the cost of transfers, but this of course also reduces

5.3 SELECTED EXPERIMENTAL RESULTS 79

4 6 8 10 12 14 16 18
Passengers

150

200

250

300

350

400

450

500

Co
st

Solution Cost to Passengers

Base Value
Greedy
Auction
Greedy w/ Transfers
Auction w/ Transfers
Graph

Figure 5.1: The solution cost for each method in the Euclidean domain with |V | = 20, cap(v) =
5, mni (v) = 7, bud (v) = 6, and ct (m, v1, v2) = 0.

4 6 8 10 12 14 16 18
Passengers

0

100

200

300

400

500

600

700

800

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

Computation Time to Passengers

Auction w/ Transfers
Graph
Greedy w/ Transfers

Figure 5.2: The computation time for each method in the Euclidean domain with |V | = 20,
cap(v) = 5, mni (v) = 7, bud (v) = 6, and ct (m, v1, v2) = 0.

80 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

the benefit gained from transfers.

4 6 8 10 12 14 16 18
Passengers

0

10

20

30

40

50

60
Nu

m
. T

ra
ns

fe
rs

Num. Transfers to Passengers

Auction w/ Transfers
Graph
Greedy w/ Transfers

Figure 5.3: The number of transfers found for each method in the Euclidean domain with |V | =
20, cap(v) = 5, mni (v) = 7, bud (v) = 6, and ct (m, v1, v2) = 0.

In Figure 5.4 we show the results of an experiment with the same parameters, except the
number of vehicles changes rather than the number of passengers. When the number of vehicles
varies, the approaches with transfers still significantly outperform the approaches without. The
improvement, particularly with the graph algorithm, increases with the number of vehicles.

We also ran experiments where the length of the vehicle and passenger routes were unbiased,
with starting points and destinations chosen purely at random. In these cases, transfers often
reduced the total distance travelled as well. However, the amount of the improvement depended
largely on the individual problem instances.

5.3.2 San Francisco

In addition to tests in the plane, we solved problems based on real world ridesharing problems.
In these problems, non-professional drivers with their own destination pick up passengers along
the way and transport them to their own destinations. By allowing transfers, we plan for the
passengers to potentially take multiple vehicles to reach their destinations, allowing drivers to
help transport passengers while going less out of their way to do so.

5.4 CHAPTER SUMMARY 81

10 11 12 13 14 15 16 17 18 19
Vehicles

100

150

200

250

300

350

Co
st

Solution Cost to Vehicles

Base Value
Greedy
Auction
Greedy w/ Transfers
Auction w/ Transfers
Graph

Figure 5.4: The solution cost found for each method in the Euclidean domain with |M | = 10,
cap(v) = 5, mni (v) = 7, bud (v) = 6, and ct (m, v1, v2) = 0.

To test these ridesharing problems, we obtained a map of San Francisco from OpenStreetMap
[84] and found shortest paths on this map using pgRouting [111] (see Figure 5.5 for an example
solution).

We sampled passenger and vehicle starting points from real-world taxi cab data [89], limited
to the downtown area. Vehicles are constrained to trips between 0.22 and 0.56 km, and passengers
are constrained to trips greater than 1.33 km. Selected results are shown in Figure 5.6.

Routing on the map of San Francisco with pgRouting is significantly more costly than on
the Euclidean plane. For the case with seven passengers, the greedy algorithm with transfers
took over 80 seconds and the auction algorithm with transfers took nearly 200 seconds. The
graph algorithm was not run due to its’ high cost. Faster path planning algorithms, or perhaps
approximate distance estimates, will need to be used to make ridesharing with transfers a reality.
However, there are still average savings of approximately 15% found by using transfers.

5.4 Chapter Summary

We have presented three heuristic algorithms to solve the nTPDP-T: a greedy approach, an auc-
tion approach, and an approach based on graph search. Each of the algorithms trades off compu-

82 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

Figure 5.5: An example solution with transfers for a problem in San Francisco. Two passengers
are transferred to other vehicles.

4.0 4.5 5.0 5.5 6.0 6.5 7.0
Passengers

15000

20000

25000

30000

35000

40000

Co
st

Solution Cost to Passengers

Best w/ Transfers
Best w/o Transfers

Figure 5.6: The solution cost found for each method in San Francisco with |V | = 18, Cv = 4,
Mv = 7, Bv = 1.5 km, and cT = 0.

5.4 CHAPTER SUMMARY 83

tation time with solution effectiveness. We have demonstrated that in certain problem instances,
transferring items can reduce the distance travelled by nearly 30%, including on ridesharing
problems on a map of San Francisco. In the remaining chapters of this thesis, we build upon
the ideas in these heuristics to find improved solutions for the general PDP-T, both offline and
online.

84 CHAPTER 5: HEURISTICS FOR THE NTPDP-T

Chapter 6

Online Rescheduling with Transfers

In Chapters 4 and 5, we presented algorithms to plan for variants of the PDP-T without time
windows, when all the item requests are known beforehand. However, in many domains, the re-
quests may not be known beforehand, but may come online. Item requests may also be modified
or cancelled during schedule execution, and vehicles may fail or be delayed. In all of these cases
the vehicles must replan and modify the schedule. That is the subject of this chapter.

In Chapter 3, we presented a preliminary approach to scheduling for PDP-T problems on
the CoBots. This scheduler found an optimal schedule by solving a mixed integer program
(MIP). Users made requests online, and a new MIP was solved every time a request arrived. This
is effective for small numbers of tasks, on the order of two vehicles and fifteen tasks without
transfers. However, solving an MIP is infeasible when there are large numbers of tasks and
vehicles, and even more challenging with transfers. To solve the MIP from scratch quickly in
response to online requests is even less reasonable.

Hence, we require an algorithm to modify an existing schedule, quickly and online, in re-
sponse to new and changing requests. We present heuristics based on ideas similar to the heuris-
tics presented in Chapter 5, which additionally consider time windows and are able to modify
existing schedules. In this chapter we consider most of the constraints introduced in Chapter 2,
with the exceptions of the maximum route duration and maximum transport time. In addition,
we allow for soft time constraints in this chapter only.

In the second half of this chapter, we consider that the robots may not replan and reschedule
based only on new requests and their own state, but also based on the shared information from
other vehicles. For example, one of the CoBots could observe that a door is closed at an office
another robot is making a delivery in, and the other robot could delay its scheduled delivery until
the occupant returns. Or one CoBot may observe that a hallway is blocked, and warn the other
CoBots to avoid it. We enable the CoBots to share these types of information and reschedule

85

86 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

based on the observations of other robots.

6.1 Auctions to Revise Schedules with Transfers Online

We introduce an auction mechanism to plan online, time-constrained PDP-T schedules. One
advantage of an auction mechanism is that it could also be implemented in a distributed manner.
We replan in response to new requests, and to vehicle delays and failures. We evaluate our
approach experimentally on the CoBots and on large simulated problem instances.

6.1.1 The Online Auction Algorithm

At a high level, our rescheduling approach is to revise a schedule through an auction. Individual
items are put up for auction. Initially, vehicles place bids based on the additional cost they would
incur to pick up and deliver an item. This cost is determined by an insertion heuristic which
inserts the item pickup and delivery actions into the vehicle’s schedule. The vehicle with the
lowest bid wins, and the item is added to that vehicle’s schedule. Then, that vehicle holds a
second auction, in which other vehicles can place bids to transfer the item to or from the original
vehicle and complete part of the transport at lower cost. If a transfer is added to the schedule,
recursive auctions may be held to further divide the item’s transport.

In these auctions, time constraints are maintained with a Simple Temporal Network (STN).
All scheduling is done by a centralized algorithm, which is aware of all requested tasks and the
vehicles’ current positions. The server already knows all of this information for the telepresence
interface, so no additional communication is needed [29]. However, this auction algorithm could
also be implemented in a distributed manner. The vehicle holding an auction would need to
communicate its full schedule to the other vehicles, which could then use this information to find
the best place to insert a transfer when placing bids.

We provide a top-down explanation, first discussing the high level auction, then the insertion
heuristic, and finally how time constraints are maintained.

Auctioning Pickups, Deliveries and Transfers

Algorithm 9 shows the auction algorithm for scheduling transfers with time constraints.

When the auction algorithm is first called, we begin with an existing partial schedule. This
partial schedule may include delivering other items which were scheduled earlier from online
scheduling. Even if no items are delivered, the partial plans alway includes Start and End actions.

6.1 AUCTIONS TO REVISE SCHEDULES WITH TRANSFERS ONLINE 87

Algorithm 9 auction(S, V,M): Run an auction to form a schedule for the vehicles V to
deliver items M . The vehicles begin with the partial schedule S (which may consist of solely
Start and End actions).

1: ∀v ∈ V bidsv ←∞
2: for m ∈M do
3: if m not in schedule S then
4: ∀v ∈ V bid(m, v,route insert cost(S, v, 〈PICKUP (m) ,DELIVER(m)〉))
5: else
6: ∀v1, v2 ∈ V s.t. v1 transports m in S, v2 6= v1 transfer bid(
7: m, v1, v2,insert transfer(m, v1, v2))
8: end if
9: end for

10: done← True
11: for v ∈ V do
12: if v has a valid bid then
13: Vehicle v wins bid of lowest cost, update the schedule
14: Cancel conflicting bids
15: done← False
16: end if
17: end for
18: if not done then
19: Repeat auction
20: end if

First, we check if each item is delivered in the existing partial schedule (line 2). If not, each
vehicle places a bid to pick up and deliver that item by inserting a Retrieve and a Deliver action
into its plan without changing the rest of the plan’s ordering (line 5). The value of the bid is
the additional cost incurred by the vehicle, including both additional distance travelled and the
penalty for soft time window violations. If the item already is part of some vehicle’s plan, then
for each such vehicle, we attempt to insert transfer actions to split its route with another vehicle
(line 7). The cost is again the additional cost in distance and time window violations incurred
by all of the vehicles. The route insert cost procedure was already introduced in the
previous chapter. We explain the insert transfer procedure in detail in the next section.

Each vehicle places a bid on each item and item transport split. Once all the bids are placed,
the winning bids are evaluated (lines 11 - 17). Each vehicle’s winning bid is applied, and the
schedule is updated accordingly to insert either a new item or a new transfer. Winning bids may
conflict with later bids, for example, if two vehicles bid on the same item, or if two vehicles bid
to transfer an item to or from the same vehicle. Due to time constraints, more subtle conflicts
may occur if a new introduced transfer causes an action on an entirely different vehicle to be

88 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

delayed. We detect these conflicts using temporal networks as discussed later.
To further optimize the auction algorithm, we use caching when possible so we do not need

to reevaluate bids if the relevant section of the schedule has not changed.

Insertion Heuristic

The insert transfer(m, v1, v2) subroutine inserts a transfer of an item m transported by
vehicle v1 to or from an additional vehicle v2. Intuitively, this routine splits vehicle v1’s transport
of m in half with vehicle v2: vehicle v2 takes responsibility for either m’s retrieval or delivery
(either a RETRIEVE or DELIVER action, or a RECEIVE or TRANSFER action) and the item is
exchanged midway. This is a similar idea to the split route nt algorithm from the pre-
vious chapter. However, instead of choosing a transfer point up front and then inserting that
transfer point into the schedule, we consider different transfer points as we consider different
insertion points in the schedule. See Figure 6.1 for an example of the expected output of the
insert transfer algorithm.

1 Retrieve Item 1 1 Deliver Item 1

1 Robot 1 Start

m

1
s

r

1

m

Transfer Item 11

m

1
s

r

1

mm

Original Find Transfer Add Transfer

m

1
s

r

1

mm

Figure 6.1: Vehicle r’s pickup and delivery of item m is split with vehicle s using
insert transfer. First, a transfer point is chosen between two subsequent tasks on each
vehicle’s plan. Then the delivery point is removed from r’s plan and inserted into s’s, lowering
the delivery cost.

First, the insert transfer algorithm searches over all subsequent pairs of actions a, b in
Sv1 , and subsequent actions c and d in Sv2 . A RECEIVE action will be inserted between actions
a and b, and a TRANSFER action will be inserted between actions c and d if vehicle v2 will make
the delivery, or vice versa if vehicle v2 will pick up item m originally in place of vehicle v1. The
inserted transfer point must not violate the capacity and must be reachable without violating any

6.1 AUCTIONS TO REVISE SCHEDULES WITH TRANSFERS ONLINE 89

hard time constraints. The algorithm computes a proposed exchange point from loc(a), loc(b),
loc(c), and loc(d). For CoBot’s map, we simply find the first intersection point between the
shortest path from loc(a) to loc(b) and the shortest path from loc(c) to loc(d). If no such point
exists then no transfer is made between these actions. More sophisticated methods of choosing
transfer points can be used for other maps.

Once a transfer point is found, the algorithm attempts to have vehicle v2 pick up the item in
place of vehicle v1, then transfer it to v1 for v1’s original delivery. Next, it attempts to have v1
pick up the item in the original location, then transfer it to v2, and have v2 deliver the item to v1’s
original delivery location. We iterate through every possible insertion point for the new pickup
or delivery point in Sv2 , and choose the plan of lowest cost.

During this search, we check that the newly introduced transfer does not induce a cycle by
following the transfer graph beginning at the transfer actions and checking that neither of the
initial transfer actions is reached a second time.

Although the insert transfer routine runs in polynomial time, it is still expensive for
large problem instances. To speed things up and reduce the number of considered transfer points,
we add a budget bud (v) for each vehicle as in the previous chapter. If the starting and ending
points of item m’s portion of v’s route are both further than bud (v) units of distance from s’s
planned path, we disregard the potential transfer point. This limits the consideration of transfer
points that are unlikely to be cost-effective.

Maintaining Time Constraints

To maintain time constraints, we form a Simple Temporal Network [35]. Every action in the
vehicles’ plans is a node in the network, associated with a time window within which that action
must occur. Each edge is associated with a time window which bounds the difference in time
between two nodes. Every Start action node has the time window [0, 0], and every End action
has the time window [0,∞). Nodes for actions that transport item m have the time window
[mS,mE].

Every pair of subsequent actions a and b in a vehicle v’s plan have nodes linked with an
edge with duration [δ (a) + dv (loc(a), loc(b)) ,∞), the minimum time in which a vehicle can
complete action a and then travel to the location of action b. TRANSFER actions are connected
to the corresponding RECEIVE actions with edges of duration [0, 0], ensuring that both actions
occur at the same time. Whenever the schedule is modified, we solve the constraints in the
temporal network to find valid windows of time in which each action could be executed without
violating any constraints. Figure 6.2 shows an example temporal network and solution.

With hard time constraints, when a new action or set of actions is inserted into the schedule,

90 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

Legend: [Min, Max Time Difference]Action Item Robot
Time Windows: Item Action

Start r
[0, 0] [0, 0]

[10, ∞]Start s
[0, 0] [0, 0]

End s
[0, ∞] [82, ∞]

End r
[0, ∞] [75, ∞]

Pickup 1 r
[10, 70] [12, 15]

Pickup 2 s
[20, 90] [20, 25]

Deliver 2 r
[20, 90] [75, 90]

Deliver 3 s
[50, 90] [82, 90]

TransferSend 2 s
[20, 90] [37, 40]

TransferReceive 2 r
[20, 90] [37, 40]

Pickup 3 s
[50, 90] [52, 60]

Deliver 1 r
[10, 70] [67, 70]

[15, ∞] [15, ∞]

[30, ∞]

[0, ∞]

[12, ∞] [25, ∞] [30, ∞] [8, ∞]

[0, ∞][0, 0]

Figure 6.2: An example temporal network with two vehicles, three items and a single transfer.
The feasible time windows for each action are computed based on the item time windows and
the edge durations.

we attempt to insert the new actions into the temporal network to determine whether or not
the schedule remains feasible with the new actions. This does not require reconstruction or
recomputation of the entire temporal network from scratch; the changes can be propagated from
the insertion points. The starts of windows are updated from left to right, and the ends of windows
are updated from right to left, starting with the newly inserted action. With soft time constraints,
the temporal network is used to compute the earliest feasible execution time of each action by
setting all delivery deadlines to infinity. The action execution times are then used to determine
the cost of violated soft time constraints.

6.1.2 Online Scheduling and Rescheduling

We presented an algorithm to revise a schedule to transport new items. To replan online with
this scheduler, the existing schedule must first be updated. First, completed tasks are removed
from the schedule. Then, vehicles currently carrying items have PICKUP actions added to their
schedule at the current location, with a time window of [a, a] where a is the current time and a
duration of 0. These actions are not executed, but ensure the algorithm maintains its invariants.

We replan in four cases:

• New Item Requested: The auction algorithm inserts the new items into the existing sched-
ule.

• Request Cancelled: Every action involving the removed item is removed from the sched-
ule.

• Delayed Vehicle: If a vehicle is late to complete a task by a fixed amount of time, all
tasks involving items the late vehicle is scheduled to carry and does not currently hold are
removed from the schedule and re-inserted.

6.1 AUCTIONS TO REVISE SCHEDULES WITH TRANSFERS ONLINE 91

• Disabled Vehicle: If a vehicle does not communicate with the server for a fixed time, it is
marked as disabled. Its tasks are re-added to the schedule, except for items it is holding. It
will be impossible to deliver these items without manual intervention. This approach may
lead to conflicts with multiple vehicles completing tasks if the vehicle is operational but
communication has failed. However, it is unlikely for a vehicle to remain incommunicado
for an extended time, and executing a task twice is preferrable to not executing the task at
all.

6.1.3 Experiments in Online Rescheduling

We first present several illustrative problems run on the CoBot robots, demonstrating the sched-
uler’s ability to revise schedules with transfers. We then share extensive results from larger
problem instances solved in simulation, demonstrating the scheduler’s scalability and effective-
ness.

Illustrative Revised Schedules on CoBot

Since the CoBots do not have arms, pickups, deliveries and transfers are made with human help.
We assume in these examples that humans are readily available to retrieve, deliver and transfer
items. The time taken to ask for help is included in the results.

For the first experiment, two robots placed four pickup and delivery requests (see Figure 6.3).
Items 1 and 2 were requested at time 0, Item 3 at 150 s, and Item 4 at 200 s. Solving the MIP
optimally without transfers in an online manner (our original approach) results in each robot
performing one of the initial tasks. When Tasks 3 and 4 arrive, one robot travels all the way back
to the starting point. Using the auction algorithm with transfers, only one robot travels to the
opposite end of the building initially. Then the other robot is free to deliver items 3 and 4. The
MIP approach took approximately 5 minutes 45 seconds to execute and traversed 280.7 m. The
auction algorithm with transfers took approximately 4 minutes to execute and traversed 162.1 m.

For the second example, we used three robots to perform five tasks placed at the same time.
Two robots were scheduled to transfer an item to a third robot for delivery. However, we imme-
diately turned off the robot scheduled to deliver the three items. The server detected this, and a
new plan was formed which the robots then executed (see Figure 6.4).

Large Simulated Problems

The final problem set was run on large simulated problem instances to test the scalability of
the algorithms. The world is a 30x30 grid of city blocks, each one unit long. Item pickup and

92 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

1
2

2

1 2

1

3

3

4
4

10 m

(a)

1
2

2

1
1 23

3

4
4

1

(b)

Figure 6.3: Planned schedules to deliver four items, scheduled with the (a) MIP without transfers,
and (b) auction with transfers. Items 1 and 2 are requested at time 0, Item 3 is requested after
150 s, and Item 4 is requested after 200 s. See Fig. 6.1 for symbol meanings.

6.1 AUCTIONS TO REVISE SCHEDULES WITH TRANSFERS ONLINE 93

2
1

3

1

3

1

2

2
5

4

5

214

3

(a)

2
1

3

1

3 12

2
5

4

5

214

(b)

Figure 6.4: (a) Deliveries are scheduled with three robots (including two transfers). (b) When
one of the robots dies and fails to respond, the tasks are rescheduled. See Fig. 6.1 for symbol
meanings.

dropoff locations are chosen from the block intersection at random. Unlike in the CoBot domain,
vehicles have an assigned end location, a station where they return to charge. Corresponding start
and end points for both vehicles and items are constrained to be at least five blocks apart.

We ran tests in this domain with |V | = 80 vehicles and with the number of items |M | varying
from 20 to 240. We formed schedules for fifty different trials for each value of |M |. For every
vehicle v, cap(v) = 3 and bud (v) = 5. Each vehicle travels one block per minute. Soft time
windows are used, and the cost function penalty for delays was 50 per minute, meaning every
minute a delivery is late adds 50 units to the cost function. The remainder of the cost function
is based solely on total distance and the number of transfers, with α = 1, β = 0, γ = ∞
(with soft time windows, every request can always be scheduled), and ct (m, v1, v2) = 4. Each
item is given a small time window of ten minutes for delivery. This is a very tight window: for
some items it is not even physically possible to deliver the item in time. Our goal here is to
make the delivery as quickly as possible. The start of this time window falls at a random point
in the interval [0, 5

4
|M |]. The schedule is executed online, with new items scheduled one at a

time. The scheduler is informed of each request half an hour before the time window begins (or
immediately if the start of the window falls within the first half hour).

These problems are too large for us to solve optimally. Instead, we compare the auction
algorithm with transfers to the auction algorithm without transfers. The costs of the solutions
found with both algorithms are shown in Figure 6.5. With 240 items, the cost is reduced by
almost 33% by using transfers. Most of this savings comes from an improved capability to

94 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

deliver items within their time windows due to the availability of additional scheduling options.
With 240 items, an average of 26.6 transfers were made. The auction without transfers took an
average of 6.03 s to execute in total, while the auction with transfers took an average of 13.98 s.
This amounts to an average of 0.058 s per request.

0 50 100 150 200 250
Num. of Items

2000

4000

6000

8000

10000

12000

14000

16000

Co
st

Solution Cost to Num. of Items

Auction
Auction w/ Transfers

Figure 6.5: The mean cost of the generated schedules to the number of items. The shaded regions
depict the standard deviation across the fifty trials.

6.2 Rescheduling with Shared Information

Aside from forming multi-vehicle schedules which may include transfers, we have thus far taken
little advantage of the fact that there are multiple vehicles deployed to execute schedules. Once
assigned a task, a vehicle executes that task independently without aid or communication from
any other vehicle. In this section, we explore how multi-agent techniques can be applied to the
CoBots to perform their existing tasks more effectively.

In the previous section, we enabled the vehicles to reschedule when task requests are made
or modified, and when the vehicles are delayed or fail. In this section, we look at novel ways
to improve task execution through distributed information sharing. We consider this problem
specifically from the perspective of the CoBot robots, which can detect when doors are closed
and when hallways are blocked, and then share this information to form better schedules more
likely to succeed on time. We look at constructing a “rationale graph” detailing the dependen-

6.2 RESCHEDULING WITH SHARED INFORMATION 95

cies between these assumptions and the robots’ schedules. We then use this rationale graph to
communicate which assumptions have been violated and to replan for the affected tasks on the
rationale graph. Replanning can be done in either a centralized or decentralized fashion.

6.2.1 Multi-Agent Rescheduling with Rationale Graphs

One of the main factors preventing service robots from being deployed in the real world is a
lack of robustness to a dynamic world with unexpected events. This robustness can be increased
through the use of multiple agents. Specifically, we propose to increase robustness among the
CoBots by sharing information and using this information to replan. The information we envision
the CoBots sharing includes:

• Hallways that are blocked or have heavy traffic. If one robot cannot navigate through a
hallway, other robots should avoid that corridor until traffic decreases.

• Closed and open doors. Robots have some flexibility regarding when they deliver a mes-
sage or item to an office. If one robot passes an office and sees it is currently closed, other
robots should delay making trips to that office, if their schedule constraints allow it.

• Robot failures. If a robot is unable to move or the other robots are unable to communicate
with it for a lengthy period of time, it will not be able to complete its tasks. The other
robots should finish the tasks in its stead.

• Human help availability. CoBots rely on humans to help them take the elevator. If one
robot sees humans waiting at the elevator, it could communicate this information to let the
other robots know that it may be a good time to take the elevator. Also, communicating
open door information can help other robots proactively seek help in occupied offices.

This shared information serves as preconditions in each robot’s schedule. To complete a delivery
task, the hallways the robot travels in must not be blocked, the door at the delivery point must
be open, the robot must be in working order, and human help must be available when necessary.
Each piece of information is time-sensitive, and the robots’ certainty decays over time. Previ-
ously, we assumed that all these prerequisites would always be satisfied. If certain conditions
were not satisfied, such as a hallway being blocked, a robot would be delayed and rescheduling
would occur. Or, if no one was at an office to give the robot an item, the task would be reported
as failed.

We assume that the multi-agent scheduler outputs these prerequisites for actions in the sched-
ule, or rationales for the schedule along with the schedule itself. For example, a schedule for
robot r1 to deliver two items to Office A and Office B could be:

1. DELIVER(A) because open(end(A)) ∧ unblocked(Hall1)

96 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

2. DELIVER(B) because open(end(B)) ∧ unblocked(Hall2)

If an assumption behind the schedule’s reasoning changed, such as another robot observing
Hall1 is blocked, then rescheduling would become necessary. The scheduler could adjust the
schedule so that the robot went down a different hallway, or so that a different robot which could
take a different path performed the task instead.

The largest difficulty is that the scheduler must provide reasoning along with a schedule.
Sometimes the reasoning behind a schedule is not entirely clear. Negative reasoning— or ratio-
nales for why the robot didn’t choose to execute a different schedule— is particularly difficult
to come up with: if a robot chose to take one corridor first, there could be any number of other
corridors it could have chosen had they been less crowded, or any number of other tasks that
could have been completed earlier had one corridor had a different state or one door been open
earlier. For example, one corridor could have been blocked, leading us to take a longer path. If
that corridor becomes unblocked, we would then ideally want to reschedule to use that corridor.

However, positive rationales— reasons that the chosen schedule are feasible— are very easy
to discover. In the earlier example, office A was chosen first because it was assumed to be open,
and Hall1 was selected as part of the robot’s path because it was unblocked. If these rationale
are violated then the schedule is highly likely to change. If another path becomes open or a door
opens, then a better schedule could become available, but the current schedule is still valid. So
we focus on positive rationales. If negative rationales are returned by the scheduler, they can still
be shared and exploited as well. It may be possible to ennumerate some negative rationales—
for example, the list of blocked hallways is likely small— but considering all of the negative
rationales, including every office door that was closed, or the scheduling of all the other tasks,
would presumably be expensive.

Reasoning could be used to reschedule for even greater effect if a rationale graph can be
formed. Here, each choice predicate (or a subset of the predicates) is linked to the specific
decisions in the schedule which came about as a result of that predicate. Each of these decision
points / scheduling assignments links to another choice. If this graph is known, then when a
predicate changes, only the parts of the schedule that are its dependences in the rationale graph
need to be updated. A rationale graph will likely be incomplete, with only positive rationales or
with only selected negative rationales, since the set of negative rationales may be large. When a
rationale is violated (i.e., a hallway is blocked), the tasks linked to it are rescheduled in light of
the violated assumption.

Two major multi-agent technical challenges must be solved to accomplish this behavior. First,
the robots must have a method of sharing prerequisites in the rationale graph and deciding which
information to share with one another. Second, the robots must have an algorithm to adjust a

6.2 RESCHEDULING WITH SHARED INFORMATION 97

multi-agent schedule and decide when to reschedule.

6.2.2 Multi-Agent Rationale Sharing

The first challenge to rescheduling with shared information is choosing how to share rationales
and selecting which rationales to share. We present two potential mechanisms for distributed
information sharing.

Distributed World Model

In the first method, a distributed world model, all robots share complete information of the world.
This is a common technique in multi-agent robot soccer [30, 62]. At regular intervals, each robot
shares its full state with all other robots: it’s position and orientation, its current schedule, and
the observed state of the world, including open and closed doors and blocked hallways. The
robots merge these observations to store the current state of each robot, the state of each door
and the last time it was observed, and the state of each hallway and the last time it was observed.
Hallway observations could consist of the last time a hallway was traversed and the time it took,
or a “blocked” status if a robot is currently unable to progress in a hallway.

Forming a distributed world model makes it easy for each robot to have all necessary infor-
mation to detect violated rationales in the rationale graph, and to schedule and to reschedule. It is
also easy to detect when a robot has failed from a lack of communication. For a relatively small
deployment a distributed world model may be the best option. However, it does not scale well
to large numbers of robots, where each robot needs to share its entire state with n other robots.
Furthermore it requires significant bandwidth use, which is already limited by other applications
such as telepresence which require a large part of the available wireless bandwidth.

Distributed Sharing of Invalidated Rationales

In the second method, the entire rationale graph is shared with all of the robots. When a robot
detects an invalidated rationale, it shares the information only with the robots that are assigned
tasks directly linked to that prerequisite in the rationale graph.

This approach requires little bandwidth compared to the frequent communication updates
needed to form a distributed world model. Furthermore, it is less susceptible to network delays
and failures, which are common with mobile robots required to switch between multiple wireless
access points. The scheduler could be centralized, like our current MIP approach, or tasks could
be assigned in a decentralized, online fashion.

98 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

However, a separate method is required to determine when a robot fails. This could be
accomplished by scheduling regular communicated updates with specific robots. If an update
does not occur, the robot can be assumed to have failed.

6.2.3 Multi-Agent Rescheduling

The remaining technical difficulty is how the robotic agents can reschedule given shared infor-
mation, either from a distributed world model or from more limited reason-based information
sharing. We discuss two potential methods of rescheduling: centralized rescheduling, and de-
centralized rescheduling, particularly by auctioning tasks to robots.

Centralized Multi-Agent Rescheduling

Currently a schedule is formed on a centralized server and then sent to the robots to execute. This
setup makes sense since there is already a centralized server to accept user tasks on the website.
The simplest way to reschedule is, when one of the original schedule’s rationales is cancelled,
to form a new schedule entirely from scratch. However, this is computationally expensive and
is often unnecessary. Furthermore, it may sow confusion among users if the users were given a
specific time a robot is expected to come: for this reason, we only tell users that a CoBot will
arrive in their requested time window.

Instead of scheduling entirely from scratch, we can can make use of the rationale graph to
partially reschedule only the tasks on the schedule whose rationales are broken. This can be done
with a local search procedure, such as Tabu search or simulated annealing, searching for small
changes to the affected area to find a new schedule. The rest of the schedule that is not affected
by the rationale graph is treated as a base and remains unchanged.

If a full rationale graph is not available from the scheduler, then local search can be performed
on the entire schedule with an additional weight towards changing the links causing direct con-
flicts.

When rescheduling, care must be taken so that the schedule includes the current state of the
robot: the tasks that robots are already in the progress of completing, including pickup tasks the
robots have already completed and items they are currently carrying.

Multi-Agent Rescheduling with Decentralized Auctions

Scheduling and rescheduling of multi-agent schedules can also be done in a distributed, online
manner using auctions, such as with our algorithm earlier in this chapter. When one agent re-
ceives a request (it could be either the web server or a user communicating with a robot directly)

6.2 RESCHEDULING WITH SHARED INFORMATION 99

that robot broadcasts the request to the others to declare an auction. Each robot then checks if the
new request could be fit into its schedule. If so, each robot places a bid with the cost in fuel and
time of adding the request into its schedule. The bid with the lowest cost wins, and the auctioneer
announces the winner to all robots.

Then, the winner communicates the positive rationales for its bid to the other robots. Each
robot stores all the other robots assigned tasks along with their rationales. If a rationale is vio-
lated, the relevant robot is informed. That robot then attempts to adjust its own schedule using
local search to still complete the task. For some violated rationales no rescheduling is necessary,
for example, if a hallway is blocked and the path scheduler can select a different route. If the
task cannot be completed, or the cost is significantly higher, the robot declares a new auction for
the same task, to see if another robot can perform it more efficiently. Further auction rounds can
be held to plan for transfers.

The rationale graph in this setup does not include negative rationales. However, negative
rationales may be included at an additional communication cost. When placing bids, robots can
share all the rationales for their bids, both positive and negative. If a negative rationale changes,
and the robot that requested the task can now perform it at lower cost, it can communicate with
the bid winner to initiate a new auction.

While sharing either positive rationales or all rationales, edges between tasks assignments on
the rationale graph do not need to be shared. This is because they can be represented implicitly
with the auction mechanism. When a rationale is violated and a new auction is held for a task,
the two robots whose schedules changed may reexamine each of their tasks and bids. If one
of their tasks comes at a much higher cost now, they may reinitiate the auction. Likewise, if a
bid would have been higher (or been possible to make at all) given the new schedule, they may
request that the task’s current executor initiate a new auction to reschedule. In this manner, the
auction mechanism recursively reschedules for intra-task links in the rationale graph.

6.2.4 Rescheduling on the CoBot Robots

We implemented centralized rescheduling with MIPs using rationale graphs from shared infor-
mation on the CoBot robots. When a CoBot passes by a door, closed or open, it sends this
information to the server. The CoBot has a door detector which matches its LIDAR scans to
expected door locations marked on its map to determine whether the door is closed or open. The
server stores this information in the database, including the location and the time the observation
was made.

Next, the server checks if the new door information violates any of the rationales. consider
violated positive rationales, meaning closed doors which we expected to be open. We assume that

100 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

the door information is only valid for five minutes. If the robot is scheduled to visit a closed door
within the next five minutes, then rescheduling is performed. We could also consider negative
rationales, if we also rescheduled when any door which is currently marked as closed is now
detected as open, rescheduling in the same manner as for positive rationales.

When rescheduling, we add a penalty to scheduling a task when a door is expected to be
closed. This rescheduling approach is for the MIP scheduler, although different approaches could
be applied to other scheduling algorithms. We add an additional term to the objective function,
to minimize K

∑
i di where K is a constant and di is a binary variable indicating whether task

i was scheduled when a door was expected to be closed. For each task i where we observed a
closed door within the last five minutes, we also add the constraints

ti − (Di + 300) ≤ M(1− di)

ti − (Di + 300) ≥ −Mdi

to the MIP, where ti is the scheduled execution time of task i, Di is the time in seconds we
observed the closed door, and M is a large constant. This sets di to 1 if Di ≤ ti ≤ Di + 300 and
0 otherwise. By adding penalties instead of hard constraints, we are able to schedule attempting
to deliver items to a closed door if no other better schedule exists.

Figure 6.6 shows an example of two robots executing this rescheduling algorithm. CoBot-2
is heading to Office A to deliver an object. CoBot-4, in an unrelated task, passes by Office A and
observes that the door is closed. It communicates this information to the server, which resched-
ules the delivery to five minutes later, and CoBot-2 proceeds to head to Office B to complete what
was originally the second task in its schedule, as it now has time. After five minutes, CoBot-2
can head to Office A and complete its delivery.

One feature of this rescheduling algorithm is that if Office A had remained closed, CoBot-2
would have observed this upon making its delivery, informed the server, and if there was time
later, reschedule the delivery for later. The robot would keep delaying the task as many times as
necessary, checking back until the door is opened. Once the time window expires or there is no
time in the schedule to fit in the task later, CoBot-2 would attempt to make the delivery anyway,
giving up after a few minutes and reporting the task as failed.

Blocked hallways are treated slightly different from closed doors. Rather than changing the
schedule of tasks based on blocked hallways, we plan different paths to avoid the obstacles. As
before, blocked hallways are recorded on the server and rationale violations, or robots which plan
to use these blocked paths in the near future, are detected. Instead of rescheduling, the robots
with violated rationales are informed of these blockages. A penalty is added to these corridors in

6.2 RESCHEDULING WITH SHARED INFORMATION 101

(a) (b) (c)

(d)

(e)

(f)

Figure 6.6: a CoBot-2 heads to Office A to make a delivery. b CoBot-4 passes Office A and
observes the door is closed. It notifies the server. The server sees a violation in CoBot-2’s
rationale graph and reschedules its tasks. c CoBot-2 is scheduled to complete a task at Office
B first, and turns around. d CoBot-2 completes its task at Office B. e CoBot-4 returns from
its previous task and observes that the door to Office A is now open. f CoBot-2 completes its
original task at Office A.

102 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

(a) CoBot-2 to Office (b) CoBot-4 Blocked (c) CoBot-2 Replans (d) Obstacle Avoided

Figure 6.7: a CoBot-2 heads towards an office to make a delivery. b CoBot-4 detects that a
hallway is blocked, and tells the server. The server realizes that CoBot-2’s rationale has been
violated and communicates this information to CoBot-2. c CoBot-2 uses the information to
change its plan. d CoBot-2 takes an alternate round to avoid the blocked hallway.

the path planner so that the robots avoid them if possible. When a robot finally does manage to
traverse the blocked corriodr, as well as after a fixed time without any observations, the hallway
is updated as unblocked and robots replan using that corridor.

Figure 6.7 shows one example of this algorithm executing on the CoBots. CoBot-2 is heading
towards an office to make a delivery. However, CoBot-4, while heading down the same hallway
in the opposite direction, encounters an obstacle and is blocked. It proceeds to communicate this
information to the server, which detects a rationale violation in CoBot-2’s schedule and informs
CoBot-2. CoBot-2 replans its path and selects an alternate route to its destination which avoids
the blocked hallway. The original and revised routes are shown in Figure 6.8.

6.3 Chapter Summary

We have introduced an auction-based algorithm to schedule pickup and delivery problems with
transfers and time windows. The algorithm runs online and replans in response to new requests,
dead vehicles, and shared information. We have demonstrated the schedules formed on robots
and in large simulated problem instances. Furthermore, we have discussed centralized and dis-
tributed algorithms to reschedule from shared information, and demonstrated rescheduling from
observations of closed doors and blocked hallways.

6.3 CHAPTER SUMMARY 103

Figure 6.8: CoBot-2 replans its route after CoBot-4 reports that a hallway is blocked.

104 CHAPTER 6: ONLINE RESCHEDULING WITH TRANSFERS

Chapter 7

Very Large Neighborhood Search with
Transfers

We have previously presented algorithms to solve the PDP-T optimally, as well as heuristics to
solve the PDP-T either offline or online. In this chapter, we introduce a metaheuristic, Very Large
Neighborhood Search with Transfers (VLNS-T), to solve the PDP-T offline. The metaheuristic
takes a much longer time to run that the heuristics presented previously, and cannot be run online.
However, it searches over a larger space of solutions, and finds higher quality solutions.

Like the VLNS algorithm for the PDP presented in [93], VLNS-T forms a schedule with
simulated annealing, where “neighboring” states are found by removing a randomized set of
items from the proposed scheduled, then reinserting the items into the schedule using a set of
heuristics. We introduce two new insertion heuristics which insert transfers into the schedule:
one which “splits” existing segments of an item’s route from a single vehicle with a second
vehicle (similar to the heuristic from the previous chapters, except able to handle additional
constraints), and another heuristic which inserts an item into an existing schedule where the item
is picked up by one vehicle, transfered to another, and delivered by the second vehicle.

We also introduce an algorithm which, given heuristic proposes an ordering for the vehicles’
actions, and a lower-level routine, given a set of vehicular plans, determines whether and how
they can satisfy the vehicles’ and items’ time constraints. Here we consider the full PDP-T
introduced in Chapter 2. For the first time in this thesis, we consider all of the allowed constraints
at once, particularly the maximum vehicle route duration and maximum item transportation time.
These constraints require a more complex approach to determine action times than the simple
temporal networks of the previous section.

We evaluate the VLNS-T algorithm on benchmark problems and transportation problems
derived from real world taxi rides in New York City, demonstrating the benefits of allowing

105

106 CHAPTER 7: VERY LARGE NEIGHBORHOOD SEARCH WITH TRANSFERS

transports in both cases compared to state of the art PDP algorithms.

7.1 The VLNS-T Algorithm

Our algorithm to search for solutions to the PDP-T consists of three parts. From highest to lowest
level, these are:

1. Very Large Neighborhood Search. The VLNS algorithm uses simulated annealing to
randomly choose “neighboring” schedules and iteratively improve the schedule. Neigh-
boring schedules are formed by removing random items and reinserting them with heuris-
tics.

2. Greedy Item Insertion Heuristics. These heuristics insert items into the schedule (poten-
tially with transfers) to find a new “neighboring” schedule.

3. Valid Schedule Determination. The insertion heuristics generate a list of actions for each
vehicle, but not their execution times. Another routine computes the best times for the
actions and determines if the schedule is valid.

We discuss these components of the algorithm in order.

7.1.1 Very Large Neighborhood Search

VLNS-T is based on the Adaptive VLNS algorithm introduced in [93] for the PDP without
transfers. This is a variant of simulated annealing in which the neighborhood of states is “very
large”. In this case we remove random items from the schedule and then reinsert them with
multiple heuristics to find “neighbors”.

Alg. 10 shows the VLNS-T algorithm. On each iteration, a random number of items q are
removed from the schedule using one of several heuristics. Next, a second heuristic attempts to
insert items that are not part of the schedule. The new schedule is accepted with a probability
based on the temperature, which decreases over time. The initial temperature is based on the cost
of the initial schedule, but with γ = 0 to ignore undelivered items. We use the same parameter
values as [93].

For the random item and insert item routines, the VLNS algorithm is adaptive in the
sense that it chooses from sets of heuristics and learns over time which removal and insertion
heuristics are the most effective. For each insertion or removal heuristic i, we compute a weight
wj,i over each adaptive “segment” j of length τ iterations of VLNS. Removal and insertion
heuristics are selected randomly in proportion to their weight. Initially all heuristics have equal
weight. The weight is modified by a different amount depending on whether the heuristic gives

7.1 THE VLNS-T ALGORITHM 107

Algorithm 10 vlns t(S): Form a schedule with VLNS-T from starting schedule S.
1: Sbest ← S
2: T ← ω

− ln 0.5
c (S, γ = 0)

3: for i ∈ 1, .., N do
4: q ←rand. integer in [min(4, |P |),min(100, ξ|P |)]
5: R← random items(S, q)
6: S ′ ← remove items(S,R)
7: S ′ ← insert items(S ′,UND(S))
8: if c (S ′) < c (Sbest) then
9: Sbest ← S ′

10: end if
11: if random() < exp−(c (S ′)− c (S))/T then
12: S ← S ′

13: end if
14: T ← cT
15: end for
16: return Sbest

a new best overall solution, a new solution better than the previous solution, or a newly accepted
solution worse than the current solution. All the parameters for VLNS-T and the values we use
are shown in Table 7.1.

Removal Heuristics

For random item, we use the three heuristics introduced in [93]: the Shaw removal heuristic,
the random removal heuristic, and the worst removal heuristic.

The Shaw heuristic chooses items similar in distance, time, and demand to remove based on
a relatedness metric which depends on location, time, and demand, choosing the first item at
random and the remainder in proportion to their relatedness.

R(a, b) = φ(d(start(a), start(b)) + d(end(a), end(b))) +

χ(|t (apickup)− t (bpickup)|+

|t (adelivery)− t (bdelivery)|) +

ψ |dem(a)− dem(b)|

where apickup and adelivery give the pickup and delivery actions for item a, respectively. The
heuristic selects an initial item at random, then chooses the remaining q−1 items with probability
proportional to their relatedness to the first. The random removal heuristic simply selects q
distinct items at random to remove, with equal probability. For the worst removal heuristic,

108 CHAPTER 7: VERY LARGE NEIGHBORHOOD SEARCH WITH TRANSFERS

Name Value Description
α 1 Cost weight to distance travelled.
β 0 Cost weight to vehicle operation time.
γ 106 Cost weight to unassigned items.
N 25000 Num. VLNS iterations.
ξ 0.4 Maximum fraction removed items.
ω 0.05 Initial VLNS temperature weight.
τ 100 Adaptive segment size.
σ1 33 Adaptive score, best overall solution.
σ2 9 Adaptive score, new improved solution.
σ3 13 Adaptive score, new worse solution.
r 0.1 Adaptive reaction factor.
φ 9 Relatedness distance weight.
χ 3 Relatedness time weight.
ψ 2 Relatedness demand weight.
η 0.025 Noise rate.

Table 7.1: VLNS Parameters

items are selected for removal at random in proportion to the difference in cost of the current
schedule and the current schedule with the item in question removed. With this heuristic, items
which are more costly to deliver are more likely to be removed.

Insertion Heuristics

Two greedy heuristics are used to insert items into the schedule with transfers. The first, the
split routes heuristic, takes existing pickup and delivery item route segments from a single
vehicle and splits them with another vehicle. It is based on the insert transfer heuristic
from the previous chapter. The second heuristic, the insert item with transfer heuris-
tic, searches over possible pickups and deliveries with a single transfer between a pair of vehicles.

Both heuristics are greedy but in different ways. Each relies on another heuristic to insert item
pickups and deliveries into the schedule without transfers, the same heuristic used in [93]. This
heuristic is called greedy insert(items, regret, noise) and takes as parameters the items
to insert, a value for the “regret”, which is an integer, and an amount of noise to apply to the
objective function. If we define ci,j as the jth best cost to insert item i over all points to insert
Pickup and Delivery actions, we iteratively choose item i to insert such that ci,regret − ci,1 is
maximized. VLNS-T chooses from a family of split routes heuristics, with regrets of 1,
2, 3 and 4. For each value of regret, there are two choices of noise: one with 0 noise and one
with noise ηmax d(l1, l2) where the noise is proportional to the maximum distance between any

7.1 THE VLNS-T ALGORITHM 109

two locations specified in the problem. When we compute the cost in the greedy algorithm, we
sample from c (S) ∼ max(0, N(c (S) , σ2)) to increase the diversity of generated solutions. For
further details regarding the greedy insert heuristic, see [93].

7.1.2 Greedy Insertion with Transfers

We first detail the algorithms used to insert item pickups and deliveries into an existing schedule
with transfers. We are given an initial schedule S and a set of items Mnew, with the goal of
returning a schedule of low cost with the items Mnew added into the schedule. It is prohibitively
expensive to search over all possible schedules, so we use two greedy heuristics which iteratively
insert individual items at a time. First we discuss an algorithm for inserting transfer points into
vehicle schedules before delving into the higher-level greedy heuristics.

Transfer Insertion

Both heuristics rely on the algorithm insert split(S, v1, v2,m, Trec, Tsend, cbest) , shown
in Alg. 11, to insert transfers into the schedule. This routine finds the lowest cost schedule to
transfer item m from vehicle v1 to vehicle v2. Vehicle v1 receives item m with action Trec (either
a Pickup or Transfer action) which must be inserted into the schedule, or with an action that is
already part of the schedule, in which case Trec = ∅. Likewise the action Tsend may be either
a Deliver or Receive action to insert into Sv2 after the new Transfer action, or ∅ if this action
is already part of the plan. The insert split algorithm searches over all possible places to
insert the new Receive and Transfer actions into Sv1 and Sv2 , respectively. Then it searches over
all possible insertion points for the actions Trec and Tdeliver, if applicable.

For each pair of insertion points for the new transfer actions, we compute the location of the
transfer point with find transfer point(a1, a2, b1, b2), which computes a transfer point
given the endpoints to two line segments, a and b, between which the new transfer point is in-
serted on the two vehicles’ schedules. On the Euclidean plane, we return the lines’ intersection
or the endpoints’ mean if they do not intersect. This is not necessarily the optimal transfer point,
which may depend on the timing of the two vehicles’ actions, but it is a reasonable and com-
putationally inexpensive choice. A different method of finding a transfer point may be chosen
without changing the higher level algorithm, such as choosing from a list of suitable points.

For every considered set of action insertions, the satisfiability of the proposed schedule’s time
constraints is checked with the update times algorithm, which is explained in a later section.
We also check that the new actions we insert do not create a cycle of transfers such that the
vehicles deadlock. To check this, we start from the actions following each of the two provided

110 CHAPTER 7: VERY LARGE NEIGHBORHOOD SEARCH WITH TRANSFERS

Algorithm 11 insert split(s, a, b,m, Trec, Tsend, cbest): Split item m’s delivery between
vehicles a and b in schedule s. Optionally insert the task when a receives m, Trec, and when
b delivers or transfers away m, Tsend, into the plans as well. These tasks may be ∅ if they are
already part of the plans. An accepted insertion must have cost less than cbest.
sbest ← ∅
astart← 0 if Trec 6= ∅ else index of action with m in Sa

bend← 0 if Tsend 6= ∅ else index of action with m in Sb

for i from astart to |Sa| − 1 do
for j from 0 to bend do
loc← find transfer point(Sai , S

a
i+1, S

b
j , S

b
j+1)

Tts ← TRANSFER(b,m, loc), Ttr ← RECEIVE(a,m, loc)
s′ ← insert(s, Sa, i+ 1, Tts)
s′ ← insert(s′, Sb, j + 1, Ttr)
for k from i+ 1 to (|Sa| − 1 if Trec 6= ∅ else i+ 1) do
s′′ ← s′

if Trec 6= ∅ then
s′′ ← insert(s′, Sa, k + 1, Trec)

end if
for l from 0 to (j if Tsend 6= ∅ else 0) do
s′′′ ← s′′

if Tsend 6= ∅ then
s′′′ ← insert(s′′, planb, l + 1, Tsend)

end if
c← c (s′′′)− c (s)
if c ≥ cbest or (Trec transfer and cycle(Trec, pair (Trec))) or (Tsend transfer and
cycle(Tsend, pair (Tsend))) or cycle(Ttr, Tts) or capacities violated then

continue
end if
if update times(s′′′, [a, b]) then
sbest ← s′′′, cbest ← c

end if
end for

end for
end for

end for
return sbest

7.1 THE VLNS-T ALGORITHM 111

paired actions and move forward through the schedule, checking that we do not later reach one
of the two initial actions again.

The insert split algorithm makes use of many checks to skip invalid insertion points
and speed up the search. For example, the available capacity of the vehicles is tracked through
the loops, and task insertion points which would violate capacity constraints are skipped. Sim-
ilarly, insertion points which could not possibly satisfy the time constraints are not checked.
Additionally, partial costs of adding transfer actions are calculated, and the insertion is skipped
if adding the transfer actions alone exceeds cost cbest.

Greedy Route Splitting

For the first heuristic, we take segments of each item’s route on individual vehicles and “split”
those segments with other vehicles in the split single route(S, v1, v2,m) algorithm as
shown in Alg. 12. For example, if vehicle v1 has the actions a1 = PICKUP (m) and a2 =

DELIVER(m) in its plan, split single route(S, v1, v2,m) will attempt to make two inser-
tions using the insert split routine. First, it attempts to remove a1 from Sv1 , inserting an ac-
tion RECEIVE(v2,m, l) in its place and adding the actions PICKUP (m) and TRANSFER(v1,m, l)

into Sv2 . The route splitting routine also attempts to remove a2 from Sv1 , insert an action
TRANSFER(v2,m, l) instead, and add the actions RECEIVE(v1,m, l) and DELIVER(m) to Sv2 .
The routine may be applied to make multiple transfers if the actions a1 and a2 are transfer actions.

The first heuristic, shown in Alg. 13, first greedily inserts items into the plan without trans-
fers. Then, it selects random items and greedily inserts the best transfers into their schedules
using split single route. If a transfer can be inserted, we attempt to insert more transfers
recursively. Due to the increased possibilities for where to insert transfers and the consequential
increase in computational cost, unlike greedy insert, we split the route of one item at a
time instead of choosing the best split over all routes. To further speed up the algorithm, we pass
the cost of the best split found so far to insert split to more quickly reject costly transfer
points.

Split Item Insertion

For the second heuristic, instead of adding transfers to existing item delivery routes, we plan
for a single transfer point from the beginning. We go through the items in a random order, and
attempt to insert each in the schedule without transfers. We then apply the insert split

routine to see if a delivery can be made at lower cost by using a single transfer point, explor-
ing the possible insertion points for the Pickup, Deliver, Receive and Transfer actions. The

112 CHAPTER 7: VERY LARGE NEIGHBORHOOD SEARCH WITH TRANSFERS

Algorithm 12 split single route(s, v1, v2, p, cbest): Split item p’s route segment on v1
with v2.
cbest ←∞
a1 ← first action involving p in Sv1
a2 ← second action involving p in Sv2
s′ ← s, s′′ ← s
if a1 = RECEIVE(v3, p, l) then
a′1 ← RECEIVE(v3, p, l)
s′ ← s with pair (a′1)’s second vehicle as v2

else
a′1 ← PICKUP (p)

end if
if a2 = TRANSFER(v3, p, l) then
a′2 ← TRANSFER(v3, p, l)
s′′ ← s with pair (a′2)’s second vehicle as v2

else
a′2 ← DELIVER(p)

end if
s1 ← insert split(s′,m, v2, v1, a

′
1, ∅, cbest)

s2 ← insert split(s′′,m, v1, v2, ∅, a′2, cbest)
return argmins∈s1,s2 c (s)

Algorithm 13 split routes(S,Mnew, r, σ
2): Insert itemsMnew into the schedule S, with the

specified regret r and noise σ2.
S ← greedy insert(S,Mnew, r, σ

2)
Mnew ←Mnew \ UND(S)
while |Mnew| > 0 do

Pop random item m from Mnew

Vm ← set of vehicles that transport m in S
Sb ← S, c← c (S), cb ← N(c, σ2)
for v1 ∈ Vm, v2 ∈ V \ Vm do
S ′ ← split single route(S, v1, v2,m, c− c (Sb))
c′ ← N(c (S ′) , σ2)
if c′ < cb then
Sb ← S ′, cb ← c′

end if
end for
if Sb 6= S then
S ← Sb, M ←M ∪ {m}

end if
end while
return S

7.1 THE VLNS-T ALGORITHM 113

insert item with transfer heuristic is shown in Alg. 14.

Algorithm 14 insert item with transfer(s, items): Insert items into the schedule s.
while |items| > 0 do
m← pop random item from items
sbest ← greedy insert(s, [m], 1, 0)
for v1 ∈ V , v2 ∈ V , v1 6= v2 do
s′ ← insert split(s,m, v1, v2, PICKUP (m) ,DELIVER(m), c (sbest))
if c (s′) < c (sbest) then
sbest ← s′

end if
end for
s← sbest

end while
return sbest

This heuristic is more expensive than the split routes heuristic, since it searches for
insertion points of four actions over all pairs of vehicles. However, it can find solutions to some
problems which the other heuristic cannot due to its greediness. For example, if an item cannot be
delivered by a single vehicle due to the maximum vehicle duration constraint, the other heuristic
would not find any solution, while the insert item with transfer heuristic would be
able to.

7.1.3 Determining Action Execution Times

Finally, we discuss the lowest level of the PDP-T algorithm, determining the execution times of
the actions in a schedule and whether the schedule is valid. The update times(S, V) routine
is an extension of the time determination algorithm presented in [33] which computes times when
transfers are involved. This function makes use of two key subroutines:

• earliest times(S, [(a1, t1), . . .]): Given a list of actions ai and corresponding execu-
tion times ti, update the actions following ai in the schedule to be executed as early as
possible, obeying only time window constraints. This is Step 2 in the algorithm detailed in
[33]. We extend this algorithm for transfers such that when a transfer action a’s times are
updated, we update the times of the actions following pair (a), as shown in Algorithm 15.

• fslack(a,Mnew,Mex): Determine the amount of time the execution of task a can be
delayed without violating additional constraints. These constraints include the transport
time constraints for only items in Mex. See Alg. 16 for details. The slacks are computed
recursively for transfer actions. We also keep track of whether the lowest slack occurred

114 CHAPTER 7: VERY LARGE NEIGHBORHOOD SEARCH WITH TRANSFERS

Algorithm 15 earliest times(s,Q = [(a1, t1), . . .): Update the times for the actions fol-
lowing those in Q to be as early as possible obeying time window constraints.

while |Q| > 0 do
(a, t)← pop item with lowest t from Q
if t (a) ≥ t then

continue
end if
t (a)← min(t, e (a))
if t (a) > l (a) then

return False
end if
if a is Receive or Transfer then

Add (pair (a) , t (a)) to Q
end if
if a′ = action following a in plan exists then

b (a′)← max(b (a′) , t (a) + δ (a) + d(loc(a), loc(a′))/avvel)
Add (a′, b (a′)) to Q

end if
end while
return True

due to an item’s maximum transport time constraint that has not yet been satisfied. If so,
we may need to redo the computation later.

Given these two routines, the update times(S, V) algorithm executes the following steps
to update the action arrival and execution times and determine schedule validity:

1. Determine affected vehicles. Add all vehicles to V which transfer to or from vehicles in
V . The times for these vehicles’ actions must also be updated.

2. Compute the earliest possible execution times. Call the earliest times(S,A, T) func-
tion, where A is contains the initial action for each vehicle v ∈ V and T contains the ear-
liest possible start time e (v). If any time window constraints are not satisfied, the function
returns false and the schedule is invalid.

3. Enforce maximum vehicle route durations. Call earliest times(S,A, T) again with
the initial actions A as before, but with t ∈ T corresponding to a ∈ A for vehicle v set
to e (v) + min(slack, sum) where (slack, sum, redo) = fslack(a, ∅, ∅). This delays
the start of each vehicle’s execution as much as possible while still obeying time window
constraints. If after this step any vehicle v’s route duration exceeds mrd (v), the schedule
is invalid. If the problem has no maximum route duration constraints, this step can be
skipped.

7.1 THE VLNS-T ALGORITHM 115

Algorithm 16 fslack(action,Mnew,Mex): Determine the time a’s execution can be delayed
without violating additional constraints. Returns a tuple containing the slack, the total waiting
time, and whether the slack depends on pickup actions to be delayed which are not in Mex, the
set of items which have already had their pickup actions delayed.
slack ←∞, Σwait ← 0, redo← False
for a from action to end of plan do

if a 6= action then
Σwait ← Σwait + (t (a)− b (a))
if a is Transfer or Receive then

(s1,Σ1, r1)← fslack(a,Mnew,Mex)
(s2,Σ2, r2)← fslack(pair (a) ,Mnew,Mex)
s1 ← s1 + Σwait, s2 ← s2 + Σwait

Σwait ← Σwait + min(Σ1,Σ2)
if s1 < slack then
slack ← s1, redo← r1

end if
if s2 < slack then
slack ← s2, redo← r2

end if
return (slack,Σwait, redo)

end if
end if
redo′ ← False, slack′ ← l (a)− t (a)
if a = DELIVER(m), ∃mtt(m), m 6∈Mnew then
x← t (mdelivery)− (t (mpickup) + δ (mpickup))
slack′ ← max (0,min (slack,mtt(m)− x))
redo′ ← (m 6∈Mex)

end if
slack′ ← slack′ + Σwait

if slack′ < slack then
slack ← slack′, redo← redo′

end if
end for
return (slack,Σwait, redo)

116 CHAPTER 7: VERY LARGE NEIGHBORHOOD SEARCH WITH TRANSFERS

4. Enforce maximum transportation times. For each item m, in increasing order of the time
t (mpickup), delay the action execution by min(slack, sum) where (slack, sum, redo) =

fslack(mpickup, ∅,Mex). After the times are updated with the earliest times rou-
tine, add m to Mex, and, if redo is True, add m to a list of actions that must be redone.
After attempting to delay every item m, remove the items that were marked for redos from
Mex and attempt to delay their execution again until no items are left. Retrying may be
necessary because the computation of the forward slack assumes that all items are either
in Mex with their time constraints already enforced, or the items are picked up after the
starting action. Without transfers this is always the case, but with transfers the item may be
picked up on a different robot such that the maximum transportation time constraint has not
yet been enforced. If any maximum transportation time constraint is violated afterwards
the schedule is invalid.

7.2 Experiments

We introduce several simple problems that demonstrate the potential advantages of planning for
transfers in comparison to state of the art PDP algorithms. Then we show results from solving
the more complicated Cordeau benchmark problems as a PDP-T.

7.2.1 Example Problems

As a basic test to illustrate the effectiveness of VLNS-T, we ran VLNS-T on the problem in
Figure 7.1. VLNS-T found the expected solution with a factor of two improvement.

In a second problem, ten hubs are evenly distributed around a circle of radius 50 on the
Euclidean plane. One vehicle begins at each hub, and its destination is its starting hub. Items
begin at random hubs, and are assigned a random destination from the three hubs on the opposite
side of the circle. All time windows begin at time 0 and end at time 200. The vehicles have
capacity 5 and maximum route duration 150. Ten problem instances with |M | = 15 were all
solved by the PDP-T algorithm, but no solution could be found for the PDP. This is because the
maximum route duration of 150 prevents vehicles from delivering items to the other side of the
circle and returning to their starting position.

These two examples serve to demonstrate that VLNS-T can drastically reduce the solution
cost and make previously infeasible problems feasible.

7.2 EXPERIMENTS 117

(a) PDP
(b) PDP-T

Figure 7.1: a The cost to deliver the items is 800 without transfers. b The cost is halved to 400 if
transfers are allowed. Note that the order of the Transfer and Receive actions are arranged such
that no deadlocking cycles are formed.

7.2.2 Benchmark Problems

We run VLNS-T on a set of benchmark problems [33], comparing to reported results with-
out transfers from a Tabu search heuristic and to our own implementation of VLNS [93]. In
these problems, all the vehicles begin and end their routes at the same central depot. The
vehicles have maximum route durations and capacities, and the items have maximum trans-
portation times. We set ∀v ∈ V,m1,m2 ∈ M ct (v,m1,m2) = 0.25, run 25000 iterations
of VLNS-T, and optimize for distance (α = 1, β = 0). For these problems, we do not use the
insert item with transfer heuristic due to its increased computational cost in a domain
that is already computationally expensive.

Table 7.2 shows the results. VLNS-T finds lower cost solutions for 19 of 20 problems, and
still finds the best known solution for the final problem. The cost improvements may not seem
large in proportion to the total scheduling cost, but note that in the PDP literature, the percentage
improvement is often under 2% [90] or only a binary result of whether the best known solution
was improved upon is given [93, 54], and improvements of this order of magnitude are signif-
icant. The vehicles do spend more time waiting in the solution with transfers, but waiting (the
time between the arrival time and execution time at an action) is not included in the cost function
for these problems.

118 CHAPTER 7: VERY LARGE NEIGHBORHOOD SEARCH WITH TRANSFERS

Problem Tabu VLNS VLNS-T
|V | |M | Cost Cost Wait Time Comp. Time Cost Tr. Tr. Cost Wait Time Comp. Time
01 3 24 190.02 190.02 224.26 0.06 186.46 8 2.00 481.02 0.23
02 5 48 302.08 303.39 817.68 0.18 290.89 8 2.00 884.39 1.62
03 7 72 532.08 544.00 805.92 0.35 531.02 13 3.25 810.18 4.78
04 9 96 572.78 581.39 1115.65 0.65 558.15 15 3.75 1309.50 10.89
05 11 120 636.97 640.91 1058.93 0.92 629.02 23 5.75 1084.88 29.73
06 13 144 801.40 805.33 1326.60 1.38 772.02 32 8.00 1668.58 60.55
07 4 36 291.71 291.71 500.39 0.11 288.82 6 1.50 501.41 0.50
08 6 72 494.89 505.74 415.84 0.34 480.17 12 3.00 459.49 4.68
09 8 108 672.44 675.64 270.70 0.82 639.64 21 5.25 528.98 18.90
10 10 144 878.76 873.58 742.35 1.44 861.73 18 4.50 846.41 52.85
11 3 24 164.46 164.46 407.33 0.07 164.46 0 0.00 407.33 0.17
12 5 48 296.06 297.67 369.89 0.24 292.22 9 2.25 487.39 1.43
13 7 72 493.30 491.92 442.73 0.43 479.75 14 3.50 592.78 4.20
14 9 96 535.90 550.37 538.67 0.85 527.31 16 4.00 776.95 13.38
15 11 120 589.74 589.67 965.71 1.31 584.60 24 6.00 1078.81 33.86
16 13 144 743.60 754.95 988.85 1.80 736.82 24 6.00 1143.21 47.91
17 4 36 248.21 248.21 159.37 0.13 245.69 4 1.00 337.38 0.40
18 6 72 462.69 466.82 464.36 0.45 457.82 10 2.50 842.90 5.17
19 8 108 601.96 600.24 525.53 1.14 585.36 11 2.75 686.23 17.31
20 10 144 798.63 811.36 415.74 2.00 787.36 18 4.50 542.79 51.41

Table 7.2: Cordeau benchmark results. All times are in hours. The “Tabu” column gives the best
results for Tabu search [33], the “VLNS” section for one run of VLNS [93], and the “VLNS-T”
section for one run of our algorithm. The “Tr.” column is the number of transfers. Computation
times are in hours.

VLNS-T finds better solutions, but this comes at a cost of computation time. We have done
little optimization of our implementations of VLNS and VLNS-T as our focus is on determining
the effectiveness of transfers, but heuristics to exclude transfer points from the search are a
promising area for future work. The number of transfers per item is low, i.e., Problem 6 has
32 transfers for 144 items, which is 0.22 transfers per item. An improvement in 19 out of 20
problems suggests that many PDP problems may benefit from allowing transfers. The benefit
of transfers may be greater if we optimize for criteria other than distance, such as delivery time,
which these benchmarks do not address.

7.2.3 New York Taxi Problems

We constructed a set of problems sampled from taxi routes in New York, using over 400,000
data points for Tuesday, 9/25/2012 [44]. The data includes taxi ride start and end times, and GPS
coordinates of the start and end. First, we cluster the points to find the most popular pickup and
dropoff locations, and select the 20 most popular points in Manhattan and the 80 most popular
points elsewhere. We sample from taxi routes which start and end near these points which occur
within the same hour window. Distances and travel times are estimated using OpenStreetMap
with OSRM [75]. Vehicles have capacity 4.

In the first set of problems, all items are given the same hour long time window. We varied

7.3 CHAPTER SUMMARY 119

|V | |M | Average Improvement Maximum Improvement
From Transfers From Transfers

30 25 5.63% 11.60%
30 50 7.59% 15.40%
30 75 6.36% 10.80%
30 100 5.21% 9.50%
40 25 4.72% 7.04$
40 50 6.20% 8.11%
40 75 6.68% 10.60%
40 100 7.37% 12.00%

Table 7.3: New York City Taxi Experiment Results

|V | from 20 to 40 and |M | from 25 to 100, solving 20 instances for each parameterization.
A summary of the results is shown in Table 7.3. For the second set of problems, we began
the item time windows at the pickup times in the original data, and set the delivery deadline
as the actual delivery time plus the estimated travel time. For |V | = 30 and |M | = 60, the
average improvement was 6.78%, and the maximum was 10.4%. For all selected |V | and |M |,
the average improvement of VLNS-T over VLNS varied between 4.27% and 6.82%. These
results indicate that transfers can improve efficiency in real-world transportation domains, for
example alternative shared taxi services or ridesharing.

7.3 Chapter Summary

We have introduced the VLNS-T algorithm, which searches over schedules schedules by remov-
ing and reinserting a randomized set of items. We introduced two heuristics to insert items into
a schedule with transfers, and an algorithm to compute the execution time for actions in such
a schedule. We experimentally demonstrated the large cost savings possible from VLNS-T in
comparison to a state of the art PDP algorithm without transfers, both on a set of benchmark
problems and on transportation problems on real-world maps.

120 CHAPTER 7: VERY LARGE NEIGHBORHOOD SEARCH WITH TRANSFERS

Chapter 8

Background and Related Work

Next, we provide an overview of related work pertaining to this thesis and how the thesis fits in.
Broadly speaking, this work falls at the intersection of two fields: scheduling and robotics. The
scheduling community has studied the PDP problem extensively, along with other, more general
variants of the Vehicle Routing Problem (VRP), of which PDPs are a subset. This thesis extends
the scheduling community’s work on the PDP by considering transfers. The robotics community
has extensively studied the related problems of task allocation, distributed algorithms, and robot
rendezvous. Furthermore, prior researchers have deployed robots that deliver items. We have
built on this robotics work as well to execute PDP-T solutions on robots.

8.1 Scheduling: The Vehicle Routing Problem

The scheduling community has conducted extensive research on the Vehicle Routing Problem
(VRP). In the VRP, a set of vehicles must visit a set of locations to service customer requests. A
solution to the VRP is a schedule, which assigns requests to vehicles and provides an ordering in
which each vehicle should visit its assigned requests.

Table 8.1 shows an overview of major variants of the VRP. Types of VRPs are widely varied,
and their naming in the literature is inconsistent. Here, we attempt to provide a broad overview.
We refer the reader to more thorough taxonomies [41] and surveys [87, 88, 113] for further
details.

8.1.1 The Traveling Salesman Problem

The most famous variant of the VRP is the Traveling Salesman Problem (TSP), in which a single
traveling salesman finds the shortest path to visit a set of cities, sells his wares, and returns

121

122 CHAPTER 8: BACKGROUND AND RELATED WORK

Problem Description Vehicles Items Ref.
Traveling Salesman
Problem (TSP)

Service a set of locations and re-
turn to the starting location.

Single None [28]

Multiple TSP Multiple vehicles service a set of
locations and return to the starting
location.

Multiple None [10]

Single Vehicle Rout-
ing Problem with Back-
hauls

Service a set of pickup and deliv-
ery requests to or from central de-
pots with a single vehicle.

Single To / From Depots [87]

Multi-Vehicle Rout-
ing Problem with
Backhauls

Service a set of pickup and deliv-
ery requests to or from central de-
pots.

Multiple To / From Depots [87]

Single Vehicle Pickup
and Delivery Problem
(PDP)

Service a set of pickup and deliv-
ery requests with a single robot,
then return to the depot.

Single Multiple [50]

Multi-Vehicle Pickup
and Delivery Problem
(PDP)

Service a set up pickup and deliv-
ery requests to and from arbitrary
locations.

Multiple Multiple [88]

Table 8.1: Selected variants of the Vehicle Routing Problem.

home. The TSP is NP-hard. However, constant factor approximation algorithms exist to find
solutions within a set factor of the optimal solution in polynomial time. For the general TSP, a
heuristic that creates a tour on the edges of the minimum spanning tree gives a two-approximation
algorithm [94]. For metric TSP, the best known approximation is 1.5-approximate [28], and for
the Euclidean TSP, an algorithm which gives a (1 + ε)-approximation in polynomial time is
known [4, 79].

The multi-TSP extends the traveling salesman problem to multiple salesmen. The multi-TSP
has been addressed with integer programs, other exact methods, and with heuristics [10].

8.1.2 The Vehicle Routing Problem with Backhauls

The remaining classes of problems deal with transporting items, rather than only visiting loca-
tions. First, we discuss the Vehicle Routing Problem with Backhauls (VRPB). In problems of
this class, vehicles deliver items to customers from a central depot and deliver items from cus-
tomers to a central depot or depots, but do not deliver items between customer locations. The
vehicles may deliver all the items before retrieving any, or may intermix deliveries and pick-
ups. In the simultaneous delivery and pickup problem, vehicles must both deliver and retrieve
a single customer’s items in one stop. The VRPB may have additional constraints, such as ca-
pacities [112], time windows [40], and multiple depots [81]. The VRPB can be solved optimally

8.1 SCHEDULING: THE VEHICLE ROUTING PROBLEM 123

[87], with many proposed heuristics [47, 37, 36, 81], or with metaheuristics such as tabu search
[40, 2], simulated annealing [85], genetic algorithms [5], ant colony optimization [25], and par-
ticle swarm optimization [60].

8.1.3 The Pickup and Delivery Problem

The last variant of the VRP we discuss is the Pickup and Delivery Problem (PDP), which is
the focus of this thesis. Here, customer requests involve retrieving items from one location and
delivering them to another location. The pickup and delivery locations are not limited to central
depots. The PDP is sometimes called the Dial-a-Ride-Problem (DARP), named after how users
dial a taxi for a ride [12]. The only difference between the two problems is that DARP plans for
passengers, so user convenience (i.e., the time the passengers spend in transit) is often valued
more highly. We use Table 8.2 to describe the many variants of the PDP, such as including
capacities and time windows.

Type Name Description

Vehicles

Capacities Vehicles may carry a limited number of items.
Split Deliveries Loads can be divided between multiple vehicles.
Vehicle Destinations Vehicles have their own ultimate destinations (ridesharing).
Limited Fuel Vehicles can only travel a limited distance before refueling.
Heterogeneous Vehicles Vehicles have different capacities, speeds and other capabilities

(i.e., cars, trucks, boats and planes).

Time

Release Times Items can only be picked up at a specified release time.
Deadlines Items must be delivered by a deadline.
Time Windows Items have both release times and deadlines.
Soft Time Windows Time windows can be violated, but with a penalty.

Requests
Request Priorities Certain tasks are more important to complete.
Customer Preferences Penalties may be incurred based on item to vehicle assignment.

Dynamic

Stochastic Service Times Vehicles spend a variable time servicing customers.
Stochastic Travel Times Vehicles spend a variable time traveling routes.
Dynamic Requests Customer requests are not known beforehand.
Dynamic Destinations Customer destinations are not known in advance.
Dynamic Vehicles Available vehicles are not known beforehand (ridesharing).
Vehicle Failures Vehicles may break down and become inoperable.

Transfers
Transfer Cost Vehicles pay a penalty to transfer items.
Fixed Transfer Points Vehicles can transfer items at fixed points.
Dynamic Transfer Points Vehicles can transfer items anywhere.
Distributed Vehicles must plan and communicate locally.

Table 8.2: Selected variants of the Pickup and Delivery Problem (PDP).

The PDP has been solved exactly with branch and bound methods [92, 73] for small problem
instances. It has also been addressed for larger problems with numerous heuristics such as con-

124 CHAPTER 8: BACKGROUND AND RELATED WORK

struction heuristics [74] and column generation heuristics [116]. The other approaches to this
class of problems have largely consisted of metaheuristics, such as Tabu search [83, 71], genetic
algorithms [59], and simulated annealing [11, 93].

A few approximation algorithms with guarantees have been developed for the VRP as well.
Approximation algorithms have been proposed for requests with release times at which jobs can
first be performed but without deadlines [15], with time windows for a single vehicle [7], and for
the capacitated single vehicle pickup and delivery problem [27, 51].

8.1.4 Dynamic Pickup and Delivery Problems

In dynamic pickup and delivery problems, requests come in over time and are not known before-
hand. The two general approaches used to solve these problems are to apply static solutions as
new information comes in, or to apply heuristics to adjust existing schedules [13, 69]. Many such
heuristics have been proposed [101, 91, 38, 98]. As with static pickup and delivery problems,
metaheuristics, such as tabu search and simulated annealing [52], have also been applied to the
dynamic PDP. Researchers have also developed heuristics to respond to other types of dynamic
events, such as cancellations, traffic delays, and accidents [53, 115, 97].

8.1.5 Pickup and Delivery Problems with Transfers

Less work has focused on vehicles that transfer items. The idea of transfers is already central to
hub and spoke distribution networks, such as mail services and air travel. In these networks, items
or passengers are transferred to central hubs, or “transhipment” points, of varying granularities
before being brought to their final destination. These hub and spoke networks are effective for
networks with large amounts of traffic, but less effective in networks that make fewer deliveries,
in which the cost of transporting only a few items to and from the hubs may not be justified. We
speculate that furthermore, the efficiency of hub and spoke networks could be improved for large
problem sizes by planning for each item individually; however, this has not occurred due to the
underlying computational challenges. See [24] for a more detailed overview of hub and spoke
networks in the airline industry.

Algorithms have been developed to find the optimal solution [34] and heuristics [80] for the
PDP with fixed transshipment points, and for the capacitated PDP with time windows and a single
transshipment point [82]. One of the biggest differences between the prior work and the PDP-T
heuristics we present in this thesis in Chapters 5 and 6 is that we consider multiple transfers
that can occur at any location. We are not limited to a small set of pre-selected transfer points,
but determine transfer points on the fly geometrically depending on the pickup and delivery

8.2 RELATED ROBOTICS RESEARCH 125

locations. Furthermore, with multiple transfers, we can find better solutions to certain problems
than we could with only a single transfer, and potentially deliver items that we would be unable
to deliver with a single transfer.

In [110], transfers at any pickup or delivery location are considered in the construction of
heuristics for the PDP with time windows. Another heuristic was proposed for the case where
transfers can occur anywhere [103]. Transfers at arbitrary locations have also been allowed in
[22] for the dynamic PDP-T. This heuristic, unlike much of our own work on the online PDP-T,
does not consider time windows, capacity constraints, or any other constraints.

In [48], a randomizedO(log3 n) approximation, where n is the number of pickup and delivery
vertices, is given for the preemptive capacitated PDP, where objects may be dropped off at pickup
points and retrieved by other vehicles later. We require both vehicles to be present at the transfer
locations concurrently for the PDP-T.

Masson et. al. have recently introduced a VLNS-based algorithm to solve PDPs with trans-
fers, along with a helper algorithm to determine the feasibility of a request insertion with transfers
[77, 76, 78]. This is similar to our VLNS-T algorithm presented in Chapter 7, but our work dif-
fers in that we allow a single item to be transferred multiple times, consider additional constraints
such as maximum item transportation times and maximum route durations, allow transfers at any
location, consider a cost for transfers, and require both vehicles to be present for a transfer.

8.2 Related Robotics Research

Next, we discuss related work from the robotics community. This includes research in robots to
do pickup and delivery tasks, task allocation, ridesharing, and robot rendezevous.

8.2.1 Pickup and Delivery Robots

Previous researchers have deployed individual robots to pick up and deliver items. In 1994, the
HelpMate courier robots transported items within hospitals [42].

Later robots, such as Xavier, allowed users to request tasks over the internet [106, 105]. Other
robots soon followed in allowing users to request tasks over the web [104, 49, 100, 102]. Like-
wise, users can request tasks for our CoBot robots over the web, including pickup and delivery
tasks. The CoBots differ from these previous efforts in the scale and length of their deployment:
we have deployed the robots for years in a multi-story building, and our system includes multi-
ple robots. Xavier was only a single robot, and did not consider time in its plans. Additionally,
none of these previous deployments have transfered items. We believe we are the first to form

126 CHAPTER 8: BACKGROUND AND RELATED WORK

schedules with transfers and execute these schedules on robots.

8.2.2 Task Allocation

A well-studied field of research closely related to this thesis is robot task allocation, in which
tasks must be assigned to robots to maximize a utility function. However, approaches to robot
task allocation typically assume that tasks are independent [45]. In the PDP, the tasks are not
independent, as the cost of a schedule is highly dependent on the ordering of the tasks and the
distances that must be travelled between tasks. Introducing transfers makes the tasks even more
interdependent, as the insertion of transfer points depends on the ordering of the rest of the
schedule.

Since task allocation is strongly NP-hard, a common approach is to greedily assign tasks
to robots as the robots become available [46]. Another popular approach is a free-market based
auction system, where the mobile robots place bids on tasks based on the cost to accomplish
them [118]. Another approach, common in RoboCup soccer, is complete sharing of information
and assignment of roles based on a predefined plan [23].

Researchers have also studied dynamic task allocation problems, where the tasks are not
known beforehand [70] and where the robots must respond to failures and environmental changes
[86, 21].

8.2.3 Ridesharing

With the advent of autonomous cars, researchers have begun to investigate systems to plan for
ridesharing. The idea of ridesharing is that drivers, going about their ordinary driving, will offer
rides to passengers traveling nearby to help offset their fuel costs. Systems have been built such
that drivers and passengers input their destinations on their cell phones, and software helps match
passengers with drivers [26, 8, 43]. The ridesharing problem is an instance of the PDP, with the
additional property that drivers have their own destinations, just like passengers do.

Limited prior work has been done on the ridesharing problem without transfers. The most
common approach is the use of auctions to assign passengers to vehicles. In [1] a distributed,
multi-agent rideshare system is presented where an auction assigns passengers to vehicles. Later
work has focused on making auctions that are incentive compatible and encourage users to ne-
gotiate truthfully. This work attempts to not only minimize the vehicular miles travelled (VMT),
but also to maximize the probability of successful rideshares by considering user preferences.
However, currently this work is restricted to assigning a single rider per driver [64]. In [61], pas-
sengers are assigned to vehicles with a set cover approximation algorithm, and the mechanism

8.2 RELATED ROBOTICS RESEARCH 127

design to construct a fair payment system is considered. A third approach to dynamic ridesharing
is presented in [56]: a combination genetic algorithm and insertion heuristic, which considers the
problem when passengers have time windows.

The work in this thesis can be applied to the problem of ridesharing when the vehicles can
transfer passengers, since ridesharing is a PDP, and we allow vehicles to have their own destina-
tions. To the best of our knowledge, the only researchers which has considered the problem of
dynamic ridesharing with transfers is [55]. However, this work lies in finding routes for a sin-
gle passenger while optimizing multiple objectives: cost, time, and the number of drivers in the
route. An evolutionary algorithm is presented to plan multi-hop routes with multiple objectives.
In this thesis, we form full schedules for multiple passengers with transfers, rather than a route
for an individual passenger. The cost of the passengers’ routes are highly co-dependent when the
passengers share vehicles.

8.2.4 Robot Rendezvous

The robot rendezvous problem is to find a rendezvous point for a set of robots that minimizes
the total distance travelled to reach it. Although the idea of the optimal meeting point is quite
simple, it is difficult to compute. In fact, it has been shown that no closed form solution exists
[117]. However, numerous algorithms have been developed to find the optimal meeting point
with gradient descent and other techniques, including a near-optimal solution for general maps
[117]. Other researchers have devised algorithms to find rendezvous locations given a schedule
of meetings [3] or for a set of worker robots to rendezvous with a single tanker robot [72]. The
robot rendezvous problem has also been studied for two robots in an unknown environment [96].

This thesis focuses on forming a schedule for robots to transfer items, while the robot ren-
dezvous research finds only a meeting point for multiple robots. However, this prior work in
robot rendezvous could be used as a subcomponent in forming the schedule. We do not do
so since these robot rendezvous techniques are computationally expensive, and we opt to use
inexpensive heuristics instead.

8.2.5 Distributed Algorithms

A large community of researchers has been studying how to build distributed algorithms. Appli-
cations of distributed algorithms include multi-robot coverage [9], exploration [118], formation
control [6], and task allocation [68, 86], and among the most common approaches are biologi-
cally inspired local control rules [68] and multi-agent auctions [39, 65].

For scheduling problems specifically, distributed auctions have been applied [114]. Another

128 CHAPTER 8: BACKGROUND AND RELATED WORK

approach is to replan for individual agents but with added constraints to maintain commitments
between multiple agents [109]. Multi-agent Simple Temporal Networks have also been devel-
oped for distributed settings to maintain time constraints between multiple agents [20].

In this thesis, we presented an auction algorithm which could be implemented in a distributed
manner to form schedules with transfers. We believe this is the first distributed algorithm which
specifically plans schedules with transfers. Additionally, we discussed distributed algorithms to
reschedule from shared information in Ch. 6.

Chapter 9

Conclusion

We review the major scientific contributions of this thesis before discussing promising directions
for future research.

9.1 Contributions

The concrete scientific contributions of this thesis include:

• We formally define the Pickup and Delivery Problem with Transfers (PDP-T) and the prop-
erties of a valid PDP-T schedule. We introduce and categorize simplified PDP-T variants,
including the Pickup and Single Delivery Problem with Transfers (PSDP-T), and the No
Times Pickup and Delivery Problem with Transfers (nTPDP-T).

• We analyze the potential benefits of transfers, and prove that when minimizing total dis-
tance travelled with minimal constraints, transfers can reduce the objective cost by at most
a factor of two. We show that with additional constraints, transfers may enable additional
items to be delivered.

• We implement online task requests, scheduling and execution on the CoBot robots. Users
can interrupt the CoBot robots as they move to request new tasks either in person on a touch
screen or via voice, or by visiting a website. The tasks are scheduled on the server with
an MIP (or a novel scheduling algorithm with transfers) and executed by the robots. The
execution of schedules can be monitored remotely via the web. We present results from a
study where users schedule tasks on the robots for two weeks in a multi-story building.

• We introduce the CreBot robots, which autonomously transfer items between each other.
The CoBots can transfer items as well but rely on help from humans.

• We contribute a provably two-approximate heuristic and a metaheuristic that builds on it

129

130 CHAPTER 9: CONCLUSION

for the PSDP-T. We prove a bound for the improvement from allowing transfers for the
PSDP-T at any location versus allowing them only at pickup locations. We illustrate the
results of our algorithms in simulation and on the CoBots and CreBots.

• We propose three heuristics for the nTPDP-T: a greedy insertion heuristic, an auction in-
sertion heuristic, and an insertion heuristic based on finding the shortest path in a graph.
We compare the three heuristics on simulated problems in the Euclidean plane, and on
maps of San Francisco with problems generated from real world taxi data.

• We create an auction-based heuristic to schedule PDP-Ts online. The heuristic resched-
ules in response to new requests, delays, and failures, and could be implemented in a
distributed manner. The algorithms plans with transfers to satisfy either hard or soft time
windows. We implement the online algorithm on the CoBot robots, and demonstrate the
robots rescheduling in response to delays and robot failures.

• We introduce the novel idea of rescheduling based on shared information from other robots.
We examine what information to share, and how rescheduling could be implemented in a
distributed setting. We demonstrate rescheduling based on shared observations of closed
doors and blocked hallways on the CoBot robots.

• We contribute the VLNS-T algorithm to solve the general PDP-T, with multiple con-
straints, including time windows, capacities, maximum vehicle route durations, and max-
imum item transport times. We show that VLNS-T outperforms state of the art PDP al-
gorithms on benchmark problems and on problems generated from real-world taxi data on
maps of New York City.

9.2 Future Research Directions

There are many promising directions for future research stemming from this thesis. We discuss
a few briefly:

• Further Optimization for VLNS-T. The VLNS-T algorithm improves upon VLNS solu-
tions, but is computationally expensive. One area for future research is in creating heuris-
tics and optimizations to eliminate transfer points from the search space and increase the
speed of VLNS-T so that larger problems can be solved more quickly.

• Comparison to Hub and Spoke Approaches. If PDP-T algorithms could be run on scales
where hub and spoke approaches are practical, it would be useful to learn how much of an
improvement planning for individual packages with transfers can be over using pre-defined
fixed routes to hubs for different problem sizes.

9.2 FUTURE RESEARCH DIRECTIONS 131

• Optimizing for Makespan and Delivery Time Objectives. This thesis mainly focused on
minimizing the total distance travelled by the vehicles and the total time the vehicles were
operational. How would we form schedules to minimize the makespan, the maximum time
any vehicle is operational and the time before all tasks are completed?

• Divisible resources. How could we plan to deliver divisible resources with transfers? For
example, delivering water to put out fires or food to deliver to refugees that could be split
between multiple vehicles?

• Online destinations. Taxis that pick up passengers from the curb do not know their des-
tinations until the passengers enter the vehicle. How would this change the way plans are
made?

• Predicting and Preparing for Online Requests. Given sufficient data for learning, it
could be possible to learn a distribution of where new requests are expected to occur for
the online PDP-T. Given this distribution, could the vehicles plan to prepare for expected
new requests in order to fulfill them faster?

• Geometric constraints. Maps often have distinctive geometric features, such as bottle-
neck bridges and elevators in the Gates-Hillman Center. Could these geometric constraints
be exploited to form better plans or to form plans more quickly?

• Evaluating problem difficulty. When delivering all the items to the same location, we
can find a two-approximate solution in polynomial time. Are there other special cases with
similar properties? How can we evaluate the difficulty of a particular problem instance?

• Planning under uncertainty. Items may not be ready for delivery when expected, or
delays may occur. Rather than replanning to avoid delays, as we currently, could a schedule
be planned that is resilient to these failures?

• Probabilistic Travel Times. Most current approaches to the PDP assume that the travel
time between all destinations is known a priori. However, this assumption is unrealistic,
as in most domains there is a variance in travel times. How could this distribution be
accounted for in scheduling?

• Additional domains. A few other possible domains for this research could include distri-
bution methods for the shipping industry, planning flights for airlines, and devising means
of distributing water and supplies for rescue agencies. How effective would transfers be in
these domains?

132 CHAPTER 9: CONCLUSION

9.3 Concluding Remarks

In this thesis, we have introduced several algorithms which plan schedules with transfers for
pickup and delivery problems. Transferring items makes lower cost schedules which deliver
more items possible. The work presented has broad applications in robotics, logistics and trans-
portation domains. We have evaluated our algorithms with transfers on a range of benchmark
problems and transportation problems, and deployed our scheduling algorithms on real robots.

Bibliography

[1] S. Abdel-Naby, S. Fante, and P. Giorgini. Auctions negotiation for mobile rideshare ser-
vice. In Proceedings of the International Conference on Pervasive Computing and Appli-

cations (ICPCA), pages 225–230, 2007. 68, 126

[2] F. Alfredo Tang Montané and R. Galvao. A tabu search algorithm for the vehicle rout-
ing problem with simultaneous pick-up and delivery service. Computers & Operations

Research, 33(3):595–619, 2006. 123

[3] K. Alton and I. Mitchell. Efficient dynamic programming for optimal multi-location robot
rendezvous. In IEEE Conference on Decision and Control, pages 2794–2799, 2008. 127

[4] S. Arora. Polynomial time approximation schemes for euclidean traveling salesman and
other geometric problems. Journal of the ACM (JACM), 45(5):753–782, 1998. 122

[5] B. Baker and M. Ayechew. A genetic algorithm for the vehicle routing problem. Comput-

ers & Operations Research, 30(5):787–800, 2003. 123

[6] T. Balch and R. Arkin. Behavior-based formation control for multirobot teams. IEEE

Transactions on Robotics and Automation, 14(6):926–939, 1998. 127

[7] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for
deadline-TSP and vehicle routing with time-windows. In Proceedings of the ACM Sym-

posium on Theory of Computing, pages 166–174, 2004. 124

[8] F. Barringer. Need a ride? There are apps for that. The New York Times, January 20 2011.
http://green.blogs.nytimes.com/2011/01/20/need-a-ride-theres-an-app-for-that/. 126

[9] M. Batalin and G. Sukhatme. Spreading out: A local approach to multi-robot coverage. In
Proceedings of the International Symposium on Distributed Autonomous Robotic Systems

(DARS), pages 373–382, 2002. 127

[10] T. Bektas. The multiple traveling salesman problem: an overview of formulations and
solution procedures. Omega, 34(3):209–219, 2006. 122

[11] R. Bent and P. Van Hentenryck. A two-stage hybrid local search for the vehicle routing

133

134 BIBLIOGRAPHY

problem with time windows. Transportation Science, 38(4):515–530, 2004. 124

[12] G. Berbeglia, J. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup and delivery
problems: A classification scheme and survey. Top, 15(1):1–31, 2007. 123

[13] G. Berbeglia, J. Cordeau, and G. Laporte. Dynamic pickup and delivery problems. Euro-

pean Journal of Operational Research, 202(1):8–15, 2010. 124

[14] M. Berkelaar, K. Eikland, and P. Notebaert. lpsolve, 2012. http://lpsolve.sourceforge.net.
39

[15] B. Bhattacharya and Y. Hu. Approximation algorithms for the multi-vehicle scheduling
problem. Algorithms and Computation, pages 192–205, 2010. 124

[16] J. Biswas, B. Coltin, and M. Veloso. Corrective gradient refinement for mobile robot lo-
calization. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 73–78, 2011. 30

[17] J. Biswas and M. Veloso. Depth camera based indoor mobile robot localization and navi-
gation. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), pages 1697–1702, 2012. 30

[18] J. Biswas and M. Veloso. Multi-sensor mobile robot localization for diverse environments.
Proceedings of RoboCup 2013: Robot Soccer World Cup XVII, 2013. 30

[19] J. Biswas and M. M. Veloso. Localization and navigation of the cobots over long-term
deployments. The International Journal of Robotics Research, 32(14):1679–1694, 2013.
30

[20] J. C. Boerkoel Jr, L. R. Planken, R. J. Wilcox, and J. A. Shah. Distributed algorithms
for incrementally maintaining multiagent simple temporal networks. In Proceedings of

the International Conference on Automated Planning and Scheduling, pages 11–19, 2013.
128

[21] S. Botelho and R. Alami. M+: A scheme for multi-robot cooperation through negotiated
task allocation and achievement. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), volume 2, pages 1234–1239, 1999. 126

[22] P. Bouros, D. Sacharidis, T. Dalamagas, and T. Sellis. Dynamic pickup and delivery with
transfers. In D. Pfoser, Y. Tao, K. Mouratidis, M. Nascimento, M. Mokbel, S. Shekhar,
and Y. Huang, editors, Advances in Spatial and Temporal Databases, volume 6849 of
Lecture Notes in Computer Science, pages 112–129. Springer, 2011. 125

[23] B. Browning, J. Bruce, M. Bowling, and M. Veloso. STP: Skills, tactics, and plays for
multi-robot control in adversarial environments. Proceedings of the Institution of Mechan-

BIBLIOGRAPHY 135

ical Engineers, Part I: Journal of Systems and Control Engineering, 219(1):33–52, 2005.
126

[24] D. Bryan and M. O’Kelly. Hub-and-spoke networks in air transportation: An analytical
review. Journal of Regional Science, 39(2):275–295, 2002. 3, 124

[25] B. Bullnheimer, R. Hartl, and C. Strauss. An improved ant system algorithm for the
vehicle routing problem. Annals of Operations Research, 89:319–328, 1999. 123

[26] N. Chan and S. Shaheen. Ridesharing in north america: Past, present, and future. Trans-

port Reviews, 32(1):93–112, 2012. 126

[27] M. Charikar and B. Raghavachari. The finite capacity dial-a-ride problem. In Proceedings

of 39th Annual Symposium on Foundations of Computer Science, 1998, pages 458–467,
1998. 124

[28] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical Report 388, Grad. School of Industrial Administration, Carnegie Mellon
University, 1976. 122

[29] B. Coltin, J. Biswas, D. Pomerleau, and M. Veloso. Effective semi-autonomous telepres-
ence. RoboCup 2011: Robot Soccer World Cup XV, pages 365–376, 2012. 32, 86

[30] B. Coltin, S. Liemhetcharat, C. Meriçli, J. Tay, and M. Veloso. Multi-humanoid world
modeling in standard platform robot soccer. In Proceedings of the IEEE-RAS International

Conference on Humanoid Robots (Humanoids), pages 424–429, 2010. 97

[31] B. Coltin and M. Veloso. Optimizing for transfers in a multi-vehicle collection and deliv-
ery problem. In Proceedings of the International Symposium on Distributed Autonomous

Robotic Systems (DARS), 2012. 51, 60

[32] B. Coltin, M. Veloso, and R. Ventura. Dynamic user task scheduling for mobile robots.
In Proceedings of the Workshop on Automated Action Planning for Autonomous Mobile

Robots, AAAI, 2011. 29

[33] J.-F. Cordeau and G. Laporte. A tabu search heuristic for the static multi-vehicle dial-
a-ride problem. Transportation Research Part B: Methodological, 37(6):579–594, 2003.
xiii, 5, 113, 117, 118

[34] C. Cortés, M. Matamala, and C. Contardo. The pickup and delivery problem with trans-
fers: Formulation and a branch-and-cut solution method. European Journal of Opera-

tional Research, 200(3):711–724, 2010. 3, 124

[35] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,
49(1):61–95, 1991. 89

136 BIBLIOGRAPHY

[36] J. Dethloff. Vehicle routing and reverse logistics: the vehicle routing problem with simul-
taneous delivery and pick-up. OR Spectrum, 23(1):79–96, 2001. 123

[37] J. Dethloff et al. Relation between vehicle routing problems: an insertion heuristic for
the vehicle routing problem with simultaneous delivery and pick-up applied to the vehicle
routing problem with backhauls. Journal of the Operational Research Society, 53(1):115–
118, 2002. 123

[38] R. Dial. Autonomous dial-a-ride transit introductory overview. Transportation Research

Part C: Emerging Technologies, 3(5):261–275, 1995. 124

[39] M. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coordination: A
survey and analysis. Proceedings of the IEEE, 94(7):1257–1270, 2006. 127

[40] C. Duhamel, J. Potvin, and J. Rousseau. A tabu search heuristic for the vehicle routing
problem with backhauls and time windows. Transportation Science, 31(1):49–59, 1997.
122, 123

[41] B. Eksioglu, A. Vural, and A. Reisman. The vehicle routing problem: A taxonomic review.
Computers & Industrial Engineering, 57(4):1472–1483, 2009. 121

[42] J. Evans. Helpmate: An autonomous mobile robot courier for hospitals. In Proceedings

of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (IROS),
volume 3, pages 1695–1700, 1994. 125

[43] C. Farivar. Transportation innovation: How Lyft and SideCar are changing commuting.
Ars Technica, September 28 2012. http://arstechnica.com/business/2012/09/my-life-as-a-
high-tech-part-time-not-quite-taxi-driver/. 5, 126

[44] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual exploration of big spatio-
temporal urban data: A study of New York City taxi trips. IEEE Transactions on Visual-

ization and Computer Graphics, 19(12):2149–2158, 2013. 118

[45] B. Gerkey and M. Matarić. A formal analysis and taxonomy of task allocation in multi-
robot systems. The International Journal of Robotics Research, 23(9):939–954, 2004.
126

[46] B. P. Gerkey and M. J. Matarić. A formal analysis and taxonomy of task allocation in
multi-robot systems. The International Journal of Robotics Research, 23(9), 2004. 126

[47] M. Goetschalckx and C. Jacobs-Blecha. The vehicle routing problem with backhauls.
European Journal of Operational Research, 42(1):39–51, 1989. 123

[48] I. Gørtz, V. Nagarajan, and R. Ravi. Minimum makespan multi-vehicle dial-a-ride.
Algorithms-ESA 2009, pages 540–552, 2009. 125

BIBLIOGRAPHY 137

[49] S. Grange, T. Fong, and C. Baur. Effective vehicle teleoperation on the world wide web. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
volume 2, pages 2007–2012, 2000. 125

[50] I. Gribkovskaia, Ø. Halskau, G. Laporte, and M. Vlček. General solutions to the single
vehicle routing problem with pickups and deliveries. European Journal of Operational

Research, 180(2):568–584, 2007. 122

[51] A. Gupta, M. Hajiaghayi, V. Nagarajan, and R. Ravi. Dial a ride from k-forest. ACM

Transactions on Algorithms (TALG), 6(2):41, 2010. 124

[52] K. Gutenschwager, C. Niklaus, and S. Voß. Dispatching of an electric monorail system:
Applying metaheuristics to an online pickup and delivery problem. Transportation Sci-

ence, 38(4):434–446, 2004. 124

[53] A. Haghani and S. Jung. A dynamic vehicle routing problem with time-dependent travel
times. Computers & Operations Research, 32(11):2959–2986, 2005. 124

[54] G. Hasle and O. Kloster. Industrial vehicle routing. In Geometric Modelling, Numerical

Simulation, and Optimization, pages 397–435. Springer, 2007. 117

[55] W. Herbawi and M. Weber. Evolutionary multiobjective route planning in dynamic multi-
hop ridesharing. In P. Merz and J.-K. Hao, editors, Evolutionary Computation in Combi-

natorial Optimization, volume 6622 of Lecture Notes in Computer Science, pages 84–95.
Springer Berlin / Heidelberg, 2011. 127

[56] W. Herbawi and M. Weber. A genetic and insertion heuristic algorithm for solving the
dynamic ridematching problem with time windows. In Proceedings of the International

Conference on Genetic and Evolutionary Computation, pages 385–392, 2012. 127

[57] IBM. IBM ILOG CPLEX optimization studio, 2012. http://www-
03.ibm.com/software/products/en/ibmilogcpleoptistud/. 39

[58] A. Ivanov and A. Tuzhilin. The Steiner ratio Gilbert–Pollak conjecture is still open. Al-

gorithmica, pages 1–3, 2011. 60

[59] S. Jung and A. Haghani. Genetic algorithm for a pickup and delivery problem with
time windows. Transportation Research Record: Journal of the Transportation Research

Board, 1733(-1):1–7, 2000. 124

[60] V. Kachitvichyanukul et al. A particle swarm optimization for the vehicle routing problem
with simultaneous pickup and delivery. Computers & Operations Research, 36(5):1693–
1702, 2009. 123

[61] E. Kamar and E. Horvitz. Collaboration and shared plans in the open world: Studies of

138 BIBLIOGRAPHY

ridesharing. In Proceedings of the International Jont Conference on Artifical Intelligence

(IJCAI), pages 187–194, 2009. 68, 126

[62] G. Kaminka and I. Frenkel. Integration of coordination mechanisms in the bite multi-
robot architecture. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), pages 2859–2866, 2007. 97

[63] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science,
220(4598):671, 1983. 58

[64] A. Kleiner, B. Nebel, and V. Ziparo. A mechanism for dynamic ride sharing based on
parallel auctions. In Proceedings of the International Joint Conference on Artificial Intel-

ligence (IJCAI), pages 266–272, 2011. 68, 126

[65] S. Koenig, C. Tovey, M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak, A. Kley-
wegt, A. Meyerson, and S. Jain. The power of sequential single-item auctions for agent
coordination. In Proceedings of the National Conference on Artificial Intelligence, vol-
ume 21, page 1625. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2006. 127

[66] T. Kollar, V. Perera, D. Nardi, and M. Veloso. Learning environmental knowledge
from task-based human-robot dialog. In Proceedings of the International Conference on

Robotics and Automation (ICRA), pages 4304–4309, 2013. 34, 43

[67] M. Korein, B. Coltin, and M. Veloso. Scheduling mobile exploration tasks for environment
learning. In Proceedings of the International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS), pages 1255–1256, 2013. 34

[68] M. Krieger, J. Billeter, and L. Keller. Ant-like task allocation and recruitment in coopera-
tive robots. Nature, 406(6799):992–995, 2000. 127

[69] A. Larsen and O. Madsen. The dynamic vehicle routing problem. PhD thesis, Technical
University of Denmark, Department of Informatics and Mathematical Modeling, 2000.
124

[70] K. Lerman, C. Jones, A. Galstyan, and M. Matarić. Analysis of dynamic task allocation
in multi-robot systems. The International Journal of Robotics Research, 25(3):225–241,
2006. 126

[71] H. Li and A. Lim. A metaheuristic for the pickup and delivery problem with time windows.
In Proceedings of the International Conference on Tools with Artificial Intelligence, pages
160–167, 2001. 124

[72] Y. Litus, R. Vaughan, and P. Zebrowski. The frugal feeding problem: Energy-efficient,

BIBLIOGRAPHY 139

multi-robot, multi-place rendezvous. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), pages 27–32, 2007. 127

[73] Q. Lu and M. Dessouky. An exact algorithm for the multiple vehicle pickup and delivery
problem. Transportation Science, 38(4):503–514, 2004. 123

[74] Q. Lu and M. Dessouky. A new insertion-based construction heuristic for solving the
pickup and delivery problem with time windows. European Journal of Operational Re-

search, 175(2):672–687, 2006. 124

[75] D. Luxen and C. Vetter. Real-time routing with OpenStreetMap data. In Proceedings of

the ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems (GIS), pages 513–516, New York, NY, USA, 2011. ACM. 118

[76] R. Masson, F. Lehuédé, and O. Péton. An adaptive large neighborhood search for the
pickup and delivery problem with transfers. Transportation Science, 47(3):344–355, 2013.
125

[77] R. Masson, F. Lehuédé, and O. Péton. Efficient feasibility testing for request insertion in
the pickup and delivery problem with transfers. Operations Research Letters, 41(3):211–
215, 2013. 125

[78] R. Masson, F. Lehuédé, and O. Péton. The dial-a-ride problem with transfers. Computers

& Operations Research, 41:12–23, 2014. 3, 125

[79] J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999. 122

[80] S. Mitrovic-Minic and G. Laporte. The pickup and delivery problem with time windows
and transshipment. Information Systems and Operational Research, 44(3):217–228, 2006.
3, 124

[81] G. Nagy and S. Salhi. Heuristic algorithms for single and multiple depot vehicle rout-
ing problems with pickups and deliveries. European Journal of Operational Research,
162(1):126–141, 2005. 122, 123

[82] Y. Nakao and H. Nagamochi. Worst case analysis for a pickup and delivery problem with
single transfer. Numerical Optimization Methods, Theory and Applications, 1584:142–
148, 2008. 3, 124

[83] W. Nanry and J. Wesley Barnes. Solving the pickup and delivery problem with time
windows using reactive tabu search. Transportation Research Part B: Methodological,
34(2):107–121, 2000. 124

140 BIBLIOGRAPHY

[84] OpenStreetMap. OpenStreetMap, 2012. http://openstreetmap.org. 81

[85] I. Osman. Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Annals of Operations Research, 41(4):421–451, 1993. 123

[86] L. Parker. Alliance: An architecture for fault tolerant multirobot cooperation. IEEE

Transactions on Robotics and Automation, 14(2):220–240, 1998. 126, 127

[87] S. Parragh, K. Doerner, and R. Hartl. A survey on pickup and delivery problems: Part I,
transportation between customers and depot. Journal fur Betriebswirtschaft, 58(1):21–51,
2008. 121, 122, 123

[88] S. Parragh, K. Doerner, and R. Hartl. A survey on pickup and delivery problems: Part
II, transportation between pickup and delivery locations. Journal fur Betriebswirtschaft,
58(2):81–117, 2008. 121, 122

[89] M. Piorkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser. A Parsimonious Model of
Mobile Partitioned Networks with Clustering. In Proceedings of the International Con-

ference on COMmunication Systems and NETworkS (COMSNETS), January 2009. 81

[90] M. Polacek, R. F. Hartl, K. Doerner, and M. Reimann. A variable neighborhood search
for the multi depot vehicle routing problem with time windows. Journal of Heuristics,
10(6):613–627, 2004. 117

[91] D. Popken. Controlling order circuity in pickup and delivery problems. Transportation

Research Part E: Logistics and Transportation Review, 42(5):431–443, 2006. 124

[92] S. Ropke, J. Cordeau, and G. Laporte. Models and branch-and-cut algorithms for pickup
and delivery problems with time windows. Networks, 49(4):258–272, 2007. 123

[93] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.
xiii, 105, 106, 107, 108, 109, 117, 118, 124

[94] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II. An analysis of several heuristics for
the traveling salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977. 122

[95] S. L. Rosenthal. Human-Centered Planning for Effective Task Autonomy. PhD thesis,
Carnegie Mellon University, 2012. 30

[96] N. Roy and G. Dudek. Collaborative robot exploration and rendezvous: Algorithms, per-
formance bounds and observations. Autonomous Robots, 11(2):117–136, 2001. 127

[97] Z. Rubinstein and S. Smith. Dynamic management of paratransit vehicle schedules. In
Proceedings of the International Workshop on Scheduling and Planning Applications,

BIBLIOGRAPHY 141

June 2011. 124

[98] Z. Rubinstein, S. Smith, and L. Barbulescu. Incremental management of oversubscribed
vehicle schedules in dynamic dial-a-ride problems. In Twenty-Sixth AAAI Conference on

Artificial Intelligence, 2012. 124

[99] M. Samadi, T. Kollar, and M. M. Veloso. Using the web to interactively learn to find
objects. In Proceedings of AAAI, 2012. 32

[100] P. Saucy and F. Mondada. KhepOnTheWeb: open access to a mobile robot on the internet.
IEEE Robotics Automation Magazine, 7(1):41–47, March 2000. 125

[101] M. Savelsbergh and M. Sol. Drive: Dynamic routing of independent vehicles. Operations

Research, 46(4):474–490, 1998. 124

[102] D. Schulz, W. Burgard, D. Fox, S. Thrun, and A. Cremers. Web interfaces for mobile
robots in public places. IEEE Robotics Automation Magazine, 7(1):48–56, March 2000.
125

[103] J. Shang and C. Cuff. Multicriteria pickup and delivery problem with transfer opportunity.
Computers & Industrial Engineering, 30(4):631–645, 1996. 125

[104] R. Siegwart and P. Saucy. Interacting mobile robots on the web. In Proceedings of the

IEEE International Conference on Robotics and Automation, 1999. 125

[105] R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O’Sullivan. Lessons learned
from Xavier. IEEE Robotics Automation Magazine, 7(2):33–39, June 2000. 125

[106] R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig, and J. O’Sullivan. A layered ar-
chitecture for office delivery robots. In Proceedings of the International Conference on

Autonomous Agents, pages 245–252, 1997. 125

[107] Y. Sun, B. Coltin, and M. Veloso. Interruptible autonomy: Towards dialog-based robot
task management. In Intelligent Robotic Systems Workshop, AAAI, 2013. 43

[108] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in
graphs. Math. Japonica, 24(6):573–577, 1980. 60

[109] K. Talamadupula, D. E. Smith, W. Cushing, and S. Kambhampati. A theory of intra-agent
replanning. In Proceedings of the ICAPS 2013 Workshop on Distributed and Multi-Agent

Planning, 2013. 128

[110] S. Thangiah, A. Fergany, and S. Awan. Real-time split-delivery pickup and delivery time
window problems with transfers. Central European Journal of Operations Research,
15(4):329–349, 2007. 125

142 BIBLIOGRAPHY

[111] The pgRouting Project. pgRouting Project, 2012. http://pgrouting.org. 81

[112] P. Toth and D. Vigo. Models, relaxations and exact approaches for the capacitated vehicle
routing problem. Discrete Applied Mathematics, 123(1):487–512, 2002. 122

[113] P. Toth and D. Vigo. The vehicle routing problem, volume 9. Soc. for Industrial Mathe-
matics, 2002. 121

[114] M. Wellman, W. Walsh, P. Wurman, and J. MacKie-Mason. Auction protocols for decen-
tralized scheduling. Games and Economic Behavior, 35(1):271–303, 2001. 127

[115] Z. Xiang, C. Chu, and H. Chen. The study of a dynamic dial-a-ride problem under
time-dependent and stochastic environments. European Journal of Operational Research,
185(2):534–551, 2008. 124

[116] H. Xu, Z. Chen, S. Rajagopal, and S. Arunapuram. Solving a practical pickup and delivery
problem. Transportation Science, 37(3):347–364, 2003. 124

[117] P. Zebrowski, Y. Litus, and R. Vaughan. Energy efficient robot rendezvous. In Proceedings

of the Canadian Conference on Computer and Robot Vision (CRV), pages 139–148, 2007.
70, 127

[118] R. Zlot, A. Stentz, M. Dias, and S. Thayer. Multi-robot exploration controlled by a market
economy. In Proceedings of the IEEE International Conference on Robotics and Automa-

tion (ICRA), volume 3, pages 3016–3023, 2002. 126, 127

	1 Introduction
	1.1 Thesis Approach
	1.2 Contributions
	1.3 Evaluation
	1.4 Document Outline

	2 Pickup and Delivery Problems with Transfers
	2.1 Background: The Pickup and Delivery Problem
	2.1.1 PDP Properties and Constraints
	2.1.2 Actions in a Schedule
	2.1.3 Determining Schedule Validity
	2.1.4 Objective Function
	2.1.5 Example PDP and Solution
	2.1.6 Difficulty of the PDP

	2.2 The PDP with Transfers
	2.2.1 Additional Transfer Actions
	2.2.2 Schedule Validity with Transfers
	2.2.3 The Cost of Transfers
	2.2.4 Example PDP-T Solution
	2.2.5 The Benefit of Transfers

	2.3 Variations on the PDP-T
	2.4 Online and Distributed PDP-T
	2.5 Chapter Summary

	3 Task Scheduling and Execution on the CoBot Robots
	3.1 The CoBot Robots
	3.2 Tasks for the CoBots
	3.3 Requesting Tasks
	3.4 Scheduling Tasks
	3.4.1 MIP Scheduling
	3.4.2 Illustrative Scheduling Example

	3.5 Executing and Managing Schedules
	3.5.1 Executing a Schedule
	3.5.2 Managing Task Lists with Interruptible Autonomy

	3.6 Monitoring Schedule Execution
	3.6.1 The Telepresence Interface
	3.6.2 Monitoring Multiple CoBots

	3.7 Selected Deployment Results
	3.8 Chapter Summary

	4 The Pickup and Single Delivery Problem with Transfers
	4.1 The PSDP-T Problem
	4.2 PSDP-T Algorithms
	4.2.1 Optimal Approach
	4.2.2 Minimum Length Approximation
	4.2.3 Improvement with Local Search

	4.3 Transfers at Any Location
	4.4 Experimental Results
	4.4.1 Simulation Results
	4.4.2 Illustrative Deployments on CoBots
	4.4.3 Autonomous Transfers with CreBots

	4.5 Chapter Summary

	5 Heuristics for the nTPDP-T
	5.1 Heuristics for the nTPDP without Transfers
	5.1.1 The Greedy Approach
	5.1.2 The Auction Approach

	5.2 Heuristics with Transfers for the nTPDP-T
	5.2.1 Finding a Transfer Point
	5.2.2 Splitting an Item's Route
	5.2.3 Greedy Transfer Insertion
	5.2.4 Transfer Insertion with Auctions
	5.2.5 Graph Search

	5.3 Selected Experimental Results
	5.3.1 The Euclidean Plane
	5.3.2 San Francisco

	5.4 Chapter Summary

	6 Online Rescheduling with Transfers
	6.1 Auctions to Revise Schedules with Transfers Online
	6.1.1 The Online Auction Algorithm
	6.1.2 Online Scheduling and Rescheduling
	6.1.3 Experiments in Online Rescheduling

	6.2 Rescheduling with Shared Information
	6.2.1 Multi-Agent Rescheduling with Rationale Graphs
	6.2.2 Multi-Agent Rationale Sharing
	6.2.3 Multi-Agent Rescheduling
	6.2.4 Rescheduling on the CoBot Robots

	6.3 Chapter Summary

	7 Very Large Neighborhood Search with Transfers
	7.1 The VLNS-T Algorithm
	7.1.1 Very Large Neighborhood Search
	7.1.2 Greedy Insertion with Transfers
	7.1.3 Determining Action Execution Times

	7.2 Experiments
	7.2.1 Example Problems
	7.2.2 Benchmark Problems
	7.2.3 New York Taxi Problems

	7.3 Chapter Summary

	8 Background and Related Work
	8.1 Scheduling: The Vehicle Routing Problem
	8.1.1 The Traveling Salesman Problem
	8.1.2 The Vehicle Routing Problem with Backhauls
	8.1.3 The Pickup and Delivery Problem
	8.1.4 Dynamic Pickup and Delivery Problems
	8.1.5 Pickup and Delivery Problems with Transfers

	8.2 Related Robotics Research
	8.2.1 Pickup and Delivery Robots
	8.2.2 Task Allocation
	8.2.3 Ridesharing
	8.2.4 Robot Rendezvous
	8.2.5 Distributed Algorithms

	9 Conclusion
	9.1 Contributions
	9.2 Future Research Directions
	9.3 Concluding Remarks

