
Multi-Goal Path Optimization for
Robotic Systems with Redundancy based on the
Traveling Salesman Problem with Neighborhoods

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Mechanical Engineering

Iacopo Gentilini

Laurea, Mechanical Engineering, Politecnico di Torino, Italy
Diplom, Mechanical Engineering, Universität Karlsruhe (TH), Germany

M.S., Mechanical Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, PA

May, 2012

Acknowledgments

The author would like to express his deep gratitude and appreciation to his
advisor and chair of the doctoral committee, Dr. Kenji Shimada, and to
the other member of the committee, Dr. François Margot, Dr. William C.
Messner, and Dr. David Bourne.

He also would like to acknowledge DENSO Wave, Inc, Japan, and the
Autodesk IDEA Studio program for providing enlightening ideas, the test
environments, and partial funding for this research.

Finally, a special thanks is directed to the Bertucci Graduate Fellowship
in Engineering and the Mary Jane and Milton C. Shaw Fellowship for their
encouraging trust and financial support.

Abstract

Finding an optimal path for a redundant robotic system to visit a sequence
of several goal locations is a complex optimization problem and poses two
main technical challenges. Because of the redundancy in the system, the
robot can assume an infinite number of goal configurations to reach each
goal location. Therefore, not only an optimal sequence of the goals has
to be defined, but also, for each goal, an optimal configuration has to be
chosen among infinite possibilities. Second, the actual cost for the system
to move from one configuration to the next depends on many factors, such
as obstacle avoidance or energy consumption, and can be calculated only
through the employment of specific path planning techniques.

We first address the optimization problem of finding an optimal sequence
of optimal configurations, while assuming the cost function to be analyti-
cally defined. This problem is modeled as a Traveling Salesman Problem
with Neighborhoods (TSPN), which extends the well-known TSP to more
general cases where each vertex (goal configuration) is allowed to move in a
given region (neighborhood). In the literature, heuristic solution approaches
are available for TSPN instances with only circular or spherical neighbor-
hoods. For more general neighborhood topologies, but limited to the Eu-
clidean norm as edge weighting function, approximation algorithms have also
been proposed. We present three novel approaches: (1) a global Mixed Inte-
ger Non Linear Programming (MINLP) optimizer and (2) a convex MINLP
optimizer are modified to solve to optimality TSPN instances with up to
20 convex neighborhoods, and (3) a hybrid random-key Genetic Algorithm
(GA) is developed to address more general problems with a larger number of
possibly non-convex neighborhoods and with different types of edge weight-
ing functions. Benchmark tests show that the GA is able to find the same
optimal tour calculated by the MINLP solvers while drastically reducing
the computational cost, and it always improves the best known solutions for
available test problems with up to 1,000 neighborhoods.

Second, we integrate the GA with a probabilistic path planning tech-
nique to apply the proposed procedure to two practical applications. We
minimize the time currently required by an industrial vision inspection sys-
tem to complete a multi-goal cycle, where the neighborhoods are defined
using piecewise cubic splines in a seven-dimensional configuration space.
Afterwards, we optimize the flight path and the energy consumption of a
quadrotor Unmanned Aerial Vehicle (UAV) on an urban survey mission.
The specifications of the camera installed on the UAV are used here to
define the neighborhoods as three-dimensional polyhedra.

Cum his versare, qui te meliorem facturi sunt.
Illos admitte, quos tu potes facere meliores.

Mutuo ista fiunt, et homines, dum docent, discunt.

Seneca, Epistulae Morales, VII, 8

A Lino

Contents

1 Introduction 1
1.1 Literature Review . 1

1.1.1 The TSPN . 1
1.1.2 Heuristics . 2
1.1.3 Approximation algorithms 3

1.2 Contribution . 5

2 MINLP Solution 10
2.1 MINLP Formulation of the TSPN 10

2.1.1 Neighborhoods and edge weighting functions 12
2.1.2 First STSPN formulation 13
2.1.3 Second STSPN formulation 14

2.1.3.1 Second STSPN formulation for different norms 15
2.1.4 Third STSPN formulation 16
2.1.5 Fourth STSPN formulation 19
2.1.6 MTZ formulation . 22
2.1.7 Randomly generated STSPN test instances 23

2.2 Solution of the first STSPN formulation 24
2.2.1 Description of the algorithm 24

2.2.1.1 Subtour elimination constraints by cutting
planes . 25

2.2.1.2 Solving a convex relaxation and integer cuts 26
2.2.1.3 Initial heuristic solution 28

2.2.2 Software settings . 29
2.2.3 Computational results 30

2.3 Solution of the second STSPN formulation 38
2.3.1 Solution procedure . 38
2.3.2 Software settings . 39
2.3.3 Computational results 39

v

2.4 Solution of the third and fourth STSPN formulations 43
2.4.1 Solution procedure . 43
2.4.2 Software settings . 43
2.4.3 Computational results 45

2.5 Conclusion . 46

3 Hybrid Random-Key Genetic Algorithm 48
3.1 Genetic algorithm formulation 48

3.1.1 Chromosome coding 49
3.1.2 Genetic operators . 51

3.1.2.1 Selection . 51
3.1.2.2 Crossover . 51
3.1.2.3 Mutation . 52
3.1.2.4 Immigration 55

3.1.3 Termination criteria and population management . . . 56
3.2 Computational results . 57

3.2.1 Random STSPN instances 57
3.2.1.1 Euclidean norm 58
3.2.1.2 Manhattan, Maximum, and Quadratic norm 63

3.2.2 CETSP Instances . 66
3.3 Conclusion . 68

4 7DOF Industrial Vision Inspection System 69
4.1 Problem Formulation . 69
4.2 Objective function evaluation 71

4.2.1 Traveling time . 71
4.2.2 Obstacle avoidance . 72

4.2.2.1 Single Query Planner and Roadmap Con-
struction . 75

4.2.2.2 Multiple Query Planner 81
4.3 Neighborhood definition . 84
4.4 Computational results . 86
4.5 Conclusion . 92

5 Unmanned Aerial Survey System 93
5.1 Problem Formulation . 93
5.2 Objective function evaluation 94

5.2.1 Kinematic Model . 95
5.2.2 Dynamic Model . 96
5.2.3 Aerodynamic Forces 97

vi

5.2.4 Motor Model . 99
5.2.5 Quadrotor Controller 100
5.2.6 Modification to hybrid random-key GA 101

5.3 Neighborhood definition . 102
5.4 Computational results . 107
5.5 Conclusion . 111

6 Conclusion 112
6.1 Contribution . 112
6.2 Future work . 114

A Appendix 116
A.1 Convergence of Bounded Set 116
A.2 Coded objective function and its derivatives 116

A.2.1 Euclidean and Quadratic Norm 116
A.2.2 Manhattan and Maximum norm 119

A.3 Effectiveness of integer cuts 119
A.4 Random sampling over an ellipsoid 121
A.5 Maximum volume inscribed ellipsoid 122
A.6 Laplace distribution random sampling 122
A.7 Power function distribution random sampling 122
A.8 GA parameters optimization 123
A.9 Parameter settings for the single query planner 128
A.10 Manipulator forward and inverse kinematic 129

vii

List of Figures

1.1 A disk D used in the definition of fatness for a region O ⊆ R2. 4
1.2 An ATSPN instance. The five areas around the vertices

shaded in bright blue are the neighborhoods. The directed
tour depicted with black arrows is a feasible solution. 6

1.3 Collision-free near optimal tour for a TSPN instance. Ob-
stacles are shaded in red/yellow and neighborhoods in bright
blue. 8

2.1 Randomly generated STSPN instances of comparable exten-
sion with 15 neighborhoods in R2 and optimal tours calcu-
lated with Euclidean Norm. 24

2.2 Convergence history of Couenne with CglTspn for the in-
stance tspn2DE15 1. 37

2.3 Performance profiles for the three MINLP solution procedures. 41
2.4 Performance profiles based on the CPU time for the five exact

MINLP solution procedures (a logarithmic scale is used for τ). 45

3.1 Convergence history of the hybrid random-key GA for solving
the instance lin318 v in R2 with Euclidean norm (gImax = 10). 56

3.2 Randomly generated STSPN instances of comparable exten-
sion with 15 neighborhoods in R3 and optimal tours calcu-
lated using the Euclidean Norm. 58

4.1 Robotic vision inspection system: six different configurations
of neighborhood i = 14 that correspond to the same relative
placement of the camera with respect to the component. . . . 70

4.2 Single query planner. Edges depicted in red are not collision-
free, and biRRTs are used to generate a collision free path. . 75

4.3 Objective function evaluation for collision-free tour using the
Weighted Maximum norm and different parameter sets. . . . 80

viii

4.4 Objective function evaluation for collision-free tour using the
Quadratic norm and different parameter sets. 81

4.5 Multiple query planner convergence as function of the pa-
rameter lsamp. Direct tour is the lower bound for the optimal
value of the objective function. 83

4.6 Piecewise cubic least-square approximation for neighborhood
i = 14. The sampled configurations are indicated with x-
marks in the same color of the corresponding curve. The
hyperspline consists of 8 polynomial pieces with brake points
indicated by black x-marks. 85

4.7 Original tour of 32 configurations provided by Denso Wave.
The black line corresponds to the turntable joint angle. . . . 89

4.8 Optimal tour of the original configurations obtained using the
Quadratic norm. 89

4.9 Near optimal tour of 32 neighborhoods obtained using the
Quadratic norm and low turntable speed. 90

4.10 Near optimal tour of 32 neighborhoods obtained using the
Quadratic norm and high turntable speed. 90

4.11 Cycle time improvement as function of the turntable speed
obtained using the Quadratic norm. Dashed lines represent
the corresponding objective function values for the original
tour provided by Denso Wave. 91

5.1 Quadrotor schematic. 95
5.2 Neighborhood definition for a rectangular feature with a 35

mm focal length camera. 103
5.3 For the optimization case “Energy With ψ”, path length and

energy consumption are improved by 15.6% and 19.3%, re-
spectively. 106

5.4 For the optimization case “Energy Only”, path length and
energy consumption are improved by 38.3% and 23.4%, re-
spectively. 108

A.1 Parameter Optimization for the CETSP instance rat195 in
R2 with Euclidean norm. 123

A.2 Performance profiles for the two parameter sets. 125

ix

List of Tables

2.1 Comparison of different branching options in CouTspn. . . . 31
2.2 STSPN instances with polyhedra in R2 as neighborhoods. . . 32
2.3 STSPN instances with polyhedra in R3 as neighborhoods. . . 33
2.4 STSPN instances with ellipsoids in R2 as neighborhoods. . . . 34
2.5 STSPN instances with ellipsoids in R3 as neighborhoods. . . . 35
2.6 Comparison of three MINLP solution procedures for ran-

domly generated STSPN instances with ellipsoidal neighbor-
hoods. 40

2.7 Comparison of the five exact solution procedures for STSPN
instances with polyhedral neighborhoods. 44

3.1 Formulation, Problem Type, and Solver employed for the
Touring heuristic. 55

3.2 Hybrid random-key GA results for randomly generated STSPN
instances with Euclidean norm (bold values are proven to be
optimal). 60

3.3 Comparison of the employed heuristics for randomly gener-
ated STSPN instances with Euclidean norm (bold values are
proven to be optimal . 61

3.4 Hybrid random-key GA results for randomly generated STSPN
instances with different norms (bold values are proven to be
optimal). 64

3.5 Comparison of the employed heuristics for randomly gener-
ated STSPN instances with different norms (bold values are
proven to be optimal). 65

3.6 CETSP instances in R2 and R3 with variable radii proposed
by Mennell [74]. 67

4.1 Kinematic parameter for the 7DOF vision inspection system. 86

x

4.2 Simulation and experimental results for the 7DOF vision in-
spection system. 87

5.1 Parameters used in the simulation. 107
5.2 Optimization results with 372 neighborhoods. 109
5.3 Optimization results with 1,611 neighborhoods. 110

A.1 Comparison between CouTspn and Standard. 120
A.2 Tested parameters sets. 124
A.3 CETSP instances in R2 and R3 with variable radii proposed

by Mennell [74]. 127
A.4 Comparison of different parameter settings for the single query

planner using the Weighted Maximum Norm. 128
A.5 Comparison of different parameter settings for the single query

planner using the Quadratic Norm. 129

xi

List of Algorithms

2.1 A simplified spatial Branch-and-Bound algorithm for solving
the MINLP P. 25

3.1 A Hybrid Random-Key Genetic Algorithm for solving STSPN
instances. 57

4.1 BiRRT based Single and Multiple Query Path Planner for the
STSPN. 73

4.2 Function local planner(qs, qg). 74
4.3 Function biRRT planner(P,G, qs, qg). 76
4.4 Function extend(T, q). 77
4.5 Function extract path(T1, q1, T2, q2). 78
4.6 Function connect(G,T). 79

xii

Chapter 1

Introduction

In this chapter, we first provide a literature review about recent works rel-
evant to our research, and we illustrate their limitations for practical ap-
plications. Then, we state our contribution and summarize the obtained
numerical results.

1.1 Literature Review

1.1.1 The TSPN

There are optimization instances in which the standard Traveling Salesman
Problem (TSP) formulation cannot fully capture the exact nature of the
problem. Indeed, if the vertices are allowed to move in certain continuous
domains (neighborhoods), not only an optimal Hamiltonian cycle has to be
found that visits each vertex once, but also the optimal position of each
vertex in its neighborhood has to be defined. The combination of an opti-
mal Hamiltonian cycle and optimal vertices positions is called optimal tour
hereafter. This problem was initially introduced by Arkin and Hassin [9],
and it is commonly referred to as the TSP with Neighborhoods (TSPN).

Some technical problems have been recently posed in the literature where
the TSPN formulation seems to be a suitable approach to properly capture
their nature. Utility companies employ automated meter reading (AMR)
based on radio frequency identification (RFID) to read meters from a cer-
tain distance. The reader has thus to plan in advance the shortest path that
travels within a certain radius from each meter to minimize the reading
costs [47, 93]. The same scenario occurs when mobile robots have to acquire
data from distributed sensors and therefore they have to approach each sen-
sor from a minimum distance to allow the wireless communication working

1

properly [105]. Unmanned aerial vehicles (UAV) can be deployed to monitor
a set of sites. A flight path has thus to be calculated such that the UAV
flies within a certain distance from the center of each site, while minimizing
the flying time or the fuel consumption [62]. Industrial manipulators can
be used to perform a sequence of multiple tasks during an operating cycle.
If the robotic system has 7 or more degrees of freedoms (DOF) there is an
infinite number of possible configurations that can be used while performing
each task in the sequence. Thus, an optimal sequence of optimal configura-
tions has to be calculated by a multi-goal path planner [44]. In all but the
last cited cases the neighborhoods are represented by balls in R2 or in R3,
and only in the last application the neighborhoods are non-convex regions
in the robot configuration space. Depending on the topology of the neigh-
borhoods and on the type of the edge weighting function, specific heuristic
approaches are available in the literature.

1.1.2 Heuristics

In the case of partially overlapping or disjoint balls in R2 and Euclidean
norm, indicated also as Close Enough TSP (CETSP), Gulczynski et al. [47]
propose different heuristics based on tiling, sweeping circles, radial adja-
cency, and Steiner zones. Dong et al. [28] propose two heuristics to extract
representatives vertices for each neighborhood based on tiling or convex
hulls, and then simulated annealing is used to search for a near optimal
tour. An extension of the Steiner zones heuristic is provided by Mennell [74],
where also balls in R3 and Manhattan norm are considered. First a graph re-
duction is performed by finding the intersections of the partially overlapping
balls (Steiner zones), and representative vertices are chosen for each zone.
Then a classical TSP is solved using these vertices, and finally the solution
is improved by solving a continuous touring problem. Among the several
variants of the main procedure, Mennell [74] proposes also to discretize the
Steiner zones into several representative points, and to employ a Genetic
Algorithm (GA) to solve the resulting Generalized TSP (GTSP) [94]. The
proposed procedures are applied on a set of test instances and results are
compared to the one obtained applying different approaches proposed by
other authors. Instances from the same test set will be used in this work to
benchmark our proposed method.

In the case of partially overlapping or disjoint balls in R2 and where air-
craft dynamics is considered in defining the edge weighting function, Klesh
[62] discusses necessary conditions for optimality and proposes two heuris-
tics, based on a “rubberband” approach or on a GTSP model. Since edges

2

are trajectories rather straight lines, not only the position of each vertex
has to be considered while searching for a near optimal tour, but also the
derivative of the trajectory at each vertex location.

In the case of disjoints balls in R2 and Euclidean or Manhattan norm
Yuan et al. [105] propose a two step approach: a permutation of the neigh-
borhoods is found by a traditional TSP algorithm, and then an evolutionary
approach is employed to find the best point in each neighborhood.

In the case of multi-goal path planning for redundant robotic systems,
where the problem complexity is further increased by the fact that a collision
free path between neighborhoods has to be found, Gueta et al. [44] propose
to find first a near optimal sequence in three steps: (1) cluster the repre-
sentative placements in the workspace, (2) solve the resulting TSP in each
cluster, and (3) concatenate the resulting paths. Then each neighborhood
is sampled, and a configuration is chosen for each neighborhood by combin-
ing a greedy nearest neighbor method and the Dijkstra algorithm using a
rough-to-smooth procedure. For similar cases, Saha et al. [91] propose first
to extract a small number of discrete samples for each neighborhood. The
resulting GTSP is then approximated by calculating a minimum group span-
ning tree as a special case of the Steiner tree problem [85] and by performing
a preorder tree walk.

The main limitation of the mentioned heuristic approaches is the fact
that only balls in R2 or in R3 are employed as neighborhoods. Only in the
case of robotic manipulators also non-convex neighborhoods are considered,
but a pre-sampling step is performed to transform the TSPN into a GTSP.
In this case, to avoid an excessive complexity in the GTSP model, only few
samples can be used to replace the continuous neighborhoods with clusters
of nodes [91].

1.1.3 Approximation algorithms

Besides heuristic approaches, in the computational geometry literature many
approximation algorithms have been proposed for the case of the TSPN
in R2 with Euclidean norm. The achieved approximation factors vary for
the different cases depending on the fact that the neighborhoods may be
connected or non-connected, disjoint or intersecting, with comparable or
varying diameter, convex or non-convex, and fat or non-fat. Two definitions
of fatness are available in the literature:

• A region O ⊆ R2 is said to be α-fat if for any disk D, which does not
fully contain O and whose center lies in O as illustrated in Figure 1.1,

3

O

D

Figure 1.1: A disk D used in the definition of fatness for a region O ⊆ R2.

the area of the intersection of O and D is al least 1/α the area of D
[30]. For example α is 1 for plane, 2 for the half plane, 4 for disk, ∞
for a line segment.

• A region O is said to be α-fat if the ratio of the radius of the smallest
circumscribing circle to the radius of largest inscribed circle is bounded
by α [77].

Non-fatness and intersection seem to make the problem harder. More-
over, it has been proved that the most general case of TSPN is APX-hard
[22, 90], even for the simple case where the neighborhoods are line seg-
ments of approximately the same length [30]. For connected, disjoint, vary-
ing diameter, and α-fat neighborhoods, Elbassioni et al. [30] propose an
O(α)-approximation algorithm, which can be extended to O(α/

√
m) in Rm.

Under the second definition of fatness, Mitchell [77] proposes a polynomial-
time approximation scheme (PTAS) for the same problem topology. For
connected, intersecting, and comparable diameters neighborhoods a O(1)-
approximation is proposed by Dumitrescu and Mitchell [29]. Furthermore, if
the neighborhoods are convex and α-fat an O(α3) approximation is given in
[30]. Finally, in the case of connected and intersecting neighborhoods with
varying diameter, an O(log(n)) approximation is proposed for polygons [43]
and for more general neighborhoods [30], where n is the number of neighbor-
hoods. The latter approximation becomes O(1) if the neighborhoods have
comparable diameters.

The above mentioned approximation algorithms, which are polynomial
time in many cases and represent a useful tool for finding a valid upper
bound to the solution, can deal with several types of neighborhoods but
non-connected. However, their deterministic nature may cause them to pro-
vide a near optimal tour with an effective approximation factor yet too large

4

for practical applications. Yuan et al. [105] have shown that for the simple
case of disjoint balls in R2 the solution provided by his evolutionary ap-
proach always outperforms the approximation algorithm provided in [30],
although it generally requires a larger CPU time. Moreover, approximation
algorithms are based on the Euclidean norm and mainly deal with neigh-
borhoods in R2, except for the extension to Rm proposed in [30], while in
many technical fields different definitions of the objective function in higher
dimensional spaces might be required.

1.2 Contribution

A robotic system is said to be redundant if, for reaching a given goal location,
it can assume several, possibly infinite, configurations. For example, a robot
manipulator typically interacts with objects by using a device mounted at
the end of its arm and called end-effector. If the manipulator has seven or
more joints, for placing its end-effector at a given position and orientation
in the workspace, its various joints can assume infinitely many possible po-
sitions, or configurations. Another example is an UAV that has to acquire
a picture of a target. This picture can be taken from an infinite number of
positions, or configurations, as far as some given specifications are fulfilled,
such as image resolution or distortion.

In practical applications, a redundant robotic system might be asked to
reach not only one but n goal locations within an operation cycle. Each goal
location i can be represented by a set Qi of configurations in the collision
free configuration space, Qfree, of the robotic system. The set Qi is the
neighborhood for goal i. Given two goals i 6= j and two configurations
qi ∈ Qi and qj ∈ Qj , a cost function for the manipulator to move from qi
to qj is defined. This function is called hereafter edge weighting function,
and it is indicated as d (qi, qj). In this work we aim to find configurations
qi ∈ Qi for i = 1, . . . , n and a tour that connects these n configurations such
that its total cycle cost is minimized.

This problem is very complex in its full generality, as neighborhoods can
have arbitrary shapes determined by the system specifications or physical
constraints. Moreover, computing the optimal path and thus the cost to
move between two goal locations is in itself a difficult problem since it in-
volves robot kinematics and obstacle avoidance. In this work we study first
a simplified version of this problem using analytically defined cost functions.
However, we address most of the limitations of previous approaches illus-
trated in Section 1.1, allowing wider classes both of neighborhood topologies

5

qi

qj

Qi

Qj

ξij

Figure 1.2: An ATSPN instance. The five areas around the vertices shaded
in bright blue are the neighborhoods. The directed tour depicted with black
arrows is a feasible solution.

and of edge weighting functions. In particular, polyhedra, ellipsoids, and
cubic splines in Rm have been employed as neighborhood, and four types
of edge weighting functions have been considered: Manhattan, Euclidean,
Quadratic, and Maximum norm. These provide enough flexibility to reason-
ably estimate the actual system performance for practical purposes. Under
these initial assumptions, we propose three novel approaches to search for
an optimal tour.

The first approach to solve such instances of TSPN is to formulate it as
a non-convex Mixed Integer Non Linear Programming (MINLP) using as
variables the coordinates of the vertices qi for i = 1, . . . , n as well as binary
variables ξij for i, j = 1, . . . , n to represent the possible edges of the tour,
as shown in Figure 1.2. The resulting MINLP is non-convex, even when the
integrality constraints on the variables ξij are relaxed. It follows that only
solvers for non-convex MINLP problems can be used for its solution, such
as Baron [92], Couenne [12, 20], and Lindoglobal [68].

On the one hand, these solvers struggle to solve relatively small size
instances of TSPN. On the other hand, by using a specific feature of the
MINLP formulation and customizing the solver by adding specific cut gen-
erators and heuristics, we are able to solve instances with up to 16 polyhedral
or ellipsoidal neighborhoods far more efficiently. The crucial feature that we
exploit is that once all the binary variables in the formulation are fixed to 0

6

or 1 values, the continuous relaxation of the remaining problem is convex.
It is thus possible to solve it to optimality using a continuous solver. For
example, the solver Couenne (with default settings) requires 733 seconds
to solve a TSPN instance with ellipsoids in R2 (tspn2DP6 2) to optimality,
while the proposed approach solves it in a fraction of a second.

In the second approach, the problem is reformulated as a convex MINLP
instance under the assumption that the neighborhoods and the edge weight-
ing functions are both convex, and three different formulations are de-
rived. Then, using a convex MINLP optimizer such as Bonmin [17, 20]
or Mosek [4] the problem can be solved to optimality. The best perfor-
mance is obtained when Bonmin is customized to solve TSPN instances,
and a specific cut generator is implemented to efficiently handle specific
constraints existing in the MINLP formulation of the problem. Using this
exact procedure CPU time is improved up to two orders of magnitude, and
instances with up to 20 neighborhoods have been solved to optimality.

A third approach is then proposed to handle larger scale TSPN instances
with possibly non-convex neighborhoods. Starting from the MINLP frame-
work used in the previous approaches an hybrid random-key Genetic Al-
gorithm (GA) is specifically developed to search for a near optimal tour.
The choice of a random-key coding for the GA guarantees feasibility during
crossover operations, and avoids to explicitly formulate the subtour elimi-
nation constraints of the original MINLP formulation resulting in a more
efficient representation of the problem. Moreover, the CPU time of the GA
is drastically reduced by replacing commonly used mutation operators with
two ad-hoc heuristics: (1) the position of each vertex is fixed, and their
sequence is improved by using the Lin-Kernighan heuristic [67]; and (2) the
position of each vertex is optimized by solving the Non Linear Programming
(NLP) instance resulting from fixing their sequence in the original MINLP
formulation.

To evaluate the performance of the proposed GA, TSPN instances were
either randomly generated or selected among the CETSP problems proposed
by Mennell [74]. In the first case, the GA was able to find the optimal tour
in all the cases where the solution was also calculated using the MINLP op-
timizers, while improving the computational performance by orders of mag-
nitude. In the second case, the GA improved the best known near optimal
tour on average by 1.92%, although the proposed approach is not specif-
ically tailored to solve CETSP instances. Finally, it is worth mentioning
that a drawback of the proposed heuristic approach is that no approxima-
tion factor for the results can be guaranteed. However, in case an upper
bound is required, it is sufficient to first run an approximation algorithm if

7

Figure 1.3: Collision-free near optimal tour for a TSPN instance. Obstacles
are shaded in red/yellow and neighborhoods in bright blue.

available, and then introduce the obtained approximation as a chromosome
of the initial population used in the GA.

Finally, to account for collision avoidance and thus to achieve a more
realistic evaluation of the edge weighting function for practical applications
we embed in the GA a probabilistic path planning technique based on bidi-
rectional Rapidly-exploring Random Trees (RRTs). Figure 1.3 illustrates a
TSPN instance where obstacles are considered in the definition of the near
optimal tour. Moreover, we integrate a dynamic simulator within the GA
to optimize the energy consumption of the considered robotic system.

In particular we apply the proposed approach to two test cases. First,
we minimize the cycle time of a 7 DOF robotic vision inspection system.
The neighborhoods are here approximated using piecewise cubic splines in
a seven-dimensional configuration space, and the employed edge weighting
function is based on the Quadratic or the Maximum norm. For the specific
scenario considered in this work with a 32-goal cycle, experimental tests
show an improvement of the current cycle time up to 30%. Second, the
flight path and the energy consumption of a quadrotor drone on an ur-
ban inspection mission are optimized. The neighborhoods are here defined
as three-dimensional polyhedra and the edge weighting function is either
the Euclidean or the Quadratic norm. The level of the archived improve-
ment with respect to the results obtained with more traditional optimization
techniques generally depends on the number of the neighborhood and their

8

spatial distribution. Within this work we observe the best improvement on
the largest analyzed instance with more than 1,500 goals, where path length
and energy consumption are improved up to 38% and 23%, respectively.

The thesis is organized as follows. The used MINLP formulation is
presented in chapter 2 together with the first two solution procedures. The
hybrid random-key GA is presented in chapter 3. The two considered robotic
applications are illustrated in chapters 4 and 5. Finally, chapter 6 contains
conclusions and discusses potential future work.

9

Chapter 2

MINLP Solution

In this chapter, we first introduce five different formulations for the con-
sidered optimization problem. Then, we propose a heuristic and two exact
procedures to solve small scale problems using these formulations and we
discuss the attained numerical results.

2.1 MINLP Formulation of the TSPN

Dong et al. [28] and Mennell [74] propose a MINLP formulation for the TSPN
in case neighborhoods are balls in R2 and in R3 and the edge weighting func-
tion is the Euclidean or Manhattan norm, but no numerical experiments are
reported. In this section a more general formulation is proposed, where con-
vex and non-convex neighborhoods in Rm are considered, and no constraints
are posed on the nature of the edge weighting function. A procedure is then
illustrated to reformulate the problem into a convex one if neighborhoods
and edge weighting function are convex.

A TSPN instance is given by a set V = {1, 2, . . . , n} of the indices of
the goal locations, a set Qi ⊆ Rm for i ∈ V of neighborhoods, and a non-
negative distance function d(u,v) for all u,v ∈ Rm, called edge weight-
ing function hereafter. The instance can be symmetric (STSPN) or asym-
metric (ATSPN), depending on the distance function being symmetric, i.e.
d(u,v) = d(v,u) for all u,v ∈ Rm, or not.

The ATSPN can be formulated using n variables qi ∈ Rm for all i ∈ V
and n(n− 1) binary variables ξij for all i, j ∈ V with i 6= j such that

ξij =

{
1 if neighborhood j is visited just after neighborhood i;
0 otherwise.

10

The constraints are either those in an integer programming formula-
tion of the Asymmetric TSP (ATSP) based on the clique packing subtour
elimination constraints, also known as DFJ formulation [49] (constraints
(2.2)-(2.4) below), or expressing that variable qi ∈ Rm must be in the neigh-
borhood Qi for all i ∈ V (constraints (2.5) below).

We obtain the following MINLP formulation of the ATSPN:

minimize :
n∑
i=1

n∑
j=1
j 6=i

ξij d (qi, qj) , (2.1)

subject to :

n∑
i=1
i 6=j

ξij = 1 ∀ j ∈ V , (2.2)

n∑
j=1
j 6=i

ξij = 1 ∀ i ∈ V , (2.3)

∑
i∈S

∑
j∈V\S

ξij ≥ 1 ∀S ⊂ V \ {1}, |S| ≥ 2 , (2.4)

qi ∈ Qi ⊆ Rm ∀ i ∈ V , (2.5)

ξij ∈ {0, 1} ∀ i, j ∈ V, i 6= j , (2.6)

qi ∈ Rm ∀ i ∈ V . (2.7)

The 2n assignment constraints (2.2) and (2.3) make sure that each vertex
is visited exactly once. The 2n−1 − n − 1 subtour elimination constraints
(2.4) ensure that no subtour is present in a solution by forcing the number
of active edges departing from any subgraph induced by a subset of the
vertices with cardinality at least 2 to be at least equal to 1. Finally, the n
constraints (2.5) define the neighborhoods, and the n(n− 1) +n constraints
(2.6) and (2.7) define the domain of the instance.

The objective function is a non-convex function of the binary and con-
tinuous variables. Constraints (2.2)-(2.4) are linear, and the type of the
constraints (2.5) depends on the shape of the neighborhood Qi. In our test
instances, these constraints are either linear when Qi is a polyhedron, con-
vex and quadratic when it is an ellipsoid, or non-convex polynomial equality
constraints when it is a cubic spline.

11

2.1.1 Neighborhoods and edge weighting functions

Whereas in the literature mainly balls in R2 and in R3 have been used
as neighborhoods, in order to address a larger set of technical applications,
polyhedra or ellipsoids in Rm are used in this work as examples of convex and
fat domains. Constraints (2.5) becomes thus convex inequality constraints:

Ai qi + bi ≤ 0 ∀ i ∈ V , (2.8)

(qi − ci)
T P−1

i (qi − ci)− 1 ≤ 0 ∀ i ∈ V , (2.9)

where Ai is (li × m) matrix, bi is a (li × 1) vector with li the number of
halfspaces of the i-th polyhedron, Pi is a (m×m) symmetric positive definite
matrix, and ci is a (m× 1) vector, center of the i-th ellipsoid.

Moreover, for the case of non-convex and non-fat neighborhoods, cubic
splines have been used. In this case constraints (2.5) are non-convex equal-
ity constraints, where n additional continuous variables ti and 4n spline
coefficients sk,i ∈ Rm are employed for the parametrization:

s0,i + s1,i ti + s2,i t
2
i + s3,i t

3
i − qi = 0 ∀ i ∈ V , (2.10)

0 ≤ ti ≤ 1 ∀ i ∈ V , (2.11)

ti ∈ R ∀ i ∈ V . (2.12)

The choice of cubic splines is made based on the fact that these can be eas-
ily employed to approximate actual one-dimensional neighborhoods, which
might not be analytically defined. Cubic Bézier splines, which are contained
in the convex hull of the Bézier polygon defined by the control points pk,i,
have been also used as an example:

p0,i (1− ti)3+3 p1,i (1− ti)2 ti+

3 p2,i (1− ti) t2i + p3,i t
3
i − qi = 0 ∀ i ∈ V .

(2.13)

In the present work four types of edge weighting functions d (qi, qj) have
been tested: Manhattan (1), Euclidean (2), Quadratic (Q), and Maximum
(inf) norm. The symbol enclosed in parentheses is used hereafter to refer to
that specific norm. The four edge weighting functions are:

‖qi − qj‖1 =

m∑
k=1

|qi,k − qj,k| , (2.14)

‖qi − qj‖2 =

√
(qi − qj)T (qi − qj) , (2.15)

‖qi − qj‖Q =

√
(qi − qj)T Q (qi − qj) , (2.16)

‖qi − qj‖∞ = max {|qi,1 − qj,1| , . . . , |qi,m − qj,m|} . (2.17)

12

where Q is symmetric positive definite. In industrial robotic applications
where the edge weighting function has to account for the traveling time
rather than for the distance, Quadratic and Maximum norm are usually
employed [44].

2.1.2 First STSPN formulation

If the graph induced by qi is undirected, i.e., d (qi, qj) = d (qj , qi), then
the TSPN becomes Symmetric (STSPN). Starting from the DFJ formula-
tion of the Symmetric TSP (STSP), the MINLP formulation of the STSPN
becomes:

minimize :

n∑
i=1

n∑
j=1
j>i

ξij d (qi, qj) , (2.18)

subject to :
i−1∑
j=1

ξji +
n∑

j=i+1

ξij = 2 ∀ i ∈ V , (2.19)

∑
i∈S

(∑
j∈V\S
j<i

ξji +
∑
j∈V\S
j>i

ξij

)
≥ 2 ∀S ⊂ V \ {1}, |S| ≥ 3 ,

(2.20)

ξij ∈ {0, 1} ∀ i, j ∈ V, j > i , (2.21)

together with constraints (2.5) and (2.7). This formulation is denoted as first
STSPN formulation hereafter. The binary variables ξij are now n(n− 1)/2
and the assignment problem constraints, (2.19), are n.

One difficulty in handling the above formulation is the number of subtour
elimination constraints (2.20). Although their number is exponential in the
size of the instance n, they can be handled efficiently implicitly using a
cutting plane approach [81]. A heuristic and an exact solution procedure
based on this formulation are proposed in Section 2.2, and they are tested
on randomly generated TSPN instances with ellipsoids and polyhedra in
R2 and R3, and with the Euclidean norm. First the standard Branch-and-
Bound algorithm for convex MINLP available in Bonmin [17] is used to
find a heuristic solution. This is then used to define the initial point and the
upper bound for a customized version of the Branch-and-Bound algorithm
available in Couenne [12].

13

2.1.3 Second STSPN formulation

A drawback of the MINLP formulation of the TSPN is the non-convexity
of the NLP relaxation. This is caused by two factors: the non-convexity
of the objective function, (2.1) or (2.18), regardless the nature of the edge
weighting function d (qi, qj), and the potential non-convexity of the neigh-
borhoods, (2.5). To overcome this limitation an alternative formulation can
be introduced for the STSPN case. If n(n− 1)/2 additional real variables
dij are introduced, the MINLP formulation becomes:

minimize :
n∑
i=1

n∑
j=1
j>i

dij , (2.22)

subject to :

{
dij = 0 if ξij = 0
d (qi, qj)− dij ≤ 0 if ξij = 1

∀ i, j ∈ V, j > i , (2.23)

dij ∈ R+ ∀ i, j ∈ V, j > i , (2.24)

together with constraints (2.19), (2.20), (2.5), (2.21), and (2.7), where R+ =
{x ∈ R | x ≥ 0}. After replacing the disjunction (2.23) with the following
big-M relaxation [55]:

d (qi, qj) ≤ dij + (1− ξij) dmax,ij ∀ i, j ∈ V, j > i . (2.25)

we denote the resulting formulation as the second STSPN.
We observe that the number of additional variables dij does not depend

on the domain dimension m, and that the objective function (2.22) is a linear
function of these variables. The value of dmax,ij corresponds to the maximum
possible value of d (qi, qj) for qi ∈ Qi and qj ∈ Qj . If the edge weighting
function is convex, then the n(n− 1)/2 constraints (2.25) are convex since
each one of those is the positive sum of a convex function and an affine
function. Finally, if the neighborhoods (2.5) are convex, then the entire
problem is convex.

The following lemma holds:

Lemma 1. If (q?i , ξ
?
ij , d

?
ij) is an optimal point for the second STSPN for-

mulation, then (q?i , ξ
?
ij) is optimal for the first STSPN formulation, where

i, j ∈ V, j > i.

Proof. Let us call O∗II the optimal value of the objective function (2.22)
calculated at d?ij , and let us call O∗I the value, not necessarily optimal, of
the objective function (2.18) calculated at (q?i , ξ

?
ij). Since constraints (2.25)

hold, it is true that O∗I ≤ O∗II .

14

Suppose now that there exists a point (q̃i, ξ̃ij) such that ÕI < O∗I , where

ÕI is the value of the objective function (2.18) calculated at (q̃i, ξ̃ij). Sup-
pose that this point is a feasible point for the first formulation. If the
following values are assigned to d̃ij :{

d̃ij = 0 if ξ̃ij = 0 ,

d̃ij = d (q̃i, q̃j) if ξ̃ij = 1 ,

then constraints (2.25) are satisfied, and (q̃i, ξ̃ij , d̃ij) is a feasible point also
for the second formulation. Moreover, it holds:

ÕII =
n∑
i=1

n∑
j=1
j>i

d̃ij =
n∑
i=1

n∑
j=1
j>i

ξ̃ij d (q̃i, q̃j) = ÕI < O∗I ≤ O∗II .

Finally, ÕII < O∗II contradicts the definition of optimality, for which it

must hold ÕII ≥ O∗II . Therefore, (q?i , ξ
?
ij) is an optimal point for the first

STSPN formulation.
Note that this Lemma holds also if the original disjunction (2.23) is used

in the second STSPN formulation instead of the big-M relaxation (2.25).

An exact solution procedure based on the second STSPN formulation
is proposed in Section 2.3, and it is tested on randomly generated STSPN
instances with ellipsoids in R2 and R3, and with the Manhattan, the Eu-
clidean, and the Maximum norm. Using a customized version of Outer-
Approximation based Branch-and-Cut algorithm for convex MINLP avail-
able in Bonmin [17], STSPN instances with up to 20 convex neighborhoods
can be solved. The heuristic results obtained by solving the first STSPN
formulation are used here as initial point and as upper bound for the algo-
rithm, and all the subtour elimination constraints already found are added
to the initial formulation of the problem.

2.1.3.1 Second STSPN formulation for different norms

The second STSPN formulation can be reformulated in case of Euclidean or
Quadratic norm by substituting Equation (2.15) or (2.16) into constraints
(2.25), which become Second Order Conic (SOC) constraints.

For the Maximum norm, constraints (2.25) are substituted by mn(n−1)

15

linear constraints:

qi,k − qj,k ≤ dij + (1− ξij) dmax,ijk

∀ i, j ∈ V, j > i, ∀ k ∈ {1, . . . ,m} , (2.26)

qj,k − qi,k ≤ dij + (1− ξij) dmax,ijk

∀ i, j ∈ V, j > i, ∀ k ∈ {1, . . . ,m} . (2.27)

Finally for the Manhattan norm, the second STSPN formulation be-
comes:

minimize :
n∑
i=1

n∑
j=1
j>i

m∑
k=1

dijk , (2.28)

subject to : qi,k − qj,k ≤ dijk + (1− ξij) dmax,ijk

∀ i, j ∈ V, j > i, ∀ k ∈ {1, . . . ,m} , (2.29)

qj,k − qi,k ≤ dijk + (1− ξij) dmax,ijk

∀ i, j ∈ V, j > i, ∀ k ∈ {1, . . . ,m} , (2.30)

dijk ∈ R+ ∀ i, j ∈ V, j > i, ∀ k ∈ {1, . . . ,m} , (2.31)

together with constraints (2.19), (2.20), (2.5), (2.21), and (2.7). In this case
mn(n− 1)/2 additional variables dijk are used.

2.1.4 Third STSPN formulation

In the second STSPN formulation a big-M relaxation of the disjunction
(2.23) is introduced. However, a stronger relaxation may lead to better
performance of the solver especially for MINLP cases where the disjunction
is driven by binary (indicator) variables [48].

If the neighborhoods Qi are bounded, without loss of generality we can
assume that qi,k ≥ 0 ∀ i ∈ V and ∀k ∈ {1, . . . ,m}. Moreover, there exists a
positive constant dmax such that dij ≤ dmax ∀ i, j ∈ V, j > i. The following
lemma holds.

Lemma 2. If q̃i,j are n(n−1) additional variables, which represent qi when
the edge i− j or j − i is in the tour, constraints (2.23) are equivalent to the

16

following set of constraints:

dij = 0
q̃i,j = 0 if ξij = 0
q̃j,i = 0

d (q̃i,j , q̃j,i)− dij ≤ 0
q̃i,j ∈ Qi if ξij = 1
q̃j,i ∈ Qj

∀ i, j ∈ V, j > i . (2.32)

qi =
1

2

n∑
j=1
j 6=i

q̃i,j ∀ i ∈ V , (2.33)

q̃i,j ≤ qi ∀ i, j ∈ V, j 6= i , (2.34)

together with constraints (2.19).

Proof. Constraints (2.19) and (2.21) insure that only two among the (n −
1) variables ξij incident to a neighborhood are non-zero. Consequently,
constraints (2.32) insure that for each neighborhood Qi only two among the
(n − 1) variables q̃i,j are non-zero, i.e., the two variables corresponding to
the two edges of the tour incident to Qi. Moreover, constraints (2.33) and
(2.34) insure that these two variables are both equal to qi, since the linear
system qa + qb = 2q, qa ≤ q; qb ≤ q admits the only solution qa = qb = q.
Therefore, if ξij = 1, then q̃i,j = qi, q̃j,i = qj , and constraints (2.32) become
d (qi, qj)− dij ≤ 0.

We indicate the subset of the domain defined by constraints (2.32) as
Dij = D0

ij ∪D0
ij , where:

D0
ij = {(ξij , dij , q̃i,j , q̃j,i) | ξij = 0, dij = 0, q̃i,j = 0, q̃j,i = 0} , (2.35)

D1
ij = {(ξij , dij , q̃i,j , q̃j,i) | ξij = 1, 0 ≤ dij ≤ dmax,d (q̃i,j , q̃j,i)− dij ≤ 0,

q̃i,j ∈ Qi, q̃j,i ∈ Qj} . (2.36)

Sets D0
ij and D1

ij are clearly bounded, and if the edge weighting function,
d(·), is convex then they are both convex. We are now interested in the con-
vex hull of Dij . Similarly to the results presented by Günlük and Linderoth
[48], we can introduce the following lemmas.

Lemma 3. If D1
ij is convex, then conv(Dij) = D0

ij ∪D−ij , where:

D−ij = {(ξij , dij , q̃i,j , q̃j,i) | 0 < ξij ≤ 1 , 0 ≤ dij/ξij ≤ dmax,

d (q̃i,j/ξij , q̃j,i/ξij)− dij/ξij ≤ 0, q̃i,j/ξij ∈ Qi, q̃j,i/ξij ∈ Qj} .

17

Proof. Since sets D0
ij and D1

ij are bounded and convex, the convex hull of
Dij can be calculated as:

conv(Dij) = {(ξij , dij , q̃i,j , q̃j,i) = (1− α)(ξ0
ij , d

0
ij , q̃

0
i,j , q̃

0
j,i)+

α(ξ1
ij , d

1
ij , q̃

1
i,j , q̃

1
j,i) | (ξ0

ij , d
0
ij , q̃

0
i,j , q̃

0
j,i) ∈ D0

ij ,

(ξ1
ij , d

1
ij , q̃

1
i,j , q̃

1
j,i) ∈ D1

ij , 0 ≤ α ≤ 1} . (2.37)

From Equations (2.35) and (2.37) we observe that α = ξij . On the one
hand, if ξij > 0, we can also observe that d1

ij = dij/ξij , q̃
1
i,j = q̃i,j/ξij , and

q̃ 1
j,i = q̃j,i/ξij . The additional variables α, ξ0

ij , ξ
1
ij , d

0
ij , d

1
ij , q̃

0
i,j , q̃

0
j,i, q̃

1
i,j ,

and q̃ 1
j,i can thus be projected out from (2.37), and the set D−ij is obtained

using Equation (2.36). On the other hand, if ξij = 0, then (0, dij , q̃i,j , q̃j,i) ∈
conv(Dij) if and only if (0, dij , q̃i,j , q̃j,i) ∈ D0

ij . Therefore, conv(Dij) =

D0
ij ∪D−ij .

Lemma 4. It holds: closure(D−ij) = conv(Dij).

Proof. Let {αs} ⊂ (0, 1) be an arbitrary sequence converging to 0, and let

Dp(α) = {(dij , q̃i,j , q̃j,i) | 0 ≤ dij/α ≤ dmax,

d (q̃i,j/α, q̃j,i/α)− dij/α ≤ 0, q̃i,j/α ∈ Qi, q̃j,i/α ∈ Qj} .

Since, by construction, Dp(αs) 6= ∅, there exists a corresponding se-
quence {(dij , q̃i,j , q̃j,i)s} such that (dij , q̃i,j , q̃j,i)s ∈ Dp(αs). Since 0 ≤ dij ≤
α dmax, (dij)s converges to 0, and since Qi and Qj are bounded sets, then
(q̃i,j)s and (q̃j,i)s also converge to 0, as illustrated in Appendix A.1. Finally,
it holds:

lim
α→0

Dp(α) = {(dij , q̃i,j , q̃j,i) | dij = 0, q̃i,j = 0, q̃j,i = 0} .

Therefore, D0
ij is clearly contained in closure(D−ij), and, according to Lemma 3,

closure(D−ij) = conv(Dij).

Finally, if polyhedra or ellipsoids are used as neighborhoods and a norm
is used as edge weighting function the complete relaxed third formulation of

18

the STSPN is given by:

minimize :
n∑
i=1

n∑
j=1
j>i

dij ,

subject to :
i−1∑
j=1

ξji +
n∑

j=i+1

ξij = 2 ∀ i ∈ V ,

∑
i∈S

(∑
j∈V\S
j<i

ξji +
∑
j∈V\S
j>i

ξij

)
≥ 2 ∀S ⊂ V \ {1}, |S| ≥ 3 ,

qi =
1

2

n∑
j=1
j 6=i

q̃i,j ∀ i ∈ V ,

q̃i,j ≤ qi ∀ i, j ∈ V, j 6= i ,

‖q̃i,j − q̃j,i‖ ≤ dij ∀ i, j ∈ V, j > i ,

q̃i,j ∈ Q̃i(ξij) ⊆ Rm+ ∀ i, j ∈ V, j > i ,

q̃j,i ∈ Q̃j(ξij) ⊆ Rm+ ∀ i, j ∈ V, j > i ,

dij ≤ ξij dmax ∀ i, j ∈ V, j > i ,

0 ≤ ξij ≤ 1 ∀ i, j ∈ V, j > i ,

qi ∈ Rm ∀ i ∈ V ,

q̃i,j ∈ Rm ∀ i, j ∈ V, i 6= j ,

dij ∈ R+ ∀ i, j ∈ V, j > i ,

where Q̃i(ξ) can be defined as:

Ai qi + ξ bi ≤ 0 or

(qi − ξ ci)
T P−1

i (qi − ξ ci)− ξ2 ≤ 0 .

2.1.5 Fourth STSPN formulation

In this Section we propose an alternative method to obtain a stronger re-
laxation for the STSPN deriving directly the convex hull of the disjunction
(2.23).

Assuming that the neighborhoods, Qi, are bounded, and thus dij ≤
dmax ∀ i, j ∈ V, j > i, we denote the subset of the domain defined by

19

constraints (2.23) as D̄ij = D̄0
ij ∪ D̄1

ij , where:

D̄0
ij = {(ξij , dij , qi, qj) | ξij = 0, dij = 0, qi ∈ Qi, qj ∈ Qj} , (2.38)

D̄1
ij = {(ξij , dij , qi, qj) | ξij = 1, 0 ≤ dij ≤ dmax, d (qi, qj) ≤ dij ,

qi ∈ Qi, qj ∈ Qj} . (2.39)

Sets D̄0
ij and D̄1

ij are clearly bounded, and if the edge weighting function,
d(·), is convex then they are both convex. As in the previous section, we
are now interested in the convex hull of Dij .

Lemma 5. If q̄i,j are n(n− 1) additional variables and D̄1
ij is convex, then

conv(D̄ij) = D̄0
ij ∪ D̄−ij ∪ D̄1

ij, where:

D̄−ij = {(ξij , dij , qi, qj) | 0 < ξij < 1, 0 ≤ dij/ξij ≤ dmax,

d (qi/ξij − q̄i,j/ξij , qj/ξij − q̄j,i/ξij) ≤ dij/ξij ,
qi/ξij − q̄i,j/ξij ∈ Qi, qj/ξij − q̄j,i/ξij ∈ Qj ,
q̄i,j/(1− ξij) ∈ Qi, q̄j,i/(1− ξij) ∈ Qj} .

Proof. Since sets D̄0
ij and D̄1

ij are bounded and convex, the convex hull of

D̄ij can be calculated as:

conv(D̄ij) = {(ξij , dij , qi, qj) = (1− α)(ξ0
ij , d

0
ij , q

0
i , q

0
j) + α(ξ1

ij , d
1
ij , q

1
i , q

1
j) |

(ξ0
ij , d

0
ij , q

0
i , q

0
j) ∈ D̄0

ij , (ξ
1
ij , d

1
ij , q

1
i , q

1
j) ∈ D̄1

ij , 0 ≤ α ≤ 1} .
(2.40)

From Equations (2.38) and (2.40) we can observe that α = ξij and
d1
ij = dij/ξij for ξij > 0. Therefore, the additional variables α, ξ0

ij , ξ
1
ij , d

0
ij ,

and d1
ij can be projected out from (2.40). Moreover, if we set q0

i = q̂i ∈ Qi
and q0

j = q̂j ∈ Qj , than we obtain ξijq
1
i = qi + (ξij − 1)q̂i and ξijq

1
j =

qj + (ξij − 1)q̂j , and the following set can be derived using Equation (2.39):

D̂−ij = {(ξij , dij , qi, qj) | 0 < ξij ≤ 1, 0 ≤ dij/ξij ≤ dmax,

d (qi/ξij + (ξij − 1)/ξij q̂i , qj/ξij + (ξij − 1)/ξij q̂j) ≤ dij/ξij ,
qi/ξij + (ξij − 1)/ξij q̂i ∈ Qi, qj/ξij + (ξij − 1)/ξij q̂j ∈ Qj ,
q̂i ∈ Qi , q̂j ∈ Qj} (2.41)

Finally, if we introduce the additional variables q̄i,j , if we perform the
substitutions (ξij − 1)q̂i = −q̄i,j and (ξij − 1)q̂j = −q̄j,i in (2.41), and
if we assume ξij < 1, then the set D̄−ij can be directly derived from D̂−ij .

20

Moreover, since D̄0
ij is convex if ξij = 0 then (0, dij , qi, qj) ∈ conv(D̄ij) if

and only if (0, dij , qi, qj) ∈ D̄0
ij . Similarly, since D̄1

ij is convex if ξij = 1

then (1, dij , qi, qj) ∈ conv(D̄ij) if and only if (1, dij , qi, qj) ∈ D̄1
ij . Therefore,

conv(D̄ij) = D̄0
ij ∪ D̄−ij ∪ D̄1

ij .

Lemma 6. It holds: closure(D̄−ij) = conv(Dij).

Proof. Let {α0
s} ⊂ (0, 1) be an arbitrary sequence converging to 0 and

{α1
s} ⊂ (0, 1) be an arbitrary sequence converging to 1. Let

D̄p(α) = {(dij , qi, qj) | 0 ≤ dij/α ≤ dmax,

d ((qi − q̄i,j)/α , (qj − q̄j,i)/α)− dij/α ≤ 0,

(qi − q̄i,j)/α ∈ Qi, (qj − q̄j,i)/α ∈ Qj ,
q̄i,j/(1− α) ∈ Qi, q̄j,i/(1− α) ∈ Qj} .

Since, by construction, Dp(αs) 6= ∅, there exists a sequence
{(dij , qi, qj , q̄i,j , q̄j,i)0

s} such that (dij , qi, qj)
0
s ∈ D̄p(α

0
s). Since 0 ≤ dij ≤

α dmax, (dij)s converges to 0, and since Qi and Qj are bounded sets, then(
(qi)

0
s − (q̄i,j)

0
s

)
and

(
(qj)

0
s − (q̄j−1)0

s

)
also converge to 0. Finally, it holds:

lim
α→0

D̄p(α) = {(dij , qi, qj) | dij = 0, qi ∈ Qi, qj ∈ Qj} .

Similarly, there exists a sequence {(dij , qi, qj , q̄i,j , q̄j,i)1
s} such that

(dij , qi, qj)
1
s ∈ D̄p(α

1
s). Since Qi and Qj are bounded sets, then (q̄i,j)

1
s

and (q̄j−1)1
s converge to 0. Finally, it holds:

lim
α→1

D̄p(α) ={(dij , qi, qj) | 0 ≤ dij ≤ dmax, d(qi, qj)− dij ≤ 0,

qi ∈ Qi, qj ∈ Qj} .

In conclusion, D̄0
ij and D̄1

ij are clearly contained in closure(D̄−ij), and,

according to Lemma 5, closure(D−ij) = conv(Dij).

Finally, if polyhedra or ellipsoids are used as neighborhoods and a norm
is used as edge weighting function the complete relaxed fourth formulation

21

of the STSPN is given by:

minimize :
n∑
i=1

n∑
j=1
j>i

dij ,

subject to :
i−1∑
j=1

ξji +
n∑

j=i+1

ξij = 2 ∀ i ∈ V ,

∑
i∈S

(∑
j∈V\S
j<i

ξji +
∑
j∈V\S
j>i

ξij

)
≥ 2 ∀S ⊂ V \ {1}, |S| ≥ 3 ,

‖(qi − q̄i,j)− (qj − q̄j,i)‖ − dij ≤ 0 ∀ i, j ∈ V, j > i ,

qi − q̄i,j ∈ Q̄i(ξij) ∀ i, j ∈ V, j > i ,

qj − q̄j,i ∈ Q̄j(ξij) ∀ i, j ∈ V, j > i ,

q̄i,j ∈ Q̄i(1− ξij) ∀ i, j ∈ V, j > i ,

q̄j,i ∈ Q̄j(1− ξij) ∀ i, j ∈ V, j > i ,

dij ≤ ξij dmax ∀ i, j ∈ V, j > i ,

0 ≤ ξij ≤ 1 ∀ i, j ∈ V, j > i ,

qi ∈ Rm ∀ i ∈ V ,

q̄i,j ∈ Rm ∀ i, j ∈ V, i 6= j ,

dij ∈ R+ ∀ i, j ∈ V, j > i .

where Q̄i(ξ) can be defined as:

Ai qi + ξ bi ≤ 0 or

(qi − ξ ci)
T P−1

i (qi − ξ ci)− ξ2 ≤ 0 .

2.1.6 MTZ formulation

The principal drawback of the proposed STSPN formulations is the exponen-
tial number of subtour elimination constraints (2.4) that makes impractical
a direct solution of the problem. To address this limitation, we considered
other IP formulations of the ATSP presented in the literature such as se-
quential formulation, flow based formulation, and time staged formulation
[79]. In particular the sequential formulation, also known as MTZ formula-
tion, introduces n−1 new continuous variables ηi, and it reduces the number
of subtour elimination constraint to n2− 2n− 1 [76]. If constraints (2.4) are

22

removed and the following constraints are introduced:

ηi − ηj + n ξij ≤ n− 1 ∀ i, j ∈ V \ {1}, i 6= j , (2.42)

ηi ∈ R+ ∀ i ∈ V \ {1} , (2.43)

an alternative formulation of the ATSPN is obtained. It is however well
known that the MTZ formulation of the ATSP produces a weaker Linear
Programming (LP) relaxation than the DFJ formulation [80], though some
improvement attempts have been proposed in [25]. Furthermore, the NLP
relaxation of the MTZ formulation of the ATSPN is still non convex.

The convex MINLP solver Bonmin [17] is used to perform some prelim-
inary tests. The results are illustrated in Section 2.3. Since Bonmin is an
exact solver only for convex problems, the solution returned using the TMZ
formulation is feasible, but without any optimality guarantee.

2.1.7 Randomly generated STSPN test instances

Differently from the case of the TSP where many public instances are avail-
able [86], to benchmark the proposed algorithms only one public repository
was found for the case of the TSPN with balls in R2 and in R3 [74]. There-
fore, the following procedure has been employed to randomly generate more
general TSPN instances in Rm with different types of neighborhoods.

First n random points ci ∈ [0, 100]m are generated. These points are the
centers of the ellipsoids, and their average distance d̄ is computed. Then, for
a fixed percentage h of the average distance, a box around ci is defined as
ci ± h d̄xi/2, where xi is a uniformly distributed random vector in [0, 1]m.
Finally, within these boxes, ellipsoids (E), polyhedra (P), or Bézier cubic
splines (S) are placed according to Equations (2.8), (2.9), and (2.13). The
symbol enclosed in parentheses is used hereafter to refer to that specific
topology. Each ellipsoid is generated by aligning its principal axes with the
coordinate frame. A corresponding polyhedron is then generated by using
the 2m facets of the box and 6 additional facets tangent to the ellipsoid
at randomly selected locations. Finally, a Bézier spline is generated by
randomly selecting its four control points within the box, which guarantees
the spline to be fully contained in it. Examples are shown in Figures 2.1
and 3.2.

23

(a) Instance tspn2DP15 1. (b) Instance tspn2DE15 1.

Figure 2.1: Randomly generated STSPN instances of comparable extension
with 15 neighborhoods in R2 and optimal tours calculated with Euclidean
Norm.

2.2 Solution of the first STSPN formulation

2.2.1 Description of the algorithm

The basis of the algorithm proposed to solve the first STSPN formulation
with convex neighborhoods is a spatial branch-and-bound as implemented
in Couenne [12, 20]. The main difference with a usual branch-and-bound
algorithm for solving mixed-integer linear programs is that branching might
occur on a continuous variable. It also uses a linear outer-approximation
of the nonlinear problem for bounding purposes. The detailed description
of the algorithm is outside the scope of this work and can be found in the
above paper and references therein. Algorithm 2.1 is a high-level simplified
description of the basic algorithm applied on the STSPN, except that only
a small number of constraints (2.20) are included in the initial formulation
P. How we select these constraints is explained below.

Note that when the branching variable selected in Step 14 is an integer
variable, the branching point b is taken as an integer value and subproblem
Pk+ is defined by setting χ ≥ b+ 1. This ensures that the two subproblems
Pk− and Pk+ form a partition of subproblem Pk. When the branching
variable is a continuous variable, the two generated subproblems overlap on
χ = b. This could create a potentially infinite loop, but the choice of the

24

Algorithm 2.1 A simplified spatial Branch-and-Bound algorithm for solv-
ing the MINLP P.

Input: Problem P
Output: The value zopt of an optimal solution of P

1. Define set L of subproblems; let L← {P};
2. Define zu as an upper bound for P; let zu ← +∞
3. while L 6= ∅
4. choose Pk ∈ L
5. L← L \ {Pk}
6. generate a linear relaxation LPk of Pk

7. repeat
8. solve LPk; let (ξ̄k, q̄k) be an optimum and z̄k its objective value
9. refine linearization LPk

10. until (ξ̄k, q̄k) is feasible for Pk or z̄k does not improve sufficiently
11. if (ξ̄k, q̄k) is feasible for Pk, then let zu ← min{zu, z̄k}
12. (optional) find a local optimum ẑk of Pk; zu ← min{zu, ẑk}
13. if z̄k ≤ zu − ε then
14. choose a variable χ := ξij or qid where d ∈ {1, . . . ,m}
15. choose a branching point b
16. create subproblems:
17. Pk− with χ ≤ b,
18. Pk+ with χ ≥ b
19. L← L ∪ {Pk−,Pk+}
20. output zopt := zu

branching point in Step 15 and the refinement Step 9 prevent this to happen.
Next, we describe two major modifications of the basic algorithm as

well as a way to generate a very good initial heuristic solution [39]. These
alterations yield big improvement of the performance of the solver. The
resulting algorithm is refereed to as CouTspn hereafter.

2.2.1.1 Subtour elimination constraints by cutting planes

The first modification relates to Step 9 of the algorithm. In that step, we
check if any of the constraints (2.20) not included in the current problem is
violated by the solution (ξ̄k, q̄k). This separation is done using a maximum
flow computation [54]. If vertex 1 is defined as source, for all terminals
vertices t ∈ V\{1}, the following max-flow linear problem is solved (we use
the LP solver Clp [34])

25

maximize :
n∑
j=2

ζ1j , (2.44)

subject to :

n∑
j=2

ζ1j =

t−1∑
j=1

ζjt −
n∑

j=t+1

ζtj , (2.45)

i−1∑
j=1

ζji −
n∑

j=i+1

ζij = 0 ∀ i ∈ V\{1, t} , (2.46)

− ξ̄kij ≤ ζij ≤ ξ̄kij ∀ i, j ∈ V, j > i , (2.47)

ζij ∈ R ∀ i, j ∈ V, j > i , (2.48)

where ζij represents the flow between vertices i and j. It is allowed to be
negative to account for having a positive flow flowing from j to i on the arc
ij with j > i. The capacity of each edge is defined in constraints (2.47)
using the solution ξ̄kij of the current linearization LPk.

The maximum flow value between the source 1 and at least one of the
terminals is strictly less than 2 if and only if a violated constraint (2.20)
exists. If for some terminal t this maximum flow value is strictly less than
2, the set S defining a violated constraint (2.20) is formed by the union
of the source 1 and all other vertex i such that the constraint (2.46) for i
has a nonzero dual variable in an optimal solution to (2.44)-(2.48). If such
constraint is generated, it is added as a global cut, i.e., in all problems
currently in the list L. The algorithm reaches Step 11 only if no such
constraint can be found. While more efficient subtour elimination constraint
separation algorithms exist [5, 8], the size of the instances we are interested
to solve (i.e. n ≤ 30) does not require more sophistication.

2.2.1.2 Solving a convex relaxation and integer cuts

The second modification concerns Step 12. In the basic algorithm, one try
to solve the nonlinear problem (taking all variables as continuous) using the
current bounds on the variables. If that solution (ξ̄k, q̄k) happens to satisfy
all the integer constraints (2.21) and the corresponding ξ̄k variables set to
1 form a tour, the value value ẑk of that solution is a valid upper bound on
the optimal value of the STSPN.

We propose to modify this step as follows. Let (ξ̄k, q̄k) be the solution
obtained when exiting the loop 7-10. If some of the integer constraints (2.21)
are not satisfied, we round ξ̄k to a binary vector ξ̂k representing a tour. This

26

is done in a greedy fashion, by selecting an initial random node p1 and then
for j = 2, . . . , n selecting pj as the node with maximum value for the variable
ξ̄kpj−1pj among all the nodes not yet selected. To simplify notation, we use

here ξij to denote either ξij if i < j or ξji if i > j. The rounded vector ξ̂k

has ξ̂kpj−1pj and ξ̂kpnp1 set to 1 and all other variable in ξ̂ are set to 0. In

that way, ξ̂k is the characteristic vector of a tour, and it is feasible for the
original formulation.

We then check if ξ̂k already appears in the list of all rounded vectors
considered so far. If ξ̂k does not appear in that list, we solve the initial non-
linear problem (2.18)-(2.21), (2.5), and (2.7), after fixing all binary variables
to their rounded value in ξ̂k. As the resulting problem is convex, its optimal
solution q̂k can be computed easily with a nonlinear solver (we use Ipopt
[20, 98]). To improve the performance of the solver, a permutation π of V is
used to represent the tour defined by ξ̂k, the binary variables are removed
from the problem, and the following objective function (indices are taken
modulo n):

n∑
i=1

d
(
qπ(i), qπ(i+1)

)
(2.49)

is minimized subjected to constraints (2.8) and (2.7) if the neighborhoods
are polyhedra and constraints (2.9) and (2.7) if they are ellipsoids.

Ipopt requires all functions in the problem formulation to be at least
once differentiable, which is not the case when a norm is employed as edge
weighting function in Equation (2.49). If the Euclidean norm is considered,
we instead use the following edge weighting function:

d (qi, qj) =

{
‖qj − qi‖2 if ‖qj − qi‖2 ≥ ε ;
ε
2 + 1

2 ε ‖qj − qi‖
2
2 if ‖qj − qi‖2 < ε .

(2.50)

We use ε = 0.1 in the tests. The function (2.50) is continuously differentiable
except when ‖qj − qi‖2 = ε. In this case, it is only differentiable once. The
small error introduced in the latter case is relatively inconsequential for our
use of the solution. The above function is hard-coded into the solver as
illustrated in Appendix A.2.

The rounding operation producing ξ̂k can potentially produce several
times the same binary vector at different iterations. To avoid as much as
possible to generating and solving repeatedly the same continuous problem,
we add the linear constraint

n∑
i=1

n∑
j=i+1

ξ̂kij ξij ≤ n− 1 . (2.51)

27

Although constraint (2.51) is not initially valid, it can be now added as
a global cut, i.e. not only to the problem Pk but to all problems currently in
the list L. This is justified, as we have computed the optimal solution when
the binary variables take the values in ξ̂k and the only feasible solutions (ξ, q)
cut by that constraint have all ξ = ξ̂k. If the rounded vector ξ̂k appears for
the first time, cut (2.51) is added and we return to Step 7. Otherwise we
continue to Step 13. The two above operations are implemented in a cut
generator called CglTspn based on the COIN-OR CglCutGenerator class.

This modification is related to the local searches of the hybrid algorithm
(developed for solving problems that are convex) described in Section 2.3.2
of [17]. There, it is suggested to solve the mixed-integer linear program
(MILP) associated with the current subproblem and use that solution to fix
integer variables, solve an NLP and get a valid upper bound. The rounding
step described above can be seen as a heuristic method to solve the MILP.
The integer cuts (2.51) can be added easily only because all integer variables
in our problem are binary. For a problem with general integer variables, that
option is not available.

2.2.1.3 Initial heuristic solution

Using a good upper bound zu in Step 2 instead of zu = +∞ typically
improves the solution times of MINLP. We thus devised a heuristic approach
that usually generates a very good solution. A by-product of this heuristic
is the identification of a set of subtour inequalities that we use in the initial
formulation P used by the algorithm.

The heuristic starts by considering the problem H obtained by dropping
all constraints (2.20) and (2.21) in the model (2.18)-(2.21), (2.5), and (2.7).
Since all variables in H are continuous, H can be solved using the interior
point solver Ipopt (precise version numbers and non-default settings for
the software used are listed in Section 2.2.2). The initial point used as
input is constructed by initializing each variable qi to the center of each
neighborhood and the binary variables such that ξij = 1 only if j = i + 1
with j = 1 if i = n. Note that, as problem H is nonconvex, the solution
returned by Ipopt might not be optimal, but this is not a concern for
our purposes. Afterward, we use the maximum flow separation algorithm
described in Section 2.2.1.1 to find the first constraint (2.20) violated by the
solution returned by Ipopt, and we add it to H. We then call Ipopt again,
and this continues until all constraints (2.20) are satisfied by the solution
returned by Ipopt.

At that point, we feed the current formulationH to the NLP Branch-and-

28

Bound algorithm for convex MINLP Bonmin [17, 20]. We then proceed in a
similar fashion as with Ipopt, separating constraints (2.20) violated by the
solution returned by Bonmin iteratively. As Bonmin is an exact solver only
for convex problems, the solution returned is a feasible solution, but without
any optimality guarantee. We nevertheless observe that, in the instances
used in our computational tests, the values of the heuristic solutions obtained
using this approach are usually very close to the optimal ones. The complete
procedure is performed using the algebraic modeling language Ampl [35],
and the maximum flow separation in this case is not embedded in a cut
generator within Ipopt or Bonmin using Clp, but externally solved using
the LP solver Cplex [21].

While solving the continuous relaxation of a subproblem with Bonmin,
the objective function (2.18) might become non-differentiable when neigh-
borhoods overlap. This happens when two vertices qi and qj for i 6= j are
identical, resulting in convergence problems as Bonmin calls Ipopt as a
subroutine. To overcome this issue, we add an exponentially decaying non-
convex term to the objective function (2.18) to prevent this overlapping (we
use γ = δ = 10 in the tests):

n∑
i=1

n∑
j=1
j>i

ξij ‖qj − qi‖2 + δ e−γ
2‖qj−qi‖22 . (2.52)

Finally, the subtour elimination constraints in the initial formulation
used by CouTspn contains all the subtour elimination constraints that were
introduced in the course of generating the heuristic solution. (Note that the
exponentially decaying term (2.52) is not employed when using CouTspn.)

2.2.2 Software settings

Results were obtained using open-source software available from COIN-OR
[20]. This section describes precisely which version and additional non-
default settings were used. The used software are the following.

The interior point solver Ipopt [20, 98] version stable/3.9 with all default
settings plus the option:

• linear solver MA57.

The convex MINLP solver Bonmin [17, 20] stable/1.4 using Cbc re-
leases/2.4.2, Clp releases/1.11.1, and Ipopt releases/3.8.3 as sub-solvers
with all default settings except:

• linear solver MA57

29

• integer tolerance 1e−6
• allowable fraction gap 0

The MINLP solver Couenne [12, 20] stable/0.3 using Cbc releases/2.4.2,
Clp releases/1.11.1, Ipopt releases/3.8.3 as sub-solvers with all default set-
ting except:

• variable selection osi-simple

• optimality bt no

• log num obbt per level 0

• aggressive fbbt no

• log num abt per level 0

• log num local optimization per level 0

• local optimization heuristic no

• ipopt.linear solver MA57

• ipopt.max iter 500

• ipopt.mu strategy monotone/adaptive

The meaning of monotone/adaptive is that, when solving a given instance,
we first use the setting monotone. If Ipopt fails somewhere during the solu-
tion process, we then try the adaptive setting. For all the tested instances
at least one of the two settings works.

Finally for the heuristic procedure we also employed the commercial LP
solver Cplex [21] version 12.2.0 with all default settings and the algebraic
modeling language Ampl [35] version 20110121.

2.2.3 Computational results

Tests are performed on 64 random STSPN instances formed by ellipsoids or
polyhedra defined in Rm (with m = 2 or 3) and generated as explained in
Section 2.1.7. All test instances are available from [38], and an example in R2

is shown in Figure 2.1. The machine used is a Dell Precision T7500 with
an Intel Xeon @3.33 GHz processor with 12GB of RAM running Fedora

14 kernel 2.6.35.13-92.
First, a heuristic solution is obtained using Ipopt and Bonmin as de-

scribed in Section 2.2.1. The results are reported in the column with label
“Bonmin” in tables 2.2, 2.3, 2.4, and 2.5. The reported Bonmin CPU time
includes the time spent for the separation of the subtour elimination con-
straints. The number of the added constraints is reported in the column
with label “s.e. cuts”.

30

Second, using as initial point the heuristic solution calculated in the pre-
vious step, each STSPN instance is solved to optimality by using CouTspn.
The initial cutoff zu is set to the value of the heuristic solution provided by
Bonmin. The results are reported in the columns labeled “CouTspn” in
tables 2.2, 2.3, 2.4, and 2.5. The overall CPU time, the time spent by CglT-
spn only, and the time spent within CglTspn to solve NLP instances with
Ipopt are reported.

The number of subtour eliminations constraints (“s.e. cuts”) generated
and the number of integer cuts (2.51) (“int. cuts”), and the total number
of nodes in the tree are also reported.

We compare four branching strategies, using either the option osi-simple

or osi-strong of CouTspn. The former selects the branching variable us-
ing a simple ranking function while the latter performs strong branching
with pseudo-costs [12] before selecting the variable. In addition, each of
these options are tested with and without a modification of the code of
CouTspn restricting branching only to binary variables. Table 2.1 reports
the results. Although simple branching (either on all variables or restricted

Table 2.1: Comparison of different branching options in CouTspn.

instance
branching CPU time [s] cuts

nodes
only bin. osi overall CglTspn Ipopt int. s.e.

tspn2DP12 1

no simple 128 15 3.79 851 100 2,728
yes simple 135 15 3.82 855 102 2,750
no strong 604 14 2.06 456 76 3,708
yes strong 372 8.07 2.04 458 73 1,564

tspn2DE12 1

no simple 379 39 12 1,795 150 6,186
yes simple 383 38 12 1,777 144 6,170
no strong 1,225 37 6.51 986 115 8,990
yes strong 760 24 6.83 1,034 120 4,716

tspn3DE10

no simple 816 58 16 3,298 234 10,602
yes simple 804 60 15 3,189 244 10,690
no strong 2,665 102 10 2,166 183 30,464
yes strong 1,015 49 11 2,242 181 10,168

only to binary variables) usually requires a larger number of cuts and nodes,
it seems to be the most efficient in terms of overall CPU time. Therefore,
all the other tested instances were solved using simple branching on binary
variables.

We first observe that, unsurprisingly, the difficulty of solving an instance
usually increases with the number n of neighborhoods. We note that the

31

T
ab

le
2
.2

:
S

T
S

P
N

in
st

an
ce

s
w

it
h

p
ol

y
h

ed
ra

in
R

2
as

n
ei

gh
b

or
h

o
o
d

s.

in
st

an
ce

n
va

r.
h

B
o
n
m
in

C
o
u
T
sp

n
h

eu
ri

st
ic

C
P

U
s.

e.
o
p

ti
m

a
l

C
P

U
ti

m
e

[s
]

cu
ts

n
o
d

es
va

lu
e

ti
m

e
[s

]
cu

ts
va

lu
e

ov
er

a
ll

C
g
lT

sp
n

Ip
o
p
t

in
t.

s.
e.

ts
p

n
2D

P
5

1
5

20
0.

25
18

4.
73

3
0
.1

5
0

1
8
4
.7

3
3

0
.1

2
0
.0

4
0
.0

2
7

0
1
6

ts
p

n
2D

P
5

2
5

20
0.

15
21

7.
65

9
0
.1

3
0

2
1
7
.6

5
9

0
.1

4
0
.0

4
0
.0

1
5

0
1
6

ts
p

n
2D

P
6

1
6

27
0.

25
20

0.
46

9
0
.2

1
1

2
0
0
.4

6
9

0
.4

0
0
.1

1
0
.0

3
1
2

3
4
2

ts
p

n
2D

P
6

2
6

27
0.

15
24

7.
58

8
0
.1

8
0

2
4
7
.5

8
8

0
.1

3
0
.0

4
0
.0

1
3

2
1
2

ts
p

n
2D

P
7

1
7

35
0.

25
19

6.
25

3
0
.3

6
1

1
9
6
.2

4
7

1
.7

2
0
.4

9
0
.1

4
3
8

1
5

1
2
6

ts
p

n
2D

P
7

2
7

35
0.

15
23

6.
44

4
0
.3

2
2

2
3
6
.4

4
4

1
.1

9
0
.3

0
0
.1

1
2
6

3
6
6

ts
p

n
2D

P
8

1
8

44
0.

25
18

8.
11

8
0
.3

1
0

1
8
8
.1

0
8

1
.7

9
0
.4

2
0
.0

9
2
6

1
0

9
6

ts
p

n
2D

P
8

2
8

44
0.

15
22

6.
10

3
0
.4

9
1

2
2
6
.1

0
3

4
.0

4
1
.0

5
0
.3

5
9
0

1
4

2
4
8

ts
p

n
2D

P
9

1
9

54
0.

25
25

0.
93

9
0
.3

4
1

2
4
9
.7

3
2

2
2

4
.5

2
1
.0

3
2
7
1

4
8

9
1
4

ts
p

n
2D

P
9

2
9

54
0.

15
25

8.
45

0
0
.4

0
1

2
5
8
.4

5
0

2
.1

2
0
.4

2
0
.0

9
2
3

1
0

8
0

ts
p

n
2D

P
10

1
10

65
0.

25
22

0.
24

2
0
.4

8
2

2
2
0
.2

4
2

2
1

3
.5

1
0
.8

4
1
8
0

4
2

6
5
6

ts
p

n
2D

P
10

2
10

65
0.

15
26

8.
37

8
0
.3

4
0

2
6
8
.3

7
8

3
.8

5
0
.5

5
0
.1

3
3
5

2
0

1
5
0

ts
p

n
2D

P
11

1
11

77
0.

25
24

3.
84

7
0
.6

0
4

2
4
3
.8

4
7

1
0
9

1
4

4
.0

7
8
5
5

9
8

2
,9

1
8

ts
p

n
2D

P
11

2
11

77
0.

15
25

4.
22

1
0
.5

0
0

2
5
4
.2

2
1

1
1

1
.2

5
0
.3

1
8
2

2
3

2
6
4

ts
p

n
2D

P
12

1
12

90
0.

25
25

3.
54

3
0
.5

8
3

2
5
3
.5

4
3

1
3
5

1
5

3
.8

2
8
5
5

1
0
2

2
,7

5
0

ts
p

n
2D

P
12

2
12

90
0.

15
30

7.
75

0
0
.5

4
2

3
0
6
.9

3
1

9
1

1
2

3
.4

5
6
9
9

8
6

2
,1

1
6

ts
p

n
2D

P
13

1
13

10
4

0.
25

28
0.

38
9

1
.5

2
8

2
7
3
.1

7
4

4
,8

9
5

7
0
7

1
7
0

2
5
,6

2
9

4
8
7

7
3
,7

2
4

ts
p

n
2D

P
13

2
13

10
4

0.
15

31
8.

43
2

0
.4

6
0

3
1
7
.7

8
0

9
3

1
1

3
.1

4
6
2
2

1
2
6

1
,9

2
6

ts
p

n
2D

P
14

1
14

11
9

0.
25

30
6.

33
8

0
.8

9
4

3
0
6
.3

3
8

6
,5

3
7

9
1
5

2
0
4

3
0
,9

7
3

7
7
6

9
3
,8

6
4

ts
p

n
2D

P
14

2
14

11
9

0.
15

26
6.

00
9

0
.9

2
3

2
6
4
.1

6
4

3
7
8

3
9

1
1

1
,6

9
0

1
2
3

5
,7

1
8

ts
p

n
2D

P
15

1
15

13
5

0.
25

28
5.

08
2

1
.7

2
6

2
8
0
.2

0
2

2
8
,1

2
1

5
,1

9
2

6
4
9

9
4
,2

1
1

1
,1

9
7

2
7
7
,7

8
0

ts
p

n
2D

P
15

2
15

13
5

0.
15

29
9.

05
5

1
.4

2
6

2
8
8
.4

6
7

3
,0

2
0

3
5
2

7
8

1
1
,9

3
7

3
7
1

4
0
,0

0
2

ts
p

n
2D

P
16

1
16

15
2

0.
15

36
7.

89
5

3
.3

4
6

3
6
5
.7

7
7

1
3
,6

5
4

2
,0

2
0

3
3
1

5
3
,3

5
0

9
9
8

1
3
8
,6

5
0

ts
p

n
2D

P
16

2
16

15
2

0.
15

29
2.

28
0

1
.4

3
8

2
9
2
.2

8
0

5
,7

0
1

6
3
3

1
2
3

1
8
,7

5
3

4
2
0

5
7
,2

9
2

32

T
ab

le
2
.3

:
S

T
S

P
N

in
st

an
ce

s
w

it
h

p
ol

y
h

ed
ra

in
R

3
as

n
ei

gh
b

or
h

o
o
d

s.

in
st

an
ce

n
va

r.
h

B
o
n
m
in

C
o
u
T
sp

n
h

eu
ri

st
ic

C
P

U
s.

e.
o
p

ti
m

a
l

C
P

U
ti

m
e

[s
]

cu
ts

n
o
d

es
va

lu
e

ti
m

e
[s

]
cu

ts
va

lu
e

ov
er

a
ll

C
g
lT

sp
n

Ip
o
p
t

in
t.

s.
e.

ts
p

n
3D

P
5

5
25

0.
25

2
36

.2
14

0.
1
3

0
2
3
6
.2

1
4

0
.1

5
0
.0

4
0
.0

2
5

0
1
0

ts
p

n
3D

P
6

6
33

0.
25

2
57

.5
51

0.
2
0

1
2
5
7
.5

5
1

0
.6

0
0
.1

3
0
.0

4
1
4

4
3
6

ts
p

n
3D

P
7

7
42

0.
25

3
10

.6
91

0.
2
8

2
3
1
0
.6

9
1

4
.2

5
0
.7

1
0
.2

1
5
6

1
4

1
8
2

ts
p

n
3D

P
8

8
52

0.
25

2
79

.2
57

0.
2
7

0
2
7
7
.7

3
0

1
2

2
.1

1
0
.6

1
1
3
7

2
7

3
9
8

ts
p

n
3D

P
9

9
63

0.
25

2
95

.0
18

0.
4
4

3
2
9
0
.4

7
8

5
8

6
.9

2
2
.2

3
4
8
2

8
0

1
,5

5
2

ts
p

n
3D

P
10

10
75

0.
25

3
06

.5
08

0.
4
6

3
3
0
1
.8

8
4

2
3
0

2
5

7
.8

7
1
,6

2
8

1
7
1

4
,8

6
2

ts
p

n
3D

P
11

11
88

0.
25

2
76

.1
19

0.
9
1

3
2
7
6
.1

1
9

5
3
2

5
0

1
4

2
,5

0
7

1
8
4

8
,1

2
8

ts
p

n
3D

P
12

12
10

2
0.

25
3
00

.9
06

0.
9
6

4
2
9
8
.7

7
9

7
,8

0
7

7
9
1

1
6
4

2
7
,7

0
5

6
3
7

8
7
,8

4
0

33

T
a
b

le
2.

4:
S

T
S

P
N

in
st

an
ce

s
w

it
h

el
li

p
so

id
s

in
R

2
as

n
ei

gh
b

or
h

o
o
d

s.

in
st

an
ce

n
va

r.
h

B
o
n
m
in

C
o
u
T
sp

n
h

eu
ri

st
ic

C
P

U
s.

e.
o
p

ti
m

a
l

C
P

U
ti

m
e

[s
]

cu
ts

n
o
d

es
va

lu
e

ti
m

e
[s

]
cu

ts
va

lu
e

ov
er

a
ll

C
g
lT

sp
n

Ip
o
p
t

in
t.

s.
e.

ts
p

n
2D

E
5

1
5

20
0.

25
19

1.
25

5
0
.1

4
0

1
9
1
.2

5
5

0
.2

2
0
.0

7
0
.0

3
8

0
1
8

ts
p

n
2D

E
5

2
5

20
0.

15
21

9.
30

7
0
.1

3
0

2
1
9
.3

0
7

0
.1

9
0
.0

6
0
.0

3
7

0
1
6

ts
p

n
2D

E
6

1
6

27
0.

25
20

2.
99

5
0
.2

4
1

2
0
2
.9

9
5

0
.6

7
0
.1

8
0
.0

6
1
3

4
4
4

ts
p

n
2D

E
6

2
6

27
0.

15
24

8.
86

0
0
.1

8
0

2
4
8
.8

6
0

0
.2

4
0
.0

8
0
.0

4
5

2
1
2

ts
p

n
2D

E
7

1
7

35
0.

25
20

1.
49

2
0
.3

0
1

2
0
1
.4

9
2

3
.3

8
1
.0

0
0
.2

8
4
6

1
4

1
6
0

ts
p

n
2D

E
7

2
7

35
0.

15
23

9.
78

8
0
.2

5
1

2
3
9
.7

8
8

1
.7

2
0
.4

3
0
.1

8
2
7

3
7
8

ts
p

n
2D

E
8

1
8

44
0.

25
19

0.
24

3
0
.3

7
0

1
9
0
.2

4
3

2
.6

1
0
.4

5
0
.1

2
2
3

9
9
8

ts
p

n
2D

E
8

2
8

44
0.

15
22

9.
19

0
0
.4

0
1

2
2
9
.1

5
0

7
.1

2
1
.7

7
0
.6

0
8
6

1
6

2
8
6

ts
p

n
2D

E
9

1
9

54
0.

25
25

9.
29

7
0
.4

0
2

2
5
9
.2

9
0

4
5

7
.4

2
1
.6

2
4
0
1

5
5

1
,3

9
0

ts
p

n
2D

E
9

2
9

54
0.

15
26

2.
81

5
0
.4

1
1

2
6
2
.8

1
5

3
.2

0
0
.5

5
0
.1

9
2
6

1
1

9
2

ts
p

n
2D

E
10

1
10

65
0.

25
22

5.
12

6
0
.4

1
1

2
2
5
.1

2
6

3
5

4
.4

5
1
.7

9
2
2
4

4
0

8
2
0

ts
p

n
2D

E
10

2
10

65
0.

15
27

3.
76

8
0
.3

5
0

2
7
3
.1

9
2

7
.8

5
0
.7

6
0
.2

4
4
3

2
3

1
8
2

ts
p

n
2D

E
11

1
11

77
0.

25
24

9.
76

0
0
.6

3
5

2
4
7
.8

8
6

1
8
6

1
9

5
.1

9
9
5
4

1
0
4

3
,5

4
2

ts
p

n
2D

E
11

2
11

77
0.

15
25

8.
00

3
0
.3

9
0

2
5
8
.0

0
3

1
8

2
.0

6
0
.6

3
9
1

2
1

3
4
0

ts
p

n
2D

E
12

1
12

90
0.

25
26

5.
85

8
0
.5

5
2

2
6
5
.8

5
8

3
8
3

3
8

1
2

1
,7

7
7

1
4
4

6
,1

7
0

ts
p

n
2D

E
12

2
12

90
0.

15
31

4.
06

3
0
.8

6
4

3
1
2
.4

9
3

2
0
9

2
2

5
.8

2
9
4
1

9
8

3
,1

4
8

ts
p

n
2D

E
13

1
13

10
4

0.
25

27
8.

87
6

1
.1

5
5

2
7
8
.8

7
6

8
,8

1
3

1
,1

7
5

2
9
5

3
2
,6

3
7

5
3
3

1
0
4
,2

6
8

ts
p

n
2D

E
13

2
13

10
4

0.
15

32
4.

94
0

0
.4

9
1

3
2
4
.2

7
1

2
4
6

2
2

5
.7

6
9
0
9

1
5
1

3
,4

5
8

ts
p

n
2D

E
14

1
14

11
9

0.
25

31
0.

79
4

0
.9

5
3

3
1
0
.7

9
4

1
1
,3

9
6

1
,3

7
3

3
1
9

3
8
,2

0
5

8
7
2

1
2
7
,7

0
4

ts
p

n
2D

E
14

2
14

11
9

0.
15

27
2.

15
7

0
.6

9
3

2
7
0
.6

3
8

8
4
0

7
4

2
2

2
,7

7
4

1
4
2

9
,4

6
2

ts
p

n
2D

E
15

1
15

13
5

0.
25

29
0.

36
2

1
.0

8
6

2
8
9
.7

1
6

7
7
,9

0
5

1
6
,2

7
6

1
,7

7
7

1
8
4
,8

4
5

1
,6

5
2

5
4
3
,7

7
4

ts
p

n
2D

E
15

2
15

13
5

0.
15

29
3.

40
5

1
.2

0
6

2
9
3
.3

5
7

5
,9

0
4

6
1
0

1
6
9

1
6
,6

0
2

4
3
0

6
0
,2

3
0

ts
p

n
2D

E
16

1
16

15
2

0.
15

37
4.

00
5

2
.8

4
6

3
6
9
.9

4
5

2
5
,6

6
3

3
,3

2
3

5
4
3

6
7
,5

3
1

1
,1

0
5

1
9
5
,8

0
6

ts
p

n
2D

E
16

2
16

15
2

0.
15

29
5.

13
0

1
.2

0
7

2
9
5
.1

3
0

9
,8

4
7

9
0
7

1
8
9

2
1
,9

3
1

4
7
1

7
3
,6

3
8

34

T
a
b

le
2.

5:
S

T
S

P
N

in
st

an
ce

s
w

it
h

el
li

p
so

id
s

in
R

3
as

n
ei

gh
b

or
h

o
o
d

s.

in
st

an
ce

n
va

r.
h

B
o
n
m
in

C
o
u
T
sp

n
h

eu
ri

st
ic

C
P

U
s.

e.
o
p

ti
m

a
l

C
P

U
ti

m
e

[s
]

cu
ts

n
o
d

es
va

lu
e

ti
m

e
[s

]
cu

ts
va

lu
e

ov
er

a
ll

C
g
lT

sp
n

Ip
o
p
t

in
t.

s.
e.

ts
p

n
3D

E
5

5
25

0.
25

2
53

.4
95

0.
2
0

0
2
5
3
.4

9
5

0
.1

7
0
.0

5
0
.0

2
4

0
1
4

ts
p

n
3D

E
6

6
33

0.
25

2
76

.9
96

0.
2
7

1
2
7
6
.9

9
6

1
.2

1
0
.2

0
0
.0

7
1
9

4
5
0

ts
p

n
3D

E
7

7
42

0.
25

3
23

.6
89

0.
3
2

2
3
2
3
.6

8
9

7
.1

0
0
.9

1
0
.2

4
6
6

1
9

2
1
0

ts
p

n
3D

E
8

8
52

0.
25

2
96

.9
18

0.
4
6

0
2
9
6
.9

1
8

2
8

3
.5

0
1
.1

1
2
0
0

3
3

6
3
2

ts
p

n
3D

E
9

9
63

0.
25

3
15

.7
61

0.
4
4

3
3
1
2
.9

2
0

1
5
6

1
2

3
.4

7
7
9
0

1
0
7

2
,7

2
2

ts
p

n
3D

E
10

10
75

0.
25

3
28

.6
27

0.
7
3

4
3
2
8
.6

2
7

8
0
4

6
0

1
5

3
,1

8
9

2
4
4

1
0
,6

9
0

ts
p

n
3D

E
11

11
88

0.
25

3
01

.3
07

0.
5
8

1
3
0
1
.3

0
7

1
,9

5
5

1
3
1

3
2

6
,1

5
3

3
2
3

2
1
,4

7
8

ts
p

n
3D

E
12

12
10

2
0.

25
3
20

.5
75

1.
3
2

5
3
2
0
.5

7
5

2
4
,6

2
3

2
,4

4
2

3
1
8

5
4
,9

1
3

8
5
5

1
8
3
,3

8
8

35

CPU time to compute the initial heuristic solution is a small fraction (smaller
than 10−4 on some instances) of the time needed for solving the instance to
optimality and that this fraction decreases as n increases. The maximum
time used by CouTspn to solve one of the instances is 28,121 seconds for
polyhedral neighborhoods (tspn2DP15 1) and 77,905 seconds for ellipsoidal
neighborhoods (tspn2DE15 1), while the corresponding values for obtaining
the heuristic solutions are respectively 1.72 and 1.08 seconds.

For polyhedral neighborhoods in R2 (resp. R3) the average percent gap
between heuristic and optimal solution is 0.43% (resp. 0.54%) and the max-
imum gap is 3.67% for tspn2DP15 2 (resp. 1.56% for tspn3DP9). Moreover,
the heuristic solution turns out to be optimal in 14 cases out of 24 in R2

and in 4 cases out of 8 in R3.
For ellipsoidal neighborhoods in R2 (resp. R3), the average percent gap

between heuristic and optimal solution is 0.15% (resp. 0.11%) and the max-
imum gap is 1.10% for tspn2DE16 1 (resp. 0.91% for tspn3DE9). The
heuristic solution turns out to be optimal in 14 cases out of 24 in R2 and in
7 cases out of 8 in R3. These numbers attest of the quality of the solutions
found by the heuristic algorithm.

Thus, CouTspn usually improves slightly the heuristic solution and
gives a guarantee of optimality of its solution. Note that CouTspn usu-
ally finds the optimal value within the first few iterations of the cut gen-
erator CglTspn, and most of the CPU time is spent afterward to prove its
optimality, as illustrated in Figure 2.2.

Furthermore, the results show that solving instances with ellipsoidal
neighborhoods is in general harder than with polyhedral ones. This suggests
that in practice, as long as an approximation is necessary, using polyhedral
neighborhoods is likely the better option. In R2, the ratio of the CPU times
required to solve an instance with ellipsoidal neighborhoods vs. polyhedral
ones is on average 1.91, with a maximum ratio of 2.84 for tspn2DX12 1. A
similar pattern occurs in R3 with an average ratio of 2.52 and a maximum
one of 3.67 for tspn3DX11.

We also observe that three-dimensional instances are harder to solve
than two-dimensional ones, given the same number n of neighborhoods and
the same extension factor h. If one compares the 8 instances with n increas-
ing from 5 to 12 and h = 0.25, the ratio of the CPU times for polyhedral
neighborhoods in R3 vs. R2 is on average 11, with a maximum of 58 for
tspnXDP12. For ellipsoidal neighborhoods, the average ratio is 16, with a
maximum of 64 for tspnXDE12. In only one instance, tspnXDE5, the CPU
times are approximately the same. Note that in the above comparisons,
although the parameters n and h are identical for paired instances, there is

36

0 1 2 3 4 5 6 7 8
x 104

180

200

220

240

260

280

300

Cpu Time [s]

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Best Solution History
Lower Bound History
10% Optimality Tolerance
20% Optimality Tolerance

Figure 2.2: Convergence history of Couenne with CglTspn for the instance
tspn2DE15 1.

no strict correspondence of shape and location of the neighborhoods. Other
factors such as overlapping conditions or spatial distribution may thus influ-
ence the difference in CPU time, as can be easily noticed by observing the
results for the two-dimensional cases with n = 16 and h = 0.15. The ratio of
CPU times for instances with polyhedral neighborhoods tspn2DP16 1 and
tspn2DP16 1 is 2.40.

Finally, in most cases, instances with larger neighborhoods (h = 0.25)
are harder to solve than instances with smaller ones (h = 0.15), when the
number n of neighborhoods is fixed. For polyhedral neighborhoods, the ratio
of CPU times required to solve an instance with h = 0.25 vs. h = 0.15 is
11, with a maximum of 53 for tspn2DP13. However, there are instances
for which the opposite is true, namely tspn2DP5 (ratio 0.85) and tspn2DP8
(ratio 0.44). This confirms that other aspects not considered in this analysis
may also influence the overall CPU time. For ellipsoidal neighborhoods, the
average ratio is 9, with a maximum of 36 for tspn2DE13. Here also, for
instance tspn2DE8 the ratio falls to 0.37, well below one.

A comparison between CouTspn and CouTspn when the modification
described in Section 2.2.1.2 is not used can be found in Appendix A.3. Even
with termination criteria very favorable for the latter algorithm, we observe
that the proposed approach is orders of magnitude faster.

37

2.3 Solution of the second STSPN formulation

2.3.1 Solution procedure

Using the Outer-Approximation based Branch-and-Cut algorithm for convex
MINLP available in Bonmin [17], STSPN instances with convex neighbor-
hoods based on the second STSPN formulation can be solved to optimality.
The heuristic result obtained by solving the first STSPN formulation as il-
lustrated in Section 2.2.1.3, is used here as initial point and as upper bound
for the algorithm. Moreover, all the subtour elimination constraints already
found are added to the initial formulation of the problem. Finally, an ad-
hoc cut generator based on maximum flow computation is embedded in the
standard algorithm to check if any of the constraints (2.20) not included in
the current problem formulation is violated by the current solution, similarly
to the procedure illustrated in Section 2.2.1.1. If such constraint is found,
it is added as a global cut.

The edge weighting function becomes non-differentiable when two ver-
tices are identical, as illustrated in Section 2.2.1.3. To overcome this issue,
if the Euclidean or the Quadratic norm is used then constraints (2.24) are
reformulated as dij ≥ dMIN, and the objective function (2.22) becomes:

− n(n− 3)

2
dMIN +

n∑
i=1

n∑
j=1
j>i

dij , (2.53)

This formulation preserves the convexity of the problem, if convex neigh-
borhoods are employed, while excluding non differentiable points from the
feasible set. We use dMIN = 0.01 in the tests. If the Manhattan or the Max-
imum norm is used, according to Section 2.1.3.1 then constraints (2.26),
(2.27), (2.29), and (2.30) are linear and no differentiability issue arises.

Computational test have been performed using also the MTZ formula-
tion and the Branch-and-Bound algorithm for convex MINLP available in
Bonmin [17]. Since Bonmin is an exact solver only for convex problems,
the solution returned using the TMZ formulation is feasible, but without
any optimality guarantee. To avoid vertices from overlapping and conse-
quential convergence problems in the solver, also for this formulation an
exponential decaying term is used in the definition of the objective function,
as illustrated in Equation (2.52).

38

2.3.2 Software settings

This section describes precisely the additional non-default settings that were
used in the solution procedure.

The convex MINLP solver Bonmin [17] stable/1.4 available from COIN-
OR [20] using Cbc releases/2.4.2, Clp releases/1.11.1, and Ipopt releases/3.8.3
as sub-solvers with all the default settings except:

• linear solver MA57

• max iter 500

• bonmin.integer tolerance 1e−6
• bonmin.algorithm B-BB (MTZ)

• bonmin.algorithm B-Hyb (STSPN II)

• bonmin.num retry unsolved random point 1 (STSPN II)

• bonmin.random point perturbation interval .5 (STSPN II)

• bonmin.nlp solve frequency 1 (STSPN II)

• bonmin.nlp solve max depth 50 (STSPN II)

2.3.3 Computational results

Tests are performed on 6 random STSPN instances with ellipsoidal neighbor-
hoods, and using three types of edge weighting functions: Manhattan, Eu-
clidean, and Maximum norm. Instances with ellipsoids are in general harder
to solve than similar instances with polyhedra as shown in Section 2.2.3, but
they can be solved to optimality using the second STSPN formulation since
the neighborhoods are convex. The computational results are illustrated in
Table 2.6. The used edge weighting function is reported in the column with
label “d(·)”, the total number of variables used in the formulation in the
column with label “n. var.”, the final tour length in the column with label
“obj.”, the CPU time in the column with label “CPU”, the number of the
added subtour elimination constraints in the column with label “s.e.c.”, and
the number of nodes generated by the solver Bonmin in the column with
label “nodes”. Results obtained with the heuristic approaches based on the
MTZ formulation and on the first STSPN formulation are reported in the
rows with labels “TSPN MTZ” and “STSPN I H”, rispectively. Finally, op-
timal solutions obtained with the second STSPN formulation are reported in
the rows with label “STSPN II”. The simulations are performed on an Intel

Core i7 920 @2.67 GHz processor with 6GB of memory running Windows

7 Ultimate SP1.

39

Table 2.6: Comparison of three MINLP solution procedures for randomly
generated STSPN instances with ellipsoidal neighborhoods.

instance n m h d(·) formulation n. var. obj. CPU [s] s.e.c. nodes

tspn2DE10 10 2 0.25 2
TSPN MTZ 119 225.126 176 - 126
STSPN I H 65 225.126 1.45 1 0
STSPN II 110 225.126 6.57 9 521

tspn2DE15 15 2 0.25 2
TSPN MTZ 254 311.528 3,218 - 1,546
STSPN I H 135 290.362 3.76 6 0
STSPN II 240 289.716 681 43 109,408

tspn2DE20 20 2 0.15 2
TSPN MTZ 439 347.460 30,698 - 41,271
STSPN I H 230 342.276 12 19 0
STSPN II 420 342.276 9007 46 766,163

tspn3DE10 10 3 0.25 2
TSPN MTZ 129 328.627 234 - 645
STSPN I H 75 328.627 1.05 4 0
STSPN II 120 328.627 16 10 6,930

tspn3DE15 15 3 0.25 2
TSPN MTZ 269 434.150 9,175 - 21,566
STSPN I H 150 434.157 2.62 3 0
STSPN II 255 434.150 8,186 135 1,625,274

tspn3DE20 20 3 0.15 2
TSPN MTZ 459 502.913 237,643 - 500,948
STSPN I H 250 502.793 2.89 8 0
STSPN II 440 502.793 9,126 83 967,878

tspn2DE10 10 2 0.25 1
TSPN MTZ 299 286.304 53 - 4
STSPN I H 155 286.231 4.54 1 0
STSPN II 200 286.164 4.07 7 713

tspn2DE15 15 2 0.25 1
TSPN MTZ 674 379.993 172 - 4
STSPN I H 345 348.634 7.85 3 0
STSPN II 450 348.057 531 16 107,692

tspn2DE20 20 2 0.15 1
TSPN MTZ 1199 494.542 965 - 6
STSPN I H 610 423.844 32 9 0
STSPN II 800 419.476 65,486 32 6,610,820

tspn2DE10 10 2 0.25 inf
TSPN MTZ 209 191.218 59 - 2
STSPN I H 110 190.427 1.01 1 0
STSPN II 110 190.427 1.35 4 42

tspn2DE15 15 2 0.25 inf
TSPN MTZ 464 319.125 1,558 - 43
STSPN I H 240 264.964 7.30 6 0
STSPN II 240 263.742 145 15 35,833

tspn2DE20 20 2 0.15 inf
TSPN MTZ 819 423.950 1,154 - 22
STSPN I H 420 314.694 21 17 0
STSPN II 420 299.752 1,325 32 167,882

Since both the MTZ and the first STSPN formulation are non convex,
the results obtained using the convex optimizer Bonmin are not always op-
timal. However the latter seems to perform better than the former. The
average optimality gap for the MTZ formulation is 8.25% with a maximum

40

1 1.05 1.1 1.15 1.2 1.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(r

p,
s <

 τ
)

STSPN I H
STSPN II
TSPN MTZ

(a) Performance ratio rp,s based on the objective function value.

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(r

p,
s <

 τ
)

STSPN I H
STSPN II
TSPN MTZ

(b) Performance ratio rp,s based on the CPU time (a logarithmic scale is used for τ).

Figure 2.3: Performance profiles for the three MINLP solution procedures.

of 41.43% for tspn2DE20 and Maximum norm. For the first STSPN formu-
lation the average optimality gap is 0.58% with a maximum of 4.98% for

41

tspn2DE20 and Maximum norm. Figure 2.3.a illustrates the performance
profiles derived using as performance measure the objective function value
[27]. Note that the probability for the solution procedure based on the sec-
ond STSPN formulation that its performance ratio rp,s is within factor 1 of
the best possible ratio is 1 since the procedure is exact.

Moreover, the CPU time of the MTZ formulation is larger than the one
of the second STSPN formulation by an average factor of 12 with a max-
imum factor of 44 for tspn2DE10 and Maximum norm. On the contrary,
the CPU time of the first STSPN formulation is smaller than the one of
the second STSPN formulation on average by two orders of magnitude with
maximum factors up to three orders of magnitude. These results suggest
that the first STSPN formulation definitely leads to a more efficient pro-
cedure than the MTZ formulation for finding a near optimal tour to use
as initial point for the second STSPN formulation. These results are high-
lighted in Figure 2.3.b, which illustrates the performance profiles derived
using as performance measure the CPU time [27].

Solving to optimality the same instances using the second STSPN for-
mulation with the Euclidean norm seems to be harder than with the Max-
imum norm. The CPU time with Euclidean norm is larger than the one
with Maximum norm by an average factor of 5.45 with a maximum of 6.79
for tspn2DE20. Moreover, the comparison of Euclidean and Manhattan
norms does not lead to a certain conclusion. In two cases, tspn2DE10 and
tspn2DE15, the CPU time with Euclidean norm is larger than the one with
Manhattan norm by an average factor of 1.45, but for tspn2DE20 it is smaller
by a factor of 7.14.

Instances in R3 seem to be harder to solve to optimality than instances
in R2 with the same number of neighborhoods, which is consistent with
the results reported in Section 2.2.3. The CPU time for instances in R3 is
larger than the one for instances in R2 by an average factor of 5.15 with a
maximum of 12.02 for tspn2DE15.

Finally, the three instances that were solved to optimality in Section 2.2.3
using the Euclidean norm, i.e., tspn2DE10, tspn2DE15, and tspn3DE10,
show that the proposed procedure based on the second STSPN formulation
performs better in term of computational cost than the one proposed in
Section 2.2, while finding the same optimal tour. Although we need to take
into account that the testing environments are not exactly the same, the
CPU times were improved here by a factor of 5, 114, and 50, respectively.

42

2.4 Solution of the third and fourth STSPN for-
mulations

2.4.1 Solution procedure

Using the same procedure illustrated in Section 2.3 for the second STSPN
formulation, STSPN instances with polyhedral neighborhoods and the Eu-
clidean norm are solved to optimality using the third and the fourth STSPN
formulations. According to Section 2.1.3.1 these formulations lead to Sec-
ond Order Conic problems for the considered cases, and thus the conic
solver Mosek [4] is also employed. In this case the subtour eliminations
constraints are generated using a procedure similar to the one indicated
in Section 2.2.1.3 and added one by one to the problem formulation using
Ampl.

To avoid convergence issues in the solver Bonmin if two vertices overlaps
or if they are both zero vectors, which is always the case for the additional
variables in the third and the fourth STSPN formulations, a constant term
is introduced in the Euclidean norm:

‖qi − qj‖2 =

√
ε2 + (qi − qj)T (qi − qj) , (2.54)

and we use ε2 = 0.000001 in the tests. This is not necessary for the solver
Mosek since conic constraint are fully supported by the solver.

2.4.2 Software settings

This section describes precisely the additional non-default settings that were
used in the solution procedure.

The convex MINLP solver Bonmin [17] stable/1.6 available from COIN-
OR [20] using Cbc releases/2.7.5, Clp releases/1.14.5, and Ipopt releases/3.10.1
as sub-solvers with all the default settings except:

• linear solver MA57

• max iter 500

• bonmin.algorithm B-Hyb

• bonmin.integer tolerance 1e−6
• bonmin.mir cuts -99

The solver Mosek [4] Version 6.0.0.135 with all the default settings.

43

T
a
b

le
2
.7

:
C

o
m

p
a
ri

so
n

of
th

e
fi

v
e

ex
ac

t
so

lu
ti

on
p

ro
ce

d
u

re
s

fo
r

S
T

S
P

N
in

st
an

ce
s

w
it

h
p

ol
y
h

ed
ra

l
n

ei
gh

b
or

h
o
o
d

s.

in
st

an
ce

S
T

S
P

N
I

S
T

S
P

N
II

S
T

S
P

N
II

I
S

T
S

P
N

IV
B
o
n
m
in

M
o
se

k
B
o
n
m
in

M
o
se

k
B
o
n
m
in

M
o
se

k
n

.
C

P
U

n
.

C
P

U
n

.
C

P
U

n
.

C
P

U
n

.
C

P
U

n
.

C
P

U
n

.
C

P
U

ts
p

n
2D

P
5

1
20

0.
12

30
0.

64
60

0
.3

1
7
0

0
.8

4
9
0

0
.8

4
7
0

0
.8

1
9
0

0
.9

7
ts

p
n

2D
P

5
2

20
0.

14
30

0.
47

60
0
.4

1
7
0

0
.7

5
9
0

0
.9

2
7
0

0
.9

2
9
0

1
.0

0
ts

p
n

2D
P

6
1

27
0.

4
42

0.
59

87
1
.8

1
1
0
2

1
.8

7
1
3
2

3
.2

4
1
0
2

1
.7

5
1
3
2

4
.1

8
ts

p
n

2D
P

6
2

27
0.

13
42

0.
48

87
0
.7

0
1
0
2

1
.2

8
1
3
2

1
.1

4
1
0
2

2
.1

5
1
3
2

1
.8

3
ts

p
n

2D
P

7
1

35
1.

72
56

0.
86

11
9

1
2

1
4
0

5
.1

3
1
8
2

4
.6

3
1
4
0

4
.3

7
1
8
2

1
2

ts
p

n
2D

P
7

2
35

1.
19

56
0.

73
11

9
4
.9

6
1
4
0

4
.8

4
1
8
2

4
.1

2
1
4
0

3
.8

2
1
8
2

3
.0

6
ts

p
n

2D
P

8
1

44
1.

79
72

0.
86

15
6

1
1

1
8
4

5
.0

7
2
4
0

4
.6

2
1
8
4

7
.7

7
2
4
0

8
.8

1
ts

p
n

2D
P

8
2

44
4.

04
72

1.
25

15
6

3
2

1
8
4

6
.0

1
2
4
0

1
3

1
8
4

1
1

2
4
0

1
7

ts
p

n
2D

P
9

1
54

22
90

1.
83

19
8

1
5
6

2
3
4

1
2

3
0
6

1
2

2
3
4

2
5

3
0
6

4
2

ts
p

n
2D

P
9

2
54

2.
12

90
1.

08
19

8
8
9

2
3
4

7
.7

1
3
0
6

4
.3

7
2
3
4

1
2

3
0
6

8
.8

1
ts

p
n

2D
P

10
1

65
21

11
0

2.
12

24
5

8
7
8

2
9
0

1
8

3
8
0

1
3

2
9
0

2
4

3
8
0

2
6

ts
p

n
2D

P
10

2
65

3.
85

11
0

1.
47

24
5

5
9
1

2
9
0

1
8

3
8
0

5
.1

0
2
9
0

2
6

3
8
0

8
.3

3
ts

p
n

2D
P

11
1

77
10

9
13

2
3.

98
29

7
1
9
,6

5
2

3
5
2

9
8

4
6
2

2
7

3
5
2

4
6

4
6
2

4
9

ts
p

n
2D

P
11

2
77

11
13

2
1.

93
29

7
3
,0

0
4

3
5
2

2
6

4
6
2

6
.4

4
3
5
2

2
1

4
6
2

1
7

ts
p

n
3D

P
5

25
0.

15
35

0.
47

75
0
.6

1
9
5

1
.0

0
1
2
5

1
.4

0
9
5

0
.9

8
1
2
5

1
.3

9
ts

p
n

3D
P

6
33

0.
6

48
0.

58
10

8
2
.9

0
1
3
8

2
.3

9
1
8
3

3
.4

2
1
3
8

3
.0

0
1
8
3

2
.0

3
ts

p
n

3D
P

7
42

4.
25

63
1.

15
14

7
2
3

1
8
9

7
.0

5
2
5
2

2
3

1
8
9

1
4

2
5
2

4
0

ts
p

n
3D

P
8

52
12

80
3.

71
19

2
1
9

7
2
4
8

5
5

3
3
2

9
3

2
4
8

2
9

3
3
2

6
8

ts
p

n
3D

P
9

63
58

99
3.

56
24

3
1
,5

9
8

3
1
5

3
4
3

4
2
3

1
2
4

3
1
5

1
1
2

4
2
3

2
0
8

ts
p

n
3D

P
10

75
23

0
12

0
8.

99
30

0
8
,1

3
7

3
9
0

3
0
2

5
2
5

2
5
2

3
9
0

1
0
8

5
2
5

2
5
1

44

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(r

p,
s <

 τ
)

STSPN I
STSPN II − BONMIN
STSPN II − MOSEK
STSPN III − BONMIN
STSPN III − MOSEK
STSPN IV − BONMIN
STSPN IV − MOSEK

Figure 2.4: Performance profiles based on the CPU time for the five exact
MINLP solution procedures (a logarithmic scale is used for τ).

2.4.3 Computational results

Tests are performed on 20 STSPN instances with polyhedral neighborhoods
from Section 2.2.3. The computational results are illustrated in Table 2.7.
The total number of variables used in the formulation is reported in the
columns with label “n.” and the CPU time in the columns with label
“CPU”. Results previously obtained with the exact solution procedure for
the first formulation are reported in the column with label “STSPN I”. Re-
sults obtained using the second, third, and fourth formulations are reported
in columns with labels “STSPN II”, “STSPN III”, and “STSPN IV”, where
the used solver is also indicated. The final tour length is not reported since
results are always optimal and values can be read from Tables 2.2 and 2.3.
The simulations are performed on an Intel Core i7 920 @2.67 GHz pro-
cessor with 12GB of memory running Windows 7 Ultimate SP1.

Figure 2.4 illustrates the performance profiles derived using as perfor-
mance measure the CPU time [27]. Clearly, the second formulation solved
using Bonmin outperforms all the other procedures. In particular the geo-
metric average of the ratio of the CPU time spent by the first formulation
solved using Couenne to the second formulation solved using Bonmin is

45

2.39, with a maximum ratio of 27.40 for tspn2DP11 1 and a minimum ratio
of 0.19 for tspn2DP5 1. Note that the processors used for the two sets of
tests are slightly different, but with an advantage towards the first formu-
lation and thus it does not impact our conclusion.

The worst performance is obtained by the second formulation is solved
using Mosek, where the CPU time ratio to the second formulation solved
using Bonmin is 32.26. This result is heavily influenced by the fact that the
subtour elimination constraints cannot be dynamically added in the Branch
and Bound algorithm available in Mosek, requiring the problem to be solved
several times before a feasible tour is returned.

Finally, the remaining four solution procedures show a very similar per-
formance. The CPU time ratios for the third and fourth formulations solved
using Bonmin to the second formulation solved using Bonmin are 7.02 and
7.09, respectively, and the ratios for the third and fourth formulations solved
using Mosek to the second formulation solved using Bonmin are 6.17 and
8.95, respectively. We can observe that the increase in the number of vari-
ables due to the additional q̃i,j or q̄i,j causes the computational cost to
increase when Bonmin is used. However, when Mosek is used this increase
might be compensated by the fact that the third and fourth formulations
use a stronger relaxation than the second, allowing an overall faster solution
procedure.

2.5 Conclusion

In this chapter, first a non-convex MINLP formulation of the STSPN is
provided. A very fast heuristic solution procedure using the MINLP solver
Bonmin is described. Computational tests show that the generated heuristic
solution is usually within 1% of optimality, making it a very efficient and
practical tool. An alternative heuristic solution procedure based on the
MTZ formulation is also tested, but results show that the latter procedure
is outperformed by the former both in terms of computational cost and
optimality gap.

An approach for solving the problem to optimality using a modified
version of the global MINLP solver Couenne is then presented. An ad
hoc cut generator is developed to improve the performance of the standard
algorithm while solving STSPN instances.

Two main modifications are proposed. First, subtour elimination con-
straints are handled as cutting planes and introduced using a maximum flow
computation. Second, we observe that, in the proposed formulation, fixing

46

all the binary variables results in a convex problem. We take advantage
of that by rounding fractional solutions, solving the corresponding problem
(possibly improving the upper bound), and adding a cut preventing the same
rounded solution to be considered. Computational tests show that STSPN
instances with up to 16 neighborhoods in R2 and with up to 12 neighbor-
hoods in R3 can be solved to optimality, and that the proposed approach
is orders of magnitude faster than the standard algorithm implemented in
Couenne.

A second approach is then proposed by reformulating the STSPN as
a convex MINLP instance, under the assumption that neighborhoods and
edge weighting function are both convex. Three different formulations are
provided, and a modified version of the convex MINLP solver Bonmin is
implemented, where subtour elimination constraints are again handled as
cutting planes and an ad hoc cut generator is embedded in the standard
algorithm. Alternatively, the solver Mosek is also employed to directly
handle the conic constraints in the convex formulations.

Numerical tests show that the solution procedure based on the second
STSPN formulation and the modified solver Bonmin outperforms all the
other approaches in case of convex neighborhoods and convex edge weight-
ing function. In particular, it outperforms the procedure based on the first
STSPN formulation and the modified solver Couenne in terms of computa-
tion cost by factors up to two orders of magnitude, while converging to the
same optimal value. Using the best solution procedure, instances with up
to 20 ellipsoidal neighborhoods in R2 and R3 have been solved to optimal-
ity using the Euclidean, the Manhattan, and the Maximum norm as edge
weighting function.

47

Chapter 3

Hybrid Random-Key
Genetic Algorithm

In this chapter, we propose a Genetic Algorithm as a heuristic approach to
employ for large scale problems. The formulation is presented, and numer-
ical results are compared with the solutions obtained in chapter 2. Some
test problems available in the literature are also analyzed.

3.1 Genetic algorithm formulation

The computational cost of the heuristic and exact procedures illustrated in
chapter 2 rapidly increases with the number of the neighborhoods. There-
fore, an alternative heuristic approach might be useful in practical appli-
cations to find a near optimal tour for instances with up to 1, 000 neigh-
borhoods. Moreover, the results of the heuristic procedure can be used to
define a feasible initial point and an upper bound for the MINLP optimizer
and thus to improve its performance, as discussed in Section 2.2.1.3.

Heuristic approaches proposed in the literature model only very specific
STSPN instances, such as balls in R2 or R3, and they generally generate
only one near optimal tour while hardly trying to improve it by exploiting
the specific nature of the problem. On the contrary, a Genetic Algorithm
(GA) can maintain a large pool of near optimal tours, and performs only
low cost computations to improve each one of those. Moreover, the general
structure of a GA allows to deal with any type of STSPN instances, even
with non-connected neighborhoods.

In a general GA formulation the pool of near optimal feasible points
currently known is called population. Each point is coded in a particu-

48

lar sequence, called individual or chromosome, of real, integer, or binary
numbers, called genes, which univocally represents the point. The encod-
ing strategy depends on the nature of the considered optimization problem,
and on the specific genetic operators used to generate new chromosomes.
At each iteration of the algorithm, also called generation, newly generated
chromosomes are grouped into a new pool, which usually contains the same
number of chromosomes as the initial population. The algorithm ends when
a termination criterion is fulfilled [11, 51].

The most commonly used genetic operators are selection, crossover, mu-
tation, and immigration. Selection chooses the best chromosomes in the
current population and copies them into the next population in order to
preserve the best know feasible points throughout the execution of the algo-
rithm. Crossover combines in a deterministic or random fashion the genes
of two randomly chosen chromosomes (parents) of the current population
to create two or more new chromosomes (offsprings), and inserts them in
the next population, mimicking the biological concept that such combina-
tions may produce superior offsprings. With the same goal, mutation varies
randomly chosen genes in the chromosomes of the population following a
probabilistic pattern. Finally, immigration randomly generates new chro-
mosomes in the population in order to maintain a broad genetic variety.

Several works have been proposed in the literature to find a near op-
timal point for MINLP problems using a GA. Yokota et al. [104] propose
a GA formulation that performs arithmetic crossover and accounts for in-
feasible chromosomes by adding a penalty term to the objective function.
Deep et al. [24] propose a special truncation procedure to handle integer
variables, Laplace crossover, Power mutation, and a penalty approach for
handling constraints. Moreover, many GA with ad-hoc operators have been
proposed in the literature for solving TSP instances [64]. Moving from the
results proposed by Snyder and Daskin [95] for solving GTSP instances, in
the present work a new coding procedure is proposed by adapting to the
STSPN the random-key schema proposed by Bean [11]. Finally, a hybrid
GA formulation is employed where specific heuristics instead of mutation
operators enhance the quality of each chromosome while maintaining feasi-
bility.

3.1.1 Chromosome coding

Section 2.1.2 illustrates that one of the major drawbacks of the first or second
MINLP formulations of the STSPN is the exponential number of subtour
elimination constraints. To overcome this issue, a random-key based chro-

49

mosome coding scheme is proposed that intrinsically satisfies constraints
(2.19) and (2.20). Moreover, instead of keeping the n(n− 1)/2 binary vari-
ables ξij , only n real numbers in the interval [0, 1] are necessary to represent
an Hamiltonian cycle. Each chromosome is thus a sequence of n genes. Each
gene is composed by a vector part, which represent the position of the ver-
tex in its neighborhood, and fractional part, which represents the position
of the vertex in the cycle. The vector part is equal to qi, except for the
case of parameterized neighborhoods, such as cubic splines (2.10) or (2.13),
where it is equal to the parameter ti. The fractional part is a real number
in the interval [0, 1], which represents the ordering in ascending order, i.e.,
the vertex with the smallest fractional part is the first in the cycle and the
vertex with the largest one is the last. As an example, in the case n = 5 the
following chromosome:

q1.22 q2.72 q3.45 q4.87 q5.02

is decoded into the following tour:

q5 → q1 → q3 → q2 → q4 .

Obviously, if a parametric representation of the neighborhoods is used, from
the parameter ti the corresponding location qi has to be calculated during
the decoding procedure.

When a new chromosome is generated, the fractional part of each gene
is determined by generating a uniformly distributed random number in the
interval [0, 1]. The same is done for the vector part in case of a paramet-
ric representation of the neighborhoods (cubic splines). In case of convex
neighborhoods, we observe that the edges of the tour always cross the neigh-
borhoods boundaries unless all the neighborhoods are fully contained in a
larger one. The optimal position of each vertex is thus likely to be on the
boundary of its corresponding neighborhood, as can be easily observed in
Figure 2.1. Therefore, for the vector part of each gene, qi, a configuration is
randomly chosen in the neighborhood using a beta distribution to obtain a
higher density in proximity of the boundary, as illustrated in Appendix A.4.
Note that in case of polyhedra, the corresponding ellipsoid as illustrated
in Section 2.1.7 is used for generating points in its interior. If this is not
available, the maximum volume ellipsoid inscribed in the polyhedron can be
used for this purpose, as explained in Appendix A.5.

50

3.1.2 Genetic operators

3.1.2.1 Selection

An elitist strategy is employed to propagate from one generation to the next
the best known chromosomes, in order to conserve them throughout the ex-
ecution of the algorithm and to provide the crossover operators with a pool
of parents to choose from. The percentage of the new population constituted
by these chromosomes is indicated by pS . This value is not kept constant
in all the generations since it has been observed that the convergence rate
of the algorithm may benefit from one or more large immigration cycles if
the best chromosome does not improve for a certain number of consecutive
generations.

3.1.2.2 Crossover

Starting from the pool of parents provided by the selection operator, new
choromosomes called offsprings are generated using the crossover opera-
tor, and the percentage of the new population constituted by offsprings is
indicated by pX . The random-key based chromosome coding has the advan-
tage that allows performing a direct uniform crossover on the chromosomes
while maintaining the feasibility of the offsprings and thus avoiding compu-
tationally expensive postprocessing steps to recover feasibility. First, parents
are selected from the pool using a tournament procedure, where the best
among three randomly selected chromosomes in the pool becomes one par-
ent [41, 51]. Then, a sequence of n random numbers uniformly distributed
in the interval [0, 1] is generated and if the i-th element of the sequence is
less than a given threshold pU , then the offspring will inherit the i-th gene
from the first parent, otherwise it will inherit it from the second. As an
example, in the case n = 5 and pU = 0.3 the following random sequence and
two parents:

0.28 0.74 0.68 0.15 0.64

qI1 .22 qI2 .72 qI3 .45 qI4 .87 qI5 .02

qII1 .89 qII2 .91 qII3 .38 qII4 .12 qII5 .43

generate the following offspring (indicated by the tilde):

q̃1 = qI1 .22 q̃2 = qII2 .91 q̃3 = qII3 .38 q̃4 = qI4 .87 q̃5 = qII5 .43 ,

which is decoded into the following feasible tour:

q̃1 → q̃3 → q̃5 → q̃4 → q̃2 .

51

The Laplace crossover proposed by Deep and Thakur [23] can also be
adapted to further evolve the vector part of the genes. If xi for i = 1, . . . , n
are n realizations of a random variable X ∼ Laplace(µ, λ) as illustrated
in Appendix A.6, then the vector part of each gene of the two offsprings
generated by the operator is given by:

q̃Ii = qIi + xi (qIIi − qIi) ,

q̃IIi = qIIi + xi (qIIi − qIi) .
(3.1)

It is worth noticing that after applying the Laplace crossover, the chromo-
some may become infeasible, since the vertices may exit from their neighbor-
hoods. However, the touring heuristic, as explained in the next section, will
move the vertices back in the feasible set. Moreover, in the numerical tests
where no heuristics are employed, the penalty approach on the objective
function illustrated by Deep et al. [24] is used to account for infeasibility.

3.1.2.3 Mutation

The mutation operator is usually a low computational cost operator that
alters the value of randomly selected genes in the population. However,
to fully exploit the nature of the STSPN, in this work an hybrid GA for-
mulation is employed and specific heuristics are rather used, which modify
each gene in each chromosome. These operators are computationally inten-
sive, but also improve the performance of the GA in terms of quality of the
found near optimal tour and overall computational cost, as illustrated in
Section 3.2. In other words, although the computational cost of producing a
new generation becomes higher, the overall number of generations required
to converge becomes smaller. In particular, two heuristics are employed:
the first modifies the fractional part of the genes, keeping the vector part
constant (Lin-Keringhan heuristic), and the second does the opposite, i.e.,
modifies the vector part keeping the fractional constant (Touring heuristic).

In the experimental tests where no heuristics are employed, the Power
mutation proposed by Deep et al. [24] is used. The k-th component of
the vector part of the i-th gene of a chromosome in the population, qi,k, is
selected with probability pM , two random numbers, xp and xs, uniformly
distributed in the interval [0, 1] are selected, and the following mutation is

52

performed:

q̃ik =


qi,k − (xp)

1/α (qi,k − qLi,k) if
qi,k−qLi,k
qUi,k−q

L
i,k

≤ xs ,

qi,k + (xp)
1/α (qUi,k − qi,k) if

qi,k−qLi,k
qUi,k−q

L
i,k

> xs ,

(3.2)

where qLi,k and qUi,k are the lower and upper bounds on the k-th component

of the i-th neighborhood, and α > 0. (xp)
1/α is a realizations of a random

variable distributed according to the Power Function distribution Pow(α, 1),
as illustrated in Appendix A.7. Finally, a penalty approach on the objective
function is used to account for infeasibility, as illustrated in [24].

Lin-Keringhan heuristic If the vector part is kept constant, then the
STSPN becomes a well known STSP. Therefore, among the many heuristics
available in the literature for finding a near optimal cycle for a STSP, the
one that has shown good performance even on large instances is the Lin-
Keringhan heuristc [67]. Two different implementations were tested: the one
proposed by Helsgaun [52], and the one proposed by Applegate et al. [6].
Since this operator has to be applied on each chromosome in each generation,
although the former showed in general slightly better performance in terms
of near optimal tour cost, the latter was finally used on the basis of its in
average smaller execution time.

Touring heuristic If the fractional part is kept constant, then the STSPN
becomes a NLP problem, which is convex if the neighborhoods and the edge
weighting function are convex. After decoding the neighborhoods sequence
from the fractional part into a permutation π(i), with π(n + 1) = π(1),
the same NLP problem illustrated in Section 2.2.1.2 can be derived using
the first STSPN formulation, i.e., the objective function (2.49) has to be
minimized subject to constraints (2.5) and (2.7).

If the second STSPN formulation is used then the Touring heuristic is
formulated as follows:

minimize :
n∑
i=1

di , (3.3)

subject to : d
(
qπ(i), qπ(i+1)

)
≤ di ∀ i ∈ V , (3.4)

di ∈ R+ ∀ i ∈ V , (3.5)

53

together with constraints (2.5) and (2.7). Here n additional variables di are
used.

If the Euclidean norm or the Quadratic norm is used and if the neigh-
borhoods are polyhedra or ellipsoids, then the above formulation becomes a
Second Order Conic Programming (SOCP) problem, whereas if the neigh-
borhoods are cubic splines, it becomes a non-convex NLP problem, which
has no guarantee to be solved to optimality using a convex NLP optimizer.
In the latter case recent developments achieved in polynomial optimization
problems (POP) can be used to find a global optimum, and in particular
the sparse semidefinite programming (SDP) relaxation methods proposed
by Waki et al. [100] and Lasserre [65] were tested. However, preliminary re-
sults showed that the elevated computational cost does not allow to achieve
fast convergence for problems beyond 10 neighborhoods. Moreover, on the
basis of the structure of the GA, multiple initial points for the convex NLP
optimizer are usually tested, which allows it to outperform the SDP based
approaches in terms of overall convergence rate while reaching the same
optimal point, though without guarantee of global optimality.

If the Manhattan norm or the Maximum norm is used, the following
formulation for the Touring heuristic can be derived:

minimize :

n∑
i=1

m∑
k=1

dik , (3.6)

subject to : qπ(i),k − qπ(i+1),k ≤ dik ∀ i ∈ V, ∀ k ∈ {1, . . . ,m} , (3.7)

qπ(i+1),k − qπ(i),k ≤ dik ∀ i ∈ V, ∀ k ∈ {1, . . . ,m} , (3.8)

dik ∈ R+ ∀ i ∈ V, ∀ k ∈ {1, . . . ,m} , (3.9)

together with constraints (2.5) and (2.7). In this formulation n × m ad-
ditional variables dik are used, which become n if the Maximum norm is
used (in this case di1 = . . . = dim = di). The advantage of this formula-
tion is that the NLP becomes a Linear Programming (LP) problem if the
neighborhoods are polyhedra, and a Quadratic Constrained Quadratic Pro-
gramming (QCQP) problem if the neighborhoods are ellipsoids. In case of
cubic splines, it remains a non-convex NLP problem.

In the present work, the optimizer Cplex [21] is employed to solve LP,
QCQP, and SOCP problems. For more general NLP instances the open
source convex optimizer Ipopt [98] is used where the sparsity of the La-
grangian Hessian matrix allows to achieve fast convergence in the Newton
scheme. In this case the objective function and its derivatives are hard-coded
into the solver as illustrated in Appendix A.2. In particular, for the case of

54

Table 3.1: Formulation, Problem Type, and Solver employed for the Touring
heuristic.

Neighborhood
Edge Weighting Function

1 2 Q inf

Polyhedra
STSPN Form. II II II II
Problem Type LP SOCP SOCP LP
Solver Cplex Cplex Cplex Cplex

Ellipsoids
STSPN Form. II II II II
Problem Type QCQP SOCP SOCP QCQP
Solver Cplex Cplex Cplex Cplex

Cubic Splines
STSPN Form. II I + ε I + ε II
Problem Type NLP NLP NLP NLP
Solver Ipopt Ipopt Ipopt Ipopt

Euclidean or Quadratic norm the modified edge weighting function (2.50)
is used, which ensures all the functions in the problem formulation to be at
least once differentiable as required by the solver Ipopt. Here, the objec-
tive function (2.49) is employed, and the additional variables di are thus not
necessary. For the case of Manhattan or Maximum norm differentiability
is directly ensured by the employment of the objective function (3.6). Ta-
ble 3.1 reports the formulation and the solver used for each combination of
neighborhood and edge weighting function, where the symbols ε indicates
that the modified edge weighting function (2.50) is used.

Finally, it is worth mentioning that even if the original chromosome is in-
feasible due to the crossover operator, the employed solver always produces
a feasible point and thus assures that each vertex lies within its neighbor-
hood.

3.1.2.4 Immigration

The immigration operator is not frequently used in GA implementations.
However, since no random mutations are performed in the present imple-
mentation, and instead heuristics are used to improve the quality of each
chromosome, in order to maintain sufficient genetic variety at each genera-
tion new chromosomes are generated according to the procedure illustrated
in Section 3.1.1. The percentage of the new population made by these chro-
mosomes is indicated by 1− pS − pX .

Finally, we observed that the convergence rate of the algorithm can be
improved by not keeping the immigration percentage constant during the

55

20 40 60 80 100 120 140 160 180
2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

Generation

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Best Known Chromosme
Population Average

Figure 3.1: Convergence history of the hybrid random-key GA for solving
the instance lin318 v in R2 with Euclidean norm (gImax = 10).

entire execution, but by varying it for one ore more generations if the objec-
tive value of the best chromosome remains constant for a certain sequence of
consecutive generations, gImax . In this case the percentage of the propagated
chromosomes is p̄S and of the new chromosomes is 1− p̄S . Figure 3.1 illus-
trates this behavior. If the population average stabilizes, the GA is not able
to further improve the best known chromosome, but if a large immigration
cycle is performed, then the algorithm is able to find a new near optimal
tour.

3.1.3 Termination criteria and population management

Two termination criteria are used in the current implementation of the al-
gorithm: maximum number of generations, gmax, and maximum number of
generations without improving the best known chromosome, gCmax . More-
over, at the end of each generation duplicated chromosomes, i.e., chromo-
somes that simultaneously correspond to the same cycle and have the same
objective function value, are replaced with newly generated chromosomes.
Finally, in case no Touring heuristic is used, a final feasibility check is per-
formed on each chromosome, and if it lies outside the feasible set, a penalty

56

Algorithm 3.1 A Hybrid Random-Key Genetic Algorithm for solving
STSPN instances.

Input: Neighborhoods Qi, i = 1, . . . , n and edge weighting function d(·)
Output: Near optimal tour q?π(i), i = 1, . . . , n and its objective value O?

1. generate an initial population of chromosomes
2. let O? be the objective of the best chromosome in the population
3. let q?π(i) be the corresponding decoded tour

4. g ← 1; gC ← 1; gI ← 1
5. repeat
6. if gI < gImax then
7. selection of pS chromosomes
8. crossover of pX chromosomes with parameters pU , µ, λ
9. immigration of 1− pS − pX chromosomes
10. else
11. selection of p̄S chromosomes
12. immigration of 1− p̄S chromosomes
13. gI ← 1
14. apply improvement heuristics on 1− pS or 1− p̄S chromosomes
15. (optional) mutation of pM genes components with parameter α
16. let O?g be the objective of the best chromosome in the generation
17. if O?g ≥ O? − εI then increment gC and gI
18. else let O? ← O?g ; update q?π(i); gC ← 1; gI ← 1

19. increment g
20. remove duplicates and (optional) check feasibility
21. until g > gmax or gC > gCmax

22. output q?π(i) and O?

is added to its objective function value [24]. A high-level description of the
algorithm is provided in Algorithm 3.1.

3.2 Computational results

3.2.1 Random STSPN instances

The first set of tests is performed on randomly generated STSPN instances
with ellipsoids, polyhedra, and Bézier cubic splines in R2, R3, and R7. An
example of such instances is illustrated in Figure 3.2.

57

(a) Ellipsoids in R3 (tspn3DE15). (b) Polyhedra in R3 (tspn3DP15).

(c) Bézier Splines in R3 (tspn3DS15).

Figure 3.2: Randomly generated STSPN instances of comparable exten-
sion with 15 neighborhoods in R3 and optimal tours calculated using the
Euclidean Norm.

3.2.1.1 Euclidean norm

The computational results obtained using the Euclidean norm as edge weight-
ing function are illustrated in Table 3.2. The neighborhood topology is re-
ported in the column with label “Q”, the population size in the column
with label “pop.”, and the termination criteria in the column with label
“gmax”, where gCmax is enclosed in parentheses. Moreover, the minimum,
maximum, and average values of the objective function recorded during a

58

sequence of five separate runs are reported in the columns with labels “min.”,
“max.”, and “mean”, the percentage gap between minimum and maximum
attained objective function values in the column with label “gap”, and, for
the best run, the total number of generations and the number of generations
where the value of the objective function has been improved in the columns
with labels “g” and “impr.”, respectively. The parameters used in the GA
are: pS = 0.35, pU = 0.30, pX = 0.55, µ = 0.0, λ = 0.3, pM = 0.005,
α = 0.20, and gImax = gCmax . Due to the last parameter choice, no large im-
migration cycles are executed in these tests, and the algorithm terminates
when gCmax consecutive generations do not improve the best known chro-
mosome. The simulations have been performed on an Intel Core i7 920

@2.67 GHz processor with 6GB of memory running Windows 7 Ultimate

SP1.
Although no optimality is guaranteed, the GA always returns the opti-

mal tour for each of the six instances with up to 20 ellipsoidal neighborhoods
(n ≤ 20) in R2 and R3 solved to optimality using the Euclidean norm and
the second STSPN formulation. For cases with a larger number of neigh-
borhoods, no optimal tour has been calculated using the MINLP optimizer
because of the excessive computational cost. However, using the heuristic
procedure based on the first STSPN formulation a near optimal tour for the
cases tspn2DE30 and tspn2DE50 has been obtained with objective function
values 329.341 and 382.649, and CPU times 119 s and 81,111 s, respec-
tively. For these two cases, the GA outperforms the heuristic procedure
based on the MINLP optimizer both in terms of objective function value,
by an average factor of 1.92%, and in terms of CPU time, up to two orders
of magnitude.

For instances with more than 20 neighborhoods, where no optimality
information is available, the GA tends to return more consistent results
in case of ellipsoids and in R7. The average percentage gap between the
minimum and maximum value of the objective function is 1.43% overall
with a maximum of 3.74% for tspn3DP100. In case of ellipsoids it is 0.95%,
in case of polyhedra 2.22%, and in case of Bézier splines 1.13%. Finally, if
we consider n ≥ 100, the average percentage gap between the minimum and
maximum value of the objective function for instances in R7 it is 0.70%, in
R3 2.14%, and in R2 1.47%.

Best known chromosomes are typically improved only in a fraction of
the overall generations, and the employment of strong ad-hoc heuristics
instead of more traditional mutation operators seems to strengthen this
tendency. The generations where an improvement is observed are on average
36% of the overall generations with a maximum of 78% for tspn2DS200

59

T
a
b

le
3
.2

:
H

y
b

ri
d

ra
n

d
om

-k
ey

G
A

re
su

lt
s

fo
r

ra
n

d
om

ly
ge

n
er

at
ed

S
T

S
P

N
in

st
an

ce
s

w
it

h
E

u
cl

id
ea

n
n

or
m

(b
ol

d
va

lu
es

ar
e

p
ro

ve
n

to
b

e
op

ti
m

al
).

in
st

an
ce

n
m

h
Q

p
o
p

.
g m

a
x

m
in

.
m

a
x
.

m
ea

n
g
a
p

g
im

p
r.

ts
p

n
2D

E
10

10
2

0.
25

E
10

1
5
(5

)
2
2
5
.1

2
6

2
2
5
.1

2
6

2
2
5
.1

2
6

0
.0

0
%

7
2

ts
p

n
2D

E
15

15
2

0.
25

E
10

1
5
(5

)
2
8
9
.7

1
6

2
8
9
.7

1
6

2
8
9
.7

1
6

0
.0

0
%

4
1

ts
p

n
2D

E
20

20
2

0.
15

E
10

1
5
(5

)
3
4
2
.2

7
6

3
4
2
.2

7
6

3
4
2
.2

7
6

0
.0

0
%

4
1

ts
p

n
2D

E
30

30
2

0.
25

E
15

2
5
(8

)
3
2
2
.3

9
5

3
2
2
.3

9
5

3
2
2
.3

9
5

0
.0

0
%

9
2

ts
p

n
2D

E
50

50
2

0.
25

E
15

2
5
(8

)
3
7
6
.0

3
5

3
8
1
.5

1
2

3
7
9
.0

5
1

1
.4

6
%

1
7

8
ts

p
n

2D
E

10
0

10
0

2
0.

15
E

30
5
0
(1

5
)

5
1
3
.2

5
0

5
1
3
.9

0
3

5
1
3
.5

5
6

0
.1

3
%

2
3

6
ts

p
n

2D
E

20
0

20
0

2
0.

15
E

30
5
0
(1

5
)

6
5
2
.8

2
3

6
6
8
.3

1
8

6
6
0
.1

1
0

2
.3

7
%

2
2

8
ts

p
n

2D
P

30
30

2
0.

25
P

15
2
5
(8

)
3
0
8
.9

4
3

3
1
5
.3

9
1

3
1
2
.3

1
8

2
.0

9
%

2
5

6
ts

p
n

2D
P

50
50

2
0.

25
P

15
2
5
(8

)
3
6
3
.5

9
4

3
7
2
.7

4
7

3
6
8
.6

4
2

2
.5

2
%

1
2

5
ts

p
n

2D
P

10
0

10
0

2
0.

15
P

30
5
0
(1

5
)

4
9
6
.5

7
1

5
0
6
.5

3
9

5
0
1
.4

5
2

2
.0

1
%

5
0

1
0

ts
p

n
2D

P
20

0
20

0
2

0.
15

P
30

5
0
(1

5
)

6
3
5
.0

4
1

6
4
6
.9

9
7

6
3
8
.0

9
4

1
.8

8
%

5
0

1
6

ts
p

n
2D

S
30

30
2

0.
25

S
15

2
5
(8

)
3
4
6
.0

8
2

3
4
8
.9

8
6

3
4
7
.8

1
9

0
.8

4
%

2
5

7
ts

p
n

2D
S

50
50

2
0.

25
S

15
2
5
(8

)
4
5
2
.1

1
5

4
5
9
.4

7
0

4
5
5
.6

1
4

1
.6

3
%

2
5

1
3

ts
p

n
2D

S
10

0
10

0
2

0.
15

S
30

5
0
(1

5
)

6
0
5
.7

0
3

6
1
4
.8

7
4

6
0
9
.4

2
6

1
.5

1
%

5
0

2
2

ts
p

n
2D

S
20

0
20

0
2

0.
15

S
30

5
0
(1

5
)

8
2
9
.5

1
8

8
3
6
.8

6
9

8
3
3
.1

4
7

0
.8

9
%

5
0

3
9

ts
p

n
3D

E
10

10
3

0.
25

E
15

2
5
(8

)
3
2
8
.6

2
7

3
2
8
.6

2
7

3
2
8
.6

2
7

0
.0

0
%

9
2

ts
p

n
3D

E
15

15
3

0.
25

E
15

2
5
(8

)
4
3
4
.1

5
0

4
3
4
.1

5
0

4
3
4
.1

5
0

0
.0

0
%

7
1

ts
p

n
3D

E
20

20
3

0.
15

E
15

2
5
(8

)
5
0
2
.7

9
3

5
0
2
.7

9
3

5
0
2
.7

9
3

0
.0

0
%

7
1

ts
p

n
3D

E
10

0
10

0
3

0.
15

E
30

5
0
(1

5
)

1
,2

0
9
.4

3
1
,2

2
8
.3

2
1
,2

2
0
.4

4
1
.5

6
%

1
9

6
ts

p
n

3D
E

20
0

20
0

3
0.

15
E

40
6
0
(2

0
)

1
,6

7
7
.9

4
1
,7

0
6
.5

0
1
,6

9
1
.2

0
1
.7

0
%

3
2

1
4

ts
p

n
3D

P
10

0
10

0
3

0.
15

P
30

5
0
(1

5
)

1
,0

9
8
.2

2
1
,1

3
9
.2

4
1
,1

1
9
.8

7
3
.7

3
%

5
0

1
4

ts
p

n
3D

P
20

0
20

0
3

0.
15

P
40

6
0
(2

0
)

1
,4

9
0
.3

2
1
,5

3
1
.1

7
1
,5

2
0
.3

5
2
.7

4
%

6
0

2
1

ts
p

n
3D

S
10

0
10

0
3

0.
15

S
30

5
0
(1

5
)

1
,4

6
5
.4

0
1
,4

9
0
.4

0
1
,4

7
9
.7

6
1
.7

1
%

2
9

1
3

ts
p

n
3D

S
20

0
20

0
3

0.
15

S
40

6
0
(2

0
)

2
,0

5
2
.9

6
2
,0

8
1
.8

9
2
,0

6
6
.8

0
1
.4

1
%

3
9

1
9

ts
p

n
7D

E
10

0
10

0
7

0.
15

E
40

6
0
(2

0
)

4
,3

2
8
.4

7
4
,3

3
6
.4

5
4
,3

3
3
.1

0
0
.1

8
%

2
9

5
ts

p
n

7D
E

20
0

20
0

7
0.

15
E

40
6
0
(2

0
)

7
,0

7
1
.8

1
7
,0

8
4
.5

3
7
,0

7
8
.9

5
0
.1

8
%

3
0

9
ts

p
n

7D
P

10
0

10
0

7
0.

15
P

40
6
0
(2

0
)

3
,4

5
9
.0

2
3
,5

0
2
.0

8
3
,4

8
6
.0

1
1
.2

5
%

6
0

1
1

ts
p

n
7D

P
20

0
20

0
7

0.
15

P
40

6
0
(2

0
)

5
,5

1
4
.4

5
5
,5

9
9
.5

8
5
,5

5
8
.0

1
1
.5

4
%

3
9

1
8

ts
p

n
7D

S
10

0
10

0
7

0.
15

S
40

6
0
(2

0
)

4
,9

1
7
.8

5
4
,9

4
4
.1

2
4
,9

3
0
.4

6
0
.5

3
%

3
2

1
2

ts
p

n
7D

S
20

0
20

0
7

0.
15

S
40

6
0
(2

0
)

8
,4

4
2
.3

4
8
,4

8
7
.7

8
8
,4

5
9
.7

4
0
.5

4
%

4
2

1
4

60

T
a
b

le
3
.3

:
C

om
p

ar
is

o
n

o
f

th
e

em
p

lo
y
ed

h
eu

ri
st

ic
s

fo
r

ra
n

d
om

ly
ge

n
er

at
ed

S
T

S
P

N
in

st
an

ce
s

w
it

h
E

u
cl

id
ea

n
n

or
m

(b
ol

d
va

lu
es

a
re

p
ro

ve
n

to
b

e
o
p

ti
m

al

in
st

an
ce

H
R

K
G

A
G

A
L

K
T

O
U

R
ob

j.
C

P
U

[s
]

ob
j.

g
C

P
U

[s
]

o
b

j.
g

C
P

U
[s

]
o
b

j.
g

C
P

U
[s

]

ts
p

n
2D

E
10

2
2
5
.1

2
6

3.
82

23
5.

47
7

1
4
3

4
.6

1
2
6
1
.3

7
2

2
0

4
.6

9
2
7
4
.1

0
2

2
5
.6

2
ts

p
n

2D
E

15
2
8
9
.7

1
6

6.
51

38
2.

23
4

2
3
5

7
.8

5
3
4
1
.1

7
8

3
7

7
.9

0
4
4
9
.0

6
4

2
9
.0

6
ts

p
n

2D
E

20
3
4
2
.2

7
6

6.
47

45
6.

69
0

2
4
0

7
.8

0
3
9
5
.5

5
3

2
4

8
.0

1
7
1
4
.9

6
5

3
7
.8

3
ts

p
n

2D
E

30
32

2.
39

5
17

64
0.

88
6

4
0
5

2
0

3
8
2
.4

6
2

2
0

2
0

7
9
7
.6

2
6

8
2
1

ts
p

n
2D

E
50

37
6.

03
5

49
1,

35
9.

15
1
,1

5
9

5
9

4
8
1
.3

4
1

3
3

5
9

1
,4

8
4
.1

2
1
5

6
0

ts
p

n
2D

E
10

0
51

3.
25

0
19

4
3,

18
9.

91
2
,0

6
4

2
3
3

6
4
8
.3

0
0

2
4

2
3
4

3
,2

7
5
.2

1
1
7

2
4
2

ts
p

n
2D

E
20

0
65

2.
82

3
62

0
8,

87
0.

79
5
,2

8
6

8
0
0

9
4
2
.7

8
7

2
7

8
0
4

7
,8

9
8
.7

3
4
3

8
0
5

ts
p

n
2D

P
30

30
8.

94
3

31
48

6.
37

9
4
9
1

3
8

3
7
9
.9

1
7

2
4

3
9

5
3
3
.0

7
6

2
4

3
8

ts
p

n
2D

P
50

36
3.

59
4

23
1,

18
5.

17
3
2
3

2
8

4
7
5
.4

4
3

9
3
0

1
,3

3
1
.0

1
1
3

2
9

ts
p

n
2D

P
10

0
49

6.
57

1
23

7
2,

79
8.

58
1
,6

2
9

2
8
4

6
4
6
.2

6
3

2
3

2
9
0

3
,1

1
1
.3

2
5
1

2
8
7

ts
p

n
2D

P
20

0
63

5.
04

1
42

0
6,

90
9.

89
2
,3

7
9

5
0
4

9
7
5
.9

3
6

1
1

5
0
6

7
,1

8
7
.9

2
5
6

5
1
0

ts
p

n
2D

S
30

34
6.

08
2

35
65

4.
78

4
5
1
2

4
2

3
5
9
.5

7
5

2
9

4
2

8
2
2
.5

3
1

1
5

4
2

ts
p

n
2D

S
50

45
2.

11
5

85
1,

15
9.

95
1
,2

1
5

1
0
2

4
6
5
.8

3
0

5
3

1
0
3

1
,2

5
9
.3

2
6
5

1
0
2

ts
p

n
2D

S
10

0
60

5.
70

3
88

7
3,

51
2.

14
7
,4

9
7

1
0
6
4

6
4
3
.3

5
5

1
0
2

1
,0

7
0

3
,6

0
9
.5

7
8
5

1
,0

6
6

ts
p

n
2D

S
20

0
82

9.
51

8
3,

63
1

9,
22

7.
06

1
0
,0

0
0

1
9
9
5

9
1
1
.6

6
2

1
3
7

4
,3

7
9

7
,6

2
3
.5

1
2
2
4

4
,3

6
7

ts
p

n
3D

E
10

3
2
8
.6

2
7

24
33

5.
95

7
6
5
1

3
0

3
9
0
.0

3
2

9
1

3
0

3
2
8
.6

9
2

1
0

3
2

ts
p

n
3D

E
15

4
3
4
.1

5
0

17
49

8.
74

3
4
4
8

2
1

5
1
1
.1

6
7

6
2

2
1

5
9
5
.4

3
4

4
2
8

ts
p

n
3D

E
20

5
0
2
.7

9
3

12
65

6.
65

1
3
0
6

1
5

5
6
7
.8

5
6

4
2

1
5

8
5
1
.8

8
3

3
1
6

ts
p

n
3D

E
10

0
1,

20
9.

43
15

4
4,

77
1.

23
1
,5

9
0

1
8
5

1
,5

9
4
.4

3
1
3

1
9
0

4
,6

2
2
.3

1
1
8

1
9
5

ts
p

n
3D

E
20

0
1,

67
7.

94
68

6
1,

13
45

.5
3
,0

2
6

8
2
4

2
,3

9
2
.0

3
1
6

8
5
8

1
0
,2

4
8
.2

2
9

8
3
9

ts
p

n
3D

P
10

0
1,

09
8.

22
23

0
4,

04
8.

34
1
,4

7
1

2
7
7

1
,5

9
6
.7

0
1
3

2
8
2

4
,2

7
7
.9

8
5
4

2
7
9

ts
p

n
3D

P
20

0
1,

49
0.

32
76

94
9,

04
6.

99
2
,4

4
8

9
2
3

2
,4

2
9
.4

8
1
0

9
6
3

9
,2

7
8
.1

5
7
4

9
3
4

ts
p

n
3D

S
10

0
1,

46
5.

40
80

5,
06

4.
10

7
6
4

9
6

1
,5

9
9
.8

1
6

1
0
5

5
,4

9
5
.5

8
2
0

1
0
0

ts
p

n
3D

S
20

0
2,

05
2.

96
44

3
11

,9
52

.7
1
,8

7
8

5
3
1

2
,3

6
7
.3

0
9

5
3
9

1
0
,9

6
2
.2

3
1

5
4
5

ts
p

n
7D

E
10

0
4,

32
8.

47
93

0
8,

43
1.

68
5
,9

7
1

1
,1

1
7

5
,2

3
9
.2

2
7
4

1
,1

2
8

8
,3

2
8
.4

3
2
9

1
,1

3
7

ts
p

n
7D

E
20

0
7,

07
1.

81
15

31
1,

87
26

.5
5
,6

9
0

1
,8

3
7

8
,8

9
3
.1

6
3
4

1
,8

7
1

1
6
,7

1
6
.5

2
7

1
,8

5
5

ts
p

n
7D

P
10

0
3,

45
9.

02
47

6
7,

12
0.

23
1
,7

5
7

5
7
1

5
,2

2
0
.0

7
2
4

5
7
1

6
,8

6
1
.6

6
6
1

5
7
8

ts
p

n
7D

P
20

0
5,

51
4.

45
78

3
15

,1
06

.4
2
,8

8
7

9
4
1

8
,9

8
7
.2

4
1
4

9
4
4

1
4
,1

5
3
.0

4
2

9
5
3

ts
p

n
7D

S
10

0
4,

91
7.

85
41

7
9,

60
2.

17
3
,1

3
0

5
0
0

5
,0

4
6
.0

7
2
9

5
0
8

9
,1

6
5
.1

2
1
9

5
0
7

ts
p

n
7D

S
20

0
8,

44
2.

34
13

64
19

,3
90

.7
5
,6

8
8

1
6
3
7

8
,7

2
1
.3

7
3
5

1
,6

5
1

1
8
,4

3
5
.3

2
4

1
,6

4
6

61

and a minimum of 14% for tspn3DE20. In particular, in case of convex
neighborhoods where the Touring heuristic always returns the optimal value
for a fixed cycle, the average percentage is 30%. In case of non-convex
neighborhoods, where the Touring heuristic is weaker as optimality is not
guaranteed, the average percentage is 46%. Finally, higher dimension seems
to influence this tendency, too: for instances in R7 the average percentage
is 30%, whereas in R2 and in R3 it is 39%.

Table 3.3 proposes a comparison among the best values of the objective
function attained with the proposed GA using both heuristics (HRKGA),
using traditional mutation operators and no heuristic (GA), using the Lin-
Keringhan heuristic only (LK), and using the Touring heuristic only (TOUR).
In the last three implementations the algorithm terminates either if g >
10, 000 or if the CPU time is 20% larger than the CPU time spent by the
first implementation. The best obtained value of the objective function is
reported in the column with label “obj.”, and the measured CPU time in
the column with label “CPU”. It is worth noticing, that since the GA code
has been parallelized the reported CPU time is approximatively seven times
larger than the wall clock time observed for the execution of the algorithm
on the employed CPU.

The GA implementation strongly benefits from the employment of the
ad-hoc heuristics. A more traditional implementation with mutation oper-
ators leads within comparable CPU time to objective function values that
are larger than the one obtained with the proposed approach by an average
factor of 4.65 with a maximum of 13.59 for tspn2DE200. This factor tends to
increase with the number of neighborhoods and to decrease with the space
dimension: the average values range in R2 from 1.60, for the case n = 30,
up to 11.86, for the case n = 200, and in R7 from 1.99, for the case n = 100,
up to 2.56, for the case n = 200. Finally, the neighborhood topology does
not seem to have a remarkable influence on these factors: the average values
are 5.09 for ellipsoids, 4.49 for polyhedra, and 4.36 for Bézier splines.

The GA implementation that uses the Lin-Keringhan heuristic consid-
erably improves the performance of the algorithm and leads to objective
function values that are larger than the one obtained with the proposed
approach only by an average factor of 1.27 with a maximum of 1.63 for
tspn3DP200. Moreover, this implementation seems to perform better with
non-fat neighborhoods: the average factor is only 1.07 for Bézier splines,
whereas it is 1.30 for ellipsoids and 1.45 for polyhedra. Finally, the number
of neighborhoods and the space dimension does not seem to have a strong
influence on these factors: the average values range in R2 from 1.14, for the
case n = 30, up to 1.36, for the case n = 200, and in R7 from 1.25, for the

62

case n = 100, up to 1.31, for the case n = 200.
Finally, the GA implementation that uses the Turing heuristic only has a

similar behavior as the first implementation, and leads to objective function
values that are larger than the one obtained with the proposed approach
by an average factor of 4.59 with a maximum of 12.10 for tspn3DP200.
However, when this heuristic is employed after the Lin-Keringhan heuristic
it further improves the quality of each chromosome, and the GA eventually
converges to the optimal tour for the cases where n ≤ 20. This would be
very hard using traditional mutation operators because of the continuous
nature of the optimization problem.

3.2.1.2 Manhattan, Maximum, and Quadratic norm

The following tests are performed on the same instances used in the previous
Section, but using the Manhattan, the Maximum, and the Quadratic norm
as edge weighting functions. The computational results are illustrated in
Tables 3.4 and 3.5. The edge weighting functions is reported in the column
with label “d(·)”. The parameters used in the GA are the same as the ones
listed in Section 3.2.1. For the Quadratic norm in R2 and R3, the Q matri-
ces are diagonal matrices with diagonal elements [1, 1/2] and [1, 1/2, 1/10],
respectively.

The GA returns the optimal tour for each of the instances with up to
20 ellipsoidal neighborhoods solved to optimality using the Manhattan or
the Maximum norm and the second STSPN formulation. Moreover, the GA
outperforms the MINLP optimizer in terms of CPU time up to two orders of
magnitude for n = 20, although the MINLP optimizer is faster for n = 10.

Table 3.4 illustrates that for instances with more than 20 neighborhoods
where no optimality information is available the GA tends to return more
consistent results in case of Manhattan norm. The average percentage
gap between the minimum and maximum value of the objective function
recorded during a sequence of five separate runs is 1.37% with a maximum
of 3.34% for tspn3DP100. In case of Manhattan norm the average gap is
1.22%, in case of Maximum norm 1.36%, and in case of Quadratic norm
1.52%.

Table 3.5 confirms the importance of the ad-hoc heuristics in the imple-
mentation of the GA even with different types of edge weighting functions.
The objective function values are larger than the ones obtained by the pro-
posed approach by an average factor of 5.01 for the case of traditional GA
implementation, of 1.27 for the case of Lin-Keringhan heuristic only, and of
5.11 for the case of Touring heuristic only. Finally, the type of norm does

63

T
a
b

le
3
.4

:
H

y
b

ri
d

ra
n

d
om

-k
ey

G
A

re
su

lt
s

fo
r

ra
n

d
om

ly
ge

n
er

at
ed

S
T

S
P

N
in

st
an

ce
s

w
it

h
d

iff
er

en
t

n
or

m
s

(b
ol

d
va

lu
es

ar
e

p
ro

ve
n

to
b

e
op

ti
m

al
).

in
st

an
ce

n
m

h
Q

d
(·)

p
o
p

.
g m

a
x

m
in

.
m

a
x
.

m
ea

n
g
a
p

g
im

p
r.

ts
p

n
2D

E
10

10
2

0.
25

E
1

1
0

1
5
(5

)
2
8
6
.1

6
4

2
8
6
.1

6
4

2
8
6
.1

6
4

0
.0

0
%

4
1

ts
p

n
2D

E
15

15
2

0.
25

E
1

1
5

2
5
(8

)
3
4
8
.0

4
7

3
5
3
.1

6
5

3
5
2
.9

6
1

1
.4

7
%

1
1

3
ts

p
n

2D
E

20
20

2
0.

15
E

1
1
5

2
5
(8

)
4
1
9
.4

7
4

4
2
3
.6

6
5

4
2
1
.1

5
0

1
.0

0
%

7
1

ts
p

n
2D

E
10

0
10

0
2

0.
15

E
1

4
0

6
0
(2

0
)

6
3
4
.2

1
3

6
4
2
.0

8
7

6
3
8
.7

1
9

1
.2

4
%

6
0

1
4

ts
p

n
2D

P
10

0
10

0
2

0.
15

P
1

4
0

6
0
(2

0
)

6
3
5
.0

9
2

6
3
8
.3

8
5

6
3
6
.6

7
6

0
.5

2
%

2
9

5
ts

p
n

2D
S

10
0

10
0

2
0.

15
S

1
4
0

6
0
(2

0
)

7
4
6
.2

8
9

7
5
2
.5

9
2

7
4
9
.0

4
6

0
.8

4
%

4
1

1
5

ts
p

n
2D

E
10

10
2

0.
25

E
in

f
1
0

1
5
(5

)
1
9
0
.4

2
7

1
9
0
.4

2
7

1
9
0
.4

2
7

0
.0

0
%

4
1

ts
p

n
2D

E
15

15
2

0.
25

E
in

f
1
5

2
5
(8

)
2
6
3
.7

4
2

2
6
3
.7

4
2

2
6
3
.7

4
2

0
.0

0
%

2
4

7
ts

p
n

2D
E

20
20

2
0.

15
E

in
f

1
5

2
5
(8

)
2
9
9
.7

5
2

2
9
9
.7

5
2

2
9
9
.7

5
2

0
.0

0
%

1
2

3
ts

p
n

2D
E

10
0

10
0

2
0.

15
E

in
f

4
0

6
0
(2

0
)

4
4
9
.6

5
2

4
5
0
.1

9
8

4
4
9
.8

7
1

0
.1

2
%

4
1

1
1

ts
p

n
2D

P
10

0
10

0
2

0.
15

P
in

f
4
0

6
0
(2

0
)

4
3
2
.6

9
1

4
3
6
.7

4
0

4
3
5
.0

0
8

0
.9

4
%

2
8

6
ts

p
n

2D
S

10
0

10
0

2
0.

15
S

in
f

4
0

6
0
(2

0
)

5
3
8
.2

7
2

5
4
0
.4

8
6

5
3
9
.3

8
5

0
.4

1
%

5
2

1
5

ts
p

n
2D

E
10

0
10

0
2

0.
15

E
Q

4
0

6
0
(2

0
)

4
2
7
.7

8
2

4
3
1
.6

2
7

4
3
0
.0

2
2

0
.9

0
%

2
5

5
ts

p
n

2D
P

10
0

10
0

2
0.

15
P

Q
4
0

6
0
(2

0
)

4
1
5
.8

5
5

4
2
0
.2

8
1

4
1
7
.5

4
3

1
.0

6
%

6
0

1
8

ts
p

n
2D

S
10

0
10

0
2

0.
15

S
Q

4
0

6
0
(2

0
)

5
1
6
.6

6
1

5
2
4
.5

8
8

5
2
0
.9

2
7

1
.5

3
%

3
6

1
8

ts
p

n
3D

E
10

0
10

0
3

0.
15

E
1

4
0

6
0
(2

0
)

1
,6

7
1
.7

8
1
,7

0
2
.9

5
1
,6

9
4
.8

6
1
.8

6
%

2
9

9

ts
p

n
3D

P
10

0
10

0
3

0.
15

P
1

4
0

6
0
(2

0
)

1
,5

9
0
.0

3
1
,6

2
0
.0

1
1
,6

0
8
.2

1
1
.8

9
%

2
6

8
ts

p
n

3D
S

10
0

10
0

3
0.

15
S

1
4
0

6
0
(2

0
)

2
,0

8
7
.8

5
2
,1

0
8
.1

4
2
,0

9
8
.4

2
0
.9

7
%

5
0

1
5

ts
p

n
3D

E
10

0
10

0
3

0.
15

E
in

f
4
0

6
0
(2

0
)

9
3
1
.3

0
0

9
5
1
.1

5
9

9
3
8
.0

3
3

2
.1

3
%

2
7

8
ts

p
n

3D
P

10
0

10
0

3
0.

15
P

in
f

4
0

6
0
(2

0
)

8
4
6
.2

5
5

8
7
4
.4

8
1

8
6
2
.2

7
9

3
.3

4
%

3
1

1
1

ts
p

n
3D

S
10

0
10

0
3

0.
15

S
in

f
4
0

6
0
(2

0
)

1
,1

2
5
.6

9
1
,1

3
9
.4

4
1
,1

3
0
.7

1
1
.2

2
%

3
1

1
2

ts
p

n
3D

E
10

0
10

0
3

0.
15

E
Q

4
0

6
0
(2

0
)

7
1
9
.0

4
9

7
3
2
.4

8
3

7
2
7
.9

6
8

1
.8

7
%

2
9

1
0

ts
p

n
3D

P
10

0
10

0
3

0.
15

P
Q

4
0

6
0
(2

0
)

6
5
9
.7

4
7

6
7
4
.9

2
1

6
6
6
.9

3
2

2
.3

0
%

2
5

6
ts

p
n

3D
S

10
0

10
0

3
0.

15
S

Q
4
0

6
0
(2

0
)

8
9
2
.1

6
9

9
0
4
.9

0
3

8
9
7
.4

3
3

1
.4

3
%

3
6

1
7

64

T
a
b

le
3
.5

:
C

o
m

p
a
ri

so
n

of
th

e
em

p
lo

ye
d

h
eu

ri
st

ic
s

fo
r

ra
n

d
om

ly
ge

n
er

at
ed

S
T

S
P

N
in

st
an

ce
s

w
it

h
d

iff
er

en
t

n
or

m
s

(b
ol

d
va

lu
es

a
re

p
ro

ve
n

to
b

e
o
p

ti
m

al
).

in
st

an
ce

d
(·)

H
R

K
G

A
G

A
L

K
T

O
U

R
ob

j.
C

P
U

[s
]

o
b

j.
g

C
P

U
[s

]
o
b

j.
g

C
P

U
[s

]
o
b

j.
g

C
P

U
[s

]

ts
p

n
2D

E
10

1
2
8
6
.1

6
4

5.
55

30
9
.6

4
2

2
0
9

6
.6

8
3
2
8
.3

8
0

3
5

6
.7

8
3
1
4
.2

7
9

2
7
.3

7
ts

p
n

2D
E

15
1

3
4
8
.0

4
7

23
37

6
.7

2
3

5
8
0

2
8

4
3
0
.7

2
2

8
7

2
8

5
2
8
.9

1
3

1
0

2
9

ts
p

n
2D

E
20

1
4
1
9
.4

7
4

9.
45

67
7
.5

9
1

3
4
9

1
1

4
8
9
.9

2
5

4
0

1
2

7
8
2
.7

8
3

9
1
2

ts
p

n
2D

E
10

0
1

63
4.

21
3

44
8

3,
75

6
.7

0
3
,4

1
0

5
3
8

8
0
3
.9

2
9

4
6

5
4
6

3
,8

3
9
.8

2
5
1

5
4
2

ts
p

n
2D

P
10

0
1

63
5.

09
2

63
4,

32
9
.3

9
4
5
3

7
6

8
7
7
.8

0
4

3
8
4

4
,0

9
8
.5

5
4
9

7
6

ts
p

n
2D

S
10

0
1

74
6.

28
9

18
0

4,
78

8
.1

6
1
,4

7
0

2
1
7

7
9
7
.3

5
9

2
1

2
1
9

4
,6

4
2
.2

9
3
2

2
2
0

ts
p

n
2D

E
10

in
f

1
9
0
.4

2
7

15
19

5
.0

0
6

5
6
9

1
8

2
1
5
.4

0
5

9
0

1
8

2
6
2
.9

3
1

6
2
0

ts
p

n
2D

E
15

in
f

2
6
3
.7

4
2

31
30

2
.5

0
7

8
0
3

3
7

2
9
9
.2

0
6

1
2
5

3
8

3
5
9
.8

3
1

8
3
8

ts
p

n
2D

E
20

in
f

2
9
9
.7

5
2

14
38

0
.9

8
3

5
2
9

1
7

3
4
3
.6

9
4

5
2

1
7

5
0
1
.8

8
0

1
3

1
8

ts
p

n
2D

E
10

0
in

f
44

9.
65

2
57

3
2,

69
5
.8

3
4
,3

2
2

6
8
8

5
6
0
.1

0
4

8
5

6
9
4

2
,9

6
1
.0

6
5
1

6
9
1

ts
p

n
2D

P
10

0
in

f
43

2.
69

1
90

3,
03

1
.2

9
6
2
6

1
0
8

5
9
7
.0

7
9

6
1
0
9

2
,9

3
2
.3

4
3
5

1
1
0

ts
p

n
2D

S
10

0
in

f
53

8.
27

2
21

4
3,

49
8
.2

5
1
,7

6
8

2
5
7

5
6
2
.3

5
8

1
8

2
6
1

3
,2

1
2
.2

5
3
3

2
5
8

ts
p

n
2D

E
10

0
Q

42
7.

78
2

25
6

2,
29

7
.9

2
1
,8

0
0

3
0
8

5
4
1
.3

0
7

2
9

3
1
6

2
,9

6
7
.7

4
2
0

3
1
9

ts
p

n
2D

P
10

0
Q

41
5.

85
5

46
5

2,
45

7
.7

2
3
,0

8
8

5
5
9

5
4
7
.0

2
7

5
8

5
6
5

2
,4

0
6
.2

3
7
6

5
6
4

ts
p

n
2D

S
10

0
Q

51
6.

66
1

12
47

2,
89

6
.1

7
9
,8

7
7

1
,4

9
7

5
5
5
.7

0
7

1
3
5

1
,5

0
6

2
,5

3
5
.7

5
1
7
5

1
,5

0
7

ts
p

n
3D

E
10

0
1

1,
67

1.
78

46
2

6,
57

8
.6

4
3
,3

8
1

5
5
5

2
,2

4
9
.0

2
4
1

5
6
5

6
,8

6
8
.8

1
4
0

5
5
9

ts
p

n
3D

P
10

0
1

1,
59

0.
03

65
5,

95
6
.4

0
4
2
6

7
8

2
,4

0
8
.0

1
3

8
0

6
,4

1
5
.4

2
3
6

7
8

ts
p

n
3D

S
10

0
1

2,
08

7.
85

22
5

6,
38

8
.6

6
1
,7

8
4

2
7
0

2
,2

2
0
.7

8
2
2

2
7
6

7
,4

8
3
.2

5
3
0

2
7
2

ts
p

n
3D

E
10

0
in

f
93

1.
30

0
44

7
3,

82
5
.0

8
3
,2

8
7

5
3
7

1
,2

5
5
.3

1
5
1

5
3
7

3
,7

0
5
.4

1
3
4

5
4
9

ts
p

n
3D

P
10

0
in

f
84

6.
25

5
67

3,
15

1
.8

6
4
3
3

8
0

1
,3

4
6
.3

3
3

9
1

3
,5

5
6
.9

6
4
6

8
1

ts
p

n
3D

S
10

0
in

f
1,

12
5.

69
18

3
4,

66
6
.3

2
1
,4

7
6

2
1
9

1
,1

9
9
.7

2
1
4

2
2
4

4
,3

9
5
.0

8
2
2

2
2
6

ts
p

n
3D

E
10

0
Q

71
9.

04
9

38
9

2,
99

2
.4

6
2
,7

0
5

4
6
7

9
6
4
.0

3
5

3
7

4
6
7

2
,9

7
3
.1

6
2
9

4
7
5

ts
p

n
3D

P
10

0
Q

65
9.

74
7

18
6

2,
56

2
.7

5
1
,1

6
7

2
2
3

9
7
4
.1

1
0

1
6

2
2
4

3
,0

0
1
.7

5
3
2

2
2
6

ts
p

n
3D

S
10

0
Q

89
2.

16
9

11
2

3,
50

4
.6

4
7
9
1

1
3
4

9
7
7
.3

6
9

9
1
3
9

3
,4

0
0
.6

0
2
4

1
3
8

65

not seem to influence the results. In case of traditional implementation of
the GA, the average factors are for the Manhattan, the Maximum, and the
Quadratic norm 4.98, 5.25, and 4.81, respectively. In case of Lin-Keringhan
heuristic, the average factors are 1.27, 1.28, and 1.26, respectively. In case of
Touring heuristic, the average factors are 5.08, 5.24, and 5.02, respectively.

3.2.2 CETSP Instances

The second set of tests is performed by applying the hybrid random-key GA
on the Close Enough TSP (CETSP) instances proposed by Mennell [74]. The
neighborhoods are balls in R2 and R3, and the Euclidean and Manhattan
norms are used as edge weighting functions. Table 3.6 compares the results
obtained by the proposed GA (HRKGA) with the best results reported by
Mennell [74]. The instances are denoted by “ v” to specify that they have
variable radii as explained in [74]. The used edge weighting functions is
reported in the column with label “d(·)”, the best attained objective function
value in the column with label “obj.”, and the percentage improvement of
the objective function value with respect to results obtained in [74] in the
column with label “obj. impr.”. Moreover, the CPU time is reported in
the column with label “CPU” and the total number of generations and the
number of generations where the value of the objective function has been
improved in the columns with labels “g” and “impr.”, respectively.

A heuristic procedure is initially performed to search for a set of param-
eters that improve the performance of the hybrid random-key GA. Details
on this procedure are reported in Appendix A.9. The final parameters used
in the GA are the same as the ones listed in Section 3.2.1 but pS = 0.60,
pU = 0.40, pX = 0.30, gImax = 10, p̄S = 1 chromosome, and εI = 0.1. The
algorithm is terminated here only when a near optimal tour better than the
one provided in the literature is found.

Although the proposed method is not specifically tailored for CETSP
instances, the results show that it outperforms all the algorithms tested in
Mennell [74] in terms of attained objective function values, especially for in-
stances in R3. The best known near optimal tours have been improved by an
average factor of 1.92% and by a maximum factor of 8.03% for bonus1000 v
in R3 with Euclidean norm. In particular, the average improvement fac-
tors are 1.22% in R2 with Euclidean norm, 3.27% in R3 with Euclidean
norm, and 1.28% in R2 with Manhattan norm. On the contrary, the com-
parison of CPU times does not lead to a clear conclusion since the values
for some tests have not been reported and the computational environments
are different. All experiments reported by Mennell [74] are performed on an

66

T
ab

le
3
.6

:
C

E
T

S
P

in
st

an
ce

s
in

R
2

an
d
R

3
w

it
h

va
ri

ab
le

ra
d

ii
p

ro
p

os
ed

b
y

M
en

n
el

l
[7

4]
.

in
st

an
ce

n
m

d
(·)

H
R

K
G

A
C

E
T

S
P

o
b

j.
ob

j.
C

P
U

[s
]

p
o
p

.
g

im
p

r.
o
b

j.
C

P
U

[s
]

im
p

r.

k
ro

D
10

0
v

10
0

2
2

14
1.

8
2
4

2
,0

0
3

5
0

1
9
0

2
8

1
4
1
.8

3
4

1
,0

0
8

0
.0

1
%

ra
t1

95
v

19
5

2
2

68
.2

2
4

8
1

5
0

7
5

6
8
.2

2
4

1
1
5

0
.0

0
%

li
n

31
8

v
31

8
2

2
2,

07
8.

2
0

9
,2

9
4

5
0

1
8
2

5
2

2
,0

8
0
.5

7
N

/
A

0
.1

1
%

rd
40

0
v

40
0

2
2

1,
24

5.
4
3

1
0
,1

3
8

6
0

1
7
3

2
7

1
,2

5
2
.3

8
1
2
,7

9
5

0
.5

5
%

p
cb

44
2

v
44

2
2

2
22

6.
1
1
8

1
,0

1
4

6
0

4
0

2
6

2
3
5
.1

8
8

1
,1

6
1

3
.8

6
%

d
49

3
v

49
3

2
2

13
8.

2
9
1

2
,1

6
6

6
0

2
5

2
2

1
4
0
.1

2
0

4
6

1
.3

1
%

d
sj

10
00

v
1,

00
0

2
2

63
9.

7
2
1

3
0
,3

5
5

1
0
0

7
6

4
8

6
5
3
.1

2
8

N
/
A

2
.0

5
%

te
am

1
10

0
v

10
1

2
2

38
8.

5
3
7

1
0
8

5
0

7
6

3
8
8
.5

3
7

4
7

0
.0

0
%

te
am

5
49

9
v

50
0

2
2

44
8.

5
3
1

1
,3

0
9

6
0

1
5

1
2

4
5
4
.3

2
7

2
,7

6
3

1
.2

8
%

b
on

u
s1

00
0

v
1,

00
1

2
2

95
7.

1
1
9

1
9
,1

5
9

1
0
0

5
4

3
8

9
8
7
.1

1
4

N
/
A

3
.0

4
%

k
ro

D
10

0
v

10
0

3
2

16
9.

8
6
8

1
2
7

5
0

1
0

9
1
7
1
.5

6
8

1
2
1

0
.9

9
%

ra
t1

95
v

19
5

3
2

82
.3

5
8

2
4
9

5
0

1
2

8
8
4
.4

7
0

1
9
4
5

2
.5

0
%

li
n

31
8

v
31

8
3

2
2,

15
4.

9
1

3
,1

2
4

5
0

5
0

2
3

2
,1

8
9
.4

3
3
4
,6

4
0

1
.5

8
%

rd
40

0
v

40
0

3
2

3,
59

0.
7
0

8
,1

7
3

6
0

1
0
0

1
3

3
,5

9
2
.6

0
N

/
A

0
.0

5
%

p
cb

44
2

v
44

2
3

2
24

7.
0
2
0

3
,0

0
7

6
0

1
0
0

4
2

2
5
8
.4

0
4

7
,4

0
6

4
.4

1
%

d
49

3
v

49
3

3
2

72
7.

2
5
9

2
,0

2
7

6
0

2
4

1
9

7
6
1
.0

6
5

2
5
,0

1
3

4
.4

4
%

d
sj

10
00

v
1,

00
0

3
2

1,
91

6.
9
9

9
4
2

6
0

2
2

2
,0

7
4
.8

4
4
7

7
.6

1
%

te
am

1
10

0
v

10
1

3
2

90
5.

7
3
2

8
9

5
0

5
4

9
0
7
.5

9
3

1
2
7

0
.2

1
%

te
am

5
49

9
v

50
0

3
2

81
6.

0
8
1

2
,0

4
4

6
0

1
9

1
6

8
4
0
.4

7
7

1
0
6
,6

9
2

2
.9

0
%

b
on

u
s1

00
0

v
1,

00
1

3
2

2,
47

3.
5
0

9
6
4

6
0

2
2

2
,6

8
9
.4

1
9
0

8
.0

3
%

k
ro

D
10

0
v

10
0

2
1

17
3.

6
1
9

1
1
0

5
0

2
2

1
1

1
7
4
.0

1
3

2
2

0
.2

3
%

ra
t1

95
v

19
5

2
1

82
.2

0
0

1
0
8

5
0

7
6

8
2
.2

0
0

3
2

0
.0

0
%

li
n

31
8

v
31

8
2

1
2,

48
4.

2
4

8
4
4

5
0

4
4

2
6

2
,5

0
5
.4

1
N

/
A

0
.8

5
%

rd
40

0
v

40
0

2
1

1,
53

5.
5
7

7
0
5

6
0

1
4

9
1
,5

4
4
.5

4
6
1
4

0
.5

8
%

p
cb

44
2

v
44

2
2

1
27

7.
8
0
5

8
8
5

6
0

1
2

1
0

2
8
1
.2

5
4

1
6
9

1
.2

3
%

d
49

3
v

49
3

2
1

17
2.

9
8
8

2
0
3
7

6
0

4
6

2
6

1
7
9
.5

6
3

2
2
3

3
.6

6
%

d
sj

10
00

v
1,

00
0

2
1

74
4.

9
8
5

2
3
2
2
6

1
0
0

1
1
9

5
3

7
5
8
.1

1
9

N
/
A

1
.7

3
%

te
am

1
10

0
v

10
1

2
1

49
0.

4
2
1

4
0
1

5
0

5
9

1
6

4
9
4
.1

1
4

3
9
1

0
.7

5
%

te
am

5
49

9
v

50
0

2
1

55
6.

5
7
6

1
7
1
5

6
0

4
8

2
6

5
6
3
.1

1
0

1
,8

9
9

1
.1

6
%

b
on

u
s1

00
0

v
1,

00
1

2
1

1,
19

3.
9
2

1
4
,8

0
8

1
0
0

8
9

4
5

1
,2

2
6
.3

9
3
3
,7

2
9

2
.6

5
%

67

Intel Pentium @2.4 GHz processor with 3GB of memory running Windows

XP Professional, and thus the frequency of the processor used in this work
is higher by a factor of 1.11. Nevertheless, we can observe that the geometric
average of the ratio of the CPU time spent by the proposed GA and the one
reported in [74] is 1.06 with a maximum ratio of 47 for d493 v in R2 with
Euclidean norm, and a minimum ratio of 0.019 for team5 499 v in R3 with
Euclidean norm.

Finally, the new parameter set and the presence of a large immigration
operation when gI > gImax allows the proposed GA to increase the number
of generations where an improvement of the best chromosome is observed.
The comparison of the current results with the ones reported in Section 3.2
for TSPN instances with ellipsoidal neighborhoods shows this tendency (the
latter results are enclosed in parentheses hereafter). On average, the best
chromosome has been improved in 62% (27%) of the overall generations.
In particular, in case of balls in R2 and Euclidean norm the percentage is
58% (30%), in case of balls in R3 and Euclidean norm it is 70% (25%), and
in case of balls in R2 and Manhattan norm it is 58% (24%).

3.3 Conclusion

In this chapter a hybrid random-key Genetic Algorithm (GA) has been
proposed to solve the Traveling Salesman Problem whit Neighborhoods
(TSPN). Based on the MINLP formulation presented in chapter 2, this ap-
proach uses random-key coding for the chromosomes, and it exploits the
efficiency of ad-hoc heuristics to improve the quality of each chromosome
rather than more traditional mutation operators.

Numerical results show that the convergence rate of the algorithm can
be improved by not keeping the percentage of the newly introduced chromo-
somes constant during its entire execution. In the GA final implementation
this percentage is changed for one generation every time the best known ob-
jective function value remains constant for a certain sequence of consecutive
generations, i.e., when the population average tends to stabilize.

Finally, the proposed method converges to the optimal tour in all the
cases proven to be optimal by using the convex MINLP optimizers. More-
over, applying the GA on TSPN instances available in the literature with
circular and spherical neighborhoods, although the proposed method is not
tailored for those specific instances, the best known near optimal tours have
been improved on average by 1.92%. For instances in R3 only the average
improvement is 3.27%.

68

Chapter 4

7DOF Industrial Vision
Inspection System

In this chapter, we apply the proposed hybrid random-key Genetic Algo-
rithm to an industrial vision inspection system. We illustrate how the neigh-
borhoods are defined and how the edge weighting function is customized to
account for cycle time minimization and obstacle avoidance. Finally, simu-
lation and experimental results are discussed.

4.1 Problem Formulation

The application analyzed in this chapter is a robotic system used for inspect-
ing assembled industrial components, such as engine blocks or evaporators.
The system consists of a 6 Degrees of Freedom (DOF) robotic manipulator
and 1 DOF turntable. Its configuration space is thus seven-dimensional.
The component that has to be inspected is placed on the turntable, and
a camera is mounted at the end-effector of the manipulator. Afterwards,
a predefined set of features on the component surface is inspected using
the camera and an on-line image processing software. To perform the in-
spection, the component is rotated and the manipulator is simultaneously
actuated to locate the camera at all the relative placements with respect to
the component surface where the required images have to be acquired from.
Since the sequence of the inspection placements is not fixed, the overall cycle
time required to acquire all the images can be optimized by searching for an
optimal sequence.

Each relative placement of the camera with respect to the component
surface is specified by six parameters. Since the configuration space is seven-

69

1 2

3 4

5 6

qi,1

qi,2
qi,3

qi,4
qi,5
qi,6

qi,7

Figure 4.1: Robotic vision inspection system: six different configurations of
neighborhood i = 14 that correspond to the same relative placement of the
camera with respect to the component.

dimensional (m=7), this system has one degree of redundancy. Figure 4.1
illustrates this concept by showing six among the infinitely many configu-
rations that correspond to the same relative placement between the camera
and the component, and thus to identical images. By exploiting this redun-

70

dancy of the system, the cycle time can be further improved by searching not
only for an optimal sequence, but also for an optimal sequence of optimal
configurations.

Heuristic approaches for similar problems are proposed in the literature
[44, 45, 46, 91, 102, 103]. However, in these works the continuous nature
of the problem is lost by extracting a small number of discrete samples for
each neighborhood. Afterwards, Saha et al. [91] propose to approximate
the resulting GTSP by calculating a minimum group spanning tree and by
performing a preorder tree walk. Collision avoidance is considered using a
sampling-based planner. Alternatively, Gueta et al. [44] propose to prede-
termine a near optimal sequence, and then to choose a configuration in each
neighborhood by using a heuristic approach.

We model this optimization problem as a STSPN, where each neighbor-
hood is identified by the set of all the possible configurations that correspond
to the same relative placement between the camera and the component, i.e.,
to the same image. Since the considered system has one degree of redun-
dancy these regions can be represented as possibly non-connected curves in
the seven-dimensional configuration space of the robotic system.

Moreover, specific considerations are required about the nature of the
edge weighting function. First, since the objective function that needs to
be optimized is the overall cycle time, the simple Euclidean norm cannot be
used for this purposes, and a more realistic criterion is needed to evaluate
the time spent by the manipulator and the turntable to move from one
placement to the next. Second, collision avoidance has to be considered.

4.2 Objective function evaluation

4.2.1 Traveling time

During the motion of the robotic system, the joints move simultaneously.
Thus, a good estimate of the traveling time spent to move from configuration
qi to configuration qj is given by the Weighted Maximum norm [44]:

d (qi, qj) = max
k=1,...,7

{ |qi,k − qj,k|
ωk

}
. (4.1)

where ωk is the angular velocity set by the controller for joint k. More-
over, the Quadratic norm defined by the diagonal matrix Q with diagonal
elements [1/ω2

1, . . . , 1/ω
2
7] is also employed. Although the latter norm leads

to a minimum path traveled by each joint but not directly to a minimum
traveling time, it has been observed that the actual cycle time calculated

71

by using this norm is smaller than the one calculated using the weighted
Maximum norm.

The two edge weighting functions can be evaluated very efficiently and
thus are used in the Lin-Keringhan and Touring heuristics, and in the prob-
abilistic path planner. However, the full evaluation of the objective function
for each chromosome at steps 2. and 16. of the hybrid random-key GA il-
lustrated in Section 3.1.2 requires a more accurate model. When the system
moves from configuration qi to configuration qj , the actual traveling time
can be estimated as:

d (qi, qj) = max
k=1,...,7

∆t0 +

 ωk
αk

+
|qi,k−qj,k|

ωk
if |qi,k − qj,k| > ω2

k
αk

2

√
|qi,k−qj,k|

α otherwise

 ,

(4.2)
where αk is the angular acceleration set by the controller for joint k and ∆t0
is the controller delay.

Finally, the probabilistic path planner may introduce mid configurations
when the robotic system moves from qi to qj to avoid collisions. Considering
a point to point motion from a generic start configuration qs to a generic goal
configuration qg with initial and final joint velocities q̇s to q̇g, respectively,
the traveling time can be estimated as:

d (qs, qg) = max
k=1,...,7



2αk|qs,k−qg,k|−2ω2
k+q̇2s,k+q̇2g,k

2αkωk
+

2ωk−q̇s,k−q̇g,k
αk

if |qs,k − qg,k| >
2ω2

k−q̇
2
s,k−q̇

2
g,k

2αk√
4αk|qs,k−qg,k|+2q̇2s,k+2q̇2g,k−q̇s,k−q̇g,k

αk

otherwise


, (4.3)

We require for each joint the velocities q̇s,k and q̇g,k to have the same sign,
and thus they are considered to be positive in Equation (4.3). If an inversion
in the joint motion direction has to be modeled, a mid configuration with
zero joint velocity is introduced.

4.2.2 Obstacle avoidance

To obtain a realistic evaluation of the traveling time for the robotic system to
move from configuration qi to configuration qj a collision-free path connect-
ing them has to be found. This additional requirement drastically increases
the complexity of the optimization problem and requires the employment of
an ad-hoc path planning technique.

72

Algorithm 4.1 BiRRT based Single and Multiple Query Path Planner for
the STSPN.

Input: tour qπ(i), i = 1, . . . , n, edge weighting function d(·),
indicator matrix Mconn, sampling threshold lsamp,
distance matrix D, and roadmap G = (VG, EG)

Output: collision-free tour length O, updated D and G

1. O ← 0
2. for i = 1 to n do
3. if |VG| > lsamp and Mconn[π(i), π(i+ 1)] = 1 then
4. if qπ(i) 6∈ VG then connect(G, qπ(i))
5. if qπ(i+1) 6∈ VG then connect(G, qπ(i+1))
6. vs ← index(VG, qπ(i)); vg ← index(VG, qπ(i+1))
7. if vs 6= nil and vg 6= nil then
8. if D(vs, vg) = −1 then
9. D(vs, vg)← shortest path(G, qπ(i), qπ(i+1))
10. O ← O +D[vS , vG]
11. else
12. O ← O +∞
13. else
14. P = (VP , EP): VP ← {qπ(i), qπ(i+1)} and EP ← ∅
15. if local planner(qπ(i), qπ(i+1)) then
16. EP ← {(qπ(i), qπ(i+1))}
17. else
18. biRRT planner(P,G, qπ(i), qπ(i+1))
19. if |EP | > 0 then
20. if connect(G,P) then Mconn[π(i), π(i+ 1)]← 1
21. O ← O + length(P)
22. else
23. O ← O +∞
24. return O

Probabilistic sampling-based planners have been intensively used to solve
single query or multiple query motion planning problems in high dimensional
configuration spaces [60]. Single query motion planners are used when the
planning procedure has to be performed only once, and the configuration
space is explored using a single or a bi-directional tree. Rapidly-exploring
Random Trees (RRTs) are an example of this planning approach [15, 16, 66].
When the planning procedure has to be repeated more than once possibly
with different start and goal configurations, multiple query motion planners
are used. First, a roadmap is built during a preprocessing phase to explore

73

Algorithm 4.2 Function local planner(qs, qg).

Input: start configuration qs, goal configuration qg, and
resolution for collision avoidance qres

Output: collision status for edge (qs, qg)

1. if ‖(qs, qg)‖2 < qres/2 then
2. return true
3. else
4. qm ← (qs + qg)/2
5. if qm ∈ Qfree
6. if local planner(qs, qm) and local planner(qm, qg) then
7. return true
8. return false

the connectivity of the configuration space. Second a shortest path algo-
rithm is employed to quickly answer to several planning queries navigating
through the roadmap. An example of such a planner is the Probabilistic
Roadmap Method [3, 56, 61]. Recent attempts have been proposed to inte-
grate these two methods for large scale motion planning. An example is the
Sampling Based Roadmaps of Trees (SRT) [82, 83].

In the proposed optimization scheme based on the hybrid random-key
GA illustrated in Section 3.1.2 a path planning step has to be executed
n times for each chromosome in the population since in each tour there
are n distinct edges. Thus, a multiple query planner seems to be the best
choice to efficiently handle this large number of requests. However, the
initial and final configurations qi and qj for each query are unknown at
the beginning and can become any of the infinitely many configurations
within each neighborhood. A preprocessing step where a full exploration
of the collision-free configuration space Qfree is performed would be thus
extremely expensive in terms of computational cost. Similarly to the SRT
approach, single query planners are instead used to simultaneously answer
the initial queries and incrementally build a roadmap G = (VG, EG) over
Qfree, which afterwards is used to answer multiple queries. A high-level
description of the proposed approach is provided in Algorithm 4.1.

For each edge in each tour, (qπ(i), qπ(i+1)), first the algorithm checks if
the number of configurations in the roadmap, |VG|, is larger than a given
threshold, lsamp, and if the corresponding neighborhoods Qπ(i) and Qπ(i+1)

have been previously connected at least once by using an indicator matrix
Mconn. During the initial calls these two conditions are not verified, and

74

T2

T1

qs

qg

qπ(i)

qπ(i+1)

Figure 4.2: Single query planner. Edges depicted in red are not collision-free,
and biRRTs are used to generate a collision free path.

thus a single query planner is invoked adding the extracted collision-free
path to the roadmap G. Once the roadmap is completed according to the
given criteria, then a multi query planner is used and the calculated edge
lengths are stored in a sparse distance matrix, D.

4.2.2.1 Single Query Planner and Roadmap Construction

First, the function local planner, which is described in Algorithm 4.2, is
used to verify if the point to point motion along the line segment defined
in the configuration space by the two configurations qπ(i) and qπ(i+1) is
collision-free. This is done by subdividing the line segment using a bisection
approach up to a given resolution, qres, and checking each intermediate con-
figuration, qm, for collision. Collision evaluation is performed in a hierarchal
fashion, first checking for intersection the bounding capsules containing the
components of the system [2], and then using bounding-volume trees defined

75

Algorithm 4.3 Function biRRT planner(P,G, qs, qg).

Input: collision-free path P = (VP , EP), roadmap G = (VG, EG) in Qfree,
start configuration qs, goal configuration qg,
first tree T1 = (VT1 , ET1), second tree T2 = (VT2 , ET2),
number of attempts to merge the trees lmerge, and
resolution for collision avoidance qres

Output: updated P and G

1. VT1
← {qs}; ET1

← ∅
2. VT2 ← {qg}; ET2 ← ∅
3. for l = 1 to lmerge do
4. let qrand be a randomly chosen configuration in Q
5. qnew,1 ← extend(T1, qrand)
6. if qnew,1 6= nil then
7. qnew,2 ← extend(T2, qnew,1)
8. if qnew,2 6= nil and ‖(qnew,1, qnew,2)‖2 < qres then
9. if local planner(qnew,1, qnew,2) then
10. P ← extract path(T1, qnew,1, T2, qnew,2)
11. connect(G,T1); connect(G,T2)
12. EG ← EG ∪ {(qnew,1, qnew,2)}
13. return true
14. swap(T1, T2)
15. return false

using triangular meshes [32, 42, 78].
Second, if the line segment between the two configurations qπ(i) and

qπ(i+1) is not collision free, then the function biRRT planner described in
Algorithm 4.3, is used to find a collision-free path between these two con-
figurations. Figure 4.2 illustrates the two steps of the single query planner.

BiRRT Planner Two RRTs, T1 rooted at the start configuration qs =
qπ(i) and T2 rooted at a goal configuration qg = qπ(i+1), are grown towards
each other to build the collision-free path. Initially a random configuration,
qrand, is generated as follows:

qrand =

{
ql + ((1 + 2η)U − η)|qg − qs| if l < lloc or u < ploc
qmin + U(qmax − qmin) otherwise

(4.4)

where ql,k = min{qs,k, qg,k}, qmin and qmax are the joint limits vectors, u is
a uniformly distributed number in [0, 1], U is a diagonal (m × m) matrix
with diagonal entries uniformly distributed in [0, 1], the parameter η defines

76

Algorithm 4.4 Function extend(T, q).

Input: tree T = (VT , ET), configuration q, step subdivision hstep
and edge weighting function d(·)

Output: new configuration qnew towards q

1. let qnear be the nearest neighbor of q in VT w.r.t. d(·)
2. qnew ← qnear + (q − qnear)/hstep
3. if qnew ∈ Qfree and local planner(qnear, qnew) then
4. VT ← VT ∪ {qnew}
5. ET ← ET ∪ {(qnear, qnew)}
6. return qnew
7. return nil

a reduced sampling domain, lloc is the minimum number of configurations
sampled from the reduced domain, and ploc is the probability to sample
from the reduced domain. This sampling approach with alternate sampling
domains has shown to improve the performance of the planner, confirming
similar results presented by Kuffner Jr and LaValle [63] and LaValle and
Kuffner Jr [66].

Afterwards, the algorithm attempts to extend the configuration closest to
qrand on one tree towards qrand by defining a new configuration qnew,1. This
procedure is performed by the function extend illustrated in Algorithm 4.4,
where the new configuration is defined by moving from the selected closest
configuration on the tree, qnear, towards the random configuration, q =
qrand, by a step defined as (q− qnear)/hstep, and checking the resulting new
edge for collisions. Then the algorithm attempts to extend the configuration
closest to qnew,1 on the second tree towards qnew,1 by defining a second new
configuration qnew,2 using again the function extend.

If the line segment from qnew,1 to qnew,2 is not collision free, the two
trees are swapped and the same procedure is repeated. Finally, The pro-
cedure terminates if the maximum number of attempts to merge the two
trees, lmerge, is reached or if the trees can be merged. In the latter case, a
path P = (VP , EP), which is defined as a tree rooted at qs and with only
one leaf node at qg, is extracted by back-walking the two trees T1 and T2

from the last added leaf nodes, qnew,1 and qnew,2. Moreover, unnecessary
internal nodes are removed from the path P and the position of each internal
configuration is pulled towards the start and goal configurations using the
function extract path illustrated in Algorithm 4.5.

Finally, if the two trees have been merged, they are added to the roadmap

77

Algorithm 4.5 Function extract path(T1, q1, T2, q2).

Input: first tree T1 = (VT1
, ET1

), second tree T2 = (VT2
, ET2

),
last added leaf nodes q1 and q2, step subdivision hstep,
and smoothing attempts lsmooth

Output: collision-free path defined as tree P = (VP , EP)

1. VP ← {q1, q2}; EP ← {(q1, q2)}
2. for t = 1 to 2 do
3. T ← Tt
4. q ← qt; qp ← parent(Tt, qt)
5. while qp 6= root(Tt) do
6. VP ← VP ∪ {qp}
7. if t = 1 then EP ← {(qp, q)} else EP ← {(q, qp)}
8. q ← qp; qp ← parent(Tt, q)
9. if |VP | > 2
10. q ← q2
11. repeat
12. qp ← parent(P, q)
13. repeat
14. qpp ← parent(P, qp)
15. if local planner(qpp, q) then
16. VP ← VP \ {qp}
17. EP ← (EP \ {(qpp, qp), (qp, q)}) ∪ {(qpp, q)}
18. qp ← qpp
19. else break
20. until qpp = root(P)
21. q ← qp
22. until qpp = root(P)
23. q ← q2
24. repeat
25. qp ← parent(P, q); qpp ← parent(P, qp)
26. for l = 1 to lsmooth do
27. qnew ← qp + (q1 − qp)/hstep + (q2 − qp)/hstep
28. if qnew ∈ Qfree and local planner(qpp, qnew)

and local planner(qnew, q) then
29. qp ← qnew
30. else l = lsmooth
31. q ← qp
32. until qpp = root(P)
33. return P

G by using the function connect illustrated in Algorithm 4.6. The root

78

Algorithm 4.6 Function connect(G,T).

Input: roadmap G = (VG, EG), tree T = (VT , ET),
edge weighting function d(·),
and connection graph GC = (VC , EC)

Output: updated G

1. VC ← ∅
2. EC ← ∅
3. let Vconn be a set containing the root node of T ,

the last added leaf node of T , and some internal nodes of T
4. for qconn in Vconn do
5. let qnear be the nearest neighbor of qconn in VG w.r.t. d(·)
6. if local planner(qconn, qnear) then
7. VC ← VC ∪ {qconn, qnear}
8. EC ← EC ∪ {(qconn, qnear)}
9. else
10. P = (VP , EP): VP ← {qconn, qnear} and EP ← ∅
11. if biRRT planner(P,G, qconn, qnear) then
12. VC ← VC ∪ VP
13. EC ← EC ∪ EP
14. if |EC | > 0 then
15. VG ← VG ∪ VT ∪ VC
16. EG ← EG ∪ ET ∪ EC
17. return true
18. return false

nodes, the last added leaf nodes, and some internal nodes are connected to
the corresponding closest node in the roadmap G by using again either the
function local planner or, if it fails, the function biRRT planner.

The choice of the resolution for collision avoidance, qres, of the step
subdivision, hstep, and of the edge weighting function, d(·), are critical for the
performance of the single query planner [19, 60]. To analyze this relationship
a fixed tour of 9 fixed configurations is considered, and a collision-free path
is generated for each edge in the tour using the function biRRT planner.
This operation is repeated 10 times for each parameter set using either the
Weighted Maximum norm or the Quadratic norm. Figures 4.3.a, 4.3.b, 4.4.a,
and 4.4.b report the minimum, average, and maximum value of the norm-
base objective function evaluated before performing the path smoothing step
included in Algorithm 4.5. Figures 4.3.c, 4.3.d, 4.4.c, and 4.4.d report the
minimum, average, and maximum value of the corresponding cycle time
calculated after the smoothing step according to Equations (4.2) and (4.3).

79

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3

4

5

6

7

8

9

10

11

qres [rad]

W
ei

gh
te

d
M

ax
im

um
 N

or
m

 [s
]

Objective function with hstep = 5

(a) hstep = 5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3

4

5

6

7

8

9

10

11

qres [rad]

W
ei

gh
te

d
M

ax
im

um
 N

or
m

 [s
]

Objective function with hstep = 20

(b) hstep = 20

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
5

6

7

8

9

10

11

12

13

14

qres [rad]

C
yc

le
 T

im
e

[s
]

Objective function with hstep = 5

(c) hstep = 5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
5

6

7

8

9

10

11

12

13

14

qres [rad]

C
yc

le
 T

im
e

[s
]

Objective function with hstep = 20

(d) hstep = 20

Figure 4.3: Objective function evaluation for collision-free tour using the
Weighted Maximum norm and different parameter sets.

It can be easily observed that the larger is the step subdivision, hstep, the
lower is the average objective function value and the more consistent are the
results from the repeated executions with the same parameter set. Moreover,
although the resolution qres does not have a clear influence on the results, the
computational cost largely increases with the resolution. In the case hstep =
5 and Quadratic norm, the average CPU time ranges from 10.2s to 0.8s with
qres ranging from 0.005 rad to 0.08 rad. Moreover, results obtained with the
tested lower resolution usually have a minimum value in the same range as
the one obtained with higher resolution, indicating a similar behavior with
respect to collision avoidance. Observing that in the proposed planning
scheme the single query planner is mainly used to build the roadmap and

80

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
4

5

6

7

8

9

10

11

12

13

14

qres [rad]

Q
ua

dr
at

ic
 N

or
m

 [s
]

Objective function with hstep = 5

(a) hstep = 5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
4

5

6

7

8

9

10

11

12

13

14

qres [rad]

Q
ua

dr
at

ic
 N

or
m

 [s
]

Objective function with hstep = 20

(b) hstep = 20

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
5

6

7

8

9

10

11

12

13

14

qres [rad]

C
yc

le
 T

im
e

[s
]

Objective function with hstep = 5

(c) hstep = 5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
5

6

7

8

9

10

11

12

13

14

qres [rad]

C
yc

le
 T

im
e

[s
]

Objective function with hstep = 20

(d) hstep = 20

Figure 4.4: Objective function evaluation for collision-free tour using the
Quadratic norm and different parameter sets.

not as final answer to planning requests, the computational performance
is more critical than the objective function value for each planning query.
Therefore, parameters are fixed to hstep = 5 and qres = 0.08 hereafter. The
detailed results for all the peformed tests are reported in Appendix A.9.

4.2.2.2 Multiple Query Planner

If the neighborhoods corresponding to the two configurations qπ(i) and
qπ(i+1) have been connected at least once by the single query planner, and if
the number of configurations, |VG|, added to the roadmap, G, is larger than
the threshold lsamp, then G is used to find a collision-free path between

81

the two configurations. First, if the two configurations are not in G the
function connect is used to find a collision-free path between them and the
corresponding nearest configurations in G. Then, using the function index,
which returns the index of a configuration in G or nil if it is not in G, the
corresponding entry in the sparse distance matrix D is checked. If the entry
has not been assigned yet, the function shortest path is used to calculate
the shortest path in G between the two configurations and to update D.

Since the single query planner, upon which the roadmap is build, is a
sampling-based thus heuristic procedure, the heuristic search A* is used to
retrieve the shortest path [50]. This algorithm is based on the exact search
proposed by Dijkstra [26] but it considerably improves the computational
performance using a heuristic function, which in the proposed implementa-
tion is either the Weighted Maximum norm or the Quadratic norm between
the current and the goal configurations. An alternative procedure is to use
the all-pairs search for sparse graph proposed by Johnson [58] to first eval-
uate all the entries of D as soon as the threshold lsamp is reached. However,
we observed that the number of entries in D that are actually queried is a
small fraction of the total number. Moreover, we also observed that adding
new configurations and edges to the roadmap even after the threshold lsamp
is reached improves the performance of the algorithm with respect to the
objective function value. In particular, we observed that resetting the con-
nection indicator matrix Mconn when gI >= gImax at step 6. in the main
Algorithm 3.1, which causes new configurations and edges to be added to
the roadmap, allows the hybrid random-key GA to converge to a shorter
near optimal tour. Based on these observations, the incremental approach
for calculating the entries of D was finally chosen.

The parameter lsamp, i.e. the minimum number of configurations in
the roadmap G, strongly influences the performance of the proposed path
planner [60]. To illustrate this behavior a roadmap is built repeating Algo-
rithm 4.1 on randomly generated tours of random configurations until the
threshold lsamp is reached. Afterwards, a fixed tour of fixed configurations
is analyzed using the multiple query planner and the value of the objective
function is stored. The same procedure is then repeated with a different
value of the parameter lsamp. Figure 4.5.a illustrates how the norm-based
objective function value for the fixed tour evolves as function of lsamp us-
ing the Weighted Maximum norm or the Quadratic norm as edge weighting
function. Figure 4.5.b illustrates the results of the same tests where the
actual cycle time is calculated as post processing step once the algorithm
terminates. The dashed line labeled “Direct Tour” correspond to the limit
objective function value for the fixed tour where no collision avoidance is

82

0 2 4 6 8 10 12 14 16 18

x 10
4

4.5

5

5.5

6

6.5

7

7.5

8

l
samp

N
or

m
 V

al
ue

 [s
]

Weighted Maximum Norm
Quadratic Norm
Direct Tour

(a) Norm-base objective function convergence for a fixed tour.

0 2 4 6 8 10 12 14 16 18

x 10
4

12

12.5

13

13.5

14

14.5

15

l
samp

C
yc

le
 T

im
e

[s
]

Weighted Maximum Norm
Quadratic Norm
Direct Tour

(b) Cycle time convergence for a fixed tour.

Figure 4.5: Multiple query planner convergence as function of the parameter
lsamp. Direct tour is the lower bound for the optimal value of the objective
function.

considered. On the one hand, we can clearly observe that the larger is lsamp,
the shorter is the retrieved collision-free tour. On the other hand, the larger
is lsamp, the more the transition between single query and multiple query
planner is postponed resulting in an excessive computational cost for the

83

hybrid random-key GA. Based on these numerical tests the parameter is
fixed to lsamp = 100, 000 hereafter, which seems to guarantee a sufficient
quality in the retrieved solution.

Finally, we can observe from Figures 4.3, 4.4, and 4.5 that the employed
norms show similar convergence trends as the actual cycle time. There-
fore, in the actual implementation the cycle time is calculated according to
Equations (4.2) and (4.3) only as a final step when the distance matrix, D,
is updated or the objective function value for the extracted path is returned
by the function length at steps 10. or 21. of Algorithm 4.1, respectively.

4.3 Neighborhood definition

For each image i, i.e. for each relative placement between the camera and
the component, the position and orientation of the manipulator end-effector
can be represented in the turntable coordinate system as a homogenous
transformation (4× 4) matrix:

tR(i)
e =

[
tλ

(i)
e

tµ
(i)
e

tν
(i)
e

tp
(i)
e

0 0 0 1

]
, (4.5)

where tp
(i)
e is the end-effector position, and tλ

(i)
e , tµ

(i)
e , and tν

(i)
e are the unit

vectors in R3 that define the end-effector coordinate system with respect to
the turntable coordinate system for image i.

If mpt is the origin of the turntable coordinate system with respect to
the manipulator coordinate system and qi,7 is the turntable rotation angle
about its z-axis, then constraints (2.5) for this robotic system can be derived
as:[

rot(ez, qi,7) mpt
0 0 0 1

]
· tR(i)

e = mR(i)
e = FK([qi,1, . . . , qi,6]T) ∀ i ∈ V , (4.6)

where the (3×3) rotation matrix rot(ez, q) and the forward kinematic func-
tion of the manipulator FK(·) are defined in Appendix A.10.

Using the manipulator inverse kinematic function IK(·), constraints (4.6)
can be written as:

IK

([
rot(ez, qi,7) mpt

0 0 0 1

]
· tR(i)

e

)
= [qi,1, . . . , qi,6]T ∀ i ∈ V . (4.7)

As illustrated in Appendix A.10, the manipulator inverse kinematic IK(·)
can have up to 8 different solutions, called figures. Thus, constraints (4.7)

84

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

100

150

200

250

Spline parameter t
14

A
ng

le
 [d

eg
]

q

14,1

q
14,2

q
14,3

q
14,4

q
14,5

q
14,6

q
14,7

Figure 4.6: Piecewise cubic least-square approximation for neighborhood
i = 14. The sampled configurations are indicated with x-marks in the same
color of the corresponding curve. The hyperspline consists of 8 polynomial
pieces with brake points indicated by black x-marks.

represent a set of possibly non-connected curves in the configuration space
where qi,7 can be viewed as the curve parameter.

In this work, piecewise cubic hypersplines are used to simplify the def-
inition of constraints (4.7), i.e. the neighborhoods, while considering only

one figure at a time. Thus, for each relative placement tR
(i)
e a set of configu-

rations qi is obtained by evaluating Equation (4.7) for all the feasible value
of qi,7 sampled at an interval of 5 deg. The set of consecutive configurations
that lie within physical joints limits and are collision-free is then approx-
imated using a piecewise cubic hyperspline, as illustrated in Figure 4.6.
The number of pieces, np, used in the present work is 8. Similarly to Equa-
tion (2.10), the spline parameter ti ∈ [0, 1] is introduced and constraints (2.5)

85

Table 4.1: Kinematic parameter for the 7DOF vision inspection system.

Joint 1 2 3 4 5 6 7 LS 7 HS

qmin [rad] -2.97 -1.75 -2.08 -3.32 -2/3π -2π -2π -2π
qmax [rad] 2.97 2.36 2.95 3.32 -2/3π 2π 2π 2π
ωk [rad/s] 3.51 3.51 3.51 5.17 5.17 8.40 2.88 6.98
αk [rad/s2] 21.74 21.74 21.74 33.69 33.69 52.12 14.4 34.91

are redefined as:

np∑
p=1

1p(ti)
(
s0,i,p + s1,i,p (ti − ti,p) + s2,i,p (ti − ti,p)2

+ s3,i,p (ti − ti,p)3
)
− qi = 0 ∀ i ∈ V . (4.8)

where ti,p, p = 1, . . . , np + 1 are the spline break points and 1p(ti) = 1 if
ti ∈ [ti,p, ti,p+1), 0 otherwise.

4.4 Computational results

The proposed procedure is tested using a set of 31 relative placements tR
(i)
e

and one depot placement provided by Denso Wave, Inc., which owns the
vision inspection system examined in this work. The actual data for qmin,
qmax, ωk, and αk are obtained for the DENSO VS 6577E-B manipulator the
turntable from the specification sheets [88], [33], and [1]. The values are
reported in Table 4.1. For the turntable, i.e. joint 7, two sets of parameters
are provided: low and high speed labeled “LS” and “HS”, respectively. The
controller delay is set to ∆t0 = 0.1s.

Given the extensive use of the nearest neighbor operation in the pro-
posed procedure, the roadmap G is implemented using an adjacency list
based on the kd-tree [13, 14]. Using this data structure the expected cost
of such operation is reduced from O(|VG|) to O(log |VG|) [36, 37]. Moreover,
the planning algorithm is executed as a separated thread from the hybrid
random-key GA using an Inter-Process Communication (IPC) between the
two processes based on Remote Procedure Calls (RPC) [75]. This allows
the two algorithms to be executed on different cores while maintaining in
memory a large roadmap, which can grow above 106 configurations, during
different runs of the hybrid random-key GA and thus avoiding to rebuild it
at each execution. Finally, the parameter used in Algorithms 4.1 to 4.6 are:

86

Table 4.2: Simulation and experimental results for the 7DOF vision inspec-
tion system.

Norm Original TSP TSPN LS TSPN HS

Euclidean

norm value [rad] 30.51 24.85 19.12 20.24
impr. - 18.6% 37.3% 33.7%
cycle time [s] 13.86 11.79 10.16 9.25
impr. - 14.9% 26.7% 33.3%
ArmPl. [s] 18.96 15.89 13.11 12.45
impr. - 16.2% 30.9% 34.3%

norm value [s] 5.640 4.440 3.135 2.515
impr. - 21.3% 44.4% 55.4%
sim. time [s] 13.86 11.80 10.14 9.40

Weighted impr. - 14.9% 26.8% 32.2%
Maximum ArmPl. [s] 18.96 15.74 14.39 12.73

impr. - 17.0% 24.1% 32.9%
sys. time [s] 10.62 8.92 8.35 7.88
impr. - 16.0% 21.4% 25.7%

Quadratic

norm value [s] 7.390 5.911 4.728 3.561
impr. - 20.0% 36.0% 51.8%
cycle time [s] 13.86 11.74 9.98 9.13
impr. - 15.3% 28.0% 34.1%
ArmPl. [s] 18.96 16.01 13.72 12.27
impr. - 15.6% 27.6% 35.3%
sys. time [s] 10.62 9.10 7.87 7.42
impr. - 14.3% 25.9% 30.1%

η = 0.3, ploc = 0.1, lloc = 10, hstep = 5, qres = 0.08, lmerge = 1, 000, and
lsamp = 100, 000.

Table 4.2 illustrates the results of the performed experiments. The col-
umn with label “Original” reports the results obtained with the original
sequence of 32 configurations provided by Denso Wave and it is used after-
wards as reference value. The results reported in the columns with label
“TSPN LS” and “TSPN HS” are obtained using the proposed optimization
procedure for low and high turntable speed, respectively. Finally, the results
reported in the column with label “TSP” are obtained by finding an optimal
sequence of the original configurations. First, a distance matrix is calculated
by using the planning procedure illustrated in the previous Section on all
the possible edges of the full graph defined by the 32 original configurations.
Then, the resulting TSP is solved to optimality using the exact TSP solver
Concorde [7].

87

For each one of the four testing framework, three different sets of results
are reported:

• norm-based objective function value and simulated cycle time of the
near optimal tour found by the hybrid random-key GA, which are
labeled “norm value” and “cycle time”, respectively;

• simulated cycle time for the near optimal tour returned by the simu-
lator DENSO WinCAPS III - ArmPlayer Plus [87], which is labeled
“ArmPl.”;

• experimental cycle time for the near optimal tour required by the
actual vision inspection system, which is labeled “sys. time”.

The tests are performed using the Weighted Maximum norm and the Qua-
dratic norm as underlying edge weighting function for the hybrid random-
key GA and for the path planner. The values obtained using the Euclidean
norm are also reported, but no test on the actual system are performed in
this case.

By exploiting the redundancy of the system while searching for a near
optimal tour, if the Quadratic norm is used as underlying edge weighting
function the actual cycle time can be reduced by 26% for low turntable
speed or by 30% for high turntable speed. In this scenario the optimization
achieved searching only for an optimal sequence of the original configurations
is about 14%. Figure 4.7 shows the original tour, Figure 4.8 the tour of the
original configurations optimized by the TSP solver, and Figures 4.9 and
4.10 the near optimal tours obtained with the proposed procedure for the
two turntable speeds.

The actual improvement measured on the real system is smaller than the
one observed for the norm-based objective function, which is 52% in case of
Quadratic norm and high turntable speed. Moreover, the actual improve-
ment is also smaller than the ones obtained using the cycle time as defined
in Equations (4.2) and (4.3) or using the simulator ArmPlayer Plus, 34% or
35%, respectively. However, we can observe that the trends of simulation
and experimental results are very similar, i.e. high turntable speed always
leads to smaller cycle time than the one obtained using the low turntable
speed or the TSP optimization, independently of the method used to eval-
uate the cycle time. Moreover, Figure 4.11 illustrates how the calculated
cycle time decreases as the turntable speed increases, suggesting that the
performance of the system can be adjusted just by changing the dynamic
characteristic of the turntable. Results obtained using the Weighted Max-
imum norm lead to similar observations, confirming that both norms well

88

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1
−300

−200

−100

0

100

200

300

Neighborhood Index

A
ng

le
 [d

eg
]

q
i,1

q
i,2

q
i,3

q
i,4

q
i,5

q
i,6

q
i,7

Figure 4.7: Original tour of 32 configurations provided by Denso Wave. The
black line corresponds to the turntable joint angle.

1 8 2 3 4 5 6 7 17 30 29 31 27 28 26 25 32 18 24 19 20 23 22 21 16 15 14 13 11 12 10 9 1
−300

−200

−100

0

100

200

300

Neighborhood Index

A
ng

le
 [d

eg
]

q
i,1

q
i,2

q
i,3

q
i,4

q
i,5

q
i,6

q
i,7

Figure 4.8: Optimal tour of the original configurations obtained using the
Quadratic norm.

89

1 13 16 23 22 21 17 32 25 31 30 29 28 27 26 24 18 19 20 15 14 12 11 10 9 2 3 4 5 7 6 8 1
−300

−200

−100

0

100

200

300

Neighborhood Index

A
ng

le
 [d

eg
]

q
i,1

q
i,2

q
i,3

q
i,4

q
i,5

q
i,6

q
i,7

Figure 4.9: Near optimal tour of 32 neighborhoods obtained using the Qua-
dratic norm and low turntable speed.

1 8 14 15 16 17 32 25 26 31 30 28 27 29 24 18 19 20 23 22 21 13 12 11 10 9 2 3 4 5 6 7 1
−300

−200

−100

0

100

200

300

Neighborhood Index

A
ng

le
 [d

eg
]

q
i,1

q
i,2

q
i,3

q
i,4

q
i,5

q
i,6

q
i,7

Figure 4.10: Near optimal tour of 32 neighborhoods obtained using the
Quadratic norm and high turntable speed.

90

3 4 5 6 7 8 9
2

4

6

8

10

12

14

Turntable speed [rad/s]

O
bj

ec
tiv

e
va

lu
e

[s
]

Quadratic Norm
DENSO Sequence
Cycle Time
DENSO Sequence

Figure 4.11: Cycle time improvement as function of the turntable speed ob-
tained using the Quadratic norm. Dashed lines represent the corresponding
objective function values for the original tour provided by Denso Wave.

represent the behavior of the actual system for the purpose of cycle time
minimization.

Finally, we observe that the simulated cycle time is usually larger than
the one measured on the actual system. The values calculated with the
purely kinematic model defined in Equations (4.2) and (4.3) and with the
simulator ArmPlayer Plus are larger than the actual ones on average by
28.1% and 75.8%, respectively, if the Weighted Maximum norm is used,
and by 27.6% and 73.3%, respectively, if the Quadratic norm is used. The
actual dynamic performance achieved by the manipulator controller with a
light camera mounted on its end-effector is probably higher than the one
reported in the specification sheet or used by ArmPlayer Plus, which causes
the observed reduction in the measured cycle time. At the same time, similar
delays in the controller have a larger impact on the shorter cycle time of
the actual system, which can originate the observed different improvement
levels.

91

4.5 Conclusion

In this chapter a practical applications of the proposed optimization ap-
proach is illustrated. The cycle time currently required by a 7 DOF robotic
vision inspection system to complete a 32-goal cycle is improved by 30%.
The neighborhoods are approximated using piecewise cubic splines in a
seven-dimensional configuration space, and the employed edge weighting
functions are the Weighted Maximum or the Quadratic norm. Moreover,
a kinematic model is used to evaluate the actual cycle time, and an ad-
hoc probabilistic path planning technique, which merges single and multiple
query sampling-based planners, is embedded in the GA to guarantee each
edge in the calculated near optimal tour to be collision-free.

92

Chapter 5

Unmanned Aerial Survey
System

In this chapter, we apply the proposed hybrid random-key GA to an un-
manned aerial survey system. We illustrate how the neighborhoods are
defined and how the edge weighting function is customized to account for
specific system characteristics, obstacle avoidance, and energy consumption.
Finally, simulations are performed and results are discussed.

5.1 Problem Formulation

The robotic system considered in this chapter is a quadrotor Unmanned
Aerial Vehicle (UAV). This UAV can be used to autonomously carry out
rescue missions of large urban areas damaged by natural disasters, or to
visually inspect large facilities or infrastructures. An optimal path is needed
to maximize the number of critical location covered by the quadrotor during
each flight mission, i.e., to accelerate the search operations of rescue teams
or to minimize the cost of each inspection procedure.

A similar problem is considered in the literature, where an UAV is con-
strained to fly within a certain distance from the center of each site that
needs to be monitored [62]. The neighborhood are modeled here as cir-
cles in R2, and necessary conditions for optimality are discussed. Finally,
two heuristics, based on a “rubberband” approach or on a Generalized TSP
(GTSP) model are proposed, but no extensive results are illustrated.

In this work no constraints are formulated for the trajectory that has
to be tracked by the UAV given the high manoeuvrability of commercial
quadrotors [57, 71, 73]. Theretofore, the problem of finding the optimum

93

flight path for the quadrotor to visit all the desired locations where the
images have to be acquired from can be formulated as a traditional TSP.
However, since each image can be acquired by the quadrotor from infinitely
many feasible configurations, the problem can be re-formulated as a TSPN.
In this case the redundancy of the system is originated by the fact that
the relative position between the camera and the object is not fixed, as for
the 7DOF industrial vision inspection system illustrated in chapter 4, but
it can vary within certain bounds. These can be determined based on the
dimensions of the feature to inspect, on the UAV and camera characteristics,
and on the image quality specifications, such as resolution or distortion.

Initially, we study a simplified version of this problem using an analyti-
cally defined objective function based on the Euclidean or Quadratic norm.
Moreover, polyhedra in R3 are employed to define the neighborhoods, which
provide enough flexibility to model the actual constraints for practical pur-
poses. The hybrid random-key GA is then used to find a near optimal tour
for the resulting TSPN.

Afterwards, bidirectional RRTs are used to account for collision avoid-
ance, and a full dynamic simulation is performed to better estimate within
the GA the actual cost in terms of traveled distance or energy consumption.
Finally, simulations are performed using two different urban scenarios.

5.2 Objective function evaluation

An edge weighting function needs to be defined to evaluate the cost for the
quadrotor to fly from one neighborhood to the next. If the objective of the
optimization is to minimize the total traveled distance, the Euclidean or
the Quadratic norm can be used. In particular, the Quadratic norm can
be used when total distance and total traveled yaw angle are minimized
simultaneously to balance between the two quantities.

Although a norm allows to evaluate the objective function (2.18) very
efficiently, it does not guarantee each edge in the tour to be collision-free. To
account for the presence of obstacles along the path of the quadrotor that
connects two configurations in the tour, and thus to have a more realistic
evaluation of the path length, we use the following procedure based on Ori-
ented Bounding Boxes (OBB). If the straight line connecting the considered
two configurations intersects only one OBB, additional collision avoidance
configurations are deterministically added to generate a collision free path.
If the collision scenario is more complex, the single query planner presented
in Section 4.2.2.1 is used to efficiently generate a collision-free path.

94

λ1

λ2

λ3

ey

ex

ez

α1

F1

F2F3

F4

α2α3

α4

Figure 5.1: Quadrotor schematic.

Finally, if the objective of the optimization is to minimize the total
energy used by the quadrotor during the mission, a full dynamic charac-
terization is required. The rest of this Section describes the kinematic and
dynamic models of the quadrotor, the aerodynamic forces derivation, and
the control scheme used to simulate the flight of the UAV.

5.2.1 Kinematic Model

Two coordinate systems are defined as illustrated in Fig. 5.1: the inertial co-
ordinate system, {ex, ey, ez}, and the body coordinate system, {λ1,λ2,λ3},
centered at the center of mass, r, of the quadrotor. The rotation from the
body coordinate system to the inertial coordinate system is defined using
ZXY Euler angles. The first rotation is about the z-axis of the inertial
coordinate system by the yaw angle, ψ. The second rotation is about an
intermediate x-axis by the roll angle, ϕ. The third rotation is about the

95

y-axis of the body coordinate system by the pitch angle, ϑ. The resulting
rotation matrix is:

R =

cψ cϑ− sψ sϕ sϑ −sψ cϕ cψ sϑ+ sψ sϕ cϑ
sψ cϑ+ cψ sϕ sϑ cψ cϕ sψ sϑ− cψ sϕ cϑ
−cϕ sϑ sϕ cϕ cϑ

 (5.1)

where s(·) = sin(·) and c(·) = cos(·).
The velocity of the quadrotor center of mass can be transformed from

the body to the inertial coordinate system using the relation ṙ = v =
[vx, vy, vz]

T = R [v1, v2, v3]T . Similarly, the quadrotor angular velocity can
be transformed using the relation ω = [ωx, ωy, ωz]

T = R [ω1, ω2, ω3]T . More-
over, the relationship between the angular velocity in the inertial coor-
dinate system and the time derivatives of the Euler angles is given by
ω = M [ψ̇, ϕ̇, ϑ̇]T , where:

M =

0 cψ −sψ cϕ
0 sψ cψ cϕ
1 0 sϕ

 . (5.2)

Finally, the time derivative of the rotation matrix is given by Ṙ = ΩR =
RΩλ, where

Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 , Ωλ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (5.3)

and Ωu = ω × u for any u ∈ R3.

5.2.2 Dynamic Model

The force equilibrium in the inertial coordinate system is given by:

mv̇ = mg ez − (T1 + T2 + T3 + T4)λ3 +RFd , (5.4)

and in the body coordinate system:

m

v̇1

v̇2

v̇3

 = −mΩλ

v1

v2

v3

+mgRTez −

 0
0

T1 + T2 + T3 + T4

+ Fd , (5.5)

where m is the quadrotor mass, Fd the drag force in the body coordinate
system due to the quadrotor translational velocity and the wind, and Tk the
thrust of the k-th propeller with k ∈ {1, 2, 3, 4} [31, 84].

96

The moment equilibrium about the quadrotor center of mass in the in-
ertial coordinate system is given by:

d

dt

(
Iω +

4∑
k=1

Ip,kαk

)
= R

 l(T4 − T2)
l(T1 − T3)

M1 −M2 +M3 −M4

+RMd , (5.6)

where I is the quadrotor tensor of inertia with respect to the center of mass,
Ip,k the cumulative propeller and motor tensor of inertia with respect to the
unit center of mass, Md the drag moment in the body coordinate system
due to the quadrotor rotational velocity, Mk the propeller shaft torque, αk
the propeller angular velocity, and l the distance of the propeller center of
mass from the quadrotor center of mass.

If we assume that the quadrotor tensor of inertia in the body coordinate
system, Iλ = RT IR, is constant by averaging the variable contribution of
the rotating propellers, that the third principal component, Ip, of the tensor
Ip,k is aligned with λ3 and is the same for each propeller, that the propellers
angular velocities are given by αk = (−1)kαkλ3, and we neglect the drag
moment Md, Equation (5.6) becomes in the body coordinate system:

Iλ

ω̇1

ω̇2

ω̇3

 = −ΩλIλ

ω1

ω2

ω3

− Ip
 αω2

−αω1

α̇

+

 l(T4 − T2)
l(T1 − T3)

M1 −M2 +M3 −M4

 , (5.7)

where α = −α1 + α2 − α3 + α4.

5.2.3 Aerodynamic Forces

The drag force in the body coordinate system can be approximated as:

Fd =
ρ

2

cd,1A1(w1 − v1)|w1 − v1|
cd,2A2(w2 − v2)|w2 − v2|
cd,3A3(w3 − v3)|w3 − v3|

 , (5.8)

where w1, w2, and w3 are the components of the wind velocity in the body
coordinate system and cd,i are the quadrotor drag coefficients.

The propeller thrust can be written as:

Tk = cT,kρAp(rpαk)
2 , (5.9)

where cT,k is the non-dimensional thrust coefficient, ρ the air density, Ap
the propeller disk area, and rp the propeller radius. Using blade element

97

theory in case of rigid blade, uniform inflow, and linear twist distribution,
the thrust coefficient is given by Johnson [59]:

cT,k =
σa

2

(
θ.75

3
+
µ2
k

2

(
θ.75 −

θtw

4

)
− λk

2

)
, (5.10)

where σ is the propeller solidity ratio, a is the slope of the blade lift curve,
θ = θ.75 + θtw(r/rp − 3/4) the pitch angle of the blade, θ.75 the pitch of the
blade at 75% radius, λk the inflow ratio, and the advance ratio is defined as:

µk =
√

(w1 − (v1 + vr1,k))2 + (w2 − (v2 + vr2,k))2/(rpαk) .

The velocity contributions due to the rotation of the quadrotor are vr1,k ∈
l{0,−ω3, 0, ω3}, vr2,k ∈ l{ω3, 0,−ω3, 0}, and vr3,k ∈ l{−ω2, ω1, ω2,−ω1}.

Using momentum theory, the inflow ratio can be derived as solution of
the following quartic equation [59]:

λk = λc,k +
cT,k

2
√
µ2
k + λ2

k

, (5.11)

where λc,k = (w3 − (v3 + vr3,k)/(rpαk). In vertical flight (µk = 0) Equation
(5.11) has the following solution assuming the inflow ratio to be positive:

λk =
λc,k
2

+

√(
λc,k
2

)2

+
cT,k

2
, (5.12)

which becomes λk =
√
cT,k/2 in hover (λc,k = 0). In the general case,

Equation (5.10) can be substituted in (5.11) and a solution can be found
using a Newton-Raphson schema. In vertical flight the closed form solution
is given by [59]:

λk =
1

16

(
8λc,k − σa+

√
64

3
θ.75σa+ (8λc,k − σa)2

)
, (5.13)

which can be used as the initial value for the numeric procedure.
Finally, we define the hover angular velocity, αh, for the propeller as:

αh =

√
mg

4ρAp(rp)2cTh
, (5.14)

where cTh is obtained from Equations (5.10) and (5.13) and by assuming
λc,k = 0.

98

The propeller shaft torques can be written as:

Mk = cM,kρAprp(rpαk)
2 , (5.15)

where cM,k is the non-dimensional torque coefficient. This is equal to the
power coefficient cP,k, since for each propeller the power is given by Pk =
Mkαk, and it accounts for the induced power required to produce the thrust,
the profile power required to turn the propeller, the parasite power required
to overcome drag forces, and the climb power. Assuming again rigid blade,
uniform inflow, and linear twist distribution, the power coefficient can be
obtained as [59]:

cP,k = κλkcT,k +
σcd0

8
+ µ2

k

(
σcd0

8
− λk

σa

4

(
θ.75 −

θtw

4

))
, (5.16)

where κ is an empirical factor to account for additional losses and cd0 is a
mean blade drag coefficient.

5.2.4 Motor Model

For each propeller-motor unit, the moment equilibrium in the λ3 direction
is given by:

Ip
dαk
dt

= ci(ik − i0)−Mk , (5.17)

where ci is the motor torque constant, ik the motor current, and i0 is the
zero load current. The governing equation of the motor circuit can be ap-
proximated as:

L
dik
dt

= uk −Rik −
αk
cv

, (5.18)

where L is the motor inductance, R the motor resistance, uk the motor
terminal voltage, and cv the motor speed constant. We assume cv = 1/ci
[96]. The terminal motor voltage is defined as a function of the reference
angular velocity αR,k:

uk = R

(
Mk(αR,k)

ci
+ i0

)
+
αR,k
cv

. (5.19)

A saturation is also introduced to ensure that ik ≤ imax and uk ≤ umax.
Finally, the objective function (2.18), which is the total energy used by

the quadrotor during the survey mission, can be calculated as:

E =

4∑
k=1

∫
ikukdt (5.20)

99

5.2.5 Quadrotor Controller

In order to evaluate the total energy, E, defined in Equation (5.20), a control
law αR,k(t) has to be determined to allow the quadrotor to visit all the
inspection configurations qi in the given sequence. The two layer feedback
control loop proposed in [70, 71, 72] is used for this purpose.

First, an inner control loop is implemented using a PD controller to de-
termine the reference propeller angular velocities as function of the reference
yaw angle ψR, the reference roll angle ϕR, the reference pitch angle ϑR, and
the altitude error ∆zR:

αR,1
αR,2
αR,3
αR,4

 =


1 0 1 1
−1 −1 0 1
1 0 −1 1
−1 1 0 1

 ·

kp,ψ(ψR − ψ) + kd,ψ(ω3,R − ω3)
kp,ϕ(ϕR − ϕ) + kd,ϕ(ω1,R − ω1)
kp,ϑ(ϑR − ϑ) + kd,ϑ(ω2,R − ω2)

αh −∆zR

 , (5.21)

where kp and kd are the gains of the PD controller.
Second, an outer control loop is implemented using a PID controller

with a feedforward term to determine the reference roll angle, the reference
pitch angle, and altitude error ∆zR as function of the position error, e =
rR − r, and the reference yaw angle, ψR. This is achieved by linearizing
Equation (5.4) at the hovering state:

ϕR = −∆xR sin(ψR) + ∆yR cos(ψR) , (5.22)

ϑR = −∆xR cos(ψR)−∆yR sin(ψR) , (5.23)

where: ∆xR
∆yR
∆zR

 = Ki

∫
edt+Kpe+Kdė+Kf r̈R , (5.24)

and Ki, Kp, and Kd are the gain diagonal matrices of the PID controller,
and Kf is a gain matrix for the feed-forward term.

When the quadrotor is hovering all the derivatives of the reference rR
are zero. Afterwards, when the quadrotor moves from one neighborhood to
the next the integral gains are set to zero, and the position error is defined
by:

e = r̃R − r − ((r̃R − r) · tR)tR , (5.25)

where r̃R is the point on the reference trajectory closest to r, and tR the
vector tangent to the reference trajectory at that location. The velocity
error is defined as ė = ˙̃rR − r.

100

5.2.6 Modification to hybrid random-key GA

Within the hybrid random-key GA framework, the computational cost for
calculating a collision-free path and its related energy value for each chro-
mosome in the population is extremely high. Since a large amount of the
energy is consumed by the propellers just to generate the thrust, we ini-
tially assume that there is a direct correlation between path length and
energy consumption.

Afterwards, the following procedure is introduced at each generation of
the hybrid random-key GA to account for collision avoidance and energy
consumption:

1. The best m chromosomes not yet verified are selected using the norm-
based objective function value (two chromosomes are considered to be
equal if they simultaneously correspond to the same cycle and have
the same objective function value):

• a tour is decoded from each chromosome, and the straight line be-
tween each two consecutive configurations is checked for collisions
using OBB;

• if the straight line intersects only one OBB, then additional avoid-
ance points are added around the OBB to avoid collision;

• if the straight line intersects more than one OBB, then the bi-
RRT planner is used to generate a collision free path;

• using the collision free path, a reference trajectory [rT (t), ψT (t)]
is generated, a full simulation of the flight is performed, and if the
energy-based objective function value improves the best known
value, the calculated collision free tour is stored;

• The chromosome is added to the list of the verified chromosomes.

2. The chromosomes in the population are sorted again using the energy-
based objective function value. If a chromosome does not have an
energy value, its value is then equated to the maximum value in the
population.

3. Selection, immigration, and crossover are performed using the energy-
based objective function value, and improvement heuristics are per-
formed using one of the two norms.

101

5.3 Neighborhood definition

Given a feature that needs to be inspected, a neighborhood is defined as
the set of all the feasible configurations of the camera that allow to ac-
quire a complete image of such feature with enough resolution and limited
distortion. If we assume without loss of generality that the camera cen-
ter corresponds to the origin of the body coordinate system, each camera
configuration is specified by six parameters, q = [x, y, z, ψ, ϕ, ϑ].

A camera configuration is feasible with respect to a feature, if the convex
hull of such feature is contained in the camera field of view (FOV). The FOV
is defined in the body coordinate system by the polyhedron:

Afovpb + bfov ≤ 0 , (5.26)

where:

Afov =



−1 0 0
−sβh cβh 0
−sβh −cβh 0
−sβv 0 cβv
−sβv 0 −cβv

1 0 0

 ,

bfov =
[
−dmin 0 0 0 0 dmax

]T
,

pb is an arbitrary point in the body coordinate system, βh half the camera
horizontal angle of view, βv half the camera vertical angle of view, and
dmin and dmax are the minimum and maximum allowed distances along the
camera normal direction between the camera and the feature that guarantee
enough resolution in the image.

The convex hull of the i-th feature is contained in the camera FOV if
its vertices, pi,v, satisfy Equation (5.26). Considering the transformation
between inertial and body coordinate system illustrated in Section 5.2.1,
this condition can be expressed by the following non-linear constraints in
the variables q = [x, y, z, ψ, ϕ, ϑ]:

AfovR
Tpi,v −AfovR

Tr + bfov ≤ 0 ∀v . (5.27)

Moreover, the following constraint has to be satisfied to insure that the
camera is placed on the correct side of the feature:

ni · λ1 ≤ 0 , (5.28)

102

(a) Separation surface.

(b) Polyhedral neighborhood.

Figure 5.2: Neighborhood definition for a rectangular feature with a 35 mm
focal length camera.

where λ1 is the camera view direction and ni a representative normal direc-

103

tion to the feature.
If a rectangle is used to define the convex hull of the feature, the con-

straints given in Equation (5.27) divide the half-space on one side of the
feature into two regions, as illustrated in Figure 5.2a. Below the surface,
there is no camera configuration that allows an image of the entire feature
to be captured. Above the surface, there is at least one configuration that
allows the feature to be entirely captured by the camera.

To avoid excessive distortion, however, the camera should not be placed
in the regions corresponding to a large angle between the camera view di-
rection and the normal direction to the feature. In practical applications
the camera is usually not fixed on the quadrotor, but a gimbal is used to
control its orientation. The orientation of the quadrotor and the camera
can thus be controlled separately. Therefore, we assume that the camera
roll angle is zero, and that its view direction should remain orthogonal to
the feature, i.e., λi,1 = −ni. Using this assumption, the constraints given in
Equation (5.27) become linear inequalities in the variables r = [x, y, z], and
the neighborhoods become polyhedra in R3, as illustrated in Figure 5.2b.

If pi,f is the position of the center of the i-th feature, and li,2 and li,3
the two principal half dimensions of its rectangular bounding box, the four
vertices that define the constraints in Equation (5.27) are pi,v = pi,f ±
li,2λi,2 ± li,3λi,3.

Although the total number of linear inequalities per neighborhood is then
24, we can reduce them to 6. Assuming that the orientation of the camera
is fixed and determined by the rectangular bounding box of the feature to
be inspected, than the matrix R can be written as:

Ri =
[
λi,1 λi,2 λi,3

]
(5.29)

IfRi and pi,v = pi,f±li,2λi,2±li,3λi,3 are substituted in Equation (5.27),
then the following 24 inequalities are obtained:

dmin + λi,1 · (r − pi,f ± li,2λi,2 ± li,3λi,3) ≤ 0

(tan(βh)λi,1 − λi,2) · (r − pi,f ± li,2λi,2 ± li,3λi,3) ≤ 0

(tan(βh)λi,1 + λi,2) · (r − pi,f ± li,2λi,2 ± li,3λi,3) ≤ 0 (5.30)

(tan(βv)λi,1 − λi,3) · (r − pi,f ± li,2λi,2 ± li,3λi,3) ≤ 0

(tan(βv)λi,1 + λi,3) · (r − pi,f ± li,2λi,2 ± li,3λi,3) ≤ 0

−dmax − λi,1 · (r − pi,f ± li,2λi,2 ± li,3λi,3) ≤ 0

Since λi,r · λi,s = 0 if r 6= s and li,2/3 > 0, the following 6 inequalities can

104

be inferred:

dmin + λi,1 · (r − pi,f) ≤ 0

(tan(βh)λi,1 − λi,2) · (r − pi,f − li,2λi,2) ≤ 0

(tan(βh)λi,1 + λi,2) · (r − pi,f + li,2λi,2) ≤ 0 (5.31)

(tan(βv)λi,1 − λi,3) · (r − pi,f − li,3λi,3) ≤ 0

(tan(βv)λi,1 + λi,3) · (r − pi,f + li,3λi,3) ≤ 0

−dmax − λi,1 · (r − pi,f) ≤ 0

For the sake of clarity, constraints 5.31, which define each neighborhood,
can be summered as:

Air + bi ≤ 0 , (5.32)

where:
Ai =

[
λi,1 ni,1 ni,2 ni,3 ni,4 −λi,1

]T
, (5.33)

bi = −



λi,1 · pi,1
ni,1 · pi,2
ni,2 · pi,3
ni,3 · pi,4
ni,4 · pi,5
−λi,1 · pi,6

 , (5.34)

the six support points pi,1...6 are defined as:

pi,1 = pi,f − dminλi,1 ,
pi,2/3 = pi,f ± li,2λi,2 ,
pi,4/5 = pi,f ± li,3λi,3 ,
pi,6 = pi,f − dmaxλi,1 ,

and the four normals ni,1...4 are defined as:

ni,1/2 = tan(βh)λi,1 ∓ λi,2 ,
ni,3/4 = tan(βh)λi,1 ∓ λi,3 .

A base point, pi,0, is also defined for each neighborhood:

d2 =
li,2

tan(βh)
,

d3 =
li,3

tan(βv)
,

pi,0 = pi,f −max{dmin, d2, d3}λi,1 .

105

(a) Near optimal tour for the scenario with low building density.

(b) Urban scenario with 372 neighbor-
hoods.

(c) Path section

Figure 5.3: For the optimization case “Energy With ψ”, path length and
energy consumption are improved by 15.6% and 19.3%, respectively.

The values for the yaw angles ψi, which are used in the quadrotor control
scheme, can be easily determined from λi,2 and Equation (5.1).

106

5.4 Computational results

Two test scenarios are generated using the commercial software for urban
planning Autodesk Infrastructure Modeler [10]. The quadrotor is required
to acquire an image of all the windows and doors of a group of buildings
within two different urban environments having different building density, as
illustrated in Figures 5.3 and 5.4. The near optimal tour is depicted using
blue segments, and the locations where the images are acquired from are
depicted as blue dots. The neighborhoods are depicted as green polyhedra.

The quadrotor MikroKopter Quadro L4-ME [53] is used as model for the
dynamic simulation and the employed parameters are reported in Table 5.1.

Table 5.1: Parameters used in the simulation.

Parameter Units Value Parameter Units Value

l m 0.24 cd0 0.01
m kg 0.8780 R Ω 0.77
I11 kg m2 0.0109 L H 0.0019
I22 kg m2 0.0111 i0 A 0.27
I33 kg m2 0.0204 cv rad / s V 79.59
Ip kg m2 1.76e-005 ci N m / A 0.0126
rp m 0.127 imax A 9
cd,1/2 0.01 umax V 14.8
cd,3 0.02 2βh deg 54.4
a 5.7 2βv deg 37.8
σ 0.0962 dmin m 0
θ.75 deg 10.37 dmax m 2.2
θtw deg -21.27 m 20
κ 1.1 cψ 5.76

The reference trajectory [rT (t), ψT (t)] is generated by linearly interpo-
lating the configurations along the collision free path calculated by the GA,
and letting the quadrotor hover at each location for 0.6 s, while the image
is acquired.

For each scenario, five different cases are considered, as illustrated in
Tables 5.2 and 5.3. Moreover, for each case, the results obtained without
and with the collision avoidance procedure are reported in the columns la-
beled with “Direct” and “Collision Free”, respectively. The energy values
are expressed in kJ and in Ah at a voltage of 14.8 V, which is the refer-
ence voltage of the four pack Lipo Battery 2.2 Ah used for the considered
quadrotor model.

107

(a) Near optimal tour for the scenario with high building density.

(b) Urban scenario with 1,611 neighbor-
hoods.

(c) Path section

Figure 5.4: For the optimization case “Energy Only”, path length and energy
consumption are improved by 38.3% and 23.4%, respectively.

In the first case, labeled “TSP Based”, the STSP defined by the base
points of the neighborhoods, pi,0, is solved using the exact solver Con-
corde [7]. Then a collision free path is calculated and the flight is sim-
ulated. The objective function values attained for this tour are used as a
reference value to evaluate the performance of the proposed method.

In the second case, labeled “Distance Only”, the Euclidean norm is used

108

Table 5.2: Optimization results with 372 neighborhoods.

Case Objective
Direct Collision Free

best impr. best impr.

d [m] 2,195 2,216
TSP ψ [deg] 7,379 7,379
Based E [kJ] 107.9 114.4

E [Ah] 2.03 2.15
d [m] 1,787 18.6% 1,796 19.0%

Distance ψ [deg] 7,378 0.0% 7,378 0.0%
Only E [kJ] 89.74 16.9% 94.07 17.8%

E [Ah] 1.68 1.77
d [m] 1,841 16.1% 1,864 15.9%

Distance ψ [deg] 6,838 7.3% 6,838 7.3%
with ψ E [kJ] 89.66 16.9% 95.39 16.6%

E [Ah] 1.68 1.79
d [m] 1,820 17.1% 1,828 17.5%

Energy ψ [deg] 7,199 2.4% 7,199 2.4%
Only E [kJ] 89.66 16.9% 93.15 18.6%

E [Ah] 1.68 1.75
d [m] 1,863 15.1% 1,872 15.6%

Energy ψ [deg] 6,838 7.3% 6,838 7.3%
with ψ E [kJ] 88.18 18.3% 92.38 19.3%

E [Ah] 1.66 1.73

as edge weighting function and the yaw angle is not considered in the opti-
mization. In the third case, labeled “Distance With ψ”, the edge weighting
function used in the LK Heuristic evaluation is the Quadratic norm. The
Q matrix is a diagonal matrix with elements [1, 1, 1, cψ]. Furthermore, since
the values of the yaw angles ψi can not be changed but only their sequence
can be changed, as illustrated in Section 5.3, in the evaluation of the Touring
Heuristic only the Euclidean norm is used as edge weighting function and
the yaw angle is not considered. In these two cases the collision-free path
and energy-based objective function values are obtained in a postprocessing
step after the GA terminates.

The last two cases labeled “Energy Only” and “Energy With ψ” are sim-
ilar to the previous two cases but the procedure illustrated in Section 5.2.6
is performed at each generation in the GA.

In the scenario with low building density, the total tour length is re-
duced up to 19%, the total traveled yaw angle up to 7.3%, and the energy
consumption up to 19.3%. In the second scenario, the total tour length is

109

Table 5.3: Optimization results with 1,611 neighborhoods.

Case Objective
Direct Collision Free

best impr. best impr.

d [m] 4,417 4,421
TSP ψ [deg] 23,724 23,724
Based E [kJ] 368.9 370.4

E [Ah] 6.92 6.95
d [m] 2,715 38.5% 2,717 38.6%

Distance ψ [deg] 24,704 -4.1% 24,704 -4.1%
Only E [kJ] 288.7 21.7% 289.5 21.8%

E [Ah] 5.42 5.43
d [m] 2,792 36.8% 2,875 35.0%

Distance ψ [deg] 6,669 71.9% 6,669 71.9%
with ψ E [kJ] 291.4 21.0% 295.9 20.1%

E [Ah] 5.47 5.55
d [m] 2,725 38.3% 2,726 38.3%

Energy ψ [deg] 23,174 2.3% 23,174 2.3%
Only E [kJ] 283.3 23.2% 283.9 23.4%

E [Ah] 5.32 5.33
d [m] 2,930 33.7% 2,965 33.0%

Energy ψ [deg] 7,576 68.1% 7,576 68.1%
with ψ E [kJ] 288.0 21.9% 290.8 21.5%

E [Ah] 5.40 5.46

reduced up to 38.6%, the total traveled yaw angle up to 71.9%, and the
energy consumption up to 23.4%. These values are highlighted using bold
fonts in Tables 5.2 and 5.3.

Although a shorter path generally corresponds to a reduced energy con-
sumption, the results show that this trend is not always confirmed. By
using the energy evaluation within the GA, the energy minimization can be
further improved by 1.5% in the first scenario and by 1.6% in the second
scenario, while the path lengths increase by 3.4% and by 0.3%, respectively.
Although some oscillations in the results are caused by the heuristic nature
of the proposed solver, it is important to notice that this behavior can be
observed in all the performed simulations. Moreover, this result underlines
the importance of embedding a full energy evaluation in the GA despite an
increase in the computational cost.

110

5.5 Conclusion

In this chapter a procedure is proposed to optimize the multi-goal path of
a quadrotor UAV on a survey flight mission. The optimization problem
is modeled as a TSPN, and the hybrid random-key GA is used to find a
near optimal tour. The cost function is initially defined using Euclidean or
Quadratic norm, and polyhedra are used to represent the neighborhoods.
Obstacle avoidance and dynamic simulation are then embedded in the GA
to estimate the actual cost in terms of energy consumption for a collision
free path. If compared to more traditional solution procedures, the path
length and the energy consumption for an urban survey mission with more
than 1,500 goals have been improved up to 38% and 23%, respectively.

111

Chapter 6

Conclusion

In this chapter, we conclude the proposed work and discuss future research
topics providing a possible timetable. A list of publications is also provided.

6.1 Contribution

In this work we address the technical problem of finding an optimal path
for a redundant robotic system to visit a sequence of several goal locations.
Since the system has some degree of redundancy, not only an optimal se-
quence of the goals has to be defined, but also, for each goal, an optimal
configuration has to be chosen among infinite possibilities. This problem can
be modeled as a Traveling Salesman Problem with Neighborhoods (TSPN),
which extends the well known TSP to more general cases where each vertex
(goal configuration) is allowed to move in a given region (neighborhood).

We first consider the abstract optimization problem of finding an optimal
sequence of optimal configurations using analytically defined edge weighing
functions, and we present three solution approaches. First, a non-convex
Mixed Integer Non Linear Programming (MINLP) formulation for the sym-
metric TSPN (STSPN) is provided, which has the following property: in case
of convex neighborhoods if all the integer variables are fixed to any integer
values a convex nonlinear program is obtained. We modify thus the global
MINLP optimizer Couenne by implementing an ad-hoc cut generator to ex-
ploit this property, and we improve its performance by orders of magnitude.
The exact solution is attained for instances with up to 16 convex neigh-
borhoods (ellipsoids and polyhedra) in R2, and 12 convex neighborhoods in
R3.

Second, an equivalent convex MINLP formulation for the STSPN is de-

112

rived for the case of convex neighborhoods and convex edge weighting func-
tions. Three different formulations are derived and the convex optimizers
Bonmin and Mosek are employed. In particular, after modifying Bonmin
to efficiently handle the subtour elimination constraints, instances with up
to 20 ellipsoids are solved to optimality. The computational cost is improved
up to 2 orders of magnitude with respect to the initial approach.

Third, a hybrid random key genetic algorithm (GA) is proposed to find
a near optimal tour for instances with a larger number of possibly non-
convex neighborhoods. This approach uses random-key coding for the chro-
mosomes, and it exploits the efficiency of ad-hoc heuristics to improve the
quality of each chromosome rather than more traditional mutation oper-
ators. Although no optimality is guaranteed, benchmark tests show that
the GA is able to find the same optimal tour in all the cases a solution is
also retrieved using the MINLP optimizer. Moreover, applying the GA on
TSPN instances available in the literature with circular and spherical neigh-
borhoods, although the proposed method is not tailored for those specific
problems, the best known near optimal tours have been improved on average
by 1.92%.

Finally, the hybrid random-key GA is integrated with a probabilistic
path planning technique based on bidirectional Rapidly-exploring Random
Trees (RRTs) to better estimate the cost of each edge in the tour while gen-
erating collision-free paths. First, the traveling time currently required by a
7 DOF robotic vision inspection system to complete a multi-goal operation
cycle is minimized. The neighborhoods are here approximated using piece-
wise cubic splines in a seven-dimensional configuration space, and the used
edge weighting functions are either weighted Maximum norm or Quadratic
norm. Experimental results for a given 32-goal cycle provided by Denso
Wave show a cycle time improvement up to 30%. Second, the flight path
and the energy consumption of a quadrotor drone on an urban survey mis-
sion are optimized. In this case the neighborhoods are approximated using
three-dimensional polyhedra, and the Euclidean or Quadratic norm is used
as edge weighting function. Computational experiments clearly indicate that
the performance of the proposed procedure depends on the number of the
neighborhoods and their spatial distribution. The best result in this work
is obtained for a dense urban scenario with more than 1,500 goal locations.
Path length and energy consumption are improved for this specific case up
to 38% and 23%, respectively, if compared to the results of more traditional
optimization techniques.

113

6.2 Future work

The proposed methods to retrieve an exact solution for STSPN instances suf-
fers from two main limitations, i.e., only convex neighborhoods can be used,
and only instances with up to 20 neighborhoods can be efficiently solved.
Since for practical applications the number of neighborhoods can increase
even beyond 1,000, in the future we will focus on improving the convergence
rate of the proposed approach. In particular we will further investigate the
convex formulations derived in this work trying to apply a preprocessing
step to reduce the number of binary variables, and a projection technique to
eliminate the additional variables introduced in the convex hull relaxation.
Finally, an exact procedure for the case of non-convex neighborhood should
be also implemented.

Second, in the current industrial environment there is an increasing need
of real time adaptation of plants productivity levels to actual market re-
quests. On the one hand, when the demand is high, the manufacturing
process has to be performed in the shortest amount of time as possible, e.g.
by minimizing the cycle time of each individual operation. On the other
hand, when the demand is low, there is no need of such a high perform-
ing process, and other parameters such as the total energy consumption
per manufactured unit can be optimized. Since industrial plants are highly
automated through the employment of robotic systems, we want to inves-
tigate the possibility not only to optimize their cycle time while exploiting
the redundancy in the system, but also to minimize the total energy con-
sumed while allowing a longer cycle time, as we showed for the quadrotor
application.

Third, for the case of the unmanned aerial survey system the direction-
ality constraint in the calculation of the neighborhoods should be removed
to allow a wider definition of such regions. Moreover, different analytic
functions could be tested to find a better correlation between the actual
energy consumption and the value of the edge weighting function used to
efficiently evaluate the cost of each chromosome in the GA. Field tests using
the modeled quadrotor should be also performed to validate the proposed
optimization procedure.

Finally, we observe that in practical vision inspection procedures, the
number of features, nf , to be inspected is fixed, but the number of images
necessary to capture all the features might be optimized. In other words,
more than one feature can be acquired using only one image. If the possible
camera placements where the images have to be taken from are fixed points,
this problem is known in the literature as the View Planning Problem (VPP)

114

with traveling costs [97, 101]. However, if the system is redundant, i.e.,
the camera placements are rather regions than points, then this MINLP
formulation can be introduced:

minimize :
n∑
i=1

c(qi)ψi + γ
n∑
i=1

n∑
j=1
j>i

ξij d (qi, qj) (6.1)

subject to :

n∑
i=1

νr(qi)ψi ≥ 1 ∀ r = 1, . . . , nf (6.2)

i−1∑
j=1

ξji +
n∑

j=i+1

ξij = 2ψi ∀ i ∈ V (6.3)

∑
i∈S

(∑
j∈V\S
j<i

ξji +
∑
j∈V\S
j>i

ξij

)
≥ 2ψp

∀S ⊂ V \ {1}, |S| ≥ 3
∀ p ∈ V\S

(6.4)

qi ∈ Qi ⊆ Rm ∀ i ∈ V (6.5)

ξij ∈ {0, 1} ∀ i, j ∈ V, i 6= j (6.6)

ψi ∈ {0, 1} ∀ i,∈ V (6.7)

qi ∈ Rm ∀ i ∈ V (6.8)

where c(qi) is a scalar function that retrieves the cost of acquiring an image
from configuration qi, the binary variable ψi is 1 only if the neighborhood i is
visited in the tour, and νq(qi) is the visibility binary function, which is 1 only
if the r-th feature is visible from the i-th configuration. Constraints (6.2)
assure that each feature is visible from at least one configuration in the tour.
Constraints (6.3) and (6.4) are the extension of Constraints (2.19) and (2.20)
to the case where the number of visited neighborhoods in a tour is not fixed.
If we assume that n = nr, ψi = 1 ∀ i, and νr(qi) = 1 ∀ r then the above
formulation becomes the first STSPN formulation. If we assume that the
configurations qi are fixed then it becomes the VPP fomulation proposed by
Wang et al. [101]. The above MINLP problem is clearly highly complex to
optimize, but searching for an efficient solution procedure might be a logical
extension of the present work.

115

Appendix A

A.1 Convergence of Bounded Set

The following lemma holds [48].

Lemma 7. Let Q(α) = {q ∈ Rm | q/α ∈ Q} 6= ∅ for 0 < α ≤ 1. If Q is a
bounded set, then:

lim
α→0

Q(α) = {q ∈ Rm | q = 0} . (A.1)

Proof. Let {αs} ⊂ (0, 1) be an arbitrary sequence converging to 0. Since
Q(αs) 6= ∅, there exists a corresponding sequence {qs} such that qs ∈ Q(αs).

Since Q is bounded, there exist two vectors, l and u, such that αlk ≤
qk ≤ αuk, ∀k ∈ {1, . . . ,m}. Therefore, αslk ≤ qk,s ≤ αsuk, and {qs}
converges to 0.

A.2 Coded objective function and its derivatives

This appendix illustrates the formulations used for the implementation of
the objective function, its gradient, and its Hessian in the solver Ipopt. The
Kronecker’s delta δi,j is used in the derivation:

δi,j =

{
1 if i = j;
0 otherwise.

A.2.1 Euclidean and Quadratic Norm

The Euclidean norm (2.15) and the Quadratic norm (2.16) are initially con-
sidered as edge weighting functions. Without loss of generality the symmet-
ric positive definite matrix Q used in Equation (2.16) can be represented
by a diagonal matrix having diagonal elements Qk. If the actual matrix is

116

not diagonal, a coordinate transformation can always be found such that Q
becomes diagonal in the new coordinate system. Hereafter, the derivation
for the Quadratic norm is proposed, and the corresponding derivation for
the Euclidean norm can be easily obtained by replacing the elements Qk

with one.
Using the neighborhoods permutation π(i) derived from the fixed binary

variables ξ̄ij or from the fractional part of a chromosome, the vertices can be
reordered such that qπ(i) = q̂i. The objective function (2.49) thus becomes:

O =
n∑
i=1

√√√√ m∑
k=1

Qk(qπ(i),k − qπ(i+1),k)2

=

n∑
i=1

√√√√ m∑
k=1

Qk(q̂i,k − q̂i+1,k)2

(A.2)

where it holds π(n+ 1) = π(1), q̂0 = q̂n, and q̂n+1 = q̂1.
Using the following substitution:

∆i,i+1 =

√√√√ m∑
k=1

Qk(q̂i,k − q̂i+1,k)2 (A.3)

the gradient of the objective function (A.2) can be obtained as:

∂O

∂q̂r,e
=

n∑
i=1

∑m
k=1 Qk(q̂i,k − q̂i+1,k)

∆i,i+1
(δi,rδk,e − δi+1,rδk,e)

=
n∑
i=1

Qe

q̂i,e − q̂i+1,e

∆i,i+1
(δi,r − δi+1,r)

= Qe

q̂r,e − q̂r+1,e

∆r,r+1
−Qe

q̂r−1,e − q̂r,e
∆r−1,r

(A.4)

and the Hessian as:

∂2O

∂q̂r,e∂q̂s,f
=

Qe

∆r,r+1
δe,f (δr,s − δr+1,s)

−QeQf

(q̂r,e − q̂r+1,e) (q̂r,f − q̂r+1,f)

∆3
r,r+1

(δr,s − δr+1,s)

− Qe

∆r−1,r
δe,f (δr−1,s − δr,s)

+ QeQf

(q̂r−1,e − q̂r,e) (q̂r−1,f − q̂r,f)

∆3
r−1,r

(δr−1,s − δr,s)

(A.5)

117

The solver Ipopt requires all the functions in the problem formulation
to be at least once differentiable. Since the constraints (2.5) considered
in the present work are either linear, quadratic, or cubic, the derivation
of their gradient and Hessian is rather trivial, and they are continuously
differentiable. However, the objective function (A.2) is C0 since the gradient
is not defined if ∆i,i+1 = 0, i.e., if two vertices overlap. The following
modification is thus proposed to overcome this limitation.

Modified Edge Weighting Function The Euclidean or the Quadratic
norm in the objective function (A.2) are replaced by the following edge
weighting function:

d (qi, qj) =

{
‖qj − qi‖2/Q if ‖qj − qi‖2/Q ≥ ε
ε
2 + 1

2 ε ‖qj − qi‖
2
2/Q if ‖qj − qi‖2/Q < ε

(A.6)

Using the same permutation π(i) as above, the objective function (A.2)
is now C1 and it is given by:

O =

n∑
i=1

{√∑m
k=1 Qk(q̂i,k − q̂i+1,k)2 if ∆i,i+1 ≥ ε

ε
2 + 1

2 ε

∑m
k=1 Qk(q̂i,k − q̂i+1,k)

2 if ∆i,i+1 < ε
(A.7)

After some simplifications, the gradient of the objective function (A.7)
can be obtained as:

∂O

∂q̂r,e
= Qe (q̂r,e − q̂r+1,e)

{
1

∆r,r+1
if ∆r,r+1 ≥ ε

1
ε if ∆r,r+1 < ε

−Qe (q̂r−1,e − q̂r,e)
{

1
∆r−1,r

if ∆r−1,r ≥ ε
1
ε if ∆r−1,r < ε

(A.8)

and the Hessian as:

∂2O

∂q̂r,e∂q̂s,f
= Qe (δr,s − δr+1,s)


δe,f

∆r,r+1
− Qf (q̂r,e−q̂r+1,e) (q̂r,f−q̂r+1,f)

∆3
r,r+1

if ∆r,r+1 ≥ ε
δe,f
ε if ∆r,r+1 < ε

−Qe (δr−1,s − δr,s)

−
δe,f

∆r−1,r
+

Qf (q̂r−1,e−q̂r,e) (q̂r−1,f−q̂r,f)
∆3

r−1,r
if ∆r−1,r ≥ ε

δe,f
ε if ∆r−1,r < ε

(A.9)

118

In case ‖qi − qi+1‖2/Q < ε for all i, the objective function (A.2) becomes

C2 and it simplifies to:

O =

n∑
i=1

n∑
j=1
j>i

ξ̄ij d (qi, qj) =
n ε

2
+

1

2 ε

n∑
i=1

m∑
k=1

Qk(q̂i,k − q̂i+1,k)
2

(A.10)

the gradient to:

∂O

∂q̂r,e
=

1

ε

n∑
i=1

m∑
k=1

Qk (q̂i,k − q̂i+1,k) δk,e (δi,r − δi+1,r)

=
Qe

ε
(2q̂r,e − q̂r+1,e − q̂r−1,e)

(A.11)

end the Hessian to:

∂2O

∂q̂r,e∂q̂s,f
=

Qe

ε
δe,f (2δr,s − δr+1,s − δr−1,s) (A.12)

A.2.2 Manhattan and Maximum norm

If the Manhattan norm (2.14) or the Maximum norm (2.17) is considered,
then the objective function (3.6), which is linear in the additional variables
dik, is used. Since the constraints (2.5) are either linear, quadratic, or cubic,
and the additional constraints (3.7) and (3.8) are linear, the derivation of
their gradient and Hessian is rather trivial, and they are continuously differ-
entiable. Therefore, in this case no modifications are required to fulfill the
solver specifications.

A.3 Effectiveness of integer cuts

In order to illustrate the effect of the modification described in Section 2.2.1.2,
in this appendix we compare two versions of the proposed algorithm. The
first one is the algorithm CouTspn described in Section 2.2.1. The second
one (named Standard in Table A.1) is obtained from CouTspn by skipping
the modification described in Section 2.2.1.2. Standard is the straightfor-
ward adaptation of Couenne in order to handle the subtour elimination
constraints by branch-and-cut. Both algorithms are run using the upper
bound computed as described in Section 2.2.1.3.

Running a few examples using standard, we noted that the CPU time it
required was much larger than for CouTspn. We thus modify the condition

119

Table A.1: Comparison between CouTspn and Standard.

instance
CouTspn Standard

optimal CPU lower upper percent CPU s.e.
nodes

value time [s] bound bound gap time [s] cuts

tspn2DP5 1 184.733 0.12 184.714 184.733 0.01% 6.29 0 1,201
tspn2DP5 2 217.659 0.14 217.649 217.659 0.01% 4.32 0 501
tspn2DP6 1 200.469 0.40 199.579 200.469 0.44% 251 1 54,808
tspn2DP6 2 247.588 0.13 247.564 247.588 0.01% 69 2 21,101
tspn2DP7 1 196.247 1.72 195.043 196.247 0.62% 431 9 62,013
tspn2DP7 2 236.444 1.19 236.406 236.444 0.02% 298 3 75,764
tspn2DP8 1 188.108 1.79 180.334 188.108 4.13% 449 8 38,349
tspn2DP8 2 226.103 4.04 224.277 226.103 0.81% 1,012 13 107,197
tspn2DP9 1 249.732 22 245.650 249.732 1.63% 5,504 41 479,662
tspn2DP9 2 258.450 2.12 255.489 258.450 1.15% 531 10 29,151
tspn2DP10 1 220.242 21 211.794 220.242 3.84% 5,258 35 310,880
tspn2DP10 2 268.378 3.85 264.219 268.378 1.55% 964 18 68,130

tspn3DP5 236.214 0.15 236.191 236.214 0.01% 6.14 0 701
tspn3DP6 257.551 0.60 257.526 257.551 0.01% 50 2 11,801
tspn3DP7 310.691 4.25 306.496 310.691 1.35% 1,064 15 81,267
tspn3DP8 277.730 12 265.412 277.730 4.44% 3,004 26 156,345

tspn2DE5 1 191.255 0.22 191.236 191.255 0.01% 134 0 62,801
tspn2DE5 2 219.307 0.19 219.285 219.307 0.01% 9.77 0 2,801
tspn2DE6 1 202.995 0.67 200.548 202.995 1.21% 251 4 42,810
tspn2DE6 2 248.860 0.24 248.836 248.860 0.01% 250 2 70,801
tspn2DE7 1 201.492 3.38 199.158 201.492 1.16% 848 10 128,033
tspn2DE7 2 239.788 1.72 237.668 239.788 0.88% 428 4 47,800
tspn2DE8 1 190.243 2.61 182.538 190.243 4.05% 654 8 48,986
tspn2DE8 2 229.150 7.12 226.580 229.160 1.12% 1,782 14 163,766
tspn2DE9 1 259.290 45 249.809 259.290 3.66% 11,274 54 659,099
tspn2DE9 2 262.815 3.20 257.484 262.815 2.03% 801 9 52,717
tspn2DE10 1 225.126 35 213.581 225.126 5.13% 8,771 36 402,581
tspn2DE10 2 273.192 7.85 265.717 273.192 2.74% 1,968 17 106,578

tspn3DE5 253.495 0.17 253.469 253.495 0.01% 151 0 30,901
tspn3DE6 276.996 1.21 273.329 276.996 1.32% 303 1 29,251
tspn3DE7 323.689 7.10 314.313 323.689 2.90% 1,778 18 105,588
tspn3DE8 296.918 28 277.578 296.918 6.51% 7,015 33 266,846

to stop Standard: If CouTspn requires less than a second, Standard
terminates if its optimality gap is less than 0.01% or if its CPU time exceeds
250 seconds. Otherwise, Standard is terminated if its CPU time is 250

120

times larger than the CPU time used by CouTspn.
Instances used in this comparisons are a subset of the instances used in

Section 2.2.3. They are selected to cover all types of instances with n ≤ 10
in R2 and n ≤ 8 in R3.

Results are reported in Table A.1. Instances reported in boldface ter-
minate as the optimality gap becomes smaller than 0.01%. On these in-
stances, Standard is on average 370 times slower than CouTspn. In-
stances tspn2DP6 1 and tspn2DE6 1 terminate as the CPU time becomes
larger than 250 seconds. All the other Instances terminate as the CPU
time exceeds 250 times the CPU time required by CouTspn. On these in-
stances, the average optimality gap is 2.29% (with a maximum of 6.51% for
tspn3DE8).

The difference in CPU time between the two algorithms is thus clearly
larger than two order of magnitude. If we consider instances in R2 with
h = 0.25 terminated as the CPU time exceeds 250 times the CPU time
required by CouTspn, despite the outlier tspn2DE6 1 showing a gap of
4.13%, the optimality gap increases from 0.62% (n = 7) to 3.84% (n = 10)
for polyhedra, and from 1.16% (n = 7) to 5.13% (n = 10) for ellipses.
Similar trends can be observed in R2 with h = 0.15 and in R3.

A.4 Random sampling over an ellipsoid

In this appendix, a method is reported to generate random vectors uniformly
distributed over an ellipsoid.

First, we generate random vectors Y uniformly distributed over the hy-
persphere {y | ‖y‖2 = 1, y ∈ Rm} using realizations of the following random
variable:

Y =

[
X1

‖X‖2
+ . . .+

Xm

‖X‖2

]T
, (A.13)

where Xk ∼ N(0, 1) and ‖X‖2 =
√∑m

k=1X
2
k . This property holds because

the density function of X is spherically symmetric [89]. Then, random
vectors Z uniformly distributed in the ellipsoid {z | zT P−1 z ≤ 1, z ∈ Rm}
can be obtained as realizations of the random variable Z = B (Y R1/m),
where R ∼ U(0, 1), P is symmetric positive definite, and B is a unique
lower triangular matrix such that P = B BT [89].

Finally, if higher density is required in proximity of the ellipsoid surface
rather than in the middle of the ellipsoid, we use the random variable R =
|2B−1|, where B ∼ Beta(1/2, 1/2). Applying the inverse transform method,

121

the beta distribution with parameters α = β = 1/2, i.e. the arcsine law,
can be obtained from the uniform distribution U ∼ U(0, 1) by using B =
1/2− 1/2 cos(π U) [40].

A.5 Maximum volume inscribed ellipsoid

In this appendix, a method is proposed to extract the maximum volume
ellipsoid inscribed in a polyhedron. Given a polyhedron {x | Ax + b ≤
0, x ∈ Rm} the maximum volume ellipsoid {x | (x− c)T P−1 (x− c) ≤ 1}
inscribed in the polyhedron, whereB is symmetric positive definite and P =
BB, can be found by solving the following convex optimization problem:

maximize : log detB (A.14)

subject to : ‖alB‖2 + al c+ bl ≤ 0 l = 1, . . . ,m (A.15)

where al x+ bl ≤ 0 is the l-th haflspace of the polyhedron, i.e. al is the l-th
row of A [18].

A.6 Laplace distribution random sampling

In this appendix, a method is proposed to generate random number dis-
tributed according to the Laplace distribution. Given a uniformly dis-
tributed random variable T ∼ U(0, 1), if:

X =


µ+ 1

λ log(2T) if T ≤ 1/2

µ− 1
λ log(2− 2T) if T > 1/2

(A.16)

then by using the inverse transform method it can be shown that X is a
Laplace distributed random variable with mean µ and variance 2/λ2, i.e.
X ∼ Laplace(µ, λ) [89].

A.7 Power function distribution random sampling

In this appendix, a method is proposed to generate random number dis-
tributed according to the Power Function distribution. Given a uniformly
distributed random variable T ∼ U(0, 1), if:

X =
1

β
T 1/α (A.17)

122

where α > 0, β > 0, then by using the method of distribution funciton it
can be shown that X has probability density function f(x) = αβα xα−1,
i.e., X ∼ Pow(α, β) with x ∈ [0, 1/β] [99].

A.8 GA parameters optimization

In this appendix, a grid search is performed to optimize the parameters to
use in the hybrid random-key GA. The CETSP instance rat195 with con-
stant radius in R2 is solved five times for each of the parameter set listed
in Table A.2 using the Euclidean norm. The simulations are executed in
a random sequence using each time a different seed for the random num-
bers generator. Figure A.1 shows a plot of the average and the standard
deviation of the best obtained objective function values for each parameter
set. Besides the parameters illustrated in Section 3.1.2, in these tests the
parameter pL is also used, which corresponds to the percentage of the new
population constituted by chromosomes from the previous generation orig-
inally excluded from the selection operator. Parameter set 33 is the best
found in terms of average objective function value.

5 10 15 20 25 30 35 40 45 50
158

159

160

161

162

163

164

165

166

167

168

Parameter Set

A
ve

rg
e

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Figure A.1: Parameter Optimization for the CETSP instance rat195 in R2

with Euclidean norm.

123

Table A.2: Tested parameters sets.

set iter pop. pL pS pX pU gImax p̄S mean std.

1 100 20 0 0.2 0.7 0.2 101 1 167.15 0.713
2 100 20 0 0.4 0.5 0.2 101 1 166.90 0.432
3 100 20 0 0.6 0.3 0.2 101 1 165.32 1.756
4 100 20 0 0.2 0.7 0.3 101 1 165.83 1.171
5 100 20 0 0.4 0.5 0.3 101 1 166.23 0.311
6 100 20 0 0.6 0.3 0.3 101 1 165.91 0.829
7 100 20 0 0.2 0.7 0.4 101 1 165.45 0.821
8 100 20 0 0.4 0.5 0.4 101 1 165.36 1.523
9 100 20 0 0.6 0.3 0.4 101 1 164.58 1.217
10 100 40 0 0.2 0.7 0.2 101 1 165.65 0.795
11 100 40 0 0.4 0.5 0.2 101 1 165.14 0.464
12 100 40 0 0.6 0.3 0.2 101 1 165.41 0.426
13 100 40 0 0.2 0.7 0.3 101 1 166.34 0.748
14 100 40 0 0.4 0.5 0.3 101 1 165.26 1.804
15 100 40 0 0.6 0.3 0.3 101 1 164.17 1.523
16 100 40 0 0.2 0.7 0.4 101 1 164.27 0.631
17 100 40 0 0.4 0.5 0.4 101 1 163.31 1.610
18 100 40 0 0.6 0.3 0.4 101 1 162.70 1.294
19 100 40 0.05 0.2 0.7 0.2 101 1 162.78 1.344
20 100 40 0.05 0.4 0.5 0.2 101 1 162.55 1.386
21 100 40 0.05 0.6 0.3 0.2 101 1 164.89 0.457
22 100 40 0.05 0.2 0.7 0.3 101 1 161.75 0.722
23 100 40 0.05 0.4 0.5 0.3 101 1 161.52 1.772
24 100 40 0.05 0.6 0.3 0.3 101 1 162.54 1.259
25 100 40 0.05 0.2 0.7 0.4 101 1 162.66 1.309
26 100 40 0.05 0.4 0.5 0.4 101 1 163.17 0.665
27 100 40 0.05 0.6 0.3 0.4 101 1 161.75 0.728
28 100 20 0 0.2 0.7 0.3 24 1 165.08 1.054
29 100 20 0 0.4 0.5 0.3 24 1 164.71 1.094
30 100 20 0 0.6 0.3 0.4 24 1 163.35 1.448
31 100 40 0 0.2 0.7 0.3 24 1 163.08 1.229
32 100 40 0 0.4 0.5 0.3 24 1 162.50 1.351
33 100 40 0 0.6 0.3 0.4 24 1 160.03 1.205
34 100 20 0 0.2 0.7 0.3 12 1 164.13 1.204
35 100 20 0 0.4 0.5 0.3 12 1 162.98 1.939
36 100 20 0 0.6 0.3 0.4 12 1 162.06 1.068
37 100 40 0 0.2 0.7 0.3 12 1 162.36 1.494
38 100 40 0 0.4 0.5 0.3 12 1 161.09 1.409
39 100 40 0 0.6 0.3 0.4 12 1 161.23 1.253
40 100 40 0 0.2 0.7 0.3 12 2 162.50 1.716
41 100 20 0 0.4 0.5 0.3 12 2 162.76 1.861
42 100 20 0 0.6 0.3 0.4 12 2 162.76 1.485
43 100 40 0 0.2 0.7 0.3 12 2 162.36 1.707
44 100 40 0 0.4 0.5 0.3 12 2 162.48 0.661
45 100 40 0 0.6 0.3 0.4 12 2 160.97 0.765
46 100 20 0 0.2 0.7 0.3 12 4 165.99 0.535
47 100 20 0 0.4 0.5 0.3 12 4 163.44 1.062
48 100 20 0 0.6 0.3 0.4 12 4 162.40 1.240
49 100 40 0 0.2 0.7 0.3 12 4 163.12 0.972
50 100 40 0 0.4 0.5 0.3 12 4 162.33 1.183
51 100 40 0 0.6 0.3 0.4 12 4 161.03 1.225

124

1 1.005 1.01 1.015 1.02 1.025 1.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(r

p,
s <

 τ
)

Original Parameter Set
Optimized Parameter Set

(a) Performance ratio rp,s based on the objective function value.

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(r

p,
s <

 τ
)

Original Parameter Set
Optimized Parameter Set

(b) Performance ratio rp,s based on the CPU time (a logarithmic scale is
used for τ).

Figure A.2: Performance profiles for the two parameter sets.

To evaluate the improvement attained with the optimized parameter set,
Table A.3 reports for all the instances tested in Table 3.6 the results attained
with the original values for the parameters used in Section 3.2.1. Hereafter,
the statistics for tests performed the using the original parameter set are
enclosed in parentheses.

The best known near optimal tours have been improved by an average

125

factor of 1.80% (1.92%) with a maximum factor of 11.26% for dsj1000 in
R3 with Euclidean norm (8.03% for bonus1000 v in R3). In particular, the
average improvement factors are 1.04% (1.22%) in R2 with Euclidean norm,
3.26% (3.27%) in R3 with Euclidean norm, and 1.10% (1.28%) in R2 with
Manhattan norm.

The geometric average of the ratio of the CPU time spent by the pro-
posed GA and the one reported in [74] is 1.33 (1.06) with a maximum ratio
of 284 (47) for d493 v in R2 with Euclidean norm, and a minimum ratio of
0.035 for lin318 v in R3 with Euclidean norm (0.019 for team5 499 v in R3

with Euclidean norm).
Figures A.2.a and A.2.b illustrate the performance profiles derived using

as performance measure the objective function value and the the CPU time,
respectively [27]. It can be easily observed that the optimized parameter set
outperforms the original one. In particular, the new parameter set improves
the performance of the algorithm, slightly in terms of objective function
value but more clearly in terms of overall CPU time.

Finally, the best chromosome has been improved in 62% (62%) of the
overall generations. In particular, in case of balls in R2 and Euclidean norm
the percentage is 46% (58%), in case of balls in R3 and Euclidean norm it is
76% (70%), and in case of balls in R2 and Manhattan norm it is 63% (58%).

126

T
ab

le
A

.3
:

C
E

T
S

P
in

st
an

ce
s

in
R

2
an

d
R

3
w

it
h

va
ri

ab
le

ra
d

ii
p

ro
p

os
ed

b
y

M
en

n
el

l
[7

4]
.

in
st

an
ce

n
m

d
(·)

H
R

K
G

A
C

E
T

S
P

o
b

j.
ob

j.
C

P
U

[s
]

p
o
p

.
g

im
p

r.
o
b

j.
C

P
U

[s
]

im
p

r.

k
ro

D
10

0
v

10
0

2
2

14
1.

82
9

2
,4

2
5

5
0

1
1
0

2
4

1
4
1
.8

3
4

1
,0

0
8

0
.0

0
%

ra
t1

95
v

19
5

2
2

68
.2

2
4

5
9
8

5
0

2
7

1
3

6
8
.2

2
4

1
1
5

0
.0

0
%

li
n

31
8

v
31

8
2

2
2,

07
9
.8

1
1
0
0
,3

3
4

5
0

7
5
1

8
5

2
,0

8
0
.5

7
N

/
A

0
.0

4
%

rd
40

0
v

40
0

2
2

1,
24

4
.2

1
2
7
,3

2
9

6
0

1
5
7

3
4

1
,2

5
2
.3

8
1
2
,7

9
5

0
.6

5
%

p
cb

44
2

v
44

2
2

2
22

9.
97

0
5
7
9

6
0

9
9

2
3
5
.1

8
8

1
,1

6
1

2
.2

2
%

d
49

3
v

49
3

2
2

13
4.

45
0

2
2
,6

4
8

6
0

1
2
3

5
2

1
4
0
.1

2
0

4
6

4
.0

5
%

d
sj

10
00

v
1,

00
0

2
2

64
7.

93
0

1
5
2
,3

4
6

1
0
0

4
6
7

9
2

6
5
3
.1

2
8

N
/
A

0
.8

0
%

te
am

1
10

0
v

10
1

2
2

38
8.

53
7

1
6
7

5
0

1
0

4
3
8
8
.5

3
7

4
7

0
.0

0
%

te
am

5
49

9
v

50
0

2
2

44
9.

77
6

8
,9

9
1

1
0
0

2
9

1
6

4
5
4
.3

2
7

2
,7

6
3

1
.0

0
%

b
on

u
s1

00
0

v
1,

00
1

2
2

97
0.

76
1

1
0
,5

6
4

2
0
0

1
2

1
2

9
8
7
.1

1
4

N
/
A

1
.6

6
%

k
ro

D
10

0
v

10
0

3
2

16
9.

61
1

1
0
3

5
0

4
4

1
7
1
.5

6
8

1
2
1

1
.1

4
%

ra
t1

95
v

19
5

3
2

82
.5

3
1

6
2
2

5
0

2
3

1
6

8
4
.4

7
0

1
9
4
5

2
.3

0
%

li
n

31
8

v
31

8
3

2
2,

15
7
.0

5
1
,2

1
6

5
0

1
3

1
1

2
,1

8
9
.4

3
3
4
,6

4
0

1
.4

8
%

rd
40

0
v

40
0

3
2

3,
58

9
.2

1
4
,9

5
7

6
0

5
0

1
1

3
,5

9
2
.6

0
N

/
A

0
.0

9
%

p
cb

44
2

v
44

2
3

2
24

9.
85

2
3
,4

0
7

6
0

8
0

5
3

2
5
8
.4

0
4

7
,4

0
6

3
.3

1
%

d
49

3
v

49
3

3
2

73
5.

82
0

1
,4

5
3

6
0

1
1

1
1

7
6
1
.0

6
5

2
5
,0

1
3

3
.3

2
%

d
sj

10
00

v
1,

00
0

3
2

1,
84

1
.1

8
1
,3

2
5

6
0

3
3

2
,0

7
4
.8

4
4
7

1
1
.2

6
%

te
am

1
10

0
v

10
1

3
2

90
6.

22
1

2
2
3

6
0

1
5

1
0

9
0
7
.5

9
3

1
2
7

0
.1

5
%

te
am

5
49

9
v

50
0

3
2

82
1.

56
8

1
1
,6

9
1

6
0

9
7

5
0

8
4
0
.4

7
7

1
0
6
,6

9
2

2
.2

5
%

b
on

u
s1

00
0

v
1,

00
1

3
2

2,
49

3
.7

3
9
4
5

6
0

2
2

2
,6

8
9
.4

1
9
0

7
.2

8
%

k
ro

D
10

0
v

10
0

2
1

17
3.

81
1

9
0

5
0

8
8

1
7
4
.0

1
3

2
2

0
.1

2
%

ra
t1

95
v

19
5

2
1

82
.2

0
0

8
7

5
0

4
4

8
2
.2

0
0

3
2

0
.0

0
%

li
n

31
8

v
31

8
2

1
2,

49
1
.6

3
1
,5

3
8

1
5
0

2
0

1
3

2
,5

0
5
.4

1
N

/
A

0
.5

5
%

rd
40

0
v

40
0

2
1

1,
53

8
.1

7
4
,6

4
1

6
0

5
2

2
5

1
,5

4
4
.5

4
6
1
4

0
.4

1
%

p
cb

44
2

v
44

2
2

1
27

8.
04

1
2
,0

5
1

6
0

7
0

3
5

2
8
1
.2

5
4

1
6
9

1
.1

4
%

d
49

3
v

49
3

2
1

17
3.

98
6

1
,7

3
1

6
0

3
2

2
1

1
7
9
.5

6
3

2
2
3

3
.1

1
%

d
sj

10
00

v
1,

00
0

2
1

74
6.

51
3

3
6
,6

7
9

1
0
0

1
4
4

6
5

7
5
8
.1

1
9

N
/
A

1
.5

3
%

te
am

1
10

0
v

10
1

2
1

49
0.

42
2

2
3
5

5
0

2
5

1
2

4
9
4
.1

1
4

3
9
1

0
.7

5
%

te
am

5
49

9
v

50
0

2
1

55
8.

43
2

4
,8

0
4

6
0

1
0
0

4
5

5
6
3
.1

1
0

1
,8

9
9

0
.8

3
%

b
on

u
s1

00
0

v
1,

00
1

2
1

1,
19

4
.7

4
1
6
,4

7
1

1
0
0

7
7

5
2

1
,2

2
6
.3

9
3
3
,7

2
9

2
.5

8
%

127

A.9 Parameter settings for the single query plan-
ner

Tables A.4 and A.5 illustrate the performance of the single query planner
with different values for the resolution for collision avoidance, qres and for
the step subdivision, hstep. The results are averaged among 10 different
execution of the algorithm using either the Weighted Maximum Norm or the
Quadratic Norm and a reduced tour of 9 configurations. The minimum, the
maximum, and the average values are reported in columns labeled “max.”,
“min.”, and “avg.”, respectively. The average CPU time per execution is
reported in columns labeled “CPU”. The objective function value of the tour
calculated without collision avoidance is indicated as “direct”.

Table A.4: Comparison of different parameter settings for the single query
planner using the Weighted Maximum Norm.

Weighted Maximum Norm [s] Cycle Time [s]
avg. min. max.

CPU [s]
avg. min. max.

CPU [s]
hstep qres direct = 2.93 direct = 5.07

5

0.005 7.15 5.16 9.84 10.81 7.34 6.15 9.68 20.43
0.010 6.65 5.62 8.17 5.02 7.97 6.17 12.98 12.27
0.020 6.82 5.31 8.95 2.74 7.39 5.70 11.43 5.74
0.040 5.76 4.00 8.73 1.20 7.85 6.26 11.61 2.59
0.080 5.86 3.85 10.30 0.81 7.33 6.04 10.00 1.75

10

0.005 6.15 4.87 7.45 13.87 6.91 6.09 7.74 29.38
0.010 5.85 4.74 6.81 6.61 6.80 5.86 7.25 14.70
0.020 5.76 3.72 7.70 2.87 6.40 5.91 7.23 8.11
0.040 6.09 5.48 6.88 1.79 7.51 5.92 10.27 3.61
0.080 6.07 5.02 8.09 1.09 7.06 5.84 8.62 2.19

20

0.005 5.69 4.59 6.56 22.21 7.50 6.13 13.61 55.11
0.010 5.51 4.92 6.50 12.88 6.87 6.16 9.10 27.75
0.020 5.15 3.83 6.32 6.97 6.76 6.04 8.23 13.89
0.040 5.23 4.09 6.63 3.96 6.68 5.98 7.16 8.30
0.080 5.56 4.83 6.42 2.47 7.05 5.90 9.20 4.44

40

0.005 failed 4.20 failed 45.08 failed 6.55 failed 92.07
0.010 failed 4.55 failed 24.54 failed 6.29 failed 47.37
0.020 failed 4.03 failed 12.27 failed 6.40 failed 24.46
0.040 failed 4.21 failed 8.12 failed 6.30 failed 13.73
0.080 failed 4.69 failed 5.00 failed 6.81 failed 7.84

128

Table A.5: Comparison of different parameter settings for the single query
planner using the Quadratic Norm.

Quadratic Norm [s] Cycle Time [s]
avg. min. max.

CPU [s]
avg. min. max.

CPU [s]
hstep qres direct = 3.98 direct = 5.07

5

0.005 8.04 6.67 10.48 10.19 7.51 6.31 10.72 23.64
0.010 8.38 5.11 10.44 4.61 8.54 6.58 11.77 10.68
0.020 8.88 6.54 13.30 2.54 7.57 6.49 9.13 5.49
0.040 7.96 5.27 12.04 1.27 7.31 6.00 9.04 2.80
0.080 8.94 5.88 12.22 0.81 8.11 6.23 9.00 1.79

10

0.005 6.88 5.91 7.73 11.48 7.21 6.28 8.40 33.73
0.010 8.09 6.61 12.15 6.85 7.38 5.90 8.50 15.65
0.020 7.85 5.61 9.16 3.31 6.74 5.66 8.87 7.42
0.040 7.70 5.93 9.91 2.02 6.80 5.80 7.81 3.53
0.080 7.61 6.01 9.04 0.96 6.69 6.07 7.62 2.14

20

0.005 6.97 5.88 8.72 25.00 7.30 6.29 9.57 53.04
0.010 7.40 6.02 9.94 12.88 6.64 6.02 7.72 26.13
0.020 7.00 5.76 8.82 7.00 6.66 5.77 7.57 13.35
0.040 7.13 5.92 8.02 3.74 6.79 5.77 8.31 6.38
0.080 6.91 5.79 8.96 2.42 6.57 6.06 7.06 3.50

40

0.005 failed 5.63 failed 42.66 failed 6.61 failed 87.09
0.010 failed 5.47 failed 24.96 failed 5.89 failed 43.72
0.020 failed 6.23 failed 14.73 failed 6.73 failed 24.40
0.040 failed 5.83 failed 8.15 failed 6.31 failed 12.66
0.080 failed 5.32 failed 5.45 failed 6.33 failed 8.27

A.10 Manipulator forward and inverse kinematic

In this appendix, we illustrated the forward and inverse kinematic of the used
six degrees of freedom Denso VS-6577G-B manipulator [88]. The forward
kinematic of the manipulator, mRe = FK([qi,1, . . . , qi,6]T), can be described
by the following homogenous transformation:

mRe = R1R2R3R4R5R6 =


λx µx νx px
λy µy νy py
λz µz νz pz
0 0 0 1

 (A.18)

where p is the end-effector position, and λ, µ, and ν are the unit vectors of
the end-effector coordinate system with respect to the manipulator coordi-

129

nate system. In particular we have:

λx = cos(q1)(cos(q4) cos(q6)− cos(q5) sin(q4) sin(q6))

+ sin(q1)(cos(q6) sin(q2 + q3)] sin(q4)

+ (cos(q3) cos(q4) cos(q5) sin(q2) + cos(q2) cos(q4) cos(q5) sin(q3)

+ cos(q2 + q3) sin(q5)) sin(q6)) (A.19)

λy = − sin(q2 + q3) sin(q5) sin(q6) + cos(q2 + q3)(cos(q6) sin(q4)

+ cos(q4) cos(q5) sin(q6)) (A.20)

λy = cos(q6)(− cos(q4) sin(q1) + cos(q1) sin(q2 + q3) sin(q4))

+ (cos(q5) sin(q1) sin(q4)

+ cos(q1)(cos(q4) cos(q5) sin(q2 + q3) + cos(q2 + q3) sin(q5))) sin(q6)
(A.21)

µx = cos(q6)(cos(q5)(cos(q3) cos(q4) sin(q1) sin(q2)

+ cos(q2) cos(q4) sin(q1) sin(q3)

− cos(q1) sin(q4)) + cos(q2 + q3) sin(q1) sin(q5))

− (cos(q1) cos(q4) + sin(q1) sin(q2 + q3) sin(q4)) sin(q6) (A.22)

µy = − cos(q6) sin(q2 + q3) sin(q5)

+ cos(q2 + q3)(cos(q4) cos(q5) cos(q6)− sin(q4) sin(q6)) (A.23)

µz = sin(q1)(cos(q5) cos(q6) sin(q4) + cos(q4) sin(q6))

+ cos(q1)(cos(q4) cos(q5) cos(q6) sin(q2 + q3)

+ cos(q2 + q3) cos(q6) sin(q5)− sin(q2 + q3) sin(q4) sin(q6)) (A.24)

νx = cos(q2 + q3) cos(q5) sin(q1)− (cos(q3) cos(q4) sin(q1) sin(q2)

+ cos(q2) cos(q4) sin(q1) sin(q3)

− cos(q1) sin(q4)) sin(q5) (A.25)

νy = − cos(q3)(cos(q5) sin(q2) + cos(q2) cos(q4) sin(q5))

+ sin(q3)(− cos(q2) cos(q5)

+ cos(q4) sin(q2) sin(q5)) (A.26)

νz = − cos(q1) cos(q2 + q3) cos(q5)− (cos(q1) cos(q4) sin(q2 + q3)

+ sin(q1) sin(q4)) sin(q5) (A.27)

px = d5 cos(q1) sin(q4) sin(q5)

+ sin(q1)(d1 + cos(q2 + q3)(d3 + d4 + d5 cos(q5)) + a3 sin(q2 + q3)

− d5 cos(q2) cos(q4) sin(q3) sin(q5)

+ sin(q2)(a2 − d5 cos(q3) cos(q4) sin(q5))) (A.28)

130

py = a1 − cos(q3)(d3 + d4 + d5 cos(q5)) sin(q2)− a3 sin(q2) sin(q3)

+ d5 cos(q4) sin(q2) sin(q3) sin(q5)

+ cos(q2)(a2 − (d3 + d4 + d5 cos(q5)) sin(q3)

+ cos(q3)(a3 − d5 cos(q4) sin(q5))) (A.29)

pz = −d5 sin(q1) sin(q4) sin(q5)

+ cos(q1)(d1 + cos(q2 + q3)(d3 + d4 + d5 cos(q5)) + a2 sin(q2)

+ a3 sin(q2 + q3)− d5 cos(q4) sin(q2 + q3) sin(q5)) (A.30)

where the following transformations were used to derive Equations (A.19)
to (A.30):

R1 =

rot(ey, q1)
0
0
0

0 0 0 1

 R2 =

rot(ex, q2)
0
a1

d1

0 0 0 1



R3 =

rot(ex, q3)
0
a2

0
0 0 0 1

 R4 =

rot(ez, q4)
0
a3

d3

0 0 0 1



R5 =

rot(ex, q5)
0
0
d4

0 0 0 1

 R6 =

rot(ez, q6)
0
0
d5

0 0 0 1


rot(ex, q) =

1 0 0
0 cos(q) − sin(q)
0 sin(q) cos(q)


rot(ey, q) =

 cos(q) 0 sin(q)
0 1 0

− sin(q) 0 cos(q)


rot(ez, q) =

cos(q) − sin(q) 0
sin(q) cos(q) 0

0 0 1


The inverse kinematic problem, [qi,1, . . . , qi,6]T = IK(mRe), can be solved

analytically in four main steps [69]. First elements (1,3) and (1,4) of the
following matrices:

R−1
1

mRe = R2R3R4R5R6 (A.31)

131

are equated leading to one equation in the unknown q1:

d5νx cos(q1)− d5νz sin(q1) = px cos(q1)− pz sin(q1) (A.32)

The above equation has to two sets of solutions. In the second step, elements
(1,4) and (2,4) of the following matrices:

mRe R
−1
6 = R1R2R3R4R5 (A.33)

are equated leading to two equations in the unknowns q2 + q3 and q2:

px − d5νx = sin(q1)(d1 + (d3 + d4) cos(q2 + q3)

+ a2 sin(q2) + a3 sin(q2 + q3) (A.34)

py − d5νy = a1 + a2 cos(q2) + a3 cos(q2 + q3)

− d3 sin(q2 + q3)− d4 sin(q2 + q3) (A.35)

The above two equations can be simplified into one equation in q2 + q3:(
px − d5nx

sin(q1)
− d1

)2

+ (py − d5ny − a1)2 − a2
2 + a2

3 + (d3 + d4)2

− 2

[(
px − d5nx

sin(q1)
− d1

)
(d3 + d4) + (py − d5ny − a1)a3

]
cos(q2 + q3)

+ 2

[
(py − d5ny − a1)(d3 + d4)−

(
px − d5nx

sin(q1)
− d1

)
a3

]
sin(q2 + q3) = 0

(A.36)

that has two sets of solutions. Afterwards, the separate solutions q2 and q3

can be easily calculated using the original two equations.
In the third step, elements (1,3), (2,3), and (3,3) of the following matri-

ces:
R−1

3 R−1
2 R−1

1
mRe = R4R5R6 (A.37)

are equated leading to three equations in the unknowns q4 and q5:

sin(q4) sin(q5) = νx cos(q1)− νz sin(q1) (A.38)

− cos(q4) sin(q5) = νy cos(q2 + q3) + (νz cos(q1)

+ νx sin(q1)) sin(q2 + q3) (A.39)

cos(q5) = νz cos(q1) cos(q2 + q3)

+ νx cos(q2 + q3) sin(q1)− νy sin(q2 + q3) (A.40)

First, the third equation can be easily solved for q5, which leads to two sets
of solutions. Then the first two equations can be uniquely solved for q4.

132

Finally, elements (3,1) and (3,2) of the same matrices used in the previous
step are equated leading to two equations in the unknown q6:

sin(q5) sin(q6) = λz cos(q1) cos(q2 + q3)

+ λx cos(q2 + q3) sin(q1)− λy sin(q2 + q3) (A.41)

cos(q6) sin(q5) = µz cos(q1) cos(q2 + q3)

+ µx cos(q2 + q3) sin(q1)− µy sin(q2 + q3) (A.42)

The above equations have one unique solution. In conclusion, eight sets of
solution for the six joint angles are calculated in the domain [−π, π] and
checked against the corresponding physical joint limit.

133

Bibliography

[1] Aerotech. ALAR Series Rotary Stages. Aerotech, Inc., 2010.

[2] M.P. Allen, G.T. Evans, D. Frenkel, and BM Mulder. Hard convex
body fluids. Advances in chemical physics, pages 1–166, 1993.

[3] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo.
Obprm: An obstacle-based prm for 3d workspaces. Robotics: The
Algorithmic Perspective, pages 630–637, 1998.

[4] Erling D. Andersen. MOSEK. URL http://www.mosek.com/.

[5] D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. On The Solu-
tion of Traveling Salesman Problems. Documenta Mathematica, Extra
Volume ICM Berlin 1998(III):645–656, 1998.

[6] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for
Large Traveling Salesman Problems. INFORMS Journal on Comput-
ing, 15(1):82–92, 2003.

[7] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde tsp
solver, 2006. URL http://www.tsp.gatech.edu/concorde.

[8] D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. The Travel-
ing Salesman Problem, A Computational Study. Princeton University
Press, Princeton, 2006.

[9] E.M. Arkin and R. Hassin. Approximation Algorithms for the Geo-
metric Covering Salesman Problem. Discrete Applied Mathematics, 55
(3):197–218, 1994.

[10] Autodesk. Autodesk infrastructure modeler, 2011. URL http://usa.

autodesk.com/.

134

http://www.mosek.com/
http://www.tsp.gatech.edu/concorde
http://usa.autodesk.com/
http://usa.autodesk.com/

[11] J.C. Bean. Genetic Algorithms and Random Keys for Sequencing and
Optimization. ORSA Journal on Computing, 6(2):154–160, 1994.

[12] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching
and Bound Tightening Techniques for Nonconvex MINLPs. Optimiza-
tion Methods and Software, 24:597–634, 2009.

[13] J.L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[14] J.L. Bentley. Multidimensional divide-and-conquer. Communications
of the ACM, 23(4):214–229, 1980.

[15] D. Berenson, S.S. Srinivasa, D. Ferguson, A. Collet, and J.J. Kuffner.
Manipulation planning with workspace goal regions. In IEEE Inter-
national Conference on Robotics and Automation, 2009 (ICRA’09),
pages 618–624. IEEE, 2009.

[16] D. Berenson, S.S. Srinivasa, D. Ferguson, and J.J. Kuffner. Manipu-
lation planning on constraint manifolds. In IEEE International Con-
ference on Robotics and Automation, 2009 (ICRA’09), pages 625–632.
IEEE, 2009.

[17] P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann,
C. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter.
An Algorithmic Framework for Convex Mixed Integer Nonlinear Pro-
grams. Discrete Optimization, 5:186–204, 2008.

[18] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge
Univ Pr, 2004.

[19] P. Cheng and S.M. LaValle. Reducing metric sensitivity in randomized
trajectory design. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2001, volume 1, pages 43–48. IEEE, 2001.

[20] COIN-OR. Computational Infrastructure for Operations Research
project, 2011. URL http://www.coin-or.org/.

[21] CPLEX. IBM ILOG CPLEX Optimization Studio 12.3, 2011. URL
http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer/.

[22] M. De Berg, J. Gudmundsson, M.J. Katz, C. Levcopoulos, M.H. Over-
mars, and A.F. van der Stappen. TSP with Neighborhoods of Varying
Size. Journal of Algorithms, 57(1):22–36, 2005.

135

http://www.coin-or.org/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

[23] K. Deep and M. Thakur. A new Crossover Operator for Real Coded
Genetic Algorithms. Applied Mathematics and Computation, 188(1):
895–911, 2007.

[24] K. Deep, K.P. Singh, ML Kansal, and C. Mohan. A Real Coded
Genetic Algorithm for Solving Integer and Mixed Integer Optimization
Problems. Applied Mathematics and Computation, 212(2):505–518,
2009.

[25] M. Desrochers and G. Laporte. Improvements and Extensions to the
Miller-Tucker-Zemlin Subtour Elimination Constraints. Operations
Research Letters, 10(1):27–36, 1991.

[26] E.W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[27] Dolan, E.D. and Moré, J.J. Benchmarking optimization software
with performance profiles. Mathematical Programming, 91(2):201–213,
2002.

[28] J. Dong, N. Yang, and M. Chen. Heuristic Approaches for a TSP
Variant: The Automatic Meter Reading Shortest Tour Problem. In
Extending the Horizons: Advances in Computing, Optimization, and
Decision Technologies, volume 37 of Operations Research/Computer
Science Interfaces Series, pages 145–163. Springer, 2007.

[29] A. Dumitrescu and J.S.B. Mitchell. Approximation Algorithms for
TSP with Neighborhoods in the Plane. Journal of algorithms, 48(1):
135–159, 2003.

[30] K.M. Elbassioni, A.V. Fishkin, and R.A. Sitters. Approximation Al-
gorithms for Euclidean Traveling Salesman Problem with Discrete and
Continuous Neighborhoods. International Journal of Computational
Geometry and Applications, 19(2):173–193, 2009.

[31] B. Erginer and E. Altug. Modeling and pd control of a quadrotor vtol
vehicle. In IEEE Intelligent Vehicles Symposium 2007, pages 894–899.
IEEE, 2007.

[32] C. Ericson. Real-time collision detection, volume 1. Morgan Kauf-
mann, 2005.

[33] FIBRO. FIBROPLAN NC-Rotary tables. FIBRO GmbH, 2001.

136

[34] J. Forrest, D. de la Nuez, and R. Lougee-Heimer. Clp user guide. IBM
Research, 2004.

[35] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Lan-
guage for Mathematical Programming. Brooks/Cole Publishing Com-
pany / Cengage Learning, 2002.

[36] J.H. Friedman, F. Baskett, and L.J. Shustek. An algorithm for finding
nearest neighbors. Computers, IEEE Transactions on, 100(10):1000–
1006, 1975.

[37] J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS), 3(3):209–226, 1977.

[38] I. Gentilini, F. Margot, and K. Shimada. STSPN Instances, 2011.
URL http://wpweb2.tepper.cmu.edu/fmargot/ampl.html.

[39] I. Gentilini, F. Margot, and K. Shimada. The Traveling Sales-
man Problem with Neighborhoods: MINLP Solution. Opti-
mization Methods and Software, 2012. Available online, DOI:
10.1080/10556788.2011.648932.

[40] P. Glasserman. Monte Carlo methods in financial engineering, vol-
ume 53. Springer verlag, 2004.

[41] D.E. Goldberg and K. Deb. A Comparative Analysis of Selection
Schemes Used in Genetic Algorithms. In Foundations of Genetic Al-
gorithms, volume 1, pages 69–93. Bloomington, IN, 1991.

[42] S. Gottschalk, M.C. Lin, and D. Manocha. Obbtree: a hierarchical
structure for rapid interference detection. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
pages 171–180. ACM, 1996.

[43] J. Gudmundsson and C. Levcopoulos. A Fast Approximation Algo-
rithm for TSP with Neighborhoods. Nordic Journal of Computing, 6
(4):469–488, 1999.

[44] L.B. Gueta, R. Chiba, J. Ota, T. Ueyama, and T. Arai. Coordinated
Motion Control of a Robot Arm and a Positioning Table With Ar-
rangement of Multiple Goals. In IEEE International Conference on
Robotics and Automation, 2008 (ICRA’08), pages 2252–2258. Insti-
tute of Electrical and Electronics Engineers Inc., The, 2008.

137

http://wpweb2.tepper.cmu.edu/ fmargot/ampl.html

[45] L.B. Gueta, R. Chiba, T. Arai, T. Ueyama, and J. Ota. Hybrid de-
sign for multiple-goal task realization of robot arm with rotating ta-
ble. In IEEE International Conference on Robotics and Automation
(ICRA’09), pages 1279–1284. IEEE, 2009.

[46] L.B. Gueta, J. Cheng, R. Chiba, T. Arai, T. Ueyama, and J. Ota.
Multiple-goal task realization utilizing redundant degrees of freedom of
task and tool attachment optimization. In IEEE International Confer-
ence on Robotics and Automation (ICRA’11), pages 1714–1719. IEEE,
2011.

[47] D.J. Gulczynski, J.W. Heath, and C.C. Price. The Close Enough
Traveling Salesman Problem: A Discussion of Several Heuristics. Per-
spectives in Operations Research, pages 271–283, 2006.

[48] O. Günlük and J. Linderoth. Perspective relaxation of mixed integer
nonlinear programs with indicator variables. Integer Programming and
Combinatorial Optimization, pages 1–16, 2008.

[49] G. Gutin and A.P. Punnen. The Traveling Salesman Problem and its
Variations. Kluwer Academic Publisher, Dordrecht, 2002.

[50] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuris-
tic determination of minimum cost paths. Systems Science and Cy-
bernetics, IEEE Transactions on, 4(2):100–107, 1968.

[51] R.L. Haupt and S.E. Haupt. Practical genetic algorithms, Second Edi-
tion. Wiley, 2004.

[52] K. Helsgaun. An Effective Implementation of the Lin-Kernighan Trav-
eling Salesman Heuristic. European Journal of Operational Research,
126(1):106–130, 2000.

[53] HiSystems GmbH. MikroKopter Quadro L4-ME, 2012. URL http:

//mikrokopter.de/.

[54] S. Hong. A Linear Programming Approach for the Travelling Salesman
Problem. PhD thesis, Johns Hopkins University, Baltimore, 1972.

[55] J.N. Hooker. Integrated methods for optimization, volume 170.
Springer Verlag, 2011.

[56] D. Hsu, J.C. Latombe, and H. Kurniawati. On the probabilistic foun-
dations of probabilistic roadmap planning. The International Journal
of Robotics Research, 25(7):627, 2006.

138

http://mikrokopter.de/
http://mikrokopter.de/

[57] H. Huang, G.M. Hoffmann, S.L. Waslander, and C.J. Tomlin. Aerody-
namics and control of autonomous quadrotor helicopters in aggressive
maneuvering. In IEEE International Conference on Robotics and Au-
tomation, 2009 (ICRA’09), pages 3277–3282. IEEE, 2009.

[58] D.B. Johnson. Efficient algorithms for shortest paths in sparse net-
works. Journal of the ACM (JACM), 24(1):1–13, 1977.

[59] W. Johnson. Helicopter theory. Dover Publications (New York), 1994.

[60] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. International Journal of Robotics Research, 30(7):
846–894, 2011.

[61] L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[62] A.T. Klesh. Optimal Exploration Systems. PhD thesis, University of
Michigan, 2009.

[63] J.J. Kuffner Jr and S.M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In IEEE International Conference on
Robotics and Automation, 2000 (ICRA’00)., volume 2, pages 995–
1001. IEEE, 2000.

[64] P. Larranaga, C.M.H. Kuijpers, R.H. Murga, I. Inza, and S. Dizdare-
vic. Genetic Algorithms for the Travelling Salesman Problem: a Re-
view of Representations and Operators. Artificial Intelligence Review,
13(2):129–170, 1999.

[65] J.B. Lasserre. A Semidefinite Programming Approach to the General-
ized Problem of Moments. Mathematical Programming, 112(1):65–92,
2008.

[66] S.M. LaValle and J.J. Kuffner Jr. Randomized kinodynamic planning.
The International Journal of Robotics Research, 20(5):378–400, 2001.

[67] S. Lin and B.W. Kernighan. An Effective Heuristic Algorithm for
the Traveling-Salesman Problem. Operations Research, 21(2):498–516,
1973.

[68] LINDO. Solver Suite. URL http://www.lindo.com/.

139

http://www.lindo.com/

[69] P. Mckerrow. Introduction to robotics. Addison-Wesley Longman Pub-
lishing Co., Inc., 1991.

[70] D. Mellinger and V. Kumar. Minimum snap trajectory generation and
control for quadrotors. In IEEE International Conference on Robotics
and Automation (ICRA2011), pages 2520–2525. IEEE, 2011.

[71] D. Mellinger, M. Shomin, and V. Kumar. Control of quadrotors for
robust perching and landing. In Proceedings of International Powered
Lift Conference,(Philadelphia, PA), 2010.

[72] D. Mellinger, M. Shomin, N. Michael, and V. Kumar. Cooperative
grasping and transport using multiple quadrotors. In International
symposium on distributed autonomous robotic systems, 2010.

[73] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and
control for precise aggressive maneuvers with quadrotors. The Inter-
national Journal of Robotics Research, 2012.

[74] W.K. Mennell. Heuristics for Solving Three Routing Problems: Close-
Enough Traveling Salesman Problem, Close-Enough Vehicle Routing
Problem, Sequence-Dependent Team Orienteering Problem. PhD the-
sis, University of Maryland, College Park, 2009.

[75] Microsoft. Remote procedure call, 2012. URL http://msdn.

microsoft.com/en-us/library/ff358900(v=prot.10).

[76] C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer Programming
Formulation of Traveling Salesman Problems. Journal of the ACM
(JACM), 7(4):329, 1960.

[77] J.S.B. Mitchell. A PTAS for TSP with Neighborhoods among Fat
Regions in the Plane. In Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 11–18. Society for
Industrial and Applied Mathematics, 2007.

[78] T. Möller. A fast triangle-triangle intersection test. Journal of graphics
tools, 2(2):25–30, 1997.

[79] AJ Orman and H.P. Williams. A Survey of Different Integer Program-
ming Formulations of the Travelling Salesman Problem. In Optimi-
sation, Econometric and Financial Analysis, volume 9 of Advances in
Computational Management Science, pages 91–104. Springer, 2007.

140

http://msdn.microsoft.com/en-us/library/ff358900(v=prot.10)
http://msdn.microsoft.com/en-us/library/ff358900(v=prot.10)

[80] M. Padberg and T.Y. Sung. An Analytical Comparison of Different
Formulations of the Travelling Salesman Problem. Mathematical Pro-
gramming, 52(1):315–357, 1991.

[81] M.W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the res-
olution of large scale symmetric travelling salesman problems. SIAM
Review, 33:60–100, 1991.

[82] E. Plaku and L.E. Kavraki. Distributed sampling-based roadmap of
trees for large-scale motion planning. In IEEE International Confer-
ence on Robotics and Automation, 2005 (ICRA’05), pages 3868–3873.
IEEE, 2005.

[83] E. Plaku, K.E. Bekris, B.Y. Chen, A.M. Ladd, and L.E. Kavraki.
Sampling-based roadmap of trees for parallel motion planning. IEEE
Transactions on Robotics, 21(4):597–608, 2005.

[84] P. Pounds, R. Mahony, and P. Corke. Modelling and control of a quad-
rotor robot. In Proceedings Australasian Conference on Robotics and
Automation 2006. Australian Robotics and Automation Association
Inc., 2006.

[85] H.J. Promel and A. Steger. The Steiner Tree Problem. Vieweg, Braun-
schweig, 2002.

[86] G. Reinelt and W. Bixby. Tsplib: a library of travelling salesman
and related problem instances, 1995. URL http://comopt.ifi.

uni-heidelberg.de/software/TSPLIB95/.

[87] Denso Robotics. WinCaps III. URL http://www.denso-wave.com/.

[88] Denso Robotics. VS Series - Specification sheet. Denso Wave, Inc.,
Japan, 2003.

[89] R.Y. Rubinstein and D.P. Kroese. Simulation and the Monte Carlo
Method. Wiley, Hoboken, 2008.

[90] S. Safra and O. Schwartz. On the Complexity of Approximating TSP
with Neighborhoods and Related Problems. Computational Complex-
ity, 14(4):281–307, 2006.

[91] M. Saha, T. Roughgarden, J.C. Latombe, and G. Sánchez-Ante. Plan-
ning Tours of Robotic Arms Among Partitioned Goals. The Interna-
tional Journal of Robotics Research, 25(3):207–223, 2006.

141

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://www.denso-wave.com/

[92] N.V. Sahinidis. Baron: a General Purpose Global Optimization Soft-
ware Package. JOGO, 8:201–205, 1996.

[93] R. Shuttleworth, B.L. Golden, S. Smith, and E. Wasil. Advances
in Meter Reading: Heuristic Solution of the Close Enough Traveling
Salesman Problem over a Street Network. The Vehicle Routing Prob-
lem: Latest Advances and New Challenges, pages 487–501, 2008.

[94] J. Silberholz and B. Golden. The Generalized Traveling Salesman
Problem: a New Genetic Algorithm Approach. Extending the Hori-
zons: Advances in Computing, Optimization, and Decision Technolo-
gies, pages 165–181, 2007.

[95] L.V. Snyder and M.S. Daskin. A random-key genetic algorithm for
the generalized traveling salesman problem. European Journal of Op-
erational Research, 174(1):38–53, 2006.

[96] A. Tayebi and S. McGilvray. Attitude stabilization of a vtol quadrotor
aircraft. IEEE Transactions on Control Systems Technology, 14(3):
562–571, 2006.

[97] J.I. Vásquez-Gómez, E. López-Damian, and L.E. Sucar. View planning
for 3D object reconstruction. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2009 (IROS’09), pages 4015–4020.
IEEE, 2009.

[98] A. Wächter and L.T. Biegler. On the Implementation of an Interior-
Point Filter Line-Search Algorithm for Large-Scale Nonlinear Pro-
gramming. Mathematical Programming, 106(1):25–57, 2006.

[99] D.D. Wackerly, W. Mendenhall, and R.L. Scheaffer. Mathematical
statistics with applications. Cengage Learning, 2008.

[100] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of Squares
and Semidefinite Program Relaxations for Polynomial Optimization
Problems with Structured Sparsity. SIAM Journal on Optimization,
17:218, 2006.

[101] P. Wang, R. Krishnamurti, and K. Gupta. View planning problem
with combined view and traveling cost. In IEEE International Con-
ference on Robotics and Automation, 2007 (ICRA’07), pages 711–716.
IEEE, 2007.

142

[102] C. Wurll and D. Henrich. Point-to-point and multi-goal path planning
for industrial robots. Journal of Robotic Systems, 18(8):445–461, 2001.

[103] Wurll, C. and Henrich, D. and Wörn, H. Multi-goal path planning
for industrial robots. In International Conference on Robotics and
Application, 1999.

[104] T. Yokota, M. Gen, and Y.X. Li. Genetic Algorithm for Non-Linear
Mixed Integer Programming Problems and its Applications. Comput-
ers & Industrial Engineering, 30(4):905–917, 1996.

[105] B. Yuan, M. Orlowska, and S. Sadiq. On the Optimal Robot Routing
Problem in Wireless Sensor Networks. IEEE Transactions on Knowl-
edge and Data Engineering, 19(9):1252–1261, 2007.

143

	Introduction
	Literature Review
	The TSPN
	Heuristics
	Approximation algorithms

	Contribution

	MINLP Solution
	MINLP Formulation of the TSPN
	Neighborhoods and edge weighting functions
	First STSPN formulation
	Second STSPN formulation
	Second STSPN formulation for different norms

	Third STSPN formulation
	Fourth STSPN formulation
	MTZ formulation
	Randomly generated STSPN test instances

	Solution of the first STSPN formulation
	Description of the algorithm
	Subtour elimination constraints by cutting planes
	Solving a convex relaxation and integer cuts
	Initial heuristic solution

	Software settings
	Computational results

	Solution of the second STSPN formulation
	Solution procedure
	Software settings
	Computational results

	Solution of the third and fourth STSPN formulations
	Solution procedure
	Software settings
	Computational results

	Conclusion

	Hybrid Random-Key Genetic Algorithm
	Genetic algorithm formulation
	Chromosome coding
	Genetic operators
	Selection
	Crossover
	Mutation
	Immigration

	Termination criteria and population management

	Computational results
	Random STSPN instances
	Euclidean norm
	Manhattan, Maximum, and Quadratic norm

	CETSP Instances

	Conclusion

	7DOF Industrial Vision Inspection System
	Problem Formulation
	Objective function evaluation
	Traveling time
	Obstacle avoidance
	Single Query Planner and Roadmap Construction
	Multiple Query Planner

	Neighborhood definition
	Computational results
	Conclusion

	Unmanned Aerial Survey System
	Problem Formulation
	Objective function evaluation
	Kinematic Model
	Dynamic Model
	Aerodynamic Forces
	Motor Model
	Quadrotor Controller
	Modification to hybrid random-key GA

	Neighborhood definition
	Computational results
	Conclusion

	Conclusion
	Contribution
	Future work

	Appendix
	Convergence of Bounded Set
	Coded objective function and its derivatives
	Euclidean and Quadratic Norm
	Manhattan and Maximum norm

	Effectiveness of integer cuts
	Random sampling over an ellipsoid
	Maximum volume inscribed ellipsoid
	Laplace distribution random sampling
	Power function distribution random sampling
	GA parameters optimization
	Parameter settings for the single query planner
	Manipulator forward and inverse kinematic

