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Abstract

Complex systems are designed using the model-based design paradigm in
which mathematical models of systems are created and checked against spec-
ifications. Cyber-physical systems (CPS) are complex systems in which the
physical environment is sensed and controlled by computational or cyber ele-
ments possibly distributed over communication networks. Various aspects of
CPS design such as physical dynamics, software, control, and communication
networking must interoperate correctly for correct functioning of the systems.
Modeling formalisms, analysis techniques and tools for designing these differ-
ent aspects have evolved independently, and remain dissimilar and disparate.
There is no unifying formalism in which one can model all these aspects equally
well. Therefore, model-based design of CPS must make use of a collection of
models in several different formalisms and use respective analysis methods and
tools together to ensure correct system design. To enable doing this in a for-
mal manner, this thesis develops a framework for multi-model verification of
cyber-physical systems based on behavioral semantics.

Heterogeneity arising from the different interacting aspects of CPS design
must be addressed in order to enable system-level verification. In current prac-
tice, there is no principled approach that deals with this modeling heterogene-
ity within a formal framework. We develop behavioral semantics to address
heterogeneity in a general yet formal manner. Our framework makes no as-
sumptions about the specifics of any particular formalism, therefore it readily
supports various formalisms, techniques and tools. Models can be analyzed
independently in isolation, supporting separation of concerns. Mappings across
heterogeneous semantic domains enable associations between analysis results.
Interdependencies across different models and specifications can be formally
represented as constraints over parameters and verification can be carried out
in a semantically consistent manner. Composition of analysis results is sup-
ported both hierarchically across different levels of abstraction and structurally
into interacting component models at a given level of abstraction. The theoret-
ical concepts developed in the thesis are illustrated using a case study on the
hierarchical heterogeneous verification of an automotive intersection collision
avoidance system.
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Agung Julius, Xin Li, Sarah Loos, Larry Pileggi, Ivan Ruchkin, Bradley Schmerl
and Soner Yaldiz have co-authored various publications with me. Special thanks
to Matthias and others for the work that won the 2011 ICCAD Best Paper
Award and was later chosen as a research highlight by ACM. Collaboration
with Prashant Ramachandra, Jim Kapinski and Jyotirmoy Deshmukh from
Toyota has led to some interesting new research directions. Burt Andrews and
Diego Benitez were my internship mentors at Bosch RTC and co-inventors on
a patent.

My grad-student life has been pleasant due to the window seat that Jim
Weimer vacated for me friends I’ve made. Ajinkya, Andrew, Aurora, Bosco,
Dragana, Dusan, Ellery, the J’s—Javad, Jim, João, Joel, Jon, Joya, Juhua, June
and JY, Kshitiz, Kyle, Kyri, Le, Luca, Nick, Nikos, Matthias, Milos, Rohan,
Sabina, Sanja, Sergio, Xiaoqi and Yilin have been fun to hang out with in
and around Porter Hall. Luca, Sergio and Prof. Bruno Sinopoli deserve thanks
for the nice coffee. Claire and Carol have kept things at ece-porterb running
smoothly. Elaine and Samantha are excellent as Ph.D. program coordinators.

I made several friends while serving on the boards of Indian Graduate Stu-
dents’ Association (IGSA) and ECE Graduate Organization (EGO) at Carnegie
Mellon and Maharashtra Mandal, Pittsburgh (MMPgh). Effie Barron at ECE
helped with the EGO Insider’s Guide updates. I had the pleasure of hosting a
classical dance concert of the talented dancers and fellow grad students Anu,
Brinda, Ishani and my wife Shriya. Pradeep Fulay has been a source of inspi-
ration for endeavors both academic and otherwise. I owe my successful finish
of the 2012 Pittsburgh Marathon to his motivation and encouragement.

My family back home in Pune has been a source of strength and support
over all these years. Despite being 24+ hours of flight distance away, they are
some of the closest people I have. Lastly, but most importantly, I thank my
wife Shriya for helping me get through all the stress of grad school and keeping
my sanity alive.

The work done in this thesis was supported by NSF grants CNS 1035800-
NSF and CCF-0926181.



viii



Contents

1 Introduction 1
1.1 Heterogeneity in Model-Based Design . . . . . . . . . . . . . . . . . . . . . 4
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 13

3 Behavioral Semantics for Heterogeneous Models and Specifications 19
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Models vs. Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Semantic Mappings Using Behavior Relations . . . . . . . . . . . . . . . . 26
3.4 Addressing Semantic Interdependencies Using Parameter Constraints . . . 31
3.5 Semantics of Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Behavior Localization/Globalization . . . . . . . . . . . . . . . . . 39
3.5.2 Model Localization/Globalization . . . . . . . . . . . . . . . . . . . 41
3.5.3 Globalized Semantic Composition . . . . . . . . . . . . . . . . . . . 42

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Heterogeneous Abstraction 47
4.1 Heterogeneous Abstraction Using Behavioral Semantics . . . . . . . . . . . 47
4.2 Compositional Heterogeneous Abstraction . . . . . . . . . . . . . . . . . . 54

4.2.1 Heterogeneous Abstraction In Common Behavior Domains . . . . . 54
4.2.2 Localization/Globalization of Abstraction Functions . . . . . . . . . 58
4.2.3 Heterogeneous Abstraction In Local Behavior Domains . . . . . . . 62

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Heterogeneous Verification 73
5.1 Specification Implication Using Behavioral Semantics . . . . . . . . . . . . 73
5.2 Verification Using a Single Heterogeneous Abstraction . . . . . . . . . . . . 78
5.3 Verification Using Several Heterogeneous Abstractions . . . . . . . . . . . . 80

5.3.1 Conjunctive Multi-Model Heterogeneous Verification . . . . . . . . 80
5.3.2 Disjunctive Multi-Model Heterogeneous Verification . . . . . . . . . 81

5.4 Consistent Heterogeneous Verification with Interdependencies . . . . . . . 83
5.5 Hierarchical Heterogeneous Verification . . . . . . . . . . . . . . . . . . . . 87

ix



5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Case Study 91
6.1 Cooperative Intersection Collision Avoidance System for Stop-Sign Assist . 93
6.2 Hierarchical Heterogeneous Verification Tree for CICAS-SSA . . . . . . . . 96
6.3 Disjunctive Heterogeneous Verification . . . . . . . . . . . . . . . . . . . . 100

6.3.1 Model Coverage Using Behavior Relations . . . . . . . . . . . . . . 100
6.3.2 Model Coverage for Mode Switching . . . . . . . . . . . . . . . . . 105

6.4 Conjunctive Heterogeneous Verification . . . . . . . . . . . . . . . . . . . . 107
6.4.1 Conjunctive Abstraction in a Common Semantic Domain . . . . . . 107
6.4.2 Conjunctive Abstraction via Behavior Relations . . . . . . . . . . . 109

6.5 Compositional Heterogeneous Abstraction . . . . . . . . . . . . . . . . . . 113
6.5.1 Heterogeneous Abstraction for POV . . . . . . . . . . . . . . . . . . 113
6.5.2 Heterogeneous Abstraction for SV . . . . . . . . . . . . . . . . . . . 115
6.5.3 Abstraction Between Compositions . . . . . . . . . . . . . . . . . . 115

6.6 Consistent Parametric Heterogeneous Verification . . . . . . . . . . . . . . 117
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Conclusion 127
7.1 Summary of the Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 141

x



List of Figures

1.1 A typical collection of models and formalisms for CPS. . . . . . . . . . . . 3

3.1 Safety verification problem in behavioral semantics. . . . . . . . . . . . . . 22

3.2 Verification using multiple heterogeneous models of CPS. . . . . . . . . . . 24
3.3 Continuous behaviors with state partitioning boundary. . . . . . . . . . . . 30
3.4 Interdependencies between heterogeneous models. . . . . . . . . . . . . . . 32
3.5 Parametric multi-model heterogeneous verification of CPS. . . . . . . . . . 34

4.1 A Simulink model of a thermostat. . . . . . . . . . . . . . . . . . . . . . . 49
4.2 A behavior of the Simulink model. . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 A hybrid automaton model of a thermostat. . . . . . . . . . . . . . . . . . 50

4.4 Heterogeneous abstraction using behavior relations. . . . . . . . . . . . . . 51
4.5 Heterogeneous coverage using behavior relations . . . . . . . . . . . . . . . 52
4.6 Compositional heterogeneous abstraction in common behavior domains. . . 55
4.7 Insufficiency of arbitrary behavior relations for compositionality. . . . . . . 57
4.8 Compositional heterogeneous abstraction analysis in local behavior domains. 58
4.9 Commutative diagram for abstraction function localization/globalization. . 59

5.1 Intersection with two cars crossing. . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Heterogeneous implication using behavior relations. . . . . . . . . . . . . . 75
5.3 Conjunctive heterogeneous implication using behavior relations. . . . . . . 76
5.4 Conjunctive heterogeneous verification using behavior relations. . . . . . . 82
5.5 Disjunctive heterogeneous verification using behavior relations . . . . . . . 84
5.6 Heterogeneous verification as a tree representation. . . . . . . . . . . . . . 88

6.1 A pictorial sketch of CICAS-SSA. . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Safety-decision schematic for CICAS-SSA. . . . . . . . . . . . . . . . . . . 96
6.3 CICAS-SSA hierarchical heterogeneous verification tree. . . . . . . . . . . . 99
6.4 Verification model M13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Verification model M21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Verification model M22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Verification model M23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.8 Inter-model switching that covers M3j . . . . . . . . . . . . . . . . . . . . . 106
6.9 A hybrid model M41 for SV going only straight if safe. . . . . . . . . . . . 110
6.10 Heterogeneous abstractions M5i of M41. . . . . . . . . . . . . . . . . . . . . 110

xi



6.11 A parameterized hybrid model M41 for SV going only straight if safe. . . . 118
6.12 Parameterized models M5i. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xii



List of Tables

6.1 Illustration of theoretical concepts in the CICAS-SSA case study. . . . . . 122

xiii



Notation

Symbol Description Page

M model 20

M modeling formalism 20

S specification 20

S specification formalism 20

B behavior domain 20

B behavior class, behavior formalism 20

JMKB semantic interpretation of model M in behavior do-
main B

21

JSKB semantic interpretation of specification S in behavior
domain B

21

M |=B S model M satisfies specification S in behavior domain
B

21

�φ, ©φ, φ1 → φ2 temporal logic operators ‘always’ φ, ‘in the next step’
φ and φ1 ‘implies’ φ2

25

R ⊆ B0 ×B1 behavior relation R that associates pairs of behaviors
(b0, b1) from B0 ×B1 that are related with each other

28

R(B′
0), B

′
0 ⊆ B0 the subset of behaviors in B1 that are associated with

some behavior in B′
0

28

R−1(B′
1), B

′
1 ⊆ B1 the subset of behaviors in B0 that are associated with

some behavior in B′
1

28

Σ∗ the set of all finite-length traces from event labels in Σ 28

Σω the set of all infinite-length traces from event labels in
Σ

28

A : B0 → B1 behavior abstraction function A, a special case of be-
havior relation that is also a function

30

C(P ) constraint C on the set of parameters P 32

C constraint formalism 32

JCM(PM),MKB,
or simply
JCM ,MKB

semantic interpretation of parameterized model M in
behavior domain B for all valuations of model param-
eters in set PM determined by the constraint CM

33

xiv



JCS(P S), SKB, or
simply JCS, SKB

semantic interpretation of parameterized specification
S in behavior domain B for all valuations of specifica-
tion parameters in set P S determined by the constraint
CS

33

CM ,M |=B CS, S parameterized model M with valuations of parameters
PM determined by constraint CM satisfies parameter-
ized specification S with valuations of parameters P S

determined by constraint CS in behavior domain B

33

Caux auxiliary constraint Caux capturing dependencies be-
tween various model and specification parameters

36

P ||Q semantic composition of models P and Q 37

b ↓BB′ , or simply
b ↓

localization of behavior b ∈ B to b′ ∈ B′ 40

b′ ↑BB′, or simply
b′ ↑

globalization of behavior b′ ∈ B′ to the set {b ∈ B|b ↓=
b′}

41

PG globalization of model P 41

P ||GQ globalized semantic composition of models P and Q,
same as PG||QG

42

M0 ⊑
B M1 model M1 is an abstraction of model M0 in behavior

domain B

47

M0 ⊑
R M1 model M1 is a heterogeneous abstraction of model M0

via behavior relation R

49

A′⇑ globalization of behavior abstraction function A′ 59

A⇓ localization of behavior abstraction function A 59

S1 ⇒
B S0 specification S1 implies specification S0 in behavior do-

main B

73

S1 ⇒
R S0 specification S1 implies specification S0 via behavior

relation R

75

�Iφ φ holds for the time interval I in immediate future 110

♦Iφ φ holds at some time during the time interval I in the
immediate future

110

xv



xvi



Chapter 1

Introduction

Cyber-physical systems (CPS) have tightly-coupled computational (cyber) and physical

elements that have to interoperate in order for the systems to function. In today’s world,

CPS are everywhere: in transportation systems such as cars, planes and trains; healthcare

and medical devices such as robotic surgery equipment and pacemakers; energy systems

such as smart grids; smart infrastructures such as green energy buildings; industrial systems

such as in chemical and nuclear plants; and robotics, to name a few.

Complex systems are designed using the model-based design (MBD) paradigm, where

mathematical models of the systems are developed and checked against requirement spec-

ifications. The MBD approach aims to catch errors early in the design process before the

system or prototypes are built, thereby avoiding costly re-design/re-development cycles

[70]. MBD of CPS is a complex problem due to the tight coupling between the cyber and

physical parts. The underlying theory, design principles and analysis methods for the many

issues that need to be addressed in the development of CPS have evolved independently

1



in many distinct disciplines. Concerns that have been traditionally distinct, such as com-

putation, timing, concurrency, algorithms, memory consumption from computer science

and physical dynamics, stability, control, bandwidth limitations and transport delays from

engineering need to be addressed together.

Heterogeneity is inherent in CPS because of the constituent physical dynamics, con-

trol logic, software implementation, real-time execution and communication networking.

Therefore, for all but the most trivial CPS, many types of models need to be created and

analyzed. There are several different modeling formalisms and analysis tools that suit

different aspects of the overall CPS system design. Common formalisms and tools used

for design and analysis of a CPS as depicted in Fig. 1 include: acausal equation-based

models in tools such as MapleSim [3] and Modelica [4], suited for modeling the underlying

physics of a system, e.g., the plant dynamics; signal-flow models in tools such as Simulink

[6], suitable for control design and simulation; finite-state machines and labeled transition

systems in tools such as LTSA [64], best suited for modeling decision logic and communi-

cation protocols; hybrid-dynamic models in tools such as SpaceEx[41], useful for analyzing

abstract unified behaviors of continuous dynamics and discrete mode switches; network

simulation models in tools such as OMNeT++[5], useful for analyzing communication net-

work properties such as packet loss and communication delay; and software models in tools

such as Spin [50], useful for analyzing whether the decision logic is correctly implemented.

There is no universal modeling formalism that can capture all possible design aspects

for CPS. Therefore, MBD of CPS has to make use of not one, but a collection of differ-

ent models in different formalisms. These models often make interdependent simplifying
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Figure 1.1: A typical collection of models and formalisms for CPS.

assumptions to occlude certain details while retaining those details that are relevant for a

particular analysis at hand. Because of these dependencies, the models cannot be analyzed

in isolation. This introduces the following problem of heterogeneity: without a single com-

prehensive modeling formalism, how can it be guaranteed that the heterogeneous models

are consistent with each other, and how can verification results from the different for-

malisms be combined to infer system-level properties? In current practice, heterogeneity

is addressed in an ad hoc manner. This thesis develops a formal approach to addressing

heterogeneity in model-based design of CPS.
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1.1 Heterogeneity in Model-Based Design

Support for heterogeneous formalisms remains ad hoc in current practice. Due to the

lack of rigorous support, system designers often resort to extensive documentation in text

files and spreadsheets about different models, specifications and simplifying assumptions.

This approach is severely limited and lacks mathematical rigor, no matter how extensive

the documentation. In the research community, several approaches from the research

literature address different pieces of the overall heterogeneous model-based development

puzzle; however, none presents a comprehensive solution. The research community has

dealt with specific formalisms for specific purposes, but has not addressed heterogeneity

at a general level without making specific assumptions about the formalisms involved.

Heterogeneous simulation tools, both commercially available ones, such as Simulink,

along with its toolboxes and research tools, such as Ptolemy with its heterogeneous actor-

oriented formalisms, aim to simply support simulation of heterogeneous aspects of systems

together. Simulation is inherently informal and provides no formal correctness guarantees.

There are several formal analysis approaches and tools that do provide formal guarantees

but cannot be used in these simulation frameworks.

Other approaches to addressing heterogeneity involve model transformation using meta-

models or model translation using interchange formats to convert one form of model into

another. These approaches also have limitations. A lot of formalisms do not have exactly

matching notions in their specific semantics, so often times one can only use a restrictive

subset of modeling vocabulary that still works with model translation or transformation.

Also, as research makes progress and new analysis tools and techniques become avail-
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able, one has to re-create meta-models and translation schemes to be able to use the new

formalisms necessary for the new tools and techniques.

Because of the lack of a general unifying framework for heterogeneous model-based de-

velopment, the design and analysis approaches for CPS presently have several limitations.

From a theoretical perspective, there is a lack of clear understanding about how commonly

understood concepts for particular formalisms, such as abstraction, implication, composi-

tion, entailment can be generalized or extended to include multiple formalisms. As a result,

the notion of verification of a system described using several heterogeneous models, how

they relate to, or compose with, each other, and what their analyses mean in terms of the

underlying system is not well understood. Due to the lack of clear understanding of how

heterogeneous models and specifications relate with one another, there is no mechanism to

combine analysis results together in a meaningful manner, except perhaps in approaches

that treat analysis results as ‘knowledge’ or ‘information’ to be combined. Different as-

pects of system design are modeled in different formalisms and simplifying assumptions are

inevitably made in creating those models. These assumptions are interdependencies in the

semantic sense and there isn’t a formal way of capturing them since they cut across for-

malism boundaries. Moreover, due to these interdependencies, models cannot be analyzed

purely independently in isolation, but rather a mechanism to ensure these assumptions

are consistent and that the analysis results are meaningful is necessary. In current prac-

tice, when models get analyzed in isolation, dependencies are captured informally at best,

and there is no principled way of ensuring consistency. This thesis aims to address these

limitations.
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From a practical perspective, the lack of a unifying framework makes system integration

difficult. Since there is no universal modeling formalism that can model all the aspects of

the system design, creation of a system-level model in some modeling formalism isn’t an

option.

There is a need for a general formal framework that can support heterogeneous model-

based development of CPS. The objective of this framework is to enable the associations

between various heterogeneous models and their respective sets of behaviors in suitable

behavior formalisms. The framework needs to be general enough to allow the use of dif-

ferent modeling and specification formalisms, and different analysis methods and tools.

There needs to be support for combining verification results from individual models in a

meaningful way to reason about the correctness of the overall system. Complex systems

are usually composed of smaller subsystems where different parts are often designed by

different engineers, possibly at different times. So the framework needs to support com-

positionality and distributed development in order to draw conclusions about the system

correctness from the correctness of the components in a distributed compositional manner.

Additionally, semantic assumptions and simplifications are made while constructing mod-

els from particular perspectives that hide or abstract information from other perspectives

of the system. The framework needs the ability to formally represent these assumptions

and ensure system-wide semantic consistency of these assumptions.

In this thesis, we develop this richer semantic support for heterogeneity to enable het-

erogeneous formal verification of CPS. Our heterogeneous model-based development frame-

work lays out sufficient conditions and formal constructs that support the use of several

6



different system models together in a meaningful way. This thesis focuses on safety veri-

fication. The formal treatment ensures that different verification results can be combined

with interdependencies resolved in a consistent manner; and the generality enables the use

of many different modeling and specification formalisms and analysis tools together in a

systematic manner.

1.2 Thesis Contributions

This thesis addresses some of the shortcomings of existing approaches outlined above. The

contributions of this thesis are as follows.

1. Behavioral semantics for heterogeneous models and specifications. Behavioral seman-

tics provides the generality necessary for supporting several different modeling and

specification formalisms together in a common formal framework. Semantic interpre-

tations of models and specifications can be defined in terms of subsets of behaviors

from behavior domains of choice exhibited by the models or permitted by the spec-

ifications. This enables us to define the standard notions of abstraction between

models, implication between specifications and entailment between a model and a

specification in terms of subset of corresponding sets of behaviors within a given

domain of their semantic interpretation.

2. Semantic associations between heterogeneous formalisms using behavior relations.

Associations between different behavior domains provide a means to associate subsets

of behaviors—particularly semantic interpretations of models and specifications—
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from these domains. This enables the association between the semantic interpre-

tations of models and specifications when they are not, or cannot, be defined in a

common behavior domain.

3. Abstractions across heterogeneous modeling and semantic formalisms using behavior

relations. Within our behavioral semantics framework, when semantics of two models

are defined in a common behavior domain, the abstraction relation holds between

the models when one overapproximates the set of behaviors of the other. We extend

this notion of behavior set inclusion to allow heterogeneous behavior domains via

behavior relations when the semantics of the two models are defined in different

behavior domains.

When multiple models are involved, we define a notion of behavior set coverage.

Different subsets of behaviors of a given model are overapproximated by a collection of

models such that every behavior of the underlying model is considered in at least one

model. In this case, models individually are not abstractions of the underlying model,

but together they form an abstraction. For mode-switching systems, we provide a

notion of coverage with switching where behaviors of the systems in each mode can

be covered by a different model. Such a coverage is useful when specifications require

some temporally invariant condition to hold over all time, i.e., over all modes no

matter how the system switches modes.

4. Compositional approach to heterogeneous abstraction using behavior abstraction func-

tions as special cases of behavior relations. When component models are composed

to form system models, heterogeneous abstraction can be performed independently
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for each component so that one can infer abstraction for the composition from that

of the component models. A framework based on behavior abstraction functions, a

special case of behavior relations, is developed to elucidate sufficient conditions for

compositional heterogeneous abstraction. Centralized and decentralized approaches

to the compositional heterogeneous abstraction problem are considered and consis-

tency conditions for the decentralized case are provided.

5. Implications between heterogeneous specifications and their use for verification us-

ing behavior relations. Formal specifiations are useful for expressing correctness re-

quirements about system behaviors. Analogous to abstraction between models, we

formulate implication between heterogeneous specifications based on the refinement

of subsets of behavior allowed when the semantics of the two specifications can be

defined in a common domain. For heterogeneous domains of semantic definitions,

implication is extended using the associations provided by behavior relations, similar

to model abstractions.

In case of several specifications, a notion of conjunctive specification implication

is developed whereby each specification can be focused on defining the behaviors of

choice for a particular design aspect and its model while being allowed to be lenient

on the others. Analogous to the notion of model coverage, conjunctive specification

implication allows each specification to not have to individually refine the system-

level specification, but when taken together they do.

6. Hierarchical heterogeneous verification via behavior relations using nested conjunctive

and disjunctive analysis constructs. When using several models and specifications to-
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gether towards system-level verification, we develop two types of analysis constructs.

Using the notion of coverage that uses several models together for abstracting an un-

derlying detailed model, we define a disjunctive heterogeneous verification construct

wherein the individual models can be analyzed against specifications that are each

stronger than the underlying system-level specification. Analogously, when models

are each individual abstractions of the underlying system model, conjunctive speci-

fication implication can be used and verification of the models against these specifi-

cations can be used together in a conjunctive heterogeneous verification. Disjunctive

and conjunctive verification constructs can be nested arbitrarily to form multi-level

hierarchies of heterogeneous verification. A tree representation of hierarchical het-

erogeneous verification is presented for visualizing and managing conditions at each

level within the overall system verification.

7. Consistent heterogeneous verification in presence of semantic interdependencies. Dur-

ing the creation of heterogeneous models of a system, simplifying assumptions are

often made to facilitate separation of concerns. Details abstracted away in a particu-

lar formalism are usually captured in some other formalism. We use constraints over

parameters as a uniform treatment across modeling and specification formalisms to

formally represent these semantic interdepdenencies and develop parametric variants

of hierarchical heterogeneous verification constructs. Auxiliary constraints model the

interdependencies that cut across modeling and specification formalisms. Projections

onto local sets of parameters for particular analysis tasks, given the interdependen-

cies and the system-level parameter valuations to be considered, are used to capture
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the external effect of the interdependencies on local verification tasks. Consistency

conditions are developed for ensuring that these external effects of the interdepen-

dencies are captured in a correct manner when using interdependent analysis tasks

together towards system verification.

8. Demonstration of the practical applicability of the approach using a case study. The

theoretical machinery developed in this thesis is evaluated using a case study from

automotive CPS domain. A cooperative intersection collision avoidance system is

a heterogeneous safety-critical CPS that presents an ideal example to showcase our

framework. We present a hierarchical heterogeneous verification tree for ensuring

collision freedom for such systems. Different parts of the verification tree are used to

demonstrate different aspects of the multi-model heterogeneous verification problem.

We showcase how conjunctive and disjunctive heterogeneous verification constructs,

coverage for mode switching, semantic consistency for parametric verification and

compositional heterogeneous abstraction are all used towards a common system-level

verification objective. All the previous theoretical contributions are illustrated using

various elements of the heterogeneous verification case study.

1.3 Thesis Organization

We begin by outlining related work and summarizing its shortcomings in Chapter 2. Chap-

ter 3 formulates the problem of heterogeneous model-based design in terms of models and

specifications in various formalisms, their semantic interpretations in terms of sets of be-
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haviors and semantic mappings using behavior relations. Chapter 4 develops the notion

of abstraction between heterogeneous models using behavior relations, with coverage and

compositionality conditions developed for using multiple models to establish abstraction.

Chapter 5 introduces heterogeneous specifications for verifying the heterogeneous models

and develops a hierarchical heterogeneous verification framework to enable the use of anal-

yses of multiple models and specifications together towards system verification. Chapter

6 presents a hierarchical heterogeneous verification from the automotive CPS domain and

showcases the different aspects of the theoretical machinery developed in this thesis used

as different elements of the overall system verification activity. Chapter 7 summarizes the

contributions of this thesis and outlines some future research directions.
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Chapter 2

Related Work

There have been several efforts in the research literature in addressing different aspects

of the overall heterogeneous model-based design problem for cyber-physical systems. This

chapter reviews some relevant literature comparing and contrasting our approach from

those, and mentions their shortcomings as a motivation for the work presented in this

thesis.

Many efforts have focused on supporting simulation of heterogeneous elements or system

models for multi-model system development. The field of computer automated multi-

paradigm modeling (CAMPaM) is introduced in [68] and the current issues and a survey

of promising approaches are outlined. Ptolemy II supports hierarchical integration of

multiple “models of computation” into a single simulation model based on an actor-oriented

formalism [20]. MILAN [61] is an integrated simulation framework that allows different

components of a system to be built using different tools. The Metropolis toolchain [16]

supports multiple analysis tools for design and simulation. SysWeaver [32] is a model-based
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development tool that includes a flexible code generation scheme for distributed real-time

systems. The functional aspects of the system are specified in Simulink and translated into

a SysWeaver model to be enhanced with timing information, the target hardware model

and its communication dependencies. The focus of these efforts has been simulation and

not verification.

The Vanderbilt model-based prototyping toolchain provides an integrated framework

for embedded control system design [77]. It provides support for multiple formalisms, such

as functional Simulink/Stateflow models, software architecture, and hardware platform

modeling along with deployment. The toolchain’s ESMoL language has a time-triggered

semantics, which restricts the functional view to Simulink blocks that can only execute

periodically. There is currently no support for additional heterogeneity (e.g., due to phys-

ical or verification models), nor a notion of consistency between additional system models.

Semantic anchoring to transform between system models transformation concentrates on

the specification of the dynamic semantics of the domain-specific modeling languages [28].

The method relies on the observation that a broad category of component behaviors can

be represented by a small set of basic behavioral abstractions such as finite state machines,

timed automata and others. The underlying assumption is that the behavior of these

abstractions is well understood and precisely defined. The methodology and toolchain is

described in [27]. Unlike the semantic anchoring or toolchain approach for different yet

specific formalisms, our treatment is general and works for any formalisms.

Several projects have focused on methods for transforming models between formalisms.

Meta-modeling approaches such as Generic Modeling Environment (GME) [31], MILAN
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[61], the Metropolis toolchain [16], and DEVS [86] enable heterogeneous model analysis

by creating meta-models for each modeling formalism. The Hybrid Systems Interchange

Format (HSIF) [71] and Automatic Integration of Reusable Embedded Software (AIRES)

[46] use standardized interface formats to exchange information between multiple models.

Translation schemes [28] and toolchains [77] have been developed to translate various types

of models into these formats. The limitation of the model transformation approach is that

with new formalisms and analysis tools that get introduced as research progresses, the

translation schemes and meta-models need to be re-created before the new techniques

can be supported. Additionally, in case of certain modeling formalisms and commercial

tools, the semantics may not be precisely known to the system designer. In such a case,

supporting those formalisms becomes difficult.

The work by Bhave et al. [21] provides a rigorous treatment of heterogeneity by us-

ing concepts from software architecture for disciplined engineering of complex systems.

Through high-level, hierarchical component-oriented architectural models, their approach

provides structural representations that form the basis for understanding the dependencies

between various models that focus on partial analysis of the full system [80]. Structures

of heterogeneous models are defined as views of the system structure from different design

perspectives [22], and graph morphisms between system structures and model structures

are used to ensure consistency across heterogeneous models in terms of correct deployment

of functionality across subsystems [23]. While this body of work uses a rigorous treatment

of heterogeneous models and multi-domain model-based development, it does not support

system-level verification using heterogeneous models due to the lack of detailed operational
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semantics at the architectural level.

The work by Julius [52] uses a behavioral approach in the spirit of Willems’ work [87]

and creates a framework for comparing and interconnecting behaviors based on the dif-

ferent time axis structures for discrete, continuous and hybrid behaviors. For embedded

software applications, the Behavior-Interaction-Priority (BIP) framework [24] leverages the

component structure of a system and supports behavioral annotation of the components

by state diagrams to support system analysis [17]. In contrast to Julius’s approach of

incorporating behaviors in the definition of models, we see behaviors as the semantic in-

terpretation of systems, which allows us to observe behaviors in different domains. This

idea is similar to the one proposed in [47], where timed and time-abstract traces serve as

different semantics for the same hybrid automaton. The notion of tagged signal semantics

has been proposed to compare [62] and compose [19] heterogeneous reactive systems. Un-

like [19, 24], the focus of this work is to use heterogeneous models independently towards a

common system-verification goal, rather than to compose heterogeneous components into

one big system for simulation.

Within the formal verification literature, the idea of using an abstraction in a simpler

modeling formalism in order to verify safety properties about a more complex model in

the original formalism has been used frequently. Hybrid abstractions of nonlinear sys-

tems [30, 48], linear hybrid automata abstractions of hybrid systems with linear dynamics

[40], discrete abstractions of hybrid systems [10, 13, 29], continuous abstractions of hybrid

systems [8] and synchronous abstractions of asynchronous modules [12] are some of the ex-

amples where simpler abstractions are successfully created and used. These approaches use
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specific pairs of formalisms. Our objective is to create a general framework for abstraction

that can support any set of heterogeneous formalisms.

NAOMI is an experimental platform for enabling multiple heterogeneous models to

work together and keeping them and their data synchronized [34]. In NAOMI, a model is

defined in terms of the set of input and output attributes that it shares with the system.

NAOMI analyzes model dependencies to determine the impact of changes to one model

on other dependent models and coordinates the propagation of necessary model changes.

Inference-based approaches focused on ontologies have been proposed for static analysis and

type checking [63]. In the similar spirit, the work in [59] focuses on integrating the results of

disparate verification efforts and analysis techniques using static and epistemic ontologies.

These approaches treat models, specifications, analysis results etc. as ‘knowledge’ and use

the concepts from relational databases and targeted knowledge acquisition to put together

‘knowledge’ about the system. Rather than using ontology-based approach, we use a

behavioral approach, which allows us to compare and relate behaviors of different types.

Analogous to our idea of logically nesting verification tasks, the TLA+ proof system

deploys a proof manager that breaks down a complex verification task logically into proof

obligations that are proved using theorem provers and satisfiability modulo theories solvers

in case of software systems [26]. Our framework supports more general (e.g., continuous,

hybrid) dynamics and non-deductive analysis methods. Verification architectures (VA)

for real-time systems have been proposed to verify global properties by combining local

analyses using abstract behavioral protocols in a deductive manner [37]. Unlike VA, whose

aim is to use structured constructs like abstract protocols to simplify proof obligations,
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our objective is to use structured constructs to put together system-level verification from

the verification of heterogeneous models.

Compositional reasoning approaches in formal verification literature has focused on

reducing the computational complexity of system-level verification by analyzing its con-

stituent component models instead. Compositional methods, such as assume-guarantee

reasoning, with abstraction defined by language inclusion [56] and simulation relations

[38, 49], or compositional methods based on deduction [73], are usually defined in the

context of a single formalism. Another example is the behavior-interaction-priority (BIP)

framework for embedded software, which uses structured interaction invariants to sup-

port compositional analysis, but only for transition system models [18]. Our objective

is to develop a general framework that elucidates the basic conditions for compositional

abstraction between any pair of heterogeneous formalisms.

We summarize the shortcomings of the related work by noting that various pieces

of the heterogeneity puzzle for model-based development of cyber-physical systems are

addressed in specific contexts in the literature, but no approach provides a comprehensive

general solution. In this thesis, we develop a general framework that within which any

formalism can be used. Throughout the thesis, the addressing of the heterogeneity, the

use of abstractions across different formalisms, formal verification using multiple models

across various formalisms, compositionality and support for defining interdependencies

across different formalisms and ensuring consistency, are all developed within a common

framework.
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Chapter 3

Behavioral Semantics for

Heterogeneous Models and

Specifications

The key challenge in successfully using heterogeneous models, specifications, analysis tech-

niques and tools together to analyze an underlying system lies in being able to relate the

different semantics of the various models and specifications. In this chapter, we formu-

late the problem of heterogeneous model-based design, define semantic mappings between

heterogeneous formalisms and use them to define semantics of composition.
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3.1 Problem Formulation

The objective of model-based design of systems is to create system models and analyze them

against some correctness specifications in order to discover errors early in the development

cycle. We begin by formally defining various elements of this process.

A model M is a mathematical description of a system using a modeling formalism

M, which is a collection of modeling primitives and syntactic rules for building models.

Modeling formalisms typically used for CPS include transition systems, hybrid automata,

signal-flow models, acausal equation-based models, and queuing networks. For simplicity

of notation, we use the term modeling formalism synonymously with the set of all models

that can be constructed using the primitives, and say a model M is an element of some

formalism M, written as a set membership M ∈ M.

A specification formalism S is a collection of specification primitives for precisely defin-

ing correctness requirements. A specification S is a correctness requirement written in

some S. Various temporal logics, algebraic expressions that describe bad or unsafe sets of

states to be avoided, are some of the specification formalisms used in capturing correctness

specifications. We allow any such formalism, so long as the requirements can be written

precisely and unambiguously. We also use the term specification formalism synonymously

with the set of all specifications that can be constructed using the primitives, and say a

specification S is a member of some formalism S, written S ∈ S.

The semantics of models and specifications is defined by a set of legal behaviors from a

given behavior domain B in a behavior class B. Behavior classes used to define semantics

for CPS models include discrete traces, continuous trajectories and hybrid trajectories. For
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each behavior class, we assume there exists a syntax, called the behavior formalism, which

can be used to precisely define behavior domains and individual behaviors. For simplicity

of notation, we use the terms behavior class and behavior formalism interchangeably, and

use the set membership notation B ∈ B for a behavior domain B in the class/formalism

B.

For a model M in a modeling formalism M, JMKB denotes the set of legal behaviors

in a behavior domain B from a behavior formalism B that it exhibits. Similarly, JSKB

denotes the set of behaviors that specification S written in a specification formalism S

allows in a given behavior domain B from a behavior formalism B. Note that JMKB ⊆ B

and JSKB ⊆ B.

In this thesis, we focus on the problem of safety verification, where the objective is to

establish that model behaviors do not violate what is permitted by a given specification.

When model and specification semantics are defined in a common behavior domain B, this

safety verification requirement is mathematically captured as

JMKB ⊆ JSKB. (3.1)

We say a model M satisfies a specification S in behavior domain B, written M |=B S,

if (3.1) holds. Fig. 3.1 shows a simple Venn diagram representation of safety verification

problems using behavioral semantics. The behavior domain is shown as a gray rectangle.

The semantic interpretations of model M and specification S are both subsets of the

behavior domain B. Further, M |=B S if the set JMKB is contained in JSKB. This ensures
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Figure 3.1: Safety verification problem in behavioral semantics.

that each individual behavior b ∈ JMKB that the model M exhibits is allowed by the

specification S.

Constructing a system or a model M such that it satisfies a specification S in a cho-

sen behavior domain B is called a design task. On the other hand, checking whether a

specification S is satisfied in a behavior domain B by a given system or model M is called

a verification task. There can be several approaches to establishing M |=B S depending

upon the particular formalisms. Examples of formal approaches for establishing safety

verification include reachability analysis, theorem proving, establishing language inclusion

using simulation relations, certificate-based guarantees [9], and numerical simulation with

some formal guarantees such as sensitive state-space exploration [36] or robust testing [54].

Informal but principled approaches used in practice include exhaustive simulation with

some coverage criteria [14, 55] and falsification [69, 83]. While we advocate that formal

approaches should be used to establish verification whenever possible, we do not restrict

what approach or tool is used to establish M |=B S.

Suppose there were a universal modeling formalism M0 in which one could create an
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all-inclusive model M0 of a CPS. Suppose the system-level correctness specification S0 is

captured in a formalism S0, and the system behavior domain B0 in a formalism B0 is used

to define the semantics of M0 and S0. Then we would use some analysis technique to

establish M0 |=B0 S0 and we would be done. In reality, there is no universal modeling

formalism M0 and even if there were, analyzing a gigantic all-inclusive system model M0

would likely be intractable.

Fig. 3.2 shows the multi-model heterogeneous verification problem considered in this

thesis. Rather than a single unified model M0, several models Mi in different modeling

formalisms Mi and their corresponding specifications Si in specification formalisms Si are

usually created. The behavior domains Bi and behavior classes Bi, as well as the tools

used to establish Mi |=
Bi Si can be different for each i. Since the models Mi can have

interdependent simplifying assumptions about other models as well as the underlying sys-

tems, these assumptions form interdependencies that cut across modeling and specification

formalisms. The objective in this dissertation is to create a general framework to enable

the use of heterogeneous models and tools to establish each of the entailments Mi |=
Bi Si,

and to combine these results to conclude M0 |=B0 S0 without having to model or directly

analyze M0.

3.2 Models vs. Specifications

Models and specifications are both precise mathematical definitions of system behaviors;

however, they usually differ in how they define the behavior set. Models are usually direct

representations that typically give operational descriptions of the system dynamics, and
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Figure 3.2: Verification using multiple heterogeneous models of CPS.

are therefore more suitable for developing implementations. They define how individual

system behaviors or trajectories evolve over time by capturing the dynamics using, for

example, differential equations, state transitions, or a combination of the two. Examples

of such direct modeling formalisms include finite automata, transition systems, process

algebras, differential equations, hybrid automata, hybrid programs, simulation models in

Simulink and statecharts in Stateflow. Specifications, on the other hand, are usually indi-

rect representations, which give declarative descriptions about sets of system behaviors and

are therefore more suitable for capturing requirements. They describe qualitative informa-

tion about the behaviors in terms of what properties they hold, irrespective of where the

behaviors come from, or how they are generated. Various logics including several forms

of temporal logic and mathematical expressions that define bad sets to be avoided are
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popular formal indirect specification formalisms. We point out other terminology in the

literature to essentially state the same divide. What we call models and specifications have

also been called operational and declarative system descriptions [74], system specifications

and requirement specifications [76], constructive and axiomatic style descriptions [60] and

requirement specifications and action specifications [57].

Since models and specifications are both used to define sets of behaviors, semantically

they are identical. It is because of this common semantic interpretation that we can use

models as well as specifications in analogous semantic operations, sometimes even inter-

changeably. For example, the discrete interpretation of a traffic light can be represented

in a transition system model as well as a temporal logic specification as illustrated in the

following example.

Example 1. Consider a traffic system modeled using a transition system as illustrated

below as model M . The system is allowed to start in any of the states, illustrated by

the incoming arrows into the states with no origin, and transitions into the corresponding

following states as per the allowed order · · ·R → G → Y → R → · · · .

R G Y

τ

ττ

M

The same set of behaviors can also be defined using a temporal logic specification

S : �(R → ©G)∧�(G → ©Y )∧�(Y → ©R), where predicates R, Y,G are true only in

states R, Y,G respectively.

A sample behavior that both the model M exhibits and S permits is the trace b :
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G Y R G Y R . . . . It is easy to see that the sets of behaviors exhibited by M and

permitted by S is identical. �

Under certain cases, models can be constructed from specifications. We call this process

modelization of specifications. Linear-time temporal logic (LTL) admits a variety of efficient

algorithms for translating a formula into an equivalent automaton [42, 43, 58, 84] and

this construction is used in tools such as labeled transition system analyzer (LTSA) [64]

and SPIN [50]. In case of real-time temporal logics, for metric interval temporal logic

(MITL), timed automata construction has been proposed in [11] and [66]. In another work,

timed automata and timed regular expressions have been proposed as interchangeable

modeling and specification formalisms [15]. In the similar spirit, specifications can be

reverse-engineered from models, a process called specification mining [51, 72]. Whenever it

is not possible to find models or specifications that define exactly identical sets of behaviors,

one typically finds the tightest underapproximation in case of modelization and the tightest

overapproximation in case of mining. The particulars of these types of conversions are

beyond the scope of this thesis.

3.3 Semantic Mappings Using Behavior Relations

The first step in analyzing heterogeneous models and specifications together in a com-

mon framework is to create a mechanism to compare their associated sets of behaviors.

Typically, various modeling formalisms have their natural behavior formalisms that are

the most suitable for defining model semantics. Examples include continuous trajectories
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for ordinary differential equations, discrete traces for transition systems, hybrid trajecto-

ries for hybrid automata, and timed traces for timed automata. Analysis techniques and

tools usually work with semantics developed in natural behavior formalisms for models

in particular modeling formalisms. However, the semantics of models can also be defined

in behavior formalisms other than the most natural ones. For example, the semantics of

a hybrid automaton can be defined in terms of piecewise continuous trajectories ignor-

ing the discrete transition labels, and in terms of discrete traces ignoring the changes to

the continuous variables. Another example of semantics defined in different formalisms is

when timed and time-abstract traces are used to define semantics of continuous and hybrid

systems.

If semantics of various modeling formalisms can be defined in terms of a common behav-

ior domain in a suitable formalism, that gives us a natural way of comparing and associating

analysis results of each individual analysis task. In such a case, behavior domains Bi in

behavior formalisms Bi would be identical for each i, which we can simply call B ∈ B. This

simple and straightforward approach is proposed in [78]. The semantics of a model can be

defined by creating a mapping ρM : M → 2B, which for a model M ∈ M and given a com-

mon behavior domain B defines the corresponding set of all possible behaviors ρM(M) ⊆ B

that the model exhibits. The semantic mappings for specifications are similarly defined by

mappings ρS : S → 2B, which defines the behavior set ρS(S) ⊆ B that the specification

S permits. The rationale behind creating such mappings to a universal behavior domain

B is that models ultimately represent the same system, specifications ultimately restrict

system behaviors and therefore, it should be possible to map model behaviors to system
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behaviors irrespective of the particular modeling and specification formalisms.

In general, when the semantics of models and specifications are defined using their nat-

ural behavior domains and there is either no obvious way of mapping them to a common

behavior domain, or when using a common behavior domain makes analysis difficult, pos-

sibly because some tools that work in specific formalisms cannot be used in the formalism

of the common domain, we need another mechanism to relate different semantics across

heterogeneous behavior domains. We introduce behavior relations to deal with different

behavioral domains. Behavior relations support semantic heterogeneity by allowing the

use of several different types of behavior formalisms for different models and specifications

[81].

Definition 3.1 (Behavior Relation). Given behavior domains B0 and B1 in behavior

formalisms B0 and B1, a behavior relation is a set R ⊆ B0 × B1 that associates pairs

of behaviors from the two behavior domains B0 and B1.

Given a behavior relation R ⊆ B0 × B1, for a subset of behaviors B′
0 ⊆ B0, R(B′

0)

denotes the set of behaviors in B1 associated with behaviors in B′
0, i.e., R(B′

0) = {b1 | ∃b0 ∈

B′
0 s.t. (b0, b1) ∈ R}. Similarly, for B′

1 ⊆ B1, R
−1(B′

1) is defined as the set of behaviors in

B0 associated with behaviors in B′
1, i.e., R

−1(B′
1) = {b0 | ∃b1 ∈ B′

1 s.t. (b0, b1) ∈ R}.

Example 2. Consider a behavior domain B0 = R
R+ as the set of all 1-d continuous

trajectories starting at time 0. Let the variable name for the single dimension be x,

which we will call the state. Consider another behavior domain B1 = Σ∗ ∪ Σω defined as

the set of all finite or infinite traces with event labels in Σ = {α, ᾱ}. Consider a usual

behavior abstraction technique frequently used in the literature — state-space partitioning,
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illustrated below. The continuous state-space R is partitioned in two halves x ≤ lx and

x ≥ lx at a boundary x = lx as follows.

α

ᾱ

x
x = lx

x ≤ lx x ≥ lx

The event corresponding to a continuous trajectory crossing the partition going from x ≤ lx

to x ≥ lx is associated with the label α and that from x ≥ lx to x ≤ lx is associated with

the label ᾱ.

We now express the semantic associations using a behavior relation R. Consider b0 ∈ B0

and b1 ∈ B1 where b0 = x(t) for t ∈ R+ and b1 = σ0σ1 · · · . In words, the behavior relation

states that (b0, b1) ∈ R if (i) ∃ a finite or infinite number of event times ti ∈ R+, i = 0, 1, . . .

that correspond to the continuous trajectory crossing the boundary in the right direction

associated with the label σi (i.e., from “from(σi)” to “to(σi)” according to the following

table),(ii) there are no crossings between any consecutive event times ti and ti+1 and (iii) if

there is a final event time tN , there are no crossings after that event time. Mathematically,

these conditions can be written as

∀t′ ∈ [0, t0), x(t′) ∈ from(σ0),

∀t′ ∈ [ti−1, ti), x(t′) ∈ to(σi−1) ∩ from(σi),

and if there is a final event time tN , ∀t
′ ≥ tN , x(t′) ∈ to(σN),

where
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σ from(σ) to(σ)

α x ≤ lx x ≥ lx

ᾱ x ≥ lx x ≤ lx

Fig. 3.3 shows some continuous trajectories along the dimension x over time, overlaid

on the two partitions of the state space. With respect to Fig. 3.3, for continuous behaviors

c, d, e, f and discrete behaviors g := α, h := αᾱαᾱαᾱ · · · , (c, g) ∈ R, (d, g) ∈ R and

(f, h) ∈ R. In contrast, there does not exist any behavior b′1 s.t. (e, b′1 ∈ R) since e never

crosses the partition boundary.

x

lx

c

d

e

f

t

Figure 3.3: Continuous behaviors with state partitioning boundary.

�

We consider special cases of behavior relations that are also functions, i.e., R ⊆ B0×B1

s.t. (b0, b1) ∈ R and (b0, b
′
1) ∈ R only if b1 = b′1. We call these behavior abstraction functions
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and denote them as functions A : B0 → B1.

Example 3. We consider the behavior relation R from Ex. 2. It is already a partial

function in that it does not associate any concrete behavior with more than one abstract

behaviors, but not every concrete behavior has an associated abstract behavior. We can

fix this by adding an association for all the remaining behaviors (i.e., those that do not

cross the partition boundary) to empty behavior ε (which is an element of B1).

With respect to Fig. 3.3, A(c) = A(d) = α and A(f) is the infinite string αᾱαᾱαᾱ · · · ,

while A(e) = ε. �

3.4 Addressing Semantic Interdependencies Using Pa-

rameter Constraints

Simplifying assumptions are made often in modeling different aspects of a system while

creating different models in suitable formalisms. This approach supports separation of

concerns where only those details that are relevant are represented, while the remaining

details are abstracted away. These assumptions are based on details from models and

specifications relevant to other aspects of the system. For example, as shown in Fig.

3.4, physical bounds on rates of change of variables, bounds on communication delays

and computation times, error bounds on measurements capture pieces of information that

belong to physical equation-based models, network models and timing models for worst-

case execution time analysis, but can be used in a verification or control design model.

To be able to formally model and address these semantic interdependencies in a manner
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Figure 3.4: Interdependencies between heterogeneous models.

consistent across modeling and specification formalisms, we introduce constraints over

parameters as a mechanism to make the interdependencies explicit. This approach has

been presented in [78, 81].

A parameter p of a system is a real-valued variable that affects the system behavior. The

valuation of a set of parameters P is a function v : P → R that associates each parameter

with a value. Note that parameters are required to be static, i.e., their valuation may be

different for different behaviors, but it does not change over time. V (P ) denotes the set of

all possible valuations of the parameters in P .

A constraint C(P ) over a set of parameters P is an expression written in a constraint

formalism C, such as first-order logic of real arithmetic. For a given v ∈ V (P ), JC(P )Kv ∈

{⊤,⊥}, where ⊤ and ⊥ denote symbols for logical constants true and false, is the

evaluation of the constraint C(P ) at v, and JC(P )K is the set of all valuations v over P for

which JC(P )Kv = ⊤.

Conjunction of constraints C1(P ) and C2(P ), written C1(P )∧C2(P ), is also a constraint

whose corresponding parameter valuations are the intersection of the parameter valuations
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of the original constraints, i.e., JC1(P ) ∧ C2(P )K = JC1(P )K ∩ JC2(P )K. Similarly, disjunc-

tion of constraints is a constraint whose corresponding parameter valuations are the union

of the parameter valuations of the original constraints. We write C ′(P ) ⇒ C(P ) when

JC ′(P )K ⊆ JC(P )K.

Given two sets of parameters P and P ′, the projection of a constraint C(P ) onto P ′,

written as C(P ) ↓P ′, is the constraint over P ′ defined by existential quantification of the

parameters in P \ P ′. Its valuations JC(P ) ↓P ′K are

{v′ ∈ V (P ′) | ∃v ∈ JC(P )K : v′(p′) = v(p′) ∀p′ ∈ P ′ ∩ P}.

We now return to the problem formulation from Sec. 3.1. Fig. 3.5 shows the para-

metric multi-model heterogeneous problem. We let Pi be a set of parameters introduced

for every ith analysis task. These parameters can be in the models Mi or specifications

Si. Parameters PM
i ⊆ Pi are associated with the models Mi and parameters P S

i ⊆ Pi are

associated with the specifications Si. Constraints C
M
i and CS

i determine the values of the

parameters in PM
i and P S

i for models Mi and specifications Si, respectively. The semantic

interpretation of a parameterized model Mi with a constraint CM
i , written JCM

i ,MiK
Bi , is

the set of all possible behaviors in Bi associated with the model Mi for all parameter valua-

tions in JCM
i (PM

i )K. Similarly, the semantic interpretation of a parameterized specification

JCS
i , SiK

Bi is the set of all behaviors in Bi that are permitted by Si for the values of param-

eters P S
i determined by the constraint CS

i . The parametric entailment CM
i ,Mi |=

Bi CS
i , Si
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Figure 3.5: Parametric multi-model heterogeneous verification of CPS.

needs to establish that

JCM
i ,MiK

Bi ⊆ JCS
i , SiK

Bi . (3.2)

This equation is a parametric extension of Equation (3.1).

Example 4. We consider the STARMAC quadrotor model from [35]. The equations of

motions for the quadrotor illustrated below are given by:

ẍ = −
b

m
ẋ+

1

m
(u1 + u2 + u3 + u4)sin(θ)

z̈ = −
b

m
ż +

1

m
(u1 + u2 + u3 + u4)cos(θ)− g

θ̈ =
L

Iy
(u1 − u3)−

c

L
θ̇,

where x and z determine the position of the quadrotor in a two-dimensional vertical plane,
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and θ represents its orientation with respect to the vertical axis. Here, the quadrotor mass

m, constant c, length of the frame L, and inertia Iy are some of the parameters for the

model and g represents the gravitational acceleration.

L

L

mg

u1

u3

θ

z

x

In absence of obstacles, the model uses an linear quadratic regulator (LQR) controller

in a ‘GoToTarget’ mode to fly towards a target. In presence of obstacles, it switches to

a ‘GoUp’ mode by giving equal inputs to all four motors. The safety specification is that

the quadrotor always maintains a vertical safety distance vsafe from the ground, horizontal

safety distance hsafe from potential obstacles in the ‘GoUp’ mode and velocity-dependent

safety distance given by the velocity times some time-to-crash buffer tsafe from potential

obstacles in the ‘GoToTarget’ mode. The parameters vsafe, hsafe, tsafe are specification

parameters. The parametric entailment objective for this example is to establish that

for all valuations of model and specification parameters of interest, the model satisfies the

specification. Parameter values for which this parametric entailment holds, are synthesized

in [35]. �

We observe that the set of possible behaviors of a given model grows or shrinks mono-

tonically with increasing or decreasing sets of parameter valuations, i.e., if C ′ ⇒ C, then
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JC ′,MKB ⊆ JC,MKB for any model M . We assume that the specifications are parameter-

ized such that increasing sets of parameter valuations allow increasing sets of behaviors,

i.e., if C ′ ⇒ C, then JC ′, SKB ⊆ JC, SKB for any specification S.

We let the constraint Caux(P ) denote the auxiliary constraints that capture the depen-

dencies across the set of all parameters P =
⋃n

j=0 Pj , which is the set of all parameters

being used, including the original system-level parameters P0. Without loss of generality

we assume the sets Pj, j = 0, 1, . . . , n are disjoint.

Example 5. Suppose parameterized specifications S1 and S2 for a communication model

and a computation model specify the communication delay and computation time as pa-

rameters τc and τcc. Suppose a verification model M3 has a parameter ǫ that overapproxi-

mates the delays. This interdependency can be modeled using the auxiliary constraint

S1.τc + S2.τcc ≤ M3.ǫ.

More complex nonlinear auxiliary constraints representing interdependencies appear in the

case study in Sec. 6.6. �

The auxiliary constraint is qualified using the following requirement.

Definition 3.2. We say that an auxiliary constraint Caux is non-conflicting for a given

system-level constraint C0 if

(C0 ∧ Caux) ↓P0
= C0.

The definition states that the interdependencies themselves are not in conflict with

the original system-level valuation of parameters for which we are to establish correctness
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guarantees.

3.5 Semantics of Composition

Given the behavioral semantics of models defined as subsets of behaviors that the models

allow, in this section we develop the semantics of composition of models. We start with

a simple special-case scenario in which the semantics of component models P and Q are

defined in the same behavior domain. In this case, we define the semantic composition of

two component models as follows.

Definition 3.3 (Semantic Composition). Given component models P andQ from the same

modeling formalismM with semantics defined in behavior domainB, the composition P ||Q

is a model in M s.t.

JP ||QKB = JP KB ∩ JQKB. (3.3)

This definition of composition as the intersection of behavior sets is consistent with the

literature for many definitions when the semantics are defined in a common behavior do-

main [19, 52, 62]. The definition, based on the system-theoretic work in the literature, e.g.,

by Willems [87], accommodates for the traditional concepts of component composition or

interconnection using output-to-input connection. The traditional input-output definitions

of component models do not specify the signal spaces for the inputs and outputs, which

can be understood as being unrestricted. The output-to-input connection assigns equality

constraint to the output of one component to the input of another, and the resultant be-

havior is one that agrees with both the components. For a detailed discussion, the reader
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is referred to the work by Julius [52] that discusses how the interconnection of linear time-

invariant systems, discrete-event systems and hybrid systems, as well as controller-plant

interconnection can be defined using the notion of behavioral interconnection, defined as

the intersection of corresponding sets of behaviors.

We note that for a given modeling formalism M, syntactic techniques may exist for cre-

ating a composition, e.g., construction of product automata. We allow all such procedures

to be used to define the composition, so long as (3.3) holds.

Example 6. Consider the following component models P and Q.

p0 p1

α

β

P

q0 q1

β

α

Q

p0q0 p0q1

p1q0 p1q1

M

α

β

The behavior domain for the component models is B := {α, β}∗, and the semantic interpre-

tations are JP KB = {α∗β} and JQKB = {αβ∗}. The semantic interpretation of a composite

model M := P ||Q is JMKB = {αβ}, since αβ is the only behavior that is common to the

two1. Note that syntactic procedure of creating a product transition system results in the

above composite system model M , whose semantic interpretation in B is exactly {αβ}. �

Example 7. Let ẋ ∈ [1, 5] and ẋ ∈ [2, 7] be the differential inclusion models of two

components. Their composition is a model ẋ ∈ [2, 5]. Here the common behavior domain

B for the two models is the set of all 1-d trajectories in the variable x. The physical

intuition where this situation might arise is that say if x represents a variable in a physical

1Unlike some statechart semantics, such as Stateflow’s, that allow unspecified events let a component
model stay in the same state, in this example, the absence of a transition is blocking, meaning no action
is possible.
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process that evolves according to some physical constraints for each case, then for the

combined case, physical constraints of both the cases have to be adhered to. In general,

in compositions of models with differential dynamics, different components are allowed to

control the evolution of different variables. We consider this case later in Sec. 3.5.3 where

we define globalized semantic composition as the generalization of this special case that

uses common semantic domains. �

The definition of semantic composition in Def. 3.3 can be extended to heterogeneous

modeling formalisms if the semantics of the two models from two modeling formalisms

can be defined in a common behavior domain B. An application for such a heterogeneous

composition would be to mathematically compose controllers modeled in causal formalisms

and plants modeled in acausal formalisms. Note, however, that for such a semantic def-

inition of composition, there wouldn’t be any syntactic constructs cutting across the two

formalisms in order to give us the right set of composite behaviors.

Now we consider the semantic composition of component models when their natural

behavior domains can be unequal. We create a mechanism to associate the component

semantics to a common domain in which they can be composed. Mappings between this

common domain and the natural domains of the component models are developed next.

3.5.1 Behavior Localization/Globalization

We now consider mappings between behavior domains from the same formalism. These

sorts of mappings will be used to associate the semantics of a component model in terms

of its local variables to the behavioral semantics at the global system level when it is
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composed with other component models.

Definition 3.4 (Behavior Localization). Given a behavior formalism B and two behavior

domains B,B′ ∈ B, an onto function ↓BB′ : B → B′ (i.e., every element of B′ has at least

one pre-image in B) is called a (behavior) localization of behavior domain B to behavior

domain B′.

Given a localization ↓BB′ of B to B′, for b ∈ B, we will let b↓BB′ denote ↓BB′(b). In

the following, we drop the superscript and subscript domain as indexes whenever the

respective domains are clear from the context, or simply index them by the component

names. Localization functions are extended to sets of behaviors in the usual way. Next, we

consider two common types of variable elimination as examples of behavior localization.

Example 8 (Event label removal). Consider behavior domains B := Σ∗ and B′ := Σ′∗ for

some Σ′ ⊆ Σ. The localization of B onto B′ is defined in terms of the event label removal

for strings s ∈ B as follows.

1. The empty string is projected onto itself, i.e. ε↓ = ε.

2. For any string s ∈ B and event label a ∈ Σ

• (s ◦ a)↓ = (s)↓ ◦ a . . . if a ∈ Σ′

• (s ◦ a)↓ = (s)↓ . . . if a 6∈ Σ′,

where ◦ is a concatenation operator.

�

Example 9 (Continuous variable elimination). Consider a global behavior domain B =

(R2)R+ of 2-d continuous trajectories, with the variables along the two dimensions named

x and y. Let a local behavior domain be B′ = (R)R+ with the variable name x. Let
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B̃ ⊆ B = {[x(t) y(t)]T | ∀t ∈ R+, x(t) ≥ 0, y(t) ∈ [0, 1]}. Then the localization due to

elimination of variable y can be written in terms of its existential quantification. B̃↓ can

be defined as the set {x(t)|∃y(t) s.t. ∀t ∈ R+, x(t) ≥ 0, y(t) ∈ [0, 1]}. �

Definition 3.5 (Behavior Globalization). Given behavior domains B, B′ and a behavior

localization ↓: B → B′, for each behavior b′ ∈ B′, the set-valued function ↑ : B′ → 2B−{∅}

defined by ↑(b′) = ↓−1(b′) = {b ∈ B|b↓ = b′}, is called a (behavior) globalization of B′ to

B.

For brevity of notation, we use b′↑ to mean ↑(b′). Note that b′↑ is always non-empty

since the localization function ↓ is onto.

Behavior localization and globalization are generally inferred from relationships between

models from given modeling formalisms and associated definitions of the relationships

between model primitives and their semantic interpretations.

3.5.2 Model Localization/Globalization

Consider two component models P and Q with different local behavior domains BP and

BQ in a behavior formalism B. These local behavior domains have only the variables

pertaining to a specific component while excluding others. In such a case, we need to lift

the local semantics of the components to common global behavior domains before we can

compose them.

We begin by defining the relationship between behaviors in a global domain and a local

domain. Given the definitions of localization and globalization of behavior domains, we

define model globalization as follows.
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Definition 3.6 (Model Globalization). Given a global behavior domain B, a model P

with its local behavior domain B′, and a behavior localization function ↓ : B → B′, the

(model) globalization of P is any model PG s.t. JPGKB = JP KB
′

↑.

For a given modeling formalism M, syntactic approaches for globalization may exist,

e.g., addition of self loops for newly added event labels for discrete transition systems, or

addition of state variables with unconstrained dynamics for continuous dynamic systems.

We allow the use of all such syntactic pre-processing procedures that lead to models with

the correct set of behaviors JP KB
′

↑ before composition.

Example 10. Consider two transition system models P as shown below. The local al-

phabet is ΣP = {α, β} and the local behavior domain BP = ΣP ∗

. Let the global alphabet

be Σ = {α, β, γ} and the global behavior domain B = Σ∗. Let the localization function

↓ : B → BP be defined as per Ex. 8.

α β

P

γ γ γ

α β

PG

The semantic interpretation of P in the local behavior domain BP is the set {αβ}. The

globalization of the set {αβ} in the global behavior domain B is the set {γ∗αγ∗βγ∗}. Note

that the syntactic globalization procedure by introducing self loops for the new label γ

results in a model PG shown above, and JPGKB = JP KB
P

↑. �

3.5.3 Globalized Semantic Composition

Given the above formal machinery in terms of model localization and globalization, the

following definition generalizes the notion of semantic composition from Def. 3.3.
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Definition 3.7 (Globalized Semantic Composition). Given a global behavior domain B,

component models P and Q with their corresponding local behavior domains BP and

BQ, and behavior localizations ↓P : B → BP and ↓Q : B → BQ, the globalized semantic

composition of P and Q in the global behavior domain B, denoted by P ||GQ is the semantic

composition of models PG and QG, which are the globalizations of P and Q respectively,

i.e., P ||GQ = PG||QG.

Syntactic procedures for globalization and composition can be used to construct global-

ized semantic compositions. Note that although syntactic procedures can produce different

model globalizations, they still yield semantically equivalent compositions in terms of sets

of behaviors. The non-uniqueness of syntactic globalization procedures is not an issue since

the resulting globalizations are all semantically equivalent, which is what we need for the

semantic composition.

Example 11. Consider two transition system models P and Q as shown below (without

the dashed self loops).

γ γ γ

α β

P (G)

β β β

α γ

Q(G)

α

γ

γ
ββ

M

The local alphabets of P and Q are ΣP = {α, β} and ΣQ = {α, γ}, and corresponding

behavior domains BP = ΣP ∗

and BQ = ΣQ∗

respectively. Let the global alphabet be

Σ = {α, β, γ}, and the global behavior domain B = Σ∗. Let ↓P and ↓Q be the localizations

as defined in Ex. 8.

The local sets of behaviors for the two components are JP KB
P

= {αβ} and JQKB
Q

=

{αγ}. The semantic globalizations of the two component models yield JP KB
P

↑P = {γ∗αγ∗βγ∗}
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and JQKB
Q

↑Q = {β∗αβ∗γβ∗}. The composition M := P ||GQ has corresponding sets of be-

haviors given by JMKB = JP KB
P

↑P ∩ JQKB
Q

↑Q = {αβγ, αγβ}.

Note that the syntactic globalization procedure of introducing self loops yields models

PG and QG, whose syntactic composition results in a model M as shown above, s.t. M =

P ||GQ. �

Example 12. Let Bj := R
R+ be the sets of 1-d continuous trajectories with variable

names xj , j = p, q respectively. Let two components P given by ẋp ∈ [1, 2] and Q given

by ẋq ∈ [3, 5], respectively, have their semantics defined in domains Bj , j = p, q. Let

B := (R2)R+ be the system behavior domain of 2-d continuous trajectories with variable

names along the two dimensions xp and xq. The globalizations of P and Q add the missing

dimension and leave it unconstrained. Therefore, PG and QG can be obtained as

PG ≡

















ẋp

ẋq

















∈

















[1, 2]

(−∞,∞)

















, QG ≡

















ẋp

ẋq

















∈

















(−∞,∞)

[3, 5]

















.

Their composition is P ||GQ ≡

















ẋp

ẋq

















∈

















[1, 2]

[3, 5]

















. �

3.6 Summary

In this chapter, we formulated the heterogeneous model-based design problem for analyses

of the type system-level safety verification. Model semantics are defined in terms of their
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interpretation in some behavior domain formally specified in some behavior formalism.

Semantic mappings between behavior domains of different types are defined in terms of

behavior relations and their special case behavior abstraction functions; while those be-

tween behavior domains of the same type are defined in terms of behavior localization and

globalization.

The semantic mappings across heterogeneous behavior domains using behavior rela-

tions and behavior abstraction functions; and across homogeneous behavior domains using

localization and globalization enable us to define model operations and relations such as

heterogeneous associations and semantic composition. Given this theoretical machinery

we study heterogeneous abstraction in the next chapter.
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Chapter 4

Heterogeneous Abstraction

For all but the most trivial cyber-physical systems (CPS), abstraction is essential for mak-

ing analysis and verification tractable. Different modeling formalisms are often used in

various abstractions to facilitate the design of particular aspects of the system. In this

chapter, we develop a formal machinery for establishing abstractions across any pairs of

formalisms using behavioral semantics and behavior relations defined in the previous chap-

ter.

4.1 Heterogeneous Abstraction Using Behavioral Se-

mantics

Many different forms of abstraction have been considered in the literature. We focus

on abstraction that corresponds to behavioral inclusion, for example, language or trace

inclusion.
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Definition 4.1 (Abstraction). When semantically interpreted over the same behavior

domain B, a model M1 is an abstraction of a model M0, written M0 ⊑
B M1, if

JM0K
B ⊆ JM1K

B. (4.1)

This mathematical definition of a subset relation captures the notion of overapproxi-

mation, whose interpretation could depend on the particulars of the behavior formalism,

e.g., in terms of language semantics, trace semantics and reachable sets.

In case of heterogeneous modeling formalisms, whenever it is possible to define seman-

tics in terms of a common behavior domain, we can still use this standard definition of

abstraction. Models M0 and M1 in the above definition can be from two different modeling

formalisms M0 and M1. This is illustrated in the following example.

Example 13. Consider a Simulink model M0 of a thermostat as shown in Fig. 4.1. The

model depicts a simple illustration of heating and cooling dynamics of the temperature

continuous variable, say T , when the heating is on and when the heating is off and the

temperature drops towards the ambient. The hysteresis limits for switching the thermostat

on and off, say Ton and Toff, instantiated to values 14 and 16 units and the ambient and

furnace temperatures Ta and Tf instantiated to -30 and 30 units are used for simulation.

A particular initial condition (‘initial value’ of the 1/s block) is 10 units. In terms of the

behavior domain B of piecewise continuous 1-d trajectories in the variable T , a simulation

trace determines a corresponding behavior for the initial condition of choice, as shown in

Fig. 4.2.
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Thermostat model in Simulink
Switching thresholds: 14,16

Initial condition: 10
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Factor

beta
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-30

Figure 4.1: A Simulink model of a thermostat.

Now consider a hybrid automaton model M1 of the thermostat as shown in Fig. 4.3. Let

the semantics of M1 also be defined in B. The behaviors of this model can be determined

using reacheability analysis. If the ranges of the parameters Ton, Toff, Ta, Tf , and the

bounds on the initial condition T0, T0 include the particular instantiations used in the

Simulink model M0, it can be shown that the hybrid automaton M1 abstracts M0 in B.

The overapproximation of the corresponding behavior set JM0K
B by JM1K

B is given by the

fact that the abstract automaton model allows more behaviors that those allowed by the

Simulink model in domain B. �

The following definition extends the notion of behavior set inclusion from Def. 4.1 to

heterogeneous behavior domains using mappings across the different domains to enable the

subset comparison.

Definition 4.2 (Heterogeneous Abstraction). Given behavior domains B0, B1 in behavior

formalisms B0 and B1 and a behavior relation R ⊆ B0×B1, a model M1 is a heterogeneous
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Figure 4.2: A behavior of the Simulink model.

heatOn heatOff

Ṫ = α(Tf − T ) Ṫ = β(Ta − T )

T ≥ Toff

T ≤ Ton

T ∈ [T0, T0]

Figure 4.3: A hybrid automaton model of a thermostat.

abstraction of a model M0 through R, written M0 ⊑
R M1, if

JM0K
B0 ⊆ R−1(JM1K

B1). (4.2)

Fig. 4.4 show a Venn diagram representation for the heterogeneous abstraction defini-

tion using behavioral semantics. It asserts that for every behavior b0 in B0 of model M0,

the behavior relation R associates at least one corresponding behavior in B1 of model M1.
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B0

b0

R−1(JM1K
B1)

JM0K
B0

Figure 4.4: Heterogeneous abstraction using behavior relations.

Heterogeneous abstraction using behavior relations is illustrated in a case study in

Chapter 6.

When using several abstractions of a model together towards system analysis, we can

make use of a collection of models to abstract an underlying model. This is typically useful

when there are different behaviors in different operating regimes that are best modeled

by different models, where neither one fully represents the whole set of behaviors of the

system, but their union does. This notion is made formal by the following definition.

Definition 4.3 (Model Coverage). For a system model M0 with a behavioral domain B0,

given a set of models Mi with corresponding behavior domains Bi and behavior relations

Ri ⊆ B0×Bi, models Mi, i = 1, . . . , n cover M0 if there exists a partition {B1
0 , B

2
0 , . . . , B

n
0 }

of JM0K
B0 s.t. ∀i = 1, 2, . . . , n

Bi
0 ⊆ R−1

i (JMiK
Bi).

Fig. 4.5 provides a pictorial intuition behind the coverage definition from Def. 4.3. It

ensures that every behavior of the underlying system M0 to be accounted for by at least

one model. Heterogeneous model coverage is illustrated in a case study in Sec. 6.3.

51



B0

b0

JM0K
B0
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i R
−1
i (JMiK

Bi)

Figure 4.5: Heterogeneous coverage using behavior relations

A special case of coverage using multiple models occurs when the behavior of a system in

different modes of operation can be best modeled using different models, and the system can

switch between these modes. For safety specifications that require that some correctness

condition always hold over all time (i.e., also over all modes no matter what order the

system switches into them), the different models can be analyzed in isolation, provided

we account for all possible manners of entering any given mode into the model for that

particular mode. Heterogeneous model coverage for mode switching is illustrated in a case

study in Sec. 6.3.

To address interdependencies between models across different formalisms, we use ex-

plicitly identified model parameters which will be used to define the interdependencies. We

use the parametric semantic interpretations of models as defined in Sec. 3.4. The notions of

model abstraction and coverage are extended to include parameter constraints as follows.

Definition 4.4 (Parametric Abstraction). Given a parameterized model M0 with a behav-

ioral domain B0, a parameterized model Mi with corresponding behavior formalism Bi and

a behavior relation Ri ⊆ B0×Bi, Mi is said to be a parametric abstraction of M0 under an
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auxiliary constraint Caux if for any constraint CM
0 on P0 such that Caux is non-conflicting

for CM
0 , for the effective external constraint EM

i := (Caux ∧ CM
0 ) ↓PM

i
, we have

JCM
0 ,M0K

B0 ⊆ R−1
i (JEM

i ,MiK
Bi). (4.3)

In words, the above definition asserts that when the behaviors of the system model

M0 along with the system-level constraint CM
0 and a model Mi with the effective external

constraint EM
i due to CM

i given the interdependencies Caux are compared via the behavior

relation Ri, the set of behaviors of Mi overapproximate that of M0. Parametric abstraction

is illustrated in Sec. 6.6.

Along similar lines as the definition of parametric abstraction, we define parametric

coverage as follows.

Definition 4.5 (Parametric Coverage). For a parameterized system model M0 with a

corresponding behavior formalism B0, a given set of parameterized models Mi with corre-

sponding behavior formalisms Bi and behavior relations Ri ⊆ B0 × Bi, i = 1, . . . , n form

a parametric cover for M0 if for any constraint CM
0 on P0 such that Caux is non-conflicting

for CM
0 , there exists a partition {B1

0 , B
2
0 , . . . , B

n
0 } of JCM

0 ,M0K
B0 s.t. ∀i = 1, 2, . . . , n, , for

the effective external constraints EM
i := (Caux ∧ CM

0 ) ↓PM
i
, we have

Bi
0 ⊆ R−1

i (JEM
i ,MiK

Bi). (4.4)

The intuition behind the definition of parametric coverage is similar to that of para-

metric abstraction, except that the models Mi with their effective external constraints EM
i
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only need to overapproximate their subset of the partition of the behaviors of the model

M0 with constraint CM
0 via their behavior relations Ri. Then because of the partition, the

union of the model behaviors via Ri abstracts the behaviors of M0.

4.2 Compositional Heterogeneous Abstraction

Models of complex systems are often composed of interacting component models. In such

cases, heterogeneous abstraction can be independently established for the respective com-

ponent models and these results can be used to infer heterogeneous abstraction for their

composition [82]. We develop conditions under which heterogeneous abstraction between

component models implies heterogeneous abstraction between the composite system mod-

els.

4.2.1 Heterogeneous Abstraction In Common Behavior Domains

Fig. 4.6 illustrates the compositional heterogeneous abstraction problem. We consider two

levels of abstraction, represented by the subscripts i = 0, 1. For each level of abstraction,

we assume there is a modeling formalism Mi and a behavior class Bi. Component models

Pi, Qi ∈ Mi have their semantics defined in common behavior domains Bi ∈ Bi. Behavior

abstraction function A : B0 → B1 is used as a mapping between the behavior domains B0

and B1.

We use the definition of semantic composition from Def. 3.3 of two component models.

The following proposition gives conditions for compositional heterogeneous abstraction.
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Q1 ∈ M1, with

JQ1K
B1 ⊆ B1 ∈ B1

Q0 ∈ M0, with

JQ0K
B0 ⊆ B0 ∈ B0

Have:
Q0 ⊑

A Q1

P1 ∈ M1, with

JP1K
B1 ⊆ B1 ∈ B1

P0 ∈ M0, with

JP0K
B0 ⊆ B0 ∈ B0

Have:
P0 ⊑

A P1

To show:
M0 ⊑A M1

‖

‖

M0 ∈ M0, with

JM0K
B0 ⊆ B0 ∈ B0

M1 ∈ M1, with

JM1K
B1 ⊆ B1 ∈ B1

Figure 4.6: Compositional heterogeneous abstraction in common behavior domains.

Proposition 4.1. For each abstraction level i = 0, 1, given component models Pi, Qi

with the semantics of each model interpreted over a behavior domain Bi , and a behavior

abstraction function A : B0 → B1, if P0 ⊑
A P1 and Q0 ⊑

A Q1, then

P0||Q0 ⊑
A P1||Q1.

Proof. From P0 ⊑A P1 and Q0 ⊑A Q1, we have JP0K
B0 ⊆ A−1(JP1K

B1) and JQ0K
B0 ⊆
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A−1(JQ1K
B1). Therefore,

JP0||Q0K
B0 = JP0K

B0 ∩ JQ0K
B0

⊆ A−1(JP1K
B1) ∩A−1(JQ1K

B1)

= A−1(JP1K
B1 ∩ JQ1K

B1)

= A−1(JP1||Q1K
B1).

This proposition states that with global semantics, composition of abstractions is the

abstraction of the composition.

Remark 4.6 (Insufficiency of Behavior Relations). We note that arbitrary behavior re-

lations that are not functions are not sufficient in even this simple case of compositional

heterogeneous abstraction. If a behavior relation A is not a function, it is possible to have

a behavior b0 ∈ JP0K
B0 ∩ JQ0K

B0 with (b0, p1) ∈ A, (b0, q1) ∈ A, s.t. p1 ∈ JP1K
B1\JQ1K

B1

and q1 ∈ JQ1K
B1\JP1K

B1 but 6 ∃ b1 ∈ JP1K
B1 ∩ JQ1K

B1 with (b0, b1) ∈ A, as shown in the

Venn diagram in Fig. 4.7.

For this b0, we have b0 ∈ A−1(JP1K
B1) ∩ A−1(JQ1K

B1) but b0 6∈ A−1(JP1K
B1 ∩ JQ1K

B1)

and therefore the above proof does not hold. The arbitrary mappings that are the source

of these counterexamples – those that allow one concrete behavior to be associated with

more than one abstract behaviors – are perhaps not necessary in practice. The restriction

from behavior relations to functions disallows the possibility of having several abstract

behaviors correspond to a single concrete behavior, while still allowing several concrete
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JP0K
B0

JP1K
B1

JQ0K
B0

JQ1K
B1

b0

p1

q1

JP1K
B1 ∩ JQ1K

B1

A(b0)
A(b0)

Figure 4.7: Insufficiency of arbitrary behavior relations for compositionality.

behaviors to be mapped to a single abstract behavior. �

Next we consider the general case where the local semantics of the two components

are defined in terms of distinct behavior domains. Fig. 4.8 illustrates the general case of

the compositional heterogeneous abstraction problem. Component models Pi, Qi ∈ Mi

have their semantics defined in terms of local behavior domains BP
i , B

Q
i ∈ Bi. These local

domains include only the variables relevant to the given component. Because the local

semantic domains BP
i and B

Q
i for components P and Q are different from each other, their

own behavior abstraction functions AP and AQ that are used as mappings between the

respective local behavior domains. To compose the two models to form the system models

Mi ∈ Mi, the local semantics are lifted to global behavior domains Bi ∈ Bi to include

variables from both components.

We begin by developing a mechanism to associate between different abstraction func-
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Q1 ∈ M1, with

JQ1K
B

Q
1 ⊆ B

Q
1 ∈ B1

Q0 ∈ M0, with

JQ0K
B

Q
0 ⊆ B

Q
0 ∈ B0

Have:

Q0 ⊑
AQ

Q1

P1 ∈ M1, with

JP1K
BP

1 ⊆ BP
1 ∈ B1

P0 ∈ M0, with

JP0K
BP

0 ⊆ BP
0 ∈ B0

Have:

P0 ⊑
AP

P1

To show:
M0 ⊑A M1

‖

‖

M0 ∈ M0, with

JM0K
B0 ⊆ B0 ∈ B0

M1 ∈ M1, with

JM1K
B1 ⊆ B1 ∈ B1

Figure 4.8: Compositional heterogeneous abstraction analysis in local behavior domains.

tions of component models.

4.2.2 Localization/Globalization of Abstraction Functions

We have defined behavior set localization and globalization as fundamental semantic oper-

ations in Chapter 3. Note that in case of compositional heterogeneous analysis as depicted

in Fig. 4.8, there are four different behavior localizations (or globalizations) – one for each

component and one at each level of abstraction. We index these with subscripts i = 0, 1

for the two levels of abstraction and superscripts j = 1, 2 or j = P,Q to distinguish be-

tween these wherever necessary. Here we create the notions of localization/globalization

of behavior abstraction functions given the localization/globalization mappings at both the

levels of abstraction that the behavior abstraction function maps.
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Given behavior globalizations at the abstract and concrete levels of abstraction, we

next define the globalization of a behavior abstraction function between the abstract and

concrete local domains.

Definition 4.7 (Abstraction Function Globalization). Given two behavior classes B0 and

B1, behavior domains from each behavior class: B0, B
′
0 ∈ B0 and B1, B

′
1 ∈ B1, localizations

↓i of Bi to B′
i for i = 1, 2, and a behavior abstraction function A′ of B′

0 to B′
1, a behavior

abstraction function A of B0 to B1 is said to be a globalization of A′ if

∀b0 ∈ B0 : A
′(b0↓0) = A(b0)↓1. (4.5)

In words, the definition of abstraction globalization states that given any global concrete

behavior b0, the abstraction of its localization b0↓0 at the concrete level 0 through the local

abstraction function A′ should be the same as the localization at the abstract level 1 of its

corresponding abstract behavior A(b0). This concept is illustrated by the diagram in Fig.

4.9: A is a globalization of A′ if the diagram commutes.

B′
1 B1

B0B′
0

↓1

A

↓0

A′

Figure 4.9: Commutative diagram for abstraction function localization/globalization.

We write A = A′⇑ if A is a globalization of A′. We call A′ a localization of A, written
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A′ = A⇓, iff A = A′⇑.

Note that in case of compositional heterogeneous analysis as depicted in Fig. 4.8, there

are two different abstraction localizations/globalizations – one for each component.

We note the following existence and uniqueness properties of localization/globalization

of behavior abstraction functions.

• Existence of globalization. For a given local abstraction A′, it is always possible to

construct a globalization A′⇑ s.t. the diagram commutes. This is due to the fact that

both localizations ↓i, i = 0, 1 are onto functions. Therefore, for any local behaviors b′0

and b′1 = A(b′0), b
′
0↑0 and b′1↑1 are non-empty. One can then associate every behavior

b0 ∈ b′0↑0 with some behavior b1 ∈ b′1↑1, which results in a valid globalization of A′.

• Non-uniqueness of globalization. For a given local abstraction A′, its global-

ization A′⇑ is not unique. For a b′0 with A′(b′0) = b′1 and b′1↑1 = {b01, b
1
1}, consider

a global behavior b0 ∈ b′0↑0 . Then A0 with A0(b0) = b01 and A1 with A1(b0) = b11

can both be globalizations of A′. Since localization causes loss of information, its

set-valued inverse provides some freedom for creating mappings at the global level;

appropriate ones need to be chosen.

• Non-existence of localization. For a given global abstraction A, its localization

A⇓ may not exist, i.e., the diagram may not commute for any A′. Consider b00, b
1
0

with A(b00) = b01 and A(b10) = b11, and b00↓0 = b10↓0, but b
0
1↓0 6= b11↓0. For such a case,

there can be no A′ s.t. A′⇑ = A.

• Uniqueness of localization. For a given global abstraction A, if A⇓ exists, it

is unique. This is simply due to the diagram commuting. ∀ b0, behaviors b0↓0,
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A(b0) =: b1, and b1↓1 are unique. Therefore, for every given mapping A(b0) = b1,

there is a unique mapping A′(b0↓0) = b1↓1.

• Globalization and localization are not necessarily inverse operations. From

the uniqueness of localization and non-uniqueness of globalization, it is straightfor-

ward to show that

(A′⇑)⇓ = A′; (4.6)

but (A⇓)⇑ may not be equal to A.

Given the theoretical machinery developed so far, we now find conditions under which

compositional heterogeneous abstraction w.r.t. Fig. 4.8 can be used.

The following lemma states that heterogeneous abstraction between model globaliza-

tions via a global abstraction function is equivalent to heterogeneous abstraction between

original models via the localization of the global abstraction function.

Lemma 4.1. For abstraction levels i = 0, 1, given component models Pi with local behavior

domains B′
i, behavior localization functions ↓i : Bi → B′

i, let their corresponding globalized

models be PG
i with global behavior domains Bi. If A : B0 → B1 is a global behavior

abstraction function and A′ : B′
0 → B′

1 is a localization of A, then

PG
0 ⊑A PG

1 ⇔ P0 ⊑
A′

P1.

Proof. From the definition of model globalization, we have

bi ∈ JPG
i KBi ⇔ bi↓i ∈ JPiK

B′

i (4.7)
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and

b′i ∈ JPiK
B′

i ⇔ b′i↑i ⊆ JPG
i KBi . (4.8)

Case I: PG
0 ⊑A PG

1 ⇒ P0 ⊑
A′

P1

For any given b0 ∈ JPG
0 KB0 , let b1 := A(b0). From PG

0 ⊑A PG
1 , we have b1 ∈ JPG

1 KB1 . From

(4.5), A′(b′0 := b0↓0) = b1↓1. Hence, from (4.7), we have that ∀b′0 ∈ JP0K
B′

0 ,A′(b′0) ∈ JP1K
B′

1 ,

which implies JP0K
B′

0 ⊆ A′−1(JP1K
B′

1), i.e., P0 ⊑
A′

P1.

Case II: PG
0 ⊑A PG

1 ⇐ P0 ⊑
A′

P1

From P0 ⊑A′

P1, we have b′0 ∈ JP0K
B′

0 ⇒ A′(b′0) =: b′1 ∈ JP1K
B′

1 . From Def. 4.7 and (4.8),

for any b′0 ∈ JP0K
B′

0 , b0 ∈ b′0↑0 ⊆ JPG
0 KB0 ⇒ A(b0) =: b1 ∈ b′1↑1 ⊆ JPG

1 KB1 . Therefore,

JPG
0 KB0 ⊆ A−1(JPG

1 KB1), i.e., PG
0 ⊑A PG

1 .

In terms of Fig. 4.8, the implication of Lemma 4.1 is the following. When the abstract

and concrete models of a component are considered in isolation, it does not matter whether

one does the heterogeneous abstraction analysis in the global domains or the local domains.

We now use the result from Lemma 4.1 in a compositional setting when the component

models are composed to form a system model.

4.2.3 Heterogeneous Abstraction In Local Behavior Domains

Consider the general scenario w.r.t. Fig. 4.8 in which the component models Pi and Qi have

different local behavior domains BP
i and B

Q
i in behavior class Bi, for levels of abstraction

i = 0, 1. In this case, we need to lift the local semantics of the components to common

global behavior domains before we can compose them. This operation is defined as model
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globalization in Def. 3.6 as a fundamental operation on behavior sets.

For the following discussion, we let models Mi, with the global behavior domains Bi,

be the globalized compositions Pi||
GQi of component models Pi and Qi with their local

behavior domains BP
i and B

Q
i , for levels of abstraction i = 0, 1 as depicted in Fig. 4.8.

We consider two scenarios in which the source of the abstraction is at the system and

component levels respectively.

Centralized development

First, we consider the case where an abstraction function A : B0 → B1 between the global

behavior domains B0 and B1 is given. For this case, the following proposition shows that

the problem of establishing M0 ⊑A M1 can be reduced to solving two smaller problems

P0 ⊑
A⇓P

P1 and Q0 ⊑
A⇓Q

Q1.

Proposition 4.2. For abstraction levels i = 0, 1, given component models Pi and Qi with

corresponding local behavior domains BP
i and B

Q
i , let their globalized semantic composi-

tions be Pi||
GQi in global behavior domains Bi with behavior localizations ↓ji : Bi → B

j
i ,

where j = P,Q, and a global behavior abstraction function A : B0 → B1. If localizations

A⇓P and A⇓Q of A exist and P0 ⊑
A⇓P

P1 and Q0 ⊑
A⇓Q

Q1, then M0 ⊑
A M1.

Proof. From P0 ⊑AP

P1 and Q0 ⊑AQ

Q1, we know from Lemma 4.1 that PG
0 ⊑A PG

1 and
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QG
0 ⊑A QG

1 , i.e., that JPG
0 KB0 ⊆ A−1(JPG

1 KB1) and JQG
0 KB0 ⊆ A−1(JQG

1 KB1). We have,

JP0||
GQ0K

B0 = JPG
0 KB0 ∩ JQG

0 KB0

⊆ A−1(JPG
1 KB1) ∩ A−1(JQG

1 KB1)

= A−1(JPG
1 KB1 ∩ JQG

1 KB1)

= A−1(JP1||
GQ1K

B1).

Prop. 4.2 states that we can establish M0 ⊑A M1 in the global behavior domains by

establishing P0 ⊑A⇓P

P1 and Q0 ⊑A⇓Q

Q1 in the local behavior domains of the two

components.

Example 14. Consider component models

P0 ≡

















ẋ

ẏ

















∈

















[2, 4]

[1, 2]

















,

















x

y

















(0) ∈

















[0, lx)

[0, ly)

















and Q0 ≡

















ẋ

ż

















∈

















[3, 5]

[1, 2]

















,

















x

z

















(0) ∈

















[0, lx)

[0, lz)

















.

Let P1 and Q1 be as follows.

p0 p1

p2 p3
α

α

ββ

P1

q0 q1

q2 q3
a

a

ββ

Q1
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The compositions are M0 := P0||
GQ0 given by





























ẋ

ẏ

ż





























∈





























[3, 4]

[1, 2]

[1, 2]





























,





























x

y

z





























(0) ∈





























[0, lx)

[0, ly)

[0, lz)





























and

p0q0 p1q0 p2q0 p3q0

p0q1 p1q1 p2q1 p3q1

p0q2 p1q2 p2q2 p3q2

p0q3 p1q3 p2q3 p3q3

M1 := P1||
GQ1.

α

α

α

α

aa

aa

β

β
β

β

Global behavior domain B0 := (R3)R+ for M0 is the set of 3-d trajectories with variable

names x, y, z; while global behavior domain B1 := Σ∗ for M1 is the set of all finite traces

over the alphabet Σ = {α, ᾱ, β, β̄, a, ā}. Let the behavior abstraction function A : B0 → B1

be defined by partitioning the continuous state space as follows.
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β̄

β

α
ᾱ

a

ā

x

y

z

Given b0 = [x(t) y(t) z(t)]T =: x̄(t), t ∈ R+ and b1 = σ0σ1 · · · , A
j(b0) = b1 if ∃ times ti ∈

R+ s.t.

∀t′ ∈ [0, t0), x̄(t) ∈ from(σ0),

∀t′ ∈ [ti−1, ti), x̄(t) ∈ to(σi−1) ∩ from(σi),

∀t′ ≥ tN x̄(t) ∈ to(σN )

where i = 1, . . . , N for some N ∈ N and from(·) and to(·) are given in the following

table.
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σ from(σ) to(σ)

a z ≤ lz, x, y ∈ R z ≥ lz, x, y ∈ R

ā z ≥ lz, x, y ∈ R z ≤ lz, x, y ∈ R

α y ≤ ly, x, z ∈ R y ≥ ly, x, z ∈ R

ᾱ y ≥ ly, x, z ∈ R y ≤ ly, x, z ∈ R

β x ≤ lx, y, z ∈ R x ≥ lx, y, z ∈ R

β̄ x ≥ lx, y, z ∈ R x ≤ lx, y, z ∈ R

Otherwise, A(b0) = ε.

The problem of establishing M0 ⊑A M1 for above A can be reduced to two smaller

problems P0 ⊑
A⇓P

P1 and Q0 ⊑
A⇓Q

Q1 as follows.

Local behavior domains for the two models of component P are BP
0 = (R2)R+ with

variable names for the dimensions x and y; and BP
1 = ΣP ∗

with ΣP = {α, ᾱ, β, β̄}. Sim-

ilarly, in case of the two models of component Q, BQ
0 = (R2)R+ with variable names for

the dimensions x and z; and B
Q
1 = ΣQ∗

with ΣQ = {a, ā, β, β̄}. Let behavior localization

functions for the two components at the two levels of abstractions be variable elimination

and natural projection as in Ex. 8 and 9. We get the behavior abstraction function local-

izations AP : BP
0 → BP

1 and AQ : BQ
0 → B

Q
1 , where AP = A⇓P and AQ = A⇓Q are as

follows.
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y

ly

lx

α β

ᾱ

β̄ x

z

lz

lx

a β

ā

β̄ x

Let x̄P = [xy]T and x̄Q = [xz]T . Given bP0 = x̄P (t), bQ0 = x̄Q(t) for t ∈ R+ and b
j
1 = σ

j
0σ

j
1 · · · ,

Aj, j = P,Q, are defined as Aj(bj0) = b
j
1 if ∃ times tji ∈ R+ s.t.

∀t′ ∈ [0, tj0), x̄j(t′) ∈ from
j(σj

0),

∀t′ ∈ [tji−1, t
j
i ), x̄j(t′) ∈ to

j(σj
i−1) ∩ from

j(σj
i ),

∀t′ ≥ t
j
N , x̄j(t′) ∈ to

j(σj
N ),

where i = 1, . . . , N for some N ∈ N and from
j(·) and to

j(·) are given in the following

tables.

σ from
P (σ) to

P (σ)

α y ≤ ly, x ∈ R y ≥ ly, x ∈ R

ᾱ y ≥ ly, x ∈ R y ≤ ly, x ∈ R

β x ≤ lx, y ∈ R x ≥ lx, y ∈ R

β̄ x ≥ lx, y ∈ R x ≤ lx, y ∈ R

σ from
Q(σ) to

Q(σ)

a z ≤ lz, x ∈ R z ≥ lz, x ∈ R

ā z ≥ lz, x ∈ R z ≤ lz, x ∈ R

β x ≤ lx, z ∈ R x ≥ lx, z ∈ R

β̄ x ≥ lx, z ∈ R x ≤ lx, z ∈ R

Otherwise, Aj(bj0) = ε.

From the initial conditions and the monotonicity of the dynamics of P0 (resp. Q0), we

can see that every behavior of the concrete model crosses the x == lx and y == ly (resp.

z == lz) boundaries in either order and have corresponding behaviors αβ (resp. aβ) or βα
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(resp. βa) at the discrete level that they map to. Therefore P0 ⊑AP

P1 and Q0 ⊑AQ

Q1.

Using Prop. 4.2, M0 ⊑
A M1.

Here, analyzing Pis and Qis is much easier than analyzing Mis directly. In general, the

extent of savings achieved by doing the heterogeneous abstraction analysis compositionally

depends on how much smaller the local behavior domains are compared to the global ones.

�

Decentralized development

Now, we consider the case where the abstraction functions AP : BP
0 → BP

1 and AQ : BQ
0 →

B
Q
0 between the local behavior domains BP

i and B
Q
i are given and heterogeneous abstrac-

tions of component models P0 ⊑
AP

P1 and Q0 ⊑
AQ

Q1 are established independently. This

is the more common situation in practice, particularly for distributed development. In

this case, the following proposition states that if the globalizations of abstraction functions

AP⇑P and AQ⇑Q are defined consistently, the heterogeneous abstraction results for the

components carry over to their compositions.

Proposition 4.3. For abstraction levels i = 0, 1, given component models Pi and Qi with

local behavior domains BP
i and B

Q
i , let their compositions be Pi||

GQi in global behavior

domainsBi and local behavior abstraction functions beAP : BP
0 → BP

1 andAQ : BQ
0 → B

Q
1

s.t. P0 ⊑
AP

P1 and Q0 ⊑
AQ

Q1. If A
P⇑P = AQ⇑Q =: A, i.e., then P0||

GQ0 ⊑
A P1||

GQ1.

Proof. The result follows due to (AP⇑P )⇓P = AP and (AQ⇑Q)⇓Q = AQ from (4.6) and

Prop. 4.2.

Prop. 4.3 states that the heterogeneous abstraction results for component models Pi
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and Qi via possibly very different abstraction functions AP and AQ follow over to the

system heterogeneous abstraction so long as AP and AQ are consistent, i.e., that it is

possible to find globalizations AP⇑P and AQ⇑Q that are in agreement with each other.

Note from the non-uniqueness of globalization of abstraction functions that there is some

design freedom while constructing the semantic mappings at the global behavior domains

for the two components such that they agree.

We note the following conditions for agreement of the globalizations of the local ab-

straction functions from the two components.

• Disjoint behavior domains. If the local behavior domains are disjoint (no common

variables), the abstraction functions are disjoint. Therefore, when globalized, they

are not mutually restrictive and it is always possible to construct globalizations that

agree.

• Agreement in intersection. For non-disjoint local behavior domains, it is nec-

essary for globalization agreement that the local abstraction functions agree on the

“intersection” of the two behavior domains, say B∩
i , i.e., along the variables common

to the two components. If localizations AP⇓∩ : B∩
0 → B∩

1 and AQ⇓∩ : B∩
0 → B∩

1

of AP and AQ agree, it is always possible to construct globalizations of AP and AQ

that agree due to the fact that variables not common to the two components are not

mutually constraining.

Decentralized compositional heterogeneous abstraction is illustrated using a case study

in Sec. 6.5.
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4.3 Summary

This chapter presents a mechanism to establish abstraction between models in different

formalisms using behavioral semantics. When possible, the semantic interpretations of

heterogeneous models can be defined in a common behavior domain, which enables the

use of the notion of abstraction using behavior set inclusion. When model semantics are

defined in different behavior domains, associations between these domains using behavior

relations enable us to relate the corresponding behavior sets.

When models are composed of interacting component or subsystem models, hetero-

geneous abstraction can be established independently for each component in isolation

in its local behavior domains. Behavior abstraction functions, special cases of behavior

relations, are used as associations between heterogeneous behavior domains at different

levels of abstraction; while localizations/globalizations are used as associations between

local component behavior domains and global system behavior domains at a given level

of abstraction. Sufficient conditions are developed under which heterogeneous abstraction

between component models implies heterogeneous abstraction between their compositions.

Behavior relations are general mappings for associating behaviors from two different do-

mains. They are useful when associating pairs of behaviors where there is no clear notion

of one being more abstract than the other. Behavior abstraction functions, on the other

hand, are mappings defined with the purpose of establishing abstraction in mind. Behav-

ior abstraction functions prohibit one concrete behavior to be mapped to more than one

abstract behaviors, which is in accordance with what is needed for abstraction. Behavior

relations allow more than one behaviors from one domain to be mapped to more than one
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behaviors from the other. Behavior relations can also leave certain behaviors unmapped

if they are not relevant for the analyses at hand. Behavior abstraction functions need

to associate mappings to every behavior since they are used for the goal of abstraction.

The appropriate choice of mappings depends on the particular domains and the behavior

association objective at hand.

Given the mechanism developed in this chapter to associate and compare sets of be-

haviors and semantic interpretations of heterogeneous models using behavior relations and

behavior abstraction functions, in the next chapter we develop heterogeneous verification

across different semantic domains.
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Chapter 5

Heterogeneous Verification

The goal of heterogeneous verification in model-based design is to infer properties about

an underlying system by using its models or abstractions in different modeling formalisms

and analyzing them for correctness against specifications using relevant analysis procedures

and tools. In this chapter, we introduce the concept of formal specifications over hetero-

geneous behavior domains and their use along with heterogeneous model abstraction and

coverage concepts developed in the previous chapter towards hierarchical heterogeneous

formal verification of systems.

5.1 Specification Implication Using Behavioral Seman-

tics

We begin by establishing semantic relationships between specifications that are similar to

the semantic tools developed for abstraction and coverage between models.
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Definition 5.1 (Specification Implication). When semantically interpreted over the same

set of behaviors B, a (stronger) specification S1 is said to imply a (weaker) specification

S0, written S1 ⇒
B S0, if

JS1K
B ⊆ JS0K

B. (5.1)

This definition simply asserts that any behavior that satisfies S1 also satisfies S0. In

this definition, note that the two specifications can be from heterogeneous specification

formalisms S0 and S1, so long as their semantics are defined in the same behavior domain.

Example 15. Consider two cars crossing through an intersection as shown in Fig. 5.1.

Consider an English language specification S0 stated as “the two cars never collide

in the intersection,” and a temporal logic specification S1 written as �¬(xred ∈ [0, f ]∧

ygreen ∈ [0, h]), which requires that the two cars cannot be in the intersection at the same

time.

0 f

h

0

y

x

Figure 5.1: Intersection with two cars crossing.

Consider a behavior domain B, which is the set of all 4-d continuous trajectories in the

variables xred, yred, xgreen, ygreen for the x, y positions of the red and green car, such that

yred ∈ [0, h] and xgreen ∈ [0, f ] always hold, i.e., that the cars are always within their road
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limits. The set JS0K
B permits the cars to be in the intersection area so long as they do not

collide (which depending on the intended interpretation of collide might mean ‘be within

ε’ distance of each other for some ε). The set JS1K
B simply does not allow the two cars

to be in the intersection at the same time, which is more restrictive. Therefore we have

S1 ⇒
B S0. �

The following definition extends the notion of specification implication to heterogeneous

behavior domains using behavior relations.

Definition 5.2 (Heterogeneous Implication). Given behavior domains B0, B1 in behavior

formalisms B0 and B1, and a behavior relation R ⊆ B0 × B1, we say that specification S1

implies specification S0 via R, written S1 ⇒
R S0, if

R−1(JS1K
B1) ⊆ JS0K

B0 . (5.2)

Fig. 5.2 shows a Venn diagram representation for the heterogeneous implication defini-

tion using behavioral semantics. It asserts that if a behavior b0 ∈ B0 is associated through

R with a behavior in b1 ∈ B1 that satisfies S1, then b0 satisfies S0.

B0

b0

JS0K
B0

R−1(JS1K
B1)

Figure 5.2: Heterogeneous implication using behavior relations.

75



When several specifications are used to define correctness requirements for different

models, we define conjunction of specifications to be the intersection of the behavior sets

allowed by each of the specifications. We need to ensure that the specifications checked

against each model together imply the specification for the underlying system. The follow-

ing definition makes this notion formal.

Definition 5.3 (Conjunctive Heterogeneous Implication). Given system behavior domain

B0, behavior domains Bi and behavior relations Ri ⊆ B0 × Bi, i = 1, . . . , n, specifications

Si, i = 1, . . . , n, conjunctively imply the system specification S0 if

⋂

i

R−1
i (JSiK

Bi) ⊆ JS0K
B0 .

Fig. 5.3 shows a Venn diagram representation of conjunctive heterogeneous implication

using behavior semantics. The definition allows the individual specifications Si to not

imply S0, but their conjunction (intersection of the allowed behaviors) is required to be

stronger than S0.

b0

⋂

i R
−1
i (JSiK

Bi)

JS0K
B0

Figure 5.3: Conjunctive heterogeneous implication using behavior relations.
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When there are interdependencies between specifications for different models, we ex-

plicitly model them using constraints over parameters and use parametric semantics for

specifications as developed in Sec. 3.4. We extend the notion of specification implication

and conjunctive specification implication to include parameter constraints as follows.

Definition 5.4 (Parametric Implication). Given a behavior relation Ri ⊆ B0 ×Bi and an

auxiliary constraint Caux, a parameterized specification Si is said to parametrically imply

a parameterized specification S0 if for any constraint CS
0 on P0 such that Caux is non-

conflicting for CS
0 , for the effective external constraint ES

i := (Caux ∧ CS
0 ) ↓PS

i
, we have

R−1
i (JES

i , SiK
Bi) ⊆ JCS

0 , S0K
B0 . (5.3)

In words, the definition of parametric implication states that when the system-level

specification S0 with its system-level constraint CS
0 and specification Si with its effective

external constraint ES
i due to S0 given the interdependencies Caux are compared, the be-

haviors allowed by Si underapproximate those allowed by S0. Note the similarity of this

definition to the analogous Def. 4.4 for models.

The following definition develops the parametric extension of conjunctive specificaion

implication.

Definition 5.5 (Conjunctive Parametric Implication). For a parameterized system spec-

ification S0 with a set of parameters P0 and a corresponding behavioral formalism B0, a

given set of parameterized specifications Si with corresponding behavior formalisms Bi and

behavior relations Ri ⊆ B0 × Bi, Si, i = 1, . . . , n, conjunctively paremetrically imply S0
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if for any constraint CS
0 on P0 such that Caux is non-conflicting for CS

0 , for the effective

external constraints ES
i := (Caux ∧ CS

0 ) ↓PS
i
, we have

⋂

i

R−1
i (JES

i , SiK
Bi) ⊆ JCS

0 , S0K
B0 . (5.4)

The intuition behind conjunctive parametric implication is similar to that of the para-

metric implication except that the individual specifications Si with their effective external

constraints ES
i are allowed to not have to individually imply S0 for its constraint CS

0 , al-

though the conjunction of the specifications has to. Note the similarity of this definition

to the analogous Def. 4.5 for models.

Conjunctive parametric implication is illustrated in a case study in Sec. 6.6.

5.2 Verification Using a Single Heterogeneous Abstrac-

tion

We begin the development of heterogeneous verification with a simple case using a single

abstract model, which serves as a basic building block for multi-model system-level verifi-

cation. Given the definitions of heterogeneous abstraction and heterogeneous implication,

we develop the following proposition for heterogeneous verification that uses both of these

concepts.

Proposition 5.1 (Heterogeneous Verification). Given two behavior domains B0 and B1

in behavior formalisms B0 and B1, models M0 and M1 in modeling formalisms M0 and
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M1, specifications S0 and S1 in specification formalisms S0 and S1, and a behavior relation

R ⊆ B0 × B1, if M0 ⊑
R M1, M1 |=

B1 S1 and S1 ⇒
R S0, then M0 |=

B0 S0.

Proof. From M0 ⊑
R M1, we have

JM0K
B1 ⊆ R−1(JM1K

B1)

(From M1 |=
B1 S1) ⊆ R−1(JS1K

B1)

(From S1 ⇒
R S0) ⊆ JS0K

B0 .

Therefore, M0 |=
B0 S0.

The following diagram shows the schematic of heterogeneous verification according to

Prop. 5.1.

M1 |=B1 S1

⊑
R

⇒
R

M0 |=B0 S0

The abstraction and implication relations between the respective models and specifications

via the behavior relation R give us the ability to use the analysis result M1 |=
B1 S1 at an

abstract level in behavior domain B1 to conclude M0 |=
B0 S0 in a detailed behavior domain

B0.
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5.3 Verification Using Several Heterogeneous Abstrac-

tions

There are two natural ways of using multiple models and specifications together. In one,

models individually are abstractions of the underlying system and the conjunction of their

associated specifications needs to imply the system specification. Alternatively, each model

may represent only a subset of the behaviors of the underlying system, and the collection

of models provides an abstraction of the complete system. In this second case, the specifi-

cation for each model needs to imply the specification of interest for the underlying system

for the set of behaviors covered by the model. We develop these two notions in the context

of heterogeneous verification.

5.3.1 Conjunctive Multi-Model Heterogeneous Verification

We first consider the case where each model in a collection of models is a heterogeneous

abstraction of the underlying system and specifications for the set of models together form

a conjunctive implication for the system specification. In this case, we have the following

analysis result.

Proposition 5.2 (Heterogeneous Conjunctive Analysis). For a system model M0 with

a behavioral domain B0 and specification S0, given models Mi with the corresponding

behavior domains Bi, specifications Si and behavior relations Ri ⊆ B0×Bi, if M0 ⊑
Ri Mi,

specifications Si conjunctively imply S0, and Mi |=
Bi Si for each i = 1, . . . , n, then M0 |=

B0

S0.
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Proof. From M0 ⊑
Ri Mi for each i, we have

JM0K
B0 ⊆

⋂

i

R−1
i (JMiK

Bi)

(since Mi |=
Bi Si) ⊆

⋂

i

R−1
i (JSiK

Bi)

(Conj. Het. Implication) ⊆ JS0K
B0 .

Therefore, M0 |=
B0 S0.

Fig. 5.4 gives a pictorial intuition for the heterogeneous conjunctive analysis from Prop.

5.2 using a Venn diagram representation of various behavior sets in the domain B0. Model

M0 individually abstracted by models Mi means that its behavior set lies in the intersec-

tion of those of Mi via behavior relations Ri. Each model satisfying their specifications

means their behavior sets are inside respected behavior sets of the specifications Si. Fi-

nally, conjunctive heterogeneous implication says that the intersection of the behavior sets

of specifications Si via Ri is contained inside that of S0. Conjunctive heterogeneous verifi-

cation is illustrated in a case study in Sec. 6.4.

5.3.2 Disjunctive Multi-Model Heterogeneous Verification

In the disjunctive case, no model is a proper abstraction of the underlying system, only

all models together cover it. Hence, in order to make sure that a specification holds for

the underlying system we need to verify that each of the disjunctive models satisfies that

specification.

From the definition of model coverage, we have the following lemma.
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b0

⋂

i R
−1
i (JSiK

Bi)

JS0K
B0

R−1
i (JMiK

Bi)

JM0K
B0

Figure 5.4: Conjunctive heterogeneous verification using behavior relations.

Lemma 5.1. If models Mi cover M0 through Ri, i = 1, . . . , n, we have

JM0K
B0 ⊆

n
⋃

i=1

R−1
i (JMiK

Bi).

Proof. From the definition of partition, we have

JM0K
B0 =

n
⋃

i=1

Bi
0

(Def. 4.3) ⊆
n
⋃

i=1

R−1
i (JMiK

Bi).

We use this lemma in heterogeneous disjunctive analysis as follows.

Proposition 5.3 (Heterogeneous Disjunctive Analysis). For system model M0 with a be-

havioral domain B0 and specification S0, given models Mi with the corresponding behavior

domains Bi, specifications Si and behavior relations Ri ⊆ B0 × Bi, if each specification
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Si heterogeneously implies S0, models Mi cover M0, and Mi |=
Bi Si for each i = 1, . . . , n,

then M0 |=
B0 S0.

Proof. From the definition of model coverage, we have

JM0K
B0 ⊆

⋃

i

R−1
i (JMiK

Bi)

(since Mi |=
Bi Si) ⊆

⋃

i

R−1
i (JSiK

Bi)

(Het. Implication) ⊆ JS0K
B0 .

Therefore, M0 |=
B0 S0.

Fig. 5.5 gives a pictorial intuition behind the disjunctive heterogeneous analysis con-

struct from Prop. 5.3. The union of the behaviors for models Mi via behavior relations

Ri cover the set of behaviors for M0 in behavior domain B0. Individual safety verification

results mean that the sets of behaviors of models Mi are in those of Si. Finally, each

specification Si being stronger than S0 via Ri means that the union of the behavior sets

for Si via Ri is contained inside the set of behaviors allowed by S0 in B0. Disjunctive

heterogeneous analysis is illustrated in a case study in Sec. 6.3.

5.4 Consistent Heterogeneous Verification with Inter-

dependencies

To ensure consistent heterogeneous verification in presence of ineterdependencies, we ex-

tend the notions of model abstraction and coverage in Sec. 4.1 as well as specification
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b0

JM0K
B0

⋃

iR
−1
i (JMiK

Bi)

R−1
i (JSiK

Bi)

JS0K
B0

Figure 5.5: Disjunctive heterogeneous verification using behavior relations

implication in Sec. 5.1 to include constraints over parameters. We begin by developing a

notion of external-constraint consistency, which ensures that the values of parameters used

for each analysis task correctly approximates original system-level parameter valuations

given the interdependencies.

Definition 5.6. The pair of constraints (CM
i , CS

i ) for i
th analysis task CM

i ,Mi |=
Bi CS

i , Si

is said to be external-constraint consistent if

EM
i := (CM

0 ∧ Caux) ↓PM
i
⇒ CM

i and CS
i ⇒ (CS

0 ∧ Caux) ↓PS
i
=: ES

i . (5.5)

The constraints EM
i and ES

i capture the effective external constraints on the local

sets of parameters PM
i and P S

i ; while the constraints CM
i and CS

i get used for estab-

lishing parametric entailment for model Mi and specification Si. The external-constraint

consistency ensures that the constraints used for individual analysis are over- and under-

approximative in the correct sense. The monotonicity of parameterization of parameters

then ensures that the corresponding model and specification behavior sets are also over-
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and under-approximated in the correct manner.

Given these definitions, the following two propositions give sufficient conditions for

parametric conjunctive and disjunctive analysis.

Proposition 5.4. Given parameterized system model M0 and specification S0 with cor-

responding behavior domain B0 and the pair of constraints CM
0 , CS

0 over the system-level

parameters PM
0 , P S

0 , a set of parameterized models Mi and specifications Si with corre-

sponding behavior formalisms Bi, behavior relations Ri ⊆ B0×Bi and pairs of constraints

CM
i , CS

i over parameters PM
i , P S

i for i = 1, . . . , n, if

i. constraints (CM
i , CS

i ) are external-constraint consistent,

ii. each model Mi is a parametric abstraction of M0,

iii. specifications Si conjunctively parametrically imply S0, and

iv. CM
i ,Mi |=

Bi CS
i , Si

then CM
0 ,M0 |=

B0 CS
0 , S0.

Proof. From the definition of parametric abstraction, we have

JCM
0 ,M0K

B0 =
⋂

i

R−1
i (JEM

i ,MiK
Bi)

(Def. 5.6, monotonicity) ⊆
⋂

i

R−1
i (JCM

i ,MiK
Bi)

(CM
i ,Mi |=

Bi CS
i , Si) ⊆

⋂

i

R−1
i (JCS

i , SiK
Bi)

(Def. 5.6, monotonicity) ⊆
⋂

i

R−1
i (JES

i , SiK
Bi)

(Def. 5.5) ⊆ JCS
0 , S0K

B0
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Therefore, CM
0 ,M0 |=

B0 CS
0 , S0.

This proposition presents the parametric counterpart of the conjunctive heterogeneous

analysis construct from Prop. 5.2. It uses the parametric definitions of abstraction (Def.

4.4), entailment (Eq. (3.2)) and conjunctive implication (Def. 5.5). The external-constraint

consistency and monotonicity provide the remaining pieces for the conjunctive parametric

verification to work out. Conjunctive parametric verification is illustrated in a case study

in Sec. 6.6.

The next proposition gives an analogous construct for disjunctive parametric heteroge-

neous verification.

Proposition 5.5. Given parameterized system model M0 and specification S0 with a be-

havior formalism B0 and the pair of constraints CM
0 , CS

0 over the system-level parameters

PM
0 , P S

0 , a set of parameterized models Mi and specifications Si with corresponding behav-

ior formalisms Bi, behavior relations Ri ⊆ B0 × Bi and pairs of constraints CM
i , CS

i over

parameters PM
i , P S

i for i = 1, . . . , n, if

i. constraints (CM
i , CS

i ) are external-constraint consistent,

ii. models Mi form a parametric cover for M0,

iii. specifications Si each parametrically imply S0 and

iv. CM
i ,Mi |=

Bi CS
i , Si

then CM
0 ,M0 |=

B0 CS
0 , S0.

Proof. From the definition of parametric coverage, there exists a partition {B1
0 , . . . , B

n
0 } of
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JCM
0 ,M0K

B0 s.t.

JCM
0 ,M0K

B0 ⊆
⋃

i

R−1
i (JEM

i ,MiK
Bi)

(Def. 5.6, monotonicity) ⊆
⋃

i

R−1
i (JCM

i ,MiK
Bi)

(CM
i ,Mi |=

Bi CS
i , Si) ⊆

⋃

i

R−1
i (JCS

i , SiK
Bi)

(Def. 5.6, monotonicity) ⊆
⋃

i

R−1
i (JES

i , SiK
Bi)

(Def. 5.4) ⊆ JCS
0 , S0K

B0

Therefore, CM
0 ,M0 |=

B0 CS
0 , S0.

This proposition presents the parametric counterpart of the disjunctive heterogeneous

analysis construct from Prop. 5.3. It uses the parametric definitions of coverage (Def. 4.5),

entailment (Eq. (3.2)) and implication (Def. 5.4). The external-constraint consistency and

monotonicity provide the remaining pieces for the conjunctive parametric verification to

work out.

5.5 Hierarchical Heterogeneous Verification

We note that the conjunctive and disjunctive analysis constructs can be nested arbitrar-

ily. For example, the jth conjunctive verification subtask Mj |=
Bj Sj can be broken down

disjunctively into its subtasks Mji |=Bji Sji by creating new models that cover Mj and

specifications that imply Sj. Thus, using the nesting of conjunctive and disjunctive con-

structs, any arbitrary propositional logical breakdown of a system verification task can be
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X

Figure 5.6: Heterogeneous verification as a tree representation.

achieved. This is illustrated using a case study in Sec. 6.2.

In its most basic form, a heterogeneous verification can be viewed as a tree, as illus-

trated in Fig. 5.6. Similar tree structures for organizing information are used in tools

such as SVM [7] for requirements management and in fault-tree analysis tools such as

PLFaultCAT [33] and Galileo [85] for analyzing root causes of faults. In a heterogeneous

verification tree, each node is a verification activity and can be successful, inconclusive or

failed. The root node is the system verification activity, with subsequent children nodes

representing the verification activities invoked to reason about the parent verification ac-

tivity. The success of the verification activity of a parent node can be inferred from the

successful verification activities of its children nodes plus the correctness of the conjunctive
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or disjunctive decomposition. If either the verification of children nodes or the correctness

of decomposition cannot be established, the analysis result of the node is inconclusive (and

not failed), because these conditions are sufficient, but not necessary. Associated with each

node are the details of the verification activity, namely the model, its specification, a list

of parameters, the constraints on parameters in the model and the specification, and a

behavior relation indicating how the behaviors of children relate to the behaviors of the

parent.

5.6 Summary

This chapter develops a framework based on behavior relations for enabling heterogeneous

verification. Behavior relations provide with the semantic associations across heteroge-

neous behavior domains, which allow us to extend the usual notions of abstraction and

implication to heterogeneous domains. Multiple abstractions can be used together towards

the verification with an underlying more-detailed model in two kinds of ways — one where

models are individually abstractions and specifications on the models together imply the

underlying specification, and one where models for different operating regimes together

abstract the underlying system model and specifications individually imply the underlying

specification. When the model can switch between different operating regimes over time,

initial conditions used for verification need to correctly overapproximate the range of initial

conditions that are physically possible due to the mode switching.
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Chapter 6

Case Study

In this chapter, we demonstrate the practical applicability of the theoretical machinery

developed in this thesis. We use an example from the automotive CPS domain that is

both heterogeneous and safety-critical.

Every year, police reported automotive crashes in the United States amount to $ 300

billion in comprehensive costs and 43,000 fatalities. Out of these, intersection-area crashes

amount to $97 billion in comprehensive costs and 9,500 fatalities [25]. Cooperative intersec-

tion collision avoidance systems (CICAS) is a government-industry initiative to instrument

intersections and make use of these smart intersections to cooperate together with smart

vehicles to eliminate intersection-related crashes [1].

Within the CICAS umbrella, three types of intersection collisions are considered. CI-

CAS for violations (CICAS-V) looks at collisions caused due to stop-sign and signal-

controlled intersection violations. CICAS for signalized left turn assist (CICAS-SLTA)

focuses on signalized left turns at intersections with no protected left turn, where a driver
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turning left needs to make a judgment about the safety of gaps in the oncoming opposing

traffic. CICAS for stop-sign assist (CICAS-SSA) focuses on rural highways with stop-sign

controlled intersections where a driver crossing the highways needs to make a judgment

about the safety of the gaps in the oncoming lateral traffic [1].

The instrumented intersection consists of a traffic signal controllers capable of exporting

signal phase and timing in formation, a local global positioning system (GPS), and road

side equipment (RSE) that includes computing, memory, and dedicated short range com-

munication (DSRC) radio. The vehicle portion of the systems includes on-board equipment

for computing and DSRC radio connected to the vehicle controller area network (CAN),

global positioning, and the driver-vehicle interface (DVI). The instrumented intersection

sends the signal phase and timing, positioning corrections, and positions and velocities of

the oncoming vehicles as applicable to either the RSE or to a DSRC-equipped vehicle. The

computation engine at RSE or the vehicle uses the available information to analyze the

safety of a given gap and informs that to the driver via DVI or a roadside dynamic message

sign [65].

MBD of CICAS presents the challenges we aim to address in this thesis. The systems

are safety-critical due to the very nature of the application, which warrants formal verifica-

tion. The systems are also heterogeneous due to the diversity of the constituent elements

such as sensing of positions and velocities of vehicles, communication of the signal phase

and timing information and sensor readings to a computer, software to compute safe gaps

either on a computation element based on the physical dynamics of the vehicles and speed

limits. There is no good unified formalism for modeling all aspects of such complex het-
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erogeneous system, yet one would like to formally verify the correctness of such a system.

Therefore, these systems are good applications for illustrating the practical implications

of the theoretical developments in this thesis. In this chapter, we use CICAS-SSA as a

representative system from CICAS and develop its hierarchical heterogeneous verification.

6.1 Cooperative Intersection Collision Avoidance Sys-

tem for Stop-Sign Assist

Rural highways in the United States often have intersections where minor road traffic is

allowed to cross the highway traffic. Drivers on minor roads at these stop-sign controlled

intersections have to determine when the gap in the cross traffic is sufficient for them

to drive across the highway or make a turn to merge into the highway traffic safely. A

number of factors lead to errors in human judgment about the safety of oncoming gaps,

such as lack of clear visibility due to the intersection geometry or inclement weather, error

in judgment about the speed of oncoming vehicles, and inaccurate estimates about how

long it will take to drive through the intersection or make a turn onto the highway and

blend safely with the cross traffic. Accidents at such intersections are often fatal because

of the side-on collisions at highway speeds. Over 60% of the fatal crashes occur in rural

stop-sign controlled highway intersections . Fatalities and injuries resulting from stop-sign

related crashes cost approximately $28 billion annually [67].

CICAS-SSA is a research initiative by the US Department of Transportation Federal

Highway Administration, Minnesota Department of Transportation and University of Min-
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nesota’s Intelligent Transportation Systems (ITS) Institute [2]. The goal of the program is

to instrument the rural stop-sign controlled intersections to help human driver judge the

safety of oncoming traffic gaps by: sensing the positions and velocities of the oncoming

traffic; communicating these readings to a computer; computing safety of the oncoming

gap based on the intersection geometry, type of the vehicle wanting to cross the traffic, and

speed limits; and displaying the (un)safety of the gap to the driver on a dynamic message

sign.

Figure 6.1 shows a schematic of a rural highway called the major road with a minor

road crossing it at a stop-sign controlled intersection. The major road is monitored for

the positions and velocities of the oncoming vehicles and the minor road is monitored for

occupancy and vehicle class. The vehicle at the stop-sign being served by CICAS-SSA is

called the subject vehicle (SV). The nearest oncoming vehicle is called the principal other

vehicle (POV), where ‘nearest’ is defined as the vehicle in the oncoming traffic with the

shortest time-to-intersection as determined from the positions and approach velocities of

the vehicles in the oncoming traffic. In the example in Fig. 6.1, the two-way highway is

separated by a median that is wide enough for a vehicle to stop between the traffic in each

direction, so the median is monitored for occupancy.

Following the terminology used in the CICAS-SSA literature, the distance between any

two vehicles approaching the intersection is called a gap, while that between a POV and the

intersection center line is called a lag. As oncoming cars enter and cross the intersection,

the downstream gaps become lags, and the safety-judgment decision of whether or not to

enter the intersection can be made based on the lags between the nearest oncoming vehicles
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Figure 6.1: A pictorial sketch of CICAS-SSA.

in each lane and the intersection.

CICAS-SSA being implemented in prototypes warns drivers when it is unsafe to enter

the intersection and telling them to proceed with caution otherwise [45]. This simple

warning scheme is based on empirical data, based on the smallest size of gap in seconds

that 80 percentile of drivers would reject. Rather than using this simple approach of

alerting or warning the driver, we consider the scenario that a more conservative advice

is given to the driver, but one that is guaranteed to be safe, i.e., if the driver does follow

the instructions, there cannot be a collision. The particular strategy we model in this case

study is shown in Fig. 6.2. The SV modeled is allowed to (but doesn’t have to) enter the

intersection only if all the oncoming vehicles are far enough away (beyond a distance l)

from the intersection to allow the SV to pass completely through the intersection before the

POV has arrived at the intersection. Otherwise the SV has to remain stopped. The driver

model for SV assumes that (s)he responds within a finite duration of time and accelerating
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with a minimum value once starting to drive.

POV

SV

h

0

0 fl

far close inInt
Y

X

Figure 6.2: Safety-decision schematic for CICAS-SSA.

6.2 Hierarchical Heterogeneous Verification Tree for

CICAS-SSA

The verification objective for the CICAS-SSA design described above is to ensure that if

a driver follows the SV driver follows the system’s advice, there is no collision. We use

the hierarchical heterogeneous tree representation from Sec. 5.5 to manage several levels

of abstraction to break this problem down into heterogeneous models and their analysis

using nested conjunctive and disjunctive verification constructs from Sec. 5.3.1, Sec. 5.3.2

and Sec. 5.4.

Figure 6.3 depicts the heterogeneous verification tree for for the CICAS-SSA design

discussed above. Each node in the verification tree is a verification activity, with the

root identifying the system-level verification. We enumerate each level of abstraction as
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the distance from the root node in terms of the number of links, i.e., Levels 0 (for root)

through 6 (for leaf nodes). We refer to each node with the index ij where i is the level of

abstraction and j is a number read from left to right starting from 1 at a given level of

abstraction. Conjunctive breakdowns are depicted with an arcs labeled ∧, and disjunctive

breakdowns and disjunctive coverage for mode switching are depicted with arcs labeled ∨

and ∨∗. We give a high-level description of the verification tree first, and selected pieces

of this tree in detail later to illustrate various aspects of the theory.

The verification for each node can be concluded by the verification of its children one

level of abstraction up, given a correct method of breakdown used – conjunctive, disjunctive

or disjunctive with switching. At each level of abstraction, depending on the nature of

the breakdown, one has to create models, define new specifications for them, construct

behavior relations and verify model abstractions or coverage and conjunctive or individual

specification implication. Abstraction can be carried out compositionally using behavior

abstraction functions whenever possible. The actual verification activity is carried out at

the leaf nodes using some analysis techniques and tools.

The verification objective at the root node, Node 01, can be established as “given the

uncertainties in the measurements from the sensing subsystem, delays in the communi-

cation subsystem, computation time, and driver response time, there is never a collision

if the SV driver follows the system’s advice.” At abstraction level 1, different models of

communication, computation, sensing and driver behavior are used to obtain bounds on

delays and errors which are used along with a formal verification model to establish SV and

another car is never in the intersection at the same time. At level 2, the formal verifica-
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tion model is disjunctively covered by the three choices the SV has, namely going straight,

turning right and turning left. At level 3, the models for each of these cases is conjunctively

abstracted by simpler models that consider only one lane at a time. At level 4, the single

lane-multi-vehicle models are covered with mode-switching by models with a single POV

that either starts safe or starts unsafe. For the case when the POV starts safe and the SV

has a chance to enter the intersection, at level 5 (leaf nodes) we have simple models that

capture the dynamics of the POV, the dynamics of the SV and a discrete protocol model.

The relative times of POV to get to and SV to exit the intersection along with the correct

order ensures conjunctive heterogeneous verification. The leaf nodes are actually verified,

without constructing any further abstractions.
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Figure 6.3: CICAS-SSA hierarchical heterogeneous verification tree.
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6.3 Disjunctive Heterogeneous Verification

In this section we illustrate the theoretical concepts of disjunctive heterogeneous verifi-

cation developed in Sec. 5.3.2. Disjunctive heterogeneous verification involves creating

heterogeneous abstractions that cover different subsets of behavior sets of an underlying

model. The specifications that are checked against these models need to each individually

imply the original specification. A special case of coverage can be used for mode-switching

systems while verifying temporally invariant specifications. Next we describe two places

within the CICAS-SSA tree in Fig. 6.3 where disjunctive heterogeneous verification can be

used.

6.3.1 Model Coverage Using Behavior Relations

We consider the verification problem at Node 13 in Fig. 6.3 and illustrate the concepts

of coverage using behavior relations, specification implication using behavior relations and

their use for disjunctive heterogeneous verification.

Consider the verification modelM13 at Node 13 as shown in Fig. 6.4. The model is made

up of two hybrid automata components Major Road and SV. The Major Road component

models the dynamics of the oncoming vehicles. The vehicle dynamics are modeled by

differential inclusions representing ranges of possible velocities given highway speed limits.

The vector-valued variable x in Fig. 6.4 represents the positions of the oncoming cars from

the intersection, which are negative in the frame of reference for the intersection.

In real intersections, the oncoming vehicles approach the intersection one after another.

As they enter the intersection and cross, new vehicles become the ones of interest. This
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phenomenon can be thought of as a loop that initializes the oncoming vehicles to their

positions, and runs until some vehicle reaches the intersection, and after that vehicle has

crossed the intersection, the system is re-initialized with the positions of the new set of

vehicles, which again runs until the next vehicle reaches the intersection. The model

captures one such instance that is useful over and over again. This instance allows the

evolution of the system to continue until some car reaches the intersection, represented by

the invariant x ≤ 0 in the Major Road component. It also captures the worst-case set of

initial conditions for the oncoming cars: they can be anywhere in the instrumented area,

denoted by the range [−420, 0] for the initial conditions. Proving the infinite loop, given

these individual instances, would be necessary to infer the correctness of the real systems.

waiting

x ≤ −300

stopped

conflict s

ys ≤ 4.5

clear s

ẏ = 0; v̇ = 0
x < −300

ys ≥ 4.5

conflict r

yr ≤ 170

clear r
yr ≥ 170

driving

x ≤ 0

ẋ ∈ [20, 30]

y(0) = 0; v(0) = 0x(0) ∈ [−420, 0]

||

x < −300

ẏs = vs; v̇s ∈ [0.25, 5]

ẏr = vr; v̇r ∈ [2, 5]

ẏ = 0; v̇ = 0

ẏ = 0; v̇ = 0

ẏ = 0; v̇ = 0

Major Road SV

conflict l

yl ≤ 180

clear l
yl ≥ 180ẏl = vl; v̇l ∈ [2, 5]

ẏ = 0; v̇ = 0

x < −300

ẏr = 0; v̇r = 0

ẏs = 0; v̇s = 0

ẏ
l
= 0; v̇

l
= 0

Figure 6.4: Verification model M13.

The decision strategy modeled for the SV is that if all the oncoming vehicles on the

major road are beyond an imaginary marker at position l = −300, the SV is permitted to

start driving, but it doesn’t have to. When some car crosses l, the SV has to stay stopped,

forced by the invariant in waiting. Whenever permitted, whether the SV decides to go
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straight or turn left or right is represented as a nondeterministic choice; however once it

has committed to one, it isn’t allowed to change its mind. The position and velocities of

the SV along straight, left and right directions are ys, yl, yr and vs, vl, vr respectively. For

brevity of notation in Fig. 6.4, y and v mean {ys, yl, yr} and {vs, vl, vr}, respectively; ys̄,

yl̄, yr̄ mean {yl, yr}, {ys, yr}, {ys, yl}, respectively; and vs̄, vl̄, vr̄ mean {vl, vr}, {vs, vr},

{vs, vl}, respectively.

The evolution of the model M13 stops when the SV clears the conflict regions or when

the some major road vehicle enters the intersection. By the time the major road vehicle

enters the intersection, if the SV is still in the conflict zone, there is a safety violation (a

potential collision). Alternatively, if the SV has cleared the conflict zone or hasn’t entered

it, there is no safety violation. The objective is to guarantee collision freedom for this

particular strategy. The collision-freedom specification S13 can be defined by the temporal

logic formula � ¬ ((x == 0∧0 < ys < 4.5)∨(x == 0∧0 < yr < 170))∨(x == 0∧0 < yl <

180)), where numbers 4.5, 170 and 180 are chosen based on a typical highway intersection

geometry.

We create three models shown in Fig. 6.5, 6.6 and 6.7, for the cases where SV is only

allowed to turn left, go straight and turn right.

The behavior domain of M13 (i.e., B13) is the set of all MN + 6 dimensional hybrid

traces, where N is the number of major road lanes with M being the max number of

vehicles that can fit within the instrumented area per lane, yielding MN as the dimension

for x plus 6 from SV. The dimensionality of the SV model is reduced when we only consider

one direction at a time, and so the domains B21, B22 and B23 are each sets of all MN + 2
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Figure 6.5: Verification model M21.
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ẏs = 0; v̇s = 0
x < −300

ys ≥ 4.5
driving
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ẋ ∈ [20, 30]

ys(0) = 0; vs(0) = 0x(0) ∈ [−420, 0]

|| ẏs = vs; v̇s ∈ [0.25, 5]

ẏs = 0; v̇s = 0

ẏs = 0; v̇s = 0

Major Road SV

Figure 6.6: Verification model M22.

dimensional hybrid traces. The behavior relations for this breakdown are as follows:

• R21 : {(b13, b21)|b13 ↓ys,yr,vs,vr== 0̄ and b0 ↓x,yl,vl== b21}

• R22 : {(b13, b22)|b13 ↓yl,yr,vl,vr== 0̄ and b0 ↓x,ys,vs== b22}

• R23 : {(b13, b23)|b13 ↓yl,ys,vl,vs== 0̄ and b0 ↓x,yr,vr== b23}

where ↓<<list>> represents the projection onto the list of variables << list >> and 0̄

represents vector traces of zeros over all time .
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Figure 6.7: Verification model M23.

The specifications to be checked for the models are

• S21 : � ¬ (x == 0 ∧ 0 < yl < 180),

• S22 : � ¬ (x == 0 ∧ 0 < ys < 4.5) and

• S23 : � ¬ (x == 0 ∧ 0 < yr < 170).

We have heterogeneous implication S21 ⇒R21 S13 because R−1
21 ( JS21K

B21) forces that yl

be conflict-free and ys, yr be 0, which implies that yl, ys, yr are conflict-free. Similarly, we

have S22 ⇒R22 S13 and S23 ⇒R23 S13. Further, we note that in every behavior of M13,

has only {yl, vl} or {ys, vs} or {yr, vr} nonzero and rest SV variables zero. Each of these

possibilities is covered by one model. Therefore, from Prop. 5.3, if M2i |=
B2i S2i, we can

conclude M13 |=
B13 S13.

To summarize, we use the concepts of model coverage using behavior relations, specifi-

cation implication using behavior relations and demonstrated their use towards the disjunc-

tive heterogeneous verification problem at Node 13 in Fig. 6.3. This disjunctive coverage

reduces the dimensionality of the SV variables and breaks the verification problem down

104



into individual cases for SV turning left, going straight or turning right.

6.3.2 Model Coverage for Mode Switching

Now we illustrate the notion of model coverage for mode switching from Sec. 4.1 and

demonstrate its use for verifying temporally invariant specifications in isolation for each

individual mode.

Consider the analysis task at Node 3j of establishing that the SV and another car are

never in the intersection at the same time, for models that include a single lane but several

vehicles. As noted earlier, the safety decision is made based only on the nearest vehicle,

which is the POV. Once the closest oncoming vehicle crosses the intersection, it “falls off”

the instrumented area and the next oncoming vehicle becomes the new POV. This behavior

can be covered by two models with inter-model switching for the following two cases.

Figure 6.8 shows the mode-switching schematic of a car falling off the instrumentation

area and a new one becoming the new POV. This event is modeled as the discrete jump and

a reset of the continuous variable x, which always maintains the position of the POV. As

oncoming POVs cross the intersection, the new ones can be either initially safe (modeled by

M41) or already unsafe (modeled by M42). Since the specification of establishing that the

SV and any other car is never in the intersection at the same time is a temporally invariant

requirement, we can reason about the requirement for the two modes independent of how

many times and in what order the system switches between the two modes. Note that

we have disjunctive coverage with inter-model switching so long as initial conditions are

overapproximative, and here they are.
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x ≥ 0x ≥ 0
x ≥ 0

Figure 6.8: Inter-model switching that covers M3j .

In case of Node 42, the POV is already too close for the SV to enter the intersection

safely, so the SV can only stay stopped, so it is trivially safe. For Node 41 when the POV

is initially at a safe distance, the SV can decide to enter the intersection if it chooses to.

This is modeled in model M41 as shown in Fig. 6.9. In the first case, whenever the current

POV crosses the intersection and a new vehicle becomes the POV, the new POV is still

far off, i.e., beyond the reference marker. In this case, the SV can possibly start driving,

but doesn’t have to. This case is considered in Node 41. In the other case, it is already

close enough, and the SV cannot start driving and has to stay stopped. This is the trivial

case considered in Node 42.

To summarize, we have used the notion of coverage with mode switching to construct

two different models for two modes that represent the POVs approaching the intersection in

CICAS-SSA. No matter how many cars there are on the highway, each oncoming car when

it becomes the POV either starts far off or too close for SV to safely enter the intersection.

This lets us simplify the dimension of the single-lane multi-vehicle Major Road models

from M at Nodes 3j to one for single-lane single-POV models at Nodes 41 and 42. Because
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we are interested in safety over all time, the different SV actions for the two models can

be analyzed independently for safety over all time while the system is in those modes.

6.4 Conjunctive Heterogeneous Verification

In this section, we illustrate the notion of conjunctive heterogeneous verification from

Sec. 5.3.1. Conjunctive heterogeneous verification involves creation of models that form

abstractions of the underlying model and checking specifications against these models

that conjunctively imply the underlying specification. The heterogeneity in modeling and

specification formalisms can be addressed by either defining the semantics in a common

domain or using behavior relations as illustrated next.

6.4.1 Conjunctive Abstraction in a Common Semantic Domain

We illustrate the use of heterogeneous abstraction with the modeling heterogeneity resolved

by defining the model semantics in a common system behavior domain. This lets us use

compare the semantic interpretations of heterogeneous models and specifications in the

same behavior domain. This method is a good choice at Node 01 in which we model the

system-level verification task. The semantics of the various abstractions constructed are

defined in terms of this system behavior domain.

At Level 1, we have different aspects of the system design being modeled and analyzed

independently for the respective concerns. For example, Node 11 captures the driver be-

havior with an objective of getting a conservative estimate on the response time. Node 12
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captures a computational model and the objective is to do some worst-case execution time

analysis to determine the timing. Node 14 represents the analysis of the sensing subsys-

tem, with the objective of making sure that the sensing error is always bounded within a

given range of positions and velocities. Node 15 represents a communication model used to

find out a bound on the communication delay from sensing subsystem to the computation

subsystem. Node 13 is a formal model with hybrid dynamics to be used to formally es-

tablish that “the SV and any other vehicle are not in the intersection at the

same time” for the given computation time, communication time, sensing errors and driver

response time.

The semantics of these models can be defined in terms of a common system behavior

domain. Note that all the models are abstractions of the underlying system because they

restrict only the behaviors in the analysis aspect while allowing everything in the rest of

the aspects of the system. The specifications conjunctively imply specification S01 because

S15 is the same as S01. The rest of the specifications are indirectly used in qualifying

the behaviors of interest in the verification model. The measurement error is overapprox-

imated in the nondeterminism in the verification model M15, while the driver response,

computation and communication time delay bounds τd, τc, τcc are accounted for in the dif-

ference between time-to-intersection and time-to-exit-intersection at the leaf nodes. Note

that without the support for auxiliary constraints over parameters, we would not be able

to model these dependencies.

In summary, modeling and specification heterogeneity can be addressed by defining

their semantic interpretations in a common behavior domain. This can be done relatively
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easily when typically each model represents different aspects of the same underlying sys-

tem. There are other places in the verification tree in Fig. 6.3 where conjunctive analysis

constructs can be used, namely Nodes 2i at Level 2, and Node 41 at Level 4. One can

use common behavior domains to resolve interdependencies, but we use different behavior

domains and use behavior relations to address the heterogeneity instead as illustrated next.

6.4.2 Conjunctive Abstraction via Behavior Relations

We now illustrate the notion of conjunctive heterogeneous verification using behavior re-

lations when model and specification semantics are defined in terms of different behavior

domains.

Consider the verification task of showing M41 |=B41 S41 at Node 41 in Fig. 6.3. The

model M41 is shown in Fig. 6.9. We break down this task conjunctively by creating

three models M5i as shown in Fig. 6.10 and constructing corresponding specifications S5i,

i = 1, 2, 3. M51 models the behaviors of the POV, and is exactly the same as the POV

automaton in M41. M52 models the behavior of the SV only while it is in the conflict

zone and has the same dynamics as that of the conflict s location of M41. M53 is a

discrete model consisting of two elements. The component POV is a created by partition-

ing the component POV of M1 into discrete states far,close, and inInt using predicates

x ≤ −300, −300 ≤ x ≤ 0, and 0 ≤ x. The second component SV is merely a discrete

control graph of the hybrid automaton model for SV in M1. The only synchronized pair

of transitions is (far
β1

−→close) and (waiting
β1

−→stopped).

The behavior domain B41 is the set of 3-d hybrid trajectories in variables x, ys and vs.
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Figure 6.9: A hybrid model M41 for SV going only straight if safe.
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Figure 6.10: Heterogeneous abstractions M5i of M41.

The behavior domain B51 and B52 are 1-d and 2-d continuous trajectories in variables x and

ys, vs respectively. The behavior domain B53 is {α1, α2, β1, β2}
∗. The behavior relations

are

• R51 : {(b41, b51)|b51 == b1 ↓x },

• R52 : {(b41, b52)|b52 == s41 ↓ys,vs where s41 is b41 restricted to the discrete location

(driving,conflict s)} and

• R53 : {(b41, b13)|b41 is a hybrid trajectory that visits the discrete locations correspond-

ing to ones in b53 in that order }.

For these behavior relations, we first note that M41 ⊑R5i M5i because neither of the
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models M5i is more restrictive than M41. The specifications for the three models are

• S51 : � (x == −300 ⇒ �9 x < 0),

• S52 : � (♦8 ys ≥ 4.5) and

• S53 : � ((φ1 ∧ ¬φ2) → ¬(♦φ2)), where φ1 is the predicate “POV is close” satisfied

in states (close,·) and (inInt,·); and φ2 is the predicate “SV is driving” satisfied

in states (·,conflict s).

The behaviors effectively allowed in B41 by the specifications S5i are as follows:

• R−1
51 (JS51K): system behaviors where POV takes at least 9 seconds to get from l =

−300 to the intersection.

• R−1
52 (JS52K): system behaviors where SV clears the intersection within 8 seconds of

starting to drive.

• R−1
53 (JS53K): system behaviors where SV does not start driving after POV crosses l.

There can only be two cases:

1. The SV has already started driving before the POV crosses l and is in the intersec-

tion: in this case, from R−1
51 (JS51K) and R−1

52 (JS52K) together, the SV will clear the

intersection in at most 8 seconds and the POV won’t get to the intersection in at

least 9 seconds, OR

2. The SV hasn’t started driving when the POV crosses l: in this case, from R−1
53 (JS53K),

the SV cannot start driving anymore.

Therefore, from all the specifications put together, the two cars can’t be in the intersection

at the same time, which implies S41, i.e., we have conjunctive heterogeneous implication.

111



M51 |=
B51 S51 can be shown by algebraic computations: for the fastest velocity (30m/s)

it takes 10s to travel 300m. M52 |=B52 S52 can be shown by Newton’s laws of motion:

the longest time needed to cross 4.5m with initial velocity 0 and minimum acceleration

0.25m/s2 is
√

2∗4.5
0.25

= 6 seconds. M53 |=
B53 S53 can be shown by using Labeled Transition

System Analyzer (LTSA).

Because of all the conditions for the correct conjunctive heterogeneous verification are

satisfied, from Prop. 5.2, we can conclude M41 |=
B41 S41.

To summarize, we have used conjunctive heterogeneous verification using behavior re-

lations when model and specification semantics are defined in different behavior domains.

In contrast with the method of defining semantics in a common domain, this approach lets

us define individual semantics in domains of choice, which can be helpful for leaf nodes

where there is no further breakdown and verification activities directly take place.

Conjunctive heterogeneous abstraction can also be used at Nodes 2i, where each model

M2i with multi-lane multi-vehicle Major Road component models can be conjunctively ab-

stracted by N single-lane multi-vehicle models with M vehicles, which reduces the Major

Road dimension down to N instances of M each. The definitions of the conflict zones in

the straight, left and right directions are different for different lanes when considered indi-

vidually, since the lanes are geographically at different coordinates. One can address these

different values using a conservative worst-case approach by using conflict-zone definitions

that include all the actual individual conflict zones for each of the lanes. Alternatively, we

can also treat the conflict zone boundaries as parameters and use parameter interdepen-

dency framework introduced in Sec. 6.6 for doing analysis for different valuations of these

112



parameters corresponding to the different lanes.

6.5 Compositional Heterogeneous Abstraction

In this section, we illustrate the notions of compositional heterogeneous abstraction de-

veloped in Sec. 4.2, particularly using distributed development with component abstrac-

tions established in local behavior domains. Compositional heterogeneous abstraction in-

volves defining the local semantics of component models, creation of behavior abstraction

functions and establishing abstraction via them, and ensuring that consistency conditions

between the abstraction functions are met such that agreeing globalized system-level ab-

straction function can be constructed and used.

Consider the problem of establishing abstraction between modelsM41 andM53 as shown

in Fig. 6.9 and 6.10(c). We establish heterogeneous abstraction between these two models

compositionally in a distributed manner. We call the POV and SV components within

models M41 and M53 as component models P0, Q0 and P1, Q1 respectively. We use two

different kinds of abstraction functions for two components – one using state-space parti-

tioning and another by retaining the discrete transition graph by projecting away all the

continuous dynamics.

6.5.1 Heterogeneous Abstraction for POV

The local behavior domains for the POV models P0 and P1 areB
POV
0 : 1-d hybrid traces, i.e.,

evolution of the hybrid state hPOV := (lPOV , x) over time, with lPOV ∈ LPOV := {driving}
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and x ∈ R; and BPOV
1 := ΣPOV ∗

for set of event labels ΣPOV = {β1, β2}. The model

semantics are JP0K
B0 : the set of all hybrid traces with the discrete location driving and

x that starts in the initial condition set [−420,−300] and evolves along any arbitrary

derivative in the range [vx, vx], and JP1K
B1 : the singleton set {β1β2}.

A behavior abstraction function APOV : BPOV
0 → BPOV

1 constructed by partitioning the

continuous dimension x at boundaries x = l and x = 0 is written mathematically as follows.

Given bPOV
0 = hPOV (t) ∈ BPOV

0 and bPOV
1 = σ0σ1 · · · ∈ BPOV

1 , APOV (bPOV
0 ) = bPOV

1 iff ∃

times ti ∈ R+ s.t. ∀t′ ∈ [0, t0), x(t
′) ∈ from(σ0); ∀t

′ ∈ [ti−1, ti), x(t
′) ∈ to(σi−1)∩from(σi)

for i = 1, . . . , N for some N ∈ N; and ∀t′ ≥ tN , x(t
′) ∈ to(σN), where from(·) and to(·)

are given in the following table.

σ from(σ) to(σ)

β1 x ≤ l x ∈ [l, 0]

β2 x ∈ [l, 0] x ≥ 0

Otherwise, APOV (bPOV
0 ) = ε.

Suppose the boundary l is at −300. Since the range of velocities is positive, and initial

condition is in the range [−420,−300], it is straightforward to show that ∀bPOV
0 ∈ BPOV

0 ,

APOV (bPOV ) = β1β2. Therefore, P0 ⊑
APOV

P1. Note that if l is say −310, APOV (bPOV ) =

β2 for some bPOV and P0 6⊑
APOV

P1.
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6.5.2 Heterogeneous Abstraction for SV

The local behavior domains for the SV modelsQ0 andQ1 are B
SV
0 : the set of 3-d hybrid tra-

jectories hSV (t), where hSV := (lSV , x, ys, vs) are the hybrid states that take values in LSV ×

X SV , for the discrete set of locations LSV := {waiting, stopped, conflict s, clear s}

and the continuous state space X SV := R
3; and BSV

1 := ΣSV ∗
with ΣSV := {α1, α2, β1},

where α’s signify SV entering and exiting the intersection.

A behavior abstraction function ASV : BSV
0 → BSV

1 , constructed by only keeping the

discrete part of the hybrid model and adding transition labels, is written formally as follows.

Given bSV0 = hSV (t), where t ∈ R+ and hSV = (lSV , x, ys, vs), and bPOV
1 = σ0σ1 · · · with

states qSVi ∈ LSV
i s.t. qSVi

σi−→ qSVi+1, A
SV (bSV0 ) = bSV1 iff ∃ times ti ∈ R+ s.t. ∀ t′ ∈ [ti, ti+1)

with t0 = 0, lSV (t′) == qSVi . Otherwise, APOV (bPOV
0 ) = ε.

Because Q1 has the exact same discrete transition graph as that of Q0, for every hybrid

behavior bSV0 ∈ JQ0K
BSV

0 , ASV (bSV0 ) ∈ JQ1K
BSV

1 , i.e., Q0 ⊑
ASV

Q1.

6.5.3 Abstraction Between Compositions

At the discrete level of abstraction, the global unified behavior domain B1 is Σ∗, where

Σ = ΣPOV ∪ ΣSV = {α1, α2, β1, β2}. Behavior localizations ↓
j
1, j = P,Q are discrete event

projection functions that replace a string not in the local label set by the empty string

ε. In this case, the syntactic procedures of adding self loops on the missing labels α1, α2

in P1 and β2 in Q1 take care of the globalizations and their composition is simply their

product. At the hybrid level, we add an unrestricted continuous variable y in P0 leaving

Q0 unchanged, and take the parallel composition of the resulting hybrid automata.
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The variables common to local behavior domains BPOV
i and BSV

i are x and β1. We

have to make sure that the localizations APOV⇓∩ and ASV ⇓∩ of abstraction functions

APOV and ASV onto these common variables , i.e., the mappings from behaviors in x to

behaviors in {β1}
∗ agree. APOV⇓∩ is essentially the same as APOV , with the row for β2

discarded. ASV puts indirect restrictions on x due to the guard and invariant conditions

of the hybrid transitions (waiting, x) → (stopped, x) that are mapped with the discrete

transition waiting
β1

−→ stopped. Such a hybrid transition occurs iff x ≤ l and x ≥ l hold

before and after the transition, i.e., while crossing the boundary x = l in the increasing

direction, which agrees with APOV ⇓∩. In the self-loop β1 transitions, x does not appear and

is therefore unrestricted, and in agreement with APOV ⇓∩. Therefore, using compositional

heterogeneous abstraction from Prop. 4.3, we can conclude M41 ⊑
A M53.

In summary, we have used compositional heterogeneous abstraction from Sec. 4.2 to

use abstraction between heterogeneous component models using local behavior abstraction

functions to conclude abstraction between the composite models. The consistency condi-

tion for distributed heterogeneous abstraction works out. Note that if for some reason,

the parameter l is different in models P0 and Q0, the consistency condition in Prop. 4.3

cannot be satisfied and the heterogeneous approach cannot be used. Suppose the reference

marker in the POV component is l′ rather than l, but the SV thinks it is l. Physically

this may correspond to, e.g., a measurement error or parallax for a human SV driver. In

this case, there is a disagreement between the two models as to what corresponds to the

β1 event of POV going from far to close. Since in this case the two abstraction functions

would disagree on the mapping between behaviors in the variable x and the event β1 that
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are common to the local behavior domains of the two components, the design freedom

in the non-uniqueness of globalizations while adding the remaining variables and events

would not help us resolve this mismatch. These kinds of mismatches can be avoided by en-

forcing the consistency conditions for the behavior abstraction functions for decentralized

development from Sec. 4.2.

6.6 Consistent Parametric Heterogeneous Verification

In this section, we illustrate the use of consistent parametric verification construct de-

veloped in Sec. 5.4. Consistent parametric verification uses the parametric extensions of

semantic interpretations, abstraction and entailment, and uses external-constraint consis-

tency to guarantee consistent heterogeneous verification.

To illustrate the use of parametric heterogeneous verification, we return to the conjunc-

tive heterogeneous verification of model M41 by models M5i. The parameterized models

are shown in Fig. 6.11 and 6.12. The parameterized specifications are

• S41 : �¬(x == 0 ∧ 0 ≤ ys ≤ h)

• S51 : �(x == l ⇒ �tx x < 0)

• S52 : �(♦tyys ≥ h)

• S53 stays the same as the unparameterized one.

The bounds on the POV velocity, the bounds on the SV acceleration, the position of

the marker l and the lane width of the major road h are represented as parameters as

shown in Fig. 6.11 and Fig. 6.12. These parameters embedded in the unparameterized
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Figure 6.11: A parameterized hybrid model M41 for SV going only straight if safe.
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(a) Parameterized
model M51

conflict s
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β1

β1 β2far close inInt

α1

α2

||

β1 β1

POV

SV

(c) Model M53

Figure 6.12: Parameterized models M5i.

models are now explicitly identified as follows.

• PM
41 : {M41.vx,M41.vx,M41.l,M41.h,M41.ay,M41.ay},

• P S
41 : {S41.h},

• PM
51 : {M51.vx,M51.vx,M51.l},

• P S
51 : {S51.l, S51.tx},

• PM
52 : {M52.h,M52.ay,M52.ay},

• P S
52 : {S52.h, S52.ty},

• PM
53 : {},

118



• P S
53 : {}.

The following constraints identify the ranges of these parameters.

• CM
41 : 20 ≤ M41.vx ≤ M41.vx ≤ 30 ∧ M41.l == −300 ∧M41.h == 4.5 ∧ 0.25 ≤ M41.ay ≤

M41.ay ≤ 5

• CS
41 : S41.h == 4.5

• CM
51 : 18 ≤ M51.vx ≤ M51.vx ≤ 32 ∧M51.l == −300

• CS
51 : S51.l == −300 ∧ 9 ≤ S51.tx ≤ 10

• CM
52 : M52.h == 4.5 ∧ 0.2 ≤ M52.ay ≤ M52.ay ≤ 5.2

• CS
52 : S52.h == 4.5 ∧ 7 ≤ S52.ty ≤ 8

Now, we know that the time needed for the POV to get from l to 0 needs to be bigger

than the time needed for the SV to start accelerating from a stationary position and clear

the intersection (i.e., ty < tx). From Newton’s laws of motion, we note that
√

2h
ay

≤ ty and

tx ≤ −l
vx
. We add this to Caux along with the equality constraints between the parameters

that are identical between M5is and M41:

Caux : (M41.vx == M51.vx) ∧ . . . ∧ (M41.ay == M52.ay) ∧

(
√

2h
ay

≤ ty < tx ≤ −l
vx
)

We have a parametric abstraction for each model because due to the equality constraints

in Caux, we get equal parameter valuations for the corresponding models, and under the

same parameter valuations, M5i are not more restrictive than M41. Note that we have

parametric conjunctive specification implication so long as ty < tx holds, and here it does.
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CM
51 ,M51 |=B51 CS

51, S51 and CM
52 ,M52 |=B52 CM

52 , S52 can be shown using Newton’s laws

so long as
√

2h
ay

≤ ty and tx ≤ −l
vx

hold, which they do. CM
53 ,M53 |=B53 CM

53 , S53 still holds

since it hasn’t changed from the unparameterized case.

Finally, we get the following projections of CM
41 and CS

41 on PM
5i and P S

5i through Caux:

• (CM
41 ∧ Caux) ↓PM

51
: 20 ≤ M51.vx ≤ M51.vx ≤ 30 ∧M51.l == −300 ∧M51.vx < 33.33

• (CS
41 ∧ Caux) ↓PS

51
: ⊤

• (CM
41 ∧ Caux) ↓PM

52
: 0.25 ≤ M52.ay ≤ M52.ay ≤ 5 ∧M52.h == 4.5 ∧M52.ay > 0.19

• (CS
41 ∧ Caux) ↓PS

52
: M52.h == 4.5

We have (CM
41 ∧ Caux) ↓PM

51
⇒ CM

51 , C
S
51 ⇒ (CS

41 ∧ Caux) ↓PS
51
; and (CM

41 ∧ Caux) ↓PM
52
⇒ CM

52 ,

CS
52 ⇒ (CS

41 ∧ Caux) ↓PS
52
. We have also proved these semantic consistency conditions in

the theorem prover KeYmaera [75]. Now we can use parametric conjunctive heterogeneous

verification and conclude that CM
41 ,M41 |=

B41 CS
41, S41.

In this parameterized example, because we are able to capture the parameter depen-

dencies, we now know how fast the SV needs to accelerate given ranges of vx, h and l.

Alternatively, if the system is implemented as a road-side infrastructure-based solution,

where ay cannot be chosen but is known empirically from driver behavior data, we know

how l should be chosen. While the heterogeneous verification of the unparameterized ex-

ample succeeds, there is no support for capturing these interdependencies. Therefore, there

is value added in exposing parameters and identifying interdependencies.

Although we have illustrated the use of parametric heterogeneous verification for only

one node, verification constructs at other nodes can be performed using explicitly identified

parameters and auxiliary constraints for interdependencies from all across the tree in a
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similar manner. For example, the communication delay τc, the driver response time τd and

the computation time τcc introduced in Sec. 6.4.1 can be added to the auxiliary constraint

by modifying it as

(

√

2h

ay
≤ ty) ∧ (ty + τc + τd + τcc < tx) ∧ (tx ≤

−l

vx
).

This would ensure that the margin of difference between tx, the worst case time-to-

intersection for the POV, and ty, the time-to-clear-intersection for the SV, overapprox-

imates all the delays in the system. The sensor readings received are slightly delayed due

to the communication links, the computation takes some time to finish, and the driver

takes some time to respond. Given these several delays, the objective is to ensure that

there is still enough time left for the SV to safely clear the intersection before the POV

reaches the intersection. This new auxiliary constraint along with the knowledge about

the ranges of these delay parameters would provide a new set of external constraints when

projected onto the local sets of parameters for the parametric verification tasks of the SV

and the POV models.
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Theoretical Concepts Illustrated Theory Section

Sec. 6.2 Hierarchical verification tree Sec. 5.5

Sec. 6.3 Disjunctive verification Sec. 5.3.2

Sec. 6.3.1 Model coverage using behavior relations Sec. 4.1

Sec. 6.3.2 Coverage with mode switching Sec. 4.1

Sec. 6.4 Conjunctive verification Sec. 5.3.1

Sec. 6.4.1 Heterogeneous abstraction using a common behavior domain Sec. 4.1

Sec. 6.4.2 Hetetogeneous verification using behavior relations Sec. 4.1

Sec. 6.5 Compositional heterogeneous abstraction Sec. 4.2

Sec. 6.6 Consistent Parametric Verification Sec. 5.4

Table 6.1: Illustration of theoretical concepts in the

CICAS-SSA case study.
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6.7 Summary

In this chapter, we have used the hierarchical heterogeneous verification of a cooperative

intersection collision avoidance system as a case study to demonstrate the practical use

of the theoretical concepts developed in this thesis. Table 6.1 summarizes the theoreti-

cal concepts illustrated in each section of this chapter and points out references to the

corresponding places in the earlier chapters where the theory is developed.

We have illustrated that heterogeneity can be addressed by defining semantics in a

common behavior domain as well as by associating heterogeneous domains using behavior

relations. Heterogeneous abstractions via common semantic domains or behavior relations

are used in conjunctive heterogeneous verification. Model coverage as well as coverage for

mode switching is used in disjunctive heterogeneous verification. Compositional heteroge-

neous abstraction of hybrid and discrete component models is performed in a distributed

manner. Semantic interdependencies are modeled using constraints over parameters and

consistency is ensured using parametric extensions of heterogeneous verification.

The theoretical concepts illustrated at various places in the case study are used to-

wards a system-level verification of the CICAS-SSA, represented at the root node, Node

01, in Fig. 6.3. The bounds on communication, driver response and computation delays,

and measurement error bounds from the analyses at Nodes 11, 12, 13 and 15 are used

indirectly within the heterogeneous verification of the hybrid-dynamic model at Node 13.

Starting with the model at Node 13, at each subsequent level of abstraction, conjunctive or

disjunctive analysis breakdowns or coverage for mode-switching are used to make the ver-

ification task iteratively simpler with each step. Rigorous definitions of behavior domains,

123



behavior relations (or abstraction functions), model abstractions or coverage, and individ-

ual or conjunctive specification implication are used to establish the sufficient conditions

that let us infer verification at each node based on the simpler verification tasks at their

children nodes. Ultimately, the verification performed on simple continuous and discrete

models at the leaf nodes of the verification tree can be used to conclude more involved

analysis tasks at their ancestors, involving higher dimensional hybrid dynamics. Bounds

on various delays, intersection geometry, conflict zone boundaries for different lanes, and

bounds on accelerations and velocities can be introduced as parameters and dependen-

cies can be defined using auxiliary constraints. Semantic external-constraint consistency

is established using analysis tools, such as the theorem prover KeYmaera.

Some methodological observations and experience from this case study can be useful

for future heterogeneous verification activities, at least at a conceptual level. Starting

with the system-level verification objective at the root node of a verification tree, the first

step of conjunctively using models for different aspects of the system enables separation of

concerns. Formal verification is known to be computationally expensive, therefore this early

separation of other aspects from the verification model has value in keeping the analysis

complexity at check. Given this conjunctive breakdown, the use of individual specifications

to get bounds on parameters of interest such as delays, errors and physical limits, allows

one to check only the properties of interest for that particular design aspect without having

to worry about the other aspects or the system-level verification objective. The use of these

bounds via auxiliary parameter constraint enables a mechanism to combine the analysis

results from these aspects towards the system-level analysis. Hierarchical decompositions
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seem to be the approach most useful for simplifying the verification objective in detailed

verification model(s); however, it could be equally effective in reducing analysis complexity

for other models in real-world complex systems. The use of different abstractions according

to the particular cases (disjunctive analyses), modes (coverage with mode switching) and

aspects (conjunctive analyses) can be made as per the specifics of the examples.

From an engineering workflow perspective, the separation of concerns in terms of mod-

els of different aspects of system design, such as physical dynamics, software, network, and

abstract verification models, enables different analyses for these models to be performed

by different groups or experts in parallel and in relative isolation from one another. Ab-

straction hierarchies for individual models can be constructed based on the needs and the

specifics of only the individual problem at hand, as per the observations listed in the earlier

paragraph, which can remain local to the group involved in developing that particular as-

pect of the system design. Formal definitions of behavior domains, and behavior relations

for specific aspects allow the design experts of these different aspects to know the impli-

cations of their designs at the system level. Parameter constraints and external-constraint

consistency conditions can be used at the time of system integration by facilitating the

composition of the analysis results from these independently-developed aspects in a se-

mantically sound and consistent manner.
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Chapter 7

Conclusion

This chapter summarizes the contributions of the thesis and outline some future research

directions.

7.1 Summary of the Contributions

The contributions of this thesis are as follows.

1. Behavioral semantics for heterogeneous models and specifications. To address the

problem of heterogeneity in model-based design of CPS, we have created a general

framework based on behavioral semantics. The generality of our framework permits

the use of several modeling and specification formalisms, analysis techniques and tools

because no assumptions are made about the specifics of any particular formalism.

The use of behavioral semantics also lets us define the semantic interpretations of

models and specifications in several different behavior domains. This provides a basis
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for comparing the semantic interpretations of models and specifications as subsets of

a common behavior domain.

The use of behavioral semantics offers a uniform semantic treatment to models

and specifications in terms of the sets of behaviors in a given domain that they exhibit

or allow. This identical treatment allows us to develop similar notions of abstraction,

entailment and implication, all as behavior set inclusions of corresponding semantic

interpretations of the models and specifications.

2. Semantic associations between heterogeneous formalisms using behavior relations. To

support heterogeneity in the semantic definitions of models and specifications from

suitable behavior formalisms, we allow semantics to be defined across different be-

havior domains. This is particularly useful when some analysis techniques and tools

leverage particular behavior formalisms best. When semantic interpretations of mod-

els and specifications are defined in such heterogeneous behavior domains, behavior

relations provide the associations between these domains. This gives us the ability to

compare subsets of behaviors that are the semantic interpretations of various models

and specifications in heterogeneous behavior domains.

3. Abstractions across heterogeneous modeling and semantic formalisms using behavior

relations. Abstractions are necessary to make formal analysis tractable. In case

of CPS, abstractions across heterogeneous modeling formalisms are necessary. Ab-

straction across different modeling formalisms can be defined using semantic inter-

pretations in a common behavior domain when a model overapproximates the set

of possible behaviors of another model. When semantics of models are defined in
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different heterogeneous behavior domains, the definition of abstraction can be ex-

tended to include associations using behavior relations to relate sets of behaviors to

be overapproximated.

Often times it is necessary to use multiple different abstractions in different model-

ing formalisms together to analyze different aspects of system design. When different

operating regimes of systems are best captured using different models, a notion of

disjunctive abstraction, or coverage, is developed to ensure that each behavior of the

system is considered in at least one model. For mode switching systems that are

analyzed for temporally invariant specifications, a notion of coverage with switch-

ing is also developed with correct overapproximation of initial conditions such that

individual modes can be analyzed independently.

4. Compositional approach to heterogeneous abstraction using behavior abstraction func-

tions as special cases of behavior relations. Complex systems are often composed of

subsystems, and it is beneficial to analyze subsystems independently for supporting

separation of concerns. We have developed a framework for formally defining seman-

tic composition of component models using behavioral semantics. In general, the

behavior domains that define semantics of subsystem models can be different from

each other, where only the local semantics of component models are considered. A

notion of globalized semantic composition is developed to lift the local semantics of

subsystem models to a common domain where they can be composed.

For analyzing heterogeneous abstractions compositionally, arbitrary behavior re-

lations turn out to be insufficient to guarantee compositionality. Instead, special
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cases of behavior relations called behavior abstraction functions are used. Central-

ized development can be used to break down a system-level abstraction problem into

subsystems. On the other hand, distributed development can be used to construct

suitable consistent abstraction functions such that abstraction established indepen-

dently for subsystems also holds for the composition.

5. Implications between heterogeneous specifications and their use for verification using

behavior relations. Specifications are useful for defining correctness requirements for

systems and their models. This thesis considers safety specifications and defines the

set of allowed behaviors in a given behavior domain as the semantic interpretation

of such specifications. Analogous to abstraction, implication between heterogeneous

specifications can be supported by defining semantics either in a common domain or

across heterogeneous behavior domains via behavior relations. Multiple specifications

defined for multiple models can be used together in a conjunctive implication of the

system-level specification to guarantee that what gets specified as requirements for

individual models implies the requirement for the underlying system.

Entailment, defined as the set of behaviors of a model being contained inside the

set of behaviors allowed by a specification, can be established using several types of

analysis tools depending on the context, such as state-space exploration approaches

like reachability analysis, theorem proving, model checking, establishing certificate-

based guarantees and exhaustive simulation.

6. Hierarchical heterogeneous verification via behavior relations using nested conjunc-

tive and disjunctive analysis constructs. When several different models in different
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formalisms get built and analyzed against different specifications, we have developed

two constructs for putting together the individual analysis results in a meaningful

way. Conjunctive heterogeneous abstraction uses individual abstraction by models

and conjunctive specification implication, and disjunctive heterogeneous verification

uses disjunctive model abstraction (coverage) along with individual specification im-

plication. Disjunctive heterogeneous verification can also be used for mode-switching

systems when specifications are not temporally invariant. Conjunctive and disjunc-

tive heterogeneous verification constructs can be combined hierarchically in a tree

structure to put together complex analysis hierarchies.

7. Consistent heterogeneous verification in presence of semantic interdependencies. In

order to formally represent dependencies that exist across models from different for-

malisms, we have developed the use of model and specification parameters as a formal

mechanism to capture the interdependencies in the assumptions made in the different

modeling and specification formalisms. The use of auxiliary constraints to define in-

terdependencies enable us to develop notions of semantic consistency for verification

by projecting the dependencies and the system-level valuations of parameters onto

the model and specification parameters of every analysis task at hand. This ensures

that despite the interdependencies, what is being checked for the individual models

still guarantees what is being inferred about the system.

8. Demonstration of practical applicability of the approach using a case study. We have

demonstrated the applicability of the theoretical framework developed in this thesis

for multi-model hierarchical heterogeneous verification of the cooperative intersec-
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tion collision avoidance system for stop-sign assist (CICAS-SSA). CICAS-SSA is

typical of the kinds of systems targeted in this thesis—it is heterogeneous, due to

the constituent sensing, communication, computation and physical dynamics; and it

is safety critical, which warrants formal verification of the system using the several

heterogeneous models developed for the system. We have demonstrated a hierarchi-

cal heterogeneous verification tree that uses the individual pieces developed during

the thesis—conjunctive and disjunctive heterogeneous verification, coverage for mode

switching, compositional heterogeneous abstraction and parameter consistency.

7.2 Directions for Future Work

The following paragraphs outline some future research directions that were identified as

logical next steps during the development of the theoretical framework and the case study.

1. Creation of state-based relations for constructing behavior relations. The framework

developed in this thesis requires relations between behavior domains for supporting

heterogeneity. The specific behavior relations used for illustrations in this thesis are

inspired from some commonly used abstraction techniques such as state-space par-

titioning, projecting away continuous variables, considering only subparts of trajec-

tories in specific modes, and ensuring the same discrete and hybrid state transition

graphs. While associations are necessary at the behavior level, often times condi-

tions or constraints on states are developed in order to guarantee operations for the

behaviors, such as simulation relations on states to guarantee language inclusion.
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While these methods are supported in our framework, we have not developed general

mechanisms for defining state-based mappings that would lead to the construction of

behavior-based mappings. Heterogeneous generalizations of simulation relations [38],

timed simulation relations [39] and other state-based mappings such as approximate

(bi)simulation functions [44] and approximate syncrhonization [53] could be some

specific starting points from which one can generalize. Developing such extensions

would facilitate the use of our approach when it is easier to think at the level of states

rather than entire behaviors.

2. Heterogeneity at a given level of abstraction between interacting component mod-

els. The compositional heterogeneous abstraction framework developed in this thesis

only considers heterogeneity at two different levels of abstraction. Within a given

level of abstraction, heterogeneity between component models modeled in different

formalisms can currently be addressed by defining their semantics in a common be-

havior domain. A possible extension to this work is to permit heterogeneity between

the respective semantic domains of the component models at a given level of abstrac-

tion. Heterogeneous generalizations of composition and localization/globalization are

needed in order to define heterogeneous globalized semantic composition.

A starting point could be the framework of Benveniste et al. for composing hetero-

geneous reactive systems [19] in which heterogeneous parallel composition is defined

using an algebra of tag structures following the tagged-signal semantics of Lee and

Sangiovanni-Vincentelli [62]. A similar notion of heterogeneous parallel composition

could be developed within the behavioral semantics framework developed in this
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thesis.

3. Translation between models and specifications. Our identical semantic treatment of

models and specifications in terms of their corresponding sets of behaviors leads to

some interesting possibilities that could be of value in some applications. We note

that abstraction, entailment and implication are all mathematically inclusions of be-

havior sets possibly via behavior relation mappings. These semantically equivalent

notions are syntactically very different given the difference between the operational

(direct) and declarative (indirect) descriptions typically used for models and specifi-

cations, respectively. The tool support for these different flavors of the same semantic

problem also varies a great deal. Tools such as PHAVer [40] are good at establishing

abstraction between two models, tools such as CheckMate [29] are good at estab-

lishing entailment between a model and a specification, while theorem provers such

as KeYmaera [75] are good at proving implications between specifications. Trans-

lation between models and specifications would enable system designers to leverage

the power of exploiting syntactically easier formalisms to deal with the semantically

equivalent problems. The translation from a specification to a model, which we call

modelization, is already used in tools such as SPIN [50] and LTSA [64] because it

is easy to translate temporal logic specifications into equivalent transition system

models. For various pairs of heterogeneous modeling and specification formalisms, it

would be worth investigating whether such translation leads to more efficient algo-

rithms for establishing heterogeneous behavior set inclusion for abstraction, implica-

tion and entailment.
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4. Semantic consistency using variable constraints. This thesis uses constraints over

static parameters as a mechanism to formally represent semantic interdependencies.

A natural extension of constraints on parameters is to constraints on variables that

can change over time. However, we lose the generality across modeling and specifica-

tion formalisms provided by the parameter constraints due to the unambiguous and

uniform semantic interpretations of models and specifications that use these param-

eters. Constraints over variables can be expressed in temporal or dynamic logics and

the notions of projection using existential quantification and implication still can be

used. However, semantic interpretations of models and specifications in presence of

certain assumptions about dynamically changing variables need to be defined.

A starting point could be to use modelization to turn the variable constraints

(which can be thought of as specifications) into abstract models to define compo-

sition. In this case, the consistent parametric verification problem has the form of

heterogeneous assume-guarantee reasoning, where the constraints over variables are

used as assumptions about the environment for guaranteeing properties. Further

investigation and evaluation on some examples with time-varying interdependencies

would be useful.

5. Integrating the multi-view architectural framework and the multi-model heterogeneous

verification framework. Bhave et al. use architectural modeling of cyber-physical

systems as a unifying high-level structural representation of systems. Graph mor-

phisms are used to ensure structural consistency between architectures of heteroge-

neous models, called views, and the underlying base architecture of the system. We
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have proposed the use of a multi-view architectural framework for managing param-

eter consistency [78]. Recently we have also been investigating a combined approach

of using the multi-view architectural approach and multi-model heterogeneous ver-

ification approach together towards system design. Our preliminary work in this

direction appears in work submitted for publication [79].

The structural information contained in architectures can be used to exploit richer

substructure decomposition for compositional heterogeneous abstraction part of our

framework. The knowledge from the structural information in the architectures can

also lead to simplifying assumptions or decompositions that make verification obliga-

tion easier. A specific example of using this type of structural information from the

case study is the observation that the oncoming vehicles arrive at the intersection

in order, and once a vehicle crosses the intersection, the next one becomes the new

POV. This observation enables the coverage of multi-vehicle major road models by

single-POV models. Principled approaches to capture and exploit such connections

between the structural and semantic sides need to be developed and explored further.

6. Temporally varying specifications for mode-switching disjunctive coverage. In this

thesis we have introduced the concept of coverage for using different models for dif-

ferent modes of mode-switching systems. However, this approach works only for

specifications that are temporally invariant. For more general temporally varying

specifications, we could extend our work to include notions similar to that of the

so-called verification architectures introduced by Faber [37]. Verification architec-

tures use high-level switching protocols to verify an overall system property, and
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require that each mode adheres to this high-level protocol. A similar approach can

be explored in the general setting of behavioral semantics.

7. Creation of abstractions from detailed simulation models. Detailed simulation models

in commercial tools such as Simulink are often created in industry to simulate com-

plex cyber-physical systems and generate embedded software code. The first hurdle

in analyzing these existing models using verification capabilities of different tools

is usually to construct correct heterogeneous abstractions of the simulation models

using the formalisms supported by these tools. Recently, an approach to reverse en-

gineer requirement specifications from simulation models, called specification mining,

has been developed by researchers at Toyota [51]. Specification mining constructs

tight overapproximations of simulation models. These mined specifications can be

used with modelization approaches to construct models in formalisms of interest.

This combination of mining and modelization could provide a principled approach to

constructing heterogeneous abstractions from an existing simulation models.

8. Bridging the gap between theoretical developments and their practical applicability.

This thesis has made theoretical contributions towards addressing the heterogeneity,

consistent resolution of interdependencies, abstraction across different formalisms

and support for compositional reasoning in centralized and decentralized develop-

ment of subsystems in a general and formal framework. All these research challenges

are motivated from the challenges in practice, arising in model-based development

of cyber-physical systems. However, the adoption of the theoretical machinery from

this thesis by practicing engineers would require understanding of how their under-
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standing of models, what they mean, and their relations and interdependencies would

be formally defined in our framework of behavior semantics, behavior relations. In-

sight about where and when to use various types of breakdowns such as conjunctive,

disjunctive and mode-switching coverage, and local and global semantics and their

use for compositional development would also need to be provided. The CICAS-SSA

case study presented in this thesis aims to demonstrate the practical applicability

of the theoretical concepts. Some methodological observations from that exercise

outlined in the summary of the case study chapter can be generalized as a guidance

for use in similar exercises in other domains, as outlined next.

A potential starting point towards the adoption of this work by practicing en-

gineers would be to define a library of definitions of behavior domains in various

formalisms. In this thesis, we have used domains defined in continuous trajectories,

piecewise-continuous trajectories, discrete traces and hybrid trajectories of various

dimensions. Such a library of formal definitions of behavior domains could be useful

for practicing engineers for formally defining the semantics of their models.

This thesis uses specific behavior relations inspired from some commonly used

abstraction techniques such as state-space partitioning, projecting away continuous

variables, considering only sub-parts of trajectories in specific modes, and ensuring

the same discrete and hybrid state transition graphs, and a potential future direction

of the use of state-based relations for constructing behavior relations has been men-

tioned earlier in this list. A library of such commonly used behavior relations would

be useful in formally defining how these types of mappings are implicitly constructed
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in the reasoning in practice.

Finally, while the specific choice of breakdowns used for abstraction hierarchies

would always be problem-specific, the insight gained from the CICAS-SSA case study

about what breakdowns are useful in what contexts can be made available as a po-

tential source for trying out similar breakdowns in other contexts. Conjunctive ab-

straction is a common choice while representing different aspects of the system design

such as computation, communication and physical dynamics. Disjunctive breakdown

would be most useful when there are distinct subsets of system behaviors, such as

different cases of a non-deterministic choice, or linear vs. nonlinear dynamics, etc.,

where different cases can be better analyzed using different abstractions. Coverage

for mode-switching systems is useful when different modes have distinctly different

dynamics. For example, in case of powertrain models, idle-speed mode has a closed-

loop control of idle speed around a set point; during nominal operation, the open-

loop choice of throttle control is made according to the stoichiometric ratio; while

the full-load driving and braking modes have fully open and fully closed throttles

respectively. These are distinctly different modes of operations that can be better

analyzed in isolation using mode-switching coverage for temporally invariant spec-

ifications. A future direction towards supporting temporally varying specifications

in mode-switching coverage has been mentioned earlier in this list. These guidelines

can be useful at a conceptual level while deciding what breakdown to use in different

contexts of system analyses.
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