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Abstract

Multi-Scale Modeling of Mechanical Properties of Single Wall Carbon Nanotube
(SWCNT) Networks

Single wall carbon nanotubes (SWCNTs) show a variety of unparalleled properties such
as high electrical and thermal conductivity, high specific surface area (SSA) and a large
sti�ness under axial loads. One of the major challenges in tapping the vast potential of
SWCNTs is to fabricate nanotube based macrostructures that retain the unique proper-
ties of nanotubes. Pristine SWCNT aerogels are highly porous, isotropic structures of
nanotubes mediated via van der Waals (VDW) interactions at junctions. The mechan-
ical behavior of such aerogels is examined in several experimental studies. However, it
is necessary to supplement these studies with insights from simulations in order to de-
velop a fundamental understanding of deformation behavior of SWCNT aerogels. In this
study, the mechanical behavior of SWCNT networks is studied using a multi-scale mod-
eling approach. The mechanics of an individual nanotube and interactions between few
nanotubes are modeled using molecular dynamics (MD) simulations. The results from
atomistic simulations are used to inform meso-scale and continuum scale finite element
(FE) models. The deformation mechanism of pristine SWCNT networks under large com-
pressive strain is deduced from insights o�ered by meso-scale simulations. It is found that
the elasticity of such networks is governed by the bending deformation of nanotubes while
the plastic deformation is governed by the VDW interactions between nanotubes. The
stress response of the material in the elastic regime is dictated by the VDW stresses on
nanotubes while in the plastic regime, both the VDW and axial deformation stresses on
nanotubes drive the overall stress response. In this study, the elastic behavior of a random
SWCNT network with any set of junction sti�ness and network density is also investi-
gated using FE simulations. It is found that the elastic deformation of such networks can
be governed either by the deformation of the nanotubes (bending, axial compression) or
deformation of the junctions. The junction sti�ness and the network density determine
the network deformation mode. The results of the FE study are also applicable to any
sti� fiber network.
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1.1 Research and Motivation

Carbon nanotubes are macromolecules of sp2 hybridized carbon with a high aspect
ratio. Single wall carbon nanotubes (SWCNTs) show a variety of unparalleled properties.
They have high electrical and thermal conductivity,[1] high specific surface area (SSA)[1]
and a low density.[1] Due to having the highest known values of the spring constant be-
tween C-C bonds (500-1000 N/m),[2] SWCNTs provide very high sti�ness to an axial
load or small bending deformations, which manifests in high elastic moduli. At larger
strains, nanotubes deform by buckling due to their hollow shell-like structure.[2] How-
ever, these deformations are reversible and involve no bond breaking. Nanotubes deform
plastically at very high strains (several dozen percent depending on the strain rate) by
forming defects that involve bond rotation.[2]

One of the major challenges in tapping the vast potential of nanotubes is to fabricate
nanotube based macrostructures that retain the unique properties of nanotubes. To this
date, these structures include vertically aligned CNT arrays via direct growth,[3] long
fibers or sheets yarned from a CNT forest,[4] thin films or buckypapers,[5] and CNT
based aerogels.[6] Aerogels in general are lightweight materials with a high SSA. The
properties of aerogels depend upon the intrinsic properties of their constituent materials.

CNT based aerogels are highly porous, isotropic structures with random filamentous
networks of nanotubes cross-linked via van der Waals interactions at junctions.[6] These
interactions can be tailored in a number of ways such as covalent crosslinking, graphene
coating or fused junctions as shown in Fig 1.1a.[7] CNT aerogels have an open cell structure
with pore sizes ranging from 2-50 nm.[7]

A straightforward method to manufacture CNT aerogels is the single step CVD pro-
cess. It consists of feeding a carbon source into a furnace operating at high temperature
containing a catalyst precursor and quartz substrate in the presence of a carrier gas.[8]
However this method produces aerogels consisting of a mixture of SWNCTs and multi-
walled carbon nanotubes (MWCNTs). Since MWCNTs have much lower SSA compared
to SWCNTs,[1] the SSA of aerogels produced using this method is comparatively low
(300 to 400 m2 gm-1).[8] In contrast, aerogels can also be created from an aqueous gel
precursor by freeze drying and critical point drying (CPD).[7] In this process SWCNTs are
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(Taken from Refs. [7] & [9])

Figure 1.1: a) Free standing aerogels with tunable junctions b) Stress-strain curve for
uncoated aerogel c) Stress-strain curves for graphene coated and uncoated aerogels.

suspended in water using a surfactant. Suspensions are sonicated, centrifuged to sediment
nanotube aggregates, and then poured into various shaped molds. These suspensions form
hydrogels due to van der Waals interaction between nanotubes. These hydrogels are then
converted to aerogels by removing background liquid using CPD or free drying without
collapsing the network.[7] This method o�ers flexibility to tune aerogel shapes and sizes
and control over CNT type, length, diameter, electronic properties and concentration.[6]

SWCNT aerogels fabricated from aqueous gel precursors have a low density (7.3-
13.1 mg mL-1) and a high SSA (1291 m2 gm-1 at a density of 7.3 mg mL-1).[7] They
form electrically percolating networks at very low volume fractions of nanotubes.[6] These
aerogels have high electrical conductivity (250 S m-1 at a density of 10 mg mL-1).[7]
Figure 1.1b shows a stress-strain curve for SWCNT based aerogels under compression.[7]
Aerogels can be compressed to a strain of > 90% because of their high porosity.[8, 7]
This curve shows three characteristic regimes: a linear elastic regime (strain < 9%), a
plateau regime (9% < strain < 60%) and a densification regime (strain > 60%). This
curve has similar characteristics to that observed for open cell foams.[10] It is speculated
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that the initial linear elasticity may be caused by bending of nanotubes[10, 11, 7] or
rotation of nanotubes about the nodes between nanotubes.[9] The plateau region can be
associated with the collapse of cells due to elastic buckling of the nanotubes[10, 11, 7]
and/or breaking/forming of nodes.[7] In the densification regime, when opposing cell walls
touch each other, deformation is due to the compression of nanotubes, giving rise to a
sharp increase in stress.[10] The measured elastic modulus for the linear elastic regime is
higher than other aerogels at similar density.[7] However CNT aerogels undergo plastic
deformation for strains > 9% or even in the linear elastic region after 2-3 cycles under
cyclic loading, particularly at strains close to 9%.[7] The reason for the observed plastic
deformation in the plateau regime is attributed to strain induced alignment of nanotubes
because of increased van der Waals interaction between nanotubes on compression. And
since there is no restorative force at original nodes, this alignment is irreversible.[9, 12, 7]
The reason for plastic deformation under cyclic loading could be the development of self-
organized folded patterns in nanotubes due to buckling after a few cycles.[11]

Aerogels can be made superelastic by coating junctions with a few layers of graphene
nanoplates.[9] Figure 1.1 shows stress-strain behavior for uncoated and graphene coated
aerogels during loading-unloading cycles under compression.[9] This curve also exhibits
the same behavior as for open cell foams with three distinct regimes. However, graphene
coated aerogels can recover their original shapes even when compressed to strains > 80%.
The coating also increases the elastic modulus as well the compressive strength of the
material.[9] Hysteresis loops in the loading unloading cycles can be attributed to energy
dissipation due to friction between flowing air and nanotube walls.[8, 10, 9] There is
no degradation in mechanical properties of coated aerogels after 2000 loading-unloading
cycles at 60% strain and 106 cycles at 2% strain.[9] The superelastic behavior, increase in
elastic modulus and compressive strength, and resistance to fatigue in graphene coated
aerogels can be attributed to the strengthening of existing junctions that hinders the
free rotation of nanotubes about the junctions and thus provides a restorative force large
enough to destabilize additional junctions formed during large compression.[9] Figure 1.2
summarizes the di�erent mechanisms of deformation proposed for CNT based aerogels.

Lightweight materials that are thermally and electrically conducting, highly elastic
and resilient under cyclic loading can have a variety of applications. Aerogels produced
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Figure 1.2: Plausible mechanisms of deformation in CNT aerogels.

from aqueous gel precursors by CPD and freeze drying can be back-filled with a polymeric
fluid producing a polymeric nanocomposite.[6] Such nanocomposites will have an internal
structure with well dispersed, homogeneously distributed nanotubes without the need of
mechanical mixing.[13] Apart from this, other advantages are: low percolation threshold,
large number density of fillers per filler volume, extensive interfacial area per volume of
filler, short distances between fillers comparable to the radius of gyration of polymeric
chain.[13] CNT based aerogels can also be used in energy storage devices in batteries,
electrodes, and supercapacitors. In addition to high electrical conductivity and current
density of individual nanotubes[1], a network of nanotubes such as one found in aerogels
o�ers a combination of micropores (<2 nm) inherent to nanotubes[14] and mesopores
(2-50 nm) formed by entanglement of CNTs.[7] This bimodal distribution of pore sizes
is believed to be a property of an ideal electrode in electrochemical capacitors because
actual energy storage occurs in micropores with large surface area while mesopores pro-
vide fast transport of electrolyte to and from the micropores.[14] CNT based aerogels are
a promising candidates for environmental applications such as sorption. CNTs are con-
sidered as superior sorbents for gases because of their high specific surface area coupled
with excellent van der Waals interaction,[1] and they can also be used for a wide range of
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organic and inorganic contaminants. CNT based aerogels in a densified state can absorb
up to 180 times their own weight with excellent selectivity and recyclability.[8] Because
CNT aerogels are hydrophobic and can be floated on water, they can be used in large-area
spill cleanup applications.[8] CNT aerogel sheets are used in artificial muscles that provide
giant elongations upon electrical actuation.[15] The structure and mechanical properties
of cancellous bone is similar to a cellular material.[10] CNT based aerogels having very
low density and superior mechanical properties can provide a good substitute for dam-
aged or fractured bone.[10] These resilient and super-elastic aerogels can also be used in
energy-absorbing and damping applications.[10, 11]

CNT aerogels have a vast potential in terms of applications. In order to realize this
potential, a rigorous understanding of the mechanical behavior of CNT aerogels is re-
quired. The mechanical behavior of such aerogels is examined in several experimental
studies.[7, 9] However, these studies generally measure the properties of the bulk due to
the absence of an in-situ characterization technique that can o�er insight into the de-
formation process unfolding at the nanoscale. Therefore, it is needed to adjunct these
experimental studies with insights from simulations in order to develop a fundamental
understanding of deformation of CNT aerogels. In some cases, the simulations can even
guide the experiments towards rationally modifying the structure of aerogels so that their
mechanical properties can be enhanced. But to date there is not a single numerical model
that can provide a fundamental understanding of mechanics of CNT networks. This can
be in part due to the complexity of deformation mechanisms involved. Most important
among these are the VDW interactions between CNTs that di�erentiate CNT based aero-
gels from traditional cellular materials. Therefore, the goal of this study is to develop a
numerical model that can capture the complex physics associated with the deformation
of a CNT network and can also quantify its mechanical behavior as a function of network
and junction properties.

1.2 Literature Review

It has been well established that the mechanics of any network depends broadly on the
mechanical behavior of its individual filaments and cross-links and on network properties
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such as density of filaments, cross-links and the underlying network structure.[16, 17, 18,
19, 20, 21, 22, 23, 24, 25] It has also been suggested that networks might behave very
di�erently under small and large deformations due to a number of reasons. For more
than a half century, much of the work in the field of network mechanics was focused on
materials such as papers and rubbers. But recently that trend has slightly shifted towards
mechanics of cell, tissue and artificial biomaterials. Although the main focus of this review
will be the class of materials in which carbon nanotubes fall, nevertheless we will briefly
cover each of the important parameters that dictates mechanical behavior of networks.

1.2.1 Network Structure

A network structure can be described based on certain parameters such as network
density, distribution of filament segment lengths, and orientation. Network density can
be characterized both by the density of cross-links as well as the density of filaments. The
mean filament segment length l

c

is related to filament density r
l

by equation 1.1 for a 2D
network.[26] Here, r

l

is the total filament length per unit area and l
c

is the average length
between two crossings in the network.

l
c

= fi

2fl
l

(1.1)

If we assign a cross-link at each filament crossing, then cross-link density r
n

can be
related to filament density r

l

using equation 1.2.

fl
n

= fl2

l

fi
(1.2)

Equations 1.3 and 1.4 give the corresponding relations in a 3D network.[27]

l
c

= 2
fiDfl

l

(1.3)
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fl
n

= fiDfl2

l

4 (1.4)

Segment lengths are Poisson distributed with a very broad spread.[26] Another im-
portant result of some studies is that fluctuations in the filament density in a network
depend upon the probing length scale. The fluctuations increase as length scale decreases.
In one study, the authors found that the variation of the auto-correlation function of the
density with probing length scale has a power law dependence with two distinct scal-
ing regimes.[28] This outcome greatly a�ects the degree of homogeneity in the system in
terms of strain distribution (a�nity) as discussed later. Two other network parameters
discussed in several papers are geometric and rigidity percolation. Geometric percola-
tion is the density at which a continuous path spanning the whole network first appears.
Rigidity percolation is when the network acquires finite sti�ness. In networks with sti�
cross-links, these two events are the same. Otherwise geometric and rigidity percola-
tion occur at two separate filament densities, r

l

= 5.71/l and 6.71/l respectively in a 2D
network.[29, 24] Here l is the length of the filament.Average filament orientation dic-
tates the degree of anisotropy in the mechanical properties of the network. Preferential
alignment of filaments in the network may introduce some anisotropy in the mechanical
properties.[16]

1.2.2 Nature of Filaments

The mechanical behavior of filaments can be categorized based on persistence length.
For semi-flexible filaments (persistence length of the order of filament length), filament
bending and stretching are major modes of deformation.[21] A further distinction can be
made based upon the filament aspect ratio. For long slender beams, shear deformation
can be neglected and Euler-Bernoulli theory can be used.[16, 30] For short, stubby beams,
Timoshenko theory includes a correction due to the shear deformation mode.[16, 30]
Given the broad distribution of segment lengths in a random network there might be
some short segments.[26] Therefore, it is desirable to use Timoshenko beam theory for
the entire network.[16] In the case of flexible filaments with relatively smaller persistence
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length, entropic stretching also becomes important.[21] The constitutive equations for such
filaments can be represented by entropic spring models such as the freely rotating chain
model[31] or worm like chain model.[32] If the filaments have small persistence length, they
tend to coil up along their contour length. Upon applying strain at the ends, uncoiling of
the filament occurs with a decrease in its entropy. This results in a thermodynamic force
that depends both on the amount of stretch as well as the temperature of the system.
SWCNTs generally have large aspect ratio and persistence length at room temperature.[2,
1] Therefore, both shear deformation and entropic stretching can be neglected.[2] SWCNT
aerogels can thus be treated as semi-flexible networks.

1.2.3 Nature of Cross-links

Two major distinct classes of cross-links are bonded and non-bonded. Bonded cross-
links can be further classified on the basis of whether they allow for the angle and distance
between filaments to change. In some cases, cross-links may have some inherent structure
and their own constitutive behavior. In cellular cytoskeletons for example, elasticity is
governed by entropic stretching of actin cross-links that constitute a new class of cross-
links.[25, 33] In the case of non-bonded cross-links, filaments may interact via an excluded
volume constraint or inter-fiber friction, and, cross-link density might change with defor-
mation via formation/breaking of contacts.[16] In our study, we model van der Waals
interactions between nanotubes as springs that resists both change in angle and distance
between nanotubes in the small strain limit. In the case of large deformation, cross-links
were allowed to break when strained beyond maximum length.

1.2.4 Small Deformation

1.2.4.1 Flexible Filaments

Early network deformation models were based on the assumption of an a�ne defor-
mation of the network, i.e, filaments were assumed to deform based on a far field strain.
Filaments were assumed to have all possible orientations and total stress is obtained by
averaging over all orientations. It was found that the network modulus varies linearly



10

with filament density.[34, 35, 36] Later in some models, it was taken into consideration
that filaments may reduce their energy via non-a�ne deformation locally.[37, 38] In such
networks, the modulus was found to depend on both network density as well as the coor-
dination number at the cross-links. In [17], the authors considered all four mechanisms:
axial stretching, bending, and entropic stretching. They found that from a purely a�ne
perspective, increasing the average filament segment length transitions the overall mode
of deformation from axial stretching to bending to thermal stretching. However, this
prediction is valid only for regular cellular architecture. On increasing randomness in the
network, the bending regime completely disappears. The behavior of the fibrous archi-
tecture was also a�ected by the nature of the cross-links. But the main conclusion of this
study was that the networks with flexible filaments are more sensitive to randomness and
polydispersity than the ones with semi-flexible filaments. They attributed this to the fact
that entropic stretching sti�ness varies as l -4 while mechanical stretching sti�ness varies
as l -1.

1.2.4.2 Semi-flexible Filaments

Several studies have been performed on deformation of networks with semi-flexible
filaments with either freely rotating (pins) or sti� (welds) cross-links. The mechanical
behavior of such networks is characterized by three distinct elastic regimes with di�erent
scaling between modulus with network density. The first regime is observed at a critical
network density equivalent to either geometric or rigidity percolation depending upon the
nature of the cross-links.[24, 29, 39, 21] Both the elastic modulus and the shear modulus
scale as a power law of network density with an exponent of 3.0 [20, 21, 24] At the critical
point, the moduli transition from a zero to a non-zero value continuously.[21, 24] Most of
the elastic energy of the network is stored in bending of filaments in this regime.[20, 21]

On increasing the network density further, another distinct regime is observed. The
system energy is still dominated by the bending mode, but a di�erent scaling behavior
is observed.[40, 41, 21, 24] The modulus of the network increases linearly with bending
modulus of the filaments.[20, 21]The scaling exponent of the modulus with network density
was found to be 6.67 in this regime.[24]
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Upon further increasing the network density, the modulus of the network becomes
independent of the bending modulus of the filaments and scales linearly with density.[20,
21]The elastic response of the network in this regime is governed by axial deformation of
the filaments. [42, 43, 44, 45, 46, 47]

Another major distinction between bending and stretching dominated regimes is that
deformation of the network in the former is highly non-a�ne. Non-a�nity in the system
decreases with an increase in network density.[16, 20, 21] However, it never vanishes, and
the modulus of the network will always be smaller than the one predicted from the a�ne
theory.[16, 22] Non-a�nity in the system also depends upon the probing length scale.
In the bending dominated regime, non-a�nity increases without bound with decreasing
length scale, while in the stretching dominated regime, it saturates with decreasing length
scale.[21] The cross-over from the non-a�ne to a�ne regime is dictated by a dimensionless
parameter l.[20, 21] For l<�<l, deformation is a�ne while for l>�>l deformation is non-
a�ne. Here l is the length of the filament while l is defined as l

c

(l
c

/l
b

)z. l
c

as mentioned
above is the average segment length, while l

b

is the square root of the ratio of bending to
axial sti�ness of the filament. The value of z in some numerical studies is calculated as
2/5 [20, 21] while it has been established as 1/3 in some empirical studies.[20] In another
study the transition density, r

cross

, was found to vary as r
cross

*l~(r/l)-1/2.83.[24] Here r is
the radius of the filament. In [22], non a�nity in the system is also measured as a function
of length scale for di�erent network density and bending sti�ness. However, they found
two scaling regimes for variation of non-a�nity measure with probing length scale at all
network densities. Distinction between the two regimes only vanished at very low filament
bending sti�ness. In another study [23], deformation of a three-dimensional network of
semi-flexible filaments was considered. In this study, instead of varying the density of
filaments, the density of cross-links was varied. They found two distinct regimes. At
low cross-link density, they reported both shear and Young’s modulus varied as density
squared and the system’s elastic energy was stored in bending mode. Upon increasing the
cross-link density, they found that scaling exponent decreased from 2 to 1, and a transition
from bending to stretching occurred. They measured non-a�nity in the system via two
measures, root mean square deviation (RMS) of simulated positions from those of perfectly
a�ne deformations and a standard correlation function between the displaced and initial
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positions. They found that RMS decreases and correlation increases on increasing the
cross-link density, consistent with the fact that non-a�nity in the system increases with
density.

1.2.5 Large Deformation

Intense strain hardening is observed in networks of both flexible and semi-flexible
filaments under large deformation.[48] This might be due to the preferential alignment
of filaments during deformation and also axial pulling of undulations in case of thermal
filaments.[49, 50, 20, 24] In [19], two-dimensional networks of semi-flexible filaments with
sti� cross-links were studied under shear. They observed a bending dominated regime at
small strain followed by a transition into a stretching dominated regime characterized by a
large network sti�ness. This strain hardening was attributed to filament orientation along
the direction of the strain. Undulations in the filaments simply delayed the transition from
bending to stretching. On increasing the network density, the network became sti�er, and
strain hardening was observed at a comparatively smaller value of strain. The degree of
non a�nity in the system was also found to decrease with strain as a result of filament
re-orientation in the direction of strain.

Allowing the nodes to break led to strain softening and avalanches of cross-links fail-
ure. In [18], large deformation of three dimensional networks of sti� elastic filaments
under tension was modeled. Three di�erent types of cross-links were studied: In the first
case, cross-links were permanent, in nature, unbreakable, and new ones can’t be formed.
The elastic modulus of the network in this case increased with strain and intense strain
hardening was observed due to the orientation of filaments along the direction of applied
strain, thereby increasing the contribution of axial stretching to the total elastic energy.
This deformation was reversible. In the second case, cross-links were allowed to break
when strained beyond maximum length. In this case, single cross-link failures nucleated
small avalanches of cross-link failures, causing sharp drops in the stress-strain curve re-
sulting in saw-tooth patterns. As the strain was increased, strong strain softening was
observed. With increasing cross-link density, higher initial sti�ness was observed but
cross-links started breaking at smaller strains. Deformation of the network is irreversible,
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with sti�ness vanishing when the networks were completely broken. In the third case,
new cross-links were allowed to form if two filaments come closer than a certain distance.
The number of cross-links in this case increased with the strain. Strain hardening was
observed as in the case of permanent cross-links; however, in this case the deformation
was irreversible, with elastic energy and number of cross-links further increasing during
de-straining.

In [25, 51, 52, 53], the deformation of two and three-dimensional networks of rigid fila-
ments with compliant cross-links was modeled under shear. These cross-links represented
the highly compliant protein cross-links in cytoskeleton,[33] and were modeled as worm-
like chains. Under small strains, the shear modulus was found to vary as the square of
total cross-link density. In the non-linear regime observed at larger strains, the modulus
of the network scaled with stress with a power law dependence of 3/2, and non-a�nity
increased with strain. Taking into account stretching as well as bending was found to
have no e�ect on the non-linear sti�ening regime.

In the case of non-bonded networks, hysteresis is observed between loading and un-
loading due to filament rearrangement and sliding.[54] In such networks, strain rate also
plays an important role. Large strain can be achieved at same level of stress for slower
strain rate. This is attributed to viscous e�ects at cross-links.[54] The elastic modulus of
such networks under uniaxial compression seems to scale with density as a power law.[55]

1.3 Multi-Scale Modeling Approach

In this study, we model the mechanical behavior of CNT aerogels using a multi-scale
modeling approach. Molecular dynamics (MD) simulations are used at the atomic scale to
model the mechanical properties of individual nanotubes and to study the VDW interac-
tions between a bunch of nanotubes. However these simulations become computationally
expensive for a large system such as a network of nanotubes. Therefore the results from
atomistic simulation are used to inform a continuum scale finite element model that is
capable of performing faster simulation even for a large network of nanotubes. The finite
element model is used to carry out high throughput simulations characterizing the elastic
behavior of a CNT network in terms of the junction and network properties. But this
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Figure 1.3: Multi-scale Modeling Approach

model fails at modeling VDW interactions between nanotubes in the limit of large strain.
This model also cannot capture the entanglements between nanotubes present in a CNT
aerogel. Therefore in order to bridge the gap between atomistic and continuum scale we
employ a meso-scale model that can capture the complex physics associated with CNT
aerogels while avoiding the large computation cost of traditional MD simulation. It is
used to model self assembly of a CNT network and its large deformation behavior. Our
multi scale modeling approach is summarized in Figure 1.3.

1.4 Hypothesis

1. In a sti� random fiber network, changing junction properties can change the elastic
deformation mode.
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2. A meso-scale simulation can model the large deformation behavior of a CNT network
accurately including the three deformation regimes.

1.5 Document organization

In chapter 2, VDW interactions between CNTs are modeled using molecular dynamics
(MD) simulations. The specific cases of translation, sliding and rotation of a pair of
carbon nanotubes are studied. The resistance o�ered against deformation by the CNT
junction is calculated. In addition, the fracture strength of these junctions is obtained.

In chapter 3, the method for generating a random network of nanotubes for 2D and
3D cases is discussed in the beginning. This section covers the algorithms for generating
junctions between the nanotubes and checking for network connectedness in detail. This
discussion is followed by the method for developing the finite element model in order
to study the network deformation at the continuum scale. This section talks about the
sti�ness matrices of beam and spring elements, coordinate transformation, assembly of
elements, loading boundary conditions, solving the system of linear equations, and post-
processing operations. The a�ne theory for 2D network deformation is mentioned at the
end.

In chapter 4, the results obtained from the finite element simulations of deformation
of 2D and 3D networks are discussed. The first section of this chapter talks about the
variation in the number of junctions with network density in 2D and 3D networks. In the
next section, the FEM results for a 2D network are discussed, including characterizing the
network deformation as a function of network structure and junction parameters. These
results are also compared with the predictions from a�ne theory, and the amount of non-
a�ne deformation in the network is calculated. Similar parameter maps are developed
for a 3D network, as well and a set of rules that dictates the network deformation mode.
This chapter ends with a brief discussion about the non-linear mechanical behavior of
CNT networks in the event of junction fracture.

In chapter 5, a meso-scale model is developed for studying the self-assembly and large
deformation behavior of a pristine CNT network. In the first section of this chapter,
the common meso-scale modeling approaches are discussed. In the second section, the
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formulation and implementation of a bead spring model for simulating a CNT network
is discussed. This model is fitted using the results from atomistic MD simulations for
individual nanotubes. In the last section, the results of the self assembly and mechan-
ical testing of CNT networks are discussed. These results are also compared with the
experimental results.

In chapter 6, the summary of this work including the important findings as well as the
future scope of this work are discussed.
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Chapter 2

MD Simulations: CNT junctions
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2.1 Introduction

One of the major challenges in tapping the vast potential of CNTs is to fabricate
nanotube-based macrostructures that capitalize on the unique properties of nanotubes.
Interactions between nanotubes play a very important role in shaping mechanical proper-
ties of these macrostructures. Nanotubes interact via weak van der Waals (VDW) forces.
The VDW potential between two atoms as a function of distance x can be modeled by
the Lennard-Jones potential [56] as shown in equation 2.1.

u(x) = ≠ A

x6

+ B

x12

(2.1)

Here A and B are attractive and repulsive constants respectively. This model assumes
that electron density is uniformly distributed over the whole surface of a nanotube instead
of being localized at each individual atom.[56] Using this approximation, the potential F
between two parallel nanotubes is given by equation 2.2.[56]
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where, n is the mean surface density of carbon atoms (equal to 4/3(3)1/2a2 where a
is the lattice constant for graphene) and dS

1

and dS
2

are the surface elements for two
nanotubes.

By inserting equation 2.1 into equation 2.2 and integrating, potential F between two
parallel nanotubes can be represented by equation 2.3.[57]
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where, d is the distance between the nanotubes.
The equilibrium distance d

o

between two nanotubes is achieved when dF/dd = 0.
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Figure 2.1: Top and front view of crossed nanotube configuration of radii r
1

and r
2

,
distance d and angle g between them
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The energy well depth F
o

per unit length can be obtained by plugging the value of d
o

into equation 2.3.[57]
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Figure 2.1 shows two nanotubes with radii r
1

and r
2

at a distance d and making an
angle g with respect to each other. The VDW potential F between nanotubes in a crossed
configuration is given by equation 2.6.[58, 57]
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Here, a is taken as 1/r
1

+ 1/r
2

.
The VDW potential between two nanotubes also varies with angle g such that the

potential energy is minimum when the two tubes are in a parallel configuration, since this
allows for maximum overlap of area.
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2.2 Method

The nanotube configuration shown in figure 2.1 is modeled by molecular dynamics
simulation using the LAMMPS package.[59, 60] The first step involves developing the
atomic model. Carbon atoms belonging to di�erent nanotubes are assigned as type 1
and 2. In order to represent the sp2 bonding of C atoms in a nanotube, the AIREBO
potential is applied to type 1-1 and 2-2 atomic bonds.[61] The Lennard-Jones (lj/cut)
potential is applied to capture the VDW interactions between atoms of di�erent type 1-
2.[59, 60] Nanotube atomic coordinates are read from an input data file. Fixed boundary
conditions are used in the simulation. The energy of the system is minimized prior to
beginning the simulation using molecular statics.

In the first simulation, nanotubes are rotated in opposite direction at each time step
by a small angle g. The simulation is run for 50000 time-steps with each time-step being
equal to 0.001 ps. The total energy of the system is plotted as a function of the angle
between the nanotubes at every 200 time steps. In the second simulation, the angle
between the nanotubes is taken to be zero (parallel nanotubes) and distance d between
the nanotubes is varied to find the total energy as function of d. In the third simulation,
the angle between nanotubes is taken to be ninety degrees (perpendicular nanotubes) and
one nanotube is made to slide against the other to determine the total energy as function
of distance moved by the first nanotube. The spring sti�ness in di�erent directions is
then obtained by calculating the double derivatives of these plots as discussed below. The
LAMMPS input script for the crossed nanotube case is shown in Appendix A.

2.3 Results

Figure 2.2a shows the variation of the energy of the parallel nanotube system (g=0)
with respect to the distance between the nanotubes d. The equilibrium distance d

o

is taken
to be the distance at which the system energy is minimum. The value of d

o

obtained from
the simulation is 3.09 Å, quite close to the theoretical value of 3.17 Å, which is calculated
by plugging in the values of constants A (15.2 eVxÅ6) and B (24100 eVxÅ12) in equation
2.4.[57] The well depth „

o

= 1.73 eV is the energy of the system at the equilibrium distance



21

(a) Variation of energy with spacing d (b) Variation of force and sti�ness with spacing d

Figure 2.2: Results of parallel nanotube configuration

(a) Variation of energy with angle g (b) Variation of force and sti�ness with angle g

Figure 2.3: Results of crossed nanotube configuration
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(a) Variation of energy with sliding distance (b) Variation of force and sti�ness with sliding distance

Figure 2.4: Results of perpendicular nanotube configuration

d
o

. Since this is the total energy, the energy per unit length is obtained by dividing by
nanotube length, which is 24 Å in our case. Therefore the value of „

o

obtained from the
simulation is 72.15 meV/Å. The theoretical value of „

o

is calculated by plugging in the
values of constants n (0.381 Å-2), r

1

(4 Å), r
2

(4 Å), A (15.2 eVxÅ6) and B (24100 eVxÅ12)
in equation 2.5.[57], giving „

o

= 75.78 meV/Å. The two values of „
o

are in good agreement.
These results validate our method for modeling VDW interactions between two nanotubes.
The first derivative of the energy v/s distance curve gives the force between nanotubes,
which is zero at the equilibrium separation, as shown in figure 2.2b. The second derivative
of the energy curve gives the sti�ness of a spring that resists translation in the z direction,
k

z

. At the equilibrium separation distance, this value is equal to 116.14 N/m.
Figure 2.3a shows the variation of energy with respect to angle g between crossed

nanotubes. It is clear that the system energy is minimum when g is zero. This means
that the parallel configuration of nanotubes is most stable, since VDW interactions are
maximized. As shown in figure 2.3b, the second derivate of this plot at g = 0 gives the
value of sti�ness of a torsional spring that resists rotation along z direction, k

rotz

. From
our simulation, this value is equal to 4.59E-21 Nm/rad. Although k

rotz

varies with g as
shown in figure 2.3b, in our network deformation simulations we will assume it to be
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Junction Type Equilibrium Configuration Sti�ness
Maximum Force/

Torque

resists change in spacing d d
o

= 3.09Å 116.14 N/m 1.6 ú 10≠9N

resists change in angle “ “
o

= 0º
4.59 ú 10≠21

Nm/rad
3.20 ú 10≠21Nm

resists sliding perfect overlap of C atoms 0.108 N/m 3.84 ú 10≠12N

Table 2.1: Properties of SWCNT junctions governed by VDW interactions

constant.
Figure 2.4a shows the variation of energy during sliding of one nanotube against an-

other in the perpendicular configuration. We will model sliding using springs that resist
translation in x and y direction. These springs have equal sti�ness constants in either
direction. The sti�ness constants, k

x

& k
y

, are obtained by calculating the maximum in
the second derivative of the energy curve shown in figure 2.4b. This value is equal to
0.108 N/m as obtained from the simulation. The force resulting due to compression or
stretching of these springs is obtained by calculating the first derivative of the energy
curve shown in figure 2.4b. The maximum value of this force, f

max

(3.84E-12 N) is taken
to be the fracture strength of the spring, beyond which the spring breaks or slip occurs
in physical sense. In our finite element model, we will assume that complete fracture of
the node occurs as soon as either spring breaks.

Table 2.1 summarizes the characteristics of the three junction types discussed above.
As evident from the values of sti�ness obtained from calculating the second derivates
of the energy curves, nanotube junctions o�er maximum resistance to any deformation
that a�ects the spacing between them. The energy cost associated with the sliding and
rotation of nanotubes at junctions is small, therefore such junction deformations have
small sti�ness. The energy fluctuations associated with the sliding of nanotubes arise
from the periodic atomic structure of nanotubes and thus such fluctuations produce tiny
forces as compared to the other two deformation types. Therefore, the junctions between
nanotubes can easily break via sliding. Thus, the springs that model nanotube sliding at
junctions in the finite element model have a fracture strength associated with them.
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2.4 Conclusion

Molecular Dynamics simulations o�er insight into van der Waals interactions of nan-
otubes at the atomistic scale, providing a measure of resistance o�ered against sliding,
rotation and translation of nanotubes. These interactions will be modeled as linear trans-
lational / torsional springs added at each node in the network deformation model. How-
ever, the spring model is only valid in the limit of small strain. Therefore, in the event of
large deformation, these springs will be allowed to break if strained beyond their maxi-
mum length. This length can be calculated based on the spring fracture strength obtained
from the MD simulations.
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Chapter 3

FEM: Method
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Figure 3.1: Basic algorithm for generating a random network

3.1 Network Geometry

The method used to generate a random network of nanotubes described in this section
is for a three dimensional network. The method for generating a two dimensional network
is slightly di�erent and much simpler. Major di�erences between the two methods are
highlighted. Figure 3.1 outlines the basic algorithm for generating a random network.
The major modules of the algorithm are covered in detail in the next few pages.

3.1.1 Placing and modifying nanotubes

A nanotube is represented by a line segment of length l. Line segments are placed
sequentially in a unit cell of side length L until the desired network line density r

l

is
reached. r

l

has the same meaning as defined in chapter 1 but in a 3D network it is the total
nanotube length per unit volume of the unit cell. A line segment in three dimension can be
represented by its mid-point and orientation. The orientation is described by azimuthal
and polar angle, j

s

and f
s

. In order to ensure a random distribution of nanotubes, mid-
point co-ordinates are selected at random from [0, L]. To pick a random point on the
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(a) Modification of a nanotube (b) Line segments with end-points p
1a

, p
1b

and
p

2a

, p
2b

respectively and shortest distance AB

Figure 3.2: Modifying nanotube and generating junctions

surface of a unit sphere, j
s

and f
s

are defined as 2pu
r

and cos-1(2v
r

-1) respectively. Here
u

r

and v
r

are random numbers chosen from [0, 1].[62] Once a line segment is placed its
end-points and angles of orientation are stored. If a line segment extends outside the
simulation box it is modified as shown in figure 3.2a. This is done in order to make the
network periodic. In case of a 2D network, the unit cell is square instead of a cube and
only one angle is required to define the orientation. This angle is selected from [0, p].

3.1.2 Generating junctions between nanotubes

A nanotube crossing in 3D is defined as the shortest distance between two line seg-
ments. A line segment is checked for such crossings against all previously deposited line
segments. If the separation distance at a crossing is less than a certain cuto� distance,
that crossing is assigned as a junction between nanotubes in the finite element model.
The coordinates of the end-points of nanotube junctions are also stored. In the 2D net-
work, a crossing is more simply defined as wherever two line segments intersect and all
such crossings are assigned as nanotube junctions. The algorithm for finding the shortest
distance between two line segments in 3D is described as follows.

Let end points of the two line segments shown in figure 3.2b be (x
1a

, y
1a

, z
1a

), (x
2a

, y
2a

, z
2a

)
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and (x
1b

, y
1b

, z
1b

), (x
2b

, y
2b

, z
2b

) respectively. Also let’s assume that the shortest distance
between two line segments is defined between points A on the first line segment and B on
the second. The coordinates of points A and B then can be written as:

(x
A

, y
A

, z
A

) = (x
1a

+ ⁄
1

(x
2a

≠ x
1a

), y
1a

+ ⁄
1

(y
2a

≠ y
1a

), z
1a

+ ⁄
1

(z
2a

≠ z
1a

)) (3.1)

(x
B

, y
B

, z
B

) = (x
1b

+ ⁄
2

(x
2b

≠ x
1b

), y
1b

+ ⁄
2

(y
2b

≠ y
1b

), z
1b

+ ⁄
2

(z
2b

≠ z
1b

)) (3.2)

Here l
1

and l
2

are two unknowns. So the final problem reduces to finding the values
of parameters, l

1

and l
2

such that the distance between points A and B is minimum and
both l

1

and l
2

œ [0,1]. This problem is solved using the method of Lagrangian multipliers
for inequality constraints as outlined below.

The distance between points A and B can be written as h(⁄
1,

⁄
2

):

h(⁄
1,

⁄
2

) = ((x
A

≠ x
B

)2 + (y
A

≠ y
B

)2 + (z
A

≠ z
B

)2)1/2 (3.3)

Let us define four parameters, µ
1

, µ
2

, µ
3

, µ
4

, such that the Lagrangian L(⁄
1

, ⁄
2

, µ
1

, µ
2

, µ
3

, µ
4

)
can be defined as:

L(⁄
1

, ⁄
2

, µ
1

, µ
2

, µ
3

, µ
4

) = ≠h(⁄
1,

⁄
2

) + µ
1

(1 ≠ ⁄
1

) + µ
2

⁄
1

+ µ
3

(1 ≠ ⁄
2

) + µ
4

⁄
2

(3.4)

So we need to solve the following 6 equations for 6 unknowns ⁄
1

, ⁄
2

, µ
1

, µ
2

, µ
3

, µ
4

:

ˆL(⁄
1

, ⁄
2

, µ
1

, µ
2

, µ
3

, µ
4

)
ˆ⁄

= 0 (3.5)

ˆL(⁄
1

, ⁄
2

, µ
1

, µ
2

, µ
3

, µ
4

)
ˆ⁄

2

= 0 (3.6)

µ
1

(1 ≠ ⁄
1

) = 0 (3.7)

µ
2

⁄
1

= 0 (3.8)
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µ
3

(1 ≠ ⁄
2

) = 0 (3.9)

µ
4

⁄
2

= 0 (3.10)

Note that there will be 9 sets of solution in total. But only the solution that satisfies
the following inequalities will be valid:

0 Æ ⁄
1

Æ 1 (3.11)

0 Æ ⁄
2

Æ 1 (3.12)

µ
1

, µ
2

, µ
3

, µ
4

Ø 0 (3.13)

Once the appropriate values of l
1

and l
2

are known, they can be used to calculate the
shortest distance, |AB|, between the two line segments.

3.1.3 Generating beam elements

Nanotube segments between two nanotube junctions, between a nanotube junction and
a boundary, or between two boundaries are assigned as beam elements. In order to do
this, nanotube junctions need to be sorted according to their order along each nanotube.
This can be easily done since junction coordinates are represented as p

1

+ ⁄(p
2

≠ p
1

).
Here p

1

and p
2

are the coordinates of nanotube endpoints and ⁄ dictates the position
of a junction in the nanotube reference frame. So nanotube junctions can be sorted by
their corresponding value of l. It is also necessary to check that no two junctions along
a nanotube have same coordinates, since it will result in a beam element of length zero.
Nanotube segments with an end that doesn’t lie on a boundary or nanotube junction (i.e
dangling segments) carry no stress during network deformation. In a 2D network, such
segments are not assigned as beam elements to save computation cost. However in a 3D
network, it is more expensive to search for such elements than to include them in the
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Figure 3.3: Example of an unconnected network

finite element model. Therefore, those nanotube segments are made into beam elements
as well.

3.1.4 Checking for network connectedness

Before a network is analyzed in the finite element model, it is important to ensure
that the network is connected and there are no isolated clusters of nanotubes, because
this results in a singular sti�ness matrix. A connected network is connected with itself
across all boundaries, and a continuous path exists between any two nodes in the network.
The connected with itself part is very important. A network might not be a connected
one even if there exists a continuous path between two opposite cell boundaries as shown
in figure 3.3. [63]

In order to analyze a network for connectedness, it is stored as a graph with each
junction stored as a node and each element stored as an edge between two nodes. Graph
theory then can be used to check for network connectedness. There are several e�cient
algorithms that are specifically designed for this purpose. E�ciency can be defined both
in terms of memory usage and number of operations performed. In a 3D network however,
memory usage becomes more critical especially for dense networks. A 3D network is stored
in the form of an adjacency list since its space usage is «(n + m), while a 2D network
is stored in form of an adjacency matrix since it is much easier to manipulate. Here, n
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and m are the number of nodes and edges in a graph respectively. A depth first search
(DFS) algorithm is used to find all possible connected clusters in a network: A node v is
selected. The function DFS(v) traverses the graph to find all nodes u connected to node
v in a depth-first order. v is marked as visited. For each node u connected to v, if not
visited previously, the function DFS(u) is called. This is the recursive version of the DFS
algorithm that is implemented for a 2D network. For a 3D network, the recursion depth
is too large. Therefore, a non-recursive version is implemented, in which recursive calls
are replaced with a stack.

Once all possible connected clusters in a network are identified, each cluster is checked
that it connects with itself across all boundaries. In a 2D network, there can be only one
connected cluster that satisfies this criterion, while in a 3D network there can be more
than one.[63] Each cluster that satisfies the above criterion is completed with any parts
that it is connected to across boundaries but not within the unit cell. The rest of the
connected clusters are isolated and are removed from the network. Figures 3.4a and 3.4b
show a random network of nanotubes for a 2D and 3D case respectively.

There can be some clusters in a network that are connected to the rest of the network
through a single nanotube. These dangling clusters will not participate in deformation,
but they occur very rarely and are di�cult to find.[63] Therefore, such clusters aren’t
removed from the network.

3.2 Finite Element Model

The finite element method consists of dividing the network into beam and connection
elements, writing the sti�ness matrix for each element, assembling element sti�ness matri-
ces into the global sti�ness matrix, specifying load and displacement boundary conditions,
and finally solving the system of linear equations.[64] Each of these steps are explained
in detail in the following sections.
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(a) 2D network (b) 3D network

Figure 3.4: Random network of nanotubes

3.2.1 Elements

3.2.1.1 Beam Elements

Carbon nanotubes can be treated as e�ective elastic beams for small strain behavior
before buckling initiates.[65] In the FEM, a hollow elastic cylinder with a wall thickness
t
tube

of 0.34 nm represents a SWCNT.[65, 66] As mentioned previously, SWCNTs have a
very high aspect ratio.[2, 1] Therefore the e�ect of shear deformation can be neglected
for carbon nanotubes of length l. However, in the actual network of carbon nanotubes,
there is a broad distribution of nanotube segment lengths.[16] Some of the segments
might be short enough for Euler-Bernoulli theory to become inaccurate. For this reason,
Timoshenko beam theory is used for modeling nanotubes in a 3D network, although in
2D networks, Euler-Bernoulli theory is used.

In case of a 3D network, a carbon nanotube is modeled as a two-node elastic beam
element with six degrees of freedom at each node as shown in figure 3.5. An element sti�-
ness matrix relates the nodal displacements and rotations to nodal forces and torques as
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represented by the equation f = Ku. In this equation, f and u are force and displacement
vectors given by equation 3.14, and K is the sti�ness matrix.

f =

f
x1

f
y1

f
z1

·
x1

·
y1

·
z1

f
x2

f
y2

f
z2

·
x2

·
y2

·
z2

u =

u
1

v
1

w
1

◊
x1

◊
y1

◊
z1

u
2

v
2

w
2

◊
x2

◊
y2

◊
z2

(3.14)

The sti�ness matrix K
beam

for a beam element is given by equation 3.15.[64]

K
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(3.15)

where, X = AtubeEtube
lS

, Y
1

= 12EtubeItube
(1+„tube)l

3
s

, Y
2

= 6EtubeItube
(1+„tube)l

2
s
, Y

3

= (4+„tube)EtubeItube

(1+„tube)ls
,
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Figure 3.5: Two node elastic beam element (taken from [64])

Y
4

= (2≠„tube)EtubeItube

(1+„tube)ls
, S = GtubeJtube

ls
, „

tube

= 24EtubeItube
AtubeGtubel

2
s
,

and Z
1

= Y
1

, Z
2

= Y
2

, Z
3

= Y
3

, Z
4

= Y
4

K
beam

is a symmetric matrix characterized by the area of cross-section A
tube

, elastic
modulus E

tube

, second moment of inertia I
tube

, shear modulus G
tube

, polar moment of in-
ertia J

tube

and the segment length between two nanotube junctions, l
s

. Table 3.1 provides
a list of values of these parameters used in the finite element model.

The sti�ness matrix given by equation 3.15 is for a beam element lying along the global
x axis, but in a network of nanotubes, they can realize any orientation. Therefore the
sti�ness matrix must be transformed from local to global coordinates. This transformation
is done according to the equation K

el

= T tKT . Here T is the transformation matrix
defined in the equation 3.16.

T
12x12

=

Q

ccccccca

L 0 0 0
0 L 0 0
0 0 L 0
0 0 0 L
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dddddddb

where L =
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l
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n
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l
2

m
2

n
2

l
3

m
3

n
3

R

ddddb
(3.16)

l
i

, m
i

, and n
i

are the direction cosines of the local x
i

axis with respect to the global x,
y and z axes respectively as given by equation 3.17.
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For a beam element,

L =

Q
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where, l
s

= ((x
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and (x
1

, y
1

, z
1

), (x
2

, y
2

, z
2

) are the coordinates of the end-points of a nanotubes.

The local x axis for a beam element is defined along its length vector. Since the
cross-section of the nanotube is circular, any mutually perpendicular set of axes that are
also perpendicular to the local x axis can be taken as the local y and z axes. In this
simulation, the local y axis is taken to lie in the global x-y plane for a beam element.

For a 2D network, the beam element is a two node element with three degrees of
freedom at each node (translation along x, y and rotation along the z axis), so the sti�ness
matrix is a 6x6 symmetric matrix. Also the transformation matrix is much simpler in
that case.

3.2.1.2 Spring elements

As mentioned earlier, nanotube junctions are represented by spring elements that resist
translation and rotation in all directions. The sti�ness matrix K

junction

of such an element
is given by equation 3.18.
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Parameter Value

Diameter d
tube

1 nm
Wall thickness t

tube

0.34 nm
Length of nanotube l 1 mm
Elastic modulus E

tube

1.25 TPa
Shear Modulus G

tube

0.5 TPa
Area of cross-section A

tube

p d
tube

t
tube

= 1.07 nm2

Second moment of Inertia I
tube

p ((d
tube

+ t
tube

)4- (d
tube

+ t
tube

)4)/64 = 0.15 nm4

Polar moment of Inertia J
tube

2I
tube

= 0.29 nm4

Table 3.1: List of values of nanotube parameters
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(3.18)
This equation is characterized by translational (k

x

, k
y

, k
z

) and rotational sti�ness
(k

rotx

, k
roty

, k
rotz

) along the x, y and z directions. In this simulation, we have assumed
k

rotx

and k
roty

to be equal to k
rotz

. The di�erent types of junctions are shown in figure 3.6.
To represent the case of VDW interactions at nanotube junctions, values of the sti�ness
constants are obtained from the MD simulation results mentioned in chapter 2. The local
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Figure 3.6: Di�erent junction types in CNT network

sti�ness matrix is transformed according to the equation K
global

= T tKT . However, in
this case, the local z direction is defined along the length vector of the spring element.
The direction cosines for this element are given via equation 3.19.

L =
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Here, l
s

, e
s

, f
s

, (x
1

, y
1

, z
1

) and (x
2

, y
2

, z
2

) are defined similarly as for the beam elements.

Again for a 2D network, the sti�ness matrix is a 6x6 matrix with only k
x

, k
y

, k
rotz

terms, and it is not transformed.

3.2.2 Assembly of element matrices

The element sti�ness matrices need to be assembled to form the global sti�ness matrix.
The global sti�ness matrix K

global

relates degrees of freedom (DOFs) to forces and torques
at each node in the network according to the equation f

global

=K
global

u
global

. In a 2D network,
K

global

is stored directly in form of a matrix, since it is easier to modify such matrix for
future operations. However the space usage is «(n2). This becomes very costly in case of
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a 3D network, especially at high density. Since most of the elements in the sti�ness matrix
are zero (sparse matrix), it makes more sense to store only non-zero elements. Therefore,
in a 3D network, the global sti�ness matrix is stored in sparse triplet matrix format.
In this format, three matrices each with memory usage of J(n) are used. The first two
matrices are used to store the row and column of each non-zero entry in the matrix. The
third matrix stores the non-zero entry corresponding to that position. Element sti�ness
matrices are directly assembled in this format for a 3D case. The only drawback of sparse
triplet matrix format is that it is not trivial to manipulate a specific entry in the matrix.

3.2.3 Specifying boundary conditions

The end goal of this simulation is to calculate response of the nanotube network
subjected to deformation. A deformation may correspond to various modes of strain ‘ =
(‘

x

, ‘
y

, ‘
x

, “
xy

, “
xz

, “
yz

). Due to computational limitations, the length scale of the material
to be simulated can’t be matched with the experiments. The unit cell, which is periodic,
can be treated as one of many identical cells making up a larger network in the undeformed
state. Therefore strain should be applied in such a way that the cell boundaries should
match in the deformed state as well fulfilling the continuity requirement. This is achieved
by subjecting the network to a set of cyclic displacement boundary conditions given by
equation 3.20.[63]
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(3.20)

The DOFs correspond to a particular node on the boundary that is specified by the
superscript. Since the unit cell is periodic, for every boundary node there exists a node
at exactly the same location on the opposite boundary. Therefore, the DOFs of the two
nodes on opposite boundaries can be constrained by a relationship. Boundaries s1 to
s6 of the unit cell are shown in figure 3.7. Since, the networks in this simulation are
only subjected to compressive strain in the y direction, ‘

y

, boundary constraints shown in
equation 3.20 reduce to vs4 ≠ vs3 = L‘

y

. The rest of the DOFs of the opposing boundary
nodes are set to be equal to each other. In case of a 2D network, the constraint relations
remain the same. Only the number of DOFs reduces to 2 and the cell boundaries reduce
from 6 to 4.



40

Figure 3.7: Boundaries of the unit cell

3.2.4 Solving the system of linear equations

The sti�ness matrix obtained by assembling the element matrices is singular in nature,
since it has not been modified to accommodate the displacement constraints mentioned
in equation 3.20. In order to enforce these constraints, the constraint elimination method
is used.[67, 68, 69, 70, 71] The displacement of node i at the boundaries x, y, z=L can
be written in terms of the displacement of nodes at boundaries x, y, z=0 respectively as
shown in equation 3.21. Here g can be calculated from equation 3.20.

ui

L

= ui

0

+ g, i = 1, ...., p (3.21)

The original system of equation is:

K
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u
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(3.22)

The displacement vector u
global

can be divided into three parts: displacements of
internal nodes u

I

, displacements of nodes at boundaries x, y, z=L, u
L

and displacements
of nodes at boundaries x, y, z=0, u
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Accordingly equation 3.22, can be reorganized as:
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On inserting equation 3.21 in equation 3.24, results in:
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Since no external force is applied at the interior nodes of the network, the f
I

term in
equation 3.25 is 0. There will be reaction forces at boundaries in the network, f

L

and f
0

.
But since the displacement boundary conditions are periodic in nature, the reaction forces
at opposite boundaries will be in opposite direction, equal in magnitude and therefore will
cancel each other out. Thus, f

L

+ f
0

will also be 0. This equation can be re-written as:
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or

K̂
global

û
global

= f̂
global

(3.27)

By using this method, the number of unknowns in the system can be reduced. Equa-
tion 3.27 can be solved for the reduced displacement vector û

global

consisting of u
I

and u
0

.
Once values of u

0

are known, equation 3.21 can be used to calculate u
L

.
In addition to prescribing displacement constraints at boundary nodes, the transla-

tional displacements of an interior node should also be set to zero to prevent rigid body
motion.[63] The global sti�ness matrix and force vector need to be modified accordingly.
This is done using the penalty method.[72] In this method, the sti�ness term correspond-
ing to the DOF to be prescribed is modified by adding a large penalty term to it. For N
DOFs, the ith DOF equation may look like:
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K
i1

u
1

+ .. + K
ii

u
i

+ .. + K
iN

u
N

= f
i

(3.28)

Now, in order to set u
i

to some known value D, equation 3.28 is modified as follow:

K
i1

u
1

+ .. + (K
ii

+ p)u
i

+ .. + K
iN

u
N

= f
i

+ pD (3.29)

Here, p is a large penalty term. Using the implied equilibrium relation given by
equation 3.28, equation 3.29 can be simplified to:

pu
i

= pD (3.30)

In this simulation, the penalty term p is chosen as:

p = max (|K
i,j

|) x1012

i,j=1æN

(3.31)

The reduced system of linear equations 3.27 can now be solved. In this simulation,
a direct sparse linear solver, CSPARSE, developed by Timothy Davis, is used for this
purpose.[73] For this solver, the sti�ness matrix should be input in compressed column
format. A C library known as ST_TO_CC is used to convert the sti�ness matrix from
sparse triplet to compressed column file format.[74]

3.2.5 Post-processing

The post-processing operations involve calculating the elastic modulus of the network,
contribution of various deformation modes to the total elastic modulus of the network
and non-a�nity measures. The method underlying each of these calculations is outlined
as follows.

3.2.5.1 Elastic modulus of the network

The elastic modulus of the network can be calculated in two ways. The first method
involves determining the reaction forces at the boundaries of the network. Once the
displacement vector u

global

is obtained, it can be multiplied with the global sti�ness matrix
K

global

to obtain the global force vector f
global

. As mentioned earlier, reaction forces should
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Figure 3.8: Reaction forces at boundaries of the unit cell

be zero at all interior nodes except one node that is constrained to prevent rigid body
motion. However, there will be reaction forces at the boundary nodes as shown in figure
3.8. The stresses can be calculated from the reaction forces via equations 3.32-3.37.
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The elastic modulus of the network Y
network

can be calculated via equation 3.38.

Y
network

= ‡
y

‘
y

(3.38)

In a 2D network, stress is calculated as reaction force divided by side length of the
unit cell. Therefore, both stress and elastic modulus of the network have units of force
per unit length.

Another method of obtaining the elastic modulus of the network involves calculating
the total elastic energy of the system. This method is outlined in the next section. Once
the elastic energy of the network E

network

is known, the elastic modulus of the network
can be obtained via equation 3.39.

Y
network

= 2E
network

‘2

y

L3

(3.39)

In this study, the elastic modulus is calculated via both methods. The two values of
elastic modulus should be equal for a correct FEM simulation.

3.2.5.2 Elastic energy of the network

The elastic response of the network can be viewed as a result of deformation of the
nanotubes as well as deformation of the junctions. Nanotube deformation can be further
divided into torsional deformation, axial stretching/compression and bending of the nan-
otube. Junction deformation can be due to stretching/compression of springs along the x,
y and z directions as well as rotation along these directions. Therefore, it is necessary to
calculate the contribution of each of these deformation modes to the overall elastic energy
of the network. In order to do this, the elastic energy of each element in the network is
added to the relevant deformation mode. The global displacement vector obtained via
solving equation 3.27 contains the displacement and rotation values of each node in the
deformed network. For any given element, the displacement and rotation of its two nodes
can be extracted from this vector. However, since their value is in global coordinates, it



45

needs to be converted into the local coordinate system of that element. This can be done
by multiplying the displacement vector of that element with its transformation matrix
given by equation 3.16. Similarly the element local force vector can be obtained as a
product of the sti�ness matrix and the local displacement vector of that element. After
obtaining the local element force and displacement vectors (f

local

and u
local

), the elastic en-
ergies can be calculated. For a beam element, the equations for calculating elastic energy
stored in axial stretching/compression (E

stretch

), torsional (E
torsion

) and bending (E
bend

)
modes are given by 3.40-3.42.
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For a junction spring element, the equations for calculating elastic energy stored in
translational (E

kx

, E
ky

, E
kz

) and rotational modes (E
krotx

, E
kroty

, E
krotz

) are given by 3.43-
3.47.
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The total elastic energy of the network E
network

is then obtained by adding the elastic
energy of all deformation modes of all the elements in the network. In the final result, the
contribution of individual deformation modes to the overall deformation of the network
is represented as a fraction of its corresponding elastic energy to the total elastic energy
of the network.

3.2.5.3 Non a�nity measure

A network deformation is said to be a�ne if the local strain field is homogeneous and
varies according to far-field applied strain. However, this is never exactly true in a random
network of filaments as discussed in chapter 1. In order to quantify the non a�nity in
the network deformation, two parameters are used in this study. First is the root mean
square deviation (RMS) of the vertical displacement of each node in the network from
the a�ne prediction as mentioned in equation 3.48.

RMS2 =< ( u
y

‘
y

L
≠ y

L
)2 > (3.48)

Second is the standard correlation function (COREL) between the vertical displace-
ment and initial position of each node given by equation 3.49.
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For perfect a�ne deformation, RMS and COREL should be equal to 0 and 1 respec-
tively. The non-a�nity (NA

r

) measure represented by equation 3.50 captures non -a�nity
in the system at di�erent length scales

NA
r

=
A

—r
sim

≠ —r
affine

r + —r
affine

B
2

(3.50)

Here u
y

is the displacement of a node in y-direction, y is the y-coordinate of that node,
angled brackets <> denote average over all nodes in the network, sv denotes standard
deviation, r is the distance between two nodes, Dr is the change in distance between
that set of nodes and the subscript represents whether it is a result of simulation or a�ne
theory.
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Figure 3.9: Original configuration of an elastic beam of length l with n cross-links at an
angle ◊

3.3 A�ne theory

Under the premise of the a�ne theory, the strain distribution in the network is spatially
uniform. Therefore the network can be treated as an elastic continuum. Figure 3.9 shows
the original configuration of an elastic beam of length l making an angle ◊ with the x-axis
connected by n number of crosslinks to the underlying network. A compressive strain e
is applied in y direction that according to the a�ne assumption manifests into vertical
displacement at each node of the network as e*y. The elastic energy E of a single beam
is averaged over all possible configurations ◊. The elastic modulus of the network can
be extracted as Y

affine

= 2NE/(V Á2), where N/V is the number of elastic beams per
unit volume in the network. Equation 3.51 gives the relationship between the number of
beams per unit volume N/V in a network with the number of cross-links per beam n.[26]

N

V
= nfi

2l2

(3.51)

This theory is developed only for a 2D network. In the case of a 3D network, each
cross-link can also assume any random orientation. This e�ect cannot be captured using
this simple model.
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3.4 Conclusion

In this chapter we have discussed the method for generating a 2D and 3D network
of nanotubes. The basic algorithms for generating junctions between the nanotubes and
checking for network connectedness are examined. The finite element formulation for
studying the linear deformation of these networks is also covered. It involves the sti�ness
matrices of beam and spring elements, coordinate transformation, assembly of elements,
loading boundary conditions, solving the system of linear equations, and post-processing
operations. In the next chapter, we will apply these concepts to study the deformation of
CNT networks.
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Chapter 4

FEM: Results
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4.1 Introduction

In this chapter, the results obtained from the finite element simulations of deformation
of 2D and 3D networks are discussed. The first section of this chapter talks about the
variation in the number of junctions with network density in 2D and 3D networks. In the
next section, the FEM results for a 2D network are discussed, including characterizing the
network deformation as a function of network structure and junction parameters. These
results are also compared with the predictions from a�ne theory, and the amount of non-
a�ne deformation in the network is calculated. Similar parameter maps are developed
for a 3D network, as well and a set of rules that dictates the network deformation mode.
This chapter ends with a brief discussion about the non-linear mechanical behavior of
CNT networks in the event of junction fracture.

4.2 Network Geometry

The variation in the average number of junctions per nanotube n
c2D

with respect to
network line density r

l

for a 2D network is shown in figure 4.1. In this simulation, network
line density is increased while keeping the nanotube length l constant. 10 simulations with
di�erent initial seeds are carried out at each density and the results show the average
values. The number of junctions per nanotube n

c2D

increases linearly with r
l

as shown
in the plot. This agrees with the theoretical relationship given by equation 4.1 shown by
the solid line in the plot.

n
c2D

= 2lfl
l

fi
(4.1)

n
c3D

= fid
tube

lfl
l

2 (4.2)

The corresponding equation for a 3D network is given by 4.2. The number of junctions
per nanotube n

c3D

in a 3D network depends on both network line density r
l

and nanotube
diameter d

tube

. It increases linearly with both. As mentioned earlier, in the simulations
the nanotube diameter is captured using a cuto� distance (COD), and a crossing between
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Figure 4.1: Variation of number of junctions per nanotube with 2D network density

two nanotubes is assigned as a junction only if its separation distance is below the COD.
In the simulations, both network line density and COD for junction formation are varied.
Figures 4.2a and 4.2b show the variation of junctions per nanotube n

c3D

with respect to
COD and r

l

respectively.
A perfect data collapse for figure 4.2a can be obtained by dividing the number of

junctions with r
l

as shown in figure 4.3a. This means that the number of junctions per
nanotube varies linearly with the network density in a 3D network as well. We try to
fit this data to get the relationship between the variation in the number of nodes per
nanotube with respect to the COD. It is evident from figure 4.3a that a linear fit doesn’t
work, especially at high COD. However, a quadratic polynomial fit gives an R2 value of
1. This conclusion is further supported by figure 4.3b. We get a perfect data collapse of
variation of n

c3D

with density when each data point is divided by the polynomial function
of its COD obtained in the previous plot. The linear fit between n

c3D

and density in this
case further confirms the linear scaling behavior of the number of nodes per nanotube
with respect to network line density. It can be extracted from figures 4.3a and 4.3b that
the number of junctions per nanotube varies as equation 4.3.

n
c3D

= lfl
l

(8.2d2

tube

+ fi

2 d
tube

) (4.3)
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(a) Variation with respect to cuto� distance (b) Variation with respect to network line density

Figure 4.2: Variation of number of junctions per nanotube in 3D network

(a) Variation with respect to cuto� distance (b) Variation with respect to network line density

Figure 4.3: Data collapse for number of junctions per nanotube in 3D network
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It is interesting to note that this equation does reduce to equation 4.2 with the linear
part dominating at very small COD. The coe�cient of linear term is same in both the
equations. In the rest of the simulations , network density will be referred to as the
number of nodes per nanotube in the network.

4.3 FEM: 2D analysis

4.3.1 Variation of elastic modulus with unit cell size

In this study, the material at laboratory-scale is treated as an array of periodic unit
cells deforming under cyclic boundary conditions. Therefore, the size of the unit cell
can be much smaller than that of the actual material, saving us a lot of computation.
However, it is also very important to determine the lower limit on the size of the unit cell
such that the choice doesn’t a�ect the results of the simulations. Therefore, we study the
variation of the elastic modulus of the network Y

network

with respect to system size, i.e,
side length L of the unit cell. In these simulations, the network density is fixed and the
side length L of the unit cell is varied. Since the nanotube length l used in each simulation
is 1 mm, the value of L actually represents the ratio of the length of the unit cell to the
length of individual nanotubes. 10 simulations are run for each value of L. The average
elastic modulus and standard error bar at each point are calculated and plotted against
L. Figures 4.4a and 4.4b show such curves for low and high network densities respectively.
In both of these curves, the standard error and the variation in elastic modulus are very
high for small system size. As L increases, the standard error decreases, and the elastic
modulus of the network becomes constant. This behavior is more pronounced in the
low density network. Since the goal is to save computational cost without a�ecting the
results, the lowest value of L at which the elastic modulus becomes constant is chosen as
the default system size for the rest of the simulations. This value is L = 1.4 mm. Since
the standard error is very small at this value of L, 10 simulations are carried for each set
of parameters.
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(a) Low network density (b) High network density

Figure 4.4: Variation of network elastic modulus with system size L in 2D network

Figure 4.5: Mapping of network elastic modulus with junction sti�ness and network
density in 2D network
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Figure 4.6: Variation of network elastic modulus with junction axial sti�ness and network
density in 2D network

4.3.2 Parameter Map

The parameters to study for a 2D network can be categorized as network, nanotube
and junction parameters. In this study, we fix the nanotube parameters to the exper-
imental values mentioned in table 3.1.[7, 6, 9] The network parameter that is varied is
network density, n

c2d

. Junction parameters include translational sti�ness along the x any
y directions. k

x

, k
y

and rotational sti�ness along the z direction, k
rotz

. In this study,
k

x

and k
y

are assumed to be equal in magnitude. Figure 4.5 shows a parameter map of
the variation of elastic modulus of the network Y

network

with respect to k
x

/k
y

and k
rotz

at
di�erent network densities n

c2d

. It is clear from the figure that the elastic modulus only
varies with k

x

/k
y

and not with k
rotz

. In order to study the variation with respect to k
x

/k
y

,
a cross-section of the graph in figure 4.5 is shown in figure 4.6. As can be seen from the
figure, the elastic modulus increases with k

x

/k
y

initially and becomes constant after a cer-
tain value, which is equal in magnitude to the axial sti�ness of the nanotube, E

tube

A
tube

/l
(1.3375 N/m). This might suggest that for values of k

x

/k
y

lower than the nanotube axial
sti�ness, network deformation is governed by stretching/compression of cross-links, while
axial deformation of nanotubes governs the deformation for sti� cross-links.
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(a) junction axial sti�ness, k
x

/k
y

=1e-06 N/m (b) junction axial sti�ness, k
x

/k
y

=1e-03 N/m

(c) junction axial sti�ness, k
x

/k
y

=0.1 N/m (d) junction axial sti�ness, k
x

/k
y

=1 N/m

(e) junction axial sti�ness, k
x

/k
y

=1e03 N/m (f) junction axial sti�ness, k
x

/k
y

=1e09 N/m

Figure 4.7: Variation of network elastic modulus with network density in 2D network
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In order to extend this argument further, we look at the variation of elastic modulus
of the network with respect to network density at di�erent values of k

x

/k
y

as shown in
figure 4.7. The results from both the a�ne prediction and the finite element model are
shown. The a�ne results are fitted with the appropriate curve in order to predict the
scaling law. The results obtained from simulation follow the respective scaling laws at
high network densities. At low densities, however the behavior is quite di�erent from
the a�ne prediction. This is elaborated upon further in the next section. The scaling
behavior changes with respect to k

x

/k
y

. At values of k
x

/k
y

lower than nanotube axial
sti�ness (figures 4.7a, 4.7b & 4.7c), the scaling behavior takes the form of a quadratic
polynomial. The ratio of the quadratic to the linear term in this polynomial decreases
with increasing k

x

/k
y

. This indicates that the scaling law becomes more linear as the
junction axial sti�ness is increased. At values of k

x

/k
y

larger than the nanotube axial
sti�ness (figures 4.7d, 4.7e & 4.7f), the quadratic terms completely disappear and the
scaling behavior becomes exactly linear. This transition in the scaling behavior is also
indicative of a change in the governing mode of network deformation with varying junction
sti�ness. These two di�erent scaling responses are also mentioned in the literature of
sti�[20, 21, 23, 24] and compliant cross-links.[25, 51, 52, 53]

In order to actually predict the governing mode of network deformation, we look at
the fraction of total elastic energy stored in each deformation mode. Figure 4.8 shows
the curves for the variation of the fraction of total elastic energy in various deformation
modes as a function of network density at di�erent values of k

x

/k
y

. The curves from
both the a�ne prediction and the finite element model are shown. As mentioned before,
simulation results match a�ne prediction at high densities. For very low values of k

x

/k
y

(figures 4.8a, 4.8b & 4.8c), most of the elastic energy of the network is stored in axial
stretching/compression of junction springs. As the value of k

x

/k
y

increases beyond the
nanotube axial sti�ness (figures 4.8d, 4.8e & 4.8f), most of the elastic energy of the network
is stored in axial deformation of the nanotubes. Figure 4.8c shows a special case when the
value of k

x

/k
y

is still lower than the nanotube sti�ness but very close to it. In this case,
at intermediate densities most of the energy is stored in stretching/compression of cross-
links. But since the di�erence between nanotube sti�ness and k

x

/k
y

is considerably smaller
(¥1.22 N/m), the energy stored in axial deformation relative to cross-link deformation
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(a) junction axial sti�ness, k
x

/k
y

=1e-06 N/m (b) junction axial sti�ness, k
x

/k
y

=1e-03 N/m

(c) junction axial sti�ness, k
x

/k
y

=0.1 N/m (d) junction axial sti�ness, k
x

/k
y

=1 N/m

(e) junction axial sti�ness, k
x

/k
y

=1e03 N/m (f) junction axial sti�ness, k
x

/k
y

=1e09 N/m

Figure 4.8: Variation of elastic energy distribution with network density in 2D network
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(a) junction axial sti�ness, k
x

/k
y

=1e09 N/m (b) junction axial sti�ness, k
x

/k
y

=1e-06 N/m

Figure 4.9: Variation of root mean square deviation (RMS) and standard correlation
function (COREL) with network density in 2D network

starts to increase with density. At very high density, the former should govern the overall
deformation of the network (not shown in the graphs).

Based upon the three results presented above, it can be concluded that network defor-
mation is governed by the stretching/compression of cross-links for compliant cross-links,
while axial deformation of nanotubes governs the deformation for sti� cross-links. Such
a network can be thought of as springs connected in series, where the softer spring will
always govern the overall deformation. This analogy has previously been discussed in the
literature.[16, 17] This is, however, only true at high network densities in some cases. At
low network density, the mechanical behavior of network is no longer a�ne, and bending
of nanotubes also plays an important role as discussed in the next section.

4.3.3 Non-a�ne deformation

As mentioned in the previous section, the scaling behavior of the elastic modulus with
respect to network density is quite di�erent from the a�ne prediction especially at low
densities. Also the value of the elastic modulus of the network is much lower than its
a�ne prediction at such small densities. This is because at small network density, the
system can reduce is energy via softer deformation modes, that is bending of nanotubes.
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Figure 4.10: Variation of non a�nity measure (NA) with distance between nodes r in 2D
network

This is indeed the case as evident from figure 4.8. Much of the system’s elastic energy is
stored in the bending mode for small network densities. As the network density increases,
Y

network

starts to scale as dictated by a�ne theory. However it never reaches the a�ne
value because even at high density, some fraction of energy is still stored in bending mode
as shown in figure 4.8. Out of the six cases shown in figure 4.7, only for the case when
the value of k

x

/k
y

is very small (figure 4.7a), does the elastic modulus follows the a�ne
prediction closely even at small density. This is because for such small value of k

x

/k
y

there
is no contribution of nanotube bending as shown in the respective energy curve (figure
4.8a). This non-a�nity in the system is captured using two parameters. First is the root
mean square deviation (RMS), and second is the standard correlation function (COREL)
as discussed in chapter 3. For perfectly a�ne deformation, RMS and COREL should be
equal to 0 and 1 respectively. The variation of both RMS and COREL with network
density for high and low values of k

x

/k
y

is shown in figures 4.9a & 4.9b respectively. It
can be seen from figure 4.9a that at low network densities, the value of RMS is high
and COREL is very low indicating non-a�ne deformation. But with increasing network
density, RMS starts decreasing and saturates to a low value. The value of COREL,
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on other hand, increases with network density and saturates to a value close to 1 at
high network density. This further indicates that the deformation of a random network
follows a�ne prediction at high densities. This is true however only for networks with
sti� cross-links. For the case of compliant cross-links, there is no contribution of bending
deformation even at very low network density as mentioned above. In this case, values
of RMS and COREL functions remain constant with network density according to figure
4.9b. Even at low network densities, COREL is close to 1. This shows that deformation is
always a�ne in a network with compliant cross-links. Non a�nity is not only a function
of network density, but also of the probing length scale.[16, 21, 22] In figure 4.10, non
a�nity in the network deformation NA

r

in the system is plotted against di�erent length
scales for a high density network (n

c2d

=62). The value of NA
r

is considerably higher at
very small length scale but decreases significantly at the length scale comparable to the
system size, L. This shows that the degree of non-a�nity also depends on length scale
at which it is measured. In particular, two distinct scaling regimes can be seen in figure
4.10. This kind of scaling behavior is also mentioned in the literature.[22]

Finally we look at the map of elastic energy distribution in a deformed 2D network.
Figures 4.11 & 4.12 show the elastic energy distribution map for networks with sti� and
compliant crosslinks respectively. As mentioned earlier these networks are subjected to
a compressive strain in the y direction. For networks with sti� crosslinks as shown in
figure 4.11, most of the elastic energy is stored in nanotube deformation. At high network
density, most of the elastic energy is stored in axial compression of nanotubes aligned
along the y direction as shown in figure 4.11a. The deformation field is also a�ne in
this case. For a low density network, most of the elastic energy is stored in bending of
a few nanotubes aligned along the x direction as shown in figure 4.11b. This also shows
that deformation of the network is highly non-a�ne in this case. On the contrary, most
of the elastic energy is stored in deformation of junctions in networks with compliant
cross-links as shown in figures 4.12. The elastic energy is stored uniformly in the axial
stretching/compression of junctions, irrespective of the network density in this case. This
shows that network deformation is a�ne for very weak junctions even at low densities,
further supporting the results mentioned earlier.
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(a) junction axial sti�ness k
x

/k
y

=1e09 N/m, network density nc2D=50

(b) junction axial sti�ness k
x

/k
y

=1e09 N/m, network density nc2D=11

Figure 4.11: Elastic energy distribution in deformed 2D networks with sti� crosslinks
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(a) junction axial sti�ness k
x

/k
y

=1e-06 N/m, network density nc2D=50

(b) junction axial sti�ness k
x

/ky=1e-06 N/m, network density nc2D=11

Figure 4.12: Elastic energy distribution in deformed 2D networks with compliant
crosslinks
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(a) (b)

Figure 4.13: Variation of elastic modulus of 3D network with system size L

4.4 FEM: 3D analysis

4.4.1 Variation of elastic modulus with unit cell size

The variation of the elastic modulus of the network Y
network

with respect to system
size, i.e, side length L of the unit cell is studied for a 3D network as well. In these
simulations, network density and COD for nanotube junction formation is fixed while
side length of the unit cell L is varied. The length of individual nanotubes l in these
simulations is 1 mm. The number of computations increases by a large amount for a 3D
network especially with high density and large system size. Therefore, these simulations
are run only for a low density network. The results in figure 4.13 show an average value
of elastic modulus for 10 simulations at each value of L. Variation in the elastic modulus
between each simulation is represented by a standard error bar. As shown in figure 4.13a,
the elastic modulus is very high with a large error bar for L = 1 mm. On increasing L, the
elastic modulus decreases and appears to be constant. In order to study the variation at
larger L, the first data point is removed (figure 4.13b). Initially a small variation in elastic
modulus with system size can be seen. It becomes constant at large system size. The
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Figure 4.14: Variation of elastic modulus of 3D network with network density for di�erent
values of junction torsional sti�ness k

rotz

error bar length also decreases with system size. But since the variation is very small, and
considering the fact that the number of computations increases significantly with system
size, L= 1.2 mm is chosen as the default system size for all subsequent simulations.

4.4.2 Parameter Map

As in the 2D network, we vary only network and junction parameters. However in a 3D
network, parameters include network line density r

l

and cut of distance COD for junction
formation as discussed in section 4.1. In these simulations, r

l

is fixed and only COD is
varied to save computation time. The junction parameters include sti�ness constants that
resist translation and rotation along three local coordinate axes, k

x

, k
y

, k
z

, k
rotx

, k
roty

and
k

rotz

respectively But since k
x

and k
y

are assumed to be equal and so are k
rotx

, k
roty

and
k

rotz

, the independent junction parameters reduce to k
x

, k
z

and k
rotz

only.
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(a) Variation of network elastic modulus

(b) Variation of dominant deformation mechanisms

Figure 4.15: Variation of elastic modulus of 3D network and dominant deformation mech-
anisms with junction axial sti�ness k

x

/k
z

and network density n
c3D

(Ekx, Eky, Ekz: junc-
tion deformation in x, y and z directions, Ebend, Estretch: bending and axial deformation
of nanotubes)
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(a) Variation of the elastic modulus (b) Variation of dominant deformation mechanism

Figure 4.16: Variation of network elastic modulus and dominant deformation mechanisms
with junction axial sti�ness in x direction k

x

and network density n
c3D

in 3D network

Figure 4.14 shows the variation of the elastic modulus of the network with density for
two extreme values of k

rotz

. There is no di�erence in the scaling behavior or the values
of the elastic modulus for the two values of k

rotz

. This shows that rotation at nanotube
junctions doesn’t play a significant role in the deformation of the overall network. This
makes sense since the network is under compression. This idea is further supported using
the elastic energy argument presented later in this section.

In the next set of simulations both k
x

and k
z

are varied while k
rotz

is fixed. The elastic
modulus of the network Y

network

is calculated as a function of network density n
c3D

for
each case. Figure 4.15a shows a parameter map of the variation of elastic modulus of
the network with respect to k

x

and k
z

for di�erent network densities. Figure 4.15b shows
a parameter map of the dominant deformation mechanism in the network at di�erent
values of k

x

, k
z

and n
c3D

. These plots show that Y
network

varies with both k
x

& k
z

and
di�erent mechanisms govern the network deformation at di�erent values of k

x

, k
z

and
n

c3D

. Therefore, it is better to look at the cross-sections of these maps at di�erent values
of k

x

and k
z

.
Figure 4.16 shows the cross-sections of figures 4.15a and 4.15b at k

z

= 1e-06 N/m. It
is evident from figure 4.16a that Y

network

initially increases with k
x

and becomes constant
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(a) junction axial sti�ness in x direction, k
x

=1e-06 N/m

(b) k
x

=1e-03 N/m (c) k
x

=0.1 N/m

(d) k
x

=100 N/m (e) k
x

=1e09 N/m

Figure 4.17: Variation of elastic modulus of 3D network with network density
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after a certain value of k
x

for di�erent network densities. Thus deformation of the network
is controlled by stretching/compression of cross-links along local x and y directions for
small k

x

. It can also be observed in figure 4.16b that for low values of k
x

most of the
elastic energy of the network is stored in stretching/compression of cross-links along local
x and y directions for all network densities. On increasing the value of k

x

, the governing
deformation mechanism switches to another kind depending upon the network density.
For low network density, stretching/compression of cross-links along the local z direction
governs the network deformation when k

x

is increased beyond current value of k
z

(1e-
06 N/m). At intermediate network densities, non-a�ne bending of nanotubes becomes
the governing deformation mechanism when k

x

is increased beyond nanotube bending
sti�ness, 12E

tube

I
tube

/l3(2.25e-06 N/m). For high network densities, a�ne axial stretch-
ing/compression of nanotubes becomes the governing deformation mechanism when k

x

is
increased beyond nanotube axial sti�ness, E

tube

A
tube

/l (1.3375 N/m).
Figure 4.17 shows the variation of Y

network

with respect to network density at di�erent
values of k

x

. The scaling of the elastic modulus with density in the a�ne regime changes
with respect to k

x

. At values of k
x

lower than the nanotube axial sti�ness, the scaling
behavior takes the form of a quadratic polynomial. The ratio of quadratic to linear term
in this polynomial decreases with increasing k

x

. At values of k
x

larger than the nanotube
axial sti�ness, the quadratic terms completely disappear and the scaling behavior be-
comes exactly linear. The change in scaling behavior reflects the change in deformation
mechanism from stretching/compression of crosslinks to axial deformation of nanotubes
at high network density. The elastic behavior of the 3D network for the current value of
k

z

(1e-06 N/m), which is always less than k
x

in this case, is similar to the behavior of a
2D network as discussed in the previous section. The only exception is that at very low
network density, deformation is governed by the k

z

term instead of k
x

, since the former is
smaller in magnitude. Therefore it can be said that in a 3D network of nanotubes, the
two mechanisms of nanotube junction deformation (along the local x & y directions and
the local z direction) can be thought of as springs connected in series for very low network
density. At higher density, the two mechanisms of nanotube junction deformation (along
the local x & y directions) and nanotube stretching/compression act as springs connected
in series similar to a 2D network.
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(a) Variation of the elastic modulus (b) Variation of dominant deformation mechanism

Figure 4.18: Variation of network elastic modulus and dominant deformation mechanisms
with junction axial sti�ness in z direction k

z

and network density n
c3D

in 3D network

The deformation of the 3D network becomes very di�erent from a 2D network when
k

z

is greater than k
x

. In order to study this di�erence, the value of k
x

is fixed. Figure
4.18 shows the cross-sections of figures 4.15a and 4.15b at k

x

= 1e-06 N/m. Figure 4.18a
shows that Y

network

doesn’t vary with k
z

at all for low network densities. However, at
high network densities, Y

network

increases with k
z

and becomes constant at higher k
z

. This
can be explained using the elastic energy map shown in figure 4.18b. For low network
density, most of the elastic energy is stored in stretching/compression of cross-links along
the local x and y directions at all values of k

z

. Therefore, Y
network

doesn’t vary with k
z

at all for low network densities. It is in accordance with the previous finding that the
two mechanisms of nanotube junction deformation act as springs connected in series for
low network densities. Therefore, network deformation is governed by the k

x

term in this
case since it is always less than k

z

. However, on increasing the value of k
z

at high network
densities, the governing deformation mechanism changes to stretching/compression of
cross-links along the local z direction. This explains the initial increase in Y

network

at high
network density when k

z

becomes greater than k
x

. However, the fact that deformation is
controlled by the k

z

term despite it being higher in magnitude than k
x

suggests that at
high network density, the two mechanisms of nanotube junction deformation act as springs
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connected in parallel. It might be true because at high density, the network becomes more
connected and nodes in the network can’t move independent of each other anymore. The
governing deformation mode changes to bending of nanotubes on further increasing k

z

at
high network densities. Therefore Y

network

becomes constant at large value of k
z

as shown
in figure 4.18a. The change in governing mechanism from junction deformation along the z
direction to nanotube bending happens when k

z

is increased beyond the nanotube bending
sti�ness. This suggests that the two mechanisms of nanotube junction deformation (along
the local z direction) and nanotube bending can be viewed as springs connected in series
for a 3D network.

Figure 4.19 shows the variation of Y
network

with respect to network density at di�erent
values of k

z

. For low values of k
z

when deformation of the network is governed by nanotube
junction deformation either along the x, y or z direction, the scaling of the elastic modulus
with respect to network density is quadratic in nature. However, for larger values of k

z

,
when nanotube bending starts dominating, scaling behavior changes to a power law fit
with a large scaling exponent. The scaling exponent becomes equal to 6.7 for very large
values of k

z

(figures 4.19d and 4.19e). A scaling exponent value of 6.67 is reported in the
literature for the bending dominated regime in a random network.[24]

The discussion above can be summarized as follows. The elastic modulus of the net-
work under compression doesn’t vary with the rotational sti�ness of nanotube junctions.
The dominant deformation mechanisms are stretching and bending of nanotubes as well
as translation of nanotube junctions along the local x, y and z directions. The net-
work structure and the junction parameters determine which mechanism will govern the
overall deformation of the network. The two mechanisms of junction deformation (trans-
lation along the local x & y directions and local z direction) act as springs connected
in series and parallel for low and high network densities respectively. The two mecha-
nisms of nanotube junction translation (along the local x & y directions) and nanotube
stretching/compression act as springs connected in series. The two mechanisms of nan-
otube junction translation (along the local z direction) and nanotube bending can also
be viewed as springs connected in series. This set of rules can be applied to explain all
the cases shown in the parameter maps in figures 4.15a and4.15b. Appendix B presents
curves for the variation of elastic modulus with network density for each of these individ-
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(a) junction axial sti�ness in z direction, k
z

=1e-06 N/m

(b) k
z

=1e-03 N/m (c) k
z

=0.1 N/m

(d) k
z

=100 N/m (e) k
z

=1e09 N/m

Figure 4.19: Variation of elastic modulus of 3D network with network density
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ual cases. The corresponding elastic energy curves for each of these cases are shown in
Appendix C.

4.5 Deformation modes in pristine SWCNT network

As mentioned earlier, single wall carbon nanotubes (SWNCTs) interact via weak van
der Waals (VDW) forces at junctions in a 3D network of nanotubes. In chapter 2, VDW
interactions between nanotubes is modeled using MD simulations. The values of junction
sti�ness obtained from the simulations are k

x

/k
y

= 0.108 N/m, k
z

= 116.14 N/m and
k

rotz

/k
rotx

/k
roty

= 4.59E-21 Nm/rad. These values of junction sti�ness are used in the
finite element model for the next set of simulations. The variation of elastic modulus of
the network with respect to network density or number of junctions per nanotube (n

c3d

)
is studied.

In a 3D network of nanotubes, the nanotube separation distance at junctions can span
a wide interval. Figure 2.2b shows that the nanotube junction sti�ness k

z

along the local
z direction varies with distance between the nanotubes. It is higher in magnitude at
the equilibrium distance of 3.17 Å but decreases very steeply as the distance between
the nanotubes increases. The value of k

z

almost becomes zero above a distance of 3.529
Å. This arises from the short range nature of VDW interactions. In order to accurately
predict the elastic modulus of a 3D nanotube network, the e�ect of the variation of k

z

with respect to separation distance needs to be taken into account. In the next series
of finite element simulations, the value of k

z

is set to 116.14 N/m for all the junctions
separations less than or equal to 3.17 Å. The value of k

z

is set to a very small value (1E-06
N/m) instead of zero for separation distances greater than or equal to 3.529 Å. This is
done to ensure that the FE solution is determinate. The value of k

z

is decreased linearly
for separation distances between these two values. Similarly the value of k

x

is set to 0.108
N/m for distances less than or equal to 3.529 Å and to a very small value of 1E-06 N/m
for distances of length greater than 3.529 Å.

Figure 4.20 shows the variation of elastic modulus of the network with respect to net-
work density. The scaling behavior of the elastic modulus is quadratic in nature. This
means that the deformation of the network is governed mainly by the deformation of
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Figure 4.20: Elastic modulus of SWCNT
network v/s density

Figure 4.21: Elastic energy distribution
in SWCNT network v/s density

nanotube junctions. This is confirmed by figure 4.21 that shows the variation of the
elastic energy stored in di�erent deformation mechanisms in the network as a function of
network density. According to the figure, most of the elastic energy is stored in stretch-
ing/compression of cross-links along local x and y directions at all network densities.
Since stretching/compression of cross-links is equivalent to nanotube sliding, it can be
said that the deformation of a 3D network of SWCNTs is governed by nanotube sliding
for any value of network density. The deformation field is mostly a�ne. Elastic energy is
distributed homogeneously among the nanotube junctions as shown in figure 4.22. The
value of RMS is low and COREL is close to one at all network densities as shown in figure
4.23.

In [7], the elastic modulus of pristine SWCNT aerogels under compression is reported
to be 0.21 MPa. The number of nodes per nanotube in these aerogels is 83. At this value of
n

c3d

, the value of the elastic modulus of the network obtained from this simulation is 0.07
MPa. This is lower than the experimental value since we expect that in an actual CNT
network, the nanotube entanglements may o�er some additional sti�ness. In addition, a
power law scaling of the elastic modulus with a scaling exponent of 2 is reported in [7]
as well which agrees with the simulation result. However, the bending of nanotubes is
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Figure 4.22: Distribution of the elastic
energy in SWCNT network

Figure 4.23: RMS and COREL varia-
tion with network density

speculated to be the dominant deformation mechanism in [7] as compared to the sliding
of nanotubes established by this simulation. This discrepancy might arise from the fact
that in the experiments, each nanotube junction is assumed to contribute equally to the
total elastic energy of the network.

4.6 Non linear mechanics: Junction fracture

In this section, the e�ect of junction fracture on the mechanical behavior of a 3D
network of nanotubes is studied. A junctions is allowed to fracture if the force that resists
the sliding along local x or y directions reaches a critical value, f

max

, equal to 3.84E-12
N via the MD simulations in chapter 2. It represents the phenomena of slip between
nanotubes. In an actual network, there might be several instances of slip occurring before
two nanotubes don’t interact anymore, but in this simulation, we have assumed that only
one instance of slip leads to this e�ect. In these simulations, the compressive strain e

y

is applied to the network in small increments. The resulting stress sv
y

in the network.
The junctions that fracture are removed from the network and the network is checked for
connectedness.

In the first set of simulations, the e�ect of varying junction sti�ness, k
x

and k
z

, is
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Figure 4.24: Stress-strain curves of 3D network at di�erent junction axial sti�ness in x
direction, k

x

studied. Figure 4.24 shows the stress-strain curves for three networks with junction sti�-
ness, k

x

= 1E-06 N/m, 0.1 N/m and 100 N/m. In all three simulations k
z

is equal to
1E-06 N/m and the density of network is very small. According to this figure, no junction
fracture occurs for k

x

= 1E-06 N/m since the stress-strain curve is linear. On increasing
k

x

, the shape of the stress-strain curve changes. For small strains when no junction frac-
ture occurs, the stress-strain curve is linear. The slope of the linear part gives the elastic
modulus of the network which is equal for both cases. This is because at low network den-
sity, the deformation is controlled by bending of nanotubes. At larger strains, nanotube
junctions start to fracture, and a saw-tooth pattern is observed in the stress-strain curves.
Figure 4.25 shows the percentage of fractured junctions in the network as a function of
applied strain. On increasing the strain, the network density decreases as the number
of fractured junctions increases. It leads to the change in the elastic energy distribution
in the network as shown in figure 4.26. According to the figure, at low strain most of
the elastic energy is stored in nanotube bending. The contribution of bending decreases
and deformation of junctions along the local z direction increases on increasing the strain.
This is in agreement with the variation of the elastic energy distribution as a function of
network density, shown in figure 4.16b.
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Figure 4.25: % fractured junctions in 3D
network v/s applied strain

Figure 4.26: Elastic energy distribution
in 3D network v/s applied strain

Figure 4.27: Stress-Strain curves at dif-
ferent junction sti�ness in z direction, k

z

Figure 4.28: % fractured junctions in 3D
network v/s applied strain
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(a) Low network density

(b) Intermediate network density (c) High network density

Figure 4.29: Stress-strain curves of 3D network at di�erent network densities
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Figure 4.30: % fractured junctions in 3D
network v/s applied strain

Figure 4.31: Number of junctions in 3D
network v/s applied strain

Figure 4.27 shows the stress-strain curves for two di�erent values of k
z

(1E-06 N/m
and 0.1 N/m). The value of k

x

is fixed in both cases at 0.1 N/m. The linear part of
the curves is the same in both cases since deformation is initially controlled by bending
of nanotubes. But in the case of the network with higher k

z

, the non-linearity in the
stress-stain curve occurs at smaller strain, and stress decays to a lower value at higher
strains. This is because at higher k

z

the number of fractured junctions in the network is
higher as shown in figure 4.28.

In the second set of simulations, the e�ect of varying network density is studied.
Here, k

x

and k
z

are fixed at 100 N/m and 0.1 N/m respectively. Figure 4.29 shows the
stress-strain curves at three di�erent network densities. At low network density, the stress-
strain curve has an initial linear part followed by a saw-tooth pattern at higher strains. At
intermediate and high network densities, the stress strain curve is characterized by a sharp
decrease in the value of stress at very small strain. This is because a large percentage
of junctions fracture after the first load step as shown in figure 4.30. On increasing the
strain further, the number of junctions remaining in the network decreases very rapidly
for both network densities as shown in figure 4.31. After the first few load steps, the
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high and intermediate density networks reduce to a low density network. Therefore, their
stress-strain curves becomes similar to a low density network as shown in the insets to
figures 4.29b and 4.29c.

4.7 Conclusion

We have established that the deformation of a random nanotube network (both 2D and
3D) can be governed either by the deformation of the nanotubes (bending, axial compres-
sion) or deformation of the junctions (translation of junctions in x, y or z directions). The
junction sti�ness parameters in combination with network density determine the network
deformation mode. The results of this study are also applicable to any sti� fiber network.
This validates our first hypothesis. This study provides us with a set of rules that can
be applied to predict the elastic behavior of a random network of nanotubes with any set
of junction sti�ness and network density. The rotation of nanotubes at junctions doesn’t
play a significant role in the overall deformation of the network under compression. The
two mechanisms of junction deformation (translation along the local x & y directions and
local z direction) act as springs connected in series and parallel for low and high network
densities respectively. The two mechanisms of nanotube junction translation (along the
local x & y directions) and nanotube stretching/compression act as springs connected in
series. The two mechanisms of nanotube junction translation (along the local z direction)
and nanotube bending can also be viewed as springs connected in series.

We have also shown that the network deformation is significantly di�erent from the
predictions of a�ne theory, especially at smaller network densities, when deformation is
governed by nanotube bending. The network elastic modulus never reaches the a�ne
prediction even at large network densities. Although the a�ne theory is not developed
for a 3D network, we expect the same general behavior for a 3D network as well, since
whenever the network deformation is governed by nanotube bending, the deformation is
non-a�ne.
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Chapter 5

Meso-scale Simulations
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5.1 Introduction

As discussed in the previous chapter, the elastic modulus of a CNT network as pre-
dicted via the finite element model is significantly less than the experimentally obtained
value. This di�erence in sti�ness is attributed to the entanglements between nanotubes
present in a CNT aerogel that are not captured by a continuum model. This model is
also not ideal for studying large deformations in a CNT aerogel, since the linear spring
model of VDW interactions between nanotubes at junctions is valid only in the limit of
small strain. Furthermore, the failure of nanotube junctions through multiple slip events
is hard to capture in the finite element model as well. Therefore, in this chapter we
will employ meso-scale simulations that have been shown to accurately model filamentous
networks mediated via VDW interactions.[75, 76, 77, 78] In essence, they are a coarse
graining approach in which atoms are grouped together in order to reduce the total num-
ber of degrees of freedom (DOFs) of the system. In this section, the formulation and
implementation of the three most common meso-scale modeling approaches, namely the
bead-spring model (BSM), the meso-scopic force field (MFF) model, and distinct element
method (DEM), are discussed. The three techniques are then contrasted in terms of their
accuracy and suitability to investigate the self-assembly and large deformation behavior
of SWCNT networks.

5.1.1 Bead Spring Model

In a bead-spring model, a carbon nanotube is represented by a group of beads as shown
in figure 5.1. They are connected via harmonic springs that resist change in distance and
angle between them. The beads also interact via 12-6 Lennard-Jones (LJ) potential.
Therefore, the total potential energy of the system can be written as equation 5.1.[79]

E
system

= E
axial

+ E
bend

+ E
LJ

(5.1)

where,

E
axial

= 1
2k

axial

(r ≠ r
o

)2 (5.2)
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Figure 5.1: Bead-Spring representation of a CNT (taken from [79])

E
bend

= 1
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The first two terms in equation 5.1 represent the contribution of the axial and bending
deformation of the nanotube and are given by equations 5.2 and 5.3 respectively. The
value of the equilibrium distance r

o

between beads dictates the degree of coarsening of
the model. The equilibrium angle ◊

o

between beads is 180 degrees. The third term is the
LJ potential term given by equation 5.4 that captures the VDW interaction between nan-
otubes. The value of axial and bending sti�ness parameters (k

axial

and k
bend

respectively)
and distance ‡ and energy ‘ parameters are determined from full atomistic simulations.
The translational degrees of freedom and corresponding velocities of the beads are evolved
with time according to Newton’s second law of motion.

The LJ potential term given by equation 5.4 is symmetric in nature as it only depends
on distance r between two beads. This introduces a corrugation in the total VDW po-
tential energy V

DEM

between the two nanotubes when plotted as a function of mismatch
z between the two as shown in figure 5.2.[80] This corrugation, however, is non-physical
and an artifact of this model because of replacing the cylindrical nanotubes by spherical
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Figure 5.2: The total VDW potential energy V
DEM

between two nanotubes plotted as a
function of distance L and mismatch z between the two (taken from [80])

beads. Thus, it might provide additional sti�ness to nanotubes against sliding and give
incorrect simulation results. Reducing the degree of coarsening in the model can minimize
this e�ect.

5.1.2 Distinct Element Model

In a distinct element model, a nanotube is represented by a group of spherical par-
ticles that have translational as well as rotational degrees of freedom as shown in figure
5.3. Parallel bonds that resist shear and twist in addition to axial and bending deforma-
tion connect these particles as shown in figure 5.4. These particles also interact via LJ
potential. The total potential energy of the system is given by equation 5.5.[80]

E
system

= E
axial

+ E
bend

+ E
shear

+ E
twist

+ E
LJ

(5.5)

where,

E
axial

= 1
2k

n

A�x2 (5.6)

E
bend

= 1
2k

n

I�◊2 (5.7)
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Figure 5.3: Distinct element representation of a CNT (taken from [80])

Figure 5.4: Parallel bond model for elasticity of a CNT (taken from [80])
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Figure 5.5: The total VDW potential energy V 5

DEM

between two nanotubes plotted as a
function of distance L and mismatch z between the two (taken from [80])

E
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= 1
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= V (R, ◊)G(R, “) (5.10)
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CNT

h, I = fir
CNT

h(r2

CNT

+ 0.25h2), J = 2I (5.11)

The first four terms in equation 5.5 represent the contribution of axial, bending, shear
and twist deformation of a nanotube and are given by equations 5.6, 5.7, 5.8 and 5.9
respectively. The fifth term is the LJ potential term given by equation 5.10 that captures
the VDW interaction between nanotubes. The value of sti�ness (k

n

, k
s

) and LJ parameters
are determined from full atomistic simulations. The translational and rotational degrees
of freedom and corresponding velocities of the particles are evolved with time according
to Newton’s second law of motion that accounts for both forces and moments acting on
them.
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Figure 5.6: MFF representation of a CNT (taken from [81])

The LJ potential in this model is a function of two terms. V(R,j) accounts for VDW
interaction between two nanotubes in parallel configuration. It depends on both distance
R and angle j between the two particles. This introduces anisotropy in the LJ term and
removes the artificial corrugation in the total VDW potential energy V 5

DEM

between the
two nanotubes when plotted as a function of mismatch z between the two as shown in
figure 5.5. The second term in the LJ potential G(R,g) accounts for VDW interaction if
the nanotubes are in a crossed configuration and results in an aligning moment on the
particles.[80]

5.1.3 Meso-scopic Force Field Model

In the meso-scopic force field (MFF) model, a CNT is represented by a group of
“breathing flexible” cylinders as shown in figure 5.6. The interaction of these cylinders is
defined by a force field that accounts for stretching, bending, torsional and radial breathing
deformation modes of a CNT. These cylinders also interact via pairwise LJ potential. The
degrees of freedom in this model are the positions r

i

of the end-nodes of each cylinder, the
radii R

i

of the cylinder at the cross-sections through the nodes, and the torsional angles
◊

i

at the nodes. The Lagrangian L for this system is given by equation 5.12. [81]
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Here, m
i

is the mass of a part of nanotube, represented by node i. M
i

and M ◊

i

are the
inertia terms for breathing and twisting modes of nanotube at node i. The Lagrangian
is defined by the sum of kinetic energy corresponding to each degree of freedom minus
the potential energy for each mode of deformation and pair-wise LJ interaction. The LJ
potential term ULJ in this equation captures the VDW interaction between two cylinders
in a crossed configuration. The degrees of freedom of the system are evolved with time
according to equation 5.13.[81]

d
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i

, R
i

, ◊
i
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5.1.4 Comparison between bead-spring, distinct element and
meso-scopic force field model

The most important thing to consider while evaluating any simulation technique is
that it should be able to generate the microscopic features or the experiment findings for
the problem at hand. The simulation of the complex self-assembly process present in CNT
networks can serve as a challenging test for contrasting the validity and accuracy of the
meso-scale modeling approaches discussed above. In studies[77, 80, 82], these techniques
are employed to simulate the self-assembly of CNT films and mats. These macrostructures
of nanotubes, unlike aerogels, contain large close-packed bundles of nanotubes which are
entangled as shown in a TEM micrograph in figure 5.7.[80] Figures 5.8a,5.8b and 5.8c
show three di�erent self-assembled network of nanotubes generated via, BSM, DEM and
MFF models respectively. The self-assembled networks obtained from the DEM and
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Figure 5.7: TEM image of semi-conducting CNT film (image width and length=0.5 mm)
(taken from [80])

MFF models clearly show the formation of large entangled bundles of CNTs which the
BSM fails in generating. This is attributed to the large corrugation artifact in the VDW
potential energy of the BSM that prevents nanotube sliding.[77] Since the CNT aerogels
are mostly networks of isolated nanotubes, as concluded in experimental studies[7], the
BSM might simulate correct self assembled network structure in this case, but it can
still generate non-physical results during the mechanical testing of those self-assembled
networks. Therefore, implementation of the correct form of LJ potential is an important
factor in any meso-scale simulation technique.

The DEM and MFF techniques are capable of modeling the shear and torsional de-
formation of nanotubes as well.[80, 81] While the shear deformation might be important
in smaller aspect ratio nanotubes[30], and torsional deformation might play an important
role in mechanics of macrostructures such as CNT ropes[83], they can be neglected in
modeling the mechanics of aerogels containing large aspect ratio nanotubes.

One last thing to consider is the ease with which these techniques can be implemented
and the computational cost involved. The BSM can be implemented in LAMMPS which
is an open-source package with parallel scaling capability and built-in implementation
of several MD ensembles.[59, 60] DEM is implemented in PFC3D, which is a commer-
cial package with no built-in implementation of MD ensembles.[80] MFF is implemented
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(a) Bead Spring Model (taken from [77])

(b) Distinct Element Model [80] (c) Mesoscopic Force Field Model [82]

Figure 5.8: Self-assembled networks of nanotubes generated from di�erent simulation
techniques
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in “Tubular” Molecular Dynamics package developed by the Computational Mechanics
Group at University of Alabama. It has the inbuilt implementation of some MD ensem-
bles, however, it is not open source.[81] Therefore, the BSM o�ers a major advantage in
terms of its implementation.

In this study, we model the self-assembly and large deformation behavior of CNT aero-
gels using the bead spring model. We make modifications to the LJ term in equation 5.1
such that it is physical in modeling VDW interactions between nanotubes. We implement
this model in LAMMPS by making some modifications to its source code. The modified
BSM and its implementation are discussed in the next section.

5.2 Method

In the bead spring model (BSM) introduced in the previous section, a group of atoms
of a carbon nanotube are represented by a single bead. The total potential energy of
this system is given by equation 5.1. The axial and bending deformations of nanotubes
are modeled as harmonic springs in this model, while the VDW interactions between
nanotubes are modeled by a 12-6 LJ potential. In this section, we will discuss each of these
three modes of deformation in more detail and fit the model using results from atomistic
MD simulations for individual nanotubes. All the atomistic simulations reported in this
section are carried out for (6,6) SWCNTs since they have the same diameter (0.8 nm) as
the ones used in experiments.[7] The AIREBO potential is used to model the interactions
between C atoms of nanotubes in the traditional MD simulations.[61] At the end of this
section, the implementation of the corrected BSM in LAMMPS is also discussed.

5.2.1 Axial Deformation of Nanotubes

Figure 5.9 shows the stress-strain curves corresponding to tensile and compression
testing of individual nanotubes obtained from atomistic simulation. In the limit of small
strain (< 1%), stress varies linearly with strain for both cases. The elastic modulus in
this regime is obtained to be 1 TPa. A sharp decrease in the value of stress is observed in
the compression case (blue curves) at a critical strain ‘

c

. This feature in the stress-strain
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Figure 5.9: Stress-Strain curves of axial deformation of a single CNT (inset shows small
strain regime)

curve indicates the onset of elastic bucking of the carbon nanotube under compressive
loading. The critical strain ‘

c

depends upon the length of the nanotube. Figure 5.9 shows
compression stress-strain curves for nanotubes of lengths 1.2 nm (solid curve) and 9.9 nm
(dashed curve). The value of ‘

c

for the two cases is 7.3% and 3.3% respectively indicating
that the critical strain for compressive buckling decreases with increasing nanotube length.
However, owing to a large axial sti�ness and a small bending sti�ness, the axial deforma-
tion of a nanotube by a strain of 3.3% is highly unlikely even during large deformation of
a CNT network in which the mean free length of a nanotube between two junctions is 12
nm.[7] Therefore, in this study, the compressive buckling of carbon nanotubes is ignored.
The axial deformation is modeled as a harmonic spring with deformation energy given
by equation 5.2. The value of the axial sti�ness parameter k

axial

in this equation can
be calculated as E

tube

A
tube

/r
o

, where E
tube

is the elastic modulus of the carbon nanotube
in the elastic regime, A

tube

is its area of cross-section, and r
o

is the equilibrium distance
between the beads. In this study, the value of r

o

is chosen as 1 nm. The value of E
tube

as
obtained from the atomistic simulation is 1 TPa and A

tube

is calculated using the diame-
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Figure 5.10: Nanotube bending with arrows showing direction of applied displacement

(a) 10 nm long nanotube (b) 20 nm long nanotube

Figure 5.11: Results of atomistic simulations of bending of nanotubes of di�erent lengths

ter of (6,6) SWCNT. Therefore, the value of the k
axial

parameter is calculated to be 54.2
eV/Å2. Figure 5.9 also shows the compressive stress-strain curve for a single nanotube
obtained from the BSM (black curve). It matches the atomistic simulation curves in the
limit of small strain as shown in the inset to the figure.

5.2.2 Bending Deformation of Nanotubes

In order to study the bending deformation behavior of a nanotube, a rigid body
translation is applied to nanotube ends as shown in figure 5.10. Figures 5.11a and 5.11b
show the variation of bending energy E

bend

(blue curve) and its derivative dE
bend

/d�
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Figure 5.12: Buckling kink formed along the nanotube surface under compression

(green curve) as a function of bending angle � for nanotubes of length 10 nm and 20 nm
respectively. In both cases, initially, E

bend

scales with �2 and dE
bend

/d� scales linearly
with �, indicating a harmonic bending regime in which Hooke’s law is obeyed. However,
past a critical bending angle �

c

, scaling of E
bend

with respect to � becomes linear and
dE

bend

/d� becomes constant. This sharp decrease in the derivative of E
bend

indicates the
formation of buckling kinks along the nanotube surface, which is under compression, as
shown in figure 5.12.

The critical bending angle �
c

at which the buckling occurs depends upon the length
of the nanotube. �

c

for 20 nm long tubes is almost double that for 10 nm long tubes.
This leads to the definition of critical bending buckling curvature, Ÿ

c

= 2�
C

/L, where L
is the nanotube length. Ÿ

c

for (6-6) SWCNT as obtained from the atomistic simulation
is 0.0523 rad/nm. The critical bending buckling strain can thus be defined as ‘

c

= Ÿ
c

d/2,
where d is the tube diameter. ‘

c

for (6-6) SWCNT of any length is thus obtained to
be 2.1%. Since bending of nanotubes is a much softer mode of deformation, this critical
bending buckling strain can be achieved during large deformation of a CNT network. In
[84], bending buckling of nanotubes is shown to be an important factor in the formation of
a stable CNT network via spontaneous self assembly. Therefore, in this study the bending
buckling of carbon nanotubes is included in the bead spring model. The bending energy
and force are then given by equations 5.15 and 5.16 respectively.

E
bend

=

Y
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k
bend
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Figure 5.13: Results of bead spring model of bending of nanotube of length 10 nm
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Here, ◊ is the angle between the beads as shown in figure 5.1 and is related to the
bending angle � as ◊ = fi ≠ 2�. The value of ◊

c

(3.07 radian) is chosen such that
bending buckling of a nanotube in the BSM occurs at a slightly smaller bending angle
than in atomistic simulations. This is done to ease the formation of a stable CNT network
during self-assembly. The bending sti�ness parameter k

bend

in the above equations can
be calculated as E

tube

I
tube

/r
o

, where I
tube

is the second moment of inertia of a nanotube.
The value of k

bend

is obtained to be 526.2 eV. Figure 5.13 shows the results of a BSM
simulation of bending of a nanotube of length 10 nm. The two distinct, harmonic bending
and post buckling regimes can be seen in both curves.



96

Figure 5.14: VDW interaction energy between two nanotubes as a function of distance d

(a) Parallel configuration of nanotubes (b) Sliding of nanotubes

Figure 5.15: Configurations of two carbon nanotubes system
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(a) VDW energy as a function of sliding distance z (b) Sliding force as a function of sliding distance z

Figure 5.16: Results of sliding simulation of two nanotubes

5.2.3 van der Waals Interactions between Nanotubes

Figure 5.14 shows VDW interaction energy between two nanotubes as a function of
distance d between them as obtained from atomistic simulations (red curve) and the BSM
(blue curve). In the BSM, the beads are allowed to interact via 12-6 LJ potential given
by equation 5.4. The nanotubes in these simulations are in a parallel configuration as
shown in figure 5.15a. The parameters ‘ and ‡in this equation are chosen such that the
well-depth ‘

eq

and equilibrium distance between nanotubes r
eq

obtained from atomistic
and BSM simulation are equal. However, this potential can’t reproduce the shape of the
VDW interaction energy curve, obtained from atomistic simulations. This is because the
analytical form of tube-tube potential given by equation 5.17 is di�erent from the 12-6
potential.[56]

U
tube≠tube

=
3

A

d9.5

≠ B

d3.5

4
(5.17)

Here, A and B are the respective constants of repulsive and attractive terms. Apart
from di�erent scaling of the attractive and repulsive terms in the two potentials, the beads
are assumed to be point particles in the BSM. This assumption incorrectly replaces the
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(a) VDW energy as a function of sliding distance z (b) Sliding force as a function of sliding distance z

Figure 5.17: Results of sliding simulation of two nanotubes

distance d between nanotubes in equation 5.17 with distance r between beads present
in equation 5.4. This can however easily be corrected as discussed later in this section.
The main problem in the BSM lies in the assumption of replacing cylindrical tubes with
spherical beads. Figures 5.16a and 5.16b show the variation of VDW interaction energy
and sliding force between two nanotubes as a function of sliding distance z for both
atomistic and BSM simulation. The nanotubes in these simulations are in a parallel
configuration and have equilibrium spacing r

eq

between them as shown in figure 5.15b.
The curves obtained from the BSM show large corrugation while the atomistic simulation
curves are smooth. This corrugation is an artifact of the BSM and can prevent free sliding
of nanotubes against each other. Therefore, the LJ term in BSM should be modified to
remove any corrugation artifact.

Since corrugation is a consequence of coarse graining, a small degree of coarse graining
will result in a smaller corrugation. But on reducing the degree of coarse-graining, the
number of degrees of freedom in the system also increases. This in turn increases the
computation time drastically. The value of r

o

dictates the degree of coarse-graining of
the model. Instead of decreasing the value of r

o

, one of the simplest way of removing
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Figure 5.18: VDW interaction energy between two nanotubes as a function of distance d

corrugation artifact without a�ecting computation time is to increase the value of ‡ in
equation 5.4.[76] Figures 5.17a and 5.17b show the results of BSM simulations carried out
with ‡ = 2.3r

o

, for the variation of VDW interaction energy and sliding force between
two nanotubes as a function of sliding distance z. The energy curve doesn’t show any
corrugation while the corrugation in the force curve is drastically reduced and is of the
same order as the small corrugation observed in the atomistic curve due to the atomic
structure of nanotubes. However, this simulation still cannot reproduce the exact shape
of the VDW interaction energy curve for two parallel nanotubes as a function distance
d between them as obtained from atomistic simulation and shown in figure 5.18. Note
that the curve obtained from the BSM simulation as shown in this figure is shifted along
the x-axis for comparing it with the atomistic simulation curve. The actual value of the
equilibrium distance between nanotubes r

eq

obtained from this simulation is 2.3 times the
atomistic value. Changing the functional form of LJ potential, such that it can reproduce
the atomistic simulation curve, results in corrugation.

In order to implement a LJ potential similar to equation 5.17 in the BSM without any
corrugation artifact, the degree of coarse graining needs to be decreased. But, as men-
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Figure 5.19: Calculation of 10-4 LJ interaction between particles i and j

(a) VDW energy as a function of sliding distance z (b) Sliding force as a function of sliding distance z

Figure 5.20: Results of sliding simulation of two nanotubes
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Figure 5.21: VDW interaction energy between two nanotubes as a function of distance d

tioned earlier, this increases the computation time drastically, because for an N particle
system, 6N first order ODEs need to be solved, which requires calculating LJ interactions
between approximately N(N

cut

)/2 pairs. Here, N
cut

is the number of particles within
cut-o� distance of a single particle. In order to reduce the degree of coarsening without
a�ecting the total number of particles, the LJ potential is calculated in a di�erent man-
ner. A line segment formed by two neighboring particles of a nanotube is divided into
n ghost particles as shown in figure 5.19. The LJ interaction between a pair of actual
particles, i and j, is then calculated as a summation of LJ interactions between pairs of
ghost particles (shown in red). Since each particle has (n ≠ 1)/2 ghost particles on either
side and one ghost particle at its center, each pair interaction between the actual particles
is the summation of n2 ghost pair interactions. The contribution of these ghost particles
is only towards calculating LJ interactions in order to reduce the degree of coarse grain-
ing. They don’t sum to the total number of degrees of freedom of the system. Therefore,
the total number of equations of motion to be solved still remain the same, although the
total number of LJ interactions that need to be calculated increase by a factor of n2. In
order to reproduce the exact shape of the VDW interaction energy curve as obtained from
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LJ Potentials ‘(eV) ‡(Å) r
cut

(Å)

12-6 0.42 10.32 25
12-6 (large ‡) 0.39 23.1 40

10-4 0.0072 2.9 28.34

Table 5.1: LJ potentials parameters

atomistic simulation, a LJ potential similar to equation 5.17 is implemented. The exact
form of the LJ potential U ij

LJ

between two particles i and j is given by equation 5.18.

U ij

LJ

=
nÿ

k=1

nÿ

l=1

4‘

C3
‡

r
kl

≠ 2r
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4

D

(5.18)

Here, r
kl

is the distance between ghost particles k and l belonging to actual particles
i and j respectively. r

cnt

is the radius of (6,6) SWCNT. In this study, each nanotube
segment between two neighboring particles is divided into 9 ghost particles (n=9 ). This
is su�cient to remove any corrugation artifacts in the energy and force curves for sliding
as shown in figures 5.20a and 5.20b respectively. This also reproduces the exact shape
of the VDW interaction energy curve between two nanotubes as a function of distance d
between them as shown in figure 5.21.

Table 5.1 lists values of ‡ and ‘ parameters and cut-o� distance r
cut

for the three
di�erent LJ potentials discussed above. It should be noted that both first and second
order corrections are applied to all three potentials so that both the energy and its first
derivative are continuous across the cut-o�. Figure 5.22 shows the contrast between
the shapes of VDW interaction energy curves for parallel nanotubes for the three LJ
potentials. Figures 5.23a and 5.23b show the contrast in the amount of corrugation in the
energy and force curves respectively for the sliding case for these three di�erent potentials.
Note that the 10-4 potential performs best in all cases.

In order to test these potentials, the simulation of self-assembly of a three carbon
nanotube system is carried out and the results are compared with the atomistic simulation
results. In the original configuration as shown in figure 5.24, three nanotubes of length 400
nm each form a equilateral triangle with a spacing of r

eq

and an angle of 60º between them
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Figure 5.22: VDW energy between two nanotubes as a function of distance d

(a) VDW energy as a function of sliding distance z (b) Sliding force as a function of sliding distance z

Figure 5.23: Results of sliding simulation of two nanotubes
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Figure 5.24: Configuration of three carbon nanotubes system

at the three junctions. The nanotubes are allowed to equilibrate in a NVE ensemble for
2500 ps with an initial temperature of 0 K. Figure 5.25 shows the snapshots of nanotube
configurations at various time-steps as obtained from atomistic simulation. The VDW
interactions are strongest at junctions, and they tend to rotate the nanotubes in order
to align them. But since the triangular configuration constrains the rotation of an entire
nanotube at once, nanotubes start to bend and a small curvature appears at their centers
as visible in the snapshot at 1000 ps. However, since the decrease in VDW energy is much
higher than the increase in bending energy of the nanotubes, the total potential energy of
the system decreases with the decrease in angle between the two nanotubes as shown in
figure 5.26. The rate of decrease of potential energy with angle is initially small but as the
angle between the nanotubes becomes smaller than a critical angle, the VDW interactions
at junctions become so strong that potential energy starts decreasing at a faster rate. This
configuration of nanotubes, which occurs at a critical angle of 25º, is shown in the snapshot
at 1900 ps. Once the nanotubes at junctions are completely aligned, the alignment of the
rest of the nanotubes happens via a zipping action which can clearly be observed in the
snapshots of later time-steps. In the final equilibrium configuration, corresponding to
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(a) 1000 ps (b) 1900 ps (c) 1950 ps

(d) 2000 ps (e) 2200 ps (f) 2500 ps

Figure 5.25: Snapshots of 3 CNTs configurations as obtained from atomistic simulation
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Figure 5.26: Potential energy of 3 CNTs system as a function of angle

the snapshot at 2500 ps, the entire length of the nanotubes is aligned except for a small
section at the center where the large bending curvature prevents nanotubes from aligning
further.

The three LJ potentials discussed above produced the same configurations as the atom-
istic simulation for the three carbon nanotube system. The snapshots of the nanotube
configurations at various time-steps as obtained from the BSM simulation are shown in
figure 5.27. However in the simulations carried out using 12-6 type LJ potentials, the nan-
otube configuration corresponding to the critical angle happens at an earlier-time step,
although the value of the critical angle remains the same. This can also be observed in
the variation of potential energy with time curves shown in figure 5.28. In each curve,
three di�erent regimes can be observed. In the first regime, the rate of decrease of poten-
tial energy is small. This regime is also shown in detail in the inset to this figure. In the
second regime, the rate of decrease of potential energy suddenly increases. This transition
happens at the nanotube configuration corresponding to the critical angle. In the third
regime, the potential energy eventually becomes constant with time when the equilibrium
configuration of the nanotubes is achieved. In figure 5.28, the curves obtained from 12-6
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(a) 1000 ps (b) 1900 ps (c) 1950 ps

(d) 2000 ps (e) 2200 ps (f) 2500 ps

Figure 5.27: Snapshots of 3 CNTs configurations as obtained from bead spring simulations
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Figure 5.28: Potential energy of 3 CNTs system as a function of time (inset shows energy
variation in the first regime)

type LJ potentials are shifted along the time axis. This is because in these simulations
the transition from the first regime to the second happens early. Only the 10-4 LJ type
potential reproduces the same curve as obtained from the atomistic simulation. However,
the implementation of 10-4 LJ type potential is computationally expensive relative to 12-6
type potentials. The time taken to run this simulation for 2500 ps on a single processor
is ten times greater for 10-4 LJ type potential as compared to 12-6 type potential. This
factor might increase to a higher value as particles move closer to each other and the
number of particles N

cut

within cut-o� distance of a single particle increases.

5.2.4 Implementation in LAMMPS

LAMMPS is an open-source package with parallel scaling capability and built-in im-
plementation of several MD ensembles.[59, 60] Traditionally, implementation of the bead-
spring model in LAMMPS is used for modeling polymer systems. In this study, we
implemented the BSM for carbon nanotubes systems in LAMMPS. Since some parts of
this model are di�erent from traditional bead spring models, certain changes are made
in the LAMMPS source code in order to implement this model. In this section, these
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changes are discussed in more detail.
The axial deformation of nanotubes is modeled as a simple harmonic spring in our

BSM. In LAMMPS, several types of bond interactions can be specified between a pair of
atoms. In our case, we specify harmonic bond potential between pairs of atoms belonging
to the same nanotube to model axial deformation of nanotubes. Similarly, for modeling
bending deformation of nanotubes, a harmonic angle potential is specified between triplets
of atoms belonging to the same nanotube. However bending deformation of nanotubes
also incorporates bending buckling of nanotubes past a critical strain. Therefore, in
order to implement this in LAMMPS, a function named AngleHarmonic::compute in the
angle_harmonic.cpp file in the LAMMPS source code is modified accordingly. Basically
we first calculate the angle ◊ between the atoms in a triplet and if ◊ < ◊

c

, then the force on
each atom and the bending energy of this triplet is calculated using equations for bending
buckling as given by equations 5.15 and 5.16. The modified c++ code is presented in
Appendix D.

The VDW interactions can be implemented in LAMMPS by specifying pairwise inter-
actions between non-bonded atoms belonging to di�erent nanotubes. The 12-6 type LJ
potentials are simply implemented by specifying pairwise interactions to be lj/smooth/-
linear which models a 12-6 LJ potential with first and second order corrections. However,
for implementing the 10-4 type LJ potential discussed above, a function named PairLJ-
Cut::compute in the source file pair_lj_cut.cpp is modified. In order to calculate the
potential between atoms i and j, the orientation of each atom with respect to the neigh-
boring atoms is required. It can be extracted by accessing the coordinates of neighboring
atoms. But since LAMMPS is written to be implemented on a parallel machine, the
simulation volume is first divided amongst di�erent processors and the atoms on each
processor have a local id which is di�erent from their global id. Therefore, we first get the
global id of atom i by calling the tag[i] function. The global ids of neighboring atoms will
then be tag[i]+1 and tag[i]-1. Then we convert these global ids back to local ids, m and n,
by calling atom->map(tag[i]+1) and atom->map(tag[i]-1) functions. But since atoms are
divided amongst di�erent processors in LAMMPS, multiple copies of an atom on di�erent
processors might exist. We need copies of neighboring atoms that are closest to atom i.
Therefore, images of atoms m and n which are closest to atom i are obtained by calling
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domain->closest_image(i,m) and domain->closest_image(i,n) functions. Similarly local
ids of neighboring atoms of atom j are obtained. Using the coordinates of neighboring
atoms, the orientation of atoms i and j is calculated. This information is used to calculate
the positions of ghost atoms surrounding atoms i and j. Then the LJ interactions (both
forces and energies) are calculated between pairs of these ghost atoms according to equa-
tion 5.18. These interactions are then summed up to calculate LJ interaction between
atoms i and j. The modified C++ code in presented in Appendix E.

Besides the implementation for di�erent force-fields as discussed above, LAMMPS
already has inbuilt implementation of di�erent ensembles which are used during equili-
bration and deformation simulations. In deformation simulations, the strain is applied
on a system by deforming the simulation box at a specified strain rate using deform fix
command in LAMMPS.

5.3 Results

5.3.1 Self-assembly of a CNT Network

It is very important to ensure that the structure of a CNT network, whose mechanical
behavior is to be studied, is physical and energetically stable at room temperature. Such
a network can be generated via self-assembly. During the self-assembly process, a random
network of nanotubes, which is represented by a group of beads, is allowed to evolve
under a force field defined in the bead-spring model discussed above. The system moves
towards either a local or global energy minimum with time. If the equilibration process is
carried out at room temperature, then the system may take a long time to reach an energy
minimum. This process can be expedited by subjecting the system to higher temperature
or pressure. In this section, the results of some self-assembly simulations, carried out using
the BSM with the three di�erent LJ potentials, are discussed. A quantitative as well
as qualitative comparison of the self-assembled networks with experimentally observed
structures is also presented.
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Figure 5.29: Random network of 1 µm nanotubes within a simulation box of length 1.05
µm

5.3.1.1 12-6 LJ potential

A random network of nanotubes as shown in figure 5.29 is generated via an algorithm
similar to the one used for the finite element model discussed in chapter 3. The length
of each nanotube in this network is 1 µm. Each nanotube is represented by 1001 beads
with a spacing of 10 Å between two beads. Each bead has a mass of 1170.96 amu. There
are a total of 4900 nanotubes and therefore, 4904900 beads in the network. The length
of the simulation box is 1.05 µm. The initial density of the network is 8.24 mg/mL. This
random network is first subjected to quasi-static energy minimization. In this step, the
energy of the system is minimized by iteratively adjusting the atom coordinates. This
step is important because in a random network of nanotubes, if the spacing between
two nanotubes is less than the equilibrium spacing, then the forces acting on them will
be very high. The simulation might blow up if such a network is directly subjected to
a dynamic run. There are several energy minimizers implemented in LAMMPS. cg and
quickmin styles of minimizers are used in the study.[59, 60] The network obtained from the
quasi-static energy minimization is then subjected to a sequence of dynamic equilibration
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Figure 5.30: Potential energy of CNT network as a function of time (inset shows energy
fluctuations in the last 10 ns)

steps. The network is initially equilibrated for 10 ns in an NVE ensemble with an applied
Langevin thermostat at 300 K.[85] The network is then heated to 600 K over 10 ns and
held there for 20 ns. The network is finally cooled down to 300 K over 10 ns and held
there for 20 ns. This whole annealing-quench process is carried out in an NPT ensemble
so that a pressure of 0 Pa can be maintained at the boundaries of the simulation box.

The potential energy of the system decreases with time as shown in figure 5.30. The
initial rate of decrease of potential energy is small when the equilibration is carried out
at room temperature. After 10 ns, energy starts decreasing at a faster rate owing to
applied pressure and temperature during the equilibration process. The rate of change of
potential energy then again decreases, and the potential energy of the system eventually
becomes constant indicating that the system has achieved a local energy minimum. The
configuration of the system at the end of 70 ns is taken as the final equilibrium configura-
tion, since by then the energy fluctuations have reduced to less than 1% as shown in inset
to figure 5.30. The network structure evolves via bundling and bending of nanotubes.
This is reflected in figure 5.31 showing the variation of the components of potential en-
ergy of the system with time. The bending energy of the system increases with time but
this is compensated by a much larger decrease in the VDW energy of the system due
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Figure 5.31: Variation of components of potential energy of CNT network during self-
assembly

to some degree of bundling among nanotubes. There is not much variation in the axial
deformation energy of the system.

Figure 5.32 shows the final self-assembled network of nanotubes. The density of this
network is 10.48 mg/mL which is in the same range as densities of aerogels (7.3-18.5
mg/mL) used in the experiments.[7, 6, 86] A closer look at the structure of this self-
assembled network of nanotubes shows both entanglements and some degree of bundling
among the nanotubes as shown in figure 5.33. Both of these features can also be observed
in SEM and TEM micrographs of actual CNT aerogels shown in figures 5.34a and 5.34b
respectively. It can therefore be said that the self-assembled network of nanotubes closely
resembles an actual CNT aerogel network. In order to do a more quantitative analysis, we
look at a histogram showing the distribution of VDW energy among nanotubes shown in
figure 5.35. A total of four peaks can clearly be seen in this curve. These peaks correspond
to the energies of nanotubes with zero, one, two and three nearest neighbors. Using this
data and the surface areas of the individual configurations, the total specific surface
area of this self-assembled network is calculated to be 1103 m2/gm. This value is close
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Figure 5.32: Final configuration of self assembled nanotube network (nanotubes are color
coded according to VDW energy, scale shown on right)

Figure 5.33: Bundling and entanglements present in CNT network
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(a) SEM micrograph (b) TEM micrograph

Figure 5.34: Micrographs of CNT aerogels (taken from [7])

Figure 5.35: Distribution of VDW energy among nanotubes in CNT network (Number of
nearest neighbors corresponding to each peak is indicated in roman numerals at the top)
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Figure 5.36: Potential energy of CNT network as a function of time (inset shows energy
fluctuations in last 10 ns)

to the experimentally measured value of 1190 m2/gm for CNT aerogels.[86] This analysis
further validates the self-assembled network generated using 12-6 potential. Although, this
potential generates large corrugation artifacts that prevent the free sliding of nanotubes,
it is able to simulate the correct network structure of the CNT aerogel. This is because
during the fabrication of SWCNT aerogels, nanotubes are coated with surfactants that
prevent nanotubes from bundling together by acting as barriers to sliding of nanotubes.[7]
These surfactants are later removed once a stable network forms.

5.3.1.2 12-6 LJ potential (large ‡)

The same random network of nanotubes shown in figure 5.29 is used in this simulation
as well. This network is first subjected to a quasi static energy minimization and then a
series of dynamic equilibration steps, which include equilibration in an NVE ensemble with
an applied Langevin thermostat for 5 ns followed by equilibration in an NPT ensemble
with 0 Pa pressure at simulation box boundaries for 35 ns. The equilibration is carried
out at 300 K.

The potential energy of the system decreases with time and eventually becomes con-
stant as shown in figure 5.36. The curve is qualitatively similar to the one shown in figure
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Figure 5.37: Variation of components of potential energy of CNT network during self-
assembly

5.30 except the potential energy saturates earlier in this case. The final value of potential
energy in this case is also almost three times that of the earlier case. The configuration
of the system at the end of 40 ns is taken as the final equilibrium configuration, since by
then energy fluctuations have reduced to less than 1% as shown in inset to figure 5.36.
The variation of components of potential energy of the system as shown in figure 5.37 is
also similar to the earlier case. The final value of the VDW energy is 2.5 times that of
the previous case due to large degree of bundling amongst nanotubes.

Figure 5.38 shows the final self-assembled network of nanotubes. The density of this
network is 10.64 mg/mL. The network consists of large bundles of carbon nanotubes
entangled at junctions between them as shown in figure 5.39. These large bundles of nan-
otubes di�erentiate this self-assembled network of nanotubes from actual CNT aerogels.
A total of seven peaks are present in the distribution of VDW energy as shown in figure
5.40. These peaks correspond to the energies of nanotubes with zero, one, two, three,
four, five and six nearest neighbors. Based on this data, the total specific surface area of
this self-assembled network is calculated to be 618 m2/gm. This value is much lower than
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Figure 5.38: Final configuration of self assembled nanotube network (nanotubes are color
coded according to VDW energy, scale shown on right)

Figure 5.39: Bundling and entanglements present in CNT network



119

Figure 5.40: Distribution of VDW energy among nanotubes in CNT network (Number of
nearest neighbors corresponding to each peak is indicated in roman numerals at the top)

the experimentally measured value. This puts this self-assembled network in a di�erent
category from the CNT aerogel. In studies [84, 82, 80] which employ di�erent model-
ing techniques such as DEM and MFF, similar self-assembled structures of nanotubes
containing large bundles are obtained.

The e�ects of changing the initial network structure or equilibration process are also
studied to ascertain whether such changes can produce structures similar to CNT aerogels.
In one such simulation, the network shown in figure 5.32, which is obtained from the
previous model, is used as an initial structure. In other simulation, an ordered mesh of
nanotubes with r

eq

as spacing between nanotubes at junctions. as shown in figure 5.41,
is used as an initial structure. Both of these simulations resulted in similar nanotube
networks with large bundles as shown in figure 5.38. In another simulation, instead
of expediting the equilibration process by applying some pressure or temperature, the
network is allowed to equilibrate slowly at room temperature. Figure 5.42 shows the
variation of potential energy of the system with time. The potential energy has not
become constant even after 1.5 µs which is approximately 150 million time-steps. The
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Figure 5.41: Ordered mesh network of carbon nanotubes

Figure 5.42: Potential energy of CNT network as a function of time
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Figure 5.43: Configuration of self assembled carbon nanotube network at 1.5 µs (nan-
otubes are color coded according to VDW energy, scale shown on right)

degree of bundling present in the network at 1.5 µs as shown in figure 5.43 is already
higher than the network obtained from the previous model and thus this network also
doesn’t resemble the structure of a CNT aerogel. It can be expected that given enough
equilibration time, this network will ultimately evolve into the network shown in figure
5.38. Thus, neither changing the initial structure or the equilibration process, resulted in
a di�erent network for this potential.

5.3.1.3 10-4 LJ potential

Since the 10-4 LJ potential requires more computation time, a smaller system size is
chosen. In this case, a random network of 943 nanotubes is generated within a simulation
box of length 420 nm as shown in figure 5.44. The length of each nanotube is 400
nm and is represented by 400 beads. The initial density of the network is 9.9 mg/mL.
This network is first subjected to a quasi static energy minimization and then a series
of dynamic equilibration steps, which include equilibration in an NVE ensemble with an
applied Langevin thermostat for 5 ns followed by equilibration in an NPT ensemble with
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Figure 5.44: Random network of 400 nm nanotubes within a simulation box of length 420
nm

0 Pa pressure at simulation box boundaries for 15 ns. The equilibration is carried out at
300 K.

Figure 5.45 shows the variation of the potential energy of the system with time. The
potential energy decreases with time and so does the rate of decrease of potential energy.
With time, as the bundling among the nanotubes increases, the number of particles within
the pairwise interaction cuto� distance of a single particle also increases. This increases
the computation time drastically. Therefore, the simulation is discontinued after 15 ns
despite the fact that the system has not achieved an equilibrium configuration by then.
However, some information can still be derived from simulation results generated until
15 ns. The equilibration proceeds by an increase in bending energy compensated by a
decrease in VDW energy of the system as shown in figure 5.46. This behavior is similar
to the previous cases.

Figure 5.47 shows the self-assembled network at the end of 15 ns. The final density of
network is 11.9 mg/mL. The network structure is similar to the one obtained from 12-6
LJ potential with large ‡ as shown in figure 5.38. The large bundles of nanotubes with
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Figure 5.45: Potential energy of CNT network as a function of time

Figure 5.46: Variation of components of potential energy of CNT network with time (inset
shows the axial deformation component)
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Figure 5.47: Final configuration of self assembled nanotube network (nanotubes are color
coded according to VDW energy, scale shown on right)

Figure 5.48: Bundling and entanglements present in CNT network



125

Figure 5.49: Distribution of VDW energy among nanotubes in CNT network (Number of
nearest neighbors corresponding to each peak is indicated in roman numerals at the top)

entanglements between them at junctions is present in this network as well as shown in
figure 5.48. Figure 5.49 shows the VDW energy distribution amongst the nanotubes. It
also shows seven distinct peaks. The specific surface area in this case is larger than the
previous case and is calculated to be 699 m2/gm. But since this is not the equilibrium
configuration of the network, we can expect it to eventually reach the same value when
this network finally evolves into the network shown in figure 5.38. As discussed before,
the 10-4 LJ potential is of a similar form to the actual tube-tube potential given by
equation 5.17. This potential was also able to reproduce the shapes of VDW energy
curves obtained from atomistic simulations for 2 and 3 CNTs systems. Therefore, it can
be argued that the self-assembled network of nanotubes, containing large bundles and
entanglements amongst them as obtained from both a 10-4 LJ potential and a 12-6 LJ
potential with large ‡, is a physical and energetically stable configuration of nanotubes
at room temperature when sliding between them is not hindered.
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Figure 5.50: Stress-strain curve of CNT network obtained from 12-6 LJ potential

5.3.2 Mechanical Behavior of a CNT network

The CNT networks obtained via self-assembly are subjected to compressive loading in
order to study their mechanical behavior. Only the networks obtained from simulations
employing 12-6 LJ potentials are considered in this study since they are well equilibrated.
The simulation box is deformed along the z axis at a constant loading rate of 10 m/sec.
A pressure of 0 Pa is maintained at boundaries perpendicular to the x and y axes. The
simulation is carried out at a temperature of 300 K.

Figure 5.50 shows the stress-strain curve obtained from the compressive testing sim-
ulation of the network shown in figure 5.32, carried out using a 12-6 LJ potential that
prevents sliding of nanotubes. The curve shows three di�erent regimes: a linear elastic
regime (for strains e<2%), a plateau regime (for strains 2%<e<50%) and a densification
regime (for strains e>50%). These three regimes are also present in the stress-strain
curve of CNT aerogels obtained from experiments as shown in figure 5.51.[7] However,
the linear elastic regime in the experimental curve continues upto 9% strain. The value of
the plateau stress in the simulation curve is also very high resulting in an elastic modulus
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Figure 5.51: Stress-strain curve of a CNT aerogel (taken from [7])

of 10 MPa, which is two orders of magnitude higher than the experimentally obtained
value of 0.21 MPa. Such a high value of sti�ness can be attributed to the large corruga-
tion artifacts for this potential. This is also reflected in the curve shown in figure 5.52
exhibiting the variation of di�erent components of stress with strain. Since nanotubes
cannot slide freely, the axial deformation component of the stress is highest. It dictates
the shape of the overall stress-strain curve. This emphasizes the role of nanotube sliding
in the deformation of CNT networks. This is why the 12-6 LJ potential fails at captur-
ing the correct deformation behavior of CNT networks although it generated the correct
structure during self-assembly.

Figure 5.53 shows the stress-strain curve obtained from the compressive testing simu-
lation of the network shown in figure 5.38, carried out using the 12-6 LJ potential with
large ‡ that corrects the corrugation artifact and thus allows free sliding of nanotubes.
This curve also shows three di�erent regimes: a linear elastic regime (e<10%), a plateau
regime (10%<e<50%) and a densification regime (e>50%). The strain limits of these
regimes, especially the elastic regime, are very similar to those of the experimental CNT
aerogel. The value of the plateau stress in this case is 0.027 MPa, which results in an
elastic modulus of 0.27 MPa. The actual density of this network is 10.64 mg/mL. The ex-
perimental elastic modulus of a CNT aerogel corresponding to a density of 9.9 mg/mL is
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Figure 5.52: Variation of stress components of CNT network with strain

Figure 5.53: Stress-strain curve of CNT network obtained from 12-6 LJ potential with
large ‡



129

Figure 5.54: Variation of potential energy of CNT network with strain (inset shows energy
variation in linear regime)

0.22 MPa.[7] In [7], it is also noted that the elastic modulus scales with density as power
law with an exponent of 2. Therefore, the elastic modulus of a network with density
10.64 mg/mL should be 0.25 MPa. This is close to the value of 0.27 MPa obtained from
simulation (8% error). However, the simulation fails to reproduce the strain hardening
observed in the experimental stress-strain curve during the plateau regime.

Figures 5.54 and 5.55 show the variation of potential energy of the system and its
normalized components respectively as a function of strain. In the elastic regime, the
potential energy of the system increases as shown in the inset to figure 5.54. After that it
becomes constant and eventually decreases, indicating the onset of the plastic deformation
regime. In the linear regime, the bending component of the potential energy is highest
and therefore, nanotube bending governs the elastic response of the CNT network. At
the beginning of the plateau regime, the bending energy component starts to decrease
while the VDW energy component increases. The VDW energy component eventually
becomes larger than bending energy component and therefore, VDW interactions between
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Figure 5.55: Variation of potential energy components of CNT network with strain

nanotubes govern the plastic response of the CNT network. The contribution of axial
deformation to the potential energy of the system is insignificant.

Figure 5.56 shows the variation in the components of stress as a function of strain. In a
state of zero strain, there are compressive stresses in the network due to VDW interactions
which are balanced by tensile axial stresses in the nanotubes. The magnitudes of both
VDW and axial stresses initially decrease with strain. But however, since the stresses act
in opposite directions and VDW stresses decrease at a much faster rate, the total stress
in the system is tensile and increases linearly with strain, giving a small sti�ness to the
network against compressive loading in the initial elastic regime. Eventually both VDW
and axial stresses flatten out resulting in a plateau regime. On increasing the strain
further, the axial stresses in the nanotubes start increasing resulting in a densification
regime. The bending stresses in the system are initially small but become comparable to
VDW and axial stresses at large strain. The thermal component of stress also becomes
significant at large strain since the volume of the system decreases by a factor of 3.7 at
76% strain. The variation of VDW, axial and bending components of stress is studied in
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(a) VDW and Axial Stress (b) Bending and thermal stress

Figure 5.56: Variation of stress components of CNT network with strain

detail so that the deformation mechanism of the CNT network can be deduced.
The orientation of nanotube bundles in the initial network configuration is isotropic as

shown in figure 5.57a which exhibits the distribution of the orientation angle of nanotubes
with respect to the z-axis. The number of nanotubes scales with angle as a sine function
which confirms the isotropic distribution of nanotube bundles. It should be noted that
the deviation near 90 degrees is due to finite system size e�ects. However, as the strain
on the network is increased, the distribution of orientation angles becomes skewed and
no longer follows a sine curve as shown in figure 5.57b. With further increase in strain,
more and more nanotube bundles are orienting themselves in directions perpendicular to
the z-axis along which the strain is applied.

Figure 5.58a shows the distribution of average axial stress in nanotubes with respect
to their binned orientation angle. The average axial stress corresponding to an angle bin
is calculated by dividing the sum of the axial stresses of all the nanotubes in that bin by
the number of nanotubes. The average axial stress decreases with an increase in the ori-
entation angle. However, since the number of nanotubes increases with orientation angle,
the sum of axial stresses of nanotubes in a particular angle bin varies non monotonically
with the orientation angle as shown in figure 5.58b. At 5% strain, the nanotubes with
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(a) At zero strain (bin size=1 degrees) (b) At finite strains (bin size=10 degrees)

Figure 5.57: Distribution of orientation angle of nanotubes with respect to the compressive
axis in CNT network as function of strain

(a) Distribution of average axial stress (b) Distribution of total axial stress

Figure 5.58: Distribution of average and total axial stress over orientation angle in CNT
network as function of strain (bin size = 10 degrees)
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(a) Distribution of average VDW stress (b) Distribution of total VDW stress

Figure 5.59: Distribution of average and total VDW stress over orientation angle in CNT
network as function of strain (bin size = 10 degrees)

an orientation angle of 30º contribute the most to the total axial stress which can be cal-
culated by summing over all bins. As the strain is increased to 30%, the contribution of
nanotubes with smaller orientation angles decreases since the fraction of such nanotubes
also decreases with strain as shown in figure 5.57b. However, the contribution of nan-
otubes with larger orientation angles still remains the same despite the relative increase
in their number. This is because the average stress on nanotubes with large orientation
angles doesn’t increase significantly at 30% strain as shown in figure 5.58a. Therefore,
the total axial stress at 30% strain is lower than the stress at 5% strain. Basically at
smaller strains, nanotubes bundles release stress by reorienting themselves in directions
perpendicular to the direction of applied strain via bending of nanotubes. But at larger
strain (>50%), the average axial stress on nanotubes even with large orientation angles
increases as shown in figure 5.58a. Therefore, their contribution to the total axial stress
also increases as shown in figure 5.58b. Thus, the total axial stresses in the nanotubes
start increasing resulting in the densification regime.

Figure 5.59a shows the distribution of average VDW stress in nanotubes with respect
to their binned orientation angle. The average VDW stress is calculated in a similar
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(a) 5% strain (b) 30% strain

(c) 60% strain (d) 76% strain

Figure 5.60: Deformation of a single nanotube at finite strains in CNT network (Color
bar and orientation tripod for each figure is same)
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(a) Top view

(b) Front view

Figure 5.61: Top and front views of deformed CNT network at 76% strain (Color bar for
each figure is same)
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manner as the average axial stress. The VDW stress is negative, which means it is
compressive in nature. Its magnitude decreases with an increase in the orientation angle.
At angles greater than 80º, it takes a small positive value, suggesting that the nanotubes
which lie in the x-y plane, have small, tensile VDW stresses acting on them. This curve
becomes steeper with strain. However, since the number of nanotubes increases with
orientation angle, the sum of VDW stresses of nanotubes in a particular angle bin also
varies non monotonically with the orientation angle as shown in figure 5.59b. As the strain
is increased from 5% to 30%, the total VDW stress, which can be calculated by summing
over all bins, decreases. This can be explained in a similar way as the decrease in total
axial stress. However, since VDW stresses are compressive in nature, a net small tensile
stress develops in the system when nanotube bundles reorient themselves in directions
perpendicular to the direction of applied compressive strain via bending. At 60% strain,
the average VDW stress on nanotubes with large orientation angles becomes large enough
to compensate for the decrease in total VDW stress carried by nanotubes with smaller
orientation angles. Therefore, the total VDW stress increases with strain. At very large
strain (>70%), the fraction of nanotubes with orientation angle greater than 80º becomes
so high that their large positive contribution results in the decrease of total VDW stresses
in the system. Therefore, at large strain, the increasing number of nanotubes oriented
perpendicular to the applied strain, which have VDW stresses of tensile nature, leads to
an additional increase in overall stress in the densification regime.

The bending stresses in the system are negative and increase with an increase in strain
as shown in figure 5.56. In order to explain the compressive nature of these bending
stresses, we look at the deformation of a single nanotube in a bundle. Figure 5.60 shows
snapshots of deformation of a single nanotube at several strains. A single nanotube
deforms by forming bending loops along the x, y and z axes. The bending loops formed
along the x and y axes have bending stresses of compressive nature (shown in blue) while
the bending loops formed along the z axis have bending stresses of tensile nature (shown
in red). Figure 5.61 shows the top and front views of the deformed nanotube network at
a strain of 76%. In these figures, there can be seen more bending loops oriented along
the x and y axes than along the z axis. This observation is supported by the distribution
of bending stresses among the nanotube atoms shown in figure 5.62. This distribution
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Figure 5.62: Distribution of bending stresses among nanotubes in CNT network

is skewed towards the left. This explains why the total bending stress in the system
is negative. Its magnitude increases with strain as the amount of bending deformation
increases.

5.3.3 Revisiting hypothesis

Table 5.2 draws a comparison between experiments and simulation by listing several
parameters characterizing the large deformation behavior of a CNT network. The meso-
scale simulation successfully captures the three deformation regimes associated with the
large deformation behavior of a CNT network. The stress and strain values associated
with the linear elastic regime are in good agreement with the experiments. The error
of 8% in the value of elastic modulus obtained from the meso-scale simulation is much
lower than the error of 67% obtained from the finite element model. This is because
the structure of a CNT network obtained from self-assembly simulation is further from
a simple random network of nanotubes assumed in the finite element simulation. The
VDW junctions are formed by entanglements between multiple nanotubes instead of just
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Experiment[7] Simulation
Network density (mg/mL) 9.9 10.64

Elastic Modulus (MPa) 0.21 0.27
Deformation Regimes Strain Stress (MPa) Strain Stress (MPa)

Linear regime 0.09 0.02 0.1 0.027
Plateau regime 0.6 0.08 0.5 0.03

Densification regime 0.8 0.19 0.8 0.08

Table 5.2: Parameters characterizing the large deformation behavior of a CNT network

two. Likewise a single nanotube can be a part of multiple bundles of nanotubes. The
strain limits of the plateau and the densification regimes are also accurately captured
in the meso-scale simulation. However, the BSM fails to model the strain hardening
observed in experiments during the plateau regime. This is reflected in the di�erent
values of stresses in the plateau and the densification regimes. This can be attributed to
the degree of bundling in the network as explained below. Apart from this discrepancy,
the meso-scale simulation accurately reproduces the stress-strain curve of a CNT network,
thereby o�ering insights into the governing deformation mechanisms and also capturing
the key features of the linear elastic regime. This validates our hypothesis that a meso-
scale simulation can model the large deformation behavior of a CNT network accurately
including the three deformation regimes.

In chapter 1 of this study, plausible governing mechanisms for the large deformation
behavior of CNT aerogels are mentioned and summarized in figure 1.2. In light of the
insights o�ered by meso-scale simulation, the governing deformation mechanisms are re-
vised and are summarized in figure 5.63. A distinction is made between the contribution
of these deformation mechanisms to the system’s potential energy, which dictates the
elastic/plastic response of the network, and their respective manifestations into stresses,
which drives the stress-strain response of the network. Under small compressive strains,
the bundles of nanotubes start realigning themselves perpendicular to the direction of
applied strain via bending at junctions. The bending energy of the system increases more
than the decrease in the VDW energy of the system. As a result, the response of the
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Figure 5.63: Governing mechanisms for the large deformation behavior of a CNT network
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network under small compressive strains is elastic governed by the bending of nanotubes.
But since, bending is a softer mode of deformation, the bending stresses in the network
are small. The realignment of nanotubes decreases the magnitudes of compressive VDW
stresses and to a lesser extent tensile axial stresses in the network, generating a net tensile
stress in the network against the applied small compressive strain. Therefore, in the lin-
ear elastic regime, the stress response of the material is driven by the VDW interactions
between nanotubes. As the compressive strain is increased, the decrease in the system’s
VDW energy becomes greater than the increase in the bending energy. Therefore, past a
critical strain, the response of the material becomes plastic governed by the VDW inter-
actions between nanotubes. As the strain induced alignment of nanotubes continues, the
decrease in the number of nanotubes with small orientation angles carrying large stresses
is balanced by an increase in the average stresses on nanotubes with large orientation
angles. Therefore, the net VDW and axial stresses in the system become constant caus-
ing the overall stress response of the network to plateau. At large strain, the average
axial stresses on nanotubes with large orientation angles become large enough, causing
the total axial stresses in the network to increase, leading to a densification regime. The
steep rise in the value of stress in the densification regime is also caused by the tensile
VDW stresses acting on the nanotubes with orientation angle greater than 80 degrees at
large strain.

It can be expected that in a network with a smaller degree of bundling and more
isolated nanotubes, there will be an additional volume constraint for realignment of nan-
otubes. Thus the average tensile stresses on nanotubes with large orientation angles will
increase at a faster rate, leading to a strain hardening in the plateau regime. Since, the
degree of bundling is also dictated by the form of the LJ potential to some extent, em-
ployment of a di�erent form of the LJ potential in the meso-scale model could reproduce
the strain hardening.

5.4 Conclusion

In this chapter, a bead spring model is developed for simulating a network of carbon
nanotubes. This model is capable of capturing the axial and bending deformation of car-
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bon nanotubes as well as VDW interactions between them. Several type of LJ potentials
are employed to model the VDW interactions. It is found that LJ potentials that re-
strict nanotube sliding generate a network structure similar to CNT aerogels whereas LJ
potentials that allow free sliding of nanotubes generate a bundled network of nanotubes
during the self-assembly process. However, the sti�ness of the network, whose mechanical
behavior is modeled using a LJ potential of the first kind, is found to be two orders of
magnitude higher than that of actual CNT aerogels. The elastic regime also shrinks by
a considerable amount in this case. Therefore, it is essential to allow the free sliding of
nanotubes during deformation of a CNT network.

The stress-strain curve of the CNT network, generated using the LJ potential that
allows free sliding of nanotubes, is similar to the stress-strain curve of a CNT aerogel
both in terms of the presence of the three deformation regimes as well as the stress and
strain values associated with the linear elastic regime. The error in the value of the elastic
modulus calculated from this simulation is 8% when compared with experiments. This
validates the accuracy of such meso-scale simulations in modeling the large deformation
behavior of pristine CNT networks. A deformation mechanism is presented based on the
insights o�ered by this simulation. It is found that the elastic-plastic response of CNT
networks is dictated by an interplay between the bending energy of nanotubes and the
VDW interaction energy of nanotubes. The elasticity of CNT networks is governed by
the bending deformation of nanotubes while the plastic deformation of CNT networks
is governed by the VDW interactions between nanotubes. The stress response of the
material in the elastic regime is dictated by the VDW stresses on nanotubes while in the
plateau and densification regimes, both the VDW and axial deformation stresses in the
material drive the overall stress response.
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Chapter 6

Summary and Future Work
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6.1 Summary

The two major goals of this study are to quantify the elastic behavior of a random
network of carbon nanotubes (CNTs) as a function of its density and junction properties
and to study the large deformation behavior of a pristine carbon nanotube network and
identify the underlying deformation mechanisms. In order to realize these goals, a multi-
scale modeling approach is employed.

Molecular dynamics (MD) simulations are used at the atomic scale to model the
mechanical properties of individual nanotubes and to study the van der Waals (VDW)
interactions between a group of nanotubes. The self-assembly and large deformation
behavior of a pristine carbon nanotube network are studied using meso-scale simulations.
In these simulations, a carbon nanotube is modeled as group of beads connected via
harmonic springs that resist axial and bending deformations. The beads are allowed to
interact via a Lennard Jones (LJ) potential to model van der Waals (VDW) interactions
between them. The parameters of the bead spring model are calculated using results
from the atomistic simulations of individual nanotubes. As a result of coarse graining,
this model can capture the complex physics associated with carbon nanotubes networks
while avoiding the large computation cost of traditional MD simulations. A continuum
scale finite element model is used to carry out high throughput simulations characterizing
the elastic behavior of a random network of nanotubes over a large parameter space. In
this model, a nanotube is modeled as an elastic beam element while the junctions between
nanotubes are modeled as spring elements that resist translation and rotation along the
x, y and z axes. The parameters that are considered in this study are the network density,
and the translational and the torsional sti�nesses of the junctions.

The first major finding of the finite element study is that that the deformation of a
random nanotube network (both 2D and 3D) can be governed either by the deformation of
the nanotubes (bending, axial compression) or deformation of the junctions (translation
of junctions in the x, y or z directions). The junction sti�ness parameters in combina-
tion with the network density determine the network deformation mode. The results of
this study are also applicable to any sti� fiber network. The parameter maps obtained
from this study provide us with a set of rules that can be applied to predict the elastic
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deformation behavior of a random fibrous network with any set of junction sti�nesses
and network density. The rotation of nanotubes at junctions doesn’t play a significant
role in the overall deformation of the network under compression. The two mechanisms
of junction deformation (translation along the local x & y directions and local z direc-
tion) act as springs connected in series and parallel for low and high network densities
respectively. The two mechanisms of nanotube junction translation (along the local x
& y directions) and nanotube stretching/compression act as springs connected in series.
The two mechanisms of nanotube junction translation (along the local z direction) and
nanotube bending can also be viewed as springs connected in series.

The second major finding of finite element study is that the network deformation is
significantly di�erent from the predictions of a�ne theory, especially at smaller network
densities, when deformation is governed by nanotube bending. The network elastic mod-
ulus never reaches the a�ne prediction even at large network densities. In the finite
element model, the elastic behavior of a pristine carbon nanotube network is also studied
by modeling the junctions mediated by VDW interactions between nanotubes as har-
monic springs. The sti�nesses of these springs are calculated from MD simulations. The
finite element model predicts the same scaling behavior of the network elastic modulus
with density as obtained in experiments. However, it produces an error of 67% in the
actual value of elastic modulus when compared with experiments. This discrepancy is
attributed to the possibility that the structure of a CNT aerogel can be di�erent from
a simple random fibrous network. This is later confirmed by the results of self-assembly
simulations carried out using a meso-scale model.

One of the main findings of the meso-scale simulations is the network structure ob-
tained from the self-assembly simulations, which is found to be very di�erent from a
simple random network of nanotubes. The self-assembled network contains large bundles
of nanotubes entangled at junctions between them. It is significant that this structure is
di�erent from the structures of CNT aerogels reported in the experimental studies. The
CNT aerogels reported in these studies contained mostly isolated nanotubes which gave
them a large specific surface area. Nanotube networks with similarly large specific surface
areas are generated from self-assembly simulations employing a LJ potential that hinders
free sliding of nanotubes. However, the sti�ness of such networks, whose mechanical be-
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havior is also modeled using the same kind of LJ potential, is found to be two orders of
magnitude higher than that of actual CNT aerogels. The elastic regime also shrinks by
a considerable amount in this case. Therefore, it is essential to allow the free sliding of
nanotubes during deformation of a CNT network.

The stress-strain curve of the CNT network, generated using the LJ potential that
allows free sliding of nanotubes, is similar to the experimental stress-strain curve of a
CNT aerogel both in terms of the presence of the three deformation regimes as well as
the stress and strain values associated with the linear elastic regime. The error in the
value of the elastic modulus calculated from this simulation is 8% when compared with
experiments. This validates the accuracy of such meso-scale simulations in modeling the
large deformation behavior of pristine CNT networks. The other major finding of this
study is the deformation mechanism of the CNT networks which is deduced from the
insights o�ered from these simulations. It is found that the elastic-plastic response of
CNT networks is dictated by an interplay between the bending energy of nanotubes and
the VDW interaction energy of nanotubes. The elasticity of CNT networks is governed
by the bending deformation of nanotubes while the plastic deformation of CNT networks
is governed by the VDW interactions between nanotubes. The stress response of the
material in the elastic regime is dictated by the VDW stresses on nanotubes while in the
plateau and densification regimes, both the VDW and axial deformation stresses in the
material drive the overall stress response.

6.2 Future Work

The next major extension of this work can be towards modeling the self-assembly and
mechanical behavior of CNT networks with modified junction properties such as graphene
coated and covalent cross-linked. Experimental studies have shown significant improve-
ment in the mechanical properties of CNT aerogels with modified junction properties.
It will be interesting to study how these changes to the junctions a�ect the underlying
deformation mechanisms and thereby the mechanical properties of such materials. Such
studies can be conducted via meso-scale simulations. They will involve building additional
coarse-graining models for graphene and polymer chains. The process of equilibrating the
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initial structure during the self-assembly simulations will also play an important role in
deciding the mechanical properties of the final structure. Since such networks are also
shown to have superelastic properties, the e�ect of cyclic loading and mechanisms behind
energy dissipation during the loading-unloading cycle can form an interesting study in
itself.

The second extension of this work can be towards improving the current bead spring
model developed for studying the pristine network of nanotubes. A better model will
result in less error in predicting the elastic modulus of the network and will also be able
to capture the strain hardening associated with the plateau regime. One improvement
can be employing a 10-4 LJ potential to model the large deformation behavior of the
CNT network, since this potential has the same functional form as an actual tube-tube
potential and doesn’t result in any corrugation artifacts. The major challenge in this case
will be reducing the large computation time associated with this potential. It can be done
by developing a parallel implementation of this potential.

The third and probably the most challenging extension of this study can be towards
developing a continuum model informed by the results from the meso-scale simulations.
Meso-scale simulations, although faster than traditional MD simulations, are still orders
of magnitude slower than the continuum simulations. It is impossible to perform high
throughput studies using the meso-scale simulations alone. However, superelements that
represent CNT networks more accurately, in terms of the underlying constitutive equation,
than traditional beam or spring elements can be created using insights from meso-scale
simulations. Such continuum scale simulations will provide a huge advantage in terms of
both cost and accuracy.
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List of important variables



157

l
c

Mean filament segment length
fl

l

Network filament density
fl

n

Network junction density
l Length of filament
D Diameter of filament

l
b

Square root of the ratio of bending to axial sti�ness of
the filament

d Distance between two nanotubes
“ Angle between two nanotubes
„ Potential energy between two nanotubes
d

o

Equilibrium distance between two nanotubes

„
o

Potential energy between two nanotubes at the
equilibrium distance

k
x

/k
y

/k
z

Sti�ness of springs that resist translation along x, y
and z directions of nanotube junctions

k
rotx

/k
roty

/k
rotz

Sti�ness of springs that resist rotation along x, y and z
directions of nanotube junctions

f
max

Maximum force that results in fracture of springs along
x and y directions

L Side length of simulation unit cell

n
c2D

/n
c3D

Number of junctions per nanotube in a 2D and 3D
network

COD
Cut-o� distance for junction formation between two
nanotubes

Y
network

Elastic modulus of the carbon nanotube network

‘
y

Compressive strain on carbon nanotube network in
finite element simulation

‡
y

Compressive stress on carbon nanotube network in
finite element simulation
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E
stretch

Elastic energy stored in axial deformation of nanotubes
during small deformation of network

E
bend

Elastic energy stored in bending deformation of
nanotubes during small deformation of network

E
kx

/E
ky

/E
kz

Elastic energy stored in translation of junctions during
small deformation of network

E
krotx

/E
kroty

/E
krotz

Elastic energy stored in rotation of junctions during
small deformation of network

RMS
Root mean square deviation of displacement of each
node in network from the a�ne prediction

COREL
Standard correlation function between the vertical
displacement and initial position of each node

NA Non-a�nity measure of the network deformation

Y
affine

Elastic modulus of the carbon nanotube network as
predicted from a�ne theory

E
system

Total potential of the carbon nanotube network
E

axial

Axial deformation energy of nanotubes
E

LJ

Van der Waals interaction energy of nanotubes

k
axial

Sti�ness of spring that resists axial deformation in
bead spring model

k
bend

Sti�ness of spring that resists bending deformation in
bead spring model

‡
Distance parameter in Lennard Jones potential in bead
spring model

‘
Energy parameter in Lennard Jones potential in bead
spring model

r, ◊
Distance and angle between beads in bead spring
model

r
o

, ◊
o

Equilibrium distance and angle between beads in bead
spring model
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� Bending angle of nanotube

�
c

Critical bending angle of nanotube at which buckling
occurs

z Sliding distance between two nanotubes

s
Engineering stress on carbon nanotube network in
bead-spring simulation

e
Engineering strain on carbon nanotube network in
bead-spring simulation
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LAMMPS Input Script
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atom_style atomic
un i t s metal
boundary f f f
read_data dataangle . cnt
group tube1 id <= 240
group tube2 id <> 241 480
group idwy id 3 219 249 465
newton on
pa i r_s ty l e hybrid a i r ebo 4 .0 1 0 l j / cut 10 .2
pa i r_coe f f � � a i r ebo . /CH. a i r ebo C C
pa i r_coe f f 1 2 l j / cut 0 .00284 3 .40
neighbor 2 .0 bin
neigh_modify de lay 5
dump 1 a l l atom 200 dump . cn tve l
minimize 1 .0 e≠6 1 .0 e≠6 1000 1000
f i x 1 tube1 move ro t a t e 0 0 0 0 1 0 100
f i x 2 tube2 move ro t a t e 0 2 .916 0 0 ≠1 0 100
f ix_modify 1 energy yes
f ix_modify 2 energy yes
thermo 200
dump 2 idwy custom 200 dump1 . cn tve l id x y z
run 50000
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Command Explanation

atom_style Defines attributes associated with atoms to be that of atomic style.

units Sets units to be used in simulation as defined by metal style.

boundary Sets boundary of global simulation box to be non periodic and fixed.

read_data Reads ids, coordinates, mass and type of atoms from an input file.

group Distributes atoms into two groups each representing an individual
nanotube. Third group stores atoms coordinates of which are used to

calculate angle between nanotubes at di�erent time steps.

newton Turns on Netwon’s third law of motion for bonded and pairwise
interactions. It means that if atoms involved in interactions are on two

di�erent processors than interaction is calculated by only one and
communicated to other.

pair_style Specifies a hybrid pair style that involves two kinds of potentials AIREBO
and LJ/cut. For AIREBO style scale factor for cut-o� distance is 4 and

contribution from LJ term is turned on but from torsional term is turned
o�. For LJ/cut style cuto� distance is 10.2 Å.

pair_coe� Defines AIREBO potential to be used for interactions among similar type
of atoms 1-1 & 2-2 and LJ potential for di�erent types 1-2.

neighbor Defines the style and skin distance used for building neighbors list

neigh_modify Specifies not to update neighbors list until at least 5 time steps

dump Dumps atom ids and coordinates to a data file after certain time steps.

minimize Minimizes energy of the system iteratively by adjusting atom coordinates
until either force or energy between them is below a certain threshold.

fix move Rotates all atoms in the group specified by an angle defined by the time
period of rotation and direction specified by rotation axis and its point of

origin.

fix_modify Includes the contribution of potential energy in thermodynamic output.

thermo Calculates and prints thermodynamic data after 200 time-steps

run Runs the simulation for 50000 time-steps

Table B.1: Commands used in input script for LAMMPS
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Appendix C

Elastic Modulus Curves
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Appendix D

Elastic Energy Curves
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Appendix E

Modified source code: Bending
buckling
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void AngleHarmonic : : compute ( i n t e f l a g , i n t v f l a g )
{

i n t i1 , i2 , i3 , n , type ;
double delx1 , dely1 , de lz1 , delx2 , dely2 , de l z2 ;
double eangle , f 1 [ 3 ] , f 3 [ 3 ] ;
double dtheta , tk , the ta c r =(MY_PI≠MY_PI/45) , theta , dthetacr ;
double rsq1 , rsq2 , r1 , r2 , c , s , a , a11 , a12 , a22 ;

eang l e = 0 . 0 ;
i f ( e f l a g | | v f l a g ) ev_setup ( e f l a g , v f l a g ) ;
e l s e e v f l a g = 0 ;

double ��x = atom≠>x ;
double �� f = atom≠>f ;
i n t �� a n g l e l i s t = neighbor≠>a n g l e l i s t ;
i n t n a n g l e l i s t = neighbor≠>n a n g l e l i s t ;
i n t n l o c a l = atom≠>n l o c a l ;
i n t newton_bond = force ≠>newton_bond ;

f o r (n = 0 ; n < n a n g l e l i s t ; n++) {
i 1 = a n g l e l i s t [ n ] [ 0 ] ;
i 2 = a n g l e l i s t [ n ] [ 1 ] ;
i 3 = a n g l e l i s t [ n ] [ 2 ] ;
type = a n g l e l i s t [ n ] [ 3 ] ;

// 1 s t bond

de lx1 = x [ i 1 ] [ 0 ] ≠ x [ i 2 ] [ 0 ] ;
de ly1 = x [ i 1 ] [ 1 ] ≠ x [ i 2 ] [ 1 ] ;
de l z1 = x [ i 1 ] [ 2 ] ≠ x [ i 2 ] [ 2 ] ;
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rsq1 = delx1 � delx1 + dely1 � dely1 + de l z1 � de l z1 ;
r1 = sq r t ( rsq1 ) ;

// 2nd bond

de lx2 = x [ i 3 ] [ 0 ] ≠ x [ i 2 ] [ 0 ] ;
de ly2 = x [ i 3 ] [ 1 ] ≠ x [ i 2 ] [ 1 ] ;
de l z2 = x [ i 3 ] [ 2 ] ≠ x [ i 2 ] [ 2 ] ;

r sq2 = delx2 � delx2 + dely2 � dely2 + de l z2 � de l z2 ;
r2 = sq r t ( rsq2 ) ;

// ang le ( cos and s i n )

c = delx1 � delx2 + dely1 � dely2 + de l z1 � de l z2 ;
c /= r1 � r2 ;

i f ( c > 1 . 0 ) c = 1 . 0 ;
i f ( c < ≠1.0) c = ≠1.0;

s = sq r t ( 1 . 0 ≠ c�c ) ;
i f ( s < SMALL) s = SMALL;
s = 1.0/ s ;

// f o r c e & energy
theta=acos ( c ) ;
dtheta = theta ≠ theta0 [ type ] ;
d thetacr = the tac r ≠ theta0 [ type ] ;
i f ( theta>=the tac r ){
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tk = ≠2.0�k [ type ] � dtheta ;
}
i f ( theta<the tac r ){

tk = ≠2.0 � k [ type ] � dthetacr ;
}

i f ( e f l a g ){
i f ( theta>=the tac r ){

eang l e = ≠(tk � dtheta ) / 2 . 0 ;
}
i f ( theta<the tac r ){

eang l e=≠tk � dtheta+(tk� dthetacr ) / 2 . 0 ;
}

}

a = tk � s ;
a11 = a�c / rsq1 ;
a12 = ≠a / ( r1 � r2 ) ;
a22 = a�c / rsq2 ;

f 1 [ 0 ] = a11� delx1 + a12� delx2 ;
f 1 [ 1 ] = a11� dely1 + a12� dely2 ;
f 1 [ 2 ] = a11� de l z1 + a12� de l z2 ;
f 3 [ 0 ] = a22� delx2 + a12� delx1 ;
f 3 [ 1 ] = a22� dely2 + a12� dely1 ;
f 3 [ 2 ] = a22� de l z2 + a12� de l z1 ;

// apply f o r c e to each o f 3 atoms

i f ( newton_bond | | i 1 < n l o c a l ) {
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f [ i 1 ] [ 0 ] += f1 [ 0 ] ;
f [ i 1 ] [ 1 ] += f1 [ 1 ] ;
f [ i 1 ] [ 2 ] += f1 [ 2 ] ;

}

i f ( newton_bond | | i 2 < n l o c a l ) {
f [ i 2 ] [ 0 ] ≠= f1 [ 0 ] + f3 [ 0 ] ;
f [ i 2 ] [ 1 ] ≠= f1 [ 1 ] + f3 [ 1 ] ;
f [ i 2 ] [ 2 ] ≠= f1 [ 2 ] + f3 [ 2 ] ;

}

i f ( newton_bond | | i 3 < n l o c a l ) {
f [ i 3 ] [ 0 ] += f3 [ 0 ] ;
f [ i 3 ] [ 1 ] += f3 [ 1 ] ;
f [ i 3 ] [ 2 ] += f3 [ 2 ] ;

}

i f ( e v f l a g ) ev_ta l ly ( i1 , i2 , i3 , n l oca l , newton_bond , eangle , f1 , f3 ,
delx1 , dely1 , de lz1 , delx2 , dely2 , de l z2 ) ;

}
}
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Appendix F

Modified source code: LJ potential
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void PairLJCut : : compute ( i n t e f l a g , i n t v f l a g )
{

i n t i , j , i i , j j , inum , jnum , itype , j type ,dummy;
double delxo , delyo , de lzo , rsq , evdwl , f p a i r ;
double r2 , r4 , r10 , f o r c e l j , f a c t o r _ l j ;
i n t � i l i s t ,� j l i s t ,� numneigh ,�� f i r s t n e i g h ;
i n t dCG=10,atom1 , atom2 , atom3 , atom4 , index i , i ndex j ;
double rcnt =4.068000345 , rcut =10.2 , r cu ta lp=pow( rcut , 1 0 ) ,

r cutbe t=pow( rcut , 4 ) , req =10,rmod , rred , energy , xo , yo , zo , xf ,
yf , z f ;

t a g i n t f i r s t a t om =1, lastatom =20;
double xtmpi [ 9 ] , ytmpi [ 9 ] , ztmpi [ 9 ] , xtmpj [ 9 ] , ytmpj [ 9 ] , ztmpj

[ 9 ] , delx , dely , de lz , xtmp , ytmp , ztmp ;

evdwl = 0 . 0 ;
i f ( e f l a g | | v f l a g ) ev_setup ( e f l a g , v f l a g ) ;
e l s e e v f l a g = v f l ag_fdot r = 0 ;

double ��x = atom≠>x ;
double �� f = atom≠>f ;
i n t � type = atom≠>type ;
i n t n l o c a l = atom≠>n l o c a l ;
double � s p e c i a l _ l j = fo r ce ≠>s p e c i a l _ l j ;
i n t newton_pair = fo rce ≠>newton_pair ;
t a g i n t � id=atom≠>tag ;

inum = l i s t ≠>inum ;
i l i s t = l i s t ≠>i l i s t ;
numneigh = l i s t ≠>numneigh ;
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f i r s t n e i g h = l i s t ≠>f i r s t n e i g h ;

// loop over ne ighbors o f my atoms

f o r ( i i = 0 ; i i < inum ; i i ++) {
i = i l i s t [ i i ] ;
i t ype = type [ i ] ;
j l i s t = f i r s t n e i g h [ i ] ;
jnum = numneigh [ i ] ;
xtmp = x [ i ] [ 0 ] ;
ytmp = x [ i ] [ 1 ] ;
ztmp = x [ i ] [ 2 ] ;
i f ( id [ i ]==f i r s t a t om ) {

atom1=≠1000;
}
i f ( id [ i ] != f i r s t a t om ) {

atom1=atom≠>map( id [ i ] ≠1) ;
atom1=domain≠>closest_image ( i , atom1 ) ;
i f ( type [ atom1 ] != type [ i ] ) {

atom1=≠1000;
}

}
i f ( id [ i ]==lastatom ) {

atom2=≠1000;
}
i f ( id [ i ] != lastatom ) {

atom2=atom≠>map( id [ i ]+1) ;
atom2=domain≠>closest_image ( i , atom2 ) ;
i f ( type [ atom2 ] != type [ i ] ) {

atom2=≠1000;
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}
}
f o r ( i ndex i =0; index i <9; i ndex i++){

i f ( atom1==≠1000){
i f ( index i <4){

xo=x [ i ] [ 0 ] ≠ ( x [ atom2 ] [0 ] ≠ x [ i ] [ 0 ] ) /2 ; yo=x [ i
] [ 1 ] ≠ ( x [ atom2 ] [1 ] ≠ x [ i ] [ 1 ] ) /2 ; zo=x [ i ] [ 2 ] ≠ (
x [ atom2 ] [2 ] ≠ x [ i ] [ 2 ] ) /2 ;

x f=x [ i ] [ 0 ] ; y f=x [ i ] [ 1 ] ; z f=x [ i ] [ 2 ] ;
xtmpi [ i ndex i ]=xo+index i �( xf≠xo ) /4 ; ytmpi [

i ndex i ]=yo+index i �( yf≠yo ) /4 ; ztmpi [ i ndex i
]=zo+index i �( z f≠zo ) /4 ;

}
i f ( i ndex i==4){

xtmpi [ i ndex i ]=x [ i ] [ 0 ] ; ytmpi [ i ndex i ]=x [ i ] [ 1 ] ;
ztmpi [ i ndex i ]=x [ i ] [ 2 ] ;

}
i f ( index i >4){

xo=x [ i ] [ 0 ] ; yo=x [ i ] [ 1 ] ; zo=x [ i ] [ 2 ] ;
x f=x [ i ] [ 0 ] + ( x [ atom2 ] [0 ] ≠ x [ i ] [ 0 ] ) /2 ; y f=x [ i

] [ 1 ] + ( x [ atom2 ] [1 ] ≠ x [ i ] [ 1 ] ) /2 ; z f=x [ i ] [ 2 ] + (
x [ atom2 ] [2 ] ≠ x [ i ] [ 2 ] ) /2 ;

xtmpi [ i ndex i ]=xo+( index i ≠4)�( xf≠xo ) /4 ; ytmpi [
i ndex i ]=yo+( index i ≠4)�( yf≠yo ) /4 ; ztmpi [
i ndex i ]=zo+( index i ≠4)�( z f≠zo ) /4 ;

}
}
e l s e i f ( atom2==≠1000){

i f ( index i <4){
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xo=x [ i ] [ 0 ] ≠ ( x [ i ] [ 0 ] ≠ x [ atom1 ] [ 0 ] ) /2 ; yo=x [ i
] [ 1 ] ≠ ( x [ i ] [ 1 ] ≠ x [ atom1 ] [ 1 ] ) /2 ; zo=x [ i ] [ 2 ] ≠ (
x [ i ] [ 2 ] ≠ x [ atom1 ] [ 2 ] ) /2 ;

x f=x [ i ] [ 0 ] ; y f=x [ i ] [ 1 ] ; z f=x [ i ] [ 2 ] ;
xtmpi [ i ndex i ]=xo+index i �( xf≠xo ) /4 ; ytmpi [

i ndex i ]=yo+index i �( yf≠yo ) /4 ; ztmpi [ i ndex i
]=zo+index i �( z f≠zo ) /4 ;

}
i f ( i ndex i==4){

xtmpi [ i ndex i ]=x [ i ] [ 0 ] ; ytmpi [ i ndex i ]=x [ i ] [ 1 ] ;
ztmpi [ i ndex i ]=x [ i ] [ 2 ] ;

}
i f ( index i >4){

xo=x [ i ] [ 0 ] ; yo=x [ i ] [ 1 ] ; zo=x [ i ] [ 2 ] ;
x f=x [ i ] [ 0 ] + ( x [ i ] [ 0 ] ≠ x [ atom1 ] [ 0 ] ) /2 ; y f=x [ i

] [ 1 ] + ( x [ i ] [ 1 ] ≠ x [ atom1 ] [ 1 ] ) /2 ; z f=x [ i ] [ 2 ] + (
x [ i ] [ 2 ] ≠ x [ atom1 ] [ 2 ] ) /2 ;

xtmpi [ i ndex i ]=xo+( index i ≠4)�( xf≠xo ) /4 ; ytmpi [
i ndex i ]=yo+( index i ≠4)�( yf≠yo ) /4 ; ztmpi [
i ndex i ]=zo+( index i ≠4)�( z f≠zo ) /4 ;

}
}
e l s e {

i f ( index i <4){
xo=x [ i ] [ 0 ] ≠ ( x [ i ] [ 0 ] ≠ x [ atom1 ] [ 0 ] ) /2 ; yo=x [ i

] [ 1 ] ≠ ( x [ i ] [ 1 ] ≠ x [ atom1 ] [ 1 ] ) /2 ; zo=x [ i ] [ 2 ] ≠ (
x [ i ] [ 2 ] ≠ x [ atom1 ] [ 2 ] ) /2 ;

x f=x [ i ] [ 0 ] ; y f=x [ i ] [ 1 ] ; z f=x [ i ] [ 2 ] ;
xtmpi [ i ndex i ]=xo+index i �( xf≠xo ) /4 ; ytmpi [

i ndex i ]=yo+index i �( yf≠yo ) /4 ; ztmpi [ i ndex i
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]=zo+index i �( z f≠zo ) /4 ;
}
i f ( i ndex i==4){

xtmpi [ i ndex i ]=x [ i ] [ 0 ] ; ytmpi [ i ndex i ]=x [ i ] [ 1 ] ;
ztmpi [ i ndex i ]=x [ i ] [ 2 ] ;

}
i f ( index i >4){

xo=x [ i ] [ 0 ] ; yo=x [ i ] [ 1 ] ; zo=x [ i ] [ 2 ] ;
x f=x [ i ] [ 0 ] + ( x [ atom2 ] [0 ] ≠ x [ i ] [ 0 ] ) /2 ; y f=x [ i

] [ 1 ] + ( x [ atom2 ] [1 ] ≠ x [ i ] [ 1 ] ) /2 ; z f=x [ i ] [ 2 ] + (
x [ atom2 ] [2 ] ≠ x [ i ] [ 2 ] ) /2 ;

xtmpi [ i ndex i ]=xo+( index i ≠4)�( xf≠xo ) /4 ; ytmpi [
i ndex i ]=yo+( index i ≠4)�( yf≠yo ) /4 ; ztmpi [
i ndex i ]=zo+( index i ≠4)�( z f≠zo ) /4 ;

}
}

}
f o r ( j j = 0 ; j j < jnum ; j j ++) {

j = j l i s t [ j j ] ;
f a c t o r _ l j = s p e c i a l _ l j [ sbmask ( j ) ] ;
j &= NEIGHMASK;
j type = type [ j ] ;
i f ( id [ j ]==f i r s t a t om ) {

atom3=≠1000;
}
i f ( id [ j ] != f i r s t a t om ) {

atom3=atom≠>map( id [ j ] ≠1) ;
atom3=domain≠>closest_image ( j , atom3 ) ;
i f ( type [ atom3 ] != type [ j ] ) {

atom3=≠1000;
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}
}
i f ( id [ j ]==lastatom ) {

atom4=≠1000;
}
i f ( id [ j ] != lastatom ) {

atom4=atom≠>map( id [ j ]+1) ;
atom4=domain≠>closest_image ( j , atom4 ) ;
i f ( type [ atom4 ] != type [ j ] ) {

atom4=≠1000;
}

}
energy =0;
de lxo = xtmp ≠ x [ j ] [ 0 ] ;
de lyo = ytmp ≠ x [ j ] [ 1 ] ;
de l zo = ztmp ≠ x [ j ] [ 2 ] ;
r sq = delxo � delxo + delyo � delyo + de l zo � de l zo ;

i f ( r sq < cutsq [ i t ype ] [ j type ] ) {

f o r ( index j =0; indexj <9; index j++){
i f ( atom3==≠1000){

i f ( indexj <4){
xo=x [ j ] [ 0 ] ≠ ( x [ atom4 ] [0 ] ≠ x [ j ] [ 0 ] ) /2 ;

yo=x [ j ] [ 1 ] ≠ ( x [ atom4 ] [1 ] ≠ x [ j ] [ 1 ] )
/2 ; zo=x [ j ] [ 2 ] ≠ ( x [ atom4 ] [2 ] ≠ x [ j
] [ 2 ] ) /2 ;

x f=x [ j ] [ 0 ] ; y f=x [ j ] [ 1 ] ; z f=x [ j ] [ 2 ] ;
xtmpj [ i ndex j ]=xo+index j �( xf≠xo ) /4 ;

ytmpj [ i ndex j ]=yo+index j �( yf≠yo )
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/4 ; ztmpj [ i ndex j ]=zo+index j �( z f≠zo
) /4 ;

}
i f ( i ndex j==4){

xtmpj [ i ndex j ]=x [ j ] [ 0 ] ; ytmpj [ i ndex j ]=
x [ j ] [ 1 ] ; ztmpj [ i ndex j ]=x [ j ] [ 2 ] ;

}
i f ( indexj >4){

xo=x [ j ] [ 0 ] ; yo=x [ j ] [ 1 ] ; zo=x [ j ] [ 2 ] ;
x f=x [ j ] [ 0 ] + ( x [ atom4 ] [0 ] ≠ x [ j ] [ 0 ] ) /2 ;

y f=x [ j ] [ 1 ] + ( x [ atom4 ] [1 ] ≠ x [ j ] [ 1 ] )
/2 ; z f=x [ j ] [ 2 ] + ( x [ atom4 ] [2 ] ≠ x [ j
] [ 2 ] ) /2 ;

xtmpj [ i ndex j ]=xo+( indexj ≠4)�( xf≠xo )
/4 ; ytmpj [ i ndex j ]=yo+( indexj ≠4)�(
yf≠yo ) /4 ; ztmpj [ i ndex j ]=zo+( indexj
≠4)�( z f≠zo ) /4 ;

}
}
e l s e i f ( atom4==≠1000){

i f ( indexj <4){
xo=x [ j ] [ 0 ] ≠ ( x [ j ] [ 0 ] ≠ x [ atom3 ] [ 0 ] ) /2 ;

yo=x [ j ] [ 1 ] ≠ ( x [ j ] [ 1 ] ≠ x [ atom3 ] [ 1 ] )
/2 ; zo=x [ j ] [ 2 ] ≠ ( x [ j ] [ 2 ] ≠ x [ atom3
] [ 2 ] ) /2 ;

x f=x [ j ] [ 0 ] ; y f=x [ j ] [ 1 ] ; z f=x [ j ] [ 2 ] ;
xtmpj [ i ndex j ]=xo+index j �( xf≠xo ) /4 ;

ytmpj [ i ndex j ]=yo+index j �( yf≠yo )
/4 ; ztmpj [ i ndex j ]=zo+index j �( z f≠zo
) /4 ;
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}
i f ( i ndex j==4){

xtmpj [ i ndex j ]=x [ j ] [ 0 ] ; ytmpj [ i ndex j ]=
x [ j ] [ 1 ] ; ztmpj [ i ndex j ]=x [ j ] [ 2 ] ;

}
i f ( indexj >4){

xo=x [ j ] [ 0 ] ; yo=x [ j ] [ 1 ] ; zo=x [ j ] [ 2 ] ;
x f=x [ j ] [ 0 ] + ( x [ j ] [ 0 ] ≠ x [ atom3 ] [ 0 ] ) /2 ;

y f=x [ j ] [ 1 ] + ( x [ j ] [ 1 ] ≠ x [ atom3 ] [ 1 ] )
/2 ; z f=x [ j ] [ 2 ] + ( x [ j ] [ 2 ] ≠ x [ atom3
] [ 2 ] ) /2 ;

xtmpj [ i ndex j ]=xo+( indexj ≠4)�( xf≠xo )
/4 ; ytmpj [ i ndex j ]=yo+( indexj ≠4)�(
yf≠yo ) /4 ; ztmpj [ i ndex j ]=zo+( indexj
≠4)�( z f≠zo ) /4 ;

}
}
e l s e {

i f ( indexj <4){
xo=x [ j ] [ 0 ] ≠ ( x [ j ] [ 0 ] ≠ x [ atom3 ] [ 0 ] ) /2 ;

yo=x [ j ] [ 1 ] ≠ ( x [ j ] [ 1 ] ≠ x [ atom3 ] [ 1 ] )
/2 ; zo=x [ j ] [ 2 ] ≠ ( x [ j ] [ 2 ] ≠ x [ atom3
] [ 2 ] ) /2 ;

x f=x [ j ] [ 0 ] ; y f=x [ j ] [ 1 ] ; z f=x [ j ] [ 2 ] ;
xtmpj [ i ndex j ]=xo+index j �( xf≠xo ) /4 ;

ytmpj [ i ndex j ]=yo+index j �( yf≠yo )
/4 ; ztmpj [ i ndex j ]=zo+index j �( z f≠zo
) /4 ;

}
i f ( i ndex j==4){
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xtmpj [ i ndex j ]=x [ j ] [ 0 ] ; ytmpj [ i ndex j ]=
x [ j ] [ 1 ] ; ztmpj [ i ndex j ]=x [ j ] [ 2 ] ;

}
i f ( indexj >4){

xo=x [ j ] [ 0 ] ; yo=x [ j ] [ 1 ] ; zo=x [ j ] [ 2 ] ;
x f=x [ j ] [ 0 ] + ( x [ atom4 ] [0 ] ≠ x [ j ] [ 0 ] ) /2 ;

y f=x [ j ] [ 1 ] + ( x [ atom4 ] [1 ] ≠ x [ j ] [ 1 ] )
/2 ; z f=x [ j ] [ 2 ] + ( x [ atom4 ] [2 ] ≠ x [ j
] [ 2 ] ) /2 ;

xtmpj [ i ndex j ]=xo+( indexj ≠4)�( xf≠xo )
/4 ; ytmpj [ i ndex j ]=yo+( indexj ≠4)�(
yf≠yo ) /4 ; ztmpj [ i ndex j ]=zo+( indexj
≠4)�( z f≠zo ) /4 ;

}
}

}
f o r ( i ndex i =0; index i <9; i ndex i++){

f o r ( index j =0; indexj <9; index j++){
de lx=xtmpi [ i ndex i ]≠xtmpj [ i ndex j ] ; de ly=

ytmpi [ i ndex i ]≠ytmpj [ i ndex j ] ; d e l z=
ztmpi [ i ndex i ]≠ztmpj [ i ndex j ] ;

rmod=sq r t ( de lx � de lx + de ly � de ly + de l z �
de l z ) ;

r r ed=rmod≠2� rcnt ;
i f ( rred<rcut ) {

r2 = rred � r red ;
r4 = r2 � r2 ;
r10= r4 � r4 � r2 ;
f o r c e l j = ( l j 1 [ i t ype ] [ j type ] / ( r10 �

r red ) ≠ l j 2 [ i t ype ] [ j type ] / ( r4 �
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rred ) )≠( l j 1 [ i t ype ] [ j type ] / (
r cu ta lp � rcut ) ≠ l j 2 [ i t ype ] [ j type
] / ( r cutbet � rcut ) ) ;

f p a i r = f a c t o r _ l j � f o r c e l j /( rmod) ;

f [ i ] [ 0 ] += delx � f p a i r ;
f [ i ] [ 1 ] += dely � f p a i r ;
f [ i ] [ 2 ] += de l z � f p a i r ;
i f ( newton_pair | | j < n l o c a l ) {

f [ j ] [ 0 ] ≠= delx � f p a i r ;
f [ j ] [ 1 ] ≠= dely � f p a i r ;
f [ j ] [ 2 ] ≠= de l z � f p a i r ;

}
energy=energy + ( l j 3 [ i t ype ] [ j type ] /

r10≠l j 4 [ i t ype ] [ j type ] / r4 ) ≠ ( l j 3 [
i t ype ] [ j type ] / rcuta lp ≠l j 4 [ i t ype ] [
j type ] / r cutbet ) + ( l j 1 [ i t ype ] [
j type ] / ( r cu ta lp � rcut ) ≠ l j 2 [ i t ype
] [ j type ] / ( r cutbet � rcut ) ) �( rred≠
rcut ) ;

}

}
}
i f ( e f l a g ) {

evdwl =energy ;
evdwl �= f a c t o r _ l j ;

}
i f ( e v f l a g ) ev_ta l ly ( i , j , n l o ca l , newton_pair ,

evdwl , 0 . 0 , f pa i r , delx , dely ,
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de l z ) ;
i f ( v f l ag_fdot r ) v ir ia l_fdotr_compute ( ) ;

}
}

}
}
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