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Abstract

This dissertation studies multi-agent algorithms for learning Nash equilibrium strategies in

games with many players. We focus our study on a set of learning dynamics in which agents

seek to myopically optimize their next-stage utility given some forecast of opponent behavior; i.e.,

players act according to myopic best response dynamics. The prototypical algorithm in this class is

the well-known fictitious play (FP) algorithm. FP dynamics are intuitively simple and can be seen

as the “natural” learning dynamics associated with the Nash equilibrium concept. Accordingly,

FP has received extensive study over the years and has been used in a variety of applications. Our

contributions may be divided into two main research areas. First, we study fundamental properties

of myopic best response (MBR) dynamics in large-scale games. We have three main contributions in

this area. (i) We characterize the robustness of MBR dynamics to a class of perturbations common

in real-world applications. (ii) We study FP dynamics in the important class of large-scale games

known as potential games. We show that for almost all potential games and for almost all initial

conditions, FP converges to a pure-strategy (deterministic) equilibrium. (iii) We develop tools to

characterize the rate of convergence of MBR algorithms in potential games. In particular, we show

that the rate of convergence of FP is “almost always” exponential in potential games.

Our second research focus concerns implementation of MBR learning dynamics in large-scale

games. MBR dynamics can be shown, theoretically, to converge to equilibrium strategies in impor-

tant classes of large-scale games (e.g., potential games). However, despite theoretical convergence

guarantees, MBR dynamics can be extremely impractical to implement in large games due to de-

manding requirements in terms of computational capacity, information overhead, communication

infrastructure, and global synchronization. Using the aforementioned robustness result, we study

practical methods to mitigate each of these issues. We place a special emphasis on studying al-

gorithms that may be implemented in a network-based setting, i.e., a setting in which inter-agent

communication is restricted to a (possibly sparse) overlaid communication graph. Within the

network-based setting, we also study the use of so-called “inertia” in MBR algorithms as a tool for

learning pure-strategy NE.
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Chapter 1

Introduction

1.1 Motivating Example

A game is a mathematical object that describes the strategic interaction between a group of agents.

Multi-agent systems such as wireless networks [1–5], smart grid infrastructures [6–8], electric vehicle

charging networks [9,10], wind farms [6,11], multi-robot systems [12], camera networks [13], mobile

sensor networks [14,15], and others [16,17], can be naturally modeled using the framework of game

theory. Within this context, a desirable operating condition in the multi-agent system can be

modeled as an equilibrium in the associated game [18].

As a motivating example, consider the following traffic routing scenario. Suppose a group of

drivers wishes to navigate a traffic grid. Each driver’s vehicle is equipped with an onboard computer

and is connected to neighboring vehicles in the group via an adhoc vehicular network. Each vehicle

is equipped with a model of the traffic grid and knows its starting point and destination. Prior to

physically engaging in the commute, the drivers wish to compute an equilibrium routing strategy.

In particular, it is desired that, by repeatedly exchanging information with neighboring vehicles

in the network, the group of vehicles can negotiate on a equilibrium routing strategy that can be

recommend to the drivers.

The strategic problem of routing traffic can be modeled as a game by letting each vehicle be

represented as a player. The set of actions for each player is the set of route choices available to the

vehicle. The utility function of each player is determined by travel time of the vehicle from starting

point to destination, as determined by the onboard traffic grid model. (More precisely, we let the

utility be the negative of the travel time so that players prefer to maximize their utility function.)

An equilibrium routing strategy defines a route choice for each vehicle that optimizes the utility

(travel time) of each player (vehicle).
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This particular scenario falls in the intersection of game theory [19, 20] and distributed algo-

rithms [21,22]. In a distributed algorithm, it is desired that a group of agents connected via a sparse

communication graph cooperatively compute some network-dependent quantity; e.g., the average

temperature in a sensor network [23], the optimal value of some network-dependent function [24], or

the likelihood of some event based on observations in a sensor network [25]. In this case, it is desired

that agents compute an equilibrium routing strategy of the associated traffic game. A distributed

algorithm prescribes the manner in which information is disseminated through the network and the

manner in which the disseminated information is used in order to compute the desired quantity.

Returning to the traffic routing example, the challenge is to design distributed algorithms that

allow the vehicles to cooperatively compute an equilibrium strategy and are practical to implement

when the number of players is large. In particular, the following issues should be taken into

consideration:

� The computations that must be performed by each vehicle should be simple enough to be

carried out using the limited computational resources of the vehicle’s onboard computer. (See

Chapters 3 and 5.)

� The amount of information that must be exchanged between vehicles should remain relatively

small, even when there are a large number of vehicles in the game. (See Chapter 3.)

� In this setting, it is not possible for agents to physically measure payoff information—

accordingly, all information dissemination must be explicitly handled by the learning al-

gorithm using the overlaid communication graph. (See Section 1.3.2, and Chapters 7–8.)

� The interagent communication graph should be permitted to be sparse, e.g., vehicles may

only communicate with other nearby vehicles. (See Chapters 7–8.)

� Vehicles should be permitted to process information and communicate with one another in an

asynchronous manner (i.e., the algorithm should be able to operate without a global clock).

(See Chapter 6.)

� The rate of convergence of an algorithm should be reasonably fast. (See Chapters 3 and 10.)

� An algorithm should be robust to perturbations that may occur in real-world implementations,

e.g., due to computational limitations, communication errors, and asynchrony. (See Chapter

4.)

� An algorithm should converge to a desirable equilibrium point, e.g., in some applications,

a pure-strategy (deterministic) equilibrium is preferred to a mixed-strategy (probabilistic)

equilibrium. (See Chapters 8–10.)
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In this dissertation, we will focus on a particular class of natural learning dynamics that are

induced by the Nash equilibrium concept. In Section 1.2 we introduce these learning dynamics,

and in Section 1.3 we discuss the main contributions of the dissertation.

1.2 Myopic Best-Response Dynamics

Before introducing the learning dynamics studied in this dissertation, we first briefly introduce

some necessary notation.

Formally, a game consists of a finite set of players N := {1, . . . , N}, a convex compact set

∆i representing the set of strategies1 available to each player i ∈ N , and a utility function Ui :

∆1 × · · · × ∆N → R establishing the utility received by each player i ∈ N for any given (joint)

strategy choice.

An equilibrium of a game may be defined using the notion of a best response. Informally, a best

response for player i ∈ N is a strategy choice that maximizes the utility received by player i if the

strategies of opponents are held constant. Formally, given a strategy q−i ∈
∏
j∈N\{i}∆j , the set of

best responses for player i is given by

BRi(q−i) := arg max
qi∈∆i

U(qi, q−i),

and given a strategy q ∈ ∆1 × · · · ×∆N , the joint best response set is given by

BR(q) := BR1(q−1)× · · · × BRN (q−N ),

where q−i = (q1, . . . , qi−1, qi+1, . . . , qN ), ∀i ∈ N . A strategy q ∈ ∆1× · · · ×∆N is said to be a Nash

equilibrium (NE) if Ui(qi, q−i) ≥ Ui(q′i, q−i), ∀q′i ∈ ∆i, ∀i ∈ N , or equivalently,

q ∈ BR(q). (1.1)

In words, this means that at a Nash equilibrium, no player can improve their utility by unilaterally

changing their strategy.

A question of fundamental interest is, how might a group of interacting agents learn an equilib-

rium strategy over time? In a game-theoretic learning algorithm, players are permitted to repeat-

1Throughout this dissertation we will assume that players have finite action spaces and we will use the symbol
∆i to refer to the associated set of mixed strategies available to player i ∈ N . In order to simplify the notation in
the introduction, we refer to the set of mixed strategies ∆i as the set of strategies available to player i. This is made
precise in Section 2.1.
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edly face off in some fixed game. Over the course of the repeated interaction, players may revise

their strategies based on the history of game play. Ideally, players strategies should adapt to one

another’s strategy choices, converging to an equilibrium over time.

A popular learning procedure, known as fictitious play (FP), follows naturally from the Nash

equilibrium concept (1.1). In particular, consider the (continuous-time) dynamical system

q̇ ∈ BR(q)− q. (1.2)

By definition, a strategy is a rest point of (1.2) if and only if it is a NE (1.1). For historical reasons,

the dynamical system (1.2) is generally referred to as continuous-time fictitious play [26–29].

In order to study the discrete-time analog of this system, assume that players are permitted to

repeatedly face off in some fixed game and let ai(n) ∈ ∆i denote the “action” used by player i ∈ N
in round n ∈ {1, 2, . . .} of the repeated interaction. Let a(n) = (a1(n), . . . , aN (n)) denote the joint

action. The discrete-time analog of (1.2) is given by the process (q(n))n≥1 defined by the system2

a(n+ 1) ∈ BR(q(n)), (1.3)

q(n) =
1

n

n∑
s=1

a(s). (1.4)

Note that the process (q(n))n≥1 defined above may be expressed recursively as

q(n+ 1)− q(n) ∈ 1

n+ 1
(BR(q(n))− q(n)) . (1.5)

This may be seen as an Euler discretization [30] of the differential inclusion (1.2) in which the step

size is given by 1
n+1 . As n → ∞, the continuous-time interpolation of (1.5) more closely approx-

imates a solution of (1.2). (This is made precise in [28]; see also Chapter 4 of this dissertation.)

In light of this relationship, we sometimes refer to (1.2) as the mean-field system associated with

(1.3)–(1.4)

The system (1.3)–(1.4) defines a game-theoretic learning algorithm—players repeatedly face off

in some fixed game, and after each stage n ∈ {1, 2, . . .} of the repeated interaction, players choose

their next-stage action a(n+ 1) as a (myopic) best response to the current state q(n). The action

a(n + 1) is a myopic best response in the sense that players each player seeks to optimize the

utility received in the upcoming round given the current state q(n). This may be contrasted with a

non-myopic learning process, in which agents seek to optimize their received utility in a long-term

2The initial action a(1) may be chosen arbitrarily.
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sense, e.g., using a discounted sum of future utility values.

The myopic best-response learning algorithm defined by (1.3)–(1.4) is historically known as

(discrete-time) FP [26].3 FP is known to converge to the set of NE in several important classes of

games including two-player, zero-sum games [31,32]; two-player, two-action games [33,34]; generic

two-player m-action games [35]; games solvable by iterated strict dominance [36]; “one-against-all”

multi-player games [37]; and potential games [34,38] (see also Section 2.5).

The FP algorithm has a variety useful properties. For example, while it is known that no

(uncoupled) learning algorithm can converge in all games [39], it has been shown that FP can

have good payoff performance, even in the absence of convergence [40]. As another example, the

paper [41] studies approximation guarantees unique to FP. The FP algorithm has been shown to be

useful in solving general extensive form games [42, 43]; in particular, it has been used to compute

approximately-optimal strategies in poker [43–46] as well as large-state-space word games [47]. The

work [48] showed that FP can be useful as an optimization heuristic in large-scale games. Variants of

FP have been studied in a wide range of applications including traffic routing [48, 49], distributed

constraint optimization problems [50], control of robotic teams [12, 51], dynamic programming

[52,53], cognitive radio [54–56], and learning in Markov decision processes [57].

In this dissertation we study a more general myopic best-response learning process, defined by

the system

a(n+ 1) ∈ BR1(f1(z(n)))× · · · × BRN (fN (z(n))), (1.6)

z(n+ 1) = z(n) + γ(n)
(
g(a(n+ 1))− z(n)

)
, (1.7)

where a(n) denotes the joint action taken in stage n of the repeated interaction, z(n) ∈ Z is

the observation state and Z is the observation space (the observation state z(n) represents the

information available to players in stage n), (γ(n))n≥1 is a step-size sequence, fi, i ∈ N is a

forecast function that maps the current observation state to a location in the strategy space, and

g is the observation mapping, which maps back from the strategy space into the observation space.

Intuitively speaking, a MBR algorithm may be described as follows: Each iteration of the

algorithm, each player uses the current observation state z(n) to generate a forecast of the strategy

that will be used by the other players in the upcoming round. The forecast of player i is denoted

by fi(z(n)). Each player chooses their next-stage action ai(n+ 1) as a myopic best response given

their forecast (see (1.6)). The new action information is then recursively incorporated into the

3Unless otherwise stated, throughout the dissertation we will refer to the continuous-time system (1.2) as
continuous-time FP and we will refer to the discrete-time system (1.3)–(1.4) simply as FP
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observation state using observation mapping g (see (1.7)).

By studying the general MBR dynamics (1.6)–(1.7), we are able to derive general results ap-

plying a variety of useful learning processes, including FP (1.3)–(1.4) as a special case. In Chapter

2 we will discuss these general dynamics in more detail after rigorously introducing the notation to

be used throughout the dissertation.

1.3 Contributions

The main contributions of the dissertation are broadly divided into two main research areas: (i)

fundamental properties of MBR dynamics and (ii) implementation in large-scale games. We discuss

both of these below.

1.3.1 Fundamental Properties

As our first research focus, we study fundamental properties of MBR dynamics. We have four broad

objectives in this regard, listed below. The first objective deals with MBR dynamics generally.

The next two objectives focus on understanding MBR dynamics in the important class of multi-

agent games known as potential games [34] (see also Section 2.1.1). The final objective deals with

fundamental stability properties of equilibria in potential games.

� Robustness of MBR dynamics: Broadly speaking, our goal is to understand the robust-

ness of MBR dynamics to perturbations that may occur in practical applications. We consider

a sequence of perturbations at the output of the best response in (1.6) that gradually decay

as the repeated play process progresses. More precisely, we suppose that rather than choos-

ing an action that is a precise best response in (1.6), players may choose a action that is

εn-suboptimal, with εn → 0 as n→∞.

We will study the robustness of MBR dynamics in Chapter 4. Subsequently, in Chapters 5–7

we will see that such perturbations commonly arise in practical applications. In particular,

in Chapters 5–7 we will apply the robustness result to develop practical methods for mitigat-

ing the problems of high computational complexity, global synchronization, and demanding

communication requirements discussed in Section 1.3.2 below.

� Convergence of FP to pure-strategy equilibria in potential games: Potential games

are an important class of multi-agent games with many applications in engineering and eco-

nomics (see Section 2.1.1). Furthermore, potential games play a fundamental role within the
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theory of games in the sense that every game admits a unique decomposition in terms of a

potential game component, a harmonic game component, and a non-strategic component [58].

The set of NE may be subdivided into pure-strategy (deterministic) NE and mixed-strategy

(probabilistic) NE. Mixed-strategy NE can be problematic for a number of reasons [59]. In

engineering applications involving potential games, mixed-strategy NE can be undesirable

since they are nondeterministic, have suboptimal expected utility, and do not always have

clear physical meaning [60]. Consequently, in applications, preference is generally given to

algorithms that are guaranteed to converge to a pure-strategy NE [60–63].

For FP learning dynamics, mixed-strategy NE are problematic at an even more fundamental

level (both in and out of potential games), since they can cause non-uniqueness of solutions

and make it impossible to establish convergence rate estimates [27].

It has been speculated that, for FP learning dynamics, the difficulties arising due to mixed

equilibria rarely occur in practice. For example, in [12] it is noted that “it is generally

believed that convergence of [FP] to a mixed (but not pure) Nash equilibrium happens rarely

when [players’] utilities are not equivalent to a zero-sum game”, and in [64] it is noted that

“for bimatrix games it seems this difficulty (finite-time convergence to mixed equilibria and

non-uniqueness of solutions) occurs only for a null set of initial conditions. But this needs

a proof!”. Despite such speculation, there are currently no rigorous results showing that

FP behaves in this manner (i.e., only reaching mixed equilibria from a null set of initial

conditions) in any particular class of games.

An important benefit of potential games is that they guarantee the existence of pure-strategy

NE. Nevertheless, it is well known that FP can converge to a mixed-strategy equilibrium in

such games. In fact, this deficiency was first noted in the paper where it was originally proven

that FP converges to NE in potential games (see [34], Remark (2)).

In this dissertation, we refine the convergence result for FP in potential games in an attempt

to redeem it somewhat in this regard and address the fundamental issues noted above. In

particular, we study the continuous-time FP dynamics (1.2) and show that in almost all

potential games and for almost all initial conditions, (continuous-time) FP converges to a

pure-strategy equilibrium.4

We note that as byproducts of this result we get that (i) in almost all potential games, FP

may only reach mixed equilibria from some null set of initial conditions, (ii) in almost all

potential games and for almost all initial conditions, solutions of FP are unique, and (iii) in

4When we say that continuous-time FP converges to some set, we mean that solutions of (1.2) converge to the
set.
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almost all potential games and for almost all initial conditions, the rate of convergence of FP

can be characterized (see next bullet point).

We will study convergence properties of FP in potential games in Chapter 10.

� Rate of convergence of MBR algorithms in potential games: Convergence rate es-

timates for MBR algorithms, e.g., FP, are relatively scarce [27]. In particular, there is no

characterization of the rate of convergence of FP in potential games.

In this dissertation we show that in almost all potential games and for almost all initial

conditions, the rate of convergence of (continuous-time) FP is exponential. That is, given

some fixed game, for almost every initial condition q0 there exists a constant c (dependent only

on the game and initial condition) such that if (q(t))t≥0 is a (continuous-time) FP process

satisfying q(0) = q0, then d(q(t), NE) ≤ ce−t for all t ≥ 0, where NE denotes the set of Nash

equilibria of the game.

We also study the rate of convergence of the empirical centroid FP (ECFP) dynamics (pre-

sented in Chapter 3). We will show that if a continuous-time ECFP path converges to a

completely mixed strategy equilibrium, then it converges in finite time.

The rate of convergence of MBR algorithms in potential games is studied in Chapter 10.

� Non-degenerate potential games In order to study the properties of FP in potential

games, we define a class of non-degenerate potential games. We say a potential game is

non-degenerate if the derivatives of the potential function satisfy certain non-degeneracy

conditions at every equilibrium point. In any potential game satisfying these conditions, FP

can be shown to be “well behaved” in the sense that FP converges generically to pure NE

(see second bullet point above) and the rate of convergence of FP can be characterized (see

third bullet point above). In this dissertation we show that almost all potential games are

non-degenerate, and hence FP is “well behaved” in almost all potential games.

While our non-degeneracy conditions are tailored to studying learning dynamics in games,

they are also of broader general interest. In particular, an equilibrium of a potential game can

be shown to be non-degenerate in the sense introduced in this dissertation if and only if it is

both quasi-strong and regular, as introduced by Harsanyi [65]. These important equilibrium

refinement concepts have received much study over the years [66] and equilibria satisfying

these notions have been shown to possess a variety of desirable stability properties, including

robustness to payoff perturbations and robustness to strategy perturbations [67]. It is known

that in almost all games, all equilibria are both quasi-strong and regular [65]. However, many

games of interest (including potential games) belong to measure zero subsets within the space
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of all games [68]. Finer results are required in order to conclude anything about the relative

frequency with which regular and quasi-strong equilibria occur within such classes of games.

Except for the class of bi-matrix games [69,70], little is known about the genericness of quasi-

strong and regular equilibria in any special classes of games. In this dissertation, we show

that in almost all potential games, all equilibria are both quasi-strong and regular.

We will study non-degenerate potential games in Chapter 9.

We note that while the study of these fundamental properties is of independent interest, it is also

intimately linked with our second research focus regarding implementablity in large-scale games

(see Section 1.3.2 below). The robustness result permits us to develop methods to mitigate a variety

of problems encountered in large-scale implementation, including high computational complexity,

demanding communication requirements, and global synchronization. The convergence result for

continuous-time FP, showing “almost everywhere” convergence to pure-strategy NE in potential

games, allows us to better understand the mean-field dynamics associated with FP in an important

class of multi-agent games that is frequently utilized in large-scale applications (see Section 2.1.1).

The question of characterizing the convergence rate of learning algorithms is essential to un-

derstanding the practicality of such algorithms in large-scale settings. It has been shown that in

many games of interest, including potential games, the number of rounds required for an algorithm

to reach a NE strategy can grow exponentially as the number of players increases [71].

Understanding the rate of convergence of a learning algorithm aids practitioners in choosing

learning dynamics that converge in a reasonable amount of time in a large-scale game of interest.

Furthermore, characterizing convergence rates is an important theoretical step that is necessary in

order to successfully apply such algorithms in time-varying environments. Our work provides basic

convergence rate estimates for FP and ECFP and develops tools that can aid in developing more

precise estimates in particular games.

1.3.2 Implementation in Large-Scale Games

Myopic best-response dynamics (1.6)–(1.7) can be difficult to implement in large games due to the

following issues:

� High computational complexity: In each round of a MBR algorithm, each player must

choose a best response action. In general, the complexity of computing the best-response

set grows as O(eN ), where N is the number of players. (See Section 2.6 for more details.)

Methods for mitigating computational complexity in MBR algorithms are studied in Chapter

5.
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� High information overhead: In a MBR algorithm players must track the observation state

z(n). In games with many players, this can be a large amount of information. For example,

in FP, the observation state is given by q(n) = (q1(n), . . . , qN (n)), the size of which grows

linearly in the number of players. Methods for mitigating information overhead in MBR

algorithms are studied in Chapter 3.

� Demanding communication requirements: After each round n ∈ {1, 2, . . .} of the re-

peated learning process, the updated observation state z(n) must be communicated to every

player. Since the observation state z(n) depends on the action ai(n) of every player i ∈ N ,

this requires that information regarding the action of each player be communicated to every

other player between each iteration of the repeated play process. Methods for mitigating

demanding communication requirements in MBR algorithms are studied in Chapters 7–8.

� Global synchronization: Execution of a MBR process requires a form of global synchro-

nization in the sense that, before any player can take a stage-(n + 1) action, every player

is assumed to first take their stage-n action. An asynchronous form of the MBR dynamics

(1.6)–(1.7) is studied in Chapter 6.

� Convergence to pure-strategy equilibria: As noted in Section 1.3.1 above (see second

bullet point), in some applications it can be preferable for a learning process to converge to

pure-strategy equilibria rather than mixed-strategy equilibria. Methods for mitigating this

issue are studied in Chapters 8 and 10.

The second research focus of this dissertation concerns the development of techniques to mit-

igate these issues. We place a particular emphasis on developing algorithms that are practical to

implement in a network-based setting.

Consider the traffic routing example discussed in Section 1.1 in which a group of vehicles

connected via a sparse communication graph wishes to compute an equilibrium routing strategy.

A network-based repeated play learning algorithm in this setting proceeds roughly as follows.

Each vehicle makes a route choice and transmits some information regarding their route choice to

neighboring vehicles. (The route choice of any individual vehicle is directly visible only to that

vehicle.) Based on the information received from neighboring vehicles, players may revise their

route choice and again transmit information to neighboring vehicles.

In general, we say a learning algorithm is network-based if

Assumption 1.1. Players are endowed with a preassigned communication graph G = (V,E), where

the vertices V represent the players, and the edge set E consists of communication links between

pairs of players that can communicate directly. The graph G is connected.
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Assumption 1.2. Players directly observe only their own actions.

Assumption 1.3. A player may exchange information with immediate neighbors, as defined by G,

at most once for each iteration or round of the repeated play.

In this dissertation we develop methods for mitigating each of the problems listed above in a

manner that is practical in network-based settings.

We note that an important difference between the network-based setting and traditional learning

settings is the lack of payoff information. In many traditional learning frameworks, it is assumed

that players physically engage a game, and at the end of each round of game play, players may

observe the payoff received. In this setting, one may mitigate the problems of information overhead

and inter-agent communication requirements (see above) by designing algorithms that rely on the

information implicitly transmitted by physical interaction in the game.

In the network-based setting, players engage in a form of virtual game play in which no payoff

measurements are available. In this setting, information cannot be transmitted by the physical in-

teraction in the game—all information dissemination must be carried out directly by the algorithm.

The challenge in this setting is to design algorithms which handle information dissemination in an

efficient and practical manner.

1.3.3 Dissertation Outline

We now state the main contributions of the dissertation, outlining the contributions by chapter.

Further details as well as literature review can be found in the introduction of each chapter.

Chapters 3 and 5–8 study practical methods for implementation of MBR dynamics in large

games. Each of these chapters focuses on one particular issue as outlined in Section 1.3.2. Chap-

ters 4 and 9–10 deal with fundamental properties of MBR dynamics.

Chapter 2: Setup and Notation

In this chapter we review relevant concepts in game theory, set up the notation to be used in

the rest of the dissertation, and rigorously introduce myopic best response dynamics.

Chapter 3: Empirical Centroid Fictitious Play

In this chapter we study a variant of FP, referred to as empirical centroid FP, in which players

are grouped into equivalence classes. This variant of FP mitigates the problems of high information

overhead and high computational complexity noted in Section 1.3.2. Furthermore, ECFP is shown
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to converge quickly in the sense that the associated mean-field system converges to (completely)

mixed equilibria in finite time. In addition, simulation results suggest that the rate of convergence

depends on the number of equivalence classes but is invariant to the number of players.

In classical FP, players monitor collective behavior by tracking the empirical distribution of each

individual player. In ECFP, players monitor collective behavior by tracking the centroid empirical

distribution associated with each class. In classical FP, the amount of information that must be

tracked depends linearly on the number of players. In ECFP, the amount of information that

must be tracked depends linearly on the number of equivalence classes but is independent of the

number of players. Two different learning processes may be studied in ECFP, depending on the

definition of the observation space. We show that the tuple of empirical centroids associated with

ECFP converges to the set of symmetric NE strategies, and we show that the tuple of individual

empirical distributions associated with ECFP converges to an equilibrium set denoted as the set of

mean-centric equilibria.

Similar to the continuous-time FP dynamics (1.2), ECFP admits an associated mean-field sys-

tem, which we refer to as continuous-time ECFP. Analogous to the convergence result for discrete-

time ECFP, it is shown that in continuous-time ECFP, the tuple of empirical centroids converges

to the set of symmetric NE, and the tuple of empirical distributions converges to the set of mean-

centric equilibria.

The rate of convergence of continuous-time ECFP is characterized. It is shown that if ECFP

converges to a completely mixed equilibrium (i.e., an equilibrium lying in the interior of the strategy

space), then convergence occurs in finite time. In ECFP, convergence to mixed strategy equilibria

is typical. It is conjectured that a similar finite-time convergence result may be shown when ECFP

converges converging to any mixed equilibrium (not necessarily completely mixed).

Chapter 4: Robustness in Myopic Best-Response Algorithms

The practicality of MBR algorithms depends on their robustness to perturbations that may

be encountered in real-world applications. In particular, suppose that the myopic best response

is perturbed so that players may sometimes choose suboptimal actions, but that the degree of

suboptimality decays to zero over time. (In the spirit of [72], we sometimes call a MBR process

that is perturbed in this manner a weakened MBR process.) We show that the fundamental learning

property of a MBR algorithm is retained in the presence of such a perturbation. In the case of

classical FP, this means that convergence to NE is preserved. More generally, if a MBR algorithm

converges to some equilibrium set in the absence of perturbations, then our result can be applied

to study convergence to the same equilibrium set in the presence of perturbations. At the core
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of this result is a technical lemma (see Lemma 4.16) which shows that a sequence of (unwieldy)

ε-best responses (see (2.2)) may be equivalently viewed as a sequence of more amenable, so-called

δ-perturbations (see Definition 4.4). Sequences of δ-perturbations are naturally handled within a

stochastic approximation framework using techniques such as those developed in [28].

Robustness results of this kind were first studied in [29] for the case of classical FP. The chapter

extends the approach of [29] to demonstrate robustness of general MBR algorithms. The main

result of this chapter is Theorem 4.15, which shows that any weakened MBR process will converge

to the internally chain recurrent set of the associated mean-field differential inclusion. This result

enables a wide range of applications. Some applications, including a sampling-based technique for

mitigating complexity in MBR dynamics, an asynchronous form of MBR dynamics, and network-

based implementations of MBR dynamics, are considered in the subsequent chapters.

Chapter 5: Mitigating Computational Complexity: A Single Sample Approach

In this chapter we study a sampling-based method for mitigating the computational complexity

of FP using stochastic approximation techniques. This method reduces the per-iteration complexity

of executing a MBR algorithm from O(eN ) to O(N).

More precisely, the computationally expensive aspect of computing the best-response set is

the evaluation of the expected utility function. Previous research [48, 49] has studied methods for

approximating the expected utility function using a Monte Carlo approach. Each iteration of the

repeated-play process, players draw samples from an underlying probability distribution and use

the average as an estimate of the expected utility. As long as the number of samples drawn in

round n goes to infinity as n→∞, then convergence to the equilibrium set is ensured.

In this chapter we consider an alternative sampling-based method in which players are only

required to draw one sample each round of the learning process. Players approximate the expected

utility by averaging the utility of the samples over time using a stochastic approximation rule.

We refer to a MBR algorithm implemented using this method as a single sample MBR (SS-MBR)

algorithm. Using the robustness result of Chapter 4, it is shown that a SS-MBR algorithm converges

to the internally chain recurrent set of the associated mean-field system. By studying the mean-field

system of a particular MBR algorithm one can show that this implies convergence to a particular

equilibrium set. For example, in classical FP this implies convergence to the set of NE, and in

ECFP this implies convergence of the centroid process to the set of symmetric NE.

Chapter 6: Asynchronous Learning

In this chapter we study asynchronous MBR learning processes and show that the assumption
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of global synchronization can be relaxed in a way that allows a variety of practical asynchronous

implementations. We model asynchronous learning in a discrete-time learning process by supposing

that agents may be active in some rounds and idle in others. Let Ni(n) denote the number of

rounds that agent i ∈ N has been active in rounds up to and including round n. We show that an

asynchronous MBR learning process converges to the internally chain recurrent set of the associated

mean-field system under the relatively mild assumption that limn→∞
Ni(n)
Nj(n) = 1 for all i, j ∈ N . In

classical FP this implies convergence to the set of NE and in ECFP this implies convergence to the

set of symmetric Nash equilibria or to the set of mean-centric equilibria, depending on the defined

observation space.

In order to model practical real-world learning processes, we consider continuous-time imple-

mentations of the asynchronous MBR dynamics described above. We refer to such a process as

a continuous-time embedded MBR process. Each player is assumed to take a discrete sequence

of actions. For i ∈ N , we let τi(n) ∈ [0,∞) denote the time instance at which player i takes an

action for the n-th time, and let Ni(t) denote the number of actions that a player has taken up to

and including time t ∈ [0,∞). Using the convergence result for (discrete-time) asynchronous MBR

processes, it is shown that any such learning process will converge to the internally chain recurrent

set of the associated mean-field system as long as the rule governing the timing of players actions

satisfies limt→∞
Ni(t)
Nj(t)

= 1.

We give two prototypical examples of action timing rules satisfying the above assumption. The

first is entirely stochastic—players choose the timing of their actions according to a homogenous

Poisson process. The second is a deterministic rule in which players adaptively adjust the timing

of their actions based on high-level information about the overall action timing process.

As a second application of the asynchronous MBR learning model, we study the problem of, so

called, “weak convergence” in a MBR algorithm. In particular, due to the lack of lower hemiconti-

nuity in the best-response mapping, it is possible for a MBR learning process to converge to some

equilibrium set, but players’ period-by-period strategies never approach an equilibrium themselves.

For example, Section 6.5.1 discusses an example in classical FP in which the empirical distribution

converges to the unique mixed-strategy NE of a game, but in each round of the learning process,

the players receive the lowest possible payoffs.

We say an algorithm converges strongly to equilibrium if players’ period-by-period strategies

converge to the equilibrium. We present a method for constructing a strongly-convergent MBR

algorithm given a weakly-convergent MBR algorithm. We prove the algorithm converges strongly to

the internally chain recurrent set of the associated mean-field system by showing that the (strong)

learning process contains an embedded asynchronous MBR process. The result then follows as a
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consequence of our main convergence result for asynchronous MBR processes.

Chapter 7: Network-Based Implementation

In this chapter we study the implementation of MBR algorithms in a network-based setting sat-

isfying Assumptions 1.1–1.3. We give a general template for a network-based MBR algorithm and,

using the robustness result of Chapter 4, we show that a network-based MBR algorithm converges

to the internally chain recurrent set of the associated mean-field system so long as the information

dissemination scheme satisfies a mild asymptotic accuracy condition (see Condition 7.1). We then

study two particular network-based MBR algorithms: A network-based implementation of ECFP,

introduced in Chapter 3, and a network-based implementation of single sample FP (SS-FP), in-

troduced in Chapter 5. We prove that the network-based ECFP algorithm converges to the set of

symmetric NE, and we prove that the network-based implementation of SS-FP converges to the set

of NE.

Chapter 8: Inertial MBR Algorithms: Incomplete Information and Network-Based

Implementation

In this chapter we consider the problem of learning pure-strategy NE in a network-based setting

satisfying Assumptions 1.1–1.3. Furthermore, we suppose that players have incomplete information

in the sense that they have some uncertainty about the precise structure of their utility function.

It is assumed that the probability measure modeling players beliefs regarding their utility function

converges weakly to some limit. In order to learn pure-strategy equilibria in this setting, we

consider a class of algorithms we denote as inertial MBR dynamics—such algorithms consist of a

best-response component (similar to classical FP) and an additional “inertial term” which ensures

that players occasionally repeat actions in consecutive stages. The use of such an inertial term

is a common technique that has been used to ensure convergence of MBR processes to pure-

strategy NE in more classical settings [73, 74]. We first prove a general convergence result that

applies to any inertial MBR algorithm. The general convergence result applies to a broad class

of learning dynamics and applies to a wide variety of information dissemination schemes (not just

the synchronous graph-based information dissemination schemes that we focus on in the later part

of the chapter). Subsequently, as applications of the general result, we study the network-based

implementation (under uncertainty) of two important inertial MBR algorithms: network-based

FP with inertia (referred to as N-FP), and network-based joint strategy FP (JSFP) with inertia

(referred to as N-JSFP).

It should be noted that in Chapter 10 we will address the closely related problem of studying
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continuous-time FP dynamics in potential games. We prove that in almost all potential games,

for almost all initial conditions, continuous-time FP converges to a pure-strategy equilibrium (see

Theorem 10.1). This result, while powerful, does not obviate the results of this chapter. In this

chapter we study convergence to pure-strategy equilibria in a broader class of games and a broader

class of dynamics than considered in Theorem 10.1. In particular, we study the general class of

myopic best response dynamics (a set of dynamics containing FP as a special case), and we prove

convergence of such dynamics to a pure-strategy NE in the class of weakly-acyclic games (a class

of games strictly larger than potential games).

Chapter 9: Non-Degenerate Potential Games

In this chapter we introduce a class of non-degenerate potential games in which the FP dy-

namics will be shown (in Chapter 10) to be “well behaved”. A potential game is said to be

non-degenerate if the gradient and Hessian of the potential function satisfy certain non-degeneracy

conditions at every equilibrium point. These conditions ensure that best-response dynamics are

well-behaved in the neighborhood of equilibrium points, and simplify the analysis of learning dy-

namics in (non-degenerate) potential games. While these notions of non-degeneracy are tailored to

learning dynamics in potential games, it is shown that they are closely related to other well-known

notions of non-degeneracy in general N -player games. A potential game is non-degenerate if and

only if it is quasi-strong and regular [65,67]. The main contribution of the chapter is to show that

almost all potential games are non-degenerate. As an interesting consequence of our work in this

chapter, we also obtain a useful characterization of the set of NE in potential games; namely, in

almost all potential games, the number of NE strategies is finite and odd.

Chapter 10: Myopic Best-Response Dynamics in Potential Games

In this chapter we study fundamental properties of MBR dynamics in potential games. We study

continuous-time dynamics throughout the chapter (when we refer to a particular MBR algorithm,

we mean the continuous-time dynamics associated with the algorithm). First, we prove that in

almost all potential games and for almost all initial conditions, FP converges to a pure-strategy

NE. In particular, we prove that, in a non-degenerate potential game (see Chapter 9), mixed-

strategy NE can only be reached from a null set of initial conditions. Since FP converges to the set

of NE in potential games [28], this is equivalent to the desired result.

We then consider the problem of characterizing the rate of convergence of FP in potential games.

In [27] Section 8, it was shown that mixed-strategy equilibria can pose a fundamental barrier to

establishing convergence rate estimates for FP in potential games. If a FP path touches a mixed-
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strategy equilibrium, then it can rest there for an indeterminate amount of time before moving

elsewhere. We sidestep this difficulty by showing that, within the class of non-degenerate potential

games, for almost every initial condition, the associated FP path will never touch a mixed-strategy

equilibrium. In [27] it was conjectured that the rate of convergence of FP is pathwise exponential

( [27], Conjecture 25). We show that this conjecture holds in almost all potential games and for

almost all initial conditions.

Finally, we use the tools developed earlier in the chapter to prove that if ECFP converges to a

completely mixed equilibrium in a potential game, then it converges in finite time.

Chapter 11: Conclusions

In this chapter we recapitulate the main contributions of the thesis and discuss future research

directions.

1.4 Related Work

In this section we give a brief overview of related work. Further discussion can be found in the

introduction of each chapter. We divide our discussion into two sections corresponding to each of

our main research areas.

Implementation of MBR Dynamics in Large-Scale Games

A general review of the field of learning in games can be found in [20,74].

Various modifications of FP have been studied in order to mitigate the issues discussed in

Section 1.3.2. The problem of mitigating complexity in FP using sampling-based techniques was

first introduced in [48]. In Chapter 5 (see also [75]) we extend the techniques introduced in [48]

to general MBR algorithms and improve on them by further reducing complexity using stochastic

approximation techniques. In particular, the sampled FP algorithm developed in [48] has a per-

iteration complexity that increases without bound as the algorithm progresses. The single-sample

MBR algorithms studied in Chapter 5 have a constant complexity over time.

Complexity in FP may also be mitigated by using the reinforcement technique introduced [76].

In κ-exponential FP, players use any given action with a probability that depends on the average

utility the action has generated when played in previous rounds. Alternatively, one may also miti-

gate complexity using a payoff-based variant of FP such as the actor-critic process studied in [29].

In comparison to these, the single sample approach to mitigating complexity applies more broadly

to the general class of MBR dynamics and admits a straightforward network-based implementation
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(see Chapter 7).

A variant of FP known as joint strategy FP (JSFP) that mitigates the issues of computational

complexity and information overhead was studied in [73]. In JSFP, players respond to the joint

empirical distribution of play. Somewhat counterintuitively, this results in an algorithm with rel-

atively low computational complexity, since agents can track the expected utility using a simple

recursion and whatever aggregate statistics are necessary to compute the utility that each of their

actions would have generated in a given round. Convergence to NE of the JSFP dynamics has not

been shown. However, a form of JSFP in which the players occasionally repeat actions with some

small probability has been shown to converge to the set of pure-strategy NE in ordinal potential

games.

In [73] it is assumed that players are informed by an oracle of all information needed to compute

the expected utility in each round. In Chapter 8 (see also [77]) we study a network-based imple-

mentation of JSFP in which all pertinent information is disseminated over a communication graph.

The network-based implementation of JSFP studied in Chapter 8 is shown to converge to pure NE

within the class of congestion games—a subset of potential games. The restriction to congestion

games is a consequence of the manner in which information is gathered and disseminated.

The problem of computing NE in a network-based setting is a relatively new and active area of

research. Stated chronologically by year, the work [78] studies a network-based variant of FP for

computing NE, [79] studies a gossip-based algorithm for computing NE in aggregative games, [80]

studies an algorithm for finding NE in a spatial spectrum access games, [81] studies a network-

based algorithm for NE seeking in a two-network zero-sum games, [63] presents a method for

designing games with a local a prescribed local dependence, [82] studies a network-based regret-

based reinforcement learning algorithm for tracking the polytope of correlated equilibria in time-

varying games, and [83] studies a gossip-based algorithm for computing NE in a network-based

setting in games with continuous-action spaces. Our results differ from those above primarily in

that, rather than focus on a particular learning algorithm and information dissemination scheme, we

study the general class of MBR algorithms and show that, so long as the information dissemination

scheme satisfies Condition 7.1, then any such algorithm will converge to the associated internally

chain recurrent set. The underlying MBR dynamics can then be chosen to meet the system designers

needs. (See Chapters 7–8 for more details.)

Traditionally, game-theoretic learning is couched in the framework of repeated play, which

implicitly assumes agents act in synchrony [20]. The most popular asynchronous algorithm is log-

linear learning, in which players are given the opportunity to revise their strategies at random

times according to a Poisson process [84, 85]. The work [63] studies an asynchronous learning
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algorithm for potential games with continuous action spaces. The work [86] studies a class of payoff-

based asynchronous dynamics. In Chapter 6 we show that MBR dynamics can be implemented

in an asynchronous manner so long as the asymptotic rate of play of each player satisfies a mild

condition. In general, asynchronous learning schemes would usually be analysed using asynchronous

stochastic approximation (e.g. [87]) we show in Chapter 6 that asynchronicity can be handled in a

more straightforward manner by simply using the robustness result of Chapter 4.

A popular approach used to mitigate communication issues in classical settings is the use of a

payoff-based approach [29,61,84,88,89]. As discussed in Section 1.3.2, such algorithms use physical

interaction in the game as a means of implicitly transmitting information. In a network-based

setting, players do not have access to payoff measurements, and information dissemination must be

handled explicitly by some information dissemination scheme.

We emphasize that, although FP in its classical form can be impractical to implement in large

games, FP has been shown to possess a variety useful properties. For example, while it is known

that no (uncoupled) learning algorithm can converge in all games [39], it has been shown that FP

can have good payoff performance, even in the absence of convergence [40]. As another example,

the paper [41] studies approximation guarantees unique to FP. The FP algorithm has been shown to

be useful in solving general extensive form games [42,43]; in particular, it has been used to compute

approximately-optimal strategies in poker [43–46] as well as large-state-space word games [47]. The

work [48] showed that FP can be useful as an optimization heuristic in large-scale games. Variants of

FP have been studied in a wide range of applications including traffic routing [48, 49], distributed

constraint optimization problems [50], control of robotic teams [12, 51], dynamic programming

[52,53], cognitive radio [54–56], and learning in Markov decision processes [57].

Fundamental Properties of MBR Dynamics

The general motivation for studying game-theoretic learning processes may be broadly subdivided

into two categories: a prescriptive research agenda, and a descriptive research agenda [90]. The

prescriptive agenda seeks to prescribe behavior rules to agents in a multi-agent system in order to

achieve some desirable global outcome (e.g., as in distributed control). In particular, the prescriptive

agenda is not concerned with describing the behavior of agents that may be acting in real world

economic settings. On the other hand, the descriptive agenda is concerned with studying how

“natural agents learn in the context of other learners” [90].

With our first research focus (implementation in large games), we are largely motivated by a pre-

scriptive agenda. However, our second research focus (fundamental properties of MBR dynamics)

may be seen as being motivated by both a descriptive and prescriptive agenda.
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The second research focus is motivated by a prescriptive agenda in the sense that, in many parts

of the dissertation, we employ the fundamental results developed as part of this research focus as a

theoretical underpinning in order to construct algorithms that are practical for implementation in

large-scale games. The second research focus can be seen as being motivated by a descriptive agenda

for two reasons. First, the discrete-time MBR dynamics (1.6)–(1.7) may be seen as a fairly natural

set of learning dynamics. Each round of play, agents predict how others will act and choose their

next-stage action as a myopic best response given their prediction. Indeed, the prototypical learning

dynamics in this class are the FP dynamics, which in continuous time (1.2), may be considered

to be the natural learning dynamics associated with the NE concept. Second, we note that the

robustness result that we study for MBR dynamics considers learning processes where agents with

bounded rationality may occasionally make mistakes in the best-response computation, as might

occur with natural learners.

Robustness results of the kind studied in Chapter 4 were first studied in [29] for the case of

classical FP. Chapter 4 extends the approach of [29] to demonstrate robustness of general MBR

algorithms. In addition to enhancing the applicability of MBR dynamics to real-world control

problems, the results of this chapter have required the development of useful new technical tools.

For example, Lemma 4.16 studies ε-best-response sequences and demonstrates that such sequences

may in fact be considered in terms of a more amenable sequence of so called δ-perturbations (see

Section 4.2).

The convergence result for FP in potential games (see Theorem 10.1) is relatively novel. Continuous-

time best-response dynamics similar to those we consider here have been studied in various works,

including [27, 28, 64, 91]. These papers study a variety of convergence properties for FP and repli-

cator dynamics in a wide class of games, but do not consider the question of generic convergence

to pure-strategy equilibria. A related result for two player games has been shown in [92], where it

was demonstrated that “continuous-time FP almost never converges cyclically to a mixed-strategy

equilibrium in which both players use more than two pure-strategies.”

The rate of convergence of FP is studied in [27]. While convergence rate estimates are given for

zero-sum games, it is shown that it is not possible to establish a general convergence rate estimate

for FP in potential games. If a FP path intersects a mixed-strategy equilibrium, it may rest there

for an indeterminate amount of time before moving elsewhere. We work around this problem by

showing that in almost all potential games, a FP path never intersects a mixed-strategy equilibrium.
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Chapter 2

Setup and Notation

2.1 Games in Normal Form

A game (in normal form) consists of three components: A set of players N = {1, . . . , N}, a set of

actions Yi corresponding to each player i ∈ N , and a set of utility functions ui : Y1×· · ·×YN → R,

i ∈ N , representing the preferences of each player.

We denote an instance of a game as Γ := {N , (Yi, ui)i∈N }. We assume that the action space Yi

is finite for each player and let Y := Y1 × · · · × YN denote the joint action space.

In order to ensure the existence of equilibrium strategies in the game it is necessary to consider

an extension of the game in which players are permitted to use probabilistic strategies. For a finite

set X, let 4(X) denote the set of probability distributions over X. Let ∆i := 4(Yi) denote the

set of mixed strategies available to player i, let 4(Y−i) be the set of mixed strategies (possibly

correlated) available to all players other than i, and let ∆ := 4(Y ) denote the set of joint mixed

strategies (possibly correlated) available to all players.1

In large-scale distributed settings it is often convenient to study mixed strategies where players

act independently. Let ∆N :=
∏
i∈N ∆i denote the set of independent joint strategies. A strategy

σ = (σ1, . . . , σN ) ∈ ∆N , where σi denotes the marginal strategy of player i, may be represented in

the space ∆ as the product σ1× · · · × σN ∈ ∆. In this context we define ∆−i :=
∏
j 6=i ∆j to be the

set of (independent) mixed strategies of players other than i, when the meaning is clear from the

context. When convenient, we represent a mixed strategy σ ∈ ∆N by σ = (σi, σ−i), where σi ∈ ∆i

denotes the marginal strategy of player i and σ−i = (σ1, . . . , σi−1, σi+1, . . . , σN ) ∈ ∆−i =
∏
j 6=i ∆j

denotes the strategies of players other than i.

1In order to simplify the notation in the introduction, we used qi to denote a generic element of ∆i. However, for
the remainder of the dissertation we will prefer to use σi to denote a generic element of ∆i, reserving q to denote the
empirical distribution in an FP process (see Section 2.5).
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In the context of mixed strategies, we often wish to retain the notion of playing a single deter-

ministic action. For this purpose, for i ∈ N , let 1yi denote the mixed strategy placing probability

one on the action yi ∈ Yi and let

Ai := {σi ∈ ∆i : σi = 1yi for some yi ∈ Yi}.

The set Ai contains the vertices of ∆i and lies in one-to-one correspondence with the set of pure

strategies Yi.

For x ∈ ∆, the expected utility of player i is given by2

Ui(x) :=
∑
y∈Y

ui(y)x(y1, . . . , yn). (2.1)

Given a strategy x−i ∈ 4(Y−i), the best-response for player i is given by the set-valued function

BRi : 4(Y−i)→ ∆i,

BRi(x−i) := arg max
xi∈∆i

Ui(xi, x−i).

More generally, for ε > 0 the ε-best-response set is given by BRi,ε : 4(Y−i)→ ∆i

BRi,ε(x−i) := {x̃i ∈ ∆i : Ui(x̃i, x−i) ≥ max
xi∈∆i

Ui(xi, x−i)− ε}. (2.2)

The joint best response is given by BR : ∆→ ∆

BR(x) := BR1(x−1)× · · · × BRN (x−N ).

To keep notation simple, we sometimes employ the following abuses. The notation yi ∈
BRi,ε(x−i) means that 1yi ∈ BRi,ε(x−i). Similarly, for yi ∈ Yi the notation Ui(yi, x−i) refers to the

expected utility Ui(1yi , x−i), and for y ∈ Y , Ui(y) refers to the pure strategy utility Ui(1y) = ui(y).

We will often need to work directly with strategies σ ∈ ∆N . To keep notation simple we overload

the notation for U and BR as follows. For σ ∈ ∆N , we let the expected utility of player i be given

by

Ui(σ) :=
∑
y∈Y

ui(y)σ1(y1) · · ·σN (yN ).

2We note that, in the introduction, we defined the utility function to be a map from ∆N to R. Here, we define
the utility function in a more general manner that permits correlated strategies. A similar comment holds for the
best response set, defined below.
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For σ−i ∈ ∆−i we let BRi(σ−i) := BRi(σ1 × · · · × σi−1 × σi+1 · · · × σN ). Similarly, for σ ∈ ∆N we

let BR(σ) := (BR1(σ−1), . . . ,BRN (σ−N )).

A strategy σ ∈ ∆N is said to be a Nash equilibrium if σi ∈ BRi(σ−i), ∀i ∈ N , or equivalently,

σ ∈ BR(σ). (2.3)

At a Nash equilibrium strategy, no player can improve their utility by unilaterally deviating from

the given strategy. The set of Nash equilibria is given by

NE := {σ ∈ ∆N : σ ∈ BR(σ)}. (2.4)

2.1.1 Potential Games

In a potential game, there exists an underlying potential function which all players implicitly seek to

maximize. Such games are fundamentally cooperative in nature (all players benefit by maximizing

the potential), and have many important applications in engineering and economics [38,93]. Along

with so called harmonic games (which are fundamentally adversarial in nature), potential games

may be seen as one of the basic building blocks of general N -player games [58].

Formally, a game Γ is said to be a potential game3 if there exists a function u : Y → R such

that for every i ∈ N

ui(y
′
i, y−i)− ui(y′′i , y−i) = u(y′i, y−i)− u(y′′i , y−i), ∀y−i ∈ Y−i, ∀y′i, y′′i ∈ Yi.

Potential games have a wide range of applications in the field of multi-agent systems, including

control of power systems [8]; cognitive radio and opportunistic spectrum access [5]; cover opti-

mization and collaborative sensing in mobile sensor networks [13, 15]; power allocation, channel

allocation, scheduling, and topology in control in wireless adhoc networks [3, 4, 94, 95]; large-scale

optimization [48]; and traffic optimization [48, 49], to name a few. More generally, [93] explores

connections between cooperative control and potential games. The paper [63] studies methods

for designing a potential game so that the Nash equilibria of the designed game optimize a given

objective function.

3More precisely, this notion of a potential game is sometimes referred to as an exact potential game [38]. Other
notions of potential games including weighted potential games and ordinal potential games can be found in [38].
Unless otherwise stated, in this dissertation the term potential game refers to an exact potential game in the sense
of [38].
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2.1.2 Best-Response Equivalence in Potential Games

Let Γ be a potential game, with potential function u. Let U denote the mixed extension of u. Using

the definitions of Ui and U it is straightforward to verify that

BRi(σ−i) := arg max
σ′i∈∆i

Ui(σi, σ−i) = arg max
σ′i∈∆i

U(σi, σ−i).

Thus, in order to compute the best-response set we only require knowledge of the potential function

U , not necessarily the individual utility functions (Ui)i=1,...,N . When studying best-response-based

learning processes in potential games, this means that the learning dynamics are completely deter-

mined if the potential function is specified, even if the individual player’s utility functions are not

precisely known or specified.

2.2 Other Notation

Other notation as used throughout the dissertation is as follows.

� |S| denotes the number of elements in a finite set S

� Ki := |Yi|

� K := |Y |

� N := {1, 2, . . .}

� Sc denotes the complement of a set S

� S̊ denotes the interior of a set S

� clS denotes the closure of a set S

� ∂S denotes the boundary of a set S

� The distance between a point x ∈ Rm and a set S ⊂ Rm is given by d(x, S) := inf{‖x− x′‖ :

x′ ∈ S}

� The support of a function f : Ω→ R is given by spt(f) := {x ∈ Ω : f(x) 6= 0}

� Given a function f , D(f) refers to the domain of f and R(f) to the range of f

� Lk, k ∈ {1, 2, . . .} refers to the k-dimensional Lebesgue measure
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� Hs, 0 ≤ s <∞ refers to the s-dimensional Hausdorff measure

� ‖ · ‖ denotes the standard Euclidean norm unless otherwise specified

� Given an open set Ω ⊂ Rn, and k ∈ N∪ {∞}, Ckc (Ω) denotes the set of k-times differentiable

functions with compact support in Ω

� The mapping sgn : Rn×m → Rn×m is given by

(sgn(A))i,j :=


1 if ai,j > 0

−1 if ai,j < 0

0 if ai,j = 0.

� Given two matrices A and B of the same dimension, A ◦B denotes the Hadamard product

(i.e., the entrywise product) of A and B.

� Suppose m,n, p ∈ N, Fi : Rm×Rn → R, for i = 1, . . . , p. Suppose further that F : Rm×Rn →
Rp is given by F (w, z) = (Fi(w, z))i=1,...,p. Then the operator Dw gives the Jacobian of F

with respect to the components of w = (wk)k=1,...,m; that is

DwF (w, z) =


∂F1(w,z)
∂w1

· · · ∂F1(w,z)
∂wm

...
. . .

...

∂Fp(w,z)
∂w1

· · · ∂Fp(w,z)
∂wm

 .

� Throughout, we assume the existence of probability spaces rich enough to carry out the con-

struction of the various random variables required. As a matter of convention, all equalities,

inequalities, and set inclusions involving random quantities are interpreted almost surely (a.s.)

with respect to the underlying probability measure, unless otherwise stated.

� The symbol σ is often used to denote an element of ∆N . We note, however, that when

discussing a random variable X in an appropriately defined probability space, we use the

notation σ(X) in the traditional probabilistic sense to denote the σ-algebra generated by X.
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2.3 Repeated Play Learning

Let a game Γ be fixed. In a repeated play learning process, players are assumed to repeatedly face

off in the game Γ in stages n ∈ N. Let yi(n) ∈ Yi denote the action taken by player i in stage n of

the repeated play. Alternatively, since there is a one-to-one correspondence between Yi and Ai, we

sometimes use ai(n) ∈ Ai to denote the action taken by player i in stage n of the repeated play. In

this case we have the relationship ai(n) = 1yi(n).

A repeated-play learning algorithm is a set of rules which prescribes how players should choose

their stage-(n+ 1) action based on the history of play though stage n. In this dissertation we will

focus on a set of behavior rules where each player choose their stage-(n+1) action as a myopic best

response given some prediction of opponent behavior based on the action history through stage n.

This class of learning processes is formally defined in the following section.

2.4 Myopic Best-Response Dynamics

Let players be engaged in repeated play of a game Γ = {N , (Yi, ui)i∈N } as defined in Section 2.3.

Let Z denote a compact subset of Rm for some m ∈ N, where the information that players keep

track of is assumed to live. We refer to Z as the observation space. Let

g : ∆(Y )→ Z

be a map from the joint mixed strategy space to the observation space. We assume

Assumption 2.1. The observation map g is uniformly continuous.

Let {z(n)}n≥1 be a sequence in Z that is defined recursively by letting z(1) ∈ Z be arbitrary

and for n ≥ 1

z(n+ 1) = z(n) + γ(n)
(
g (a(n+ 1))− z(n)

)
, (2.5)

where {γ(n)}n≥1 is a predefined sequence of weights satisfying

Assumption 2.2. limn→∞ γ(n) = 0,
∑

n≥1 γ(n) =∞.

We refer to z(n) as the observation state. In a myopic best-response (MBR) algorithm, each

player forms a prediction (or forecast) of the future behavior of opponents as a function of the

observation state z(n). In particular, for each player i, let fi : Z → ∆(Y−i) be a function mapping

from the observation state to a forecast of opponents strategies. We make the following assumption

Assumption 2.3. The forecast map fi is continuous for each i ∈ N .
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Given f := (f1, . . . , fN ), we define the best-response function BRf : Z → ∆(Y ) associated with

a MBR algorithm as

BRf (z) := BR1(f1(z))× · · · × BRN (fN (z)).

When players are engaged in repeated play, we say the sequence {z(n)}n≥1 is a MBR process

if each player’s stage-(n+ 1) strategy is chosen as a myopic best response given their prediction of

opponents strategies. That is, a sequence (z(n))n≥1 satisfying (2.5) is a MBR process if actions are

chosen according to the rule

ai(n+ 1) ∈ BRi(fi(z(n))), ∀i, ∀n, (2.6)

or equivalently in recursive form (see (2.5))

z(n+ 1)− z(n) ∈ γ(n)
(
g(BRf (z(n)))− z(n)

)
. (2.7)

We denote an instance of a MBR algorithm as Ψ = ({γ(n)}n≥1, g, (fi)
N
i=1).

2.5 Fictitious Play

The fictitious play (FP) algorithm, introduced in [26], is a prototypical myopic best-response algo-

rithm. Let

qi(n) :=
1

n

n∑
s=1

ai(s) (2.8)

denote the empirical distribution of player i; qi(n) ∈ ∆i is a normalized histogram of the action

choices of player i through time n. Let the empirical distribution be given by the tuple q(n) :=

(q1(n), . . . , qN (n)) ∈ ∆N .

In FP, players choose their next-stage action as a myopic best response to the empirical distri-

bution. In particular, we say the sequence (q(n))n≥1 is a FP process if

ai(n+ 1) ∈ BRi(q−i(n)), ∀i ∈ N . (2.9)

The FP algorithm defined by (2.8)–(2.9) may be intuitively understood as follows. Each player

naively assumes that all other players are playing according to some (unknown) time-invariant

mixed strategy, and that all other players strategies are independent of one another. Accordingly,

each player uses the empirical distribution q−i(n) as an estimate of the (mixed) strategy that will
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be used by opponents in round n+ 1, and chooses an action for stage n+ 1 in order to myopically

optimize their utility given this assumption.

Note that (2.8) may be expressed recursively as

qi(n+ 1) = qi(n) +
1

n+ 1

(
ai(n+ 1)− qi(n)

)
. (2.10)

As noted in Section 1.2, by considering the tuples a(n) = (a1(n), . . . , aN (n)), and q(n) = (q1(n), . . . , qN (n)),

and using the recursively relationship (2.10), the process (q(n))n≥1 defined by (2.8)–(2.9) may be

expressed recursively as

q(n+ 1)− q(n) ∈ 1

n+ 1
(BR(q(n))− q(n)) . (2.11)

Furthermore, (2.11) may be seen as a discretization of the continuous-time dynamical system

q̇ ∈ BR(q)− q. (2.12)

The dynamics (2.12) can be considered the “natural” learning dynamics associated with the

Nash equilibrium concept (2.3). By definition, the rest points of (2.12) coincide with the set of NE

(2.4). Historically, the dynamical system (2.12) is referred to as continuous-time FP [27–29].4

Since our primary focus through much of the dissertation will be on discrete-time learning

processes, unless otherwise stated, we refer to a sequence (q(n))n≥1 satisfying (2.11) as a FP

process and we will refer to appropriate solutions of (2.12) as continuous-time FP processes.5 More

precisely,

Definition 2.4. A an absolutely-continuous mapping q : R→ ∆N is said to be a continuous-time

fictitious play process with initial condition q0 if q(0) = q0 and (2.12) holds for almost all t ∈ R.

It can be shown that linear interpolation of a (discrete-time) FP process (2.11) yields a perturbed

solution of continuous-time FP (2.12) (see Section 4.2 and [28]). Using this relationship, the

work [28] presents methods that allow one to derive results about the asymptotic properties of

(2.11) by studying the continuous-time process (2.12)

This approach is not restricted to FP. In general, we will find that a useful approach for studying

asymptotic properties of discrete-time MBR processes is to consider the associated continuous-time

4We note that some authors refer to the non-autonomous system q̇ ∈ 1
t
(BR(q) − q) as continuous-time FP [27].

Since solutions of these systems are equivalent after a time change [27, 64], we find it convenient to focus on the
autonomous system (2.12).

5As an exception, in Chapter 10 we will focus exclusively on continuous-time dynamics and we will find it convenient
to refer to (2.12) simply as FP rather than continuous-time FP throughout the chapter.
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“mean-field” system. In Chapter 4 we will use the tools developed in [28] to study properties of

general (discrete-time) MBR dynamics (2.7) via the associated mean-field system.

The FP process (2.11) may be seem as a special case of myopic best-response dynamics (2.7)

where the observation space is given by ∆N , the observation state is given by q(n), and the functions

(fi)i∈N and g are given by the identity.

2.5.1 Convergence Results for FP

We say that a FP process converges to the set of NE (or briefly, converges), if

lim
n→∞

d(q(n), NE) = 0. (2.13)

This notion of learning is sometimes referred to as convergence in empirical frequency [20].

FP does not converge in all games; for example, [59, 96, 97] give examples of games where

the empirical distribution cycles around a NE strategy without ever converging to it. However,

FP is known to converge in several important classes of games including two-player zero-sum

games [31,32], two-player two-action games [33,34], generic two-player m-action games [35], games

solvable by iterated strict dominance [36], “one-against-all” multi-player games [37], and potential

games [34,38].

We summarize these results in the following theorem.

Theorem 2.5. Suppose Γ is a two-player, zero-sum game, two-player two-action game, generic

two-player m-action game, game solvable by iterated strict dominance, one-against-all game, or

potential game. Then FP converges to the set of NE in the sense that limn→∞ d(q(n), NE) = 0.

2.6 Computational Complexity in Myopic Best-Response Algorithms

When discussing problems with implementation of MBR algorithms in large-scale games in Section

1.3.2, it was claimed that MBR algorithms can be impractical to deploy in large games due to the

high computational complexity of computing a best response strategy. In particular, it was claimed

that the complexity of computing the best-response set grows as O(eN ), where N is the number of

players. We briefly clarify this claim here.

In a MBR algorithm, each player i ∈ N must solve the optimization problem

arg max
yi∈Yi

Ui(yi, fi(z(n)))
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at each iteration of the algorithm. In order to solve this optimization problem, player i must

compute the expected utility for each action yi ∈ Yi given the probability distribution fi(z(n)). In

general, the computational complexity of evaluating this expected utility increases exponentially

in the number of players N . This is the case, for example, in FP, where fi(z(n)) is given by the

(N − 1)-dimensional probability distribution represented by the tuple

q−i(n) = (q1(n), . . . , qi−1(n), qi+1(n), . . . , qN (n)) ∈ ∆−i.
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Chapter 3

Empirical Centroid Fictitious Play

3.1 Introduction

The FP algorithm, introduced in Section 2.5, is a prototypical MBR algorithm that is guaranteed

to converge to NE in several important classes of games. Despite convergence guarantees, FP can

be difficult to impractical in games with many players. In this chapter we study a variant of FP

which mitigates the problem of high information overhead inherent in large-scale implementations

of FP (see Section 1.3.2). Additionally, the methods studied in this chapter aid in reducing the

computational complexity of FP, and may be used to mitigate slow convergence rates in games

with many players.

In FP (2.8)–(2.9), each player must track the empirical distribution q(n) = (q1(n), . . . , qN (n)).

This is a vector whose size scales linearly with the number of players, N . In this chapter, we consider

a variant of FP in which players are grouped into equivalence classes. Rather than track the em-

pirical distribution of each individual player, players only track the centroid empirical distribution

corresponding to each equivalence class.

We call this variant of FP empirical centroid fictitious play (ECFP). The memory size of the

centroid distribution depends on the number of equivalence classes into which players are grouped,

but is invariant to the number of players. Hence, in ECFP, the size of the vector that must be

tracked is independent of the number of players.

In order to study the properties of ECFP, it can be useful to consider the continuous-time

dynamics associated with the algorithm. In the continuous-time setting certain properties of the

algorithm, such as convergence to NE, rate of convergence, and robustness to perturbations can

be easier to study. Using stochastic approximation techniques, it is often possible to then derive

results about the properties of the discrete-time process using the continuous-time process as a
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type of mean-field approximation.

In this chapter we begin by studying discrete-time ECFP directly. In Section 3.2 we introduce

ECFP in its basic form and prove that the algorithm converges to a subset of the set of NE which

we refer to as the set of consensus equilibria.

The concept of a consensus equilibrium is closely related to that of a symmetric equilibrium dis-

cussed in [98]. The existence of symmetric equilibrium in finite normal form games was first proven

by Nash [98] in the same work where the concept of Nash equilibrium was originally presented. In

general, a symmetric equilibrium is a Nash equilibrium that is invariant under automorphisms of

the game. A consensus equilibrium, on the other hand, is a Nash equilibrium in which all players

use an identical strategy. In the case of a symmetric game, the two concepts coincide.

In Section 3.3 we present a more general form of ECFP which allows some of the assumptions

of Section 3.2 to be relaxed. The more general form of ECFP will be shown to converge to a subset

of the NE, known as the set of symmetric NE (SNE).1 ECFP converges to the set of SNE in the

sense that the tuple of empirical centroid distributions (see (3.1) and (3.6)) converges to the set of

SNE.

A more traditional notion of learning is that of convergence in empirical frequency, which

considers the asymptotic behavior of the tuple of individual empirical distributions (see (2.8) and

subsequent discussion), rather than the tuple of centroid distributions [74, 99]. It will be shown

that an ECFP process converges to an equilibrium set known as the set of mean-centric equilibria

(MCE) in terms of convergence in empirical frequency.

In Section 3.4 we present the continuous-time ECFP dynamics. We prove that a continuous-

time ECFP process converges to the set of SNE and MCE in a manner similar to the discrete-time

process. We also characterize the rate of convergence of the continuous-time process. In particular,

it will be shown that if the limit point of ECFP is a completely mixed equilibrium, then the

algorithm converges in finite time.

In Section 3.5 we present an illustrative example of ECFP in a traffic routing scenario and

provide simulation results.

Before presenting the ECFP algorithm, we briefly discuss related work.

3.1.1 Related Work

The (continuous-time) ECFP dynamics are similar to the best-response dynamics studied in [64]

for two-player population games. In [64] it is supposed that there is an infinite population of

1We note that our definition of a symmetric NE differs from that of [98] in that explicitly relies on the manner in
which players are grouped. See (3.7) for more details.
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players and, in each small time interval, a small fraction of players revise their strategies (which are

assumed to be pure for each individual player). It is shown that mixed-strategy equilibria are stable

under these dynamics in two-player symmetric games. In ECFP, a group of N players responds

to the average empirical distribution of the group (or, the average empirical distribution of each

class, if multiple equivalence classes are assigned). In the case of two-player symmetric games, this

results in dynamics identical to [64]. In this chapter we study the system in more general N -player

symmetric potential games.

A variant of FP known as joint strategy FP (JSFP) that mitigates the issues of computational

complexity and information overhead was studied in [73]. In JSFP, players respond to the joint

empirical distribution of play. Somewhat counterintuitively, this results in an algorithm with rel-

atively low computational complexity, since agents can track the expected utility using a simple

recursion and whatever aggregate statistics are necessary to compute the utility that each of their

actions would have generated in a given round. Convergence to NE of the JSFP dynamics has not

been shown. However, a form of JSFP in which the players occasionally repeat actions with some

small probability has been shown to converge to the set of pure-strategy NE in ordinal potential

games [73]. In [73], no information gathering scheme is explicitly defined; players are assumed to

have full access to the necessary information at all times. In network-based ECFP discussed in

Chapter 7, the information gathering scheme is explicitly defined via a preassigned (but arbitrary)

communication graph, and convergence results are demonstrated when inter-agent communication

is restricted to local neighborhoods conformant to the graph.

Dynamic FP [100] applies principles of dynamic feedback from control theory to improve the

convergence properties of a continuous-time version of FP. The algorithm is shown to be stable

around some Nash equilibria where traditional FP is unstable. While the results generalize to

multi-player games, there is no mitigation of the information gathering problem. In [101], a similar

algorithm utilizing only payoff-based dynamics is presented. Similar stability results are shown

when the class of games is restricted to games with a pairwise utility structure.

Average strategy fictitious play (ASFP) [102] is a variant of JSFP with inertia applicable within

the class of congestion games. This class of games is different from the class of potential games

studied for ECFP (see Section 3.3); neither class subsumes the other. In ASFP it is assumed that

an oracle provides players with the average congestion profile. Players choose a best response in

a manner similar to the JSFP best response rule with inertia. ASFP is shown to converge to a

pure-strategy NE rather than a symmetric NE.
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3.2 Empirical Centroid FP: Basic Framework

For ease of presentation, in this section we study a basic variant of ECFP in which all players are

grouped into a single class. In Section 3.3 we will generalize these ideas to the case where players

may be grouped into multiple classes.

Suppose that players do not have the ability to track individual actions of other players,

(ai(n))n∈N , but are able to track the average action of the collective, ā(n) := 1
N

∑N
i=1 ai(n). With

this information, player do not have knowledge of the empirical distribution q(n) (see (2.8)), but

do have knowledge of the average empirical distribution,

q̄(n) :=
1

N

N∑
i=1

qi(n). (3.1)

We say the sequence (q̄(n))n≥1 is an ECFP process if for all i ∈ N and n ≥ 1, actions are chosen

according to the rule,

ai(n+ 1) ∈ arg max
αi∈Ai

U(αi, q̄−i(n)), (3.2)

where q̄−i(n) = (q̄(n), . . . , q̄(n)) is the (N − 1)-tuple containing (N − 1) repeated (identical) copies

of q̄(n).

In order to ensure that q̄(n) is well defined, we assume:

Assumption 3.1. All players use the same strategy space.

In order to ensure that ECFP converges to a Nash equilibrium strategy we assume

Assumption 3.2. Γ is a potential game with permutation invariant potential function u. That is,

u([y′]i, [y
′′]j , y−(i,j)) = u([y′′]i, [y

′]j , y−(i,j)), where, for any player k ∈ N , the notation [y′]k indicates

the action y′ ∈ Yk being played by player k, and y−(i,j) denotes the set of actions being played by

all players other than i and j.

Note that because of assumption Assumption 3.1, permutations of the form given in Assumption

3.2 are necessarily well defined. Also note that under these assumptions, the set of consensus

equilibria is known to be nonempty [103]. (Both of these assumptions will be weakened in Section

3.3.)

Intuitively speaking, FP may be said to describe a process where players (naively) assume

opponents are player mixed strategies which are stationary and independent (see Section 2.5).

In a similar vein, intuitively speaking, ECFP (3.1)–(3.2) describes a process where each player

(naively) assumes opponents are playing mixed strategies which are stationary, independent, and
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identical—the last assumption being the primary difference between ECFP and FP in this intu-

itive interpretation. Each player naively assumes q̄(n) accurately represents the (identical) mixed

strategy used by each opponent and chooses a best response to myopically optimize her next-stage

utility accordingly.

The set of consensus equilibria is given by (cf. (2.4))

CNE := {σ ∈ NE : σ1 = σ2 = · · · = σN}.

Let

q̄N (n) := (q̄(n), . . . , q̄(n)), (3.3)

be the N -tuple containing repeated copies of q̄(n). Players engaged in ECFP asymptotically learn

consensus Nash equilibrium strategies in the sense that d(q̄N (n), CNE)→ 0 as n→∞. This notion

of learning, while similar in spirit to the typical notion of convergence in empirical frequency (see

Section 2.5.1), differs in that it is the tuple of empirical centroid distributions that is converging,

rather than the tuple of empirical distributions.

The result is summarized in the following theorem.

Theorem 3.3. Let {q(n)}n≥1 be an ECFP process. Suppose Assumptions 3.1–3.2 hold. Then

players learn a consensus Nash equilibrium strategy in the sense that d(q̄N (n), CNE) → 0 as

n→∞.

We prove this result after briefly discussing some properties of the ECFP algorithm.

3.2.1 Information Overhead and Complexity in ECFP

In an ECFP process (3.1)–(3.2), the problem of demanding memory requirements is mitigated

by requiring players to track only the centroid distribution, q̄(n), a vector whose memory size is

invariant to the number of players in the game.

Likewise, a degree of mitigation in computational complexity is enabled by the introduction

of the distribution q̄−i(n) in the best-response computation. In the joint distribution q̄−i(n), all

players are assumed to use independent and identical mixed strategies. Analogous to the manner

in which independent and identically distributed (i.i.d.) random variables always make life simpler

in statistics, the introduction of the “i.i.d.” joint distribution q̄−i(n) enables simplifications in the

ECFP best-response computation. (See Section 3.5.1 for a detailed illustration.)

In contrast to FP, ECFP, in general, admits reduced complexity best-response computation at

the players, which is enabled by the “i.i.d.” nature of the q̄−i(n) used in the ECFP best-response
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computation (see (3.2)). This same factor may enable an explicit characterization of the distribu-

tion of certain essential statistics involved in the mixed utility computation in terms of parametric

statistical families. The FP best response (2.9), in contrast, is based on an optimization involving

the collection q−i(n) of individual empirical distributions; since the individual distributions are

generally different, the collection q−i(n) does not admit a similar simplification or reduced param-

eterization as far as the best-response computation is concerned. For more detailed illustrations

of the relative complexities of FP and ECFP best-response computations, we refer the reader to

Section 3.5.1.

3.2.2 Proof of Convergence

We now prove Theorem 3.3 using relatively simple arguments that work directly with the discrete-

time process. The proof technique is similar to that used in [34] for classical FP.2 An alternative

method of proof (and the one that we will resort to frequently in the later parts of the dissertation)

is to study a continuous-time variant of the learning process, and prove convergence of the discrete-

time process as a corollary of convergence of the continuous-time process. This method of proof

requires the introduction of several tools from the theory of stochastic approximation and differential

inclusions. We prefer to give a simpler proof of Theorem 3.3 now, and defer the use of these more

involved arguments until Chapter 4 where it is necessary to introduce these tools to prove our

robustness result for MBR processes. (In particular, see Section 4.5 for a proof of Theorem 3.3

using continuous-time arguments.)

Proof. Let ā(n) = 1
N

∑N
i=1 ai(n), where ai(n) ∈ Ai. Let āN (n) ∈ ∆N be theN -tuple (ā(n), . . . , ā(n)).

For n ≥ 1 the empirical centroid q̄(n) =
∑N

s=1 a(s) may be expressed recursively as q̄N (n+1) =

q̄N (n)+ 1
n+1

(
āN (n+ 1)− q̄N (n)

)
. Using this recursive form we may express the potential at q(n+1)

as U(q̄N (n+ 1)) = U
(
q̄N (n) + 1

n+1

(
āN (n+ 1)− q̄N (n)

))
. Using the multilinearity of U this gives

U(q̄N (n+ 1)) =U(q̄N (n)) +
1

n+ 1

N∑
i=1

U (āi(n+ 1), q̄−i(n))

− 1

n+ 1

N∑
i=1

U(q̄i(n), q̄−i(n)) + ζ(n+ 1),

2In [104] this same proof technique is used to prove a stronger, “robust” version of this convergence result (see
Theorem 1 in [104]) that allows us to develop a network-based implementation of ECFP. However, since the robustness
results that will be presented in Chapter 4 will supplant the robustness result proved in [104], we focus here only on
presenting convergence results for a simple (non-noisy) setting. Accordingly, we give here a simplified version of the
proof in [104] with the aim of making the main ideas more transparent.

36



where we have explicitly written the first order terms of the expansion and collected the remaining

terms in ζ(n + 1). Note that the number of second order terms in the above expansion is finite

and the terms are uniformly bounded since maxσ∈∆N |U(σ)| < ∞. Hence, there exists a positive

constant M (independent of n) large enough such that |ζ(n+ 1)| ≤M(n+ 1)−2 for all n. Thus,

U(q̄N (n+ 1)) ≥U(q̄N (n)) +
1

n+ 1

N∑
i=1

U (āi(n+ 1), q̄−i(n))

− 1

n+ 1

N∑
i=1

U(q̄i(n), q̄−i(n))− M

(n+ 1)2
. (3.4)

The permutation invariance and multilinearity of U(·) permits the following rearranging of terms:

N∑
i=1

U (āi(n+ 1), q̄−i(n)) =

N∑
i=1

U

 1

N

N∑
j=1

aj(n+ 1)


i

, q̄−i(n)


=

N∑
i=1

1

N

N∑
j=1

U
(
[aj(n+ 1)]i , q̄−i(n)

)
=

N∑
i=1

1

N

N∑
j=1

U
(

[aj(n+ 1)]j , q̄−j(n)
)

=

N∑
j=1

U (aj(n+ 1), q̄−j(n)) ,

where the notation U([aj(n)]i, q̄−i(n)) indicates the expected utility player i would receive were she

to use the strategy aj(n) and all other players use the strategy q̄(n). Substituting this in (3.4) we

get

U
(
q̄N (n+ 1)

)
− U

(
q̄N (n)

)
+

M

(n+ 1)2
≥ 1

n+ 1

N∑
i=1

(U (ai(n+ 1), q̄−i(n))− U(q̄i(n), q̄−i(n)))

≥ αn+1

n+ 1

where αn+1 :=
∑N

i=1 (U (ai(n), q̄−i(n))− U (q̄i(n), q̄−i(n))) . Note that U(·) is multilinear and there-

fore locally Lipschitz continuous. Summing over 1 ≤ t ≤ T above we get

U(q̄N (T + 1))− U(q̄N (1)) +
T∑
t=1

M

(n+ 1)2
≥

T∑
t=1

αn+1

n+ 1
.
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Note that
∑T

n=1
M

(n+1)2
is summable; therefore all terms on the left hand side are bounded above for

all T ≥ 1, and hence limT→∞
∑T

n=2
αn
n <∞. By Lemma 3.8 in the appendix we get lim

T→∞
α2+...+αT

T =

0. Subsequently, by Lemma 3.9 (see appendix), we get lim
T→∞

|{1≤t≤T :q̄N (n)/∈Cε}|
T = 0 for every ε > 0.

By Lemma 3.10 (see appendix), this is equivalent to lim
T→∞

|{1≤t≤T :q̄N (n)/∈Bδ(C)}|
T = 0 for every δ > 0.

Finally, by Lemma 3.11 (see appendix), we obtain d(q̄N (n), CNE)→ 0 as n→∞.

We emphasize that Theorem 3.3 shows that the N -tuple of the average empirical distribution

converges to CNE, that is, d(q̄N (n), CNE)→ 0. This is not the same as the more traditional defi-

nition of convergence in empirical frequency, (2.13). In the former, the N -tuple containing repeated

copies of the empirical centroid converges to equilibrium, in the latter, the N -tuple containing the

individual empirical distributions converges to equilibrium.

Note also that the set of limit points of ECFP is restricted to CNE—a subset of the NE. Thus,

if Pareto superior Nash equilibria exist outside the set CNE, then ECFP will never reach these

points, though an algorithm such as FP may. This may be seen as a tradeoff for the improvements

in information overhead, complexity, and convergence rate achieved in ECFP.

3.3 Empirical Centroid FP: General Framework

The ECFP algorithm may be generalized to a setup where players track multiple centroids, each

centroid corresponding to a different class of players. This generalization allows for ECFP to be

considered in a broader class of games than permitted by Assumptions 3.1–3.2, and permits FP to

be considered as special case of ECFP.

In the general version of ECFP, players are grouped into equivalence classes, or “permutation

invariant” classes. This grouping allows players to analyze collective behavior by tracking only

the statistics associated with each equivalence class, rather than tracking the statistics of every

individual player.

Let m ≤ N , denote the number of classes, let I = {1, . . . ,m} be an index set, and let C =

{C1, . . . , Cm} be a collection of subsets of N ; i.e. Ck ⊆ N , ∀k ∈ I. A collection C is said to be a

permutation-invariant partition of N if,

(i) Ck ∩ C` = ∅, for k, ` ∈ I, k 6= `,

(ii)
⋃
k∈I

Ck = N ,

(iii) for k ∈ I, i, j ∈ Ck, Yi = Yj ,

(iv) for k ∈ I, i, j ∈ Ck, there holds for any strategy profile y = (yi, yj , y−(i,j)) ∈ Y ,

u(yi, yj , y−(i,j)) = u([yj ]i, [yi]j , y−(i,j)),
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where the notation ([yi]j , [yj ]i, y−(i,j)) indicates a permutation of (only) the strategies of players i

and j in the strategy profile y = (yi, yj , y−(i,j)).

For a collection C, define φ(·) : N → I to be the unique mapping such that φ(i) = k if and only

if i ∈ Ck.
For k ∈ I, and σ ∈ ∆N , and permutation-invariant partition C, define

σ̄k := |Ck|−1
∑
i∈Ck

σi (3.5)

to be the k-th centroid with respect to C, where |Ck| denotes the cardinality of the set Ck. Likewise

for σ ∈ ∆N define

σ̄ := (σ̄1, σ̄2, . . . , σ̄N ), (3.6)

where σ̄i = σ̄φ(i), to be the centroid distribution with respect to C.
Given a permutation-invariant partition C, let the set of symmetric Nash equilibria (relative to

C) be given by,

SNE := {σ ∈ NE : σi = σj ∀i, j ∈ Ck, ∀ k ∈ I}, (3.7)

and let the set of mean-centric equilibria (relative to C) be given by,

MCE := {σ ∈ ∆N : U(σi, σ̄−i) ≥ U(σ′i, σ̄−i),∀σ′i ∈ ∆i, ∀i}.

The set of MCE is neither a strict superset nor subset of the NE set—rather, it is a set of natural

equilibrium points tailored to the ECFP dynamics. The set of SNE however, is contained in the

set of MCE.

The sets of SNE and MCE relative to a partition C, can be shown to be non-empty in potential

games using fixed point arguments similar to [103,105].

In ECFP, players do not track the empirical distribution of each individual player. Instead,

they track only the centroid q̄k(n) for each k ∈ I (see (3.5)). Intuitively speaking, in ECFP each

player i assumes (perhaps incorrectly) that for each class Ck ∈ C the centroid q̄k(n) accurately

represents the mixed strategy for all players j ∈ Ck. Each player i chooses her next-stage action as

a myopic best response given this assumption.

Formally, the joint action at time (n+ 1) is chosen according to the rule3

a(n+ 1) ∈ BR(q̄(n)), (3.8)

3The action a(1) may be chosen arbitrarily.
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where q̄(n) is the centroid distribution associated with q(n) (see (3.6)).

The empirical distribution is recursively defined by q(n + 1) =
(

1− 1
n+1

)
q(n) + 1

n+1a(n +

1). Combining this with (3.8) we get the following difference inclusion governing the behavior of

{q(n)}n≥1,

q(n+ 1) ∈
(

1− 1

n+ 1

)
q(n) +

1

n+ 1
BR(q̄(n)). (3.9)

Likewise, Lemma 3.14 (see appendix) shows that the sequence of centroid distributions {q̄(n)}n≥1

follows the difference inclusion,

q̄(n+ 1) ∈
(

1− 1

n+ 1

)
q̄(n) +

1

n+ 1
BR(q̄(n)). (3.10)

We refer to the sequences (q(n))n≥1 and (q̄(n))n≥1 as ECFP processes.4

3.3.1 General ECFP Convergence Result

The following theorem is the main convergence result for ECFP—it states that, if Γ is a potential

game, then players engaged in ECFP asymptotically learn elements of sets of SNE and MCE.

Learning of MCE occurs in the sense that d(q(n),MCE) → 0; this form of learning corresponds

to the typical notion of setwise convergence in empirical distribution typical in classical FP (see

Section 2.5 and [20,74]). Learning of SNE occurs in the sense that d(q̄(n), SNE)→ 0. This notion

of learning, while similar in spirit to the typical notion of convergence in empirical distribution,

differs in that it is the empirical centroid distribution (see (3.6)) that is converging to the set of

SNE, rather than the empirical distribution itself.

Theorem 3.4. Assume Γ is a potential game. Let C be a permutation-invariant partition of the

player set N . Let (q(n), q̄(n))n≥1 be an ECFP process. Then,

(i) players learn a subset of the MCE in the sense that limn→∞ d(q(n),MCE) = 0,

(ii) players learn a subset of the SNE in the sense that limn→∞ d(q̄(n), SNE) = 0.

Theorem 3.4 can be proved using similar reasoning to the proof of 3.3, and we omit this proof

here for brevity. However, this theorem can also be proved by studying a continuous-time version

of ECFP, and relating the limit sets of discrete-time ECFP to those of continuous-time ECFP. In

Chapter 4 we will prove Theorem 3.4 in this manner after introducing the appropriate tools and

notation (see Section 4.5).

4Sometimes we also simply refer to (q(n), q̄(n))n≥1 as an ECFP process.
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3.4 Continuous-Time ECFP

In this section we consider continuous-time ECFP dynamics. Using the theory of stochastic approx-

imation, the continuous-time process can be seen as a mean-field approximation of the discrete-time

process [28]. In particular, a linear interpolation of a discrete-time ECFP process can be seen as

a perturbed continuous-time ECFP path. In Chapter 4 we will show that convergence results for

discrete-time ECFP can be proved by studying its continuous-time counterpart.

In Section 3.4.1 we present continuous-time ECFP dynamics. In Section 3.4.2 we briefly dis-

cuss the relationship between continuous-time and discrete-time ECFP. In Section 3.4.3 we show

that continuous-time ECFP converges to the sets of SNE and MCE in a manner paralleling the

convergence of the discrete-time process shown in Theorem 3.4. In Section 3.4.4 we study the rate

of convergence of continuous-time ECFP.

3.4.1 Continuous-Time ECFP Process

Let Γ be a potential game and let C be a permutation-invariant partition of N . In analogy to5

(3.9), for t ≥ 0 let

q̇(t) ∈ BR(q̄(t))− q(t), (3.11)

where where q̄(t) is the centroid distribution associated with q(t) (see (3.6)). We refer to the

processes (q(t))t≥0 and (q̄(t))t≥0 as continuous-time ECFP processes.

As our end goal involves studying the limiting behavior of {q̄(t)}t≥0, note that for k ∈ I, and

q̄k(t) defined similar to (3.5), there holds

˙̄qk(t) =
d

dt
|Ck|−1

∑
j∈Ck

qj(t)

= |Ck|−1
∑
j∈Ck

d

dt
qj(t)

= |Ck|−1
∑
j∈Ck

q̇j(t),

Let p(t) := q̇(t) + q(t), so that p̄(t) = (p̄1(t), . . . , p̄N (t)) with p̄i(t) := p̄φ(i)(t) for i ∈ N (see

(3.6)). By the above, and the linearity of differentiation, p̄(t) = ˙̄q(t) + q̄(t). Thus, by Lemma 3.13,

5Note that (3.9) may be written as q(n+ 1)− q(n) ∈ 1
n+1

(BRεn(q̄(n))− q(n)).
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(3.11) implies that p̄(t) ∈ BR(q̄(t)), or equivalently,

˙̄q(t) ∈ BR(q̄(t))− q̄(t). (3.12)

3.4.2 Linear Interpolation of Discrete-Time ECFP

Discrete-time ECFP is closely related to continuous-time ECFP. In particular, linear interpolation

of a discrete-time ECFP processes (3.9) (respectively, (3.10)) can be shown to generate a perturbed

solution of the continuous-time ECFP differential inclusions (3.11) (respectively, (3.12)).

The linearly interpolated process is generated as follows. Set τ0 = 0 and τn =
∑n

i=1 γ(i) for

n ≥ 1. The continuous-time interpolation of discrete-time ECFP (3.9) is given by w : [0,∞)→ Rm,

where

w(τn + s) = q(n) + s
q(n+ 1)− q(n)

τn+1 − τn
, s ∈ [0, γ(n+ 1)).

The linear interpolation of (3.10) is generated in a similar manner, substituting q̄(n) for q(n), above.

In Chapter 4 (see also [28]) the notion of a perturbed solution is precisely defined and it is

shown that the linear interpolation of (3.9) (respectively, (3.10)) is a perturbed solution of (3.11)

(respectively, (3.12)).

3.4.3 Convergence in Continuous Time

We now show that continuous-time ECFP converges to the sets of SNE and MCE in a manner

parallelling the convergence of discrete-time ECFP.

For any solution q(t) of (3.11) and associated centroid process q̄(t), let w(t) := U(q̄(t)) and let

v(t) := 1
N

∑N
i=1 U(qi(t), q̄−i(t)). There holds,

ẇ(t) =

N∑
i=1

∂

∂q̄i
U(q̄(t)) ˙̄qi(t)

≥
N∑
i=1

[
U( ˙̄qi(t) + q̄i(t), q̄−i(t))− U(q̄(t))

]
=

N∑
i=1

[
max
αi∈∆i

U(αi, q̄−i(t))− U(q̄(t))

]
≥ 0, (3.13)

where the second line follows from the concavity of U in terms of σi (i.e., the strategy of player i)

and the third follows from (3.12).
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By Lemma 3.12 we get

1

N

N∑
i=1

U(qi(t), q̄−i(t)) = U(q̄(t)). (3.14)

Hence v(t) = w(t), and we have v̇(t) ≥ 0. The following expansion is useful in order to study

convergence to the set of MCE.

v̇(t) = ẇ(t) ≥
N∑
i=1

[
max
αi∈∆i

U(αi, q̄−i(t))− U(q̄(t))

]

=

N∑
i=1

max
αi∈∆i

U(αi, q̄−i(t))−N U(q̄(t))

=

N∑
i=1

max
αi∈∆i

U(αi, q̄−i(t))−
N∑
i=1

U(qi(t), q̄−i(t))

=

N∑
i=1

[
max
αi∈∆i

U(αi, q̄−i(t))− U(qi(t), q̄−i(t))

]
≥ 0, (3.15)

where the inequality follows from (3.13), and the third line follows again from (3.14).

By (3.13), w(t) is weakly increasing, and is constant in a time interval T if and only if

maxαi∈∆i U(αi, q̄−i(t))− U(q̄(t)) = 0, ∀i; i.e., if and only if q̄(t) ∈ SNE for all t ∈ T .

By (3.15), v̇(t) is weakly increasing, and v̇(t) = 0 in some interval T implies maxαi∈∆i U(αi, q̄−i(t))−
U(qi(t), q̄−i(t)) = 0, ∀i ∈ N , t ∈ T ; i.e., q(t) ∈ MCE for all t ∈ T . Moreover, by Lemma 3.13,

q(t) ∈ MCE, ∀t ∈ T =⇒ q̄(t) ∈ SNE ∀t ∈ T , which by the above comments implies ẇ(t) = 0

in T , or equivalently v̇(t) = 0 in T . Thus, v̇(t) is constant in a time interval T if and only if

q(t) ∈MCE for all t ∈ T .

Proposition 3.5. Assume Γ is a potential game. Then,

(i) The limit set of every solution of (3.12) is a connected subset of SNE along which U is constant;

(ii) For σ ∈ ∆N , let V (σ) := 1
N

∑N
i=1 U(σi, σ̄−i). The limit set of every solution of (3.11) is a

connected subset of MCE along which V is constant.

The proof of this proposition follows from the above comments.

3.4.4 Finite-Time Convergence in ECFP

In the above, we showed that the ECFP process (q̄(t))t≥0 converges to the set of SNE. This

set tends to contain mixed strategy equilibria—for example, Assumption 6.19 gives a condition

under which any consensus equilibrium will be a mixed strategy (within the appropriate class of
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congestion games). The following result shows that whenever ECFP converges to a (completely)

mixed equilibrium, the convergence tends to occur in finite time.6

Theorem 3.6. Let Γ be a potential game satisfying Assumption 3.1–3.2. Suppose q∗ is a completely-

mixed SNE of Γ and that the Hessian of U invertible at q∗. If an ECFP process (q̄(t))t≥0 converges

to q∗, then it does so in finite time.

We delay presenting the proof of this result until Chapter 10 where we study fundamental

properties of MBR algorithms (see Section 10.6 and, in particular, Proposition 10.23).

We note that in the above theorem we assumed that the Hessian of the potential function is

invertible at q∗. In Section 9.3 we show that in almost all potential games, the Hessian is invertible

at every completely mixed NE strategy. Using similar arguments, it may be possible to show that

the same property holds for almost all games within the subset of potential games with permutation

invariant potential function relative to C.

The above theorem shows that continuous-time ECFP often achieves finite-time convergence.

While continuous-time ECFP always converges to (completely) mixed equilibria in finite time,

discrete-time ECFP does not directly inherit this property. The discrete-time process is an per-

turbed solution of the continuous-time process (see Section 4.2) and hence tends to approach the

neighborhood of an equilibrium quickly. However, once near the equilibrium, the discrete-time pro-

cess tends overshoot the equilibrium, oscillating in a neighborhood of it. The size of the oscillations

correspond to the step-size of the process (in this case, 1
n). As we will show in Chapter 4, the step-

size sequence in ECFP can be altered, but must converge to zero and constitute a divergent series

in order to maintain the convergence result (see Assumption 2.2). Hence, we cannot asymptotically

decrease the step size much faster than 1
n . A good heuristic method for approximating equilibria

quickly may be to use a quickly diminishing step size in the early stages of the algorithm and switch

to a step size of 1
n in the later stages. Alternatively, one could use a small constant step size as a

heuristic for approximating equilibria quickly.

3.5 Illustrative Example

In this section we consider the implementation of ECFP in a traffic routing example.

Suppose a group of vehicles wishes to navigate from a common starting point to a common

destination over a set of parallel routes. Let R denote the set of routes available to all players. Let

6The theorem is stated for completely mixed equilibria. However, in Section 10.3 we show that incompletely mixed
equilibria can be handled in a similar manner by projecting to a lower dimensional game. For simplicity, we focus
here only on the completely mixed case.
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this be cast as a game with the set of players N given by the set of drivers, and the action space

of each player i given by Yi = R.

Each player’s objective is to minimize their personal travel time. The cost of travelling on any

given road r ∈ R is dependent on the number of vehicles on the route. Given an action y ∈ Y ,

and r ∈ R, let ρr(y) give the number of players on route r under the strategy y. The cost of using

route r if players use strategy y ∈ Y is given by

cr(y) := αr,2ρ(y)2 + αr,1ρ(y) + αr,0,

where αr,2, αr,1, and αr,0 are some predetermined coefficients. In the game theoretic framework,

we let the utility received by player i under action profile y = (yi, y−i) ∈ Y be given by

ui(y) := −cyi(ρ(y)).

This game is an instance of a congestion game, which is known to be a type of potential game [38].

3.5.1 Best-Response Computation

The inherent symmetry in the distribution q̄−i(n) used in the ECFP best-response calculation (3.2)

leads to reductions in computational complexity, particularly when compared with the FP best-

response calculation (2.9). We contrast the FP and ECFP best-response computations for the case

of the cognitive radio game.

ECFP Best-Response Computation

In order to choose a best response in ECFP, a player must compute7

arg max
yi∈Yi

Eq̄−i(n)[u(yi, y−i)],

where y−i is a random variable with distribution q̄−i(n), and where q̄−i(n) = (q̄−i(n), . . . , q̄−i(n)) ∈
∆−i is an (n− 1)-tuple. The symmetry in the game allows for the following simplification,

Eq̄−i(n)[u(yi, y−i)] =

N−1∑
k=0

cyi(k + 1)Pq̄−i(n)(ρyi(y−i) = k). (3.16)

7In the ECFP best response (3.2), a player must maximize the mixed utility maxαi∈Ai U(αi, q̄−i(n)). Recall that
the mixed utility (2.1) is the expected value of u(·) given that players are using probabilistic strategies q̄−i(n). Thus,
maximizing the mixed utility of (3.2) is equivalent to maximizing the expected value below.
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In the above, players only need to compute the probability associated with having k users on each

channel rather than computing the probability of every possible configuration of users.

From here, the symmetry in the i.i.d. distribution q̄−i(n) allows for further simplifications. Let

yi = r ∈ R and note that8

Pq̄−i(n)(ρr(y−i) = 0) = (1− q̄(n, r))N−1

Pq̄−i(n)(ρr(y−i) = 1) = (N − 1)q̄(n, r)(1− q̄(n, r))N−2

Pq̄−i(n)(ρr(y−i) = 2) =

(
N − 1

2

)
q̄(n, r)2(1− q̄(n, r))N−3.

As the above pattern suggests, the probability is binomial—for 0 ≤ k ≤ (N − 1),

Pq̄−i(n)(ρyi(y−i) = k) =

(
N − 1

k

)
q̄(n, r)k(1− q̄(n, r))N−1−k.

Thus, the requisite probability is given by a computationally simple closed form expression, and

the expected utility can be easily computed using (3.16). Furthermore, since players compute a

best response each iteration, they reap the computational benefits of using this simplified form for

Pq−i(n)(ρyi(y−i) = k) on each iteration of ECFP.

FP Best-Response Computation

In order to choose a best response in FP, a player must compute

arg max
yi∈Yi

Eq−i(n)[u(yi, y−i)],

where y−i is a random variable with distribution q−i(n). As before, the symmetry in the game

allows for a simplification to

Eq−i(n)[u(yi, y−i)] =
N−1∑
k=0

cyi(k + 1)Pq−i(n)(ρyi(y−i) = k).

8Recall that the notation q̄(n, r) refers to the r-th element of the vector q̄(n). In ECFP, players (incorrectly)
assume that all opponents are independently using the identical mixed strategy q̄(n). Under this assumption, the
probability of any given opponent using channel r is given by q̄(n, r).
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However, due to the lack of structure in q−i(n), no further simplifications are possible. To illustrate

the complexity of this, let yi = r ∈ R and note that

Pq−i(n)(ρr(y−i) = 0) =
∏
j 6=i

(1− qj(n, r))N−1

Pq−i(n)(ρr(y−i) = 1) =
∑
j1 6=i

qj1(n, r)
∏

j2 6=i,j1

(1− qj2(n, r))N−2

Pq−i(n)(ρr(y−i) = 2) =
∑
j1 6=i

∑
j2>j1

qj1(n, r)qj2(n, r)
∏

j3 6=i,j1,j2

(1− qj3(n, r))N−3.

In general, when the q(n) corresponds to a mixed strategy, the complexity of evaluating Pq−i(n)(ρr(y−i) =

k) grows combinatorially with k—even in this game with symmetric payoffs.

3.5.2 Simulation Results

We first simulated a fixed game with 50 users and randomly chosen cost coefficients. Using a fixed

initial condition q(1) = q0, we ran instantiations of ECFP with 1, 2, 3, and 5 player groupings

for 106 iterations in order to approximate the limiting SNE point for each instantiation of the

algorithm.

Figure 3.1 plots the distance from the centroid distribution at iteration n (i.e., q̄(n), see (3.6)) to

the limiting SNE point, denoted as q∗, in each instantiation. Since the game satisfies Assumptions

3.1–3.2, the set of consensus NE is nonempty. When players are grouped into a single class, ECFP

approaches a consensus equilibrium. Let q̄∗ denote the consensus equilibrium approached by the

instantiation with one player grouping. Figure 3.2 plots, for each instantiation, the distance from

the centroid distribution q̄(n) to the consensus equilibrium q̄∗. Figures 3.1 and 3.2 show that in

each instantiation, q̄(n) tends to approach the consensus equilibrium q̄∗ before breaking away and

moving towards the limiting SNE point q∗.

Figure 3.3 plots, for each instantiation, the worst case utility of any player under the mixed

strategy q̄(n). The figure shows that the utility tends to decrease along the path of q̄(n). (We note

also that the utility of q̄(n) is similar for all groups during the phase in which q̄(n) approaches the

consensus equilibrium q̄∗.)

As noted in Section 3.1, the behavior of discrete-time ECFP (DT-ECFP) is closely related to

that of continuous-time ECFP (CT-ECFP). Due to the discontinuous nature of the best response,

simulations of CT-ECFP are prone to numerical instability using traditional Runge-Kutta methods.

However, the behavior of CT-ECFP may be approximated by considering the linear interpolation

of DT-ECFP (see Section 3.4.2). Letting (w(t))t≥0 denote the continuous-time linear interpolation

47



Figure 3.1: The distance from q̄(n) to the limiting SNE point q∗, using a linear time scale and a
logarithmic time scale.

of a the discrete-time ECFP process (q̄(n))n≥1 for any given instantiation, Figure 3.4 shows the

distance from w(t) to the limiting SNE in each instantiation, where we consider the same fixed

game and initial condition as before. Figure 3.5 shows the distance from w(t) to the consensus

equilibrium q̄∗. In each instantiation, the continuous-time interpolation tends to approach the

consensus equilibrium q̄∗ and hover nearby q̄∗ for a time before moving towards the final limiting

SNE point. We hypothesize that the effect of hovering nearby q̄∗ is an artifact of the discretization

inherent in the interpolation of the discrete-time process, and not typical of the pure continuous-

time dynamics.

In order to study how the rate of convergence scales in terms of the number of players we ran

instantiations of ECFP with a single player grouping in a game with 50 players, a game with 200

players, and a game with 400 players. Figures 3.6 plots the distance from q̄(n) to the consensus

equilibrium q̄∗ in each case. The figure shows that the rate of convergence tends to be invariant to

the number of players.
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Figure 3.2: The distance from q̄(n) to the q̄∗ point using a linear time scale and a logarithmic
time scale.

Figure 3.3: Plot of worst case utility in each instantiation of ECFP using a linear time scale and a
logarithmic time scale.
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Figure 3.4: The distance from the interpolated process w(t) to the limiting SNE point.

Figure 3.5: The distance from the interpolated process w(t) to the consensus equilibrium q̄∗.
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Figure 3.6: The distance from q̄(n) to the consensus equilibrium q̄∗ in games with 50, 200, and
400 users.

3.6 Appendix to Chapter 3

Definition 3.7. For ε > 0, the set of ε-NE is given by

NEε := {σ ∈ ∆N : σ ∈ BRε(σ)},

and the set of ε-consensus NE is given by

CNEε := {σ ∈ NE : σ1 = . . . = σN}.

Lemma 3.8. Suppose the sum −∞ <
∞∑
n=1

an
n <∞ converges, then lim

T→∞
a1+a2+...+aT

T = 0.

Proof. By Kronecker’s Lemma [106], −∞ <
∞∑
k=1

ak
k <∞⇒ lim

T→∞
1
T

T∑
k=1

k akk = 0, which implies that

lim
T→∞

a1+...+aT
T = 0.

Lemma 3.9. Let an :=
N∑
i=1

[
vmi (q̄(n))− U(q̄N (n))

]
, then lim

T→∞
a1+...+aT

T = 0 implies that, for every
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ε > 0,

lim
T→∞

|{1 ≤ n ≤ T : q̄N (n) /∈ CNEε}|
T

= 0.

Proof. Let ε > 0 be given. By definition,

q̄N (n) ∈ CNEε ⇐⇒ vmi (q̄(n))− U(q̄N (n)) < ε ∀i. (3.17)

The utility function U(·) is assumed to be permutation invariant for all players, so an equivalent

statement to (3.17) is, q̄N (n) ∈ CNEε ⇐⇒
N∑
i=1

[
vmi (q̄(n))− U(q̄N (n))

]
< Nε. For n ∈ N, let bn = 1

if an ≥ nε and let bn = 0 otherwise. Note that bn = 0⇐⇒ q̄N (n) ∈ CNEε and bn = 1⇐⇒ q̄N (n) /∈
CNEε, thus

|{1 ≤ n ≤ T : q̄N (n) /∈ CNEε}|
T

=
b1 + . . .+ bT

T
.

Note also that an ≥ 0. Clearly,

b1 + . . .+ bT
T

≤ 1

Nε

a1 + . . .+ aT
T

,

implying lim
T→∞

b1+...+bT
T = 0, from which the desired result follows.

Lemma 3.10. lim
T→∞

|{1≤n≤T :q̄N (n)/∈CNEε}|
T = 0 for all ε > 0 implies that lim

T→∞
|{1≤n≤T :q̄N (n)/∈Bδ(CNE)}|

T =

0 for all δ > 0.

Proof. Suppose lim
T→∞

|{1≤n≤T :q̄N (n)/∈CNEε}|
T = 0 for all ε > 0, but there exists some δ > 0 such that

lim sup
T→∞

|{1≤n≤T :q̄N (n)/∈Bδ(CNE)}|
T = α > 0. Then there exists an ε′ > 0 such that

q̄N (n) /∈ Bδ(CNE)⇒ q̄N (n) /∈ CNEε′ ,

which implies that

|{1 ≤ n ≤ T : q̄N (n) /∈ CNEε′}| ≥ |{1 ≤ n ≤ T : q̄N (n) /∈ Bδ(CNE)}|.

This implies that

lim sup
T→∞

|{1 ≤ n ≤ T : q̄N (n) /∈ CNEε′}|
T

≥ α

for some ε′ > 0, a contradiction.

52



Lemma 3.11. lim
T→∞

|{1≤n≤T :q̄N (n)/∈Bδ(CNE)}|
T = 0 for all δ > 0 implies lim

n→∞
d(q̄N (n), CNE) = 0.

The proof of this result closely follows the proof of [34], Lemma 1, and is omitted here for

brevity.

Lemma 3.12. Let C be a partition of N , and for σ ∈ ∆N let σ̄ be as defined in (3.6). Then

1
N

∑N
i=1 U(pi, p̄−i) = U(σ̄).

Proof. Let I be an index set for C and let m be the cardinality of I. For k ∈ I, and j ∈ Ck note

that

|Ck|U(σ̄) = |Ck|U(σ̄j , σ̄−j) = |Ck|U(

|Ck|−1
∑
i∈Ck

σi


j

, σ̄−j)

=
∑
i∈Ck

U([σi]j , σ̄−j)

=
∑
i∈Ck

U(σi, σ̄−i),

where the second line follow from the definition of σ̄j (see (3.6)), the third by multilinearity of U ,

and the fourth by permutation invariance of elements in Ck. Thus,

1

N

N∑
i=1

U(σi, σ̄−i) =
1

N

∑
k∈I

∑
i∈Ck

U(σi, σ̄−i) =
1

N

∑
k∈I
|Ck|U(σ̄) =

1

N

N∑
i=1

U(σ̄) = U(σ̄).

Lemma 3.13. Let q ∈ ∆N , let q̄ be as defined in (3.6), and let ε ≥ 0. If σ ∈ BRε(q̄), then

σ̄ ∈ BRε(q̄).
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Proof. Let i ∈ N . Recall that σ̄ := (σ1, . . . , σN ) with σi = σφ(i). There holds

U(σ̄i, q̄−i) = U(

|Cφ(i)|−1
∑

j∈Cφ(i)

σj


i

, q̄−i)

= |Cφ(i)|−1
∑

j∈Cφ(i)

U([σj ]i, q̄−i)

= |Cφ(i)|−1
∑

j∈Cφ(i)

U([σj ]i, [q̄
φ(i)]j , q̄−(i,j))

= |Cφ(i)|−1
∑

j∈Cφ(i)

U([σj ]j , [q̄
φ(i)]i, q̄−(i,j))

= |Cφ(i)|−1
∑

j∈Cφ(i)

U([σj ]j , q̄−j)

≥ |Cφ(i)|−1
∑

j∈Cφ(i)

max
σ′j∈∆j

(U(αj , q̄−j)− ε)

= |Cφ(i)|−1
∑

j∈Cφ(i)

max
σ′i∈∆i

(U(αi, q̄−i)− ε)

= max
αi∈∆i

U(αi, q̄−i)− ε,

where the first line follows by the definition of σ̄i (see (3.6)), the second from the multilinearity

of U , the fourth by permutation invariance of elements of Cφ(i), the sixth by the fact that, by

hypothesis, σj ∈ BRj,ε(q̄−j), and the seventh by permutation invariance of elements of Cφ(i). Since

this holds for all i ∈ N , it follows that σ̄ ∈ BRε(q̄).

Lemma 3.14. Assume Γ is a potential game and suppose the action sequence {a(n)}n≥1 is chosen

according to (3.8). Then centroid process {q̄(n)}n≥1 follows the differential inclusion (3.10).

Proof. Note that q̄(n+ 1) may be written recursively as

q̄(n+ 1) = q̄(n) +
1

n+ 1
(ā(n+ 1)− q̄(n)) .

By Lemma 3.13, a(n+ 1) ∈ BRεn(q̄(n)) implies ā(n+ 1) ∈ BRεn(q̄(n)). Substituting this into the

above recursion and rearranging terms shows that {q̄(n)} follows the difference inclusion (3.10).
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Chapter 4

Robustness in Myopic Best-Response Algorithms

4.1 Introduction

In the canonical MBR algorithm presented in Section 2.4, we assumed that rather idealistic con-

ditions hold. For example, players are assumed to act in perfect synchrony, be capable of per-

fectly computing the best response in each stage, and are assumed to have instantaneous access

to all information required to compute the best response. Such assumptions are often extremely

impractical—particularly, in large-scale distributed settings. This motivates the study of the ro-

bustness of learning results to perturbations occurring in practical real-world scenarios.

The main theoretical contribution of this chapter is to show that MBR algorithms are robust

in the presence of certain perturbations, common in real-world applications [107]. In particular,

suppose that the myopic best response is perturbed so that players may sometimes choose subop-

timal actions, but that the degree of suboptimality decays to zero over time. (In the spirit of [72],

we sometimes call a MBR process that is perturbed in this manner a weakened MBR process.) We

show that the fundamental learning property of a MBR algorithm is retained in the presence of

such perturbations. For example, in the case of classical FP, this means that convergence to NE

is preserved in the presence of such perturbations. More generally, if a MBR algorithm converges

to some equilibrium set in the absence of perturbations, then our result can be applied to prove

convergence to the same equilibrium set in the presence of perturbations.

Robustness results of this kind were first studied in [29] for the case of classical FP. The chapter

extends the approach of [29] to demonstrate robustness of general MBR algorithms. This greatly

enhances the applicability of game-theoretical learning theory to real-world control problems. More-

over, the results of this chapter have required the development of useful new technical tools. For

example, Lemma 4.16 studies ε-best-response sequences and demonstrates that such sequences may
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in fact be considered in terms of a more amenable sequence of, so called, δ-perturbations (see Sec-

tion 4.2). Sequences of δ-perturbations are naturally handled within a stochastic approximation

framework using techniques such as those developed in [28].

In the subsequent chapters we will consider three applications of the robustness result developed

in this chapter.

As a first application, in Chapter 5 we study a sampling-based method for reducing the com-

plexity of MBR algorithms using the robustness property. As discussed in Sections 1.3.2 and 2.6,

computation of the best response at each iteration of a MBR algorithm can be computationally

demanding. Using the robustness result we show that sampling-based MBR algorithms are able to

achieve convergence with significantly reduced computational cost.

As a second application, in Chapter 6 we consider the problem of asynchronous implementation

of a MBR algorithm. In many game-theoretic learning algorithms, it is assumed that players

act in a perfectly synchronous manner. This assumption is unrealistic in large-scale distributed

scenarios where players do not have access to a global clock. We study a practical variant of

FP where players are permitted to choose actions in an asynchronous manner, and derive a mild

condition under which convergence can be shown to occur. The proofs of these results follow as

a simple consequence of the robustness result, and do not require the use of additional stochastic

approximation techniques.

As a third application, in Chapter 7 we study the problem of implementing a MBR algorithm

in a distributed setting. In traditional implementations of MBR algorithms it is assumed that

players have instantaneous access to the information required to generate their forecast. However,

in practical scenarios this information may often be distributed among the agents and must be

disseminated using an overlaid communication graph. We present a generic method for implement-

ing a MBR algorithm in this setting, and we show that convergence of such an algorithm can be

ensured as a consequence of the robustness result.1

The remainder of the chapter is organized as follows. Section 4.2 sets up the mathematical

tools to be used in the proof of the main theoretical result. Section 4.3 presents the notion of a

weakened myopic best-response process. Section 4.4 presents the robustness result. Section 4.5 uses

the robustness result to study the convergence and robustness of the ECFP algorithm presented in

Chapter 3.

1We remark that while these applications are interesting in and of themselves, additional utility may be gained
by considering them in conjunction with one another. For example, the first application allows for synchronous
distributed implementation and the second allows for generic asynchronous implementation. Together, they allow one
to study asynchronous distributed implementation of a MBR algorithm, using, for example, asynchronous gossip [21]
as a means of disseminating information amongst agents.
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4.2 Difference Inclusions and Differential Inclusions

In this section we introduce the mathematical tools necessary to prove our robustness result for

MBR processes. In particular, in Section 4.4 we will study the limiting behavior of a discrete-time

MBR processes using the stochastic approximation techniques introduced in this section.

Following the approach of [28], let F : Rm ⇒ Rm denote a set-valued function mapping each

point ξ ∈ Rm to a set F (ξ) ⊆ Rm. We assume:

Assumption 4.1.

(i) F is a closed set-valued map; i.e., Graph(F ) := {(ξ, η) : η ∈ F (ξ)} is a closed subset of Rm×Rm.

(ii) F (ξ) is a nonempty compact convex subset of Rm, for all ξ ∈ Rm.

(iii) For some norm ‖ · ‖ on Rm, there exists a c > 0 such that for all ξ ∈ Rm, supη∈F (ξ) ‖η‖ ≤
c(1 + ‖ξ‖).

Definition 4.2. A solution for the differential inclusion

dx(t)

dt
∈ F (x(t)) (4.1)

with initial point ξ ∈ Rm is an absolutely continuous mapping x : R→ Rm such that x(0) = ξ and

(4.1) holds for almost every t ∈ R.

In order to study the asymptotic behavior of discrete-time processes in this context, it is useful

to consider the notion of an interpolated process. Formally, given a step-size sequence {γ(n)}n≥1,

we define the continuous-time interpolation of a discrete-time process as follows.

Definition 4.3. Let {x(n)}n≥1 be a sequence in Rm. Set τ0 = 0 and τn =
∑n

i=1 γ(i) for n ≥ 1 and

define the continuous-time interpolation of {x(n)}n≥1 to be the process w : [0,∞)→ Rm satisfying

w(τn + s) = x(n) + s
x(n+ 1)− x(n)

τn+1 − τn
, s ∈ [0, γ(n+ 1)).

In general, we will be interested in studying discrete-time processes of the form x(n+1)−x(n) ∈
γ(n)F (x(n)), where (γ(n))n≥0 is a step-size sequence converging to zero. The continuous-time

interpolation of such a discrete-time process will not itself be a precise solution for the differential

inclusion (4.1). However, the interpolated process may be shown to satisfy the more relaxed solution

concept—namely, that of a perturbed solution to the differential inclusion. We first define the notion

of a δ-perturbation which we then use to define the notion of a perturbed solution.
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Definition 4.4. Let F : Rm ⇒ Rm be a set-valued map, and let δ > 0. The δ-perturbation of F is

given by

F δ(x) := {y ∈ Rm : ∃z ∈ Rm s.t. ‖z − x‖ < δ, d(y, F (z)) < δ}.

Definition 4.5. A continuous function y : [0,∞) → Rm will be called a perturbed solution to

(4.1) if it satisfies the following set of conditions:

(i) y is absolutely continuous.

(ii) There exists a locally integrable function t 7→ U(t) such that

lim
t→∞

sup
0≤ν≤T

∥∥∥∥∫ t+ν

t
U(s)ds

∥∥ = 0,

and,

(iii) dy(t)
dt − U(t) ∈ F δ(t)(y(t)) for almost every t > 0, for some function δ : [0,∞) → R with

δ(t)→ 0 as t→∞.

The following proposition gives sufficient conditions under which an interpolated process will

in fact be a perturbed solution.

Proposition 4.6. Consider a discrete-time process {x(n)}n≥1 such that

γ(n)−1 (x(n+ 1)− x(n))− γ(n)−1U(n+ 1) ∈ F δn(x(n)),

where {γ(n)}n≥2 is a sequence of positive numbers such that γ(n) → 0 and
∑∞

n=1 γ(n) = ∞,

{U(n)}n≥1 is a sequence of stochastic or deterministic perturbations satisfying

lim
n→∞

sup
k

{∥∥∥∥ k−1∑
s=n

γ(s+ 1)U(s+ 1)

∥∥∥∥ :
k−1∑
s=n

γ(s+ 1) ≤ T
}

= 0, ∀T > 0,

{δn}n≥1 is a sequence of non-negative numbers converging to 0, and supn ‖x(n)‖ < ∞. Then the

continuous-time interpolation of {x(n)}n≥1 is a perturbed solution of (4.1)

The proof of Proposition 4.6 follows similar reasoning to the proof of Proposition 1.3 in [28].

Our end goal is to characterize the set of limit points of the discrete-time process {x(n)}n≥1 by

characterizing the set of limit points of its continuous-time interpolation. With that end in mind,

it is useful to consider the notion of an internally chain-recurrent set—a set of natural limit points

for perturbed processes.
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Definition 4.7. Let ‖ · ‖ be a norm on Rm, and let F : Rm ⇒ Rm be a set valued map satisfying

Assumption 4.1. Consider the differential inclusion (4.1).

(a) Given a set X ⊂ Rm and points ξ and η, we write ξ ↪→ η if for every ε > 0 and T > 0 there

exist an integer n∗ ≥ 1, solutions x1, . . . , xn∗ to the differential inclusion (4.1), and real numbers

t1, . . . , tn∗ greater than T such that

(i) xi(s) ∈ X, for all 0 ≤ s ≤ ti and for all i = 1, . . . , n∗,

(ii) ‖xi(ti)− xi+1(0)‖ ≤ ε for all i = 1, . . . , n∗ − 1,

(iii) ‖x1(0)− ξ‖ ≤ ε and ‖xn∗(tn∗)− η‖ ≤ ε.

(b) X is said to be internally chain recurrent if X is compact and ξ ↪→ ξ′ for all ξ, ξ′ ∈ X.

The following theorem from [28] allows one to relate the set of limit points of a perturbed

solution of (4.1) to the internally chain recurrent sets F .

Theorem 4.8 ( [28], Theorem 3.6). Let y be a bounded perturbed solution to (4.1). Then the limit

set of y, L(y) =
⋂
t≥0 {y(s) : s ≥ t} is internally chain recurrent.

In our study of MBR algorithms we will sometimes focus on the class of potential games. The

existence of a potential function is useful in that it allows us to infer the existence of a Lyapunov

function that may be used to characterize the internally chain recurrent sets.

In particular, the differential inclusion (4.1) induces a set-valued dynamical system {Φt}t∈R
defined by

Φt(x0) := {x(t) : x is a solution to (4.1) with x(0) = x0}.

Let Λ be any subset of Rm. A continuous function V : Rm → R is called a Lyapunov function for Λ

if V (y) < V (x0) for all x0 ∈ Rm\Λ, y ∈ Φt(x0), t > 0, and V (y) ≤ V (x0) for all x0 ∈ Λ, y ∈ Φt(x0)

and t ≥ 0. The following proposition ( [28], Proposition 3.27) allows one to relate the internally

chain recurrent sets of a differential inclusion to Lyapunov attracting sets.

Proposition 4.9. Suppose that V is a Lyapunov function for Λ. Assume that V (Λ), the image of

Λ under V , has empty interior. Then every internally chain recurrent set L is contained in Λ and

V |L, the restriction of V to the set L, is constant.

In order to eventually prove the main theoretical result of this chapter (Theorem 4.15) we will

show that the continuous-time interpolation of a MBR process is in fact a bounded perturbed

solution to the associated differential inclusion (4.4), and hence by Theorem 4.8, the limit set of

the MBR process is an internally chain recurrent set of the associated differential inclusion.
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4.3 Weakened Myopic Best-Response Process

In a MBR process it is assumed that players actions are always chosen as optimal (best-response)

strategies. This is a strong assumption—for example, there are circumstances where computation

(or execution) of a precise best response may be difficult to carry out, whereas an approximate

best response can be implemented at relatively low cost (see, for example, Chapter 5). Similarly,

in large-scale distributed settings it may be difficult to gather all the information necessary to

compute a precise best response, but still feasible to gather sufficient information to compute an

approximate best response (See Chapter 7).

In the spirit of [29, 72], we wish to study the robustness of the MBR algorithms in a setting

where agents may sometimes choose suboptimal actions. As we will see in Chapters 5–7, this

relaxation allows for a breadth of practical applications.

Formally, let the ε-best response set in this context be given by BRf,ε : Z → ∆(Y ), where

BRf,ε(z) := BR1,ε(f1(z))× · · · × BRN,ε(fN (z)),

and where BRi,ε is as defined in (2.2).

Let σi(n) ∈ ∆i denote the strategy used by player i in round n, and let σ(n) = (σ1(n), . . . , σN (n)) ∈
∆N denote the joint strategy.2 Suppose that players choose their next-stage strategies as

σ(n+ 1) ∈ BRf,εn(z(n)), (4.2)

where we assume the sequence {εn}n≥1 satisfies

Assumption 4.10. limn→∞ εn = 0,

The associated observation state is updated as

z(n+ 1)− z(n) ∈ γ(n)
(
g(BRf,εn(z(n)))− z(n) +Mn+1

)
. (4.3)

where we assume the sequence (Mn)n≥1 satisfies

Assumption 4.11. For any T > 0 there holds

lim
n→∞

sup
k

{∥∥∥∥ k−1∑
s=n

γ(s+ 1)Ms+1

∥∥∥∥ :

k−1∑
s=n

γ(s+ 1) ≤ T
}

= 0.

2Note that this is a generalization of the repeated play framework discussed in Section 2.3, wherein we allow
players to use strategies σi(n) ∈ ∆i, rather than restricting to vertices of ∆i.
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We refer to the sequence {εn}n≥1 in (4.2) as a best-response perturbation. We refer to a sequence

{z(n)}n≥1 satisfying (4.3) and (4.2) as a weakened MBR process (cf. [29, 72]).

4.3.1 Examples

Example 4.12. Classical FP is recovered by letting γ(n) = 1
n+1 , letting the observation space be

given by Z = ∆N , letting g : ∆(Y ) → ∆N with g(x) = (g1(x), . . . , gN (x)), where gi : ∆(Y ) →
∆(Yi) is given by gi(x) =

∑
y−i∈Y−i x(yi, y−i), and for each i letting fi : ∆N → ∆(Y−i) with

fi(z) = (z1, . . . , zi−1, zi+1 . . . , zN ).

Example 4.13. Joint Strategy FP [73] is recovered by letting γ(n) = 1
n+1 , setting the observations

space to be Z = ∆(Y ), letting g : ∆(Y )→ ∆(Y ) to be the identity function and letting fi : ∆(Y )→
∆(Y−i) be given by fi(z) =

∑
yi∈Yi z(yi, y−i).

Example 4.14. Suppose all players use an identical action space given by Yi = Ȳ , ∀i. In this case,

Empirical Centroid FP (ECFP) [104] is recovered by letting γ(n) = 1
n+1 , letting the observation

space be given by Z = ∆(Ȳ ), letting g : ∆(Y ) → ∆(Ȳ ) be given by g(x) = N−1
∑N

i=1 xi where

yi 7→ xi(yi) =
∑

y−i∈Y−i x(yi, y−i), and letting fi : ∆(Ȳ ) → ∆(Y−i) be given by fi(z) = (z, . . . , z),

i.e., the (N − 1)-tuple containing repeated copies of z.3

4.3.2 Observation of Strategies

In a game-theoretic learning algorithm, it is generally assumed that players observe the “realized

actions” played by others, but may not observe the mixed strategies used to generate the realized

actions.

In a FP-type algorithm, the question of whether players view “realized actions vs mixed strate-

gies” is more involved due to the fact that the objects that players view are assumed to live in the

observation space Z.

Let σi(n) denote the mixed strategy used by player i ∈ N in round n ≥ 1 and let yi(n) denote

the realized action used by player i in round n. The action yi(n) is assumed to be drawn as a

random sample from σi(n). Let σ(n) := σ1(n) × · · · × σN (n) be the joint mixed strategy used in

round n and let y(n) = (y1(n), . . . , yN (n)) be the joint action tuple played in round n.

Suppose that there exists a sequence {εn}n≥1 satisfying Assumption 4.10 such that for any

σi ∈ BRi,εn(fi(z(n − 1))), the support of the mixed strategy σi contains only pure strategies that

are εn-best responses.

3The ECFP algorithm is explored in more depth in Section 4.5 in connection with the robustness result.

61



In this case, we will assume that the observation state is updated towards the mapping of the

realized action g(1y(n)) and that Mn = 0 for all n ≥ 1. That is,

z(n+ 1)− z(n) ∈ γ(n)
(
g(1y(n))− z(n)

)
.

This effectively assumes that players observe the mapping of the realized action g(1y(n)). In the

case of classical FP, this is equivalent to assuming that players view the realized actions of others.

The applications studied in the later parts of the dissertation (Chapters 5–7) admit such a sequence

{εn}n≥1.

Suppose that there exists a sequence {εn}n≥1 satisfying Assumption 4.10 such that in each stage

n ≥ 1 the mixed strategy of each player i ∈ N satisfies σi(n) ∈ BRf,εn(z(n)), but there does not

exist a sequence {ηn}n≥1 satisfying ηn → 0 such that each strategy yi in the support of σi(n) is an

ηn-best response. We consider two cases.

Case 1. If the observation mapping g is linear, then we assume that the observation state is

updated towards the mapping of the realized action g(1y(n)). That is

z(n+ 1)− z(n) ∈ γ(n)
(
g(σ(n))− z(n) +Mn

)
where the random variable Mn is given by

Mn = g(1y(n))− g(σ(n)).

As long as γ(n) is deterministic and γ(n) = o( 1
logn), then {Mn}n≥1 is a martingale difference

sequence satisfying Assumption 4.11 with probability 1. Note that in classical FP, JSFP, and

ECFP, the mapping g is linear.

Case 2. If the observation mapping g is nonlinear, then we assume that players observe the

mapping of the mixed strategies into the observation space. That is, the observation state is

updated as

z(n+ 1)− z(n) ∈ γ(n)
(
g(σ(n))− z(n)

)
.

4.4 Robustness Property for MBR Process

The following theorem is the main theoretical result of the chapter. It shows that if Assumptions

2.1–2.3 and 4.10–4.11 are satisfied, then the set of limit points of any weakened (discrete-time)
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MBR process are contained in a chain-recurrent set of the associated differential inclusion

ż(t) ∈ g
(
BRf (z(t)

)
− z(t). (4.4)

Theorem 4.15. Let Ψ = ({γ(n)}n≥1, g, (fi)
n
i=1) be a MBR algorithm. Assume that Ψ satisfies

Assumptions 2.1–2.3. Assume that (z(n))n≥1 is a weakened MBR process satisfying Assumptions

4.10–4.11. Then (z(n))n≥1 converges to the internally chain recurrent set of the associated differ-

ential inclusion (4.4).

The proof of Theorem 4.15 follows directly from the following lemma together with Proposition

4.6 and Theorem 4.8. The lemma shows that for sufficiently small ε the ε-best responses are

contained in the δ-perturbations of BR for all z. While this is clearly true pointwise, the uniformity

in z has not previously been shown. This observation was not made in [29] and results in a gap in

the proof presented there.

Lemma 4.16. Let εn → 0 as n→∞. Then there exists a sequence δn → 0 such that BRf,εn(z) ⊆
BRδn

f (z) uniformly for z ∈ Z.

Proof. We work with the supremum norm on Z and ∆(Yi) throughout the proof.

Fix an arbitrary δ > 0. Following [108], define the “stability set” of a (joint) action y ∈ Y as

St(y) := {z ∈ Z : yi ∈ BRi(fi(z)), ∀i}.

Note that the closer that z is to boundary of St(y), the smaller that ε must be to ensure that

ε-best responses place large mass on y, and hence are δ-perturbations of y = BR(z). To gain the

uniform inclusion of the ε-best responses in the δ-perturbations we consider the interior of the sets

St(y) separately from neighbourhoods of boundaries of the stability sets. To this end, extend the

stability set concept to sets of actions T ⊆ Y by defining

St(T ) :=
⋂
y∈T

St(y)

to be the set of z ∈ Z such that all actions y ∈ T are best responses to z. In what follows, we will

use the stability sets St(T ) to construct a finite cover {D(T )}T⊆Y of Z such that BR(f(z)) ⊆ T

for each z ∈ D(T ). This allows us to show that ε-best responses to elements in D(T ) place most of

their mass on T , and in particular it can be shown that for each set D(T ) ⊆ Z there holds

BRf,ε(z) ⊆ BRδ
f (z), for all z ∈ D(T ) (4.5)
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for all ε sufficiently small. Since the cover is finite, we can show that in fact

BRf,ε(z) ⊆ BRδ
f (z), for all z ∈ Z (4.6)

holds for all ε sufficiently small. (We note, however, that we proceed along a slightly more direct

route, showing (4.6) without directly verifying (4.5).)

To this end, note that by the upper hemicontinuity of BRi and continuity of fi, we have that

St(y) and St(T ) are closed sets. For any η > 0 and any T ⊆ Y , let B(St(T ), η) be the open

ball of radius η about St(T ) which is empty if St(T ) is empty. Let M =
∏
i∈N |Yi| and for each

k ∈ {1, 2, . . . ,M} let T k be the collection of all subsets T ⊆ Y such that |T | = k. For the tuple

η>k = (ηk+1, . . . , ηM ) define the “exclusion set”

Ek(η>k) :=

M⋃
κ=k+1

⋃
T∈T κ

B(St(T ), ηκ)

to be the set of z ∈ Z that are close to any stability sets St(T ) with |T | > k, where close is measured

by the tuple η>k.

We now work recursively from k = M down to k = 1. Start by letting ηM = δ and let

D(Y ) := B(St(Y ), ηM ).

Now let k ∈ {1, . . . ,M − 1} and suppose η>k is given. Suppose T ∈ T k, and let T̃ ⊆ Y such

that T̃ 6⊆ T. Then |T ∪ T̃ | > k, so by the definition of Ek(η>k) we have that St(T ) ∩ St(T̃ ) =

St(T ∪ T̃ ) ⊆ Ek(η>k). Therefore St(T )∩St(T̃ )∩Ek(η>k)c = ∅. Since Ek(η>k) is open by definition,

the complement is closed. Therefore the sets St(T )∩Ek(η>k)c and St(T̃ ) are disjoint compact sets

and either have a minimal separating distance or at least one is empty. We can therefore fix an ηk

such that, for each T ∈ T k,
D(T ) := B(St(T ), ηk) ∩ Ek(η>k)c

is separated from

1. St(T̃ ) for all T̃ ⊆ Y such that T̃ 6⊆ T , and

2. D(T̃ ) for all T̃ ∈ T k with T̃ 6= T .

Iterating this reasoning down to k = 1 defines the full set of ηk values as well as D(T ) for all T ⊆ Y
with T 6= ∅.
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We now show that the sets {D(T )}T⊆Y partition Z. By definition we have that D(Y ) =

B(St(Y ), ηM ); using a backwards induction argument one may verify that

M⋃
k=1

⋃
T∈T k

D(T ) =
M⋃
k=1

⋃
T∈T k

B(St(T ), ηk). (4.7)

Hence, Z =
⋃
T⊆Y St(T ) ⊆

⋃
T⊆Y D(T ) ⊆ Z, where the equality holds because there exists a

best response to any z ∈ Z, and the first containment holds by (4.7). Furthermore, by property

2) above (and the fact that, by construction, D(T ) ∩ D(T̃ ) = ∅ for |T | 6= |T̃ |) we have that

D(T ) ∩D(T̃ ) = ∅, ∀T, T̃ ⊆ Y, T̃ 6= T . Hence the sets {D(T )}T⊆Y partition Z.

We wish to show that for z ∈ D(T ), the ε-best responses place most of their mass on elements

in T . To this end, let T ∈ T k for arbitrary 1 ≤ k ≤ M , and let D̄(T ) be the closure of D(T ). We

claim that if z ∈ D̄(T ), then all pure strategy best responses to z are contained in T . To see this,

suppose contrariwise that z ∈ D̄(T ) has a pure strategy best response not contained in T . Then

z ∈ St(T̃ ) for some T̃ 6⊆ T , which violates Property 1) above.

Now define, for z ∈ Z, the set T (z) to be the T ⊆ Y such that z ∈ D(T ). Also define

Ti(z) := {yi ∈ Yi : (yi, y−i) ∈ T (z) for some y−i ∈ Y−i}, so that all of Player i’s pure strategy best

responses to z ∈ Z are contained in Ti(z). Thus, for z ∈ D̄(T ), for each i there exists a ξi,δ(z) > 0

such that

max
yi∈Yi

Ui(1yi , f(z))− max
ỹi 6∈Ti(z)

Ui(1ỹi , f(z)) = ξi,δ(z).
4

Since D̄(T ) is compact and Ui (and hence ξi) is continuous, we get inf
p∈D̄(T )

ξi,δ(z) > 0, ∀i. Since

there are finitely many T ⊆ Y and i ∈ N , there exists a ξδ > 0 such that for each i and z ∈ Z,

maxyi∈Yi Ui(1yi , fi(z)) − maxỹi /∈Ti(z) Ui(1ỹi , fi(z)) ≥ ξδ. We have shown that for any i and any z,

any action not in Ti(z) receives utility less than the best response by at least an amount ξδ.

Invoking the linearity of zi 7→ Ui(zi, z−i), it follows that for z ∈ Z, for each i, an ε-best response

to z can put probability at most ε/ξδ on actions not in Ti(z). That is, for any z ∈ Z and for any

i ∈ N ,

BRi,ε(fi(z)) ⊆
{
xi ∈ ∆(Yi) :

∑
yi∈Ti(z)

zi(yi) ≥ 1− ε

ξδ

}
.

Let ε ≤ min{δξδ, δ} and let x ∈ BRf,ε(z). By the above, x is a distance at most δ from a

strategy x′ which places all its mass on T (z). Simultaneously, by the construction of D(T ), z is a

distance at most δ from the set St(T (z)); i.e., there exists a z′ ∈ St(T (z)) such that d(z, z′) ≤ δ.

By the definition of the stability set, we have x′ ∈ BRf (z′). This shows that x ∈ BRδ
f (z). Since

4For completeness we emphasize that ξi,δ is in fact a function of δ, as well as z.
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z was arbitrary, and this holds for any x ∈ BRf,ε(z) we have BRf,ε(z) ⊆ BRδ
f (z), for all z ∈ Z.

Since this holds for any ε ≤ min{δξδ, δ}, it follows that for any sequence εn → 0 there exists a

sequence δn → 0 such that BRf,εn(z) ⊆ BRδn
f (z) for any z ∈ Z.

We now prove Theorem 4.15.

Proof. By assumption, players choose their strategies according to (4.2). Applying (4.3) we get

the recursive form γ(n)−1(z(n+ 1)− z(n))− γ(n)−1Mn+1 ∈ g(BRf,εn(z(n)))− z(n), where εn → 0.

By Lemma 4.16, we know that γ(n)−1(z(n+ 1)− z(n)) ∈ g(BRδn
f (z(n)))− z(n) for some sequence

δn → 0. Let F : Z ⇒ Z be given by F (z) = g(BRf (z)) − z. Since g is uniformly continuous, the

previous equation implies that γ(n)−1(z(n+ 1)− z(n)) ∈ F ηn(z(n)) for some sequence ηn → 0. By

Proposition 4.6, the continuous-time interpolation of {z(n)}n≥1 is a bounded perturbed solution to

the associated differential inclusion (4.4). The result then follows by Theorem 4.8.

An important consequence of Theorem 4.15 is that, if one wishes to show convergence of a

MBR algorithm to some equilibrium set, one need only verify that the associated internally chain

recurrent set is contained in the equilibrium set.

This has been shown, for example, with the set of NE and classical FP in potential games [28],

two-player zero-sum games [64], and generic 2×m games [35]. Thus, the following important result

( [29], Corollary 5) may also be seen as a consequence of Theorem 4.15. As this result will arise in

the subsequent discussion, we find it convenient to state it here.

Corollary 4.17 ( [29], Corollary 5). Let Γ be a potential game, two-player zero-sum game, or

generic 2×m game. Let (q(n))n≥1 be a weakened FP process and suppose that Assumptions 4.10–

4.11 hold. Then (q(n))n≥1 converges to the set of NE in the sense that limn→∞ d(q(n), NE) = 0.

4.5 Example: Empirical Centroid Fictitious Play

In this section we use the tools developed in this chapter to prove a robust version of Theorem

3.4. In particular, we will show that under the assumptions of Theorem 3.4, any weakened ECFP

process converges in the same sense as in Theorem 3.4.

We study the limit sets of discrete-time ECFP (DT-ECFP) by relating them to the limit sets

of continuous-time ECFP (CT-ECFP). Lemma 4.18 uses the robustness result for MBR processes

(Theorem 4.15) to show that the limit sets of the DT-ECFP processes (3.9) and (3.10) are contained

in the internally chain recurrent sets of the CT-ECFP differential inclusions (3.11) and (3.12).

Lemma 4.19 shows that the respective internally chain recurrent sets of CT-ECFP, (3.11) and
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(3.12), are contained in the SNE and MCE sets. Lemmas 4.18 and 4.19 together prove Theorem

4.20—the robustness result for ECFP processes.

Lemma 4.18. Suppose Assumptions 3.1–3.2 hold. Let {q(n), q̄(n)}n≥1 be a weakened ECFP process

such that the associated sequence (εn)n≥1 satisfies Assumption 4.10. Then,

(i) The set of limit points of {q̄(n)}n≥1 is an internally chain recurrent set of (3.12),

(ii) The set of limit points of {q(n)}n≥1 is an internally chain recurrent set of (3.11).

Proof. For q ∈ ∆N , let F1(q) = BR(q̄) − q̄ and let F2(q) = BR(q̄) − q. By Lemma 4.16 and

Assumption 4.10, there exist sequences δ1,n → 0 as n → ∞ and δ2,n → 0 as n → ∞ such that

q̄(n) as given in (3.10) is a δ1,n-perturbation of F1 for all n ≥ 1, and q(n) as given in (3.9) is a

δ2,n-perturbation of F2 for all n ≥ 1. By Proposition 4.6, the continuous-time interpolation of q̄(n)

is a perturbed solution of dx
dt ∈ F1(x) and the continuous-time interpolation of q(n) is a perturbed

solution of dx
dt ∈ F2(x). By Theorem 4.8, the set of limit points of a bounded perturbed solution of

a differential inclusion is an internally chain recurrent set of the differential inclusion, which proves

the result.

Lemma 4.19. Let Γ be an identical interests game. Let C be a permutation-invariant partition of

the associated player set N . Then,

(i) Every internally chain recurrent set of (3.12) is contained in the set of SNE.

(ii) Every internally chain recurrent set of (3.11) is contained in the set of MCE.

Proof. Proof of (i): Let W := −U . By Section 3.4.3 (in particular, see (3.13)), W is a Lyapunov

function for the set of SNE with x(t) := q̄(t). Note that W is multilinear and hence continuously

differentiable.

For a differentiable function f : Rm → R, we say x ∈ Rm is a critical point of f if for i = 1, . . . ,m,

the partial derivative at x is zero, i.e, ∂
∂xj

f(x) = 0. By Sard’s Theorem ( [109], p. 69), if CP is

the set of critical points of W , then W (CP ) contains no intervals. By definition, the set of NE is

contained in the set of critical points of U , and hence also contained in the set of critical points of

W . Furthermore, by definition, SNE ⊂ NE, and hence the set SNE is contained in the critical

points set of W . Thus, by Proposition 4.9, every internally chain recurrent set of (3.12) is contained

in the set SNE.

Proof of (ii): Note that, by Lemma 3.13, σ ∈ BR(σ̄) =⇒ σ̄ ∈ BR(σ̄). Thus, σ ∈ MCE implies

that σ̄ ∈ SNE. Let V : ∆N → R, with V (σ) := 1
n

∑N
i=1 U(σi, σ̄−i), and note that by Lemma

3.12, V (σ) = U(σ̄). Invoking again Sard’s Theorem, U(NE) contains no intervals, and hence

U(SNE) ⊂ U(NE) contains no intervals. Since U(SNE) contains no intervals, V (MCE) also

contains no intervals.
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By Section 3.4.3 (in particular, see (3.15)) the function V is a Lyapunov function for the set of

MCE with x(t) := q(t). It follows from Proposition 4.9 that every internally chain recurrent set of

(3.11) is contained in the set MCE.

Lemmas 4.18 and 4.19 together prove the following Theorem (cf. Theorem 3.4).

Theorem 4.20. Assume Γ is a potential game. Let C be a permutation-invariant partition of the

associated player set N . Let {q(n), q̄(n)}n≥1 be a weakened ECFP process such that the associated

sequence (εn)n≥1 satisfies Assumption 4.10. Then,

(i) players learn MCE strategies in the sense that limn→∞ d(q(n),MCE) = 0,

(ii) players learn SNE strategies in the sense that limn→∞ d(q̄(n), SNE) = 0.
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Chapter 5

Mitigating Complexity: A Single Sample Approach

5.1 Introduction

While MBR algorithms have many useful properties, their practicality can be undermined by the

enormous computational burden inherent in the best-response computation. For example, in each

stage of the FP algorithm, each player i ∈ N must compute the expected utility for each of her

actions given her current beliefs regarding opponents’ strategies. Evaluating this expected utility

is a problem whose complexity scales exponentially in the number of players (see Section 5.2).

In this chapter we study a Monte Carlo-based technique for mitigating computational com-

plexity in MBR algorithms. Using this technique, a MBR algorithm can be implemented with a

per-iteration complexity that scales linearly (rather than exponentially) in the number of players.

The Sampled FP (SFP) algorithm [48, 49, 52, 53, 57, 110] introduced the idea of mitigating

complexity in MBR algorithms using a Monte Carlo (i.e., sampling-based) approach.1 At each

iteration of the SFP algorithm, players approximate the expected utility of each of their actions

by drawing several samples from an underlying probability distribution. Players then myopically

choose an “optimal” next-stage action using the approximated utility as a surrogate for the true

expected utility. The work [48] showed that as long as the number of samples drawn each round

grows sufficiently quickly, players learn an equilibrium in the same sense as FP, almost surely.

SFP mitigates complexity by avoiding any direct evaluation of the expected utility. However,

SFP has a notable shortcoming: In order to guarantee learning is achieved, the number of samples

that must be drawn in each iteration (i.e., round) of the algorithm grows without bound (on the

order of
√
n samples per round, where n is the current round of the repeated play algorithm).

1The work [48] introduced these techniques and studied their use in large-scale traffic routing Problems. In
particular, in [48], sampled FP was applied to optimize traffic routing using a black-box simulation model of the
Troy, Michigan city traffic grid. An interesting future research direction would be to study traffic optimization using
single sample MBR dynamics in similar models of a city traffic grid.
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In this chapter (see also [75,111,112]) we first extend the techniques proposed in [48] to general

MBR algorithms. We call this such an algorithm a sampled MBR (S-MBR) algorithm. We then

propose a variant of the S-MBR algorithm—which we call the Single Sample MBR (SS-MBR)

algorithm—in which only one sample need be drawn each round of the repeated play process. A

SS-MBR algorithm achieves the same fundamental computational advantage as a S-MBR algorithm

(i.e., direct evaluation of the expected utility is avoided) but does so by drawing only one sample

per round (rather than the drawing kn samples in round n, with limn→∞ kn = ∞ as required in

S-MBR).

Intuitively, the reduction in the required number of per-round samples is accomplished by treat-

ing the expected-utility process as quasi static. Such treatment is possible due to the diminishing

incremental step size in the expected-utility process. In a SS-MBR algorithm, the sample data

gathered in the current round of repeated play is recursively combined with sample data from pre-

vious rounds using a stochastic-approximation-type estimation rule. This may be contrasted with

a S-MBR algorithm where, in each round of the repeated play, data gathered from sampling in

the previous round is wholly discarded and a fresh set of samples is gathered to approximate the

expected utility for the upcoming round. (See Section 5.4.3 for more details.)

Due to the improved efficiency in information handling, SS-MBR algorithms are able to achieve

convergence at a rate similar to that of S-MBR algorithm (in terms of repeated-play iterations)

despite drawing far fewer samples per-iteration. (See Section 5.5.4 for more details.)

The main contribution of the chapter is the presentation of a prototypical SS-MBR algorithm

and proof of convergence to the internally chain recurrent set of the associated differential inclusion.

The proof relies on applying the robustness result developed in Chapter 4 to the SS-MBR processes.

Related works have studied approaches for mitigating computational issues arising in large-

scale implementations of FP. Joint Strategy FP (JSFP) [73] studies a variant of FP in which

players update a utility estimate using a computationally simple recursive procedure and choose

next-stage actions using a best-response rule combined with an inertial term. JSFP is shown to

converge to pure strategy Nash equilibria (NE) in ordinal potential games but is fundamentally

different from SS-FP (and FP) in that the tracked utility corresponds to an empirical distribution

taken over joint actions,2 and convergence may only occur at pure NE. In κ-exponential FP [76],

players use any given action with a probability that depends on the average utility the action has

generated when played in previous rounds. In effect, this results in a reinforcement technique which

relies on a relatively simple recursive update rule. Alternatively, one may also mitigate complexity

2In FP, Sampled FP, and SS-FP, players choose a best response to the product of marginal empirical distributions
(or an estimate thereof), which implicitly presumes a form of independence among opponents’ strategies. Tracking
and responding to the empirical distribution of joint actions, as in JSFP, fundamentally alters the dynamics of classical
FP. SS-FP achieves computational efficiency while preserving the basic dynamical structure of FP.
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using a payoff-based variant of FP such as the actor-critic process studied in [29]. Our focus on

SS-MBR dynamics is due in part to its intrinsic value as a means of mitigating complexity, but

also stems from our eventual goal to implement the algorithm in a network-based setting. SS-MBR

dynamics will admit a simple network-based implementation in which players will form an estimate

ẑ(n) of the “true” observation state z(n) by sharing information with neighbors, and approximate

the utility of each of their actions by drawing samples from the probability distribution fi(ẑ(n)).

Other work has considered mitigating complexity by restricting attention to games where the

utility functions exhibit only a local dependence on neighboring players as defined by a graph over

the player set; e.g., [89, 113].

We note that payoff-based learning algorithms and first-order methods e.g., [29,61,86,88,89,114,

115], tend to be computationally simple and, under certain circumstances, can be a good alternative

to the present approach. However, such algorithms often assume that players have access to payoff

information, and may not be applicable in settings where this information is costly to obtain or

otherwise unavailable. For example, in a network-based setting such as [111], players are engaged

in a form of virtual game play without access to physical payoff measurements. In such a setting,

SS-FP is shown to achieve learning and may be preferable to the aforementioned approaches.

The remainder of the chapter is organized as follows. Section 5.2 introduces the notion of

complexity studied throughout the chapter. Section 5.3 reviews sampled MBR algorithms. Section

5.4 presents the SS-MBR algorithm and proves that such processes converge to the internally chain

recurrent set of the associated differential inclusion. As an example application, Section 5.5 applies

the single sample approach to classical fictitious play.

5.2 Computational Complexity in MBR Algorithms

In a MBR algorithm, each player must solve the optimization problem

arg max
yi∈Yi

Ui(yi, fi(z(n)))

at each iteration of the algorithm. In order to solve this optimization problem, player i must

compute the expected utility for each action yi ∈ Yi given the probability distribution fi(z(n)). In

general, the computational complexity of evaluating this expected utility increases exponentially in

the number of players N . This is the case, for example in FP.

Our focus in this chapter will be on mitigating the per-iteration computational complexity of an

algorithm. We say a learning algorithm has (per-iteration) complexity O(f(N,n)) if the complexity

of a single player choosing her next-stage action is O(f(N,n)), where N is the number of players
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and n is the stage of the algorithm. Using this convention, a MBR algorithm has computational

complexity (in the worst case) of O(eN ). We will show that the single-sample variant of a MBR

algorithm achieves learning in the same sense as its deterministic counterpart, but has a complexity

of O(N).

5.3 Sampled Myopic Best-Response Algorithm

In this section we briefly review the sampling-based approach for mitigating complexity introduced

in [48] in the context of MBR algorithms. Section 5.3.1 introduces some necessary notation and

Section 5.3.2 presents the Sampled MBR (S-MBR) algorithm.

5.3.1 Algorithm Setup

In a S-MBR algorithm, the expected utility Ui(yi, fi(z(n))), yi ∈ Yi is approximated by drawing

samples from the underlying probability distribution fi(z(n)) and computing the average utility

over the sampled actions.

In particular, for each yi ∈ Yi, let Ûi(yi, n) denote an estimate that player i forms of the expected

utility Ui(yi, fi(z(n))). Each round of play, player i draws several “test actions” as random samples

from the forecasted strategy fi(z(n)) ∈ ∆−i. For each action yi ∈ Yi, player i computes the average

utility the action yi would generate given the randomly sampled “test actions.” Player i then

chooses a next-stage action that is myopically optimal using the estimated utility (Ûi(yi, n))yi∈Yi

as a surrogate for the true expected utility in the best response computation (2.6).

Let yi(n) denote the action taken by player i in round n, and let y(n) := (yi(n))i∈N be the joint

action taken at time n.

Let kn denote the number of samples drawn by each player in round n of the repeated play. It

will be shown that, as long as the number of samples satisfies

Assumption 5.1. limn→∞ kn =∞,

then any S-MBR process will converge to the internally chain recurrent set of the associated differ-

ential inclusion.

We now present the general sampled MBR algorithm.

5.3.2 Sampled MBR Algorithm

Initialize

(i) Each player i ∈ N chooses an arbitrary initial action yi(1) ∈ Yi. The observation state is
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initialized as z(1) = g(1y(1)). A sample rate sequence (kn)n≥1 is fixed.

Iterate (n ≥ 1)

(ii) Each player i ∈ N draws kn “test actions” as (conditionally independent given z(n)) random

samples from the distribution fi(z(n)); let ỹs−i(n) denote the s-th random sample drawn by player

i in round n. Player i estimates the utility of each of her actions yi ∈ Yi using

Ûi(yi, n) =
1

kn

kn∑
s=1

Ui(yi, ỹ
s
−i(n)). (5.1)

(iii) Each player i ∈ N chooses a next-stage action that is a best response given her estimate of the

expected utility, i.e.,

yi(n+ 1) ∈ arg max
yi∈Yi

Ûi(yi, n). (5.2)

(iv) The observation state is updated recursively to account for the action just taken: z(n + 1) =

z(n) + 1
n+1

(
g(1y(n+1))− z(n)

)
.

5.3.3 Discussion

The following theorem shows that convergence of a S-MBR process is ensured so long as the sample

rate sequence satisfies Assumption 5.1.

Theorem 5.2. Let (z(n))n≥1 be a S-MBR process. Suppose Assumptions 2.1–2.3 and Assumption

5.1 hold. Then (z(n))n≥1 converges to the internally chain recurrent set of (4.4), almost surely.

Proof. By the strong law of large numbers, Û(yi, n) → U(yi, fi(z(n))), a.s., as n → ∞. Hence, a

S-MBR process is a weakened MBR process, almost surely. The result then follows by Theorem

4.15.

We note that in the case of classical FP, the above result combined with Corollary 4.17 implies

that limn→∞ d(q(n), NE) = 0 for the sampled variant of FP. In the case of ECFP, the above result

combined with Lemma 4.19 implies that limn→∞ d(q̄N (n), CNE) = 0 and limn→∞ d(q(n),MCE) =

0 for the sampled variant of ECFP.

Computational Complexity in S-MBR

In a sampled MBR algorithm players must drawn kn samples from the distribution fi(z(n)) in round

n and evaluate the pure-strategy utility at each sample. This gives a per-iteration complexity of
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O(Nkn) where N is the number of players and, per Assumption 5.1, kn →∞ as n→∞.

5.4 Single Sample Approach

5.4.1 Algorithm Setup

In a single sample MBR algorithm, players form an estimate of the expected utility using a recursive

stochastic-approximation-type rule. Similar to S-MBR, let Ûi(yi, n) be the estimate which player i

maintains of the expected utility Ui(yi, q−i(n)) for each of her actions yi ∈ Yi and let yi(n) be the

action taken by player i in round n. Let {ρ(n)}n≥1 be a deterministic sequence of weights to be

used in the stochastic-approximation-type procedure, and assume:

Assumption 5.3. The sequence (ρ(n))n≥1 is such that 0 < ρ(n) ≤ 1,
∑

n≥1(ρ(n))2 < ∞, and∑
n≥1 ρ(n) =∞.

We will assume that the step-size sequence (γ(n))n≥1 satisfies Assumption 2.2 and

Assumption 5.4. limn→∞
γ(n)
ρ(n) = 0.

The SS-MBR algorithm is outlined below.

5.4.2 Single Sample MBR Algorithm

Initialize

(i) For each i ∈ N , let yi(1) ∈ Yi be arbitrary. Initialize the observation state as z(1) = g(1y(1))

and initialize the utility estimate as Ûi(yi, 0) = 0, ∀yi ∈ Yi, ∀i.

Iterate (n ≥ 1)

(ii) Each player i ∈ N draws a single “test action” ỹ−i(n) as a (conditionally independent, given

z(n)) random sample ỹ−i(n) ∼ fi(z(n)) and updates the estimate Ûi(yi, n) for each action yi ∈ Yi
according to the recursion,3

Ûi(yi, n) = (1− ρ(n))Ûi(yi, n− 1) + ρ(n)Ui(yi, ỹ−i(n)).

(iii) Each player i ∈ N chooses a next-stage action using the rule:

yi(n+ 1) ∈ arg max
yi∈Yi

Ûi(yi, n).

3Since ỹ−i(n) is a pure strategy, the evaluation of the utility is relatively simple.
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(iv) The observation state is updated to reflect the action just taken:

z(n+ 1) = z(n) + γ(n+ 1)(g(1y(n+1))− z(n)).

5.4.3 Discussion

The main difference between S-MBR and SS-MBR is the manner in which players form estimates

of the expected utility sequence {Ui(yi, fi(z(n)))}n≥1, ∀yi ∈ Yi. In S-MBR, players’ estimates (see

(5.1)) “start afresh” each round of the repeated play—information gathered from sampling in the

previous round is discarded, and players draw kn (with kn →∞) new samples in order to form an

estimate of the utility for the current round.

This may be considered an inefficient use of information, since the expected utility only changes

slightly from one round to the next. In particular, note that the expected utility Ui(yi, ·) is Lipschitz

continuous with some Lipschitz constant K, and the increment of the empirical distribution (5.8)

is bounded as ‖z(n) − z(n − 1)‖ ≤ Mγ(n) for some constant M > 0. Thus, the increment in the

expected utility is bounded as

|Ui(yi, fi(z(n)))− Ui(yi, fi(z(n− 1)))| ≤ KMγ(n), (5.3)

where, by Assumption 2.2, γ(n)→ 0. Intuitively speaking, this means that if one has an accurate

estimate of the expected utility Ui(yi, fi(z(n − 1))) in round (n − 1), then it is wasteful to wholly

discard this information when forming an estimate of the round-n utility, Ui(yi, fi(z(n))). The

SS-MBR estimation rule leverages the diminishing increment property (5.3) in order to form an

accurate estimate using only one sample per round.

The S-MBR estimation rule treats {Ui(yi, fi(z(n)))}n≥1 as if it were arbitrarily generated from

one round to the next, drawing a completely new set of kn, kn → ∞ samples to estimate each

Ui(yi, fi(z(n))), ∀yi ∈ Yi in each round. The SS-MBR estimation rule, on the other hand, treats

{Ui(yi, fi(z(n)))}n≥1 as if it were quasi static, drawing one sample per round, and taking a type of

average over time.4 Because of this, despite drawing only one sample per round, the SS-MBR esti-

4Additional insight may be gained by considering the dynamical systems approach to stochastic approximations
(e.g., [30]), which allows one to study the behavior of certain discrete-time processes by analyzing an associated
differential equation. In such an analysis, an estimation rule such as (5.6) is often considered as a two-time-scale
system [116,117], with the ODE associated with the estimation rule operating at a faster rate than ODE associated
with the expected-utility process. In the asymptotic analysis of such systems, the slower process may often be
treated as effectively static compared to the faster process. We note, however, that the proofs of our results rely on
self-contained, martingale-type arguments rather than invoking results from dynamical systems based treatment of
stochastic approximation literature.
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mate of Ui(yi, fi(z(n))) actually utilizes information from n samples, whereas the S-MBR estimate

utilizes information from (only) kn samples. Thus, the SS-MBR estimation procedure actually

uses data from more samples than SFP when the S-MBR sampling rate is sublinear; i.e., when

limn→∞ kn/n = 0. This is reflected in the simulation results (see Section 5.5.4).

Computational Complexity in SS-MBR Algorithms

In a SS-MBR algorithm each player draws one sample from the distribution fi(z(n)) in round n

and evaluates the pure-strategy utility at this sample. This gives a complexity of O(N).

5.4.4 SS-MBR: Convergence Result

In this section we prove that a SS-MBR process converges, almost surely, to the internally chain

recurrent set of the associated differential inclusion (see Theorem 5.7). We begin by stating the

following technical lemma, which follows as a consequence of Toeplitz’s lemma [118].

Lemma 5.5. Let {xn}n≥0 satisfy limn→∞ xn = x. Let {ρn}n≥0 satisfy 0 < ρn ≤ 1 and
∑

n≥0 ρn =

∞. Then, the sequence {wn}n≥0 given by wn = (1−ρn)wn−1+ρnxn, n ≥ 1, satisfies limn→∞wn =

x.

The following lemma characterizes the convergence properties of the estimation procedure used

to compute Û(yi, n) in a SS-MBR algorithm.

Lemma 5.6. Let {ρn}n≥1 satisfy 0 < ρn ≤ 1,
∑

n≥1 ρn =∞ and
∑

n≥1 ρ
2
n <∞. Let {Fn}n≥1 be a

filtration and let {Xn}n≥1 be a sequence of bounded random variables, adapted to the filtration, say,

|Xn| ≤ B. Let µn = E(Xn | Fn−1) and assume that
(

1
ρn
− 1
)

(µn−µn−1)→ 0 almost surely. Then,

the sequence of random variables {µ̂n}n≥0 given by µ̂n = (1 − ρn)µ̂n−1 + ρnXn, n ≥ 1, satisfies

|µ̂n − µn| → 0 almost surely.

Proof. Subtracting µn from both sides of µ̂n = (1 − ρn)µ̂n−1 + ρnXn gives En = (1 − ρn)En−1 +

ρn

(
Xn − µn +

(
1
ρn
− 1
)
δn

)
, where En := µ̂n − µn and δn := µn−1 − µn, δ0 := 0.

Introduce the Fn-adapted sequences, for n ≥ 1

Fn = (1− ρn)Fn−1 + ρn(Xn − µn), F1 = E1

Gn = (1− ρn)Gn−1 + ρn

(
1

ρn
− 1

)
δn, G1 = 0,

and note that En = Fn +Gn. We will now show that Fn → 0 and Gn → 0 almost surely.
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By assumption,
(

1
ρn
− 1
)
δn → 0 almost surely. Lemma 5.5 applied to {Gn}n≥1 gives Gn → 0

almost surely.

On the other hand,

E(F 2
n | Fn−1) = (1− ρn)2F 2

n−1 + ρ2
nE
(
(Xn − µn)2 | Fn−1

)
≤ (1− ρn)2F 2

n−1 + ρ2
n4B2

=
(
1 + ρ2

n

)
F 2
n−1 − 2ρnF

2
n−1 + ρ2

n4B2.

Since
∑

n≥0 ρ
2
n < ∞, the Robbins-Monro Lemma [119] implies that, {F 2

n}n≥1 converges a.s., and∑
n≥0 ρnF

2
n−1 <∞. These two properties imply Fn → 0, a.s.

The following theorem is the main convergence result for SS-MBR learning processes. It shows

that if Ψ is a MBR algorithm, then the single sample variant of Ψ achieves learning in the same

sense as Ψ.

Theorem 5.7. Let {z(n)}n≥1 be a SS-MBR process. Assume Assumptions 2.1–2.3 and Assump-

tions 5.3–5.4 hold. Then z(n) converges to an internally chain recurrent set of (4.4), almost surely.

Proof. We will prove the result by showing that there exists a sequence {εn}n≥1 with limn→∞ εn = 0

such that Ui(yi(n+1), fi(z(n))) ≥ maxyi∈Yi Ui(yi, fi(z(n)))− εn. By Theorem 4.15, this is sufficient

to guarantee that z(n) converges to an internally chain recurrent set of (4.4).

Since, by (5.7), yi(n + 1) ∈ arg maxyi∈Yi Ûi(yi, n), it is sufficient to show that, for every i ∈ N
and every yi ∈ Yi,

|Ûi(yi, n)− Ui(yi, fi(z(n)))| → 0 as t→∞ a.s. (5.4)

(Note that the individual action spaces Yi are finite.) We will show this by invoking the result

of Lemma 5.6. To that end, fix i ∈ N and yi ∈ Yi, and let X(n) := Ui(yi, ỹ−i(n)), t ≥ 1,

µ(n) := Ui(yi, fi(z(n))), t ≥ 1, and µ̂(n) := Ûi(yi, n), n ≥ 0. For n ≥ 0, let Fn := σ({q−i(s)}n+1
s=1 ).

Note that µ(n) is Fn−1-measurable and that E(X(n)|Fn−1) = µ(n).

In order to invoke Lemma 5.6 it is sufficient to show that

(
1

ρ(n)
− 1

)
(µ(n)− µ(n− 1))→ 0. (5.5)

Let M := maxσ′−i,σ′′−i∈∆−i ‖σ
′
−i − σ′′−i‖, and note that by (5.8), ‖q−i(n) − q−i(n − 1)‖ ≤ Mγ(n).
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Since Ui is Lipschitz continuous and fi is uniformly continuous, there exists a constant K such that

|µ(n)− µ(n− 1)| = |Ui(yi, q−i(n))− Ui(yi, q−i(n− 1))|

≤ K‖q−i(n)− q−i(n− 1)‖ ≤ KMγ(n).

This, together with Assumption 2.2, implies that (5.5) holds.

Thus, X(n), µ(n), µ̂(n), and Fn as defined above fit the template of Lemma 5.6. By Lemma

5.6, |Ûi(yi, n)− Ui(yi, q−i(n))| = |µ̂(n)− µ(n)| → 0 as n→∞, verifying that (5.4) holds.

5.5 Example: Single Sample FP

In this section we use the results of Section 5.4 to study a reduced complexity variant of FP known

as Single Sample FP (SS-FP).

SS-FP may be applicable as a computationally efficient variant of FP in a variety of settings

including large-scale optimization [48], [110]; dynamic programming [52, 53]; traffic routing [49];

cognitive radio [54–56], and learning in Markov decision processes [57]. SS-FP may also be used as

a general tool for distributed learning [111] or control [18].

We construct the process using use the notation q(n) to denote the empirical distribution as

introduced in Section 2.5, and Û(yi, n), ρ(n), and γ(n) as discussed in Section 5.4.1.

We note that the single sample FP process differs from the actorcritic approach of [29] in that

the utility estimates for non-played actions are updated as well as those for the played action. [29]

also needed to ensure all actions were played infinitely often, but that is not necessary here.

5.5.1 Single Sample FP Algorithm

Initialize

(i) For each i ∈ N , let yi(1) ∈ Yi be arbitrary. Initialize the empirical distribution as qi(1) =

yi(1), ∀i, and initialize the utility estimate as Ûi(yi, 0) = 0, ∀yi ∈ Yi, ∀i.

Iterate (n ≥ 1)

(ii) A single “test action” ỹ(n) is drawn as a (conditionally independent, given q(n)) random sample

from the distribution q(n), and each player i ∈ N updates the estimate Ûi(yi, n) for each action
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yi ∈ Yi according to the recursion,5

Ûi(yi, n) = (1− ρ(n))Ûi(yi, n− 1) + ρ(n)Ui(yi, ỹ−i(n)). (5.6)

(iii) Each player i ∈ N chooses a next-stage action using the rule (cf. (2.9), (5.2)):

yi(n+ 1) ∈ arg max
yi∈Yi

Ûi(yi, n). (5.7)

(iv) The empirical distribution for each player i ∈ N is updated to reflect the action just taken:

qi(n+ 1) = qi(n) + γ(n+ 1)(1yi(n+1) − qi(n)). (5.8)

5.5.2 SS-FP Convergence Result

The following result shows that SS-FP achieves learning in the same sense as classical FP (see

Section 2.5) and Sampled FP (S-FP) [48].

Corollary 5.8. Let Γ be a potential game, zero-sum game, or generic 2×m game. Let {q(n)}n≥1 be

a SS-FP process, and assume Assumption 2.2 and Assumption 5.3 hold. Then limn→∞ d(q(n), NE) =

0, almost surely.

The proof of this result follows from Theorem 5.7 and the discussion immediately preceding

Corollary 4.17.

5.5.3 Computational Complexity in SS-FP

In SS-FP, the computation of the next-stage action (see (5.7)) requires players to draw a sample

from the distribution q(n) and evaluate the pure-strategy utility of this sample. This computation

has a complexity of O(N)—a significant reduction from the O(eN ) complexity of classical FP. S-FP,

on the other hand, has a complexity of O(Nnβ), if we assume the step-size sequence to be of the

form kn = nβ. The complexity of SS-FP and S-FP scale identically in terms of the number of

players. However, due to the dependence on n, S-FP becomes increasingly difficult to implement

as the algorithm progresses, whereas, the per-iteration complexity of S-FP is independent of the

iteration number.

5Since ỹ−i(n) is a pure strategy, the evaluation of the utility is relatively simple. Also note that it is not necessary
for each player i to draw a separate “test action” ỹ−i(n + 1), although, if desired (for example, in a network-based
setting [111]), doing so does not affect the convergence result.
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5.5.4 Simulation Results

In order to demonstrate the computational properties of SS-FP and S-FP we simulated both al-

gorithms in a simple traffic routing scenario. Let N = {1, . . . N} denote a finite set of drivers (or

players). Drivers share a common starting point and a common destination and may travel on one

of 10 parallel routes. Let the set of routes be denoted by R, and let the action space of player i

be given by Yi = R, ∀i ∈ N . Let ψr(y) denote the number of drivers on route r given the joint

strategy y. Each route r ∈ R has an associated cost function cr : N → R signifying the delay

experienced on route r given the number of drivers using the route. Let the utility function of

player i be given by ui(y) := −cyi(ψyi(y)). We note that this game is an instance of a congestion

game—a known subset of potential games.

We simulated S-FP and SS-FP in this routing scenario with 30 drivers and 10 routes.6 Figure

5.1 plots the expected utility for SS-FP with parameter ρn = n.7, and for S-FP with sampling rate

given by kn = bnβc for several values of β. The plots are averaged over 5 random instantiations.

The convergence rate of S-FP tends to be slower than that of SS-FP for values of β less than 1.

This is consistent with the observation that SS-FP uses more sampled date than S-FP when the

S-FP sampling rate is sublinear (see Section 5.4.3).

Figure 5.2 plots the evaluation time for each algorithm. Note that since the complexity of S-FP

is dependent on time, the algorithm becomes progressively more difficult to evaluate with each

passing iteration.

6We note that even in this simple traffic routing scenario, classical FP is extremely impractical to deploy. See, for
example, [104] Section VIII-B or [48] for more details.
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Figure 5.1: Expected utility of q(n).

Figure 5.2: Wall-clock evaluation times plotted using linear scale and logarithmic scale.

81



82



Chapter 6

Asynchronous Learning

6.1 Introduction

The canonical MBR algorithm presented in Section 2.4 is couched in the framework of synchronous

repeated play learning. In this classical learning framework, some game Γ is assumed to be fixed,

and players repeatedly face off in the game Γ. At each stage n ∈ N of the repeated interaction,

players are given the opportunity to revise their strategy.

This learning framework implicitly assumes a form of global synchronization. Each agent must

choose their stage-n action before any other agent chooses their stage-(n+ 1) action. In large scale

distributed systems, such global synchronization can be highly impractical.

In this chapter (see also [107, 120], we study a variant of MBR dynamics in which agents are

permitted to act in an asynchronous manner. While asynchronous learning schemes would usually

be analysed using asynchronous stochastic approximation (e.g. [87]) we show in this chapter that

asynchronicity can be handled in a more straightforward manner by simply using our robustness

result. In particular, using Theorem 4.15 we develop a mild sufficient condition under which an

“asynchronous MBR process” can be shown to converge to the internally chain recurrent set of the

associated differential inclusion.

The initial model of asynchronous MBR learning that we study in Section 6.3 is somewhat

abstract—it is this feature that allows us to capture a broad range of asynchronous processes.

After introducing this model and proving convergence results (Section 6.2–6.3), we then provide

two simple examples of highly practical real world models that fall within this framework (Section

6.4).

Subsequently, in Section 6.5 we use the asynchronous MBR learning model to study a variant of

MBR dynamics in which players are guaranteed to learn in stronger sense than is typically ensured
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by MBR convergence results.

Typically, a MBR algorithm is guaranteed to converge in the sense that the observation state

z(n) converges to some equilibrium set. This notion of learning is somewhat abstract and does

not guarantee that the period-by-period strategies used by players converge to any kind of optimal

set themselves. Indeed, there are examples of games where the observation state can converge

to equilibrium but the period-by-period strategies used by players always give the lowest possible

utility (see Section 6.5.1).

We refer to the form of learning where the observation state z(n) approaches an equilibrium

set as weak learning and we refer to the form of learning where players period-by-period mixed

strategies, denoted here by g(n), converge to an equilibrium set as strong learning. In Section

6.5 we present a method that, given a MBR algorithm that achieves weak learning, produces a

variant of the same MBR algorithm that is guaranteed to achieve strong learning. The proof of

convergence relies on showing that the strongly convergent variant of the algorithm fits the template

of an asynchronous MBR algorithm.

We now introduce the notion of asynchronous repeated play learning—a slight modification of

classical repeated play learning framework considered in Sections 2.3–2.4.

6.2 Asynchronous Repeated Play Learning

In order to model asynchrony, we consider an extension of the traditional repeated play framework

in which players may be “active” in some rounds and “idle” in others.

Let (Xi(n))n≥1, be a sequence of (deterministic or random) variables Xi(n) ∈ {0, 1} indicating

the rounds in which player i is active. Let Ni(n) count the number of rounds in which player i has

been active up to and including round n ∈ N; i.e.,

Ni(n) :=
n∑
s=1

Xi(s). (6.1)

Let ai(n) ∈ Ai represent the action chosen by player i in round n. Let the empirical distribution

of player i be defined in this setting as

qi(n) :=
1

Ni(n)

n∑
s=1

ai(s)Xi(s), (6.2)

and let q(n) := (q1(n), . . . , qN (n)).

In order to study asynchronous learning we focus on a special subclass of MBR dynamics in
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which the observation state is given by the empirical distribution q(n), introduced in Section 2.5.

This restriction ensures that the observation state is decoupled across players in a way that allows

for asynchronous updating. In particular, qi(n) need not be updated at the same time (or even

rate) as qj(n) for i 6= j.

6.3 Myopic Best-Response Dynamics with Asynchronous Updates

Let (fi)
N
i=1 be a family of prediction functions satisfying Assumption 2.3. Within the asynchronous

repeated-play framework given above, we say a sequence a (q(n))n≥1 satisfying (6.2) is a myopic

best-response process with asynchronous updates (or asynchronous MBR process) if for n ≥ 1,1

ai(n+ 1) ∈


BRi(fi(q−i(n))) if Xi(n+ 1) = 1,

ai(n) otherwise.

(6.3)

This models a scenario in which each player i may update her action in round (n+ 1) according to

traditional myopic best-response dynamics only if Xi(n+ 1) = 1; otherwise, the action of player i

persists from the previous round.2

We will assume that for each i ∈ N , the counting process (6.1) satisfies

Assumption 6.1.

(i) For each i ∈ N there holds limn→∞Ni(n) =∞,

(ii) For all i, j ∈ N there holds, limn→∞
Ni(n)
Nj(n) = 1.

Part (i) in the above assumption ensures that players are active in infinitely many rounds. Part

(ii) ensures that the number of actions taken by each player remain relatively close; in effect, (ii)

ensures that players obtain a weak form of synchronization.

The following theorem is the main theoretical result of this Section. It shows that under the

above assumptions, a MBR process with asynchronous updates converges in the same sense as its

synchronous counterpart.

Theorem 6.2. Let Ψ = ({γ(n)}n≥1, g, (fi)
N
i=1) be a MBR algorithm satisfying Assumptions 2.1–

2.3. Let (q(n))n≥1 be an asynchronous MBR process generated from Ψ, and assume that Assumption

6.1 holds. Then (q(n))n≥1 converges to the chain recurrent set of the associated differential inclusion

(4.4).

1Let Xi(1) = 1, ∀i and let the initial action ai(1) be chosen arbitrarily for all i. Moreover, for convenience in
notation we have used an inclusion in (6.3). However, if Xi(n + 1) 6= 1, then the inclusion should be interpreted as
an equality: ai(n+ 1) = ai(n).

2Note that classical FP may be seen as a special case within this framework with Xi(n) = 1, ∀i, n.
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We will prove this theorem after briefly discussing some examples.

6.3.1 Examples

Fictitious Play

In fictitious play, the prediction functions (fi)i∈N and observation map g are given as in Example

4.12 in Section 4.3. In this case, it has been shown that the internally chain recurrent set of the

associated differential inclusion is contained in the set of NE for two-player zero-sum games [64],

generic 2×N games [35], and potential games [28]. Hence, we get the following corollary to Theorem

6.2.

Corollary 6.3. Let Γ be a two-player zero-sum game, generic 2 × N game, or potential game.

Let (q(n))n≥1 be an asynchronous FP process, and assume that Assumption 6.1 holds. Then

limn→∞ d(q(n), NE) = 0.

Empirical Centroid FP

Assume that all players have an identical action space (Assumption 3.1) and Γ is a potential

game with permutation invariant potential function (Assumption 3.2). In an ECFP process, the

prediction functions (fi)i∈N and the observation map g are given as in Example 4.14 in Section

4.3.. In Section 4.5 it was shown that under these assumptions, the internally chain recurrent set

of the associated differential inclusion (3.11) is contained in the set of MCE. Hence, we get the

following corollary to Theorem 6.2.

Corollary 6.4. Let Γ be game satisfying Assumptions 3.1–3.2. Let (q(n))n≥1 be an asynchronous

ECFP process, and assume Assumption 6.1 holds. Then limn→∞ d(q(n),MCE) = 0.

Remark 6.5. Under the assumptions Assumption 3.1 and Assumption 3.2, if σ ∈ MCE then

using the permutation invariance of the potential function we get σ̄ ∈ CNE. Hence, the above

theorem also implies that in an asynchronous ECFP process, the centroid distribution converges to

the set of consensus NE; that is, limn→∞ d(q̄(n), CNE) = 0.3

6.3.2 Proof of Theorem 6.2

In order to prove Theorem 6.2 we will study an underlying (synchronous) MBR process that is

embedded in the asynchronous myopic BR process (q(n))n≥1 defined in (6.2)–(6.3). We begin by

3We note that similar results can be proven for the more general version of ECFP with permutation invariant
classes. However for simplicity, we focus our examples in this section on the basic formulation of ECFP. See [121] for
more details about the general case.
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presenting some additional definitions that allow us to study the embedded process.

In particular, for s ∈ N define the following terms:

τi(s) := sup{n : N : Ni(n) ≤ s}

ãi(s) := ai(τi(s))

ã(s) := (ã1(s), . . . , ãn(s))

q̃i(s) := qi(τi(s))

q̃(s) := (q1(s), . . . , qn(s))

q̂ij(s) := qj(τi(s+ 1)− 1)

q̂i(s) := (q̂i1(s), . . . , q̂in(s)).

In words, the term τi(s) denotes the round number when player i is active for the s-th time.

The terms marked with a ∼ correspond to the embedded (synchronous) MBR process that we will

study in the proof of Theorem 6.2.

When studying the embedded (synchronous) MBR process (ã(s))s≥1, it will be important to

characterize the terms to which players are “best responding”. With this in mind, note that per

(6.3), the action at time τi(s+1) is chosen as ai(τi(s+1)) ∈ arg maxαi∈Ai Ui(αi, fi(q(τi(s+1)−1))).

Thus, by construction, the (s+1)-th action of player i in the embedded (synchronous) FP process is

chosen as ãi(s+1) ∈ BRi(fi(q̂
i(s))). In the embedded (synchronous) FP process, the term q̃j(s) may

be thought of as the “true” empirical distribution of player j, and the term q̂ij(s) may be thought

of as an estimate which player i maintains of q̃j(s), and the term q̂i(s) (note the superscript) may

be thought of as player i’s estimate of the joint empirical distribution q̃(s) at the time of player i’s

(s+ 1)-th best response. Loosely speaking, if we can show that q̂i(s)→ q̃(s), ∀i, then convergence

of the embedded process (q̃(s)) (and eventually the original process (q(n))) will follow from the

robustness result, Theorem 4.15.

Before proceeding to the proof of Theorem 6.2, we point out a few useful properties that will

be helpful in the proof. Note that for i ∈ N and s ∈ {1, 2, . . .}, we have

Ni(τi(s)) = s, (6.4)
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and for i ∈ N and t ∈ {1, 2, . . .} we have

Xi(n) = 1 =⇒ τi(Ni(n)) = n. (6.5)

Furthermore, note that Xi(n) = 0 implies that Ni(n) = Ni(n− 1), and in particular,

Xi(n) = 0 =⇒ qi(n) = qi(n− 1). (6.6)

These facts are readily verified by conferring with the definitions of τi, Ni, and Xi.

We now prove Theorem 6.2.

Proof. Let E ⊂ ∆N denote the internally chain recurrent set of (4.4). As a first step, we wish to

show that lims→∞ d(q̃(s), E) = 0. We accomplish this by invoking Theorem 4.15. In particular,

we wish to show that there exists a sequence (εs)s≥1 such that lims→∞ εs = 0 and

Ui(ai(s+ 1), fi(q̃(s))) ≥ max
yi∈Yi

Ui(αi, fi(q̃(s)))− εs, ∀s ≥ 1. (6.7)

To that end, for i ∈ N define vi : ∆−i → R by v(q) := maxyi∈Yi Ui(αi, fi(q)), and note that by

(6.3), we have Ui(ai(τi(s+ 1)), fi(q(τi(s+ 1)− 1))) = vi(q−i(τi(s+ 1)− 1)), or equivalently by the

definitions of ã(s) and q̂i(s),

Ui(ãi(s+ 1)), fi(q̂
i(s))) = vi(q̂

i(s)).

Using Lemma 6.20 in the appendix, it is straightforward to verify that lims→∞ ‖q̂i(s)− q̃(s)‖ = 0.

Since Ui is Lipschitz continuous and fi uniformly continuous, this gives lim
s→∞

|Ui(ãi(s+1)), fi(q̃(s)))−
vi(fi(q̃(s)))| = 0, ∀i; i.e., there exists a sequence (εs)s≥1 such that εs → 0 and (6.7) holds. It follows

by Theorem 4.15 that

lim
s→∞

d(q̃(s), E) = 0. (6.8)

We now show that limn→∞ d(q(n), NE) = 0. Let ε > 0 be given. By Lemma 6.20 (see

appendix), for each i ∈ N there exists a time Si > 0 such that ∀s ≥ Si, ‖q(τi(s)) − q̃(s)‖ < ε
2 .

Let S
′

= maxi{Si}. By (6.8) there exists a time S
′′

such that ∀s ≥ S
′′
, d(q̃(s), NE) < ε

2 . Let

S = max{S′ , S′′}. Then

d(q(τi(s)), NE) < ε, ∀i, ∀s ≥ S. (6.9)
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Let T = maxi{τi(S)}. Note that for some i, q(T ) = q(τi(S)), and hence by (6.9),

d(q(T ), NE) < ε. (6.10)

Also note that for any n0 > T , it holds that Ni(n0) ≥ S (since Ni(τi(S)) = S, and Ni(n) is

non-decreasing in n), and moreover

Xi(n0) = 1 for some i =⇒ q(n0) = q(τi(Ni(n0))),

Xi(n0) = 0 for all i =⇒ q(n0) = q(n0 − 1), (6.11)

where the first implication holds with Ni(n0) ≥ S. In the above, the first line follows from (6.5),

and the second line follows from (6.6). Consider n ≥ T . If for some i, Xi(n) = 1, then by (6.11) and

(6.9), d(q(n), NE) = d(q(τi(Ni(n))), NE) < ε. Otherwise, if Xi(n) = 0 ∀i, then q(n) = q(n− 1).

Iterate this argument m times until either (i) Xi(n −m) = 1 for some i, or (ii), t −m = T .

In the case of (i), d(q(n), NE) = d(q(n −m), NE) = d(q(τi(Ni(n −m))), NE) < ε, where the

inequality again follows from (6.9) and the fact that n−m > T =⇒ Ni(n−m) ≥ S. In the case

of (ii), d(q(n), NE) = d(q(T ), NE) < ε, where the inequality follows from (6.10). Since ε > 0 was

arbitrarily, the result follows.

6.4 Continuous-Time Embedding of Fictitious Play

The asynchronous MBR algorithm discussed in Section 6.3 is a somewhat abstract discrete-time

process. In this section we give a concrete interpretation of the process within a practical setting. In

particular, we consider the implementation of the (discrete-time) FP algorithm in a continuous-time

setting where agents do not have access to a global clock. Effectively, this results in a discrete-time

asynchronous FP process embedded within a continuous-time framework.

For simplicity, we focus here on the FP algorithm. Given an arbitrary MBR algorithm Ψ,

identical arguments can be used to prove convergence of the internally chain recurrent set of the

associated differential inclusion (4.4).

We first introduce the continuous-time embedding of FP and derive a sufficient condition for

convergence using Theorem 6.2. Subsequently, we give two simple and practical implementations

that achieve the condition. The example implementations are prototypical in that one uses a

synchronization rule that is entirely stochastic, and the other, entirely deterministic.

As in the previous models of repeated play learning (see Sections 2.3 and 6.2), assume each
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player executes a (countable) sequence of actions (or strategies) (ai(n))n≥1. Furthermore, assume

that each action is taken at some instant in real time t ∈ [0,∞) as measured by some universal

clock.4 In particular, for each player i ∈ N , let (τi(n))∞n=1 ⊂ [0,∞) be an increasing sequence

where τi(n) indicates the time (as measured by the universal clock) at which player i chooses an

action for the n-th time. Let ai(n) denote the n-th action taken by player i; i.e., the action taken

by player i at time t = τi(n). For t ∈ [0,∞), let Ni(t) = sup{n : τi(n) ≤ t} denote the number of

actions taken by player i by time t. For t ∈ [0,∞), we define the empirical distribution of player i

in this settings as qi(t) := 1
Ni(t)

∑Ni(t)
k=1 ai(k). In particular, for t ∈ [0,∞), let qi(t−) := limt̃↑t qi(t̃).

In this context, we say the sequence (ai(n))n≥1 is an asynchronous FP action process if for

n ≥ 1 each player i chooses their stage-n action according to the rule:5

ai(n) ∈ BRi(q−i(τi(n)−)).

We call the sequence (τi(n))n≥1 the action-timing process for player i, and we refer to any method

used to generate (τi(n))n≥1 (whether deterministic or stochastic) as an action timing rule. Together,

we refer to the joint sequence (τi(n), ai(n))i∈N ,n≥1 as a continuous-time embedded FP process.

The following assumption provides a sufficient condition on the action-timing process in order

to ensure convergence of the continuous-time embedded FP process. The assumption is essentially

a restatement of Assumption 6.1, but in a continuous-time setting.

Assumption 6.6.

(i) For each i there holds limt→∞Ni(t) =∞,

(ii) for each i, j there holds limt→∞Ni(t)/Nj(t) = 1.

Part (i) of the above assumption may be satisfied, for instance, as long as the clock skew of each

agent stays bounded (with respect to the universal clock), and each agent takes actions infinitely

often with respect to their local clock. In order to ensure (ii) is satisfied, slightly more care is

needed, as demonstrated by the specific application scenarios below.

The following theorem demonstrates that if the action-timing sequence is chosen to satisfy

Assumption 6.6, then the continuous-time embedding of FP will converge to the set of NE.

Theorem 6.7. Let Γ be a two-player zero-sum game, generic 2 × N game, or potential game.

Suppose that (ai(n), τi(n))i∈N , n≥1 is a continuous-time embedding of FP satisfying Assumption

6.6. Then players learn NE strategies in the sense that limt→∞ d(q(t), NE) = 0.

4We use the term “universal clock” to refer to some reference clock by which we can compare the timing of actions
taken by individual players. However, the universal clock is merely an artifice for analyzing the process, and we do
not suppose that players have any particular knowledge concerning it.

5Let τi(1) = 0 for all i, and let the initial action ai(1) be chosen arbitrarily for all i.
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The proof of Theorem 6.7 follows readily from Corollary 6.3.

In the following two subsections, we give two simple examples of action-timing rules that il-

lustrate different methods for satisfying Assumption 6.6 (and hence achieving NE learning in the

continuous-time embedded FP process).

6.4.1 Independent Poisson Clocks

Let wi(n) = τi(n+ 1)− τi(n) denote the stage-n “waiting time” for player i. Suppose that for each

player i and n ≥ 1, wi(n) is an independent random variable with distribution wi(n) ∼ exp(λ),

where λ > 0 is some parameter that is common among all i. In this case, the action-timing process

(τi(n))n≥1 is said to be a homogenous Poisson process.

The following theorem shows that if the action-timing process is randomly generated in this

manner, then players will achieve NE learning.

Theorem 6.8. Let Γ be potential game. Suppose that (ai(n), τi(n))i∈N , n≥1 is a continuous-time

embedding of FP with the action-timing sequences (τi(n))n≥1 are generated as independent homoge-

nous Poisson processes with common parameter λ. Then players learn NE strategies in the sense

that lim
t→∞

d(q(t), NE) = 0, almost surely.

Proof. By Theorem 6.2 it is sufficient to show that limt→∞Ni(t) = ∞, ∀i, and limt→∞
Ni(t)
Nj(t)

= 1

for all i, j.

First, note that for any i and n ≥ 1, wi(n) <∞ almost surely. Hence, τi(n) =
∑n

k=1wi(k) <∞
for all i, almost surely. Equivalently, for any M > 0, almost surely there exists a (random) time

T > 0 such that Ni(t) ≥M for all t ≥ T . Hence, limt→∞Ni(t) =∞, almost surely.

Now we show that limt→∞
Ni(t)
Nj(t)

= 1 for all i, j. Let τ(1) := mini τi(1) and let T1 := (τi(n))i∈N ,n≥1\τ(1).

For n ≥ 2, let τ(n) := min Tn−1 and let Tn := Tn−1\τ(n). In this manner, we produce the sequence

(τ(n)). For n ≥ 1, i ∈ N , define Xi(n) ∈ {0, 1} to be an indicator variable with Xi(n) = 1 if

τ(n) ∈ (τi(k))k≥1 and Xi(n) = 0 otherwise.

Let F0 := ∅ and for n ≥ 1, let Fn := σ((τ(k))nk=1). For n ≥ 1 let ξi(n) := P(Xi(n) = 1| Fn−1).

Since for each i, (τi(n))n≥1 is a Poisson process with common parameter λ, there holds ξi(n) = 1
N

for all i and n.6 By Levi’s extension of the Borel-Cantelli Lemma (see [122], p.124) there holds

lim
n→∞

(
n∑
k=1

Xi(n))/(
n∑
k=1

ξi(n)) = 1, a.s. (6.12)

6Recall that N denotes the number of players.
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Note that for each i,
∑n

k=1Xi(k) = Ni(τ(n)) and
∑n

k=1 ξi(n) = n
N . Thus by (6.12),

lim
n→∞

Ni(τ(n))

Nj(τ(n))
= lim

n→∞

Ni(τ(n))

n/N

n/N

Nj(τ(n))
= 1, a.s., ∀i, j.

Finally, note that limn→∞ τ(n) =∞ a.s., and for each i Ni(t) is constant on

[0,∞)\(τ(n))n≥1. Thus, limt→∞
Ni(t)
Nj(t)

= 1, almost surely.

6.4.2 Adaptive Clock Rates

In this section we consider a scenario in which each player chooses the timing of her actions (deter-

ministically) according to a personal clock with a skew rate that may be different among players.

Let wi(n) = τi(n+1)−τi(n) again denote the stage-n “waiting time” for player i. For each i, let

wi,0 denote a base waiting time for player i. The base waiting time of player i may be interpreted

as the amount of time which expires according to the universal clock during one unit of time as

measured by player i’s personal clock. The disparity in the wi,0 thus reflects disparate skew rates

among players’ personal clocks.

Let Nmin(t) := miniNi(t). At time t, we suppose that player i has knowledge of Nmin(s)

at the time instances s ∈ {kwi,0 : k ∈ N, kwi,0 ≤ t}. (I.e., player i is aware of the value of

Nmin at instances when her “clock ticks”.) For each i ∈ N , let Bi ∈ R be a number satisfying

Bi > maxiwi,0.

Suppose that player i adaptively chooses her stage-n waiting time according to the rule:

wi(n) = min
{
kwi,0 : k ∈ N, Nmin(τi(n) + kwi,0) ≥ Ni(τi(n))−Bi

}
. (6.13)

In words, this rule may be described as follows: Player i periodically observes Nmin(t). If Ni(t)−
Nmin(t) ≤ Bi then player i takes a new action. If Ni(t) − Nmin(t) > Bi then player i waits for

Nmin(t) to increase sufficiently (satisfying Ni(t)−Nmin(t) ≤ Bi) before taking a new action.

Theorem 6.9. Let Γ be a potential game. Suppose that (ai(n), τi(n))i∈N , n≥1 is a continuous-

time embedding of FP in which the action-timing sequence (τi(n))n≥1 is generated according to the

adaptive rule (6.13). Then players learn NE strategies in the sense that limt→∞ d(q(t), NE) = 0.

Proof. By Theorem 6.2, it is sufficient to show that limt→∞Ni(t) = ∞ for some (and hence all)

i ∈ N , and that limt→∞
Ni(t)
Nj(t)

= 1.

Note that for i∗ ∈ arg maxiwi,0, there holds Ni∗(t) = b t
wi∗,0
c+1, and hence limt→∞Ni∗(t) =∞.

Furthermore, by construction, |Ni(t) − Ni∗(t)| ≤ 2 maxiBi for all i and for all t ≥ 0. Hence,
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limt→∞
Ni(t)
Nj(t)

= 1, for all i, j.

6.5 From Weak to Strong Learning

In a MBR algorithms learning generally occurs in the sense that the observation state z(n) converges

to an equilibrium set. This can be a weak notion of learning since it does not guarantee that players

period-by-period strategies converge to any kind of equilibrium set themselves.

For example, in FP it can happen that the empirical distribution converges to the set of NE,

but the period-by-period strategies used by players in each round always yield the lowest possible

utility (see Section 6.5.1).

In this section we study subclass of MBR algorithms where the observation state is given by the

empirical distribution q(n) as defined in Section 2.5, and we consider learning within synchronous

repeated play framework defined in Section 2.3. Indeed, although the focus of this chapter is

on asynchronous learning, the processes considered in this chapter all assume the synchronous

repeated play framework of Section 2.3. As will be shown in Section 6.5.3, the synchronous learning

processes considered in this section contain an embedded asynchronous learning process which will

be amenable to the convergence results derived in Section 6.3. Hence, we will be able to prove

the main result of this section (Theorem 6.16) as an application of our main convergence result for

asynchronous MBR processes, Theorem 6.2.

We refer to convergence of the empirical distribution (or some function thereof) to an equilibrium

set as weak convergence, and we refer to any form of learning involving weak convergence as weak

learning. We refer to the convergence of players’ period-by-period strategies to an equilibrium set

as strong convergence, and we refer to any form of learning involving strong convergence as strong

learning. Intuitively speaking, weak learning means that players learn an equilibrium strategy in

some abstract sense (i.e., convergence in empirical distribution) but may never actually implement

the strategy they are learning. In strong learning, not only do players learn an equilibrium strategy,

but they also implement it.

Weak learning is inherently problematic (e.g., [59,99], [74], ch. 3.5), particularly in the context

of distributed control. Strong learning resolves many fundamental issues of weak learning and,

in particular, is better suited to control applications. Among other motivations, strong learning

of mixed strategies can be important in order to achieve security guarantees [123–125], and to

effectively achieve learning in algorithms whose limit points often include mixed strategies, e.g.,

[104, 126], and [74], ch. 3.5. For example, Section 6.5.4 discusses an example achieving strong

convergence in the ECFP algorithm, the limit points of which are often mixed equilibria.

The main contribution of this section is the presentation of a method for taking a weakly
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Figure 6.1: Payoff matrix in miscoordination game.

convergent MBR learning algorithm, and constructing from it, a strongly convergent variant [127].

Using the convergence result for asynchronous MBR processes (Theorem 6.2), we show that if

a MBR achieves weak learning, then a strongly convergent variant can be constructed from it. As

an example of how the general result may be applied, we construct the strongly convergent variant

of the ECFP algorithm presented in Chapter 3.

The remainder of the section is outlined as follows. Section 6.5.1 presents a motivating example.

Section 6.5.2 presents the strongly convergent variant of classical FP. Section 6.5.3 presents the

strongly convergent variant of a general MBR algorithm, and Section 6.5.4 presents an example of

strong convergence in ECFP.

6.5.1 Weak Convergence in Fictitious Play

The following example (see [74], p. 78), while fairly simple, clearly illustrates the phenomenon of

weak convergence in FP and demonstrates why weak convergence can be a unsatisfactory notion

of learning.

Consider the two-player asymmetric coordination game shown in Figure 6.1. The game has

three Nash equilibria: both players play A, both players play B, and an asymmetric mixed-strategy

Nash equilibrium. The game is a potential game [38] and hence falls within the purview of Theorem

2.5—regardless of the initial conditions, players engaged in a FP process will learn an equilibrium

in the weak sense that d(q(n), NE)→ 0 as n→∞.

Suppose that the players are engaged in a FP process on this game, and in the first round they

miscoordinate their actions (e.g., one chooses A, and the other chooses B). Young [74] shows the

somewhat counterintuitive result that the FP dynamics will in fact lead players to miscoordinate

their action choices in every subsequent round of the learning process. Thus, despite the fact that

limn→∞ d(q(n), NE) = 0, the players’ realized action choices are extremely suboptimal—yielding

the lowest possible utility in each round of play. Intuitively speaking, this phenomenon occurs
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when players’ actions cycle in such a way as to drive the time-averaged empirical distribution to

a mixed-strategy Nash equilibrium, yet player’s period-by-period strategies never constitute (nor

even approach) a Nash equilibrium themselves.7

It may be said that in weak learning players “learn” a NE strategy in some abstract sense, but

never actually implement the strategy they are learning. In strong learning, players not only learn

a NE strategy, but they also physically implement the strategy that is being learned.

The following section presents a simple modification of FP that achieves strong learning; i.e.,

players’ period-by-period strategies converge to equilibrium in addition to convergence of the em-

pirical distributions.

6.5.2 Strongly Convergent Variant of Fictitious Play

Consider a variant of FP in which the action for player i in stage n is chosen by drawing a random

sample from the mixed strategy (i.e., probability distribution) gi(n), where

gi(n) ∈ BRi(q−i(n− 1))ρi(n) + qi(n− 1)(1− ρi(n)), (6.14)

ρi(n) ∈ [0, 1], and limn→∞ ρi(n) = 0. Intuitively, this is similar to the classical FP process (2.9),

but rather than playing a deliberate best response each round, players gradually transition toward

drawing their stage-n action as a random sample from their own empirical distribution, qi(n).

The idea is that players will play a best response sufficiently often so that, per FP, the empirical

distribution q(n) will be driven toward equilibrium, as in Theorem 2.5. Then, since ρi(n) → 0 as

n→∞, the mixed strategy gi(n) tends towards qi(n), which is itself tending towards equilibrium.

Informally, (6.14) captures the main idea of strongly convergent FP. A formal presentation of the

algorithm is given below.

Strongly Convergent Variant of Classical FP

Suppose the action for player i at time n is chosen according to the following randomized rule:

ai(n) ∼


bi(n− 1), if Xi(n) = 1,

qi(n− 1), otherwise,

(6.15)

7It must be noted that this example looses some potency in light of Theorem 10.1 in Chapter 10. In almost all
potential games (including this example game), for almost all initial conditions, the mean-field FP dynamics converge
to a pure-strategy NE. In this example game, there does exists a low-dimensional (Lebesgue measure zero) set, from
which a FP path may converge to a mixed equilibrium. The initial conditions assumed in this example lie on this
low dimensional set.
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where

bi(n− 1) ∈ BRi(q−i(n− 1)),

for probability mass function h over Yi, the notation ai(n) ∼ h indicates that the action ai(n) is

drawn as a random sample 8 from h, Xi(n) ∈ {0, 1} is a random variable, and qi(n) is the player’s

empirical distribution as defined in (6.16) below. Let Fn := σ({a(s), X1(s), . . . , Xn(s), b1(s), . . . , bn(s)}s≤t),
and note that bi(n− 1) and qi(n− 1) are Fn-measurable. Let

ρi(n) := P(Xi(n) = 1| Fn−1),

and note that ρi(n) is Fn−1-measurable. Intuitively speaking, ρi(n) represents the probability that

player i deliberately chooses to play a best-response strategy in round n given the history of play up

through the previous round. We make the following assumptions regarding each player’s probability

of deliberately choosing a best response:

Assumption 6.10. lim
n→∞

ρi(n) = 0, ∀i ∈ N , a.s.,

Assumption 6.11.
∑
t≥1

ρi(n) =∞, ∀i ∈ N , a.s.,

Assumption 6.12. lim
n→∞

∑n
k=1 ρi(k)∑n
k=1 ρj(k)

= 1, ∀i, j ∈ N , a.s.

The first assumption ensures that players eventually transition towards playing their next-

stage action as a sample from their empirical distribution rather than playing a deliberate best

response. The second assumption ensures that, for each player, a deliberate best response is played

infinitely often. The third assumption ensures that the number of deliberate best responses taken

by each player remain relatively in sync.9–6.12. In practice, players may choose their deliberate best

responses completely asynchronously; for example, setting ρi(n) = 1/nr, ∀i, with r ∈ (0, 1], results

in (purely) independent sampling of deliberate best-response rounds and secures Assumptions 6.10–

6.12.

Let

Ni(n) :=

n∑
k=1

Xi(k)

8The action ai(n) ∈ Ai is technically a dirac distribution over the finite action space Yi (see Section 2.1). More
precisely, the notation ai(n) ∼ h means that an action yi(n) is drawn as a random sample from h with ai(n) :=
δyi(n)(yi), where δyi(n)(yi) = 1 if yi = yi(n) and δyi(n)(yi) = 0 otherwise.

9Note that since ρi(n) is only required to be Fn−1-measurable, this parameter is in fact adaptively tunable. This is
a feature of practical interest since it allows players to adjust their deliberate best-response rates on the fly—possibly
adapting to the (initially unknown) deliberate best-response rates of others and to underlying process dynamics—in
order to satisfy Assumptions 6.10
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count the number of times player i has deliberately played a best response until and including

round n. Note that Ni(n) is Fn-measurable. The empirical distribution qi(n) is defined recursively

as10

qi(n+ 1) = qi(n) +
1

Ni(n+ 1)
(ai(n+ 1)− qi(n))Xi(n+ 1). (6.16)

Intuitively speaking, the empirical distribution (6.16) is updated only over rounds when a deliberate

best response is played. Note that qi(n) is Fn-measurable.

In order for players to compute qi(n) it is necessary that in addition to having knowledge of the

actions ai(n), players have knowledge of Xi(n). Formally we assume:

Assumption 6.13. At time n, each player observes Xi(n) for all i ∈ N .

This may be thought of as a (one bit) tag that is attached to the action of each player indicating

if the action is taken as a deliberate best response or not.

Finally, let11

gi(n) := bi(n− 1)ρi(n) + qi(n− 1)(1− ρi(n)), (6.17)

and note that gi(n) is Fn−1 measurable.12 More importantly, note that for every αi ∈ Ai, gi(αi, t) =

P(ai(n) = αi| Fn−1), and thus gi(n) represents the mixed strategy (conditioned on past play)

used by player i in round n. The joint mixed strategy used in round n is given by g(n) :=

(g1(n), . . . , gn(n)).

We refer to a process where, for each player i, ai(n) is selected according to (6.15), qi(n) is

calculated according to (6.16), and gi(n) is updated according to (6.17) as the strongly convergent

variant of (classical) FP (for reasons to be clear soon).

The following result states that in the strongly convergent variant of FP, players’ period-by-

period mixed strategies converge to the set of Nash equilibria—i.e., strong learning is achieved.13

Corollary 6.14. Let Γ be a two-player zero-sum game, potential game, or generic 2 ×m game.

Assume Assumptions 6.10–6.13 hold. Then the strongly convergent variant of FP achieves strong

learning in the sense that limn→∞ d(g(n), NE) = 0 almost surely.

10To initialize the process, let the action ai(1) be chosen arbitrarily, let qi(1) = ai(1), and let Xi(1) = 1 for all i.
11We note that the mixed strategy gi(n) defined here is identical to that defined originally in (6.14), where we

informally introduced the strongly convergent FP process. In order to precisely define the strongly convergent FP
process (in particular, q(n)) it was necessary to define the “intermediate” term bi, which allowed us to explicitly track
deliberate best-response rounds via Xi(n). For clarity, (6.17) redefines gi(n) in terms of the intermediate variables
used in the precise definition of the process.

12To see this, note first that qi(n−1) and ρi(n) have been shown to be Fn−1 measurable. Furthermore, this implies
that BRi(qi(n− 1)) is Fn−1-measurable. Lastly, by construction, bi(n) ∈ BRi(qi(n− 1)) is Fn−1-measurable.

13In zero-sum games, standard tie-breaking rules should be taken into account when choosing a deliberate best
response in order to ensure convergence [33]. In particular, tie-breaking rules ensure weak convergence is achieved in
the classical FP process which allows one to apply Theorem 6.16.
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Figure 6.2: Matching pennies payoff matrix

In order to prove the above result, we first study strong convergence in the more general class

of MBR algorithms and then prove the result as a corollary of the general theorem (see Theorem

6.16).

Simulation Example

In order to demonstrate the learning properties of strongly convergent FP, we simulated classical

FP and strongly convergent FP in a simple two-player matching pennies game with utility functions

as shown in Figure 6.2. The game has a unique (symmetric) mixed-strategy equilibrium in which

both players choose either action with probability 1/2. Figure 6.3a shows the period-by-period

strategies generated by classical FP. Players’ strategies are always pure and progress in continuously

lengthening cycles. While the time-averaged empirical distribution is being driven to equilibrium,

the period-by-period strategies clearly are not.

Figure 6.3b shows the period-by-period strategies generated by strongly convergent FP with

ρ(n) = n−.35. Players’ period-by-period strategies are converging to the unique Nash equilibrium

of the game.

Figure 6.3c shows the utility received by the realized joint action a(n) in each round of repeated

play for both learning algorithms. The received payoffs in classical FP cycle around the value of

the game, while the received payoffs in strongly convergent FP converge to the value of the game.

An important tradeoff in strongly convergent FP is that less frequent deliberate best-response

actions and less frequent updating of the empirical distribution (see (6.16)) can lead to a slow-down

in convergence rate. The empirical distribution processes for player 1 in each algorithm is shown

in Figure 6.3d with ρ(n) = n−.35.
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Figure 6.3: 6.3a: The probability of each player playing heads in round n using the classical FP
algorithm, 6.3b: The probability of each player playing heads in round n using the strongly convergent FP

algorithm, 6.3c: The received utility in round n given the realized action a(n), 6.3d: The empirical
distribution process of the action H (heads) for player 1 in both FP and strongly convergent FP.
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6.5.3 Strongly Convergent Variant of a Myopic Best-Response Algorithm

In this section we construct the strongly convergent variant of a MBR algorithm. The construction

here is a generalization of that of Section 6.5.2 where we constructed the strongly convergent variant

of classical FP.

Let Ψ be a myopic best-response learning algorithm such that the observation state is decoupled

across players as in Section 6.2.

For each i ∈ N , let (Xi(n))t≥1 be a sequence of random variables withXi(n) ∈ {0, 1}. Analogous

to Section 6.5.2, Xi(n) = 1 will serve to indicate that player i took a deliberate best response in

round n. Let

Ni(n) :=
n∑
s=1

Xi(s) (6.18)

count the number of deliberate best responses taken by player i through n.

In Section 6.5.2 the empirical distribution of player i, (6.16), is a time average taken only over

rounds when player i took a deliberate best response. In order to generalize this notion to a MBR

algorithm, define the term

τi(s) := inf{n : Ni(n) = s}.

For s ≥ 1, τi(s) indicates the round when player i took their s-th deliberate best response,14 and the

sequence (τi(s))s≥1 gives the subsequence of rounds when player i took a deliberate best response.

Let the empirical distribution of player i at time n be formed as

qi(n) :=
1

Ni(n)

n∑
s=1

ai(s)Xi(s). (6.19)

Let the action for player i in round n ≥ 2 be chosen according to the random rule15

ai(n) ∼


bi(n− 1), if Xi(n) = 1,

qi(n− 1), otherwise,

(6.20)

where bi(n− 1) ∈ BRηn
i (fi(q(n− 1))), and assume:16

14Note that by Assumption 6.11 and Lemma 6.21, τi(s) is finite valued a.s. for any s ∈ {1, 2, . . .}.
15To initialize the process, let the action ai(1) be chosen arbitrarily, let Xi(1) = 1, and let H̄(1) = ai(1) for all i.
16Note that this assumption subsumes the more typical assumption that ηn = 0, ∀n. By making this more general

assumption we are able to handle interesting scenarios that may arise in a practical implementation of the algorithm;
e.g., players have some asymptotically decaying error in their knowledge of their utility function or knowledge of
opponent’s empirical distributions.
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Assumption 6.15. The sequence (ηn)n≥1 associated with the strategy sequence (bi(n))n≥1 of (6.20)

is such that lim
n→∞

ηn = 0.

Let Fn := σ({a(s), X1(s), . . . , Xn(s), b1(s), . . . , bn(s)}s≤n). Let the probability that player i

chooses a deliberate best response in round n conditioned on past events be given by ρi(n) :=

P(Xi(n) = 1|Fn−1), and assume that Assumptions 6.10–6.12 are satisfied. Note that qi(n), pi(n),

ξi(n) are Fn–measurable and that by definition, ρi(n) is Fn−1–measurable.

Finally, let

gi(n) := bi(n− 1)ρi(n) + ξi(n− 1)(1− ρi(n)). (6.21)

Note that gi(n) is Fn−1–measurable and that g(αi, n) = P(ai(n) = αi|Fn−1); that is, gi(n) rep-

resents the mixed strategy in use by player i in round n (compare with (6.17)). Let g(n) :=

(g1(n), . . . , gn(n)) denote the joint mixed strategy in use at time n.

We refer to a process where, for each player i, qi(n) is updated according to (6.19), ai(n) is

updated according to (6.20), and gi(n) is updated according to (6.21) as the strongly convergent

variant of Ψ (for reasons to be clear soon—see Theorem 6.16).

The following theorem provides the general result from which the strong convergence of various

MBR algorithms can be derived.

Theorem 6.16. Let Γ be a finite normal form game, let Ψ be a myopic best-response algorithm.

Assume Assumptions 6.10–6.15 hold. Then the strongly convergent variant of Ψ achieves strong

learning in the sense that the period-by-period strategy tuple g(n) converges to the internally chain

recurrent set of the differential inclusion (4.4).

Proof. By Assumption6.10 we have limn→∞ ‖gi(n)− qi(n)‖ = 0. Hence, to prove the theorem it is

sufficient to show that

lim
n→∞

d(q(n), E) = 0. (6.22)

The empirical distribution sequence (q(n))n≥1 generated by the strongly convergent variant of a Ψ

is updated according to the asynchronous variant of Ψ given in Section 6.3. By Theorem 6.2, in

order to verify that (6.22) holds, it is sufficient to verify that the counting processes (6.18) satisfy

Assumption 6.1.

By Lemma 6.21 (see appendix) and Assumption 6.11 we get that

lim
n→∞

Ni(n)∑n
s=1 ρi(s)

= 1, a.s., (6.23)

which implies part (i) of Assumption 6.1 holds, almost surely. To show that part (ii) of Assumption
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6.1 holds almost surely, note that by (6.23) and Assumption 6.12 we have

lim
n→∞

Ni(n)

Nj(n)
= lim

n→∞

Ni(n)∑n
s=1 ρi(s)

∑n
s=1 ρi(s)∑n
s=1 ρj(s)

∑n
s=1 ρj(s)

Nj(n)
= 1, a.s.

6.5.4 Example: ECFP

Assume that all players have an identical action space (Assumption 3.1) and Γ is a potential

game with permutation invariant potential function (Assumption 3.2). In an ECFP process, the

prediction function fi is chosen for each player so that ai(n + 1) ∈ BRi(q̄−i(n)). It was shown

in Section 4.5 that if Γ is a potential game, the internally chain recurrent set of the associated

differential inclusion (3.11) is contained in the set of MCE. Hence, we get the following corollary

to Theorem 6.2.

Corollary 6.17. Let Γ be a potential game satisfying Assumptions 3.1 and 3.2. Suppose that As-

sumptions 6.10–6.13 hold. Then the strongly convergent variant of ECFP achieves strong learning

in the sense that limn→0 d(g(n), MCE) = 0.

Remark 6.18. As noted in Remark 6.5, under the assumptions Assumption 3.1 and Assumption

3.2 if σ ∈ MCE then using the permutation invariance of the potential function we get σ̄ ∈
CNE. An alternative strongly convergent variant of ECFP can be constructed by replacing qi(n) in

(6.20) with the empirical centroid distribution q̄(n). In this case, players’ period-by-period strategies

converge strongly to the set of consensus NE; that is, limn→∞ d(g(n), CNE) = 0.

As an example illustrating the importance of achieving string learning, we consider ECFP in a

simple congestion game with parallel routes. Let R = {1, . . . , R} denote a set of routes available

to all players and let Yi = R, ∀i. For r ∈ R, y ∈ Y , let ρr(y) denote the number of players (or

drivers) utilizing route r under the strategy y. For r ∈ R and k ∈ N, let cr(k) denote the cost of

using route r when k players are using the route r. Let the utility function for player i be given by

ui(y) = −cyi(ρyi(y)).

There exist various mild assumptions under which no pure strategy consensus equilibria exist.

For example, we assume:

Assumption 6.19. cr(k) is strictly increasing in k, and minr∈R,
r′ 6=r

cr(n)− cr′(1) > 0.

ECFP can be an advantageous algorithm for learning equilibria in games with a large number

of players. For example, the convergence rate of ECFP tends to be independent of the number of
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players (rather, it is more closely related to the manner in which players in ECFP are grouped—

see [104]). Moreover, in ECFP the only piece of information that needs to be known among players

is the centroid distribution—the memory size of which is invariant to the number of players.

We simulated classical ECFP and the strongly convergent variant of ECFP with parameter

ρi(n) = n−.5 in a congestion game satisfying Assumption 6.19 with 150 users and 7 routes. Figures

6.4a–6.4b and 6.4e–6.4f plot the average travel time in the respective processes. Note that this is

a measure of “global welfare” and not a direct measure of NE convergence, however the trend is

consistent with convergence to NE.

Note that the classical ECFP process leads players to often choose the same action as all others

in stages of the repeated play, thus leading to extremely poor period-by-period utilities, and poor

global welfare. On the other hand, in the strongly convergent variant of ECFP, players period-

by-period strategies approach NE leading to period-by-period utilities and global welfare that are

consistent with the learned NE strategy.

6.6 Appendix to Chapter 6

Lemma 6.20. Let i, j ∈ N , let τi(s) and q̃j(s) be defined as in Section 6.3, and assume Assumption

6.1 holds. Then lims→∞ ‖qj(τi(s))− q̃j(s)‖ = 0.

Proof. Note that by the definitions of τj , Nj , and q̃j there holds qj(n) = qj(τj(Nj(n))) = q̃j(Nj(n)),

for any n ∈ N Noting that
√

2 = maxp′,p′′∈∆(Yj) ‖p′−p′′‖, we also have ‖q̃j(s+1)−q̃j(s)‖ ≤
√

2
s , for s ∈

N, and more generally, for s1, s2 ∈ N, we have ‖q̃j(s1)− q̃j(s2)‖ ≤
∑max(s1,s2)−1

s=min(s1,s2) ‖q̃j(s+1)− q̃j(s)‖ ≤
|s2−s1|

min(s1,s2)

√
2. Hence, |qj(τi(s))− q̃j(s)‖ = ‖q̃j(Nj(τi(s)))− q̃j(s)‖ = ‖q̃j(Nj(τi(s)))− q̃j(Ni(τi(s)))‖ ≤

|Nj(τi(s))−Ni(τi(s))|
min(Ni(τi(s)),Nj(τi(s)))

√
2, where the second equality follows from the fact that Ni(τi(s)) = s (see

(6.4)). Thus, it suffices to show that lim
s→∞

|Nj(τi(s))−Ni(τi(s))|
min(Ni(τi(s)),Nj(τi(s)))

= 0. But, by Assumption 6.1, for any

i, j there holds: 0 = limn→∞
Ni(n)
Nj(n) −1 = lims→∞

Ni(τi(s))
Nj(τi(s))

−1 = lims→∞
Ni(τi(s))−Nj(τi(s))

Nj(τi(s))
, where the

second equality follows from the fact that (again by Assumption 6.1) lims→∞ τi(s) =∞.

Lemma 6.21. Let (X(n))n≥1 be 0 − 1 Bernoulli random variables, let `(n) :=
∑n

k=1X(k) be the

associated counting process, let Gn := σ({X(k)}nk=1), and let ρ(n) = P(X(n) = 1|Gn−1). Assume∑
n≥1 ρ(n) =∞. Then there holds, lim

n→∞
(`(n)) / (

∑n
k=1 ρ(n)) = 1, a.s.

Proof. The result follows from Levi’s extension of the Borel-Cantelli Lemmas, [122] p.124.
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Figure 6.4: 3a: average travel time under q̄n(n) in ECFP, 3b: average utility under period-by-period mixed

strategy g(n) in ECFP, 3c: q̄(n) in ECFP at 50 iterations, 3d: g1(n) in ECFP at 50 iterations, 3e: average

travel time under q̄n(n) in strong-ECFP, 3f: average travel time under period-by-period mixed strategy

g(n) in strong-ECFP, 3g: q̄(n) in strong-ECFP at 50 iterations, 3h: g(n) in strong-ECFP at 50 iterations.
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Chapter 7

Network-Based Implementation

7.1 Introduction

In the formulation of MBR dynamics in Section 2.4, it is implicitly assumed that each agent has

instantaneous access to all information required to compute her next-stage action. More precisely,

in order for an agent to choose her action at stage n + 1, the agent is assumed to have complete

knowledge of the stage-n observation state, z(n).

This assumption can be impractical in large-scale settings where physical limitations may hinder

agents’ ability to directly observe the actions of others or to directly communicate one with another.

For example, in classical FP, players are assumed to have precise knowledge of the stage-n empirical

distribution, q(n) (see (2.8)). Note that writing (2.8) recursively, for each j ∈ N we have qj(n) =

(1− 1
n)qj(n− 1) + 1

naj(n), where aj(n) is the action taken by player j in stage n. Hence, in order

for some player i to compute q(n) given q(n − 1) (which in turn allows the player to compute

best-response set BRi(q(n)) and choose a stage-(n+ 1) action), the player must know the stage-n

action aj(n) of all other players j ∈ N , j 6= i. In large scale distributed settings it may be difficult

for every player to communicate this information to every other player between each iteration of

the repeated play.

A more practical assumption in many large-scale settings can be to suppose that players are

equipped with an overlaid communication graph through which they may periodically exchange

information relevant to the learning process. We refer to this as a network-based learning setting.

Consider, for example a traffic routing scenario in which a group of vehicles wish to navigate a

traffic grid while minimizing their respective travel times. Suppose that the vehicles are connected

via an ad-hoc vehicular communication network. Before physically engaging in the commute,

suppose that players wish to compute a Nash equilibrium routing strategy by communicating over
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the ad-hoc network. In this setting there is no physical feedback from game play—any information

related to a repeated play learning process must be disseminated through the communication

network.

The problem of computing NE in a network-based setting has been a subject of recent research

interest. For example, [81] studies a network-based algorithm for NE seeking in a two-network

zero-sum games, [80] studies an algorithm for finding NE in a spatial spectrum access games, [82]

studies a network-based regret-based reinforcement learning algorithm for tracking the polytope of

correlated equilibria in time-varying games. The work [63] presents a method for designing games

with a local a prescribed local dependence. The works [79] and [83] study gossip-based algorithms

for computing NE in a network-based setting in games with continuous-action spaces.

In this chapter (see also [78,104,111]) we show that MBR algorithms can easily be adapted for

deployment in a network-based setting. We present a generic network-based MBR algorithm and

prove that as long as the information dissemination scheme satisfies a mild condition (see Condition

7.1), the network-based algorithm will converge to the internally chain recurrent set of the associated

differential inclusion. Our results differ from those above primarily in that, rather than focus

on a particular learning algorithm and information dissemination scheme, we study the general

class of MBR algorithms and show that, so long as the information dissemination scheme satisfies

Condition 7.1, then any such algorithm will converge to the associated internally chain recurrent

set. The underlying MBR dynamics can then be chosen to meet the system designers needs. For

example, ECFP dynamics (Chapter 3) may be used in order to reduce information overhead, SS-

MBR dynamics (Chapter 5) may be used in order to reduce complexity, and asynchronous MBR

dynamics (Chapter 6) may be used if a global clock is not available.1

After introducing the general model of a network-based MBR algorithm, we study the network-

based implementation of two example MBR algorithms. First, we consider network-based im-

plementation of the ECFP algorithm introduced in Chapter 3. ECFP mitigates the problems of

high information overhead, high computational complexity, and slow convergence rates discussed

in Sections 1.3.2–1.3.1. We present a network-based implementation of ECFP and prove that the

algorithm converges to the set of consensus NE. In particular, we explicitly specify an information

dissemination scheme and prove that it satisfies the necessary conditions for convergence.

Subsequently, we consider network-based implementation of a SS-MBR algorithm. Chapter

5 introduced SS-MBR algorithms, which use a stochastic approximation technique to mitigate

computational complexity. SS-FP, discussed in Section 5.5, is the single sample variant of classical

FP. This variant of FP reduces complexity from O(eN ) in classical FP (where N is the number of

1Note that any combination of these may also be used.
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players), to O(N) in SS-FP. In this chapter we present a network-based variant of SS-FP and prove

that the algorithm converges to the set of NE in the same sense as classical FP. As in the case of

network-based ECFP, we explicitly specify an appropriate information dissemination scheme, and

prove that the it satisfies the necessary conditions for convergence.

The remainder of the chapter is organized as follows. In Section 7.2 we present the general

model of a network-based myopic best-response algorithm and discuss a sufficient condition for

convergence to the internally chain recurrent set of the associated differential inclusion. In Section

7.3 we study the ECFP algorithm in a network-based setting. In Section 7.4 we study the SS-FP

algorithm in a network-based setting.

7.2 Network-Based Myopic Best-Response Dynamics

Algorithm Setup

In a network-based MBR algorithm, players do not have perfect knowledge of the observation state

z(n). Let ẑi(n) be an estimate that player i maintains of the observation state z(n).

A prototypical network-based MBR algorithm is given below.

7.2.1 Network-Based MBR Algorithm

Initialize

(i) Initialize the state estimate ẑi(1) for each i ∈ N .2 Let players choose an arbitrary initial action.

Iterate (n ≥ 1)

(ii) Each agent i ∈ N chooses a next-stage action according to the rule

ai(n+ 1) ∈ BRi,εn(fi(ẑ
i(n))

where εn → 0 as n→∞.

(iii) Each agent i ∈ N may engage in one round of information exchange with neighboring agents

(as defined by G) and update their estimate ẑi(n+ 1) using the information obtained.3

2The initialization of ẑi(n) may be subject to some conditions depending on the particular information dissemi-
nation scheme used, e.g., [21, 104]. See discussion below for more details.

3Note that the “true” observation state at time (n+ 1) is given by z(n+ 1) = z(n) + γ(n) (g(ai(n+ 1))− z(n)).
However, it is not assumed that players have knowledge of (z(n))n≥1.
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7.2.2 Discussion

The protocol used to form the estimate ẑi(n) in step (iv) is intentionally crafted to be broad in

order to emphasize that a wide variety of information dissemination protocols may be used. We

only require that the information dissemination scheme satisfy the following condition:

Condition 7.1. For all i ∈ N , there holds ‖ẑi(n)− z(n)‖ → 0 as n→∞.

The following Theorem gives the general convergence result for network-based MBR algorithms.

It follows readily from the robustness result of Theorem 4.15.

Theorem 7.2. Let (z(n))n≥1 be a network-based MBR algorithm satisfying Assumptions 2.1–2.3

and Condition 7.1. Then (z(n))n≥1 converges to the internally chain recurrent set of the associated

differential inclusion, (4.4).

Proof. Using the Lipschitz continuity of Ui(·), Condition 7.1 implies that there exists a sequence

(ηn)n≥1, ηn → 0 such that a(n + 1) ∈ BRηn(z(n)); i.e., the network-based MBR process fits the

template of a weakened MBR process. The result then follows by Theorem 4.15.

In the following two sections we develop two example implementations of network-based MBR

algorithms. We explicitly specify information dissemination schemes and prove that the algorithms

converge in the desired sense.

We note that, as time progresses, the observation state may require an infinite number of bits

to transmit precisely. For example, in FP players track the empirical distribution. The empirical

distribution is composed of rational numbers, which, as the algorithm progresses, require an un-

bounded number of bits to specify precisely. Realistically, players will only be able to track the

observation state up to some finite precision.

In order to apply our convergence results, we require that Condition 7.1 hold. The problem

of precise computing in network-based settings with quantized information has been considered in

prior work [128]. In order to guarantee Condition 7.1 holds in an environment where players track

the observation state with finite precision, it may be possible to use dithering techniques, similar

to those used in [128].

For the special case of FP in non-degenerate potential games (Chapters 9–10), we note that The-

orem 10.1 implies that FP converges to pure-strategy equilibria, and the first-order non-degeneracy

condition implies that pure-strategy equilibria are robust to strategy perturbations. Hence, when

running network-based FP in a non-degenerate potential game, if the precision with which agents

track q(n) is sufficient to get within a sufficiently small neighborhood of some pure-strategy equi-

librium q∗, then the convergence of FP to q∗ will be robust to strategy perturbations occurring

from imprecise specification of q(n).
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7.3 Network-Based ECFP

In this section we present a network-based implementation of the ECFP algorithm presented in

Chapter 3. We note that, for simplicity, we focus on the basic formulation of ECFP. We prove the

network-based algorithm converges to the set of CNE and present simulation results. We begin in

the next section by introducing some definitions that facilitate the presentation of the algorithm.

7.3.1 Algorithm Setup

Define the following two matrices:

Q(n) := (q1(n) q2(n) . . . qN (n))T ∈ RN×m,

Q̂(n) := (q̂1(n) q̂2(n) . . . q̂N (n))T ∈ RN×m,

where q̂i(n) ∈ Rm denotes player i’s estimate of q̄(n) ∈ Rm (see (3.1)). Let q̂(n) ∈ RN be the N -

tuple (q̂1(n), . . . , q̂N (n)). The tuple q̂(n) will be important in network-based ECFP; in particular

we will prove that q̂(n) converges to the set of consensus equilibria.

Let W ∈ RN×N be a weighting matrix with entries wi,j . We assume W satisfies the following

assumption:

Assumption 7.3. The weight matrix W is an N ×N matrix that is doubly stochastic, aperiodic,

and irreducible, with sparsity conforming to the communication graph G.

Note that given assumption Assumption 1.1 (G is a connected graph), it is always possible to

find a matrix W satisfying these conditions (see [21,22,129]).

7.3.2 Network-Based ECFP Algorithm

Initialize

(i) Each player i chooses an arbitrary initial action ai(1). The initial empirical distribution for

player i is given by qi(1) = ai(1). Each player i ∈ N initializes her local estimate of the empirical

distribution as

q̂i(1) =
∑

j∈Ωi∪{i}

wijqj(1) (7.1)

where Ωi is the set of neighbors of player i and the wij ’s are constant neighborhood weighting factors.
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Iterate (n ≥ 1)

(ii) Each player i ∈ N computes the set of best responses using q̂i(n) as the assumed mixed strategy

for each of the other (N − 1) players. The next action

ai(n+ 1) ∈ arg max
αi∈Ai

U(αi, q̂−i(n)) (7.2)

is played according to the best-response calculation. In the event of multiple pure strategy best

responses, any of the maximizing actions in (7.2) may be chosen arbitrarily. The local empirical

distribution qi(n+ 1) is updated to reflect the action taken, i.e.,

qi(n+ 1) = qi(n) +
1

n+ 1
(ai(n+ 1)− qi(n)).

(iii) Subsequently each player i computes a new estimate of the network-averaged empirical

distribution using the following update rule:4

q̂i(n+ 1) =
∑

j∈Ωi∪{i}

wi,j (q̂j(n) + qj(n+ 1)− qj(n)) , (7.3)

where Ωi is the set of neighbors of player i, and wi,j is a weighting constant.5

The update in (7.3) is represented in more compact notation as

Q̂(n+ 1) = W
(
Q̂(n) + Q(n+ 1)−Q(n)

)
, (7.4)

where W ∈ RN×N satisfies Assumption 7.3

7.3.3 Network-Based ECFP: Main Convergence Result

We will refer the the sequence (q(n))n≥1 generated by the foregoing algorithm as a network-based

ECFP process. In a network-based ECFP process, players learn a consensus equilibrium strategy

4Note that (7.3) is equivalent to q̂i(n + 1) =
∑
j wi,j(q̂j(n) + 1/(n + 1)(ai(n + 1) − qi(n))). This is closely

related to minimizing an aggregate cost function using a distributed stochastic gradient descent method [130–133]:
Jglob(q) =

∑N
i=1E‖ai(n)− q‖2 whose minimizer is the average of actions over time and over players, and where the

expectation is over the empirical distribution of ai(n) over time. The key thing to note is that the exact minimizer
of this cost is time-varying and, given that we are operating in a distributed environment with only one round of
communication allowed per time slot, we can only track this dynamic minimizer using an iterative method as given
in (7.3).

5Note that the set Ωi ∪ {i} in the summation indicates that player i uses her own (local) information and that of
her neighbors to update her estimate. The update rule is clearly distributed as information exchange is restricted to
neighboring players only.
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in a setting where information exchange is restricted to a local neighborhood of each agent. The

result is summarized in the following Theorem.

Theorem 7.4. Let (q(n))n≥1 be a network-based ECFP process such that Assumptions 1.1–1.3,

3.1–3.2, and 7.3 hold. Then d(q̂(n), CNE) → 0 as n → ∞. In particular, the agents’ estimates

q̂i(n) reach asymptotic consensus, i.e. d (q̂i(n), q̂j(n))→ 0 as n→∞ for each pair (i, j) of agents.

In the above result, the N -tuple q̂i(n) = (q̂1(n), . . . , q̂N (n)) converges to the set CNE; since

q̂i(n) is available to player i, player i learns the component of the consensus equilibrium strategy

relevant to him.

Proof. By Lemma 7.9 in the appendix, the error in a network-based ECFP process satisfies ‖q̂i(n)−
q̄(n)‖ → 0 as n→∞, thus Condition 7.1 is satisfied and the network-based ECFP fits the template

of Theorem 7.2. In Lemma 4.19 it was shown that every internally chain recurrent set of the ECFP

differential inclusion is contained in the set of SNE. In this setup, the set of CNE coincides with

the set of SNE. Applying Theorem 7.2 we get that d(q̄N (n), CNE)→ 0 as n→∞. By Lemma 7.9

we obtain, ‖q̂i(n)− q̄(n)‖ → 0 as n→ 0, and the result d(q̂(n), CNE)→ 0 as n→∞ follows.

Again, we emphasize that this mode of convergence is not the same as the more traditional

convergence in empirical frequency (see (2.13) and accompanying discussion).

7.3.4 Simulation Example

Cognitive Radio Setup

In this section we illustrate the operation of network-based ECFP by implementing it in a cognitive

radio application.

Let Ch indicate a finite collection of permissible frequency channels. Assume there are two

classes of users sharing the allocated set of channels: primary users and secondary users. Assume

each primary user has been assigned to a fixed channel from which they may not deviate. Secondary

users are free to use any channel they wish. The objective in this setup is for the secondary users

to cooperatively learn a channel allocation that is both fair and in some sense optimal.

Cast this setup in the format of a normal form game Γ = (N, (Yi, ui(·))i∈N ) with N being the

set of secondary users, and Yi = Ch for all i. Let ψr(y) (respectively, ψr(y−i)) denote the number

of users on channel r ∈ Ch for the joint strategy y ∈ Y N (y−i ∈ Y−i).
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The cost associated with channel r when k users are on channel r is given by cr(k). The utility

for player i is given by ui(y) = −cyi(ψyi(y)), and the mixed utility is given by the usual multilinear

extension. The game Γ is an instance of a congestion game—a known subset of potential games [38].

Communication Graph Setup

We assume that some small portion of spectrum is allocated for the purpose of transmitting data

pertinent to the learning algorithm (i.e., disseminating information about the empirical centroid

q̄(n).) Such an assumption is reasonable when the communication overhead associated with the

learning algorithm is relatively small compared to the objective data being transmitted, e.g., users

objective is to transmit large video files.

We model user-to-user communication using a geometric random graph. In implementing the

network-based ECFP algorithm, we assign the weight constants wi,j of (7.3) according to the

Metropolis-Hastings rule [134].

Simulation Results

We simulated ECFP in two different cognitive radio scenarios. In the first, there are 10 channels

and 400 users, and the cost function for channel r ∈ Ch is given by a cubic polynomial of the form

cr(k) = a3k
3 + a2k

2 + a1k + a0,

where k is the number of users on channel r and aj , 0 ≤ j ≤ 3 are arbitrary coefficients. Figure 5.1

shows a plot of the utilities U(q̄N (n)) and U((q̂1(n))N ) in the fully-connected and network-based

cases respectively, where q̄N (n) is as defined in (3.3).6 The choice of the distribution of player 1,

q̂1(n), to represent the network-based case was arbitrary—q̂i(n) for any i ∈ N produces a similar

result. In the network-based case, players communicated via a randomly generated geometric graph

with average node degree of 8.78.

Both the fully-connected and network-based algorithms were started with identical initial condi-

tions. It is interesting to note that, while multiple NE do exist, both algorithms tend to converge to

the same equilibrium, regardless of the communication graph topology. This trend suggests that the

basin of attraction for any given NE is similar for both fully-connected ECFP and network-based

ECFP. Neither algorithm is noticeably superior in terms of the quality of equilibria attained.

6The notation (q̂i(n))N signifies the N -tuple containing N repeated copies of q̂i(n); cf. the definition of q̄N (n) in
(3.3).
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Figure 7.1: 7.1a: The average utility (taken over the set of players) of the joint empirical distribution,
q̄N (n), 7.1b: The distance from the joint empirical distribution to the set of NE.

A useful feature of consensus NE (CNE) in this setup is their adaptability to players entering or

exiting the game. If a new player enters the game after an ECFP learning process has been running

for some time, then incumbent players can simply inform the new player of the current empirical

distribution q̄(n), and the distribution q̄N+1(n) (meaning the (N+1) tuple which contains repeated

copies of q̄(n)) will be an approximate CNE in the newly formed (N + 1) player game. Similarly, if

a player exits the game, the distribution q̄N−1(n) will be an approximate CNE in the newly formed

(N − 1) player game.

In the second cognitive radio scenario simulated, there are 10 channels, each with a quadratic

cost function. This choice of cost functions guarantees the existence of a unique CNE. We simulated

network-based ECFP in this scenario for the cases of 50, 200, and 500 users; each case had different

randomly generated cost functions. In each case, the communication graph was generated as a

random geometric graph. The average node degree for the associated communication graph in each

case was 8.04, 8.72, and 8.98 respectively.

Figure 7.1b shows a plot of the normalized distance of (q̂1(n))N to the unique NE in each case

(the particular choice of q̂1(n) again being arbitrary). Distance was measured using the Euclidean

norm, normalized by
√
N , where N is the number of players. Simulation results suggest that

the convergence rate of ECFP is independent of the number of players. Indeed, the analytical

properties of ECFP (in general, see Section VII) suggest that the convergence is dependent only
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on the number of permutation invariant classes into which the player set is partitioned and not

the overall number of players. A rigorous characterization of the precise nature of this relationship

may be an interesting topic for future research.

7.4 Network-Based Single-Sample FP

In this section we present a network-based implementation of the SS-FP algorithm given in Section

5.5. We prove that the network-based SS-FP algorithm converges to the set of NE (almost surely)

and present a simulation example. We begin in the next section by introducing some definitions

that facilitate the presentation of the algorithm.

7.4.1 Algorithm Setup

Let q̂ij(n) denote an estimate that player i ∈ N maintains of the empirical distribution of player

j ∈ N , and let q̂i(n) := (q̂i1(n), . . . , q̂iN (n)) ∈ R
∑
i∈N |Yi| denote an estimate that player i maintains

of the tuple of empirical distributions. In network-based SS-FP, each player i ∈ N will form their

empirical-distribution estimate q̂i(n) by exchanging information with neighboring players (see steps

(i) and (iv) of the network-based SS-FP algorithm below). Let W = (wij)
N
i,j=1 be a weighting matrix

to be used in the distributed computation of q̂i(n). We will assume that W satisfies Assumption

7.3.

Similar to the (centralized) SS-FP algorithm presented in Section 5.5, in network-based SS-FP,

each player i ∈ N forms an estimate of the utility Ui(·, q−i(n)), where q−i(n) = (qj(n))j∈N\{i} and

qj(n) is as defined in (2.8). Let Ûi(αi, n) ∈ R denote the estimate player i maintains of Ui(αi, q−i(n))

for each αi ∈ Ai, n ∈ {0, 1, . . .}.

Some Additional Definitions

The following notation is used to facilitate a compact description of the algorithm. Let s :=∑
k∈N mk. Let q′i(n) be an augmented (zero-stuffed) vector representing the empirical distribution

of player i such that

q′i(n) := (0, . . . 0, Nqi(n), 0 . . . , 0) ∈ Rs.

The augmented vector q′i(n) matches the general structure of q̂i(n), but in the place of qii(n) we

substitute in N · qi(n) (a scaled copy of the true empirical distribution) and set all other entries to

zero.
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For i ∈ N , ξ = (ξ1, . . . , ξi−1, ξi+1, . . . , ξN ), ξj ∈ Rmj let

P∆−i(ξ) := (P∆1(ξ1), . . . , P∆N
(ξN )),

where P∆i(ξi) := arg infσi∈∆i ‖σi − ξi‖ is the projection of ξi onto the set ∆i.

7.4.2 Network-Based SS-FP Algorithm

Initialize

(i) Each player i takes an arbitrary initial action ai(1), and the empirical distribution for player

i is initialized as qi(1) = ai(1). Each player i ∈ N initializes their local estimate of the empirical

distribution as

q̂i(1) =
∑

j∈Ωi∪{i}

wijq
′
j(1), (7.5)

where Ωi is the set of neighbors of player i. The utility estimate is initialized as Ûi(αi, 0) = 0 for

all αi ∈ Ai.

Iterate (n ≥ 1)

(ii) Each player i ∈ N draws an action a∗−i(n) as a random sample from the probability mass

function7 P∆−i

(
q̂i−i(n)

)
. For each αi ∈ Ai player i updates their estimate of the predicted utility

according to the rule:

Ûi(αi, n) = (1− ρ(n))Ûi(αi, n− 1) + ρ(n)Ui(αi, a
∗
−i(n)).

(iii) Each player i ∈ N chooses their stage-(n+ 1) action as a best response to the predicted utility

Û(·, n); i.e.,

ai(n+ 1) ∈ arg max
αi∈Ai

Û(αi, n). (7.6)

The local empirical distribution of player i is recursively updated to include the action just taken,

i.e.,

qi(n+ 1) = qi(n) +
1

n+ 1
(ai(n+ 1)− qi(n)) .

(iv) Each player i ∈ N updates their estimate of the joint empirical distribution using the following

7Given the distributed update rule used to compute q̂i(n) in step iv, it is possible that q̂i(n) may sometimes leave
the probability simplex. The projection operation guarantees that a player has a valid probability distribution from
which to draw the sample a∗−i(n).
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rule:

q̂i(n+ 1) =
∑

j∈Ωi∪{i}

wij
(
q̂j(n) + q′j(n+ 1)− q′j(n)

)
. (7.7)

7.4.3 Network-Based SS-FP: Main Convergence result

The following result shows that players engaged in a network-based SS-FP process asymptotically

learn a Nash equilibrium strategy.

Theorem 7.5. Let Γ be a potential game. Let (q(n))n≥1, where q(n) := (q1(n), . . . , qN (n)) be

computed according to the network-based SS-FP algorithm of Section 7.4.2, and suppose that As-

sumptions 1.1–1.3, 5.3–5.4, and 7.3 hold. Then players learn a Nash equilibrium in the sense that

limn→∞ d(q(n), NE) = 0. Furthermore, each player i ∈ N achieves asymptotic strategy learning in

the sense that limn→∞ ‖q̂ij(n)− qj(n)‖ = 0 for all j ∈ N .

Proof. We will prove the result by showing that there exists a sequence {εn}n≥1 such that εn → 0

and Ui(ai(n+1), q−i(n)) ≥ maxαi∈Ai Ui(αi, q−i(n))−εn for all i. By Corollary 4.17, this is sufficient

to ensure d(q(n), NE)→ 0 in potential games.

By Lemma 7.10, there holds limn→∞ ‖q̂i(n) − q(n)‖ = 0. Since the map P∆−i is Lipschitz

continuous, this implies limn→∞ ‖P∆−i

(
q̂i−i(n)

)
− q−i(n)‖ = 0. By Lipschitz continuity of Ui, this

implies that

lim
n→∞

|Ui(αi, P∆−i

(
q̂i−i(n)

)
)− Ui(αi, q−i(n))| = 0, ∀αi, ∀i. (7.8)

Using assumption A.1 in Lemma 5.6 we get

lim
n→∞

|Ûi(αi, n)− Ui(αi, P∆−i

(
q̂i−i(n)

)
)| = 0, ∀αi, ∀i.

Combining this with (7.8) gives,

lim
n→∞

|Ûi(αi, n)− Ui(αi, q−i(n))| = 0, ∀αi, ∀i.

Combining this with the network-based SS-FP action rule (7.6), we see that there exists a sequence

{εn}n≥1 such that εn → 0 and

Ui(ai(n+ 1), q−i(n)) ≥ max
αi∈Ai

Ui(αi, q−i(n))− εn, ∀i,

and the desired result holds.
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7.4.4 Simulation Results

We simulated network-based SS-FP in a simple cognitive radio example. Let N = {1, . . . N}
indicate a set of users (or players), and let Ch indicate a finite collection of permissible frequency

channels shared by all users (i.e., Yi = Ch, ∀i ∈ N). For y ∈ Y , and k ∈ Ch, let ψk(y) denote

the number of users on channel k given the (joint) action tuple y. Further, for k ∈ Ch and

` ∈ {0, 1, 2, . . .}, let ck(`) denote the cost of using channel k when there are ` users occupying the

channel. Let the utility for player i ∈ N be given by ui(y) = −cyi(ψ(y)). This game is classified as

a congestion game—a known type of potential game [38].

We simulated the network-based SS-FP algorithm presented in Section 7.4.2 in the cognitive

radio game with 40 users and 10 channels. The stochastic approximation weight sequence was given

by ρ(n) = n−.6, n ≥ 1, and the step-size sequence was given by γ(n) = n.65, n ≥ 1. The weight

matrix W used to estimate q(n) (see (7.7)) was derived using the Metropolis-Hastings rule [134].

Figure 7.2a shows a plot of the expected utility of player8 1 averaged over 5 random instantia-

tions in a fully-connected version of SSFP and a network-based version of SS-FP. In the network-

based version of SS-FP, the communication graph, shown in figure 7.2b, was generated as a random

geometric graph. Network-based SS-FP and fully-connected SS-FP tended to converge at similar

rates.

We note that the fully connected SS-FP algorithm in this section tends to converge more quickly

than the “centralized” SS-FP algorithm studied in Section 5.5.4. This is due to two factors. First,

by choosing the step-size sequence of the form γ(n) = (n+ 1)−r, r < 1 we were able to improve the

rate of convergence as compared to a step-size sequence of the form of γ(n) = (n + 1)−1. Second,

in Section 5.5.4, in each iteration of the algorithm we drew a single test action that was used to

update the utility estimates of all players. In the fully-connected version of SS-FP simulated here,

we assume that each player draws a sample test action (independent from the other players) at

each iteration. This parallelizes the process of drawing samples, which tends to accelerate the per-

round convergence rate of the algorithm. However, this does not necessarily improve the per-sample

convergence rate of the algorithm.

7.5 Appendix to Chapter 7

This appendix is concerned with topics in distributed consensus in networks where node values are

dynamic quantities. The results of this section are used to prove convergence of the network-based

algorithms presented in section 7.3.2. Results in this section are similar to results on distributed

8The utility trend for all players was similar.
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(a) (b)

Figure 7.2: (a) Utility of q(n) in fully connected SS-FP and network-based SS-FP, (b) Communication
graph used in network-based SS-FP.

averaging in networks with additive changes in node values and information dynamics in [130,

135, 136]. For a survey of traditional consensus and gossip algorithms, the reader may refer to

[21,22,137].

Consider a network of N nodes connected through a communication graph G = (V,E). The

graph is assumed to be connected. Let xi(n) ∈ R be the value of node i at time n, and let x(n) ∈ RN

be the vector of values at all nodes. The goal is for each node to track the instantaneous average

x̄(n) = 1
n

∑N
i=1 xi(n), x̄(n) ∈ R, given that the value at each node xi(n) is time varying. Let

δi(n) = xi(n + 1) − xi(n) be the change in the value at node i, and δ(n) = x(n + 1) − x(n) be

the vector of changes at all nodes, δ(n) ∈ RN . Suppose the magnitude of the change at time n is

bounded by |δi(n)| = |xi(n+ 1)− xi(n)| ≤ ε(n) ∀i. We make the following assumption:

Assumption 7.6. The sequence {ε(n)}∞n=0 is monotone non-increasing.

Let x̂i(n) ∈ R be the estimate of x̄(n) at node i and let x̂(n) ∈ RN be the vector of estimates.

We make the following assumption pertaining to the initial error in players’ estimates.

Assumption 7.7. x̂i(0)− x̄(0) = 0 ∀i.

Let the average be estimated using the update rule

x̂(n+ 1) = W (x̂(n) + x(n+ 1)− x(n)) , (7.9)
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where the matrix W ∈ RN×N is aperiodic, irreducible, and doubly stochastic with sparsity con-

forming to G. The following Lemma gives a bound for the error in the estimates of x̄(n).

Lemma 7.8. Let the sequence {x̂(n)}∞n=1 be computed according to (7.9) where the communication

graph G satisfies Assumption 1.1, the weight matrix W satisfies Assumption 7.3, the incremental

change in x(n) is bounded according to assumption Assumption 7.6 and the initialization satisfies

Assumption 7.7. Then the error at any time n is bounded by,

‖x̂(n)− x̄(n)1‖ ≤ 2
√
N

1− λ
εavg(n),

where λ = sup
y∈RN :

∑
i
yi=0

‖Wy‖
‖y‖ , and εavg(n) = 1

n

n−1∑
τ=0

ε(τ) is the time average of {ε(τ)}n−1
τ=0.

Proof. Let e(n) = x̂(n) − x̄(n)1 be the vector of errors in each players estimate of x̄(n), where 1

denotes the N × 1 vector of all ones. Let δ̄(n) = 1
n

∑
i δi(n), ∀t. Using the relation (7.9) and the

properties of doubly stochastic matrices, the vector of errors may be written recursively as,

e(n+ 1) = W (e(n) + ξ(n)) (7.10)

where ξ(n) = δ(n)− δ̄(n)1. Note that

|ξi(n)| = |δi(n)− δ̄i(n)| ≤ |δi(n)|+ |δ̄i(n)| ≤ 2ε(n),

and,

‖ξ(n)‖2 =
N∑
i=1

(ξi(n))2 ≤
N∑
i=1

4ε(n)2 = 4nε(n)2. (7.11)

Using (7.10), the error e(n) can be rewritten as a function of ξ(n) and e(0), that is e(n+ 1) =
n∑
r=0

Wr+1ξ(n− r) + Wn+1e(0). Using this relationship we establish an upper bound on the error,

‖e(n+ 1)‖ = ‖
n∑
r=0

Wr+1ξ(n− r) + Wn+1e(0)‖

≤
n∑
r=0

λr+1‖ξ(n− r)‖, (7.12)

where we have employed assumption Assumption 7.7, e(0) = 0. Applying (7.11) in (7.12), we get

‖e(n+ 1)‖ ≤
n∑
r=0

λr+12
√
Nε(n− r).
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Recall that εavg(n) = 1
n

n−1∑
τ=0

ε(τ) is the time average of the sequence {ε(n)} up to time n, and

note that given our assumptions on W, it holds that λ < 1 (see [21]). Note that, by Chebychev’s

sum inequality [138] (p. 43-44),

n∑
r=0

λr+12
√
Nε(n− r) ≤

n∑
r=0

λr+12
√
Nεavg(n+ 1),

and hence,

‖e(n+ 1)‖ ≤
n∑
r=0

λr+12
√
Nεavg(n+ 1)

=

(
λ

1− λn+1

1− λ

)
2
√
Nεavg(n+ 1) ≤ 2

√
N

1− λ
εavg(n+ 1),

giving the desired upper bound for the error.

Lemma 7.9. Let {a(n)}n≥1 be a distributed ECFP process as defined in section 7.3.2 (see equations

(7.4)-(7.2)). Then ‖q̂i(n) − q̄(n)‖ = O( logn
n ), where q̄(n) is the average empirical distribution and

q̂i(n) is player i’s estimate of q̄(n).

Proof. We use the second argument, k, to index the components of the vector qi(n) ∈ Rm. Noting

that

qi(n+ 1) = qi(n) +
1

n+ 1
(ai(n+ 1)− qi(n)) ,

it follows that the maximum incremental change for any single value in the vector qi(n) is bounded

by |qi(n+1, k)−qi(n, k)| ≤ 1
n+1 = ε(n), where we let ε(n) := 1

n+1 . Note that the distributed ECFP

process (7.4) is updated column-wise (each column corresponds to an action k) using an update rule

equivalent to (7.9) of Lemma 7.8. Also note that, column-wise, all necessary conditions of Lemma

7.8 are satisfied,9 and specifically, we have ε(n) = 1
n+1 . Thus we apply Lemma 7.8 column-wise to

Q̂ and Q(n) of (7.4), where x(n) of Lemma 7.8 corresponds to the k’th column of Q(n), and X̂(n)

of Lemma 7.8 corresponds to the k’th column of Q̂(n), and obtain

‖q̂(n, k)− q̄(n, k)1‖ ≤ 2
√
N

1− λ
εavg(n) = O

(
log n

n

)
,

where q̂(n, k) = (q̂1(n, k) q̂2(n, k) · · · q̂N (n, k))T and εavg(n) = 1
n

∑n
s=1

1
n+1 = O

(
logn
n

)
. Thus,

9The assumption of zero initial error (Assumption 7.7) is satisfied since the initialization of q̂i(1) in (7.1) is
equivalent to letting q̄i(0) = 0, q̂i(0) = 0 for all i in (7.3).
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|q̂i(n, k)− q̄(n, k)| = O
(

logn
n

)
, k = 1, . . . ,m, ∀i, and hence, ‖q̂i(n)− q̄(n)‖ = O( logn

n ), ∀i.

The following lemma is used to prove convergence of distributed synchronous SS-FP algorithm.

Lemma 7.10. Assume A.2–A.5. For i, j ∈ N , let q̂ij(n) be as defined in Section VI-B. Let the

estimates q̂i(n) be formed as in Section VI-C. Then limn→∞ ‖q̂ij(n)− qj(n)‖ = 0, ∀i, j ∈ N .

Proof. Let q̄′(n) = 1
n

N∑
i=1

q′i(n) be the average of the augmented empirical distributions as defined in

Section VI-B. Note that q̄′(n) ∈ Rs is, in fact, a vector which stacks the true empirical distributions,

q̄′(n) = (q1(n), · · · , qN (n)). Thus, by solving for q̄′(n), players are in fact solving for the true

empirical distribution.

Let k ∈ {1, . . . , s}, and let q̃k(n) ∈ RN with

q̃k(n) := (q̂1(n, k), . . . , q̂N (n, k)),

where q̂i(n, k) is the k-th entry of the vector q̂i(n). Note that the incremental change in any element

of q̃k(n) is bounded by 1/n, and that q̃k(n) is updated in a manner fitting the template of Lemma

1 of [104]. Invoking Lemma 1 of [104] (where (7.5) is to be seen as (7.7) for n = 0 and q̂i(0) = 0,

qi(0) = 0) gives

lim
n→∞

‖q̃k(n)− 1q̄′(n, k)‖ = 0,

or equivalently, limn→∞ ‖q̂i(n, k) − q̄′(n, k)‖ = 0, ∀i. Since this holds for all k ∈ {1, . . . , s} and

q̄′(n) = q(n), (where q(n) is considered as a vector), this gives the desired result.
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Chapter 8

Inertial MBR Algorithms: Incomplete Information and

Network-Based Implementation

8.1 Introduction

Game theoretic learning processes have gained increasing prominence in the control, signal pro-

cessing, and communication communities due to their applicability as decentralized algorithms

[1, 2, 7, 18, 101, 139]. In these contexts, a multi-agent system is often modeled using the framework

of a normal-form game [18, 20]. Pure-strategy Nash equilibria of the game can often be shown to

represent desirable operating conditions in the associated multi-agent system (e.g. [12]).

There exist many game-theoretic learning algorithms that ensure agents learn pure NE strategies

(e.g., [73, 74]). However, such algorithms generally assume that agents have instantaneous access

to information necessary to compute their next-stage action. In many real-world scenarios, global

information is not instantly available to all agents—rather, information tends to be distributed

throughout the system and must be disseminated to all agents using some overlaid communication

infrastructure, e.g., wireless networks [1, 2], multi-robot systems [12], smart grid infrastructures

[6, 7].

In this chapter, we consider a setting in which each agent has access to private information

about their own action history, but does not have (direct) access to information about the actions

of others, nor access to instantaneous payoff information [77, 140]. We assume that agents are

equipped with an overlaid communication graph where a vertex represents a player and an edge

denotes the ability for two players to exchange information (e.g., see [78, 79, 104, 141, 142]). An

agent may only obtain information related to another agent’s action history if that information is

disseminated through the communication graph.
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The assumption that players do not have access to payoff information is relevant in settings

where feedback from physical game play is not available, or is delayed. This may occur, for exam-

ple, in scenarios where agents wish to precompute an equilibrium strategy prior to physical game

play, or where the designed utility functions do not readily admit physical measurement. In such

a framework, information can be subject to corruption and delay as it is disseminated through the

communication graph, and the traditional convergence results of pure-strategy-NE seeking algo-

rithms do not apply.

In addition to assuming that information flow is restricted to an inter-agent communication

graph, we suppose that agents may have some uncertainty about the state of the world. We model

this uncertainty using a game of incomplete information in which players have some uncertainty

about the game utility functions. We assume that each player receives a private signal that is

correlated to the true (time-invariant) state of the world. Using this information, each agent forms

a personal belief about the state of the world, which they may update as information is shared over

the communication graph through the course of the learning process. A learning process in this

setting must take into account the joint objectives of uncertainty mitigation and pure-strategy NE

learning.

In order to learn pure-strategy NE within the framework described above, we consider a class

of MBR learning algorithms and demonstrate convergence results within the class of weakly acyclic

games [143].

The problem of learning Nash equilibria (possibly mixed) through network-based implementa-

tion of MBR dynamics in multi-agent networks has been addressed in prior work [78,104,142] (see

also, Chapter 7). In this chapter we focus on network-based equilibria learning in which the agents

specifically seek to learn pure-strategy Nash equilibria which is not guaranteed by the network-based

learning mechanisms presented in [78, 104] (and Chapter 7) and also, in settings with incomplete

information [142].

In order to learn pure-strategy equilibria in this setting we consider a class of algorithms we

denote as inertial MBR dynamics—such algorithms consist of a best-response component (similar

to classical FP) and an additional “inertial term” which ensures that players occasionally repeat

actions in consecutive stages. The use of an inertial term is a common technique used to ensure

convergence to pure-strategy NE [73,74].

We first prove a general convergence result that applies to any inertial MBR algorithm. The

general convergence result applies to a broad class of learning dynamics and applies to a wide

variety of information dissemination schemes (not just the synchronous graph-based information

dissemination schemes that we focus on in the later part of the chapter).
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Subsequently, as applications of the general result, we study the network-based implementation

(under uncertainty) of two important inertial MBR algorithms.

As a first application, we study the network-based implementation of classical FP with inertia

(referred to as N-FP) (see Section 8.4).

As a second application, we study the network-based implementation of a variant of the Joint

Strategy FP (JSFP) algorithm [73] that is applicable within the class of congestion games. (We

refer to this network-based algorithm as N-JSFP.) Classical FP can be difficult to implement in

large-scale games due to high demands in terms of information overhead and complexity as the

number of players grows large. JSFP is a variant of FP that mitigates these issues. We note

that while the N-JSFP algorithm of this chapter is able to operate with lower computational and

communication burdens than N-FP, it is applicable within a narrower class of games than N-FP.

(This is a consequence of the structure of the information that is passed through the network—see

Section 8.5 for more details.)

In summary, the chapter investigates the problem of learning pure-strategy NE in games where

there is environmental uncertainty and players must communicate information using an overlaid

communication graph. As our first main contribution, we study a general class of learning algo-

rithms that we call inertial MBR dynamics, and we prove such algorithms converge to pure-strategy

NE under appropriate assumptions. Our second main contribution is an application of this general

result to develop variants of the FP and JSFP algorithms that achieve pure-strategy NE learning

in network-based settings with uncertainty.

It should be noted that in Chapter 10 we will address the closely related problem of studying

continuous-time FP dynamics in potential games. We prove that in almost all potential games,

for almost all initial conditions, continuous-time FP converges to a pure-strategy equilibrium (see

Theorem 10.1). We suspect that a similar result holds for discrete-time FP in potential games,

although no such result has yet been proven.

This result, while powerful, does not obviate the results of this chapter. In this chapter we

study convergence to pure-strategy equilibria in a broader class of games and a broader class of

dynamics than considered in Theorem 10.1. In particular, we study the general class of myopic best

response algorithms (with inertia), and we prove convergence of such algorithms to a pure-strategy

NE in the class of weakly acyclic games (a class of games strictly larger than potential games).

The remainder of the chapter is organized as follows. In Section 8.2 we set up the problem

formulation. In Section 8.3 we present the general convergence result for inertial MBR dynamics.

In Section 8.4 we study distributed implementations of classical FP with inertia. In Section 8.5 we

study distributed implementations of the Joint Strategy FP algorithm with inertia. In Section 8.6
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we present simulation examples.

8.2 Networked Multi-Agent Systems with Incomplete Information

In this chapter we consider scenarios where players in a game have incomplete information about

the state of the world. Formally, let Θ to be the set of possible states of the world and assume that

Θ is a metrizable space. We let B(Θ) denote the Borel σ-algebra on Θ and let 4(Θ) denote the

set of probability measures on the measurable space (Θ,B(Θ)).

For each state of the world θ ∈ Θ we consider the associated normal-form game defined by the

tuple

Γ(θ) = (N , {Yi, ui(·, θ)}i∈N ), (8.1)

where N and (Yi)i∈N are as defined in Section 2.1, and ui(·, θ) : Y → R denotes the utility function

of player i ∈ N given the state θ. Observe that the set of players and the set of possible actions

are assumed to be the same irrespective of the state of the world θ. When player i chooses strategy

yi, the payoff it receives is ui({yi}i∈N , θ) = ui(y, θ). The payoff depends on the joint action profile

y = {yi}i∈N and the state of the world θ. As in the complete-information setup of Section 2.1,

we let ∆i denote the mixed strategy space of player i and let ∆N denote the set of joint mixed

strategies where it is assumed that players use independent strategies.

When a mixed strategy σ ∈ ∆ is played, we are interested in the expected payoffs which we

write as

Ui(σ, θ) = Ui(σi, σ−i, θ) :=
∑
y∈Y

ui(y, θ)σ(y). (8.2)

The notation Ui(σi, σ−i, θ) in (8.2) is meant to emphasize that the payoff depends on the strategy

σi chosen by player i and the strategies σ−i := {σj}j∈N ,j 6=i that are chosen by other players.

Since we want to study games in which θ is uncertain, we further define expected payoffs with

respect to a probability distribution µ ∈ 4(Θ)—we refer to µ as a belief about the state of the

world. The expectation of the payoff in (8.2) with respect to this belief is then given by

Ui(σ, µ) = Ui(σi, σ−i, µ) :=

∫
Ui(σ, θ)µ(dθ). (8.3)

The notation Ui(σ, µ) in (8.3) is a slight abuse of the notation Ui(σ, θ) in (8.2). This inconsistency

is resolved if we use θ to denote a state realization but also as a shorthand for the belief µ with all

mass on θ. Similarly, we will use yi and y to denote actions but also as a shorthand for strategies

σi and σ with all mass on yi and y respectively. We adopt this convention henceforth.
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The payoffs in (8.3) define a modification of the game Γ(θ) in (8.1) in which the payoffs are

given by the expected utilities in (8.3). The equilibria of this modified game are formally defined

next.

Definition 8.1. Given the game Γ(θ) in (8.1) and a belief µ define the game Γ(µ) := (N , {Yi, ui(·, µ)})
associated with the utilities in (8.3). The joint strategy σ = {σi}i∈N ∈ ∆ is a Nash equilibrium of

Γ(µ) if the utilities in (8.3) satisfy

Ui(σi, σ−i, µ) ≥ Ui(σ′i, σ−i, µ), for all σ′i ∈ ∆i, i ∈ N . (8.4)

The equilibrium is said to be a pure-strategy equilibrium if there exists an action tuple y ∈ Y such

that σ = 1y.

The equilibria in (8.4) exist because, with µ fixed, the payoffs in (8.3) define a normal form

game. In general, pure equilibria may or may not exist, but we will assume here that they do (see

Assumption 8.4). In such cases, identifying pure equilibria is important in applications because

they result in behaviors that are often more reasonable than the behaviors that result from mixed

equilibria—see Section 8.1. Our goal in this chapter is to design an algorithm allowing agents to

learn the pure equilibria in Definition 8.1 when players play repeatedly over time and acquire a

common belief about the state of the world. We formally state this problem in the following section.

8.2.1 Learning via Repeated Play

Players are permitted to repeatedly face off in the game Γ(θ) in discrete stages n ∈ N. At each stage

n, agent i plays an action yi(n) ∈ Yi that is chosen from the (possibly mixed) strategy σi(n) ∈ ∆i.

To select the strategy σi(n), agent i has access to a belief µin about the state of the world, and has

some knowledge of the past history of game play {yj(s)}n−1
s=1 , j ∈ N . The beliefs µin ∈ 4(Θ) are

time varying and possibly different for different agents, although they are required to converge to a

common distribution—see Assumption 8.3. Besides this belief about the state of the world, agent

i also has estimates σ̂ij(n) ∈ ∆j of the strategies σj(n) ∈ ∆j of other agents. The belief µin and the

estimated strategies σ̂i−i(n) := {σ̂j(n)}j∈N ,j 6=i allow agent i to estimate the payoff that it would

receive from playing an arbitrary action yi. These estimated payoffs can be written as [cf. (8.3)]

Ûi(yi, n) := Ui(yi, σ̂
i
−i(n), µin), yi ∈ Yi. (8.5)

The utility Ûi(yi, n) in (8.5) is what agent i predicts he would receive as payoff given the (partial)

information he has available on the state of the world (the belief µin) and the actions of other agents
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(the strategy estimates σ̂i−i(n)).

The action that maximizes the utility estimates in (8.5) is of importance to agent i and defined

here as the best response

ŷi(n) := arg max
yi∈Yi

Ûi(yi, n) = arg max
yi∈Yi

U(yi, σ̂
i
−i(n), µin). (8.6)

Observe that there may be multiple arguments that maximize Ûi(yi, n). Thus, the best response

ŷi(n) in (8.6) is in general a set, not an individual action.

A learning algorithm in game theory is a collection of behavior rules that dictate how each

player should choose the “next-stage action” yi(n+1) based on the information they have available

at time n. Myopic best-response rules in which agents play an action yi(n+1) ∈ ŷi(n) are common;

see e.g., [20,26,74]. Here, we are interested in a slight modification in which agents are sometimes

“reluctant” to modify their action choices from round to round. We refer to this general algorithm

(formally stated next) as inertial MBR dynamics.1

Algorithm 8.2. Let ρ ∈ (0, 1) be an inertia constant and let yi(1) be an arbitrary initial action

for each i. At time n > 1, agent i has access to strategy estimates σ̂ij(n) and a belief µin that it uses

to compute the best-response set ŷi(n) in (8.6). Players are said to follow inertial MBR dynamics

if they play actions according to

P (yi(n+ 1) = yi(n)|Fn−1) = ρ, P (yi(n+ 1) ∈ ŷi(n)|Fn−1) = 1− ρ, (8.7)

where (Fn)n≥1 is a filtration (sequence of increasing σ-algebras) that contains the information

available to players in round n. As per (8.7), an inertial MBR algorithm entails player i sticking

to its previous play yi(n) with some (fixed) probability ρ (this is the inertia component of the al-

gorithm), and playing a best response otherwise. The selection of myopic best responses promotes

a general trend of improving utility, while the inertia component of the algorithm—with its occa-

sional repetition of actions—ensures that players eventually lock into a pure strategy equilibrium.

Examples of algorithms that use best response with inertia can be found in [73,74].

Throughout this chapter, we want to study mechanisms to update the beliefs σ̂ij(n) so that

players learn pure equilibria (cf. Definition 8.1). We do so using ideas from fictitious play, so

that (roughly speaking) σ̂ij(n) is built from empirical histograms of the actions that have been

observed or action information that has been disseminated through an overlaid communication

graph. These algorithms are defined in Sections 8.4 and 8.5 after we introduce some preliminary

1We also refer to an algorithm of this form as an inertial MBR algorithm.
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convergence results for the generic inertial MBR methods given in Algorithm 8.2.

8.3 Inertial Best-Response Algorithm: General Convergence Result

In this section we study convergence results for the inertial best-response learning dynamics pre-

sented in the previous section (see Algorithm 8.2). These dynamics can be shown to achieve pure-

strategy NE learning so long as the estimated payoffs Ûi(n) = (Ûi(yi, n))yi∈Yi satisfy an appropriate

asymptotic accuracy condition (see Condition 8.7). We first present some general assumptions re-

garding game play, and then present the convergence results.

In later sections, these results will be used to prove convergence of two particular instances of

inertial best-response dynamics.

8.3.1 General Assumptions

We first introduce some notation necessary for the subsequent development. Suppose S is a metric

space with Borel σ-algebra Σ, and let {µn}n≥1 and µ be probability measures on (S,Σ). The

sequence {µn}n≥1 converges weakly to µ if
∫
g(s)µn(ds)→

∫
g(s)µ(ds) as n→∞ for any bounded

continuous function g : S → R. In this case we write µn
w−→ µ.

We assume that players’ beliefs about the state of the world converge weakly to a fixed common

distribution. Formally,

Assumption 8.3. There exists a probability measure µ ∈ ∆(Θ) such that µin
w−→ µ for all i ∈ N .

This assumption is easily attainable by a variety of belief formation mechanisms. For example,

suppose that there exist sequences (θin)n≥1 ⊂ Θ satisfying limn→∞ θ
i
n = θ, ∀i. Then the belief

sequence where µin places mass 1 on θin satisfies Assumption 8.3.

Throughout the chapter, our focus is aimed at studying learning dynamics and not the particular

process used to form the beliefs µin. In an effort to maintain this focus, we will not explicitly specify

any particular dynamics used to form the belief µin—rather, we will study learning results that can

be achieved under the broad assumption of weak convergence of beliefs. In Section 8.6 we discuss

a simulation example in which the dynamics used to form the belief µin are explicitly specified and

satisfy Assumption 8.3.

Given that there exists a µ such that µin
w−→ µ, for all i, we assume further that under the belief

µ, the game is weakly acyclic. Formally,

Assumption 8.4. Let µ be as in Assumption 8.3 and define the normal form game Γ associated

with the belief µ as Γ(µ) = (N , {Yi, ui(·, µ)}). We assume the game Γ(µ) is weakly acyclic; that is,

for any y ∈ Y , there exists a best-response path that converges to a pure-strategy Nash equilibrium.
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A review of the topic of weakly acyclic games can be found in [143]. The above assumption

ensures that the set of pure-strategy NE (see Definition 8.1) is non-empty, and will ensure that the

learning algorithms to be studied can always reach a pure-strategy NE.

Finally, we assume that under the limiting belief µ, players are never indifferent between action

choices. Formally,

Assumption 8.5. For any pair of actions y′i ∈ Yi, y′′i ∈ Yi, y′i 6= y′′i and for any y−i ∈ Y−i,

Ui(y
′
i, y−i, µ) 6= Ui(y

′′
i , y−i, µ)

for all i ∈ N .

Note that Assumption 8.5 (cf. [73] Assumption 2.2) implies that under the belief µ all pure

NE are strict. Moreover, the assumption implies that for any i ∈ N and y−i ∈ Y−i, the set

arg maxyi∈Yi Ui(yi, y−i, µ) is a singleton.

We remark that Assumption 8.5 is generic in the sense that if the number of players and actions

are fixed, then the set of utility functions for which Assumption 8.5 fails is a closed set of Lebesgue

measure zero within the space of all possible utility functions.

Assumption 8.6. Let {Fn}n≥1 be a filtration (sequence of increasing σ-algebras) with Fn :=

σ({y(s)}ns=1, {µis}i∈N ,s=1,...,n). The strategy estimate σ̂ij(n) ∈ ∆j that agent i has of the strategy

σj(n) of agent j is measurable with respect to Fn.

Assumption 8.6 means that the strategy estimates of agent i are restricted to be a function of

the history of play.

The following condition is sufficient (to be shown) to ensure that a MBR algorithm with inertia

converges to NE.

Condition 8.7. There exist n̄, T ∈ N such that, if n ≥ n̄, and if any action y ∈ Y is repeated

consecutively for T̃ ≥ T stages (i.e., y(s) = y for s = n, . . . , n+ T̃ −1), then arg maxyi∈Yi Ûi(yi, n+

T̃ − 1) = arg maxyi∈Yi Ui(yi, y−i, µ) for all i ∈ N .

Throughout this section we assume that this condition holds. (In later sections, when studying

particular inertial best-response algorithms, our main task will be to show that Condition 8.7

holds.) The condition states that there exists a finite time n̄ after which if any action profile y

is repeated a sufficiently large number of times (specifically, more than T times) then player i’s

optimal response to its predictions of the utility coincides with the optimal response to the actual

action profile y−i. This condition is natural within the class of learning algorithms with fading or
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finite memory [74] where, if players repeat an action a sufficient number of times their prediction

of the utility can be brought arbitrarily close to the utility of the repeatedly-played action.

When studying particular implementations of inertial best-response dynamics in the following

sections, the condition reduces to tangible assumptions on learning past action profiles of other

players—see Conditions 8.17 and 8.24.

8.3.2 General Convergence Analysis

The following two lemmas allow us to prove the main theoretical result of this section. Lemma 8.8

shows that pure-strategy Nash equilibria are absorbing, and Lemma 8.9 shows that the probability

of reaching such an absorbing state is uniformly bounded from below. Together they prove Theorem

8.10.

Lemma 8.8 (absorption property). Let n̄ be as in Condition 8.7. Let {y(n)}n≥1 be a sequence

of actions generated by an inertial best-response algorithm. Suppose Assumptions 8.3–8.6 and

Condition 8.7 hold. There exists a T1 ∈ N such that if n ≥ n̄, and y∗ ∈ Y is any pure-strategy Nash

equilibrium, and if y∗ is played in T1 consecutive stages, i.e., y(s) = y∗, ∀s = n, . . . , n + T1 − 1,

then y(n+ τ) = y∗ for all τ ≥ 0.

Proof. Let T be as in Condition 8.7, and let T1 ≥ T . Suppose y∗ is a pure Nash equilibrium

and y(s) = y∗ for s = n, . . . , n + T1 − 1. Then by Condition 8.7, arg maxy′i∈Yi Ûi(y
′
i, n + T̃ ) =

arg maxy′i∈Yi Ui(y
′
i, y
∗
−i, µ), ∀i (recall that Ûi(y

′
i, n + T̃ ) as defined in Section 8.2.1 is implicitly

dependent on µi
n+T̃

). Moreover, by Assumption 8.5, the set arg maxy′i∈Yi Ui(y
′
i, y
∗
−i, µ) = {y∗i } is

a singleton for each i. Thus, the action y∗ is repeated in stage n + T1. Inductively, we see that

y(n+ τ) = y∗ for all τ ≥ 0.

Lemma 8.9 (positive probability of absorption). Let n̄ be as in Condition 8.7. Let {y(n)}n≥1 be a

sequence of actions generated by an inertial best-response algorithm. Suppose Assumptions 8.3–8.6

and Condition 8.7 hold. Let T1 be as in Lemma 8.8, and let T2 ≥ T1 be given. Let n be the current

stage of the repeated play. Define the event

En := {y(τ) = y∗ for some pure strategy NE y∗

for all τ ∈ {n′, n′ + 1, . . . , n′ + T2 − 1},

for some n′ ∈ {n, . . . , n+ T2|Y |}}.

There exists an ε = ε(T2) > 0 such that P(En|Fn) > ε for all n ≥ n̄.
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Proof. The proof follows along the lines of the proof of Theorem 3.1 in [73]. By Condition 8.7,

for any n′ ≥ n̄, if any action y ∈ Y is repeated consecutively from stage n′ to stage n′ + T2 − 1,

then arg maxyi∈Yi Ûi(yi, n
′ + T2 − 1) = arg maxyi∈Yi Ui(yi, y−i, µ). Let y0 = y(n). Conditioned

on Fn, the action y0 will be played repeatedly in T2 consecutive stages with probability at least

ε1 := ρN(T2−1) > 0. Supposing this occurs, then at stage τ = t + T2 − 1, arg maxyi∈Yi Ûi(yi, τ) =

arg maxyi∈Yi Ui(yi, y
0
−i, µ). At this point, either no players can improve their utility (in which case

we are at a pure NE), or at least one player can improve their utility. If the latter is the case then,

conditioned on Fn+T2−1, with probability at least ε2 := ρN−1(1 − ρ), exactly one player i chooses

to take a best response and improves their utility, and all others continue to play y0
−i. Call the new

action profile y1. Continuing in this manner, we can construct a sequence of actions y0, y1, . . . , ym

(terminating with at most m = |Y |) such that ym is a pure-strategy Nash equilibrium. Conditioned

on Fn, the probability of this action sequence occurring (and then the final action ym being played

for T2 consecutive stages) is bounded from below by ε := (ε1ε2)|Y |ρT2−1.

The lemma establishes that from any state of beliefs and predictions, the probability that a

pure strategy Nash equilibrium is reached and repeated until absorption is positive. Next, we state

our main result for this section.

Theorem 8.10. Let {y(n)}n≥1 be a sequence of actions generated by inertial best-response dynam-

ics. Suppose Assumptions 8.3–8.6 and Condition 8.7 hold. Then the action sequence {y(n)}n≥1

converges to a pure-strategy NE of the game Γ(µ), almost surely. Moreover, let τ ∈ N ∪ {∞} be

a random variable indicating the round number in which the action sequence y(n) is absorbed to a

pure-strategy NE. Then E(τ) <∞.

Proof. Let n ≥ n̄ and let T2 be as in Lemma 8.9. By Lemma 8.8, if a pure NE action y∗ is played

in T2 consecutive stages, then y∗ will be played in all consecutive stages. By Lemma 8.9, the

probability of reaching such an “absorbing state” is uniformly lower bounded by some ε > 0. Thus,

the process is absorbed to a pure NE almost surely in finite time, and E(τ) <∞ ( [122], p.233).

In the following sections, we will use this result to study the convergence of various instances of

inertial MBR algorithms in settings with environmental uncertainty and limited communication. In

particular our main task will be to show that the algorithms under consideration satisfy Condition

8.7.
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8.4 Network-Based Implementation of Fictitious Play with Inertia

In this section we study a variation of the classical FP algorithm in which the best response of

classical FP is augmented with an inertia term, and inter-agent communication is restricted to a

graph. We refer to the class of algorithms studied in this section as network-based FP (N-FP).

The main contributions of this section are twofold. First, we present the general form of the

N-FP algorithm (see Section 8.4.3); this general algorithm explicitly specifies the learning dynamics

to be used, but does not explicitly specify the dynamics of the inter-agent communication scheme.

We show that any inter-agent communication scheme will lead to pure-strategy NE learning so long

as it satisfies a fairly mild condition (see Condition 8.17). Subsequently, we present an example

implementation of N-FP (see Section 8.4.5) in which the inter-agent communication scheme is

explicitly specified and we demonstrate that the example implementation converges to a pure-

strategy NE.

We note that in Chapter 10 it will be shown, roughly speaking, that continuous-time FP almost

always converges to a pure-strategy NE in potential games. We suspect that a similar result

holds for discrete-time FP in potential games, although no such result has yet been proven. The

inertial-based FP algorithm studied in this chapter converges to a pure NE in the broader class of

weakly-acyclic games—a class of games strictly subsuming potential games. However, if the game

is a potential game, it may be possible to ensure convergence to pure-strategy NE using standard

FP dynamics if one can prove a discrete-time analog of Theorem 10.

We begin this section by reviewing the centralized FP algorithm with fading memory and inertia.

8.4.1 Fictitious Play with Inertia and Fading Memory

A review of the classical FP algorithm can be found in Section 2.5 and a review of FP with inertia

can be found in [74].

The FP with inertia algorithm is defined as follows. Let qi(n) ∈ R|Yi| denote the weighted

empirical distribution (or just empirical distribution) of player i. Let α ∈ (0, 1] be a step-size

parameter. Let qi(n) be defined recursively as qi(1) = 1yi(1) and for n ≥ 1,

qi(n+ 1) = (1− α)qi(n) + α1yi(n+1). (8.8)

Let the joint weighted empirical distribution profile (or joint empirical distribution) be given by

q(n) := (q1(n), . . . , qN (n)). The weighted empirical distribution is said to have “fading memory”
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because it places greater weight on recent events.2

In fictitious play with fading memory and inertia, each player chooses their next-stage action

according to the rule

yi(n+ 1) ∈


arg maxyi∈Yi Ui(yi, q−i(n), θ) with prob. 1− ρ,

yi(n) with prob. ρ,

where ρ ∈ (0, 1) is some predefined inertia constant and the probability is conditioned on Fn−1 (see

Assumption 8.6).3

In the network-based setting, player i may not have precise knowledge of the action history of

player j, and hence may not have precise knowledge of qj(n). Let q̂ij(n) be an estimate that player

i maintains of qj(n). Let q̂i(n) = (q̂i1(n), . . . , q̂iN (n)) be an estimate that player i maintains of the

empirical distribution profile q(n).

Next, we present the network-based setup and inter-agent communication scheme.

8.4.2 Network-Based Setup

In a large-scale setting, the physically distributed nature of the system can make it difficult for

players to observe the actions taken by every other player. We assume that players may be unable to

observe the actions taken by others, but are equipped with an overlaid communication infrastructure

through which they may exchange information with neighboring players. Formally, we will assume

Assumptions 1.1–1.3 hold.

8.4.3 General N-FP Algorithm

We now state the general N-FP algorithm. The algorithm follows the format of an inertial MBR

algorithm, but in this case, the utility prediction of player i, Ûi(n) = (Ûi(yi, n))yi∈Yi , is formed

using player i’s estimate of the empirical distribution q̂i−i(n) (in particular, this is the product

distribution of {q̂ij(n)}j 6=i). Intuitively speaking, this may be thought of as player i forming the

(possibly incorrect) belief that her estimate of the empirical distribution q̂i−i(n) accurately repre-

sents the mixed strategies of opponents.

2While the use of inertia is essential to the structure of the proofs in this chapter, the use of fading memory is less
critical. It is possible that the results still hold using a time-varying step size αt, (e.g., [73], Section II-E); however,
the assumption of fading memory simplifies the analysis.

3We note that in the classical fictitious play algorithm it is common to omit the state parameter θ from the
argument of the utility function, as the implicit assumption is that the players know their own utilities, i.e., ui : Y → R.
Here we have kept θ to be consistent with our earlier notation.
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Algorithm 8.11.

Initialize

(i) Let ρ ∈ (0, 1) be fixed. For each i, let yi(1) be chosen arbitrarily, and let the estimate q̂i(1) be

initialized as q̂i(1) = 1yi(1).

Iterate (n ≥ 1)

(ii) Each agent i chooses their next-stage action according the rule

yi(n+ 1) =


arg maxyi∈Yi Ui(yi, q̂

i
−i(n), µin) with prob. 1− ρ,

yi(n) with prob. ρ.

(iii) Each player i updates their personal empirical distribution qi(n) according to (8.8).

(iv) Each player i engages in one round of information exchange with neighboring agents j ∈ Ni,
and updates their estimate of the joint empirical distribution q̂i(n).

In the following section we analyze convergence of N-FP. We prove convergence to a pure-

strategy NE by showing that the algorithm fits the template of Theorem 8.10.

Remark 8.12. Note that the framework assumed by Assumptions 8.3 and 1.1 may is a general-

ization of the classical repeated play learning framework. The classic framework of centralized and

complete information is recovered by letting G be the complete graph and letting µin = µ = δθ for

all i ∈ N and n ≥ 1, where δθ is the Dirac delta distribution placing mass 1 on the point {θ}.

Remark 8.13. Note that it has not been precisely specified how q̂i(n) is updated. In the following

section we give a general sufficient condition on the update rule under which convergence to pure

NE can be guaranteed.

8.4.4 Convergence Analysis for Generic N-FP Algorithm

We first introduce some notation necessary for the subsequent development. Given metric space

(X, dX) and a family of functions {gα}α∈A with gα : X → R for all α ∈ A we say {gα}α∈A is

uniformly equicontinuous if for every ε > 0 there exists a δ > 0 such that |gα(x)−gα(y)| < ε, ∀α ∈ A
whenever dX(x, y) < δ, x, y ∈ X.
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In order to ensure that weak convergence in beliefs results in a meaningful notion of convergence

in terms of players’ utility functions, we require that the utility functions satisfy the following

assumption:

Assumption 8.14. For each i ∈ N , the family of functions {ui(·, θ)}θ∈Θ is uniformly equicontin-

uous.

The following lemma allows us to establish the existence of a finite time such that after this

time players’ beliefs µin are sufficiently “close together” for our subsequent analysis.

Lemma 8.15. Suppose Assumptions 8.3 and 8.14 hold. Let ε > 0. There exists a time T > 0 such

that |Ui(σ, µin)− Ui(σ, µ)| < ε, ∀σ ∈ ∆N , ∀i, for all n ≥ T .

The proof of the lemma follows immediately from Lemma 8.30 in the appendix.

Let

η := min
y′i,y
′′
i ∈Yi, y′i 6=y′′i ,
y−i∈Y−i,
i∈N

1

4
|Ui(y′i, y−i, µ)− Ui(y′′i , y−i, µ)|;

the above lemma implies that there exists a time nη ∈ N such that, for any σ ∈ ∆N and any i ∈ N
there holds |Ui(σ, µin) − Ui(σ, µ)| < η for all n ≥ nη. Intuitively, this means that for all n ≥ nη,

players’ beliefs are sufficiently close so that any disparities have negligible effect on the utilities.

We note that the existence of such a time nη is not trivially obtained and relies explicitly on the

uniform equicontinuity of the family {ui(·, θ)}θ∈Θ. The time nη here plays the role of time n̄ in

Section 8.3.

Remark 8.16. Suppose n ≥ nη. Then for any player, the best response to any pure strategy

is unique; i.e., arg maxyi∈Yi Ui(yi, y−i, µ
i
n) is a singleton for all y−i ∈ Y−i, for all i. This follows

immediately from Assumption 8.5 and the definition of nη.

The general form of N-FP (see Section 8.4.3) explicitly specifies the learning dynamics to be

used, but does not explicitly specify the dynamics of the inter-agent communication scheme in step

(iii) of the N-FP algorithm. Any protocol for determining q̂i(n) will be valid so long as the following

condition is satisfied:

Condition 8.17. There exists a T ∈ N such that if any action y∗ ∈ Y is repeated in T̃ ≥ T

consecutive stages (i.e., y(s) = y∗, s = n, . . . , n+ T̃ − 1), then ‖q̂i(n+ T̃ − 1)− q(n+ T̃ − 1)‖ < η

for all i.
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We note that the condition is fairly mild and is attainable by a wide variety of distributed track-

ing algorithms (e.g. [144,145]). In the following section we will present an example implementation

of N-FP in which this condition is explicitly satisfied.

The following lemma shows that if Condition 8.17 is satisfied, then there exists a time T such

that if players repeatedly play an action in T consecutive stages, then the set of maximizers of

Ui(·, q̂i(n), µin) and Ui(·, q(n), µ) coincide. The time T here is analogous to the time T in Section

8.3 (see Condition 8.7).

Lemma 8.18. Let {y(n)}n≥1, {q(n)}n≥1, and {q̂1(n), . . . , q̂N (n)}n≥1 be generated according to

Algorithm 8.11. Suppose Assumptions 8.3–8.6, 8.14, and Condition 8.17 hold. Assume n ≥ nη.

Then there exists a finite T ∈ N such that if any action y∗ ∈ Y is repeatedly played in T̃ ≥
T consecutive stages, i.e., y(s) = y∗ for s = n, . . . , n + T̃ − 1, then arg maxyi∈Yi Ui(yi, q̂

i
−i(n +

T̃ ), µi
n+T̃

) = arg maxyi∈Yi Ui(yi, y
∗
−i, µ) for all i.

The proof of Lemma 8.18 is found in the appendix of this chapter. The preceding lemma ensures

that the N-FP process satisfies Condition 8.7. This allows us to invoke Theorem 8.10 in order to

prove the following theorem, which is the main convergence result for N-FP.

Theorem 8.19. Let {y(n)}n≥1, {q(n)}n≥1, and {q̂1(n), . . . , q̂N (n)}n≥1 be generated according to

Algorithm 8.11. Suppose Assumptions 8.3–8.6, 8.14 and Condition 8.17 hold. Then the action

sequence {y(n)}n≥1 converges to a pure-strategy Nash equilibrium, almost surely.

Proof. The N-FP process fits the template of Condition 8.7 with Ûi(yi, n) = Ui(yi, q̂−i(n), µin) for

each i and each αi ∈ Yi. By Lemma 8.18, the sequence of predictions {Ui(yi, q̂−i(n), µin)}n≥1

satisfies Condition 8.7. Thus, the result follows from Theorem 8.10.

In the following section, we present an example implementation of N-FP in which the inter-agent

communication scheme is explicitly specified. We demonstrate that the example implementation

converges to a pure-strategy NE.

8.4.5 An Implementation of N-FP

In this section we provide an example implementation of N-FP in which the mechanism for forming

the estimates q̂i(n) and the network-based information dissemination scheme are explicitly specified.

Algorithm 8.20.

Initialize
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(i) Let ρ ∈ (0, 1) be fixed. For each i, let yi(1) be chosen arbitrarily. Let qi(1) = 1yi(1) for all i and

let q̂i(1)i = qi(1). For j 6= i, let q̂ij(1) = wij,jqj(1) if j ∈ Ni and q̂ij(1) = 0 otherwise, where wij,j is a

weight constant (see step (iv) and Lemma 8.21).

Iterate (n ≥ 1)

(ii) Each agent i chooses their next-stage action according the rule

yi(n+ 1) =


arg maxyi∈Yi Ui(yi, q̂

i
−i(n), µin) with prob. 1− ρ,

yi(n) with prob. ρ.

(iii) Each player i updates their personal empirical distribution qi(n) according to (8.8).

(iv) For each i, q̂ij(n) is updated as

q̂ij(n+ 1) =
∑
k∈Ni

wij,k

(
q̂kj (n) + (qj(n+ 1)− qj(n))χ{k=j}

)
, (8.9)

where χ{k=j} is the characteristic function defined by χ{k=j} = 1 if k = j and χ{k=j} = 0 otherwise,

and where wij,k is the weight that player i attributes to k’s estimate of j’s empirical frequency (see

Lemma 8.21.)

8.4.6 An Implementation of N-FP: Convergence Analysis

In this section we analyze the convergence of the example implementation of N-FP presented in

Section 8.4.5.

The following Lemma ensures that Condition 8.17 is satisfied. It then follows by Theorem 8.19

that the example implementation of N-FP converges to a pure-strategy NE.

Lemma 8.21. Let {y(n)}n≥1, {q(n)}n≥1, and {q̂1(n), . . . , q̂N (n)}n≥1 be generated according to

Algorithm 8.20. Suppose Assumptions 1.1–1.3 hold. Let Wj ∈ RN×N , j ∈ N be a weight matrix

with the i, k-th entry given by Wj(i, k) = wij,k. Assume that the matrix Wj is row stochastic with

sparsity conforming to the communication network G. Assume the j-th diagonal entry satisfies

wjj,j = 1 for each j ∈ N . Let Pj be the matrix obtained by removing the j-th row and column from
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Wj. Assume Pj is irreducible and substochastic in the sense that at least one row sum of Pj is

strictly less than 1.

Then, for any ε > 0 there exists T ∈ N such that if players repeat any action y∗ ∈ Y for T̃ ≥ T
consecutive stages (i.e., y(s) = y∗, s = n, . . . , n+ T̃ − 1) then ‖q̂i(n+ T̃ − 1)− q(n+ T̃ − 1)‖ < ε.

The proof of Lemma 8.21 is found in the appendix. The size of the T term in the above lemma

depends on the step size parameter α in (8.8), network structure G, and the weight matrices

{Wj}j∈N . In general, we expect T to be small if the step size is close to 1, 0 � α ≤ 1, and the

diameter of the network is small. For instance, in a complete network with α = 1 and weights

wik,k = 1 if k ∈ Ni we have T = 1 time steps. In a star network with α = 1 such that the weights

associated with the center player i satisfy wik,k = 1 if k ∈ Ni and the weights associated with fringe

players satisfy j 6= i wjk,i = 1 for k 6= j, then we have T = 2 time steps.

In the N-FP implementation presented here, each player i maintains an estimate of the empirical

distribution of every individual player, and exchanges these estimates with its neighbors {q̂ij(n)}j∈N .

This means that at each time step players exchange
∑N

j=1 |Yj | values, and in general, track
∑N

j=1 |Yj |
values.

In the following section we study a network-based inertial MBR algorithm that can alleviate

this communication and memory burden within the class of games known as congestion games.

8.5 Network-Based Implementation of Joint Strategy Fictitious Play with In-

ertia

Joint Strategy FP (JSFP) with inertia, introduced in [73], is a variant of FP developed for large-scale

games that has relatively low computational complexity and low information overhead requirements.

In this section we study a network-based implementation of JSFP with inertia (referred to hereafter

as N-JSFP) for use in settings with environmental uncertainty. The algorithms in this section may

be seen as instances of inertial MBR dynamics.4

The variant of JSFP that we study is applicable within the class of congestion games—a subset

of the more general class of weakly-acyclic games (see Assumption 8.4). This restriction comes as

a consequence of the aggregative information that is shared over the communication graph. Thus,

while N-JSFP operates with lower complexity and communication overhead than N-FP (Section

8.4), N-JSFP is applicable within a narrower class of games than N-FP.

4A related variant of JSFP—termed Average Strategy FP (ASFP) is studied in [102]. However, ASFP differs
fundamentally from N-JSFP in that (i) ASFP assumes instantaneous and perfect information dissemination by
an oracle, (ii) N-JSFP uses a projection operation to make sense of the notion of players “assuming” that the
average congestion profile represents choices taken by agents, and (iii) N-JSFP considers learning under environmental
uncertainty.
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We begin by introducing the class of congestion games in Section 8.5.1. We then introduce the

general N-JSFP algorithm in Sections 8.5.2–8.5.3. The general N-JSFP algorithm may be imple-

mented using a wide range of inter-agent communication schemes. We provide sufficient conditions

for the convergence of the general N-JSFP algorithm in Secion 8.5.4, and prove convergence in

the same section. Finally, in Sections 8.5.5–8.5.6 we provide an explicit example implementation

of N-JSFP in which the inter-agent communication dynamics are explicitly defined, and prove

convergence of the algorithm.

8.5.1 Congestion Games

Let R = {1, . . . ,m} denote a set of resources. For each i ∈ N , let Yi ⊆ 2R, where 2R denotes the

power set of R. In particular, an action choice yi indicates a subset of resources being utilized by

player i.

In a congestion game, the cost associated with using a resource is dependent on the total number

of players using the same resource. For each r ∈ R, y ∈ Y , let ψr(y) ∈ {0, 1, 2, . . .} denote the

number of players using resource r under the action profile y. More generally, for a subset of players

K ⊆ N , the number of players in K utilizing resource r given {yj}j∈K, is given by

ψr({yj}j∈K) :=
∑
j∈K

1(r ∈ yj).

where 1(r ∈ yj) = 1 if r ∈ yj and 1(r ∈ yj) = 0 otherwise. Let

N0 := {0, 1, 2, . . .}

denote the set of natural numbers including zero. Given a subset of players K ⊂ N , and a cor-

responding set of actions {yj}j∈K, we represent the number of players using each resource by

ψ({yj}j∈K), where ψ :
∏
j∈KAj → Nm0 is a mapping with the r-th entry in ψ({yj}j∈K) given by

ψr({yj}j∈K).

For r ∈ R and k ∈ N0, let cr(k, θr) be the cost associated with using resource r given state θr,

when there are precisely k players simultaneously using the resource. For yi ∈ Yi and ψr(y−i) ∈ N0

and state parameter θ := {θr}r∈R ∈ Θ, let the utility of player i be given by

Ui(yi, y−i, θ) = −
∑
r∈yi

cr(ψr(y−i) + ψr(yi), θr)
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where we have written ψr(y) = ψr(y−i) + ψr(yi) explicitly to emphasize dependence of the utility

on “self action” yi and actions of other players y−i. Note that within the class of congestion games,

players do not need to precisely know the full action profile y = (y1, . . . , yN ) ∈ Y to compute their

utility. It is sufficient for each player to have knowledge of ψ(y−i) ∈ Nm0 and their own action

yi ∈ Yi. In this context, we sometimes express the utility function using the abuse of notation

Ui(yi, ψ(y−i), θ) := Ui(yi, y−i, θ).

In the following, we use this property of the utility functions in congestion games to design the

N-JSFP algorithm which has a lower communication overhead than N-FP.

8.5.2 N-JSFP Setup

Assume players repeatedly face off in a congestion game. We define ζi(n, r) to be a (fading-memory)

weighted average used to track the amount of congestion induced on resource r by the actions of

(only) player i. In particular, let ζi(n, r) be defined recursively by ζi,1(r) := ψr(yi(1)), and for

n ≥ 1,

ζi(n+ 1, r) := (1− α)ζi(n, r) + αψr(yi(n)), (8.10)

where α ∈ (0, 1] is a weight parameter inducing a fading-memory effect (cf. (8.8) and subsequent

discussion).

Furthermore, define ζi(n) ∈ Rm to be the vector stacking (ζi(n, r))r∈R—this is a vectorized

representation of the congestion induced by player i on any given resource.

Define ζ(n, r) :=
∑

j∈N ζj(n, r)—this represents the congestion induced on resource r by the

actions of all players. Note this can also be expressed recursively as ζ(n, r) = (1 − α)ζ(n, r) +

αψr(y(n)).

Similar to the above, let ζ(n) be a vector in Rm stacking (ζ(n, r))r∈R—this is a vectorized

representation of the congestion induced by all players on any given resource. We refer to ζ(n) as

the empirical congestion distribution.

In the network-based framework, players may not have precise knowledge of ζ(n). Instead, we

assume each player i maintains an estimate of ζ(n) which we denote by ζ̂i(n) ∈ Rm. The r-th term

of player i’s estimate, ζ̂i(n, r), represents her estimate of the congestion at resource r ∈ R.

Finally, in order to rigorously define N-JSFP, we require the following notion of a projection.

For a vector v ∈ Rm define P (v) to be a projection of v onto the set of non-negative m-dimensional

integer-valued vectors Nm0 ; formally, for 1 ≤ r ≤ m, let P (v)(r) := z for the unique z ∈ N0 satisfying

z − 1
2 ≤ v(r) < z + 1

2 . Let P (v) be the vector stacking {P (v)(r)}r∈R.
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8.5.3 General N-JSFP Algorithm

We now state the general N-JSFP algorithm. The algorithm follows the format of an inertial MBR

algorithm, but in this case, the utility prediction of player i Ûi(n) = (Ûi(yi, n))yi∈Yi is formed using

player i’s estimate of the empirical congestion distribution ζ̂i(n). The algorithm is formally stated

below.

Algorithm 8.22.

initialize

(i) Let ρ ∈ (0, 1) be the inertia probability. Let each player i choose an arbitrary initial action

yi(1). Initialize the estimate ζ̂i(1) and belief on state µi1.

iterate (n ≥ 1)

(ii) Let ζ̂i−i(n) := ζ̂i(n)− ζi(n). For each player i, the next-stage action is chosen according to the

rule

yi(n+ 1) ∈


arg maxyi∈Yi Ui(yi, P (ζ̂i−i(n)), µin), w.p. 1− ρ

yi(n), w.p. ρ

(iii) Each player i updates their state belief µin, exchanges information with neighboring agents

j ∈ Ni and updates their estimate ζ̂i(n).

Remark 8.23. The N-JSFP algorithm is closely related to the JSFP algorithm proposed in [73]. In

particular, the vector representing the weighted congestion at each resource ζ(n) := (ζ(n, r))r∈N is

closely related to the empirical frequency of the joint action profile used in the JSFP algorithm. In

this case, the vectors ζ(n) and ζi(n) together may be thought of as a sufficient statistic to compute

the predicted utility. We note that in N-JSFP, the complexity problem associated with FP in large

games is mitigated in a different manner than classical JSFP. In classical JSFP, the expected utility

is directly tracked using a simple recursion. In our formulation of JSFP, the utility is not directly

tracked; instead, players track some “sufficient statistic” ζ−i(n) = ζ(n) − ζi(n) and only evaluate

the utility at nearby pure strategies via the projection operation, Ui(yi, P (ζ(n)− ζi(n)), µin).

8.5.4 Convergence Analysis for General N-JSFP Algorithm

The general form described in Section 8.5.3 explicitly specifies the learning dynamics to be used,

but does not explicitly specify the dynamics of the inter-agent communication scheme. In the

following we show that any inter-agent communication scheme will lead to convergence so long as
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it satisfies the following condition (cf. Condition 8.17 for N-FP). The main result of this section is

Theorem 8.27.

Condition 8.24. There exists a T ≥ 1 such that if any action y∗ is repeated in T̃ ≥ T consecutive

stages then |ζ̂i(n+ T̃ , r)− ψr(y∗)| < 1
4 for every r ∈ R.

Given Condition 8.24, we show in the following lemma that if any action y∗ is repeated in

sufficiently many stages, then each player’s estimate ζ̂i−i(n) may be brought sufficiently close to the

congestion profile ψ(y∗−i) to ensure convergence.

Lemma 8.25. Let {y(n)}n≥1 and {ζ̂1(n), . . . , ζ̂N (n)}n≥1 be generated according to a N-JSFP pro-

cess as defined in Section 8.5.3, and let {ζi(n)}i∈N ,n≥1 be as defined in (8.10). Assume Condition

8.24 holds. There exists a T ≥ 1 such that if any action y∗ is repeated in T̃ ≥ T consecutive stages

then |ζ̂i−i(n+ T̃ , r)− ψr(y∗−i)| < 1
2 for every r ∈ R.

Proof. Let T̃ ≥ 0 and note that

|ζ̂i−i(n+ T̃ , r)− ψr(y∗−i)|

= |(ζ̂i(n+ T̃ , r)− ζi(n+ T̃ , r))− (ψr(y
∗)− ψr(y∗i ))|

≤ |ζ̂i(n+ T̃ , r)− ψr(y∗)|+ |ζi(n+ T̃ , r)− ψr(y∗i )|. (8.11)

By Condition 8.24, we may choose T ′ such that if y∗ is repeated in T̃ ≥ T ′ consecutive stages, there

holds |ζ̂i(n+ T̃ , r)−ψr(y∗)| < 1
4 . Note also that |ζi(n+ T̃ , r)−ψr(y∗i )| → 0 as T̃ →∞ (this follows

from (8.10)), and thus we may choose T ′′ such that for T̃ ≥ T ′′ there holds |ζi(n+T̃ , r)−ψr(y∗i )| < 1
4 .

Letting T = max{T ′, T ′′}, the desired result follows from (8.11).

The next lemma sets us up to prove convergence of N-JSFP using Theorem 8.10 and Condition

8.7.

Lemma 8.26. Let {y(n)}n≥1 and {ζ̂1(n), . . . , ζ̂N (n)}n≥1 be generated according to a N-JSFP

process as defined in Section 8.5.3, and let {ζi(n)}i∈N ,n≥1 be as defined in (8.10). Suppose As-

sumptions 1.1–1.3, 8.3–8.6, and Condition 8.24 hold. There exists a T ≥ 1 such that if any

action y∗ is repeated in T̃ ≥ T consecutive stages then arg maxyi∈Yi Ui(yi, P (ζ̂i−i(n + T̃ )), µi
n+T̃

) =

arg maxyi∈Yi Ui(yi, ψ(y∗−i), µ).

Proof. Let T ′ be chosen as in Lemma 8.25 so that |ζ̂i−i(n + T̃ , r) − ψr(y∗−i)| < 1
2 for every r ∈ R,

i ∈ N and all T̃ ≥ T ′. It follows that P (ζ̂i−i(n+ T̃ )) = ψ(y∗−i). Thus,

arg max
yi∈Yi

Ui(yi, P (ζ̂i−i(n+ T̃ )), µi
n+T̃

) = arg max
yi∈Yi

Ui(yi, ψ(y∗−i), µ
i
n+T̃

).
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Moreover, there exists a n̄ such that for n ≥ n̄ there holds

arg max
yi∈Yi

Ui(yi, y−i, µ
i
n+T̃

) = arg max
yi∈Yi

Ui(yi, y−i, µ)

for all y−i ∈ Y−i. This is a consequence of Assumption 8.3 and the fact that Ui is continuous and

bounded, and that Y−i is a finite set. By setting T = max{n̄, T ′} we get the desired result.

In the following theorem we combine the results above with Theorem 8.10 to prove that the

N-JSFP algorithm converges to a pure-strategy Nash equilibrium.

Theorem 8.27. Let {y(n)}n≥1 and {ζ̂1(n), . . . , ζN (n)}n≥1 be generated according to a N-JSFP

process as defined in Section 8.4.3, and let {ζ(n)}n≥1 be as defined in (8.10). Suppose Assumptions

1.1–1.3, 8.3–8.6, and Condition 8.24 hold. Then the action sequence {y(n)}n≥1 converges to a pure

strategy Nash equilibrium, almost surely.

Proof. The process fits the template of Theorem 8.10, with Ui(yi, P (ζ̂i−i(n)), µin) = Ûi(yi, n) for each

i and each αi ∈ Yi. By Lemma 8.26, the sequence {Ui(yi, P (ζi−i(n)), µin)}n≥1 satisfies Condition

8.7. The result then follows from Theorem 8.10.

8.5.5 An Implementation of N-JSFP

In this section we provide an example implementation of N-JSFP in which the mechanism for

forming the estimate ζ̂i(n), and the network-based information dissemination scheme are explicitly

specified. The algorithm is as follows:

Algorithm 8.28.

initialize

(i) Let yi(1) be arbitrary for all i. Let ζ̂i(1) = ψ(yi(1)) for all i.

iterate (n ≥ 1)

(ii) Let ζ̂i−i(n) = ζ̂i(n)− ζi(n). For each player i, the next-stage action is chosen according to the

rule

yi(n+ 1) ∈


arg maxyi∈Yi Ui(yi, P (ζ̂i−i(n)), µin), w.p. 1− ρ

yi(n), w.p. ρ.

(iii) Update ζi(n+ 1) according to (8.10).
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(iv) Each player i updates their estimate of ζ(n) as:

ζ̂i(n+ 1) :=
∑
k∈Ni

wik

(
ζ̂k(n) + ζk(n+ 1)− ζk(n)

)
where wik denotes the weight that player i places on the information received from player k (see

Lemma 8.29).

We remark that in N-JSFP players only share a vector with m integer values with their neighbors

where m is the cardinality of the set of resources R. In comparison, in the N-FP algorithm players

share their estimate of each agent’s empirical frequency implying that they share N ×m values at

each step.

8.5.6 Convergence Analysis of Example Implementation of N-JSFP

The following lemma shows that the distributed information tracking scheme used to form the esti-

mates ζ̂i(n) (see step (iii) in Section 8.5.5) satisfies Condition 8.24 given an appropriate assumption

on players’ weights wik. It then follows by Theorem 8.27 that the given implementation of N-JSFP

converges to a pure strategy Nash equilibrium.

Lemma 8.29. Let {y(n)}n≥1 and {ζ̂1(n), . . . , ζN (n)}n≥1 be generated according to a N-JSFP pro-

cess as defined in Section 8.5.5, and let {ζ(n)}n≥1 be as defined in (8.10). Suppose Assumptions

1.1–1.3 and 8.3–8.6 hold. Let W ∈ RN×N be a weight matrix with the i, k-th entry given by

W(i, k) = wik. Assume that the matrix W is doubly stochastic, aperiodic, and irreducible.

There exists a T̃ ≥ 1 such that if any action y∗ is repeated in T̃ ≥ T consecutive stages then

|ζ̂i
n+T̃

(r)− ψr(y∗)| < 1
4 for every r ∈ R.

The proof of Lemma 8.29 is similar to the proof of Lemma 8.21, and is omitted here for brevity.

8.6 Numerical examples

8.6.1 Traffic Congestion Game

We consider the congestion game defined in Section 8.5.1. We assume each agent can only pick a

single route at each time Y = R. The cost of route r ∈ R is quadratic in the number of players on

that route,

cr(Nr(y)) = φrNr(y)2 + βrNr(y) + κr

where φr, βr, κr are route specific constants which play the role of the unknown state of the world.
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In the numerical setup, we let φr = 1/(1 + 2(r − 1)), βr = 1 and κr = 1 for each route. Agents

implement the N-JSFP algorithm defined in Section 8.5.5. We let the fading constant α and the

inertia probability ρ be 0.1 and 0.3, respectively. Players are uncertain about κr and φr. Each

player receives a single initial signal on κr and φr for each r ∈ R. The signals on κr come from

the uniform distribution in [0.75, 1.25]. The signals on φr come from the uniform distribution in

[φr − 0.25, φr + 0.25]. Following each round of game play, players exchange their mean estimates of

the state parameters κr and φr with neighbors, and form new estimates using a weighted average

consensus recursion.

In this simple example, the µin are deterministic delta distributions, as is the limit distribution µ.

As noted in Section 8.3, this achieves weak convergence of the beliefs, thus satisfying Assumption

8.3. Moreover, Assumption 8.3 could also be satisfied in an almost sure sense by analogously

generating a sequence of random delta distributions using consensus recursions that ensure almost

sure convergence of the estimates [21,146,147].

There are N = 10 agents and m = 3 routes. The connection among agents is determined by

a geometric network. Agents are randomly placed on a two dimensional space (5 units × 5 units)

and two agents are connected if their distance is less than a given threshold value (2 units). In

Fig. 8.1 we plot the number of vehicles on each route. In Fig. 8.2 we plot the congestion cost at

each road and total congestion cost over time. We initialize all agents’ actions to be route 1. We

observe that at equilibrium there are four agents on roads 2 and 3, and two agents on road 1. Total

congestion cost diminishes significantly in the first few time steps—see Fig. 8.2. At equilibrium we

observe that congestion cost at road 2 is slightly higher than the other roads.

Next, we analyze convergence times with respect to initial level of uncertainty on the state

parameters κr and φr, and network connectivity. In particular we use distance thresholds 2, 2.5, 3

and 3.5 to generate four geometric networks with diameters 4, 3, 2 and 2 and with average lengths

2, 1.3, 1.2 and 1.1, respectively. For each network, we make 50 runs with and without uncertainty

on the state parameters. The average convergence time of the N-JSFP algorithm is reported in

Table 8.1. We observe convergence time tends to decrease as the connection threshold increases.

We do not see a significant difference between the convergence times when there is uncertainty or

not about the state parameters.

8.6.2 Target Assignment Game

We consider a team of N robots, and N target objects. Each robot can target one object and the

team’s goal is to target all of the objects. The action space is the set of objects {1, 2 . . . , N} for

each robot. The payoff of a robot i targeting object k is inversely proportional to its distance to
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Figure 8.1: Number of vehicles on each route. There are N = 10 vehicles each day choosing
among m = 3 possible routes. Convergence to pure Nash equilibrium happens after time 600.
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Connection threshold (units)
2 2.5 3 3.5

Certain 361 172 220 104
Uncertain 329 179 212 95

Table 8.1: Average convergence time of the N-JSFP algorithm

the object, represented by d(i, k), if no other robot is targeting object k,

Ui(yi = k, y−i, d(i, k)) = d(i, k)−11(

N∑
j=1

1(yj = k) = 1)

where 1(·) is the indicator function. The target assignment game with payoffs as above is a

congestion game with each object representing a resource. Note that any action profile that covers

all the objects is a Nash equilibrium because any unilateral deviation from such profile results

in zero payoff for the deviating agent. The optimal Nash equilibrium profile minimizes the total

distance while covering all the objects.

We assume robots do not exactly know their distance to each target. Robots receive an initial

noisy signal about the location of each object θ̃i(k) distributed according to N (θ(k), ξk) where θ(k)

is the location of the object and ξk > 0 is the variance of the noisy signal. Robot i updates its belief

about each object by averaging its neighbors’ beliefs with initial belief equal to θ̃i(k). The distance

to an object is the norm of the difference between the locations of the robot and the object.

In the numerical setup, we consider N = 5 robots and N = 5 objects. For comparison, we

consider line, ring and star communication networks. For each network, we consider 50 runs with

random initialization of the signals. In Figure 8.3, we plot sample average welfare normalized by

the optimal welfare over time for each network type. Welfare at time N is defined as the sum of

utilities of robots given the action profile generated by the N-JSFP process at time N . The expected

welfare at time N is the average of welfare values at time N obtained over 50 runs. Optimal welfare

is the value of welfare obtained by the action profile that maximizes the welfare. Fig. 8.3 shows

that the expected welfare of the Nash equilibrium reached by the algorithm is the same regardless

of the communication network. However, the convergence time of the algorithm depends on the

network structure where the star network has the slowest convergence time and the ring network

has the fastest convergence time.
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Figure 8.3: Expected welfare normalized by optimal welfare for line, star and ring networks. The
expected welfare is the same for all communication networks. Convergence time to a Nash

equilibrium is the fastest for the ring network and slowest for the star network.

8.7 Appendix to Chapter 8

The following lemma studies a uniform convergence property for families of equicontiuous functions.

The lemma is applied in the text to prove that given weak convergence of beliefs (see Assumption

8.3) and equicontinuity of utilities (see Assumption 8.14), Lemma 8.15 holds.

Lemma 8.30. Let Θ be as defined in Section 8.2. Let X be a compact subset of a finite-dimensional

Euclidean space. Let g : X × Θ → R be bounded. Assume that for each x ∈ X the function

g(x, ·) : Θ→ R is Borel measurable. Furthermore, assume that the family of functions {g(·, θ)}θ∈Θ

is uniformly equicontinuous. Let (µn)n≥1 and µ be probability measures on (Θ,B(Θ)) such that

µn
w−→ µ. For any ε > 0 there exists T ∈ {0, 1, 2, . . .} such that for all n ≥ T there holds

|
∫

Θ
g(x, θ)µn(dθ)−

∫
Θ
g(x, θ)µ(dθ)| < ε, ∀x ∈ X.

Proof. Let ε > 0. Since the family of functions {g(·, θ)}θ∈Θ is equicontinuous, there exists a δ > 0

such that if x, y ∈ X and ‖x − y‖ < δ then |g(x, θ) − g(y, θ)| < ε
3 for any θ ∈ Θ. Since X is a

compact subset of Euclidean space we may choose a finite set {xn}Nn=1 such that
⋃N
n=1Bδ(xn) ⊃ X,

where Bδ(x0) denotes the open ball of radius δ centered at x0.

Since µn converges weakly to µ, and the set {xn}Nn=1 is finite, and the function g(x′, ·) is

measurable for each x′ ∈ {xn}Nn=1, there exists a T ∈ {0, 1, 2, . . .} such that

|
∫
g(x′, θ)µn(dθ)−

∫
g(x′, θ)µ(dθ)| < ε

3
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for all x′ ∈ {xn}Nn=1.

Choose an arbitrary x ∈ X. There exists a x̃ ∈ {xn}Nn=1 such that x ∈ Bδ(x̃). In particular,

note that

|
∫

[g(x, θ)− g(x̃, θ)]µn(dθ)| < ε

3

∫
µn(dθ) =

ε

3
,

and likewise,

|
∫

[g(x, θ)− g(x̃, θ)]µ(dθ)| < ε

3

∫
µ(dθ) =

ε

3
.

Using the triangle inequality and applying the estimates derived above gives,

|
∫
g(x, θ)µn(dθ)− g(x, θ)µ(dθ)|

≤ |
∫

[g(x, θ)− g(x̃, θ)]µn(dθ)|

+ |
∫
g(x̃, θ)µn(dθ)−

∫
g(x̃, θ)µ(dθ)|

+ |
∫

[g(x̃, θ)− g(x, θ)]µ(dθ)| < ε,

for all n ≥ T .

The following is a proof of Lemma 8.18 in Section 8.4.4.

(Lemma 8.18). We first show that for every ξ > 0, there exists a finite T ′ ∈ N such that if any

action y∗ ∈ Y is repeatedly played in T ≥ T ′ consecutive stages, i.e., y(s) = y∗ for s = n, . . . , n+T ,

then ‖q̂i(n+ T )− 1y∗‖ < ξ, ∀i.
Let ξ > 0 be given. By the triangle inequality, ‖q̂i(n)−1y∗‖ ≤ ‖q̂i(n)− q(n)‖+‖q(n)− 1y∗‖. Thus

it is sufficient to choose T ′ sufficiently large so that

‖q̂i(n)− q(n)‖ < ξ

2
and ‖q(n)− 1y∗‖ <

ξ

2
, ∀t ≥ T ′. (8.12)

Claim there exists a finite T ′1 > 0 such that if any action y∗ is repeated in T ′1 consecutive stages,

then ‖q(n+ T ′1)− 1y∗‖ < ξ
2 . This follows immediately from the observation that, for all i, and for

any τ ∈ {1, 2, . . .} there holds qi(n+ τ) = α(1− (1− α)τ−1)1y∗i + (1− α)τqi(n).

By Condition 8.17 there exists a T ′2 such that if any action y∗ is repeated for T ≥ T ′2 consecutive

stages, then ‖q̂i(n+T )−f(n+T )‖ < ξ
2 . Let T ′ = max(T ′1, T

′
2) and note that for n ≥ T ′, (8.12) holds.

We now move to prove the statement in the Theorem. Note that under Condition 8.17, there

exists a compact C such that for each player i the belief q̂i(n) belongs to C for all n. For each
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i, Ui(·, µ) (as defined in (8.3)) is multilinear in the first argument. Hence, it is locally Lipschitz

continuous in the first argument; i.e., given the belief µ there exists a finite Ki > 0 such that for

any p′, p′′ ∈ C there holds |Ui(p′, µ)− Ui(p′′, µ)| ≤ Ki‖p′ − p′′‖. Let K := max{Ki : i ∈ N}.

Since the action space is finite, Assumption 8.5 implies there exists an ε > 0 such that for all

i ∈ N there holds |Ui(y′i, y−i, µ)− Ui(y′′i , y−i, µ)| > ε for all y′i, y
′′
i ∈ Yi, y′i 6= y′′i y−i ∈ Y−i.

Let ξ < ε
4K . Applying the claim demonstrated in the beginning of the proof there exists a T > 0

such that if any action y∗ ∈ Y is repeated in T̃ ≥ T consecutive stages, then ‖q̂i(n+T )−1y∗‖ < ξ, ∀i.

Let {y′i} = arg maxαi∈Ai Ui(αi, y
∗
−i, µ) (by Remark 8.16, the best response to any pure strategy

is a singleton), and note that

Ui(y
′
i, y
∗
−i, µ)− ε > Ui(y

′′
i , y
∗
−i, µ) (8.13)

for all y′′i ∈ Yi, y′′i 6= y′i. Furthermore, for τ = t+ T̃ , T̃ ≥ T , there holds by Lipschitz continuity of

Ui(·, µ),

|Ui(yi, q̂i−i(τ), µ)− Ui(yi, y∗−i, µ)| ≤ K‖q̂i(τ)− y∗‖ < ε

4
,

for all yi ∈ Yi. In particular, for {y′i} = arg maxαi∈Ai Ui(αi, y
∗
−i, µ) and for any y′′i ∈ Yi satisfying

y′′i 6= y′i there holds, |Ui(y′i, q̂i−i(τ), µ)−Ui(y′i, y∗−i, µ)| < ε
4 and |Ui(y′′i , q̂i−i(τ), µ)−Ui(y′′i , y∗−i, µ)| < ε

4 .

Adding and subtracting Ui(y
′′
i , q̂

i
−i(τ), µ) to the right hand side of (8.13) and adding and subtracting

Ui(y
′
i, q̂

i
−i(τ), µ) to the left hand side of (8.13), the preceding two inequalities give

Ui(y
′
i, q̂

i
−i(τ), µ)− ε

2
> Ui(y

′′
i , q̂

i
−i(τ), µ).

By Assumption 8.3 and Lemma 8.15, |Ui(y′i, q̂i−i(τ), µiτ )−Ui(y′i, q̂i−i(τ), µ)| < ε
4 and |Ui(y′′i , q̂i−i(τ), µ)−

Ui(y
′′
i , q̂

i
−i(τ), µiτ )| < ε

4 for all n ≥ tη; adding and subtracting these terms above gives

Ui(y
′
i, q̂

i
−i(τ), µiτ ) > Ui(y

′′
i , q̂

i
−i(τ), µiτ ).

Since {y′i} = arg maxαi∈Ai Ui(αi, y
∗
−i, µ) and y′′i 6= y′i is arbitrary, this implies that arg maxαi∈Ai Ui(αi, q̂

i
−i(τ), µiτ ) =

arg maxαi∈Ai Ui(αi, y
∗
−i, µ) for all i.

Distributed Averaging in Dynamic Networks

Consider a network of N nodes connected through a communication graph G = (V,E). The graph

is assumed to be strongly connected. For n = {0, 1, 2, . . .} let x1(n) ∈ R denote a value held by
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node 1 at time n. The objective is for all nodes to track as closely as possible the value x1(n).5 Let

ε(n) := |x1(n+ 1)− x1(n)| and assume that:

Assumption 8.31. There exists a B > 0 such that ε(n) < B for all n ∈ {0, 1, 2, . . . , }.

Let x̂i(n) be the estimate player i maintains of x1(n). We make the following assumption

pertaining to the initial error in players’ estimates:

Assumption 8.32. x̂i(0)− x1(0) = 0 ∀i.

Let x̂(n) = (x̂1(n), . . . , x̂N (n)) ∈ RN be a vector stacking all players’ estimates, with x̂1(n) =

x1(n) (i.e., node j knows its own value). Suppose the estimates are updated according to the

following recursion:

x̂(n+ 1) = W (x̂(n) + e1(x1(n+ 1)− x1(n))) , (8.14)

where e1 ∈ RN is the 1-st canonical vector, and where the matrix W ∈ RN×N satisfies

Assumption 8.33. W is row stochastic with sparsity conforming to G. Furthermore, W may be

decomposed as

W =

1 0

b P


where b ∈ RN−1, b 6= 0 and P is irreducible (cf. [148]).

Note that in since W is row stochastic, b 6= 0 if and only if P is substochastic in the sense that

at least one row sum of P is less than 1.

The following lemma gives a bound on the error in the agents’ estimates of x1(n).

Lemma 8.34. Suppose Assumptions 8.31–8.32 hold, and let the sequence {x̂(n)}∞n=1 be computed

according to (8.14). Suppose there exists a n∗ ≥ 1 and T ≥ 1 such that
∑n∗+T−2

n=n∗ ε(n) ≤ 1 and

{ε(n)}n∗+T−2
n=n∗ is decreasing. Then the error at time n∗ + T − 1 is bounded as,

‖x̂(n∗ + T − 1)− x1(n∗ + T − 1)1‖ ≤ N + 1

1− λ

(
1

T
+BλT

)
,

where λ := sup
‖y‖=1

‖Py‖ < 1.

5In general, the objective may be to track the value xj(n) held by an arbitrary node j. Here, we only consider
tracking x1(n), however, the general case is recovered by a permutation of the node labels.
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Proof. Let y(n) := x̂(n) − x1(n)1. Let δ(n) := [x1(n + 1) − x1(n)]e1 − [x1(n + 1) − x1(n)]1.

Subtracting x1(n+ 1)1 from both sides of (8.14) we get

y(n+ 1) = W (x̂(n) + [x1(n+ 1)− x1(n)]e1)− x1(n+ 1)1

= W (x̂(n) + [x1(n+ 1)− x1(n)]e1 − x1(n+ 1)1)

where, in the second line, we may bring x1(n+ 1)1 inside the matrix multiplication due to the row

stochasticity of W. Now we add and subtract x1(n) and use the definitions of y(n) and δ(n) to get

y(n + 1) = W (y(n) + δ(n)) . Inductively, this gives y(n + 1) =
∑n

s=0 Ws+1δ(n − s) + Wn+1y(0).

By Assumption 8.32 we have y(0) = 0, and hence y(n+ 1) =
∑n

s=0 Ws+1δ(n− s). By the triangle

inequality we have

‖y(n+ 1)‖ ≤
n∑
s=0

‖Ws+1δ(n− s)‖. (8.15)

Again using the triangle inequality, we establish a bound on ‖δ(n)‖:

‖δ(n)‖ ≤ ‖[x1(n+ 1)− x1(n)]e1‖+ ‖[x1(n+ 1)− x1(n)]1‖

≤ ε(n) +Nε(n) = (N + 1)ε(n). (8.16)

Let W := W − 1eT1 . In block form we have W = [0 . . . 0; (b − 1) P]. Due to the special block

form of W, the spectrum σ(W)6 of W consists precisely of {σ(P) ∪ {0}}. Hence, the spectral

radius of W coincides with that of P. In particular, the spectral radius of W is given by λ. Since

P is substochastic, we have λ < 1.

Substituting W = W + 1eT1 in (8.15) gives ‖y(n+ 1)‖ ≤
∑n

s=1 ‖(W + 1eT1 )s+1δ(n− s)‖. Since

W1 = 0, and eT1 W = 0, and 1eT1 = (1eT1 )s for any s = 1, 2, . . ., an inductive argument shows that

Ws = W
s

+ 1eT1 for any s ∈ {1, 2, . . .}. Thus we can upper bound ‖y(n + 1)‖ using the triangle

inequality as follows

‖y(n+ 1)‖ ≤
n∑
s=0

(
‖Ws+1

δ(n− s)‖+ ‖(1eT1 )s+1δ(n− s)‖
)

It is readily verified that for s = 1, 2, . . . there holds eT1 δ(s) = 0. Thus, the second term on the

6In Section 8.2 the symbol σ was used to represent a mixed strategy. In keeping with standard conventions, we
use σ here to denote the spectrum of a matrix, where the distinction is clear from the context.
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right hand side above is zero, i.e., ‖y(n + 1)‖ ≤
∑n

s=0 ‖W
s+1

δ(n − s)‖. As a result we have,

‖y(n+ 1)‖ ≤
∑n

s=0 λ
s+1‖δ(n− s)‖.

Let n = n∗ + T − 1. Using the bound in (8.16) gives,

‖y(n)‖ ≤
n−1∑
s=0

λs+1(N + 1)ε(n− 1− s) (8.17)

= (N + 1)

n−n∗−1∑
s=0

λs+1ε(n− 1− s) + (N + 1)

n−1∑
s=t−n∗

λs+1ε(n− 1− s).

Consider the first term on the right hand side (RHS) above. Let εavg(n
∗, T ) := 1

T

∑n∗+T−2
s=n∗ ε(s).

By assumption, the sequence {ε(n)}n∗+T−2
n=n∗ is decreasing, hence by Chebychev’s sum inequality [138]

(p. 43-44),
n−n∗−1∑
s=0

λs+1ε(n − 1 − s) ≤ εavg(n
∗, T )

n−n∗−1∑
s=0

λs+1 ≤ εavg(n
∗, T ) 1

1−λ , where the latter

inequality follows by taking the closed form of the geometric sum. Furthermore, by assumption we

have
∑n∗+T−2

s=n∗ ε(s) ≤ 1, and hence εavg(n
∗, T ) ≤ 1

T , which gives that
n−n∗−1∑
s=0

λs+1ε(n− s) ≤ 1
T

1
1−λ .

Now consider the second term on the RHS of (8.17). By Assumption 8.31, we have ε(n−s) ≤ B

which allows us to bound the second term as (N+1)
n−1∑

s=t−n∗
λs+1ε(n−1−s) ≤ (N+1)B

n−1∑
s=t−n∗

λs+1 =

(N + 1)BλT
n∗−1∑
s=0

λs ≤ (N + 1)BλT (1 − λ)−1, where the latter inequality again follows by taking

the closed form of the geometric sum.

Substituting these two bounds back into (8.17) we get

‖y(n)‖ ≤ (N + 1)
1

T

1

1− λ
+ (N + 1)BλT

1

1− λ

= (N + 1)
1

1− λ

(
1

T
+BλT

)
.

Since we chose n = n∗ + T − 1, this concludes the proof.

In order to apply Lemma 8.34, one must show that
∑n∗+T−2

n=n∗ ε(n) < 1. Essentially, this condition

states that the variation in the node value x1(n) during the designated time interval remains

bounded. This can be easily ensured, for example, if the value of x1(n) is monotone. This is the

content of the following Lemma.

Lemma 8.35. Suppose that x1(n) ∈ [0, 1] for all n. Suppose also there exist n∗, T ∈ N such that

{x1(n)}n∗+T−1
n=n∗ is a monotone sequence. Then

∑n∗+T−2
n=n∗ ε(n) ≤ 1.

Proof. Suppose that {x1(n)}n∗+T−1
n=n∗ is monotone increasing. Then ε(n) = |x1(n + 1) − x1(n)| =

x1(n+1)−x1(n). Substituting this into the sum in question gives a telescoping sum
∑n∗+T−2

n=n∗ ε(n) =
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∑n∗+T−2
n=n∗ x1(n + 1) − x1(n) = x1(n∗ + T − 1) − x1(n∗) ≤ 1. The final inequality follows since

0 ≤ x1(n) ≤ 1 for all n. A similar argument handles the monotone decreasing case.

We now prove Lemma 8.21 of Section 8.4.6.

Proof. Let ε > 0 and let n∗ ∈ N be arbitrary. Our task is to show that under the update rule (8.9),

there exists a T such that if starting at time n∗ any action is repeated in T̃ ≥ T consecutive stages,

then ‖q̂i(n∗ + T̃ − 1) − q(n∗ + T̃ − 1)‖ < ε. We will accomplish this by showing that the update

rule (8.9) fits the template of Lemma 8.34.

Fix a player j ∈ N and action yj ∈ Yj . Let qj(n, yj) denote the weight that the empirical

distribution qj(n) places on yj , and similarly, let q̂ij(n, yj) denote the weight that q̂ij(n) places on

yj . For the purpose of applying Lemma 8.34, let xj(0) = 0, let xj(n) := qj(n, yj), n ≥ 1 and for i =

1, . . . , n let x̂i(0) = 0, and let x̂i(n) := q̂ij(n, yj) for n ≥ 1. By (8.9) and the initialization condition

for Algorithm 8.20 for n ≥ 0 we have x̂i(n+ 1) =
∑

k∈Ni w
i
j,k

(
x̂k(n) + (xj(n+ 1)− xj(n))χ{k=j}

)
.

Letting x̂(n) = (x̂i(n))Ni=1 ∈ RN we may express the update rule in more compact notation as

x̂(n+ 1) = Wj (x̂(n) + ej(xj(n+ 1)− xj(n))) ,

where Wj = (wij,k)i,k∈N is the weight matrix as assumed in Lemma 8.21 and ej is the j-th canonnical

vector in R|Yj |. Note that, after a permutation of the player ordering (which causes no loss in

generality), this fits the format of (8.14). Note also that Assumption 8.31 is satisfied since xj(n) ∈
[0, 1] for all n. Furthermore, Assumption 8.32 is satisfied since, by construction, x̂i(0) = xj(0) = 0

for all i, and Assumption 8.33 is satisfied by the hypothesis of Lemma 8.21.

Now, let ε(n) := |xj(n + 1) − xj(n)| and suppose that starting at time n∗ some action y∗ =

(y∗1, . . . , y
∗
N ) ∈ Y is repeated in T consecutive stages, where T ∈ N is arbitrary. Two cases must

be considered—the case that yj = y∗j (i.e., the action which defines xj is in fact the action being

repeated by player j), and the case that yj 6= y∗j (i.e., the action which defines xj is not be-

ing played at all by j during the designated time sequence.) If yj = y∗j then {xj(n)}n∗+T−1
n=n∗ =

{qj(n, yj)}n
∗+T−1
n=n∗ increases monotonically towards 1 (this follows from (8.8)). Otherwise, if yj 6= y∗j

then {xj(n)}n∗+T−1
n=n∗ = {qj(n, yj)}n

∗+T−1
n=n∗ decreases monotonically towards 0. Since, in either case

the sequence is monotone, we have by Lemma 8.35 that
∑n∗+T−2

n=n∗+1 ε(n) ≤ 1.

Note also that if some action y∗ is repeated from time n∗ to n∗ + T − 1, then the difference

sequence {ε(n)}n∗+T−2
n=n∗ = {|qj(n+ 1, yj)− qj(n, yj)|}n

∗+T−2
n=n∗ is decreasing. This follows from (8.8).

We are now in a position to apply Lemma 8.34. By the equivalence of finite dimensional

norms, there exist constants c1 and c∞ such that ‖ · ‖ ≤ c1‖ · ‖1 and c∞‖ · ‖∞ ≤ ‖ · ‖. Given

j ∈ N and some action yj ∈ Yj we may choose a constant Tyj ∈ N sufficiently large such that
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N+1
1−λ

(
1
Tyj

+BλTyj
)
< c∞

ε
c1

∑N
i=1 |Yi|

. Applying Lemma 8.34 we get that if any action y∗ is repeated

in T ≥ Tyj consecutive stages starting at any time n∗ then

max
i∈N
|qi(j, n∗ + T − 1, yj)− qj(n∗ + T − 1, yj)| (8.18)

= ‖(qi(j, n∗ + T − 1, yj))
N
i=1 − qj(n∗ + T − 1, yj)1‖∞

= ‖x̂(n∗ + T − 1)− xj(n∗ + T − 1)1‖∞

<
1

c∞
‖x̂(n∗ + T − 1)− xj(n∗ + T − 1)1‖ ≤ ε

c1
∑N

i=1 |Yi|
.

Let T := maxj∈N ,yj∈Yj Tyj . By (8.18) we have |qij(n∗ + T̃ , yj)− qj(n∗ + T̃ , yj)| < ε
c1|

∑N
i=1 |Yi|

for all

T̃ ≥ T for all i, j ∈ N and for all yj ∈ Yj .
Now, fix any player i ∈ N . Observe that for any T̃ ≥ T we have ‖q̂i(n∗+T̃−1)−q(n∗+T̃−1)‖ ≤

c1‖q̂i(n∗ + T̃ − 1) − q(n∗ + T̃ − 1)‖1 = c1
∑

j∈N
∑

yj∈Yj |q̂
i
j(n
∗ + T̃ − 1, yj) − qj(n∗ + T̃ − 1, yj)| ≤

c1(
∑N

j=1 |Yj |)
ε

c1
∑N
j=1 |Yj |

= ε, which is the desired result.
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Chapter 9

Non-Degenerate Potential Games

9.1 Introduction

The class of potential games was introduced in Section 2.1.1. In a potential game, there exists

some underlying potential function which all players implicitly seek to optimize. Such games have

extensive applications within the field of multi-agent systems [3–5,8, 13,15,48,48,49,63,93–95].

In this chapter we define the notion of a non-degenerate potential game. Our primary motivation

in defining this class of games comes from the perspective learning theory: One might expect

that FP dynamics ought to converge to a pure-strategy NE in potential games. Yet, there are

seemingly “degenerate” cases in which FP dynamics can converge generically to mixed-strategy

NE. Furthermore, one might expect that FP dynamics ought to always converge at an exponential

rate. Yet, there are seeming degeneracies which make it difficult to establish any convergence rate

estimates for FP in potential games [27]. We wish to define a class of games in which (i) FP can

be shown to generically converge to pure-strategy NE, (ii) convergence rate estimates for FP can

be established, and (iii) the game structure allows for relatively simple analysis of the associated

learning dynamics.

We note that, in addition to facilitating the study of game-theoretic learning processes, we will

see that the non-degenerate games defined here possess several other useful properties of general

interest (see, e.g., Theorem 9.1).

We will say that an equilibrium strategy is non-degenerate if the derivatives of the potential

function at the equilibrium satisfy certain properties. Roughly speaking, we say an equilibrium

σ ∈ ∆N is first-order degenerate if the directional derivative of the potential function is zero is

the direction of some pure-strategy that is not in the support of σ. Otherwise, we will say an

equilibrium σ is first-order non-degenerate.
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Intuitively speaking, the notion of first-order degeneracy serves the following purpose. If σ is

some equilibrium which does to have full support in terms of players pure-strategies, then σ may

be seen as lying in a “face” of the strategy space, rather than in the interior. The first-order

non-degeneracy condition ensures that, within a neighborhood of the equilibrium σ, best-response

learning dynamics cannot abruptly change direction orthogonal to the face of the strategy space

containing the σ.

We will say that an equilibrium σ is second-order degenerate if the Hessian of the potential

function (constrained to the face of the strategy space containing σ) is singular. Otherwise, we

will say an equilibrium σ is second-order non-degenerate. Second-order non-degeneracy may be

seen as serving several purposes. First, it ensures that the potential function is not “flat” in the

neighborhood of an equilibrium. While the first-order non-degeneracy condition ensures that the

dynamics of a learning process are well behaved in directions that are orthogonal to the face of

the strategy space containing σ, second-order non-degeneracy ensures that the dynamics are well

behaved in directions tangential to the face of the strategy space containing σ. The second-order

degeneracy condition also serves a secondary, more practical purpose. By ensuring that the Hessian

of the potential function is non-singular, we are able to greatly simplify the analysis of dynamics

around NE points. In particular, one can understand many fundamental properties of the potential

function without needing consider anything higher than second-order terms in the Taylor-series

expansion.

While our non-degeneracy conditions are tailored around studying learning dynamics in poten-

tial games, they coincide with well-known notions of non-degeneracy in general N -player games.

In general, an equilibrium σ is said to be a quasi-strong equilibrium if the number of pure-strategy

best responses to σ is no greater than the number of strategies in the support of σ [65, 67, 149].

Restricted to the class of potential games, this coincides precisely with our notion of first-order

non-degeneracy.

The notion of first-order non-degeneracy is also closely related to the notion of non-degeneracy

that is generally considered when studying the Lemke-Howson algorithm for computing NE strate-

gies in finite games [16]. In this context, a game is said to be non-degenerate if the number of

pure-strategy best responses to any mixed-strategy σ is no greater than the number of pure strate-

gies in the support of σ (cf. [16], Definition 3.2). Our first-order degeneracy condition is slightly

weaker than this, since it only requires this condition to hold at equilibrium points.

An equilibrium σ in a general N -player game is said to be regular if the Jacobian of a certain

differential map of the players utility functions is non-singular at σ [67,149]. Restricted to the class

of potential games, this coincides with our notion of second-order non-degeneracy.

158



Regular and quasi-strong equilibria have been well studied [65,67], and it has been shown that

in almost all N -player games, all NE are both regular and quasi-strong [65].1 Such equilibria are

of interest in the general game theory community, where they are considered more “reasonable”

notions of equilibrium (e.g., robust to perturbations) than prescribed by the NE concept alone.

Furthermore, robust and quasi-strong equilibria are the subject of Harsanyi’s celebrated purification

theorem [149], where it is shown that such equilibria may be “approached” in an an associated game

with incomplete information.

We will say a potential game is degenerate if it contains any first or second-order degenerate

equilibria, and we will say that it is non-degenerate otherwise. The main contribution of this

chapter will be to show that almost all potential games are non-degenerate (see Theorem 9.9).

Using the first and second-order non-degeneracy conditions, it is fairly straightforward to show

that, in a non-degenerate potential game, the set of NE is finite, and all NE are isolated. From

the perspective of learning theory, this is a useful property, since it tends to simplify analysis by

allowing one to study learning dynamics near each equilibrium in isolation.

However, using the work of Harsanyi [65], we may in fact obtain an even stronger characteriza-

tion of the set of NE in potential games.

Theorem 9.1. In almost all potential games, the number of Nash equilibrium strategies is finite

and odd.

This result parallels the well-known oddness theorem for general N -player games [65, 150]. In

particular, Harsanyi [65] showed that in any game in which all equilibria are quasi-strong and

regular, the number of NE strategies is finite and odd. Since we show that almost all potential

games are non-degenerate in this sense, Theorem 9.1 follows as a consequence of the main result of

this chapter (Theorem 9.9) and Theorem 1 of [65].

The remainder of the chapter is organized as follows. In Section 9.1.1 we discuss our strategy

for proving Theorem 9.9 (the main result of the chapter). In Section 9.2 we set up some notation

that will be used in both this chapter and in Chapter 10. In Section 9.3 we rigorously define our

notions of non-degeneracy and present the main result of the chapter (Theorem 9.9). In Section 9.4

we prove that almost all potential games are second-order non-degenerate (Proposition 9.10), and

in Section 9.5 we prove that almost all potential games are first-order non-degenerate (Proposition

9.15). In Section 9.6 we show that in any non-degenerate potential games, all equilibria quasi-strong

and regular.

1We note that the class of N -player potential games constitutes a null set in the class of general N -player games.
Hence, finer results are required to show that these properties hold in almost all potential games.
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9.1.1 Proof Strategy

We will prove Theorem 9.9 in two steps. First, we will prove that almost all potential games are

second-order non-degenerate (Proposition 9.10). We follow roughly the approach of Harsanyi [65],

setting up an appropriate mapping into the space of N -player games, and proving that degenerate

games are contained in the set of critical values of the map. The result then follows from Sard’s

Theorem [109]. We note, however, that the mapping used by Harsanyi for general games fails to

give any useful information when restricted to potential games. Consequently, our construction

differs significantly from Harsanyi’s in terms of the mapping used and some of the fundamental

technical tools used. Must significantly, we require a strong characterization of the rank of the linear

mapping that relates equilibrium points of a game and the game utility structure (see (9.16) and

Proposition 9.11). This characterization relies on (relatively) recent results on the signsolvability

of matrices [151], not available to Harsanyi. The case of potential games also differs from the

general case in that it is not possible to construct a single mapping a la Harsanyi [65] whose critical

values set contains all degenerate games. We are required to decompose the strategy space into

a countable family of subsets and construct an appropriate mapping into the space of potential

games from each subset.

As our second step in proving Theorem 9.9, we show that almost all potential games are first-

order non-degenerate (Proposition 9.15). In order to show this, we use our characterization of the

rank of the linear mapping in (9.16) (see discussion above) to construct a Lipschitz mapping from

a set with Low Hausdorff dimension into the space of potential games, such that the range of the

map contains all first-order degenerate games. The result then follows from the fact that the graph

of a Lipschitz mapping cannot have a higher Hausdorff dimension than its domain [152].

9.2 Notation

Supposing that Γ is a potential game with potential function u : Y → R, let U : ∆N → R be the

multilinear extension of u defined by

U(σ1, . . . , σN ) =
∑
y∈Y

u(y)σ1(y1) · · ·σ(yN ). (9.1)

The function U may be seen as giving the expected value of u under the mixed strategy σ. Through-

out this chapter, we refer to U as the potential function and to u as the pure form of the potential

function.

Given a σi ∈ ∆i, let σki denote value of the k-th entry in σi, so that σi = (σki )Kik=1. Since the
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potential function is linear in each σi, if we fix any i = 1, . . . , N we may express it as

U(σ) =

Ki∑
k=1

σki U(yki , σ−i). (9.2)

In order to study learning dynamics without being (directly) encumbered by the hyperplane

constraint inherent in ∆i we define

Xi := {xi ∈ RKi−1 : 0 ≤ xki ≤ 1 for k = 1, . . . ,Ki − 1, and

Ki−1∑
k=1

xki ≤ 1},

where we use the convention that xki denotes the k-th entry in xi so that xi = (xki )
Ki−1
k=1 .

Given xi ∈ Xi define the bijective mapping Ti : Xi → ∆i as Ti(xi) = σi for the unique σi ∈ ∆i

such that σki = xk−1
i for k = 2, . . . ,Ki and σ1

i = 1 −
∑Ki−1

k=1 xki . For k = 1, . . . ,Ki let T ki be the

k-th component map of Ti so that Ti = (T ki )Kii=1.

Let X := X1×· · ·×XN and let T : X → ∆N be the bijection given by T = T1×· · ·×TN . In an

abuse of terminology, we sometimes refer to X as the mixed-strategy space of Γ. When convenient,

given an x ∈ X we use the notation x−i to denote the tuple (xj)j 6=i. Letting X−i :=
∏
j 6=iXj , we

define T−i : X−i → ∆−i as T−i := (Tj)j 6=i. Let

κ :=
N∑
i=1

(|Yi| − 1) (9.3)

denote the dimension of X, and note that κ 6= K, where K, defined earlier, is the cardinality of

the joint pure strategy set Y .

Throughout the next two chapters we often find it convenient to work in X rather than ∆N . In

order to keep the notation as simple as possible we overload the definitions of some symbols when

the meaning can be clearly derived from the context. In particular, let BRi : X−i ⇒ Xi be defined

by BRi(x−i) := {xi ∈ Xi : BRi(σ−i) = σi, σi ∈ ∆i, σ−i ∈ ∆−i, σi = Ti(xi), σ−i = T−i(x−i)}.
Similarly, given an x ∈ X we abuse notation and write U(x) instead of U(T (x)).

Given a pure strategy yi ∈ Yi, we will write U(yi, x−i) to indicate the value of U when player

i uses a mixed strategy placing all weight on the yi and the remaining players use the strategy

x−i ∈ X−i. Similarly, we will say yki ∈ BRi(x−i) if there exists an xi ∈ BRi(x−i) such that Ti(xi)

places weight one on yki .
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In this context, we let

∇U(x) :=

(
∂U(x)

∂xki

)
i=1,...,N

k=1,...,Ki−1

,

denote the “full” gradient of U , and for i = 1, . . . , N , we let

∇xiU(x) :=

(
∂U(x)

∂xki

)
k=1,...,Ki−1

denote the gradient of U with respect to the strategy of player i only.

Applying the definition of Ti to (9.2) we see that U(x) may also be expressed as

U(x) =

Ki−1∑
k=1

xki U(yk+1
i , x−i) +

(
1−

Ki−1∑
k=1

xki

)
U(y1

i , x−i). (9.4)

for any i = 1, . . . , N .

We use the following nomenclature to refer to strategies in X.

Definition 9.2.

(i) A strategy x ∈ X is said to be pure if T (x) places all its mass on a single action tuple y ∈ Y .

(ii) A strategy x ∈ X is said to be completely mixed if x is in the interior of X.

(iii) In all other cases, a strategy x ∈ X is said to be incompletely mixed.

9.3 Degenerate Potential Games

In this section we formally define the notions of degeneracy considered throughout the chapter.

In Section 9.3.1 we define the notion of a first-order degenerate equilibrium. In Section 9.3.2 we

define the notion of a second-order degenerate equilibrium. In Section 9.3.3 we define the notion

of a degenerate potential game and present the main result of the chapter, Theorem 9.9.

9.3.1 First-Order Degeneracy

Let Γ be a potential game. Throughout the section we work primarily in the spaces Xi and X.

Following Harsanyi [65], we will define the carrier set of an element x ∈ X, a natural modification

of a support set to the present context. For xi ∈ Xi let

carri(xi) := spt(Ti(xi)) ⊆ Yi (9.5)
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and for x = (x1, . . . , xN ) ∈ X let carr(x) := carr1(x1) ∪ · · · ∪ carrN (xN ).

Let C = C1 ∪ · · · ∪ CN , where for each i = 1, . . . , N , Ci is a nonempty subset of Yi. We say

that C is the carrier for x = (x1, . . . , xN ) ∈ X if Ci = carri(xi) for i = 1, . . . , N (or equivalently, if

C = carr(x)).

Let γi := |Ci| and assume that the strategy set Yi is reordered so that {y1
i , . . . , y

γi
i } = Ci; that

is, the first γi strategies in Yi are precisely the strategies in Ci. Under this ordering, the first γi− 1

components of any strategy xi with carri(xi) = Ci are free (not constrained to zero by Ci) and

the remaining components of xi are constrained to zero. That is (xki )
γi−1
k=1 is free under Ci and

(xki )
Ki
k=γi

= 0. The set of strategies {x ∈ X : carr(x) = C} is precisely the interior of the face of X

given by

ΩC := {x ∈ X : xki = 0, k = γi, . . . ,Ki − 1, i = 1, . . . , N}. (9.6)

Definition 9.3. Let x∗ be an equilibrium with carrier C. We say that x∗ is first-order degenerate

if there exists a pair (i, k), i = 1, . . . , N , k = γi, . . . ,Ki − 1 such that ∂U(x∗)
∂xki

= 0, and we say x∗ is

first-order non-degenerate otherwise.

Remark 9.4. We note that, using the multilinearity of U one may show that an equilibrium x∗ is

first-order degenerate if and only if carri(x
∗
i ) ( BRi(x

∗
−i) for some i = 1, . . . , N (cf. non-degeneracy

in [153]).

Example 9.5. The 2 × 2 identical interests game with payoff matrix M =

0 0

1 −1

 has a first-

order degenerate equilibrium at the strategy in which the row player plays his second action with

probability 1 and the column player mixes between both his actions with equal probability.

9.3.2 Second-Order Degeneracy

Let C be some carrier set. Let Ñ := |{i = 1, . . . , N : γi ≥ 2}|, and assume that the player set is

ordered so that γi ≥ 2 for i = 1, . . . , Ñ . Under this ordering, for strategies with carr(x) = C, the

first Ñ players use mixed strategies and the remaining players use pure strategies. Assume that

Ñ ≥ 1 so that any x with carrier C is a mixed (not pure) strategy.

Let the Hessian of U taken with respect to C be given by

H̃(x) :=

(
∂2U(x)

∂xki ∂x
`
j

)
i,j=1,...,Ñ ,
k=1,...,γi−1,
`=1,...,γj−1

. (9.7)
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Note that this definition of the Hessian restricts attention to the components of x that are free

under C

Definition 9.6. We say an equilibrium x∗ ∈ X is second-order degenerate if the Hessian H̃(x∗)

taken with respect to carr(x∗) is singular, and we say x∗ is second-order non-degenerate otherwise.

Remark 9.7. Note that both forms of degeneracy are concerned with the interaction of the potential

function and the “face” of the strategy space containing the equilibrium x∗. If x∗ touches one or

more constraints, then first-order non-degeneracy ensures that the gradient of the potential function

is nonzero normal to the face Ωcarr(x∗), defined in (9.6). Second-order non-degeneracy ensures that,

restricting U to the face Ωcarr(x∗), the Hessian of U
∣∣
Ωcarr(x∗)

is non-singular. If x∗ is contained

within the interior of X, then the first-order condition becomes moot and the second-order condition

reduces to the standard definition of a non-degenerate critical point.

9.3.3 Degenerate Games: Main Result

We say that a potential game is first-order degenerate (second-order degenerate) if it contains a

first-order degenerate equilibrium (second-order degenerate equilibrium) and we say it is first-order

non-degenerate (second-order non-degenerate) otherwise. We say a potential game is degenerate if

it is either first or second-order degenerate, and we say the game is non-degenerate otherwise.

The potential function U is uniquely determined by a vector in RK designating the utility (or,

more accurately, the potential) assigned to each action tuple y ∈ Y . Viewing the potential function

as such a vector in RK , we have the following definition.

Definition 9.8. We say that a property holds for almost all potential games if the complement of

the set where the property holds has LK-measure zero.

The following theorem is the main result of this section.

Theorem 9.9. Almost all potential games are non-degenerate.

We will prove this theorem in two steps. We begin by showing that almost all games are second-

order non-degenerate (Section 9.4, Proposition 9.10). Subsequently we show that almost all games

are first-order non-degenerate (Section 9.5, Proposition 9.15). Propositions 9.10 and 9.15 together

prove Theorem 9.9.

9.4 Second-Order Degenerate Games

The goal of this subsection is to prove the following proposition.
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Proposition 9.10. The set of potential games which are second-order degenerate has LK-measure

zero.

We will prove the proposition using Sard’s theorem. Our construction roughly follows that

of [65]. We begin by introducing some pertinent notation and giving some preliminary results.

Note that the set of joint pure strategies Y may be expressed as an ordered set Y = {y1, . . . , yK}
where each yτ ∈ Y , is an N -tuple of strategies, τ ∈ {1, . . . ,K}. We will assume a particular ordering

for this set after Proposition 9.11.

For each pure strategy yτ ∈ Y , τ = 1, . . . ,K let uτ denote the pure-strategy potential associated

with playing yτ ; that is, uτ := u(yτ ), where u is the pure form of the potential function defined in

Section 9.2. A vector of potential coefficients u = (uτ )Kτ=1 is an element of RK .

If we consider u as a variable, then by (9.1), U is linear in u.2 At this point we will express U

in a more convenient form.

Let τ = 1, . . . ,K, i = 1, . . . , N and xi ∈ Xi. We define qτi : Xi → [0, 1] by

qτi (xi) := T ki (xi) (9.8)

where k corresponds to the action played by player i in the tuple yτ , i.e, (yτ )i = yki , and where

T ki (xi) is the k-th component of Ti(xi). In an abuse of notation, given a pure strategy yki ∈ Yi, we

let qτi (yki ) = 1 if (yτ )i = yki and qτi (yki ) = 0 otherwise.

Given a fixed vector of potential coefficients u ∈ RK , the potential function U : X → R may be

expressed as (see (9.1) and (9.8))

U(x) =

K∑
τ=1

uτ

[
N∏
i=1

qτi (xi)

]
. (9.9)

Note that this form makes it clear that U is linear in u.

Now, let C = C1 ∪ · · · ∪ CN be some carrier set. The analysis through the remainder of the

section will rely on this carrier set being fixed, and many of the subsequent terms are implicitly

dependent on the choice of C. In keeping with our prior convention we let γi := |Ci|, and let

Ñ := |{i ∈ {1, . . . , N} : γi ≥ 2}|.

Any xi with carrier Ci has precisely γi−1 free components (i.e., not constrained to zero by Ci).

2The potential function U is, of course, a function of both x and u. However, since we will only exploit the
dependence on u in this section, we generally stick to the standard game-theoretic convention of writing U as a
function of x only [19].
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The joint strategy x = (x1, . . . , xN ) is a vector with

γ :=
N∑
i=1

(γi − 1)

free components.

By (9.4) we have that

∂U(x)

∂xki
= U(yk+1

i , x−i)− U(y1
i , x−i) =: F ki (x, u) (9.10)

for i = 1, . . . , Ñ , k = 1, . . . , γi − 1. Let

F (x, u) :=
(
F ki (x, u)

)
i=1,...,Ñ

k=1,...,γi−1

. (9.11)

Given an x ∈ X, it is at times useful to decompose it as x = (xp, xm), where xm = (xki )i=1,...,Ñ , k=1,...,γi−1

and xp contains the remaining components of x. (The subscript of xm is indicative of “mixed strat-

egy components” of x and xp indicative of “pure strategy components” of x.) In this decomposition,

xm is a γ-dimensional vector containing the free components of x. Taking the Jacobian of F in

terms of the components of xm we find that

DxmF (xp, xm, u) = H̃(x), (9.12)

where DxmF (xp, xm, u) =
(
∂F
∂x`i

)
i=1,...,Ñ ,
`=1,...,γi−1

.

Let x∗ be a mixed equilibrium with carrier C. Differentiating (9.4) we see that at the equilibrium

x∗ we have ∂U(x∗)
∂xki

= 0 for i = 1, . . . , Ñ , k = 1, . . . , γi − 1 (see Lemma 10.28 in appendix), or

equivalently,

F ki (x∗, u) = U(yk+1
i , x∗−i)− U(y1

i , x
∗
−i) = 0

for i = 1, . . . , Ñ , k = 1, . . . , γi − 1. Using (9.9) in the above we get

F ki (x∗, u) =
K∑
τ=1

uτ

(qτi (yk+1
i )− qτi (y1

i )
)∏
j 6=i

qτj (x∗j )

 = 0. (9.13)

It will be convenient to be able to relate the ordering of Y with the ordering of (F ki )i=1,...,Ñ , k=1,...,γi−1.
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For this purpose, given i = 1, . . . , Ñ , k = 1, . . . , γi − 1, let

s∗(i, k) :=


k for i = 1,∑i−1

j=1(γj − 1) + k for i ≥ 2.

Define i∗ : {1, . . . , γ} → {1, . . . , Ñ} and k∗ : {1, . . . , γ} → {1, . . . ,maxi{γi − 1}} to be the inverse

of s∗; that is

s∗(i∗(s), k∗(s)) = s (9.14)

for all s = 1, . . . , γ.

Given an x ∈ X, let A(x) = (as,τ (x))s=1,...,γ,
τ=1,...,K

∈ Rγ×K be defined as the matrix with entries

as,τ (x) :=
(
qτi∗(s)(y

k∗(s)+1
i )− qτi∗(s)(y

1
i )
) ∏
j 6=i∗(s)

qτj (xj), (9.15)

Using this notation, (9.13) is equivalently expressed as

A(x∗)u = 0. (9.16)

The following proposition establishes the solvability of (9.16). We note that, in order to prove

Proposition 9.10 (the main result of this section), it is sufficient to consider only x such that

carr(x) = C in the following proposition. However, later, when studying first order degenerate

games in Section 9.5, we will consider the notion of an “extended carrier set” (see (9.25)), and we

will need to characterize the rank of A(x) for x with carr(x) ⊂ C.

Proposition 9.11. For any x such that carr(x) ⊆ C, the matrix A(x) has full row rank.

Before proving this proposition we introduce some notation that will permit us to study the

structure of A(x).

We begin by establishing a particular ordering of elements in Y . Let

K̃ :=
N∏
i=1

γi.

For τ = 1, . . . , K̃, let ατ = (α1
τ , . . . , α

Ñ
τ ) be a multi-index associated with the τ -th action tuple in
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Y , meaning that

yτ = (y
α1
τ

1 , . . . , y
αÑτ
Ñ
, y1
Ñ+1

, . . . , y1
N ),

where y1
i , for i = Ñ + 1, . . . , N , is, by construction, the pure strategy used by player i at any

strategy x with carrier C. Let Y be reordered so that for every τ = 1, . . . , K̃, i = 1, . . . , Ñ we have

1 ≤ αiτ ≤ γi. This ensures that the first K̃ strategies in Y contain all strategy combinations of the

elements of C1, . . . , CN , and that for any multi-index α = (α1, . . . , αÑ ), 1 ≤ αi ≤ γi, there exists a

unique 1 ≤ τ ≤ K̃ such that yτ = (yα
1

1 , . . . , yα
Ñ

Ñ
, y1
Ñ+1

, . . . , y1
N ).

By definition (9.8) and the ordering we assumed for Y we have that

qτi (yki ) =


1 if k = αiτ

0 otherwise.

(9.17)

For 1 ≤ s ≤ γ and 1 ≤ τ ≤ K̃, let

rs,τ := qτi (yk+1
i )− qτi (y1

i ) and ps,τ (x) :=
∏
j 6=i

qτj (xj), (9.18)

where i = i∗(s) and k = k∗(s) (see (9.14)), and note that as,τ (x) = rs,τps,τ (x) (see (9.15)). We may

write A(x) = R ◦P(x), where ◦ is the Hadamard product, and R and P(x) have entries rs,τ and

ps,τ (x) respectively.

Partition A(x), R and P(x) as A(x) = [A1(x) A2(x)], R = [R1 R2], and P(x) = [P1(x) P2(x)],

where A1(x),R1,P1(x) ∈ Rγ×K̃ and A2(x),R2,P2(x) ∈ Rγ×(K−K̃), so we may write

A(x) = [A1(x) A2(x)], with, A1(x) = R1 ◦P1(x) and A2(x) = R2 ◦P2(x).

In order to show that A(x) has full row rank, it is sufficient to prove that A1(x) has full row

rank—this is the approach we will take in proving the proposition.

We address this by studying the sign pattern of A1(x). Properties of sign pattern matrices

(i.e., matrices with entries in {−1, 0, 1}) have been well-studied. We recall the following definition

from [154],

Definition 9.12. A sign pattern matrix L ∈ Rm×n with n ≥ m is said to be an L-matrix if for

every matrix M with sgn(M) = sgn(L), the matrix M has full row rank.

The following Lemma characterizes L-matrices [151,154].
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Lemma 9.13. Let L ∈ Rm×n be a sign pattern matrix with n ≥ m. Then L is an L-matrix if and

only if for every diagonal sign pattern matrix D ∈ Rm×m, D 6= 0 there is a nonzero column of DL

in which each nonzero entry has the same sign.

In light of Definition 9.12, Proposition 9.11 is equivalent to the following lemma.

Lemma 9.14. For any x such that carr(x) ⊆ C, the matrix A1(x) = (R1 ◦ sgn(P1(x))) is an

L-matrix.

The proof of this lemma relies on showing that (R1 ◦ sgn(P1(x))) satisfies the L-matrix char-

acterization given in Lemma 9.13.

Before proving this lemma we introduce some definitions that will be useful in the proof.

Given a diagonal matrix D ∈ R`×`, ` ∈ N, let diag(D) be the vector in R` containing the

diagonal elements of D.

Given a diagonal sign pattern matrix D ∈ R`×`, ` ∈ N, define idx(D) as follows. If diag(D)

does not contain any ones, then let idx(D) = 1. Otherwise, let idx(D) be one more than the first

index in diag(D) containing a 1.34

Given a diagonal matrix D ∈ Rγ×γ , let Di ∈ R(γi−1)×(γi−1), i = 1, . . . , Ñ be the (unique)

diagonal matrices satisfying diag(D) = (diag(D1), . . . ,diag(DN )).

Proof. Let x be a strategy satisfying carr(x) ⊆ C. In order to show that (R1 ◦ sgn(P1(x))) is an

L-matrix, it is sufficient (by Lemma 9.13) to show that and for any diagonal sign pattern matrix

D 6= 0, there exists a column of D(R1 ◦ sgn(P1(x))) which is nonzero and in which every nonzero

entry has the same sign. With this in mind, we begin by giving a characterization of the columns

of R1.

Suppose that i = 1, . . . , Ñ and k = 1, . . . , γi − 1 are fixed. Note the following:

(i) Suppose τ ∈ {1, . . . , K̃} is such that αiτ = k + 1, where αiτ is the i-th index of the multi-

index ατ . Since ατ is used to define the ordering of actions in Y , we have qτi (yk+1
i ) = 1 and

qτi (y1
i ) = 0 (see (9.17) and preceding discussion). Hence, qτi (yk+1

i )− qτi (y1
i ) = 1.

(ii) Suppose τ ∈ {1, . . . , K̃} is such that αiτ = 1. Then qτi (yk+1
i ) = 0, and qτi (y1

i ) = 1. Hence,

qτi (yk+1
i )− qτi (y1

i ) = −1.

3Assume indexing starts with one, not zero. For example, if the first time a 1 appears in diag(D) is at index 2,
then idx(D) = 3.

4The awkward offset in this definition is needed in order to handle the indexing offset inherent in the mapping
Ti : Xi → ∆i, i = 1, . . . , N .
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(iii) For all other τ ∈ {1, . . . , K̃} we have qτi (yk+1
i ) = 0, and qτi (y1

i ) = 0, and hence qτi (yk+1
i ) −

qτi (y1
i ) = 0.

For 1 ≤ τ ≤ K̃, let rτ ∈ Rγ be the τ -th column of R1. Partition this column as

rτ =


r1
τ

...

rÑτ

 .

where riτ ∈ Rγi−1. From (9.18) we see that

riτ =


qτi (y2

i )− qτi (y1
i )

...

qτi (yγii )− qτi (y1
i )

 .

Given the observations (i)–(iii) above we see that for each i we have

riτ =


−1 if αiτ = 1

eαiτ−1 if 2 ≤ αiτ ≤ γi,
(9.19)

where the symbol eαiτ−1 refers to the (αiτ − 1)-th canonical vector in Rγi−1 and 1 ∈ Rγi−1 is the

vector of all ones.

We now characterize the columns of sgn(P1(x)). For i = 1, . . . , Ñ we define

Ii(x) :=
{
k ∈ {1, . . . , γi} : T ki (xi) > 0

}
.

Since carr(x) = C, the ordering we assumed for Yi implies that T ki (x) = 0 for k ≥ γi + 1. By the

definition of Ti, it is not possible to have T ki (xi) = 0 for all k = 1, . . . ,Ki and hence Ii(x) 6= ∅.

Let pτ be the τ -th column of P1(x) and let

p̃τ := sgn(pτ )

170



be the τ -th column of sgn(P1(x)).5 Suppose that τ ∈ {1, . . . , K̃} is such that for the multi-index

ατ we have αiτ ∈ Ii(x) for all i = 1, . . . , Ñ . Then for each s = 1, . . . , γ the (s, τ)-th entry of P1(x)

is strictly positive (see (9.8) and (9.18)), and hence pτ is positive and p̃τ = 1.

Partition the columns pτ and p̃τ as

pτ =


p1
τ

...

pÑτ

 and p̃τ =


p̃1
τ

...

p̃Ñτ

 , (9.20)

where piτ , p̃
i
τ ∈ Rγi−1. Suppose that τ is such that for the multi-index ατ we have αiτ /∈ Ii(x) for

exactly one subindex i ∈ {1, . . . , Ñ}. Then piτ is positive (see (9.18)) and pjτ is zero for any j 6= i.

Hence, p̃iτ = 1 and p̃jτ = 0 for any j 6= i.

Now, let D ∈ Rγ×γ be an non-null diagonal sign pattern matrix. We will show that there is a

nonzero column of D(R1 ◦ sgn(P1(x))) in which each nonzero entry is a 1.

We now consider two possible cases for the structure of D and show that in each case there is

a nonzero column of D(R1 ◦ sgn(P1(x))) in which every nonzero entry is 1.

Case 1: Suppose that for all i ∈ {1, . . . , Ñ} such that idx(Di) /∈ Ii(x) we have diag(Di) = 0.

Choose τ such that 
αiτ = idx(Di) if idx(Di) ∈ Ii(x),

αiτ ∈ Ii(x) if idx(Di) /∈ Ii(x).

Note that αiτ ∈ Ii(x) for all i = 1, . . . , Ñ , and hence p̃τ = 1 (see discussion preceding (9.20)). The

τ -th column of D(R1 ◦ sgn(P1(x))) is given by

D(rτ ◦ p̃τ ) = diag(D) ◦ rτ =
(
diag(Di) ◦ riτ

)Ñ
i=1

. (9.21)

For any i such that idx(Di) /∈ Ii(x) we have, by assumption, diag(Di) = 0 and hence diag(Di)◦
riτ = 0. Moreover, note that in this case we have idx(Di) = 1 since, by the definition of idx(·),
diag(Di) = 0 implies idx(Di) = 1.

Suppose now that i is such that idx(Di) ∈ Ii(x). For i = 1, . . . , Ñ , if αiτ = 1 then riτ =

−1 (by (9.19)) and diag(Di) contains no ones (this is the definition of idx(Di) = 1). In fact,

diag(Di) contains only entries with value of 0 or −1. Hence, diag(Di) ◦ riτ = −diag(Di), which is

a nonnegative vector.

5For convenience in notation, we suppress the argument x when writing the columns of these matrices.
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If 2 ≤ αiτ ≤ γi then riτ = eαiτ−1 (by (9.19)). Recalling the definition of idx(·), by our choice of

αiτ = idx(Di), the (αiτ − 1)-th entry of diag(Di) is 1. Hence, diag(Di) ◦ riτ = eαiτ−1. In particular,

this implies that if αiτ 6= 1 then diag(Di) ◦ riτ is not identically zero and every nonzero entry of

diag(Di) ◦ riτ is 1.

In summary, for i = 1, . . . , Ñ , we have diag(Di) ◦ riτ ≥ 0, with equality only when idx(Di) = 1

and Di = 0. Hence, by (9.21), the τ -th column of D(R1 ◦ sgn(P1(x))) satisfies D(rτ ◦ p̃τ ) ≥ 0, with

equality only when idx(Di) = 1 and Di = 0 for all i. But, by assumption D 6= 0, so D(rτ ◦ p̃τ ) 6= 0.

Case 2: Suppose that for some i ∈ {1, . . . , Ñ} we have idx(Di) 6∈ Ii(x) and diag(Di) 6= 0. Let

τ ∈ {1, . . . , K̃} be chosen such that αiτ = idx(Di) for exactly one such i ∈ {1, . . . , Ñ} and for all

other j 6= i we have αiτ ∈ Ij (this is always possible since Ij 6= ∅). Then we have

p̃iτ = 1, and p̃jτ = 0, for all j 6= i

(see discussion following (9.20)).

As shown in Case 1, if αiτ = 1, then Di ≤ 0 and riτ = −1 which implies that diag(Di) ◦ riτ ≥ 0.

Moreover, since p̃iτ = 1 and since, by assumption diag(Di) 6= 0 we have diag(Di) ◦ riτ ◦ p̃iτ 6= 0 and

every nonzero entry is 1.

If 2 ≤ αiτ ≤ γi, then, again using the same reasoning as in Case 1, we see that diag(Di) ◦ riτ =

eαiτ−1. Since p̃iτ = 1 we get that diag(Di) ◦ riτ ◦ piτ = eαiτ−1.

For j 6= i we have p̃jτ = 0, which implies diag(Dj) ◦ rjτ ◦ p̃jτ = 0.

All together, this implies that the τ -th column of D(R1 ◦ sgn(P1(x))), given by (diag(Dj) ◦ rjτ ◦
p̃jτ )Ñj=1, is nonzero and every nonzero entry is equal to 1.

Since this holds for arbitrary diagonal sign matrix D 6= 0, Lemma 9.13 implies that (R1 ◦
sgn(P1(x))) is an L-matrix. Since this holds for any x satisfying carr(x) ⊆ C, we see that the

desired result holds.

Given the carrier C there are
(
K
γ

)
possible combinations (of length γ) of the columns of A(x).

For each r = 1, . . . ,
(
K
γ

)
, let Ar(x) ∈ Rγ×γ denote a square matrix formed by taking one unique

combination of the columns of A(x). For r = 1, . . . ,
(
K
γ

)
, let

Sr := {x ∈ X : carr(x) = C, det Ar(x) 6= 0}.

By Proposition 9.11, no strategy x ∈ X with carr(x) = C may simultaneously be in all Scr . Note

also that each Sr is open relative to the set {x ∈ X : carr(x) = C} = Ω̊C (see (9.6)). Thus, we

may construct a countable family of open balls (B`)`≥1, B` ⊂ ΩC that satisfy:
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(i)
⋃
`≥1B` = {x ∈ X : carr(x) = C}

(ii) For each ` ∈ N there exists an r` ∈ {1, . . . ,
(
K
γ

)
} such that B` ⊆ Sr` (i.e., Ar`(x) is invertible

for all x ∈ B`).
Fix ` ∈ {1, 2, . . .}. After reordering, A(x) may be partitioned as A(x) = [Ãr`(x) Ar`(x)], where

Ãr`(x) is a matrix formed by the columns of A(x) not used to form Ar`(x). Let the strategy set Y

be reordered in the same way as the columns A(x).6 Given a vector of potential coefficients u ∈ RK ,

let it be partitioned as u = (u1, u2), where u1 = (u1, . . . , uK−γ) and u2 = (uK−γ+1, . . . , uK). Define

ρ̃` : B` × RK−γ → Rγ by

ρ̃`(x, u1) := −Ar`(x)−1Ãr`(x)u1,

If x∗ ∈ B` is an equilibrium for some potential game with potential coefficient vector u, then by

(9.16) we have A(x∗)u = 0. Since Ar`(x
∗) is invertible, this is equivalent to u2 = −Ar`(x

∗)−1Ãr`(x
∗)u1.

Hence, if x∗ ∈ B` is an equilibrium of some potential game with potential coefficient vector

u = (u1, u2), the function ρ̃` permits us to recover u2 given u1 and x∗.

Conversely, suppose x ∈ B` and u1 ∈ RK−γ are arbitrary. If u = (u1, u2) with u2 = ρ̃`(x, u1),

then by the definition of ρ̃` we see that A(x)u = 0. By the definition of A(x) (see (9.11)–(9.15))

this implies

F (x, u1, ρ̃`(x, u1)) = 0, for all x ∈ B`.

Thus, taking a partial derivative with respect to xki we get

∂

∂xki
F (x, u1, ρ̃`(x, u1)) = 0, i = 1, . . . , Ñ , k = 1, . . . , γi − 1. (9.22)

Consider again the decomposition x = (xp, xm). Using compact notation, (9.22) is restated as

DxmF (xp, xm, u1, ρ̃`(xp, xm, u1)) = 0. (9.23)

Suppose x∗ ∈ B` is an equilibrium of a potential game with potential coefficients u and carr(x∗) =

C. Applying the chain rule in (9.23), using (9.12), and using the fact that F (x, u) = A(x)u =

Ãr`(x)u1 + Ar`(x)u2, we find that at x∗ there holds

H̃(x∗) = −Ar`(x
∗)J̃ρ`(x

∗, u), (9.24)

where J̃ρ`(x, u) := Dx̃m ρ̃`(xp, x̃m, u)
∣∣
x̃m=xm

is the Jacobian of ρ̃` taken with respect to xm.

6Note that we previously assumed a specific ordering for Y . However, this was for the purpose of proving
Proposition 9.11, which is unaffected by a reordering of Y at this point.
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Since Ar`(x) is invertible for all x ∈ B`, this means that given any equilibrium x∗ ∈ B`, the

Hessian H̃(x∗) is nonsingular if and only if the Jacobian J̃ρ`(x
∗, u) is nonsingular.

For each ` ∈ N, define the function ρ` : B` × RK−γ → RK by ρ`(x, u1) := (u1, ρ̃`(x, u1)). The

function ρ` is a trivial extension of ρ̃` that recovers the full vector of potential coefficients u ∈ RK

given u1 ∈ RK−γ and an equilibrium x∗ ∈ B`.
Note that the Jacobian of ρ` takes the form

Jρ`(x, u) =

 0 I

Jρ̃` M

 ,

for some matrix M. Clearly, det Jρ` = 0 if and only if det J̃ρ` = 0. Thus, by (9.24) we see that if

x∗ ∈ B` is an equilibrium of a game with potential coefficient vector u, then

det Jρ`(x
∗, u) = 0 ⇐⇒ det H̃(x∗) = 0.

We now prove Proposition 9.10.

Proof. Let C be a carrier set. Let U(C) ⊆ RK be the set of games having at least one degenerate

equilibrium with carrier set C; that is,

U(C) :=
{
u ∈ RK : ∃ degenerate equilibrium x∗ ∈ {x ∈ X : carr(x) = C}

}
.

For ` ∈ N, let U(C, `) ⊆ RK be the subset of games having at least one degenerate equilibrium

x∗ ∈ B`, where B` is defined with respect to C; that is,

U(C, `) :=
{
u ∈ RK : ∃ degenerate equilibrium x∗ ∈ B`

}
.

By construction, we have
⋃
`≥1B` = {x ∈ X : carr(x) = C}, and hence U(C) =

⋃
`≥1 U(C, `).

We showed above that for any (x, u) ∈ B` × RK such that x is an equilibrium of the potential

game with potential coefficients u, the Hessian H̃(x) (taken with respect to C) is invertible if and

only if the Jacobian of ρ`(x, u) is invertible. Thus, the set U(C, `) is contained in the set of critical

values of ρ`. By Sard’s theorem, we get that U(C, `) is a set with LK-measure zero. Since U(C) is

the countable union of sets of LK-measure zero, it is itself a set with LK-measure zero.

Let U ⊂ RK denote the set of games with at least one degenerate equilibrium. The set U may

be expressed as the union U =
⋃
C U(C) taken over all possible support sets C. Since there are a
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finite number of support sets C, the set U has LK-measure zero.

9.5 First-Order Degenerate Games

The following proposition shows that first-order degenerate games form a null set.

Proposition 9.15. The set of potential games which are first-order degenerate has LK-measure

zero.

Proof. Fix some set C = C1 ∪ · · · ∪ CN where each Ci is a nonempty subset of Yi. Let Ĉ be

any strict subset of C. In the context of this proof let γi := |Ci|, let γ :=
∑N

i=1(γi − 1), let

Ñ := |{i = 1, . . . , N : γi ≥ 2}|, and assume Yi is reordered so that {y1
i , . . . , y

γi
i } = Ci. Note that

this ordering implies that for any x with carr(x) = C we have y1
i ∈ carr(x), i = 1, . . . , N .

Given an equilibrium x∗ let the extended carrier of x∗ be defined as

ext carr(x∗) := carr(x∗) ∪

(
N⋃
i=1

{yki ∈ Yi : k = 2, . . .Ki,
∂U(x∗)

∂xk−1
i

= 0}

)
. (9.25)

Suppose that x∗ is an equilibrium with extended carrier C. By Lemma 10.28 (see appendix) and

the ordering we assumed for Yi we have

F ki (x∗, u) =
∂U(x∗)

∂xk−1
i

= 0, i = 1, . . . , Ñ , k = 1, . . . , γi − 1, (9.26)

where F ki is as defined in (9.10). Thus, if x∗ is an equilibrium for some game with potential

coefficient vector u ∈ RK , and ext carr(x∗) = C, then by the definition of A(x) (see (9.11)–(9.15)),

(9.26) implies that A(x∗)u = 0, or equivalently,

u ∈ ker A(x∗),

where the matrix A(x) ∈ Rγ×K is defined with respect to C, as in (9.15).

Let U(C, Ĉ) ⊆ RK be the set of games in which there exists an equilibrium x∗ with carr(x∗) = Ĉ

and ext carr(x∗) = C. Let

X̂ := {x ∈ X : carr(x) = Ĉ}.

By the above we see that

U(C, Ĉ) ⊆ ∪
x∈X̂ ker A(x). (9.27)
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For each x ∈ X̂, let range A(x)T denote the range space of A(x)T . Each entry of A(x)T is a

polynomial function in x and hence is Lipschitz continuous over the bounded set X̂. By Propo-

sition 9.11 we have rankA(x)T = γ for all x ∈ X̂. Thus, we may choose a set of γ basis vectors

{b1(x), . . . ,bγ(x)} spanning range A(x)T such that each bk(x) ∈ RK , k = 1, . . . , γ is a Lips-

chitz continuous function in x. Moreover, we may choose a complementary set of (K − γ) lin-

early independent vectors {bγ+1(x), . . . ,bK(x)} forming a basis for the orthogonal complement

(range A(x)T )⊥, with each bk(x) ∈ RK , k = γ + 1, . . . ,K being a continuous function in x. Let

B(x) := (bγ+1(x) · · · bK(x)) ∈ RK×(K−γ). Let f : X̂×RK−γ → RK be given by f(x, v) := B(x)v.

Since B(x) is Lipschitz continuous in x and X̂ is bounded, f is Lipschitz continuous. By the

fundamental theorem of linear algebra, for each x ∈ X̂, ker A(x) = (range A(x)T )⊥ = range B(x).

Hence, ⋃
x∈X̂

ker A(x) = f(X̂ × RK−γ). (9.28)

Since Ĉ ( C, the Hausdorff dimension of X̂ is at most (γ − 1) and the Hausdorff dimension of

X̂×RK−γ is at most K−1. Since f is Lipschitz continuous, this implies (see [152], Section 2.4) that

the Hausdorff dimension of f(X̂ × RK−γ) is at most K − 1, and in particular, that f(X̂ × RK−γ)

has LK-measure zero. By (9.27) and (9.28), this implies that U(C, Ĉ) has LK-measure zero.

Let U ⊆ RK denote the set of all games containing a first-order degenerate equilibrium. Since

we may represent this set as a finite union of LK-measure zero sets,

U =
⋃

∅6=Ci⊆Yi, i=1,...,N
C=C1∪···∪CN

Ĉ(C

U(C, Ĉ),

the set U also has LK measure zero.

9.6 Quasi-Strong and Regular Equilibria

The notions of a quasi-strong equilibrium and a regular equilibrium were introduced in [65] and

have been studied in many subsequent works (see [66,67] and citations therein). Equilibria that are

quasi-strong and regular possess a variety of useful properties. Of greatest note, such equilibria have

been shown to be “essential” (robust against perturbations in the payoffs) and “strongly proper”

(robust against perturbations in players’ strategies) [67].

It has been shown [65] that in almost all (finite) N -player games, all equilibria are quasi-strong

and regular. In this section we relate our non-degeneracy conditions (which were crafted specifically
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for potential games and rely explicitly on the potential function) to the notions of quasi-strong and

regular equilibria. The main goal of this section will be show that the following two properties hold

(see Proposition 9.18):

1. An equilibrium in a potential game is quasi-strong if and only if it first-order non-degenerate.

2. If an equilibrium in a potential game is quasi-strong, then it is regular if and only if it is

second-order non-degenerate.

This means that an equilibrium of a potential game is non-degenerate (both first and second-order)

if and only if it is quasi-strong and regular. Along with Theorem 9.9, this implies that in almost

all potential games, all equilibria are both quasi-strong and regular, and possess all the associated

robustness and stability properties.

The work [65] showed that in any game where all equilibria are quasi-strong and regular, the

number of equilibrium strategies is finite and odd ( [65], Theorem 1). Thus, Proposition 9.18 (the

main result of this section), together with Theorem 9.9 of this dissertation and Theorem 1 of [65],

implies that Theorem 9.1 holds.

We now formally define the notions of a quasi-strong and regular equilibrium. These notions are

traditionally defined within the space ∆N . We will review the traditional definitions given in [65]

and then for convenience, we will recast these definitions to work with elements in X rather than

in ∆N .

An equilibrium σ∗ ∈ ∆N is said to be quasi-strong if for each i = 1, . . . , N , every pure strategy

in the support of σ∗i is a best response to σ∗−i [65, 67]. This may be stated equivalently as follows.

Definition 9.16. An equilibrium x∗ ∈ X is said to be quasi-strong if carri(x
∗) = {yi ∈ Yi : yi ∈

BRi(x
∗
−i)} for all i = 1, . . . , N .

Given σ ∈ ∆N and u ∈ RK , let

F̃ ki (σ, u) := σ1
i σ

k+1
i [U(yk+1

i , σ−i)− U(y1
i , σ−i)] (9.29)

for i = 1, . . . , N , k = 1, . . . ,Ki − 1, and let F 0
i (σ, u) :=

∑Ki
k=1 σ

k
i − 1 for i = 1, . . . , N . Let

F̃ (σ, u) :=
(
F̃ ki (σ, u)

)
i=1,...,N

k=0,...,Ki−1

An equilibrium σ∗ ∈ ∆N is said to be regular if the Jacobian DσF (σ, u) is non-singular [65,67]. We

note that this definition of a regular equilibrium is slightly different from the one given in [65] in
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that we have used the potential function U in the place of the individual utility function Ui. Using

the definition of a potential game it is straightforward to verify that U(yk+1
i , x−i) − U(y1

i , x−i) =

Ui(y
k+1
i , x−i) − Ui(y1

i , x−i) for any x−i ∈ X−i, and hence, this coincides with the definition given

in [65] within the class of potential games.

We will now recast this definition so we may work with elements in the space X rather than

∆N . In an abuse of notation, given an x ∈ X and u ∈ RK , let

F̃ ki (x, u) := T 1
i (xi)x

k
i [U(yk+1

i , x−i)− U(y1
i , x−i)] (9.30)

= T 1
i (xi)x

k
i F

k
i (x, u),

for i = 1, . . . , N , k = 1, . . . ,Ki − 1, where F ki (x, u) is defined as in (9.10).7 Let

F̃ (x, u) :=
(
F̃ ki (x, u)

)
i=1,...,N

k=1,...,Ki−1

.

Note that the indexing here differs from that used to define F (x, u) in (9.11), where we restricted

to k ∈ {1, . . . , γi − 1}.

Definition 9.17. An equilibrium x∗ of a potential game with potential coefficient vector u, is said

to be regular if the Jacobian of F̃ (x∗, u), given by DxF̃ (x∗, u), is non-singular.

To see that this definition of a regular equilibrium coincides with the definition given in [65],

suppose that x∗ ∈ X is an equilibrium of some potential game with potential coefficient vector

u, and let σ∗ = T (x∗). The Jacobian DxF̃ (x∗, u) may be formed from DσF̃ (σ∗, u) by removing

the rows of DσF̃ (σ∗, u) corresponding to the coordinate maps F̃ 0
i , i = 1, . . . , N and removing the

columns of DσF̃ (σ∗, u) in which the partial derivative is taken with respect to σ1
i , i = 1, . . . , N .

Note that for i = 1, . . . , N , and k = 1, . . . ,Ki − 1, we have
∂F̃ki (σ∗,u)

∂σ1
i

= 0. This follows from

(9.29) and the fact that for k = 1, . . . ,Ki − 1, either ∂U(σ)

∂σk+1
i

= U(yk+1
i , σ−i) − U(y1

i , σ−i) = 0 or

σk+1
i = 0. Note also that

∂F̃ 0
i (σ∗,u)

∂σ1
i

= 1 for i = 1, . . . , N . This means that for each i = 1, . . . , N , the

column of DσF̃ (σ∗, u) in which the partial derivative is taken with respect to σ1
i is composed of all

zeros except for a one in the row corresponding to F̃ 0
i . Thus, by the definition of the determinant,

removing the above mentioned rows and columns from DσF̃ (σ∗, u) does not change the value of

the determinant of the resulting matrix. Consequently, DxF̃ (x∗, u) is invertible if and only if

DσF̃ (σ∗, u) is invertible, and the equilibrium x∗ ∈ X is regular as defined in Definition 9.17 if and

7In (9.10), F ki (x, u) is only defined for i = 1, . . . , Ñ , k = 1, . . . , γi − 1; here we trivially extend this definition to
i = 1, . . . , N , k = 1, . . . ,Ki − 1.
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only if σ∗ is regular as defined in [65].

The following proposition is the main result of the section.

Proposition 9.18. Let Γ be a potential game. Then,

(i) An equilibrium x∗ is first-order non-degenerate if and only if it is quasi-strong.

(ii) If an equilibrium x∗ is quasi-strong, then it is second-order non-degenerate if and only if it is

regular.

In particular, an equilibrium x∗ of a potential game is non-degenerate if and only if it is quasi-

strong and regular.

Proof. In order to simplify notation, throughout the proof we will use the symbol x̂ rather than

the usual x∗, when referring to an equilibrium. Without loss of generality, given an equilibrium x̂,

assume that each player’s action set Yi is reordered so that carri(x̂i) = {y1
i , . . . , y

γi
i }. Note that this

comports with the ordering assumption implicit in the definitions of both first and second-order

degeneracy (see Sections 9.3.1–9.3.2).

Using the multilinearity of U , it is straightforward to verify that, within the class of potential

games, an equilibrium x̂ is first-order non-degenerate if and only if it is quasi-strong (see Remark

9.4).

We now show that, if an equilibrium x̂ is quasi-strong, then x̂ is regular if and only if x̂ is

second-order non-degenerate. Assume henceforth that x̂ is a quasi-strong equilibrium.

Our goal is to show that DxF̃ (x̂, u) is invertible if and only if H̃(x̂) is invertible (see (9.7)).

By (9.12), this is equivalent to showing that DxF̃ (x̂, u) is invertible if and only if DxmF (x̂, u) is

invertible. With this end in mind, we begin by considering the behavior of the component maps of

F̃ and F in two important cases.

Case 1: Suppose (i, k) is such that k ∈ {1, . . . , γi − 1}. Note that in this case we have x̂ki > 0.

Differentiating (9.30) with respect to x`j , (j, `) 6= (i, k) we get

∂F̃ ki (x̂, u)

∂x`j
=

(
∂T 1

i (x̂i)

∂x`j

)
x̂ki F

k
i (x̂, u) + T 1

i (x̂i)x̂
k
i

∂F ki (x̂, u)

∂x`j

Since k ∈ {1, . . . , γi − 1}, we have F ki (x̂, u) = 0 and hence,

∂F̃ ki (x̂, u)

∂x`j
= T 1

i (x̂i)x̂
k
i

∂F ki (x̂, u)

∂x`j
(9.31)

for (j, `) 6= (i, k).
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Differentiating (9.30) with respect to xki we get

∂F̃ ki (x̂, u)

∂xki
= −x̂ki F ki (x̂, u) + T 1

i (x̂i)F
k
i (x̂, u) + x̂ki T

1
i (x̂i)

∂F ki (x̂, u)

∂xki
(9.32)

By our choice of (i, k) we have F ki (x̂, u) = 0. Also note that F ki (x, u) does not depend on xki (see

(9.10)), and hence
∂Fki (x̂,u)

∂xki
= 0. By (9.32), this implies that

∂F̃ki (x̂,u)

∂xki
= 0. But we just showed

∂Fki (x̂,u)

∂xki
= 0, hence

∂F̃ ki (x̂, u)

∂xki
=
∂F ki (x̂, u)

∂xki
= 0. (9.33)

Together, (9.31) and (9.33) imply that for each (i, k) such that k = 1, . . . , γi−1 we haveDxmF̃
k
i (x̂, u) =

T 1
i (x̂i)x̂

k
iDxmF

k
i (x̂, u), where x̂ki > 0 and T 1

i (x̂i) > 0. This implies that

Dxm

(
F̃ ki (x̂, u)

)
i=1,...,N

k=1,...,γi−1

is nonsingular ⇐⇒ DxmF (x̂, u) is non-singular, (9.34)

where F (x, u) is defined in (9.11).

Case 2: Suppose (i, k) is such that k ∈ {γi, . . . ,Ki − 1}. Note that in this case we have x̂ki = 0.

Differentiating (9.30) with respect to x`j , (j, `) 6= (i, k) we get

∂F̃ ki (x̂, u)

∂x`j
= T 1

i (x̂i)x̂
k
i

∂F ki (x̂, u)

∂x`j
= 0, (9.35)

where the equality to zero holds since x̂ki = 0. Note in particular that this implies thatDxmF̃
k
i (x̂, u) =

0.

If we differentiate (9.30) with respect to xki we get

∂F̃ ki (x̂, u)

∂xki
= T 1

i (x̂i)F
k
i (x̂, u) + x̂ki T

1
i (x̂i)

∂F ki (x̂, u)

∂xki︸ ︷︷ ︸
=0

= T 1
i (x̂i)[U(yk+1

i , x̂−i)− U(y1
i , x̂−i)],

where the equality to zero in the first line holds since x̂ki = 0, and the second line follows from the

definition of F ki (see (9.10)).

Since x̂ is a first-order non-degenerate equilibrium, U(y1
i , x̂−i) > U(y`+1

i , x̂−i) for all ` =

γi, . . . ,Ki − 1. Also, by our ordering of Yi we have T 1
i (x̂i) > 0. Hence, T 1

i (x̂i)[U(yk+1
i , x̂−i) −
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U(y1
i , x̂−i)] < 0. This, along with (9.35), implies that Dxp

(
F̃ ki (x̂, u)

)
i=1,...,N

k=γi,...,Ki−1

is a diagonal

matrix with non-zero diagonal.

We now consider the Jacobian DxF̃ (x̂, u). This may be expressed as

DxF̃ (x̂,m) =

 Dxm

(
F̃ ki (x̂, u)

)
i=1,...,N

k=1,...,γi−1

Dxp

(
F̃ ki (x̂, u)

)
i=1,...,N

k=1,...,γi−1

Dxm

(
F̃ ki (x̂, u)

)
i=1,...,N

k=γi,...,Ki−1

Dxp

(
F̃ ki (x̂, u)

)
i=1,...,N

k=γi,...,Ki−1


By the above we see that this matrix has the form

DxF̃ (x̂,m) =

Dxm

(
F̃ ki (x̂, u)

)
i=1,...,N

k=1,...,γi−1

M

0 D

 ,

where M ∈ Rγ×(κ−γ) and D ∈ R(κ−γ)×(κ−γ) is an invertible diagonal matrix. Given this block form

we see that DxF̃ (x̂,m) is invertible if and only if Dxm

(
F̃ ki (x̂, u)

)
i=1,...,N

k=1,...,γi−1

is invertible. By (9.34)

we see that DxF̃ (x̂, u) is invertible if and only if DxmF (x̂, u) is invertible, which proves the desired

result.
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Chapter 10

Myopic Best-Response Dynamics in Potential Games

10.1 Introduction

In this chapter we study fundamental convergence properties of continuous-time MBR dynamics.

We focus our attention on the important class of multi-agent games known as potential games (see

Section 2.1.1). This chapter has three main contributions: (i) We show that in almost all potential

games and for almost all initial conditions, FP converges to a pure-strategy equilibrium, (ii) We

characterize the rate of convergence of FP in potential games, and (iii) We characterize the rate of

convergence of ECFP in potential games.

We briefly discuss each of these contributions below.

10.1.1 Fictitious Play in Potential Games

The set of NE may be subdivided into pure-strategy (deterministic) NE and mixed-strategy (prob-

abilistic) NE. Mixed-strategy NE can be problematic for a number of reasons [59]. In engineering

applications, mixed-strategy NE can be undesirable since they are nondeterministic, have sub-

optimal expected utility, and do not always have clear physical meaning [60]. Thus, in applica-

tions, preference is often given to algorithms that are guaranteed to converge to a pure-strategy

NE [60–63].

In potential games, pure-strategy NE are guaranteed to exist. It has been shown that FP will

converge to the set of NE in potential games [28,34,38]; however, it is well-known that FP need not

converge to a pure-strategy equilibrium in such games [34,74]. In fact, this deficiency was first noted

in the paper where FP was first shown to converge to the set of NE in potential games (see [34],

Remark (2)). In this chapter we attempt to redeem FP somewhat in this regard. We show that,

while convergence to mixed-strategy equilibria is possible, it is an exceptional occurrence. The
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following theorem is the first main result of this chapter.

Theorem 10.1. In almost all potential games, and for almost all initial conditions, FP converges

to a pure-strategy NE.

We now discuss our strategy for proving Theorem 10.1.

FP in Potential Games: Proof Strategy

In Chapter 9 we introduced the notion of a non-degenerate potential game and showed that almost

every potential game is non-degenerate. The basic strategy we will use to prove Theorem 10.1 is

to leverage two noteworthy properties satisfied in every non-degenerate potential game:

1. The FP vector field cannot concentrate mass in finite time, meaning it cannot map a set of

positive (Lebesgue) measure to a set of zero measure in finite time (see Section 10.4.1).

2. In a neighborhood of an interior Nash equilibrium (i.e., a completely mixed equilibrium), the

magnitude of the time derivative of the potential along paths grows linearly in the distance

to the Nash equilibrium, while the value of the potential varies only quadratically; that is,

d

dt
U(x(t)) ≥ d(x(t), x∗) ≥

√
|U(x(t))− U(x∗)|.

where U denotes the potential function and x∗ is the equilibrium point.

Using Markov’s inequality, property 2 immediately implies that if a path converges to an interior

NE then it must do so in finite time (see Section 10.4.2). Hence, properties 1 and 2 together imply

that the set of points from which FP converges to an interior NE must have Lebesgue measure

zero.

In order to handle mixed NE that are not in the interior of the strategy space (i.e., incompletely

mixed equilibria), we consider a projection that maps incompletely mixed equilibria to the interior

of the strategy space of a lower dimensional game. Using the techniques described above, we are

then able to handle completely and incompletely mixed equilibria in a unified manner.

In particular, we see that the set of points from which FP converges to the set of mixed-strategy

NE has Lebesgue measure zero. Since any FP path must converge to a NE [28], this implies Theorem

10.1.
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FP in Potential Games: Intuition and Comparison with Classical Techniques

It is well known that FP converges to the set of NE in potential games [28]. Hence, to prove

Theorem 10.1 we need only prove that each mixed-strategy NE can only be reached from a set of

measure zero.

Given a classical ODE, such a result could be proved via linearization. In particular, given some

equilibrium point, consider the linearization of the dynamics near the equilibrium point. Assuming

all eigenvalues associated with the linearized system are non-zero, the dimension of the stable

manifold (i.e., the set of initial conditions from which the equilibrium can be reached) is equal to

the dimension of the stable eigenspace of the linearized system [155].

In FP, the vector field is discontinuous—hence, it is not possible to linearize around an equilib-

rium point, and such classical techniques cannot be applied directly. However, to a certain extent,

the gradient field of the potential function may be seen as an approximation of the FP vector field.

In particular, it can be shown that the direction of the FP vector field approximately coincides

with the direction of the gradient field of the potential function (see Lemma 10.3).

Unlike the FP vector field, the gradient field of the potential function can be linearized. In a

non-degenerate game, any completely mixed-strategy NE is a non-degenerate saddle point of the

potential function. Hence, at least one eigenvalue of the linearized system must lie in the right-half

plane. This implies that, for the gradient dynamics of the potential function, the stable manifold

associated with an equilibrium point has dimension at most κ− 1, where κ is the dimension of the

strategy space.

Since the FP vector field approximates the gradient field of the potential function, intuition

suggests that for FP dynamics, each mixed equilibrium should also admit a similar low-dimensional

stable manifold.

While this provides an intuitive explanation for why one might expect Theorem 10.1 to hold,

we did not use any such linearization arguments in the proof. We found that studying the rate of

potential production near mixed equilibria (e.g., as discussed in the “proof strategy” section above)

led to shorter and simpler proofs. However, we hypothesize that an alternate proof of Theorem 10.1

could be obtained by considering smooth approximations to FP and linearizing near mixed-strategy

equilibria.

10.1.2 Rate of Convergence of FP in Potential Games

The second main contribution of this chapter is a characterization of the rate of convergence of FP

in potential games.

185



The problem of characterizing the rate of convergence in FP is intimately related to the problem

of characterizing the dynamics of FP near mixed-strategy equilibria. If an FP path passes through a

mixed-strategy NE, it can rest there for an indeterminate amount of time before moving elsewhere

( [27], Section 8). In this way, the mere existence of mixed-strategy equilibria presents a fundamental

barrier to establishing general convergence rate estimates in FP.

In [27] it was conjectured that within the class of weighted potential games, the rate of conver-

gence of every FP path is asymptotically exponential ( [27], Conjecture 25). In Section 10.5, we

partially resolve this conjecture by showing that it holds in almost all (exact) potential games. In

particular, we show that it holds for almost all initial conditions within the class of non-degenerate

potential games introduced in Chapter 9.

In addition to resolving this conjecture, our techniques are able to cast some light on the manner

in which convergence occurs. We show that, for almost all games and almost all initial conditions,

FP never passes through a mixed-strategy equilibrium. Hence, the problem of sojourning at mixed-

strategy equilibria pointed out in [27] almost never occurs.

In future work we plan to study methods for sharpening this estimate using the techniques

developed in this chapter.

10.1.3 Rate of Convergence of ECFP in Potential Games

The third main contribution of the chapter concerns the rate of convergence of ECFP in potential

games.

In Section 3.4.3 we showed that ECFP converges to the set of SNE (3.7). At a SNE strategy,

players in the same grouping are required to use identical strategies, and such equilibria are often

mixed, rather than pure. For example, within the class of congestion games, Assumption 6.19 gives

a condition under which any consensus equilibrium will be a mixed strategy.

As the third main contribution of this chapter, in Section 10.6 we show that if ECFP converges to

a completely mixed-strategy equilibrium in a non-degenerate potential game satisfying Assumptions

3.1–3.2, then convergence occurs in finite time.

We note that, in this dissertation we do not consider the rate of convergence of ECFP to incom-

pletely mixed equilibria. Studying convergence to incompletely mixed equilibria is fundamentally

more delicate than studying convergence to completely mixed equilibria (see Section 10.3). We

only consider the simpler case of convergence of ECFP to completely mixed equilibria. However,

we conjecture that using the projection techniques developed in Section 10.3, it can be shown that

if ECFP converges to any mixed equilibrium (not necessarily completely mixed), then it converges

in finite time.

186



10.1.4 Related Work

A related result for two player games has been shown in [92], where it was demonstrated that FP

almost never converges cyclically to a mixed-strategy equilibrium in which both players use more

than two pure-strategies.

Continuous-time best-response dynamics similar to those we consider here have been studied in

various works, including [27,28,64,91]. These papers study a variety of convergence properties for

FP and replicator dynamics in a wide class of games, but do not consider the question of generic

convergence to pure-strategy equilibria.

The work [27] studies the rate of convergence of FP in zero-sum games. It is proven that FP

converges to the set of NE in (weighted) potential games, and it is conjectured that the rate of

convergence in this case is exponential.

In [153] it is shown that in potential games, FP can take an arbitrarily long time to converge

to a neighborhood of a pure-strategy equilibrium. This is accomplished by choosing a “nearly

degenerate” game in which a FP path passes arbitrarily close to a some pure strategy that is

“almost” a pure-strategy equilibrium. Using the tools developed in this dissertation, in future

work we hope to show that this type of slow convergence is exceptional in the sense that if one

removes a small set of “almost degenerate” potential games, then the time needed to converge to

a neighborhood of a pure-strategy NE can be uniformly bounded.

The remainder of the chapter is organized as follows. Section 10.2 discusses notation to be used

throughout the chapter. Section 10.3 establishes the two key inequalities used to prove Theorem

10.1. Section 10.4 proves Theorem 10.1. Section 10.5 studies the rate of convergence of FP in non-

degenerate potential games. Section 10.6 studies the rate of convergence of ECFP to completely

mixed equilibria.

10.2 Notation

Throughout the chapter we will find it convenient to use the notation introduced in Section 9.2. In

particular, we will often work in the space X, defined Section 9.2, rather than in ∆N . This will free

us from being perpetually encumbered by the hyperplane constraints implicit in ∆i, i ∈ N , and

∆N . In this context, a (continuous-time) fictitious play process is defined as follows (cf. Definition

(2.4)).

Definition 10.2. A mapping x : R → X is said to be a (continuous-time) fictitious play process
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with initial condition x0 ∈ X if x is an absolutely continuous mapping such that x(0) = x0 and

ẋ ∈ BR(x)− x (10.1)

holds for almost all t ∈ R.

10.3 Potential Production Inequalities

In this section we prove two key inequalities ((10.3) and (10.4)) that are the backbone of our proof

of Theorem 10.1.

We note that in proving Theorem 10.1 there is a fundamental dichotomy between studying

completely mixed equilibria and incompletely mixed equilibria. Completely mixed equilibria lie

in the interior of the strategy space. At these points the gradient of the potential function is

zero and the Hessian is non-singular; local analysis of the dynamics is relatively easy. On the other

hand, incompletely mixed equilibria necessarily lie on the boundary of X and the potential function

may have a nonzero gradient at these points.1 Analysis of the dynamics around these points is

fundamentally more delicate.

In order to handle incompletely mixed equilibria we construct a nonlinear projection whose

range is a lower dimensional game in which the image of the equilibrium under consideration is

completely mixed. This allows us to handle both types of mixed equilibria in a unified manner.

10.3.1 Projection to a Lower-Dimensional Game

Let x∗ be a mixed equilibrium.2

For x ∈ Xi, let carri(xi) be as defined in (9.5), and for x ∈ X, let carr(x) be as defined

in the discussion following (9.5). Let Ci := carri(x
∗
i ), where x∗i is the player-i component of

x∗, let C := C1 ∪ · · · ∪ CN = carr(x∗). Let γi := |Ci| and assume that Yi is ordered so that

{y1
i , . . . , y

γi
i } = Ci; that is, the first γi strategies in Yi are precisely the strategies in Ci. Let

Ñ :=
∣∣{i ∈ {1, . . . , N} : γi ≥ 2

}∣∣, and assume that the player set is ordered so that γi ≥ 2 for

i = 1, . . . , Ñ . Since x∗ is assumed to be a mixed-strategy equilibrium, we have Ñ ≥ 1.

Given an x ∈ X, we will frequently use the decomposition x = (xp, xm), where xm :=

1We note that in games that are first-order non-degenerate, the gradient is always non-zero at incompletely mixed
equilibria.

2We note that x∗ is assumed to be fixed throughout the section and many of the subsequently defined terms are
implicitly dependent on x∗.
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(xki )i=1,...,Ñ , k=1,...,γi−1 and xp contains the remaining components of x.3 Let γ :=
∑N

i=1(γi − 1).

Recalling that κ is the dimension of X (see (9.3)), note that for x ∈ X we have x ∈ Rκ, xm ∈ Rγ ,

and xp ∈ Rκ−γ .

The set of joint pure strategies Y may be expressed as an ordered set Y = {y1, . . . , yK} where

each element yτ ∈ Y , τ ∈ {1, . . . ,K} is an N -tuple of strategies. For each pure strategy yτ ∈ Y ,

τ = 1, . . . ,K, let uτ denote the pure-strategy potential associated with playing yτ ; that is, uτ :=

u(yτ ), where u is the pure form of the potential function defined in Section 9.2. A vector of potential

coefficients u = (uτ )Kτ=1 is an element of RK .

Given a vector of potential coefficients u ∈ RK and a strategy x ∈ X, let4

F ki (x, u) :=
∂U(x)

∂xki
,

for i = 1, . . . , Ñ , k = 1, . . . , γi − 1, and let

F (x, u) :=
(
F ki (x, u)

)
i=1,...,Ñ

k=1,...,γi−1

=

(
∂U(x)

∂xki

)
i=1,...,Ñ

k=1,...,γi−1

.

Differentiating (9.4) we see that at the equilibrium x∗ we have ∂U(x∗)
∂xki

= 0 for i = 1, . . . , Ñ ,

k = 1, . . . , γi − 1 (see Lemma 10.28 in appendix), or equivalently,

F (x∗, u) = F (x∗p, x
∗
m, u) = 0.

By Definition 9.2, the (mixed) equilibrium x∗ is completely mixed if γ = κ, and is incompletely

mixed otherwise . Suppose γ < κ so that x∗ is incompletely mixed. Let J(x) := DxmF (xp, xm, u)

and let H̃(x) be as defined in (9.7). Note that by (9.12) we have J(x∗) = H̃(x∗). Since Γ is assumed

to be a non-degenerate game, J(x∗) is invertible. By the implicit function theorem, there exists

a function g : D(g) → Rγ such that F (xp, g(xp), u) = 0 for all xp in a neighborhood of x∗p, where

D(g) ⊂ Rκ−γ denotes the domain of g, x∗p ∈ D(g), and D(g) is open.

The graph of g is given by

Graph(g) := {x ∈ X : x = (xp, xm), xp ∈ D(g), xm = g(xp)}.

3The subscript in xm is suggestive of “mixed-strategy components” and the subscript in xp is suggestive of “pure-
strategy components”.

4We note that the functions F ki and F defined below are identical to those defined in (9.10) and (9.11). In order
to keep the chapter relatively self contained, we redefine these terms here.
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Note that Graph(g) is a smooth manifold with Hausdorff dimension (κ − γ) [152]. An intuitive

interpretation of Graph(g) is given in Remark 10.6.

If Γ is a non-degenerate potential game then, using the multilinarity of U , we see that γ ≥ 2

(see Lemma 10.25 in appendix). This implies that

Graph(g) has Hausdorff dimension at most (κ− 2).

Let Ω := ΩC , where ΩC is defined in (9.6), denote the face of X containing x∗. Define the

mapping P̃ : D(P̃) → Ω, with domain D(P̃) := {x = (xp, xm) ∈ X : xp ∈ D(g)}, as follows. If x∗

is completely mixed then let P̃(x) := x be the identity. Otherwise, let

P̃(x) := x∗ + (x− (xp, g(xp))) . (10.2)

Let P̃ki (x) be the (i, k)-th coordinate map of P̃, so that P̃ = (P̃ki ) i=1,...,N
k=1,...,Ki−1

. Following the

definitions, it is simple to verify that for x ∈ D(P̃) we have P̃ki (x) = 0 for all (i, k) with k ≥ γi,

and hence P̃ indeed maps into Ω.

Let X̃i := {x̃i ∈ Rγi−1 : x̃ki ≥ 0, k = 1, . . . , γi − 1,
∑γi−1

k=1 x̃
k
i ≤ 1}, i = 1, . . . , Ñ , and let

X̃ := X̃1 × · · · × X̃Ñ . Let P : D(P)→ X̃ with domain D(P) = D(P̃) ⊂ X be given by

P := (P̃ki )i=1,...,Ñ , k=1,...,γi−1.

Note that P contains the components of P̃ not constrained to zero. As we will see in the following

section, P may be interpreted as a projection into a lower dimensional game in which P(x∗) is a

completely mixed equilibrium.

10.3.2 Inequalities

Let Ũ : X̃ → R be given by

Ũ(x̃) := U(x∗p, x̃),

where x∗ = (x∗p, x
∗
m) is the mixed equilibrium fixed in the beginning of the section. Let Γ̃ be a

potential game with player set {1, . . . , Ñ}, mixed-strategy space X̃i, i = 1, . . . , Ñ , and potential

function Ũ . By construction, P(x∗) is a completely mixed equilibrium of Γ̃. Moreover, by the

definition of a non-degenerate equilibrium, the Hessian of Ũ is invertible at P(x∗).

We are interested in studying the projection P(x(t)) of a FP process into the lower dimensional
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game Γ̃.5 We wish to show that the following two inequalities hold:

(i) For x in a neighborhood of x∗

∣∣Ũ(P(x∗))− Ũ(P(x))
∣∣ ≤ c1d

2(P(x),P(x∗)), (10.3)

for some constant c1 > 0.

(ii) Suppose (x(t))t≥0 is a FP process. For x(t) residing in a neighborhood of x∗

d

dt
Ũ(P(x(t))) ≥ c2d(P(x(t)),P(x∗)), (10.4)

for some constant c2 > 0.

The first inequality follows from Taylor’s theorem and the fact that ∇Ũ(P(x∗)) = 0. The

following section is devoted to proving (10.4).6

10.3.3 Proving the Differential Inequality

We begin with Lemma 10.3 which shows—roughly speaking—that within the interior of the action

space, the FP vector field approximates the gradient field of the potential function.

The following definitions are useful in the lemma. ForB ⊆ X, let PXi(B) := {xi ∈ Xi : (xi, x−i) ∈
B for some x−i ∈ X−i} be the projection of B onto Xi. Given an xi ∈ Xi, let

d(xi, ∂Xi) := min{x1
i , . . . , x

Ki−1
i , 1−

Ki−1∑
k=1

xki }

denote the distance from xi to the boundary of Xi. Let

d(PXi(B), ∂Xi) := inf
xi∈PXi (B)

d(xi, ∂Xi)

denote the distance between the set PXi(B) and the boundary of Xi.

Since we will eventually be interested in studying a lower-dimensional game derived from Γ, in

the lemma we consider an alternative game Γ̂ of arbitrary size.

5In the lower dimensional game Γ̃, the dynamics of the projected process are not precisely fictitious play dynamics.
However, the behave nearly like fictitious play dynamics, which is what allows us to establish these inequalities.

6We note that when we write these inequalities, we mean they are satisfied in an integrated sense (e.g., as used
in (10.24)–(10.25)). In this section, we treat all of these as pointwise inequalities. A rigorous argument could be
constructed using the chain rule in Sobolev spaces (see, for example, [156]).
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Lemma 10.3. Let Γ̂ be a potential game with player set {1, . . . , N̂}, action sets Ŷi, i = 1, . . . , N̂ ,

with cardinality K̂i := |Ŷi|, and potential function Û . Let X̂ = X̂1 × · · · × X̂N̂ denote the mixed

strategy space.

Let B ⊂ X̂ and fix i ∈ {1, . . . , N̂}. Then for all x ∈ B there holds

zi · ∇xiÛ(x) ≥ c‖∇xiÛ(x)‖1, ∀ zi ∈ BRi(x−i)− xi

where the constant c is given by c = d(PXi(B), ∂X̂i).

Proof. Let x ∈ B. If ‖∇xiÛ(x)‖1 = 0, then ∇xiÛ(x) = 0, and the inequality is trivially satisfied.

Suppose from now on that ‖∇xiÛ(x)‖1 > 0.

Without loss of generality, assume that Yi is ordered so that

y1
i ∈ BRi(x−i). (10.5)

Differentiating (9.4) we find that7

∂Û(x)

∂xki
= Û(yk+1

i , x−i)− Û(y1
i , x−i). (10.6)

Together with (10.5), this implies that for k = 1, . . . , K̂i − 1 we have

yk+1
i ∈ BRi(x−i) ⇐⇒

∂Û(x)

∂xki
= 0. (10.7)

Using the multlinearity of Û we see that if ξi ∈ BRi(x−i) and ξki > 0 then yk+1
i ∈ BRi(x−i). But, by

(10.7) this implies that if ξi ∈ BRi(x−i) and ξki > 0 then ∂Û(x)

∂xki
= 0. Noting that any ξi ∈ BRi(x−i)

is necessarily coordinatewise nonnegative, this gives

(ξi − xi) · ∇xiÛ(x) =

K̂i−1∑
k=1

ξki
∂Û(x)

∂xki︸ ︷︷ ︸
=0

−
K̂i−1∑
k=1

xki
∂Û(x)

∂xki
, ξi ∈ BRi(x−i) (10.8)

Since we assume x ∈ B, we have xki ≥ d(PX̂i(B), ∂X̂i), for all k = 1, . . . , K̂i − 1. Since we assume

7Note that the domain of (expected) potential function Û may be trivially extended to an open neighborhood
around X̂ (see Section 9.2). Using this extension we see that the derivative is well defined for x lying on the boundary
of X̂.
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y1
i ∈ BRi(x−i), from (10.6) we get that ∂Û(x)

∂xki
≤ 0 for all k = 1, . . . , K̂i−1. Substituting into (10.8),

this gives

(ξi − xi) · ∇xiÛ(x) ≥ d(PX̂i(B), ∂X̂i)

K̂i−1∑
k=1

(
−∂Û(x)

∂xki

)
, ξi ∈ BRi(x−i).

But since ∂Û(x)

∂xki
≤ 0 for all k we have

∑K̂i−1
k=1

(
−∂Û(x)

∂xki

)
= ‖∇xiÛ(x)‖1, and hence

(ξi − xi) · ∇xiÛ(x) ≥ d(PX̂i(B), ∂X̂i)‖∇xiÛ(x)‖1, ξi ∈ BRi(x−i),

which is the desired result.

Remark 10.4. Since the space Xi in Lemma 10.3 is finite dimensional, given any norm ‖ ·‖, there

exists a constant c̃ > 0 such that

zi · ∇xiU(x) ≥ c‖∇xiU(x)‖, ∀ zi ∈ BRi(x−i)− xi

with c = c̃d(PXi(B), ∂Xi).

For each x = (xp, xm) ∈ X near to x∗, the following lemma allows us to define an additional

lower dimensional game Γxp associated with xp in which the best-response set is closely related to

the best response set for the original game Γ. The lemma is a straightforward consequence of the

definition of the best response correspondence and the continuity of ∇U .

Lemma 10.5. For x in a neighborhood of x∗, the best response set satisfies

BRi(x−i) ⊆ BRi(x
∗
−i), ∀ i = 1, . . . , Ñ .

Given any x = (xp, xm) ∈ X we define Ũxp : X̃ → R and
∼
BRxp,i: X̃−i ⇒ X̃i as follows. For

x̃ ∈ X̃ let

Ũxp(x̃) := U(xp, x̃),

and for x̃−i ∈ X̃−i let
∼
BRxp,i (x̃−i) := arg max

x̃i∈X̃i
Ũxp(x̃i, x̃−i)

Let Γxp be the potential game with player set {1, . . . , Ñ}, mixed strategy space X̃ and potential
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function Ũxp . Note that since U is continuous and X̃ is compact, Ũxp converges uniformly to

Ũx∗p =: Ũ as xp → x∗p. In this sense the game Γxp can be seen as converging to Γ̃ as xp → x∗p.

Remark 10.6. The function g defined in Section 10.3.1 admits the following interpretation. Sup-

pose we fix some xp = (xki )i=1,...,N, k=γi,...,Ki−1. Then g(xp) is a completely mixed Nash equilibrium

of Γxp. Moreover, if we let xp → x∗p, then the corresponding equilibrium of the reduced game Γxp

converges to x∗, i.e., (xp, g(xp))→ (x∗p, g(x∗p)) = x∗, precisely along Graph(g).

Remark 10.7. Suppose x∗ is a first-order non-degenerate equilibrium. Using the multilinearity

of U we see that for any x ∈ X we have carri(xi) ⊆ BRi(x−i). By Remark 9.4, at x∗ we have

carri(x
∗
i ) = BRi(x

∗
−i). Due to the ordering we assumed on Yi, this implies that yki ∈ BRi(x

∗
−i) ⇐⇒

1 ≤ k ≤ γi. Moving to the X domain, this means that if x̂i ∈ BRi(x
∗
−i), then x̂ki = 0 for all

k = γi, . . . ,Ki − 1. By Lemma 10.5, this implies that for all x in a neighborhood of x∗ and for

x̂i ∈ BRi(x−i) we have (x̂ki )
Ki−1
k=γi

= 0.

The following lemma extends the result of Lemma 10.3 so it applies in a useful way to the

potential function Ũ under the projection P.

Lemma 10.8. There exists a constant c > 0 such that for all x = (xp, xm) in a neighborhood of x∗

and all η ∈ Rγi−1 with ‖η‖ sufficiently small we have

(zi + η) · ∇xiŨ(P(x)) ≥ c‖∇xiŨ(P(x))‖,

for all zi ∈
∼
BRi,xp ([xm]−i) − [xm]i, where [xm]i := (xki )k=1,...,γi−1 refers to the player-i component

of xm and [xm]−i contains the components of xm corresponding to the remaining players.

Proof. By construction, the projection P(x∗) maps x∗ into the interior of X̃. Choose ε > 0 such

that the ball B(P(x∗), ε) ⊂ X̃ is separated by a positive distance from the boundary of X̃. Applying

Lemma 10.3 (and Remark 10.4) to the game Γxp we see that there exists a constant c > 0 such

that for any x = (xp, xm) ∈ X with xm ∈ B(P(x∗), ε) there holds

zi · ∇xiŨxp(xm) ≥ 4c‖∇xiŨxp(xm)‖ (10.9)

for all zi ∈
∼
BRxp,i ([xm]−i)− [xm]i. Note that the constant in Lemma 10.3 is only dependent on the

distance from the set B (in this case, B(P(x∗), ε)) to the boundary of the strategy space (in this

case, X̃), and is independent of the particular potential function under consideration—this permits

the choice of c > 0 in (10.9) that holds uniformly for all xp.
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By the continuity of U and P we have

∥∥∥∥ ∇Ũxp(P(x))

‖∇Ũxp(P(x))‖
− ∇Ũ(P(x))

‖∇Ũ(P(x))‖

∥∥∥∥ < 2c√
2

(10.10)

and P(x) ∈ B(x∗, ε), for all x in a sufficiently small neighborhood of x∗ and x 6∈ Graph(g). Note that

diam X̃i := maxxi,x′i∈X̃i
‖xi − x′i‖ =

√
2, and hence, ‖zi‖ ≤

√
2 for any zi ∈

∼
BRxp,i ([xm]−i)− [xm]i,

xm ∈ X̃. Thus, (10.9) and (10.10) give

zi · ∇Ũ(P(x)) ≥ 2c‖∇Ũ(P(x))‖,

for all zi ∈
∼
BRxp,i ([xm]−i) − [xm]i and all x in a neighborhood of x∗, x 6∈ Graph(g). As long

as ‖η‖ ≤ c, the desired result holds for x in a neighborhood of x∗, x 6∈ Graph(g). But x ∈
Graph(g) =⇒ P(x) = P(x∗) =⇒ ∇xiŨ(P(x)) = 0, in which case the inequality is trivially

satisfied.

Finally, the following lemma shows that the differential inequality (10.4) holds.

Lemma 10.9. Let Γ be a non-degenerate potential game with mixed equilibrium x∗, and let (x(t))t≥0

be a FP process. Then the inequality (10.4) holds for x(t) in a neighborhood of x∗.

Proof. Let

P(x) :=

(
∂P̃ki
∂x`j

)
i=1,...,Ñ ,k=1,...,γi−1
j=1,...,N, `=γi,...,Ki−1

where the partial derivatives are evaluated at x. The Jacobian of P̃ evaluated at x is given by

(
∂P̃ki
∂x`j

)
i,j=1,...,N,

k,`=1,...,Ki−1

=

I P(x)

0 0

 .

Using the chain rule we may express the time derivative of the potential along the path P̃(x(t)) as

d

dt
U(P̃(x(t))) = ∇U(P̃(x(t)))

I P(x)

0 0

 ẋ = ∇xmU(P̃(x(t)))(I P(x))ẋ.

For i = 1, . . . , Ñ , k = 1, . . . , γi − 1 let ηki (t) :=
∑N

j=1

∑Ki−1
`=γj

∂P̃ki
∂x`j

ẋ`i , let ηi(t) := (ηki (t))γi−1
k=1 , and let
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η(t) = (ηi(t))
Ñ
i=1. Multiplying out the right two terms above we get

d

dt
U(P̃(x(t))) = ∇xmU(P̃(x(t))) (ẋm + η(t)) (10.11)

By Lemma 10.5 and Remark 10.7, if we restrict x(t) to a sufficiently small neighborhood of x∗ then

for any zi = (z′i, z
′′
i ) ∈ BRi(x−i(t)), z

′
i = (zki )γi−1

k=1 , z′′i = (zki )Ki−1
k=γi

, we have z′i ∈
∼
BRxp,i ([xm]−i) and

z′′i = 0. We note two important consequences of this:

(i) If we restrict x(t) to a sufficiently small neighborhood of x∗ and note that

U(P̃(x(t))) = Ũ(P(x(t)), then by (10.11) we have

d

dt
Ũ(P(x(t))) = ∇Ũ(P(x(t))) ·


z1(t) + η1(t)

...

zÑ (t) + ηÑ (t)

 (10.12)

=
Ñ∑
i=1

∇xiŨ(P(x(t))) · (zi(t) + ηi(t)),

where zi(t) ∈
∼
BRxp(t),i ([xm(t)]−i)− [xm(t)]i.

(ii) We may force maxi=1,...,Ñ ‖ηi‖ to be arbitrarily small by restricting x(t) to a neighborhood of

x∗.

Consequence (i) follows readily by using the definition of FP (10.1). To show consequence

(ii), note that by (10.1) we have ẋki = zki − xki for all i = 1, . . . , N , k = 1, . . . ,Ki, for some

zi ∈ BRi(x−i). But, for x in a neighborhood of x∗ and k ≥ γi, we have shown above that zki = 0,

and hence ẋki = −xki .8 Due the ordering we assumed for Yi, we have [x∗]ki = 0 for any (i, k) such

that k ≥ γi. Hence, xki → 0 as x→ x∗, for any (i, k) such that k ≥ γi.

Furthermore, there exists a c > 0 such that |∂P̃
k
i (x)

∂x`j
| < c, i = 1, . . . , Ñ , k = 1, . . . , γi − 1,

j = 1, . . . , N , ` ≥ γj uniformly for x in a neighborhood of x∗ (see Lemma 10.29 in appendix). By

the definition of ηi, this implies that maxi=1,...,Ñ ‖ηi‖ may be made arbitrarily small by restricting

x(t) to a sufficiently small neighborhood of x∗.

Now, let x(t) be restricted to a sufficiently small neighborhood of x∗ so that ‖ηi(t)‖ is small

enough to apply Lemma 10.8 for each i. Applying Lemma 10.8 to (10.12) we get d
dt Ũ(P(x(t))) ≥∑Ñ

i=1 c‖∇xiŨ(P(x(t)))‖ for x(t) in a neighborhood of x∗. By the equivalence of finite-dimensional

norms, there exists a constant c1 such that d
dt Ũ(P(x(t))) ≥ c1‖∇Ũ(P(x(t)))‖ for x(t) in a neigh-

8We note that this particular step depends crucially on the assumption of first-order non-degeneracy (see Remark
10.7).
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borhood of x∗.

Since Γ is assumed to be (second-order) non-degenerate, P(x∗) is a non-degenerate critical

point of Ũ . By Lemma 10.30 (see appendix) there exists a constant c2 such that c1‖∇Ũ(x̃)‖ ≥
c2d(x̃,P(x∗)) for all x̃ ∈ X̃ in a neighborhood of P(x∗). Since P is continuous we have d

dt Ũ(P(x(t))) ≥
c2d(P(x(t)),P(x∗)), for x(t) in a neighborhood of x∗.

10.4 Fictitious Play in Potential Games: Proof of Main Result

For each mixed equilibrium x∗, let the set Λ(x∗) ⊂ X be defined as

Λ(x∗) :=


{x∗} if x∗ is completely mixed,

Graph(g) otherwise,

where g is defined with respect to x∗ as in Section 10.3.1.

In this section we will prove Theorem 10.1 in two steps. First, we will show that for each

mixed equilibrium x∗, the set Λ(x∗) can only be reached in finite time from an Lκ-null set of initial

conditions (see Proposition 10.10), where κ, defined in (9.3), is the dimension of X. Second, we

will show that if a FP process converges to the set Λ(x∗), then it must do so in finite time (see

Proposition 10.17). Since x∗ ∈ Λ(x∗), Propositions 10.10 and 10.17 together show that that for any

mixed equilibrium x∗, the set of initial conditions from which FP converges to x∗ has Lκ-measure

zero.

By Theorem 9.1 we see that, in a non-degenerate potential game, the set of NE is finite. Hence,

Propositions 10.10 and 10.17 imply that FP can only converge to set of mixed strategy equilibria

from a Lκ-null set of initial conditions. Since a FP process must converge to the set of NE in a

potential game ( [28], Theorem 5.5), this implies that Theorem 10.1 holds.

10.4.1 Finite-Time Convergence

The goal of this subsection is to prove the following proposition.

Proposition 10.10. Let Γ be a non-degenerate game and let x∗ be a mixed-strategy NE of Γ. The

set Λ(x∗) can only be reached by a FP process in finite time from a set of initial conditions with
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Lκ-measure zero. That is,

Lκ({x0 ∈ X : x(0) = x0, x(t) is a FP process,

x(t) ∈ Λ(x∗) for some t ∈ [0,∞)}) = 0.

Before proving the proposition we present some definitions and preliminary results. Let

Ii,k,` := {(xi, x−i) ∈ X : U(yki , x−i) = U(y`i , x−i)}, (10.13)

for i = 1, . . . , N , k, ` = 1, . . . ,Ki, ` 6= k, be the set in which player i is indifferent between his k-th

and `-th actions.

If the game Γ is non-degenerate, then each Ii,k,` is the union of smooth surfaces with Hausdorff

dimension at most (k − 1) (see Lemma 10.34 in appendix). In particular, for each x ∈ Ii,k,` there

exists a vector ν ∈ Rκ that is normal to Ii,k,` at x. We refer to the set Ii,k,` as an indifference

surface of player i.

Let Q̃ be defined as the set of points where two or more indifference surfaces intersect and their

normal vectors do not coincide. Furthermore, if an indifference surface I has a component Î ⊆ I
with Hausdorff dimension less than κ− 1, then we put any points where Î intersects with another

decision surface into Q̃. Since each indifference surface is smooth with dimension at most κ− 1, Q̃

has Hausdorff dimension at most κ− 2. Let

Q := Q̃ ∪ Λ(x∗).

As shown in Section 10.3.1, if x∗ is non-degenerate, then the set Graph(g) (and hence Λ(x∗)) has

Hausdorff dimension at most κ− 2. Thus Q has Hausdorff dimension at most κ− 2.9

The FP vector field (see (10.1)) is given by FP : X ⇒ X, where

FP(x) := BR(x)− x. (10.14)

9Proposition 10.10 can easily be generalized to say that any set A ⊂ X such that clA has Hausdorff dimension at
most κ− 2, can only be reached in finite time from a set of Lκ-measure zero by substituting A for Λ(x∗) throughout
the section.
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Let

Z :=
{
x ∈ X\Q : x ∈ Ii,k,` for some i, k, ` with normal ν, (10.15)

and ν · z = 0 for some z ∈ FP(x)
}
.

Since each Ii,k,` has Hausdorff dimension κ− 1, Z has Hausdorff dimension at most κ− 1. We

define the relative boundary of Z, denoted here as ∂Z as follows. If Z has Hausdorff dimension κ−2

or less, then let ∂Z := Z. If Z has Hausdorff dimension κ−1 then it may be expressed as the union of

a finite number of smooth (κ−1)-dimensional surfaces, denoted here as (Zs)Nzs=1, 1 ≤ Nz <∞, and a

component with Hausdorff dimension at most κ−2, denoted here as Z ′. That is, Z = (
⋃Nz
s=1Zs)∪Z ′.

Each Zs, s = 1, . . . , Nz is contained in some indifference surface, which we denote here as Is. Define

the relative interior of Zs (with respect to Is) as riZs := {x ∈ Zs : ∃ε > 0 s.t. B(x, ε) ∩ Is ⊂ Zs},
and define the relative boundary of Zs as ∂Zs := clZs\riZs. We then define the relative boundary

of Z as

∂Z :=

(
Nz⋃
s=1

∂Zs

)
∪ Z ′.

Note that ∂Z is a set with Hausdorff dimension at most κ− 2. By Lemma 10.37 in the appendix,

the FP vector field is oriented tangentially along Z, in the sense that for any x ∈ Z there holds

ν · y = 0 for any vector ν normal to Z at x, and any y ∈ FP(x). This implies that FP paths can

only enter or exit Z through ∂Z.

Let

X∗ := X\ (Q ∪ Z)

The following technical lemma will be used to show that FP is well posed within X∗ (see

Lemma 10.12). It is a consequence of the fact that the FP vector field can only have jumps that

are tangential to indifference surfaces.

Lemma 10.11. Suppose x ∈ X∗ is in some indifference surface Ii,k,`. Then there exists a constant

c > 0 and a vector ν that is normal to Ii,k,` at x, such that

ν · z ≥ c, ∀ z ∈ FP(x̃)

for all x̃ ∈ X∗ in a neighborhood of x.

Proof. By the definition of Ii,k,`, if x ∈ Ii,k,` then for all x̂ ∈ X such that x̂−i = x−i we have

x̂ ∈ Ii,k,`. This implies that for any vector ν that is normal to Ii,k,`, the (i,m)-th component of ν
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must be zero for all m = 1, . . . ,Ki − 1.

Suppose that x ∈ X∗∩Ii,k,`. Since x 6∈ Q, there is a neighborhood of x in which no indifference

surface intersects with Ii,k,`. This implies that for x̃ within a neighborhood of x, BR−i(x̃) = a−i

for some a−i that is a vertex of X−i.

Together, these two facts imply that for all x̃ in a neighborhood of x, we have ν · z′ = ν · z′′ for

all z′ ∈ BR(x), z′′ ∈ BR(x̃), for any vector ν that is normal to Ii,k,` at x. Since x /∈ Z, recalling

the form of FP (10.14), this means we can choose a vector ν that is normal to Ii,k,` at x and a

constant c > 0 such that ν · z > c for z ∈ FP(x̃) for all x̃ in a neighborhood of x.

The following lemma gives a well-posedness result for FP inside X∗.

Lemma 10.12. For any x0 ∈ X∗, there exists a T ∈ (0,∞] and a unique absolutely-continuous

function x : [0, T ] → X∗, with x(0) = x0, solving the differential inclusion d
dtx(t) ∈ FP(x(t)) for

almost all t.

Proof. If x ∈ X∗ is not on any indifference surface, then FP is single valued in a neighborhood of

x, and (10.1) is (locally) a Lipschitz differential equation with unique local solution.

Suppose that x0 ∈ X∗ is on an indifference surface I. By Lemma 10.11 there exists a constant

c > 0 such that for all x̃ in a neighborhood of x we have FP(x̃) · ν > c, where ν is a normal vector

to I at x. This implies that for δ > 0 sufficiently small we have {t ∈ [−δ, δ] : x(t) ∈ I} = {0}.
Furthermore, since x 6∈ Q, for δ > 0 sufficiently small we have

{t ∈ [−δ, δ] : x(t) ∈ Ii,k,`, for any i, k, `} = {0}. (10.16)

Now, let x0 ∈ X∗ and let (x(t))t≥0 and (z(t))t≥0 be two solutions to (10.1) with x(0) = z(0) =

x0. If (x(t))t≥0 never crosses an indifference surface, then the flow is always classical and the two

solutions always coincide; i.e., x(t) = z(t), t ≥ 0. Suppose that (x(t))t≥0 does cross an indifference

surface and let t∗ ≥ 0 be first time when such a crossing occurs. For t < t∗, the flow is classical

and we have x(t) = z(t) for t ≤ t∗.
By (10.16) we see that for δ > 0 sufficiently small, x(t) is not in any indifference surface for

t ∈ [t∗− δ, t∗+ δ]\{t∗}. Suppose that at time t = t∗+ δ we have x(t) = x̂ 6= ẑ = z(t). Let (x̃(τ))τ≥0

and (z̃(τ))τ≥0 be solutions to the time-reversed FP flow with x̃(0) = x̂ and z̃(0) = ẑ.

Since x̂ 6= ẑ, and since the time-reversed flow is classical for 0 ≤ τ < δ (in particular, of the

form ẋ = a+ x for some constant a), we get x̃(δ) 6= z̃(δ). But this is impossible because the paths

(x(t))t≥0 and (z(t))t≥0 are absolutely continuous and we already established that x̃(δ) = x(t∗) =

z(t∗) = z̃(δ).

200



As a matter of notation, we say that λ is a signed measure on Rκ if there exists a Radon measure

µ on Rκ and a µ-measurable function σ : Rκ → {−1, 1} such that

λ(K) =

∫
K
σdµ (10.17)

for all compact sets K ⊂ Rκ. When convenient, we write σµ to denote the signed measure λ in

(10.17).

Letting elements x ∈ X be written componentwise as (xs)
κ
s=1, we recall [152] that a function

u ∈ L1(Ω) (with Ω ⊆ Rκ, Ω open) is a function of bounded variation (i.e., a BV function) if there

exist finite signed Radon measures Dsu such that the integration by parts formula

∫
Ω
u
∂φ

∂xs
dx = −

∫
Ω
φdDsu (10.18)

holds for all φ ∈ C∞c (Ω). The measure Dsu is called the weak, or distributional, partial derivative

of u with respect to xs. We let Du := (Dsu)s=1,...,κ.

The measure Du can be uniquely decomposed into three parts [157]

Du = ∇uLκ + Cu+ Ju. (10.19)

Here Ju is supported on a set Ju with Hausdorff dimension κ− 1, and Cu is singular with respect

to Lκ and satisfies Cu(E) = 0 for all sets E with finite Hκ−1 measure.

The L1 function ∇u is analogous to a classical derivative, and in particular if u is differentiable

on an open set V then Du = ∇uLκ on that set, with ∇u matching the classical derivative. Further-

more, if u jumps across a smooth (κ− 1)-dimensional hypersurface, then for x on the hypersurface

we have

Du = Ju = (u+ − u−)νdHκ−1, (10.20)

where u+ is the value of u on one side of the surface, u− is the value on the other, and ν is the

normal vector pointing from u− to u+ [157].

A vector-valued function f ∈ L1(Ω : Rκ) is a function of bounded variation if each of its

components is also of bounded variation. Letting f be written componentwise as f = (fs)κs=1, we

write Df := (Djf
s)j,s=i,...,κ.
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Next we define the divergence of a function f ∈ L1(Ω : Rκ), denoted by D · f , as the measure

D · f :=

κ∑
s=1

Dsf
s.

Given a constant c ∈ R, we say that D · f = c if D · f = dD·f
dLκ L

κ, and dD·f
dLκ = c, where dD·f

dLκ

denotes the Radon-Nikodym derivative. The following lemma characterizes the divergence of the

FP vector field. As a matter of notation, if a function f : X → X satisfies f(x) ∈ FP(x) for all

x ∈ X then we say f ∈ FP.

Lemma 10.13. For every f ∈ FP, the vector field f satisfies D · f = −1.

The proof of this lemma follows from the fact that FP is piecewise linear, and any jumps in FP

are tangential to indifference surfaces.

Proof. Suppose f ∈ FP, and let f be written componentwise as f = (fki )i=1,...,N, k=1,...,Ki−1. Let

i ∈ {1, . . . , N} and k ∈ {1, . . . ,Ki − 1}. Let Dj,`f
k
i denote the weak partial derivative of fki with

respect to x`j , j = 1, . . . , N , ` = 1, . . . ,Kj − 1, and let Dfki =
(
Dj,`f

k
i

)
j=1,...,N, `=1,...,Kj−1

. Let

Jfki =
(
Jj,`f

k
i

)
j=1,...,N, `=1,...,Kj−1

denote the jump component associated with Dfki (see (10.19)).

The vector field f is piecewise linear. Breaking up f over regions in which it is linear we see that
dD·f
dLκ = −1. It remains to show that D · f has no singular component; i.e., under the decomposition

(10.19), the measure D · f has zero Cantor component and zero jump component.

Since fki is piecewise linear and only jumps on the set
⋃Ki
`=1, ` 6=k Ii,k,` which has finite κ − 1

measure, fki has no Cantor part; that is, Cfki = (Cj,`f
k
i )j=1,...,N, `=1,...,γj = 0 (see (10.19)). Hence,

the singular component of D · f , which we denote here as S, has no Cantor part and is given by

S :=
∑N

i=1

∑Ki−1
k=1 Ji,kf

k
i .

Suppose that x ∈ Ii,k,` for some ` (recall ` 6= k). Suppose ν is a vector that is normal to Ii,k,` at

x. By the definition of Ii,k,`, if x ∈ Ii,k,` then for all x̂ ∈ X such that x̂−i = x−i we have x̂ ∈ Ii,k,`.
This implies that the (i, k)-th component of ν must be zero. Since Jfki = ((fki )+ − (fki )−)νHκ−1

for x on
⋃Ki
`=1,`6=k Ii,k,` (see (10.20)), taking the (i, k)-th component we get Ji,kf

k
i Hκ−1 = 0.

Since this is true for every pair (i, k) we see that S = 0, and hence D · f = −1 in the interior

of X. An identical argument holds on the boundary of X, and hence, S = 0 and D · f = −1.

The following lemma shows that for sets E ⊆ X∗ with relatively smooth boundary, the surface

integral of FP over the boundary of E is well defined.
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Lemma 10.14. Let E be a subset of X∗ with piecewise smooth boundary. For any functions

f, g ∈ FP we have

∫
∂E
f · νEdHκ−1 =

∫
∂E
g · νEdHκ−1 =:

∫
∂E

FP · νEdHκ−1,

where νE denotes the outer normal vector of E.

Proof. Suppose x ∈ X∗ is not on any indifference surface Ii,k,`. Then FP(x) maps to a singleton

and f(x) = g(x).

Suppose x ∈ X∗ is on an indifference surface Ii,k,`. Let νI denote a normal vector to Ii,k,`.
Since x ∈ X∗, the vector field FP can only jump tangentially to νI . Using similar reasoning to the

proof of Lemma 10.11, this implies that for any a, b ∈ FP(x) we have a · νI(x) = b · νI(x). Hence

FP(x) · ν := a · ν, a ∈ FP(x) is well defined for such x.

In particular, note that if x ∈ X∗ is on some indifference surface I and νI = νE at x, then

f(x) · νE = FP(x) · νI for any function f ∈ FP.

Let Î be the union of all indifference surfaces. Since ∂E is piecewise continuous and the

indifference surfaces are smooth, the set S := {x ∈ X∗ : x ∈ Î ∩ ∂E, νÎ(x) 6= ν∂E(x)} has

Hκ−1-measure zero, where νÎ(x) and ν∂E(x) denote the normal vectors to Î and ∂E at x.

We have shown that f
∣∣
(∂E)\S = g

∣∣
(∂E)\S for all f, g ∈ FP, and Hκ−1(S) = 0, and hence,

∫
∂E
f · νEdHκ−1 =

∫
∂E
g · νEdHκ−1, for all f, g ∈ FP.

The following lemma shows that, within X∗, the FP vector field compresses mass at a rate of

−1. In particular, this implies that, within X∗, FP cannot map a set of positive measure to a set

of zero measure in finite time.10

Lemma 10.15. Let E be a compact subset of X∗ with piecewise smooth boundary and finite perime-

ter. Then ∫
∂E

FP · νE dHκ−1 = −Lκ(E),

where νE denotes the outer normal vector of E.

Proof. We first note that by Lemma 10.13 for every f ∈ FP we have
∫
E dD · f = −Lκ(E).

10We note that this result can also be derived as a consequence of Lemma 3.1 in [158]. For the sake of completeness
and to simplify the presentation, we give a proof of the result here using the notation and tools introduced in the
chapter.
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Let (fn)n≥1, fn : X∗ → X∗ be a sequence of uniformly bounded C1 functions such that fn → f

a.e. for some function f : X∗ → X∗ satisfying f(x) ∈ FP(x) for all x ∈ X∗. (Such a sequence can

be explicitly constructed by smoothing the FP vector field, e.g., [99].)

Let f and each fn be written componentwise as f = (f s)κs=1 and fn = (fsn)κs=1. Let D · fn =∑κ
s=1Dsf

s
n be the divergence measure associated with fn and D · f =

∑κ
s=1Dsf

s the divergence

measure associated with f . Since f and fn are BV functions, by (10.18) we have

−
∫
X∗

f sn
∂φ

∂xs
dx =

∫
X∗

φDsf
s
n, and −

∫
X∗

fs
∂φ

∂xs
dx =

∫
X∗

φDsf
s

for n ∈ N, s = 1, . . . , κ, for any φ ∈ C1
c (X∗).

For a function φ ∈ C1
c (X∗), there exists a constant c > 0 such that |∂φ(x)

∂xs
| < c for all x ∈ X∗.

Since (fn)n≥1 is uniformly bounded, |fn(x)∂φ(x)
∂xs
| is bounded by some constant c > 0 for all x ∈ X∗,

and since X∗ is a bounded set, the constant function cχX∗ (which dominates |fn ∂φ
∂xs
| on X∗) is

integrable. Noting that fn
∂φ
∂xs
→ f ∂φ

∂xs
pointwise, the dominated convergence theorem gives

lim
n→∞

∫
X∗

φDsf
s
n = − lim

n→∞

∫
X∗

fsn
∂φ

∂xs
dx = −

∫
X∗

fs
∂φ

∂xs
dx =

∫
X∗

φDsf
s.

for n ∈ N, s = 1, . . . , κ. This implies that the sequence of measures (D · fn)n≥1 converges weakly

to D · f in the sense that for any φ ∈ C1
c (X∗) there holds limn→∞

∫
X∗ φdD · fn =

∫
X∗ φdD · f .

Letting φ approximate the characteristic function χE , and noting that by Lemma 10.13 we have

(D · f)(∂E) = 0, we see that limn→∞
∫
E dD · fn =

∫
E dD · f . Hence,

−Lκ(E) =

∫
E
dD · f

= lim
n→∞

∫
E
dD · fn

= lim
n→∞

∫
∂E
fn · νEdHκ−1

=

∫
∂E
f · νEdHκ−1

=

∫
∂E

FP · νEdHκ−1,

where the third line follows from the Gauss-Green theorem [152], the fourth line follows from the

dominated convergence theorem (by assumption, E has finite perimeter and a piecewise smooth

boundary, and f is bounded), and the fifth line follows from Lemma 10.14.
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We now prove Proposition 10.10.

Proof. We begin by noting that, by Lemma 10.36 in the appendix, clQ, has Hausdorff dimension

at most κ− 2.

Let ε > 0. By the definition of the Hausdorff measure ([152], Chapter 2), there exists a countable

collection of balls (Bj
ε )j≥1, each with diameter less than ε, such that clQ ∪ ∂Z ⊂

⋃
j≥1B

j
ε and∑∞

j=1 c
(

diamBjε
2

)κ−2
< 2Hκ−2(clQ ∪ ∂Z), where c := πκ−2

Γ(κ−2
2

)+1
, and where Γ in this context

denotes the standard Γ function.

Since ∂Z is closed, clQ ∪ ∂Z is closed, and hence there exists a finite subcover (Bj
ε )
Nε
j=1 such

that clQ ∪ ∂Z ⊂
⋃Nε
j=1B

j
ε . Let Bε :=

⋃Nε
j=1B

j
ε , and let

X∗ε := X\ (Bε ∪ Z) .

Note that, by Lemma 10.35 in the appendix we have

lim
ε→0
Hκ−1(∂Bε) = 0. (10.21)

Fix some time T > 0, and for 0 < t ≤ T , let

Eε(T − t) := {x0 ∈ X∗ε : x(0) = x0, x(t) is a FP process,

x(s) ∈ Bε, for some 0 < s ≤ t}

and note that the boundary ∂Eε(T − t) is piecewise smooth. The set Eε(T − t) may be thought of

as the set obtained by tracing paths backwards out of Bε from time T back to time T − t. Let

Vε(t) := Lκ(Eε(T − t)).

Letting Rε denote the flux through ∂Bε into Eε(T − t) and again letting ν denote the outer
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normal to ∂Eε(T − t), for t > 0 we have

d

dt
Vε(t) =

∫
∂Eε(T−t)\∂Bε

−FP · ν dx (10.22)

≤ Rε +

∫
∂Eε(T−t)

−FP · ν dx

≤ Rε + Lκ(Eε(T − t))

= Rε + Vε(t),

where the third line follows by Lemma 10.15.

Noting that ‖FP‖∞ <∞, the flux through ∂Bε is bounded by

Rε ≤ Hκ−1(∂Bε)‖FP‖∞ =: R̄ε. (10.23)

By (10.21) we have Hκ−1(∂Bε)→ 0 as ε→ 0, and hence R̄ε → 0 as ε→ 0.

Using the integral form of Gronwall’s inequality, (10.22) and (10.23) give Vε(t) ≤ tR̄εet, 0 < t ≤
T . In particular, this means that

Lκ(Eε(0)) ≤ R̄εeT ,

where the right hand side goes to zero as ε→ 0. Sending ε→ 0, we see that the set W (T ) := {x0 ∈
X∗ : x(0) = x0, x(t) is a FP process, x(s) ∈ Q ∪ ∂Z for some 0 < s ≤ T} has Lκ-measure zero.

Since paths may only enter Z through the boundary ∂Z, this means that the set of points in

X from which Z can be reached within time T is contained in W (T ) ∪ Z. Furthermore, the set of

points from which Q ∪ Z can be reached within time T is contained in W (T ) ∪ Z ∪Q, which is a

Lκ-measure zero set. Since this is true for every T > 0, we get the desired result.

Remark 10.16. We note that the proof given above implies that Q∪Z can only be reached in finite

time from a Lκ-measure zero subset of X∗. Since X∗ := X\(Q ∪ Z), this, combined with Lemma

10.12, implies that for almost every initial condition x0 ∈ X∗, there exists a unique FP process x

with x(0) = x0. Since Lκ(X\X∗) = 0, this implies that for almost every x0 ∈ X, there exists a

unique FP process x with x(0) = x0.

10.4.2 Infinite-Time Convergence

The following proposition shows that it is not possible to converge to Λ(x∗) in infinite time.
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Proposition 10.17. Let Γ be a non-degenerate potential game and let x∗ be a mixed-strategy

equilibrium. Suppose (x(t))t≥0 is a FP process and x(t) → x∗. Then x(t) converges to Λ(x∗) in

finite time.

Proof. From the definitions of Λ(x∗) and P we see that

x(t)→ Λ(x∗) ⇐⇒ P(x(t))→ P(x∗).

If we integrate (10.4), use the fact that P(x(t)) → P(x∗) and set e(t) := d(P(x(t)),P(x∗)), then

we find that

Ũ(P(x∗))− Ũ(P(x(t))) ≥ c2

∫ ∞
t

e(s)ds. (10.24)

Using (10.3) above we get

ce2(t) ≥
∫ ∞
t

e(s) ds, (10.25)

with c = c1/c2. Now, using Markov’s inequality we have that

L1 ({s : e(s) > e(t)/2, s > t}) ≤ 2

e(t)

∫ ∞
t

e(s) ds ≤ 2ce(t).

Let t be fixed. Recursively applying the above inequality we find that

L1 ({s : e(s) > 0, s > t}) ≤ 4ce(t).

Thus if P(x(t)) converges to P(x∗), it must reach it for the first time in finite time.

By construction P(x) = P(x∗) if and only if x ∈ Λ(x∗). Hence, if x(t) converges to Λ(x∗) it

must reach it for the first time in finite time.

By (10.4) we have d
dt Ũ(P(x(t))) ≥ 0 in a neighborhood of P(x∗). Since Γ is non-degenerate,

the Hessian of Ũ is invertible at P(x∗), and for all x̃ ∈ X̃ in a punctured ball around P(x∗) we have

Ũ(x̃) 6= Ũ(P(x∗)). Thus, if x(t) → x∗ and P(x(T )) = P(x∗) (i.e., x(T ) ∈ Λ(x∗)) for some T ≥ 0,

then we must have P(x(t)) = P(x∗) (i.e., x(t) ∈ Λ(x∗)) for all t ≥ T . Contrariwise, we would have

Ũ(P(x∗)) = Ũ(P(x(T ))) < lims→∞ Ũ(P(x(s))) = Ũ(P(x∗)), which is a contradiction.

10.5 Rate of Convergence of FP in Potential Games

In this section we characterize the rate of convergence of FP in potential games.

The following result shows that the rate of convergence of FP in non-degenerate potential games
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is exponential for almost all initial conditions. Since almost all potential games are non-degenerate,

this shows that Conjecture 25 of [27] holds for almost all initial conditions in almost all (exact)

potential games (see Remark 10.19 below).

Theorem 10.18. Let Γ be a non-degenerate potential game. For almost every initial condition x0,

there exist a constant c = c(Γ, x0) such that if x is a FP process associated with Γ and x(0) = x0,

then

d(x(t), NE) ≤ ce−t. (10.26)

Proof. Note the following:

(i) By Remark 10.16, for almost every initial condition x0 ∈ X, there is a unique FP process with

x(0) = x0.

(ii) By Theorem 10.1, for almost every initial condition, FP converges to a pure-strategy NE.

This implies that there exists a set Ω ⊂ X satisfying the following properties: (a) Lκ(X\Ω) = 0,

(b) for every FP process x with initial condition x0 ∈ Ω, x is the unique FP process satisfying

x(0) = x0, and x converges to a pure-strategy NE.

Let x0 ∈ Ω, let x be a FP process with x(0) = x0, and let x∗ be the pure-strategy NE to which

x converges. Without loss of generality, assume that the pure-strategy set Y is reordered so that

x∗ = 0 (i.e., T 1
i (x∗i ) = 1 for all i = 1, . . . , N , where T ki is defined in Section 9.2).

Since Γ is (first-order) non-degenerate, there exists a neighborhood of x∗ through which no

indifference surface passes. Since x∗ is a NE, this implies that for all x in a neighborhood of x∗

we have BR(x) = x∗. Since x(t) → x∗, this, along with (10.1), implies that there exists a time

τ = τ(Γ, x0) > 0 such that for all t ≥ τ , we have ẋ(t) = −x(t). Hence, for t ≥ τ we have

‖x(t)‖ = ‖x(τ)‖eτ−t. Letting c := supt∈[0,τ ] ‖x(t)‖eτ we get ‖x(t)‖ ≤ ce−t for all t ≥ 0.

Remark 10.19. Conjecture 25 of [27] posited that within the class of weighted potential games,

the rate of convergence of any FP process x is exponential with the constant c in (10.26) depending

on the game Γ and the particular FP process x; i.e., c = c(Γ,x). In Theorem 10.18 we showed this

is true in almost all exact potential games and for almost all initial conditions, and furthermore,

we showed that, for almost all initial conditions, the constant c in (10.26) can be determined by the

initial condition alone, rather than depending on the full path x; i.e., c = c(Γ, x0).

10.6 Finite-Time Convergence in ECFP

In this section we study the rate of convergence of ECFP. The main result of this section is

Proposition 10.23, which shows that when ECFP converges to an interior equilibrium, it generally
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does so in finite time. In order to simplify notation in the proofs, we will study the behavior of

ECFP within the space X rather than ∆N (see Section 9.2).

Let C = {C1, . . . , Cm} be a permutation invariant partition of the player set, and let I =

{1, . . . ,m} be the associated index set (see Section 3.3). Given an x ∈ X, let the k-th partial

centroid (relative to C) be given by the mapping

fk(x) := |Ck|−1
∑
i∈Ck

xi, (10.27)

and let the centroid distribution (relative to C) be given by the mapping f(x) := (fφ(i))Ni=1, where

φ : N → I is as defined in Section 3.3. Let fi(x) = (fφ(j))j∈N , j 6=i give the centroid distribution

for players other than i.

In this context, we say (x(t))t≥0 is an ECFP process if x : [0,∞)→ X is an absolutely continuous

mapping and

ẋi(t) ∈ BRi(fi(x(t)))− xi(t), ∀i ∈ N (10.28)

holds for almost all t ∈ [0,∞).

In this section we will focus on studying the convergence of ECFP to interior equilibrium points

and we will assume that at an interior equilibrium point x∗, the following holds.

Assumption 10.20. The Hessian of U is invertible at x∗.

In Section 9.3 we showed that almost all potential games satisfy this assumption. In studying

ECFP, we focus on the subset of games the are permutation invariant relative to a given player-

set partition C. Using similar techniques to those of Section 9.3 it may be possible to show that

the almost all games that are permutation invariant with respect to a given partition C satisfy

Assumption 10.20.

Suppose x∗ is a completely mixed SNE satisfying Assumption 10.20. The following two inequal-

ities will be instrumental in proving the main result of this section (Proposition 10.23).

(1) For all x in a neighborhood of x∗ we have

∣∣U(x∗)− U(f(x))
∣∣ ≤ c1d

2(f(x), x∗). (10.29)

(2) Suppose (x(t))t≥0 is an ECFP process with f(x(t))→ x∗. Then for all x(t) in a neighborhood

of x∗ there holds
d

dt
U(f(x(t))) ≥ c2d(f(x(t)), x∗). (10.30)
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The first inequality is a straightforward consequence of Taylor’s theorem and the fact that∇U(x∗) =

0. The second inequality is proved using the following two lemmas.

Lemma 10.21. Let x∗ be a completely mixed SNE. There exists a constant c > 0 such that for

each i = 1, . . . , N there holds

zi · ∇xiU(f(x)) ≥ c‖∇xiU(f(x))‖, ∀zi ∈ BRi(fi(x))− [f(x)]i

for all x in a neighborhood of x∗.

Proof. Let Bε be an ε-ball around x∗ and let ε be chosen so that Bε is separated by a positive

distance from the boundary of X.

Let x ∈ Bε. If ‖∇xiU(f(x))‖1 = 0, then the inequality is trivially satisfied. Suppose from now

on that ‖∇xiU(f(x))‖1 > 0.

Without loss of generality, assume that Yi is ordered so that

y1
i ∈ BRi(fi(x)).

Differentiating (9.4) at f(x) we find that

∂U(f(x))

∂xki
= U(yk+1

i , fi(x))− U(y1
i , fi(x)), (10.31)

so that for k = 1, . . . ,Ki − 1 we have

yk+1
i ∈ BRi(fi(x)) ⇐⇒ ∂U(f(x))

∂xki
= 0. (10.32)

Using the multlinearity of U we see that if ξi ∈ BRi(fi(x)) and ξki > 0 then yk+1
i ∈ BRi(fi(x)).

But, by (10.32) this implies that if ξi ∈ BRi(fi(x)) and ξki > 0 then ∂U(x)

∂xki
= 0. Noting that any

ξi ∈ BRi(fi(x)) is necessarily coordinatewise nonnegative, this gives

(ξi − [f(x)]i) · ∇xiU(f(x)) =

Ki−1∑
k=1

ξki
∂U(f(x))

∂xki︸ ︷︷ ︸
=0

−
Ki−1∑
k=1

[f(x)]ki
∂U(f(x))

∂xki
, (10.33)

for ξi ∈ BRi(x−i). Since we assume x ∈ Bε, we have xki ≥ d(Bε, ∂X), for all k = 1, . . . ,Ki − 1,

which implies that the each component of f(x) also satisfies [f(x)]ki ≥ d(Bε, ∂X) (see (10.27)).
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Since we assume y1
i ∈ BRi(fi(x)), from (10.31) we get that ∂U(f(x))

∂xki
≤ 0 for all k = 1, . . . ,Ki − 1.

Substituting into (10.33), this gives

(ξi − [f(x)]i) · ∇xiU(f(x)) ≥ d(Bε, ∂X)

Ki−1∑
k=1

(
−∂U(f(x))

∂xki

)
, ξi ∈ BRi(fi(x)−i).

But since ∂U(f(x))

∂xki
≤ 0 for all k we have

∑Ki−1
k=1

(
−∂U(f(x))

∂xki

)
= ‖∇xiU(f(x))‖1, and hence

(ξi − [f(x)]i) · ∇xiU(f(x)) ≥ d(Bε, ∂X)‖∇xiU(f(x))‖1, ξi ∈ BRi(fi(x)).

Since X is finite dimensional, the desired result follows by the equivalence of finite dimensional

norms.

Lemma 10.22. Let x∗ be a completely mixed SNE satisfying Assumption 10.20 and assume

(x(t))t≥0 is an ECFP process satisfying f(x(t)) → x∗. Then for x(t) in a neighborhood of x∗,

the differential inequality (10.30) holds.

Proof. By the chain rule we have

d

dt
U(f(x(t))) = ∇U(f(x(t))) · d

dt
f(x(t))

Using the permutation invariance of U we see that (10.28) implies that d
dtf(x(t)) ∈ BR(f(x(t))−

f(x). Restricting to the strategy component of player i, this gives d
dt [f(x(t))]i ∈ BRi(fi(x))−[f(x)]i.

Thus, we may use Lemma 10.21, which combined with the above gives

d

dt
U(f(x(t))) ≥ c‖∇U(f(x(t)))‖

for some constant c > 0, and for f(x(t)) in a neighborhood of x∗. Since the Hessian of U is

non-degenerate, by Lemma 10.30 in the appendix we have ‖U(f(x(t)))‖ ≥ cd(f(x(t)), x∗) for some

constant c > 0 and for f(x(t)) in a neighborhood of x∗. Combined with the above this gives

d

dt
U(f(x(t))) ≥ cd(f(x(t)), x∗), (10.34)

for some constant c > 0, and for f(x(t)) in a neighborhood of x∗. Let Ω denote this neighborhood of

x∗. Since f is continuous and f(x∗) = x∗, there exists a neighborhood Ω′ of x∗ such that f(Ω′) = Ω.

Hence, (10.34) holds for all x(t) in some neighborhood Ω′ of x∗, which is the desired result.
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The following proposition characterizes the convergence rate of ECFP when converging to in-

terior equilibria satisfying Assumption 10.20. The proof technique is similar to that of Proposition

10.17.

Proposition 10.23. Let Γ be potential game satisfying Assumptions 3.1–3.2. Let x∗ be a completely

mixed SNE satisfying Assumption 10.20. If an ECFP process converges to x∗ in the sense that

f(x(t))→ x∗, then it converges in finite time.

Proof. If we integrate (10.30), use the fact that f(x(t)) → x∗, and set E(t) := d(f(x(t)), x∗) then

we find that

U(x∗)− U(f(x(t)))) ≥ c2

∫ ∞
t

E(s)ds.

Using (10.29) above we get

cE2(t) ≥
∫ ∞
t

E(s) ds,

with c = c1/c2. Now, using Markov’s inequality we have that

L1 ({s : E(s) > E(t)/2, s > t}) ≤ 2

E(t)

∫ ∞
t

E(s) ds ≤ 2cE(t).

Let t be fixed. Recursively applying the above inequality we find that

L1 ({s : E(s) > 0, s > t}) ≤ 4cE(t).

Thus if f(x(t)) converges to x∗, it must reach it for the first time in finite time.

By (10.30) we have d
dtU(f(x(t))) ≥ 0 in a neighborhood of x∗. By assumption, the Hessian of

U is invertible at x∗, and for all x̃ ∈ X̃ in a punctured ball around x∗ we have Ũ(f(x̃)) 6= Ũ(x∗).

Thus, if f(x(t)) → x∗ and f(x(T )) = x∗ for some T ≥ 0, then we must have f(x(t)) = x∗ for all

t ≥ T . Contrariwise, we would have U(x∗) = Ũ(f(x(T ))) < lims→∞ U(f(x(s))) = U(x∗), which is

a contradiction.

Remark 10.24. Proposition 10.23 shows that convergence of ECFP to completely mixed equilibria

generally occurs in finite time. However, using the projection techniques developed in Section 10.3,

it may be possible to extend this result to show that convergence of ECFP to incompletely mixed

equilibria also occurs in finite time.
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Appendix

Lemma 10.25. Suppose Γ is a degenerate game. At any mixed equilibrium there are at least two

players using mixed strategies.

Proof. Suppose that x∗ is an equilibrium in which only one player uses a mixed strategy–say,

player 1. Let Ci = carri(x
∗) and γi = |Ci|. Then the mixed strategy Hessian is given by ∇U(x) =

( ∂
2U(x)

∂xk1∂x
`
1
)k,`=1,...,γi = 0, where the equality to zero follows since U is linear in x1.

Lemma 10.26. Let x ∈ X and i = 1, . . . , N . Assume Yi is ordered so that y1
i ∈ BRi(x−i). Then:

(i) For k = 1, . . . ,Ki − 1 we have ∂U(x)

∂xki
≤ 0.

(ii) For k = 1, . . . ,Ki − 1, we have yk+1
i ∈ BRi(x−i) if and only if ∂U(x)

∂xki
= 0. In particular,

combined with (i) this implies that yk+1
i 6∈ BRi(x−i) ⇐⇒ ∂U(x)

∂xki
< 0.

Proof. (i) Differentiating (9.4) we find that

∂U(x)

∂xki
= U(yk+1

i , x−i)− U(y1
i , x−i). (10.35)

(i) Since y1
i is a best response, we must have U(y1

i , x−i) ≥ U(yk+1
i , x−i) for any k = 1, . . . ,Ki − 1.

Hence ∂U(x)

∂xki
≤ 0.

(ii) Follows readily from (9.4).

Lemma 10.27. Let x ∈ X. If yki ∈ BRi(x−i) then ∂U(x)

∂xki
≥ 0.

Proof. The result follows readily from (10.35).

Lemma 10.28. Suppose x∗ is an equilibrium and yki ∈ carr(x∗), k ≥ 2. Then ∂U(x∗)
∂xki

= 0.

Proof. Since U is multilinear, yki must be a pure-strategy best response to x∗−i. The result then

follows from Lemma 10.26.

Lemma 10.29. There exists a c > 0 such that |∂P̃
k
i (x)

∂x`j
| < c, i = 1, . . . , Ñ , k = 1, . . . , γi − 1,

j = 1, . . . , N , ` ≥ γj for x in a neighborhood of x∗.

Proof. Differentiating (10.2) we see that
∂P̃ki (x)

∂x`j
= −∂gki (xp)

∂x`j
, i = 1, . . . , Ñ , k = 1, . . . , γi − 1, j =

1, . . . , N , ` ≥ γj , x = (xp, xm).
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By the definition of g we have F (xp, g(xp), u) = 0 for all xp in a neighborhood of x∗p. Hence,

0 = DxpF (xp, g(xp), u)

= DxpF (xp, x
′
m, u)

∣∣
x′m=g(xp)

+DxmF (xp, xm, u)Dxpg(xp),

By (9.12) we have DxmF (xp, xm, u) = H(x). Since the equilibrium x∗ is assumed to be non-

degenerate, H(x∗) is invertible and the above implies that

Dxpg(x∗p) = H(x∗)−1DxpF (x∗p, x
∗
m).

Using (9.10) and the multilinearity of U , one may readily verify that DxpF (x∗p, x
∗
m, u) is entrywise

finite. Since g is continuously differentiable, it follows that each entry of

(
∂P̃ki (x)

∂x`j

)
i=1,...,Ñ ,k=1,...,γi−1

j=1,...,N, `≥γj

=

(
−∂g

k
i (xp)

∂x`j

)
i=1,...,Ñ ,k=1,...,γi−1

j=1,...,N, `≥γj

= −Dxpg(xp)

is uniformly bounded for x = (xp, xm) in a neighborhood of x∗.

Lemma 10.30. Suppose V : Rn → R is twice differentiable. Suppose x∗ is a critical point of V

and the Hessian of V at x∗, denoted by H(x∗), is invertible. Then there exists a constant c such

that ‖∇V (x)‖ ≥ cd(x∗, x) for all x in a neighborhood of x∗.

Proof. Suppose the claim is false. Then for any ε > 0 there exists a sequence (xεk)k≥1 ⊂ B(x∗, ε)

such that ‖∇V (xk)‖ < 1
kd(xk, x

∗). Let (xk)k≥1 be such a sequence that furthermore satisfies

limk→∞ d(xk, x
∗) = 0. Let yk ∈ Rn, tk ∈ R be such that xk = x∗ + tkyk, ‖yk‖ = 1. Since (yk)k≥1 is

a sequence on the unit sphere in Rn it has a convergent subsequence; say, ykj → y as j →∞. Let

f : R→ R be given by f(t) := V (x∗ + ty).

Using the continuity of ∇V we see that for any c > 0 we have |f ′(t)| < ct for all t sufficiently

small. Since x∗ is a critical point of V we have f ′(0) = 0. Hence

f ′′(0) = lim
t→0

∣∣∣∣f ′(t)− f ′(0)

t

∣∣∣∣ = lim
t→0

|f ′(t)|
t

< c.

Letting c→ 0 we see that f ′′(0) = 0. But this means 0 = f ′′(0) = yTH(x∗)y, implying the Hessian

is singular, which is a contradiction.

The following lemma characterizes the level sets of polynomial functions. Before presenting the
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lemma we require the following definition.

Definition 10.31. Given a polynomial p : Rn → R, n ≥ 1, let

Z(p) := {x ∈ Rn : p(x) = 0}

be the zero-level set of p.

Lemma 10.32. Let p(x) : Rn → R, n ≥ 1 be a polynomial that is not identically zero. Then

Ln(Z(p)) = 0.

Proof. We will prove the result using an inductive argument.

Suppose first that n = 1 so that p : R → R. Let k denote the degree of p. Since p is not

identically zero, the fundamental theorem of algebra implies that p has at most k zeros. Hence

L1(Z(p)) = 0.

Now, suppose that n ≥ 2 and for any polynomial p̃ : Rn−1 → R there holds Ln−1(Z(p̃)) = 0.

We may write

p(x, xn) =
k∑
j=0

pj(x)xjn,

where k is the degree of p in the variable xn, x = (x1, . . . , xn−1), the functions pj , j = 0, . . . , k are

polynomials in n− 1 variables, and where at least one pj is not identically zero.

If (x, xn) is such that p(x, xn) = 0 then there are two possibilities: Either (i) p0(x) = . . . =

pk(x) = 0, or (ii) xn is the root of the one-variable polynomial px(t) :=
∑k

j=1 pj(x)tj .

Let A and B be the subsets of Rn where (i) and (ii) hold respectively, so that Z(p) = A ∪ B.

For any xn ∈ R we have (x, xn) ∈ A ⇐⇒ x ∈ Z(pj), ∀j = 1, . . . , k. By the induction hypothesis,

we have Z(pj) = 0 for at least one j, and hence
∫
Rn−1

χA(x, xn) dx = 0 for any xn ∈ R, where we

include the argument in the characteristic function χA, in order to emphasize the dependence on

both x and xn. This implies that xn 7→
∫
Rn−1

χ
(x,xn)∈A dx is a measurable function (it’s identically

zero) and

Ln(A) =

∫
R

∫
Rn−1

χA(x, xn) dx dxn = 0.

By the fundamental theorem of algebra, for any x ∈ Rn−1 there are at most k values t ∈ R such

that (x, t) ∈ B, and hence
∫
R
χB(x, xn) dxn = 0. As before, this implies that x 7→

∫
R
χB(x, xn) dxn

is a measurable function and

Ln(B) =

∫
Rn−1

∫
R
χB(x, xn) dxn dx = 0.
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Since Z(p) = B ∪A, this proves the desired result.

Remark 10.33. Note that if p ≡ 0, then Z(p) = Rn. Thus, in general, if p : Rn → R is a

polynomial, then Lemma 10.32 implies that either Z(p) = Rn or Ln(Z(p)) = 0.

Lemma 10.34. Suppose Γ is a non-degenerate potential game. Then each indifference surface

Ii,k,`, as defined in (10.13), is a union of smooth surfaces with Hausdorff dimension at most κ− 1.

Proof. Throughout the proof, when we refer to the dimension of a set we mean the Hausdorff

dimension. Let i ∈ {1, . . . , N}, k, ` ∈ {1, . . . ,Ki}, k 6= ` and let I := Ii,k,`, where Ii,k,` is as defined

in (10.13). Note that I is the zero-level set of the polynomial p(x) := U(yki , x−i)− U(y`i , x−i). By

Lemma 10.32 and Remark 10.33 we see that either Lκ(I) = 0, or I = X. Being the level set of a

polynomial, if Lκ(I) = 0, then I is the union of smooth surfaces with dimension at most κ− 1.

Suppose that I has dimension greater than κ−1. Then by the above, we see that I = X. Since

Γ is a finite normal-form game, there exists at least one equilibrium x∗ ∈ X. Letting x∗ be written

componentwise as x∗ = ([x∗]mj )j=1,...,N, m=1,...,Ki−1 we see that if [x∗]ki > 0, then x∗ ∈ I = X

implies that x∗ is a second-order degenerate equilibrium. Otherwise, if [x∗]ki = 0, then x∗ ∈ I = X

implies that x∗ is a first-order degenerate equilibrium. In either case we see that x∗ is a degenerate

equilibrium, and hence Γ is a degenerate game, which is a contradiction.

Since I was an arbitrary indifference surface, we see that if Γ is a non-degenerate game, then

every indifference surface has dimension at most κ− 1.

Lemma 10.35. Let Bε be as defined in the proof of Proposition 10.10. Then,

Hκ−1(∂Bε)→ 0 as ε→ 0.

Proof. Following standard notation (see [152], Chapter 2), for 0 ≤ s <∞, 0 < δ ≤ ∞, and A ⊂ Rκ,

let

Hsδ(A) := inf

{ ∞∑
j=1

α(s)

(
diamCj

2

)s
: A ⊂

∞⋃
j=1

Cj , diamCj ≤ δ
}
,

where α(s) := πs

Γ( s
2

)+1 , and where Γ in this context denotes the Γ function

By our construction of (Bj
ε )j≥1, for every ε > 0 we have

∞∑
j=1

α(s)

(
diamBj

ε

2

)κ−2

< 2Hκ−2(Q ∪ ∂Z) <∞.
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Since diamBj
ε ≤ ε for every ε > 0, j ∈ N, this gives

lim
ε→0
Hκ−1
ε (∂Bε) ≤ lim

ε→0
Hκ−1
ε (Bε)

≤ lim
ε→0

∞∑
j=1

α(s)

(
diamBj

ε

2

)κ−1

≤ lim
ε→0

ε
∞∑
j=1

α(s)

(
diamBj

ε

2

)κ−2

≤ lim
ε→0

ε2Hκ−2(Q ∪ ∂Z) = 0.

By the definition of the Hausdorff measure we have Hκ−1(∂Bε) := supδ>0Hκ−1
δ (∂Bε). Hence, the

above implies limε→0Hκ−1(∂Bε) = 0.

Lemma 10.36. Let Q be defined as in Section 10.4.1. Then clQ has Hausdorff dimension at most

κ− 2.

Proof. Let A be the subset of X where two or more decision surfaces intersect. Let N ⊂ A be the

subset of X where two or more decision surfaces intersect and their normal vectors coincide. Define

the relative interior of N with respect to A as

riN := {x ∈ N : ∃ε > 0 s.t. B(x, ε) ∩A ⊂ N},

and define the relative boundary of N with respect to A as

∂N := clN\riN.

Since each indifference surface has Hausdorff dimension κ− 1, N has Hausdorff dimension at most

κ− 1. In particular, N is the union of a finite number of smooth κ− 1 dimensional surfaces and a

component with Hausdorff dimension at most κ− 2. This implies that the relative boundary of N

has Hausdorff dimension at most κ− 2.

Let Q̃ be as defined in Section 10.4.1. Note that the closure of Q̃ satisfies cl Q̃ ⊆ Q̃ ∪ ∂N .

Since the sets Q̃ and ∂N have Hausdorff dimension at most κ− 2, the set cl Q̃ also has Hausdorff

dimension at most κ− 2.

Let Λ(x∗) be as defined in Section 10.4. If Λ(x∗) = {x∗}, then Λ(x∗) is closed and has Hausdorff

dimension 0. Otherwise, Λ(x∗) is defined as the graph of g. In Section 10.3.1 it was shown that

Graph(g) has Hausdorff dimension at most κ − 2. Since g is a smooth function, the closure of
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Graph(g) has Hausdorff dimension at most κ− 2.

Recall that Q is defined as Q = Q̃ ∪ Λ(x∗) and hence clQ = cl Q̃ ∪ cl Λ(x∗). Since cl Q̃ and

cl Λ(x∗) each have Hausdorff dimension at most κ − 2, clQ also has Hausdorff dimension at most

κ− 2.

Lemma 10.37. Let Z be as defined (10.15). Then for any x ∈ Z there holds ν · y = 0 for any

vector ν normal to Z at x, and any y ∈ FP (x)

Proof. Suppose x ∈ X and x is in some indifference surface Ii,k,`. Suppose ν is a vector that

is normal to Ii,k,` at x. By the definition of Ii,k,`, if x ∈ Ii,k,` then for all x̂ ∈ X such that

x̂−i = x−i we have x̂ ∈ Ii,k,`. This implies that the (i, k̃)-th component of ν must be zero for every

k̃ = 1, . . . ,Ki − 1.

For x ∈ X, let N (x) := {(i, k) : i ∈ {1, . . . , N}, k ∈ {1, . . . ,Ki − 1}, x ∈ Ii,k,` for some ` =

1, . . . ,Ki−1, ` 6= k}. Letting FPki be the (i, k)-th component map of FP, note that by the definition

of an indifference surface, FPki (x) is single valued for every pair (i, k) /∈ N (x).

Suppose x ∈ X\Q is in at least one decision surface I and let ν be a vector that is normal to

I at x. Note that x /∈ Q implies that if x is contained in any other decision surface Î 6= I, then

ν is also normal to Î at x. Letting ν be written componentwise as ν = (νki )i=1,...N, k=1,...,Ki−1, the

above discussion implies that νki = 0 for every pair (i, k) ∈ N (x).

Now suppose x ∈ Z. By the definition of Z we have x /∈ Q and x is in at least one decision

surface I. Let ν be a vector that is normal to I at x. By the definition of Z, there exists some

y ∈ FP(x) such that y · ν = 0. Breaking this down in terms of components in N (x) we have

0 = y · ν =
∑

(i,k)∈N (x)

yki ν
k
i +

∑
(i,k)/∈N (x)

yki ν
k
i .

The first sum is zero since νki = 0 for all (i, k) ∈ N (x). Consequently, the second sum must also

be zero. But we have shown above that F ki (x) is single valued for any (i, k) /∈ N (x). Hence,

for any ỹ ∈ FP(x) we have ỹki = yki for all (i, k) /∈ N (x), and in particular,
∑

(i,k)/∈N (x) ỹ
k
i ν

k
i =∑

(i,k)/∈N (x) y
k
i ν

k
i = 0. Moreover, since νki = 0 for all (i, k) ∈ N (x) we have

∑
(i,k)∈N (x) ỹ

k
i ν

k
i = 0,

which implies

ỹ · ν =
∑

(i,k)∈N (x)

ỹki ν
k
i +

∑
(i,k)/∈N (x)

ỹki ν
k
i = 0.

Since ỹ ∈ FP(x) was arbitrary, this proves the desired result.
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Chapter 11

Conclusions

In this dissertation we studied myopic best-response dynamics in large-scale games. Our first main

research focus was implementation of MBR dynamics in large games. MBR algorithms can be diffi-

cult to implement in large games due to intensive requirements in terms of computational capacity,

information overhead, inter-agent communication, and global synchronization. Furthermore, it is

sometimes desired for algorithms to converge to pure-strategy equilibria. We studied methods

for mitigating each of these issues with a particular focus on network-based settings in which all

inter-agent communication is restricted to an overlaid communication graph. In this non-classical

setting, information cannot be implicitly transmitted by game play—all information dissemination

must be explicitly handled by the learning algorithm.

Our second main research focus concerned fundamental properties of MBR algorithms. We

studied the robustness of MBR dynamics to an important class of perturbations that occur in

practical real-world applications. We then studied convergence properties of MBR dynamics in

potential games. Potential games [34] constitute an important class of multi-agent games with a

wide variety of applications in large-scale engineering settings (e.g., [3–5, 8, 13, 15, 48, 48, 49, 63, 93–

95]). FP is a highly prototypical MBR algorithm that may be considered the “natural” learning

dynamics associated with the NE concept. As noted above, in applications it can be desirable to

have an algorithm converge to pure-strategy NE. We showed that in almost all potential games,

and for almost all initial conditions, FP converges to a pure-strategy NE. We also developed tools

to study the rate of convergence of MBR dynamics in potential games. We showed that the rate of

convergence of FP is exponential in almost all potential games and for almost all initial conditions.

We also characterized the convergence rate of ECFP in potential games.

We now recapitulate, by chapter, the major contributions of the dissertation.

Chapter 3: Empirical Centroid Fictitious Play
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In order to mitigate the problem of high information overhead, we considered a form of MBR learn-

ing in which the dimension of the observation space is not dependent on the number of players,

but instead, is dependent on the number of equivalence classes into which players are grouped.

The resultant algorithm, termed ECFP, mitigates the problem of information overhead in MBR

algorithms. Additionally, the algorithm can be used to mitigate slow convergence in large games—

the rate of convergence of the algorithm is shown empirically to be independent of the number of

players, and the continuous-time ECFP dynamics are shown theoretically to converge in finite time

to completely mixed equilibria. Discrete and continuous-time ECFP dynamics are studied. It is

shown that both dynamics converge to the set of symmetric NE.

Chapter 4: Robustness Properties in Myopic Best-Response Algorithms

In this chapter we studied the robustness of MBR dynamics. We considereed a sequence of asymp-

totically decaying perturbations at the output of the best response. We show that MBR dynamics

are robust in the sense that, if the MBR dynamics converged to some equilibrium set in the absence

of perturbations, then they will also converge in the presence of such perturbations. In subsequent

chapters, we studied methods to mitigate the issues of complexity, information overhead, global

synchronization, and demanding communication requirements using this robustness result.

Chapter 5: A Single Sample Approach

In this chapter we studied a sampling-based method for mitigating complexity in MBR algorithms.

The computationally expensive aspect of computing the best response is evaluating the expected

utility. We considered a method for implementing MBR dynamics in which players approximate

the expected utility by drawing one sample from an underlying distribution in each round and

averaging over time using stochastic-approximation techniques. It is shown that a single sample

MBR process converges to the internally chain recurrent set of the associated differential inclusion.

The single sample approach reduces the per-iteration computational complexity of implementing a

MBR algorithm from O(eN ) to O(N), where N is the number of players.

Chapter 6: Asynchronous Implementation

In the classical setup of repeated play learning, it is assumed that agents act in a synchronous

manner. In large-scale distributed settings, global synchronization can be impractical. We show

that MBR dynamics can be practically implemented in an asynchronous fashion, and, using the ro-

bustness result of Chapter 4, we derive conditions under which an asynchronous MBR will converge

to the internally chain recurrent set of the associated differential inclusion. We define a generic
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notion of asynchronous repeated play learning in which player may be “active” in some rounds and

“idle” in others. We first prove convergence of asynchronous MBR dynamics in this setting. Sub-

sequently, we study continuous-time embedded MBR processes. Such processes model real-world

implementations in which agents choose a countable sequence of actions, but the timing of their

actions occurs in continuous time. Convergence under a mild condition was proven in this setting,

and practical prototypical implementations using stochastic and deterministic action timing rules

were given.

Chapter 7: Network-Based Implementation

In this chapter we studied the problem of implementing a MBR algorithm in a network-based

setting. In a network-based setting, physical payoff measurements are not available, and it is not

possible to implicitly transmit information via game play. The task of information dissemination

must be handled directly by the learning algorithm. A generic network-based MBR algorithm was

presented and, using the robustness result, we derived a condition under which such an algorithm

can be shown to converge. Subsequently, we developed network-based implementations of the

ECFP algorithm presented in Chapter 3 and the single sample FP algorithm presented in Chapter

5. The network-based ECFP algorithm was shown to converge to the set of symmetric NE and the

SSFP algorithm was shown to converge to the set of NE.

Chapter 8: Inertial MBR Algorithms: Incomplete Information and Network-Based

Implementation

The use of inertia is a common technique used to ensure convergence to pure-strategy NE in classi-

cal settings where players have complete information and may observe the actions of other players

or possibly their own payoffs. In this chapter we show that the use of so-called inertial techniques

can be used to ensure convergence of MBR dynamics to pure-strategy NE in network-based settings

and settings where players have incomplete information about the state of the world. We studied

general MBR dynamics with inertia and proved that under a mild assumption, any such algorithm

converges to a pure-strategy NE. We then studied MBR algorithms with inertia in a network-based

setting with incomplete information. We focused on two particular MBR algorithms: FP with

inertia and JSFP with inertia. We showed that so long as the information dissemination scheme

satisfies a mild assumption, each algorithm will converge to a pure strategy NE. We then explicitly

defined an information dissemination scheme and proved convergence of each algorithm to a pure

strategy NE. Network-based FP with inertia and network-based JSFP with inertia differ primarily

in terms of their information requirements. Network-based JSFP with inertia operates using less
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information than network-based FP with inertia. However, due to the manner in which informa-

tion is disseminated in network-based JSFP with inertia, it is applicable within a narrower class of

games than network-based FP with inertia.

Chapter 9: Non-Degenerate Potential Games

In this chapter we presented a notion of non-degeneracy for potential games. In a non-degenerate

potential game, FP dynamics are “well behaved” (shown in Chapter 10) in the sense that they

almost always converge to pure-strategy NE, and the rate of convergence can be estimated. It

was shown that the notion of a non-degenerate potential game coincides with other well known

notions of non-degeneracy in general N -player games. The main contribution of the chapter was a

proof that almost all potential games are non-degenerate. It was shown that in almost all potential

games, the number of NE is finite and odd.

Chapter 10: Myopic Best-Response Dynamics in Potential Games

The chapter studied continuous-time MBR processes in potential games. The Chapter has three

main results. First, it is shown that in almost all potential games, and for almost all initial

conditions, FP converges to a pure-strategy NE. Second, it is shown that in almost all potential

games and for almost all initial conditions, the rate of convergence of FP is exponential. Third, it

is shown that if a MBR process converges to a completely mixed-strategy equilibrium (a relatively

typical occurrence), then convergence occurs in finite time.

11.1 Future Work

We now briefly highlight some promising future research directions.

In studying ECFP, we assumed that the utility function satisfies a symmetry condition amongst

players in a given group. It would be interesting to study ECFP dynamics in games that nearly

satisfy this symmetry condition. In particular, in games non-symmetric games, symmetric NE

may not exist—it would be interesting to study if the centroid tuple q̄(n) converges to a nearly

optimal (symmetric) strategy in such games. It may also be interesting to study methods to

optimally cluster players in order to nearly satisfy the symmetry condition. This research direction

may permit ECFP to be used as a method for reducing information overhead and accelerating

convergence in a broader class of games.

ECFP may be seen as solving a type of generalized NE problem [159], in which it is desired

to find an equilibrium within a constrained subset of the strategy space. It may be interesting to

study MBR dynamics as a more general tool for solving these types of problems.
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Simulation results show that in the case where players are grouped into a single group, the

convergence rate tends to be independent of the number of players. A potential future research

direction may include a rigorous characterization of the rate of convergence of ECFP in terms of

both the number of players and the number of groups.

The convergence rate estimate for ECFP (see Section 10.6) is only shown to hold when the

process converges to a completely mixed-strategy equilibrium. Using the projection techniques

developed in Section 10.3, it may be possible to show a similar convergence result for any (possibly

incompletely) mixed-strategy equilibrium.

In this dissertation we studied asynchronous MBR dynamics and network-based learning algo-

rithms. However, we did not study asynchronous MBR dynamics in a network-based setting. This

is an important future research direction since the assumption of global synchronization tends to be

impractical in a large-scale network-based setting. In an asynchronous network-based MBR algo-

rithm, players could choose the timing of their actions and the timing of communication according

to a homogenous Poisson process, as discussed in Section 6.4.1. Using such a timing rule, informa-

tion could be disseminated in an asynchronous manner using an asynchronous gossip algorithm [21].

In future research, this could be made explicit and rigorous.

The study of fundamental properties of MBR dynamics in Chapter 10 sews fertile ground for

several future research topics. In [153] it was shown that the rate of convergence in FP can be

made arbitrarily slow in potential games by choosing an appropriate (nearly generate) game. In

effect, the coefficient in the exponential convergence rate estimate for FP (see Section 10.5) can be

made arbitrarily large by choosing the potential game to be nearly degenerate. In future research,

we plan to investigate establishing uniform convergence rate estimates by removing small sets of

“nearly degenerate” games.

It was shown that continuous-time FP almost always converges to a pure-strategy NE. It would

be interesting to study an extension of this result to discrete-time FP. The extension is not straight-

forward. In certain games, the interpolated discrete-time process can “overshoot” sets that would

normally draw the process away from a mixed equilibrium and towards a pure equilibrium. This

overshooting phenomenon must be accounted for when characterizing the class of games in which

discrete-time FP converges generically to a pure-equilibrium. Based on simulation results, we hy-

pothesize that discrete-time FP also converges to pure-strategy equilibria in almost all potential

games.

Another worthwhile future research direction may be the study of discrete-time FP with a

constant step-size. In particular, we hypothesize that constant step-size FP converges to a neigh-

borhood of a pure NE in almost all potential games. Constant step-size FP does not not slow down
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over time as does traditional FP in which the step size is diminishing. Consequently, constant

step-size FP may be useful for learning and control in time-varying environments.
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