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Abstract

We consider a problem of optimal investment with intermediate consump-
tion in the framework of an incomplete semimartingale model of a financial
market. We show that a necessary and sufficient condition for the validity
of key assertions of the theory is that the value functions of the primal and
dual problems are finite.
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1 Introduction

A fundamental problem of mathematical finance is that of an investor who
wants to invest and consume in a way that maximizes his expected utility.
The first results for continuous time models were obtained by Merton [20, 21]
in a Markovian setting via dynamic programming arguments. An alternative
martingale approach was developed among others by Cox and Huang [3,
4], Karatzas, Lehoczky and Shreve [14], and Karatzas and Shreve [12] for
complete markets and by Karatzas, Lehoczky, Shreve and Xu [15], He and
Pearson [8, 9], Kramkov and Schachermayer [17, 18], Karatzas and Žitković
[13], and Žitković [25] in an incomplete case. The main focus here was to
establish conditions under which “key” results, such as the existence of primal
and dual optimizers, hold.

When the consumption occurs only at maturity and the utility function
is deterministic a necessary and sufficient condition has been obtained in
Kramkov and Schachermayer [18]. It is stated as the finiteness of the dual
value function. In the case of intermediate consumption and stochastic field
utility, the latest sufficient conditions are due to Karatzas and Žitković [13]
and Žitković [25]. They are formulated in the form of several regularity
assumptions such as a uniform asymptotic elasticity.

This paper obtains necessary and sufficient conditions in the general
framework of an incomplete financial model with a stochastic field utility
and intermediate consumption occurring according to some stochastic clock.
As in [18] we assume that the dual value function is finite (from above).
Maybe surprisingly, the only other condition we need is the finiteness of the
primal value function (from below). Note that the latter condition holds
trivially in the setting of [18].

The remainder of the thesis is organized as follows. In Section 2 we de-
scribe the model and state the main results. Their proofs are given in Section
4 and are based on the abstract versions of the main theorems presented in
Section 3.

2 Main Results

A model of a security market consists of (d + 1) assets: one bond and d
stocks. We assume that the bond is chosen as a numéraire and denote by
S = (Si)1≤i≤d the discounted price processes of the stocks. We suppose that
S is a semimartingale on a complete stochastic basis (Ω, F , (Ft)t∈[0,∞) , P)
with an infinite time horizon, F0 is the completion of the trivial σ-algebra.

Define a portfolio Π as a triple (x, H, c), where the constant x is an
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initial value, H = (H i)1≤i≤d is a predictable S-integrable process of stocks’
quantities, and c = (ct)t≥0 is a nonnegative and optional process that specifies
the consumption rate in the units of the bond.

Hereafter we fix a stochastic clock κ = (κt)t≥0, which is a non-decreasing,
cádlág, adapted process such that

κ0 = 0, P [κ∞ > 0] > 0, and κ∞ ≤ A (2.1)

for some finite constant A. Stochastic clock represents the notion of time
according to which consumption occurs.

The discounted value process V = (Vt)t≥0 of a portfolio Π is defined as

Vt , x +

∫ t

0

HudSu −

∫ t

0

cudκu, t ≥ 0. (2.2)

A portfolio Π with c ≡ 0 is called self-financing. The collection of nonnegative
value processes of self-financing portfolios with initial value 1 is denoted by
X , i.e.,

X ,

{

X ≥ 0 : Xt = 1 +

∫ t

0

HudSu, t ≥ 0

}

.

A pair (H, c), such that for a given x > 0 the corresponding value process
V is nonnegative, is called an x-admissible strategy. If for a consumption
process c we can find a predictable S-integrable process H such that (H, c)
is an x-admissible strategy, we say that c is an x-admissible consumption
process.

The set of the x-admissible consumption processes corresponding to a
stochastic clock κ is denoted by A (x), that is,

A (x) , {c : c is x-admissible} , x > 0. (2.3)

We write A , A (1) for brevity.
The set of equivalent martingale deflators is defined as

Z , {Z > 0 : Z is a cádlág martingale, s.t. Z0 = 1 and
XZ = (XtZt)t≥0 is a local martingale for every X ∈ X } .

(2.4)

We assume that
Z 6= Ø. (2.5)

This condition is closely related to the absence of arbitrage opportunities in
the sense of [11].

We now introduce an economic agent whose consumption preferences are
modeled with a utility stochastic field U = U(t, ω, x) : [0,∞)×Ω× [0,∞) →
R ∪ {−∞} satisfying the conditions below.
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Assumption 2.1. For every (t, ω) ∈ [0,∞)×Ω the function x → U(t, ω, x) is
strictly concave, increasing, continuously differentiable on (0,∞) and satisfies
the Inada conditions:

lim
x↓0

U ′(t, ω, x) = +∞ and lim
x→∞

U ′(t, ω, x) , 0, (2.6)

where U ′ denotes the partial derivative with respect to the third argument.
At x = 0 we have, by continuity, U(t, ω, 0) = lim

x↓0
U(t, ω, x), this value may

be −∞. For every x ≥ 0 the stochastic process U (·, ·, x) is optional.

For a given initial capital x > 0 the goal of the agent is to maximize his
expected utility. The value function of this problem is denoted by

u(x) , sup
c∈A (x)

E

[
∫ ∞

0

U(t, ω, ct)dκt

]

, x > 0. (2.7)

We use the convention

E

[
∫ ∞

0

U(t, ω, ct)dκt

]

, −∞ if E

[
∫ ∞

0

U−(t, ω, ct)dκt

]

= +∞.

Here and below, W− and W+ denote the negative and the positive parts of
a stochastic field W , respectively.

Our goal is to find conditions on the financial market and the utility field
U under which the key conclusions of the utility maximization theory hold,
namely, u satisfies the Inada conditions and the solution ĉ(x) ∈ A (x) to (2.7)
exists.

Remark 2.2. For simplicity of notations we assume throughout the paper that
the argument x in U(t, ω, x) represents the consumption in the discounted
units, that is, in the number of bonds. This does not restrict any generality.
Indeed, suppose that the investor’s stochastic field utility is given as Ũ =
Ũ(t, ω, x̃), where the consumption x̃ is measured in the number of units
of a different asset, whose discounted value is given by a strictly positive
semimartingale A = (At)t≥0 .Then we arrive to our framework by setting

U(t, ω, x) , Ũ (t, ω, x/At(ω)) .

To study (2.7) we employ standard duality arguments as in [17] and [25]
and define the conjugate stochastic field V to U as

V (t, ω, y) , sup
x>0

(U(t, ω, x) − xy) , (t, ω, y) ∈ [0,∞) × Ω × [0,∞). (2.8)
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It is well-known that −V satisfies Assumption 2.1. We also denote

Y (y) , cl {Y : Y is càdlàg adapted and
0 ≤ Y ≤ yZ (dκ × P) a.e. for some Z ∈ Z } ,

(2.9)

where the closure is taken in the topology of convergence in measure (dκ × P)
on the space of real-valued optional processes. We write Y , Y (1) for
brevity.

After these preparations, we define the value function of the dual opti-
mization problem as

v(y) , inf
Y ∈Y (y)

E

[
∫ ∞

0

V (t, ω, Yt)dκt

]

, y > 0, (2.10)

where we use the convention:

E

[
∫ ∞

0

V (t, ω, Yt)dκt

]

, +∞ if E

[
∫ ∞

0

V +(t, ω, Yt)dκt

]

= +∞.

Theorems 2.3 and 2.4 constitute our main results.

Theorem 2.3. Assume that conditions (2.1) and (2.5) and Assumption 2.1
hold true and suppose

v(y) < ∞ for all y > 0 and u(x) > −∞ for all x > 0. (2.11)

Then we have:

1. u(x) < ∞ for all x > 0, v(y) > −∞ for all y > 0. The functions u and
v are conjugate, i.e.,

v(y) = sup
x>0

(u(x) − xy) , y > 0,

u(x) = inf
y>0

(v(y) + xy) , x > 0.
(2.12)

The functions u and −v are continuously differentiable on (0,∞), strictly
increasing, strictly concave and satisfy the Inada conditions:

u′(0) , lim
x↓0

u′(x) = +∞, −v′(0) , lim
y↓0

−v′(y) = +∞,

u′(∞) , lim
x→∞

u′(x) = 0, −v′(∞) , lim
y→∞

−v′(y) = 0.

2. For every x > 0 and y > 0 the optimal solutions ĉ(x) to (2.7) and Ŷ (y)
to (2.10) exist and are unique. Moreover, if y = u′(x) we have the dual
relations

Ŷt(y) = U ′ (t, ω, ĉt(x)) , t ≥ 0,

and

E

[
∫ ∞

0

ĉt(x)Ŷt(y)dκt

]

= xy.
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The finiteness conditions (2.11) are clearly necessary for the conclusions
of either item 1 or 2. Notice that the condition u(x) > −∞ for all x > 0 holds
trivially if the utility stochastic field U is uniformly bounded from below by
a real-valued function.

A natural question is whether one can use the set Z instead of Y as the
dual domain and still obtain the same value function v. Theorem 2.4 below
states that the answer is positive, however, the minimizer might lie outside
of the set Z in general, see e.g. Example 5.1 in Kramkov and Schachermayer
[17]. Furthermore, due to a certain symmetry between primal and dual prob-
lems (that is explored in more detail in Section 3) a similar conclusion is valid
for the value function u. Let B be a subset of A such that

(i) for every Y ∈ Y , we have

sup
c∈B

E

[
∫ ∞

0

ctYtdκt

]

= sup
c∈A

E

[
∫ ∞

0

ctYtdκt

]

,

(ii) the set B is closed under the countable convex combinations, that
is, for any sequence (cn)n≥1 of optional processes in B and any se-
quence of positive numbers (an)n≥1 such that

∑∞
n=1 an = 1, the process

∑∞
n=1 ancn belongs to B.

Observe that Z is closed under the countable convex combinations.

Theorem 2.4. Under the conditions of Theorem 2.3, we have

v(y) = inf
Z∈Z

E
[∫∞

0
V (t, ω, yZt) dκt

]

, y > 0,

u(x) = sup
c∈B

E
[∫∞

0
U(t, ω, xct)dκt

]

, x > 0.

The proofs of Theorems 2.3 and 2.4 will be given in Section 4 and will rely
on Theorems 3.2 and 3.3, which are the “abstract” versions of Theorems 2.3
and 2.4, respectively. We conclude this section with examples of the invest-
ment problems (see e.g. Karatzas [10] as well as Karatzas and Shreve [12])
that are included in our formulation. Hereafter, 1E denotes the indicator
function of a set E.

Example 2.5. Maximization of the expected utility from consumption:

u(x) = sup
c∈A (x)

E

[
∫ T

0

U(t, ω, ct)dt

]

.

Here the clock κ is given by

κ(t) , min (t, T ) , t ≥ 0.
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Example 2.6. Maximization of the expected utility from consumption and
terminal wealth:

u(x) = sup
c∈A (x)

E

[
∫ T

0

U1(t, ω, ct)dt + U2(ω, cT )

]

. (2.13)

Here the clock κ is given by

κ(t) , t1[0,T )(t) + (T + 1)1[T,∞)(t), t ≥ 0.

Example 2.7. Maximization of the expected utility from terminal wealth:

u(x) = sup
X∈X

E [U(ω, xXT )] , (2.14)

The corresponding clock process is

κ(t) , 1[T,∞)(t), t ≥ 0.

Note that the formulation (2.14) extends the framework of Kramkov and
Schachermayer (see [17, 18]) to stochastic utility.

Example 2.8. Maximization of the expected utility from consumption over
the infinite time horizon, that is

u(x) = sup
c∈A (x)

E

[
∫ ∞

0

e−νtU(t, ω, ct)dt

]

, x > 0, ν > 0, (2.15)

where the clock is defined as

κ(t) ,

∫ t

0

e−νsds =
1

ν

(

1 − e−νt
)

, t ≥ 0.

Example 2.9. Maximization of expected utility from consumption occurring
at discrete times (t1, . . . , tN):

u(x) = sup
c∈A (x)

E

[

N
∑

j=1

U(tj , ω, ctj)

]

, x > 0. (2.16)

Here the clock process is

κ(t) ,

N
∑

j=1

1[tj ,+∞)(t), t ≥ 0.

8



3 Abstract versions of the main theorems

Let µ be a finite and positive measure on a measurable space (Ω, F ). Denote
by L0 = L0 (Ω, F , µ) the vector space of (equivalence classes of) real-valued
measurable functions on (Ω, F , µ) topologized by convergence in measure µ.
Let L0

+ denote its positive orthant, i.e.,

L0
+ =

{

ξ ∈ L0 (Ω, F , µ) : ξ ≥ 0
}

.

For any ξ and η in L0 we write

〈ξ, η〉 ,

∫

Ω

ξηdµ,

whenever the latter integral is well-defined. Let C , D be subsets of L0
+ that

satisfy the conditions below.

1. We have
ξ ∈ C ⇔ 〈ξ, η〉 ≤ 1 for all η ∈ D ,
η ∈ D ⇔ 〈ξ, η〉 ≤ 1 for all ξ ∈ C .

(3.1)

2. C and D contain at least one strictly positive element:

there are ξ ∈ C , η ∈ D such that min(ξ, η) > 0 µ a.e. (3.2)

Observe that our construction of the abstract sets C and D is similar to the
one in [17], however we do not require a constant to be an element of C . This
leads to a symmetry between the sets C and D that plays an important role
in the proofs. Also notice that C and D are convex and bounded in L0 (µ).
For x > 0 and y > 0 we define the sets:

C (x) , xC , {xξ : ξ ∈ C } ,

D(y) , yD , {yη : η ∈ D} .
(3.3)

Consider a stochastic utility function U : Ω× [0,∞) → R∪ {−∞}, which
satisfies the following conditions.

Assumption 3.1. For every ω ∈ Ω the function x → U(ω, x) is strictly
concave, increasing, continuously differentiable on (0,∞), and satisfies the
Inada conditions:

lim
x↓0

U ′(ω, x) = +∞ and lim
x→∞

U ′(ω, x) = 0, (3.4)

where U ′(·, ·) denotes the partial derivative with respect to the second ar-
gument. At x = 0 we have, by continuity, U(ω, 0) = lim

x↓0
U(ω, x), this value

may be −∞. For every x ≥ 0 the function U (·, x) is measurable.
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Define the conjugate function V to U as

V (ω, y) , sup
x>0

(U(ω, x) − xy) , (ω, y) ∈ Ω × [0,∞).

Observe that −V satisfies Assumption 3.1. For a function W on Ω × [0,∞)
and a function ξ ∈ L0

+ we will write W (ξ) , W (ω, ξ(ω)). Recall that W+

and W− denote the positive and the negative parts of W , respectively.
Now we can state the optimization problems:

u(x) = sup
ξ∈C (x)

∫

Ω

U(ξ)dµ, x > 0, (3.5)

v(y) = inf
η∈D(y)

∫

Ω

V (η)dµ, y > 0, (3.6)

where we used the convention:
∫

Ω
U(ξ)dµ , −∞ if

∫

Ω
U−(ξ)dµ = +∞,

∫

Ω
V (η)dµ , +∞ if

∫

Ω
V +(η)dµ = +∞.

The following theorem is an abstract version of Theorem 2.3.

Theorem 3.2. Assume that C and D satisfy conditions (3.1) and (3.2). Let
Assumption 3.1 hold and suppose

v(y) < ∞ for all y > 0 and u(x) > −∞ for all x > 0. (3.7)

Then we have:

1. u(x) < ∞ for all x > 0, v(y) > −∞ for all y > 0. The functions u and
v satisfy the biconjugacy relations, i.e.,

v(y) = sup
x>0

(u(x) − xy) , y > 0,

u(x) = inf
y>0

(v(y) + xy) , x > 0.
(3.8)

The functions u and −v are continuously differentiable on (0,∞), strictly
increasing, strictly concave, and satisfy the Inada conditions:

u′(0) , lim
x↓0

u′(x) = +∞, −v′(0) , lim
y↓0

−v′(y) = +∞,

u′(∞) , lim
x→∞

u′(x) = 0, −v′(∞) , lim
y→∞

−v′(y) = 0.
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2. For every x > 0 the optimal solution ξ̂(x) to (3.5) exists and is unique.
For every y > 0 the optimal solution η̂(y) to (3.6) exists and is unique.
If y = u′(x), we have the dual relations

η̂(y) = U ′
(

ξ̂(x)
)

µ a.e.

and
〈ξ̂(x), η̂(y)〉 = xy.

In order to state an abstract version of Theorem 2.4 we need the following
definitions. Let D̃ be a subset of D such that

(i) D̃ is closed under the countable convex combinations,

(ii) for every ξ ∈ C we have

sup
η∈D

〈ξ, η〉 = sup
η∈D̃

〈ξ, η〉. (3.9)

Likewise, define C̃ to be a subset of C such that

(iii) C̃ is closed under the countable convex combinations,

(iv) for every η ∈ D we have

sup
ξ∈C

〈ξ, η〉 = sup
ξ∈C̃

〈ξ, η〉.

Theorem 3.3. Under the conditions of Theorem 3.2, we have

v(y) = inf
η∈D̃

∫

Ω
V (yη)dµ, y > 0.

u(x) = sup
ξ∈C̃

∫

Ω
U (xξ) dµ, x > 0.

The proofs of Theorem 3.2 and 3.3 are given via several lemmas.

Lemma 3.4. Under the conditions of Theorem 3.2, we have

v(y) ≥ sup
x>0

(u(x) − xy) , y > 0. (3.10)

As a result, both u and v are real-valued functions, such that

lim sup
x→∞

u(x)

x
≤ 0 and lim inf

y→∞

v(y)

y
≥ 0.
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Proof. Fix x > 0 and y > 0. We have

sup
ξ∈C (x)

inf
η∈D(y)

∫

Ω

(U(ξ) − ξη) dµ ≤ inf
η∈D(y)

sup
ξ∈C (x)

∫

Ω

(U(ξ) − ξη) dµ. (3.11)

Using (3.1) we can bound the left-hand side from below by u(x) − xy:

sup
ξ∈C (x)

inf
η∈D(y)

∫

Ω
(U(ξ) − ξη) dµ ≥ sup

ξ∈C (x)

(∫

Ω
U(ξ)dµ − xy

)

= u(x) − xy.

Since V (η) ≥ U(ξ) − ξη for every ξ ≥ 0 and η ≥ 0, we can bound the
right-hand side of (3.11) from above by v(y):

inf
η∈D(y)

sup
ξ∈C (x)

∫

Ω

(U(ξ) − ξη) dµ ≤ inf
η∈D(y)

∫

Ω

V (η)dµ = v(y),

and the result follows.

The techniques in Kramkov and Schachermayer [18] inspired the proof of
the following lemma.

Lemma 3.5. Under the conditions of Theorem 3.2, for every y > 0 the
family (V − (h))h∈D(y) is uniformly integrable.

Proof. Fix y > 0. Assume by contradiction that (V − (h))h∈D(y) is not a uni-
formly integrable family. Then we can find a sequence (ηn)n≥2 ⊂ D(y), a
sequence (An)n≥2 of disjoint subsets of (Ω, F ) and a constant α > 0 such
that

∫

Ω

V − (ηn) 1Andµ ≥ α, n ≥ 2.

Since v(y) < ∞, there exists η1 ∈ D(y) such that

M ,

∫

Ω

V +
(

η1
)

dµ < ∞.

Define a sequence (ζn)n≥1 as ζn ,
n
∑

k=1

ηk, n ≥ 1. Then by (3.1) for every

ξ ∈ C we have

〈ζn, ξ〉 =

n
∑

k=1

〈ηk, ξ〉 ≤ ny.

Thus ζn ∈ D(ny), n ≥ 1. Now, since V − is nonnegative and nondecreasing
we get

∫

Ω
V − (ζn) dµ ≥

∫

Ω

n
∑

k=2

V −

(

n
∑

j=1

ηj

)

1Akdµ

≥
∫

Ω

n
∑

k=2

V −
(

ηk
)

1Akdµ

≥ α(n − 1), n ≥ 2.
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On the other hand, since V + is nonincreasing we obtain
∫

Ω

V + (ζn) dµ ≤

∫

Ω

V +
(

η1
)

dµ = M < ∞.

Therefore we deduce that
∫

Ω

V (ζn) dµ ≤ M − α(n − 1), n ≥ 2.

Consequently,

lim inf
z→∞

v(z)

z
≤ lim inf

n→∞

∫

Ω
V (ζn) dµ

ny
≤ lim inf

n→∞

M − α(n − 1)

ny
= −

α

y
< 0,

which contradicts to the conclusion of Lemma 3.4.

We need a version of Komlós’ lemma for the set D . Some other formula-
tions of Komlós’ lemma are proven in [16, 5, 1, 23].

Lemma 3.6. Assume that the sets C and D satisfy (3.1) and (3.2). Let
(ηn)n≥1 ⊂ D. Then there exists a sequence of convex combinations ζn ∈
conv (ηn, ηn+1, . . . ) , n ≥ 1, and an element η̂ ∈ D , such that (ζn)n≥1 con-
verges µ a.e. to η̂.

Proof. Using Lemma A1.1 p.515 in [5] we can construct a sequence ζn ∈
conv (ηn, ηn+1, . . . ) , n ≥ 1, such that (ζn)n≥1 converges µ a.e. to an element
η̂. By convexity of the set D we obtain that (ζn)n≥1 is a subset of D . By
Fatou’s lemma for every ξ ∈ C we have

〈ξ, η̂〉 ≤ lim inf
n→∞

〈ξ, ζn〉 ≤ 1.

Hence, η̂ ∈ D .

Lemma 3.7. Under conditions of Theorem 3.2 for each y > 0 there exists a
unique η̂(y) ∈ D(y), such that

v(y) =

∫

Ω

V (η̂(y)) dµ. (3.12)

As a consequence, v is strictly convex.

Proof. Fix y > 0. Let (ηn)∞n=1 ⊂ D(y) be a minimizing sequence, i.e.,

v(y) = lim
n→∞

∫

Ω

V (ηn) dµ.
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It follows from Lemma 3.6 that there exists a sequence of convex combina-
tions ζn ∈ conv (ηn, ηn+1, . . . ), n ≥ 1, and an element η̂(y) ∈ D(y), such that
(ζn)∞n=1 converges µ a.e. to η̂(y).

Using convexity of V , Lemma 3.5, and Fatou’s lemma we get

v(y) = lim inf
n→∞

∫

Ω

V (ηn) dµ ≥ lim inf
n→∞

∫

Ω

V (ζn) dµ ≥

∫

Ω

V (η̂(y))dµ.

Therefore (3.12) holds. Uniqueness of the minimizer to (3.6) follows from
the strict convexity of V .

To show the strict convexity of v fix y1 < y2. Since η̂(y1)+η̂(y2)
2

∈ D
(

y1+y2

2

)

and V is strictly convex we obtain

v

(

y1 + y2

2

)

≤

∫

Ω

V

(

η̂(y1) + η̂(y2)

2

)

dµ <
v(y1) + v(y2)

2
.

By the symmetry between the optimization problems (3.5) and (3.6), the
following result is a corollary to Lemma 3.7.

Lemma 3.8. Under the assumptions of Theorem 3.2, for every x > 0 there
exists a unique maximizer to the primal problem (3.5). As a consequence, u
is strictly concave.

Lemma 3.9. Under the assumptions of Theorem 3.2, we have

v(y) = sup
x>0

(u(x) − xy) , y > 0. (3.13)

Proof. The two-step proof is based on the change of numéraire ideas.
Step 1. Let us show (3.13) assuming that

the constant function 1 ∈ C and

∫

Ω

U(1)dµ > −∞.

In this case
∫

Ω
U(x)dµ is finite for any constant x ≥ 1. Let Sn be the set of

all nonnegative, measurable functions ξ : Ω → [0, n], i.e.,

Sn ,
{

ξ ∈ L0 : ξ(ω) ∈ [0, n] for all ω ∈ Ω
}

, n > 0. (3.14)

The sets Sn are σ(L∞,L1) compact. Fix y > 0. Since D(y) is convex and U
is concave, the minimax theorem (see [24], Theorem 45.8) gives the following
equality

sup
ξ∈Sn

inf
η∈D(y)

∫

Ω

(U(ξ) − ξη)dµ = inf
η∈D(y)

sup
ξ∈Sn

∫

Ω

(U(ξ) − ξη) dµ. (3.15)
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Denote

C
′(x) ,

{

ξ ∈ C (x) : sup
η∈D(y)

〈ξ, η〉 = xy

}

.

It follows from (3.3) that
⋃

x>0

C ′(x)
⋃

{ξ ≡ 0} =
⋃

x>0

C (x). As a result, we

get

sup
x>0

(u(x) − xy) = sup
x>0

sup
ξ∈C ′(x)

(∫

Ω
U(ξ)dµ − xy

)

≥ lim
n→∞

sup
ξ∈Sn

inf
η∈D(y)

∫

Ω
(U(ξ) − ξη)dµ.

(3.16)

In view of (3.15), (3.16), and Lemma 3.4 it suffices to show that

v(y) = lim
n→∞

inf
η∈D(y)

sup
ξ∈Sn

∫

Ω

(U(ξ) − ξη) dµ. (3.17)

For each n ≥ 1 define V n as follows:

V n(z) , sup
0<x≤n

(U(x) − xz) , z > 0.

Then via pointwise maximization we get

inf
η∈D(y)

sup
ξ∈Sn

∫

Ω

(U(ξ) − ξη) dµ = inf
η∈D(y)

∫

Ω

V n(η)dµ , vn(y).

Notice that vn ≤ v and (vn(y))n≥1 is an increasing sequence. Let (ηn)n≥1 ⊂
D(y) be such that

lim
n→∞

vn(y) = lim
n→∞

∫

Ω

V n(ηn)dµ. (3.18)

It follows from Lemma 3.6, that there exists a sequence ζn ∈ conv(ηn, ηn+1, . . . ),
n ≥ 1, such that (ζn)n≥1 converges µ a.e. to a function ζ̂ ∈ D(y).

We claim that (V n)− (ζn), n ≥ 2, is a uniformly integrable sequence.
Indeed, for n ≥ 2 we have

V n(ζ) ≥ V 2(ζ) ≥ V (ζ)1{ζ≥U ′(2)} + (U(2) − 2U ′(2)) 1{ζ<U ′(2)}.

The concavity of U yields that U ′(2) ≤ U(2) − U(1). Therefore,

V n(ζ) ≥ min (V (ζ), 2U(1) − U(2)), n ≥ 2.

The uniform integrability of (V n)− (ζn), n ≥ 2, follows now from Lemma 3.5
and the integrability of U(1) and U(2).
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Therefore from the convexity of V n and Fatou’s lemma we get

lim
n→∞

∫

Ω

V n(ηn)dµ ≥ lim inf
n→∞

∫

Ω

V n(ζn)dµ ≥

∫

Ω

V (ζ̂)dµ ≥ v(y),

which in view of (3.18) implies (3.17).
Step 2. Here we show how the general case can be reduces to the one

in Step 1. Let ξ̂ , arg min
ξ∈C (1/2)

∫

Ω
U(ξ)dµ and ξ0 be a strictly positive element of

C (1/2). Both ξ̂ and ξ0 exist by Lemma 3.8 and assumption (3.2) respectively.
Define

ζ , max(ξ̂, ξ0).

Then ζ ∈ C and
∫

Ω
U(ζ)dµ is finite. Let

Ũ(x) , U(ζx),

C̃ (x) , {ξ : ξζ ∈ C (x)} ,

then

u(x) = sup
ξ∈C̃ (x)

∫

Ω

Ũ(ξ)dµ, x > 0.

Similarly, define
Ṽ (y) , V (y/ζ) ,

D̃(y) , {η : η/ζ ∈ D(y)} ,

then we have

v(y) = inf
η∈D̃(y)

∫

Ω

Ṽ (η)dµ, y > 0.

Observe that Ũ satisfies assumption 3.1, Ṽ is the conjugate function to Ũ ,
whereas the sets C̃ (1) and D̃(1) satisfy the bipolar relations (3.1) and (3.2).
Moreover,

1 ∈ C̃ (1) and

∫

Ω

Ũ(1)dµ > −∞.

Now (3.13) follows from Step 1.

Proof of Theorem 3.2. Observe that by Lemmas 3.8 and 3.7 both functions
u and −v are strictly concave. Thus, conjugacy relations (3.8) follow from
Lemma 3.9 and Theorem 12.2 in Rockafellar [22] (if we extend u by the
value −∞ on (−∞, 0]). In turn, the strict concavity of u and −v, (3.8), and
Theorem 26.3 in [22] imply differentiability of u and v everywhere in their
domains.
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Fix x > 0 and take y = u′(x). Let η̂ ∈ D(y) be the optimizer to the dual
problem (3.6) and ξ̂ ∈ C (x) be the optimizer to the primal problem (3.5).
Both η̂ and ξ̂ exist by Lemmas 3.7 and 3.8 respectively. Using the definition
of V, (3.1), (3.3), and Theorem 23.5 in [22] we get

0 ≤

∫

Ω

(

V (η̂) − U
(

ξ̂
)

+ ξ̂η̂
)

dµ ≤ v(y)− u(x) + xy = 0.

Therefore, for µ a.e. ω ∈ Ω we have

V (η̂) = U
(

ξ̂
)

− ξ̂η̂.

This implies the remaining assertions of the theorem:

U ′
(

ξ̂
)

= η̂ µ a.e.,

〈ξ̂, η̂〉 =
∫

Ω
U
(

ξ̂
)

dµ −
∫

Ω
V (η̂) dµ = u(x) − v(y) = xy.

In order to prove Theorem 3.3 we proceed in a way that is similar to the
proof of Proposition 1 in Kramkov and Schachermayer [18]. Define the polar
of a set A ⊆ L0

+ as

Ao ,
{

ξ ∈ L0
+ : 〈ξ, η〉 ≤ 1 for all η ∈ A

}

.

A subset A of L0
+ is called solid if 0 ≤ η ≤ ζ and ζ ∈ A implies that

η ∈ A. Observe that the sets C and D satisfy the bipolar relations. We
will use a version of the bipolar theorem that was proven by Brannath and
Schachermayer in [2]: for a subset A of L0

+ the bipolar Aoo is the smallest
subset of L0

+ containing A, which is convex, solid, and closed with respect to
the topology of convergence in measure.

Lemma 3.10. Under the conditions of Theorem 3.2, for every fixed y > 0 let
η̂(y) be the minimizer to the dual problem (3.6). Then there exists a sequence
(ζn)n≥1 in D̃ that µ a.e. converges to η̂(y)/y.

Proof. Fix y > 0. By assumption D̃ is a convex set that satisfies (3.9).
Therefore, applying the bipolar theorem (see [2]) we deduce that D is the
smallest convex, closed and solid subset of L0

+ (Ω, F , µ) containing D̃ . Thus

for any η ∈ D there exists a sequence (ζn)n≥1 in D̃ such that ζ = lim
n→∞

ζn

exists µ a.e. and ζ ≥ η. In particular such a sequence exists for η = η̂(y)/y.
We deduce from optimality of η̂(y) that η = ζ = lim

n→∞
ζn.

17



Lemma 3.11. Under the conditions of Theorem 3.2 for each y > 0 we have

inf
η∈D̃

∫

Ω

V (yη)dµ < ∞.

Proof. To simplify notations we will assume that y = 1. Let (an)n≥1 be a

sequence of strictly positive numbers such that
∞
∑

n=1

an = 1. By Lemma 3.7,

for each n ≥ 1 there exists η̂(an), the minimizer to the dual problem (3.6)
when y = an. One can construct a sequence of strictly positive numbers
(δn)n≥2 that decreases to 0, such that

∞
∑

n=1

∫

Ω

V (η̂(an)) 1An
dµ < ∞, if An ∈ F , and µ(An) ≤ δn, n ≥ 2. (3.19)

From Lemma 3.10 we deduce the existence of a sequence (ηn)n≥1 ⊂ D̃ such
that

µ (V (anηn) > V (η̂(an)) + 1) ≤ δn+1, n ≥ 1.

Define the sequences of measurable sets (Bn)n≥1 and (An)n≥1 as follows:

Bn , {V (anηn) ≤ V (η̂(an)) + 1} , n ≥ 1,

A1 , B1, . . . , An , Bn\

(

n−1
⋃

k=1

Ak

)

, . . . .

Then (An)n≥1 is a measurable partition of Ω and µ (An) ≤ δn for n ≥ 2.

To finish the proof, let η ,
∞
∑

n=1

anηn. Then η ∈ D̃ , since D̃ is closed

under countable convex combinations. From the construction of (An)n≥1,
monotonicity of V , and (3.19) we obtain

∫

Ω
V (η)dµ =

∞
∑

n=1

∫

Ω
V

(

∞
∑

j=1

ajηj

)

1An
dµ

≤
∞
∑

n=1

∫

Ω
V (anηn) 1An

dµ

≤
∞
∑

n=1

∫

Ω
V (η̂(an)) 1An

dµ + µ(Ω)

< ∞.

This concludes the proof of the lemma.
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Proof of Theorem 3.3. By symmetry between the primal and dual problems,
it suffices to prove that

v(y) = inf
η∈D̃

∫

Ω

V (yη)dµ, y > 0.

Fix y > 0 and ε > 0. We will show that there exists η ∈ D̃ such that

∫

Ω

V ((y + ε)η) dµ ≤ v(y) + ε.

Let η̂ ∈ D(y) be the minimizer to the dual problem (3.6), ζ be an element
of D̃ , such that

∫

Ω

V (εζ) dµ < ∞,

whose existence follows from Lemma 3.11. Let δ > 0 be such that
∫

Ω

(|V (η̂)| + |V (εζ)|) 1Adµ ≤
ε

2
, if A ∈ F with µ(A) ≤ δ.

By Lemma 3.10 there exists θ ∈ D̃ such that the set

B ,

{

V (yθ) > V (η̂) +
ε

2µ(Ω)

}

has measure µ(B) ≤ δ. Define

η ,
yθ + εζ

y + ε
.

Since D̃ is convex it follows that η ∈ D̃ . By construction of the set B and
monotonicity of V we obtain

∫

Ω
V ((y + ε)η)dµ =

∫

Ω
V (yθ + εζ) dµ

≤
∫

Ω
V (yθ) 1Bcdµ +

∫

Ω
V (εζ) 1Bdµ

≤ ε
2

+
∫

Ω
V (η̂) dµ +

∫

Ω
(V (εζ) − V (η̂)) 1Bdµ

≤ v(y) + ε.

4 Proofs of the main theorems

Let us recall the concept of Fatou convergence of stochastic processes, see [7].
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Definition 4.1. Let τ be a dense subset of [0,∞). A sequence of processes
(Y n)n≥1 is Fatou convergent on τ to a process Y , if (Y n)n≥1 is uniformly
bounded from below and

Yt = lim sup
s↓t, s∈τ

lim sup
n→∞

Y n
s = lim inf

s↓t, s∈τ
lim inf
n→∞

Y n
s

almost surely for every t ≥ 0. If τ = [0,∞), then the sequence (Y n)n≥1 is
called Fatou convergent.

We also recall that a probability measure Q is called an equivalent local
martingale measure for X , if Q is equivalent to P and every X ∈ X is a
local martingale under Q. We denote the set of equivalent local martingale
measures by M e.

The following lemma can be thought as an extension of Theorem 5.12
in [6] to our settings. The proof of Lemma 4.2 is based on an application
of Fatou convergence and the optional decomposition theorem, see [19, 7].
However, since assumption (2.5) is weaker than the condition M e 6= ∅ in
[19, 7], we need to do extra work.

Lemma 4.2. Let c be a nonnegative optional process and κ be a stochastic
clock. Under the assumptions (2.1) and (2.5), the following conditions are
equivalent:

(i) c ∈ A ,

(ii) sup
Z∈Z

E
[∫∞

0
ctZtdκt

]

≤ 1.

Proof. Let c ∈ A . Then there exists a predictable S-integrable process H ,
s.t.

1 +

∫ t

0

HudSu ≥

∫ t

0

cudκu ≥ 0, t ≥ 0.

Take an arbitrary Z ∈ Z . Using supermartingale property of Zt(1+
∫ t

0
HudSu),

t ≥ 0, we obtain for every T ≥ 0

1 ≥ E

[

ZT

(

1 +

∫ T

0

HudSu

)]

≥ E

[

ZT

∫ T

0

cudκu

]

.

Using localization and integration by parts we deduce

E

[

ZT

∫ T

0

cudκu

]

= E

[
∫ T

0

cuZudκu

]

.

Taking T → ∞ and using the monotone convergence theorem, we get (ii).

20



Conversely, assume that sup
Z∈Z

E
[∫∞

0
ctZtdκt

]

≤ 1. Using localization and

integration by parts we deduce from (ii):

E

[

Zn

∫ n

0

cudκu

]

= E

[
∫ n

0

cuZudκu

]

, n ≥ 0.

One can see that
{

(Zt)t∈[0,n] : Z ∈ Z
}

coincides with the set of cádlág
densities of equivalent local martingale measures for X on (Ω, Fn). Let us
denote the set of such measures by M e

n . Then, by Proposition 4.2 in [19],
there exists a cádlág process V n on [0, n] given by

V n
t = ess sup

Q∈M e
n

EQ

[
∫ n

0

cudκu|Ft

]

, t ∈ [0, n],

which is a supermartingale under every Q ∈ M e
n . Notice that V n

t ≥
∫ t

0
cudκu,

t ∈ [0, n], and V n
0 ≤ 1. Now, applying Theorem 4.1 in [7], we can write V n

as

V n
t = V n

0 +

∫ t

0

Hn
u dSu − An

t , t ∈ [0, n],

where Hn is predictable S-integrable and An is optional and increasing, s.t.
An

0 = 0. Let us extend Hn to [0,∞) by setting Hn
t , 0 for t > n. Using

Lemma 5.2 in [7], we can construct a sequence of stochastic processes Y n ∈
conv

(

1 +
∫ ·

0
Hn

u dSu, 1 +
∫ ·

0
Hn+1

u dSu, . . .
)

, n ≥ 1, and a process Y , such that
(ZY n)n≥1 is Fatou convergent on the set of positive rational numbers to a

supermartingale ZY for every Z ∈ Z . Then, we have Yt ≥
∫ t

0
cudκu, t ≥ 0,

and Y0 ≤ 1. Now, on [0, n] using Theorem 4.1 in [7], we get

Yt = Y0 +

∫ t

0

Gn
udSu − Bn

t , t ∈ [0, n],

where Gn is predictable S-integrable and Bn is optional and increasing with
Bn

0 = 0. Let us set Gn
t , 0 for t > n. Denoting

n(t) , min {n ∈ N : n > t} , t ≥ 0,

we deduce that the process

G̃t ,

n(t)
∑

k=1

(

Gk
t − Gk−1

t

)

, t ≥ 0,

is such that 1 +
∫ t

0
G̃udSu ≥

∫ t

0
cudκu, t ≥ 0. Thus, c ∈ A .
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Lemma 4.3. Let κ be a stochastic clock. Under the assumptions (2.1) and
(2.5), for every c ∈ A we have

sup
Z∈Z

E

[
∫ ∞

0

ctZtdκt

]

= sup
Y ∈Y

E

[
∫ ∞

0

ctYtdκt

]

≤ 1.

Proof. By definition (2.9) for an arbitrary Y ∈ Y we can find a sequence
(Y n)n≥1 in the solid hull of Z (i.e., such that Y n ≤ Zn (dκ × P) a.e. for some
Zn ∈ Z ), such that (Y n)n≥1 converges (dκ × P) a.e. to Y . Using Fatou’s
lemma and Lemma 4.2 we get

E

[
∫ ∞

0

ctYtdκt

]

≤ lim inf
n→∞

E

[
∫ ∞

0

ctY
n
t dκt

]

≤ sup
Z∈Z

E

[
∫ ∞

0

ctZtdκt

]

≤ 1.

Denote by L0 = L0 (dκ × P) the linear space of (equivalence classes
of) real-valued optional processes on the stochastic basis

(

Ω, F , (Ft)t≥0 , P
)

which we equip with the topology of convergence in measure (dκ × P). Let
L0

+ be the positive orthant of L0. Recall that a polar of a set A ⊆ L0
+ is

defined as:

Ao ,

{

Y ∈ L0
+ : E

[
∫ ∞

0

ctYtdκt

]

≤ 1 for all c ∈ A

}

.

In view of Theorems 3.2 and 3.3 in order to complete the proofs of Theorems
2.3 and 2.4 it suffices to establish the following proposition. Note that the
sets C , D and measure µ correspond to the sets A , Y and measure (dκ × P),
the sets C̃ and D̃ accord with the sets B and Z , respectively.

Proposition 4.4. Assume that an Rd-valued semimartingale S satisfies (2.5).
Under the condition (2.1), the sets A and Y , defined in (2.3) and (2.9), re-
spectively, have the following properties:

(i) A and Y are subsets of L0
+ that are convex, solid and closed in the

topology of convergence in measure (dκ × P) .
(ii) The sets A and Y satisfy the bipolar relations:

c ∈ A ⇔ E
[∫∞

0
ctYtdκt

]

≤ 1 for all Y ∈ Y ,
Y ∈ Y ⇔ E

[∫∞

0
ctYtdκt

]

≤ 1 for all c ∈ A .

(iii)There exists c ∈ A such that c > 0 and there exists Y ∈ Y such that
Y > 0.
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Proof. (i) It is enough to show closedness of A . Let (cn)n≥1 be a sequence in
A that (dκ × P) a.e. converges to c. For an arbitrary Z ∈ Z using Fatou’s
lemma and Lemma 4.2 we get:

E

[
∫ ∞

0

ctZtdκt

]

≤ lim inf
n→∞

E

[
∫ ∞

0

cn
t Ztdκt

]

≤ 1.

Therefore by Lemma 4.2, c ∈ A , and thus A is closed.
(ii) It follows from Lemma 4.2 that

A = Z
o,

whereas from Lemma 4.3 we deduce

Y ⊆ A
o = Z

oo. (4.1)

Since Y is closed, convex, and solid and Z ⊂ Y , it follows from the bipolar
theorem of Brannath and Schachermayer that Z oo ⊆ Y . Combining this
with (4.1) we conclude that

Y = A
o. (4.2)

On the other hand it follows from part (i) that A is also convex, closed and
solid. Thus A = A oo by the bipolar theorem. Therefore, from (4.2) we get

A = Y
o.

(iii) Since X contains a constant function 1 = (1)t≥0, the existence of
c ∈ A , such that c > 0, follows from the definition of the set A . The
existence of Y ∈ Y , such that Y > 0, follows from assumption (2.5). This
completes the proof of Proposition 4.4.
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[7] H. Föllmer and D. Kramkov. Optional decompositions under con-
straints. Probab. Theory Related Fields, 109:1–25, 1997.

[8] H. He and N. D. Pearson. Consumption and portfolio policies with
incomplete markets and short-sale constraints: the finite-dimensional
case. Math. Finance, 1:1–10, 1991.

[9] H. He and N. D. Pearson. Consumption and portfolio policies with
incomplete markets and short-sale constraints: the infinite-dimensional
case. J. Econom. Theory, 54:259–304, 1991.

[10] I. Karatzas. Optimization problems in the theory of continuous trading.
SIAM J. Control Optim., 27:1221–1259, 1989.

24



[11] I. Karatzas and K. Kardaras. The numéraire portfolio in semimartingale
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