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Abstract 

Neurocomputers offer a massively parallel computing paradigm by mimicking the human 

brain. Their efficient use in statistical information processing has been proposed to overcome 

critical bottlenecks with traditional computing schemes for applications such as image and 

speech processing, and associative memory. In neural networks information is generally 

represented by phase (e.g., oscillatory neural networks) or amplitude (e.g., cellular neural 

networks). Phase-based neurocomputing is constructed as a network of coupled oscillatory 

neurons that are connected via programmable phase elements. Representing each neuron 

circuit with one oscillatory device and implementing programmable phases among neighboring 

neurons, however, are not clearly feasible from circuits perspective if not impossible. In contrast 

to nascent oscillatory neurocomputing circuits, mature amplitude-based neural networks offer 

more efficient circuit solutions using simpler resistive networks where information is carried via 

voltage- and current-mode signals. Yet, such circuits have not been efficiently realized by CMOS 

alone due to the needs for an efficient summing mechanism for weighted neural signals and a 

digitally-controlled weighting element for representing couplings among artificial neurons. 

Large power consumption and high circuit complexity of such CMOS-based 

implementations have precluded adoption of amplitude-based neurocomputing circuits as well, 

and have led researchers to explore the use of emerging technologies for such circuits. Although 
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they provide intriguing properties, previously proposed neurocomputing components based on 

emerging technologies have not offered a complete and practical solution to efficiently construct 

an entire system. In this thesis we explore the generalized problem of co-optimization of 

technology and architecture for such systems, and develop a recipe for device requirements and 

target capabilities. We describe four plausible technologies, each of which could potentially 

enable the implementation of an efficient and fully-functional neurocomputing system. 

We first investigate fully-digital neural network architectures that have been tried before 

using CMOS technology in which many large-size logic gates such as D flip-flops and look-up 

tables are required. Using a newly-proposed all-magnetic non-volatile logic family, mLogic, we 

demonstrate the efficacy of digitizing the oscillators and phase relationships for an oscillatory 

neural network by exploiting the inherent storage as well as enabling an all-digital cellular 

neural network hardware with simplified programmability. We perform system-level 

comparisons of mLogic and 32nm CMOS for both networks consisting of 60 neurons. 

Although digital implementations based on mLogic offer improvements over CMOS in terms 

of power and area, analog neurocomputing architectures seem to be more compatible with the 

greatest portion of emerging technologies and devices. For this purpose in this dissertation we 

explore several emerging technologies with unique device configurations and features such as 

mCell devices, ovenized aluminum nitride resonators, and tunable multi-gate graphene devices 

to efficiently enable two key components required for such analog networks – that is, summing 

function and weighting with compact D/A (digital-to-analog) conversion capability. We 

demonstrate novel ways to implement these functions and elaborate on our building blocks for 

artificial neurons and synapses using each technology. We verify the functionality of each 

proposed implementation using various image processing applications based on compact circuit 

simulation models for such post-CMOS devices. 
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Finally, we design a proof-of-concept neurocomputing circuitry containing 20 neurons using 

65nm CMOS technology that is based on the primitives that we define for our analog 

neurocomputing scheme. This allows us to fully recognize the inefficiencies of an all-CMOS 

implementation for such specific applications. We share our experimental results that are in 

agreement with circuit simulations for the same image processing applications based on 

proposed architectures using emerging technologies. Power and area comparisons demonstrate 

significant improvements for analog neurocomputing circuits when implemented using beyond-

CMOS technologies, thereby promising huge opportunities for future energy-efficient 

computing. 
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Chapter 1  

Introduction 

As we reach the end of the CMOS roadmap researchers have started to intensively focus on 

post-CMOS technologies for circuit and system solutions. While there are several emerging 

technologies that offer great promise as CMOS alternatives, there are none that completely 

replace CMOS for the systems and architectures that are implemented today. For this reason it 

is important to explore system opportunities for emerging technologies as they evolve, since 

small block- or circuit-level comparisons to CMOS technology are unlikely to demonstrate any 

significant benefit. The greatest potential for an emerging technology will only be evident in 

terms of complete systems that are configured and optimized to exploit their unique features. 

1.1 Neurocomputing and Associative Memories 

Neurocomputing is considered an intriguing alternative to computing based on traditional 

techniques due to its brain-inspired massive parallelism. A neurocomputer attempts to mimic 

the human brain via a network of coupled artificial neurons that process information in parallel. 

Each brain neuron corresponds to a computational unit in a neurocomputer, and a connection 

between two artificial neurons represents a synapse that is connecting two brain neurons. The 
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strength of this synapse is the synaptic weight in a neurocomputer that relates one artificial 

neuron to another. In this way, neurocomputers operate analogously to the human brain. 

Traditional computing schemes (variants of the von Neumann architecture) run a software 

algorithm for a specific application by sequentially executing each line in the instruction code. 

Even though each execution might take a very short time the overall computation efficiency is 

not that high due to the serial execution of instructions when compared to neurocomputing [1]-

[3]. Instead, a neurocomputer performs pattern recognition via associative memory in a 

massively-parallel manner. It maps a set of input patterns to a set of output patterns via synaptic 

weights, whereby an output pattern can be retrieved for a given initial pattern. It therefore 

represents a powerful component for non-algorithmic, nonlinear, complex problems, and 

statistical information processing applications such as pattern recognition, image processing, 

and associative memory. These applications would otherwise require numerous memory fetch 

operations and a processor that is executing a list of commands for optimization. 

For example, traditional associative memory circuits use Manhattan distance (MD) 

technique to find the best match among stored patterns in the system for a given noisy input 

pattern [4]-[5]. Since directly implementing MD is costly due to the required numerous 

subtraction and absolute value operations, binary bits representing the grey-scale pixels are first 

converted into thermometer bits, and then Hamming distance is applied to find the number of 

unmatched bit locations between that input pixel and the corresponding pixel in the stored 

patterns. However, such an approach consumes significant amount of memory resources 

because each memorized pattern has to be stored in the system as opposed to the neural 

networks (NNs) where the stored patterns are represented by synaptic weights among artificial 

neurons. This technique does not also provide functional flexibility that associative memories 

based on NNs offer because MD finds a deterministic match while NNs offer a statistical 
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approach which is useful for various image processing applications other than pattern matching 

as well. 

We have modeled both MD and NN using a hardware description language (VHDL). We 

have mapped these models to standard logic gates using a logic synthesis tool (Synopsys Design 

Compiler). Figure 1.1 shows a hardware comparison of both associative memories that are 

implemented in 32nm CMOS. Although a computer would require less power to perform these 

functions, and we would never consider an MD implementation of the scale that would require 

10’s of kilowatts, this comparison does show how these two custom implementations would 

compare to each other in terms of power and area when built to perform the same functions. 

Apart from aforementioned implementation challenges MD requires 200x more devices and 

dissipates 700x more power for large-scale systems. This comparison does not consider the 

potential benefits of localized highly-distributed memory and computation that the NNs offer as 

opposed to a separate memory and processor. 

1.2 Neurocomputing Circuits Using CMOS Technology 

While neurocomputers offer a promising architecture for energy-efficient, future computing 

systems, their CMOS implementations have largely been viewed as impractical and significantly 

inferior to implementations based on more traditional CMOS architectures and memories due 

to the required circuit complexity and corresponding power consumption, thereby limiting the 

wide use of such architectures. 

Oscillatory neural networks (ONNs), a prevalent example of phase-based neurocomputing, 

are particularly interesting systems since they mimic nature and the brain. But each neuron 

requires a voltage or current controlled oscillator and a means of programming the phase 

relationship among all neurons to represent the stored information. Importantly, ONNs rely on 

having connections (artificial synapses) among all artificial neurons – that is, the ability to 
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program the n2 phase relationships among n artificial neurons. CMOS voltage-controlled 

oscillators (VCOs) are theoretically viable to represent oscillations, but completely impractical 

from an energy standpoint. Moreover, implementing the phase relationships among the VCOs is 

even more costly. For example, proposed ONN architecture based on phase-locked loops (PLLs) 

in Figure 1.2 [3] requires one PLL for each artificial neuron and one variable gain amplifier 

(VGA) for each programmable synapse. It would be impractical to power n PLLs and n2 VGAs 

on a single CMOS chip for even a modest-size associative memory. To provide an analog control 

voltage to VGAs this architecture also necessitates the use of digital-to-analog converters 

(DACs) to convert digital control bits for synapse programming to an analog voltage level, 

further exacerbating the overall system performance. 

 

Figure 1.1. Hardware comparison of MD- and NN-based associative memory. mp denotes the 

number of memorized patterns. 
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While nascent ONN systems have severe implementation challenges, amplitude-based 

cellular neural networks (CNNs) offer more efficient circuits due to being a more mature 

technology. For CNNs there are training algorithms that have already been developed based on 

only local connections among just the nearest neighboring neurons. Independent of memory 

size or number of neurons, each artificial neuron is interconnected only to neighboring neurons 

within a specified radius. The radius can be extended for better accuracy such that all neurons 

share one-to-one connections like ONN architectures, but CNNs can also be implemented using 

the smallest possible radius that corresponds to only 9 connections to neighboring neurons. 

Even with so few connections though, CNN implementation of the neurons and synapses via 

CMOS is inefficient as compared to more traditional computing architectures. 

 

Figure 1.2. Conceptual architecture of PLL NNs for a 2-neuron system. VCO in this figure represents 

the voltage-controlled oscillator; and s11, s12, s21, and s22 denote the corresponding programmable synaptic 

weights between artificial neurons that can be implemented with VGAs. 

For example, analog implementations of CNNs have been attempted whereby a digital input 

for each programmable synapse is converted to a control voltage using a DAC and an analog 

variable-gain amplifier/multiplier [6]-[7]. Since each neuron in a CNN system has 9 artificial 

synapses, nine DACs and nine analog amplifiers are needed for each artificial neuron, which is 
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impractical for large-scale systems. Such implementations also lack the functional flexibility of 

neurocomputers, since artificial neuron circuits share the same synapse circuits using a cloning 

template for synaptic weights to compensate the high circuit complexity required for synapse 

circuits. Moreover, the best reported digital CNN implementation in CMOS [8] requires 32 D 

flip-flops and 155 mostly-large-size logic gates (e.g., look-up tables, multiplexers, XORs, etc.) 

for each neuron, which is also not practical for large-scale systems. 

1.3 Organization of Thesis 

Although CMOS is inefficient for constructing neurocomputers, emerging technologies 

portend to offer new opportunities. However, the proposed implementations so far have either 

not addressed and solved all the performance issues that CMOS-based architectures already 

have, or posed new problems that require special circuit and/or manufacturing techniques. In 

this thesis we describe our novel approach to enable efficient and feasible neurocomputing 

circuits and associative memories. For this purpose we begin with a survey of previously 

proposed designs based on emerging technologies and show the issue(s) associated with each 

design in Chapter 2. Then we explain our design approach (i.e., co-optimization of technology 

and architecture) to deal with such issues, and provide the required device/technology 

specifications for building affordable neurocomputing systems. Next, using these specifications, 

we demonstrate our proposals for both digital and analog neurocomputing circuits and 

associative memories enabled by emerging technologies such as mLogic, mCell, ovenized 

aluminum nitride (AlN) resonator and graphene in Chapter 3, Chapter 4, Chapter 5 and Chapter 

6, respectively. In these chapters we also provide circuit simulations and performance 

comparisons to CMOS technology using Verilog-A compact models for the corresponding 

devices all developed based on measurement data, and discuss device developments required for 

building practical systems based on such devices. We strongly believe our findings in these 

chapters will guide the beyond-CMOS device development for energy-efficient computing. 
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Chapter 7 presents the design and experimental results of a proof-of-concept CMOS chip in 

65nm that emulates our proposed analog neurocomputing scheme. Chapter 8 concludes the 

thesis with brief summary and future considerations. 
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Chapter 2  

Emerging Technologies for 

Neurocomputing 

In this chapter we investigate the use of emerging technologies for a more efficient 

implementation of neurocomputing circuits. We start with an overview of recently proposed 

neurocomputing circuits and associative memories based on post-CMOS technologies, such as 

resistance change devices. We further evaluate the challenges and deficiencies associated with 

the deployment of these device technologies in actual neurocomputing systems. We then 

propose a generalized abstraction for a neurocomputing circuit that would be required to 

implement artificial neurons and synapses in a system context. We postulate how our system 

approach would be implemented, and outline the design features required for the 

device/technology for both digital and analog implementations. 

2.1 Previous Work 

Emerging technology devices offer new opportunities to efficiently construct a tunable 

analog resistance that could be used to implement programmable artificial synapses for 
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neurocomputers. Recently the use of specific memristor devices such as RRAM (resistive RAM) 

[9]-[10] and PCM (phase change memory) [11]-[13] (see Figure 2.1) has been shown to 

efficiently implement electronic synapses. Such voltage-controlled resistances are adjusted to 

have programmable synaptic weights. However, since these devices have only one control path 

for setting their resistances, using them as artificial synapses requires either one DAC per 

synapse to convert digital control bits into an analog control signal or one digitally-controlled 

pulse generator for each synapse to provide a pulse-based programming scheme for gradual 

resistance change [9]-[13]. In such implementations the neuron circuits would be implemented 

in traditional CMOS technology, which requires compatible monolithic integration with CMOS. 

 

Figure 2.1. RRAM [9] (left) and PCM [13] (right). 

Optically gated carbon nanotube field effect transistors (OG-CNTFETs) in Figure 2.2 have 

also been proposed to efficiently represent artificial synapses using a pulse-based programming 

for gradual resistance change [14]. Along with the aforementioned issues for two-terminal 

memristor devices, OG-CNTFETs suffer from high resistance values ranging from MΩ to GΩ, 

thereby requiring high voltages to create reliable/distinguishable currents through artificial 

synapses. For example, the proposed neurocomputing scheme in [14] uses a 7V supply voltage to 

generate only 10-40nA current, which would present design challenges with internal and 

external noise sources. 
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Figure 2.2. OG-CNTFET [14]. 

Another design based on memristors (e.g., titanium dioxide in Figure 2.3) [15]-[17] relies on 

a memristor bridge synapse consisting of 4 or 5 devices and a CMOS differential pair to convert 

voltage-mode signals to current-mode signals for an efficient summing of neural signals. The 

neuron circuit is implemented as a differential amplifier to sum these currents coming from 

neighboring neurons and generate an output voltage based on the summation. This 

implementation uses wide and strong pulses to program memristors (synapse programming), 

but small and narrow pulses during neural evaluation in order not to significantly alter 

resistance of memristors. This requires complex pulse generation circuitry, which is costly in 

terms of area and power. To prevent undesired resistance drift during neural evaluation, a 

doublet generator has been proposed [16] that results in further power and area consumption. 

 

Figure 2.3. Titanium dioxide (TiO2)-based memristor [17]. 
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Spintronic devices have also been recently proposed to implement neurocomputers by 

exploiting spin properties of electrons to perform efficient computation [18]-[19]. Such circuits 

use domain wall magnets (DWMs) for constructing programmable synapses and magnetic 

tunnel junctions (MTJs) for implementing artificial neurons as shown in Figure 2.4. However, 

both neuron and synapse circuits still require CMOS devices for converting spin-based signals 

into charge mode signals via latches and sending neural information through long-distance 

connections. They also necessitate one DAC for programming each artificial synapse and 

another DAC for applying initial inputs to each artificial neuron. It is important to note, 

however, that domain wall based synapses would not be reliable for these types of applications 

since neural processing currents and/or thermal fluctuations and/or external magnetic fields 

can change the position of the domain wall inside the magnet during neural evaluation, thereby 

changing the corresponding synaptic weight and causing incorrect functioning. 

 

Figure 2.4. Spintronic neuron-synapse unit consisting of MTJ and DWM devices [18]. 

Nanoscale spin torque oscillators (STOs) depicted in Figure 2.5 offer single device oscillators 

to model the artificial neurons as well [20]-[21]. Such devices have been demonstrated to couple 

when implemented on a shared free layer for the magnetic spin [22]; however, efficiently 

implementing a programmable phase among all oscillators to represent the stored data is a 
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daunting challenge if not completely infeasible. Local distances between neighboring neurons 

have been claimed to represent such synaptic weights [21]. Yet, an architecture based on using 

fixed distances as weights cannot be re-programmed once fabricated, thereby eliminating the 

flexible functionality neurocomputers naturally enable. Moreover, a dc current is required to 

specify the STO oscillation frequency, thereby consuming significant stand-by power to store 

state. Several CMOS amplifying stages are also required to boost the tiny STO output power 

[23]. 

 

Figure 2.5. STO (Courtesy of Jimmy Zhu’s group from Carnegie Mellon University). 

Lastly, a neural network design has been demonstrated based on spin waves for information 

exchange [24]. Each artificial neuron is constructed as a magneto-electric cell (see Figure 2.6) 

that has only two magnetic polarization states. Therefore, gray-scale image pixels are not 

possible with this neuron circuit, thus limiting the functionality of overall neurocomputing 

system. Couplings between the cells can be adjusted only by the direction and strength of a 

global magnetic field, so only a few functions can be performed once manufactured. In 
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addition, extra circuitry is required to convert electrical signals to spin waves for the 

initialization of the neural network. 

 

Figure 2.6. Magneto-electric cell [24]. 

2.2 Architecture Abstraction for Neurocomputing Based on 

Emerging Technologies 

While proposed NN architectures based on emerging technologies that have been discussed 

in the previous section do not offer a complete, highly-efficient system solution for 

neurocomputing, co-design and co-optimization of future emerging devices and untried NN 

architectures could produce an efficient and practical neurocomputing system. Our co-

optimization methodology consists of three key steps: i) determine device requirements for an 

efficient NN implementation, ii) explore emerging technologies and new device configurations 

based on these pre-determined requirements, and iii) develop novel neurocomputing systems 

using selected and/or proposed post-CMOS devices via technology-driven architecture 

optimization. 

In this section we analyze a conceptual circuit diagram of a generalized neuron-synapse 

model that can be used for both feed-forward and recurrent (feedback) networks to explore what 
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device specifications are required to construct it efficiently and robustly. Figure 2.7 

demonstrates a typical neuron-synapse model that has been used in both phase- and amplitude-

based NNs [2]-[3], [6]-[8]. In this model the outputs of neighboring neurons are multiplied with 

corresponding synaptic weights. Then the results of these multiplications are accumulated in the 

neuron circuit to generate the neuron state. Finally, neuron circuit takes this summation and 

generates the output of the neuron based on an activation function that generally corresponds to 

a variant of the sigmoid function. Based on this model we now determine required device 

properties for both analog and digital implementations. 

 

Figure 2.7. Conceptual architecture of a typical neuron-synapse model. 

2.2.1 Digital Neural Networks 

In a digital implementation both synaptic weights and neuron outputs are represented by 

binary bits (e.g., 4 or 5 bits [8], [25]). Multiplication of the neighboring neuron outputs by 

synaptic weights, summation of neural signals, and output generation based on this summation 

are done by standard digital logic gates. Therefore, a practical implementation of digital 

associative memories based on NNs requires non-volatile and easily-programmable logic 

families. 
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Non-volatile logic: Digital CMOS neurocomputing circuits consume a great deal of memory 

resources (e.g., D flip-flops, look-up tables and SRAM) for a sequential operation and storing 

data [8]. A non-volatile logic family provides storage at each logic stage, thereby eliminating the 

need for any extra memory element. By exploiting the inherent storage of logic state high 

throughput via deep pipelining can also be achieved [27]. 

Simplified programmability: Associative memories based on neurocomputing offer highly-

distributed memory among small computational units in contrast to traditional computing 

schemes that require separate processor and memory. However, CMOS technology could not 

enable such a feature with today’s technology. Therefore, the emerging technology device must 

provide easy, low-power re-configurability in order to enable highly-efficient digital associative 

memories. 

2.2.2 Analog Neural Networks 

In an analog implementation the neuron outputs are in voltage form, and the synaptic 

weights are represented as resistances that adjust the amount of current going into the neuron 

input from each neighboring neuron. The neuron circuit must efficiently sum these currents and 

then generate an output voltage based on that summation. Hence, an efficient implementation 

of analog associative memories based on neurocomputing requires all of the followings: i) an 

efficient tunable resistance element to represent artificial synapses; ii) an efficient means of 

converting between digital control data and analog computation engine; iii) an efficient 

summing mechanism for neural signals; iv) an efficient device with electrically-isolated input 

and output terminals; and v) an efficient conversion of the summed currents into an analog 

voltage level. 

Tunable resistance element: A programmable analog resistance is required to represent 

artificial synapses. Artificial synapses are used to represent couplings between neighboring 

neurons based on the set of patterns that will be stored in the system. When implemented as a 
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tunable resistor the strength of these synapses can be gradually increased or reduced using a 

digital control data with 4-5 bits. Such resolution is sufficient enough for a hardware 

implementation of neurocomputing systems [2], [6], [8], [25]. Neurocomputers can also tolerate 

fuzziness on such resistances up to 15% [6], but still continue functioning correctly. 

Efficient D/A (digital-to-analog) conversion: The control inputs for both synapse 

programming and neuron initialization are in digital form. Such digital data must be efficiently 

converted to a resistance value in a binary-weighted approach that is a typical feature of 

conventional DAC circuits. Hence, provided tunable analog resistance nature of an emerging 

technology device must be supported by such a property for an efficient NN implementation 

(i.e., digital control data applied to such a device must gradually alter its resistance in a binary-

weighted fashion). 

Efficient summing mechanism for neural information processing signals: As explained 

above, inputs to the neuron circuits coming from neighboring synapses are in current form. The 

device that is to be used for implementing artificial neurons must add such currents in a fast and 

compact manner without affecting the current level on artificial synapses. 

Electrically-isolated input-output terminals: Since the input and output of the neuron 

circuits are in different forms (i.e., one is current, and the other voltage) they must not affect 

each other during neural evaluation. In other words, the output voltage must not impact the 

current level on artificial synapses, and currents coming from neighboring synapses must not 

leak into output path. This can be achieved by a device with electrically-isolated input-output 

terminals. This feature is also required to separate programming and reading paths of artificial 

synapses during neural evaluation (i.e., current passing through reading path of the device must 

not significantly affect its resistance). This would otherwise require special powering schemes 

and circuits, or tight integration with CMOS technology [9]-[19]. 
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Efficient conversion mechanism between the summed neural signals and neuron output: 

Though an electrical isolation between the input and output paths of the device that will be used 

for efficiently building a neurocomputer is necessary, an efficient coupling mechanism between 

these two paths is required to convert the summation of neural signals into an analog output 

voltage using an inverter/buffer-like resistive divider (e.g., magnetic or thermal coupling). This 

provides a sigmoid-like transfer function for the neuron circuits. 

An emerging technology that provides the aforementioned features in an efficient and 

compact way can enable a practical realization of an analog associative memory by representing 

each artificial neuron as a voltage divider with two tunable (pull-up and pull-down) resistors 

and each artificial synapse as a programmable resistor with 4 or 5 digital control bits. 

2.3 Towards Highly-Efficient Associative Memories and 

Neurocomputing 

Based on these requirements for both analog and digital architectures, we propose novel 

neurocomputing systems via a technology-driven architecture optimization in the following 

chapters that utilize various emerging technologies to create what might not be the definitive 

neural system, but could be a step toward a practical realization of a complete working system 

that could improve with future technology improvements and tuning. 

It is important to note that both storage capacity and recognition accuracy of the proposed 

associative memories and neurocomputing architectures in the next chapters do not depend on 

the enabling devices and circuits, but on the selected training algorithms to calculate synaptic 

weights. Developing such algorithms, however, is not within the scope of this thesis. Moreover, 

the overall storage capacity can be further increased by hierarchical tree approach proposed in 

[20]. It is also possible to improve recognition capability of large neural systems by partitioning 

the network to process smaller parts of input patterns simultaneously (i.e., building smaller 
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associative memories in parallel) while still having the nearest neighbor coupling within each 

computing unit. In such an approach the final output pattern can be easily obtained by 

combining the pattern retrieval results from each partitioned unit. 
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Chapter 3  

Fully-Digital Associative Memories 

and Neurocomputing 

In this chapter we propose an approach for associative memories whereby the non-volatility 

offered by a newly-proposed magnetic logic family, mLogic, is exploited to construct fully-digital 

neurocomputing circuits with great efficiency [26]. This chapter first explains how to build 

mLogic circuits enabled by novel mCell devices, following a brief description for the structure 

and working mechanism of these devices. Second, it demonstrates our design approach for fully-

digital NNs in application to CNN and ONN systems, along with related behavioral simulation 

results obtained from MATLAB. Last, it provides system-level comparison results with respect 

to 32nm digital CMOS implementations. 

3.1 mCell: Non-Volatile Programmable Magnetic Device 

The mCell device that has been recently proposed in [27]-[29] is based on modification of an 

existing STT-MTJ-based MRAM (magnetic RAM) device [30] to incorporate an electrically 

isolating but magnetically coupling layer [31] between the STT switching layer and coupled free 
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layer, as shown in Figure 3.1. With this added isolation layer it becomes a four terminal device 

comprised of a write-path (w+, w-) and an electrically-isolated read-path (R, R’) (see Figure 

3.1). The magnetic moments of the top magnetic electrodes are in the same direction and 

permanently fixed, acting as magnetic reference layer. The STT switching layer is composed of a 

magnetic metal connecting the bottom magnetic electrodes. For these electrodes, the magnetic 

moments at the opposite ends are oriented in the opposite direction by a pinning mechanism. A 

domain wall (i.e., a transition region of rotating magnetic moments) is formed due to this 

opposite magnetization in the bottom electrodes. 

 

Figure 3.1. 2D cross section view of mCell for the write-path current direction from left to right (left) 

and right to left (center), and its schematic symbol (right). 

The domain wall in the STT switching layer can be moved by sending a small current pulse 

through the write-path, utilizing an STT effect. This also programs the magnetization of coupled 

free layer via magnetic coupling between that layer and the STT switching layer. The domain 

wall has only two stable locations, as shown in Figure 3.1. As such, the magnetization of coupled 

free layer becomes only parallel or antiparallel to the magnetic moments of the top electrodes. 

When these two are in parallel, the read-path resistance is low and vice versa. This makes mCell 

work in two stable resistance states that are determined by both direction and pulse duration of 

the write-path current. These resistances are set by a non-volatile magnetic polarization and 
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therefore, remain the same when the device is powered off. With today’s technology, the read-

path resistance changes by only a factor of 2x [32] and has been best shown to change by 7x with 

special techniques [33]. It is expected that with improvements in magnetic devices and 

materials the high-to-low read-path resistance ratio will further increase, possibly surpassing 

what has been considered a 10x theoretical limit. 

3.2 mLogic: Non-Volatile All-Magnetic Logic Technology 

Although building non-volatile logic using mCells is challenging due to dynamic range for 

the read-path resistance as small as 2-3x with today’s materials (e.g., 2.5kΩ/1.25kΩ), a complete 

mLogic family has been recently developed based on novel current-steering technique [27]-[29]. 

Pulsed supply voltages that synchronize and power the logic circuits provide current-based logic 

programming signals via resistor dividers. Hence, both input and output signals of mLogic gates 

are of currents, not voltages. The corresponding input and output logic levels are then 

determined by the direction of these currents (e.g., a positive current corresponds to logic ‘1’ 

while a negative current corresponds to logic ‘0’). 

The mLogic NAND gate example implemented in a similar way to a CMOS NAND gate is 

illustrated in Figure 3.2 (left). A unique property of this logic technology is that inversion is free, 

since the read-path resistance of the mCell device is determined by the direction of its write-

path current. For example, the A and B signals can be connected to the right terminal of the 

mCell devices in the pull-up network instead of connecting their inversions to the left terminal 

of those devices, as depicted in Figure 3.2 (center). Similarly, any other mLogic gate can be 

implemented without needing complementary inputs. 

Moreover, a complementary mLogic gate can be obtained by simply interchanging the pull-

up and pull-down networks, since the output logic level is determined by the resistance ratio of 

these two networks. In this way, for instance, the mLogic NAND gate in Figure 3.2 (center) can 
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be converted to an AND gate without requiring an inverter, as shown in Figure 3.2 (right). It is 

also important to note that inverters/buffers may still be used for signal buffering and 

restoration, or as delay elements in this logic family. 

 

Figure 3.2. Traditional NAND (left), inversion-free NAND (center), and AND (right) gate examples 

using mLogic technology. 

The vertical terminals of mCells (i.e., read-path) are characterized by two series MTJ 

resistances that are formed between the top electrodes and free layer via a tunnel barrier as 

shown in Figure 3.1. The horizontal path (i.e., write-path) for the programming current has 

small resistance as low as 120Ω [27]. This low input resistance represents the fanouts that are 

connected in series to form the current path that programs the states of mCells as shown in 

Figure 3.3. As such, each fanout mCell receives the same programming current, thereby 

preventing current shunting through unbalanced loads. 

Even with only 2-3x read-path resistance change, with proper sizing and voltage levels the 

programming current signals can be properly steered to drive the logic states of the fanouts [27]-

[29]. For example, referring to Figure 3.3, consider that the non-overlapping power clocks are 

positive (pClk1,2+) and negative (pClk1,2-) with respect to the ground shown at the end of the 

fanout chain. If the read-path resistance of mCell with the A input to the upward arrow is high 

resistance, and that to the downward arrow is low resistance, then the logic signal F would be a 
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current flowing from right to left in that figure. The direction of this current would program the 

states of mCells with the F input signal. 

 

Figure 3.3. An inverter driving three two-input NOR gates. The fanout mCells are connected in series 

as highlighted by the red path. Two non-overlapping power clocks are applied to the driven and driving 

mLogic gates. 

Moreover, efficient logic pipelining (see Figure 3.4) is enabled by the inherent storage of the 

mCell state and the non-overlapping power clocks [27]. In each pipeline stage the mLogic gates 

marked by P1, and those marked by P2 are clocked with the non-overlapping pClk1+/- and 

pClk2+/- shown in Figure 3.4, respectively. This results in further power reduction for our 

proposed fully-digital associative memories in the next sections because only some of the 

mLogic gates will dissipate power at each time interval. 

It is possible to integrate CMOS transistors with mCells to form a hybrid non-volatile logic 

family, but this eliminates some of the aforementioned energy-saving benefits. Moreover, there 

are integration issues that make this costly and impractical, since tightly integrating mCells and 

mLogic on top of CMOS would consume routing resources that are needed for all of the artificial 

synapses in our proposed fully-digital associative memory architectures. Instead, we envision a 
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fully-functional mLogic chip that can be layered or stacked (using through-silicon vias) with 

CMOS only for power, clocking and input/output (I/O). 

 

Figure 3.4. Pipelined mLogic gate stages [27]. Each pipeline stage is divided into two sub-stages. The 

mLogic gates in the first sub-stages and second sub-stages are clocked with two non-overlapping power 

clocks for power savings. 

3.3 Proposed Fully-Digital ONN Architecture 

ONNs are particularly interesting systems since they mimic nature and the human brain. In 

ONNs, memorized patterns are synchronized oscillatory states in which neurons periodically 

communicate with each other according to certain relations between their phases. This 

interaction between neurons is based on phase modulation (PM) encoding. The PM encoding 

neuron changes its firing pattern (i.e., at which time within the cycle the firing occurs) to 

represent its state. It is theoretically shown that ONNs can be built using PLLs [3], laser 

oscillators [35], and microelectromechanical system (MEMS) oscillators [36]. 

3.3.1 Derivation of Discrete-Time ONN Dynamics 

Referring to the PLL-based NN shown in Figure 1.2, its dynamics is given by [3]: 
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where θi is the phase of the ith VCO, Ω>>1 is the natural frequency of the system, sij’s are 

synaptic weights, and V is the VCO output signal. Since Ω>>1, we can average Eq. 1 over time, 

which yields: 
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where the averaged transfer function H is: 
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Various types of transfer functions are given in [3] based on the different PLL output 

waveforms. Since we discretize the whole system, any of them could be selected; however, 

transfer function corresponding to the rectangular waveform is the easiest one to discretize (see 

Figure 3.5). This transfer function has only three stable points at θ = 0, π, and –π. Therefore, 

synchronization is achieved only if all oscillatory neurons are in-phase or anti-phase with 

respect to each other. 

 

Figure 3.5. Transfer function for fully-digital ONN. 
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Next we define excess phase as: 

   i i t . (4.4)  

Plugging (4.4) into (4.2) results in: 
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Discretizing the continuous-time ONN system in (4.5) gives the discrete-time ONN dynamic 

equation as: 
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where k is the iteration step. The training algorithm is applied to specify synaptic weights that 

represent the patterns that are stored in this system. Solutions to this difference equation then 

correspond to these stored patterns. 

3.3.2 Implementation of Fully-Digital ONN 

The proposed fully-digital ONN architecture shown in Figure 3.6 is the representation of the 

discrete-time ONN dynamic system in (4.6). One adder without a reset signal is needed to 

accumulate excess phase. The transfer function block in Figure 3.6 is the realization of H 

function drawn in Figure 3.5. u1 and u2 are the initial inputs for the first and second neurons, 

respectively. 

Most importantly, efficient implementation of this discretized ONN system is enabled by the 

inherent storage of the non-volatile logic family that allows us to digitally represent oscillations 

in phase domain instead of converting phase-domain computations into voltage domain. With 

local storage of state we can easily track the accumulation of excess phase, thus transforming the 
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oscillator’s function into digital domain. Moreover, phase relationships among artificial neurons 

are discretized via non-volatile storage by digitally representing the transfer function shown in 

Figure 3.5. 

 

Figure 3.6. High-level circuit representation of the discrete-time ONN. The signal-selecting blocks 

are multiplexers. 

The non-volatile logic with the inherent storage of state offers additional advantages: i) easy 

programmability without the need for extra memory; and ii) high throughput via a fully-

pipelined architecture without the need for D flip-flops [27]. With inherent pipelining and 

simplified programmability, only a few hundred non-volatile logic cells are required to model 

each oscillatory neuron. With improvements in training algorithms for ONNs, even fewer logic 

gates would be needed. For example, the training algorithm proposed in [37] that can be 

potentially applied to any NNs used for associative memories is claimed to render 

implementation of sparsely-interconnected NNs possible. If it can be successfully applied to 

oscillatory associative memories as well, it will enable sparsely-interconnected ONNs, thus 

further simplifying the proposed ONN implementation. 
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3.3.3 Behavioral Simulation 

To validate the functionality of our discretized ONN system we generate a high-level 

behavioral model with MATLAB based on our proposed architecture that is shown in Figure 3.6. 

This model is formed by direct implementation of each individual block (i.e., multiplier, 

multiplexer, accumulator, subtractor, and transfer function) in this proposed architecture. Using 

pattern recognition example from [3], the 60-pixel bit patterns shown in Figure 3.7 are stored in 

the system via synaptic weights. We use Hebbian Rule to calculate these weights as described in 

[3]. 

 

Figure 3.7. 60-pixel memorized bit patterns. They are stored in the neural network via synaptic 

weights. 

In our model we represent inputs and synaptic weights as 5-bit signed binary numbers. 

Therefore, 31 possible phase levels can be defined in this system. Moreover, number of step size 

to recognize the pattern would alter with different choices of representing data and how higher 

order bits generated during neural computation are handled. 

Figure 3.8 shows our first example with an input pattern that is generated as close to that 

used in [3] as possible. Eight steps are required to fully recognize the pattern. In this example, 

oscillatory associative memory gets locked to one of the stored patterns as designated in the 

example in [3]. 
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Figure 3.8. Pattern recognition process (Example 1). The initial input pattern is the distorted version 

of the bit pattern ‘1’. 

Figure 3.9 demonstrates our second example using a different input pattern. Seven steps are 

required to fully retrieve one of the stored patterns. These examples verify that our proposed 

ONN system functions correctly, and does not lose any significant data due to discretization of 

system dynamics. 

 

Figure 3.9. Pattern recognition process (Example 2). The initial input pattern is the distorted version 

of the bit pattern ‘0’. 

3.3.4 System-Level Comparison to 32nm CMOS Technology 

We constructed our proposed ONN architecture in Figure 3.6 with CMOS and mLogic based 

on circuit simulation modeling for both. We assumed a fully-interconnected 60-neuron system 

to comply with behavioral simulation presented in the previous sub-section. Similarly, 5-bit 

signed binary numbers were chosen for inputs and synaptic weights. 
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For the CMOS implementation we first generated a VHDL (VLSI hardware description 

language) based model for an oscillatory neuron and then compiled it using a logic synthesis 

tool (Synopsys Design Compiler) with 32nm CMOS logic library that completed the circuit 

optimization based on timing targets we provided. We verified the implementation of the same 

ONN architecture based on mLogic with +/-12.5mV supplies for buffers and multiplexers, and 

+/-50mV supplies for other logic gates using a circuit simulation with a physics-based device 

model for mCells [27]-[28]. 

In both implementations each neuron consists of two major blocks: i) a computation block 

(CB) that performs neural computation; and ii) an interconnection block (IB) that stores 

synaptic weights and inputs them to the computation block in an orderly manner. With our 60-

neuron system example for each neuron the CMOS implementation with 0.7V supply requires 

2168 transistors and 87.4µW power for CB, and 17208 transistors and 581µW power for IB. 

Nevertheless, for the same system the mLogic implementation per neuron requires 2238 mCell 

devices and 573µW power for CB, and 1200 mCell devices and 33µW power for IB. Hence, for a 

60-neuron system the mLogic implementation represents a 5.6x improvement in the number of 

devices required while consuming comparable power as the CMOS implementation. With 

increase in the number of neurons, however, interconnections would dominate due to the fully-

interconnected architecture. Hence, for large-scale oscillatory associative memories the 

improvement with mLogic would reach approximately 15x for the number of devices required 

and 18x for power as shown in Figure 3.10. As explained in Section 4.3.1 the device count 

comparison fairly represents the area comparison, since nanoscale mCell and CMOS transistor 

occupy approximately the same area. Moreover, these comparisons do not consider the potential 

benefits of layout and stacking of this all-magnetic logic technology. 
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Figure 3.10. mLogic vs CMOS comparison per neuron for different ONN system sizes: Device count 

comparison (left) and power comparison (right). 

3.4 Proposed Fully-Digital CNN Architecture 

The CNN that was first proposed by L. O. Chua and L. Yang in 1988 [38] is a special class of 

NNs as it offers only local interconnections among artificial neurons. Regardless of the number 

of neurons in the CNN system, each neuron is connected to only neighboring neurons within a 

specified radius r and itself. For example, referring to a 2D CNN architecture shown in Figure 

3.11, for r=1 the red cell in the center interacts only with the blue cells and itself, whereas it 

interacts with the white cells as well for r=2. This radius can be extended for better accuracy 

such that all neurons share one-to-one connections like other NN systems, but CNNs can be 

built for more efficient hardware implementations using the smallest possible radius that 

corresponds to only 9 connections for each neuron. 

In CNNs each cell has an input, a state and an output, and interacts with the cells within its 

neighborhood r according to certain relations between their amplitudes. This interaction 
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between the CNN cells is based on amplitude modulation (AM) encoding. The AM encoding 

neuron changes its firing rate (i.e., the magnitude of its response over one cycle) to represent its 

state. 

 

Figure 3.11. A 2D CNN illustrating neighboring cells for a CNN cell when r=1. 

3.4.1 Derivation of Discrete-Time CNN Dynamics 

The conventional dynamic equation of a continuous-time CNN is given by: 

 


 
     i i ij j ij j

j Neighbors of i j Neighbors of i
x x s G x b u I( )  (4.7)  

where xi is the state of the ith CNN cell, sij’s are feedback coefficients, bij’s are control coefficients, 

uj is the input of the jth CNN cell, I is the bias term, and the activation function G is usually the 

saturation function defined as: 

 







  
 

  

x if x
G x if x

if x

1 1
( ) 1 1

1 1
. (4.8)  

We convert this continuous-time CNN dynamic equation in (4.7) into the discrete-time CNN 

dynamic equation as follows: 
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

  
n

i ij j i
j Neighbors of i

x k s G x k I[ 1] ( [ ])  (4.9)  

where k is the iteration step and Ii, the bias term corresponding to the ith CNN cell, is given by: 

 


 i ij j
j Neighbors of i

I b u I . (4.10)  

The training algorithm is applied to specify both feedback and control coefficients that 

represent the patterns stored in this system. Solutions to the difference equation in (4.9) then 

correspond to the stored patterns. 

3.4.2 Implementation of Fully-Digital CNN 

Using the discrete-time CNN dynamics in (4.9) we construct our proposed fully-digital CNN 

system. Its conceptual diagram consisting of two neurons is shown in Figure 3.12. The signal-

selecting blocks in that figure are multiplexers. Most importantly, the implementation of this 

discretized CNN system is enabled by the non-volatile logic. The inherent storage of logic state 

offers simplified programmability and highly-efficient pipelined stages, thereby eliminating the 

need for look-up tables and D flip-flops. As such, only a few hundred mLogic gates would be 

required to model each artificial neuron. 

3.4.3 Behavioral Simulation 

As an illustrative example we have generated a high-level behavioral model for the proposed 

CNN architecture in MATLAB, assuming zero bias terms for all artificial neurons. This model 

consists of individual implementations of each block shown in Figure 3.12. Similar to pattern 

recognition examples in Section 3.3.3 we use pattern recognition example demonstrated in [3]. 

The feedback coefficients are calculated based on the 60-pixel memorized bit patterns shown in 

Figure 3.13 using the synthesis procedure as described in [39]. 
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Figure 3.12. High-level circuit representation of the discrete-time CNN. 

In this model 5-bit binary numbers are assumed to be used for inputs and feedback 

coefficients. As such, 31 possible gray-scale color levels can be defined in the model. Moreover, 

the number of steps to retrieve one of the stored patterns would alter with different choices of 

representing data and how higher order bits that are generated during neural computations are 

handled. 

For our first pattern recognition example in Figure 3.13 we use the same input pattern given 

in the example in [3]. The generated CNN system is locked to the stored bit pattern ‘1’ at three 

steps as in the case in [3]. In our second pattern recognition example we use the distorted input 

pattern ‘0’. This time seven steps are required to recognize the pattern. All the results presented 

here comply with the results obtained for a fully-digital ONN in Section 3.3.3 with exception of 

time evolution of the retrieved output patterns, thereby confirming correct functionality of our 

proposed fully-digital CNN system. 
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Figure 3.13. Memorized bit patterns and pattern recognition examples for our proposed fully-digital 

CNN system. 

3.4.4 System-Level Comparison to 32nm CMOS Technology 

We constructed our proposed fully-digital CNN architecture shown in Figure 3.12 using 

mLogic technology and compared it with the best-reported CMOS-based digital CNN topology 

[8] that is implemented here using logic gates for comparison purposes. This CNN system 

implemented in CMOS leverages a novel multiplication scheme that significantly reduces the 

number of CMOS transistors required. We used 5-bit binary numbers for inputs and feedback 

coefficients while assuming zero bias terms for all artificial neurons. The neural networks were 

built using the smallest possible interconnections among artificial neurons – that is, each 

neuron has only 9 connections. 

For the CMOS implementation we first generated a behavioral model for the best-reported 

CNN hardware in [8] using a hardware description language (VHDL). Then we compiled it with 
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32nm CMOS standard logic library using a logic synthesis tool (Synopsys Design Compiler) that 

performed a circuit optimization based on our timing constraints. We used a 0.7V supply 

voltage, and a 500MHz clock for synchronization and pipelining. 

For the mLogic implementation we used the Verilog-A model of the mCell device that was 

written in SPICE for circuit simulations using a first-order approximation of the underlying 

physics [27]-[28]. We applied +/-10mV power supplies for buffers and +/-25mV power supplies 

for the remaining mLogic gates. Again we used the same clock frequency of 500MHz as in the 

CMOS implementation. 

Our system-level experiment demonstrates that each neuron requires 12606 transistors with 

a power dissipation of 423.5µW using 32nm CMOS technology; and 2269 mCell devices with a 

power dissipation of 271.3µW using mLogic technology. Since the complexity of each CNN cell is 

determined by the specified neighborhood, the CNN system size does not affect performance 

values we have provided above. With increased radius of neighborhood mLogic would provide 

about one order of magnitude improvement in both power and area when compared to digital 

CMOS implementations. Moreover, these comparison results again do not consider the potential 

benefits of layout and stacking of this all-magnetic logic family. 

3.5 Summary 

This chapter focuses on the design of fully-digital neurocomputing circuits (ONN and CNN) 

using non-volatile logic technologies such as mLogic. System-level comparisons to 32nm CMOS 

indicate one order of magnitude improvement in both area and power consumption for both 

systems. Although further development and scaling of such new non-volatile logic technologies 

can yield additional improvements as opposed to mature CMOS that has almost reached its 

scaling limits, analog neuromorphic circuits based on emerging devices and technologies might 
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offer much better performance by exploiting their unique features that CMOS transistors could 

not enable. 
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Chapter 4  

All-Magnetic Analog Associative 

Memory and Neurocomputing 

In this chapter we propose the use of newly-proposed mCell devices described in the 

previous chapter for our analog neurocomputing architecture that is suitable for efficiently 

building programmable artificial neurons and synapses [40]. To this end this chapter first 

describes why mCells could be efficient for such purposes, and then demonstrates our proposed 

neurocomputing architecture using mCells only. Finally, it evaluates the performance of this 

architecture by means of circuit simulations, and provides direction and targets for future device 

development to enable feasible neurocomputing systems based on such spin-based devices. 

4.1 mCells for Neurocomputing 

The use of the mCell devices for building an analog associative memory offers great 

promises. The easy-yet-efficient programming of such magnetic devices enables easy 

reconfigurability of artificial synapses and efficient initialization of artificial neurons without 

requiring DACs. Small write-path resistances and current-based programming allow efficient 
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summing of currents coming from neighboring synapses for the neuron circuits. The 

electrically-isolated programming and reading paths provide simplified conversion between 

current-mode and voltage-mode signals in the neuron circuits, thereby resulting in highly-

efficient neural information processing. This feature of the mCell devices also prevents the 

strength of artificial synapses from altering during neural evaluation without requiring any 

special powering techniques. Local storage offered by these devices allows the non-volatile 

storage of the synaptic weights, thus eliminating the need for any memory elements to store 

data. The non-volatility allows neural information to remain stored even when mCells are 

powered off. 

4.2 Proposed Neurocomputing Architecture Using mCells 

The conceptual circuit model for an artificial neuron based on mCells is depicted in Figure 

4.1. In this model, the neuron circuit that is implemented as a combination of magnetic buffers 

connected in parallel consists of two main components: i) excitation and ii) inhibition. For 

example, when the neuron circuit used for image processing represents an image pixel that is 

closer to a black pixel, the excitation and inhibition components generate positive and negative 

voltages (neuron outputs) with equal amplitudes, respectively. On the contrary, when the 

neuron circuit represents more like a white image pixel, the excitation component produces a 

negative voltage while the inhibition component produces a positive voltage. The amplitude of 

this neuron output signal then represents how close the corresponding image pixel is to a black 

or white pixel. 

The synapse circuit is constructed as a number of binary-weighted mCells connected in 

parallel as shown in Figure 4.2. Each artificial synapse between neighboring neurons is also 

categorized into two components: i) excitatory synapse and ii) inhibitory synapse. The 

excitation component is activated by reducing the equivalent resistance of the corresponding 

synapse via digital control inputs when neighboring neurons are coupled to each other via a 
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positive synaptic weight (i.e., two neighboring neurons, each representing an image pixel, that 

are more likely to be of the same color, either white or black). The inhibition component is 

activated in the same way as the excitation component when the relationship between 

neighboring neurons is represented by a negative synaptic weight (i.e., two neighboring 

neurons, each representing an image pixel, that are more likely to be of the opposite colors). 

 

Figure 4.1. The proposed neuron circuit based on mCells. Different read-path resistances can be set 

by adjusting the cross-sectional area of tunnel barriers of the corresponding mCells. The write-path 

resistances of mCells are differentiated by changing their write-path lengths to enable different switching 

thresholds for magnetic buffers as follows: Rwrite,1>Rwrite,2>…>Rwrite,N. Rread denotes the read-path 

resistances of the corresponding mCells. V+ and V- represent the positive and negative supply voltages 

with equal amplitudes, respectively. 
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Figure 4.2. Excitatory and inhibitory synapse circuits based on mCells. Binary-weighted mCells can 

be obtained by changing the width of the device. be,1-be,M and bi,1-bi,M represent the M-bit excitation and 

inhibition control data, respectively. Rread denotes the read-path resistance of the corresponding mCell. 

The strength of the relationships (i.e., synaptic weight) among artificial neurons can be 

adjusted by altering the equivalent resistance the corresponding synapse represents. A lower 

resistance corresponds to a stronger relationship (i.e., higher current), while a higher resistance 
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corresponds to a weaker relationship (i.e., lower current). The subtraction of these currents 

flowing through excitatory and inhibitory synapses then determines the final impact of the 

corresponding synapse on the neuron output, since excitatory and inhibitory synapses are 

connected to the oppositely-signed signals as explained earlier. As such, each weighted current 

generated via an artificial synapse takes one of the values from I*{-2M+1, -2M+2, …, -1, 0, 1, …, 

2M-2, 2M-1}. For example, excitatory and inhibitory synapses consisting of four mCells in parallel 

can generate currents ranging from -15I to 15I, in steps of I. 

4.3 Circuit Simulation Results 

To verify the functionality of our proposed associative memory architecture we used a 

Verilog-A model of the mCell device that was written in SPICE for circuit simulations using a 

first-order approximation of the underlying physics [27]-[28]. Using this compact model we 

constructed a 5-neuron associative memory. We set the thickness of the write-paths for mCells 

to 6nm, which is a technology parameter that cannot differ from one device to another. We used 

three mCells for both excitatory and inhibitory synapses. This allowed 15 different synaptic 

weights to be defined in our model. To properly size the mCell devices in the synapse circuits, we 

adjusted the width of the devices as {10nm, 20nm, 40nm}, yielding the read-path resistances: 

Rread,1={2.5kΩ, 5kΩ}, Rread,2={1.25kΩ, 2.5kΩ}, and Rread,3={625Ω, 1.25kΩ} (see Figure 4.2). 

Moreover, we implemented the neuron circuits using four magnetic buffers in parallel for both 

excitation and inhibition neuron components. For proper configuration of the neuron circuits 

we set the length of tunnel barriers of the corresponding mCells along with the length of the 

write-paths to {80nm, 40nm, 20nm, 10nm} to get the read-path resistances: Rread,1={312.5Ω, 

625Ω}, Rread,2={625Ω, 1.25kΩ}, Rread,3={1.25kΩ, 2.5kΩ}, and Rread,4={2.5kΩ, 5kΩ} (see Figure 

4.1). Thus, the length of the write-paths of mCells in the neuron circuits became {190nm, 110nm, 

70nm, 50nm}, resulting in the write-path resistances: Rwrite,1=326Ω, Rwrite,2=189Ω, Rwrite,3=120Ω, 

and Rwrite,4=85.7Ω (see Figure 4.1). 
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Using pattern examples [1 0 1 1 0] and [1 0 1 0 1] as memorized patterns by programming 

excitatory and inhibitory synapses accordingly, we evaluated convergence of this small network 

consisting of 5 neurons when other patterns were provided as inputs. Figure 4.3 shows our 

pattern recognition example using gray-scale pixels as well. The system correctly recognizes the 

pattern [1 0 1 0 1] as the closest memorized pattern to the initial gray-scale input pattern. 

 

Figure 4.3. Pattern recognition example based on a 5-neuron system. Intermediate pixel values are 

possible as initial conditions by means of different switching thresholds of mCells in the neuron circuits. 

For this example the initial input pattern is [1 0 0.5 0.5 1] at time=0s and the recovered output pattern is 

[1 0 1 0 1] at time=25ns. 
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We also constructed larger associative memory circuits with local interconnections among 

artificial neurons (e.g., 9 connections for each neuron). For illustration we show here the same 

mCell simulation models to evaluate an associative memory consisting of 20 neurons. The bit 

patterns shown in Figure 4.4 are examples of memorized patterns that are programmed into the 

neural network circuit model via synaptic weights. 

 

Figure 4.4. Memorized bit patterns for a 20-neuron based associative memory. 

As an initial input pattern we applied a 27% distorted version of the bit pattern ‘4’ with 

several gray-scale pixels as shown in Figure 4.5 (left), and our associative memory design 

successfully recovers the bit pattern ‘4’ as shown in Figure 4.5 (right). Importantly, the results 

indicate that our proposed NN-based associative memory architecture scales well with the 

number of bits as long as the nearest neighbor coupling is sufficiently accurate. 

 

Figure 4.5. The initial input pattern for a 20-neuron based associative memory (left) and the output 

pattern produced by this associative memory (right). 

Now we showcase the use of the same neural network system consisting of 20 neurons for 

different image processing applications such as edge and line detections. In order to program 

excitatory and inhibitory synapses, we used the cloning templates for edge and line detection 
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applications given in [8], [34]. Figure 4.6 presents our circuit simulation results for these 

applications. All the simulation results in this section validate the potential of our proposed 

neurocomputing architecture based on the integration of non-volatile magnetic devices to 

enable highly-efficient computing schemes. 

 

Figure 4.6. Circuit simulation results for neurocomputing circuits based on mCells. Input patterns 

(left) and output patterns (right). (a) Horizontal line detection. (b) Vertical line detection. (c) Edge 

detection. 

4.3.1 Comparisons to Digital CMOS and mLogic Implementations 

Using our neurocomputing circuit models developed in the previous section we here 

compare our proposed all-magnetic analog neural network with digital implementations in 

terms of power and device count. Though it is an immature technology, mCell-based analog 

implementation provides significant improvements over digital CMOS as shown in Figure 4.7. 

With device improvements described in the next section the use of such a programmable, non-

volatile resistance element could enable a practical realization of neurocomputing systems and 

associative memories. 
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Figure 4.7 also highlights that analog computing could be much more efficient than digital 

one for certain applications that could shift the computing paradigm used in electronics and 

computer systems. A better system solution for future computing architectures might be based 

on the use of a mixed-signal scheme enabled by highly-efficient analog neurocomputing and a 

digital processor, inter-switched based on the application. 

 

Figure 4.7. Comparison results for device count and power. 

It is important to note that both simulated mCell and a 32nm CMOS transistor occupy 

roughly the same footprint area. Thus, device count comparison here represents area 

comparison for both implemented architectures.  Since area comparison is also affected by how 

well each technology scales, a comparison based on device count better demonstrates 

corresponding circuit complexities for both technologies. 

4.4 A Guideline for Future Device Development for mCells 

This section provides initial targets for what can be improved for mCells to make proposed 

analog system viable. Firstly, threshold for switching current can be reduced to enable more 

efficient synapse programming and most importantly, ultra-low voltage and ultra-low power 
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operation of all-magnetic analog neurocomputing system. Increase in the switching speed (i.e., 

domain wall velocity per applied current density in the write-path) will decrease the settling 

time of overall system to a stable pattern (e.g., sub-ns), thereby allowing highly energy-efficient 

neurocomputing. In addition, increase in the high-to-low read-path resistance ratio of the mCell 

devices will significantly reduce power consumption of the neuron circuits. 
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Chapter 5  

Thermal-Based Analog Associative 

Memory and Neurocomputing 

In this chapter we propose a novel configuration of ovenized AlN resonators [41]-[43] as a 

tunable analog resistance for efficiently building artificial neurons and synapses [44]. This 

chapter begins with a brief introduction to ovenized AlN resonators, followed by our device and 

system proposals for neurocomputing. Next it elaborates on how to implement D/A 

programming feature required for synapse programming and neuron initialization based on our 

proposed device configuration while providing a thermal DAC design example. Finally it 

demonstrates our circuit simulation results for a thermal associative memory, following by a 

brief description of the Verilog-A compact model for the proposed device that is developed 

based on measurement data. 

5.1 Ovenized AlN Resonator 

As we reach the end of the CMOS roadmap it is apparent that not any one device will fully 

replace CMOS for general purpose integrated circuit applications. There are, however, 
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opportunities to explore the integration of emerging technologies with CMOS that will produce 

novel integrated systems in the near future. For example, MEMS devices [45]-[46] have already 

been demonstrated to enable high-Q filtering and analog/RF function that are otherwise 

impractical or impossible with CMOS alone. Such mechanical devices have also been explored 

for use as digital logic switches [47]-[49], but it is their analog functionality that could provide 

the greatest benefit for future computing systems. 

AlN resonators have been recently demonstrated to provide a tunable RF resistance as a 

function of a controllable thermal input for ovenized oscillator applications [41]-[42]. The AlN 

resonator (see Figure 5.1) is formed by a piezoelectric AlN film sandwiched between two metal 

electrodes. The bottom electrode can be left floating or grounded. The top electrode is 

lithographically patterned into interdigitated electrodes in order to define the resonator center 

frequency and excites in-plane lateral vibrations. 

 

Figure 5.1. Micrograph of an example AlN RF resonator (Courtesy of Gianluca Piazza’s group from 

Carnegie Mellon University). The resonator size is relatively large (approximately 50µm x 100µm x 1µm) 

as it was designed for high power oscillators. The pitch of the interdigitated metal electrodes sets the 

resonance frequency. 

When the piezoelectric material is excited by an external AC signal it converts applied RF 

voltage into a mechanical strain. As the frequency of the AC signal matches the resonance 
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frequency of the mechanical structure, the amplitude of motion increases. The generated 

displacement is sensed as an increase of charge, which effectively corresponds to a maximum 

value for electrical admittance given a fixed input voltage. By sweeping the AC signal over 

frequency the characteristic admittance of a mechanical resonator is attained (see Figure 5.2). 

The resonator center frequency is set by the physical dimensions and the acoustic velocity of the 

material, which is highly dependent on temperature (approximately -28ppm/K). Therefore, it is 

possible to rigidly shift the resonant admittance curve by heating the resonator. 

 

Figure 5.2. RF admittance of the resonator with different heater powers for an example resonator 

[41]. The thermal input applied via heater resistance shifts the admittance curve in frequency axis. One to 

two orders of magnitude change in RF impedance at a specific operation frequency enables a tunable 

analog resistance for artificial synapses and a building block for artificial neurons. 

A method for in-situ and low power heating (ovenization) of the AlN mechanical resonator 

has been recently developed [41]-[43]. As the resonator is locally heated, its admittance versus 

frequency curve is rigidly translated towards lower frequencies as can be seen in Figure 5.2. The 

heater is formed by a simple resistor patterned in either the bottom or top electrode of the 
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resonator. By integrating the heater within the body of the resonator (see Figure 5.3) and taking 

advantage of small thermal mass of the AlN resonator, it is possible to attain one to two orders 

of magnitude change in impedance with just few mWs of power for these large-scale resonators 

that are used for RF circuit applications. For example, as shown in Figure 5.2, when operating at 

a fixed frequency it is possible to vary the equivalent impedance of the resonator by more than 

one order of magnitude with 5.5mW of heater power. As the dimensions of the resonator are 

scaled we calculate that merely few tens of µW power levels will be required to achieve similar 

response. 

 

Figure 5.3. Example heater implementations as a serpentine on the bottom electrode [41] (left), 

around the top electrode [42] (center), and on top of the resonator [43] (right). 

5.2 Proposed Architecture for Neurocomputing Based on 

Ovenized Resonators 

The ovenized AlN resonator offers great opportunities for analog associative memories 

because its impedance can be set over a continuous range by a local heater when operated at a 

specific frequency (see Figure 5.2). However, it would be inefficient to require an analog control 

voltage for adjusting the impedance of each resonator, since this would correspond to requiring 

a DAC to convert digital control bits to an analog signal for each neuron and synapse. 
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Instead, we propose to use multiple heaters for each resonator to eliminate the need for a 

DAC and implement all-analog nanoscale associative memory based on a neuron-synapse model 

demonstrated in Figure 2.7. This approach is enabled by the additive feature of thermal power 

via multiple heaters that provides a natural summing and compact D/A conversion. Such a 

compact device can be implemented as one or a combination of the following ways to integrate 

multiple heaters into the device configuration: i) transforming the bottom floating electrode into 

a serpentine, ii) including a serpentine around the top RF electrode, and iii) adding a serpentine 

heater on top of the resonator (see Figure 5.3). Figure 5.4 demonstrates our proposed circuit 

schematic symbol for an ovenized resonator with multiple heaters. 

 

Figure 5.4. The proposed circuit schematic symbol for an ovenized resonator with j+1 heaters. The 

thermal control inputs are applied between Vc01-Vcj1 and Vc02-Vcj2. VRF1 and VRF2 represent the RF ports of 

the resonator. 

The conceptual circuit model for our proposed architecture is shown in Figure 5.5. Each 

artificial neuron is constructed as one resonator pair that functions similar to a simple inverter, 

but produces intermediate values between digital logic levels ‘0’ and ‘1’ as well. This is enabled 

by tunable analog resistance of ovenized resonators as they are controlled by thermal inputs. 

This feature of ovenized AlN resonators provides efficient neuro-like computations using just 

one resonator pair for each artificial neuron. 
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Figure 5.5. Conceptual circuit diagram of the proposed AlN resonator based associative memory. The 

heaters for synapse circuits and ones connected to the initial inputs in the neuron circuits need to be 

carefully designed to provide a proper D/A conversion from digital inputs to the resonator impedance 

while ones connected to neighboring synapses in the neuron circuits are equivalent to each other (e.g., 

1kΩ). 

Each synapse between neighboring neurons is categorized into two components: i) 

excitatory synapse and ii) inhibitory synapse, as shown in Figure 5.5. Each of these 

components is represented by one resonator. Excitation component is activated by reducing the 

impedance of the corresponding resonator via thermal control inputs when neighboring neurons 
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are coupled to each other via a positive synaptic weight (i.e., two neighboring neurons, each 

representing an image pixel, that are more likely to be of the same color, either white or black). 

The inhibition component is activated in the same way as the excitation component when the 

relationship between neighboring neurons is represented by a negative synaptic weight (i.e., two 

neighboring neurons, each representing an image pixel, that are more likely to be of the opposite 

colors). The strength of these relationships among artificial neurons can be adjusted by altering 

the impedance of the corresponding resonator. A lower impedance corresponds to a stronger 

relationship (i.e., higher current), while a higher impedance corresponds to a weaker 

relationship (i.e., lower current). 

Similarly, the initial thermal inputs representing the initial input patterns consist of two 

components: i) excitation control bits connected to the pull-down resonator in the neuron 

circuit and ii) inhibition control bits connected to the pull-up resonator in the neuron circuit, as 

depicted in Figure 5.5. When the initial thermal input corresponding to the initial input pixel is 

positive (i.e., closer to a black image pixel), it is applied to excitation control bits (ue1-uem), 

thereby pulling the initial neuron output signal (i.e., resonator-based inverter output) up closer 

to RF supply signal. On the other hand, when the initial thermal input is negative (i.e., closer to 

a white image pixel), it is applied to inhibition control bits (ui1-uim), thus pulling the initial 

neuron output signal down closer to ground (i.e., 0V). 

It is important to note that inhibitory synapses are connected to the pull-up resonator of the 

neuron circuit (pair of resonators representing an artificial neuron), while excitatory synapses 

are connected to the pull-down resonator of the neuron circuit. This is because the weighted 

currents through artificial synapses increase the heater power, which in turn increases the 

impedance of the corresponding resonator. Therefore, when excitation becomes more dominant 

as compared to inhibition, the neuron circuit generates an output level that is closer to the RF 



55 
 

signal level that is applied to the corresponding neuron. In contrast, when inhibition is more 

dominant, the neuron circuit produces an output that is closer to 0V. 

For our proposed AlN resonator based neural network architecture the weighted outputs of 

neighboring neurons are summed in the neuron circuits by means of multiple heaters that are 

equivalent to each other. The additive feature of power generated by each heater offers a natural 

summing mechanism for the impact of artificial synapses. This could not be done by a single 

heater connected to all the artificial synapses since adding currents, instead of heat, would be 

problematic due to phase differences among the neighboring neuron output signals. These 

differences, when summed, would result in partial (or even complete) cancellation of signals 

and, therefore, incorrect outcomes. Using multiple heaters for each resonator eliminates such 

phase shift effects since total heat is now summed, and it depends only on the squares of the 

magnitude of the weighted RF signals. For proper operation, therefore, the synapse impedances 

have to be adjusted based on the squares of the current magnitudes to generate the required 

heat, rather than the current magnitudes themselves. 

For any neurocomputing architecture, artificial neurons require a means of generating an 

output (i.e., an activation function) based on the sum of the incoming neural signals. The 

activation function in neural networks is generally a variant of the sigmoid function. The neuron 

transfer function based on measurement data from two exemplary AlN resonators 

(approximately 50µm x 100µm x 1µm) that are configured as a non-inverting “inverter” 

produces the simulated characteristic shown in Figure 5.6. This neuron characteristic provides 

the sigmoid-like functionality required for use by the architecture in Figure 5.5 to implement a 

NN-based associative memory. 

It is important to note that both storage capacity and the size of basin of attraction for the 

proposed associative memory circuit depend on the selected training algorithm for calculating 

synaptic weights, but developing such algorithms for NNs is beyond the scope of this thesis. 
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Figure 5.6. Transfer function of our “inverter-based” neuron using ovenized AlN resonators when the 

amplitude of RF supply voltage is 1V. 

5.3 Implementing D/A Programming Feature 

The careful tuning of artificial synapses and properly applying the initial input patterns are 

of great importance for neurocomputers to function properly. Despite being compact, the 

proposed AlN resonator-based architecture still necessitates the scrutinized design of DAC due 

to the non-linear relationship between the resonator impedance (Zres) and heater power (Pheater) 

(see Figure 5.2). Figure 5.7 demonstrates our proposed artificial synapse device that is 

controlled by j+1 digital control bits. The digital-to-analog conversion based on this device 

configuration is performed in accordance with the following equation: 

      j
resheater

j

bb b P Z
R R R

22 2
0 1

0 1
 (5.1)  

where the left-hand side of the equation represents total power generated via variable-size 

heaters, and R0-Rj denote heater resistances that are connected to the corresponding control bits 
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(b0 - jb ). The complementary versions of the control bits are applied to the heaters because the 

increase in the heater power increases the resonator impedance, thereby decreasing the current 

flowing through the corresponding synapse (i.e., reducing the strength of artificial synapse). 

 

Figure 5.7. Proposed DAC device using multiple heaters for each resonator. b0-bj represent the 

corresponding bits for the digital input. 

The heater power required for a specific output impedance (synaptic weight) can be found 

from the resonator impedance versus heater power curve. Using all possible combinations of the 

control bits (2j+1 combinations for a (j+1)-bit DAC) results in an over-determined system 

consisting of 2j+1 equations with j+1 unknowns (R0-Rj). Since the resonator impedance changes 

non-linearly with the heater power, a regression (e.g., least-squares fitting) is required to 

determine variable-size heater resistances for such an equation system. 

The variable-size heaters required for D/A conversion to apply the initial input patterns in 

the neuron circuits can be designed in a similar way to that required for artificial synapses. 

However, for this case the curves in Figure 5.8 should be used for fitting. These curves 

correspond to the transfer function shown in Figure 5.6, but are split into two parts: i) excitation 

and ii) inhibition. 
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Figure 5.8. Neuron output signal level versus heater power applied via excitation control bits (top) 

and neuron output signal level versus heater power applied via inhibition control bits (bottom) when the 

amplitude of RF supply voltage is 1V. These two curves correspond to the transfer function shown in 

Figure 5.6. 
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5.3.1 Derivation of Variable-Size Heater Resistances 

The equations used to determine variable-size heater resistances must consider the 

temperature-dependence of these resistances since heater resistances in AlN resonators increase 

linearly with increase in the resonator temperature [41]. This effect can be formulated as: 

       nomheater thR T R T1  (5.2)  

where Rheater is heater resistance changing with the resonator temperature, ΔT represents 

temperature increase in the resonator, Rnom is nominal heater resistance at ambient 

temperature, and αth is the temperature coefficient of heater resistance. The relationship 

between temperature increase in the resonator and the heater power is linear [41], yielding: 

      nomheater th th heaterR T R R P1  (5.3)  

where Rth is the slope of temperature increase in the resonator versus the heater power curve. 

Both αth and Rth can be extracted from measurement data. 

To derive the equation system for this design problem, we modify (5.1) by considering 

thermal effects on heater resistances, as follows: 

    


  
     




j

on resheater
k k

iV P Z
kR T

2

0

1 mod2
1

 (5.4)  

where Von is the on-voltage for the digital control bits, i is the number that the digital control bits 

represent, and     denotes the largest integer that is less than the number inside (floor 

function). Plugging (5.3) into (5.4) yields: 

 

    


  
     





j

on resheater
k resnom k th th heater

iV P Z
kR R P Z

2

0 ,

1 mod2
11

 (5.5)  
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where Rnom,k is nominal heater resistance for Rk(ΔT). 

By taking all combinations of the thermal input bits into account we generate the system of 

equations that we seek: 

    


 
  

on nom resth th diag heaterV I R P KG P Z
12  (5.6)  

where the vector 

heaterP  includes the target heater powers corresponding to the desired 

resonator impedances (determined using Zres versus Pheater curve), I is the identity matrix, Pdiag is 

a diagonal matrix with diagonal elements 

heaterP , 


nomG  is the nominal heater conductances 

vector ([1/Rnom,0 1/Rnom,1 … 1/Rnom,j]T), and K is a 2j+1-by-(j+1) matrix with elements K(a, b)=

 
 a b mod2 . 

To ensure monotonicity it can be easily proven that the following constraints must hold: 
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 (5.7)  

where   sets the minimum step size between two consecutive heater conductances and is a 

parameter for our design problem. A regression method can be applied to this over-determined 

equation system with monotonicity constraints to determine heater resistances. 

5.3.2 A “Thermal DAC” Example 

To assess the potential of the proposed ovenized resonator configuration we created an 

optimization function in MATLAB that uses a “monotonic” least-squares fitting based on the 

equations described in the previous sub-section. As an example we designed a 4-bit DAC (i.e., 
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j=3 in above equations) such that 16-level resistance can be obtained for an artificial synapse to 

set its synaptic weight. Figure 5.9 depicts the required curves based on measurement data for an 

approximately 50µm x 100µm x 1µm AlN resonator [41] to determine αth, Rth and the target 

heater powers for the desired impedance values. The ambient temperature for this measurement 

data is 310K [41]. 

 

Figure 5.9. Resonator impedance versus heater power curve at 1.1667GHz operation frequency (left), 

temperature increase in the resonator versus heater power curve (center), and heater resistance versus 

temperature increase in the resonator curve (right). All curves are extracted from measured data for an 

example resonator [41]. 

Figure 5.10 shows three different cases where   is the lowest (i.e., 0) in Scheme 1 and the 

highest in Scheme 3. Scheme 1 provides the minimum least-squares fitting error (i.e., minimum 

integral non-linearity) whereas the step sizes are more uniform in Scheme 3 (i.e., minimum 

differential non-linearity). It is interesting to note that as   increases the proposed DAC 

architecture approaches the conventional binary-weighted (24) DAC design for this example. 

As we change Von, we only need to change the absolute values of nominal resistances while 

keeping their ratios constant. This is an important feature, especially in the presence of process 

variations, since the proposed architecture now depends on the ratios of heater resistances 
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rather than their absolute values. These results indicate that it is possible to represent each 

artificial synapse as a single resonator with multiple heaters in a compact and efficient way. 

 

Figure 5.10. Designed DACs based on measurement data. The resonator impedance decreases as DAC 

value (i.e., synaptic weight) increases. 

5.4 Circuit Simulation Results 

To evaluate the potential of the proposed associative memory architecture in Figure 5.5 we 

have created a compact circuit simulation model in Verilog-A based on measurement data for 

approximately 50µm x 100µm x 1µm AlN resonator. While this resonator is much larger than 

what we propose to use in our associative memory implementation, it does provide some 

hardware data from which an accurate circuit-level simulation model can be built and 

characterized. Our model is comprised of an RLC circuit (see Figure 5.11) that is used for 
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modeling ovenized MEMS resonators [50]-[51]. The circuit parameters are extracted from 

measurement data using a least squares fitting to a Butterworth-Van Dyke model [52]. 

 

Figure 5.11. Circuit model for ovenized MEMS resonators. The variable capacitance (Cm) is thermally 

controlled by total applied power to the heaters. The circuit parameters are extracted from measurement 

data using a fitting algorithm specifically developed for such resonators. 

Using this compact model we constructed a 5-neuron associative memory based on the 

architecture proposed in Figure 5.5. We used a resonator with four heaters to serve as a 4-bit 

DAC for synaptic weights. This allowed 31 gray-scale color levels to be defined in our model. 

Using pattern examples [1 0 1 1 0] and [1 0 1 0 1] as memorized patterns by programming 

excitatory and inhibitory synapses accordingly, we evaluated the convergence of this small 

network when other patterns were provided as inputs. Figure 5.12 shows a pattern recognition 

example. At the end of pattern recognition process, an RF signal amplitude of around 2V 

represents logic ‘1’ while an RF signal amplitude of less than 1V represents logic ‘0’. Even though 

there is 40% distortion in the initial input pattern [0 1 1 1 0], the associative memory converges 

to the stored pattern that most closely resembles to this input pattern. 
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Figure 5.12. Pattern recognition example based on a 5-neuron system. Associative memory fully 

recognizes the pattern [1 0 1 1 0] despite 40% distortion in the initial input pattern. 

Figure 5.13 demonstrates a second pattern recognition example for the same 5-neuron 

system, but now using gray-scale pixels represented by intermediate input signal values. The 

system correctly recognizes the pattern [1 0 1 0 1] as the closest memorized pattern to the initial 

gray-scale input pattern. 



65 
 

 

Figure 5.13. Pattern recognition example based on a 5-neuron system. Intermediate pixel values are 

possible as initial conditions by means of inherent tunability of analog resistance that ovenized resonators 

offer. 

We also constructed larger associative memory circuits with local interconnections among 

artificial neurons (e.g., 9 connections for each neuron) based on the architecture in Figure 5.5. 

For illustration we show here the same AlN resonator simulation models to evaluate an 

associative memory consisting of 20 neurons. The bit patterns shown in Figure 4.4 are examples 

of memorized patterns that are programmed into neural network circuit model via synaptic 

weights (heater bits). 
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As an initial input pattern we applied a 28% distorted version of the bit pattern ‘5’ with 

several gray-scale pixels, and our thermal associative memory successfully recovers the bit 

pattern ‘5’ as illustrated in Figure 5.14. Importantly, the results here indicate that our proposed 

NN-based associative memory architecture scales well with the number of bits as long as the 

nearest neighbor coupling is sufficiently accurate. 

 

Figure 5.14. The initial input pattern for a 20-neuron based associative memory (left) and the output 

pattern produced by this associative memory (right). 

Now we leverage the same thermal neurocomputing circuit consisting of 20 neurons for 

some other image processing applications such as edge detection, horizontal and vertical line 

detections. In order to program excitatory and inhibitory synapses in this system, we used the 

cloning templates for edge and line detection applications given in [8], [34]. We get exactly the 

same results as in Figure 4.6, proving correct functionality of the proposed thermal associative 

memory. 

5.4.1 Energy and Area Comparisons 

The Verilog-A compact model used for circuit simulations in the previous section was based 

on a large-scale resonator. Because such resonators are limited by the device area, thermal time 

constant [41], and total heater power required for maximum impedance swing, it is much more 

reasonable to analyze the performance of our proposed thermal neural network system in terms 

of energy and area. Figure 5.15 illustrates our comparisons to CMOS and biological neurons [1] 

based on these performance metrics. It is apparent that despite holding a huge promise for 
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future neurocomputing circuits, the proposed device configuration still needs significant 

improvements to enable practical thermal associative memories. 

 

Figure 5.15. Energy and area comparison results for thermal neuron circuits. 

5.5 Towards Viable Thermal Neurocomputing Circuits 

This section is intended to provide direction and targets for future device development and 

research for AlN resonators that could enable highly-efficient neurocomputers. The most critical 

improvement required for ovenized AlN resonators is the device scaling. The primary challenge 

for this is the synthesis of nanoscale AlN films that preserve similar properties of their large-

scale counterparts (e.g., piezoelectric coupling and intrinsic damping). Similar techniques that 

have been used for the deposition of highly oriented 10nm piezoelectric to make actuators and 

NEMS (nanoelectromechanical systems) relay [53]-[54] can be applied to enable the scaling of 

AlN resonators as well. As such, we anticipate that nanoscale devices could be formed by a 

piezoelectric plate of approximately 800nm x 500nm x 2nm. 

To this effect, we have conducted a scaling analysis for such a miniaturized ovenized 

resonator. The main scaling equations are summarized in Table 5.1 where w, l and t denote the 
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width, length and thickness of the resonator. It is important to note that although the device 

dimensions are reduced, it is possible to keep a constant motional impedance and frequency for 

the resonator. This will enable the use of a lower power for generating the driving RF signal at 

few GHz that can easily be interfaced with the resonator (series resistance of about 100Ω despite 

scaling). More importantly, scaling is also advantageous in ensuring that a faster thermal time 

constant and lower voltages (i.e., lower energy) are required to operate each device. With these 

improvements we project operation with voltages lower than 200mV and operating speeds that 

are limited by a thermal time constant of approximately 10ns. This would provide significant 

performance improvements for an analog neurocomputing system as depicted in Figure 5.16. It 

should be noted that comparison with a biological neuron in that figure is not an apples-to-

apples comparison as it offers much higher computational power with its extraordinarily dense 

connectivity and impeccable functionality than hardware implementations mimicking just its 

high-level abstraction. 

Table 5.1. Scaling equations for ovenized AlN resonators. w, l and t denote the width, length and 

thickness of the device, respectively. Device dimensions used throughout this chapter are in the form of 

{w x l x t}. 

Device Property Relation to Device Dimensions 

Resonator Area ∝ wl 

Resonator Impedance ∝ wl/t 

Operating Voltage ∝ (wt/l)1/2 

Thermal Time Constant ∝ l2 

Energy for Max. Impedance Swing ∝ wlt 
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Figure 5.16. Modified energy and area comparison results for thermal neuron circuits, including 

predicted device improvements for ovenized AlN resonators. 
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Chapter 6  

All-Graphene Analog Associative 

Memory and Neurocomputing 

In this chapter we propose to construct a fully-functional analog neural network using multi-

gate programmable graphene devices. Different from proposed designs in Chapter 4 and 

Chapter 5, this architecture represents couplings between neighboring neurons in voltage 

domain, and uses only electrical signals for both weighting and summing functions, thereby not 

requiring any special non-electrical properties for the enabling device. This chapter begins with 

a brief description of the multi-gate programmable graphene device that enables our proposed 

neuromorphic architecture. Next, we show our neurocomputing circuit design that is specifically 

configured for this kind of resistive devices, followed by our circuit simulation results to validate 

its correct operation. 

6.1 Multi-Gate Programmable Resistive Device Using Graphene 

Graphene is a two-dimensional material consisting of a single-atom thick layer of carbon 

that is arranged in a hexagonal lattice (see Figure 6.1). With its 2D planar structure it has been 
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shown to be compatible with traditional CMOS process [55]. Moreover, the charge carriers in 

graphene can move over great distances at a constant speed without scattering. This is similar to 

the behavior of photons travelling at the speed of light. In graphene the speed of charge carriers 

is slower than light by only a factor of 300 [56], resulting in high saturation velocity. Graphene 

also has high carrier mobility and zero energy band-gap. Thus, it offers unique opportunities for 

future nanoelectronics such as high frequency applications [57]. In addition, the linear 

dispersion relation in graphene gives rise to relativistic behavior of the charge carriers resulting 

in photon-like behavior and Klein tunneling [58]. 

 

Figure 6.1. A graphene device [59]. 

Here we propose a novel graphene device configuration that could be used to represent 

artificial neurons and synapses. The number of charge carriers in a graphene ribbon can be 

controlled through local gating [60] that allows the gradual resistance change of the device. This 

is because the electric field between the gate and graphene ribbon due to applied gate voltage 

attracts electrons in graphene, thereby altering its conductivity.  By means of this feature and 

zero energy band-gap offered by this particular material, a resistor string can be built using 

multiple gates over a single continuous graphene ribbon, as illustrated in Figure 6.2. Although 

the gates effectively dope the graphene creating multiple junctions, conductivity is maintained 

due to Klein tunneling at the junctions [58]. The contribution of each gate on the resistance level 

can be adjusted for specific purposes by simply altering the corresponding gate length (i.e., l1, l2 
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and l3 in the figure). Such a multi-gate graphene device performs the DAC and summing 

functions that can be utilized for implementing artificial neurons and synapses without 

requiring any other data converters or CMOS amplifiers. 

 

Figure 6.2. Cross-section drawing of the multi-gate graphene resistance. Each gate controls the 

conductivity of the corresponding area underneath it. Vg1, Vg2 and Vg3 represent voltage signals applied to 

these gates. The number of gates over graphene ribbon can be easily increased. 

6.2 Proposed Neurocomputing Circuits Based on Graphene 

The neuron-synapse building block for our proposed architecture is shown in Figure 6.3. 

Each artificial neuron is constructed as one pull-up (RPU) and one pull-down (RPD) graphene 

device with multiple gates. In combination they function similar to an analog buffer that 

produces intermediate values between high and low voltage levels. Each gate in these two 

devices has an equal impact on the total resistance (i.e., each having the same length, referring 

to Figure 6.2), and the number of gates per device in the neuron circuits is equal to the number 

of neighboring neurons. As such, these devices enable an efficient summing mechanism for 

weighted neural signals coming from neighboring synapses via equally-sized gate structure. 

Each synapse between neighboring neurons is categorized into two components: i) 

excitatory synapse and ii) inhibitory synapse, as shown in Figure 6.3. Each of these 

components is represented by two multi-gate programmable resistances. Each gate in both 

devices controls a binary-weighted resistor based on the corresponding area on graphene ribbon 

(e.g., l1=x, l2=2x, and l3=4x, referring to Figure 6.2). The number of control bits, i, can be 
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adjusted based on the requirements for the network function where the number of allowable 

resistance values is equal to 2i+1-1, because each synapse consists of two components. Generally 

15-31 different synaptic values are enough for a wide range of neural network applications [8], 

[25]. This device configuration enables a compact D/A (digital-to-analog) conversion for 

digitally-controlled synaptic weights. 

 

Figure 6.3. Proposed neuron and synapse circuits based on multi-gate graphene devices. bex,1-bex,i and 

bin,1-bin,i represent i-bits binary numbers for excitatory and inhibitory synaptic weights, respectively. 

The total resistance of two devices in each synapse component is always constant since 

binary bits applied to them are complementary to each other (see Figure 6.3). Hence the 

couplings between neuron output and synaptic weights are linear as given by: 

 ex w
ex w neu out

total

R
V V for excitatory synapse

R
_

_ _  (6.1)  
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 in w
neu outin w

total

R
V V for inhibitory synapse

R
_

__   (6.2) 

where Vneu_out is the output of the corresponding neuron; Rex_w and Rin_w denote excitatory and 

inhibitory synaptic weights, respectively; Vex_w and Vin_w are weighted voltage signals 

corresponding to excitatory and inhibitory components, respectively; and 

 ex w ex w in w in wtotalR R R R R' '
_ _ _ _     (6.3)  

where Rex_w’ and Rin_w’ are complementary versions of Rex_w and Rin_w, respectively. 

The excitation component of each synapse circuit is activated by increasing Rex_w via digital 

control bits (i.e., bex,1-bex,i in Figure 6.3) when neighboring neurons are coupled to each other via 

a positive synaptic weight (i.e., two neighboring neurons, each representing an image pixel, that 

are more likely to be of the same color, either white or black). The inhibition component is 

activated in the same way as the excitation component (i.e., via bin,1-bin,i in Figure 6.3) when the 

relationship between neighboring neurons is represented by a negative synaptic weight (i.e., two 

neighboring neurons, each representing an image pixel, that are more likely to be of the opposite 

colors). A synaptic weight can be either positive or negative, so the corresponding synapse 

component is deactivated by setting Rex_w or Rin_w to its lowest possible value (i.e., either bex,1-

bex,i or bin,1-bin,i are set to 0). 

An interesting property of this proposed architecture is that couplings between neighboring 

neurons are voltage-mode signals instead of current-mode signals, in contrast to other proposed 

resistive networks in Chapter 4 and Chapter 5. This is dictated by the gates being controlled by 

voltage-mode signals. 

It is important to note that inhibitory synapses are connected to the gates of pull-up device 

in the neuron circuits, while excitatory synapses are connected to the gates of pull-down device, 

as shown in Figure 6.3. This is because weighted signals coming from artificial synapses increase 
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the resistance of the corresponding device. Therefore, when excitation becomes more dominant 

as compared to inhibition, the neuron circuit generates an output level that is closer to the 

supply voltage, Vsupply in Figure 6.3. In contrast, when inhibition is more dominant, the neuron 

circuit produces an output that is closer to 0V (ground). 

6.3 Circuit Simulations 

To evaluate the potential of our proposed neurocomputing architecture in Figure 6.3 we 

have created a compact circuit simulation model in Verilog-A for the graphene device 

configurations based on device measurement data [60]. The relationship between graphene 

resistance and applied gate voltage is modeled as a saturation function with two cut-off voltages 

(i.e., Vcut_min and Vcut_max). This function outputs the lowest resistance value (Rmin) when applied 

gate voltage is less than Vcut_min, and the highest resistance value (Rmax) when applied gate 

voltage is higher than Vcut_max. When it is in-between these two voltage levels the device 

resistance increases linearly with applied gate voltage (from Rmin to Rmax). 

In our circuit simulations we used Vsupply=1V, Vcut_min=0.1V, Vcut_max=0.9V, and 

Rmax/Rmin=100 which is achievable with today’s technology [60]. This R-V characteristic can be 

attained by means of a properly-selected reference voltage corresponding to the ground in our 

circuits (e.g., around -3V for the device example in [60]), or a carefully-tuned back-

gate/substrate voltage, or both. We connected 1pF capacitor at the output of each neuron circuit 

to model device parasitics. 

The devices used in the neuron circuits have nine equally-weighted gates (i.e., l1=l2=…=l9) so 

that each neuron has nine local connections in the network. The devices used in the synapse 

circuits, however, have three binary-weighted gates (i.e., l1=2l2=4l3) that allows 15 different 

synaptic weights that can be defined in the model (considering both excitatory and inhibitory 

synapse components). The device resistances in the synapse circuits are designed to be 100 
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times greater than those in the neuron circuits in order to prevent significant deviations in the 

neuron output voltages from their actual values due to fanout. 

As a first example we constructed a 5-neuron associative memory based on the architecture 

proposed in Figure 6.3. Using pattern examples [1 0 1 1 0] and [1 0 1 0 1] as memorized patterns 

by programming excitatory and inhibitory synapses accordingly using Hebbian Rule [61], we 

evaluated the convergence of this small network when other patterns were provided as inputs. 

Figure 6.4 shows a pattern recognition example. Even though there is 40% distortion in the 

initial input pattern [0 1 1 1 0], associative memory successfully recalls stored pattern that most 

closely resembles to applied input pattern. 

 

Figure 6.4. Pattern recognition example based on a 5-neuron system. Associative memory fully 

recognizes the pattern [1 0 1 1 0] despite 40% distortion in the initial input pattern. 
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Figure 6.5 demonstrates a second pattern recognition example for the same 5-neuron 

system, but now using gray-scale pixels represented by intermediate input signal values. The 

system correctly recognizes the pattern [1 0 1 0 1] as the closest memorized pattern to the initial 

gray-scale input pattern. 

 

Figure 6.5. Pattern recognition example based on a 5-neuron system. Intermediate pixel values are 

possible as initial conditions by means of multi-gate structure of graphene devices. For this example the 

initial input pattern is [1 0 0.5 0.5 1] at time=0s and the recovered output pattern is [1 0 1 0 1] at 

time=20ns. 

We also constructed 20-pixel gray-scale example for larger neuromorphic circuits with local 

interconnections among artificial neurons (e.g., 9 connections for each neuron) based on the 

architecture in Figure 6.3. For illustration we show here the same device simulation models to 
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evaluate an associative memory consisting of 20 neurons. The bit patterns shown in Figure 4.4 

are examples of memorized patterns that are programmed into the neural network circuit model 

via synaptic weights. 

As an initial input pattern we used a 28% distorted version of the bit pattern ‘5’ with several 

gray-scale pixels, and our associative memory successfully recovers the bit pattern ‘5’ as 

illustrated in Figure 5.14, similar to our thermal neural network proposed in Chapter 5. 

Importantly, the results here indicate that our proposed neuromorphic circuits scale well with 

the number of bits as long as the nearest neighbor coupling is sufficiently accurate. 

Next we highlight the use of the same 20-neuron network for other image processing 

applications such as edge and line detections. In order to program excitatory and inhibitory 

synapses we used the cloning templates for edge and line detection applications given in [8], 

[34]. Circuit simulation results match the ones in Figure 4.6, thus confirming correct 

functionality of our proposed all-graphene analog neurocomputing circuitry. 

6.4 Device Scaling and Improvements for Affordable All-

Graphene Neurocomputing Circuits 

With proper selection of back-gate voltage minimum device dimensions that are achievable 

with today’s technology (i.e., nanoscale) could be used for proposed graphene devices while still 

attaining desired high-to-low graphene resistance ratio (e.g., 100). A sheet resistance of around 

1kΩ could be achieved for a 0.1nm thick graphene device using today’s technology [62]. A 

minimum size device can be used in the neuron circuits, and larger devices in the synapse 

circuits (e.g., 100x larger). Figure 6.6 shows tradeoff between power and area for our proposed 

all-graphene associative memory with the device width of 10nm. With smaller device 

dimensions this network would provide better performance for neurocomputing. 
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Figure 6.6. Power-area tradeoff per neuron with nine synapses for all-graphene associative memory 

with a minimum length ranging from 10nm to 1µm. 

Furthermore, in order to reduce power consumption for this all-graphene associative 

memory the sensitivity of graphene resistance change for applied gate voltage can be increased 

(e.g., more than 100x change in graphene resistance for an applied gate voltage of 1V). This can 

be achieved by decreasing the thickness of gate oxide so that the electric field between the gate 

and graphene ribbon could increase for the same applied gate voltage. This would provide either 

larger high-to-low resistance ratio for the same amount of increase in applied gate voltage or 

lower operation voltages required for such networks (e.g., less than 1V), both resulting in less 

power dissipation for the entire system. 
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Chapter 7  

Proof-of-Concept 65nm CMOS 

Analog Neurocomputing Chip 

In this chapter we illustrate a CMOS emulation circuitry for our proposed analog 

neurocomputing scheme. This chapter first scrutinizes the design of this 65nm CMOS chip and 

then gives our experimental results for various image processing applications. The chapter ends 

with our concluding remarks regarding the chip performance. 

7.1 Design of Analog CMOS Emulation Circuitry 

In this section we examine a circuit topology for use as an analog neurocomputer that is 

cultivated based on the conceptual architecture depicted in Figure 2.7. The key characteristics 

this design has to possess are the efficient current summation for neural signals coming from 

artificial synapses, the input-output isolation at the neuron circuits, and the current-to-voltage 

conversion for output generation based on a sigmoid-like transfer function. 

In the conceptual circuit diagram in Figure 2.7 both neuron outputs and synaptic weights 

can be either positive or negative. To represent all four possible neuron-synapse interactions, 
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the neuron circuits are split into two identical components: i) excitation neuron and ii) 

inhibition neuron. Each component is implemented as a two-stage summing amplifier (i.e., a 

two-stage operational amplifier with a resistive feedback) [63], followed by a large analog 

inverter, as drawn in Figure 7.1. The first stage is a single-ended differential amplifier consisting 

of five transistors, providing high gain. The second stage is built as a class-AB common source 

amplifier with two transistors, empowering high output swing and moderate gain. In addition, a 

large inverter is used at the output stages to achieve a sigmoid-like transfer function while 

producing sufficient current to artificial synapses. 

 

Figure 7.1. The CMOS neuron circuit consisting of two identical components. 

The reference voltage, Vref, in that figure corresponds to the average of maximum and 

minimum neuron output voltage levels as in: 



82 
 

  refV V Vmax min 2  (7.1)  

where Vmax and Vmin denote maximum and minimum neuron output voltages. In our case Vref is 

equal to 0.6V (i.e., {1.2V+0V}/2). 

Moreover, the excitation and inhibition neuron outputs change in opposite directions with 

respect to the reference voltage as given by: 

 ex in refV V V2   (7.2)  

where Vex is the excitation neuron output voltage and Vin is the inhibition neuron output voltage. 

For example, if the excitation neuron output is 0.9V in our hardware implementation, then the 

inhibition neuron will generate an output voltage of 0.3V (i.e., 1.2V-0.9V). 

Since the differential amplifiers in Figure 7.1 are configured in a negative feedback loop, the 

negative input terminals serve as summing nodes for neural signals coming from neighboring 

synapses. These terminals also act as a virtual ground, thereby ensuring a fixed DC voltage at 

these nodes that is equal to Vref. As such, artificial synapses can properly weight neural signals 

based on the voltage difference between the neighboring neuron output voltage and this 

reference voltage. 

The designed CMOS neuron circuit in Figure 7.1 can operate at two modes. The first one is 

the initialization mode in which initial conditions are applied to the neuron circuits. The second 

mode is the evaluation mode that constitutes the neural operation to generate the 

corresponding output pattern based on the function of the neural network set by synaptic 

weights. The E signal in the figure determines at which mode the neural network operates. 

Similar to the neuron circuits, the synapse circuits are also divided into two parts: i) 

excitatory synapse and ii) inhibitory synapse. Each part is formed by three binary-weighted 
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resistances in parallel controlled by digital data and switches as shown in Figure 7.2. This 

guarantees 15 different resistance levels that can be defined in this analog CMOS 

neurocomputing circuit. The last two switches in these circuits set the type of artificial synapse 

(i.e., the sign of synaptic weight) via the T signal. This signal controls the switches in such a way 

that two neuron outputs are connected to different inputs of neighboring neurons via artificial 

synapses. For example, when the synaptic weight is positive, the T signal becomes high, allowing 

the current flow between the excitatory neuron output and the excitatory input of neighboring 

neuron and between the inhibitory neuron output and the inhibitory input of neighboring 

neuron. Likewise, when the synaptic weight is negative, this signal is pulled down, thus 

swapping interconnections between neighboring neurons (i.e., the signs of synaptic weights). 

 

Figure 7.2. Excitatory and inhibitory synapse designs using CMOS technology. 
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The most important caveat to take during laying out these circuits is the proper distribution 

of the E signal among neuron circuits. In other words, all artificial neurons must get this signal 

at the same time for correct mode switches so as to prevent signal skew that could be caused by 

large mismatches in signal routing. The h-tree circuit technique that is used for clock 

distribution in digital circuits [64] is seemingly the most effective way to allow right circuit 

operation for such purposes. 

7.2 Experimental Test Results 

We have built an analog neurocomputing circuit described in the previous section using 

65nm CMOS technology that contains 20 neuron circuits in a 5x4 grid, each having nine synapse 

circuits connected to the nearest neighbors (see Figure 7.3). In this section we share our test 

results, including the chip performance and several image processing applications. 

 

Figure 7.3. Micrograph of a 20-neuron network implemented in 65nm CMOS. 



85 
 

Table 7.1 tabulates the performance metrics for this 65nm CMOS chip. The digital part of the 

chip corresponds to the D flip-flop chains that scan control data for initial conditions and 

synaptic weights into the neural network while the rest of the circuit (i.e., the whole neural 

network design) constitutes the analog part. With about 10ns settling time this design requires 

more than 160x less energy and around 1.5x less area per neuron when compared to the best 

reported analog CMOS implementation [1]. Hence, these results set the upper limits for area 

and power consumption as well as serving as a reliable point of comparison in building feasible 

associative memories and neurocomputing circuits enabled by emerging technologies. 

Table 7.1. Chip performance. The neuron-synapse module is composed of one neuron circuit with 

nine artificial synapses. 

System Property Value 

Chip Area 4mm2 

Area of One Neuron-Synapse Module 0.0258mm2 

Area of One Neuron Circuit 0.0074mm2 

Average Power of Analog Part 122mW 

Average Power of Digital Part 13.4µW 

Average Power of One Neuron-Synapse Module 6.1mW 

 

We first programmed artificial synapses in application to pattern recognition using Hebbian 

Rule described in [61] for training the network based on memorized patterns given in Figure 7.4 

(a), since it achieves the best pattern retrieval performance in the presence of various noise 

sources when compared to other training algorithms used for such a locally-interconnected 

architecture [61]. The system successfully recalled stored patterns from distorted inputs as 

displayed in Figure 7.4 (b)-(c). These testing results match the ones in Figure 4.5 and Figure 

5.14, validating correct operation of this CMOS emulation circuitry. 
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Figure 7.4. Pattern matching examples. (a) 20-pixel memorized bit patterns. (b) Example 1: input 

pattern (left) and output pattern (right). (c) Example 2: input pattern (left) and output pattern (right). 

We then extended our pattern matching application to digit recognition by storing all ten 

digits (see Figure 7.5 (a)) in the network via artificial synapses. We used 25% distorted versions 

of bit patterns as initial inputs to the network as shown in Figure 7.5 (b)-(d). Our associative 

memory circuit successfully retrieves output patterns that most closely resemble to the initial 

input patterns, as can be seen in Table 7.2. 

Table 7.2. Hamming distance as a percentage between stored and initial input patterns for three 

digit recognition examples in Figure 7.5 (b)-(d). 

Input 
Patterns 

Hamming Distance to Stored Digits 

0 1 2 3 4 5 6 7 8 9 

Example #1 30% 30% 55% 45% 60% 55% 65% 25% 55% 40% 

Example #2 70% 40% 35% 25% 60% 40% 45% 45% 40% 40% 

Example #3 55% 70% 35% 30% 55% 35% 45% 55% 25% 45% 
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Figure 7.5. Digit recognition. (a) 20-pixel memorized bit patterns. (b) Example 1: input pattern (left) 

and output pattern (right). (c) Example 2: input pattern (left) and output pattern (right). (d) Example 3: 

input pattern (left) and output pattern (right). 

Next, we adjusted synaptic weights for various image processing applications such as edge 

detection and hole filling. We leveraged the 3x3 cloning template for each application provided 

in [8], [34]. Figure 7.6 demonstrates our experimental results for five image processing 

applications. Recalled output patterns are the same as the ones in Figure 4.6, again verifying our 

analog neurocomputing system implemented in 65nm CMOS. 
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Figure 7.6. Testing results for different image processing applications. Input patterns (left) and 

output patterns (right). (a) Horizontal line detection. (b) Vertical line detection. (c) Edge detection. (d) 

Line completion. (e) Hole filling. 

7.3 Comparisons to Our Proposed Analog Neural Networks 

Based on Emerging Technologies 

Figure 7.7 depicts performance comparison results for the 65nm CMOS emulation circuitry 

relative to our proposed analog neurocomputing systems rigorously explained in Chapter 4, 

Chapter 5 and Chapter 6 in terms of power and area. This figure attests that unlike mature 

CMOS technology that has nearly reached its scaling limits emerging technologies and materials 
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offer unique properties that can be efficiently exploited in the practical realization of 

neurocomputing circuits and associative memories. 

 

Figure 7.7. Performance comparison of CMOS, magnetic, all-graphene, and (scaled) thermal analog 

neural networks. 
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Chapter 8  

Conclusion and Future Directions 

The goal of this thesis has been to explore efficient and viable circuit and system solutions 

for associative memories and neurocomputing circuits based on emerging post-CMOS 

technologies such as magnetic and thermally-controlled devices by exploiting their distinctive 

features. All the proposed devices and technologies in this study offer great opportunities and 

could enable the practical realization of neurocomputing systems and associative memories. 

In Chapter 2 we have proposed the co-optimization of technology and architecture for the 

practical realization of neurocomputers as previously-proposed approaches based on CMOS 

and/or emerging technologies do not offer a feasible solution for neurocomputing. In this 

respect we have developed required device properties to enable such systems in a compact and 

efficient way based on a conceptual circuit diagram. 

In Chapter 3 we have proposed highly-efficient hardware implementations of fully-digital 

CNN and ONN using non-volatile, all-magnetic logic technology, mLogic. Proposed 

architectures offer re-configurability and highly-efficient pipelining by exploiting local storage 

of the mCell state, and require minimal connections with CMOS. We have validated true 

functionality of these systems using MATLAB-based behavioral simulations. Comparison results 
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to 32nm CMOS technology demonstrate that this new all-magnetic logic technology could 

enable the practical implementation of low-voltage, low-power, and nanoscale fully-digital 

associative memories. 

In Chapter 4 we have proposed a design based on the use of a newly-proposed STT-MTJ 

device, mCell, to enable all-magnetic analog associative memories and neurocomputing systems. 

Simplified programmability and non-volatility of these devices preclude the need for DACs to 

convert digital control data into an analog signal and eliminate the need for additional memory 

elements to store such control data, thereby enabling efficient implementation of artificial 

synapses. Electrically-isolated read- and write-paths of the mCell devices allow efficient 

transformation of current-mode signals generated via artificial synapses into voltage-mode 

neuron outputs. 

In Chapter 5 we have proposed a novel configuration for ovenized AlN resonators to 

efficiently implement artificial synapses and neurons, which are never efficiently built with 

CMOS exclusively. Thermal power due to multiple heaters on a single device is controlled by a 

digital input and naturally summed together to adjust the resonator impedance, and provide an 

extremely efficient D/A conversion for each synapse and an efficient building block for each 

neuron. We have shown the design of proposed DAC by considering possible design challenges 

caused by the non-linear dependency of the resonator impedance on the heater power and 

heater resistance change due to temperature. 

In Chapter 6 we have proposed and designed a complete analog neurocomputing circuitry 

based on the multi-gate programmable graphene resistances that provide a natural summing 

and compact D/A conversion for the implementation of artificial neurons and synapses. The 

operation of proposed architecture has been confirmed using simple gray-scale pattern 

recognition and image processing examples. 
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In Chapter 7 we have demonstrated a proof-of-concept analog neurocomputing chip 

implemented in 65nm CMOS technology. It consists of 2o neuron circuits, each having nine 

synapse circuits as in CNN. Testing results coincide with image processing examples presented 

in Chapter 4, Chapter 5 and Chapter 6. Performance results constitute an upper bound for 

future neurocomputing circuits enabled by emerging technologies and materials. 

8.1 Future Considerations 

This research is intended to study novel system solutions for neurocomputing and 

associative memories using various types of emerging materials. Hence, the proposed 

implementations in this thesis might be extended to other cutting-edge materials and 

technologies that can be classified under the same categories that exhibit similar characteristics. 

For example, the use of all spin logic (ASL) [65] could be exploited to enable magnetic neural 

networks; and vanadium dioxide [66] or phase change materials [13] for thermal neural 

networks. 

To expand the architectural diversity for neurocomputing circuits the next sub-sections 

explore high-level architectures based on novel device and circuit topologies using graphene and 

RRAM as emerging technologies. These sub-sections investigate what else could be 

accomplished, leading to new research opportunities for distinct kinds of neural networks and 

serving as an excellent starting point for designing viable neurocomputing systems based on 

such beyond-CMOS devices. 

8.1.1 All-Graphene Neural Network Enabled by Evanescent Wave Coupling 

In this sub-section we propose a novel graphene-based device configuration that could be 

used to represent artificial neurons. Two graphene ribbons in close proximity are coupled to 

each other via evanescent wave transport [67]. The current through one graphene ribbon 

becomes proportional to the current through other via evanescent wave coupling based on the 
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distance between them (see Figure 8.1). Such a device configuration, which we term graphene 

coupler, can be used to represent artificial neurons. This also enables the electrical isolation 

between the input and output of the neuron circuits as required. 

 

Figure 8.1. The graphene coupler. The current through the second graphene sheet is affected by the 

current through the first one and the distance between the two. ζ denotes the coupling coefficient between 

two graphene ribbons and is a function of s, the distance between these ribbons. 

8.1.1.1 Proposed Architecture 

Figure 8.2 demonstrates our proposed all-graphene associative memory that is based on the 

conceptual neural network architecture depicted in Figure 2.7. Variable resistors in that figure 

correspond to the graphene devices with binary-weighted gates construed in Section 6.1. In this 

circuit representation the currents coming from neighboring synapses are efficiently summed 

together via a small-resistance graphene ribbon. This summation is then converted to an analog 

output voltage via a simple pull-up/pull-down network, which is enabled by current coupling 

between two graphene sheets. We hope our findings here could open up new avenues and brings 

about great opportunities for leveraging graphene in neurocomputing circuits and associative 

memories. 
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Figure 8.2. Conceptual circuit diagram for our proposed all-graphene analog neurocomputing circuit. 

Isum represents the total current coming from neighboring synapses. 

8.1.2 Oscillatory Neural Networks Using Low-Power RRAM Oscillators 

RRAMs have already been demonstrated for use as artificial synapses in neurocomputing 

circuits as highlighted in Chapter 2. Such devices offer three orders of magnitude gradual 

resistance change via pulse-based programming [9]-[10]. In this sub-section we examine the use 

of a low-power RRAM oscillator, along with RRAM synapses, to build an oscillatory neural 

network with minimal CMOS. The main difference between ONN and our proposed analog 

neurocomputing topology in Chapter 2 is that information is carried by phase rather than 

amplitude. We believe such a system proposal can unleash new methods and paths for both 

device/material development and neurocomputing systems. 
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8.1.2.1 The RRAM Oscillator 

State switching between high and low resistances in an RRAM device can be attained by 

changing the amount of current flowing through it (e.g., via Joule heating [68]). Using this 

feature and with proper biasing the continuous switching of an RRAM device could be 

sustained. For example, an RRAM oscillator can be built using a simple circuit setup shown in 

Figure 8.3 (left) (i.e., adding a resistance in series with the device). Figure 8.4 demonstrates the 

oscillation behavior of this circuit. Different oscillation frequencies can be obtained by altering 

the series resistance as illustrated in Figure 8.3 (right), since this affects the strength of the 

filamentation. Therefore, by exploiting more complex circuit topologies using RRAM devices a 

voltage-controlled oscillator could be built without requiring inductors and capacitors, thus 

allowing low-power operation. In spite of further need for exhaustive analysis and research to 

construct a complete oscillator circuitry, such an oscillator could offer crucial opportunities for 

enabling low-power oscillatory associative memories as mentioned in the next sub-section. 

 

Figure 8.3. A simple RRAM oscillator setup (left) and state switching of RRAM with various series 

resistances (right) (Courtesy of Jeffrey Weldon’s group from Carnegie Mellon University). RS denote the 

series resistance. 
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Figure 8.4. Oscillation behavior of the RRAM oscillator when Rs is 379Ω (Courtesy of Jeffrey 

Weldon’s group from Carnegie Mellon University). The oscillation frequency is 12.7kHz. 

8.1.2.2 Proposed ONN System 

Figure 8.5 demonstrates our proposed ONN system that is enabled by RRAM devices, based 

on the conceptual architecture in Figure 1.2. Each artificial synapse is represented by a single 

RRAM device while each neuron circuit is formed by an RRAM oscillator and a capacitor. The 

capacitor sums the currents coming from neighboring synapses, and forms a low pass filter with 

RRAM synapses for signal averaging as required (see Section 3.3.1). XOR logic gates calculate 

the phase differences between the neighboring neuron outputs, and are implemented using 

CMOS technology [69]. This architecture requires minimal connections to CMOS devices. 
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Figure 8.5. Proposed ONN architecture enabled by RRAM with minimal CMOS. 

8.1.2.3 Preliminary Results 

As a preliminary work to show the potential of proposed architecture depicted in Figure 8.5 

we built a small network consisting of 5 neuron circuits and 25 synapses using Verilog-A models 

for the XOR gates and voltage-controlled RRAM oscillator with 10% tuning range around a 

center frequency of 1GHz, based on that figure. We used 3-input XOR gates with the last bit 

representing the sign of corresponding synapse (excitatory or inhibitory), thereby providing 

great flexibility for programming synaptic weights. The RRAM oscillator was modeled as a 

standard VCO with a gain of 100MHz/V. We configured the RRAM synapses based on two 

stored patterns, [1 0 1 0 1] and [1 0 1 1 0]. The circuits were powered with +/-0.5V supply 

voltages so as to prevent resistance shift in the RRAM devices [9]-[10]. 
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When we apply stable states as initial inputs, the network stays in the same synchronized 

states as expected (see Figure 8.6 and Figure 8.7). We then apply noisy patterns as initial inputs. 

Figure 8.8 demonstrates the convergence of this network when there is 50% distortion in the 

second pixel. The pattern with two 50% noisy pixels (second and third) is successfully recovered 

via synchronization of this small network as depicted in Figure 8.9. Figure 8.10 shows 

associative recall of the memorized pattern, [1 0 1 0 1], when the initial input has 25% distortion 

in the fifth pixel and 50% distortion in the second and third pixels. Although these results seem 

to be promising, more analysis and research are still required for this implementation to pass 

the small prototype stage. 

 

Figure 8.6. The system stays in the locked state with stored pattern, [1 0 1 1 0], as initial state. 
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Figure 8.7. The system stays in the locked state with stored pattern, [1 0 1 0 1], as initial state. 

 

Figure 8.8. Synchronization of our proposed network with one 50% distorted pixel. Input pattern: [1 

0.5 1 0 1] & Output pattern: [1 0 1 1 0]. 
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Figure 8.9. Synchronization of our proposed network with two 50% distorted pixels. Input pattern: [1 

0.5 0.5 0 1] & Output pattern: [1 0 1 1 0]. 

 

Figure 8.10. Synchronization of our proposed network with one 25% and two 50% distorted pixels. 

Input pattern: [1 0.5 0.5 0 0.75] & Output pattern: [1 0 1 0 1]. 
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