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Abstract

This thesis examines two complex, dynamic problems by employing the theory of Markov

Decision Processes (MDPs). Chapters 2 and 3 consider assemble-to-order (ATO) inventory

systems. An ATO system consists of several components and several products, and assembles

products as demand is realized; it is becoming increasingly popular since it provides greater

flexibility in manufacturing at a reasonable cost. This work contributes to the ATO research

stream by characterizing optimal inventory replenishment and allocation policies. Chapter 4

examines the new product development (NPD) process with scarce resources and many projects

in parallel, each lasting several periods, in the face of uncertainty. This study advances the

NPD literature by revealing that optimal project selection and resource allocation decisions

are congestion-dependent. Below, I elaborate on the novel optimal policies and structural

results I obtain using MDP formulations, which is the overarching theme of the thesis.

In Chapter 2, I consider generalized ATO “M -systems” with multiple components and

multiple products. These systems involve a single “master” product which uses multiple units

from each component, and multiple individual products each of which consumes multiple units

from a different component. Such systems are common for manufacturers selling an assembled

product as well as individual spare parts.

I model these systems as infinite-horizon MDPs under the discounted cost criterion. Each

component is produced in batches of fixed size in a make-to-stock fashion; batch sizes are

determined by individual product sizes. Production times are independent and exponentially

distributed. Demand for each product arrives as an independent Poisson process. If not

satisfied immediately upon arrival, these demands are lost. Therefore the state of the system

can be described by component inventory levels.

A control policy specifies when a batch of components should be produced (i.e., inventory
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replenishment), and whether an arriving demand for each product should be satisfied (i.e.,

inventory allocation). The convexity property that has been largely used to characterize

optimal policies in the MDP literature may fail to hold in our case. Therefore I introduce

new functional characterizations for submodularity and supermodularity restricted to certain

lattices of the state space. The optimal cost function satisfies these new characterizations: The

state space of the problem can be partitioned into disjoint lattices such that, on each lattice,

(a) it is optimal to produce a batch of a particular component if and only if the state vector

is less than a certain threshold associated with that component, and (b) it is optimal to fulfill

a demand of a particular product if and only if the state vector is greater than or equal to

a certain threshold associated with that product. I refer to this policy as a lattice-dependent

base-stock and lattice-dependent rationing (LBLR) policy. I also show that if the optimization

criterion is modified to the average cost rate, LBLR remains optimal.

Chapter 2 makes three important contributions. First, this is the first study that estab-

lishes the optimal inventory replenishment and allocation policies for M -systems. Second, this

study is the first to characterize the optimal policies for any ATO problem when different

products may use the same component in different quantities. Third, I introduce new func-

tional characterizations restricted to certain lattices of the state space, giving rise to an LBLR

policy.

In Chapter 3, I evaluate the use of an LBLR policy for general ATO systems as a heuristic.

I numerically compare the globally optimal policy to LBLR and two other heuristics from

the literature: a state-dependent base-stock and state-dependent rationing (SBSR) policy,

and a fixed base-stock and fixed rationing (FBFR) policy. Taking the average cost rate as

the performance criterion, I develop a linear program to find the globally optimal cost, and

Mixed Integer Programming formulations to find the optimal cost within each heuristic class.

I generate more than 1800 instances for the general ATO problem, not restricted to the as-

sumptions of Chapter 2, such as the M -system product structure. Interestingly, LBLR yields

the globally optimal cost in all instances, while SBSR and FBFR provide solutions within

2.7% and 4.8% of the globally optimal cost, respectively. These numerical results also provide

several insights into the performance of LBLR relative to other heuristics: LBLR and SBSR

perform significantly better than FBFR when replenishment batch sizes imperfectly match the
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component requirements of the most valuable or most highly demanded product. In addition,

LBLR substantially outperforms SBSR if it is crucial to hold a significant amount of inventory

that must be rationed.

Based on the numerical findings in Chapter 3, future research could investigate the opti-

mality of LBLR for ATO systems with general product structures. However, as I construct

counter-examples showing that submodularity and supermodularity – which are used to prove

the optimality of LBLR in Chapter 2 – need not hold for general ATO systems, showing the

optimality of LBLR for general ATO systems will likely require alternate proof techniques.

In Chapter 4, I study the problem of project selection and resource allocation in a multi-

stage new product development (NPD) process with stage-dependent resource constraints.

As in Chapters 2 and 3, I model the problem as an infinite-horizon MDP, specifically under

the discounted cost criterion. Each NPD project undergoes a different experiment at each

stage of the NPD process; these experiments generate signals about the true nature of the

project. Experimentation times are independent and exponentially distributed. Beliefs about

the ultimate outcome of each project are updated after each experiment according to a Bayesian

rule. Projects thus become differentiated through their signals, and all available signals for a

project determine its category. The state of the system is described by the numbers of projects

in each category. A control policy specifies, given the system state, how to utilize the resources

at each stage, i.e., the projects (i) to experiment at each stage, and (ii) to terminate.

I characterize the optimal control policy as following a new type of strategy, state-dependent

non-congestive promotion (SDNCP), for two different special cases of the general problem: (a)

when there is a single informative experiment and projects are not terminated, or (b) when

there are multiple uninformative experiments. An SDNCP policy implies that, at each stage,

it is optimal to advance a project with the highest expected reward to the next stage if

and only if the number of projects in each successor category is less than a state-dependent

threshold. In addition, I show that threshold values decrease in a non-strict sense as a later

stage becomes more congested or as an earlier stage becomes less congested. (A stage becomes

“more congested” with an increase in the number of projects at this stage or with an increase

in the expected reward of any project at this stage.) An SDNCP policy can be used as a

heuristic for the general problem. I support the outstanding performance of an SDNCP policy
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in the general case through a numerical study. These findings highlight the importance of

taking into account congestion in optimal portfolio strategies.
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Chapter 1

Introduction

This dissertation analyzes two complex, dynamic problems by employing the theory of Markov

Decision Processes (MDPs). MDPs offer an elegant mathematical framework for addressing

arbitrarily challenging, sequential decision problems that arise in the fields of operations re-

search, management science, finance, and computer science, among others. Fundamentally,

MDPs enable researchers to analyze the dynamics of a stochastic process whose transition

mechanism is controlled over time: The state of the process provides the decision maker with

all the information necessary to choose a feasible action in that state. The process responds to

the chosen action by randomly evolving to a new state, and yields either costs or rewards to

the decision maker. While MDPs capture complex systems, they still enable clean analytical

formulations with the help of abstraction and assumptions. Most importantly, it is assumed

that the probability that the controlled process transitions into its new state depends only

on the current state and the chosen action. In other words, the state transitions of an MDP

possess the memoryless property, which greatly simplifies the analysis of stochastic processes.

(Since it satisfies the memoryless property, the exponential distribution is extensively used in

the MDP literature.)

Due to the memoryless assumption, in an MDP one needs to make decisions only at

certain time epochs. Therefore, one strength of MDPs lies in their ability to be used to

formulate a discrete recursive value function capturing the expected cost or reward; the optimal

action as a function of the current state can be derived by calculating this value function.

Many researchers have studied various techniques in this context, including dynamic and

linear programming, to compute value functions. However, most computational methods suffer
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from multiple dimensionality; their practical applications are limited to cases where the state

space is manageably small and/or the value function has a simple analytical form. To solve

computationally nontrivial problems, many other researchers have focused on characterizing

the structural properties of value functions. Establishing basic properties of value functions in

MDPs and showing that they survive under iteration, forms the basis of the inductive proof

technique. This technique allows the structure of the optimal policy to be deduced. Structural

properties provide a powerful methodology for either partial or complete characterization of

optimal policies, which might have important managerial implications and/or offer smarter

computational methods.

The properties of MDPs mentioned above are particularly useful to model the two problems

I study in my dissertation: Assemble-to-order (ATO) inventory systems and new product

development (NPD) processes. Chapters 2 and 3 discuss ATO systems under Markovian

assumptions on production and demand. An ATO system consists of several components and

several products, assembling products as demand is realized. ATO systems are becoming

increasingly popular as they provide greater flexibility in manufacturing at a reasonable cost.

This work contributes to the ATO research by characterizing optimal inventory replenishment

and allocation policies. Chapter 4 examines the MDP representation of an NPD process with

scarce resources and many concurrent projects, each lasting several periods, in the presence

of uncertainty. Chapter 4 contributes to the NPD research by highlighting the impact of

congestion on optimal project selection and resource allocation decisions. In Chapters 2-

4 I elaborate on the novel optimal policies and computational results obtained using MDP

formulations.

Chapter 2 considers generalized ATO “M -systems” with multiple components and multiple

products. These systems involve a single “master” product which uses multiple units from each

component, and multiple individual products which consume multiple units from one different

component. (One example of such a system involves a manufacturer who sells an assembled

product as well as individual spare parts.) I model these systems as infinite-horizon MDPs

under the discounted cost criterion. Each component is produced in batches of fixed size in

a make-to-stock fashion; batch sizes are determined by individual product sizes. Production

times are independent and exponentially distributed. Demand for each product arrives as an
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independent Poisson process; if not immediately satisfied, these demands are lost. Therefore

the state of the system can be described by component inventory levels. A control policy

specifies when a batch of components should be produced (i.e., inventory replenishment), and

whether an arriving demand for each product should be satisfied (i.e., inventory allocation).

The optimal cost function (i.e., the value function) may not satisfy the convexity property,

which is among the most commonly investigated structural properties in the MDP literature.

Nevertheless, the MDP formulation provides a precise expression of states, which I partition

into certain lattices; I then introduce new functional characterizations for submodularity and

supermodularity restricted to those lattices of the state space. These characterizations are

satisfied by the optimal cost function. These allow us to prove that, on each lattice, (a) it is

optimal to produce a batch of a particular component if and only if the state vector is less than

a certain threshold associated with that component; and (b) it is optimal to fulfill a demand

for a particular product if and only if the state vector is greater than or equal to a certain

threshold associated with that product. I label this policy as lattice-dependent base-stock and

lattice-dependent rationing (LBLR). I also extend the optimality of LBLR to the average cost

criterion.

To our knowledge, the work in Chapter 2 is is the first attempt to characterize the optimal

inventory replenishment and allocation policies for M -systems. This is also the first study

that derives optimal policies for any ATO problem when different products require the same

component in different quantities. Finally, this work introduces a lattice-dependent policy,

specified by novel functional characterizations through certain lattices of the state space. I

believe that our lattice-dependent solution for M -systems may be usefully employed in opti-

mal policy characterization for more complex ATO models, and potentially for other MDP

problems as well.

Chapter 3 evaluates an LBLR policy for general ATO systems (not restricted to our model

of Chapter 2), as a heuristic. I numerically compare the globally optimal policy to LBLR and

two other heuristics from the literature: a state-dependent base-stock and state-dependent

rationing (SBSR) policy, and a fixed base-stock and fixed rationing (FBFR) policy. Taking

the average cost rate as the performance criterion, I develop a linear program to find the

globally optimal cost, and mixed integer programming formulations to find the optimal cost
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within each heuristic class. I generate more than 1800 instances for the general ATO problem.

Interestingly, LBLR yields the globally optimal cost in all instances, while SBSR and FBFR

provide solutions within 2.7% and 4.8% of the globally optimal cost, respectively. These

numerical results also provide several insights into the performance of LBLR relative to other

heuristics: LBLR and SBSR perform significantly better than FBFR when replenishment

batch sizes imperfectly match the component requirements of the most valuable or most highly

demanded product. In addition, LBLR substantially outperforms SBSR when it is crucial to

hold a significant amount of inventory that must be rationed.

The numerical findings in Chapter 3 can shed light on the optimality of LBLR for ATO

systems with general product structures. However, Chapter 3 also constructs counter examples

which show that submodularity and supermodularity need not hold for general ATO systems.

Therefore, our proof technique in Chapter 2 might be inadequate to prove the optimality of

LBLR for the general ATO problem, implying the need for a new methodology.

Chapter 4 addresses the issues of project selection and resource allocation in a multi-stage

new product development (NPD) process with stage-dependent resource constraints. As in

the previous chapters, I model the problem as an infinite-horizon MDP under the discounted

cost criterion. Each NPD project undergoes a different experiment at each stage of the NPD

process; these experiments generate signals about the true nature of the project. Experimen-

tation times are independent and exponentially distributed. After each experiment, beliefs

about the outcome of each project are updated according to a Bayesian rule. A project thus

becomes differentiated through its signals, and its category is determined by all its available

signals. The state of the system is described by the number of projects in each category. A

control policy specifies, given the system state, how to utilize the resources at each stage, i.e.,

the projects (i) to experiment at each stage, and (ii) to terminate.

I characterize the optimal control policy according to a new strategy, state-dependent non-

congestive promotion (SDNCP), for two different special cases of the general problem: (a)

when there are multiple uninformative experiments and projects are not terminated, or (b)

when there is a single informative experiment. An SDNCP policy implies that, at each stage,

it is optimal to advance the project with the highest expected reward to the next stage if

and only if the number of projects in each successor category is less than a state-dependent
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threshold. I further reveal that threshold values decrease in a non-strict sense as a later stage

becomes more congested or as an earlier stage becomes less congested. (A stage becomes more

congested if at this stage either the number of projects increases or the expected reward of

any project increases.) These analytical findings uncover the role congestion plays in optimal

policies.

I also evaluate the use of SDNCP as a heuristic for the general NPD problem, comparing

it to several variants of fixed non-congestive promotion (FNCP) policies with fixed thresholds.

Our steps to compute the optimal cost within each heuristic class proceed very much in

the same way as in Chapter 3. I generate 79 instances of the general NPD problem: For

SDNCP, the MIP solver could solve 63% of these instances within two hours. Remarkably,

SDNCP minimizes the average costs in 90% of the instances that could be solved within

two hours. (For the solved instances, the average distances of SDNCP and FNCP from the

optimal cost are 0.05% and 8.47%, respectively.) The strong numerical performance of SDNCP

demonstrates that promotion decisions should be based on a broader monitoring of projects

across all categories.

This dissertation broadens our knowledge of optimal policies for MDPs by advancing novel

structural results for the challenging ATO and NPD problems under Markovian assumptions.

Chapter 2 introduces new functional characterizations along with lattice-dependent policies

to characterize optimal policies for M -systems. Computational results in Chapter 3 further

emphasize the practicality of LBLR policies for the general ATO problem. Chapter 4 estab-

lishes the optimality of an SDNCP policy in two special cases of the NPD problem. Chapter 4

also demonstrates the strong numerical performance of SDNCP for the general NPD problem,

which might have substantial implications for many industries including, but not limited to,

pharmaceutical and IT where R&D plays a vital role. Future work needs to establish optimal

policies for general ATO and NPD problems. But I am confident that the findings of this

dissertation will guide future studies on similar, or even more complex problems.





Chapter 2

New Functional Characterizations

and Optimal Structural Results for

Assemble-to-Order M-Systems

2.1 Introduction

Assemble-to-order (ATO) production is a popular strategy for manufacturing firms. ATO

allows companies to reduce their response window by stocking components, but gives them

the flexibility of postponing final assembly until demand is realized (Benjaafar and ElHafsi

2006). Many high-tech firms, facing shrinking product life cycles and increasing demand for

product varieties, use ATO to broaden customized product offerings, lower inventory cost,

and mitigate the effect of product obsolescence. Besides manufacturing, ATO systems can be

observed in cases where customer orders may include several items in different quantities (Song

2000). However, despite its popularity, little is known about the forms of optimal policies for

ATO systems. Much of this is attributable to the fact that there is considerable difficulty in

identifying optimal policies, as ATO systems build upon the features of both assembly and

distribution systems (Song and Zipkin 2003). (An assembly system has only one product and

aims to optimally coordinate components. A distribution system has only one component and

seeks to optimally allocate the component among different products.) Hence, one needs to

address both coordination and allocation issues in an ATO system, making them notoriously

This chapter has been submitted to the journal Operations Research with co-authors Mustafa Akan and
Alan Scheller-Wolf.
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Figure 2.1 Specific types of ATO product structures: (a) N -system, (b) M -system, (c) W -system, and (d)

Nested system with three products.

difficult to analyze.

ATO systems can be categorized based on their product structures (Lu et al. 2010). Figure

2.1 depicts the four specific types of ATO product structures: (a) An N -system, the simplest

of the ATO product structures, has two components and two products. One product uses

both components while the other product uses only one component. (b) An M -system has

two components and three products. One product uses both components while the other two

products use different components. (c) A W -system has three components and two products.

Each product is assembled from one product-specific component and one common component.

(d) A nested system has multiple components and products, where the set of components

required by one product is a subset of the set of components required by the next larger

product. Figure 2.1(d) depicts a nested system with three components. There are papers

characterizing the optimal policies for ATO systems with product structures (a), (c), or (d);
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for instance, see Dogru et al. (2010) for a W -system; Lu et al. (2010) for an N -system, and a

W -system and its generalizations; and ElHafsi et al. (2008) for a nested system.

In this chapter, we consider the inventory control of a continuous time ATO system with

multiple products and components structured according to a generalized version of the M -

system. Specifically, the system involves a single (master) product which uses multiple units

from each component, and multiple (individual) products each of which consumes multiple

units from a different component. Our product structure takes the form of M -system when

there are three products, cf. Figure 2.1(b).

We formulate the problem as an infinite-horizon Markov decision process (MDP) under the

total expected discounted cost criterion. We assume each component is produced in batches

of a fixed size in a make-to-stock fashion; production times are independent and exponentially

distributed. Demand for each end-product arrives as an independent Poisson process. If not

satisfied immediately upon arrival, these demands are lost. A control policy specifies when to

produce a batch of any component and, upon arrival of a demand, whether or not to satisfy

it from inventory if sufficient inventory exists.

A standard approach for the analysis of optimal policies of MDPs is to explore the first-

and/or second-order properties of the optimal cost function (see Koole 2006). In the literature,

optimal cost functions are typically shown to be convex (or concave). However, the existence

of counter-examples proves that convexity need not hold for our model (see Chapter 3 for

counter examples). Taking an alternative approach we define new functional characterizations

for submodularity and supermodularity, restricted to certain subspaces of the state space. See

Topkis (1998) for definitions of submodularity and supermodularity.

With these new definitions, we characterize the forms of optimal inventory replenishment

and allocation policies under a mild condition: If the batch size for any component equals

the number of units of that component needed to make one unit of the individual prod-

uct using that component only (Assumption 2.4.1), the optimal inventory replenishment is a

lattice-dependent base-stock production policy and the optimal inventory allocation is a lattice-

dependent rationing policy (cf. Theorem 2.4.1). This implies that the state space of the

problem can be partitioned into disjoint lattices such that, on each lattice, (a) it is optimal

to produce a batch of a particular component if and only if the state vector is less than the
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base-stock level associated with that component, and (b) it is optimal to fulfill a demand of

a particular product if and only if the state vector is greater than or equal to the rationing

level associated with that product. Furthermore, as the system moves to a different lattice

upon replenishment of a particular component, (i) the base-stock level of any other compo-

nent increases, (ii) the rationing level for any individual product not using that component

increases, and (iii) the rationing level for the master product using all components decreases,

in a non-strict sense.

Our contributions in the ATO research stream are as follows: First, to our knowledge, our

study is the first attempt to characterize the forms of optimal replenishment and allocation

policies for the M -system and its generalizations. Second, unlike previous research dealing

with the optimal policy characterization for ATO systems under stochastic lead times, we are

the first to allow different products to use the same component in different quantities. Third,

we define new functional characterizations for submodularity and supermodularity, restricted

to certain subspaces of the state space. Fourth, we introduce the notion of a lattice-dependent

policy, which represents a significant step towards understanding the problem and may enable

researchers to develop near-optimal heuristic solutions for general ATO systems.

The rest of this chapter is organized as follows: In Section 2.2 we review the related liter-

ature. In Section 2.3 we formulate our model under the discounted cost criterion. In Section

2.4, we introduce the new functional characterizations, establish the optimal replenishment

and allocation policies, and extend our structural results to the average cost case. In Section

2.5, we offer some extensions and concluding remarks.

2.2 Literature Review

Literature on ATO systems is extensive; Song and Zipkin (2003) provide a detailed review of

the ATO literature. However, there has been little research on optimal policy characterization

for ATO systems, which can be classified along the dimensions of system structure (assembly,

distribution, or general ATO) and nature of component supply leadtime (deterministic vs.

stochastic); see Table 2.1. Our model falls into the last column and last row in Table 2.1.

Below, we review the literature shown in Table 2.1. We also discuss several studies on stochastic
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Table 2.1 Literature on optimal policy characterization for ATO systems.

Assembly System Distribution System General ATO System
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Schmidt and Nahmias (1985) Topkis (1968) Veinott (1965)

Rosling (1989) Sobel and Zhang (2001) Gerchak and Henig (1989)

Chen and Zheng (1994) Hillier (2000)

Janakiraman and Muckstadt (2004) Van Mieghem and Rudi (2001)

Dogru et al. (2010)

Lu et al. (2010)
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Song et al. (2000) Ha (1997) ElHafsi et al. (2008)

Benjaafar and ElHafsi (2006) Ha (2000) Nadar et al. (2012)

ElHafsi (2009) de Véricourt et al. (2002)

Gayon et al. (2009a)

Gayon et al. (2009b)

leadtime single-item models.

Deterministic Leadtime ATO Models. Schmidt and Nahmias (1985) study a finite

horizon inventory model in which an end-product is assembled from two components, which

are ordered from an external supplier. They show that the optimal ordering rule for compo-

nents is a state-dependent base-stock policy, with the order-up-to point in each component

nondecreasing in the inventory position of the other component. The optimal assembly policy

is a base-stock policy as well. Rosling (1989) considers an assembly system with proportional

production and stock holding costs, showing that the optimal policies are equivalent to those

of a series system (Clark and Scarf 1960) under an initial condition on stock levels. Chen and

Zheng (1994), and Janakiraman and Muckstadt (2004) provide extensions of Rosling’s results.

Topkis (1968) considers a single-product model with multiple independent demand classes.

He shows that it is optimal to satisfy demand of a class if the stock level is above a certain

class-dependent level, independent of the levels of unmet demand of lower or equally important

classes. Topkis also proves the optimality of a base-stock ordering policy under certain condi-

tions. Sobel and Zhang (2001) consider an inventory model with two nonstationary demand

sources: deterministic demand that must be satisfied immediately and stochastic demand

that can be backordered. Assuming zero leadtime and a fixed setup cost, they establish the

optimality of a modified (s, S) policy.

Veinott (1965) is the first to consider a nonstationary model with multiple products, mul-

tiple demand classes, and zero delivery lag. He develops sufficient conditions ensuring that
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a base-stock ordering policy is optimal over an infinite horizon. This result extends to pos-

itive delivery lag under certain restrictions. Gerchak and Henig (1989) develop an optimal

myopic solution procedure for ordering and sales decisions in a stationary system with zero

leadtimes, infinite production capacity, and partial backlogging. They state that generaliza-

tions to nonstationary and fixed leadtimes are possible. Hillier (2000) studies ATO systems

with general demand, backlogging, and zero leadtime. If component commonality is allowed,

he develops lower and upper bounds on the optimal solution. Otherwise, the model becomes

a multi-period newsvendor problem with a myopic solution. These results can also be general-

ized to lost sales and nonzero leadtimes. Van Mieghem and Rudi (2001) consider newsvendor

networks with multiple products, multiple processing and storage points, and independent

demand over time. They show that the structure of the optimal policy in a single-period

newsvendor network carries over to a multi-period setting under certain conditions.

Two recent papers have managed to characterize optimal policies for more complex, non-

trivial special cases of ATO product structures: Dogru et al. (2010) consider an ATOW -system

with identical component lead times (see Figure 2.1 for the W -system product structure).

Based on stochastic programming, they show the optimality of myopic allocation policies

along with a base-stock replenishment rule when the base-stock level of the common com-

ponent equals the sum of the base-stock levels of the unique parts, or when both products

have the same unit inventory cost. Using a sample path argument, Lu et al. (2010) obtain a

similar result for W -systems operating under a base-stock policy and nonidentical lead times;

no hold-back rules are optimal for the inventory/backlog cost minimization problem when

the symmetric cost condition holds. Lu et al. (2010) also extend this optimality result to

N -systems (see Figure 2.1 for the N -system product structure) and generalized W -systems.

Stochastic Leadtime Single-Item Models. In his cutting edge work, Kaplan (1970)

shows that the multidimensional minimization problem can be reduced to a one-dimensional

minimization for single-item models where orders never cross in time and order arrival proba-

bilities depend only on the time since the order was placed. The state reduction is still possible

if there is a fixed ordering cost. The ordering policies obtained are functions of the sum of

the stock on hand plus stock on order: A state-dependent base stock policy is optimal when

there is no fixed cost, otherwise a state-dependent (s, S) policy is optimal. Ehrhardt (1984)
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extends Kaplan’s work by deriving conditions for the optimality of myopic base-stock policies.

See also Song and Zipkin (1996) for a generalization of Kaplan’s leadtime model.

Zipkin (1986) relaxes Kaplan’s leadtime model in a continuous-time setting by allowing

the probability of having a certain number of outstanding orders at any period to depend on

the number of outstanding orders at a previous period, showing in this case the inventory

level has a stationary and limiting distribution. Song and Zipkin (1993) consider a situation in

which the demand rate varies with an underlying Markov chain, unmet demand is backordered,

orders never cross, and the leadtime history is ignored in placing orders. If the ordering cost is

linear in the order quantity, they show the optimality of a state-dependent base-stock policy.

If there is a fixed ordering cost, a state-dependent (s, S) policy is optimal. Finally, Hariharan

and Zipkin (1995) analyze a setting with Poisson customer orders each of which arrives with

a due date and cannot be fulfilled early. If due dates and replenishment leadtimes are fixed,

they prove the optimality of a base-stock policy by transforming the system into a conventional

inventory model and adapting Veinott’s (1965) approach. If the replenishment leadtime is a

random variable bounded below and satisfies the assumptions of Kaplan (1970), a base-stock

policy remains optimal.

Stochastic Leadtime ATO Models. Song et al. (2000) is the first significant attempt

to consider leadtime uncertainty in an assembly problem. In their setting, a one-time demand

of a random quantity of the end-item occurs at a known time. Component ordering decisions

about the quantity and timing are made simultaneously, at the beginning of the horizon. The

objective is to determine how much and when to order each component to minimize the total

expected holding, tardiness, overage, and underage costs. They provide several structural

results regarding the total cost function. Their numerical results underscore the importance

of considering the effects of leadtime uncertainty in an assembly system.

For continuous-time models, most authors assume that component production and demand

interarrival times are exponentially distributed. Ha (1997) considers a production system with

lost sales and several demand classes which differ in their lost sale costs, showing the optimality

of a base-stock production and stock-reservation inventory allocation policy with class-based

rationing levels. Ha (2000) extends the findings of Ha (1997) to Erlang production times. de

Véricourt et al. (2002) extend the results of Ha (1997) in a backordering environment. In a
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recent study, Gayon et al. (2009a) allow for both Erlang production times and backordering.

Lastly, Gayon et al. (2009b) consider a supplier with multiple customer classes, some of which

share tentative advance demand information by announcing their orders ahead of their due

date. Customer classes vary in their expected due dates, cancellation probabilities, and short-

age costs. They prove in this case the optimal inventory replenishment is a state-dependent

base-stock policy, and the optimal inventory allocation is a state-dependent rationing policy.

Benjaafar and ElHafsi (2006) consider an assembly system with a single end-product and

multiple components. One unit of each component is assembled into the end-product, which is

demanded by multiple customer classes. Again under Markovian assumptions on production

and demand, a state-dependent base-stock and state-dependent rationing policy is optimal.

ElHafsi (2009) extends the results of Benjaafar and ElHafsi (2006) by allowing customer orders

to arrive as a compound Poisson process. Our model in this chapter generalizes the model

in Benjaafar and ElHafsi (2006) in several directions: (i) Each of our components is required

by an individual product as well as the master product, (ii) each of our components may

be used by the two products in different quantities, and (iii) the master product may use

different quantities of different components. Furthermore, the state-dependent base-stock and

state-dependent rationing (SBSR) policy in Benjaafar and ElHafsi (2006) is a special case of

our lattice-dependent base-stock and lattice-dependent rationing (LBLR) policy if lattices are

chosen optimally (see Chapter 3). Therefore, LBLR is analytically no worse than SBSR for

general ATO systems.

To our knowledge, ElHafsi et al. (2008) is the only prior work considering a nontrivial spe-

cial case of ATO product structures along with random leadtimes. Specifically, they consider

a nested system with multiple components under Markovian assumptions (see Figure 2.1 for a

nested system with three components), proving the optimality of state-dependent base-stock

and state-dependent rationing policies.

All of the papers cited in Table 2.1 assume that products require common components in

equal quantities (if they share common components). We significantly relax this assumption;

each of our components may be used by individual and master products in unequal quantities.

Furthermore, the ATO literature neglects to characterize the forms of optimal policies for

generalized M -systems. Our work represents an initial step towards filling this gap as well, by
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introducing novel functional characterizations that give rise to lattice-dependent policies.

2.3 Problem Formulation

We consider an ATO system with n components (j = 1, 2, .., n) and n + 1 products (i =

1, 2, .., n + 1), where each component j is consumed by products i = j and i = n + 1 only.

Notice that the ATO system we consider reduces to an “M -system” when n = 2, cf. Figure

2.1(b). Define a = (a1, a2, .., an) as the vector of component requirements for product n + 1;

aj is the number of component j needed to assemble one unit of product n + 1. Define

b = (b1, b2, .., bn) as the vector of component requirements for all the other products; bj is the

number of component j required to make one unit of product i = j. Each component j is

produced in batches of a fixed size qj in a make-to-stock fashion. Define q = (q1, q2, .., qn) as

the vector of production batch sizes. Production time for component j is independent of the

system state and the number of outstanding orders of any type, and exponentially distributed

with finite mean 1/µj . Assembly lead times are negligible so that assembly operations can

be postponed until demand is realized. Demand for each product i arrives as an independent

Poisson process with finite rate λi. Demand for product i can be fulfilled only if all the

required components are available; otherwise, the demand is lost, incurring a unit lost sale

cost ci. Demand may also be rejected in the presence of all the necessary components, again

incurring a unit lost sale cost.

The state of the system at time t is the vector X(t) = (X1(t), .., Xn(t)), where Xj(t)

is a nonnegative integer denoting the on-hand inventory for component j at time t. Each

component held in stock has a holding cost per unit time which is strictly increasing convex

in the number of available units of that component. Denote by h(X(t)) =
∑

j hj(Xj(t))

the inventory holding cost rate at state X(t). Since all inter-event times are exponentially

distributed, the system retains no memory, and decision epochs can be restricted to times

when the state changes. Using the memoryless property, we can formulate the problem as an

MDP and focus on Markovian policies for which actions at each decision epoch depend solely

on the current state. A control policy π specifies for each state x = (x1, .., xn), the action

uπ(x) = (y1, .., yn, z1, .., zn+1), yj , zi ∈ {0, 1}, ∀i, j, where yj = 1 means produce component j,
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yj = 0 means do not produce component j, zi = 1 means satisfy demand for product i, and

zi = 0 means reject demand for product i.

As each ordering decision specifies only whether or not to produce a component, there is

at most one outstanding order for each component at any time. Also, as component orders are

not part of our system state, these can in effect be cancelled upon transition to a new state.

Both of these assumptions are standard in the literature (see Ha 1997, Benjaafar and ElHafsi

2006, and ElHafsi et al. 2008).

Define 0 < α < 1 as the discount rate. For a given policy π and a starting state x ∈ Nn0

(where N0 is the set of nonnegative integers and Nn0 is its n-dimensional cross product), the

expected discounted cost over an infinite planning horizon vπ(x) can be written as

vπ(x) = Eπx

 n∑
j=1

∫ ∞
0

e−αthj(Xj(t))dt+
n+1∑
i=1

∫ ∞
0

e−αtcidNi(t)


where Ni(t) is the number of demands for product i that have not been fulfilled from on-hand

inventory up to time t. Letting β denote the upper bound on transition rates for all system

states (i.e., β =
∑

j µj +
∑

i λi), we below formulate the optimality equation that holds for the

optimal cost function v∗ = vπ
∗

(see Lippman 1975, and Chapter 5 in Bertsekas 2007 for an

explanation of how the continuous-time control problem can be transformed into an equivalent

discrete-time control problem):

v∗(x) =
1

α+ β

h(x) +
∑
j

µjT
(j)v∗(x) +

∑
i

λiTiv
∗(x)

 , (2.3.1)

where the operator T (j) for component j is defined as

T (j)v(x) = min{v(x + bjej), v(x)}, (2.3.2)

the operator Ti for individual product i ≤ n is defined as

Tiv(x) =

 min{v(x) + ci, v(x− biei)} if xi ≥ bi,

v(x) + ci otherwise,
(2.3.3)
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and the operator Tn+1 for the master product is given by

Tn+1v(x) =

 min{v(x) + cn+1, v(x− a)} if x ≥ a,

v(x) + cn+1 otherwise,
(2.3.4)

where ej is the jth unit vector of dimension n. For a given state x, the operator T (j) specifies

whether or not to produce a batch of component j; and the operator Ti specifies, upon arrival

of a demand for product i, whether or not to fulfill it from inventory if sufficient inventory

exists. In the optimality equation 2.3.1, as it is always possible to redefine the time scale,

without loss of generality we assume α+ β = 1.

2.4 Characterization of the Optimal Policy

In this section we first define new second-order functional characterizations, and show how

these properties propagate through our optimal cost function. We then use these propagation

results to establish the optimality of lattice-dependent base-stock and rationing policies under

a mild condition on component batch sizes.

2.4.1 Functional Characterizations

Define f as the class of real-valued functions on the n-dimensional nonnegative orthant, and

let ∆pf = f(x + p)− f(x) where p = (p1, p2, .., pn) is a vector of nonnegative integers.

We introduce the notion of “submodularity with step size p” for p ∈ Nn0 to describe

the class of functions f for which ∆pjejf is nonincreasing with an increase of pk in the kth

dimension, ∀j 6= k. We denote the class of functions satisfying this property by Sub(p).

We also define the concept of “supermodularity with step sizes r and p” for r,p ∈ Nn0

to describe the class of functions f with ∆pjejf nondecreasing with an increase of r in the

domain, ∀j. We denote this class of functions by Super(r,p).

Lastly, we define the notion of “n-dimensional supermodularity with step sizes r and p”

for r,p ∈ Nn0 to describe the class of functions f with ∆pf nondecreasing with an increase of

r in the domain, and denote it by nSuper(r,p). Note that both Super(1, 1) and nSuper(1, 1)

are the class of convex functions of one dimension.
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Definition 2.4.1 (Second-Order Properties). Let f be a real-valued function defined on

Nn0 . Also let r,p ∈ Nn0 .

(a) f ∈ Sub(p), if f(x + pjej)− f(x) ≥ f(x + pjej + pkek)− f(x + pkek), ∀x ∈ Nn0 , ∀j and

∀k 6= j.

(b) f ∈ Super(r,p), if f(x + pjej + r)− f(x + r) ≥ f(x + pjej)− f(x), ∀x ∈ Nn0 and ∀j.

(c) f ∈ nSuper(r,p), if f(x + p + r)− f(x + r) ≥ f(x + p)− f(x), ∀x ∈ Nn0 .

The following lemma shows that the class of Super(r,p) is a subset of that of nSuper(r,p):

Lemma 2.4.1. Super(r,p) ⊆ nSuper(r,p), ∀r,p ∈ Nn0 .

Proof. See Appendix A.1.

2.4.2 Propagation Results

We now proceed to the analysis of our optimal cost function based on the functional character-

izations of Section 2.4.1. First notice that our optimal cost function 2.3.1 is a linear function of

replenishment control operators (i.e., T (j), ∀j), allocation control operators (i.e., Ti, ∀i), and

holding cost rates (i.e., hj , ∀j). The lemma below shows that (a) each of our replenishment

control operators preserves both “submodularity with step size q” and “supermodularity with

step sizes a and q”; (b) each of our allocation control operators preserves both “submodularity

with step size b” and “supermodularity with step sizes a and b”; and (c) our holding cost rate

satisfies all these properties:

Lemma 2.4.2. (a) T (j) : Sub(q) ∩ Super(a,q)→ Sub(q) ∩ Super(a,q), ∀j,

(b) Ti : Sub(b) ∩ Super(a,b)→ Sub(b) ∩ Super(a,b), ∀i, and

(c) h ∈ Sub(q) ∩ Super(a,q) ∩ Sub(b) ∩ Super(a,b).

Proof. See Appendix A.2.

While our second-order properties are preserved by linear transformations, the second-order

properties shown to propagate through our replenishment and allocation control operators
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above differ in their parameters (i.e., q vs. b), and thus need not hold for our optimal cost

function: Only for cases with equal parameters (q = b) are we able to characterize the structure

of our cost function. Therefore, we assume the production batch size for each component j

equals the number of units of component j required by one unit of product i = j:

Assumption 2.4.1. qj = bj, ∀j.

Although we make the above assumption for analytical tractability, this corresponds to sys-

tems with component batch sizes which are, reasonably, determined by the individual product

sizes. This assumption is consistent with previous treatments of Markovian inventory systems

(see, for example, Ha 1997, Benjaafar and ElHafsi 2006, and ElHafsi et al. 2008).

We now define V ∗ as the set of real-valued functions satisfying the properties of Sub(b),

Super(a,b), and nSuper(a,b). Then, under Assumption 2.4.1, the lemma below follows from

Lemmas 2.4.1 and 2.4.2, and Propositions 3.1.5 and 3.1.6 in Bertsekas (2007):

Lemma 2.4.3. Under Assumption 2.4.1, if v ∈ V ∗, then Tv ∈ V ∗ where Tv(x) = h(x) +∑
j µjT

(j)v(x) +
∑

i λiTiv(x). Furthermore, the optimal cost function v∗ is an element of V ∗.

Proof. See Appendix A.2.

In the next subsection, we use the second-order properties of our optimal cost function to

characterize the forms of optimal inventory replenishment and allocation policies.

2.4.3 Optimal Inventory Replenishment and Allocation

We introduce the notation L(p, r) = {p+kr : k ∈ N0} to denote an n-dimensional lattice with

initial vector p ∈ Nn0 and common difference r ∈ Nn0 , where ∃j such that pj < rj . With this

we are now ready to state the main result of this chapter:

Theorem 2.4.1. Under Assumption 2.4.1, there exists an optimal stationary policy that can

be specified as follows.

(1) The optimal inventory replenishment policy for each component j is a lattice-dependent

base-stock policy with lattice-dependent base-stock levels S∗j (p) ∈ L(p,a), ∀p: It is opti-

mal to produce a batch of component j if and only if x ∈ L(p,a) is less than S∗j (p).
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(2) The optimal inventory allocation policy for each product i ≤ n is a lattice-dependent

rationing policy with lattice-dependent rationing levels R∗i (p) ∈ L(p,a), ∀p: It is optimal

to fulfill a demand for product i ≤ n if and only if x ∈ L(p,a) is greater than or equal

to R∗i (p).

(3) The optimal inventory allocation policy for product n+ 1 is a lattice-dependent rationing

policy with lattice-dependent rationing levels R∗n+1(p) ∈ L(p,b), ∀p: It is optimal to

fulfill a demand for product n + 1 if and only if x ∈ L(p,b) is greater than or equal to

R∗n+1(p).

The optimal policy has the following additional properties:

i. As the system moves to a difference lattice with an increment of bk in the inventory level

of component k, both the optimal base-stock level of component j 6= k and the optimal

rationing level for (individual) product i /∈ {k, n+ 1} increase in a non-strict sense, ∀k.

ii. As the system moves to a difference lattice with an increment of bk in the inventory level

of component k, the optimal rationing level for (master) product n + 1 decreases in a

non-strict sense, ∀k.

iii. It is optimal to fulfill a demand of (master) product n+ 1 if xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j.

Proof. See Appendix A.3.

Theorem 2.4.1 builds upon the properties of Super(a,b), nSuper(a,b), and Sub(b): Super

(a,b) implies that, as the system moves to a higher inventory level on the lattice L(p,a),

the desirability of producing a batch of any component decreases in a non-strict sense (i.e.,

optimality of base-stock policies, point 1), and the desirability of satisfying a demand for any

product i ≤ n increases in a non-strict sense (i.e., optimality of rationing policies for each

product i ≤ n, point 2). nSuper(a,b) implies that, as the system moves to a higher inventory

level on the lattice L(p,b), the incentive to fulfill a demand for product n + 1 increases in a

non-strict sense (i.e., optimality of a rationing policy for product n+ 1, point 3).

Notice that the rationing policy for each product i ≤ n in point 2 is defined over lattices

with common difference a, while the rationing policy for product n+1 in point 3 is defined over
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lattices with common difference b. The intuition behind these results is as follows: Demands

of each product i ≤ n compete with those of product n + 1 for the same component. For

a given product i ≤ n, an increment of a in the inventory level increases the total demand

for its competitor product that can be satisfied, thereby mitigating the competition. Hence,

the incentive to fulfill a demand of product i ≤ n increases in a non-strict sense (point 2).

Likewise, for product n+ 1, an increment of b in the inventory level mitigates the competition

as the total demand for each of its competitors that can be satisfied increases. Hence, the

incentive to fulfill a demand of product n + 1 increases in a non-strict sense (point 3). Note

that under the rationing policy described in Theorem 2.4.1, for a given product, an increment

in the inventory level that does not increase the total demand for any of its competitors that

can be satisfied, may reduce the incentive to fulfill a demand of this product (in a non-strict

sense).

Theorem 2.4.1, using the properties of Sub(b) and Super(a,b), proves the following addi-

tional properties of the optimal policy: Point (i) says that, based on the property of Sub(b),

upon replenishment of a batch of a component k, the desirability of producing a batch of com-

ponent j 6= k increases while the desirability of satisfying a demand for product i /∈ {k, n+ 1}

decreases, in a non-strict sense. Therefore, both the base-stock level of component j 6= k and

the rationing level for product i /∈ {k, n + 1} increase in a non-strict sense. The intuition

is that the presence of product n + 1 requires us to coordinate inventory replenishment and

fulfillment decisions across components; it is less beneficial to produce or hold a batch of one

component when the inventory level of any other component is significantly smaller. Point

(ii) states that, based on the property of Super(a,b), upon replenishment of a batch of any

component, the incentive to fulfill a demand for product n+ 1 increases in a non-strict sense

since the total demand for one of its competitors that can be satisfied increases. Lastly, point

(iii) shows that it is optimal to fulfill a demand of product n+ 1 as long as the total demand

for any other product that can be satisfied stays the same.

To our knowledge, we are the first to introduce the notion of a lattice-dependent base-

stock and rationing (LBLR) policy. Such a policy differs from state-dependent base-stock and

rationing (SBSR) policies shown to be optimal in a single-product ATO system by Benjaafar

and ElHafsi (2006) in the following ways: There are inventory levels x1 ∈ L(p1,a) and x2 ∈
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L(p2,a), x1 ≥ x2, p1 6= p2, such that an LBLR policy allows a particular component to be

produced at x1 even if it is not produced at x2, but an SBSR policy does not. Likewise, there

are inventory levels x1 ∈ L(p1,b) and x2 ∈ L(p2,b), x1 ≥ x2, p1 6= p2, such that an LBLR

policy allows a demand for product n+ 1 to be rejected at x1 even if it is satisfied at x2, but

again an SBSR policy does not. Conversely, if a 6=
∑

j zej for z ∈ N0, then there also may

exist inventory levels x1 ≥ x2, such that an SBSR policy allows a particular component to be

produced at x1 even if it is not produced at x2, but an LBLR policy does not. But if a is

chosen optimally, then it can be shown that an SBSR policy is a subclass of LBLR policies

(see Chapter 3).

2.4.4 The Case of Average Cost

In this subsection, as our optimization criterion, we take the average cost per unit time over

an infinite planning horizon. Given a policy π, the average cost rate is given by

vπ(x) = lim
T→∞

sup
1

T


n∑
j=1

∫ T

0
hj(Xj(t))dt+

n+1∑
i=1

∫ T

0
cidNi(t)

 .

The objective is to identify a policy π∗ that yields v∗(x) = infπ v
π(x) for all states x. The

following proposition shows that our structural results carry over to the average cost case:

Proposition 2.4.1. Suppose that Assumption 2.4.1 holds and the Markov chain governing

the system is irreducible. There exists a stationary policy that is optimal under the average

cost criterion. The policy retains all the properties of the optimal policy under the discounted

cost criterion, as introduced in Theorem 2.4.1. Also, the optimal average cost is finite and

independent of the initial state; there exists a finite constant v∗ such that v∗(x) = v∗, ∀x.

Proof. See Appendix A.4.

2.5 Extensions and Concluding Remarks

We have studied the inventory replenishment and allocation problem in an ATO production

system with generalized M -system product structure. We extend the existing literature by

characterizing the optimal policy while allowing different products to use different quantities of
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the same component. Assuming component batch sizes are determined by the individual prod-

uct sizes, we establish the optimality of a lattice-dependent base-stock and lattice-dependent

rationing policy for both the discounted cost and average cost cases. We discuss below two

extensions to our analysis and several concluding remarks.

First, our analysis can be extended to systems where a nonempty subset of the components

is required only by product n + 1. These systems take the form of N -system when there are

two components. Define A1 as the set of components used by product n + 1 only, and A2 as

the set of components j used by products i = j and i = n + 1 (i.e., A1 = {1, 2, .., n} \ A2).

Such systems are a special case of our model in which the demand rate for each product i ∈ A1

is zero, and therefore an LBLR policy is optimal for these systems. Notice that Assumption

2.4.1 is no longer required in setting the batch sizes for components i ∈ A1. Since the demand

rate for each product i ∈ A1 is zero, one can choose bi to be the ideal batch size for component

j = i, ∀i ∈ A1.

Second, our model can be extended to allow each product to be requested by multiple

demand classes with different lost sale costs. Suppose that there areDi different demand classes

for product i, and let di = 1, 2, .., Di. A demand for one unit of product i from class di arrives

as an independent Poisson process with rate λi,di and has a lost sale cost ci,di , ∀i. Without loss

of generality, we assume ci,1 ≥ ci,2 ≥ · · · ≥ ci,Di , ∀i. We can revise our optimal cost function

by augmenting the allocation control operator Ti to include the index of demand class di, ∀i.

We can then prove the optimality of LBLR under the following modifications: (i) The optimal

inventory allocation for demand class di of each product i ≤ n is a lattice-dependent rationing

policy with rationing levels R∗
i,di

(p) ∈ L(p,a), ∀p, (ii) the optimal inventory allocation for

demand class dn+1 of product n + 1 is a lattice-dependent rationing policy with rationing

levels R∗n+1,dn+1(p) ∈ L(p,b), ∀p, and (iii) it is optimal to fulfill a demand of product n + 1

from class 1 as long as the total demand for any other product that can be satisfied stays the

same. Furthermore, R∗i,1(p) ≤ R∗i,2(p) ≤ · · · ≤ R∗
i,Di

(p), ∀p, ∀i.

In Chapter 3, we conduct numerical experiments to evaluate the use of an LBLR policy as

a heuristic for general ATO systems, comparing it with two other heuristics: a state-dependent

base-stock and rationing policy (SBSR), and a fixed base-stock and rationing policy (FBFR),

both adapted from Benjaafar and ElHafsi (2006). We numerically show, in the average cost



24 Chapter 2. Optimal Structural Results for ATO M-Systems

case, that LBLR always yields the globally optimal cost in over 1800 examples, while SBSR

(or FBFR) provides solutions within 2.7% (or 4.8%) of the globally optimal cost. We are also

able to analytically show that LBLR outperforms the other heuristics. Based on these results,

future research could investigate whether an LBLR policy is indeed optimal for general ATO

systems, and if so, how the state space should be partitioned into disjoint lattices. However,

one may need to develop a different methodology to prove the optimality of LBLR, because in

Chapter 3 we also provide counter-examples showing that the second-order properties of our

optimal cost function, which are sufficient to ensure the optimality of LBLR, may fail to hold

for general ATO systems.

Future extensions of this study could also consider ATO systems with backordering. In

this case, we would need to include the number of backordered demands for each product in

the state space, and investigate the optimal backorder clearing mechanism upon replenishment

of any component. Another direction for future research is to extend our model to phase-type

or even general component production and demand interarrival times. Also, it would be more

realistic to allow for dependent demand across products and over time. Lastly, extending

our model to include nonzero assembly times is an interesting problem to pursue. However,

with today’s manufacturing technology, assembly times are usually small and our model would

likely provide a good approximation.



Chapter 3

Performance Evaluation of

Lattice-Dependent Base-Stock and

Rationing Policies for ATO Systems

3.1 Introduction

In Chapter 2, we considered the control of a continuous-time assemble-to-order (ATO) gen-

eralized “M -system” (see Figure 3.1) with multiple products and components. This system

involves a single product which uses multiple units from each component, and multiple in-

dividual products each of which uses multiple units from a different component. We model

the problem as an infinite-horizon Markov decision process (MDP) under the discounted cost

criterion. Each component is produced in batches of fixed size in a make-to-stock fashion;

production times are independent and exponentially distributed. Demand for each product

arrives as an independent Poisson process. If not satisfied immediately upon arrival, these

demands are lost. A control policy specifies when to produce a batch of any component and,

upon arrival of a demand, whether or not to satisfy it from inventory if sufficient inventory

exists.

In Chapter 2, we prove that if replenishment batch sizes are determined by individual prod-

uct sizes (as in Figure 3.1), the optimal inventory replenishment policy is a lattice-dependent

base-stock production policy and the optimal inventory allocation policy is a lattice-dependent

This chapter has been submitted to the journal Production and Operations Management with co-authors
Mustafa Akan and Alan Scheller-Wolf.
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Figure 3.1 An M -system where ai is the number of units of component i used by one unit of product i, bi

is the number of units of component i needed to assemble one unit of product m + 1, and the batch size for

component i is ai.

rationing policy. This implies that the state space of the problem can be partitioned into

disjoint lattices such that, on each lattice, (a) it is optimal to produce a batch of a particular

component if and only if the state vector is less than the base-stock level of that component,

and (b) it is optimal to fulfill a demand of a particular product if and only if the state vector

is greater than or equal to the rationing level for that product. In Chapter 2, we also show

these structural results carry over to the average cost case.

In this chapter, we conduct numerical experiments to evaluate the use of a lattice-dependent

base-stock and lattice-dependent rationing (LBLR) policy as a heuristic replenishment and

allocation policy for ATO systems with general product structures. We also compare the LBLR

policy to two other heuristics: a state-dependent base-stock and state-dependent rationing

(SBSR) policy inspired by Benjaafar and ElHafsi (2006), and a fixed base-stock and fixed

rationing (FBFR) policy as presented in Benjaafar and ElHafsi (2006). We take the average

cost rate as our performance criterion, for robustness against the starting state of the system

and discount factor.

We develop a Linear Programming (LP) formulation to find the globally optimal cost, and

Mixed Integer Programming (MIP) formulations to find the optimal cost within each heuristic

class (LBLR, SBSR, and FBFR). Remarkably, we find that LBLR always yields the globally

optimal cost in over 1800 compiled instances, while SBSR (or FBFR) provides solutions within
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2.7% (or 4.8%) of the globally optimal cost. (The average distances from optimal cost are 0.5%

and 1.5%, respectively.) We also analytically show that LBLR outperforms the other heuristics.

Our numerical results indicate that LBLR and SBSR perform significantly better than FBFR

when the component batch sizes imperfectly match the component requirements of the most

highly demanded and/or most valuable product. In addition, LBLR has the greatest benefit

over SBSR when products are highly differentiated but demand for each product should have

a substantial fill rate. This observation is also supported by a regression study.

We then reformulate the ATO problem under the total expected discounted cost criterion,

and construct counter examples showing that the properties of submodularity and supermodu-

larity (which are used to prove the optimality of LBLR for ATO generalized M -systems under

this criterion in Chapter 2) may fail to hold for ATO systems with general product structures.

Consequently, if LBLR is optimal for general product structures, one may need to develop a

different methodology to establish this result.

We proceed as follows: In Section 3.2 we formulate our general model under the average

cost criterion, and describe the heuristic policies and their MIP formulations. In Section 3.3

we present and interpret our numerical results for the heuristic policies. In Section 3.4 we

reformulate our general model under the discounted cost criterion, and show the functional

characterizations that are sufficient to ensure the optimality of LBLR need not hold for general

ATO systems. In Section 3.5 we offer a summary and a few concluding remarks.

3.2 The Case of Average Cost

In this section, we first describe our general model for an infinite-horizon continuous-time

ATO system and develop a linear program to find the globally optimal average cost. We then

present the heuristics and develop MIP formulations to find the optimal solution within each

heuristic class.

3.2.1 Problem Formulation

We consider an ATO system with m components (i = 1, 2, ..,m) and n products (j = 1, 2, .., n).

Define A as an m × n nonnegative resource-consumption matrix; aij denotes the number
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of units of component i needed to assemble one unit of product j, and aj denotes the jth

column of A. Each component i is produced in batches of a fixed size qi in a make-to-stock

fashion. Define q = (q1, q2, .., qm) as the vector of production batch sizes. Production time

for component i is independent of the system state and the number of outstanding orders

of any type, and exponentially distributed with finite mean 1/µi. Assembly lead times are

negligible, so that assembly operations can be postponed until demand is realized. Demand

for each product j arrives as an independent Poisson process with finite rate λj . Demand for

product j can be fulfilled only if all required components are available; otherwise, the demand

is lost, incurring a unit lost sale cost cj . Demand may also be rejected in the presence of all

the necessary components, again incurring a unit lost sale cost cj .

The state of the system at time t is the vector X(t) = (X1(t), .., Xm(t)), where Xi(t) is a

nonnegative integer denoting the on-hand inventory for component i at time t. Each compo-

nent held in stock incurs a holding cost per unit time which is convex and strictly increasing

in the number of available units of that component. Denote by h(X(t)) =
∑

i hi(Xi(t))

the inventory holding cost rate at state X(t). Since all inter-event times are exponentially

distributed, the system retains no memory, and decision epochs can be restricted to times

when the state changes. Using the memoryless property, we can formulate the problem as an

MDP and focus on Markovian policies for which actions at each decision epoch depend solely

on the current state. A control policy ` specifies for each state x = (x1, .., xm), the action

u`(x) = (u1, .., um, u1, .., un), ui, uj ∈ {0, 1}, ∀i, j; where ui = 1 means produce component i,

and ui = 0 means do not produce component i; uj = 1 means satisfy demand for product j,

and uj = 0 means reject demand for product j. Thus there is at most one outstanding order

for each component at any time. Also, as component orders are not part of our system state,

these can in effect be cancelled upon transition to a new state. Both of these assumptions

are standard in the literature (see Ha 1997, and Benjaafar and ElHafsi 2006). (Our numerical

results suggest that the latter assumption is acceptable: Orders are cancelled optimally in 54%

of the instances in Section 3.3. However, for those instances, if the optimal policy of our model

is followed but orders are never cancelled, it increases costs by no more than 0.11%, and the

average cost increase is virtually 0%.)

For a given policy ` and starting state x ∈ Nm0 (where N0 is the set of nonnegative integers
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and Nm0 is its m-dimensional cross product), the average cost per unit time over an infinite

planning horizon v`(x) can be written as follows (see, for example, Chapter 2 and ElHafsi et

al. 2008):

v`(x) = lim
T→∞

sup
1

T


m∑
i=1

∫ T

0
hi(Xi(t))dt+

n∑
j=1

∫ T

0
cjdNj(t)

 ,

where Nj(t) is the number of demands for product j that have been rejected up to time t. The

objective is to identify a policy `∗ that yields v∗(x) = inf` v
`(x) for all states x.

We next formulate a linear program to find a global optimal solution to the above problem.

First, denote by U(x) the set of admissible actions at state x. Also, define νy|x,u as the rate

at which the system moves from state x to state y if action u = (u1, .., um, u1, .., un) ∈ U(x) is

chosen, and πx,u as the limiting probability that the system is in state x and action u ∈ U(x)

is chosen. Then, the globally optimal average cost Z∗ can be found by solving the following

linear program (see Puterman 1994, for an explanation of the Linear Programming method to

solve MDPs):

(LP) minimize
∑

x∈Nm0

∑
u∈U(x)

h(x)πx,u +
∑

x∈Nm0

∑
u∈U(x)

∑
j:uj=0

λjcjπx,u

subject to
∑

u∈U(y)

πy,u

∑
x∈Nm0

νx|y,u −
∑

x∈Nm0

∑
u∈U(x)

νy|x,uπx,u = 0, ∀y ∈ Nm0 , (3.2.1)

∑
x∈Nm0

∑
u∈U(x)

πx,u = 1, (3.2.2)

πx,u ≥ 0, ∀x ∈ Nm0 , ∀u ∈ U(x). (3.2.3)

The first term of the objective function corresponds to the time-average inventory holding cost

and the second term corresponds to the time-average cost of lost sales. Constraints (3.2.1)

and (3.2.2) are the balance equations and yield the limiting probability values.
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3.2.2 Formulation of Heuristic Policies

We next describe the heuristic policies for our general model, and develop MIP formulations

to compute the optimal average cost within each heuristic class.

Lattice-Dependent Base-Stock and Lattice-Dependent Rationing (LBLR): We

introduce the notation L(p, r) = {p + kr : k ∈ N0} to denote an m-dimensional lattice with

initial vector p ∈ Nm0 and common difference r ∈ Nm0 , where ∃i such that pi < ri. We also define

∆i = (∆i
1,∆

i
2, ..,∆

i
m) and ∆j = (∆j1,∆j2, ..,∆jm) as m-dimensional vectors of nonnegative

integers. With these we describe an LBLR policy as follows: (i) Inventory replenishment of

each component i follows a lattice-dependent base-stock policy with lattice-dependent base-

stock levels Si(p) ∈ L(p,∆i) such that a batch of component i is produced if and only if

x ∈ L(p,∆i) is less than Si(p), and (ii) inventory allocation for each product j follows a

lattice-dependent rationing policy with lattice-dependent rationing levels Rj(p) ∈ L(p,∆j)

such that a demand for product j is satisfied if and only if x ∈ L(p,∆j) is greater than or

equal to Rj(p). An illustration of such a policy for a 2-component 2-product system is shown

in Figure 3.2.

We could optimize over the vectors ∆i and ∆j to obtain the LBLR policy with the least

average cost. But it is both time-consuming and unnecessary to do so, as the following rule

of thumb achieves the globally optimal cost in each of our numerical instances: Choose any

vectors ∆i and ∆j such that (i) ∆i
i = maxj aij , ∀i; (ii) ∆i

k = minj akj , ∀k 6= i; and (iii)

∆ji = aij∗ , where j∗ = arg maxk 6=j ck, ∀i, j (see Figure 3.2 for an example). Such a selection

of the vectors ∆i and ∆j is also consistent with previously established optimality results for

ATO systems (see Chapter 2, and Benjaafar and ElHafsi 2006).

We proceed to the MIP formulation of this heuristic class. First, define the set Si(p,b) =

{(x,u) : x ∈ L(p,∆i),u ∈ U(x), and
∑

x,u πx,u = 0 ⇔ Si(p) = b} for b ∈ L(p,∆i). The

elements of the set Si(p,b) are state-action pairs (x,u) such that the limiting probability that

the system is in state x and action u is chosen should be zero when the base-stock level of

component i equals b on the lattice with initial vector p. Likewise, define the set Rj(p,b) =

{(x,u) : x ∈ L(p,∆j),u ∈ U(x), and
∑

x,u πx,u = 0 ⇔ Rj(p) = b} for b ∈ L(p,∆j). The

elements of the set Rj(p,b) are state-action pairs (x,u) such that the limiting probability
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Figure 3.2 The illustration of LBLR for a 2x2 system with a11 = a12 = a21 = 1, a22 = 3, q1 = 1, q2 = 3,

h1 = 1, h2 = 5, µ1 = µ2 = λ1 = λ2 = 1, c1 = 20, c2 = 100. In graphs (a) and (b), a filled circle means produce

a batch of components at the corresponding inventory levels. In graphs (c) and (d), a filled circle means fulfill

the demand at the corresponding inventory levels. In graphs (a)-(d), each dashed line forms a different lattice;

its slope is determined by ∆1 = (1, 1), ∆2 = (1, 3), ∆1 = (1, 3), and ∆2 = (1, 1), respectively.
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that the system is in state x and action u is chosen should be zero when the rationing level

for product j equals b on the lattice with initial vector p. Lastly, define z
Si(p)
b and z

Rj(p)
b as

binary variables as follows:

z
Si(p)
b =

 1 if Si(p) = b,

0 otherwise.

z
Rj(p)
b =

 1 if Rj(p) = b,

0 otherwise.

We are now ready to describe the constraints of the MIP problem. First, the optimal

solution of the MIP problem should satisfy constraints (3.2.1)-(3.2.3) of the LP formulation

of the optimal policy. Also, on each lattice, the optimal solution should select exactly one

base-stock level for each component and one rationing level for each product. To this end, we

impose the following constraints:

∑
b∈L(p,∆i)

z
Si(p)
b = 1, ∀p and ∀i, (3.2.4)

∑
b∈L(p,∆j)

z
Rj(p)
b = 1, ∀p and ∀j. (3.2.5)

The constraints below link our binary variables to the appropriate limiting probability vari-

ables:

∑
(x,u)∈Si(p,b)

πx,u ≤ 1− zSi(p)
b , ∀p, ∀b, and ∀i, (3.2.6)

∑
(x,u)∈Rj(p,b)

πx,u ≤ 1− zRj(p)
b , ∀p, ∀b, and ∀j. (3.2.7)

In constraint (3.2.6), if z
Si(p)
b equals one, then all limiting probability variables corresponding

to the state-action pairs in set Si(p,b) are forced to equal zero. Likewise, in constraint (3.2.7),

if z
Rj(p)
b equals one, then all limiting probability variables corresponding to the state-action

pairs in set Rj(p,b) are forced to equal zero. Otherwise, these constraints become redundant.
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(See Bhandari et al. 2008, for a similar MIP formulation in a different context.)

The optimal average cost of this policy ZLBLR can be found by solving the following MIP

problem:

(LBLR) minimize
∑

x∈Nm0

∑
u∈U(x)

h(x)πx,u +
∑

x∈Nm0

∑
u∈U(x)

∑
j:uj=0

λjcjπx,u

subject to (3.2.1)− (3.2.7).

State-Dependent Base-Stock and State-Dependent Rationing (SBSR): Define

x−i = (x1, .., xi−1, xi+1, .., xm) as an m − 1 dimensional vector of the inventory levels for

components k 6= i. With this we describe an SBSR policy as follows (as in Theorem 1

of Benjaafar and ElHafsi 2006): (i) Inventory replenishment of each component i follows a

state-dependent base-stock policy with state-dependent base-stock levels Si(x−i) such that a

batch of component i is produced if and only if xi ≤ Si(x−i); and (ii) inventory allocation

for demand class j follows a state-dependent rationing policy with state-dependent rationing

levels Rij(x−i), ∀i, such that a demand from class j is fulfilled if and only if xi ≥ Rij(x−i),

∀i. Different demand classes in Benjaafar and ElHafsi (2006) correspond to different products

in our model.

The SBSR policy has the following additional properties (again as in Benjaafar and ElHafsi

2006): (a) The base-stock level of one component is nondecreasing in the inventory level of

any other component; (b) a unit increase in the inventory level of one component leads to at

most a unit increase in the base-stock level of any other component; (c) the rationing level

for any demand class at one component is nonincreasing in the inventory level of any other

component; (d) the production of a component is never interrupted once it is initiated; (e)

for each component, the rationing level for any demand class is greater than or equal to the

rationing level for the demand class with the next higher lost sale cost; and (f) demands with

the highest lost sale cost are always satisfied if sufficient inventory exists. Note that properties

(e) and (f) are inapplicable to our general model, as our products differ not only in their lost

sale costs but also in their component usage rates, and thus we will not enforce properties (e)

and (f) in our numerical experiments. We also omit property (d) from SBSR to keep the state
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space manageable. Nevertheless in our numerical experiments, SBSR performs no worse than

it would under property (d).

Benjaafar and ElHafsi (2006) showed that, under Markovian assumptions on production

and demand, the SBSR policy is optimal when the system involves a single end-product and

multiple components. In their setting, one unit of each component is assembled into the

end-product, which is demanded by multiple demand classes.

We proceed to the MIP formulation of this heuristic class. Define the set Si(x−i, b) =

{(y,u) : y ∈ Nm0 , u ∈ U(y), y−i = x−i, and
∑

y,u πy,u = 0 ⇔ Si(x−i) = b} for b ∈ N0,

and the set Rij(x−i, b) = {(y,u) : y ∈ Nm0 , u ∈ U(y), y−i = x−i, and
∑

y,u πy,u = 0 ⇔

Rij(x−i) = b} for b ∈ N0. Also, define z
Si(x−i)
b and z

Rij(x−i)
b as binary variables as follows:

z
Si(x−i)
b =

 1 if Si(x−i) = b,

0 otherwise.

z
Rij(x−i)
b =

 1 if Rij(x−i) = b,

0 otherwise.

We next describe constraints of the MIP problem. Again, the optimal solution of the MIP

problem should satisfy constraints (3.2.1)-(3.2.3). In addition, the optimal solution should

select exactly one base-stock level for each component and one rationing level for each product

at each component, given the inventory levels of all other components:

∑
b∈N0

z
Si(x−i)
b = 1, ∀i and ∀x−i, (3.2.8)

∑
b∈N0

z
Rij(x−i)
b = 1, ∀i, ∀j, and ∀x−i. (3.2.9)

The constraint below ensures that (a) the base-stock level of each component is nondecreasing

in the inventory levels of other components, and (b) a unit increase in the inventory level of

one component leads to at most a unit increase in the base-stock level of another component:

z
Si(x−i)
b ≤ zSi(x−i+ek)b + z

Si(x−i+ek)
b+1 , ∀k 6= i, ∀x−i, and ∀b ∈ N0. (3.2.10)
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The constraint below ensures that (c) the rationing level for each product at each component

is nonincreasing in the inventory levels of other components:

z
Rij(x−i)
b ≤

∑
0≤b′≤b

z
Rij(x−i+ek)
b′ , ∀k 6= i, ∀j, ∀x−i, and ∀b ∈ N0. (3.2.11)

The binary variables are linked to the appropriate limiting probability variables as follows:

∑
(x,u)∈Si(x−i,b)

πx,u ≤ 1− zSi(x−i)b , ∀b, ∀i, and ∀x−i, (3.2.12)

∑
(x,u)∈Rij(x−i,b)

πx,u ≤ 1− zRij(x−i)b , ∀b, ∀i, ∀j, and ∀x−i. (3.2.13)

The optimal average cost of this policy ZSBSR can be found by solving the following MIP

problem:

(SBSR) minimize
∑

x∈Nm0

∑
u∈U(x)

h(x)πx,u +
∑

x∈Nm0

∑
u∈U(x)

∑
j:uj=0

λjcjπx,u

subject to (3.2.1)− (3.2.3) and (3.2.8)− (3.2.13).

Fixed Base-Stock and Fixed Rationing (FBFR): Lastly, we describe an FBFR policy

as follows (as in Benjaafar and ElHafsi 2006): (i) Inventory replenishment of each component

i follows a base-stock policy with a fixed base-stock level Si such that a batch of component

i is produced if and only if xi ≤ Si; and (ii) inventory allocation for each product j follows

a rationing policy with a vector of fixed rationing levels Rj = (R1j , R2j , .., Rmj) such that a

demand for product j is satisfied if and only if xi ≥ Rij , ∀i.

We next describe the MIP problem of this heuristic class. Define the set Si(b) = {(x,u) :

x ∈ Nm0 , u ∈ U(x),
∑

x,u πx,u = 0 ⇔ Si = b} for b ∈ N0, and the set Rj(b) = {(x,u) : x ∈

Nm0 , u ∈ U(x),
∑

x,u πx,u = 0 ⇔ Rj = b} for b ∈ Nm0 . Also, define zSib and z
Rj

b as binary

variables as follows:

zSib =

 1 if Si = b,

0 otherwise.
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z
Rj

b =

 1 if Rj = b,

0 otherwise.

Once again, the optimal solution of the MIP problem should satisfy constraints (3.2.1)-

(3.2.3). In addition, the optimal solution should select exactly one base-stock level for each

component and one rationing level for each product:

∑
b∈N0

zSib = 1, ∀i, (3.2.14)

∑
b∈Nm0

z
Rj

b = 1, ∀j. (3.2.15)

The constraints below link the binary variables to the appropriate limiting probability vari-

ables:

∑
(x,u)∈Si(b)

πx,u ≤ 1− zSib , ∀b and ∀i, (3.2.16)

∑
(x,u)∈Rj(b)

πx,u ≤ 1− zRj

b , ∀b and ∀j. (3.2.17)

The optimal average cost ZFBFR can be found by solving the following MIP problem:

(FBFR) minimize
∑

x∈Nm0

∑
u∈U(x)

h(x)πx,u +
∑

x∈Nm0

∑
u∈U(x)

∑
j:uj=0

λjcjπx,u

subject to (3.2.1)− (3.2.3) and (3.2.14)− (3.2.17).

The proposition below ranks our heuristic policies in terms of their optimal costs:

Proposition 3.2.1. Z∗ ≤ ZLBLR ≤ ZSBSR ≤ ZFBFR

Proof. See Appendix B.1.

Proposition 3.2.1 establishes that LBLR performs no worse than the other heuristics. In

the next section, we conduct numerical experiments to test the significance of this finding and

provide insights into the performance of LBLR relative to the other heuristics.
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3.3 Numerical Experiments

Our primary goals in this section are to examine the performance of LBLR relative to SBSR,

investigate how system parameters affect the cost advantage of LBLR over SBSR, and explain

why such an advantage occurs. Our secondary goal is to examine the performance of LBLR

relative to FBFR, which is easier to implement. For ease of exposition, we confine our detailed

analysis to 2-product 2-component systems in which either (1) one product requires a subset of

components used by the other product (nested structure, Section 3.3.1), or (2) neither product

requires a set of components that is a subset of those used by the other product (non-nested

structure, Section 3.3.2). We believe these two cases capture the essence of the ATO problem.

However, after comparing computational efforts in Section 3.3.3, we also report numerical

results for selected larger instances in Section 3.3.4.

To construct our 2-product 2-component systems, we select two products from a set of four

different products (A, B, C, and D), each of which requires two different components (φ and

γ) as in the following resource-consumption matrix:

A B C D

φ 1 1 2 1
γ 1 2 1 3

For each of our 2-product 2-component systems, we generate numerical instances by varying

values of the related parameters (i.e., qi, hi, cj , and λj) under linear holding cost rates (i.e.,

hi(xi) = hixi). For each generated instance, we solve the LP and MIP problems to compute

the average costs and corresponding product fill rates (denoted by fj). We compare the

heuristic policies in terms of (i) their percentage differences from optimal cost Z∗, calculated

as 100 × ZH−Z∗
Z∗ where H ∈ {LBLR, SBSR, FBFR}; and (ii) their computational times.

We coded the LP and MIP formulations in the GAMS programming language, incorporating

CPLEX 10.1 optimization subroutines, and used a dual processor WinNT server, with Intel

Core i7 2.67 GHz processor and 8 GB of RAM. We restricted the computation time of any

instance to be no more than 1000 seconds.

An important note here is that, although our 2-product 2-component systems violate the

conditions ensuring the optimality of LBLR (i.e., the generalized M -system product structure,
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Table 3.1 Parameters for numerical instances.

Products j, k q = (qφ, qγ) hφ, hγ cj/ck ck λj , λk ∆φ ∆γ ∆j ∆k

j = A, k = B {(1, 1), (1, 2)} {1, 3, 5} {.2, .4, .6, .8, 1} 100 {.5, 1} (1,1) (1,2) (1,2) (1,1)

j = A, k = D {(1, 1), (1, 3)} {1, 3, 5} {.2, .4, .6, .8, 1} 100 {.5, 1} (1,1) (1,3) (1,3) (1,1)

j = B, k = C {(1, 2), (2, 1)} {1, 3, 5} {.2, .4, .6, .8, 1} 100 {.5, 1} (2,1) (1,2) (2,1) (1,2)

j = B, k = D {(1, 2), (1, 3)} {1, 3, 5} {.2, .4, .6, .8, 1} 100 {.5, 1} (1,2) (1,3) (1,3) (1,2)

j = C, k = D {(2, 1), (1, 3)} {1, 3, 5} {.2, .4, .6, .8, 1} 100 {.5, 1} (2,1) (1,3) (1,3) (2,1)

Notes. µφ = µγ = 1 in all instances. The last four columns list optimal ∆i and ∆j values for LBLR policy.

Z∗ = ZLBLR in all instances.

see Chapter 2), LBLR yields the globally optimal cost in each of our more than 1800 compiled

instances. Table 3.1 exhibits the parameters for 1800 of these instances; the products that

we select to construct our 2-product 2-component systems are listed in the first column, the

corresponding ranges of parameters are listed in the intermediate columns, and the vectors

∆i and ∆j used to compute ZLBLR are listed in the last four columns. LBLR also yields the

globally optimal cost in all numerical instances generated in Sections 3.3.1, 3.3.2, and 3.3.4.

3.3.1 Nested Structure

In this subsection we consider three different examples: (a) An ATO system with products A

and D, qφ = 1, and qγ = 3; (b) an ATO system with products A and B, qφ = 1, and qγ = 2;

and (c) an ATO system with products A and B, and qφ = qγ = 1. In each example we vary

the holding cost rates of the components and the ratio of lost sale costs of the products, all

else being equal. Also, we vary demand rates, all else being equal. The percentage differences

are only sufficiently large to convey meaningful information in Example (a), so we relegate

the numerical results for Examples (b) and (c) to Appendix B.2, reporting only the results of

Example (a) below. However, we will study each example in a separate regression analysis.

An explanation of the lower percentage differences in Examples (b) and (c) is that smaller

component usage rates lead to fewer lattices, making use of LBLR less important.

LBLR vs. SBSR. We first analyze the percentage gaps between LBLR and SBSR. We

observe from Table 3.2 that, for fixed holding cost rates, the largest two gaps always occur

when the ratio of lost sale costs is 0.2 and 0.4: Products become less differentiated when the

ratio takes greater values, and therefore they should be treated as if they are almost equally

important in stock allocation decisions. Since stock rationing becomes less crucial as products
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become less differentiated, the benefit of a lattice-dependent rationing policy decreases; hence

the gaps between LBLR and SBSR are lower at higher values of this ratio. An important

insight here is that product differentiation is driven both by differences in lost sale costs and

component usage rates. Thus, when the ratio of lost sale costs is sufficiently large but lower

than 1 (say 0.6 and 0.8), we expect products A and D to be only slightly differentiated,

since product A requires fewer components. But, when the ratio is 1, products again become

significantly differentiated, due to the difference in component usage rates. This explains why

the fill rates of product D are lower than those of product A when the ratio is 1. However,

such differentiation results in relatively small optimal cost gaps.

We next examine the percentage gaps under different holding cost rates when cA/cD is

equal to 0.2. As hφ increases while hγ is fixed, the gap declines. However, as hγ increases

while hφ is fixed, the gap increases (there is a minor exception at hφ = 5). Our explanation

is that, as hφ increases, inventory control decisions rely more heavily on component φ, and

therefore, since products A and D use the same number of component φ (but different numbers

of component γ), SBSR better mimics LBLR and the gap diminishes. But the reverse is true as

hγ increases. Also note that the gap declines as both hφ and hγ increase: Higher holding cost

rates lead to less inventory in the system, implying the action space of the problem shrinks.

Therefore, the number of actions in which LBLR and SBSR differ decreases, and so does the

cost advantage of LBLR.

We list computational times for the heuristics in the last three columns of this and subse-

quent tables. It is clear LBLR has distinct computational advantage over SBSR, and a slight

one over FBFR. We discuss computational times in greater detail in Section 3.3.3.

Next, we vary demand rates, as shown in Table 3.3. First, we observe that, for a fixed

demand rate of product A, the largest two gaps always occur when the demand rate of product

D is 0.5 and 1. When λD takes greater values, the cost of rejecting the demand per unit time

for product D relative to the cost of rejecting all demands per unit time (i.e., λDcD
λAcA+λDcD

) is

higher. Since product D has a greater impact on total costs, product D dominates product A

and the system is close to the one with a single product.

Hence, as product D begins to dominate product A, lattice-dependent rationing becomes

equivalent to state-dependent rationing, and the gap decreases. But, when λD is 0.5 or 1, since
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Table 3.2 Numerical results for nested structure.

Optimal solution
Percentage difference Computation times

from optimal cost (in seconds)

hφ hγ cA/cD Avg. cost fA fD LBLR SBSR FBFR LBLR SBSR FBFR

1 1 0.2 54.974 0.160 0.707 0.000 1.397 1.481 3.18 1000 6.02
- - 0.4 69.827 0.300 0.669 0.000 1.054 1.293 2.57 352.40 5.20
- - 0.6 83.416 0.340 0.642 0.000 0.495 0.513 2.64 962.11 3.94
- - 0.8 96.217 0.407 0.582 0.000 0.178 0.312 2.95 144.47 5.65
- - 1.0 106.280 0.631 0.360 0.000 0.123 0.994 2.41 15.95 6.65
- 3 0.2 63.591 0.213 0.690 0.000 2.000 2.511 2.67 1000 15.13
- - 0.4 78.085 0.316 0.651 0.000 1.550 2.456 2.22 1000 6.44
- - 0.6 91.221 0.381 0.599 0.000 0.852 1.880 2.59 1000 6.76
- - 0.8 102.751 0.474 0.508 0.000 0.364 1.790 2.22 146.89 6.64
- - 1.0 111.582 0.629 0.356 0.000 0.218 2.273 2.45 6.20 7.29
- 5 0.2 71.364 0.244 0.668 0.000 2.706 3.446 2.25 1000 11.46
- - 0.4 85.140 0.358 0.610 0.000 1.711 3.391 2.05 296.75 7.73
- - 0.6 97.362 0.423 0.551 0.000 1.014 2.668 2.36 191.44 6.75
- - 0.8 107.718 0.511 0.466 0.000 0.738 2.288 2.47 48.20 4.37
- - 1.0 116.091 0.623 0.358 0.000 0.128 3.164 2.16 7.10 5.37
3 1 0.2 61.368 0.112 0.689 0.000 0.917 1.119 2.03 9.14 3.90
- - 0.4 76.644 0.328 0.632 0.000 0.620 0.680 2.54 80.22 4.20
- - 0.6 89.403 0.389 0.598 0.000 0.377 0.391 3.04 65.80 4.27
- - 0.8 101.044 0.451 0.541 0.000 0.214 0.298 2.21 184.04 5.30
- - 1.0 110.406 0.608 0.385 0.000 0.033 0.605 2.67 25.97 4.81
- 3 0.2 70.509 0.132 0.670 0.000 1.103 2.088 2.43 339.01 9.51
- - 0.4 85.362 0.337 0.617 0.000 1.023 1.812 2.47 120.75 4.70
- - 0.6 97.654 0.429 0.555 0.000 0.668 1.588 2.47 624.89 5.40
- - 0.8 108.447 0.500 0.487 0.000 0.351 1.646 2.46 53.17 7.46
- - 1.0 116.867 0.615 0.375 0.000 0.436 2.347 2.47 50.95 7.34
- 5 0.2 78.196 0.150 0.652 0.000 1.270 2.136 2.38 67.71 4.04
- - 0.4 92.564 0.373 0.578 0.000 1.481 2.638 2.63 110.78 10.65
- - 0.6 104.024 0.466 0.515 0.000 0.710 2.622 2.25 48.93 6.79
- - 0.8 113.995 0.531 0.453 0.000 0.409 2.685 2.55 8.93 5.88
- - 1.0 122.202 0.622 0.365 0.000 0.222 2.885 2.74 11.50 5.68
5 1 0.2 65.655 0.123 0.664 0.000 0.786 1.250 2.00 89.78 3.15
- - 0.4 81.147 0.328 0.607 0.000 0.755 0.925 2.05 68.08 4.27
- - 0.6 93.924 0.407 0.561 0.000 0.101 0.153 2.28 43.85 5.68
- - 0.8 105.146 0.483 0.505 0.000 0.444 0.588 2.37 204.44 6.56
- - 1.0 114.037 0.588 0.406 0.000 0.030 0.348 2.69 4.45 3.28
- 3 0.2 75.148 0.137 0.646 0.000 0.816 2.354 2.18 27.74 5.50
- - 0.4 90.404 0.336 0.590 0.000 0.907 1.585 2.07 213.12 4.48
- - 0.6 102.664 0.450 0.518 0.000 0.359 1.256 2.45 7.93 4.83
- - 0.8 113.290 0.553 0.429 0.000 0.178 1.833 2.72 35.52 12.79
- - 1.0 121.537 0.606 0.384 0.000 0.308 2.119 2.36 14.06 9.24
- 5 0.2 82.579 0.151 0.612 0.000 0.679 1.672 2.01 113.45 3.79
- - 0.4 97.557 0.355 0.556 0.000 1.332 2.829 2.37 229.81 8.86
- - 0.6 109.376 0.478 0.484 0.000 0.434 2.199 2.43 90.09 6.58
- - 0.8 119.242 0.576 0.397 0.000 0.174 2.485 2.31 15.23 5.58
- - 1.0 127.367 0.612 0.373 0.000 0.422 2.850 3.19 17.86 6.75

Notes. qφ = 1, qγ = 3, λA = λD = 1, µφ = µγ = 1, and cD = 100. Computation times equal to 1000 seconds

indicate termination of the algorithm.
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Table 3.3 Numerical results for nested structure.

Optimal solution
Percentage difference Computation times

from optimal cost (in seconds)

λA λD Average cost fA fD LBLR SBSR FBFR LBLR SBSR FBFR

0.5 0.5 38.387 0.506 0.712 0.000 2.157 2.668 1.93 26.14 8.82
- 1.0 62.807 0.199 0.693 0.000 0.777 1.616 2.46 199.08 6.21
- 1.5 96.090 0.000 0.559 0.000 0.081 1.157 2.43 4.37 2.02
- 2.0 138.053 0.000 0.440 0.000 0.056 1.107 2.18 4.12 2.20
- 2.5 183.980 0.000 0.359 0.000 0.035 1.089 2.06 3.11 2.10

1.0 0.5 44.757 0.544 0.679 0.000 1.562 3.704 2.07 1000 12.75
- 1.0 71.364 0.244 0.668 0.000 2.706 3.446 2.39 1000 11.70
- 1.5 106.032 0.045 0.552 0.000 0.128 1.102 2.95 8.14 4.35
- 2.0 148.053 0.000 0.440 0.000 0.052 1.032 2.36 5.43 2.22
- 2.5 193.980 0.000 0.359 0.000 0.034 1.033 2.17 2.40 2.33

1.5 0.5 52.369 0.433 0.667 0.000 1.566 4.785 2.52 30.65 11.31
- 1.0 80.498 0.194 0.659 0.000 2.195 4.131 2.72 1000 21.45
- 1.5 115.877 0.035 0.551 0.000 0.251 1.143 2.52 99.63 4.81
- 2.0 158.053 0.000 0.440 0.000 0.049 0.967 2.20 2.61 2.10
- 2.5 203.980 0.000 0.359 0.000 0.032 0.982 2.28 2.01 2.52

2.0 0.5 61.127 0.326 0.671 0.000 1.276 4.370 2.53 122.25 10.09
- 1.0 90.017 0.157 0.644 0.000 1.742 4.064 2.51 1000 8.69
- 1.5 125.770 0.031 0.550 0.000 0.316 1.138 2.69 19.05 6.16
- 2.0 168.053 0.000 0.440 0.000 0.046 0.909 2.35 5.93 2.06
- 2.5 213.980 0.000 0.359 0.000 0.030 0.936 2.26 2.61 2.39

2.5 0.5 70.416 0.259 0.678 0.000 0.991 3.616 2.21 1000 7.10
- 1.0 99.717 0.129 0.640 0.000 1.451 3.745 2.47 1000 12.51
- 1.5 135.675 0.031 0.549 0.000 0.363 1.125 2.70 86.33 5.96
- 2.0 178.053 0.000 0.440 0.000 0.043 0.858 2.42 2.00 1.79
- 2.5 223.980 0.000 0.359 0.000 0.029 0.894 2.27 2.68 2.34

Notes. qφ = 1, qγ = 3, hφ = 1, hγ = 5, µφ = µγ = 1, cA = 20, and cD = 100. Computation times equal to 1000

seconds indicate termination of the algorithm.

product D has a higher lost sale cost, the effect of product dominance is less significant and

LBLR can outperform SBSR by a couple of percent. Also, we observe that as λA increases

while λD is 0.5, the gap declines (there is a minor exception at λA = 1.5), but as λA increases

while λD is 1, the gap first increases and then decreases. Our explanation is that again, if one

product clearly dominates the other, a low percentage gap results. But when one product is

only slightly dominant, system performance can be improved by LBLR. Finally, as λA increases

while λD is 1.5, the gap increases; since product D has a higher lost sale cost, when λD is

1.5 the dominance of product D is so strong that increasing λA up to 2.5 only mitigates this

dominance. We expect the gap to fall at higher values of λA, since product A will eventually

dominate product D.

Another important observation from Table 3.3 is that, as both demand arrival rates go

from 0.5 to 2.5, the gap first increases and then declines. When capacity is high relative to
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demand (i.e., λA = λD = 0.5), it is optimal to hold less inventory and therefore the benefit

of LBLR is lower. When capacity is scarce (i.e., λA, λD ≥ 1.5), the system focuses more on

filling the high value item, even under high base-stock levels. Consequently, it is not critical

to ration inventory in a sophisticated manner, and again the benefit of LBLR is lower.

Our overall conclusion is that LBLR may substantially outperform SBSR when demands

for both products are fulfilled in significant quantities, when products are highly differentiated,

or when products differ mainly in their lost sale costs. Thus we predict that the gap between

LBLR and SBSR will increase as the fill rates of both products increase, as the difference of

fill rates increases, or as the ratio of lost sale costs decreases. To test these predictions we use

the data in Tables 3.2 and 3.3 in a regression model for the percentage gap between SBSR and

LBLR with the following independent variables: (i) fA, (ii) fD − fA, and (iii) cA/cD. As we

report in the upper left panel of Table 3.4, variables (i)-(iii) have the predicted sign and are

statistically significant at p = 0.001. The results continue to hold when stepwise regression

is used by including all the candidate variables (i.e., system parameters) in the model and

eliminating those that are statistically insignificant.

We also test the above prediction in Examples (b) and (c), and find that it remains true

in Example (b), but not in Example (c) (see the upper right and lower left panels of Table

3.4). The ambiguity in Example (c) arises because SBSR performs so well that the gaps are

insignificant for many data points. An explanation of this performance is that the lower batch

sizes in Example (c) require less flexibility in inventory control decisions, making LBLR less

important.

LBLR vs. FBFR. As expected, the percentage gaps between LBLR and FBFR are

higher than the ones between LBLR and SBSR. In Table 3.2, in contrast to the comparison

of LBLR and SBSR, we observe significant gaps between LBLR and FBFR when products

differ only in their component usage rates (i.e. when cA/cD = 1). This benefit comes from the

coordination of the components achieved by LBLR and SBSR but not FBFR: Since batch sizes

for components φ and γ are 1 and 3, respectively, it is easier to match supply with the demand

of product D (using 1 and 3 units of components φ and γ), compared to product A (using 1 unit

of each component). Hence, it becomes more crucial to coordinate inventory decisions when

product A becomes more important, as is the case when cA/cD = 1. Likewise, in Table 3.3 we
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Table 3.4 Regression results.

3.1(a). Products A and D, qφ = 1, and qγ = 3 3.1(b). Products A and B, qφ = 1, and qγ = 2

Variable Estimate SE t-stat. p-value Variable Estimate SE t-stat. p-value

Intercept −0.5191 0.3977 −1.3053 0.1963 Intercept −0.2461 0.2209 −1.1141 0.2693
cA/cD −2.0499 0.4612 −4.4442 0.0000∗ cA/cB −1.8331 0.2853 −6.4260 0.0000∗

fA 5.2332 0.5169 10.1246 0.0000∗ fA 4.0617 0.3363 12.0794 0.0000∗

fD − fA 2.4549 0.6277 3.9108 0.0002∗ fB − fA 1.7025 0.3092 5.5060 0.0000∗

N = 70, R2 = 67.30%, and adjusted-R2 = 65.82%. N = 70, R2 = 76.41%, and adjusted-R2 = 75.34%.

3.1(c). Products A and B, qφ = 1, and qγ = 1 3.2. Products B and C, qφ = 2, and qγ = 2

Variable Estimate SE t-stat. p-value Variable Estimate SE t-stat. p-value

Intercept 0.5720 0.1665 3.4354 0.0010∗ Intercept −1.6590 0.2330 −7.1200 0.0000∗

cA/cB −0.6958 0.2528 −2.7518 0.0076 fB 3.3140 0.3770 8.7898 0.0000∗

fA −0.2652 0.4360 −0.6081 0.5452 fC − fB 3.5845 0.3618 9.9076 0.0000∗

fB − fA −0.6361 0.3528 −1.8028 0.0760

N = 70, R2 = 11.94%, and adjusted-R2 = 7.94%. N = 70, R2 = 59.46%, and adjusted-R2 = 58.25%.

Notes. SE stands for standard error. Starred p-values indicate that the corresponding variables are statistically

significant at probability of 0.001.

see that the gaps between FBFR and the other heuristics are noticeably higher when product

A is more highly demanded (especially when λD ≤ 1 ≤ λA). These observations underscore the

importance of the coordinated inventory decisions when the component batch sizes imperfectly

match the component usage rates of the most valuable and/or mostly demanded product.

3.3.2 Non-Nested Structure

We next consider an ATO system with products B and C, and qφ = qγ = 2, in Tables 3.5 and

3.6.

LBLR vs. SBSR. We observe from Table 3.5 that, for fixed holding costs, LBLR provides

the least savings when cB/cC is 0.6 (there is a minor exception when hφ = 5 and hγ = 3).

For smaller values of cB/cC , products are highly differentiated and therefore lattice-dependent

rationing greatly improves the system performance. For higher values of cB/cC , products are

almost equally important since the total numbers of components they require are equal, and

product fill rates are quite close to each other. Nevertheless, when cB/cC is greater than

0.6, there are cases where the optimal cost gaps between LBLR and SBSR are comparatively

large. To understand why this happens, we examined the optimal solutions when cB/cC is

1: If inventory levels are equal and sufficiently great to satisfy any demand, it is optimal to



44 Chapter 3. Performance Evaluation of Lattice-Dependent Policies for ATO Systems

Table 3.5 Numerical results for non-nested structure.

Optimal solution
Percentage difference Computation times

from optimal cost (in seconds)

hφ hγ cB/cC Average cost fB fC LBLR SBSR FBFR LBLR SBSR FBFR

1 1 0.2 45.970 0.135 0.800 0.000 1.416 2.293 2.71 1000 5.12
- - 0.4 61.586 0.313 0.743 0.000 0.671 1.416 2.93 1000 7.31
- - 0.6 72.943 0.505 0.654 0.000 0.090 0.106 2.93 35.29 4.13
- - 0.8 82.243 0.560 0.615 0.000 0.554 0.556 2.76 43.79 6.37
- - 1.0 90.722 0.589 0.589 0.000 0.257 0.257 2.91 91.85 5.16
- 3 0.2 52.497 0.138 0.778 0.000 1.158 2.103 2.56 1000 3.67
- - 0.4 68.437 0.294 0.727 0.000 0.576 2.586 2.56 159.70 5.15
- - 0.6 80.874 0.456 0.653 0.000 0.117 0.904 2.77 17.38 4.48
- - 0.8 90.622 0.565 0.595 0.000 0.556 0.818 2.73 1000 6.55
- - 1.0 98.944 0.605 0.567 0.000 0.609 0.658 2.97 205.89 6.19
- 5 0.2 57.452 0.122 0.764 0.000 0.782 2.258 2.78 640.69 3.17
- - 0.4 73.412 0.255 0.726 0.000 0.646 2.919 2.42 155.57 4.40
- - 0.6 86.437 0.411 0.660 0.000 0.174 1.459 2.31 18.05 5.58
- - 0.8 97.158 0.516 0.604 0.000 0.888 1.609 2.21 31.80 8.90
- - 1.0 106.030 0.587 0.555 0.000 0.277 0.705 2.59 22.99 6.78
3 1 0.2 54.913 0.199 0.783 0.000 1.535 2.511 3.15 1000 8.69
- - 0.4 69.340 0.346 0.733 0.000 0.798 1.196 2.97 1000 5.02
- - 0.6 80.220 0.499 0.658 0.000 0.131 0.142 2.95 38.12 5.34
- - 0.8 90.026 0.539 0.629 0.000 0.190 0.232 3.00 24.12 5.24
- - 1.0 98.944 0.567 0.605 0.000 0.609 0.658 3.07 131.37 10.68
- 3 0.2 61.973 0.183 0.763 0.000 1.272 3.134 2.95 1000 5.28
- - 0.4 76.955 0.306 0.725 0.000 0.717 2.196 3.08 98.93 5.58
- - 0.6 88.944 0.473 0.651 0.000 0.111 0.767 3.28 42.94 4.99
- - 0.8 98.931 0.554 0.607 0.000 0.171 0.621 2.94 83.36 7.46
- - 1.0 107.503 0.586 0.586 0.000 0.643 0.680 2.77 887.82 6.66
- 5 0.2 67.262 0.165 0.748 0.000 0.990 2.797 2.26 1000 3.94
- - 0.4 82.624 0.272 0.721 0.000 0.736 2.583 2.77 237.54 5.63
- - 0.6 95.092 0.426 0.656 0.000 0.157 1.287 2.72 16.89 5.04
- - 0.8 105.871 0.493 0.627 0.000 0.397 1.268 2.96 126.21 6.67
- - 1.0 115.073 0.570 0.584 0.000 0.655 1.122 3.22 101.65 9.55
5 1 0.2 62.755 0.227 0.750 0.000 1.613 2.680 2.50 1000 14.89
- - 0.4 76.537 0.366 0.708 0.000 0.784 1.303 2.90 296.68 6.32
- - 0.6 87.039 0.500 0.642 0.000 0.221 0.511 2.55 37.55 4.84
- - 0.8 96.899 0.517 0.621 0.000 0.071 0.517 2.58 10.89 4.78
- - 1.0 106.030 0.555 0.587 0.000 0.277 0.705 2.94 41.38 6.41
- 3 0.2 69.789 0.173 0.724 0.000 1.550 2.016 2.69 1000 3.99
- - 0.4 84.698 0.312 0.703 0.000 0.702 1.975 2.53 1000 5.56
- - 0.6 96.246 0.481 0.630 0.000 0.062 1.009 2.93 35.87 5.31
- - 0.8 106.112 0.516 0.613 0.000 0.098 0.812 2.68 19.00 6.18
- - 1.0 115.073 0.584 0.570 0.000 0.655 1.122 2.73 66.69 10.55
- 5 0.2 74.924 0.144 0.703 0.000 0.814 2.156 2.22 480.08 4.65
- - 0.4 90.553 0.284 0.694 0.000 0.550 2.291 2.38 285.22 6.61
- - 0.6 102.748 0.446 0.621 0.000 0.169 1.372 2.40 26.05 4.71
- - 0.8 113.464 0.490 0.608 0.000 0.292 1.385 2.96 33.92 5.19
- - 1.0 123.004 0.564 0.564 0.000 0.598 1.729 2.63 79.46 17.09

Notes. qφ = qγ = 2, λB = λC = 1, µφ = µγ = 1, cC = 100. Computation times equal to 1000 seconds indicate

termination of the algorithm.
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satisfy demands of both products. However, if the inventory level of component γ (or φ) is

much greater than that of component φ (or γ), it may be optimal to reject demand of product

C (or B) which uses a greater number of component φ (or γ). SBSR may not induce this kind

of structure, but LBLR does.

We next consider the percentage gaps between LBLR and SBSR under different holding

cost rates when cB/cC is 0.2. In these cases LBLR provides the greatest cost advantage when

hφ = 5 and hγ = 1, and the smallest cost advantage when hφ = 1 and hγ = 5. These

correspond to the cases when the fill rate of product B takes the greatest and lowest values,

respectively. Any increment in hγ (or hφ) hurts product B (or C) more since product B (or

C) requires a greater number of component γ (or φ). Hence, when hγ is higher, product C

is so valuable that demands for product B are rejected most of the time and stock rationing

becomes less critical.

We now vary demand arrival rates, as shown in Table 3.6. Our conclusions from the nested

structure remain valid: As one product grows more dominant, it becomes less critical to ration

inventory, and the gap between LBLR and SBSR decreases. Likewise, when capacity becomes

scarce or high relative to demand, it is not critical to ration inventory in a sophisticated

manner, and therefore the gap shrinks. Also, notice that the gap between LBLR and SBSR is

significant even when λB is 2.5 and λC is 0.5, due to the lower lost sale cost of product B.

Based on the previous findings, we again predict that the gap between LBLR and SBSR

increases as the product fill rates or difference of fill rates increase. To test this prediction,

we use the data in Tables 3.5 and 3.6, and develop a regression model with two independent

variables: (i) fB and (ii) fC − fB. In contrast to the nested case, we excluded cB/cC from

the regression model due to its nonmonotonic relationship with our dependent variable, the

percentage gap between LBLR and SBSR. All the variables have the predicted sign and are

statistically significant (see lower right panel of Table 3.4).

LBLR vs. FBFR. FBFR performs, on average, better than in the nested structure. Our

explanation is that as component usage rates of both products are closer to component batch

sizes in the current case, it is easier to match supply with demand, and thus coordination of

inventory decisions is less crucial. Furthermore, no matter which product is more valuable

or dominant, the degree of difficulty of inventory coordination remains the same. Hence, the
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Table 3.6 Numerical results for non-nested structure.

Optimal solution
Percentage difference Computation times

from optimal cost (in seconds)

λB λC Average cost fB fC LBLR SBSR FBFR LBLR SBSR FBFR

0.5 0.5 32.743 0.506 0.794 0.000 1.426 2.147 2.18 187.57 4.63
- 1.0 53.926 0.259 0.758 0.000 1.643 1.899 2.39 1000 7.04
- 1.5 84.862 0.026 0.626 0.000 0.015 0.515 3.09 13.85 3.04
- 2.0 126.450 0.000 0.488 0.000 0.000 0.275 2.59 6.53 2.19
- 2.5 172.774 0.000 0.395 0.000 0.000 0.149 2.59 4.05 2.16

1.0 0.5 39.922 0.456 0.803 0.000 1.265 2.169 2.32 1000 11.77
- 1.0 62.755 0.227 0.750 0.000 1.613 2.680 2.45 1000 14.51
- 1.5 94.745 0.034 0.622 0.000 0.137 0.585 3.03 440.08 2.56
- 2.0 136.450 0.000 0.488 0.000 0.000 0.255 2.41 4.89 2.13
- 2.5 182.774 0.000 0.395 0.000 0.000 0.141 2.44 10.04 2.30

1.5 0.5 47.885 0.380 0.794 0.000 1.134 2.383 2.95 1000 14.59
- 1.0 72.092 0.176 0.745 0.000 1.364 2.286 2.97 1000 13.09
- 1.5 104.645 0.029 0.621 0.000 0.220 0.626 3.63 696.38 4.42
- 2.0 146.450 0.000 0.488 0.000 0.000 0.238 2.77 3.63 1.95
- 2.5 192.774 0.000 0.395 0.000 0.000 0.134 2.67 3.09 2.32

2.0 0.5 56.723 0.310 0.778 0.000 0.883 1.849 2.80 532.94 4.44
- 1.0 81.721 0.132 0.751 0.000 1.224 1.947 2.75 1000 9.88
- 1.5 114.577 0.024 0.620 0.000 0.260 0.630 2.72 316.97 3.69
- 2.0 156.450 0.000 0.488 0.000 0.000 0.222 2.38 3.30 2.16
- 2.5 202.774 0.000 0.395 0.000 0.000 0.127 2.71 5.98 2.13

2.5 0.5 66.026 0.261 0.773 0.000 0.729 1.558 2.59 103.17 4.48
- 1.0 91.469 0.109 0.748 0.000 1.092 1.707 2.78 1000 7.52
- 1.5 124.528 0.021 0.620 0.000 0.279 0.619 2.88 192.57 3.65
- 2.0 166.450 0.000 0.488 0.000 0.000 0.209 2.58 11.82 2.20
- 2.5 212.774 0.000 0.395 0.000 0.000 0.121 2.80 7.67 2.35

Notes. qφ = qγ = 2, hφ = 5, hγ = 1, µφ = µγ = 1, cB = 20, and cC = 100. Computation times equal to 1000

seconds indicate termination of the algorithm.

performances of SBSR and FBFR are closer, although SBSR again significantly outperforms

FBFR in many instances.

3.3.3 Computational Efforts

In Table 3.7, we report four statistics of computation times for the numerical instances intro-

duced in Sections 3.3.1 and 3.3.2: the average, standard deviation, minimum, and maximum

computation time within each heuristic class and each example. We omit the statistics of

computation times for the global optimal solution, as it is instantaneous. We observe from

Table 3.7 that LBLR outperforms the other heuristics in terms of average computation times.

Although one would intuitively expect the computation times for SBSR and LBLR to be sim-

ilar since the feasible solution sets for the MIP problems of SBSR and LBLR are comparable,

we find that the average computation times are significantly shorter for LBLR (by up to two
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Table 3.7 Computation times (in seconds).

3.1(a). Products A and D, qφ = 1, and qγ = 3 3.1(b). Products A and B, qφ = 1, and qγ = 2

LBLR SBSR FBFR LBLR SBSR FBFR

Average 2.42 239.67 6.32 Average 2.46 368.30 6.03

Std. Deviation 0.27 361.99 3.52 Std. Deviation 0.25 436.79 2.22

Minimum 1.93 2.00 1.79 Minimum 1.76 2.21 2.27

Maximum 3.19 1000.00 21.45 Maximum 3.11 1000.00 11.02

3.1(c). Products A and B, qφ = 1, and qγ = 1 3.2. Products B and C, qφ = 2, and qγ = 2

LBLR SBSR FBFR LBLR SBSR FBFR

Average 2.19 89.12 6.28 Average 2.73 359.56 5.96

Std. Deviation 0.33 194.76 3.40 Std. Deviation 0.28 415.98 3.31

Minimum 1.57 1.56 1.93 Minimum 2.18 3.09 1.95

Maximum 3.10 1000.00 17.45 Maximum 3.63 1000.00 17.09

orders of magnitude). Such a computational advantage of LBLR over SBSR arises because a

lattice-dependent structure closely fits the globally optimal structure, and our rule of thumb

discussed in Section 3.2.2 enables the MIP solver to start from good initial solutions. In addi-

tion, the range of LBLR computation times is lower within each example, implying that the

computation time for LBLR is more robust to parameter change in our instances.

3.3.4 Selected Larger Instances

We next generate several instances with more components and/or products to determine the

maximum problem size that can be solved within a reasonable time for each heuristic. To

construct such instances we use the following resource-consumption matrix and parameter

values:

Products

A B C D E F G H I J K L qi hi µi

C
om

p
on

en
ts φ 1 1 2 1 2 3 2 3 1 1 2 1 2 1 1

γ 1 2 1 3 2 1 3 2 1 2 1 3 2 1 1
η 1 1 2 2 1 1 2 2 2 1 1
θ 2 2 2 1 1

cj 30 50 40 70 60 50 80 70 25 45 35 65

λj 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 3.8 exhibits our numerical results; the components and products that we select to

construct our instances are shown in the first two columns. We restrict the computation time
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Table 3.8 Numerical results for selected larger instances.

Optimal solution Heuristic solutions Computation times

Components Products Avg. cost Time LBLR SBSR FBFR LBLR SBSR FBFR

φ, γ A, B 8.086 0.29 8.086 8.086 8.123 12.41 3.27 2.28
- A, B, C 11.470 0.34 11.470 11.470 11.504 18.57 6.65 5.48
- A-D 18.093 0.41 18.093 18.093 18.218 23.20 241.88 14.75
- A-E 26.037 0.57 26.037 26.076 26.243 36.70 18000 35.93
- A-F 34.692 0.75 34.692 34.730 34.768 42.14 18000 148.10
- A-G 51.078 1.56 51.078 51.219 51.265 58.46 18000 1006.77
- A-H 66.784 3.33 66.784 * 70.807 87.73 5666.93 18000
- A-I 72.779 5.57 72.779 110.519 * 142.86 18000 202.08
- A-J 83.284 13.68 83.284 * * 274.26 291.24 180.00
- A-K 91.686 39.86 91.686 * * 611.96 268.64 307.00
- A-L 107.106 140.42 * * * 973.96 454.00 635.00

φ, γ, η A, B 10.732 5.04 10.732 20.000 10.796 6499.90 18000 871.46
- A, B, C 15.912 8.49 15.912 30.000 * 7862.30 18000 714.04
- A-D 24.555 14.75 24.555 47.500 * 9234.14 18000 209.00
- A-E 32.782 28.21 32.782 62.500 * 12984.66 18000 216.00
- A-F 41.565 51.84 41.565 75.000 * 15796.73 18000 252.00
- A-G 58.123 180.53 58.123 * * 18000 398.89 283.00
- A-H 73.924 242.60 ** * * 18000 430.00 320.00

φ, γ, η, θ A, B 14.591 618.03 ** ** ** 18000 18000 18000

Notes. A single star (*) indicates that the MIP solver fails to report a feasible solution as it runs out of memory.

Two stars (**) indicate that the MIP solver fails to report a feasible solution within 5 hours. Computation

times equal to 18000 seconds indicate termination of the algorithm.

of each instance to be no more than 5 hours (i.e., 18000 seconds).

Table 3.8 indicates that LBLR again yields the globally optimal cost in all instances. (For

instances where the LBLR solution is unavailable, the global optimal solution adheres to

the structure of LBLR.) We also observe that computation times for each of our heuristics

considerably increase with the number of components and/or products. Relatively speaking,

an increment in the number of components increases computation times more than an increase

in the number of products, since both the state space and action space rapidly grow with the

number of components. For LBLR, we could solve instances with two components and eleven

products, or three components and six products, within 5 hours. For SBSR, we could solve an

instance with two components and four products within 5 hours. For FBFR, we could solve

instances with two components and seven products, or three components and two products,

within 5 hours. Consequently, given the time limit, we are able to solve larger instances for

LBLR. (We also observe in the numerical model that the majority of the computation time

for LBLR tends to come from generating the MIP model rather than finding its solution.)
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3.3.5 Summary of Insights

Our numerical study shows that LBLR outperforms SBSR substantially if it is crucial to hold

a significant amount of inventory that must be rationed. This is the case, for example, when

(i) demands for both products should be satisfied in significant quantities, (ii) products are

highly differentiated mainly through lost sale costs, (iii) both holding cost rates are small, (iv)

capacity and demand are comparable, implying inventory should be rationed, or (v) demand

rates of the products are similar. Our regression results indicate that conditions (i) and (ii)

are statistically significant. (Due to an insufficient number of data points, we are unable to

show the significance of other conditions using a regression model.) Another important insight

is that in the nested structure, LBLR performs better than SBSR if there is an increase in the

holding cost of the component used by the different products in different quantities. In the

non-nested structure, if there is a decrease in the holding cost of the component used more by

a less valuable product, the gap between LBLR and SBSR increases.

FBFR performs substantially worse than both LBLR and SBSR when component batch

sizes do not match the component requirements of the most valuable or most highly demanded

product. This is because both state-dependent and lattice-dependent structures enable us to

coordinate inventory decisions across components, and therefore adjust supply levels for the

most important product. LBLR achieves such a coordination more economically than SBSR

in terms of both average costs and computation times.

3.4 The Case of Discounted Cost

In this section we first reformulate our general model under the total expected discounted cost

criterion. We then present several counter examples showing that the properties of submod-

ularity and supermodularity, which are used to ensure the optimality of LBLR in Chapter 2,

may fail to hold for general ATO systems under the discounted cost criterion. We execute this

reformulation, as we used these properties in Chapter 2 to prove the optimality of LBLR for

the discounted cost case, and then extended this optimality result to the average cost case.
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3.4.1 Problem Formulation

Define 0 < α < 1 as the discount rate. For a given policy ` and a starting state x ∈ Nm0 , the

expected discounted cost over an infinite planning horizon v`(x) can be written as

v`(x) = E`x

 m∑
i=1

∫ ∞
0

e−αthi(Xi(t))dt+

n∑
j=1

∫ ∞
0

e−αtcjdNj(t)

 .
Letting β denote the upper bound on transition rates for all system states (i.e., β =

∑
i µi +∑

j λj), we below formulate the optimality equation that holds for the optimal cost function

v∗ = v`
∗
:

v∗(x) =
1

α+ β

h(x) +
∑
i

µiT
(i)v∗(x) +

∑
j

λjTjv
∗(x)

 , (3.4.1)

where the operator T (i) for component i is defined as

T (i)v(x) = min{v(x + qiei), v(x)}, (3.4.2)

and the operator Tj for product j is defined as

Tjv(x) =

 min{v(x) + cj , v(x− aj)} if x ≥ aj ,

v(x) + cj otherwise,
(3.4.3)

where ei is the ith unit vector of dimension m. For a given state x, the operator T (i) specifies

whether or not to produce a batch of component i; and the operator Tj specifies, upon arrival

of a demand for product j, whether or not to fulfill it from inventory if it is feasible.

3.4.2 Counter Examples

Define f as the class of real-valued functions on Nm0 , and let δpf = f(x+p)−f(x) for p ∈ Nm0 .

In Chapter 2, we introduced the notion of “submodularity with step size p” for p ∈ Nm0 to

describe the class of functions f with δpieif nonincreasing with an increase of pk in the kth

dimension, ∀i 6= k. Denote this class of functions by Sub(p). In Chapter 2, we also introduced
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the notion of “supermodularity with step sizes r and p” for r,p ∈ Nm0 to describe the class

of functions f with δpieif nondecreasing with an increase of r in the domain, ∀i. Denote this

class of functions by Super(r,p). Thus:

Definition 3.4.1. Let f be a real-valued function defined on Nm0 . Also let r,p ∈ Nm0 .

(a) f ∈ Sub(p), if f(x + piei)− f(x) ≥ f(x + piei + pkek)− f(x + pkek), ∀x ∈ Nm0 , ∀i and

∀k 6= i.

(b) f ∈ Super(r,p), if f(x + piei + r)− f(x + r) ≥ f(x + piei)− f(x), ∀x ∈ Nm0 and ∀i.

In Chapter 2 we proved that, for the M -system product structure, the optimal cost function

satisfies the properties of both Sub(b) and Super(a,b), where a is the vector of component

requirements for the master product, and b is the vector of component requirements for indi-

vidual products. We then used this result to establish the optimality of LBLR. As the model

presented in this chapter allows for general product structures, it is not apparent whether the

results in Chapter 2 will extend to our setting. To answer this question we construct counter

examples that do not satisfy the M -system product structure for which the above functional

characterizations fail to hold. Thus showing optimality of LBLR policies, if this indeed holds,

will likely require an alternate proof technique.

We restrict our attention to a 1-component 3-product system, which violates the M -system

product structure since more than two products consume the same component. We select

products A, B, and D, and component γ, to construct our system (recall products A, B,

and D use 1, 2, and 3 units of component γ, respectively). We then generate several counter

examples by varying values of the related parameters for this system, and using the value

iteration method to determine the optimal cost function evaluated at different initial inventory

levels (see Chapter 1 in Bertsekas 2007 for an explanation of the value iteration method).

As the concept of submodularity is inapplicable to single-component systems, we only check

whether the optimal cost function satisfies the property of Super(r, p), at various step sizes

r ∈ N0 and p ∈ N0. Note that f ∈ Super(r, p) if f(x + p + r) − f(x + r) ≥ f(x + p) − f(x),

∀x ∈ N0. We consider various step sizes as we want to generalize the following structural

result, which is valid in a 1-component 2-product system (see Chapter 2): The property of
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Table 3.9 Counter examples for supermodularity with various step sizes.

Parameters for counter examples Results for various step sizes

α qγ µγ cA cB cD λA λB λD (1,2) (1,3) (1,5) (2,3) (2,4) (3,3)

0.3 2 0.15 10 80 120 0.025 0.80 0.025 N N N Y Y N
0.4 2 0.15 10 60 120 0.050 0.35 0.450 N N N Y N Y
0.3 3 0.05 1 2 40 0.150 0.72 0.080 N N N N Y Y

Notes. hγ = 1 in all examples. The last six columns show whether Super(r, p) holds depending on step sizes r

and p: “Y” means that Super(r, p) holds for the corresponding example, and “N” means that Super(r, p) fails

to hold.

Super(r, p) holds when step sizes r and p are chosen to be component requirements of the

two products. (But if r and p are chosen differently, Super(r, p) may fail to hold, even for

M -systems. Consider a 2-product system with products A and B, and component γ. Suppose

that qγ = 1, µγ = 1, λA = 1, λB = 10, cA = 10, cB = 100, hγ = 60, and α = 0.5: Super(1, 1)

fails to hold in this example, while Super(1, 2) holds.)

The intuition behind this positive result in Chapter 2 is as follows: Demands of one product

compete with those of the other product for the same component, and therefore the incentive

to satisfy a demand for one product increases as the competition becomes less severe due to a

supply increase equal to the component requirement of the competitor product. Following the

same intuition, this structural result might be foreseeably extended to our 3-product system in

different ways: (i) r and p may be the numbers of components used by different products (e.g.,

r = 1 and p = 2, in our 3-product system), or (ii) r may be the number of components used

by one product while p is the sum of the numbers of components used by the other products

(e.g., r = 1 and p = 5). Hence, for our 1-component 3-product system, there are six possible

pairs of r and p.

We report our results for three counter examples in Table 3.9. The left panel of Table 3.9

lists the parameters for our counter examples, while the right panel shows whether the property

of Super(r, p) holds for each r and p. The existence of counter examples for each pair of step

sizes proves that the property of Super(r, p) need not hold for 1-component 3-product systems,

and thus for general ATO systems. Hence, one may need to develop a different methodology

from that introduced in Chapter 2 to prove the optimality of LBLR for general ATO systems.
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3.5 Conclusions

We have studied the lattice-dependent base-stock and lattice-dependent rationing (LBLR)

policy introduced in Chapter 2 as a heuristic for general ATO systems. In the average cost case,

we compare it to two other heuristics from the literature: state-dependent base-stock and state-

dependent rationing (SBSR), and fixed base-stock and fixed rationing (FBFR). We numerically

show that an LBLR policy minimizes the average costs in each of the more than 1800 instances

of general ATO problems we tested. Our numerical experiments also demonstrate that LBLR

performs significantly better than SBSR (by up to 2.7% of the optimal cost) when products

are highly differentiated and it is optimal to fulfill a significant fraction of the demand for each

product. FBFR performs worse than the other two heuristics (by up to 4.8% of the optimal

cost), since it lacks the coordination of inventory decisions across different components. We

also analytically show that LBLR performs no worse than the other heuristics.

Based on our numerical results, future research could investigate the optimality of LBLR

for ATO systems with general product structures. However, our counter examples for the

discounted cost case show that the functional characterizations that are sufficient to ensure

the optimality of LBLR need not hold for general product structures. Thus, if LBLR is indeed

optimal, it may be necessary to develop a new method to prove this. Another direction for

future research is to study the performance of LBLR in ATO systems with backordering and/or

general component production and demand interarrival times. Lastly, assuming LBLR, future

research could develop solution procedures for the optimization of base-stock and rationing

levels in high-dimensional ATO problems for which even solving the linear program formulation

to optimality might prove problematic.





Chapter 4

Optimal Portfolio Strategies for

New Product Development

4.1 Introduction

Due to rapid technology innovations and changing customer preferences, developing new prod-

ucts and launching them successfully into the market have become critical in today’s compet-

itive environment. As a result, many large-scale firms pursue multiple new product develop-

ment (NPD) projects in parallel to achieve broader product lines and higher market share

(Ulrich and Eppinger 2004). Concurrent projects often place competing demands on scarce

resources (e.g., testing equipment or specialists with unique areas of expertise), adding com-

plexity to NPD portfolio management (Kavadias and Chao 2008). If not managed properly,

constrained resources may lead to significant delays in project completion times, reducing the

firm’s profitability (Adler et al. 1995).

Managing scarce resources to optimize their use in an NPD process becomes even more

challenging in the face of uncertainty regarding project outcomes. To reduce uncertainty and

adjust development efforts accordingly, project managers generally divide the NPD process

into a series of distinct experimental stages, reviewing the evolution of projects at each stage

(Cooper 2008). Hence, managers sequentially gather additional information and use it to

update their prior beliefs about project outcomes (Artmann 2009). This approach therefore

allows managers to focus and redeploy available resources on high value projects as they are

This chapter presents joint work undertaken with Mustafa Akan, Laurens Debo, and Alan Scheller-Wolf.
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able to eliminate projects with little promise before testing at expensive downstream stages

(Thomke 2008). A new drug development process can be viewed as an example of a sequential

NPD process. It typically involves three stages: (i) safety trials, (ii) efficacy trials, and (iii)

large-scale trials; see DiMasi et al. (2003).

This type of management of scarce resources has potential to improve the firm’s prof-

itability. But this improvement comes at a cost: Increased system complexity. For example,

information generated through experimental outcomes is imperfect and experimentation times

are typically variable (Sommer et al., 2008). Furthermore, NPD projects at different stages

may demand the use of different specialized resources, requiring project managers to make

concurrent resource allocation decisions across stages at a time. To our knowledge, the NPD

literature has not yet developed a comprehensive modeling framework that explicitly captures

all of these aspects of the problem. In this chapter we take the first step towards filling

this gap, and study the problem of project selection and resource allocation in a multi-stage

NPD process with imperfect information across stages, exponential experimentation times,

and stage-dependent resource constraints.

We model the problem as an infinite-horizon Markov decision process (MDP) under the

total expected discounted cost criterion. Each NPD project undergoes a different experiment

at each stage of the NPD process; experiments generate signals about the true nature of a

project. Beliefs about the true nature of a project are updated after each experiment according

to a Bayesian rule. Projects thus become differentiated through their signals, and all available

signals for a project determine its category. The state of the system is described by the numbers

of projects in each category. Given the system state, a control policy specifies what fraction

of resources should be allocated to each project at each stage and which projects, if any,

should be terminated. At each stage, the experimentation rate for a project is proportional to

the fraction of resources allocated to that project. The existence of binding stage-dependent

resource constraints implies the total experimentation rate at each stage is bounded. Each

experiment incurs a variable cost upon completion, which is concave and nondecreasing in the

utilized fraction of resources. But the returns of a project, which are determined by posterior

beliefs at the last stage, are earned only after the project is complete.

We characterize the optimal control policy by introducing a new policy, state-dependent
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non-congestive promotion (SDNCP), for two different special cases of the problem: (a) when

there is a single stage with an informative experiment and projects are never terminated, or

(b) when there are multiple stages with uninformative experiments. An SDNCP policy implies

that, at each stage, it is optimal to advance a project with the highest expected reward to

the next stage if and only if the number of projects in each successor category is less than a

congestion-dependent threshold. Specifically, threshold values decrease in a non-strict sense

as a later stage becomes more congested or as an earlier stage becomes less congested. (A

stage becomes more congested with an increase in the number of projects at this stage or with

an increase in the expected reward of any project at this stage.) These findings further our

knowledge of the NPD problem, revealing the impact of congestion on the optimal policy.

We conduct numerical experiments to evaluate the use of an SDNCP policy as a heuristic

for the general NPD problem, and compare it to a fixed non-congestive promotion policy with

fixed thresholds (FNCP-Ch), and several other heuristics. Taking the average cost rate as our

performance criterion, we formulate a linear program to find the globally optimal cost, and

mixed integer programs to find the optimal cost within each heuristic class. We then generate

79 instances of the general NPD problem: For SDNCP, the MIP solver could solve 63% of

these instances within two hours. Remarkably, SDNCP minimizes the average costs in 90%

of the instances that could be solved within two hours. (For the solved instances, the average

distances of SDNCP and FNCP-Ch from the optimal cost are 0.05% and 8.23%, respectively.)

Our numerical results also indicate that SDNCP has a greater benefit over FNCP-Ch (i) when

the NPD process slows down at downstream stages, (ii) when the project holding and/or

experimentation costs are higher, or (iii) when the experiments are less informative. But

computation times of FNCP-Ch are several orders of magnitude lower than those of SDNCP.

The rest of this chapter is organized as follows: In Section 4.2 we offer a brief literature

review. In Section 4.3 we formulate our general model under the discounted cost criterion.

In Section 4.4 we establish the optimal control policy when there is a single stage with an

informative experiment and projects are not terminated. In Section 4.5 we establish the

optimal control policy when there are multiple stages with uninformative experiments. In

Section 4.6 we present heuristic policies for the general model, along with numerical results.

In Section 4.7 we offer a summary and conclusions.
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4.2 Literature Review

Earlier literature in this area is comprised of two major streams: (i) Resource allocation, and

(ii) dynamic scheduling. Kavadias and Loch (2004) provide a comprehensive literature review,

which we summarize below.

Resource Allocation. Several authors in this stream studied project selection models

with binary decision variables, additive present values of projects, and budget limitations over

time (e.g., Lorie and Savage 1955, Weingartner 1966). These models have also been extended

to dependent present values and continuous decision variables. Several other authors deal

with the dynamic and stochastic knapsack problem, in which each request (project) arrives

in time as a stochastic process and has a demand for a limited resource (e.g., Papastavrou et

al. 1996, and Kleywegt and Papastavrou 2001). The demands and their rewards are random,

and become known upon arrival. If a demand is accepted, the reward is received, otherwise a

penalty is paid. The objective is to maximize the expected reward in a given timeline. There is

also a significant body of literature around the resource-constrained scheduling problem (e.g.,

Brucker et al. 1999, and Neumann et al. 2002). The objective is to optimally schedule project

activities subject to due dates, precedence relations, and resource constraints. However, all

studies in this research stream neglect to model intermediate project reviews.

Dynamic Scheduling. This stream of research can further be divided into three groups.

The first group considers the optimal sequential selection problem in which an NPD project

passes through several distinct stages and its status is inspected at each stage (e.g., Roberts

and Weitzman 1981). A project at any stage is either terminated or promoted to the next

stage based on the information available. The second group studies the multi-armed bandit

problem in which projects compete for access to a specialized resource which can be utilized by

only one project at any point in time. A project utilizing the resource undergoes Markovian

transitions and returns an immediate state- and time-dependent reward. Gittins and Jones

(1972) introduced the Gittins Index, a number that can be assigned to each project at any

time; it is always optimal to work on the project with the highest index. These problems

have also been generalized by allowing the state of passive projects to evolve over time and

influence the reward of the active project. The last group approaches the project prioritization
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problem as a multiclass queueing model with stochastic completion times for each job class.

The cµ rule, giving priority to the job with the highest delay cost divided by the expected

processing time, is proven optimal for various settings (e.g., Wein 1992, and Ha 1997). Unlike

the first group, we include resource constraints; unlike the last two groups, we allow projects

at different stages to require different resources.

In summary, to our knowledge, we are the first to model the project selection and re-

source allocation problem in an NPD process with (i) intermediate project reviews (and there-

fore Bayesian updating of beliefs about the ultimate success of each project) and (ii) stage-

dependent resource constraints. Furthermore, our MDP formulation enables us to rigorously

show that the optimal policy is congestion-dependent.

4.3 Problem Formulation

We consider the problem of project selection and resource allocation in a continuous-time

NPD process (e.g., a new drug development process, cf. Figure 4.1). Each NPD project

passes through a finite number of experimental stages (e.g., safety, efficacy, and general tests)

before the resulting product (e.g., “Lipitor”) is placed on the market. Define M = {1, 2, ..,m}

as the set of experimental stages, and i as the index for the stage (e.g., m = 3). The true

ultimate nature of a project falls into one of a number of states (e.g., “success” or “failure”),

and initial expectations about the nature are the same across all projects. Each experiment

generates a piece of new information (e.g., a “good” or “bad” signal) about the nature of the

project; uncertainty pertaining to the ultimate outcome of the project is further resolved at

each stage. Define K as the number of possible signals that can be generated at each stage

for each project, and k as the index for the signal (e.g., K = 2). There exists a one-to-one

correspondence between the set of signals at each stage and the set of states for the true nature.

Both sets consist of integers from 1 to K such that a lower integer indicates a project with

higher expected return (e.g., k = 1 means a “good” signal and a “success”, and k = 2 means

a “bad” signal and a “failure”).

All available signals for a project determine its category, and projects become differentiated

through their categories. Define N = {0, 1, .., n} as the set of project categories, and j as
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Figure 4.1 A new drug development process. Each small box represents a different project category, and each

line at a given stage represents a different signal.

the index for the category. Note that Ki is the number of categories at stage i, and n =

K + K2 + ... + Km (e.g., n = 14). Different stages of the NPD process require different

resources, which are limited. Define Wi as the set of project categories waiting for access to

resources of stage i for experimentation (e.g., W1 = {0}, W2 = {1, 2}, and W3 = {3, 4, 5, 6}).

Also, define Wm+1 as the set of project categories that have completed all stages except the

product launch stage m+ 1 (e.g., W4 = {7, 8, .., 14}).

Experiments imperfectly reveal the true nature of a project throughout the NPD process.

Define Φi as an K ×K informativeness probability matrix at stage i; φ
(i)
k,k′ is the probability

that the experiment at stage i generates signal k′ for projects with true nature k. Notice that if

φ
(i)
k,k = 1, ∀k, then the experiment at stage i perfectly reveals the true nature. Thus we assume

φ
(i)
k,k < 1, ∀i, k. Beliefs about the true nature of a project undergo Bayesian updating after

each experiment. Define pj = (pj,1, .., pj,K) as the probability distribution for the true nature

of a project in category j ∈Wi. Suppose that a project in category j ∈Wi becomes category

j′ ∈Wi+1, returning signal k′ at stage i. Then the posterior probability mass function for the
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true nature of the project is calculated as

pj′,k =
pj,k × φ

(i)
k,k′

fj→j′
, ∀k,

where fj→j′ is the probability that a project in category j ∈Wi returns a signal k′ at stage i

(and thus falls into category j′ ∈Wi+1), i.e.,

fj→j′ =
∑

1≤k≤K
pj,k × φ

(i)
k,k′ .

The expected reward for a project in category j is calculated by ρj =E[r · pj ], where r is a K

dimensional nonnegative vector whose elements are in descending order; rk denotes the reward

for a project with ultimate outcome k. Therefore ρj ≥ 0, ∀j. (The assumption that ρj ≥ 0,

∀j, may be able to be relaxed.) The returns of a project are earned only after the project is

complete.

Both experimentation and product launch times are independent and exponentially dis-

tributed. Define µi as the maximum possible experimentation rate at stage i, and µm+1 as

the maximum possible product launch rate. Managerial control of resource allocation at each

stage affects experimentation rates; µiyj is the experimentation rate at stage i for a project

in category j ∈Wi, which is proportional to the fraction of resources utilized by that project,

yj ∈ [0, 1]. The same is also true for the product launch rate. Once a project in category

j completes the experiment at stage i, the system incurs a variable cost, cij(yj). But there

are no costs associated with interrupted experiments. (This assumption is not restrictive in

the two cases of the model introduced in Sections 4.4 and 4.5, as we show it is never optimal

to interrupt any experiment once it has been initiated in those cases.) We assume cij(yj) is

concave and weakly increasing in yj , and equals zero when yj = 0, ∀i. Also, experimentation

costs at a given stage i and rate y are the same across different categories; ci(y) = cij(y),

∀j ∈Wi. Projects may be terminated at no cost; termination time for any project in the NPD

process is exponentially distributed with a fixed rate λ, which can be chosen to be arbitrarily

large.

The state of the system at time t is the vector X(t) = (X1(t), .., Xn(t)), where Xj(t)
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is a nonnegative integer denoting the number of projects in category j at time t. Projects

held in the NPD process incur an aggregate holding cost per unit time which is convex and

strictly increasing in the total number of projects. Denote by h(X(t)) = h′(
∑

j>0Xj(t)) the

holding cost rate at state X(t). Since all inter-event times are exponentially distributed, the

system retains no memory, and decision epochs can be restricted to times when the state

changes. Using the memoryless property, we can formulate the problem as an MDP and focus

on Markovian policies for which actions at each decision epoch depend solely on the current

state. A control policy u specifies for each state x = (x1, .., xn), the action au(x) = (y0, .., yn, z),

yj ∈ [0, 1], ∀j, and z ∈ {0, 1, .., n}, where yj denotes the fraction of resources of stage i (or

stage m + 1) allocated to a project in category j ∈ Wi (or j ∈ Wm+1), and z denotes the

category from which a project is terminated (z = 0 means do not terminate any project). The

action au(x) = (y0, .., yn, z) must satisfy the following conditions: (a) yj = 0 and z 6= j if

xj = 0, ∀j > 0; (b)
∑

j∈Wi
yj ≤ 1, ∀i; and (c)

∑
j∈Wm+1

yj ≤ 1.

Define 0 < α < 1 as the discount rate. Also, define β as the upper bound on transition

rates for all system states (i.e., β = λ +
∑

i µi + µm+1). We below formulate the optimality

equation that holds for the optimal cost function v∗ = vu
∗
:

v∗(x) =
1

α+ β

h(x) + λTAv
∗(x) +

∑
1≤i≤m

µiTB,iv
∗(x) + µm+1TCv

∗(x)

 , (4.3.1)

where the operator TA is defined as

TAv(x) = min
0≤j≤n
s.t. x≥ej

v (x− ej) , (4.3.2)

the operator TB,i for each stage i ∈ {1, 2, ..,m} is given by

TB,iv(x)

= min
yj , j∈Wi

s.t.
∑
j∈Wi

yj≤1

∑
j∈Wi

cij(yj) + yj
∑
j′

v
(
x− ej + ej′

)
fj→j′

+

1−
∑
j∈Wi

yj

 v (x)

 ,
(4.3.3)
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and the operator TC is defined as

TCv(x) = min
yj , j∈Wm+1

s.t.
∑

j∈Wm+1

yj≤1

 ∑
j∈Wm+1

yj (v (x− ej)− ρj) +

1−
∑

j∈Wm+1

yj

 v (x)

 , (4.3.4)

where e0 is a zero vector of dimension n, and ej is the jth unit vector of dimension n for

1 ≤ j ≤ n. For a given state x, (a) the operator TA specifies whether or not to terminate

a project, and which project to select if a project is to be terminated; (b) the operator TB,i

specifies what fraction of resources of stage i should be allocated to a project in each category

j ∈ Wi for experimentation; and (c) the operator TC specifies what fraction of resources of

stage m + 1 should be allocated to a project in each category j ∈ Wm+1 for product launch.

However, without loss of generality, the action space of the operators TB,i and TC can be

reduced to the set of binary variables:

Lemma 4.3.1. There is no loss of generality in assuming that yj ∈ {0, 1}, ∀j.

Proof. See Appendix C.1.

Following Lemma 4.3.1, we assume yj ∈ {0, 1}, ∀j. This implies that the operator TB,i (or

TC) specifies when to fully utilize the resources of stage i (or stage m+1), and on which project.

For notational convenience, we replace cij(1) with ci, ∀i and ∀j ∈ Wi (recall ci(yj) = cij(yj),

∀i and ∀j ∈Wi). Also, without loss of generality, we assume α+β = 1 as it is always possible

to redefine the time scale. Then the optimality equation takes the following form:

v∗(x) = h(x) + λTAv
∗(x) +

∑
1≤i≤m

µiTB,iv
∗(x) + µm+1TCv

∗(x) (4.3.1′)

where the operator TA stays the same as

TAv(x) = min
0≤j≤n
s.t. x≥ej

v (x− ej) , (4.3.2′)
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but the operators TB,i and TC are modified as

TB,iv(x) = min

v (x) , min
j∈Wi

s.t. x≥ej

∑
j′

v
(
x− ej + ej′

)
fj→j′ + ci

 (4.3.3′)

and

TCv(x) = min

v (x) , min
j∈Wm+1
s.t. x≥ej

[v (x− ej)− ρj ]

 . (4.3.4′)

Although we have considerably simplified the optimal cost function, its analysis is still dif-

ficult; the system manager must handle concurrent resource allocation decisions across stages

in the face of uncertainty around not only the ultimate outcome of each project but also the

project completion times. Only for two special cases of our model are we able to derive struc-

tural results for the optimal cost function: (i) when there is a single informative experiment

and projects are not terminated (Section 4.4) or (ii) when there are multiple uninformative

experiments (Section 4.5).

4.4 Informative Single-Experiment Model

In this section, we assume that the NPD process involves (i) an experimental stage that

generates one out of the K signals about the true nature of each project, and (ii) a product

launch stage:

Assumption 4.4.1. m = 1.

Notice that, under Assumption 4.4.1, n = K. We also assume that projects are never

terminated:

Assumption 4.4.2. λ = 0.

Under Assumptions 4.4.1 and 4.4.2, the optimality equation can be written as follows:

v∗(x) = h(x) + µ1TBv
∗(x) + µ2TCv

∗(x), (4.4.1)
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where the operators TB and TC are defined as

TBv(x) = min

v (x) ,
∑

1≤j≤n
v (x + ej) f0→j + c

 (4.4.2)

and

TCv(x) = min

v(x), min
1≤j≤n
s.t. x≥ej

[v(x− ej)− ρj ]

 (4.4.3)

where c is the experimentation cost. The operator TB specifies when to utilize resources of

stage 1 for a project in category 0, i.e., when to test a new product idea. The operator TC

specifies when to place a new product on the market, and which project to select when a new

product is to be introduced.

We proceed to characterize the structure of the optimal cost function (4.4.1). We first

introduce additional auxiliary indices d, l, q, and w for the category; the alphabetical order

d→ l→ q → w corresponds to a decrease in the expected reward. We then define V̂ as the set

of real-valued functions g on Nn0 that satisfy the following properties (we give interpretations

after Lemma 2):

(P.1) g(x + ew) ≥ g(x + eq), ∀x, ∀q, w ∈ {1, 2, .., n} where q < w,

(P.2) g(x + ew) ≥ g(x)− ρw, ∀x, ∀w ∈ {1, 2, .., n},

(P.3) g(x + eq)− ρw ≥ g(x + ew)− ρq, ∀x, ∀q, w ∈ {1, 2, .., n} where q < w,

(P.4) g(x + eq + el)− g(x + eq + ed) ≥ g(x + el)− g(x + ed), ∀x, ∀d, l, q ∈ {1, 2, .., n} where

d ≤ l ≤ q,

(P.5) g(x+eq+el)−g(x+eq+ed) ≥ g(x+ew+el)−g(x+ew+ed), ∀x, ∀d, l, q, w ∈ {1, 2, .., n}

where d ≤ l ≤ q ≤ w,

(P.6)
∑

1≤j≤l g(x + eq + el)f0→j+
∑

l<j≤n g(x + eq + ej)f0→j− g(x + eq)

≥
∑

1≤j≤l g(x + el)f0→j+
∑

l<j≤n g(x + ej)f0→j− g(x), ∀x, ∀l, q ∈ {1, 2, .., n} where

l ≤ q, and
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(P.7)
∑

1≤j≤l g(x + eq + el)f0→j+
∑

l<j≤n g(x + eq + ej)f0→j− g(x + eq)

≥
∑

1≤j≤l g(x + ew + el)f0→j+
∑

l<j≤n g(x + ew + ej)f0→j− g(x + ew), ∀x, ∀l, q, w ∈

{1, 2, .., n} where l ≤ q < w.

The lemma below shows that the optimal cost function satisfies Properties 1–7:

Lemma 4.4.1. Under Assumptions 4.4.1 and 4.4.2, if v ∈ V̂ , then Tv ∈ V̂ , where Tv(x) =

h(x) + µ1TBv(x) + µ2TCv(x). Furthermore, the optimal cost function v∗ is an element of V̂ .

Proof. See Appendix C.2.

We next consider the implications of Properties 1–7: Property 1 states that the optimal cost

function weakly decreases as the number of projects with higher expected reward increases,

keeping the total number of projects fixed. Property 2 shows that placing a new product on

the market is beneficial no matter what category is chosen, as long as it is feasible (recall

that ρj ≥ 0, ∀j). However, Property 3 says that choosing the category with higher expected

reward is more desirable for product launch (in a non-strict sense). Property 4 states that

the incentive to trade a project in category l with one having higher expected reward weakly

increases as the number of projects with expected rewards lower than ρl increases. Property

5 states that the incentive to trade a project in category l with one having higher expected

reward is greater in a non-strict sense when a project with expected reward less than ρl is

traded with one having higher expected reward (but lower than ρl). Property 6 implies that,

when l = 1, the desirability of testing a new product idea weakly increases as the number of

projects in any category decreases. Property 7 implies that, when l = 1, the desirability of

testing a new product idea weakly increases as the number of projects with lower expected

reward increases, keeping the total number of projects fixed.

The intuition behind Properties 1–3 is straightforward: It is more desirable to have a

project with higher expected reward, which will reasonably take priority over those with lower

expected rewards in the allocation of resources for product launch. More critically, Properties

4–7 enable us to uncover the role congestion plays in promotion decisions for new product

ideas:

• As the number of projects in category l increases, the system becomes more congested

from the perspective of a new product idea: If a new product idea is tested at the
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experimental stage, it might become a project with expected reward less than ρl, taking

a lower priority than all projects in category l in the queue for the second stage. Such

a project waits longer for access to resources of the second stage when there are more

projects in category l. Consequently, since any delay in the project completion time is

costly, it is less desirable to test a new product idea (Property 6).

• Likewise, when a project is replaced with one having higher expected reward, the system

again becomes more congested from the same perspective: A new product idea, once

tested, is more likely to see a greater number of high priority projects in the queue for

the second stage if a low value project is replaced with a high value project. Thus it is

less desirable to test a new product idea (Property 7).

• As the system becomes more congested due to an increase in the number of low value

projects, the system anticipates a lower throughput rate at the experimental stage in

the future (due to Property 6), and eventually a small number of high value projects.

To hedge against future scarcity of high value projects, the system tends to trade a

project in category l with one having higher expected reward. But such a trade becomes

more desirable as the number of projects with expected rewards less than ρl increases

(Property 4).

• Likewise, as the system becomes more congested due to a rise in the expected reward of

a low value project, the system tends to trade a project in category l with one having

higher expected reward in anticipation of a small number of high value projects (due

to Property 7). But it becomes more desirable to trade a project in category l with

one having higher expected reward when a project with expected reward less than ρl is

traded with one having higher expected reward (but less than ρl) (Property 5).

Using Lemma 4.4.1, below we show the optimality of a state-dependent noncongestive-

promotion (SDNCP) policy under Assumptions 4.4.1 and 4.4.2:

Theorem 4.4.1. Under Assumptions 4.4.1 and 4.4.2, the optimal portfolio strategy is a state-

dependent noncongestive-promotion policy with state-dependent promote-up-to levels S∗j (x−j):

It is optimal to allocate resources of the experimental stage to a new product idea if and only
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if xj < S∗j (x−j), ∀j, where x−j = (x1, .., xj−1, xj+1, .., xn) is an n − 1 dimensional vector of

the numbers of projects in categories k 6= j. The optimal policy has the following additional

properties:

i. The optimal promote-up-to level S∗j (x−j) weakly decreases as the number of projects in

category k 6= j increases, ∀j.

ii. The optimal promote-up-to level S∗j (x−j) weakly decreases as the expected reward of a

project in category k 6= j increases, ∀j.

iii. It is always optimal to launch a new product if there are projects available for the product

launch stage.

iv. It is always optimal to allocate resources of the product launch stage to a project with

highest expected reward.

v. It is never optimal to interrupt any experiment at the initial stage.

Proof. See Appendix C.2.

Using Property 6, Theorem 4.4.1 establishes the optimality of a new type of policy, i.e., SD-

NCP. Such a policy protects the system against congestion, restricting the number of projects

that can be held in each category. Points (i) and (ii) prove that the promote-up-to levels

weakly decrease as the system becomes more congested with an increase in the number of

projects in any category (due to Property 6), or with an increase in the expected reward of

any project in the system (due to Property 7). Points (iii) and (iv) reveal that it is always

optimal to launch a new product if it is feasible (due to Property 2), and it is optimal to choose

a project with highest expected reward for product launch (due to Property 3). Lastly, point

(v) states it is never optimal to interrupt an experiment once it has been initiated.

To our knowledge, we are the first to characterize the optimal resource allocation and

project selection for NPD when projects must pass through an informative experimental stage

and a product launch stage which require different resources. Also, we significantly extend

the existing literature by showing that optimal promotion decisions depend on the number of

projects and the breakdown of projects into categories.
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Previously established optimality results can be shown to hold in two variations of our

problem: (i) Suppose that experimental and product launch stages share the same resources,

implying that the system manager makes only one resource allocation decision at a time.

Then it can be shown that an index rule is optimal (see Chapter 1 of Bertsekas 2007 for an

explanation of the index rule). (ii) Suppose that the experimental stage is uninformative.

Then the problem bears a close resemblance to the single-item inventory model introduced

by Ha (1997). A non-congestive promotion policy remains optimal in this special case of our

model; it is optimal to promote a new product idea if and only if the number of projects in

the system is less than a fixed promote-up-to level. This concurs with the base-stock policy

that is optimal in Ha (1997); it is optimal to order an item if and only if the inventory level

is less than a fixed base-stock level. Our model in the next section extends the model in Ha

(1997) by allowing for multiple uninformative stages.

4.5 Uninformative Multi-Experiment Model

In this section, we no longer impose Assumptions 4.4.1 and 4.4.2. But we assume that exper-

imental stages do not provide any information about the true nature of any NPD project. In

this case it is useful to view the stages as sequential steps in the development of a single type

of product or service, the value of which is well understood.

Assumption 4.5.1. K = 1.

Under Assumption 4.5.1, n = m and the optimality equation can be written as follows:

v∗(x) = h(x) + λTAv
∗(x) +

∑
1≤i≤m

µiTB,iv
∗(x) + µm+1TCv

∗(x), (4.5.1)

where the operators TA, TB,i, and TC are defined as

TAv(x) = min
0≤i≤m
s.t. x≥ei

v(x− ei), (4.5.2)
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TB,iv(x) =

 min{v(x), v(x− ei−1 + ei) + ci} if x ≥ ei−1,

v(x) otherwise,
(4.5.3)

and

TCv(x) =

 min{v(x), v(x− em)− ρ} if x ≥ em,

v(x) otherwise,
(4.5.4)

where ci is the experimentation cost at stage i and ρ ≥ 0 is the expected reward for a new

product. The operator TA specifies when to terminate a project, and which project to select

when a project is to be terminated. The operator TB,i specifies when to utilize resources of

stage i for a project at stage i− 1, i.e., when to promote a project from stage i− 1 to stage i.

The operator TC specifies when to place a new product on the market.

We proceed to characterize the structure of the optimal cost function (4.5.1). We will use

three of the auxiliary indices introduced in Section 4.4: l, q, and w are the indices for the

stage, and the alphabetical order l → q → w corresponds to a progress from earlier to later

stages. Also, define em+1 as a zero vector of dimension n. We then define Ṽ as the set of

real-valued functions g on Nn0 that satisfy the following properties:

(P.8) g(x + eq) ≥ g(x + ew), ∀x, ∀q, w ∈ {1, 2, ..,m} where q < w,

(P.9) g(x + em) ≥ g(x)− ρ, ∀x,

(P.10) g(x + eq + ew−1) − g(x + eq−1 + ew−1) ≥ g(x + eq + ew) − g(x + eq−1 + ew), ∀x,

∀q, w ∈ {1, 2, ..,m+ 1} where q 6= w,

(P.11) g(x + el + eq) − g(x + el−1 + eq) ≥ g(x + el + ew) − g(x + el−1 + ew), ∀x, ∀l, q, w ∈

{1, 2, ..,m+ 1} where l ≤ q < w ≤ m+ 1,

(P.12) g(x + ew + el)− g(x + ew−1 + el) ≥ g(x + ew + eq)− g(x + ew−1 + eq), ∀x, ∀l, q, w ∈

{0, 1, ..,m+ 1} where 0 ≤ l < q ≤ w − 1, and

(P.13) g(x + 2el)− g(x + el−1 + el) ≥ g(x + el + el−1)− g(x + 2el−1), ∀x, ∀l ∈ {1, 2, ..,m}.

The lemma below shows that the optimal cost function satisfies Properties 8–13:
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Lemma 4.5.1. Under Assumption 4.5.1, if v ∈ Ṽ , then Tv ∈ Ṽ , where Tv(x) = h(x) +

λTAv(x) +
∑

1≤i≤m µiTB,iv(x) + µm+1TCv(x). Furthermore, the optimal cost function v∗ is

an element of Ṽ .

Proof. See Appendix C.3.

We now consider the implications of Properties 8–13: Property 8 says that the optimal cost

function weakly decreases as projects move from one stage to the next stage. Note that the

optimal cost function may increase as projects leave the system from the last stage. However,

even if this is the case, Property 9 shows that introducing a new product is always beneficial

as long as it is feasible (recall that ρ ≥ 0). Property 10 states that the incentive to promote a

project from one stage to the next stage weakly increases if any project at another stage gets

promoted. Property 11 implies that promoting a project from stage l − 1 to stage l is more

desirable in a non-strict sense when a project at stage q ≥ l is traded with another project

at stage w > q. Furthermore, Property 12 implies that promoting a project from stage w − 1

to stage w is more desirable in a non-strict sense when a project at stage l < q is traded

with another project at stage q ≤ w − 1. Conversely, Property 13 shows that the incentive to

promote a project from one stage to the next stage weakly decreases if another project at the

same stage gets promoted.

The intuition behind Properties 8 and 9 is as follows: Since delays in project completion

times are costly, it is more desirable to have projects that are closer to the product launch

stage, as well as to launch a new product immediately if it is feasible. More importantly,

Properties 10–13 enable us to uncover the role congestion plays in promotion decisions at each

stage. From the perspective of a project at stage l − 1, a project at stage q ≥ l causes more

congestion than a project at stage w > q: A project at stage l− 1, if promoted along the NPD

process, is more likely to catch the project at stage q than at stage w. Hence, if a project at

stage w is replaced with a project at stage q, it becomes more likely that projects accumulate

at the same stage and create a bottleneck, leading to a lower rate of return for projects. Thus

it becomes less desirable to promote the project at stage l−1 (Property 11). Conversely, there

is a greater benefit in promoting the project at stage w if a project at stage l < q is replaced

with a project at stage q < w (Property 12). The bottleneck of the NPD process is more
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likely to occur at stage w when projects at stage l < w get closer to stage w; promoting a

project at stage w might help us avoid such an occurrence of the bottleneck. To sum up, it

becomes more desirable to promote projects as projects at later or earlier stages get promoted.

However, it becomes less desirable to promote a project as another project at the same stage

gets promoted (Property 13); the risk of creating a bottleneck at a further stage is reduced by

not promoting the project.

Using Lemma 4.5.1, below we show the optimality of an SDNCP policy under Assumption

4.5.1:

Theorem 4.5.1. Under Assumption 4.5.1, the optimal portfolio strategy at each stage i is

a state-dependent noncongestive-promotion policy with state-dependent promote-up-to levels

S∗i (x−i): It is optimal to promote a project to stage i if and only if xi < S∗i (x−i), where

x−i = (x1, .., xi−1, xi+1, .., xm) is an m − 1 dimensional vector of the numbers of projects at

stages k 6= i. The optimal policy has the following additional properties:

i. The optimal promote-up-to level S∗i (x−i) weakly increases as the number of projects at

stage j > i decreases.

ii. The optimal promote-up-to level S∗i (x−i) weakly increases as the number of projects at

stage j < i increases.

iii. The optimal promote-up-to level S∗i (x−i) weakly increases as projects at stage j 6= i− 1

move along the process.

iv. It is always optimal to launch a new product if there are projects available for the product

launch stage.

v. It is never optimal to interrupt any experiment.

vi. It is never optimal to terminate any project.

Proof. See Appendix C.3.

Theorem 4.5.1, using Property 11, again establishes the optimality of an SDNCP policy;

each stage of the NPD process is protected against congestion through promote-up-to levels.
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Points (i) and (ii) prove that the promote-up-to level at a given stage weakly increases as a

later stage becomes less congested with a decline in the number of projects at that stage (due

to Property 11), or as an earlier stage becomes more congested with an increase in the number

of projects at that stage (due to Property 12). Points (iii) shows that the promote-up-to level

at stage i weakly increases as projects at stage j 6= i− 1 get promoted to the next stage (due

to Property 10). Point (iv) states that it is always optimal to launch a new product if it is

feasible (due to Property 9). Point (v) states it is never optimal to interrupt an experiment

once it has been initiated. Lastly, point (vi) says that it is never optimal to terminate any

project during the NPD process.

As far as we aware, Theorem 4.5.1 is the first attempt to characterize the optimal resource

allocation in an NPD process with stage-dependent resources. Furthermore, we are the first to

reveal the impacts of both upstream and downstream projects on optimal promotion decisions.

Our model in this section shares similarities with the inventory model proposed by Benjaafar

et al. (2011), although neither subsumes the other. Specifically, Benjaafar et al. (2011)

consider an assembly system with multiple stages, each of which produces a different item

in batches of variable sizes. They show that the optimal production policy for each item is

a state-dependent base-stock policy with the base-stock level nonincreasing in the inventory

level of items that are downstream and nondecreasing in the inventory level of items that

are upstream. These features of the optimal policy in Benjaafar et al. (2011) match our

findings in points (i) and (ii) of Theorem 4.5.1; the optimal promotion policy at each stage is a

state-dependent non-congestive promotion policy with the promote-up-to level nonincreasing

in the number of projects that are downstream and nondecreasing in the number of projects

that are upstream. Our model in this section differs from Benjaafar et al. (2011) in several

directions: (i) Our projects may be terminated (although it turns out that it is never optimal

to terminate any project), (ii) our resources may be partially utilized and our experimentation

times are dependent on resource usage rates (although there is no loss of generality in assuming

that resources are either fully utilized or not utilized at all, cf. Lemma 4.3.1), and (iii) our

experiments incur variable costs (which are dependent on resource usage rates).
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4.6 Numerical Study

In this section, under the average cost criterion, we first formulate a linear program to find a

global optimal solution for our general NPD model from Section 4.3. Then, based on our ana-

lytical findings in Sections 4.4 and 4.5, we develop several heuristics for resource allocation, and

corresponding mixed integer programming formulations utilized in finding the optimal average

cost within each heuristic class. Lastly, we numerically compare the globally optimal policy

to each of our heuristics, including a naive resource allocation policy that always promotes

projects if it is feasible.

4.6.1 Formulation of the Linear Program

Modifying our performance criterion to the average cost rate over an infinite planning horizon,

we formulate a linear program to find a global optimal solution to the model we introduced in

Section 4.3. First, denote by A(x) the set of admissible actions at state x. Also, define νx′|x,a

as the rate at which the system moves from state x to state x′ if action a = (y0, .., yn, z) ∈ A(x)

is chosen, and πx,a as the limiting probability that the system is in state x and action a ∈ A(x)

is chosen. Then, the globally optimal average cost Z∗ can be found by solving the following

linear program:

minimize
∑

x∈Nn0

∑
a∈A(x)

∑
1≤i≤m

∑
j∈Wi

µiciyjπx,a −
∑

x∈Nn0

∑
a∈A(x)

∑
j∈Wm+1

µm+1ρjyjπx,a

+
∑

x∈Nn0

∑
a∈A(x)

h(x)πx,a

subject to
∑

a∈A(x′)

πx′,a

∑
x∈Nn0

νx|x′,a −
∑

x∈Nn0

∑
a∈A(x)

νx′|x,aπx,a = 0, ∀x′ ∈ Nn0 , (4.6.1)

∑
x∈Nn0

∑
a∈A(x)

πx,a = 1, (4.6.2)

πx,a ≥ 0, ∀x ∈ Nn0 , ∀a ∈ A(x). (4.6.3)
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The first term of the objective function corresponds to time-average experimentation costs,

the second term corresponds to time-average rewards of completed projects, and the last term

corresponds to time-average project holding costs. Constraints (4.6.1) and (4.6.2) are the

balance equations that yield the limiting probability values.

4.6.2 Formulation of Heuristic Policies

We next describe several heuristic policies for our general model, and develop Mixed Integer

Programming (MIP) formulations to find the optimal average cost within each heuristic class.

Recall that our model in Section 4.4 does not allow for project termination; and our model

in Section 4.5 may terminate projects, but it turns out that it is never optimal to terminate

any project. Thus we do not impose any structure on termination decisions in our heuristics,

allowing for project termination (as in the globally optimal policy).

State-Dependent Non-Congestive Promotion (SDNCP): We first define x−j =

(x1, .., xj−1, xj+1, .., xn) as an n−1 dimensional vector of the numbers of projects in categories

k 6= j. With this we describe an SDNCP policy as follows: (i) Resource allocation at each

experimental stage follows a non-congestive promotion policy with state-dependent promote-

up-to levels such that a project in category j ∈ Wi is promoted to stage i if and only if

xj′ < Sj′(x−j′), ∀j′ ∈ Wi+1 where fj→j′ > 0, and xk = 0, ∀k ∈ Wi where ρk > ρj . (ii) A

new product is always placed on the market if it is feasible; a project in category j ∈Wm+1 is

selected for product launch if and only if xk = 0, ∀k ∈Wm+1 where ρk > ρj .

The SDNCP policy has the following additional properties: (a) The promote-up-to level

at one category is nondecreasing in the number of projects in any other category at an earlier

stage; (b) the promote-up-to level at one category is nondecreasing in the expected reward of

a project in any other category at an earlier stage; (c) the promote-up-to level at one category

is nonincreasing in the number of projects in any other category at the same stage or a later

stage; and (d) the promote-up-to level at one category is nonincreasing in the expected reward

of a project in any other category at the same stage or a later stage.

We proceed to the MIP formulation of this heuristic class. First, for b ∈ N0, define the set

Sj(x−j , b) = {(x′,a) : x′ ∈ Nn0 , a ∈ A(x′), x′−j = x−j , and
∑

x′,a πx′,a = 0 ⇔ Sj(x−j) = b}.

The elements of the set Sj(x−j , b) are state-action pairs (x,a) such that the limiting probability
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that the system is in state x and action a is chosen should be zero when the promote-up-to

level at category j equals b (given x−j). Also, define z
Sj(x−j)
b as a binary variable as follows:

z
Sj(x−j)
b =

 1 if Sj(x−j) = b,

0 otherwise.

We are now ready to describe the constraints of the MIP problem. First, the optimal

solution of the MIP problem should satisfy constraints (4.6.1)-(4.6.3) of the LP formulation of

the optimal policy. Also, the optimal solution should select exactly one promote-up-to level

at each category, given the numbers of projects in all other categories. To this end, we impose

the following constraint:

∑
b∈N0

z
Sj(x−j)
b = 1, ∀j and ∀x−j . (4.6.4)

The constraint below ensures that (a) the promote-up-to level at one category is nondecreasing

in the number of projects in any other category at an earlier stage:

z
Sj(x−j)
b ≤

∑
b≤b′

z
Sj(x−j+ek)
b′ , ∀j ∈Wi, ∀k ∈Wi′ s.t. 2 ≤ i′ < i, ∀x−j , and ∀b ∈ N0. (4.6.5)

The constraint below ensures that (b) the promote-up-to level at one category is nondecreasing

in the expected reward of a project in any other category at an earlier stage:

z
Sj(x−j)
b ≤

∑
b≤b′

z
Sj(x−j−ek+ek′ )
b′ , ∀j ∈Wi, ∀k, k′ ∈Wi′ s.t. 2 ≤ i′ < i and ρk′ > ρk, ∀x−j ,∀b.

(4.6.6)

The constraint below ensures that (c) the promote-up-to level at one category is nonincreasing

in the number of projects in any other category at the same stage or a later stage:

z
Sj(x−j)
b ≤

∑
b′≤b

z
Sj(x−j+ek)
b′ , ∀j ∈Wi, ∀k ∈Wi′ \ {j} s.t. i ≤ i′, ∀x−j , and ∀b ∈ N0. (4.6.7)

The constraint below ensures that (d) the promote-up-to level at one category is nonincreasing
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in the expected reward of a project in any other category at the same stage or a later stage:

z
Sj(x−j)
b ≤

∑
b′≤b

z
Sj(x−j−ek+ek′ )
b′ , ∀j ∈Wi, ∀k, k′ ∈Wi′ \ {j} s.t. i ≤ i′ and ρk′ > ρk, ∀x−j , ∀b.

(4.6.8)

The constraint below links our binary variables to the appropriate limiting probability vari-

ables:

∑
(x,a)∈Sj(x−j ,b)

πx,a ≤ 1− zSj(x−j)b , ∀b, ∀j, and ∀x−j . (4.6.9)

In constraint (4.6.9), if z
Sj(x−j)
b equals one, then all limiting probability variables corresponding

to the state-action pairs in set Sj(x−j , b) are forced to equal zero. Otherwise, this constraint

becomes redundant.

We next impose the following constraint to ensure that a new product is always placed on

the market if it is feasible:

πx,a = 0, ∀(x,a) s.t.
∑

j∈Wm+1

yj = 0 and
∑

j∈Wm+1

xj > 0. (4.6.10)

Lastly, the following constraint implies that, if a project at a given stage is to be promoted, it

should be selected from the most valuable category:

πx,a = 0, ∀(x,a) where ∃i, ∃j, j′ ∈Wi s.t. xj′ ≥ yj = 1 and ρj′ > ρj . (4.6.11)

The optimal average cost of this policy ZSDNCP can be found by solving the following MIP

problem:

(SDNCP) minimize
∑

x∈Nn0

∑
a∈A(x)

∑
1≤i≤m

∑
j∈Wi

µiciyjπx,a −
∑

x∈Nn0

∑
a∈A(x)

∑
j∈Wm+1

µm+1ρjyjπx,a

+
∑

x∈Nn0

∑
a∈A(x)

h(x)πx,a

subject to (4.6.1)− (4.6.11).
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Fixed Non-Congestive Promotion with Promote-up-to Levels across Categories

(FNCP-C): (i) Resource allocation at each experimental stage follows a non-congestive pro-

motion policy with fixed promote-up-to levels such that a project in category j ∈ Wi is

promoted to stage i if and only if xj′ < Sj′ , ∀j′ ∈Wi+1, and xk = 0, ∀k ∈Wi where ρk > ρj .

(The number of projects in each category at stage i affects promotion of a project at stage

i− 1.) (ii) A new product is always placed on the market if it is feasible; a project in category

j ∈Wm+1 is selected for product launch if and only if xk = 0, ∀k ∈Wm+1 where ρk > ρj .

We proceed to the MIP formulation of this heuristic class. First, define Si as the vector of

fixed promote-up-to levels at stage i. (Notice that the number of promote-up-to levels at stage i

equals Ki.) Also, define the set Si(bi) = {(x,a) : x ∈ Nn0 , a ∈ A(x),
∑

x,a πx,a = 0⇔ Si = bi}

for bi ∈ NKi

0 . The elements of the set Si(bi) are state-action pairs (x,a) such that the limiting

probability that the system is in state x and action a is chosen should be zero when the vector

of promote-up-to levels at stage i equals bi. Lastly, define zSi
bi

as a binary variable as follows:

zSi
bi

=

 1 if Si = bi,

0 otherwise.

We now describe the constraints of the MIP problem. First, the optimal solution of the

MIP problem should satisfy constraints (4.6.1)-(4.6.3) of the LP formulation of the optimal

policy, and constraints (4.6.10) and (4.6.11) of the MIP formulation of the SDNCP policy.

Also, the optimal solution should select exactly one promote-up-to level at each category:

∑
bi∈NK

i
0

zSi
bi

= 1, ∀i. (4.6.12)

The constraint below links our binary variables to the appropriate limiting probability vari-

ables:

∑
(x,a)∈Si(bi)

πx,a ≤ 1− zSi
bi
, ∀bi, ∀i. (4.6.13)

The optimal average cost of this policy ZFNCP−C can be found by solving the following
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MIP problem:

(FNCP-C) minimize
∑

x∈Nn0

∑
a∈A(x)

∑
1≤i≤m

∑
j∈Wi

µiciyjπx,a −
∑

x∈Nn0

∑
a∈A(x)

∑
j∈Wm+1

µm+1ρjyjπx,a

+
∑

x∈Nn0

∑
a∈A(x)

h(x)πx,a

subject to (4.6.1), (4.6.2), (4.6.3), (4.6.10), (4.6.11), (4.6.12), (4.6.13).

Fixed Non-Congestive Promotion with Promote-up-to Levels across Children

(FNCP-Ch): (i) Resource allocation at each experimental stage follows a non-congestive

promotion policy with fixed promote-up-to levels such that a project in category j ∈ Wi is

promoted to stage i if and only if xj′ < Sj′ , ∀j′ ∈Wi+1 where fj→j′ > 0, and xk = 0, ∀k ∈Wi

where ρk > ρj . (ii) A new product is always placed on the market if it is feasible; a project

in category j ∈Wm+1 is selected for product launch if and only if xk = 0, ∀k ∈Wm+1 where

ρk > ρj .

Notice that in this heuristic class the numbers of projects in child categories affect pro-

motion of a parent project. Therefore, FNCP-Ch is a subclass of SDNCP; SDNCP becomes

FNCP-Ch if all promote-up-to levels are constant across system states.

We proceed to the MIP formulation of this heuristic class. First, define Sj as the vector of

fixed promote-up-to levels associated with children of category j. (Notice that the vector Sj has

a dimension of K, ∀j.) Also, define the set Sj(b) = {(x,a) : x ∈ Nn0 , a ∈ A(x),
∑

x,a πx,a =

0 ⇔ Sj = b} for b ∈ NK0 . The elements of the set Sj(b) are state-action pairs (x,a) such

that the limiting probability that the system is in state x and action a is chosen should be

zero when the vector of promote-up-to levels associated with children of category j equals b.

Lastly, define z
Sj
b as a binary variable as follows:

z
Sj
b =

 1 if Sj = b,

0 otherwise.

We next describe the constraints of the MIP problem. Again, the optimal solution of the

MIP problem should satisfy constraints (4.6.1)-(4.6.3) of the LP formulation of the optimal
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policy, and constraints (4.6.10) and (4.6.11) of the MIP formulation of the SDNCP policy.

Also, the optimal solution should select exactly one promote-up-to level at each category:

∑
b∈NK0

z
Sj
b = 1, ∀j. (4.6.14)

The constraint below links our binary variables to the appropriate limiting probability vari-

ables:

∑
(x,a)∈Sj(b)

πx,a ≤ 1− zSj
b , ∀b, ∀j. (4.6.15)

The optimal average cost of this policy ZFNCP−Ch can be found by solving the following

MIP problem:

(FNCP-Ch) minimize
∑

x∈Nn0

∑
a∈A(x)

∑
1≤i≤m

∑
j∈Wi

µiciyjπx,a −
∑

x∈Nn0

∑
a∈A(x)

∑
j∈Wm+1

µm+1ρjyjπx,a

+
∑

x∈Nn0

∑
a∈A(x)

h(x)πx,a

subject to (4.6.1), (4.6.2), (4.6.3), (4.6.10), (4.6.11), (4.6.14), (4.6.15).

Fixed Non-Congestive Promotion with Promote-up-to Levels across Stages

(FNCP-S): (i) Resource allocation at each experimental stage follows a non-congestive pro-

motion policy with fixed promote-up-to levels such that a project in category j ∈ Wi is

promoted to stage i if and only if
∑

j′∈Wi+1
xj′ < Si, and xk = 0, ∀k ∈ Wi where ρk > ρj .

(Total number of projects at stage i affects promotion of a project at stage i− 1.) (ii) A new

product is always placed on the market if it is feasible; a project in category j ∈ Wm+1 is

selected for product launch if and only if xk = 0, ∀k ∈Wm+1 where ρk > ρj .

We proceed to the MIP formulation of this heuristic class. First, define the set Si(b) =

{(x,a) : x ∈ Nn0 , a ∈ A(x),
∑

x,a πx,a = 0⇔ Si = b} for b ∈ N0. The elements of the set Si(b)

are state-action pairs (x,a) such that the limiting probability that the system is in state x

and action a is chosen should be zero when the promote-up-to level at stage i equals b. Lastly,
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define zSib as a binary variable as follows:

zSib =

 1 if Si = b,

0 otherwise.

Once again, the optimal solution of the MIP problem should satisfy constraints (4.6.1)-

(4.6.3) of the LP formulation of the optimal policy, and constraints (4.6.10) and (4.6.11) of

the MIP formulation of the SDNCP policy. Also, the optimal solution should select exactly

one promote-up-to level at each stage:

∑
b∈N0

zSib = 1, ∀i. (4.6.16)

The constraint below links our binary variables to the appropriate limiting probability vari-

ables:

∑
(x,a)∈Si(b)

πx,a ≤ 1− zSib , ∀b, ∀i. (4.6.17)

The optimal average cost of this policy ZFNCP−S can be found by solving the following

MIP problem:

(FNCP-S) minimize
∑

x∈Nn0

∑
a∈A(x)

∑
1≤i≤m

∑
j∈Wi

µiciyjπx,a −
∑

x∈Nn0

∑
a∈A(x)

∑
j∈Wm+1

µm+1ρjyjπx,a

+
∑

x∈Nn0

∑
a∈A(x)

h(x)πx,a

subject to (4.6.1), (4.6.2), (4.6.3), (4.6.10), (4.6.11), (4.6.16), (4.6.17).

Naive Promotion (NP): This heuristic always promotes projects if it is feasible. Thus

we enforce the following constraint:

πx,a = 0, ∀(x,a) where ∃i s.t.
∑
j∈Wi

yj = 0 and
∑
j∈Wi

xj > 0. (4.6.18)
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The optimal average cost of this policy ZNP can be found by solving the following linear

program:

(NP) minimize
∑

x∈Nn0

∑
a∈A(x)

∑
1≤i≤m

∑
j∈Wi

µiciyjπx,a −
∑

x∈Nn0

∑
a∈A(x)

∑
j∈Wm+1

µm+1ρjyjπx,a

+
∑

x∈Nn0

∑
a∈A(x)

h(x)πx,a

subject to (4.6.1), (4.6.2), (4.6.3), (4.6.10), (4.6.11), (4.6.18).

4.6.3 Numerical Experiments

We proceed to numerically compare the globally optimal policy to our heuristic policies, es-

pecially investigating how system parameters affect the cost advantage of SDNCP over other

heuristics. For ease of exposition, we confine our analysis to NPD processes that involve (i) two

experimental stages each of which generates one out of two signals, and (ii) a product launch

stage (i.e., m = 3 and K = 2). We construct our numerical instances by varying values of the

related parameters (i.e., h, c1, c2, µ1, µ2, µ3, φ
(1), and φ(2)). We assume in all numerical in-

stances that holding cost rates are linear (i.e., h(x) = h
∑

j xj), initial beliefs for a new product

idea are evenly distributed among two possible states of the true nature (i.e., p0,1 = p0,2 = 0.5),

and informativeness probabilities at each experimental stage are independent from the true

nature (i.e., φ
(1)
1,1 = φ

(1)
2,2 = φ(1) and φ

(2)
1,1 = φ

(2)
2,2 = φ(2)).

For each numerical instance, we solve the LP problem to compute the globally optimal

average cost, and the MIP problems to compute the optimal average cost within each heuristic

class. We compare the heuristic policies in terms of their percentage differences from optimal

cost Z∗, calculated as 100× ZH−Z∗
Z∗ where H ∈ {SDNCP, FNCP-C, FNCP-Ch, FNCP-S, NP}.

We coded the LP and MIP formulations in the GAMS programming language, incorporating

CPLEX 10.1 optimization subroutines, and used a dual processor WinNT server, with Intel

Core i7 2.67 GHz processor and 8 GB of RAM. We restricted the computation time of any

instance to be no more than two hours.

We first vary experimentation and product launch rates, all else being equal; see Table

4.1. Remarkably, SDNCP yields the globally optimal cost in all instances we could solve
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Table 4.1 Numerical results for various rates of experimentation and product launch.

Percentage difference from optimal cost

µ1 µ2 µ3 Optimal Cost SDNCP FNCP-C FNCP-Ch FNCP-S NP

0.5 0.5 0.5 -1.486 0.000 0.417 0.417 0.572 25.485

0.5 0.5 1.0 -2.196 0.000† 0.000 0.000 0.023 8.488
0.5 0.5 1.5 -2.425 * 0.000 0.008 0.054 6.449
0.5 1.0 0.5 -2.150 0.000 2.493 2.446 2.498 5.246

0.5 1.0 1.0 -3.327 0.000† 0.000 0.000 0.000 0.021

0.5 1.0 1.5 -3.723 0.000† 0.000 0.000 0.000 0.000
0.5 1.5 0.5 -2.366 0.000 2.265 2.223 2.278 3.128

0.5 1.5 1.0 -3.712 0.000† 0.000 0.000 0.000 0.000

0.5 1.5 1.5 -4.171 0.000† 0.000 0.000 0.000 0.000
1.0 0.5 0.5 -1.996 * 2.400 2.385 2.655 91.970
1.0 0.5 1.0 -3.092 0.000 0.058 0.058 0.071 42.196

1.0 0.5 1.5 -3.480 0.000† 0.000 0.000 0.049 38.121
1.0 1.0 0.5 -2.936 * 4.427 4.339 4.233 33.686
1.0 1.0 1.0 -5.397 * 0.020 0.020 0.026 1.219

1.0 1.0 1.5 -6.329 0.000† 0.000 0.000 0.000 0.269
1.0 1.5 0.5 -3.318 0.000 5.741 5.566 5.081 24.507
1.0 1.5 1.0 -6.269 * 0.030 0.030 0.030 0.078

1.0 1.5 1.5 -7.449 0.000† 0.000 0.000 0.000 0.000
1.5 0.5 0.5 -2.233 * 6.687 6.642 6.794 142.088
1.5 0.5 1.0 -3.467 * 0.061 0.063 0.337 72.667

1.5 0.5 1.5 -3.920 0.000† 0.000 0.000 0.051 65.740
1.5 1.0 0.5 -3.313 0.000 8.204 8.032 7.386 64.889
1.5 1.0 1.0 -6.468 * 0.077 0.077 0.173 5.753
1.5 1.0 1.5 -7.898 * 0.003 0.004 0.020 2.621
1.5 1.5 0.5 -3.753 0.000 9.721 9.417 8.698 51.362
1.5 1.5 1.0 -7.727 * 0.362 0.360 0.366 1.185
1.5 1.5 1.5 -9.859 * 0.003 0.003 0.006 0.048

Average 0.000 1.591 1.559 1.533 25.452

Notes. h = 2, c1 = c2 = 4, r1 = 40, r2 = 0, λ = 100, φ(1) = φ(2) = 0.75, and p0,1 = p0,2 = 0.5. ∗The MIP solver

could not solve the corresponding instance within two hours. †We did not solve the corresponding instance for

SDNCP; FNCP-Ch, which is a special class of SDNCP, yields the globally optimal cost, thus so does SDNCP.

without exceeding the time limit. We also observe from Table 4.1 that fixed non-congestive

promotion policies (i.e., FNCP-C, FNCP-Ch, and FNCP-S) show similar performances; the

average distances from optimal cost are 1.59%, 1.56%, and 1.53%, respectively. For these fixed

non-congestive promotion policies, the largest percentage gaps occur when the experimentation

rate at stage 1 is equal to 1.5 and the product launch rate is equal to 0.5. Our explanation is

that, if the NPD process slows down at further stages, it is more crucial to protect the system

against congestion in a sophisticated manner, which can be achieved by SDNCP but not the

other heuristics. Therefore, the optimality gaps are higher under (monotonically) decreasing

rates of experimentation and product launch.
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Table 4.2 Numerical results for various rates of experimentation and product launch.

Computation times (in seconds)

µ1 µ2 µ3 Opt. Soln. SDNCP FNCP-C FNCP-Ch FNCP-S NP

0.5 0.5 0.5 0.24 7200.00 495.93 10.61 2.16 0.18
0.5 0.5 1.0 0.21 * 246.42 3.78 1.21 0.18
0.5 0.5 1.5 0.47 7200.00 286.50 5.79 1.10 0.15
0.5 1.0 0.5 0.22 98.22 451.77 6.81 2.88 0.15
0.5 1.0 1.0 0.25 * 216.31 6.71 2.35 0.17
0.5 1.0 1.5 0.46 * 199.80 3.16 2.37 0.19
0.5 1.5 0.5 0.27 68.86 681.22 14.44 2.65 0.18
0.5 1.5 1.0 0.29 * 433.61 7.72 1.42 0.16
0.5 1.5 1.5 0.43 * 260.83 2.54 1.14 0.22
1.0 0.5 0.5 0.16 7200.00 379.08 8.17 2.09 0.17
1.0 0.5 1.0 0.30 692.25 293.05 6.14 1.30 0.22
1.0 0.5 1.5 0.38 * 164.30 3.51 1.24 0.20
1.0 1.0 0.5 0.26 7200.00 717.47 12.18 2.26 0.19
1.0 1.0 1.0 0.29 7200.00 267.96 6.13 1.15 0.18
1.0 1.0 1.5 0.32 * 245.49 5.30 1.08 0.24
1.0 1.5 0.5 0.21 53.22 536.58 39.84 1.45 0.17
1.0 1.5 1.0 0.24 7200.00 273.39 7.34 2.50 0.21
1.0 1.5 1.5 0.32 * 363.88 4.72 2.02 0.19
1.5 0.5 0.5 0.18 7200.00 424.90 7.45 2.01 0.25
1.5 0.5 1.0 0.24 7200.00 277.02 4.33 1.52 0.25
1.5 0.5 1.5 0.25 * 201.47 3.81 1.74 0.24
1.5 1.0 0.5 0.20 4235.38 743.27 10.29 2.62 0.21
1.5 1.0 1.0 0.24 7200.00 282.34 7.12 1.37 0.24
1.5 1.0 1.5 0.29 7200.00 240.30 4.28 1.33 0.23
1.5 1.5 0.5 0.19 4426.84 742.87 9.24 2.70 0.21
1.5 1.5 1.0 0.25 7200.00 473.53 13.04 2.19 0.27
1.5 1.5 1.5 0.33 7200.00 251.32 6.10 1.73 0.24

Average 0.27 5331.93 375.95 8.17 1.84 0.20

Notes. h = 2, c1 = c2 = 4, r1 = 40, r2 = 0, λ = 100, φ(1) = φ(2) = 0.75, and p0,1 = p0,2 = 0.5. Single star (*)

indicates that we did not solve the corresponding instance for SDNCP; FNCP-Ch yields the globally optimal

cost, thus so does SDNCP. Computation times equal to 7200 seconds indicate termination of the algorithm.

Conversely, if the NPD process speeds up at later stages, it is more desirable to aggressively

promote projects; the percentage gaps are lower for NP under (monotonically) increasing rates

of experimentation and product launch. But it is important to note that NP yields the globally

optimal cost even when µ1 = 0.5, µ2 = 1.5, and µ3 = 1: New product ideas should always be

tested at the initial stage as the later stages are faster, and also upon completion of the initial

stage, projects should always be tested at the second stage as its throughput rate, which is

constrained by the initial stage, is lower than the product launch rate.

Table 4.2 lists computation times for the numerical instances introduced in Table 4.1.

We observe that computation times of FNCP-C are approximately two orders of magnitude
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Table 4.3 Numerical results for various holding and experimentation costs.

Absolute gap Percentage gap Computation times

h c1 c2 Optimal Cost SDNCP FNCP-Ch SDNCP FNCP-Ch SDNCP FNCP-Ch

1 2 2 -8.485 * 0.074 * 0.873 7200.00 13.41
1 2 4 -7.288 0.000 0.108 0.000 1.475 534.29 9.84
1 2 6 -6.240 0.000 0.233 0.000 3.735 1630.05 5.92
1 4 2 -6.311 * 0.228 * 3.606 7200.00 6.80
1 4 4 -5.429 0.000 0.282 0.000 5.198 463.55 9.50
1 4 6 -4.581 0.000 0.232 0.000 5.058 96.83 8.17
1 6 2 -4.687 0.000 0.233 0.000 4.969 81.31 10.62
1 6 4 -3.790 * 0.200 * 5.272 7200.00 12.91
1 6 6 -2.956 0.000 0.164 0.000 5.538 38.05 8.47
2 2 2 -6.292 * 0.263 * 4.180 7200.00 12.51
2 2 4 -5.299 0.008 0.169 0.160 3.191 7082.82 5.49
2 2 6 -4.473 0.000 0.215 0.000 4.798 60.28 3.68
2 4 2 -4.498 0.000 0.224 0.000 4.989 100.21 10.23
2 4 4 -3.753 0.000 0.353 0.000 9.417 4270.56 8.84
2 4 6 -3.051 0.000 0.417 0.000 13.667 56.16 8.58
2 6 2 -3.111 0.000 0.450 0.000 14.465 48.85 13.82
2 6 4 -2.362 * 0.410 * 17.355 7200.00 9.40
2 6 6 -1.671 0.000 0.344 0.000 20.596 218.55 6.32
3 2 2 -4.777 * 0.271 * 5.667 7200.00 7.32
3 2 4 -3.945 0.059 0.311 1.483 7.874 95.16 4.57
3 2 6 -3.196 0.000 0.434 0.000 13.579 43.82 5.72
3 4 2 -3.199 0.000 0.437 0.000 13.655 3483.90 12.03
3 4 4 -2.507 0.000 0.508 0.000 20.269 104.37 3.01
3 4 6 -1.992 0.000 0.626 0.000 31.429 81.05 2.30
3 6 2 -1.999 0.000 0.633 0.000 31.652 44.03 5.84
3 6 4 -1.493 0.000 0.751 0.000 50.275 32.47 3.62
3 6 6 -0.992 0.000 0.873 0.000 88.034 48.43 3.76

Average 0.003 0.350 0.078 14.475 2289.44 7.88

Notes. r1 = 40, r2 = 0, µ1 = µ2 = 1.5, µ3 = 0.5, λ = 100, φ(1) = φ(2) = 0.75, and p0,1 = p0,2 = 0.5. Single star

(*) indicates that the MIP solver could not solve the corresponding example within two hours. Computation

times equal to 7200 seconds indicate termination of the algorithm.

greater than those of FNCP-Ch and FNCP-S, which have the same order of magnitude on

average. Recall from Table 4.1 that the performance of these three heuristics are comparable

with respect to objective value. Thus we drop FNCP-C and FNCP-S from our experimental

set; we opt to keep FNCP-Ch as it enables us to rigorously investigate the importance of

allowing state-dependent promote-up-to levels, without computation time concerns. We also

omit NP from our experimental set, as it yields unsatisfactory results due to our selection of

experimentation and product launch rates in the remainder of this section. See Appendix C.4

for the omitted numerical results.

We next vary the holding cost rate and experimentation costs, all else being equal; see
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Table 4.3. We observe that SDNCP minimizes the average costs in most of the instances we

could solve without exceeding the time limit. (For the solved instances, the average distances

of SDNCP and FNCP-Ch from the optimal cost are 0.08% and 14.48%, respectively.) We

also observe that the optimality gap of FNCP-Ch increases as the holding cost rate and/or

experimentation costs increase: It is almost always beneficial to terminate projects with little

promise from the NPD process under high holding and/or experimentation costs. But neg-

ative optimal costs prove that it is still desirable to develop new products (from high-value

categories); the benefit of introducing a new product largely relies on cost savings as a result

of significantly reduced time-to-market (or congestion), which calls for a broader monitoring

of projects across stages, in decision-making. For FNCP-Ch, however, promotion of projects

at one stage depends only on projects at the next stage. Hence, higher holding and/or exper-

imentation costs lead to larger optimality gaps.

For FNCP-Ch, it is also important to note that an increment in experimentation cost

of stage 1 leads to larger optimality gaps than in experimentation cost of stage 2: If the

experimentation cost is higher at stage 1, an investment on a new product idea has a much

lower rate of return than an investment on a project that shows promise upon completion of

the initial stage. Thus, further caution must be taken while promoting new product ideas.

But FNCP-Ch fails to do so as it does not incorporate projects at the last stage into decision-

making for new product ideas, and thus a larger percentage gap results.

Lastly, we vary informativeness probabilities, all else being equal; see Table 4.4. Once again,

SDNCP minimizes the average costs in most of the instances we could solve. (For the solved

instances, the average distances of SDNCP and FNCP-Ch from the optimal cost are 0.05% and

8.69%, respectively.) For FNCP-Ch, the largest percentage gaps occur when experiments are

highly uninformative (i.e., when φ(1) ≤ 0.65 and φ(2) ≤ 0.75): As experiments become more

informative, the system tends to terminate more projects from low-value categories. But then

low-value categories have little impact on congestion; thus it is less valuable to keep track of

the numbers of projects in each category. Since FNCP-Ch uses less information regarding the

numbers of projects across categories, it performs closer to the globally optimal policy when

experiments are highly informative.

Our numerical results have led us to conclude that SDNCP performs significantly better
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Table 4.4 Numerical results for various informativeness probabilities.

Absolute gap Percentage gap Computation times

φ(1) φ(2) Optimal Cost SDNCP FNCP-Ch SDNCP FNCP-Ch SDNCP FNCP-Ch

0.95 0.95 -5.630 0.007 0.321 0.123 5.703 5191.45 5.51
- 0.85 -5.570 0.000 0.352 0.000 6.320 57.93 5.94
- 0.75 -5.570 0.000 0.367 0.000 6.582 5724.65 8.75
- 0.65 -5.570 0.000 0.365 0.000 6.553 159.24 4.80
- 0.55 -5.570 0.000 0.361 0.000 6.481 51.74 5.54

0.85 0.95 -4.606 0.000 0.231 0.000 5.020 205.42 10.22
- 0.85 -4.239 * 0.174 * 4.105 7200.00 6.97
- 0.75 -4.213 0.000 0.219 0.000 5.201 77.71 5.11
- 0.65 -4.212 * 0.218 * 5.178 7200.00 4.48
- 0.55 -4.212 0.000 0.218 0.000 5.185 83.12 4.88

0.75 0.95 -3.643 0.000 0.200 0.000 5.495 1648.26 6.73
- 0.85 -3.063 0.000 0.098 0.000 3.206 86.18 13.79
- 0.75 -2.936 * 0.127 * 4.339 7200.00 11.93
- 0.65 -2.936 * 0.149 * 5.062 7200.00 6.83
- 0.55 -2.935 0.000 0.147 0.000 4.998 58.35 9.47

0.65 0.95 -2.960 0.012 0.115 0.416 3.892 130.70 9.53
- 0.85 -2.275 * 0.121 * 5.296 7200.00 10.89
- 0.75 -1.961 * 0.188 * 9.601 7200.00 11.76
- 0.65 -1.918 * 0.267 * 13.919 7200.00 12.24
- 0.55 -1.893 0.002 0.256 0.127 13.495 5483.98 9.94

0.55 0.95 -2.893 * 0.114 * 3.951 7200.00 7.20
- 0.85 -2.120 * 0.144 * 6.768 7200.00 9.31
- 0.75 -1.619 * 0.241 * 14.901 7200.00 13.65
- 0.65 -1.500 * 0.464 * 30.940 7200.00 11.03
- 0.55 -1.500 * 0.526 * 35.093 7200.00 12.93

Average 0.002 0.239 0.051 8.691 4214.35 8.78

Notes. h = 2, c1 = c2 = 4, r1 = 40, r2 = 0, µ1 = µ2 = 1, µ3 = 0.5, λ = 100, and p0,1 = p0,2 = 0.5. Single star

(*) indicates that the MIP solver could not solve the corresponding example within two hours. Computation

times equal to 7200 seconds indicate termination of the algorithm.

than FNCP-Ch (i) when the NPD process slows down at downstream stages, (ii) when holding

and/or experimentation costs are higher, or (iii) when experiments are highly uninformative.

As for computation times, FNCP-Ch has a distinct advantage over SDNCP.

4.7 Conclusions

We have studied the problem of resource allocation and project selection for NPD under

Markovian assumptions. Each NPD project undergoes a different experiment at each stage

of the NPD process. Signals created through experimentation enable project managers to

resolve uncertainty around the true nature of the project. Projects are therefore categorized

based on their signals; the state space consists of the numbers of projects in each category.
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NPD projects at different stages demand the use of different specialized resources, requiring

us to make concurrent resource allocation decisions across stages at the same time. Given the

system state, a control policy specifies what fraction of resources should be allocated to each

project at each stage and which projects, if any, should be terminated.

We show the optimality of SDNCP in two special cases of the problem: (a) when there is a

single informative experiment and projects are not terminated, or (b) when there are multiple

uninformative experiments. An SDNCP policy implies that, at each stage, it is optimal to

advance a project with the highest expected reward to the next stage if and only if the number

of projects in each successor category is less than a state-dependent threshold. Furthermore,

threshold values decrease in a non-strict sense as a later stage becomes more congested or as

an earlier stage becomes less congested. (A stage becomes more congested with an increase in

the number of projects at this stage or with an increase in the expected reward of any project

at this stage.) To our knowledge, this study is the first to reveal the impact of congestion on

optimal resource allocation decisions under stage-dependent resource constraints.

We numerically evaluate the use of SDNCP as a heuristic in 79 instances of the general

NPD problem: For SDNCP, the MIP solver could solve 63% of these instances within two

hours. Remarkably, SDNCP yields the globally optimal cost in 90% of the instances that

could be solved within two hours. Further, we numerically compare SDNCP to FNCP-Ch,

which is a simpler version of SDNCP whose thresholds are constant across system states.

Our numerical experiments demonstrate that SDNCP substantially outperforms FNCP-Ch,

(i) when upstream stages are faster than downstream stages, or (ii) when expected margins

of projects are lower, or (iii) when experiments are less informative. However, computation

times of FNCP-Ch are several orders of magnitude lower than those of SDNCP.

An important avenue for future research is to explore the optimal policy for the general

NPD problem. But further optimality results might require alternate metrics for congestion,

which will build upon our structural results in this chapter: Section 4.4 revealed that a stage

becomes more congested with an increase in the expected reward of any project. Section

4.5 revealed that it becomes more desirable to promote a project at a particular stage when

projects at earlier or later stages get promoted. Therefore one would intuitively expect the

incentive to promote projects to increase (i) if a project at any later stage is promoted to the
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next stage, returning a signal that will keep its expected reward below a certain threshold (low

expected rewards ensure reduced congestion at later stages), or (ii) if a project at any earlier

stage is promoted to the next stage, returning a signal that will keep its expected reward above

a certain threshold (high expected rewards lead to increased congestion at earlier stages).

Another direction for future research is to extend our optimality results to allow for gen-

eral experimentation times. (For example, it appears straightforward to prove that SDNCP

remains optimal under Erlang experimentation times when there are multiple uninformative

experiments.) Also, extending our Bayesian framework to different conjugate priors is an in-

teresting direction for future studies. On a wider level, decision-making process for resource

allocation and project selection should also incorporate competition between new and previ-

ously developed products. But such an extension will likely require the use of game theoretical

models.





Chapter 5

Conclusions

It is generally accepted that assemble-to-order (ATO) and new product development (NPD)

problems are very difficult to analyze. This dissertation significantly broadens current knowl-

edge of optimal policies for these complex, dynamic problems by employing the theory of

Markov Decision Processes (MDPs).

Much of the complexity in the ATO problem is attributable to the simultaneous consider-

ation of inventory replenishment and allocation decisions. This problem becomes even more

difficult when replenishment and/or allocation decisions involve non-unitary changes in sev-

eral component inventory levels, as is the case in our M -systems. We modeled this problem

as an MDP, with state space consisting of component inventory levels. We then developed

novel functional characterizations restricted to certain lattices of the state space. The opti-

mal cost function satisfies these functional characterizations if the state space is partitioned

into disjoint lattices based on component requirements of products. Using these properties we

have managed to prove the optimality of a lattice-dependent base-stock and lattice-dependent

rationing (LBLR) policy. Computational results support the excellent performance of LBLR

as a heuristic for the general ATO problem.

As for the NPD problem, much of the complexity comes from the evolution of projects

throughout the NPD process, which generates knowledge about projects’ potential success,

but is subject to stage-dependent resource constraints. We again modeled the problem as an

MDP: Since beliefs about the true nature of a project undergo Bayesian updating after each

experiment, we categorize projects based on posterior beliefs and keep as the state space the

breakdown of projects into categories. Due to stage-dependent resource constraints, concurrent
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resource allocation decisions have to be made across stages at any time. Therefore we define

a separate set of actions for resource allocation at each stage. As a result, however, both the

state and action spaces are unmanageably huge. We have been able to prove the optimality

of a state-dependent non-congestive promotion (SDNCP) policy in two simpler versions of the

problem, reporting the strong numerical performance of SDNCP for the general NPD problem.

Future work can focus on establishing optimal policies for general ATO and NPD problems.

We are confident that the findings in this dissertation will serve as a basis for future studies on

more general settings. More broadly, our treatments of the ATO and NPD problems highlight

that MDPs might be very useful in handling other complex problems that include structural

dynamics and uncertainty.



Appendix A

Supplement to Optimal Structural

Results for ATO M-Systems

This chapter includes supplementary material for Chapter 2: New Functional Characteriza-

tions and Optimal Structural Results for Assemble-to-Order M -Systems.

A.1 Proofs of the Results in Section 2.4.1

Lemma 2.4.1 (Restated). Super(r,p) ⊆ nSuper(r,p), ∀r,p ∈ Nn0 .

Proof. f ∈ Super(r,p) implies the following inequalities:

f(x + p1e1 + r)− f(x + p1e1) ≥ f(x + r)− f(x),

f(x + p1e1 + p2e2 + r)− f(x + p1e1 + p2e2) ≥ f(x + p1e1 + r)− f(x + p1e1),

...

f(x +
∑
j≤n

pjej + r)− f(x +
∑
j≤n

pjej) ≥ f(x +
∑
j<n

pjej + r)− f(x +
∑
j<n

pjej)

Summation of the inequalities above implies f(x + p + r)− f(x + p) ≥ f(x + r)− f(x), and

therefore f ∈ nSuper(r,p).

A.2 Proofs of the Results in Section 2.4.2

Lemma 2.4.2 (Restated). (a) T (j) : Sub(q) ∩ Super(a,q)→ Sub(q) ∩ Super(a,q), ∀j,
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(b) Ti : Sub(b) ∩ Super(a,b)→ Sub(b) ∩ Super(a,b), ∀i, and

(c) h ∈ Sub(q) ∩ Super(a,q) ∩ Sub(b) ∩ Super(a,b).

Proof. Recall that T (j)v(x) = min{v(x + qjej), v(x)}, Tiv(x) = min{v(x) + ci, v(x − biei)} if

xi ≥ bi, and Tiv(x) = v(x)+ci otherwise, for i ≤ n; and Tn+1v(x) = min{v(x)+cn+1, v(x−a)}

if xj ≥ aj for all j, and Tn+1v(x) = v(x) + cn+1 otherwise.

(a) Assume that v ∈ Sub(q) ∩ Super(a,q). We will show T (j)v ∈ Sub(q) ∩ Super(a,q).

• First we show T (j)v ∈ Sub(q), i.e., T (j)v(x + qiei)− T (j)v(x) ≥ T (j)v(x + qiei + qkek)−

T (j)v(x+qkek), ∀k 6= i. Pick arbitrary k ∈ {1, 2, .., n}. There are four different scenarios

we need to consider depending on the optimal actions at T (j)v(x+qiei) and T (j)v(x+qkek)

(if this inequality holds under suboptimal actions of T (j)v(x) and/or T (j)v(x+qiei+qkek),

it also holds under optimal actions of these operators, and thus we do not enforce the

optimal actions at these operators). These four scenarios are as follows:

(1) Suppose that T (j)v(x+qiei) = v(x+qiei) < v(x+qjej +qiei) and T (j)v(x+qkek) =

v(x+qkek) < v(x+qjej+qkek). As we assume v ∈ Sub(q), the following inequalities

hold:

T (j)v(x + qiei)− T (j)v(x) ≥ v(x + qiei)− v(x)

≥ v(x + qiei + qkek)− v(x + qkek)

≥ T (j)v(x + qiei + qkek)− T (j)v(x + qkek)

(2) Suppose that T (j)v(x+qiei) = v(x+qjej +qiei) < v(x+qiei) and T (j)v(x+qkek) =

v(x + qkek) < v(x + qjej + qkek). As we assume v ∈ Sub(q), the following hold:

T (j)v(x + qiei)− T (j)v(x) ≥ v(x + qjej + qiei)− v(x)

≥ v(x + qjej)− v(x + qjej + qkek)

+v(x + qjej + qiei + qkek)− v(x)

≥ v(x + qjej + qiei + qkek)− v(x + qkek)

≥ T (j)v(x + qiei + qkek)− T (j)v(x + qkek)
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(3) Suppose that T (j)v(x+qiei) = v(x+qiei) < v(x+qjej +qiei) and T (j)v(x+qkek) =

v(x + qjej + qkek) < v(x + qkek). If j = i, then it is easy to verify that

T (j)v(x + qjej)− T (j)v(x) ≥ v(x + qjej)− v(x + qjej)

= v(x + qjej + qkek)− v(x + qjej + qkek)

≥ T (j)v(x + qjej + qkek)− T (j)v(x + qkek)

If j 6= i, as we assume v ∈ Sub(q), the following inequalities hold:

T (j)v(x + qiei)− T (j)v(x) ≥ v(x + qiei)− v(x)

≥ v(x + qjej + qiei)− v(x + qjej)

≥ v(x + qjej + qiei + qkek)− v(x + qjej + qkek)

≥ T (j)v(x + qiei + qkek)− T (j)v(x + qkek)

(4) Suppose that T (j)v(x+qiei) = v(x+qjej +qiei) < v(x+qiei) and T (j)v(x+qkek) =

v(x+qjej+qkek) < v(x+qkek). As we assume v ∈ Sub(q), the following inequalities

hold:

T (j)v(x + qiei)− T (j)v(x) ≥ v(x + qjej + qiei)− v(x + qjej)

≥ v(x + qjej + qiei + qkek)− v(x + qjej + qkek)

≥ T (j)v(x + qiei + qkek)− T (j)v(x + qkek)

Hence our inequality holds in each of the possible scenarios. Therefore, T (j)v ∈ Sub(q).

• Next we show T (j)v ∈ Super(a,q), i.e., T (j)v(x + qiei + a) − T (j)v(x + a) ≥ T (j)v(x +

qiei) − T (j)v(x), ∀i. Again, there are four different scenarios depending on the optimal

actions at T (j)v(x + qiei + a) and T (j)v(x):

(1) Suppose that T (j)v(x + qiei + a) = v(x + qiei + a) < v(x + qjej + qiei + a) and

T (j)v(x) = v(x) < v(x + qjej). As we assume v ∈ Super(a,q), the following
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inequalities hold:

T (j)v(x + qiei + a)− T (j)v(x + a) ≥ v(x + qiei + a)− v(x + a)

≥ v(x + qiei)− v(x)

≥ T (j)v(x + qiei)− T (j)v(x)

(2) Suppose that T (j)v(x + qiei + a) = v(x + qjej + qiei + a) < v(x + qiei + a) and

T (j)v(x) = v(x) < v(x + qjej). As we assume v ∈ Super(a,q), the following

inequalities hold:

T (j)v(x + qiei + a)− T (j)v(x + a) ≥ v(x + qjej + qiei + a)− v(x + a)

≥ v(x + qjej + qiei) + v(x + qjej + a)

−v(x + qjej)− v(x + a)

≥ v(x + qjej + qiei)− v(x)

≥ T (j)v(x + qiei)− T (j)v(x)

(3) Suppose that T (j)v(x + qiei + a) = v(x + qiei + a) < v(x + qjej + qiei + a) and

T (j)v(x) = v(x + qjej) < v(x). If j = i, then it is easy to verify that

T (j)v(x + qjej + a)− T (j)v(x + a) ≥ v(x + qjej + a)− v(x + qjej + a)

= v(x + qjej)− v(x + qjej)

≥ T (j)v(x + qjej)− T (j)v(x)

If j 6= i, as we assume v ∈ Super(a,q) and v ∈ Sub(q), the following hold:

T (j)v(x + qiei + a)− T (j)v(x + a) ≥ v(x + qiei + a)− v(x + a)

≥ v(x + qiei)− v(x)

≥ v(x + qjej + qiei)− v(x + qjej)

≥ T (j)v(x + qiei)− T (j)v(x)
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(4) Suppose that T (j)v(x + qiei + a) = v(x + qjej + qiei + a) < v(x + qiei + a) and

T (j)v(x) = v(x + qjej) < v(x). As we assume v ∈ Super(a,q), the following

inequalities hold:

T (j)v(x + qiei + a)− T (j)v(x + a) ≥ v(x + qjej + qiei + a)− v(x + qjej + a)

≥ v(x + qjej + qiei)− v(x + qjej)

≥ T (j)v(x + qiei)− T (j)v(x)

Hence our inequality holds in all the possible scenarios. Therefore, T (j)v ∈ Super(a,q).

(b) Assume that v ∈ Sub(b) ∩ Super(a,b). We will show Tiv ∈ Sub(b) ∩ Super(a,b).

Case I: Suppose that i ≤ n.

• First we show Tiv ∈ Sub(b), i.e., Tiv(x + bjej)−Tiv(x) ≥ Tiv(x + bjej + bkek)−Tiv(x +

bkek), ∀k 6= j. Pick arbitrary k ∈ {1, 2, .., n}. There are four different scenarios we need

to consider depending on the optimal actions at Tiv(x + bjej) and Tiv(x + bkek) (if this

inequality holds under suboptimal actions of Tiv(x) and/or Tiv(x + bjej + bkek), it also

holds under optimal actions of these operators, and thus we do not enforce the optimal

actions at these operators). These four scenarios are as follows:

(1) Suppose that Tiv(x + bjej) = v(x + bjej) + ci and Tiv(x + bkek) = v(x + bkek) + ci.

As we assume v ∈ Sub(b), the following inequalities hold:

Tiv(x + bjej)− Tiv(x) ≥ v(x + bjej) + ci − v(x)− ci

≥ v(x + bjej + bkek) + ci − v(x + bkek)− ci

≥ Tiv(x + bjej + bkek)− Tiv(x + bkek)

(2) Suppose that xi ≥ bi, Tiv(x + bjej) = v(x + bjej) + ci and Tiv(x + bkek) = v(x +

bkek − biei). As we assume v ∈ Sub(b), the following inequalities hold:

Tiv(x + bjej)− Tiv(x) ≥ v(x + bjej) + ci − v(x− biei)



98 Appendix A. Supplement to Optimal Structural Results for ATO M-Systems

≥ v(x)− v(x + bkek)

+v(x + bjej + bkek) + ci − v(x− biei)

≥ v(x + bjej + bkek) + ci − v(x + bkek − biei)

≥ Tiv(x + bjej + bkek)− Tiv(x + bkek)

(3) Suppose that xi ≥ bi if i 6= j, Tiv(x + bjej) = v(x + bjej − biei) and Tiv(x + bkek) =

v(x + bkek) + ci. If i = j, then it is easy to verify that

Tiv(x + biei)− Tiv(x) ≥ v(x)− v(x)− ci

= v(x + bkek)− v(x + bkek)− ci

≥ Tiv(x + biei + bkek)− Tiv(x + bkek)

If i 6= j, as we assume v ∈ Sub(b), the following inequalities hold:

Tiv(x + bjej)− Tiv(x) ≥ v(x + bjej − biei)− v(x− biei)

≥ v(x + bjej)− v(x)

≥ v(x + bjej + bkek) + ci − v(x + bkek)− ci

≥ Tiv(x + bjej + bkek)− Tiv(x + bkek)

(4) Suppose that xi ≥ bi, Tiv(x + bjej) = v(x + bjej − biei) and Tiv(x + bkek) =

v(x + bkek − biei). As we assume v ∈ Sub(b), the following inequalities hold:

Tiv(x + bjej)− Tiv(x) ≥ v(x + bjej − biei)− v(x− biei)

≥ v(x + bjej + bkek − biei)− v(x + bkek − biei)

≥ Tiv(x + bjej + bkek)− Tiv(x + bkek)

Hence our inequality holds in all the possible scenarios. Therefore, Tiv ∈ Sub(b).

• Next we show Tiv ∈ Super(a,b), i.e., Tiv(x + bjej + a)− Tiv(x + a) ≥ Tiv(x + bjej)−

Tiv(x), ∀j. Again, there are four different scenarios depending on the optimal actions at
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Tiv(x + bjej + a) and Tiv(x):

(1) Suppose that xi ≥ bi, Tiv(x+bjej+a) = v(x+bjej+a−biei) and Tiv(x) = v(x−biei).

As we assume v ∈ Super(a,b), the following inequalities hold:

Tiv(x + bjej + a)− Tiv(x + a) ≥ v(x + bjej + a− biei)− v(x + a− biei)

≥ v(x + bjej − biei)− v(x− biei)

≥ Tiv(x + bjej)− Tiv(x)

(2) Suppose that xi ≥ bi, Tiv(x+bjej+a) = v(x+bjej+a)+ci and Tiv(x) = v(x−biei).

As we assume v ∈ Super(a,b), the following inequalities hold:

Tiv(x + bjej + a)− Tiv(x + a) ≥ v(x + bjej + a) + ci − v(x + a− biei)

≥ v(x + bjej) + v(x + a)

−v(x) + ci − v(x + a− biei)

≥ v(x + bjej) + ci − v(x− biei)

≥ Tiv(x + bjej)− Tiv(x)

(3) Suppose that xi + ai ≥ bi if i 6= j, Tiv(x + bjej + a) = v(x + bjej + a − biei) and

Tiv(x) = v(x) + ci. If i = j, it is easy to verify that

Tiv(x + biei + a)− Tiv(x + a) ≥ v(x + a)− v(x + a)− ci

= v(x)− v(x)− ci

≥ Tiv(x + biei)− Tiv(x)

If i 6= j, as we assume v ∈ Sub(b) and v ∈ Super(a,b), the following hold:

Tiv(x + bjej + a)− Tiv(x + a) ≥ v(x + bjej + a− biei)− v(x + a− biei)

≥ v(x + bjej + a)− v(x + a)
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≥ v(x + bjej) + ci − v(x)− ci

≥ Tiv(x + bjej)− Tiv(x)

(4) Suppose that Tiv(x + bjej + a) = v(x + bjej + a) + ci and Tiv(x) = v(x) + ci. As

we assume v ∈ Super(a,b), the following inequalities hold:

Tiv(x + bjej + a)− Tiv(x + a) ≥ v(x + bjej + a) + ci − v(x + a)− ci

≥ v(x + bjej) + ci − v(x)− ci

≥ Tiv(x + bjej)− Tiv(x)

Hence our inequality holds in all the possible scenarios. Therefore, Tiv ∈ Super(a,b).

Case II: Suppose that i = n+ 1.

• First we show Tn+1v ∈ Sub(b), i.e., Tn+1v(x + bjej) − Tn+1v(x) ≥ Tn+1v(x + bjej +

bkek)−Tn+1v(x+bkek), ∀k 6= j. Pick arbitrary k, j ∈ {1, 2, .., n}. There are four possible

scenarios depending on the optimal actions at Tn+1v(x + bjej) and Tn+1v(x + bkek):

(1) Suppose that Tn+1v(x + bjej) = v(x + bjej) + cn+1 and Tn+1v(x + bkek) = v(x +

bkek) + cn+1. As we assume v ∈ Sub(b), the following inequalities hold:

Tn+1v(x + bjej)− Tn+1v(x) ≥ v(x + bjej) + cn+1 − v(x)− cn+1

≥ v(x + bjej + bkek) + cn+1 − v(x + bkek)− cn+1

≥ Tn+1v(x + bjej + bkek)− Tn+1v(x + bkek)

(2) Suppose that x + bkek ≥ a, Tn+1v(x + bjej) = v(x + bjej) + cn+1 and Tn+1v(x +

bkek) = v(x + bkek − a). As we assume v ∈ Sub(b) and v ∈ Super(a,b), the

following inequalities hold:

Tn+1v(x + bjej)− Tn+1v(x) ≥ v(x + bjej) + cn+1 − v(x)− cn+1

≥ v(x + bjej + bkek)− v(x + bkek)
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≥ v(x + bjej + bkek − a)− v(x + bkek − a)

≥ Tn+1v(x + bjej + bkek)− Tn+1v(x + bkek)

(3) Suppose that x+bjej ≥ a, Tn+1v(x+bjej) = v(x+bjej−a) and Tn+1v(x+bkek) =

v(x + bkek) + cn+1. As we assume v ∈ Super(a,b) and v ∈ Sub(b), the following

inequalities hold:

Tn+1v(x + bjej)− Tn+1v(x) ≥ v(x + bjej − a)− v(x)− cn+1

≥ v(x + bjej)− v(x + bjej + bkek)

+v(x + bjej + bkek − a)− v(x)− cn+1

≥ v(x + bjej + bkek − a)− v(x + bkek)− cn+1

≥ Tn+1v(x + bjej + bkek)− Tn+1v(x + bkek)

(4) Suppose that x + bjej ≥ a, x + bkek ≥ a, Tn+1v(x + bjej) = v(x + bjej − a) and

Tn+1v(x + bkek) = v(x + bkek − a). Notice that, for j 6= k, x + bjej ≥ a and

x + bkek ≥ a imply, respectively, xt ≥ at for all t 6= j and xt ≥ at for all t 6= k, and

therefore x ≥ a. As we assume v ∈ Sub(b), the following inequalities hold:

Tn+1v(x + bjej)− Tn+1v(x) ≥ v(x + bjej − a)− v(x− a)

≥ v(x + bjej + bkek − a)− v(x + bkek − a)

≥ Tn+1v(x + bjej + bkek)− Tn+1v(x + bkek)

Hence our inequality holds in all the possible scenarios. Therefore, Tn+1v ∈ Sub(b).

• Next we show Tn+1v ∈ Super(a,b), i.e., Tn+1v(x+bjej +a)−Tn+1v(x+a) ≥ Tn+1v(x+

bjej)− Tn+1v(x), ∀j. Again, there are four different scenarios depending on the optimal

actions at Tn+1v(x + bjej + a) and Tn+1v(x):

(1) Suppose that x ≥ a, Tn+1v(x + bjej + a) = v(x + bjej) and Tn+1v(x) = v(x − a).
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As we assume v ∈ Super(a,b), the following inequalities hold:

Tn+1v(x + bjej + a)− Tn+1v(x + a) ≥ v(x + bjej)− v(x)

≥ v(x + bjej − a)− v(x− a)

≥ Tn+1v(x + bjej)− Tn+1v(x)

(2) Suppose that x ≥ a, Tn+1v(x + bjej + a) = v(x + bjej + a) + cn+1 and Tn+1v(x) =

v(x− a). As we assume v ∈ Super(a,b), the following inequalities hold:

Tn+1v(x + bjej + a)− Tn+1v(x + a) ≥ v(x + bjej + a) + cn+1 − v(x + a)− cn+1

≥ v(x + bjej)− v(x)

≥ v(x + bjej − a)− v(x− a)

≥ Tn+1v(x + bjej)− Tn+1v(x)

(3) Suppose that Tn+1v(x + bjej + a) = v(x + bjej) and Tn+1v(x) = v(x) + cn+1. Then

it is easy to verify that

Tn+1v(x + bjej + a)− Tn+1v(x + a) ≥ v(x + bjej)− v(x)

= v(x + bjej) + cn+1 − v(x)− cn+1

≥ Tn+1v(x + bjej)− Tn+1v(x)

(4) Suppose that Tn+1v(x+bjej+a) = v(x+bjej+a)+cn+1 and Tn+1v(x) = v(x)+cn+1.

As we assume v ∈ Super(a,b), the following inequalities hold:

Tn+1v(x + bjej + a)− Tn+1v(x + a) ≥ v(x + bjej + a) + cn+1 − v(x + a)− cn+1

≥ v(x + bjej) + cn+1 − v(x)− cn+1

≥ Tn+1v(x + bjej)− Tn+1v(x)

Hence our inequality holds in all the possible scenarios. Therefore, Tn+1v ∈ Super(a,b).

(c) We below show h ∈ Sub(p) ∩ Super(r,p), for any r and p.
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• First we prove h ∈ Sub(p) (i.e., h(x + pjej)− h(x) ≥ h(x + pjej + pkek)− h(x + pkek),

∀k 6= j): h(x + pjej) − h(x) =
∑

i 6=j hi(xi) + hj(xj + pj) −
∑

i 6=j hi(xi) − hj(xj) =

hj(xj + pj) − hj(xj) =
∑

i/∈{j,k} hi(xi) + hj(xj + pj) + hk(xk + pk) −
∑

i/∈{j,k} hi(xi) −

hj(xj)− hk(xk + pk) = h(x + pjej + pkek)− h(x + pkek), ∀k 6= j.

• Second we prove h ∈ Super(r,p) (i.e., h(x + pjej + r)− h(x + r) ≥ h(x + pjej)− h(x),

∀j): h(x + pjej + r)−h(x + r) =
∑

i 6=j hi(xi + ri) +hj(xj + pj + rj)−
∑

i 6=j hi(xi + ri)−

hj(xj +rj) = hj(xj +pj +rj)−hj(xj +rj) ≥ hj(xj +pj)−hj(xj) =
∑

i 6=j hi(xi)+hj(xj +

pj)−
∑

i 6=j hi(xi)− hj(xj) = h(x + pjej)− h(x), ∀j. The inequality above follows from

the assumption that hj is a convex function, ∀j.

Since h ∈ Sub(p)∩Super(r,p), for any r and p, we have h ∈ Sub(q)∩Super(a,q)∩Sub(b)∩

Super(a,b).

Lemma 2.4.3 (Restated). Under Assumption 1, if v ∈ V ∗, then Tv ∈ V ∗, where Tv =

h(x) +
∑

j µjT
(j)v(x) +

∑
i λiTiv(x). Furthermore, the optimal cost function v∗ is an element

of V ∗.

Proof. Define V ∗ as the set of functions satisfying the properties of Sub(b), Super(a,b), and

nSuper(a,b). Also, define the operator T on the set of real-valued functions v: Tv(x) = h(x)+∑
j µjT

(j)v(x) +
∑

i λiTiv(x). First we show T : V ∗ → V ∗. By Lemma 2.4.1, Super(r,p) ⊆

nSuper(r,p), and therefore Sub(p)∩Super(r,p) ⊆ nSuper(r,p). This, combined with Lemma

2.4.2, yields T (j) : Sub(q)∩Super(a,q)∩nSuper(a,q)→ Sub(q)∩Super(a,q)∩nSuper(a,q),

and Ti : Sub(b) ∩ Super(a,b) ∩ nSuper(a,b) → Sub(b) ∩ Super(a,b) ∩ nSuper(a,b). By

Assumption 1, q = b; and therefore T (j), Ti : Sub(b)∩Super(a,b)∩nSuper(a,b)→ Sub(b)∩

Super(a,b) ∩ nSuper(a,b). That is, T (j) : V ∗ → V ∗ and Ti : V ∗ → V ∗. By Lemmas

2.4.1 and 2.4.2, we also know h ∈ V ∗. Now let v ∈ V ∗. Since T (j)v ∈ V ∗, Tiv ∈ V ∗, and

h ∈ V ∗, and our second-order properties are preserved by linear transformations, Tv ∈ V ∗.

Hence, T : V ∗ → V ∗. Following Propositions 3.1.5 and 3.1.6 in Bertsekas (2007), we verify

that limk→∞(T kv0)(x) = v∗(x) where v0 is the zero function, v∗ is the optimal cost function,

and T k refers to k compositions of operator T . Since v0 ∈ V ∗ and T : V ∗ → V ∗, we have

T kv0 ∈ V ∗, and therefore v∗ ∈ V ∗.
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A.3 Proofs of the Results in Section 2.4.3

Theorem 2.4.1 (Restated). Under Assumption 2.4.1, there exists an optimal stationary policy

that can be specified as follows.

(1) The optimal inventory replenishment policy for each component j is a lattice-dependent

base-stock policy with lattice-dependent base-stock levels S∗j (p) ∈ L(p,a), ∀p: It is opti-

mal to produce a batch of component j if and only if x ∈ L(p,a) is less than S∗j (p).

(2) The optimal inventory allocation policy for each product i ≤ n is a lattice-dependent

rationing policy with lattice-dependent rationing levels R∗i (p) ∈ L(p,a), ∀p: It is optimal

to fulfill a demand for product i ≤ n if and only if x ∈ L(p,a) is greater than or equal

to R∗i (p).

(3) The optimal inventory allocation policy for product n+ 1 is a lattice-dependent rationing

policy with lattice-dependent rationing levels R∗n+1(p) ∈ L(p,b), ∀p: It is optimal to

fulfill a demand for product n + 1 if and only if x ∈ L(p,b) is greater than or equal to

R∗n+1(p).

The optimal policy has the following additional properties:

i. As the system moves to a difference lattice with an increment of bk in the inventory level

of component k, both the optimal base-stock level of component j 6= k and the optimal

rationing level for (individual) product i /∈ {k, n+ 1} increase in a non-strict sense, ∀k.

ii. As the system moves to a difference lattice with an increment of bk in the inventory level

of component k, the optimal rationing level for (master) product n + 1 decreases in a

non-strict sense, ∀k.

iii. It is optimal to fulfill a demand of (master) product n+ 1 if xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j.

Proof. By Lemma 2.4.3, we know v∗ ∈ V ∗. Define, for v∗ ∈ V ∗,

S∗j (p) = min{p + za : v∗(p + za + qjej)− v∗(p + za) > 0, z ∈ N0}, ∀j,

R∗i (p) = min{p + za : v∗(p + za)− v∗(p + za− biei) > −ci, z ∈ N0, pi + zai ≥ bi}, ∀i ≤ n,

R∗n+1(p) = min{p + zb : v∗(p + zb)− v∗(p + zb− a) > −cn+1, z ∈ N0, p + zb ≥ a}.
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(1) Since v∗ ∈ Super(a,b) and q = b, v∗(p + za + qjej) − v∗(p + za) is increasing in z.

As z increases, since the holding cost rate h is strictly increasing, this difference will

eventually cross 0. Therefore, the lattice-dependent base-stock policy is optimal.

(2) Since v∗ ∈ Super(a,b), v∗(p + za) − v∗(p + za − biei) is increasing in z. We know

that, as z increases, this difference will eventually cross 0. Therefore, as z increases,

this difference should also cross −ci. Hence, the lattice-dependent rationing policy is

optimal.

(3) Since v∗ ∈ nSuper(a,b), v∗(p + zb)− v∗(p + zb− a) is increasing in z. As z increases,

since the holding cost rate h is strictly increasing, this difference will eventually cross

−cn+1. Therefore, the lattice-dependent rationing policy is optimal.

Next we will prove properties (i)-(iii):

i. To prove property (i), first, we show that the optimal base-stock levels for each com-

ponent j obey S∗j (p + bkek) ≥ S∗j (p) + bkek, ∀k 6= j. Let S∗j (p) = p + z1a and

S∗j (p + bkek) = p + bkek + z2a. Then, it is not optimal to produce a batch of com-

ponent j at x = p + z1a and x = p + bkek + z2a. Since v∗ ∈ Sub(b), it is not optimal to

produce a batch of component j at x = p + z2a, implying z2 ≥ z1. Therefore, we must

have S∗j (p + bkek) ≥ S∗j (p) + bkek.

Second, we show that the optimal rationing levels for each product i ≤ n obey R∗i (p +

bkek) ≥ R∗i (p) + bkek, ∀k 6= i. Let R∗i (p) = p + z1a and R∗i (p + bkek) = p + bkek + z2a.

Then, it is optimal to fulfill a demand for product i at x = p+z1a and x = p+bkek+z2a.

Since v∗ ∈ Sub(b), it is also optimal to fulfill a demand for product i at x = p + z2a,

implying z2 ≥ z1. Therefore, we must have R∗i (p + bkek) ≥ R∗i (p) + bkek.

ii. To prove (ii), we will show that the optimal rationing levels for product n + 1 obey

R∗n+1(p + bkek) ≤ R∗n+1(p) + bkek, ∀k. Let R∗n+1(p) = p + z1b and R∗n+1(p + bkek) =

p + bkek + z2b. Then, it is optimal to fulfill a demand for product n+ 1 at x = p + z1b

and x = p + bkek + z2b. Since v∗ ∈ Super(a,b), it is also optimal to fulfill a demand

for product n + 1 at x = p + z1b + bkek, implying z1 ≥ z2. Therefore, we must have

R∗n+1(p) + bkek ≥ R∗n+1(p + bkek).
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iii. Lastly, we will prove that it is optimal to fulfill a demand of product n + 1 if xj ≥

aj + bj

⌊
xj
bj

⌋
, ∀j. Define Ṽ as the set of real-valued functions f defined on Nn0 such

that f(x) − f(x − a) + cn+1 ≥ 0, for xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j. Recall Tv(x) = h(x) +∑

j µjT
(j)v(x) +

∑
i λiTiv(x). We show below T : Ṽ → Ṽ .

Assume that v ∈ Ṽ . We want to prove Tv ∈ Ṽ . Since h is an increasing convex function

and
∑

j µj +
∑

i λi ≤ 1, the following inequality holds:

Tv(x)− Tv(x− a) + cn+1 = h(x)− h(x− a) +
∑
j

µj(T
(j)v(x)− T (j)v(x− a))

+
∑
i

λi(Tiv(x)− Tiv(x− a)) + cn+1

≥
∑
j

µj(T
(j)v(x)− T (j)v(x− a) + cn+1)

+
∑
i

λi(Tiv(x)− Tiv(x− a) + cn+1)

To prove Tv ∈ Ṽ , it suffices to show T (j)v(x) − T (j)v(x − a) + cn+1 ≥ 0, ∀j, and

Tiv(x) − Tiv(x − a) + cn+1 ≥ 0, ∀i, where xk ≥ ak + bk

⌊
xk
bk

⌋
, ∀k. We prove these

inequalities as follows:

• First we show T (j)v(x)− T (j)v(x− a) + cn+1 ≥ 0. There are two possible scenarios

depending on the optimal action at T (j)v(x):

(1) Suppose that T (j)v(x) = v(x + qjej) < v(x): T (j)v(x)− T (j)v(x− a) + cn+1 ≥

v(x + qjej) − v(x + qjej − a) + cn+1 ≥ 0. The second inequality follows from

the fact that v ∈ Ṽ and xj + qj ≥ aj + bj

⌊
xj
bj

⌋
+ qj = aj + bj

⌊
xj+qj
bj

⌋
. (By

Assumption 1, qj = bj .)

(2) Suppose that T (j)v(x) = v(x) ≤ v(x + qjej): T
(j)v(x)− T (j)v(x− a) + cn+1 ≥

v(x)− v(x−a) + cn+1 ≥ 0. The second inequality follows from the assumption

of v ∈ Ṽ .

• Second we show Tiv(x)− Tiv(x− a) + cn+1 ≥ 0, for i ≤ n. There are two possible

scenarios depending on the optimal action at Tiv(x):

(1) Suppose that Tiv(x) = v(x) + ci: Tiv(x) − Tiv(x − a) + cn+1 ≥ v(x) + ci −

v(x−a)− ci + cn+1 ≥ 0. The second inequality follows from the assumption of
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v ∈ Ṽ .

(2) Suppose that xi ≥ bi and Tiv(x) = v(x − biei): Tiv(x) − Tiv(x − a) + cn+1 ≥

v(x− biei)− v(x−a− biei) + cn+1 ≥ 0. The second inequality follows from the

fact that v ∈ Ṽ and xi − bi ≥ ai + bi

⌊
xi
bi

⌋
− bi = ai + bi

⌊
xi−bi
bi

⌋
. Here notice

that, as we assume xi ≥ ai + bi

⌊
xi
bi

⌋
and xi ≥ bi, we should have xi ≥ ai + bi,

implying x ≥ a + biei.

• Lastly we show Tn+1v(x)−Tn+1v(x−a)+cn+1 ≥ 0. There are two possible scenarios

depending on the optimal action at Tn+1v(x):

(1) Suppose that Tn+1v(x) = v(x) + cn+1 < v(x− a): Tn+1v(x)− Tn+1v(x− a) +

cn+1 ≥ v(x) + cn+1− v(x−a)− cn+1 + cn+1 ≥ 0. The second inequality follows

from the assumption of v ∈ Ṽ .

(2) Suppose that Tn+1v(x) = v(x− a) ≤ v(x) + cn+1: Tn+1v(x)− Tn+1v(x− a) +

cn+1 ≥ v(x− a)− v(x− a)− cn+1 + cn+1 = 0.

Since
∑

j µj(T
(j)v(x)− T (j)v(x− a) + cn+1) +

∑
i λi(Tiv(x)− Tiv(x− a) + cn+1) ≥ 0,

we have Tv(x) − Tv(x − aj) + cj ≥ 0. Hence, T : Ṽ → Ṽ . Following Propositions

3.1.5 and 3.1.6 in Bertsekas (2007), we verify that limk→∞(T kv0)(x) = v∗(x) where v0

is the zero function, v∗ is the optimal cost function, and T k refers to k compositions of

operator T . Since v0 ∈ Ṽ and T : Ṽ → Ṽ , we have T kv0 ∈ Ṽ , and therefore v∗ ∈ Ṽ .

Since v∗(x) − v∗(x − a) + cn+1 ≥ 0, for xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j, it is optimal to fulfill a

demand of product n+ 1 if xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j.

A.4 Proofs of the Results in Section 2.4.4

Proposition 2.4.1 (Restated). Suppose that Assumption 1 holds and the Markov chain gov-

erning the system is irreducible. There exists a stationary policy that is optimal under the

average cost criterion. The policy retains all the properties of the optimal policy under the

discounted cost criterion, as introduced in Theorem 1. Also, the optimal average cost is finite

and independent of the initial state; there exists a finite constant v∗ such that v∗(x) = v∗, ∀x.
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Proof. We first prove the following conditions: (i) There exists a stationary policy π that

induces an irreducible positive recurrent Markov chain with finite average cost vπ, and (ii) the

number of states for which h(x) ≤ vπ is finite. To prove condition (i), consider a policy where

the production of each component is controlled by a base-stock policy with an independent and

fixed critical level, and inventory allocation follows a first-come-first-served policy. Notice that

we have a finite-state Markov chain under this policy. Hence, this policy yields a finite average

cost. It is easy to prove condition (ii) as the inventory holding cost rate for each component is

increasing convex in its inventory level. Thus, for any positive value γ, the number of states for

which h(x) ≤ γ is always finite. Under conditions (i) and (ii), there exists a constant v∗ and

a function f(x) such that f(x) + v∗ = inf{h(x) +
∑

j µjT
(j)f(x) +

∑
i λiTif(x)} (Weber and

Stidham 1987). The stationary policy that minimizes the righthand side of the above equation

for each state x is an optimal policy for the average cost criterion and yields a constant average

cost v∗. Hence, properties of the optimal policy for the average cost are determined through

the function f(x). Recall that properties of the optimal policy for the discounted costs are

determined through v∗(x). Since the same event operators are applied to f(x), the optimal

policy for the average cost retains the same structure as in the discounted cost case.



Appendix B

Supplement to Performance

Evaluation of Lattice-Dependent

Policies for ATO Systems

This chapter includes supplementary material for Chapter 3: Performance Evaluation of

Lattice-Dependent Base-Stock and Rationing Policies for ATO Systems.

B.1 Proof of Proposition 3.2.1

Proposition 3.2.1 (Restated). Z∗ ≤ ZLBLR ≤ ZSBSR ≤ ZFBFR

Proof. It is immediate that the first inequality holds since LP is a relaxation of all other MIP

problems. It is also easy to verify that the third inequality holds since FBFR is a subclass of

SBSR; SBSR becomes FBFR if all base-stock and rationing levels are constant across system

states. To prove the second inequality, we will show that SBSR is a subclass of LBLR.

Recall that the difference vector of lattices for component i is defined as ∆i = (∆i
1,∆

i
2, ..,

∆i
m) where ∆i

k ∈ N0, ∀i, k, and the difference vector of lattices for product j is defined as

∆j = (∆j1,∆j2, ..,∆jm) where ∆ji ∈ N0, ∀i, j. Now we choose any specific ∆i such that

∆i
i ≥

∑
k 6=i ∆i

k, ∀i (recall LBLR chooses the optimal ∆i). We then consider the inventory

replenishment decisions for component i under an LBLR policy. The only constraint on these

decisions is that, if a batch of component i is not produced at inventory level x, then it is not

produced at inventory level x + ∆i. But this is also true under an SBSR policy: If a batch of

component i is not produced at inventory level x, then the base-stock level of component i is



110 Appendix B. Supplement to Performance Evaluation of Lattice-Dependent Policies for ATO Systems

less than xi at inventory level x. We know from property (b) of SBSR that, if the inventory level

of component k 6= i increases by ∆i
k, ∀k, then the base-stock level of component i increases

by at most
∑

k 6=i ∆i
k units. Consequently, the base-stock level of component i is less than

xi +
∑

k 6=i ∆i
k at inventory level x + ∆i. As we assume ∆i

i ≥
∑

k 6=i ∆i
k, a batch of component

i is not produced at inventory level x + ∆i.

We next consider the inventory allocation decisions for product j under an LBLR policy.

The only constraint on these decisions is that, if a demand for product j is satisfied at inventory

level x, then it is satisfied at inventory level x + ∆j . Again this is also true under an SBSR

policy: It is immediate from property (c) that if a demand for product j is satisfied at inventory

level x, then it is also satisfied at inventory level y ≥ x. Hence, SBSR is a subclass of LBLR,

and the second inequality holds.
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B.2 Additional Numerical Results for Nested Structure

Tables B.1 – B.4 exhibit our numerical results for Examples (b) and (c) in Section 3.3.1.

Table B.1 Numerical results for Example (b).

Optimal solution
Percentage difference Computation times

from optimal cost (in seconds)

λA λB Average cost fA fB LBLR SBSR FBFR LBLR SBSR FBFR

0.5 0.5 31.974 0.508 0.792 0.000 1.742 2.687 1.76 335.07 4.87
- 1.0 55.396 0.224 0.730 0.000 1.589 2.413 2.27 1000 11.02
- 1.5 89.495 0.013 0.589 0.000 0.098 1.891 2.58 18.67 3.04
- 2.0 133.028 0.000 0.453 0.000 0.075 1.532 2.69 6.54 2.77
- 2.5 180.194 0.000 0.364 0.000 0.046 1.004 2.43 8.19 3.41

1.0 0.5 39.059 0.457 0.782 0.000 1.526 2.898 1.89 84.08 5.11
- 1.0 64.497 0.172 0.719 0.000 1.504 3.295 2.40 1000 8.02
- 1.5 99.455 0.010 0.588 0.000 0.129 1.739 2.36 9.29 3.99
- 2.0 143.028 0.000 0.453 0.000 0.070 1.425 2.91 5.12 2.27
- 2.5 190.194 0.000 0.364 0.000 0.044 0.952 2.16 3.60 2.35

1.5 0.5 47.243 0.373 0.756 0.000 1.410 2.961 2.24 1000 8.56
- 1.0 74.046 0.137 0.711 0.000 1.225 2.928 2.64 1000 9.15
- 1.5 109.428 0.008 0.588 0.000 0.142 1.607 2.67 55.06 4.43
- 2.0 153.028 0.000 0.453 0.000 0.065 1.332 2.38 3.81 2.31
- 2.5 200.194 0.000 0.364 0.000 0.041 0.904 2.60 5.06 5.88

2.0 0.5 56.289 0.300 0.736 0.000 1.014 2.620 2.51 67.22 8.70
- 1.0 83.797 0.108 0.709 0.000 0.967 2.593 2.31 1000 10.90
- 1.5 119.407 0.012 0.585 0.000 0.147 1.489 2.43 251.57 5.42
- 2.0 163.028 0.000 0.453 0.000 0.061 1.250 2.29 7.27 2.59
- 2.5 210.194 0.000 0.364 0.000 0.039 0.861 3.11 2.21 4.15

2.5 0.5 65.748 0.235 0.765 0.000 0.794 2.313 2.15 426.50 7.08
- 1.0 93.644 0.088 0.715 0.000 0.805 2.277 2.42 1000 10.29
- 1.5 129.391 0.010 0.584 0.000 0.148 1.387 2.45 74.47 5.78
- 2.0 173.028 0.000 0.453 0.000 0.058 1.178 2.72 4.20 2.33
- 2.5 220.194 0.000 0.364 0.000 0.038 0.822 2.35 4.28 2.68

Notes. qφ = 1, qγ = 2, hφ = 1, hγ = 5, µφ = µγ = 1, cA = 20, and cB = 100. Computation times equal to 1000

seconds indicate termination of the algorithm.
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Table B.2 Numerical results for Example (b).

Optimal solution
Percentage difference Computation times

from optimal cost (in seconds)

hφ hγ cA/cB Average cost fA fB LBLR SBSR FBFR LBLR SBSR FBFR

1 1 0.2 48.715 0.096 0.789 0.000 1.271 1.490 2.65 1000 5.36
- - 0.4 65.892 0.186 0.759 0.000 0.645 0.827 2.73 1000 5.47
- - 0.6 81.278 0.261 0.712 0.000 0.268 0.436 2.81 58.92 6.23
- - 0.8 95.296 0.357 0.628 0.000 0.086 0.329 2.56 90.89 7.56
- - 1.0 106.140 0.589 0.400 0.000 0.005 0.710 2.88 119.72 7.20
- 3 0.2 57.606 0.134 0.765 0.000 1.142 2.680 2.83 1000 8.56
- - 0.4 73.881 0.231 0.718 0.000 0.854 2.030 2.45 1000 6.05
- - 0.6 88.301 0.326 0.645 0.000 0.495 1.598 2.53 1000 5.39
- - 0.8 100.865 0.423 0.553 0.000 0.227 1.391 2.42 3.70 6.13
- - 1.0 110.557 0.601 0.381 0.000 0.278 2.150 2.46 42.28 6.59
- 5 0.2 64.497 0.172 0.719 0.000 1.504 3.295 2.36 1000 8.19
- - 0.4 79.868 0.270 0.676 0.000 1.277 2.736 2.14 1000 6.26
- - 0.6 93.359 0.361 0.607 0.000 0.551 2.184 2.16 37.68 7.21
- - 0.8 104.877 0.466 0.506 0.000 0.205 1.970 2.40 27.39 5.30
- - 1.0 114.194 0.580 0.397 0.000 0.118 2.740 2.08 21.94 4.06
3 1 0.2 55.704 0.093 0.758 0.000 1.075 1.635 2.49 1000 4.68
- - 0.4 72.863 0.203 0.715 0.000 0.531 0.895 2.49 1000 5.83
- - 0.6 87.484 0.331 0.647 0.000 0.096 0.177 2.58 170.89 4.39
- - 0.8 100.184 0.418 0.573 0.000 0.169 0.314 2.85 75.94 8.11
- - 1.0 110.179 0.575 0.418 0.000 0.001 0.465 2.49 23.68 3.33
- 3 0.2 64.894 0.110 0.730 0.000 1.187 2.931 2.59 1000 10.22
- - 0.4 81.334 0.238 0.681 0.000 0.813 1.960 2.62 1000 9.62
- - 0.6 95.115 0.362 0.611 0.000 0.273 1.294 2.43 164.92 5.09
- - 0.8 106.805 0.457 0.526 0.000 0.138 1.339 2.63 59.24 5.27
- - 1.0 115.950 0.587 0.399 0.000 0.172 1.750 2.64 23.93 4.90
- 5 0.2 71.610 0.116 0.686 0.000 1.396 2.828 2.24 1000 8.09
- - 0.4 87.455 0.246 0.656 0.000 0.991 2.745 2.47 1000 10.14
- - 0.6 100.331 0.412 0.556 0.000 0.463 2.111 2.66 38.59 5.80
- - 0.8 111.307 0.482 0.494 0.000 0.226 2.200 2.45 12.27 5.81
- - 1.0 120.293 0.595 0.388 0.000 0.318 2.723 2.47 21.74 4.43
5 1 0.2 60.431 0.100 0.731 0.000 0.811 1.867 1.99 613.64 4.55
- - 0.4 77.354 0.222 0.686 0.000 0.346 0.937 2.09 598.84 5.24
- - 0.6 91.803 0.340 0.618 0.000 0.125 0.315 2.52 84.92 4.54
- - 0.8 104.066 0.423 0.560 0.000 0.352 0.495 2.61 152.06 9.06
- - 1.0 113.656 0.560 0.431 0.000 0.002 0.347 2.73 10.07 5.79
- 3 0.2 69.735 0.129 0.690 0.000 1.116 2.841 2.24 1000 6.62
- - 0.4 86.234 0.217 0.665 0.000 0.546 1.780 2.27 558.06 8.69
- - 0.6 99.999 0.385 0.568 0.000 0.121 1.114 2.73 9.48 4.54
- - 0.8 111.637 0.476 0.494 0.000 0.164 1.326 2.58 21.10 7.06
- - 1.0 120.581 0.585 0.399 0.000 0.057 1.493 2.51 9.64 5.78
- 5 0.2 76.270 0.102 0.651 0.000 1.290 2.920 2.11 1000 5.85
- - 0.4 92.500 0.279 0.591 0.000 0.879 2.435 2.13 322.30 7.16
- - 0.6 105.490 0.399 0.539 0.000 0.248 1.696 2.22 17.21 4.51
- - 0.8 116.544 0.527 0.431 0.000 0.024 2.070 2.54 6.21 6.24
- - 1.0 125.545 0.585 0.391 0.000 0.315 2.487 2.66 11.83 8.12

Notes. qφ = 1, qγ = 2, λA = λB = 1, µφ = µγ = 1, and cB = 100. Computation times equal to 1000 seconds

indicate termination of the algorithm.
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Table B.3 Numerical results for Example (c).

Optimal solution
Percentage difference Computation times

from optimal cost (in seconds)

λA λB Average cost fA fB LBLR SBSR FBFR LBLR SBSR FBFR

0.5 0.5 60.414 0.595 0.417 0.000 0.000 1.170 1.57 1.56 2.00
- 1.0 99.799 0.357 0.356 0.000 0.882 2.526 1.98 11.51 10.96
- 1.5 144.392 0.269 0.273 0.000 0.268 1.941 2.04 47.06 7.26
- 2.0 191.741 0.242 0.213 0.000 0.071 1.468 2.09 111.46 10.80
- 2.5 240.147 0.019 0.193 0.000 0.010 0.928 2.08 1000 17.45

1.0 0.5 76.209 0.488 0.294 0.000 0.000 2.010 1.73 2.14 1.93
- 1.0 118.449 0.279 0.307 0.000 0.939 2.100 1.74 51.46 5.25
- 1.5 163.994 0.213 0.245 0.000 0.354 1.641 2.18 15.49 5.74
- 2.0 211.639 0.193 0.194 0.000 0.101 1.360 2.07 551.63 4.33
- 2.5 260.130 0.016 0.192 0.000 0.014 0.863 2.10 132.75 13.52

1.5 0.5 93.828 0.382 0.212 0.000 0.000 1.674 1.59 2.78 5.47
- 1.0 137.517 0.266 0.260 0.000 0.874 1.865 1.81 19.48 9.89
- 1.5 183.736 0.166 0.233 0.000 0.386 1.422 1.84 41.09 5.07
- 2.0 231.571 0.160 0.182 0.000 0.114 1.218 2.19 535.52 8.41
- 2.5 280.116 0.014 0.191 0.000 0.016 0.806 2.13 139.29 3.00

2.0 0.5 112.533 0.313 0.160 0.000 0.000 1.348 1.90 2.42 2.36
- 1.0 156.912 0.220 0.237 0.000 0.821 1.654 2.31 12.79 12.97
- 1.5 203.538 0.160 0.212 0.000 0.401 1.262 2.07 1000 9.20
- 2.0 251.522 0.138 0.173 0.000 0.120 1.101 1.99 175.88 7.16
- 2.5 300.105 0.013 0.190 0.000 0.018 0.757 2.00 91.46 13.36

2.5 0.5 131.697 0.222 0.266 0.000 0.060 1.140 2.04 9.07 4.41
- 1.0 176.514 0.187 0.221 0.000 0.758 1.462 2.09 40.45 7.75
- 1.5 223.350 0.138 0.203 0.000 0.420 1.152 2.15 24.47 9.38
- 2.0 271.485 0.120 0.166 0.000 0.121 1.003 2.34 435.99 6.69
- 2.5 320.096 0.012 0.189 0.000 0.019 0.712 1.98 301.15 8.41

Notes. qφ = qγ = 1, hφ = hγ = 9, µφ = µγ = 1, cA = 40, and cB = 100. Computation times equal to 1000

seconds indicate termination of the algorithm.
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Table B.4 Numerical results for Example (c).

Optimal solution
Percentage difference Computation times

from optimal cost (in seconds)

hφ hγ cA/cB Average cost fA fB LBLR SBSR FBFR LBLR SBSR FBFR

1 1 0.2 74.483 0.004 0.494 0.000 0.000 0.729 2.57 4.73 2.80
- - 0.4 94.325 0.019 0.487 0.000 0.000 0.618 2.73 8.27 4.18
- - 0.6 108.481 0.588 0.203 0.000 0.079 0.199 2.63 72.24 4.65
- - 0.8 114.719 0.748 0.121 0.000 0.009 0.131 2.89 22.72 5.03
- - 1.0 119.118 0.803 0.089 0.000 0.000 0.145 3.03 2.83 4.79
- 5 0.2 83.572 0.014 0.489 0.000 0.001 0.672 2.28 26.71 2.83
- - 0.4 102.492 0.186 0.404 0.000 0.012 0.416 2.63 8.63 6.06
- - 0.6 114.344 0.483 0.255 0.000 0.118 0.247 2.92 182.43 8.35
- - 0.8 122.984 0.636 0.176 0.000 0.073 0.263 2.41 270.42 11.07
- - 1.0 129.337 0.715 0.133 0.000 0.060 0.362 2.72 55.27 13.58
- 9 0.2 91.285 0.045 0.463 0.000 0.011 0.584 2.19 13.26 2.87
- - 0.4 107.906 0.320 0.329 0.000 0.403 0.678 2.34 198.77 4.72
- - 0.6 118.665 0.506 0.238 0.000 0.104 0.344 2.66 11.44 9.26
- - 0.8 128.232 0.599 0.186 0.000 0.134 0.519 3.10 182.74 11.74
- - 1.0 135.512 0.653 0.159 0.000 0.046 0.562 2.84 26.79 10.80
5 1 0.2 78.377 0.007 0.487 0.000 0.000 2.649 1.86 3.68 4.41
- - 0.4 97.974 0.059 0.464 0.000 0.006 2.298 2.31 9.62 4.41
- - 0.6 112.693 0.422 0.281 0.000 0.032 0.894 2.36 4.85 7.07
- - 0.8 121.971 0.615 0.182 0.000 0.000 0.639 2.20 21.85 4.24
- - 1.0 128.871 0.690 0.141 0.000 0.000 0.667 2.04 8.09 6.26
- 5 0.2 89.465 0.036 0.470 0.000 0.000 1.771 2.17 3.03 3.32
- - 0.4 108.034 0.271 0.355 0.000 0.081 1.376 2.08 45.81 4.95
- - 0.6 121.254 0.406 0.284 0.000 0.234 1.108 2.33 8.91 4.15
- - 0.8 131.881 0.538 0.212 0.000 0.086 0.689 2.65 39.65 6.99
- - 1.0 140.432 0.590 0.184 0.000 0.014 0.589 2.33 4.44 5.89
- 9 0.2 97.785 0.036 0.436 0.000 0.026 1.341 1.94 3.21 3.09
- - 0.4 114.619 0.276 0.326 0.000 0.369 1.189 2.11 64.06 10.21
- - 0.6 126.975 0.444 0.247 0.000 0.093 0.932 2.06 4.05 4.19
- - 0.8 137.696 0.470 0.229 0.000 0.001 0.715 2.24 5.08 3.86
- - 1.0 147.058 0.572 0.181 0.000 0.023 0.770 2.34 32.20 8.33
9 1 0.2 81.346 0.011 0.482 0.000 0.000 4.117 1.86 3.56 3.72
- - 0.4 100.440 0.103 0.439 0.000 0.000 4.236 1.98 7.26 2.86
- - 0.6 114.918 0.373 0.302 0.000 0.000 1.907 1.89 8.06 2.82
- - 0.8 125.899 0.513 0.233 0.000 0.000 0.920 2.09 4.96 4.17
- - 1.0 134.148 0.632 0.169 0.000 0.000 1.066 2.21 3.14 4.04
- 5 0.2 93.368 0.035 0.460 0.000 0.012 3.353 1.79 15.69 2.74
- - 0.4 111.341 0.193 0.385 0.000 0.315 2.618 2.15 4.63 8.27
- - 0.6 124.910 0.411 0.279 0.000 0.101 1.377 2.27 11.45 5.55
- - 0.8 136.407 0.432 0.264 0.000 0.000 1.159 2.17 4.06 4.08
- - 1.0 146.016 0.535 0.205 0.000 0.008 0.908 2.26 4.72 2.60
- 9 0.2 101.886 0.084 0.407 0.000 0.043 2.619 1.92 4.65 2.98
- - 0.4 118.449 0.279 0.307 0.000 0.939 2.100 1.85 50.04 5.33
- - 0.6 131.368 0.413 0.240 0.000 0.011 1.117 1.99 6.95 3.81
- - 0.8 142.775 0.433 0.231 0.000 0.003 0.994 2.07 2.81 2.62
- - 1.0 153.310 0.521 0.194 0.000 0.072 1.033 2.06 3.61 7.22

Notes. qφ = qγ = 1, λA = λB = 1, µφ = µγ = 1, and cB = 100. Computation times equal to 1000 seconds

indicate termination of the algorithm.



Appendix C

Supplement to Optimal Portfolio

Strategies for New Product

Development

This chapter includes supplementary material for Chapter 4: Optimal Portfolio Strategies for

New Product Development.

C.1 Proofs of the Results in Section 4.3.

Lemma 4.3.1 (Restated). There is no loss of generality in assuming that yj ∈ {0, 1}, ∀j.

Proof. We will first prove that, without loss of generality, the action space of the operator TB,i

can be reduced to the set of binary variables. Pick arbitrary stage i. For a given state x, let

y∗j denote the optimal rate of resources of stage i allocated to a project in category j ∈ Wi.

Also, define Y ∗ =
∑

j∈Wi
y∗j as the optimal rate of utilized resources at stage i. Therefore,

1−Y ∗ is the optimal rate of unused resources at stage i. Now suppose that Y ∗ > 0. Then the

operator TB,i can be written as follows:

TB,iv(x) =
∑
j∈Wi

cij(y∗j ) + y∗j
∑
j′

v
(
x− ej + ej′

)
fj→j′

+ (1− Y ∗) v (x) ,

We next introduce an auxiliary variable ŷj ∈ [0, 1]. Let ŷ∗j , ∀j ∈ Wi, solve the following
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problem:

min
∑
j∈Wi

cij(ŷj), subject to
∑
j∈Wi

ŷj = Y ∗.

Notice that, since cij(ŷj) is concave in ŷj , there exists a category k̂ ∈ Wi such that ŷ∗
k̂

= Y ∗

and ŷ∗j = 0, ∀j 6= k̂. We now introduce another auxiliary variable ỹj ∈ [0, 1]. Let ỹ∗j , ∀j ∈Wi,

solve the following problem:

min
∑
j∈Wi

ỹj
∑
j′

v
(
x− ej + ej′

)
fj→j′ , subject to

∑
j∈Wi

ỹj = Y ∗.

There exists a category k̃ ∈ Wi s.t.
∑

j′ v
(
x− ek̃ + ej′

)
fk̃→j′ ≤

∑
j′ v
(
x− ej + ej′

)
fj→j′ ,

∀j ∈Wi. This implies that ỹ∗
k̃

= Y ∗ and ỹ∗j = 0, ∀j 6= k̃, is an optimal solution.

We then derive the following lower bound TLB,i for the operator TB,i (by assumption,

cik̂(y) = cik̃(y), ∀y ∈ [0, 1]):

TLB,iv(x) =
∑
j∈Wi

cij(ŷ∗j ) + ỹ∗j
∑
j′

v
(
x− ej + ej′

)
fj→j′

+ (1− Y ∗) v (x)

= cik̂(Y
∗) + Y ∗

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ + (1− Y ∗) v (x)

= cik̃(Y
∗) + Y ∗

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ + (1− Y ∗) v (x)

≤
∑
j∈Wi

cij(y∗j ) + y∗j
∑
j′

v
(
x− ej + ej′

)
fj→j′

+ (1− Y ∗) v (x) = TB,iv(x)

Notice that y∗
k̃

= Y ∗ and y∗j = 0, ∀j 6= k̃, is an optimal solution for the operator TB,i. Therefore,

there is no loss of generality in assuming that resources are utilized by only one project when

Y ∗ > 0.

We next show that, without loss of generality, Y ∗ can be restricted to take values zero or

one. Suppose that there exists 0 < Y ∗ < 1 such that cik̃(Y
∗) +Y ∗

∑
j′ v
(
x− ek̃ + ej′

)
fk̃→j′ +

(1− Y ∗) v (x) < min{cik̃(1) +
∑

j′ v
(
x− ek̃ + ej′

)
fk̃→j′ , v (x)}. Note v (x) corresponds to
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Y ∗ = 0. Then the following inequalities must hold for fixed ε:

TB,iv(x) = cik̃(Y
∗) + Y ∗

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ + (1− Y ∗) v (x)

≤ cik̃(Y
∗ + ε) + (Y ∗ + ε)

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ + (1− Y ∗ − ε) v (x) , (a)

TB,iv(x) = cik̃(Y
∗) + Y ∗

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ + (1− Y ∗) v (x)

≤ cik̃(Y
∗ − ε) + (Y ∗ − ε)

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ + (1− Y ∗ + ε) v (x) (b)

If inequality (a) holds with equality, Y ∗+ε is also an optimal rate of utilized resources. Likewise,

if inequality (b) holds with equality, Y ∗ − ε is also an optimal rate of utilized resources. If

Y ∗ + ε (or Y ∗ − ε) is an optimal rate of utilized resources, we can replace Y ∗ with Y ∗ + ε (or

Y ∗ − ε) and repeat the same argument for the same value of ε iteratively. Then we need to

consider the following scenarios:

(i) Inequality (a) holds with equality until we hit 1. Inequality (b) holds with equality until

we hit 0.

(ii) Inequality (a) holds with equality until we hit 1. There exists κb ∈ {0, 1, ..} such that

inequality (b) holds with equality at Y ∗ − (κb − 1)ε but fails at Y ∗ − κbε ≥ 0.

(iii) There exists κa ∈ {0, 1, ..} such that inequality (a) holds with equality at Y ∗+ (κa− 1)ε

but fails at Y ∗ + κaε ≤ 1. Inequality (b) holds with equality until we hit 0.

(iv) There exists κa ∈ {0, 1, ..} such that inequality (a) holds with equality at Y ∗+ (κa− 1)ε

but fails at Y ∗ + κaε ≤ 1. There exists κb ∈ {0, 1, ..} such that inequality (b) holds with

equality at Y ∗ − (κb − 1)ε but fails at Y ∗ − κbε ≥ 0.

But scenarios (i)–(iii) are infeasible as we assumed cik̃(Y
∗) + Y ∗

∑
j′ v
(
x− ek̃ + ej′

)
fk̃→j′ +

(1− Y ∗) v (x) < min{cik̃(1) +
∑

j′ v
(
x− ek̃ + ej′

)
fk̃→j′ , v (x)} where 0 < Y ∗ < 1. Now con-

sider scenario (iv): {Y ∗ − (κb − 1)ε, Y ∗ − (κb − 2)ε, .., Y ∗ + (κa − 1)ε} is a set of optimal rates



118 Appendix C. Supplement to Optimal Portfolio Strategies for New Product Development

of utilized resources, implying the following (strict) inequalities:

cik̃

(
Y ∗ +

(κa − κb)ε
2

)
+

(
Y ∗ +

(κa − κb)ε
2

)∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′

+

(
1− Y ∗ − (κa − κb)ε

2

)
v (x)

< cik̃(Y
∗ + κaε) + (Y ∗ + κaε)

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ + (1− Y ∗ − κaε) v (x) , (a′)

cik̃

(
Y ∗ +

(κa − κb)ε
2

)
+

(
Y ∗ +

(κa − κb)ε
2

)∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′

+

(
1− Y ∗ − (κa − κb)ε

2

)
v (x)

< cik̃(Y
∗ − κbε) + (Y ∗ − κbε)

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ + (1− Y ∗ + κbε) v (x) . (b′)

Inequalities (a′) and (b′) imply the following inequalities, respectively:

cik̃(Y
∗ + κaε)− cik̃

(
Y ∗ +

(κa − κb)ε
2

)
+

(κa + κb)ε

2

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′

>
(κa + κb)ε

2
v (x)

> cik̃

(
Y ∗ +

(κa − κb)ε
2

)
− cik̃ (Y ∗ − κbε) +

(κa + κb)ε

2

∑
j′

v
(
x− ek̃ + ej′

)
fk̃→j′ .

Thus:

cik̃(Y
∗ + κaε)− cik̃

(
Y ∗ +

(κa − κb)ε
2

)
> cik̃

(
Y ∗ +

(κa − κb)ε
2

)
− cik̃ (Y ∗ − κbε) .

But the above inequality contradicts the assumption that cij(yj) is concave in yj . Therefore,

we cannot have 0 < Y ∗ < 1 such that cik̃(Y
∗)+Y ∗

∑
j′ v
(
x− ek̃ + ej′

)
fk̃→j′+(1− Y ∗) v (x) <

min{cik̃(1) +
∑

j′ v
(
x− ek̃ + ej′

)
fk̃→j′ , v (x)}. If Y ∗ = 0 is an optimal solution, then y∗j = 0,

∀j ∈ Wi; without loss of generality, the action space of the operator TB,i can be reduced to

the set of binary variables. If Y ∗ = 1 is an optimal solution, there is no loss of generality in

assuming that resources are utilized by only one project; again the action space can be reduced

to the set of binary variables.

We will now prove that, without loss of generality, the action space of the operator TC can
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be reduced to the set of binary variables. For a given state x, let y∗j denote the optimal rate

of resources of stage m+ 1 allocated to a project in category j ∈Wm+1. Thus:

TCv(x) =
∑

j∈Wm+1

y∗j (v (x− ej)− ρj) +

1−
∑

j∈Wm+1

y∗j

 v (x)

There exists a category k ∈ Wm+1 such that v (x− ek) − ρk ≤ v (x− ej) − ρj , ∀j ∈ Wm+1.

If v (x− ek) − ρk ≤ v (x), then y∗k = 1 and y∗j = 0, ∀j 6= k, is an optimal solution. If

v (x− ek) − ρk > v (x), then y∗j = 0, ∀j ∈ Wm+1, is an optimal solution. Therefore, without

loss of generality, the action space of the operator TC can be reduced to the set of binary

variables.

C.2 Proofs of the Results in Section 4.4.

Lemma 4.4.1 (Restated). Under Assumptions 4.4.1 and 4.4.2, if v ∈ V̂ , then Tv ∈ V̂ , where

Tv(x) = h(x)+µ1TBv(x)+µ2TCv(x). Furthermore, the optimal cost function v∗ is an element

of V̂ .

Proof. Define V̂ as the set of real-valued functions on Nm0 that satisfy Properties 1–7. Also, de-

fine the operator T on the set of real-valued functions v as follows: Tv(x) = h(x)+µ1TBv(x)+

µ2TCv(x). We show that TB : V̂ → V̂ , TC : V̂ → V̂ , and h ∈ V̂ . We will then prove that

T : V̂ → V̂ .

TB : V̂ → V̂ . Assuming v satisfies Properties 1–7, we want to show TBv satisfies Proper-

ties 1–7.

Property 1. We will prove TBv satisfies Property 1 (i.e., TBv(x + ew) ≥ TBv(x + eq)).

There are two different scenarios we need to consider depending on the optimal action at

TBv(x + ew) (if this inequality holds under a suboptimal action of TBv(x + eq), it also holds

under the optimal action of this operator, and thus we do not enforce the optimal action at

this operator). These two scenarios are as follows:

(1) Suppose that TBv(x+ew) = v(x+ew). As we assume v satisfies Property 1, the following

inequalities hold: TBv(x + ew) = v(x + ew) ≥ v(x + eq) ≥ TBv(x + eq).
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(2) Suppose that TBv(x + ew) =
∑

j v (x + ew + ej) f0→j + c. As we assume v satisfies

Property 1, the following inequalities hold: TBv(x+ew) =
∑

j v (x + ew + ej) f0→j +c ≥∑
j v (x + eq + ej) f0→j + c ≥ TBv(x + eq).

Therefore TBv satisfies Property 1.

Property 2. We will prove TBv satisfies Property 2 (i.e., TBv(x + ew) ≥ TBv(x) − ρw).

There are two different scenarios we need to consider depending on the optimal action at

TBv(x + ew):

(1) Suppose that TBv(x+ew) = v(x+ew). As we assume v satisfies Property 2, the following

inequalities hold: TBv(x + ew) = v(x + ew) ≥ v(x)− ρw ≥ TBv(x)− ρw.

(2) Suppose that TBv(x + ew) =
∑

j v (x + ew + ej) f0→j + c. As we assume v satisfies

Property 2, the following inequalities hold: TBv(x+ew) =
∑

j v (x + ew + ej) f0→j +c ≥∑
j (v (x + ej)− ρw) f0→j + c =

∑
j v (x + ej) f0→j + c− ρw ≥ TBv(x)− ρw.

Therefore TBv satisfies Property 2.

Property 3. We will prove TBv satisfies Property 3 (i.e., TBv(x + eq) − ρw ≥ TBv(x +

ew) − ρq). There are two different scenarios we need to consider depending on the optimal

action at TBv(x + eq):

(1) Suppose that TBv(x+eq) = v(x+eq). As we assume v satisfies Property 3, the following

inequalities hold: TBv(x+eq)−ρw = v(x+eq)−ρw ≥ v(x+ew)−ρq ≥ TBv(x+ew)−ρq.

(2) Suppose that TBv(x + eq) =
∑

j v (x + eq + ej) f0→j + c. As we assume v satisfies Prop-

erty 3, the following inequalities hold: TBv(x + eq)− ρw =
∑

j v (x + eq + ej) f0→j + c−

ρw ≥
∑

j v (x + ew + ej) f0→j + c− ρq ≥ TBv(x + ew)− ρq.

Therefore TBv satisfies Property 3.

Property 4. We will prove TBv satisfies Property 4 (i.e., TBv(x + eq + el) − TBv(x +

eq + ed) ≥ TBv(x + el) − TBv(x + ed), ∀d, l, q ∈ {1, 2, .., n} where d ≤ l ≤ q). We consider

the following scenarios depending on the optimal actions at TBv(x + eq + el) and TBv(x + ed)

(if this inequality holds under suboptimal actions of TBv(x + eq + ed) and/or TBv(x + el), it

also holds under optimal actions of these operators, and thus we do not enforce the optimal

actions at these operators):
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(1) Suppose that TBv(x + eq + el) = v(x + eq + el) and TBv(x + ed) = v(x + ed). As we

assume v satisfies Property 4, the following inequalities hold:

TBv(x + eq + el)− TBv(x + eq + ed) ≥ v(x + eq + el)− v(x + eq + ed)

≥ v(x + el)− v(x + ed)

≥ TBv(x + el)− TBv(x + ed)

(2) Suppose that TBv(x+eq +el) = v(x+eq +el) and TBv(x+ed) =
∑

j v(x + ed + ej)f0→j

+c. As we assume v satisfies Properties 4 and 7, the following inequalities hold:

TBv(x + eq + el)− TBv(x + eq + ed)

≥ v(x + eq + el)− v(x + eq + ed)

≥ v(x + el)− v(x + ed)

≥
∑
j

v(x + el + ej)f0→j + c−
∑
j

v(x + ed + ej)f0→j − c

≥ TBv(x + el)− TBv(x + ed)

(3) Suppose that TBv(x + eq + el) =
∑

j v(x + eq + el + ej)f0→j + c and TBv(x + ed) =

v(x + ed). As we assume v satisfies Properties 4 and 6, the following inequalities hold:

TBv(x + eq + el)− TBv(x + eq + ed)

≥
∑
j

v(x + eq + el + ej)f0→j + c− v(x + eq + ed)

≥
∑
j

v(x + eq + el + ej)f0→j + c− v(x + eq + el)

+v(x + el)− v(x + ed)

≥
∑
j

v(x + el + ej)f0→j + c− v(x + ed)

≥ TBv(x + el)− TBv(x + ed)

(4) Suppose that TBv(x + eq + el) =
∑

j v(x + eq + el + ej)f0→j + c and TBv(x + ed) =∑
j v(x + ed + ej)f0→j+c. As we assume v satisfies Property 4, the following inequalities
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hold:

TBv(x + eq + el)− TBv(x + eq + ed)

≥
∑
j

v(x + eq + el + ej)f0→j + c−
∑
j

v(x + eq + ed + ej)f0→j − c

=
∑
j

(v(x + eq + el + ej)− v(x + eq + ed + ej))f0→j

≥
∑
j

(v(x + el + ej)− v(x + ed + ej))f0→j

=
∑
j

v(x + el + ej)f0→j + c−
∑
j

v(x + ed + ej)f0→j − c

≥ TBv(x + el)− TBv(x + ed)

Therefore TBv satisfies Property 4.

Property 5. We will prove TBv satisfies Property 5 (i.e., TBv(x + eq + el)−TBv(x + eq +

ed) ≥ TBv(x + ew + el) − TBv(x + ew + ed), ∀d, l, q, w ∈ {1, 2, .., n} where d ≤ l ≤ q ≤ w).

We consider the following scenarios depending on the optimal actions at TBv(x + eq + el) and

TBv(x + ew + ed):

(1) Suppose that TBv(x + eq + el) = v(x + eq + el) and TBv(x + ew + ed) = v(x + ew + ed).

As we assume v satisfies Property 5, the following inequalities hold:

TBv(x + eq + el)− TBv(x + eq + ed) ≥ v(x + eq + el)− v(x + eq + ed)

≥ v(x + ew + el)− v(x + ew + ed)

≥ TBv(x + ew + el)− TBv(x + ew + ed)

(2) Suppose that TBv(x+ew +ed) =
∑

j v(x + ew + ed + ej)f0→j + c and TBv(x+eq +el) =

v(x + eq + el). As we assume v satisfies Properties 5 and 7, the following inequalities

hold:

TBv(x + eq + el)− TBv(x + eq + ed)

≥ v(x + eq + el)− v(x + eq + ed)

≥ v(x + ew + el)− v(x + ew + ed)
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≥
∑
j

v(x + ew + el + ej)f0→j −
∑
j

v(x + ew + ed + ej)f0→j

≥ TBv(x + ew + el)− TBv(x + ew + ed)

(3) Suppose that TBv(x + eq + el) =
∑

j v(x + eq + el + ej)f0→j + c and TBv(x + ew + ed) =

v(x + ew + ed). As we assume v satisfies Properties 5 and 7, the following inequalities

hold:

TBv(x + eq + el)− TBv(x + eq + ed)

≥
∑
j

v(x + eq + el + ej)f0→j + c− v(x + eq + ed)

≥
∑
j

v(x + eq + el + ej)f0→j + c− v(x + eq + el)

+v(x + ew + el)− v(x + ew + ed)

≥
∑
j

v(x + ew + el + ej)f0→j + c− v(x + ew + ed)

≥ TBv(x + ew + el)− TBv(x + ew + ed)

(4) Suppose that TBv(x + eq + el) =
∑

j v(x + eq + el + ej)f0→j + c and TBv(x + ew + ed) =∑
j v(x + ew + ed + ej)f0→j + c. As we assume v satisfies Property 5, the following

inequalities hold:

TBv(x + eq + el)− TBv(x + eq + ed)

≥
∑
j

v(x + eq + el + ej)f0→j + c−
∑
j

v(x + eq + ed + ej)f0→j − c

=
∑
j

(v(x + eq + el + ej)− v(x + eq + ed + ej))f0→j

≥
∑
j

(v(x + ew + el + ej)− v(x + ew + ed + ej))f0→j

=
∑
j

v(x + ew + el + ej)f0→j + c−
∑
j

v(x + ew + ed + ej)f0→j − c

≥ TBv(x + ew + el)− TBv(x + ew + ed)

Therefore TBv satisfies Property 5.
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Property 6. We will prove TBv satisfies Property 6, i.e.,

∑
1≤j≤l

TBv(x + eq + el)f0→j +
∑
n≥j>l

TBv(x + eq + ej)f0→j − TBv(x + eq)

≥
∑

1≤j≤l
TBv(x + el)f0→j +

∑
n≥j>l

TBv(x + ej)f0→j − TBv(x), ∀l, q ∈ {1, .., n} where l ≤ q.

We consider the following scenarios depending on the optimal actions at TBv(x + eq + el),

TBv(x + eq + ej) for j > l, and TBv(x) (if this inequality holds under suboptimal actions of

TBv(x + eq), TBv(x + el), and/or TBv(x + ej) for j > l, it also holds under optimal actions of

these operators, and thus we do not enforce the optimal actions at these operators):

(1) Suppose that TBv(x) = v(x). As we assume v satisfies Property 6, it is not optimal

to promote a new product idea at state z ≥ x: TBv(x + eq + el) = v(x + eq + el) and

TBv(x + eq + ej) = v(x + eq + ej), ∀j > l. Thus:

∑
1≤j≤l

TBv(x + eq + el)f0→j +
∑
n≥j>l

TBv(x + eq + ej)f0→j − TBv(x + eq)

≥
∑

1≤j≤l
v(x + eq + el)f0→j +

∑
n≥j>l

v(x + eq + ej)f0→j − v(x + eq)

≥
∑

1≤j≤l
v(x + el)f0→j +

∑
n≥j>l

v(x + ej)f0→j − v(x)

≥
∑

1≤j≤l
TBv(x + el)f0→j +

∑
n≥j>l

TBv(x + ej)f0→j − TBv(x)

(2) Suppose that TBv(x + eq + el) = v(x + eq + el), TBv(x + eq + ej) = v(x + eq + ej)

for j∗ > j > l, TBv(x + eq + ej) =
∑

j′ v(x + eq + ej + ej′)f0→j′ + c for j ≥ j∗ > l,

and TBv(x) =
∑

j′ v(x + ej′)f0→j′ + c. As we assume v satisfies Properties 4 and 6, the

following inequalities hold:

∑
1≤j≤l

TBv(x + eq + el)f0→j +
∑
n≥j>l

TBv(x + eq + ej)f0→j − TBv(x + eq)

≥
∑

1≤j≤l
v(x + eq + el)f0→j +

∑
l<j<j∗

v(x + eq + ej)f0→j

+
∑
j∗≤j

∑
j′

v(x + eq + ej + ej′)f0→j′ + c

 f0→j −
∑

1≤j≤l
v(x + eq + ej)f0→j
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−
∑

l<j<j∗

v(x + eq + ej)f0→j −
∑
j∗≤j

v(x + eq + ej)f0→j − c

=
∑

1≤j≤l
v(x + eq + el)f0→j +

∑
j∗≤j

∑
j′

v(x + eq + ej + ej′)f0→j′ + c

 f0→j

−
∑

1≤j≤l
v(x + eq + ej)f0→j −

∑
j∗≤j

v(x + eq + ej)f0→j − c

=
∑

1≤j≤l
(v(x + eq + el)− v(x + eq + ej)) f0→j

+
∑
j∗≤j

∑
j′

v(x + eq + ej + ej′)f0→j′ − v(x + eq + ej)

 f0→j − c
∑
j<j∗

f0→j

≥
∑

1≤j≤l
(v(x + el)− v(x + ej)) f0→j

+
∑
j∗≤j

∑
j′

v(x + eq + ej + ej′)f0→j′ − v(x + eq + ej)

 f0→j − c
∑
j<j∗

f0→j

≥
∑

1≤j≤l
(v(x + el)− v(x + ej)) f0→j

+
∑
j∗≤j

∑
j′

v(x + ej + ej′)f0→j′ − v(x + ej)

 f0→j − c
∑
j<j∗

f0→j

=
∑

1≤j≤l
v(x + el)f0→j +

∑
j∗≤j

∑
j′

v(x + ej + ej′)f0→j′ + c

 f0→j

−
∑

1≤j≤l
v(x + ej)f0→j −

∑
j∗≤j

v(x + ej)f0→j − c

=
∑

1≤j≤l
v(x + el)f0→j +

∑
l<j<j∗

v(x + ej)f0→j

+
∑
j∗≤j

∑
j′

v(x + ej + ej′)f0→j′ + c

 f0→j −
∑

1≤j≤l
v(x + ej)f0→j

−
∑

l<j<j∗

v(x + ej)f0→j −
∑
j∗≤j

v(x + ej)f0→j − c

≥
∑

1≤j≤l
TBv(x + el)f0→j +

∑
n≥j>l

TBv(x + ej)f0→j − TBv(x)

(3) Suppose that TBv(x + eq + el) =
∑

j′ v(x + eq + el + ej′)f0→j′ + c. As we assume v

satisfies Property 7, TBv(x + eq + ej) =
∑

j′ v(x + eq + ej + ej′)f0→j′ + c for j > l. As

we assume v satisfies Property 6, TBv(x) =
∑

j′ v(x + ej′)f0→j′ + c. As we assume v



126 Appendix C. Supplement to Optimal Portfolio Strategies for New Product Development

satisfies Property 6, the following inequalities hold:

∑
1≤j≤l

TBv(x + eq + el)f0→j +
∑
n≥j>l

TBv(x + eq + ej)f0→j − TBv(x + eq)

≥
∑

1≤j≤l

∑
j′

v(x + eq + el + ej′)f0→j′ + c

 f0→j

+
∑
n≥j>l

∑
j′

v(x + eq + ej + ej′)f0→j′ + c

 f0→j

−
∑
j′

v(x + eq + ej′)f0→j′ − c

=
∑
j′

 ∑
1≤j≤l

v(x + eq + el + ej′)f0→j +
∑
n≥j>l

v(x + eq + ej + ej′)f0→j

−v(x + eq + ej′)
]
f0→j′

≥
∑
j′

 ∑
1≤j≤l

v(x + el + ej′)f0→j +
∑
n≥j>l

v(x + ej + ej′)f0→j − v(x + ej′)

f0→j′
=
∑

1≤j≤l

∑
j′

v(x + el + ej′)f0→j′ + c

 f0→j

+
∑
n≥j>l

∑
j′

v(x + ej + ej′)f0→j′ + c

 f0→j

−
∑
j′

v(x + ej′)f0→j′ − c

≥
∑

1≤j≤l
TBv(x + el)f0→j +

∑
n≥j>l

TBv(x + ej)f0→j − TBv(x)

Therefore TBv satisfies Property 6.

Property 7. We will prove TBv satisfies Property 7, i.e.,

∑
1≤j≤l

TBv(x + eq + el)f0→j +
∑
n≥j>l

TBv(x + eq + ej)f0→j − TBv(x + eq)

≥
∑

1≤j≤l
TBv(x + ew + el)f0→j +

∑
n≥j>l

TBv(x + ew + ej)f0→j − TBv(x + ew),

∀l, q, w ∈ {1, .., n} where l ≤ q < w.

We consider the following scenarios depending on the optimal actions at TBv(x + eq + el),

TBv(x + eq + ej) for j > l, and TBv(x + ew):
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(1) Suppose that TBv(x + ew) = v(x + ew). As we assume v satisfies Property 7 and q < w,

it is not optimal to promote a new product idea at state x+ eq. As we assume v satisfies

Property 6, it is not optimal to promote a new product idea at state x + eq + ej , ∀j.

Therefore, TBv(x + eq + el) = v(x + eq + el) and TBv(x + eq + ej) = v(x + eq + ej) for

j > l. As we assume v satisfies Property 7, the following inequalities hold:

∑
1≤j≤l

TBv(x + eq + el)f0→j +
∑
n≥j>l

TBv(x + eq + ej)f0→j − TBv(x + eq)

≥
∑

1≤j≤l
v(x + eq + el)f0→j +

∑
n≥j>l

v(x + eq + ej)f0→j − v(x + eq)

≥
∑

1≤j≤l
v(x + ew + el)f0→j +

∑
n≥j>l

v(x + ew + ej)f0→j − v(x + ew)

≥
∑

1≤j≤l
TBv(x + ew + el)f0→j +

∑
n≥j>l

TBv(x + ew + ej)f0→j − TBv(x + ew)

(2) Suppose that TBv(x + eq + el) = v(x + eq + el), TBv(x + eq + ej) = v(x + eq + ej)

for j∗ > j > l, TBv(x + eq + ej) =
∑

j′ v(x + eq + ej + ej′)f0→j′ + c for j ≥ j∗, and

TBv(x + ew) =
∑

j′ v(x + ew + ej′)f0→j′ + c. As we assume v satisfies Properties 5 and

7, the following inequalities hold:

∑
1≤j≤l

TBv(x + eq + el)f0→j +
∑
n≥j>l

TBv(x + eq + ej)f0→j − TBv(x + eq)

≥
∑

1≤j≤l
v(x + eq + el)f0→j +

∑
l<j<j∗

v(x + eq + ej)f0→j

+
∑
j∗≤j

∑
j′

v(x + eq + ej + ej′)f0→j′ + c

 f0→j −
∑

1≤j≤l
v(x + eq + ej)f0→j

−
∑

l<j<j∗

v(x + eq + ej)f0→j −
∑
j∗≤j

v(x + eq + ej)f0→j − c

=
∑

1≤j≤l
v(x + eq + el)f0→j +

∑
j∗≤j

∑
j′

v(x + eq + ej + ej′)f0→j′ + c

 f0→j

−
∑

1≤j≤l
v(x + eq + ej)f0→j −

∑
j∗≤j

v(x + eq + ej)f0→j − c

=
∑

1≤j≤l
(v(x + eq + el)− v(x + eq + ej)) f0→j

+
∑
j∗≤j

∑
j′

v(x + eq + ej + ej′)f0→j′ − v(x + eq + ej)

 f0→j − c
∑
j<j∗

f0→j
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≥
∑

1≤j≤l
(v(x + ew + el)− v(x + ew + ej)) f0→j

+
∑
j∗≤j

∑
j′

v(x + eq + ej + ej′)f0→j′ − v(x + eq + ej)

 f0→j − c
∑
j<j∗

f0→j

≥
∑

1≤j≤l
(v(x + ew + el)− v(x + ew + ej)) f0→j

+
∑
j∗≤j

∑
j′

v(x + ew + ej + ej′)f0→j′ − v(x + ew + ej)

 f0→j − c
∑
j<j∗

f0→j

=
∑

1≤j≤l
v(x + ew + el)f0→j +

∑
j∗≤j

∑
j′

v(x + ew + ej + ej′)f0→j′ + c

 f0→j

−
∑

1≤j≤l
v(x + ew + ej)f0→j −

∑
j∗≤j

v(x + ew + ej)f0→j − c

=
∑

1≤j≤l
v(x + ew + el)f0→j +

∑
l<j<j∗

v(x + ew + ej)f0→j

+
∑
j∗≤j

∑
j′

v(x + ew + ej + ej′)f0→j′ + c

 f0→j −
∑

1≤j≤l
v(x + ew + ej)f0→j

−
∑

l<j<j∗

v(x + ew + ej)f0→j −
∑
j∗≤j

v(x + ew + ej)f0→j − c

≥
∑

1≤j≤l
TBv(x + ew + el)f0→j +

∑
n≥j>l

TBv(x + ew + ej)f0→j − TBv(x + ew)

(3) Suppose that TBv(x + eq + el) =
∑

j′ v(x + eq + el + ej′)f0→j′ + c. As we assume v

satisfies Property 7, TBv(x + eq + ej) =
∑

j′ v(x + eq + ej + ej′)f0→j′ + c for j > l. As

we assume v satisfies Properties 6 and 7, TBv(x + ew) =
∑

j′ v(x + ew + ej′)f0→j′ + c.

As we assume v satisfies Property 7, the following inequalities hold:

∑
1≤j≤l

TBv(x + eq + el)f0→j +
∑
n≥j>l

TBv(x + eq + ej)f0→j − TBv(x + eq)

≥
∑

1≤j≤l

∑
j′

v(x + eq + el + ej′)f0→j′ + c

 f0→j

+
∑
n≥j>l

∑
j′

v(x + eq + ej + ej′)f0→j′ + c

 f0→j

−
∑
j′

v(x + eq + ej′)f0→j′ − c
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=
∑
j′

 ∑
1≤j≤l

v(x + eq + el + ej′)f0→j +
∑
n≥j>l

v(x + eq + ej + ej′)f0→j

−v(x + eq + ej′)
]
f0→j′

≥
∑
j′

 ∑
1≤j≤l

v(x + ew + el + ej′)f0→j +
∑
n≥j>l

v(x + ew + ej + ej′)f0→j

−v(x + ew + ej′)
]
f0→j′

=
∑

1≤j≤l

∑
j′

v(x + ew + el + ej′)f0→j′ + c

 f0→j

+
∑
n≥j>l

∑
j′

v(x + ew + ej + ej′)f0→j′ + c

 f0→j

−
∑
j′

v(x + ew + ej′)f0→j′ − c

≥
∑

1≤j≤l
TBv(x + ew + el)f0→j +

∑
n≥j>l

TBv(x + ew + ej)f0→j − TBv(x + ew)

Therefore TBv satisfies Property 7. Hence we showed that TBv satisfies Properties 1–7; TB :

V̂ → V̂ .

TC : V̂ → V̂ . Assuming v satisfies Properties 1–7, we want to show TCv satisfies Proper-

ties 1–7.

Property 1. We will prove TCv satisfies Property 1 (i.e., TCv(x + ew) ≥ TCv(x + eq)).

As we assume v satisfies Properties 2 and 3, it is always optimal to launch a new product

by choosing a project with highest expected reward: TCv(x + ew) = v (x + ew − eb) − ρb

where b is the smallest j such that xj + Ij=w ≥ 1 (Ij=w = 1 if j = w, and Ij=w = 0

otherwise). Suppose that b = w. Then it is easy to verify that TCv(x + ew) = v(x) − ρw ≥

v(x) − ρq ≥ TCv(x + eq). Now suppose that b 6= w. As we assume v satisfies Property 1,

TCv(x + ew) = v(x + ew− eb)−ρb ≥ v(x + eq− eb)−ρb ≥ TCv(x + eq). Therefore TCv satisfies

Property 1.

Property 2. We will prove TCv satisfies Property 2 (i.e., TCv(x + ew) ≥ TCv(x) − ρw).

As we assume v satisfies Properties 2 and 3, TCv(x + ew) = v (x + ew − eb) − ρb where b is

the smallest j such that xj + Ij=w ≥ 1. Suppose that b = w. Then it is easy to verify that

TCv(x + ew) = v (x)− ρw ≥ TCv(x)− ρw. Now suppose that b 6= w. As we assume v satisfies

Property 2, TCv(x+ew) = v (x + ew − eb)−ρb ≥ v (x− eb)−ρb−ρw ≥ TCv(x)−ρw. Therefore
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TCv satisfies Property 2.

Property 3. We will prove TCv satisfies Property 3 (i.e., TCv(x + eq) − ρw ≥ TCv(x +

ew)−ρq). Again, as we assume v satisfies Properties 2 and 3, TCv(x+eq) = v (x + eq − eb)−ρb

where b is the smallest j such that xj + Ij=q ≥ 1. Suppose that b = q. Then it is easy to

verify that TCv(x + eq) − ρw = v (x) − ρq − ρw ≥ TCv(x + ew) − ρq. Now suppose that

b 6= q. As we assume v satisfies Property 3, TCv(x + eq) − ρw = v (x + eq − eb) − ρb − ρw ≥

v (x + ew − eb)− ρb − ρq ≥ TCv(x + ew)− ρq. Therefore TCv satisfies Property 3.

Property 4. We will prove TCv satisfies Property 4 (i.e., TCv(x + eq + el)−TCv(x + eq +

ed) ≥ TCv(x + el) − TCv(x + ed), ∀d, l, q ∈ {1, 2, .., n} where d ≤ l ≤ q). Recall that as we

assume v satisfies Properties 2 and 3, it is always optimal to launch a new product by choosing

a project with highest expected reward. We consider the following scenarios:

(1) Suppose that xj = 0, ∀j ≤ l. Then it is easy to verify the following equalities:

TCv(x + eq + el)− TCv(x + eq + ed) = v(x + eq)− ρl − v(x + eq) + ρd

= v(x)− ρl − v(x) + ρd

= TCv(x + el)− TCv(x + ed)

(2) Suppose that xj = 0, ∀j ≤ d, and xj ≥ 1, ∃j ∈ {d+1, d+2, .., l}. Define b as the smallest

j such that xj ≥ 1. As we assume v satisfies Property 4, the following inequality holds:

TCv(x + eq + el)− TCv(x + eq + ed) = v(x + eq + el − eb)− ρb − v(x + eq) + ρd

≥ v(x + el − eb)− ρb − v(x) + ρd

= TCv(x + el)− TCv(x + ed)

(3) Suppose that xj ≥ 1, ∃j ≤ d. Again define b as the smallest j such that xj ≥ 1. As we

assume v satisfies Property 4, the following inequality holds:

TCv(x + eq + el)− TCv(x + eq + ed)

= v(x + eq + el − eb)− ρb − v(x + eq + ed − eb) + ρb
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≥ v(x + el − eb)− ρb − v(x + ed − eb) + ρb

= TCv(x + el)− TCv(x + ed)

Therefore TCv satisfies Property 4.

Property 5. We will prove TCv satisfies Property 5 (i.e., TCv(x + eq + el)−TCv(x + eq +

ed) ≥ TCv(x+ew+el)−TCv(x+ew+ed), ∀d, l, q, w ∈ {1, 2, .., n} where d ≤ l ≤ q ≤ w). Recall

that as we assume v satisfies Properties 2 and 3, it is always optimal to launch a new product

by choosing a project with highest expected reward. We consider the following scenarios:

(1) Suppose that xj = 0, ∀j ≤ l. Then it is easy to verify the following equalities:

TCv(x + eq + el)− TCv(x + eq + ed) = v(x + eq)− ρl − v(x + eq) + ρd

= v(x + ew)− ρl − v(x + ew) + ρd

= TCv(x + ew + el)− TCv(x + ew + ed)

(2) Suppose that xj = 0, ∀j ≤ d, and xj ≥ 1, ∃j ∈ {d+1, d+2, .., l}. Define b as the smallest

j such that xj ≥ 1. As we assume v satisfies Property 5, the following inequality holds:

TCv(x + eq + el)− TCv(x + eq + ed) = v(x + eq + el − eb)− ρb − v(x + eq) + ρd

≥ v(x + ew + el − eb)− ρb − v(x + ew) + ρd

= TCv(x + ew + el)− TCv(x + ew + ed)

(3) Suppose that xj ≥ 1, ∃j ≤ d. Again define b as the smallest j such that xj ≥ 1. As we

assume v satisfies Property 5, the following inequality holds:

TCv(x + eq + el)− TCv(x + eq + ed)

= v(x + eq + el − eb)− ρb − v(x + eq + ed − eb) + ρb

≥ v(x + ew + el − eb)− ρb − v(x + ew + ed − eb) + ρb

= TCv(x + ew + el)− TCv(x + ew + ed)
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Therefore TCv satisfies Property 5.

Property 6. We will prove TCv satisfies Property 6, i.e.,

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

≥
∑

1≤j≤l
TCv(x + el)f0→j +

∑
n≥j>l

TCv(x + ej)f0→j − TCv(x), ∀l, q ∈ {1, .., n} where l ≤ q.

Recall that as we assume v satisfies Properties 2 and 3, it is always optimal to launch a new

product by choosing a project with highest expected reward. Taking q = n, we consider the

following scenarios:

(1) Suppose that xj = 0, ∀j ≤ q. As we assume v satisfies Property 2, the following

inequality holds:

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

=
∑

1≤j≤l
(v(x + eq)− ρl)f0→j +

∑
n≥j>l

(v(x + eq)− ρj)f0→j − v(x) + ρq

= v(x + eq)−
∑

1≤j≤l
ρlf0→j −

∑
n≥j>l

ρjf0→j − v(x) + ρq

≥ −
∑

1≤j≤l
ρlf0→j −

∑
n≥j>l

ρjf0→j

=
∑

1≤j≤l
(v(x)− ρl)f0→j +

∑
n≥j>l

(v(x)− ρj)f0→j − v(x)

=
∑

1≤j≤l
TCv(x + el)f0→j +

∑
n≥j>l

TCv(x + ej)f0→j − TCv(x)

(2) Suppose that xj = 0, ∀j ≤ l, and xj ≥ 1, ∃j ∈ {l+ 1, l+ 2, .., q}. Define b as the smallest

j such that xj ≥ 1. As we assume v satisfies Property 6, the following inequality holds:

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

=
∑

1≤j≤l
(v(x + eq)− ρl)f0→j +

∑
b≥j>l

(v(x + eq)− ρj)f0→j

+
∑
n≥j>b

(v(x + eq + ej − eb)− ρb)f0→j − v(x + eq − eb) + ρb
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=
∑

1≤j≤b
v(x + eq)f0→j +

∑
n≥j>b

v(x + eq + ej − eb)f0→j − v(x + eq − eb)

−
∑

1≤j≤l
ρlf0→j −

∑
b≥j>l

ρjf0→j +
∑

1≤j≤b
ρbf0→j

≥
∑

1≤j≤b
v(x)f0→j +

∑
n≥j>b

v(x + ej − eb)f0→j − v(x− eb)

−
∑

1≤j≤l
ρlf0→j −

∑
b≥j>l

ρjf0→j +
∑

1≤j≤b
ρbf0→j

=
∑

1≤j≤l
(v(x)− ρl)f0→j +

∑
b≥j>l

(v(x)− ρj)f0→j

+
∑
n≥j>b

(v(x + ej − eb)− ρb)f0→j − v(x− eb) + ρb

=
∑

1≤j≤l
TCv(x + el)f0→j +

∑
n≥j>l

TCv(x + ej)f0→j − TCv(x)

(3) Suppose that xj ≥ 1, ∃j ≤ l. Again define b as the smallest j such that xj ≥ 1. As we

assume v satisfies Property 6, the following inequality holds:

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

=
∑

1≤j≤l
(v(x + eq + el − eb)− ρb)f0→j +

∑
n≥j>l

(v(x + eq + ej − eb)− ρb)f0→j

−v(x + eq − eb) + ρb

≥
∑

1≤j≤l
(v(x + el − eb)− ρb)f0→j +

∑
n≥j>l

(v(x + ej − eb)− ρb)f0→j

−v(x− eb) + ρb

=
∑

1≤j≤l
TCv(x + el)f0→j +

∑
n≥j>l

TCv(x + ej)f0→j − TCv(x)

Therefore TCv satisfies Property 6 when q = n. As TCv satisfies Property 7, it also satisfies

Property 6 for l ≤ q ≤ n:

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

≥
∑

1≤j≤l
TCv(x + eq+1 + el)f0→j +

∑
n≥j>l

TCv(x + eq+1 + ej)f0→j − TCv(x + eq+1),
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1≤j≤l

TCv(x + eq+1 + el)f0→j +
∑
n≥j>l

TCv(x + eq+1 + ej)f0→j − TCv(x + eq+1)

≥
∑

1≤j≤l
TCv(x + eq+2 + el)f0→j +

∑
n≥j>l

TCv(x + eq+2 + ej)f0→j − TCv(x + eq+2),

...∑
1≤j≤l

TCv(x + en + el)f0→j +
∑
n≥j>l

TCv(x + en + ej)f0→j − TCv(x + en)

≥
∑

1≤j≤l
TCv(x + el)f0→j +

∑
n≥j>l

TCv(x + ej)f0→j − TCv(x).

Summation of the above inequalities implies

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

≥
∑

1≤j≤l
TCv(x + el)f0→j +

∑
n≥j>l

TCv(x + ej)f0→j − TCv(x) where l ≤ q ≤ n.

Therefore TCv satisfies Property 6.

Property 7. We will prove TCv satisfies Property 7, i.e.,

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

≥
∑

1≤j≤l
TCv(x + ew + el)f0→j +

∑
n≥j>l

TCv(x + ew + ej)f0→j − TCv(x + ew),

∀l, q, w ∈ {1, 2, .., n} where l ≤ q < w.

Recall that as we assume v satisfies Properties 2 and 3, it is always optimal to launch a new

product by choosing a project with highest expected reward. Taking q = w − 1, we consider

the following scenarios:

(1) Suppose that xj = 0, ∀j ≤ q. As we assume v satisfies Property 3, the following holds:

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

=
∑

1≤j≤l
(v(x + eq)− ρl)f0→j +

∑
q≥j>l

(v(x + eq)− ρj)f0→j

+
∑

n≥j≥w
(v(x + ej)− ρq)f0→j − v(x) + ρq
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=
∑

1≤j≤l
(v(x + eq) + ρq)f0→j +

∑
q≥j>l

(v(x + eq) + ρq)f0→j +
∑

n≥j≥w
v(x + ej)f0→j

−v(x)−
∑

1≤j≤l
ρlf0→j −

∑
q≥j>l

ρjf0→j

≥
∑

1≤j≤l
(v(x + ew) + ρw)f0→j +

∑
q≥j>l

(v(x + ew) + ρw)f0→j +
∑

n≥j≥w
v(x + ej)f0→j

−v(x)−
∑

1≤j≤l
ρlf0→j −

∑
q≥j>l

ρjf0→j

=
∑

1≤j≤l
(v(x + ew)− ρl)f0→j +

∑
q≥j>l

(v(x + ew)− ρj)f0→j

+
∑

n≥j≥w
(v(x + ej)− ρw)f0→j − v(x) + ρw

=
∑

1≤j≤l
TCv(x + ew + el)f0→j +

∑
n≥j>l

TCv(x + ew + ej)f0→j − TCv(x + ew)

(2) Suppose that xj = 0, ∀j ≤ l, and xj ≥ 1, ∃j ∈ {l+ 1, l+ 2, .., q}. Define b as the smallest

j such that xj ≥ 1. As we assume v satisfies Property 7, the following inequality holds:

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

=
∑

1≤j≤l
(v(x + eq)− ρl)f0→j +

∑
b≥j>l

(v(x + eq)− ρj)f0→j

+
∑
n≥j>b

(v(x + eq + ej − eb)− ρb)f0→j − v(x + eq − eb) + ρb

=
∑

1≤j≤b
v(x + eq)f0→j +

∑
n≥j>b

v(x + eq + ej − eb)f0→j − v(x + eq − eb)

−
∑

1≤j≤l
ρlf0→j −

∑
b≥j>l

ρjf0→j +
∑

1≤j≤b
ρbf0→j

≥
∑

1≤j≤b
v(x + ew)f0→j +

∑
n≥j>b

v(x + ew + ej − eb)f0→j − v(x + ew − eb)

−
∑

1≤j≤l
ρlf0→j −

∑
b≥j>l

ρjf0→j +
∑

1≤j≤b
ρbf0→j

=
∑

1≤j≤l
(v(x + ew)− ρl)f0→j +

∑
b≥j>l

(v(x + ew)− ρj)f0→j

+
∑
n≥j>b

(v(x + ew + ej − eb)− ρb)f0→j − v(x + ew − eb) + ρb

=
∑

1≤j≤l
TCv(x + ew + el)f0→j +

∑
n≥j>l

TCv(x + ew + ej)f0→j − TCv(x + ew)

(3) Suppose that xj ≥ 1, ∃j ≤ l. Again define b as the smallest j such that xj ≥ 1. As we
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assume v satisfies Property 7, the following inequality holds:

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

=
∑

1≤j≤l
(v(x + eq + el − eb)− ρb)f0→j +

∑
n≥j>l

(v(x + eq + ej − eb)− ρb)f0→j

−v(x + eq − eb) + ρb

≥
∑

1≤j≤l
(v(x + ew + el − eb)− ρb)f0→j +

∑
n≥j>l

(v(x + ew + ej − eb)− ρb)f0→j

−v(x + ew − eb) + ρb

=
∑

1≤j≤l
TCv(x + ew + el)f0→j +

∑
n≥j>l

TCv(x + ew + ej)f0→j − TCv(x + ew)

Therefore TCv satisfies Property 7 when l ≤ q ≤ w − 1 and q = w − 1. This implies that TCv

satisfies Property 7 for l ≤ q ≤ w − 1:

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

≥
∑

1≤j≤l
TCv(x + eq+1 + el)f0→j +

∑
n≥j>l

TCv(x + eq+1 + ej)f0→j − TCv(x + eq+1),∑
1≤j≤l

TCv(x + eq+1 + el)f0→j +
∑
n≥j>l

TCv(x + eq+1 + ej)f0→j − TCv(x + eq+1)

≥
∑

1≤j≤l
TCv(x + eq+2 + el)f0→j +

∑
n≥j>l

TCv(x + eq+2 + ej)f0→j − TCv(x + eq+2),

...∑
1≤j≤l

TCv(x + ew−1 + el)f0→j +
∑
n≥j>l

TCv(x + ew−1 + ej)f0→j − TCv(x + ew−1)

≥
∑

1≤j≤l
TCv(x + ew + el)f0→j +

∑
n≥j>l

TCv(x + ew + ej)f0→j − TCv(x + ew).

Summation of the above inequalities implies

∑
1≤j≤l

TCv(x + eq + el)f0→j +
∑
n≥j>l

TCv(x + eq + ej)f0→j − TCv(x + eq)

≥
∑

1≤j≤l
TCv(x + ew + el)f0→j +

∑
n≥j>l

TCv(x + ew + ej)f0→j − TCv(x + ew),

where l ≤ q ≤ w − 1. Therefore TCv satisfies Property 7. Hence we showed that TCv satisfies
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Properties 1–7; TC : V̂ → V̂ .

h ∈ V̂ . We below show h satisfies Properties 1–7.

Property 1. h satisfies Property 1: h(x + ew) = h′(
∑
xj + 1) = h(x + eq).

Property 2. h satisfies Property 2: As h is increasing in the number of projects, h(x +

ew) = h′(
∑
xj + 1) ≥ h′(

∑
xj)− ρw = h(x)− ρw.

Property 3. h satisfies Property 3: h(x+eq)−ρw = h′(
∑
xj+1)−ρw ≥ h′(

∑
xj+1)−ρq =

h(x + ew)− ρq.

Property 4. h satisfies Property 4: h(x + eq + el) − h(x + eq + ed) = h′(
∑
xj + 2) −

h′(
∑
xj + 2) = h′(

∑
xj + 1)− h′(

∑
xj + 1) = h(x + el)− h(x + ed).

Property 5. h satisfies Property 5: h(x + eq + el) − h(x + eq + ed) = h′(
∑
xj + 2) −

h′(
∑
xj + 2) = h(x + ew + el)− h(x + ew + ed).

Property 6. h satisfies Property 6: As h is convex in the number of projects,

∑
1≤j≤l

h(x + eq + el)f0→j +
∑
n≥j>l

h(x + eq + ej)f0→j − h(x + eq)

=
∑

1≤j≤l
h′(
∑

xj′ + 2)f0→j +
∑
n≥j>l

h′(
∑

xj′ + 2)f0→j − h′(
∑

xj′ + 1)

= h′(
∑

xj′ + 2)− h′(
∑

xj′ + 1) ≥ h′(
∑

xj′ + 1)− h′(
∑

xj′)

=
∑

1≤j≤l
h′(
∑

xj′ + 1)f0→j +
∑
n≥j>l

h′(
∑

xj′ + 1)f0→j − h′(
∑

xj′)

=
∑

1≤j≤l
h(x + el)f0→j +

∑
n≥j>l

h(x + ej)f0→j − h(x).

Property 7. h satisfies Property 7:

∑
1≤j≤l

h(x + eq + el)f0→j +
∑
n≥j>l

h(x + eq + ej)f0→j − h(x + eq)

=
∑

1≤j≤l
h′(
∑

xj′ + 2)f0→j +
∑
n≥j>l

h′(
∑

xj′ + 2)f0→j − h′(
∑

xj′ + 1)

=
∑

1≤j≤l
h(x + ew + el)f0→j +

∑
n≥j>l

h(x + ew + ej)f0→j − h(x + ew).

Hence h satisfies Properties 1–7; h ∈ V̂ .

T : V̂ → V̂ . Assume v satisfies Properties 1–7 (i.e., v ∈ V̂ ). We proved that TBv, TCv,

and h satisfy Properties 1–7. It is immediate that Tv satisfies Properties 1, 4, 5, 6, and 7,
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as these properties are preserved by linear transformations. Next we will prove Tv satisfies

Property 2 (i.e., Tv(x + ew) ≥ Tv(x)− ρw). Since (i) h is increasing in the number of projects

in the system, (ii) TBv and TCv satisfy Property 2, and (iii) µ1 + µ2 ≤ 1, Property 2 holds:

Tv(x + ew) = h(x + ew) + µ1TBv(x + ew) + µ2TCv(x + ew) ≥ h(x) + µ1 (TBv(x)− ρw) +

µ2 (TCv(x)− ρw) ≥ Tv(x) − ρw. Lastly we will prove Tv satisfies Property 3 (i.e., Tv(x +

eq)− ρw ≥ Tv(x + ew)− ρq). Since (i) TBv and TCv satisfy Property 3, (ii) µ1 + µ2 ≤ 1, and

(iii) ρw ≤ ρq, Property 3 holds: Tv(x + eq) = h(x + eq) + µ1TBv(x + eq) + µ2TCv(x + eq) ≥

h(x+ ew) +µ1 (TBv(x + ew) + ρw − ρq) +µ2 (TCv(x + ew) + ρw − ρq) ≥ Tv(x+ ew) +ρw−ρq.

Therefore Tv satisfies Properties 2 and 3, as well. Hence Tv ∈ V̂ ; T : V̂ → V̂ . Following

Propositions 3.1.5 and 3.1.6 in Bertsekas (2007), we verify that limk→∞(T kv0)(x) = v∗(x)

where v0 is the zero function, v∗ is the optimal cost function, and T k refers to k compositions

of operator T . Since v0 ∈ V̂ and T : V̂ → V̂ , we have T kv0 ∈ V̂ , and therefore v∗ ∈ V̂ .

Theorem 4.4.1 (Restated). Under Assumptions 4.4.1 and 4.4.2, the optimal portfolio strategy

is a state-dependent noncongestive-promotion policy with state-dependent promote-up-to levels

S∗j (x−j): It is optimal to allocate resources of the experimental stage to a new product idea if

and only if xj < S∗j (x−j), ∀j, where x−j = (x1, .., xj−1, xj+1, .., xn) is an n − 1 dimensional

vector of the numbers of projects in categories k 6= j. The optimal policy has the following

additional properties:

i. The optimal promote-up-to level S∗j (x−j) weakly decreases as the number of projects in

category k 6= j increases, ∀j.

ii. The optimal promote-up-to level S∗j (x−j) weakly decreases as the expected reward of a

project in category k 6= j increases, ∀j.

iii. It is always optimal to launch a new product if there are projects available for the product

launch stage.

iv. It is always optimal to allocate resources of the product launch stage to a project with

highest expected reward.

v. It is never optimal to interrupt any experiment.
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Proof. By Lemma 4.4.1, we know v∗ ∈ V̂ . Define, for v∗ ∈ V̂ ,

S∗j (x−j) = min

zj :
∑

1≤k≤n
v∗(z + ek)f0→k − v∗(z) > −c, zj′ = xj′ , ∀j′ 6= j, zj ∈ N0

 , ∀j.

Since v∗ satisfies Property 6,
∑

1≤k≤n v
∗(z + ek)f0→k − v∗(z) is nondecreasing in zj . As zj

increases, since the holding cost rate h is convex and strictly increasing, this difference will

eventually cross −c. Thus a state-dependent noncongestive promotion policy is optimal. Next

we will prove properties (i)-(v):

i. Pick arbitrary j and k such that j 6= k. We will show that the optimal promote-up-to level

for category j obeys S∗j (z−j) ≤ S∗j (x−j), where zj′ = xj′ , ∀j′ /∈ {j, k}, and zk = xk + 1.

Suppose that S∗j (z−j) > S∗j (x−j). By definition, it is optimal to initiate an experiment

at z if zj < S∗j (z−j), and it is not optimal to do so at x if xj = S∗j (x−j) < S∗j (z−j).

But we have a contradiction when zj = xj = S∗j (x−j); if it is optimal to initiate an

experiment at z, it should also be optimal to do so at state x (due to Property 6). Thus

we must have S∗j (z−j) ≤ S∗j (x−j).

ii. Pick arbitrary j, k, and k′ such that j /∈ {k, k′} and k′ < k. We will show that the

optimal promote-up-to level for category j obeys S∗j (z−j) ≤ S∗j (x−j), where zj′ = xj′ ,

∀j′ /∈ {j, k, k′}, zk + 1 = xk and zk′ = xk′ + 1. Suppose that S∗j (z−j) > S∗j (x−j). By

definition, it is optimal to initiate an experiment at z if zj < S∗j (z−j), and it is not

optimal to do so at x if xj = S∗j (x−j) < S∗j (z−j). But we have a contradiction when

zj = xj = S∗j (x−j); if it is optimal to initiate an experiment at z, it should also be

optimal to do so at x (due to Property 7). Thus we must have S∗j (z−j) ≤ S∗j (x−j).

iii. Suppose that ∃k such that xk > 0. Due to Property 2, it is always optimal to launch a

new product:

TCv(x) = min

{
v(x), min

1≤j≤n s.t. x≥ej
v(x− ej)− ρj

}
= min

1≤j≤n s.t. x≥ej
v(x− ej)− ρj .
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iv. Suppose that ∃k such that xk > 0. Point (iii) implies that

TCv(x) = min
1≤j≤n s.t. x≥ej

v(x− ej)− ρj .

Due to Property 3, it is always optimal to choose a project with highest expected reward:

TCv(x) = v(x− ej∗)− ρj∗ where j∗ is the smallest j such that xj > 0.

v. Lastly, we will prove it is never optimal to interrupt any experiment. Assume that an

experiment is optimally initiated at a given state x. We will then consider the following

two cases:

• Suppose that ∃j such that xj > 0. Point (iii) implies that it is optimal to launch a

new product at state x. Suppose that a new product is placed on the market before

the experiment is complete. Thus the system moves to a state z where zj∗ = xj∗−1

and zj = xj , ∀j 6= j∗ (j∗ is the category with highest expected reward among

available categories). Due to Property 6, it is optimal to initiate an experiment at

state z; the experiment initiated at x can be resumed at z. Now suppose that a

new product is placed on the market after the experiment is complete. But then

the experiment is not interrupted.

• Suppose that xj = 0, ∀j. The system can move to a new state only after the

experiment is complete. Therefore the experiment is not interrupted.

C.3 Proofs of the Results in Section 4.5.

We will use the following auxiliary lemma to prove Lemma 4.5.1:

Lemma C.3.1. A real-valued function on Nn0 satisfying Property 10 also satisfies Properties

11–13.

Proof. Assuming a real-valued function g on Nn satisfies Property 10, we want to show g

satisfies Properties 11, 12, and 13. First, we will show g satisfies Property 11. Pick arbitrary



Appendix C. Supplement to Optimal Portfolio Strategies for New Product Development 141

l, q, and w such that l, q, w ∈ {1, 2, ..,m+ 1} and l ≤ q < w ≤ m+ 1. As we assume g satisfies

Property 10, the following inequalities hold:

g(x + el + eq)− g(x + el−1 + eq) ≥ g(x + el + eq+1)− g(x + el−1 + eq+1)

g(x + el + eq+1)− g(x + el−1 + eq+1) ≥ g(x + el + eq+2)− g(x + el−1 + eq+2)

...

g(x + el + ew−2)− g(x + el−1 + ew−2) ≥ g(x + el + ew−1)− g(x + el−1 + ew−1)

g(x + el + ew−1)− g(x + el−1 + ew−1) ≥ g(x + el + ew)− g(x + el−1 + ew)

Summation of the above inequalities implies g(x + el + eq) − g(x + el−1 + eq) ≥ g(x + el +

ew)− g(x + el−1 + ew). Thus g satisfies Property 11.

Second, we will show g satisfies Property 12. Pick arbitrary l, q, and w such that l, q, w ∈

{0, 1, ..,m + 1} and 0 ≤ l < q ≤ w − 1. As we assume g satisfies Property 10, the following

inequalities hold:

g(x + ew + el)− g(x + ew−1 + el) ≥ g(x + ew + el+1)− g(x + ew−1 + el+1)

g(x + ew + el+1)− g(x + ew−1 + el+1) ≥ g(x + ew + el+2)− g(x + ew−1 + el+2)

...

g(x + ew + eq−2)− g(x + ew−1 + eq−2) ≥ g(x + ew + eq−1)− g(x + ew−1 + eq−1)

g(x + ew + eq−1)− g(x + ew−1 + eq−1) ≥ g(x + ew + eq)− g(x + ew−1 + eq)

Summation of the above inequalities implies g(x + ew + el) − g(x + ew−1 + el) ≥ g(x + ew +

eq)− g(x + ew−1 + eq). Thus g satisfies Property 12.

Lastly, we will show g satisfies Property 13. Since g satisfies Property 11, the following

inequality holds: g(x + el + el) − g(x + el−1 + el) ≥ g(x + el) − g(x + el−1) for l ∈ {1, ..,m}.

Since g satisfies Property 12, the following inequality holds: g(x + ew) − g(x + ew−1) ≥

g(x+ew +ew−1)−g(x+ew−1 +ew−1) for w ∈ {2, ..,m}. When l = w 6= 1, summation of these

two inequalities implies g(x+el+el)−g(x+el−1+el) ≥ g(x+el+el−1)−g(x+el−1+el−1) for

l ∈ {2, ..,m}. Now suppose that l = 1. Since g satisfies Property 11, the following inequality
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holds with w = m + 1: g(x + 2e1) − g(x + e1) ≥ g(x + e1) − g(x). Thus g satisfies Property

13.

Lemma 4.5.1 (Restated). Under Assumption 4.5.1, if v ∈ Ṽ , then Tv ∈ Ṽ , where Tv(x) =

h(x) + λTAv(x) +
∑

1≤i≤m µiTB,iv(x) + µm+1TCv(x). Furthermore, the optimal cost function

v∗ is an element of Ṽ .

Proof. Define Ṽ as the set of real-valued functions on Nn0 that satisfy Properties 8–13. Also,

define the operator T on the set of real-valued functions v as follows: Tv(x) = h(x)+λTAv(x)+∑
1≤i≤m µiTB,iv(x) + µm+1TCv(x). We below show that TA : Ṽ → Ṽ , TB,i : Ṽ → Ṽ , ∀i,

TC : Ṽ → Ṽ , and h ∈ Ṽ . We will then prove that T : Ṽ → Ṽ .

TA : Ṽ → Ṽ . Assuming v satisfies Properties 8–13, we below show TAv satisfies Properties

8–13.

Property 8. We will prove TAv satisfies Property 8 (i.e., TAv(x + eq) ≥ TAv(x + ew),

∀q, w ∈ {1, 2, ..,m} where q < w). Pick arbitrary q and w such that q, w ∈ {1, 2, ..,m} and

q < w. There are two different scenarios we need to consider depending on the optimal action

at TAv(x+ eq) (if this inequality holds under a suboptimal action of TAv(x+ ew), it also holds

under the optimal action of this operator, and thus we do not enforce the optimal action at

this operator):

(1) Suppose that TAv(x+eq) = v(x+eq). As we assume v satisfies Property 8, the following

inequalities hold: TAv(x + eq) = v(x + eq) ≥ v(x + ew) ≥ TAv(x + ew).

(2) Suppose that x+eq ≥ el and TAv(x+eq) = v(x+eq−el) where l ≥ 1. Also, suppose that

l 6= q. Hence we should have xl > 0. As we assume v satisfies Property 8, the following

inequalities hold: TAv(x + eq) = v(x + eq − el) ≥ v(x + ew − el) ≥ TAv(x + ew). Now

suppose that l = q. Then it is easy to verify that TAv(x + eq) = v(x) ≥ TAv(x + ew).

Therefore TAv satisfies Property 8.

Property 9. We will prove TAv satisfies Property 9 (i.e., TAv(x + em) ≥ TAv(x) − ρ).

There are two different scenarios we need to consider depending on the optimal action at

TAv(x + em):
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(1) Suppose that TAv(x+em) = v(x+em). As we assume v satisfies Property 9, the following

inequalities hold: TAv(x + em) = v(x + em) ≥ v(x)− ρ ≥ TAv(x)− ρ.

(2) Suppose that x+em ≥ el and TAv(x+em) = v(x+em−el) where l ≥ 1. Also, suppose that

l 6= m. Hence we should have xl > 0. As we assume v satisfies Property 9, the following

inequalities hold: TAv(x+em) = v(x+em−el) ≥ v(x−el)−ρ ≥ TAv(x)−ρ. Now suppose

that l = m. Then it is easy to verify that TAv(x + em) = v(x) ≥ v(x)− ρ ≥ TAv(x)− ρ.

Therefore TAv satisfies Property 9.

Property 10. We will prove TAv satisfies Property 10 (i.e., TAv(x+ eq + ew−1)−TAv(x+

eq−1 + ew−1) ≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew), ∀q, w ∈ {1, 2, ..,m+ 1} where q 6= w).

Pick arbitrary q and w such that q, w ∈ {1, 2, ..,m + 1} and q 6= w. There are four different

scenarios we need to consider depending on the optimal actions at TAv(x + eq + ew−1) and

TAv(x + eq−1 + ew) (if this inequality holds under suboptimal actions of TAv(x + eq−1 + ew−1)

and/or TAv(x + eq + ew), it also holds under optimal actions of these operators, and thus we

do not enforce the optimal actions at these operators):

(1) Suppose that TAv(x + eq + ew−1) = v(x + eq + ew−1) and TAv(x + eq−1 + ew) = v(x +

eq−1 + ew). As we assume v satisfies Property 10, the following inequalities hold:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + eq−1 + ew−1)

≥ v(x + eq + ew)− v(x + eq−1 + ew)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

(2) Suppose that x + eq−1 + ew ≥ el, TAv(x + eq + ew−1) = v(x + eq + ew−1), and TAv(x +

eq−1 + ew) = v(x + eq−1 + ew − el) where l ≥ 1. Also, suppose that l < w. Since

x + eq−1 + ew ≥ el, we should have x + eq−1 ≥ el. As we assume v satisfies Properties

10 and 12, the following inequalities hold:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + eq−1 + ew−1 − el)
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≥ v(x + eq−1 + ew−1) + v(x + eq + ew)

−v(x + eq−1 + ew)− v(x + eq−1 + ew−1 − el)

≥ v(x + eq + ew)− v(x + eq−1 + ew − el)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

Now suppose that l ≥ w. As we assume v satisfies Property 8, if a project is to be

terminated, it is optimal to choose this from the earliest possible stage. Hence we should

have l = w. Again as we assume v satisfies Property 8, the following inequalities hold:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + eq−1)

≥ v(x + eq + ew)− v(x + eq−1)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

(3) Suppose that x + eq + ew−1 ≥ el, TAv(x + eq + ew−1) = v(x + eq + ew−1 − el) where

l ≥ 1, and TAv(x + eq−1 + ew) = v(x + eq−1 + ew). Also, suppose that l < q. Since

x + eq + ew−1 ≥ el, we should have x + ew−1 ≥ el. As we assume v satisfies Properties

10 and 12, the following inequalities hold:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1 − el)− v(x + eq−1 + ew−1 − el)

≥ v(x + eq + ew−1)− v(x + eq−1 + ew−1)

≥ v(x + eq + ew)− v(x + eq−1 + ew)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

Now suppose that l ≥ q. As we assume v satisfies Property 8, we should have l = q.

Again as we assume v satisfies Property 8, the following inequalities hold:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)



Appendix C. Supplement to Optimal Portfolio Strategies for New Product Development 145

≥ v(x + ew−1)− v(x + ew−1)

≥ v(x + eq + ew)− v(x + eq−1 + ew)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

(4) Suppose that x + eq + ew−1 ≥ el, x + eq−1 + ew ≥ ed, TAv(x + eq + ew−1) = v(x + eq +

ew−1 − el) where l ≥ 1, and TAv(x + eq−1 + ew) = v(x + eq−1 + ew − ed) where d ≥ 1.

First, suppose that q < w and l 6= q. As we assume v satisfies Property 8, we should

have l < q and xl > 0. Also we should have l = d. As we assume v satisfies Property 10,

the following inequalities hold:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1 − el)− v(x + eq−1 + ew−1 − el)

≥ v(x + eq + ew − el)− v(x + eq−1 + ew − el)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

Second, suppose that q < w and l = q. As we assume v satisfies Property 8, we should

have xi = 0, ∀i < q. Therefore, d = q − 1. Then it is easy to verify the following

inequalities:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)

≥ v(x + ew−1)− v(x + ew−1)

= v(x + ew)− v(x + ew)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

Third, suppose that q > w and d 6= w. As we assume v satisfies Property 8, we should

have d < w and xd > 0. Also we should have d = l. As we assume v satisfies Property

10, the following inequalities hold:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1 − ed)− v(x + eq−1 + ew−1 − ed)
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≥ v(x + eq + ew − ed)− v(x + eq−1 + ew − ed)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

Lastly, suppose that q > w and d = w. As we assume v satisfies Property 8, we should

have xi = 0, ∀i < w. Therefore, l = w − 1. Then it is easy to verify the following

inequalities:

TAv(x + eq + ew−1)− TAv(x + eq−1 + ew−1)

≥ v(x + eq)− v(x + eq−1)

≥ TAv(x + eq + ew)− TAv(x + eq−1 + ew)

Thus TAv satisfies Property 10. By Lemma C.3.1, TAv also satisfies Properties 11–13. Hence

we showed that TAv satisfies Properties 8–13; TA : Ṽ → Ṽ .

TB,i : Ṽ → Ṽ . Assuming v satisfies Properties 8–13, we below show TB,iv satisfies Prop-

erties 8–13, ∀i.

Property 8. We will prove TB,iv satisfies Property 8 (i.e., TB,iv(x + eq) ≥ TB,iv(x + ew),

∀q, w ∈ {1, 2, ..,m} where q < w). Pick arbitrary q and w such that q, w ∈ {1, 2, ..,m} and

q < w. There are two different scenarios we need to consider depending on the optimal action

at TB,iv(x + eq) (if this inequality holds under a suboptimal action of TB,iv(x + ew), it also

holds under the optimal action of this operator, and thus we do not enforce the optimal action

at this operator):

(1) Suppose that TB,iv(x+eq) = v(x+eq). As we assume v satisfies Property 8, the following

inequalities hold: TB,iv(x + eq) = v(x + eq) ≥ v(x + ew) ≥ TB,iv(x + ew).

(2) Suppose that x + eq ≥ ei−1 and TB,iv(x + eq) = v(x + eq − ei−1 + ei) + ci. Also, suppose

that i 6= q + 1. Since x + eq ≥ ei−1, we should have x ≥ ei−1. As we assume v satisfies

Property 8, the following inequalities hold: TB,iv(x + eq) = v(x + eq − ei−1 + ei) + ci ≥

v(x + ew − ei−1 + ei) + ci ≥ TB,iv(x + ew). Now suppose that i = q+ 1. As we assume v

satisfies Property 8 and q < w, it is easy to verify that TB,iv(x+eq) = v(x+eq+1)+cq+1 ≥

v(x + ew) ≥ TB,iv(x + ew).
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Therefore TB,iv satisfies Property 8.

Property 9. We will prove TB,iv satisfies Property 9 (i.e., TB,iv(x + em) ≥ TB,iv(x)− ρ).

There are two different scenarios we need to consider depending on the optimal action at

TB,iv(x + em):

(1) Suppose that TB,iv(x + em) = v(x + em). As we assume v satisfies Property 9, the

following inequalities hold: TB,iv(x + em) = v(x + em) ≥ v(x)− ρ ≥ TB,iv(x)− ρ.

(2) Suppose that x + em ≥ ei−1 and TB,iv(x + em) = v(x + em− ei−1 + ei) + ci. Since i ≤ m,

we should have x ≥ ei−1. As we assume v satisfies Property 9, the following inequalities

hold: TB,iv(x+em) = v(x+em−ei−1 +ei)+ci ≥ v(x−ei−1 +ei)+ci−ρ ≥ TB,iv(x)−ρ.

Therefore TB,iv satisfies Property 9.

Property 10. We will prove TB,iv satisfies Property 10 (i.e., TB,iv(x+eq+ew−1)−TB,iv(x+

eq−1 +ew−1) ≥ TB,iv(x+eq +ew)−TB,iv(x+eq−1 +ew), ∀q, w ∈ {1, 2, ..,m+1} where q 6= w).

Pick arbitrary q and w such that q, w ∈ {1, 2, ..,m + 1} and q 6= w. There are four different

scenarios we need to consider depending on the optimal actions at TB,iv(x + eq + ew−1) and

TB,iv(x+eq−1+ew) (if this inequality holds under suboptimal actions of TB,iv(x+eq−1+ew−1)

and/or TB,iv(x + eq + ew), it also holds under optimal actions of these operators, and thus we

do not enforce the optimal actions at these operators):

(1) Suppose that TB,iv(x + eq + ew−1) = v(x + eq + ew−1) and TB,iv(x + eq−1 + ew) =

v(x + eq−1 + ew). As we assume v satisfies Property 10, the following inequalities hold:

TB,iv(x + eq + ew−1)− TB,iv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + eq−1 + ew−1)

≥ v(x + eq + ew)− v(x + eq−1 + ew)

≥ TB,iv(x + eq + ew)− TB,iv(x + eq−1 + ew)

(2) Suppose that x + eq−1 + ew ≥ ei−1, TB,iv(x + eq + ew−1) = v(x + eq + ew−1), and

TB,iv(x + eq−1 + ew) = v(x + eq−1 + ew − ei−1 + ei) + ci. Also, suppose that i 6= q. Since

x + eq−1 + ew ≥ ei−1, we should have x + ew ≥ ei−1. As we assume v satisfies Property
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10, the following inequalities hold:

TB,iv(x + eq + ew−1)− TB,iv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + eq−1 + ew−1)

≥ v(x + eq + ew)− v(x + eq−1 + ew)

≥ v(x + eq + ew − ei−1 + ei) + ci − v(x + eq−1 + ew − ei−1 + ei)− ci

≥ TB,iv(x + eq + ew)− TB,iv(x + eq−1 + ew)

Now suppose that i = q. Then it is easy to verify the following inequalities:

TB,iv(x + eq + ew−1)− TB,iv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + eq + ew−1)− cq

= v(x + eq + ew)− v(x + eq + ew)− cq

≥ TB,iv(x + eq + ew)− TB,iv(x + eq−1 + ew)

(3) Suppose that x+eq+ew−1 ≥ ei−1, TB,iv(x+eq+ew−1) = v(x+eq+ew−1−ei−1+ei)+ci, and

TB,iv(x+eq−1 +ew) = v(x+eq−1 +ew). Also, suppose that i 6= w. Since x+eq+ew−1 ≥

ei−1, x+eq ≥ ei−1. As we assume v satisfies Property 10, the following inequalities hold:

TB,iv(x + eq + ew−1)− TB,iv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1 − ei−1 + ei) + ci − v(x + eq−1 + ew−1)

≥ v(x + eq + ew − ei−1 + ei) + ci − v(x + eq + ew)

+v(x + eq + ew−1)− v(x + eq−1 + ew−1)

≥ v(x + eq + ew − ei−1 + ei) + ci − v(x + eq−1 + ew)

≥ TB,iv(x + eq + ew)− TB,iv(x + eq−1 + ew)

Now suppose that i = w. Then it is easy to verify the following inequalities:

TB,iv(x + eq + ew−1)− TB,iv(x + eq−1 + ew−1)
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≥ v(x + eq + ew) + cw − v(x + eq−1 + ew)− cw

= v(x + eq + ew)− v(x + eq−1 + ew)

≥ TB,iv(x + eq + ew)− TB,iv(x + eq−1 + ew)

(4) Suppose that x + eq + ew−1 ≥ ei−1, x + eq−1 + ew ≥ ei−1, TB,iv(x + eq + ew−1) =

v(x+eq+ew−1−ei−1+ei)+ci, and TB,iv(x+eq−1+ew) = v(x+eq−1+ew−ei−1+ei)+ci.

Since x + eq + ew−1 ≥ ei−1, x + eq−1 + ew ≥ ei−1, and q 6= w, we should have x ≥ ei−1.

As we assume v satisfies Property 10, the following inequalities hold:

TB,iv(x + eq + ew−1)− TB,iv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1 − ei−1 + ei) + ci − v(x + eq−1 + ew−1 − ei−1 + ei)− ci

≥ v(x + eq + ew − ei−1 + ei) + ci − v(x + eq−1 + ew − ei−1 + ei)− ci

≥ TB,iv(x + eq + ew)− TB,iv(x + eq−1 + ew)

Thus TB,iv satisfies Property 10. By Lemma C.3.1, TB,iv also satisfies Properties 11–13. Hence

we showed that TB,iv satisfies Properties 8–13; TB,i : Ṽ → Ṽ .

TC : Ṽ → Ṽ . Assuming v satisfies Properties 8–13, we below show TCv satisfies Properties

8–13.

Property 8. We will prove TCv satisfies Property 8 (i.e., TCv(x + eq) ≥ TCv(x + ew),

∀q, w ∈ {1, 2, ..,m} where q < w). Pick arbitrary q and w such that q, w ∈ {1, 2, ..,m} and

q < w. There are two different scenarios we need to consider depending on the optimal action

at TCv(x+ eq) (if this inequality holds under a suboptimal action of TCv(x+ ew), it also holds

under the optimal action of this operator, and thus we do not enforce the optimal action at

this operator):

(1) Suppose that TCv(x+eq) = v(x+eq). As we assume v satisfies Property 8, the following

inequalities hold: TCv(x + eq) = v(x + eq) ≥ v(x + ew) ≥ TCv(x + ew).

(2) Suppose that x + eq ≥ em and TCv(x + eq) = v(x + eq − em) − ρ. Since q < w ≤ m,

we should have q < m and xm > 0. Therefore, as we assume v satisfies Property 8, the

following inequalities hold: TCv(x + eq) = v(x + eq − em) − ρ ≥ v(x + ew − em) − ρ ≥
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TCv(x + ew).

Therefore TCv satisfies Property 8.

Property 9. We will prove TCv satisfies Property 9 (i.e., TCv(x + em) ≥ TCv(x) − ρ).

There are two different scenarios we need to consider depending on the optimal action at

TCv(x + em):

(1) Suppose that TCv(x+em) = v(x+em). As we assume v satisfies Property 9, the following

inequalities hold: TCv(x + em) = v(x + em) ≥ v(x)− ρ ≥ TCv(x)− ρ.

(2) Suppose that TCv(x + em) = v(x) − ρ. Then, it is easy to verify that TCv(x + em) =

v(x)− ρ ≥ TCv(x)− ρ.

Therefore TCv satisfies Property 9.

Property 10. We will prove TCv satisfies Property 10 (i.e., TCv(x+eq +ew−1)−TCv(x+

eq−1 + ew−1) ≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew), ∀q, w ∈ {1, 2, ..,m+ 1} where q 6= w).

Pick arbitrary q and w such that q, w ∈ {1, 2, ..,m + 1} and q 6= w. There are four different

scenarios we need to consider depending on the optimal actions at TCv(x + eq + ew−1) and

TCv(x + eq−1 + ew) (if this inequality holds under suboptimal actions of TCv(x + eq−1 + ew−1)

and/or TCv(x + eq + ew), it also holds under optimal actions of these operators, and thus we

do not enforce the optimal actions at these operators):

(1) Suppose that TCv(x + eq + ew−1) = v(x + eq + ew−1) and TCv(x + eq−1 + ew) = v(x +

eq−1 + ew). As we assume v satisfies Property 10, the following inequalities hold:

TCv(x + eq + ew−1)− TCv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + eq−1 + ew−1)

≥ v(x + eq + ew)− v(x + eq−1 + ew)

≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew)

(2) Suppose that x+eq−1+ew ≥ em, TCv(x+eq+ew−1) = v(x+eq+ew−1), and TCv(x+eq−1+

ew) = v(x+eq−1+ew−em)−ρ. As we assume v satisfies Property 9, it is always optimal

to launch a new product if it is feasible. But TCv(x + eq + ew−1) = v(x + eq + ew−1); we
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should have xm = 0, q 6= m, and w 6= m+ 1. Since x + eq−1 + ew ≥ em, we should also

have q = m + 1 and/or w = m. First, suppose that q = m + 1 and w 6= m. Then it is

easy to verify the following inequalities (recall that em+1 is a zero vector of dimension

m):

TCv(x + eq + ew−1)− TCv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + ew−1) + ρ

= v(x + ew−1)− v(x + ew−1) + ρ

= v(x + ew)− v(x + ew) + ρ

= v(x + eq + ew)− v(x + ew) + ρ

≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew)

Second, suppose that q 6= m + 1 and w = m. Thus q < m. As we assume v satisfies

Property 11, the following inequalities hold:

TCv(x + eq + ew−1)− TCv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + eq−1 + ew−1)

≥ v(x + eq)− ρ− v(x + eq−1) + ρ

≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew)

Lastly, suppose that q = m + 1 and w = m. Then it is easy to verify the following

inequalities:

TCv(x + eq + ew−1)− TCv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1)− v(x + ew−1) + ρ

= v(x + ew−1)− v(x + ew−1) + ρ

= v(x + ew)− v(x + ew) + ρ

= v(x + eq + ew)− v(x + ew) + ρ

≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew)
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(3) Suppose that x + eq + ew−1 ≥ em, TCv(x + eq + ew−1) = v(x + eq + ew−1 − em)− ρ, and

TCv(x + eq−1 + ew) = v(x + eq−1 + ew). As we assume v satisfies Property 9, we should

have xm = 0, q 6= m + 1, and w 6= m. Since x + eq + ew−1 ≥ em, we should also have

q = m and/or w = m+ 1. First, suppose that q = m and w 6= m+ 1. Thus w < m. As

we assume v satisfies Property 11, the following inequalities hold:

TCv(x + eq + ew−1)− TCv(x + eq−1 + ew−1)

≥ v(x + ew−1)− ρ− v(x + eq−1 + ew−1)

≥ v(x + ew)− ρ− v(x + eq−1 + ew)

≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew)

Second, suppose that q 6= m and w = m + 1. Then it is easy to verify the following

inequalities:

TCv(x + eq + ew−1)− TCv(x + eq−1 + ew−1)

≥ v(x + eq)− ρ− v(x + eq−1) + ρ

= v(x + eq)− v(x + eq−1)

= v(x + eq + ew)− v(x + eq−1 + ew)

≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew)

Lastly, suppose that q = m and w = m + 1. Then it is easy to verify the following

inequalities:

TCv(x + eq + ew−1)− TCv(x + eq−1 + ew−1)

≥ v(x + eq)− ρ− v(x + eq−1) + ρ

= v(x + eq + ew)− v(x + eq−1 + ew)

≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew)

(4) Suppose that x + eq + ew−1 ≥ em, x + eq−1 + ew ≥ em, TCv(x + eq + ew−1) = v(x +
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eq + ew−1 − em) − ρ, and TCv(x + eq−1 + ew) = v(x + eq−1 + ew − em) − ρ. Since

x + eq + ew−1 ≥ em, x + eq−1 + ew ≥ em, and q 6= w, we should have x ≥ em. As we

assume v satisfies Property 10, the following inequalities hold:

TCv(x + eq + ew−1)− TCv(x + eq−1 + ew−1)

≥ v(x + eq + ew−1 − em)− ρ− v(x + eq−1 + ew−1 − em) + ρ

≥ v(x + eq + ew − em)− ρ− v(x + eq−1 + ew − em)− ρ

≥ TCv(x + eq + ew)− TCv(x + eq−1 + ew)

Thus TCv satisfies Property 10. By Lemma C.3.1, TCv also satisfies Properties 11–13. Hence,

we showed that TCv satisfies Properties 8–13; TC : Ṽ → Ṽ .

h ∈ Ṽ . We below show h satisfies Properties 8–13.

Property 8. h satisfies Property 8: h(x + eq) = h′(
∑

i xi + 1) = h(x + ew).

Property 9. h satisfies Property 9: As h is increasing in the number of projects in the

system, h(x + em) = h′(
∑

i xi + 1) ≥ h′(
∑

i xi)− ρ = h(x)− ρ.

Property 10. We next prove h satisfies Property 10. Pick arbitrary q and w such that

q 6= w.

(1) Suppose that m ≥ q ≥ 2 and m ≥ w ≥ 2. Then, it is easy to verify h(x + eq + ew−1)−

h(x + eq−1 + ew−1) = h′(
∑

i xi + 2)− h′(
∑

i xi + 2) = h(x + eq + ew)− h(x + eq−1 + ew).

(2) Suppose that m ≥ q ≥ 2 and w ∈ {1,m+ 1}. If w = 1, h(x + eq + ew−1)− h(x + eq−1 +

ew−1) = h′(
∑

i xi + 1)−h′(
∑

i xi + 1) = h′(
∑

i xi + 2)−h′(
∑

i xi + 2) = h(x + eq + ew)−

h(x + eq−1 + ew). If w = m+ 1, h(x + eq + ew−1)−h(x + eq−1 + ew−1) = h′(
∑

i xi + 2)−

h′(
∑

i xi + 2) = h′(
∑

i xi + 1)− h′(
∑

i xi + 1) = h(x + eq + ew)− h(x + eq−1 + ew).

(3) Suppose that q ∈ {1,m + 1} and m ≥ w ≥ 2. If q = 1, h(x + eq + ew−1) − h(x +

eq−1 + ew−1) = h′(
∑

i xi + 2) − h′(
∑

i xi + 1) = h(x + eq + ew) − h(x + eq−1 + ew). If

q = m + 1, h(x + eq + ew−1) − h(x + eq−1 + ew−1) = h′(
∑

i xi + 1) − h′(
∑

i xi + 2) =

h(x + eq + ew)− h(x + eq−1 + ew).

(4) Suppose that q, w ∈ {1,m+ 1}. If q = 1 and w = m+ 1, as h is convex in the number of
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projects in the system, h(x+eq+ew−1)−h(x+eq−1+ew−1) = h′(
∑

i xi+2)−h′(
∑

i xi+

1) ≥ h′(
∑

i xi+1)−h′(
∑

i xi) = h(x+eq+ew)−h(x+eq−1+ew). If q = m+1 and w = 1, as

h is convex in the number of projects in the system, h(x+eq+ew−1)−h(x+eq−1+ew−1) =

h′(
∑

i xi)−h′(
∑

i xi+1) ≥ h′(
∑

i xi+1)−h′(
∑

i xi+2) = h(x+eq+ew)−h(x+eq−1+ew).

Therefore h satisfies Property 10. By Lemma C.3.1, h also satisfies Properties 11–13. Thus

h ∈ Ṽ .

T : Ṽ → Ṽ . Assume v satisfies Properties 8–13 (i.e., v ∈ Ṽ ). We proved that TAv, TB,iv,

TCv, and h satisfy Properties 8–13. It is immediate that Tv satisfies Properties 8, 10, 11, 12,

and 13, as these properties are preserved by linear transformations. Next we will prove Tv

satisfies Property 9 (i.e., Tv(x + em) ≥ Tv(x)− ρ). Since (i) h is increasing in the number of

projects in the system, (ii) TAv, TB,iv, and TCv satisfy Property 9, and (iii) λ+
∑

i µi+µm+1 ≤

1, Property 9 holds: Tv(x + em) = h(x + em) + λTAv(x + em) +
∑

1≤i≤m µiTB,iv(x + em) +

µm+1TCv(x+em) ≥ h(x)+λ (TAv(x)− ρ)+
∑

1≤i≤m µi (TB,iv(x)− ρ)+µm+1 (TCv(x)− ρ) ≥

Tv(x) − ρ. Hence Tv ∈ Ṽ ; T : Ṽ → Ṽ . Following Propositions 3.1.5 and 3.1.6 in Bertsekas

(2007), we verify that limk→∞(T kv0)(x) = v∗(x) where v0 is the zero function, v∗ is the optimal

cost function, and T k refers to k compositions of operator T . Since v0 ∈ Ṽ and T : Ṽ → Ṽ ,

we have T kv0 ∈ Ṽ , and therefore v∗ ∈ Ṽ .

Theorem 4.5.1 (Restated). Under Assumption 4.5.1, the optimal portfolio strategy at each

stage i is a state-dependent noncongestive-promotion policy with state-dependent promote-up-

to levels S∗i (x−i): It is optimal to promote a project to stage i if and only if xi < S∗i (x−i),

where x−i = (x1, .., xi−1, xi+1, .., xm) is an m−1 dimensional vector of the numbers of projects

at stages k 6= i. The optimal policy has the following additional properties:

i. The optimal promote-up-to level S∗i (x−i) weakly increases as the number of projects at

stage j > i decreases.

ii. The optimal promote-up-to level S∗i (x−i) weakly increases as the number of projects at

stage j < i increases.

iii. The optimal promote-up-to level S∗i (x−i) weakly increases as projects at stage j 6= i− 1

move along the process.
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iv. It is always optimal to launch a new product if there are projects available for the product

launch stage.

v. It is never optimal to interrupt any experiment.

vi. It is never optimal to terminate any project.

Proof. By Lemma 4.5.1, we know v∗ ∈ Ṽ . Define, for v∗ ∈ Ṽ ,

S∗1(x−1) = min {z1 : v∗(z + e1)− v∗(z) > −c1, zk = xk,∀k > 1, z1 ∈ N0} , and

S∗i (x−i) = min{xi−1,min {zi : v∗(z− ei−1 + ei)− v∗(z) > −ci, zk = xk, ∀k 6= i, zi ∈ N0}},

∀i ∈ {2, ..,m}.

Since v∗ satisfies Property 11, v∗(z− ei−1 + ei)− v∗(z) is increasing in zi (take l = q = i and

w = m+ 1), ∀i ∈ {1, 2, ..,m}.

Consider S∗1(x−1). As z1 increases, since the holding cost rate h is convex and strictly

increasing in the number of projects in the system, v∗(z + e1) − v∗(z) will eventually cross

−c1. Thus there exists a finite S∗1(x−1). Now consider S∗i (x−i) for i ∈ {2, ..,m}. Notice that,

since the holding cost rate h is convex and strictly increasing in the number of projects in the

system, xi−1 will be finite. Thus there exists a finite S∗i (x−i). Hence the optimal control policy

is a noncongestive promotion policy with state-dependent promote-up-to levels S∗i (x−i), ∀i.

Next we will prove properties (i)-(vi):

i. Pick arbitrary i and j such that i < j. We will show that the optimal promote-up-to

level at stage i obeys S∗i (z−i) ≥ S∗i (x−i), where zi′ = xi′ , ∀i′ /∈ {i, j}, and zj + 1 = xj .

Suppose that S∗i (z−i) < S∗i (x−i). By definition, it is optimal to promote a project to

stage i at x if xi < S∗i (x−i), and it is not optimal to do so at z if zi = S∗i (z−i) < S∗i (x−i).

But we have a contradiction when xi = zi = S∗i (z−i); if it is optimal to promote a project

to stage i at x, it should also be optimal to do so at z (due to Property 11 when l = i,

q = j, and w = m+ 1). Thus we must have S∗i (z−i) ≥ S∗i (x−i).

ii. Pick arbitrary i and j such that i > j. We will show that the optimal promote-up-to

level at stage i obeys S∗i (z−i) ≥ S∗i (x−i), where zi′ = xi′ , ∀i′ /∈ {i, j}, and zj = xj + 1.
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Suppose that S∗i (z−i) < S∗i (x−i). By definition, it is optimal to promote a project to

stage i at x if xi < S∗i (x−i), and it is not optimal to do so at z if zi = S∗i (z−i) < S∗i (x−i).

But we have a contradiction when xi = zi = S∗i (z−i); if it is optimal to promote a project

to stage i at x, it should also be optimal to do so at z (due to Property 12 when l = 0,

q = j, and w = i). Thus we must have S∗i (z−i) ≥ S∗i (x−i).

iii. Pick arbitrary i and j such that i 6= j+ 1. We will show that the optimal promote-up-to

level at stage i obeys S∗i (z−i) ≥ S∗i (x−i), where zi′ = xi′ , ∀i′ /∈ {i, j, j + 1}, zj + 1 = xj

and zj+1 = xj+1 + 1. Suppose that S∗i (z−i) < S∗i (x−i). By definition, it is optimal to

promote a project to stage i at x if xi < S∗i (x−i), and it is not optimal to do so at z if

zi = S∗i (z−i) < S∗i (x−i). But we have a contradiction when xi = zi = S∗i (z−i); if it is

optimal to promote a project to stage i at x, it should also be optimal to do so at z (due

to Property 10 when q = i and w = j + 1). Thus we must have S∗i (z−i) ≥ S∗i (x−i).

iv. Suppose that xm > 0. Since v∗ satisfies Property 9, it is always optimal to launch a new

product: TCv
∗(x) = min {v∗(x), v∗(x− em)− ρ} = v∗(x− em)− ρ.

v. We will prove it is never optimal to interrupt any experiment. Assume that a project is

optimally promoted to stage i at a given state x, or equivalently, an experiment at stage

i is optimally initiated at x (i.e., xi < S∗i (x−i)). We will then consider the following

cases:

• Suppose that i ≥ 2. Also, suppose that the system moves to a state z such that

z1 = x1 + 1 and zj = xj , ∀j > 1. Point (ii) implies that it is optimal to promote a

project to stage i at z: The experiment at stage i, which has been initiated at x,

can be resumed at z.

• Pick arbitrary j ≥ 1 such that j + 1 6= i and j + 1 ≤ m. Suppose that the

system moves to a state z such that zj + 1 = xj , zj+1 = xj+1 + 1, and zj′ = xj′ ,

∀j′ /∈ {j, j + 1}. Point (iii) implies that it is optimal to promote a project to stage

i at z: Again, the experiment at stage i, which has been initiated at x, can be

resumed at z.

• Suppose that the system moves to a state z such that zm + 1 = xm and zj = xj ,
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∀j < m. Also, suppose that i < m. Point (i) implies that it is optimal to promote

a project to stage i at state z: Once again, the experiment at stage i, which has

been initiated at x, can be resumed at z. Next suppose that i = m: It is optimal

to promote a project to stage m at state z, since zm < xm < S∗m(x−m) = S∗m(z−m).

Once again, the experiment at stage i, which has been initiated at x, can be resumed

at z.

Therefore the experiment at stage i is never interrupted.

vi. As v∗ satisfies Property 8, it is easy to verify that v∗(x + eq + ew) − v∗(x + ew) ≥

v∗(x + eq + ew) − v∗(x + eq) for q < w. Therefore, if a project is to be terminated, it

is optimal to select this from the earliest possible stage. Pick arbitrary state x. Let

i∗ denote the earliest stage with at least one available project. Thus xi = 0, ∀i < i∗.

Suppose that it is not optimal to terminate a project from category i∗ at state x (i.e.,

v∗(x) ≤ v∗(x− ei∗)). Then we consider the following scenarios:

• Suppose that the system moves to a state z such that z1 = x1 + 1 and zj = xj ,

∀j > 1. This implies that v∗(x + e1) + c1 ≤ v∗(x). Since c1 ≥ 0, we should

have v∗(x + e1) ≤ v∗(x). Thus it is not optimal to terminate a project at stage

1. As v∗ satisfies Property 8, we should also have 0 ≥ v∗(x + e1) − v∗(x) ≥

v∗(x + e1) − v∗(x + e1 − ei∗). Thus, it is not optimal to terminate any project at

stage i∗.

• Suppose that the system moves to a state z such that zi∗+1 = xi∗ , zi∗+1 = xi∗+1+1,

and zj = xj , ∀j /∈ {i∗, i∗+1}. This implies that v∗(x) ≥ v∗(z)+ci∗+1. Also, suppose

that xi∗ ≥ 2. Since v∗(x−ei∗) ≥ v∗(x) and v∗ satisfies Property 12, we should have

0 ≥ v∗(x) − v∗(x − ei∗) ≥ v∗(z) − v∗(z − ei∗). Thus it is not optimal to terminate

any project at stage i∗. Now suppose that xi∗ = 1. Notice that zi = 0, ∀i ≤ i∗.

If a project is to be terminated at z, it is optimal to select this from stage i∗ + 1.

But it is not optimal to terminate such a project: Since v∗(x − ei∗) ≥ v∗(x) and

v∗(x) ≥ v∗(z) + ci∗+1, we should have v∗(z− ei∗+1) = v∗(x− ei∗) ≥ v∗(z).

• Pick arbitrary j such that j > i∗ and j < m. Suppose that the system moves to a

state z such that zj + 1 = xj , zj+1 = xj+1 + 1, and zj′ = xj′ , ∀j′ /∈ {j, j + 1}. Since
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v∗(x− ei∗) ≥ v∗(x) and v∗ satisfies Property 12, we should have 0 ≥ v∗(x)− v∗(x−

ei∗) ≥ v∗(z)− v∗(z− ei∗). Thus it is not optimal to terminate any project at stage

i∗.

• Suppose that the system moves to a state z such that zm + 1 = xm and zj = xj ,

∀j < m. Also, suppose that either i∗ < m or i∗ = m and xm ≥ 2. Since v∗(x−ei∗) ≥

v∗(x) and v∗ satisfies Property 12, we should have 0 ≥ v∗(x) − v∗(x − ei∗) ≥

v∗(z) − v∗(z − ei∗). Thus it is not optimal to terminate any project at stage i∗.

Now, suppose that i∗ = m and xm = 1. But then zi = 0, ∀i; there is no project in

the system.

Therefore it is never optimal to terminate any project during the NPD process.
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C.4 Additional Numerical Results for FNCP-C, FNCP-S, and

NP

Tables C.1 and C.2 exhibit additional numerical results for FNCP-C, FNCP-S, and NP.

Table C.1 Numerical results for various holding and experimentation costs.

% difference from optimal cost Computation times (in seconds)

h c1 c2 FNCP-C FNCP-S NP FNCP-C FNCP-S NP

1 2 2 0.876 0.877 1.041 467.01 3.49 0.23
1 2 4 1.610 1.637 2.316 572.58 3.96 0.19
1 2 6 4.165 4.202 5.801 1754.26 2.92 0.17
1 4 2 3.600 4.143 5.866 446.86 2.34 0.28
1 4 4 5.134 5.202 12.701 608.42 2.98 0.21
1 4 6 5.333 5.344 17.141 743.41 2.88 0.18
1 6 2 4.888 7.017 17.960 820.93 3.43 0.27
1 6 4 5.169 5.161 23.841 855.63 2.49 0.29
1 6 6 5.846 4.016 34.411 697.96 2.02 0.30
2 2 2 4.174 4.633 13.184 500.77 3.59 0.21
2 2 4 3.429 4.284 18.775 686.85 2.91 0.15
2 2 6 5.328 6.207 27.641 675.33 2.57 0.13
2 4 2 4.958 6.345 32.294 460.01 2.68 0.22
2 4 4 9.721 8.698 51.362 749.09 2.52 0.21
2 4 6 13.965 12.486 79.718 817.25 2.10 0.15
2 6 2 14.397 13.709 78.627 672.89 3.21 0.22
2 6 4 17.338 17.405 123.464 198.22 2.99 0.22
2 6 6 20.758 20.781 201.705 383.51 1.62 0.22
3 2 2 5.767 5.874 25.632 541.60 1.76 0.13
3 2 4 8.254 8.252 33.446 406.77 1.76 0.13
3 2 6 14.371 14.208 46.302 645.48 1.53 0.13
3 4 2 13.796 13.746 82.622 466.25 2.88 0.15
3 4 4 20.520 20.688 114.935 504.34 1.59 0.17
3 4 6 31.680 31.680 164.425 402.99 2.15 0.12
3 6 2 31.532 31.532 201.586 65.11 1.52 0.24
3 6 4 50.322 50.322 317.756 212.77 2.35 0.16
3 6 6 88.438 88.438 531.542 410.44 1.60 0.15

Average 14.643 14.700 83.929 583.95 2.51 0.19

Notes. r1 = 40, r2 = 0, µ1 = µ2 = 1.5, µ3 = 0.5, λ = 100, φ(1) = φ(2) = 0.75, p0,1 = p0,2 = 0.5.
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Table C.2 Numerical results for various values of informativeness probabilities.

% difference from optimal cost Computation times (in seconds)

φ(1) φ(2) FNCP-C FNCP-S NP FNCP-C FNCP-S NP

0.95 0.95 6.233 5.876 10.490 511.84 2.85 0.14
- 0.85 6.945 6.203 13.586 751.28 2.12 0.17
- 0.75 7.264 6.214 13.595 746.72 2.35 0.14
- 0.65 7.233 6.219 13.599 783.31 2.40 0.21
- 0.55 7.146 6.226 13.607 920.46 2.73 0.13

0.85 0.95 5.393 5.122 10.593 642.52 1.77 0.21
- 0.85 4.447 4.425 14.772 552.05 2.44 0.15
- 0.75 5.660 5.504 22.397 490.95 2.69 0.16
- 0.65 5.654 5.518 23.604 535.78 2.92 0.16
- 0.55 5.685 5.529 23.612 510.77 2.88 0.14

0.75 0.95 5.815 5.512 13.176 570.38 2.61 0.19
- 0.85 3.312 3.477 20.353 385.34 2.31 0.14
- 0.75 4.633 4.233 33.686 709.66 2.13 0.14
- 0.65 5.472 4.272 43.773 900.67 2.14 0.13
- 0.55 5.458 4.286 43.799 662.20 1.75 0.14

0.65 0.95 4.031 5.594 22.755 433.17 3.89 0.17
- 0.85 5.548 8.865 39.539 400.55 2.91 0.20
- 0.75 10.602 13.619 63.344 595.26 2.92 0.18
- 0.65 15.972 14.190 84.591 831.34 3.64 0.21
- 0.55 15.480 13.331 87.340 612.26 2.99 0.15

0.55 0.95 4.076 3.809 44.499 257.75 3.32 0.25
- 0.85 7.075 5.830 75.781 264.97 1.89 0.29
- 0.75 15.745 12.454 118.978 278.54 2.04 0.24
- 0.65 44.550 31.473 152.407 263.22 2.37 0.21
- 0.55 50.000 33.333 156.773 49.10 1.84 0.14

Average 10.377 8.845 46.426 546.40 2.56 0.18

Notes. h = 2, c1 = c2 = 4, r1 = 40, r2 = 0, µ1 = µ2 = 1, µ3 = 0.5, λ = 100, p0,1 = p0,2 = 0.5.
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