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Abstract

In this thesis, two of the most exciting areas in high energy physics nowadays are
studied: neutrino physics and collider physics, which play important roles in the
intensity and energy frontiers, respectively.

For neutrino physics, assuming that the neutrino mass matrix is dominated by a
term with the permutation symmetry S3, it is possible to explain neutrino data only
if the masses are quasi-degenerate. A sub-dominant term with an approximate µ− τ
symmetry leads to an approximate tri-bimaximal form. Experimental consequences
are discussed.

In this thesis several channels that contain missing-energy signal in the final states
will be investigated with minimal model assumptions. Channels of this type are very
challenging to analyze at the Large Hadron Collider (LHC), since this approach offers
only a few kinematical handles.

I start with a channel that has a clean signal of two leptons and missing en-
ergy. This signature generally arises from pair production of heavy charged particles
which each decay into a lepton and a weakly interacting stable particle. This class
of processes is analyzed with minimal model assumptions by considering all possible
combinations of spin 0, 1

2
or 1, and of weak iso-singlets, -doublets, or -triplets for the

new particles. Adding to existing work on mass and spin measurements, two new
variables for spin determination and an asymmetry for the determination of the cou-
plings of the new particles are introduced. It is shown that these observables allow
one to independently determine the spin and the couplings of the new particles, ex-
cept for a few cases that turn out to be indistinguishable at the LHC. These findings
are corroborated by results of an alternative analysis strategy based on an automated
likelihood test.

I then study decays of the form C → ℓ+ℓ−A (ℓ = e, µ), including the possibility
that this three-body decay is preceded by an additional decay step D → jC. Here A,
C and D are heavy new-physics particles and j stands for a quark jet. It is assumed
that A escapes direct detection in a collider experiment, so that one cannot kine-
matically reconstruct the momenta of the new particles. Instead, information about
their properties can be obtained from invariant-mass distributions of the visible de-
cay products, i. e. the di-lepton (ℓℓ) and jet-lepton (jℓ) invariant-mass distributions.
All possible spin configurations and renormalizable couplings of the new particles are
considered, and explicit expressions for the invariant-mass distributions are derived,
in a formulation that separates the coupling parameters from the spin and kinematic
information. In a numerical analysis, it is shown how these properties can be deter-
mined independently from a fit to the mℓℓ and mjℓ distributions.

Finally, I will take a model-independent approach to searching for new physics
involving the top quark. The experimental signatures for new physics involving top



quarks at the LHC may be characteristic, yet challenging to disentangle. I system-
atically parameterize generic interactions of a new particle that couples to the top
quark and optimize the search strategy for the new particles at the LHC and propose
the study for their properties. Several variables are proposed and a detailed numer-
ical study is performed for the determination of spins and couplings of new heavy
particles.
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Chapter 1

Introduction

In this thesis, I will discuss two of the most exciting areas in high energy physics
nowadays: neutrino physics and collider physics, which play important roles in the
intensity [1] and energy frontiers [2], respectively.

Neutrino physics is one of the main focuses of intensity-frontier physics. Recent
discoveries make the study of the properties of neutrinos an important area of research.
Measurements of the properties of neutrinos are fundamental to understanding physics
beyond the Standard Model (BSM) and have profound consequences for the evolution
of the universe.

A lot of evidence for neutrino oscillations has been collected from various sources,
including the sun, the atmosphere, accelerators and reactors. The effects of neutrino
oscillations were first detected by Raymond Davis’s Homestake Experiment [3] in the
late 1960s. A deficit in the flux of solar neutrinos with respect to the prediction of
the Standard Solar Model was observed based on a chlorine-based detector. This is
called the solar neutrino problem. In 1998, Super-Kamiokande [4] in Japan, which
utilized a large water Cherenkov detector, also found that neutrino fluxes were much
below the values predicted by the Standard Solar Model. Later on, in 2001 the SNO
experiment [5] in Canada used a heavy water Cherenkov detector to deliver the final
confirmation of neutrino oscillations, which is not predicted by the standard model
of particle physics.

Neutrino oscillation implies that the mass differences of neutrinos are non-zero
and therefore neutrinos are massive particles. Recently, new results on θ13 have been
announced by T2K [6], MINOS [7], and Double Chooz [8] in 2011, pointing to θ13 is
not zero. More recently, Daya Bay [9] and RENO [10], announced about 5 σ evidence
that sin22θ13 ≃ 0.092. A non-zero value of θ13 has many profound implications for
BSM physics, such as CP violation in the leptonic sector, and its relation to CP
violation in the quark sector.

In this thesis, I will address two important questions in neutrino physics. One is
how to explain neutrino oscillation data by assuming that the neutrino mass matrix
obeys a discrete symmetry. The other is how to generate a non-zero θ13. Furthermore,
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its phenomenological consequences will be discussed.

With the discovery era ushered in by the LHC, data-driven phenomenology is now
possible. Two detectors at the LHC, ATLAS and CMS, have collected large amounts
of data and will be able to discover or rule out many of the new physics models such
as supersymmetry, extra dimensions or strong-dynamics models. Model-independent
searches become not only important but also pressing. I aim to find a systematic
method to determine the properties of the new particles, such as masses, spins, and
couplings. For the mass determination, there already exist good observables such
as Cambridge MT2 [11] and its variants. Therefore, my focus is mainly on the spin
and coupling determination. Spin determination is very important to distinguish one
model from another because the new massive particles in these models may have
different spins. For instance, supersymmetry predicts that the superpartner of SM
leptons are scalars, i.e. they have spin equal to 0, while universal extra dimensions
(UED) [12] predicts the Kaluza-Klein (KK) partner of leptons to be spin 1

2
fermions.

As a result, it is possible to distinguish supersymmetry from UED as long as one can
discriminate the spins of these new particles. Coupling determination is also crucial
because it can tell us the group representation of the new particles. For instance, if
these particles have SU(2) symmetry, their couplings will depend on the SU(2) group
representation of these particles, i.e. whether they are SU(2) singlets, doublets or
triplets.

Motivated by the existence of cold dark matter, which accounts for 23% of the
mass-energy density of the observable universe, many new-physics scenarios incor-
porate some global discrete symmetries to ensure the existence of a massive stable
neutral particle. Well-known examples include R-parity in supersymmetry, KK-parity
in UED models and T-parity in little Higgs models [13]. These stable neutral par-
ticles escape detection and hence become missing-energy signals of detectors. The
existence of such a neutral particle at the end of the decay chain results in large
missing-energy events in which new-physics particles are produced. The main focus
of chapter 4, 5 and 6 will be on channels that contain missing-energy signals in the
final states. Since such missing particles escape detectors, it is very difficult to fully
reconstruct the energy and momenta of the final-state particles. Thus, determination
of spin and couplings of heavy new particles in these channels is highly nontrivial and
challenging.

In this thesis, I will investigate a few channels that contain missing particles in
the final states. The first channel that I am interested in involves signals with two
leptons and missing energy at the LHC. I focus on Drell-Yan–type production of
a pair of charged heavy particles Y ±, which each subsequently decay into a lepton
ℓ± (ℓ = e, µ), and a neutral heavy particle X0, i.e. pp→ Y +Y − → ℓ+ℓ−X0X̄0, where
p stands for a proton. I then considered all possible spin and SU(2) representations
of new particles X and Y. The second channel to be discussed is the decay chain
with three-body decays involving missing energy. Decays of the form C → ℓ+ℓ−A
(ℓ = e, µ) are studied, including the possibility that this three-body decay is preceded
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by an additional decay step D → jC. Here A, C and D are heavy new-physics
particles and j stands for a quark jet. It is assumed that A leads to missing energy
in the detector so that one cannot kinematically reconstruct the momenta of the new
particles. Instead, information about their properties can be obtained from invariant-
mass distributions of the visible decay products, i. e. the di-lepton (ℓℓ) and jet-lepton
(jℓ) invariant-mass distributions. I have developed a framework for extracting the
mass of the intermediate particle and the spin and couplings of new particles.

Finally, I will take a model-independent approach to searching for new physics in-
volving the top. Recent results from LHC [14] have rather stringently excluded a large
part of the squark and gluino parameter space. However, it is possible that not all the
squarks are at the same mass scale. In a typical supersymmetric grand unification
theory (GUT), the squark that is the partner of the heaviest SM quark runs fastest in
renormalization group evolution (RGE) and hence becomes lightest at the low-energy
scale. As a result, the stop can be much lighter than other squarks. I consider the
possibility that stop decays into top and the lightest neutralino dominates over other
channels. The final-state signal in this scenario would be the decay product of top
quarks and missing energy. We extend this idea to a model-independent approach
by considering different spin configurations (0, 1/2, and 1 ) of a light new particle
pair-produced in pp collisions to determine how one can distinguish between different
scenarios and extract the spin of the new particles.

In the next section I will review the standard model of particle physics and also
introduce notations that will be used in the following chapters.

1.1 The Standard Model

Despite the fact that the Standard Model (SM) has been so successful in agreeing
with experimental data, many people believe that it is not complete for reasons I
will explain in the next section. The SM accounts for our current understanding of
strong, electromagnetic, and weak interactions based on a gauge symmetry SU(3)C×
SU(2)L × U(1)Y . Each gauge group associates with its own gauge bosons, which
mediate forces between particles.

The Lagrangian for these gauge boson is

Lgauge = −1

4
(Gµν

a Ga µν +W µν
a Wa µν +BµνBµν) (1.1)

where

Gµν
a ≡ ∂µGν

a − ∂νGµ
a − g3 fabc G

µ
b G

ν
c (1.2)

W µν
a ≡ ∂µW ν

a − ∂νW µ
a − g2 ǫabc W

µ
b W

ν
c (1.3)

Bµν ≡ ∂µBν − ∂νBµ (1.4)

with eight SU(3)C gluon fields Gν
a and three SU(2)L isotriplet bosons W ν

a and UY (1)
hypercharge boson Bµ. fabc and ǫabc are structure constants of the SU(3)C and
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Names SM fermions SU(3)C , SU(2)L, U(1)Y

Quarks QI (uI
L dI

L) ( 3, 2 , 1
6
)

(×3 families) uI uI
R ( 3, 1, 2

3
)

dI dI
R ( 3, 1, −1

3
)

Leptons LI (νI eI
L) ( 1, 2 , −1

2
)

(×3 families) eI eI
R ( 1, 1, −1)

Table 1.1: Fermion content of the Standard Model.

SU(2)L groups, respectively. g3 and g2 are coupling constants of the SU(3)C and
SU(2)L groups, respectively. The Lagrangian for the fermionic sector is

Lfermion = iQ̄I
Lγ

µDµQ
I
L + iL̄I

Lγ
µDµL

I
L + iūI

Rγ
µDµu

I
R + id̄I

Rγ
µDµd

I
R + iℓ̄IRγ

µDµℓ
I
R,(1.5)

where the superscript I indicates that the fermion fields are in the interaction eigen-
states. Also, the generation indices are suppressed for simplicity and the particle
contents and the corresponding quantum numbers are summarized in Table 1.1. In
order to ensure that the Lagrangian is gauge invariant, the covariant derivative is
introduced and defined as

Dµ = ∂µ + ig3G
µ
a

λa

2
+ ig2W

µ
a

σa

2
+ ig1B

µY, (1.6)

where λa and σa are Gell-Mann and Pauli Matrices, respectively. The SM gauge
group is broken down to SU(3)C ×U(1)EM due to the Higgs mechanism, which I will
explain in detail below.

The Lagrangian for the scalar sector is

Lscalar = (DµH)†DµH + µ2H†H − λ

4
(H†H)2, (1.7)

where H is a scalar doublet field, also called the Higgs field.

H =

(
H+

H0

)
. (1.8)

After the spontaneous symmetry breaking in the Higgs potential, the Higgs field
acquires a vacum expectation value (VEV)

< H >=

(
0
v√
2

)
and v =

√
µ2

λ
. (1.9)

The mass terms of gauge bosons come from the first term of Lscalar, which is propor-
tional to

v2

8
(g2|W 1 − iW 2|2 + (g1Bµ − g2W

3
µ)2). (1.10)
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The mass eigenstates and eigenvalues of the charged gauge bosons are

W±
µ =

W 1
µ ∓W 2

µ√
2

, with MW± =
g2 v

2
. (1.11)

The mass eigenstates and eigenvalues of neutral gauge bosons are

Zµ =
−g1Bµ + g2W

3
µ√

g2
1 + g2

2

, with MZ =
v

2

√
g2

1 + g2
2 (1.12)

Aµ =
g2Bµ + g1W

3
µ√

g2
1 + g2

2

, with MA = 0. (1.13)

Finally, the interaction between scalars and fermions, namely Yukawa interactions
are given by

LYukawa = −Y U
ij Q̄

I
Li H̃ uI

Rj − Y D
ij Q̄I

Li H dI
Rj − Y L

ij L̄
I
Li H ℓIRj + h.c., (1.14)

where H̃ = iσ2H
∗ and (i,j) are the usual family indices (going from 1 to 3). LYukawa

leads to fermion mass terms after substituting the VEV in Eq. 1.9.

LMatter = −MU
ij ū

I
Li H̃ uI

Rj −MD
ij d̄

I
Li H dI

Rj −ML
ij ℓ̄

I
Li H ℓIRj + h.c., (1.15)

where Mf = vY f . One can always diagonalize Mf by rotating the flavor eigenstates
f I

L,R to the mass eigenstates fL,R,

fL = V f
L f

I
L (1.16)

fR = V f
Rf

I
R. (1.17)

This leads to a diagonal and real matrix

Mdiag
f = V f

LMfV
f †
R . (1.18)

Using the mass eigenstates, the charged current interaction involving W± and quarks
is

LCC =
g2√
2
ūLi γ

µ VCKM ij dLj W
+
µ + h.c., (1.19)

where
VCKM = VuL V

†
dL (1.20)

is the Cabbibo-Kobayashi-Maskawa(CKM) mixing matrix, which is a unitary matrix
and is the only origin of the CP violation phase in the SM if the neutrino masses are
neglected. This unitary matrix consists of 9 real parameters ( 3 mixing angles and 6
phases ). Since quarks are Dirac fields 5 phases can be absorbed by redefining phases
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of the quark fields. Eventually, only 3 mixing angles and 1 phase, which is called the
Dirac phase, have physical meaning. The matrix element of VCKM is often written as

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (1.21)

In terms of three angles θ12, θ23, θ13 and one phase δ, one can parameterize the VCKM

as follows,

VCKM =




c12c13 s12c13 s13e
−iδ

−c23s12 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ c13s23

s23s12 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 , (1.22)

where sij ≡ sinθij, cij ≡ cosθij.
The matrix elements of CKM matrix can be measured by experiments. The gen-

eral feature of VCKM is that it is almost diagonal and the diagonal elements are
approximately one. Also, it has very clear hierarchical structure and is almost sym-
metric. Based on these observations L. Wolfenstein [15] parametrized VCKM using a
different set of parameters: A, λ, ρ and η. Dropping terms above O(λ3), one obtains

VCKM ∼




1− λ2

2
λ Aλ3(ρ− i η)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− i η) −Aλ2 1


 . (1.23)

where λ ≡ s12 ≈ 0.23 is the sine of the Cabbibo angle and

Aλ2 ≡ s23 (1.24)

Aλ3(ρ− i η) ≡ s13 e
−iδ. (1.25)

1.2 Problems with the SM

There are many problems that cannot be explained by the SM and one needs to resort
to new physics models. In the following I will list some of these major problems, which
motivate us to propose new physics.

• Hierarchy Problem: The fact that gravity is much weaker than other forces
implies the existence of two vastly different energy scales: ΛPlanck ∼ 1/

√
G =

1019 GeV where gravity gets strong, and the electroweak scale ΛEW ∼ O(100 GeV).
G stands for Newton’s constant. If the SM is a complete theory and holds all
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H H

f

f

Figure 1.1: One-loop correction to the Higgs (H) squared mass parameter m2
H . f

denotes a fermion field.

the way up to the Planck scale, then one necessarily would have to deal with a
fine-tuning problem in order to keep the mass of the Higgs light for reasons to
be discussed later. The mass of the Higgs is subjected to large radiative correc-
tion, since it is a scalar particle. Unlike fermions, the scalar particle mass is not
protected by chiral symmetry; the masses of the gauge bosons are protected by
gauge symmetries. The physical Higgs mass mH can be defined as

m2
H = m2

0 +m2
rad, (1.26)

where m0 represents bare mass and mrad is the radiative correction to the Higgs
mass. In the SM, Fig. 1.1 alone gives the largest correction to the Higgs mass,

m2
rad = −|Y

f |2
8π2

(Λ2
UV − 3 m2

f ln
ΛUV

mf

), (1.27)

which is quadratically divergent to the scale where new physics is believed to
occur. Y f is the Yukawa coupling in Eq. 1.14. The dominant contribution
comes from the top quark in the loop in Fig. 1.1 since it has the largest Yukawa
coupling to the Higgs boson. If the SM is a complete theory that is correct
all the way up to the Planck scale, then it implies that in order to obtain a
physical Higgs mass mH ≃ ΛEW, m0 must be of order ΛPlanck. Since the ratio
Λ2

EW/Λ
2
Planck ≃ (100 GeV/1019 GeV)2 = 10−34 is so small the cancellation must

be extremely precise.

• Gauge unification: In the SM, there are three gauge couplings g1, g2, and g3.
Why are there so many gauge couplings instead of one? Can they be unified just
like electromagnetic and weak interaction, which are unified at the electroweak
scale? Some BSM models such as supersymmetry might be able to achieve it.

• Dark matter: Another problem that the SM cannot resolve is the dark matter
problem. Many observations including the velocity curve of stars in galaxies and
gravitational lensing studies of the Bullet Cluster provided strong evidence for
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the existence of dark matter. We know that there must be something else that
exists in addition to the matter that we observed. Many BSM models have
proposed their own DM candidates, which will be discussed in more details in
the next chapter.
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Chapter 2

Physics beyond the Standard

Model

In this thesis, I will utilize a model-independent approach to determine the spin and
coupling of new heavy particles in some channels and only make minimal assumptions.
However, there are some models that have been widely discussed in the literature and
will be used as examples for my analyses. In this chapter I will discuss two of these
BSM models, supersymmetry and UED models.

2.1 Minimal Supersymmetric Standard Model

Supersymmetry is one of the most promising BSM models. It can not only pro-
vide a solution to the hierarchy problem but also allows for the unification of gauge
couplings. In addition, it also provides a candidate for dark matter. All these nice
properties let many people believe that supersymmetry is too good not to be true.
The original motivation of introducing supersymmetry, however, was not to resolve
the hierarchy problem or all other nice features but was because of the Coleman-
Mandula theorem [16], which shows the impossibility of combining space-time and
internal symmetries in any but a trivial way. However, it can be circumvented by
introducing symmetries whose algebra satisfy anti-commutation relations beyond the
internal symmetries and the Poincare symmetry. In general, the number N of inde-
pendent supersymmetric charges can be larger than 1 but in this thesis I will just
discuss the minimal supersymmetric standard model (MSSM). In other words, only
the case N=1 is considered.

The particle content of the MSSM is listed in Table 2.1 and Table 2.2. Every
SM particle and their superpartner are denoted by the same notation except that
the supersymmetric particle has an additional tilde ˜ . Supersymmetry describes the
symmetry between fermions and bosons. The supersymmetric charge Q varies the
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2
)

Table 2.1: Chiral supermultiplets in the MSSM. The number of generations is three
for fermions and sfermions.

spin of the particle by 1/2.

Q|boson >= |fermion > ; Q|boson >= |fermion > (2.1)

Applying a supersymmetric operator on SM particles gives rise to their corresponding
supersymmetric partners, whose spins differ from their SM partners by a half integer.
The SM particles and their superpartners can be placed in a supermultiplet. There
are two types of supermultiplets:

• Chiral supermultiplet: Each scalar particle in the SM has a fermion partner
and together they form a chiral supermultiplet. Similarly, each SM fermion and
their scalar partner are embedded in a chiral supermultiplet. Note that the left-
and right-handed pieces of the quarks and leptons transform differently under
the SM gauge groups so each must have its own complex scalar partner. For
example in Table 2.1 a left-handed up quark uL and its superpartner ũL are in
the same supermultiplet.

• Gauge supermultiplet: Each SM gauge boson and its superpartner are in one
gauge supermultiplet. For instance, gluon and its superpartner gluino are em-
bedded in the same gauge supermultiplet as shown in Table 2.2.

2.1.1 Motivation of introducing MSSM

As mentioned in the last chapter, the MSSM can solve the hierarchy problem. In
the SM, the fermion loop diagram on the left hand side of Fig. 2.1 gives rise to m2

rad

in Eq. 1.27, which is quadratically divergent. However, in the MSSM there is an
additional diagram as shown on the right hand side of Fig. 2.1 that also contributes
to the quantum correction to the Higgs mass

m2
rad = 2 Y

ef

16π2 (Λ
2
UV − 2 m̃2

f ln
ΛUV

emf
) (2.2)
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H H

f

f
f̃

HH

Figure 2.1: One-loop correction to the Higgs (H) squared mass parameter m2
H . The

diagram on the left already exists in the SM. f denotes a fermion field. The diagram
on the right is a new contribution from the MSSM. f̃ represents a scalar fermion field.
Two diagrams have opposite sign resulting in the cancellation of the UV divergence.

Figure 2.2: The renormalization group evolution of the inverse gauge couplings 1/α1,
1/α2 , and 1/α3, which correspond to U(1)Y , SU(2)L, and SU(3)C gauge groups, in
the SM (left) and MSSM (right). Q stands for RG scale. (This figure is taken from
Ref. [17])
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 2.2: Gauge supermultiplets in the MSSM.

where Y
ef stands for the coupling of the Higgs to the scalar fermions and Y

ef = |Y f |2
due to the symmetry between fermions and bosons. It turns out in the MSSM, the two
quadratic divergent terms cancel out and only the logarithmic terms survive. In order
to keep the radiative corrections to the Higgs masses of order 100 GeV the mass of the
scalar fermion m̃f has to be less then 1 TeV. Note that due to the anticommutative
nature of fermions, the sign of the fermion loop contribution is opposite to that of
the scalar loop contribution. Moreover, the cancellation of quadratic divergences not
only works in the MSSM but also in any supersymmetric theory.

In addition, in the MSSM the unification of the three gauge couplings of the SM
at some high scale becomes possible. As can be seen in Fig. 2.2, in contrast to the SM
the RG running of the three gauge couplings in the MSSM is changed due to the loop
contributions from supersymmetric particles. It turns out that the three couplings
unify at a scale MGUT ∼ 2 × 1016 GeV. However, for other supersymmetric theories
the gauge-coupling unification depends on the details of the model.

2.1.2 Superpotential

The most general renormalizable superpotential with the spectrum of minimal super-
fields can be written as

W = εab

[
µHa

uH
b
d + hu

ikQ
a
iH

b
uuk + yd

jkH
a
dQ

b
jdk +

1

2
ye

jkH
a
dL

b
jek

]

+εab

[
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu

]
+

1

2
λ′′ijkuidjdk , (2.3)

where (a, b) are SU(2) indices, (i, j, k) are the usual family (flavor) indices (going from
1 to 3). εab is an antisymmetric tensor and ε12 = −ε21 = 1. The first line corresponds
to baryon number and lepton number conservation terms while the first three terms
of the second line break baryon number (B) by 1 and the last term breaks the lepton
number (L) by 1. In the MSSM only terms in the first line is relevant in order to
protect proton from decay. To exclude the baryon and lepton number violating terms
a Z2 symmetry called R-parity is introduced and defined as

PR = (−1)3(B−L)+2S (2.4)
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where S denotes the spin of the particle. The baryon number assignment are B=1
for Qi , B=-1 for ui and di, and B=0 for all others. The lepton number assignments
are L = 1 for Li, L = -1 for e, and L=0 for all others. All ordinary particles have
even R-parity; all supersymmetric partners have odd R-parity. R-parity can not only
prevent proton decay but also it ensures that supersymmetric particles are produced
in pairs at colliders and that the lightest supersymmetric particle (LSP) is stable.
If the LSP is not only stable but also electrically and color neutral it interacts only
weakly with the SM particles. Therefore it might be a good dark matter candidate.
For example, the lightest neutralino χ̃0

1 is an attractive dark matter candidate in
many supersymmetric models.

2.1.3 Soft supersymmetry breaking terms

Since we have not yet found any supersymmetric particles, supersymmetry must be
broken at some higher energy scale above the electroweak scale. We know that the
particle responsible for the supersymmetry breaking cannot be particle content of the
MSSM due to the existence of mass sum rules [18]. Hence the origin of supersymmetry
breaking is often transferred to a hidden sector of particles that do not interact
directly with MSSM particles. Therefore how to construct a realistic supersymmetry
breaking scenario and understand the mechanism of the supersymmetry breaking
mediation from hidden sector to visible sector become important. Many models
usually assume that there is a messenger field that communicates between the hidden
sector and the visible sector. More realistic models will be discussed in the Sec. 2.1.5.
However, it is possible to simply add the explicit supersymmetry breaking terms in
the effective MSSM Lagrangian. The non-renormalization theorem [19] requires that
the supersymmetry-breaking coupling should be soft, i.e. the couplings must have
positive mass dimension, to ensure that there is no quadratic divergent term similar
to Eq. 1.27 that appears in the theory. The most general soft supersymmetry breaking
part of the Lagrangian can be written as follows:

Vsoft = ǫab bH
a
uH

b
d + ǫab

[
Au

ij Q̃
a
iH

b
u
˜̄uj + Ad

ijH
a
d Q̃

b
i
˜̄dj + Ae

ijH
a
d L̃

b
i
˜̄ej

]
+ h.c.

+ Q̃†m̃2
Q
Q̃+ ˜̄u†m̃2

u
˜̄u+ ˜̄d†m̃2

d
˜̄d+ L̃†m̃2

LL̃+ ˜̄e†m̃2
e

˜̄e+ m̃2
Hu
|Hu|2 + m̃2

Hd
|Hd|2

+
M1

2
B̃B̃ +

M2

2
W̃ W̃ +

M3

2
g̃g̃ + h.c. . (2.5)

In Eq. 2.5, b is a complex scalar, which stands for the biliear interactions for the
Higgs doublets Hu and Hd. A

u
ij, A

d
ij and Ae

ij are trilinear coupling of the Higgs to the
scalar partners of the right-handed and left-handed fermions. i and j are family indices
going from 1 to 3. m̃2

Q
, m̃2

u, m̃
2
d, m̃

2
L, and m̃2

e are 3 × 3 hermitian matrices, which
contribute to the masses of the scalar partners of fermions with the same handedness.
m̃2

Hu
and m̃2

Hd
are squared-mass terms of Higgs fields Hu and Hd, respectively, and are

real parameters. M1,M2, and M3 are the bino, wino, and gluino mass terms.
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2.1.4 The mass spectrum of the MSSM

Tables 2.1 and 2.2 show the gauge eigenstates of supersymmetric particles (sparti-
cles). These sparticles obtain their masses via soft supersymmetry breaking terms
introduced in the previous subsection and after spontaneous breaking of the elec-
troweak symmetry, some of these sparticles mix together due to the Higgs VEVs.
Here I will just briefly summarize the mass eigenstates of the particles in the MSSM.
For detailed derivations please see Ref [20].

There are two Higgs doublets Hu and Hd, which both acquire non-zero VEV vu

and vd in the minimum of the scalar potential. The ratio of them is written as

tanβ ≡ vu

vd
.

The total number of real fields in Hu and Hd is eight. The mixing of these eight real
scalar fields in the gauge eigenstates forms five scalar Higgs fields in mass eigenstates
h0, H0, A0 and H± and three Goldstone bosons. Similar to the SM, these three
Goldstone bosons are eaten by the gauge bosons Z0 and W±. Note that h0 and H0

are even while A0 is odd under CP transformation.
For sfermions, because the Yukawa couplings for the first and second generation

fermions are small, it is a good approximation to ignore the mixing between the gauge
eigenstates f̃L and f̃R. As a consequence, for the first and second generation sfermions,
their mass eigenstates are the same as the gauge eigenstates. However, since the third
generation fermions have larger Yukawa couplings, the mixing between f̃L and f̃R is
no longer negligible. Hence the mass eigenstates of the third generation sfermions
f̃1 and f̃2 are linear combinations of f̃L and f̃R. For instance, the mass eigenstates
of scalar top are t̃1 and t̃2. Note that by convention M ef2

and M ef1
always refers to

the heavier and the lighter between two mass eigenstates, respectively. In the gauge
eigenstate basis, there are two neutral gauginos, (B̃, W̃ ), and two neutral higgsinos,

(H̃0
u, H̃

0
d), whose linear combinations form the mass eigenstates called neutralinos

(χ̃0
i , i = 1 ∼ 4). By convention we define Meχ4 > Meχ3 > Meχ2 > Meχ1 . Similarly, the

charged gauginos W̃± and higgsinos (H̃+
u , H̃

−
d ) form mass eigenstates called charginos

(χ̃±
i , i = 1 ∼ 2) and M

eχ±

2
> M

eχ±

1
. For the gluino, since it is the only gaugino that is

color octet and electrically neutral, the mass eigenstates are the same as the gauge
eigenstates.

2.1.5 Supersymmetry breaking scenarios

As discussed in Sec. 2.1.3, a realistic supersymmetry breaking scenario is very helpful
to study the weak scale phenomenology. There are large amount of free parameters
in the MSSM. Some reasonable assumptions can considerably reduce the number of
parameters For instance, ignoring all the CP violations sources or assuming flavor
diagonal in the scalar sector of the MSSM. However, the number of free parameters is
still intractable. There are several supersymmetry breaking schemes. The three most
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widely discussed in the literature are gravity-mediated (mSUGRA), gauge-mediated
(GMSB), and anomaly-mediated (AMSB) supersymmetry breaking models. In these
scenarios, the large amount of unknown supersymmetry parameters can be reduced
to about five parameters. They provide realistic supersymmetric models and make
the phenomenological study of the MSSM possible.

In mSUGRA the supersymmetry breaking is mediated by gravitational interac-
tion. There are four free parameters and the sign of µ at the Planck or GUT scale.

M3 = M2 = M1 = m1/2, (2.6)

m2
Q = m2

u = m2

d
= m2

L = m2
e = m2

0 1, m2
Hu

= m2
Hd

= m2
0, (2.7)

au = A0yu, ad = A0yd, ae = A0ye, (2.8)

and b, the bilinear term in the soft terms, which is usually re-expressed in terms of
tanβ. Also the sign of µ in the superpotential is undetermined, but the magnitude of
it can be constrained by the requirement of electroweak symmetry breaking. m2

0 and
m 1

2
are universal gaugino and scalar masses. A0 is the trilinear coupling.
The low energy supersymmetric parameters can be obtained by running down the

RGE. The typical mSUGRA mass spectrum can be found in Ref [21]. In the typical
mSUGRA, SPS1a gives the parameters:

m0 = 100 GeV, m 1
2

= 250 GeV, (2.9)

A0 = −100 GeV, tanβ = 10, µ > 0. (2.10)

In this scenario the LSP is always χ0
1, which is mainly Bino-like and the next-to-the

LSP (NLSP) is usually χ0
2, which is mainly wino-like. The sleptons is usually lighter

than the squarks.

2.2 Universal Extra Dimensions

There are many extra dimension models, among which UED models [12] have many
interesting phenomenological implications and have been widely discussed in the lit-
erature. The mass spectrum of particles in these models are very similar to that in
supersymmetry and therefore how to distinguish one model from the other at colliders
such as the LHC becomes very important and pressing. In this thesis I will discuss
UED with one and two extra dimensions.

2.2.1 Five-dimensional UED

In the UED all fields are allow to propagate in the bulk in contrast to other extra
dimensional models. This is also the reason why it is called “universal”. The extra
dimension is compactified on a circle of radius R. From now on, I will use notation
x for the four ordinary space-time dimensions and y for the extra dimension. In

15



order to have chiral fermions in the low energy limit, an S1/Z2 orbifold is introduced.
S1 stands for a one-dimensional torus, i.e. a circle. An identification y → −y is
introduced, and y = 0 and y = π are fixed points. This identification indicates that
there exists a Z2 symmetry or KK-parity PKK on the extra dimension. By introducing
this symmetry one can project out the unwanted zero modes that do not exist in the
SM. The KK-parity is defined as

PKK = (−1)n, (2.11)

where n denotes KK number. I will explain in detail below that all the SM particles
have n=0 and are even under KK-parity while particles in the first KK-excitation
state are odd under KK-parity. Similar to R-parity in the MSSM, KK-parity can
ensure that the new heavy particles are produced in pairs. It also guarantees the
existence of a stable lightest KK particle (LKP) which is also a good dark matter
candidate. The LKP in most of the UED theories is KK-photon B0

µ,(1).
Let us start with the simplest case, namely, scalar fields in five-dimensional UED

(UED5). The Lagrangian for scalar fields in the five dimensional space-time reads

L = ∂Mφ∂Mφ+m2φ (2.12)

= ∂µφ∂µφ+ ∂5φ∂5φ+m2φ,

where M = 0, 1, 2, 3, and 5 are 5D indices while µ=0, 1, 2, 3 are 4D indices. Since
the extra dimension is compactified on a circle, φ(x, y) is a periodic function of y and
can be decomposed into different Fourier modes. It is also called KK-decomposition.
The even functions satisfy the Neumann boundary conditions at 0 and π

∂5φ
+(x, y) = 0, (2.13)

where

φ+(x, y) =
1√
2πR

φ+
0 (x) +

1√
πR

∞∑

n=1

φ+
n (x)cos

ny

R
. (2.14)

n denotes the KK number and the SM mode corresponds to n=0 mode. The odd
functions satisfy the Dirichlet boundary conditions at 0 and π

φ−(x, y) = 0, (2.15)

where

φ−(x, y) =
1√
πR

∞∑

n=1

φ−
n (x)sin

ny

R
. (2.16)

One can then obtain the mass of n-th excitation state

m2
n = (

n

R
)2 +m2

0. (2.17)
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Thus, the mass spectrum at tree-level of the n-th KK-state is almost degenerate.
For fermions, the orbifold gives rise to the chiral structure of the zero modes

particles so that the UED5 agrees with SM in the low energy limit. In the SM,
fermions are in an SU(2) doublet if they are left-handed or in an SU(2) singlet if they
are right-handed. I start with decomposing an SU(2) singlet states ψR(x, y)

ψ+
R(x, y) =

1√
2πR

ψ0
R(x) +

1√
πR

∞∑

n=1

ψn
R(x)cos

ny

R
, (2.18)

ψ−
R(x, y) =

1√
πR

∞∑

n=1

ψn
L(x)sin

ny

R
, (2.19)

where ψ0
R(x) corresponds to the right-handed SU(2) singlet fermion. One can also

see that for n > 0 the KK-excitation states ψn
R(x) and ψn

L(x) both exist and together
they form a vector-like fermion.

Similarly left-handed SU(2) doublet fermions reads

Ψ+
L (x, y) =

1√
2πR

Ψ0
L(x) +

1√
πR

∞∑

n=1

Ψn
L(x)cos

ny

R
, (2.20)

Ψ−
L (x, y) =

1√
πR

∞∑

n=1

Ψn
R(x)sin

ny

R
, (2.21)

where Ψ0
L(x) corresponds to the left-handed SU(2) doublet fermion. Similarly, for

n > 0 the KK-excitation states Ψn
L(x) and Ψn

R(x) both exist and together they form
a vector-like fermion.

In this thesis I will use Ψn
D(x) to stand for the n-th KK-excitation state of a left-

handed SU(2) doublet fermion and ψn
S(x) to represent the n-th KK-excitation state

of a right-handed SU(2) singlet fermion.
For gauge field AM(x, y) = (Aµ, A5) the orbifold compactification forces the first

four components to be even under PKK and hence satisfies the Neumann bound-
ary condition; A5 is odd under PKK and therefore satisfies the Dirichlet boundary
condition.

Aµ(x, y) =
1√
πR

(A0
µ(x) +

1√
πR

∞∑

n=1

An
µ(x)cos

ny

R
), (2.22)

A5(x, y) =
2√
πR

∞∑

n=1

An
5 (x)sin

ny

R
. (2.23)

A summary of the particle contents in the UED5 is listed in Table 2.3.

2.2.2 Six-dimensional UED

Six-dimensional UED (UED6) is similar to UED5, but now there are two extra di-
mensions that are compactified. Hence the particles listed in Table 2.3 obtain one
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Names KK modes (n > 0) SU(3)C , SU(2)L, U(1)Y

Quark doublet (UD,(n) DD,(n)) ( 3, 2 , 1
6
)

Quark singlet uS,(n) ( 3, 1, 2
3
)

dS,(n) ( 3, 1, −1
3
)

Lepton doublet (νD,(n) ℓD,(n)) ( 1, 2 , −1
2
)

Lepton singlet ℓS,(n) ( 1, 1, −1)

Higgs (H+
n H0

n) ( 1, 2 , +1
2
)

gluon Gµ,(n) ( 8, 1 , 0)

weak bosons W±
µ,(n) , W

0
µ,(n) ( 1, 3 , 0)

B boson B0
µ,(n) ( 1, 1 , 0)

Table 2.3: Particle contents of UED5. The subscript D stands for SU(2) doublet
states while S denotes SU(2) singlet states.

more degree of freedom and carry two indices (m,n). Similar to UED5 the KK-parity
in UED6 can be defined as

PKK = (−1)(n+m), for (n,m) KK− excitation states. (2.24)

Throughout this thesis the (0, 1) mode will be the focus and it will be denoted by (1)
for simplicity. UED6 is well-motivated not only because protons have long lifetime
in this theory [22] but also it provides an explanation of the number of fermion
generations [23]. One of the characteristics of this model is the presence of scalar
adjoint particles, the KK modes of gauge bosons polarized along extra dimensions.
Therefore, for each vector boson there exists the corresponding scalar partner. In this
thesis I will use GH,(n),W

±
H,(n),W

0
H,(n), andB0

H,(n) to stand for the scalar partners of

Gµ,(n),W
±
µ,(n),W

0
µ,(n), andB0

µ,(n), respectively.
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Chapter 3

Neutrino Physics

The existing experimental neutrino data have provided us with compelling evidence
that neutrinos are massive and they change flavors while traveling from the source
to the detector. Analogous to the CKM matrix in the quark sector, the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix governs the mixing between mass eigenstates
and flavor eigenstates in the lepton sector. It can be written as

UPMNS =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 (3.1)

which is a unitary matrix and can be parametrized by three angles θij ( ij = 12, 13,
and 23 ), and three phases δ, ρ and σ.

UPMNS =




c12c13 s12c13 s13e
−iδ

−c23s12 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ c13s23

s23s12 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13







eiρ

eiσ

1


(3.2)

where sij ≡ sinθij , cij ≡ cosθij . Notice that if neutrinos are Dirac fermions, the
Majorana phases ρ and σ can be rotated away by redefining the right-handed neutrino
fields.

If θ13 is very small then the CP violation effect in the lepton sector would be
negligible even if the Dirac phase is non-zero. New results on θ13 have been announced
by several experiments. The recent result by the Daya Bay collaboration gives θ13 ≃
8.8◦ ± 0.8◦ or

sin2 2θ13 = 0.092± 0.016(stat)± 0.005(syst) (3.3)

which is not only non-zero but also “large”. As a result, if the CP violation in the
lepton sector is not small we would be able to observe this CP violating phase in the
future.
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For the other two angles the latest global analysis of neutrino oscillation data
yields

sin2 θ12 = 0.312+0.017
−0.015 (3.4)

sin2 θ23 = 0.52± 0.06 (3.5)

Many papers have proposed various approaches to understand the observed mix-
ing. Some of them utilize models with different discrete flavor symmetries, such as
S3, S4, A4, and A5, dihedral groups etc. [24, 25], to produce several mixing patters
including democratic, bi-maximal, tri-bimaximal, hexagonal or golden ratio. Among
these mixing patterns tri-bimaximal mixing seems to have better agreement with the
current oscillation data. Therefore in this thesis I will focus on the realization of this
mixing pattern in the model with S3 symmetry.

3.1 Consequences of Approximate S3 Symmetry of

the Neutrino Mass Matrix

Early solar neutrino data suggested that one neutrino eigenstate could be

S =
1√
3

(νe + νµ + ντ) . (3.6)

This led to the consideration of an S3 symmetry [26]. Today the MSW solution to
the solar neutrino problem has the higher-energy neutrinos emerging from the sun in
a state given to a good approximation by S. Here I consider the possibility that the
neutrino mass matrix is dominated by a term with S3 symmetry leading to S as an
eigenstate. I then consider possible perturbations that violate the symmetry.

My assumption is that neutrino mass is due to new physics not directly related
to the origin of the masses of other particles. A large number of papers [25] have
presented detailed models based on S3 symmetry. Here I do not consider a model
but simply try to relate possible symmetries of the new physics to observations. The
most general Majorana mass matrix invariant under S3 is

M0 =




A B B

B A B

B B A


 . (3.7)

The eigenstates are necessarily [26] a singlet given by S and a degenerate doublet D
which can be chosen as

Da =
νµ − ντ√

2
, (3.8a)

Db =

√
2

3
νe −

√
1

6
(νµ + ντ) . (3.8b)

20



The masses are

mS = A+ 2B , (3.9a)

mD = A− B . (3.9b)

The eigenstates in Eq.(3.6) and Eq.(3.8) are those of the tri-bimaximal form of the
mixing matrix discussed in many papers [27] as a fit to neutrino oscillation data.
However, in the fit the largest mass splitting is that between Da and Db responsible
for the atmospheric neutrino oscillation with smaller splitting between S and Db

associated with the solar neutrino oscillation. I assume that the breaking of the
degeneracy is due to the perturbation that breaks S3. In order that the S3 term
dominate I require that all three masses start out approximately equal by choosing

B = −2A + b , (3.10a)

with b≪ B so that
mD ≈ −mS ≈ 3A . (3.10b)

The minus sign means that the state S has the opposite CP eigenvalue from that of
D. I have assumed here for simplicity that A and B are real; otherwise D and S would
have a relative Majorana phase. The sub-dominant mass matrix M1 that breaks S3

has the result of raising the mass of one D state above mS and leaving the mass of
the other slightly below mS. These mass values then correspond to what is called the
“quasi-degenerate” case for neutrino masses.

I now assume that the perturbing matrix M1, which is added to M0, breaks S3

but retains a S2 symmetry between νµ and ντ .

M1 =




e f f

f t ǫ

f ǫ t


 (3.11)

As a result of the symmetry Da remains an eigenstate and the parameter known as θ13

vanishes. In addition to providing the mass splitting between Da and Db, M1 causes
a small mixing of Db with S. The parameters e and f can be absorbed into A and B
and so they are set to zero in what follows. Matrices of the form M0 + M1, with four
parameters are discussed in many papers [28].

I now identify the states which start out as (Da, S,Db) as (3, 2, 1). The mass m2

is understood to be positive although mS is negative (assuming A is positive). The
mass differences are

m3 −m1 =
2

3
(t− 2ǫ) , (3.12a)

m2 −m1 = − (b+ t+ ǫ) . (3.12b)
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The small value of m2 −m1 required to fit the data involves the fine-tuning of the
value of b. The resulting deviation of the factor 1√

3
for νe in S is given approximately

by

∆ =
2

3
√

3

(
t+ ǫ

6A

)
=

k√
3

(
m3 −m1

2m2

)
, (3.13)

k =
t+ ǫ

t− 2ǫ
,

sin2 θ12 = (
1√
3

+ ∆) 2 .

Since by our assumption of a quasi-degenerate neutrino mass spectrum the mass ratio
in Eq.(3.13) is small so that ∆ is predicted to be small. To obtain the doublet mass
splitting without large parameters I choose ǫ

t
to be negative. As ǫ

t
varies from 0 to

a large negative value k varies from 1 to −1
2
; for ǫ

t
= −1, ∆ = 0 and I obtain the

tri-bimaximal form. Choosing values for the mass-splittings fitted from oscillation
data [29]

m2
3 −m2

2 = 2.6× 10−3eV 2 ,

m2
2
−m2

1
= 8× 10−5eV 2 ,

(3.14)

m1 (eV) m2 (eV) m3 (eV)

1 0.1845 0.1847 0.1913

2 0.1247 0.1250 0.1350

3 0.0512 0.0520 0.0729

Table 3.1: Three sets of mass values.

I give in table 3.1 three sets of mass values. The largest values (like set 1) are
limited by cosmology [30] whereas the smallest values(like set 3) are limited by the
requirement that the magnitude of M1 is smaller than M0. For each of these I show
in Fig. 3.1 the solar neutrino survival sin2 θ12 for the higher energy neutrinos for the
LMA-MSW solution as a function of ǫ

t
. Note that the sign of the deviation from 1

3
can

be either positive or negative. I have shown the case of the“normal hierarchy” with
(m3 −m1) positive. In the case of the inverse hierarchy the curves are flipped about
the sin2 θ12 = 1

3
axis. Assuming negligible Majorana phases the mass that enters the

double beta-decay formula is

mee = −sin2 θ12 m2 + cos2 θ12 m1 ≈ (1− 2 sin2 θ12) m2 , (3.15)

given the small difference between m2 and m1.
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I finally consider a possible small violation of µ − τ symmetry by changing the
22 element in Eq.(3.11) to t + δ

2
and the 33 element to t − δ

2
. The main effect is to

mix Da and Db or the states now labeled 3 and 1. There is also a small mixing of 2
and 1 but this is suppressed by the “mass difference” 6A. The important result is a
non-zero value of θ13, the νe amplitude in state 3. Directly correlated with θ13 there
is a deviation of θ23, the νµ amplitude in state 3, from π

4
.

Starting with the tri-bimaximal mixing, corresponding to the limit ǫ
t

= −1, this
correlation is given by

tan2 θ23 = 1− 2
√

2X + 4X2 , X = sin θ13

(
1 + 2λ

1− λ

)
, λ =

m3 −m1

m2 +m1

, (3.16)

to order X2. In Fig. 3.2, I show (tan2 θ23−1) as a function of sin θ13. Different values
of ǫ

t
makes only small changes since they are proportional to λ∆.

3.2 Conclusions

In this chapter I have looked at possible experimental signatures of the assumption
that the physics yielding the neutrino mass matrix has a predominant S3 symmetry.
I further assume a sub-dominant term which breaks S3 but has an S2 µ−τ symmetry.
This leads to

(1) The neutrino masses must be quasi-degenerate. Therefore this theory would
be ruled out if cosmological analysis convincingly gave a very low limit on the sum of
the masses. Considering case 3 in Table 1 as barely quasi-degenerate the sum of the
masses should not be less than 0.17 eV.

(2) θ13, the νe component in the atmospheric mixing, vanishes and the mixing is
maximal.

(3) The high-energy solar neutrino survival, governed by the LMA-MSW solution,
deviates only a little from 1

3
as illustrated in Fig. 3.1.

(4) In the absence of significant Majorana phases the mass mee governing double
beta decay is approximately equal to m2

3
. Thus the theory would be ruled out if the

value of mee was found to be too large. For example, if the cosmological limit on the
sum of the masses was 0.4 eV consistent with case 2 in Table 1 the value of mee must
be less than 0.05 eV.
If I further allow a small term involving only νµ and ντ that violates the S2 symmetry
then there is a non-zero θ13. In this case the atmospheric mixing angle is no longer
maximum and its value is directly correlated with θ13 as shown in Eq.(3.16) and Fig.
3.2. However, the latest values of θ23 and θ13 would disfavor this approach since in
Fig. 3.2 the current value of sinθ13 ∼ 0.153, which corresponds to a deviation of
tan2θ23 from 1 by 0.25, and thus is disfavored by current experiments.

An alternative to generating nonzero θ13, is to assume that the leptonic mixing
matrix UPMNS is the product of the Hermitian conjugate of the charged lepton mix-
ing matrix U †

ℓ and the neutrino mixing matrix Uν [31]. Since charged leptons, like
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Figure 3.1: The solar neutrino survival sin2 θ12 for the higher energy neutrinos for
the LMA-MSW solution as a function of ǫ
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quarks, are Dirac fermions while in many new physics scenarios neutrinos are Majo-
rana fermions, it is tempting to assume that Uℓ is a CKM-like matrix, which has a
hierarchical structure and is parameterized by a small quantity λ, whereas Uν is of
tribimaximal form. This leads to sinθ13 ∼ − λ√

2
= −0.156 and tanθ23 ∼ −1.057 for

λ ∼0.22 , which agree very well with the current experimental data.
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Chapter 4

General analysis of signals with

two leptons and missing energy at

the LHC

4.1 Introduction

Many BSM models include stable weekly interacting massive particles which could
be constituents of dark matter. Since the stability of these particles is generally
related to some symmetry, they can be produced only in pairs at colliders, leading to
challenging signatures with at least two invisible objects in the detector. At hadron
accelerators like the LHC such a signal is not sufficiently kinematically constrained to
use direct reconstruction techniques, and thus it is very difficult to uniquely determine
the properties of the produced particles.

One of the most challenging cases are processes with a low-multiplicity final state
of only two visible objects, which is the focus of this chapter. In particular I will
consider the production of a pair of oppositely charged heavy new particles Y ± at the
LHC, which each decay into a SM lepton and an invisible neutral massive particle
X0:

pp→ Y +Y − → ℓ+ℓ−X0X̄0, (ℓ = e, µ). (4.1)

Several methods for determining the Y and X masses in processes of this type have
been proposed in the literature [11, 32–34]. Furthermore, a number of authors have
studied how to extract spin information from angular distributions [35–37] and the
total production rate [38]. The latter method, while potentially being very powerful,
requires knowledge of the branching fractions of Y ±, which are a priori unknown
without model assumptions. To the best of my knowledge, however, the problem of
determining the couplings of the new particles, which are related to their gauge group
representations, has not yet been considered.

The goal of this chapter is to analyze the process (4.1) in a more model-independent
approach by considering all possible assignments for spins (up to spin one) and SU(2)
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Figure 4.1: Basic diagram topology for the new physics processes under considera-
tion. Thick lines indicate new particles, while thin lines denote SM particles.

representations (up to triplets) for the particles X and Y . To discriminate between
these template model combinations, I discuss several variables for the measurement of
masses, spins, and interactions of the new particles, including two new spin-sensitive
observables and one new observable for the coupling determination. To minimize
model dependence, the total cross section is not considered in this set of variables.

Besides using dedicated observables, I also study an alternative analysis strategy
based on an automated likelihood test. This method matches the observed lepton
momenta in a sample of events to the corresponding momenta of a theoretically cal-
culated matrix element in a given model and calculates a likelihood from that [14,39].
Note that the two approaches based on specific observables and on the automated
likelihood test are complementary. The latter often reaches a higher statistical signif-
icance due to the fact that no information is lost by projecting onto a some variable,
but it does not permit a straightforward separation between individual particle prop-
erties, such as spin and couplings.

After characterizing all relevant spin and coupling representations in section 4.2
and identifying 11 independent model combinations, I present observables for the
measurement of particle properties in section 4.3 and demonstrate their usefulness
in a Monte-Carlo study. Section 4.4 is devoted to the analysis of the same set of
template models with the likelihood test method. Finally, the conclusions are given
in section 4.5.

4.2 Setup

The class of processes under consideration each involve Drell-Yan–type production of
a pair of charged heavy particles Y ±, which each subsequently decay into a lepton
ℓ± (ℓ = e, µ) and a neutral heavy particle X0, see Fig. 4.1. It is assumed that
the Y ± and X0 are charged under some discrete symmetry, such that they can be
produced only in pairs and the lighter new particle (X0) is stable and escapes from
the detector without leaving a signal. The observable signature thus consists of two
same-flavor opposite-sign leptons and missing momentum: ℓ+ℓ−+E/ . For this process
it is insubstantial whether X0 is self-conjugate or not. For the purpose of this work it

27



is assumed that no other new heavy particles play a role in the s- or t-channel of the
Y +Y − production process [note, however, that if Y is a vector boson this assumption
is not valid, as will be explained below]. In fact, LHC data itself will be able to
set a strong lower bound on such particles: searches for di-jet resonances could rule
out s-channel resonances that couple to light quarks up to several TeV, and any new
particles in the t-channel need to be colored and thus could be produced directly with
large cross sections unless their masses are larger than 2–3 TeV [2]1. Therefore, if
the LHC does not see any such signals, one can safely neglect the presence of extra
particles in the s- and t-channel of Y +Y − production.

Table 4.1 lists 16 possible combinations of spins up to spin one and singlet, doublet,
or (adjoint) triplet representations under the weak SU(2) for the fields X and Y . I
do not consider complex SU(2) triplets, since they contain doubly charged particles,
which would lead to a clearly distinguishable signature.

Also shown are the structure of the couplings between the Y and the Z boson
and between X, Y , and SM charged leptons. The γY Y couplings has the same form
as the ZY Y coupling. The coupling constants for the ZY Y coupling are shown in
Table. 4.2, given in terms of the ratio with respect to the γY Y coupling, RZA ≡
g(ZY Y )/e. The strength of the XY ℓ coupling depends on the detail of the given
model, and it is only relevant for the overall decay branchings, but not for the shapes
of distributions. I neglect corrections from electroweak symmetry breaking to the
masses and interactions of X and Y . As a result, if Y is a spin-1/2 fermion it couples
to the Z boson only through non-chiral vector couplings.

For illustration, Tab. 4.1 also gives examples for concrete realizations of all 16
spin and gauge group assignments within the Minimal Supersymmetric Standard
Model (MSSM) or models with universal extra dimensions. However, many of these
combinations can also be realized in other models.

A comment is on order regarding the combination 11 in the table. Taking only
the s-channel diagrams in Fig. 4.1, the cross section for spin-1 Y pair production
grows unboundedly for increasing partonic center-of-mass energy. This is a result of
incomplete SU(2) gauge cancellations. Gauge invariance requires the presence of an
additional new particle in the t-channel, which interferes negatively with the s-channel
contribution and thus preserves perturbative unitarity. In the case of universal extra
dimensions this rôle is played by the KK-quarks. Therefore, for model 11 we include
a new colored fermion Q̂ that is charged under the same discrete symmetry as X and
Y . The coupling strength of the qQ̂Y interaction is prescribed by gauge invariance:
g(q̄Q̂Y ) = g. While for consistency it is necessary to incorporate this particle in the
cross-section calculation, it is still possible that it is too massive to be seen directly
at the LHC, i. e. mQ̂ > O(TeV).

The cross sections for the Drell-Yan–type process in Fig. 4.1 for the different
models in Tab. 4.1 range from a few fb to several hundred fb for a center-of-mass
energy of

√
s = 14 TeV and X/Y masses of a few hundred GeV, see appendix A. As

1These estimated bounds pertain to the LHC with a center-of-mass energy of 14 TeV.
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Y X ℓ ZY Y XY ℓ sample model and decay

s, ISU(2) s, ISU(2) ISU(2) coupling coupling Y − → ℓ−X

1 0, 1 1
2
, 1 1 ZµY ∗←→∂µY X 1+γ5

2
ℓ Y ∗ MSSM ℓ̃−R → ℓ−B̃0

1a 0, 1 1
2
, 2 2 ZµY ∗←→∂µY X 1−γ5

2
ℓ Y ∗ MSSM ℓ̃−R → ℓ−H̃0

2 0, 2 1
2
, 1 2 ZµY ∗←→∂µY X 1−γ5

2
ℓ Y ∗ MSSM ℓ̃−L → ℓ−B̃0

2a 0, 2 1
2
, 2 1 ZµY ∗←→∂µY X 1+γ5

2
ℓ Y ∗ MSSM ℓ̃−L → ℓ−H̃0

2b 0, 2 1
2
, 3 2 ZµY ∗←→∂µY X 1−γ5

2
ℓ Y ∗ MSSM ℓ̃−L → ℓ−W̃ 0

3 0, 3 1
2
, 2 2 ZµY ∗←→∂µY X 1−γ5

2
ℓ Y ∗ UED6 W−

H,(1) → ℓ−ν(1)

4 1
2
, 1 0, 1 1 Y Z/ Y Y 1+γ5

2
ℓX UED6 ℓ−S,(1) → ℓ−B0

H,(1)

5 1
2
, 1 0, 2 2 Y Z/ Y Y 1−γ5

2
ℓX UED ℓ−S,(1) → ℓ−H0

(1)

6 1
2
, 1 1, 1 1 Y Z/ Y Y X/ 1+γ5

2
ℓ UED ℓ−S,(1) → ℓ−B0

µ,(1)

7 1
2
, 2 0, 1 2 Y Z/ Y Y 1−γ5

2
ℓX UED6 ℓ−D,(1) → ℓ−B0

H,(1)

7a 1
2
, 2 0, 3 2 Y Z/ Y Y 1−γ5

2
ℓX UED6 ℓ−D,(1) → ℓ−W 0

H,(1)

8 1
2
, 2 0, 2 1 Y Z/ Y Y 1+γ5

2
ℓX MSSM H̃− → ℓ−ν̃

9 1
2
, 2 1, 1 2 Y Z/ Y Y X/ 1−γ5

2
ℓ UED ℓ−D,(1) → ℓ−B0

µ,(1)

9a 1
2
, 2 1, 3 2 Y Z/ Y Y X/ 1−γ5

2
ℓ UED ℓ−D,(1) → ℓ−W 0

µ,(1)

10 1
2
, 3 0, 2 2 Y Z/ Y Y 1−γ5

2
ℓX MSSM W̃− → ℓ−ν̃

11 1, 3 1
2
, 2 2 S[Z, Y, Y ∗] XY/ ∗ 1−γ5

2
ℓ UED W−

µ,(1) → ℓ−ν(1)

A
←→
∂µB ≡ A(∂µB)− (∂µA)B,

S[Z, Y, Y ∗] ≡ Zµ Y
∗
ν

←→
∂µY ν + Yµ Zν

←→
∂µY ∗ν + Y ∗

µ Yν

←→
∂µZν

Table 4.1: List of different assignments of spin s and SU(2) representations for the
charged field Y and the neutral field X. I define Y −/Y + to be the particle/anti-
particle. Also shown are the structure of the couplings to the Z boson and to SM
leptons, as well as examples for realizations of these assignments in known models.
MSSM refers to the Minimal Supersymmetric Standard Model, UED to (at least) one
universal extra dimension, and UED6 to (at least) two universal extra dimensions.
ℓ̃−R, ℓ̃−L , ν̃, B̃0, W̃ 0,±, and H̃ denote the superpartners of the right-handed charged
lepton, left-handed charged lepton, neutrino, U(1) gauge field, SU(2) gauge fields, and
Higgs boson, respectively. ℓ−S,(1), ℓ

−
D,(1), ν(1), B

0
µ,(1), W

0,±
µ,(1), and H(1), respectively, are

the first-level KK-excitations of these fields. B0
H,(1) and W 0

H,(1) are scalars stemming
from one of the extra components of the higher-dimensional gauge fields in UED.
More details of these models can be found in Refs. [12, 20].
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ISU(2) RZA

1 − tan θW ≈ −0.548

2 cot(2θW ) ≈ 0.638

3 cot θW ≈ 1.824

Table 4.2: Ratio RZA of the ZY Y to γY Y coupling strength for different SU(2)
representations of Y .

a result, one can expect between 1000 and several 10,000 events being produced with
a total luminosity of 100 fb−1. Note that, as mentioned in the introduction, the total
event rate will not be considered to discriminate between models in this chapter.

At the LHC it is not possible to determine the polarizations of the final-state
leptons and X particles. As a result, several pairs of combinations in Tab. 4.1 are
indistinguishable from each other, since after summing over the spins of the external
legs their squared matrix elements are identical. Those sets of look-alikes are (1, 1a),
(2, 2a, 2b), (7, 7a), and (9, 9a). This leaves a total of 11 potentially distinguishable
combinations, which will be explored in more detail in the following.

These 11 combinations have been implemented into CompHEP 4.5.1 [40] and
representative samples with a few thousand parton-level events have been generated
for each of them. Since I will not consider the total cross sections as a discriminative
quantity, the exact values for the XY ℓ coupling and the widths of the Y particles are
irrelevant. However, the Y widths have been chosen small enough so that diagrams
with off-shell Y particles can be safely neglected, i. e. ΓY /MY ≪ 1%.

As a first step, initial-state radiation and detector acceptance effects have been
ignored in the following analysis, but I discuss these contributions in section 4.3.5.

4.3 Observables for Determination of Particle Prop-

erties

The experimental information in the signature ℓ+ℓ− + E/ consists of the 3-momenta
of the leptons ℓ+ and ℓ−, which can be parametrized in terms of their transverse
momentum pT, pseudorapidity η and azimuthal angle φ. Since the system is invari-
ant under overall azimuthal rotations, one can construct five independent non-trivial
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observables from this data. In this work we will focus on the following five quantities:

MT2 = min
pT,X1

+pT,X2
=p/T

{
max

(
mℓ+,X1

T , mℓ−,X2

T

)}
, (4.2)

cos θ∗ℓℓ = tanh
|ηℓ+ − ηℓ−|

2
= tanh

∆ηℓℓ

2
, (4.3)

Meff = pT,ℓ+ + pT,ℓ− + p/T, (4.4)

∆φℓℓ = φℓ+ − φℓ−, (4.5)

Aℓ+ℓ− =
N(Eℓ− > Eℓ+)−N(Eℓ+ > Eℓ−)

N(Eℓ− > Eℓ+) +N(Eℓ+ > Eℓ−)
. (4.6)

Here (
mℓ±,Xi

T

)2 ≡ m2
X + 2

(
pT,ℓ±

√
m2

X + p2
T,Xi
− pT,ℓ± · pT,Xi

)

is the transverse mass of the lepton ℓ±, assumed to be massless, and one neutral
heavy particle Xi, i = 1, 2. Furthermore, θ∗ℓℓ is the polar angle between one lepton
and the beam axis in a frame in which the pseudorapidities of the two leptons obey
η∗ℓ+ = −η∗ℓ− , and N(Eℓ− > Eℓ+) denotes the number of events for which ℓ− has a
larger energy than ℓ+.

This choice of observables is guided by their rôle in determining different particle
properties. The first observable in eq. (4.2) is useful for mass measurement, eqs. (4.3)–
(4.4) are sensitive to the spins of the new particles, and eq. (4.6) provides information
about their couplings.

4.3.1 Mass determination

The variable MT2 has been proposed for the measurement of particle masses in events
with two or more invisible objects in the final state [11]. MT2 and similar variables
have been studied extensively in the literature [32], and it was shown that in favorable
circumstances one can use these variables to determine both the parent mass mY as
well as the mass of the invisible child mX , in particular by including information
about initial-state radiation [33]. In this chapter, therefore, mass determination will
not be discussed any further, and the reader is referred to Refs. [11, 32, 33] for more
details.

4.3.2 Spin determination

A useful observable for determining the spin sY of the Y particles in the process in
eq. (4.1) is cos θ∗ℓℓ = tanh(∆ηℓℓ/2), see eq. (4.3), which was introduced by Barr in
Ref. [37]. It is based on the observation that the final state leptons ℓ± tend to go in
the same direction as their parent particles Y ±, since on average the Y ± are produced
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with a sizable boost if mY ≪
√
s. As a result, the distribution of the lepton polar

angle θ∗ℓℓ, in the frame where the pseudorapidities of the two leptons are equal in
magnitude, is strongly correlated to the production angle θ∗ between one of the Y
and the beam axis in the center-of-mass frame.

The θ∗ distribution is closely connected to sY . For the spin-0 and spin-1/2 cases
one finds a characteristic difference which is immediately visible in the formulas

scalar Y (spin 0):
dσ

d cos θ∗
∝ 1− cos2 θ∗, (4.7)

fermion Y (spin 1
2
):

dσ

d cos θ∗
∝ 2 + β2

Y (cos2 θ∗ − 1), (4.8)

where βY is the velocity of the produced Y particles. For spin-1 pair production the
situation is more complex since here one necessarily needs to take into account a new
particle Q̂ in the t-channel. Depending on its mass mQ̂, the observable θ∗ℓℓ distribution
can be similar to the spin-0 case or to the spin-1/2 case, or different from both, as
can be seen from the numerical results shown in section 5.3.2. Therefore, in general,
the observable (4.3) alone does not unambiguously distinguish spin-1 from spin-0 or
spin-1/2.

One advantage of the definition (4.3) is that it is invariant under longitudinal
boost, i. e. the value of tanh(∆ηℓℓ/2) does not depend on the momentum fractions
carried by the quark and anti-quark in the collision.

Here we propose two other observables for the determination of the Y spin: the
effective mass Meff and the difference between the azimuthal angles of the leptons,
∆φℓℓ, see eqs. (4.4) and (4.5). The connection between these variables and sY can be
understood from the threshold behavior of the partonic cross section qq̄ → Y +Y −. If
Y + and Y − are scalars they are produced in a p-wave and the cross section behaves
like σ ∼ β3

Y near threshold. For fermionic Y , instead, the cross section grows faster
near threshold, σ ∼ βY . Therefore the cross section for fermionic Y pair production
reaches its maximum at lower values of the Y +Y − invariant mass, mY Y , than the cross
section for scalar Y pair production. The effective mass Meff is strongly correlated to
the Y -pair invariant mass, and thus the Meff distribution will peak at larger values for
fermionic Y than for scalar Y (assuming that mY is equal in both cases and known
from measuring the MT2 distribution).

The dependence of the cross section on mY Y also leaves a characteristic imprint
on the ∆φℓℓ distribution. Scalar Y pairs will on average be produced with a larger
boost than fermionic Y pairs. This leads to a more pronounced peak at ∆φℓℓ ∼ π
in the scalar case, since the larger boost is more likely to produce a back-to-back
configuration for the final-state leptons, see Fig. 4.2

If Y ± are vector particles, the Meff and ∆φℓℓ distributions depend on the mass
mQ̂ of the particle in the t-channel. For mQ̂ ≫ mY , the Y +Y − pair production
cross section reaches its maximum at larger values of mY Y than both the spin-0 and
spin-1/2 cases, since the s-channel contribution alone grows monotonically with the
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Figure 4.2: Distributions for Meff (left) and ∆φℓℓ (right), for combinations 3, 10,
and 11 in Tab. 4.1, which correspond to Y particles with spin 0, 1

2
, and 1, respectively.

The plot is based on 35000 parton-level events for each combinations without cuts
and detector effects, and using the mass values mY = 300 GeV and mX = 100 GeV.
For combination 11, two choices of the mass of the t-channel particles are shown,
mQ̂ = 1000 GeV and 500 GeV.

center-of-mass energy. In this case, the Meff distribution for vector Y particles will
peak at larger values than the other two cases, and the ∆φℓℓ distribution will be very
strongly peaked at π. On the other hand, Fig. 4.2 shows that for mQ̂ of the same
order as mY the Meff distribution can be similar to either the spin-0 or spin-1/2 cases,
depending on the precise value of mQ̂. Nevertheless, even for a relatively low value

mQ̂ = 500 GeV2 the ∆φℓℓ distribution is still distinctly different for spin-1 compared
to the other spin cases. By using all three observables (4.3)–(4.5) in combination one
therefore obtains the best discrimination power and can unambiguously distinguish
between sY = 0, 1

2
, and 1.

Similar to tanh(∆ηℓℓ/2), also ∆φℓℓ and Meff are invariant under longitudinal
boosts, and thus very well suited for hadron colliders.

It needs to be pointed out that the three variables, tanh(∆ηℓℓ/2), ∆φℓℓ and Meff ,
are primarily sensitive to the spin of the parent particle Y , but not of the child particle
X. Indeed, as can be seen from the numerical results in sections 5.3.2 and 4.4, it is
very difficult to independently determine the X spin.

4.3.3 Coupling determination

Experiments at LEP and SLC have determined the couplings of the Z boson to SM
fermions with very high precision, in particular by measuring various left-right and
forward-backward asymmetries [41].

2For such low values of m
Q̂

one should see a signal from direct production of the Q̂ particle at
the LHC.
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Similarly, for the class of processes corresponding to Fig. 4.1, one can in princi-
ple try to extract information about the ZY Y coupling by constructing a forward-
backward asymmetry for pp → Y +Y − at the LHC. Although the initial pp state is
symmetric, the incoming quark for a qq̄-initiated process will often stem from one of
the valence quarks of the protons and thus tends to have a larger momentum than
the incoming anti-quark. Therefore one can define the forward direction by the di-
rection of the overall longitudinal boost of an event. However, since I neglect effects
from electroweak symmetry breaking in the new physics sector, all combinations in
Tab. 4.1 have parity-even ZY Y couplings and the forward-backward asymmetry for
pp→ Y +Y − is exactly zero.

However, the coupling between the incident qq̄ pair and Z boson has a parity-odd
axial-vector part, which results in the Y +Y − pair being produced with a non-vanishing
polarization asymmetry (unless Y ± are scalars). This polarization asymmetry can be
probed through the decay Y ± → ℓ±X0, since the interaction responsible for the decay
is either left- or right-handed and thus sensitive to the Y polarization, see Tab. 4.1.

In the center-of-mass frame of the Y +Y − system this leads to a forward-backward
asymmetry for the final-state leptons. As mentioned above, in the lab frame the
forward direction is defined by the overall boost of an event, which is closely correlated
to the direction of the more energetic of the two leptons. Therefore I define the
following observable given in eq. (4.6),

Aℓ+ℓ− =
N(Eℓ− > Eℓ+)−N(Eℓ+ > Eℓ−)

N(Eℓ− > Eℓ+) +N(Eℓ+ > Eℓ−)
. (4.6)

The asymmetry is partially washed out by the mass mY , which can cause a spin flip
before the Y decays, but I expect a non-vanishing result as long as mY ≪

√
s.

Eq. 4.6 is mostly useful for discriminating between combinations with sY = 1
2
,

since scalars do not carry any polarization and lead to a vanishing asymmetry, and
there is only one combination with vector Y particles in Tab. 4.1. The value of Aℓ+ℓ−

is connected to the size of the ratio RZA = g(ZY Y )/e between the ZY Y and γY Y
couplings and to the sign of the γ5 term in the XY ℓ coupling. This is illustrated in
Fig. 4.3 for the case that Y is a fermion and X is a vector boson. As evident from the
plot, there is a strong correlation between RZA and Aℓ+ℓ−, but one can encounter a
two- to three-fold ambiguity when trying to determine RZA from the measured value
of Aℓ+ℓ−.

4.3.4 Numerical results

Using CompHEP I have generated parton-level events for all 11 combinations in
Tab. 4.1 for a center-of-mass energy of

√
s = 14 TeV and mY = 300 GeV and mX =

100 GeV. For the following discussion I will assume that the Y and X masses are
known from observables like MT2 and for simplicity the uncertainty in the mass
determination will be neglected.
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Figure 4.3: Relationship between the coupling ratio RZA = g(ZY Y )/e and the
asymmetry Aℓ+ℓ−, for two different chiralities of the interaction in the Y ± → ℓ±X0

decay, where Y is a fermion and X is a vector boson. The combinations 6 and 9 in
Tab. 4.1 are indicated by the open square and circle, respectively. The plot is based
on parton-level results without cuts and detector effects, and using the mass values
mY = 300 GeV and mX = 100 GeV.

As discussed in the previous section, the observables tanh(∆ηℓℓ/2), Meff , and ∆φℓℓ,
see eqs. (4.3)–(4.5) can be used to determine the spin sY of the parent particle Y . I
have checked this by performing a 5-bin χ2 analysis for a sample of 5000 events for
each model combination, assuming Poisson statistics for the statistical error. Table 4.3
shows the results for combinations 3 (with scalar Y ), 10 (with fermion Y ), and 11
(with vector Y ) as examples. For the case of vector Y particles, results for two
sample values of the t-channel fermion mass mQ̂ are given. As evident from the table,
by combining the three observables, one can distinguish all three spin combinations
from each other with a significance of more than 18 standard deviations, for the given
choice of masses and total event count. This is true even for relatively small values
of mQ̂ ∼ O(0.5 TeV).

I have checked that the results are very similar if combinations 3 or 10 are replaced
by any of the other combinations with spin-0 or spin-1/2 Y particles, respectively.
Furthermore, for any two models with identical sY the distributions for all three
variables are statistically consistent, irrespective of the spin of X.

To discriminate between models with identical sY but different SU(2) representa-
tions of the Y and X particles one can take advantage of the charge asymmetry Aℓ+ℓ−

in (4.6). As explained in the previous section, one cannot obtain a non-zero asym-
metry if the Y particles are scalars, and I have confirmed this statement explicitly
with my simulation results. However, for sY = 1

2
, Aℓ+ℓ− can yield useful information

about the structure of the ZY Y and XY ℓ couplings. Results for the total asymme-
try, without cuts or acceptance effects, are given in Tab. 4.4 for all combinations with
fermionic Y in Tab. 4.1.

In general, Aℓ+ℓ− becomes maximal for events with large values of cos θ∗ℓℓ =

35



(model A, model B)

Variable (3,10)
(3,11)

[MQ̂=1 TeV]
(3,11)

[MQ̂=0.5 TeV]
(10,11)

[MQ̂=1 TeV]
(10,11)

[MQ̂=0.5 TeV]

tanh(∆ηℓℓ/2) 19.0 18.6 26.0 2.4 8.0

Meff 37.5 3.9 25.1 30.7 9.5

∆φℓℓ 16.3 21.4 10.7 41.1 29.0

All combined 37.5 18.6 26.0 41.1 29.0

Table 4.3:
√
χ2 values for a 5-bin χ2-test to discriminate between pairs of model

combinations with different spin of the parent Y particle. The combinations 3, 10,
and 11 from Tab. 4.1 have been chosen as examples of models with Y particles of spin
0, 1

2
, and 1, respectively. Model B is assumed to represent the simulated “data”, while

model A is the test hypothesis. The results are based on samples of 5000 parton-level
events without cuts and detector effects, and using the input values mY = 300 GeV,
mX = 100 GeV, and

√
s = 14 TeV.

Combination from Tab. 4.1 4 5 6 7 8 9 10

Aℓ+ℓ− 0.20 −0.22 0.13 0.17 −0.18 0.10 0.20

Table 4.4: Values for the asymmetry Aℓ+ℓ− for combinations with fermionic Y in
Tab. 4.1 based on simulated parton-level events for mY = 300 GeV, mX = 100 GeV,
and
√
s = 14 TeV.

tanh(∆ηℓℓ/2) close to 1, i. e. when the Y +Y − pair is produced in the forward/backward
direction. However, this correlation between Aℓ+ℓ− and tanh(∆ηℓℓ/2) depends to a
lesser extent also on spin effects in the decay Y → ℓX and thus can be markedly
different for models with opposite chirality of the XY ℓ vertex. As a result, the sig-
nificance for distinction between such models is increased by performing a binned
analysis for the distribution dAℓ+ℓ−/d tanh(∆ηℓℓ/2). It turns out that the highest
sensitivity is obtained by using just two bins.

Table 4.5 lists the statistical significances for discriminating between any pair of
the combinations 4–10 from Tab. 4.1 based on this observable. Models that have
different signs for Aℓ+ℓ− can be distinguished with more than 20 standard deviations
for an signal event sample of 5000 events (bold face numbers in the table).

However, the combinations 4, 7, and 10, as well as 6 and 9, are indistinguishable
at the three-sigma level (gray italic numbers in the table). It turns out that also
when considering any other variables in eqs. (4.2)–(4.5) one cannot achieve a higher
significance for discriminating between these models.

Note that the variable Aℓ+ℓ− has some sensitivity to distinguish between models
which differ only through the spin of the X particle, i. e. between combinations 4 and
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model A

4 5 6 7 8 9

5 36

6 4.9 29

7 1.6 33 2.9

8 32 3.5 26 29

m
o
d
el

B

9 6.7 27 1.5 4.7 23

10 0.3 37 5.8 2.2 33 7.6

Table 4.5: Statistical significance, in units of standard deviations, for the discrim-
ination between combinations with fermionic Y in Tab. 4.1 using the differential
asymmetry dAℓ+ℓ−/d tanh(∆ηℓℓ/2). Numbers in bold face indicate a difference of at
least 20 standard deviations, while gray italic numbers denote a significance of less
than three standard deviations. The results are based on samples of 5000 parton-level
events without cuts and detector effects, and using the input values mY = 300 GeV,
mX = 100 GeV, and

√
s = 14 TeV.

6, or 7 and 9 in Tab. 4.1. Assuming a signal sample of 5000 events, as in Tab. 4.5, a
discrimination significance of about five standard deviations or more can be achieved
for these pairs.

4.3.5 Simulation results

The analysis in the previous section does not take into account detector effects and
signal selection cuts. To determine how these might affect the results I have passed
the parton-level events generated by CompHEP [40] through Pythia 6.4 [42] and
PGS4 [43]. By including initial-state radiation and parton showering in the Pythia

simulation one can furthermore evaluate whether fluctuations of the initial-state
transverse momentum might wash out the characteristic features for the model dis-
crimination.

In Ref. [37] it has been shown that the selection cuts

N(ℓ+) = N(ℓ−) = 1, mℓℓ > 150 GeV, max{pT,ℓ±} > 40 GeV, min{pT,ℓ±} > 30 GeV,

p/T > 100 GeV, MT2 > 100 GeV, |p/T + pT,ℓ+ + pT,ℓ−| < 100 GeV,

pT,j < 100 GeV, Nb = 0, (4.9)

reduce the SM background rate to about 1.6 fb. Here N(ℓ±) denotes the number of
visible leptons ℓ± = e±, µ± in the central detector, Nb denotes the number of vertex b
tags, mℓℓ is the di-lepton invariant mass, and pT,j refers to the transverse momentum
of any reconstructed jets. With these cuts one obtains a selection efficiency for the
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(model A, model B)

Variable (3,10)
(3,11)

[MQ̂=1 TeV]
(3,11)

[MQ̂=0.5 TeV]
(10,11)

[MQ̂=1 TeV]
(10,11)

[MQ̂=0.5 TeV]

tanh(∆ηℓℓ/2) 23.2 20.1 30.6 6.3 10.1

Meff 40.0 9.7 24.2 36.8 12.6

∆φℓℓ 27.2 15.5 6.0 40.7 23.8

All combined 40.0 20.1 30.6 40.7 23.8

Table 4.6:
√
χ2 values for a 5-bin χ2-test to discriminate between pairs of model

combinations with different spin of the parent Y particle, for a sample of 5000 events
passing the detector simulation and selection cuts in eq. (4.9). The notation and
input parameters are the same as in Tab. 4.3.

signal process pp → Y +Y − → ℓ+ℓ−XX between 27% and 40%, depending on the
specific type of Y and X particle. As listed in the appendix A, this corresponds to
measurable signal cross sections between about 1 fb and 200 fb. For concreteness I
will assume 5000 observed events, which corresponds to the expected yield of model
combination 7 for an integrated luminosity of 200 fb−1. In comparison, the SM
background of about 300 events is small and can be neglected.

Tables 4.6 and 4.7 summarize the significance for distinguishing between models
with different Y spin and with different couplings, assuming 5000 measured events
for
√
s = 14 TeV, mY = 300 GeV and mX = 100 GeV. Overall, the obtained

significances for the spin discrimination are comparable to the parton-level results in
Tab. 4.3, and in a few cases the significance is even higher. This seemingly surprising
outcome is related to the fact that I compare the same number of “observed” events
in the previous section and in this section, but in the latter case the cuts remove part
of the phase space, leaving a higher event yield in the remaining phase-space region.

For the coupling determination one finds that the asymmetry Aℓ+ℓ− is washed
out noticeably by the cuts, leading to substantially reduced significances in Tab. 4.7
compared to Tab. 4.5. Nevertheless, models with different sign for Aℓ+ℓ− can still be
distinguished with at least 17 standard deviations.

In summary, for most cases, selection cuts and smearing effects only moderately
affect the capability for identifying particle properties with the described observables.
Of course the selection cuts reduce the overall event number, which however also
depends on the model-dependent total cross section and thus is left as a free parameter
here.
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model A

4 5 6 7 8 9

5 23

6 3.3 20

7 2.0 22 1.6

8 22 2.1 19 21

m
o
d
el

B

9 3.7 19 1.7 3.3 17

10 1.3 25 4.1 2.1 23 5.3

Table 4.7: Statistical significance, in units of standard deviations, for the discrim-
ination between combinations with fermionic Y using dAℓ+ℓ−/d tanh(∆ηℓℓ/2). The
results are based on a sample of 5000 events passing the detector simulation and
selection cuts in eq. (4.9), with notation and input parameters are the same as in
Tab. 4.5.

4.4 Comparison with Automated Likelihood Anal-

ysis

An alternative approach is an automated likelihood test for a sample of measured
events. With such a computerized analysis method it is in general not possible to
clearly separate properties like spin and couplings, but it offers the advantage of
reaching a higher sensitivity by using the complete event information instead of spe-
cific observables. A very appealing realization of an automated likelihood analysis is
the Matrix Element Method (MEM) [39], which uses parton-level matrix elements to
specify the theoretical model that is compared with the data. The method can be
used to measure one or several parameters of the model by finding the maximum of
the likelihood for a sample of events as a function of the parameters. As of today,
the MEM achieves the most precise determination of the top-quark mass [14] and
new-physics particle masses [34].

For each single event, with observed momenta pvis
i , the MEM defines a likelihood

measure that it agrees with a model for a given set of model parameters α:

P(pvis
i |α) =

1

σα

∫
dx1dx2

f1(x1)f2(x2)

2sx1x2

[
∏

i∈final

∫
d3pi

(2π)32Ei

]
|Mα(pi)|2

∏

i∈vis

δ(pi − pvis
i ).

(4.10)

Here f1 and f2 are the parton distribution functions, Mα is the theoretical matrix
element, and σα is the total cross section, computed with the same matrix element.
The three-momenta pvis

i of the visible measured objects are matched with the cor-
responding momenta pi of the final state particles in the matrix element, while the
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(model A, model B)

(3,10)
(3,11)

[MQ̂=1 TeV]
(3,11)

[MQ̂=0.5 TeV]
(10,11)

[MQ̂=1 TeV]
(10,11)

[MQ̂=0.5 TeV]

60 59 61 85 87

Table 4.8: Statistical significance, in units of standard deviations, for the discrimina-
tion between pairs of model combinations with different spin of the parent Y particle,
based on the MEM. A sample of 5000 parton-level events without cuts and detector
effects has been used. The notation and input parameters are the same as in Tab. 4.3.

momenta of invisible particles (weakly interacting particles, such as the X particle in
my case) are integrated over.

For a sample of N events, the combined likelihood is usually stated in terms of its
logarithm, which in the large-N limit can be interpreted as a χ2 value,

χ2 = −2 ln(L) = −2

N∑

n=1

lnP(pvis
n,i|α), (4.11)

where pvis
n,i are the measured momenta of the nth event.

The MEM is particularly useful for signals that cannot be fully reconstructed due
to invisible final-state particles, and it can be applied to determine the masses of both
X and Y in processes of the type in eq. (4.1) [34]. Here I will assume that the masses
are already known and instead focus on the discrimination between the models in
Tab. 4.1.

Matrix elements for all 11 combinations in the table have been computed with the
help of CompHEP and implemented into a private code for performing the phase-
space integration in (4.10). Similar to section 5.3.2 only parton-level events without
cuts have been used in this analysis. Results for model comparisons are listed in
Tables 4.8 and 4.9.

As can be seen from Tab. 4.8, the MEM achieves a much higher significance for
discriminating between combinations with different sY , see Tab. 4.3 for comparison.
This is not surprising since several observables, eqs. (4.3)–(4.5), were found to be
sensitive to the Y spin, indicating that none of them captures all relevant information.
Note also that the results in Tab. 4.8 do not depend strongly on the unknown mass
of the t-channel fermion Q̂ for combination 11.

The MEM can also distinguish between combinations that all have spin-1/2 Y par-
ticles but which differ in the SU(2) representations of X and Y , as shown in Tab. 4.9.
It is interesting to note that in most cases the statistical significance achieved by the
MEM is the same or only slightly better than the results obtained with the asym-
metry Aℓ+ℓ− in Tab. 4.5. An exception is combination 10 which can be distinguished
from the other combinations with substantially higher significance using the MEM
compared to Aℓ+ℓ− . This implies that the asymmetry Aℓ+ℓ− captures essentially all
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model A

4 5 6 7 8 9

5 30

6 7.6 25

7 2.5 29 9.1

8 30 4.1 27 29

m
o
d
el

B

9 8.6 26 3.0 9.0 27

10 15 44 22 15 44 17

Table 4.9: Statistical significance, in units of standard deviations, for the discrim-
ination between combinations with fermionic Y in Tab. 4.1 based on the MEM. A
sample of 5000 parton-level events without cuts and detector effects has been used.
The notation and input parameters are the same as in Tab. 4.5.

measurable information about the ZY Y and XY ℓ couplings, except for the special
case of model 10.

Similar to the results of the previous section, it is found that one cannot discrim-
inate very well between combinations with Y singlets and Y doublets, i. e. between 4
and 7, 5 and 8, or 6 and 93. Likewise, the MEM results for the combinations 1, 2, and
3 with scalar Y differ by less than one standard deviation, and thus are completely
indistinguishable.

4.5 Conclusions

This chapter presents a comprehensive analysis of new physics processes of the form
pp → Y +Y − → ℓ+ℓ−X0X̄0 (ℓ = e, µ), where X0 is stable and weakly interacting,
leading to a signature of two opposite-sign same-flavor leptons and missing momen-
tum. To minimize model assumptions, all possible combinations for the spins and
weak SU(2) couplings of X and Y have been considered, allowing for spin 0, 1

2
and

1, and SU(2) iso-singlets, -doublets and -triplets, see Tab. 4.1.
The signal processes have been analyzed with two different and complementary

approaches. The first method is based on specific observables. Concretely, I have
studied three variables for the measurement of the spins and one asymmetry for
the extraction of information about the couplings of the new particles. Secondly,
an automated strategy called the Matrix Element Method has been used, which
algorithmically computes a likelihood that a given event sample agrees with some
model interpretation supplied in the form of a theoretically calculated matrix element.

3Note, however, that a better differentiation between these cases would in principle be possible
with more statistics, requiring significantly larger amounts of integrated luminosity.
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It has been found that the spin sY of the parent particle Y can be determined
with high statistical significance, so that a sample of a few hundred signal events
is sufficient for discrimination at the 5σ-level. Furthermore, it was shown that the
asymmetry Aℓ+ℓ− defined in eq. (4.6) is instrumental in distinguishing between model
combinations that all have sY = 1

2
but different Y and X couplings. The majority

of possible coupling assignments can be differentiated with high significance, but it
turns out that for cases 4 and 7, as well as 6 and 9 in Tab. 4.1 one cannot achieve a
3σ discrimination with a realistic number of a few thousand events. This is related
to the fact that the relationship between the ZY Y coupling strength and the observ-
able asymmetry is not monotonic and can involve degenerate solutions. Remarkably,
the same model combinations are also difficult to distinguish with the Matrix El-
ement Method, which demonstrates that the asymmetry Aℓ+ℓ− reflects all relevant
information about the couplings of the underlying model.

For sY = 0 it is generally impossible to discriminate between cases with different
couplings or with different spin of the X particles, due to the absence of spin cor-
relations between the production and decay stages of the process. For sY = 1 the
coupling structure of the process is essentially fixed by gauge invariance and thus
already uniquely known once the vector nature of Y has been determined.

my findings indicate that even for the challenging case of a process with a short,
one-step decay chain it is in general possible to separately determine the spins and
couplings of the new heavy particles. The results in this chapter have been presented
for the specific choice of masses mY = 300 GeV and mX = 100 GeV, but I have
checked explicitly that the essential features are unchanged formY = 200 GeV. While
the main goal of this study was the development of the theoretical framework and
conceptual ideas, I have also performed a fast detector simulation with selection
cuts for the suppression of standard model backgrounds and found that qualitatively
my conclusions still hold. Nevertheless, a dedicated experimental simulation with a
careful evaluation of systematic errors, including the influence of uncertainties in the
Y and X masses, would be required to check the viability of my results under realistic
conditions.
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Chapter 5

General analysis of decay chains

with three-body decays involving

missing energy

A large range of models have been proposed that predict new particles within the reach
of the LHC. Since there is currently very little evidence for favoring one model over the
others, it will be essential to analyze a potential new-physics signal in the LHC data in
a model-independent approach, by independently determining the properties of each
of the produced particles. Recently, this idea has gained increased interest, and several
groups have worked on constructing such model-independent setups for a number
of different observable signatures, see e. g. Refs. [44–47]. A particularly challenging
scenario are processes that result in the production of new weakly interacting massive
particles (WIMPs), which are invisible to the detector. WIMPs are predicted in many
models as hypothetical dark matter candidates. In these models, the stability of the
WIMP is a consequence of some (discrete) symmetry, under which it is charged. As
a result, it can be produced only in pairs at colliders, leading to challenging events
with at least two invisible objects. At hadron colliders like the LHC there are not
enough kinematical constraints in events of this type for the direct reconstruction of
the momenta of all particles involved.

One approach to this problem is motivated by the fact that models predict ad-
ditional new particles, which can decay into the stable WIMP. In this case, one can
have cascade decay chains, which go through multiple decay steps before ending with
the stable WIMP, so that one can construct invariant-mass distributions of the visible
decay products of this cascade. The kinematic endpoints of these distributions yield
information about the masses [32, 49, 50] of the new heavy particles, while the shape
is sensitive to their spins [44, 45, 51, 52]. Refs. [44, 45] have analyzed decay chains
built up from a sequence of two-body decays in a model-independent way, by consid-
ering arbitrary spin assignments [44] and also using general parametrizations for the
coupling for the new particles [45].
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Figure 5.1: Right: Three-body decays involving an off-shell new-physics particle B
(topology I) or an off-shell Z boson (topology II). Left: The three body decay could
occur as the last step of a longer decay chain.

However, for scenarios with relatively small splittings in the mass spectrum of the
new-physics particles, it can often happen that the last decay step is a three-body
decay mediated by a heavier off-shell particle, see right-hand side of Fig. 4.1. Some
typical scenarios where this occurs in the context of supersymmetry are listed in the
appendix B. In Ref. [53], three-body decays have been analyzed in order to distinguish
gluinos, the supersymmetric partners of gluons, from a Kaluza-Klein (KK) gluons in
universal extra dimensions (UED). A model-independent study of three-body decays
has been presented in Ref. [54], but only in the limit of an asymptotically large mass
of the intermediate off-shell particles. In typical supersymmetry and UED scenarios,
however, this limit is often not a good approximation.

In this work, three-body decays of the form C → ℓ+ℓ−A will be analyzed in a
model-independent setup without assumptions about the values of the masses of the
new-physics particles. Here C is a massive new particle that decays into the WIMP
A and two SM leptons ℓ± = e±, µ± through the off-shell exchange of a third new
particle B or the SM Z-boson, see Fig. 5.11. The spins of A, B, and C, their coupling
parameters, and the massmB of the particle B will be kept as free quantities that have
to be extracted from the experimental data. I only impose the constraint mB > mC ,
or mZ > mC −mA, to ensure that I have an actual three-body decay. Without these
constraints the three-body decay would decompose into two two-body decays, which
is a scenario that has been discussed in detail in the literature cited above.

Furthermore, I also consider the case that this three-body decay is the second

1In general, besides the Z-boson, a bosonic new-physics particle (e. g. a Z ′ or a Higgs boson)
may also appear in the decay topology II. However, the branching of such a particle into leptons is
strongly constrained by data on four-fermion contact interactions [55], and thus its contribution will
be neglected here.
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step of a cascade decay of the form D →
(–)

q C →
(–)

q ℓ+ℓ−A, where
(–)

q refers to a SM
quark (antiquark), see Fig. 5.1. Such a decay chain would lead to two independent
observable invariant-mass distributions, a di-lepton (ℓ+ℓ−) invariant-mass distribu-
tion, and a jet-lepton (jℓ±) invariant-mass distribution, where the jet emerges from
the fragmentation of the quark or antiquark.

For both of these cases, I investigate the simultaneous determination of the spins
and couplings of the new particles A, B, C and D from the shapes of these distribu-
tions. The determination of the masses from kinematic endpoints has been discussed
elsewhere [32, 49, 82], and here I will simply assume that the masses of the particles
A, C and D are already known. On the other hand, the mass mB of the off-shell
intermediate particle B can not be extracted from the kinematic endpoints, and I will
study if instead it can be constrained from the shapes of the distributions.

My analysis closely follows the conventions of Ref. [45]. After introducing the
relevant spin and coupling representations in section 5.1, the calculation of the ℓℓ and
jℓ invariant-mass distributions is described in section 5.2. In section 5.3 I present a
procedure for determining the spins and couplings of the new particles, as well as the
mass of the intermediate particle B, by fitting the theoretically calculated functions to
the experimentally observed distributions. The method is illustrated by applying it in
two numerical examples. Finally, the main conclusions are summarized in section 5.4.

5.1 Setup

The three-body decay of a heavy new particle C into two opposite-sign same-flavor
leptons and a second new particle A,

C → ℓ+ℓ−A, (ℓ = e, µ), (5.1)

is mediated either by an off-shell heavy new particle B (with mB > mC > mA) or
a SM Z-boson (with mC −mA > mZ). I also consider the possibility that eq. (5.1)
occurs as the last step of a longer decay chain,

D → q C
⌊→ ℓ+ℓ−A.

(5.2)

Here D is a QCD triplet, while B and A/C are electrically charged and neutral QCD
singlets, respectively. For the purpose of this work, it is assumed that A and C are
self-conjugate (i. e. they are their own antiparticles)2. Furthermore, it is assumed that
A, B, C, and D are charged under some symmetry which ensures that A is stable
and escapes from the detector without leaving a signal.

2Some new physics models predict decay chains with non-self-conjugate neutral heavy particles,
which lead to distinct phenomenological features [56], but this case will not be considered here.
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S D C B A Example

1 S F S F q̃ → χ̃0
2 → ℓ̃∗ → χ̃0

1

2 F S F S q(1) →W 0
H,(1) → ℓ∗(1) → B0

H,(1)

3 F S F V q(1) →W 0
H,(1) → ℓ∗(1) → B0

µ,(1)Topology I





4 F V F S q(1) →W 0
µ,(1) → ℓ∗(1) → B0

H,(1)

5 F V F V q(1) →W 0
µ,(1) → ℓ∗(1) → B0

µ,(1)

6 S F V F

7 F S S q(1) →W 0
H,(1) → B0

H,(1)

8 F S V q(1) →W 0
H,(1) → B0

µ,(1)

Topology II





9 F V S q(1) →W 0
µ,(1) → B0

H,(1)

10 F V V q(1) →W 0
µ,(1) → B0

µ,(1)

11 S F F q̃ → χ̃0
2 → χ̃0

1

Table 5.1: Possible spin configurations of the heavy particles D, C, B, and A in the
decay chain of Fig. 5.1 (F=Fermion, S=Scalar, V=Vector). Also shown are examples
for realizations of these assignments in the Minimal Supersymmetric Standard Model
(MSSM) or in models with one or two universal extra dimension (UED). Here q̃, ℓ̃,
and χ̃0

i denote squark, slepton, and neutralino, respectively. q(1), ℓ(1), B̃
0
µ,(1), and

W̃ 0,±
µ,(1) refer to the first-level KK-excitations of quark, lepton, U(1) gauge field, and

SU(2) gauge field, respectively. B0
H,(1) and W 0

H,(1) are scalars stemming from one of
the extra components of the higher-dimensional gauge fields in UED. More details of
these models can be found in Refs. [12, 20].

In general, it is difficult to experimentally determine the overall strength of the
couplings in the decay chain since the width of weakly decaying particles is typi-
cally small compared to the experimental resolution. Consequently, only the shape of
the observable invariant-mass distributions will be considered here, similar to earlier
studies on spin determination [44, 45, 51, 53, 54]. All expressions for these distribu-
tions presented in the following sections therefore include an arbitrary, but constant,
normalization factor.

Table 5.1 lists all possible spin assignments for the particles A−D in any renor-
malizable theory with fields of spin 0 (scalars), spin 1/2 (fermions) and/or spin 1
(vector bosons). Also shown are examples for realizations of these assignments in
known models.

The chirality of the fermion couplings depend on the details of the new physics and
thus are a priori unknown. Following Ref. [45], I introduce arbitrary left- and right-
handed components. For scalar-fermion-fermion vertices, the interaction Lagrangians
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are defined as

B
ℓ

A
ψB A (aLω− + aRω+)ψℓ + h.c., (5.3)

B
ℓ

A
ψAB (aLω− + aRω+)ψℓ + h.c., (5.4)

C
ℓ

B
ψC B (bLω− + bRω+)ψℓ + h.c., (5.5)

C
ℓ

B
ψB C (bLω− + bRω+)ψℓ + h.c., (5.6)

D
q

C
ψD C (cLω− + cRω+)ψq + h.c., (5.7)

D
q

C
ψC D (cLω− + cRω+)ψq + h.c., (5.8)

where ω± = 1
2
(1± γ5). For vector-fermion-fermion couplings, A must be replaced by

A/ in (5.3), etc. After normalizing the overall coupling strength to unity, each vertex
can be parametrized by a single angle α, β, or γ,

aL = cosα, bL = cosβ, cL = cos γ,

aR = sinα, bR = sin β, cR = sin γ.
(5.9)

As will be shown later, the entire parameter space for the couplings can be covered
by restricting the angles to the intervals α ∈ [−π/2, π/2], β, γ ∈ [0, π/2].

The form of the CAZ vertices is uniquely determined by Lorentz symmetry and
CP properties (since the Z-boson is CP-odd, while the self-conjugate A and C are
C-even):

C
Z

A
iC

↔
∂µAZ

µ, (5.10)

C
Z

A
− CµAZ

µ, (5.11)

C
Z

A
− C Aµ Z

µ, (5.12)

C
Z

A
(CµAν − AµCν)∂

µZν + cycl., (5.13)

C
Z

A
ψCγµγ5ψA Z

µ, (5.14)
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where again the coupling constants have been normalized to unity.
In an experimental analysis, it is impossible to tell on an event-by-event basis

whether a quark or an antiquark is emitted in the first stage of eq. (5.2), i. e. whether
the cascade decay was initiated by a particle D or its antiparticle D. However, the
observable jℓ invariant-mass distribution may depend significantly on the fraction f
of events stemming from D decays versus the fraction f̄ of events stemming from D
decays, with f + f̄ = 1.

As pointed out in Ref. [45], the ratio of f and f̄ is very difficult to determine
without model assumption and thus should be treated as a free parameter. The jℓ
distribution depends on f and f̄ only through the combinations f |cL|2 + f̄ |cR|2 =
f cos2 γ + f̄ sin2 γ and f |cR|2 + f̄ |cL|2 = f sin2 γ + f̄ cos2 γ. It is therefore convenient
to introduce the parameter γ̃, defined by [45]

cos2 γ̃ = f cos2 γ + f̄ sin2 γ, (5.15)

sin2 γ̃ = f sin2 γ + f̄ cos2 γ. (5.16)

From the analysis of the jℓ invariant-mass distribution one can only obtain a con-
straint on γ̃, but not on γ and f independently.

5.2 Invariant-mass distributions

As pointed out above, it is difficult to discriminate experimentally between the decay
chain in Fig. 5.1, with a quark emitted in the first stage, and its charge-conjugated
version with an antiquark emitted in the first stage, since both quark and antiquark
fragment into jets. Therefore the only relevant observable invariant-mass distributions
are the mℓℓ (lepton-lepton) distribution and the mjℓ (jet-lepton) distribution.

There is no distinction between the two leptons in the three-body decay, in contrast
to the situation when B can be produced on-shell (i., e. for mB < mC) in which case
one can define a “near” and a “far” lepton [32, 44, 45, 49, 51, 52, 82].

Explicit expressions for the mℓℓ and mjℓ distributions are obtained by computing
the squared matrix elements for the different spin configurations S=1–11 in Tab. 5.1
and integrating over the remaining phase space variables. A convenient choice for the
phase space integration is given by

1

Γ

dΓ

dm2
ℓℓ

= Nℓℓ

∫ mmax
Aℓ−

mmin
Aℓ−

dm2
Aℓ− |M3|2, (5.17)

mmin,max
Aℓ− = 1

2
[m2

A +m2
C −m2

ℓℓ ∓ λ1/2(m2
A, m

2
C , m

2
ℓℓ)],

1

Γ

dΓ

dm2
qℓ+

= Nqℓ

∫ m2
C [1−m2

qℓ+
/(m2

D−m2
C)]

m2
A

dm2
Aℓ−

∫ 2π

0

dφ (5.18)

×
∫ (m2

Aℓ−
−m2

A)(m2
C−m2

Aℓ−
)/m2

Aℓ−

0

dm2
ℓℓ

1

m2
C −m2

Aℓ−
|M4|2,
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where λ(a, b, c) ≡ a2 + b2 + c2 − 2(ab+ ac+ bc). In these equations,M3,4 denote the
matrix elements for the 3-body or (3+1)-body decay processes, respectively, while
mAℓ− is the invariant mass of particle A and one of the leptons, and φ is the angle
between the plane spanned by the lepton-lepton system and the quark in the reference
frame of C. The charge of the lepton in mAℓ− and mqℓ+ has been specified for
definiteness, but one can equally well choose the variables mAℓ+ and mqℓ− . Nℓℓ and
Nqℓ are unspecified normalization constants.

The observable jet-lepton distribution dΓ/dm2
jℓ is obtained from dΓ/dm2

qℓ by re-
placing γ with γ̃, see eqs. (5.15),(5.16).

As mentioned above, the endpoints of the invariant-mass distributions can be
used to obtain information about the masses mA, mC and mD of the particles that
are produced on-shell in the cascade, while the shapes of the distributions depend on
the couplings and spins of the particles A–D. Focusing on the latter, it is convenient
to define the distributions dΓ/dm̂ℓℓ and dΓ/dm̂jℓ in terms of unit-normalized invariant
masses

m̂ℓℓ ≡
mℓℓ

mmax
ℓℓ

, mmax
ℓℓ = mC −mA, (5.19)

m̂jℓ ≡
mjℓ

mmax
jℓ

, (mmax
jℓ )2 =

1

m2
C

(m2
D −m2

C)(m2
C −m2

A). (5.20)

For the spin configurations S=1–6, the dependence on the coupling parameters α, β, γ̃
can be cast into the form

1

Γ

dΓ

dm̂ℓℓ

= (cos2 α sin2 β + sin2 α cos2 β) f
(ℓℓ)
1 (m̂2

ℓℓ; m
2
A, m

2
B, m

2
C)

+(cos2 α cos2 β + sin2 α sin2 β) f
(ℓℓ)
2 (m̂2

ℓℓ; m
2
A, m

2
B, m

2
C)

+(cosα sinα cosβ sin β) f
(ℓℓ)
3 (m̂2

ℓℓ; m
2
A, m

2
B, m

2
C),

(5.21)

1

Γ

dΓ

dm̂jℓ
= (cos2 α sin2 β cos2 γ̃ + sin2 α cos2 β sin2 γ̃) f

(jℓ)
1 (m̂2

jℓ; m
2
A, m

2
B, m

2
C , m

2
D)

+(cos2 α sin2 β sin2 γ̃ + sin2 α cos2 β cos2 γ̃) f
(jℓ)
2 (m̂2

jℓ; m
2
A, m

2
B, m

2
C , m

2
D)

+(cos2 α cos2 β cos2 γ̃ + sin2 α sin2 β sin2 γ̃) f
(jℓ)
3 (m̂2

jℓ; m
2
A, m

2
B, m

2
C , m

2
D)

+(cos2 α cos2 β sin2 γ̃ + sin2 α sin2 β cos2 γ̃) f
(jℓ)
4 (m̂2

jℓ; m
2
A, m

2
B, m

2
C , m

2
D)

+(cosα sinα cosβ sin β) f
(jℓ)
5 (m̂2

jℓ; m
2
A, m

2
B, m

2
C , m

2
D),

(5.22)

where the functions f
(ℓℓ)
i and f

(jℓ)
i are independent of the coupling parameters, but

they contain the entire kinematical and spin information, including the dependence
on the particle masses. Note that f

(ℓℓ)
3 and f

(jℓ)
5 receive contributions only from the

interference term between the t- and u-channel diagrams in the upper part of Fig. 5.1,
see also Ref. [53].
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From eqs. (5.21),(5.22) one can see that without loss of generality the coupling
parameters can be restricted to the intervals α ∈ [−π/2, π/2], β, γ̃ ∈ [0, π/2], as
already mentioned in the previous section.

For S=7–11, the CAZ coupling is uniquely fixed up to an overall coupling con-
stant, so that there is only one term for the lepton-lepton invariant-mass distribution.
However, there are two possible terms for the jet-lepton invariant-mass distribution:

1

Γ

dΓ

dm̂ℓℓ

= f (ℓℓ)(m̂2
ℓℓ; m

2
A, m

2
Z , m

2
C), (5.23)

1

Γ

dΓ

dm̂jℓ

= f
(jℓ)
S (m̂2

jℓ; m
2
A, m

2
Z , m

2
C , m

2
D) + cos 2γ̃ f

(jℓ)
A (m̂2

jℓ; m
2
A, m

2
Z , m

2
C , m

2
D), (5.24)

The lepton-lepton distribution dΓ/dm̂ℓℓ can be expressed in terms of compact analyt-
ical formulae. On the other hand, the analytical results for dΓ/dm̂qℓ are very lengthy,
so that instead I chose to perform the last integration step (over m2

Aℓ−) numerically.

Explicit expressions for the functions f
(xy)
i are available for free download (see

appendix C). Figs. 5.2–5.4 depict the distribution functions for a sample mass spec-
trum. In the figures, the overall normalization constants have been fixed by requiring
that f

(ℓℓ)
1 , f

(jℓ)
1 , f (ℓℓ), and f

(jℓ)
S are unit-normalized. The right column of Fig. 5.2 also

illustrates how the distributions vary with the mass mB of the off-shell intermediate
particle B, for the example of the spin configuration S=1.

5.3 Analysis method

In this section I will discuss the determination of the spins and couplings parameters
of the new particles, as well as the mass of the off-shell particle B, by fitting the
theoretically calculated distributions to experimental data. The general procedure
will be outlined in the next subsection, while its application will be demonstrated in
subsection 5.3.2 for two concrete numerical examples.

5.3.1 General procedure

The analysis is based on a binned χ2 fit for the ℓℓ and jℓ distributions. In this fit, the
binned histogram for the data is compared with theoretical histograms obtained by
numerically integrating the functions f

(ℓℓ)
i and f

(jℓ)
i , defined in the previous section,

over the interval covered by each bin. In the fit, the coupling parameters α, β, γ̃ and
the mass mB are kept as free parameters. Varying over these parameters and the spin
configuration S, the best-fit result is found as the set of numbers {S, α, β, γ̃,mB} that
minimizes the χ2 value.

During the fit procedure, for every given choice of the parameters {S, α, β, γ̃,mB},
the theoretical histograms for the ℓℓ and jℓ distributions are normalized such that
the total number of events in the theoretical histogram agrees with the number of
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Figure 5.2: Left: Distribution functions f
(ℓℓ)
i (i = 1,...,3) for the spin configurations

S=1–6, for mB = 200 GeV. Right: Dependence of f
(ℓℓ)
i (i = 1,...,3) on the mass mB

of the intermediate particle for the case S=1. The other mass parameters have been
chosen as mC = 184 GeV and mA = 98 GeV. In these plots the overall normalization
has been fixed by normalizing f

(ℓℓ)
1 to unity.
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Figure 5.3: Distribution functions f
(jℓ)
i (i = 1,...,5) for the spin configurations S=1–

6. The mass parameters have been chosen as mD = 565 GeV, mC = 184 GeV, mB =
200 GeV and mA = 98 GeV. In these plots the overall normalization has been fixed
by normalizing f

(jℓ)
1 to unity.
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Figure 5.4: Distribution functions f (ℓℓ) and f
(jℓ)
S,A for the spin configurations S=7–

11. The mass parameters have been chosen as mD = 565 GeV, mC = 184 GeV and
mA = 98 GeV. In these plots the overall normalization has been fixed by normalizing
f (ℓℓ) and f

(jℓ)
S to unity.

events in the data histogram. In practice, this normalization is most easily carried
out numerically.

In general, it may happen that there is not a unique solution for the minimum χ2

value, but instead several degenerate best-fit points are obtained. In such a situation,
the coupling parameters α, β, γ̃ and/or the spin assignment S cannot be determined
uniquely from the observable distributions of the decays (5.1),(5.2) alone.
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Note that the invariant-mass distributions will also depend on whether the decay
proceeds through a three-body topology or a sequence of two-body decays. There-
fore one can discriminate between these two possibilities by including formulas for
the sequential decay chain from Refs. [44, 45] in the fit, which will however not be
investigated further here.

5.3.2 Numerical examples

To illustrate the fitting procedure, its application is demonstrated by performing a fit
to mock-up data histograms. This section is based on the parton-level description of
the decay processes (5.1),(5.2) as described in the previous sections, thus neglecting
issues such as backgrounds, jet combinatorics and energy smearing, which are relevant
in a realistic experimental setup. However, earlier studies [32, 49, 57, 82] have shown
that, for mass parameters similar to the ones chosen here, it is possible to obtain a
clean, almost background-free sample of signal events with relatively simple selection
cuts.

The major SM background after some basic cuts stems from tt̄ production. It can
be removed by using the different-flavor subtraction as described in Ref. [49], which
also reduces most of the supersymmetry background. In addition, there is combina-
toric background from the signal process itself, due to the difficulty of choosing the
correct jet for the decay chain in Fig. 5.1 in an event with several jets. This back-
ground can be reduced by a cut on the jℓℓ invariant mass [49], and the remainder can
be subtracted with the mixed event technique of Ref. [48]. Both the different-flavor
subtraction and the mixed event technique do not significantly distort the invariant
mass distributions (although they somewhat increase the overall statistical uncer-
tainty), so that my analytical results will closely resemble the outcome of a more
detailed simulation with cuts.

Let us consider two sample choices for the hypothetical data:

“Data” A: S = 1, α = 0, β = π/2, γ̃ = 0,
mD = 565 GeV, mC = 184 GeV, mB = 200 GeV, mA = 98 GeV

(corresponding to the MSSM decay chain q̃L → χ̃0
2 → l̃∗L → χ̃0

1);

“Data” B: S = 11, γ̃ = 0,
mD = 565 GeV, mC = 184 GeV, mA = 98 GeV

(corresponding to the MSSM decay chain q̃L → χ̃0
2 → χ̃0

1).

For each case, I have computed “data” histograms with 10 bins each for the m̂ℓℓ

and the m̂jℓ distributions, corresponding to a fixed number of 1000 events. Then I
have performed a χ2 fit of the theoretical distribution functions to these fake “data”
histogram for each of the spin configurations S=1–11, searching for the minimum χ2

value as a function of the parameters α, β, γ̃, and mB
3.

3For the spin configurations S=7–11, the non-zero Z-boson width has been included although its
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a) “Data” A, using only m̂ℓℓ distribution:

best-fit parameters
S N3σ α β mB [GeV]

1 [SFSF] – 0.00 1.57 200.0

2 [FSFS] ≫ 10000 −1.22 1.05 209

3 [FSFV] ≫ 10000 +1.14 0.43 197.7

4 [FVFS] ≫ 10000 −1.34 0.23 216

5 [FVFV] ≫ 10000 −0.38 0.38 197

6 [SFVF] ≫ 10000 −0.65 0.92 191.3

S N3σ

7 [FSS] 580

8 [FSV] 26

9 [FVS] 19

10 [FVV] 280

11 [SFF] 22

b) “Data” A, using both m̂ℓℓ and m̂jℓ distributions:

best-fit parameters
S N3σ α β γ̃ mB [GeV]

1 [SFSF] – 0.00 1.57 0.00 200.0

2 [FSFS] 300 −0.08 0.07 1.57 754

3 [FSFV] 520 ±1.57 1.57 0.29 210

4 [FVFS] 940 ±1.19 0.00 1.57 220

5 [FVFV] 980 −0.93 0.25 1.57 224

6 [SFVF] 1200 −0.50 0.53 1.57 197.4

best-fit
S N3σ γ̃

7 [FSS] 360 ?

8 [FSV] 23 ?

9 [FVS] 17 0.39

10 [FVV] 220 1.57

11 [SFF] 19 1.08

Table 5.2: Results for fitting all spin configurations S=1–11 to (a) the m̂ℓℓ distri-
bution only, and (b) the m̂ℓℓ and m̂jℓ distributions together, using scenario “data” A
for the mock-up data histograms. N3σ denotes to the number of events required for
a discrimination by three standard deviations. Also shown are the best-fit parameter
values, where “?” indicates that the best-fit point is independent of that parameter.

The results are shown in Tables 5.2 and 5.3, presented in terms of the number
of events required to distinguish between the “data” and the model hypothesis at
the level of three standard deviations (corresponding to χ2/dof = 9). From Tab. 5.2
one can see that when only information about the m̂ℓℓ distribution is available, it
is difficult to distinguish the “data” A (based on the spin configuration S=1) from
the spin configurations S=2–6. The underlying reason is that for each of these spin
configurations there are three unknown continuous parameters, α, β and mB, which
can be adjusted so as to mimic the data distribution.

On the other hand, the spin configurations S=7–11 can be distinguished from
“data” A with high significance, using only the m̂ℓℓ distribution. This is a consequence
of the fact that there are no free parameters to adjust in dΓ/dm̂ℓℓ for S=7–11, and
that these spin configurations correspond to a different diagram topology (Topology

numerical impact is not very important for the masses chosen here.
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a) “Data” B, using only m̂ℓℓ distribution:

best-fit parameters
S N3σ α β mB [GeV]

1 [SFSF] 45 +0.79 0.79 ∞
2 [FSFS] 81 ? ? ∞
3 [FSFV] 25 ? ? ∞
4 [FVFS] 49 ? ? ∞
5 [FVFV] 75 α = β = ? ∞
6 [SFVF] 51 ±1.57 0.00 ∞

S N3σ

7 [FSS] 51

8 [FSV] 5100

9 [FVS] 9300

10 [FVV] 74

11 [SFF] –

b) “Data” B, using both m̂ℓℓ and m̂jℓ distributions:

best-fit parameters
S N3σ α β γ̃ mB [GeV]

1 [SFSF] 38 +0.78 0.77 0.00 ∞
2 [FSFS] 65 ? ? ? ∞
3 [FSFV] 20 ? ? ? ∞
4 [FVFS] 41 ±1.25 0.43 1.32 ∞
5 [FVFV] 60 +0.46 0.46 1.57 ∞
6 [SFVF] 59 ±1.57 0.00 ? ∞

best-fit
S N3σ γ̃

7 [FSS] 45 ?

8 [FSV] 2900 ?

9 [FVS] 1200 0.00

10 [FVV] 65 0.00

11 [SFF] – 0.00

Table 5.3: Same as Fig. 5.2, but using “data” B for the mock-up data histograms.

II in Fig. 5.1 instead of topology I).
If both the m̂ℓℓ and m̂jℓ distributions are included in the fit, all possible spin

configurations can be discriminated with at least six standard deviations, for the
given number of 1000 events.

For the second example, it is evident from Tab. 5.3 that “data” B can be distin-
guished from all other spin configurations S=1–10 by just using the m̂ℓℓ distribution.
In fact, for all combinations except S=8 and S=9 the significance for this discrimina-
tion is very high and is not improved substantially by including the m̂jℓ distribution
in the fit. Also note that the best-fit results for S=1–6 are obtained for very large
values of mB, since increasing values of mB shift the m̂ℓℓ distribution toward larger
values of m̂ℓℓ, see Fig. 5.2 (right), leading to better agreement with the reference case
S=11, see Fig 5.4.

In addition to the spin determination, the couplings of the new particles and
the mass of the off-shell B particle can in principle be extracted from the fit to the
invariant-mass distributions. This is shown in Fig. 5.5 for the example of “data”
A. The panels (a) and (b) in the figure depict the constraints on α, β and mB

obtained from fitting the m̂ℓℓ distribution alone, assuming that S=1 is the correct
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Figure 5.5: Determination of the parameters α, β, γ̃, and mB using only the m̂ℓℓ

distribution (a,b), and using both the m̂ℓℓ and m̂jℓ distributions (c,d). The dark/light
bands in the figures correspond to the 68%/95% confidence-level regions. The plots
correspond to a sample of 1000 events for the scenario “Data” A.

spin configuration. If a fit to both the m̂ℓℓ and m̂jℓ distributions is performed, one
obtains the results in panels (c) and (d). As evident from the plots, the inclusion of
the m̂jℓ distribution does not only lead to a constraint on γ̃ (which cannot be obtained
from dΓ/dm̂ℓℓ), but also to improved bounds on α and β.

However, the fit results for the coupling parameters always have a two-fold degen-
eracy, since the invariant-mass distributions, eqs. (5.21)–(5.24), are invariant under
the transformation {α, β, γ} → {signα (π

2
− |α|), π

2
− β, π

2
− γ}.

5.4 Summary

In this chapter, a general analysis of three-body decays of the form C → ℓ+ℓ−A,
leading to a pair of opposite-sign leptons and one invisible particle A, has been pre-
sented. This decay process can occur in many proposed new-physics models, either
from direct production of the particle C at the LHC, or from a cascade decay of the

type D →
(–)

q C →
(–)

q ℓ+ℓ−A, both of which have been studied here.
No assumptions about the masses, spins and couplings of the participating new-

physics particles have been made, including the off-shell particle B mediating the
three-body decay. Instead, all possible spin configurations and coupling form factors
have been considered. Experimentally, the masses, spins and coupling parameters
may be determined from measuring the invariant-mass distributions of the visible
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decay products.
In the present case, there are two independent distributions, one with respect to

the di-lepton (ℓ+ℓ−) invariant mass, and the other with respect to the jet-lepton (jℓ±)
invariant mass. Results for both have been obtained in terms of relatively compact
analytical functions or one-dimensional integral representations.

In two concrete numerical examples, it has been tested how well the properties of
the new-physics particles A, B, C and D can be determined from these two invariant-
mass distributions. It turns out that the di-lepton invariant-mass distributions alone
is sometimes not sufficient to uniquely determine the spins and coupling parameters.
However, if the longer two-step cascade decay chain is observed, and one can measure
both the ℓ+ℓ− and jℓ± invariant-mass distributions, it is possible to unambiguously
discriminate between all possible spin configuration with high significance. Further-
more, one can independently constrain all coupling parameters and the mass of the
off-shell mediator B, up to an intrinsic two-fold ambiguity.

The results presented here are based on a parton-level analysis. In a realistic
experimental environment, the significance for the model discrimination and the pre-
cision for the parameter determination may be diluted by jet energy smearing and
combinatorics, but the essential features and main conclusions are not affected sub-
stantially by these effects, as demonstrated for example in Refs. [48, 49, 57, 82].
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Chapter 6

New Physics from the Top at the

LHC

6.1 Introduction

The top quark may be a window to physics beyond the Standard Model (SM). Its mass
near the electroweak scale and its large coupling to the Higgs boson may be crucial
to understanding the electroweak sector beyond the SM. Now that the SM-like Higgs
boson has been observed at the Large Hadron Collider (LHC) [59] with a relatively
light mass of about 125 GeV, the assumed “naturalness” of the Higgs sector [60], which
states that the quantum corrections to the Higgs mass should be of the same order of
magnitude as its physical mass, suggests the existence of a partner of the top quark
below or near the TeV scale, motivating theories such as weak-scale supersymmetry,
Little Higgs, and extra dimensions (either warped or universal). Vacuum stability of
the electroweak potential also indicates the need for new physics to balance the large
top-quark contribution. The top quark hence provides a possible early indicator of
new physics and a good probe of a wide variety of new-physics scenarios.

The LHC is a top factory, producing a hundred times more tt̄ pairs from QCD
processes than were produced at the Tevatron. Top-quark production is well under-
stood in the SM. Thus any new physics contributions will be on top of a well-known
and well-measured, albeit large, background. With the discovery era ushered in by
the LHC, it would be prudent to keep the initial search as general as possible.

In this work, I take a model-independent approach to searching for new physics
processes of the form

pp→ Y Ȳ → tt̄XX,

where Y is a massive new particle with the same gauge quantum numbers as the top
quark andX is an electrically and color neutral stable particle. The weakly interacting
X could be a constituent of dark matter, which would manifest itself as missing energy
in a collider detector. I systematically consider different spin configurations (0, 1/2,
and 1) for the new particles Y and X. Each combination is exemplified by particles
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in well-motivated new-physics models (see the next section for details). For example,
in the Minimal Supersymmetric Standard Model (MSSM) Y could be a scalar top
and X the lightest neutralino. This case has been studied extensively in the literature
(see, for example, Refs. [61–67]). However, I do not limit myself to specific particles
in a particular model; rather, I undertake a general categorization, assuming merely
a mass accessible at the LHC and a discrete symmetry that ensure the stability of X.
For simplicity, I restrict consideration to processes that involve only the top partner,
Y , and the dark-matter candidate, X, as new particles.

In order to distinguish experimentally between the different possibilities, one needs
to determine the spins and couplings of the new particles Y and X. In this chapter,
several observables for this purpose are proposed and their usefulness is demonstrated
in a realistic Monte Carlo simulation. To avoid ambiguities due to model-dependent
branching fractions, I do not consider the total cross section in this set of variables.

The chapter is organized as follows. In section 6.2 I introduce the model-independent
classification of new-physics top partners and their interactions. The production of
these particles at the LHC is discussed in section 6.3, while the current bounds from
collider searches are summarized in section 6.4. In section 6.5, the expected reach
of the LHC for this class of processes is analyzed through a detailed Monte Carlo
simulation. The determination of relevant properties of the new particles, such as
mass, spin and couplings, and the discrimination between models are discussed in
section 6.6. Finally, conclusions are presented in section 6.7.

6.2 New Particles and their Couplings to the Top

Colored particles can be copiously produced at the LHC by strong QCD interactions.
Let Y denote a new color-triplet particle with charge +2/3. Y and its antiparticle can
be produced at leading order in QCD by the processes shown in Fig. 6.1 (left). I shall
not consider the production of a single new particle via Yukawa-type interactions:
since they are strongly model-dependent and are subject to strong constraints from
flavor physics, it is assumed that such vertices are forbidden by a discrete symmetry.
Y decays to a new particle that is a color singlet, denoted X [see Fig. 6.1 (right)],
which will show as missing energy in a collider experiment.

There are four possible combinations of spins that allow a coupling between X,
Y and the SM top quark, t. These are listed, with the relevant couplings and sample
model decays, in Table 6.1. For fermions I allow a general chirality structure. I shall
henceforth refer to these scenarios as models i, ii, iii, and iv.

Let us elaborate on the unusual case in which Y is a vector color triplet, possibly
arising as a bound state from strong dynamics or from a special kind of supersym-
metric model [68]. The kinetic term is

Lkin = −1

2
(Fµν)

†F µν , Fµν = DµYν −DνYµ , (6.1)
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Ȳ

Y

g
g

g

g

g
Y

Ȳ
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Figure 6.1: Diagrams corresponding to the pair production (left) and the decay
(right) of the color triplet Y . Double lines denote new particles, while single lines
denote SM particles.

Y X GY Y XY t sample model and decay

JY , ISU(3) JX , ISU(3) coupling coupling Y → tX

i 0, 3 1
2
, 1 GaµY ∗←→∂µT

aY XΓt Y ∗ MSSM t̃→ tχ̃0
1

ii 1
2
, 3 0, 1 Y G/ aT aY Y ΓtX UED tKK → tγH,KK

iii 1
2
, 3 1, 1 Y G/ aT aY Y X/ Γt UED tKK → tγKK

iv 1, 3 1
2
, 1 S3[G, Y, Y

∗] XY/ ∗Γt [68] ~Q→ tχ̃0
1

Γ ≡ aLPL + aRPR , A
←→
∂µB ≡ A(∂µB)− (∂µA)B

S3[G, Y, Y
∗] ≡ T a

[
Ga

µ Y
∗
ν

←→
∂µY ν +Ga

µ Y
µ∗←−∂νYν −Ga

µ Y
∗
ν

−→
∂νY µ

]

Table 6.1: Quantum numbers and couplings of the new particles X and Y , which
interact with the SM top quark, t. In the last column, t̃ and χ̃0

1 are the scalar top
and lightest neutralino in the MSSM, respectively [20]. tKK, γKK, and γH,KK are the
first-level Kaluza-Klein excitations of the top, the photon, and an extra-dimensional
component of a photon, respectively, in universal extra dimensions (UED) [12]. Fi-

nally, ~Q is the vector superpartner in a supersymmetric model with an extended gauge
sector [68].
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where Dµ = ∂µ − igTaG
a
µ. Then the Y -Y -gluon interaction term is

LY Y G =
1

2
ig(Ta)ji

(
(∂µȲ ν

j − ∂ν Ȳ µ
j )(Ga

µYνi −Ga
νYµi)− h.c.

)
. (6.2)

The resulting Feynman rule is

Ȳ
ρ
jq

Y σ
i

Gτ
b

p

= ig(Tb)ji ((q − p)τgσρ + pρgστ − qσgρτ ) . (6.3)

Likewise, the Y -Y -gluon-gluon interaction term is

LY Y GG = −g
2

2
(Gµ

b Ȳ
ν −Gν

b Ȳ
µ)TbTa(G

a
µYν −Ga

νYµ) . (6.4)

The resulting Feynman rule is

Ȳ
ρ
k

Y σ
j

Gλ
d

Gτ
c

= −ig2
(
(TcTd + TdTc)kjg

τλgρσ − (TcTd)kjg
τσgλρ − (TdTc)kjg

τρgλσ
)
.

(6.5)

6.3 Color-Triplet Top-Partner Production

The dominant modes for production of the top partner in hadronic collisions are the
QCD subprocesses

qq̄ , gg → Y Ȳ . (6.6)

I restrict myself to the first- and second-generation quarks q = u, d, c, s and use the
CTEQ 6L1 parton distribution functions (PDFs) [69], with the factorization scale set
to mY . For mY ∼ 200–1000 GeV, the dominant subprocess is gg → Y Ȳ , which is
about one order of magnitude larger than uū, dd̄→ Y Ȳ . The channels cc̄, ss̄ → Y Ȳ
are suppressed by roughly one additional order of magnitude.

The total QCD production cross section at the LHC as a function of the mass
of the Y is shown in Fig. 6.2, for the cases in which Y has spin 0, 1/2, and 1. The
plots include next-to-leading order (NLO) and resummed next-to-leading logarithmic
(NLL) QCD corrections for the scalar Y [70] and NLO and NNLL corrections for
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Figure 6.2: Production cross sections for pp→ Y Ȳ at the LHC for 8 TeV (left) and
14 TeV (right), as a function of the mass mY , for different Y spins. The leading SM
backgrounds are indicated by horizontal lines.

the fermionic Y [71]. The QCD corrections for vector Y production have not yet
been calculated; I use the K-factor for the scalar Y (1.77 at

√
s = 8 TeV, 1.56 at√

s = 14 TeV), since the two cases share similar leading-order Feynman diagrams.

The cross section for the fermion is about an order of magnitude larger than that
of the scalar, because of the fermion’s extra spin degrees of freedom and threshold
effects. In the s-channel, the scalar is produced as a p-wave with a velocity dependence
of σ ∼ β3, whereas the fermion is produced as an s-wave with σ ∼ β. Thus, the ratio
of the cross sections of the fermion and scalar is larger at small values of β, that
is, when the mass of the Y is large. This relative enhancement of the fermionic Y Ȳ
production is particularly pronounced when the Y particles are produced mostly near
the threshold limit. Note that, although the curves for the vector and scalar appear
to be parallel on the logarithmic scale, their ratio varies from about 34 to 16 in the
mass range shown.

6.4 Current Bounds from the Tevatron and LHC

As Fig. 6.1 indicates, the top-quark partner, Y , decays to a top quark plus a neutral
particle, X. The discrete symmetry implies that X is stable and leads to missing-
energy events. Thus, the signal is tt̄ plus missing energy. Searches for supersymmetric
scalar tops at the Tevatron [72, 73] and the LHC [74–76] put constraints on the
allowed parameter space for the class of processes considered here. Additional, though
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JY Limit on mY

0 >∼ 500 GeV

1/2 >∼ 650 GeV

1 >∼ 730 GeV

Table 6.2: Experimental bounds on the mass of particle Y for different spins, JY ,
under the assumption mY ≫ mX . These estimates are based on the ATLAS results
from Refs. [75].

generally weaker, bounds also arise from general searches for signals with jets and
missing energy [77].

Currently, the strongest constraints arise from scalar top searches at ATLAS using
4.7 fb−1 of data taken at

√
s = 7 TeV [75]. For mY ≫ mX , they put a lower

bound mY
>∼ 500 GeV on a scalar Y . By taking into account the different production

cross sections for scalars, fermions, and vectors (see Fig. 6.2), one can translate the
results of Refs. [75] into a limit of mY

>∼ 650 GeV for a fermionic top partner and

mY
>∼ 730 GeV for a vector top.
The bounds are summarized in Table 6.2. It should be pointed out that the limits

for fermionic and vector Y are simple estimates from theoretical considerations. For
more robust results, a detailed experimental analysis of these scenarios needs to be
performed.

For larger values of mX , that is, smaller mass differences mY − mX , the limits
become weaker. The excluded region in the mY –mX mass plane for scalar Y particles
will be shown in the next section (see Fig. 6.4).

6.5 Signal Observability at the LHC

As the previous section discusses, I consider new physics signals of the type tt̄ + E/ .
For the leading channel, in which the top quarks decay hadronically [61], the signal
receives large backgrounds from SM processes with multiple QCD jets. To suppress
QCD backgrounds, I consider the semileptonic channel [62], in which one of the tops
decays hadronically and the other decays leptonically, namely,

pp→ Y Ȳ → tX t̄X → bj1j2 b̄ℓ
−ν̄ℓ XX + h.c. (ℓ = e, µ). (6.7)

This channel is beneficial because of its sizeable branching fraction and the identifi-
cation of both t and t̄. The dominant background processes are

tt̄, tt̄Z (with Z → νν̄), and Wbb̄jj (with W → ℓνℓ). (6.8)

The cross sections for the first two backgrounds (without branching fractions) are
shown in Fig. 6.2 as horizontal lines, including NLO corrections for tt̄Z [78] and
NLO+NNLL effects for tt̄ [79].
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The separation of signal and background in the semileptonic channel has been
studied previously in the literature [62, 63, 72, 74–76]. Here, I reanalyze the signal
selection with the purpose of developing optimized selection cuts in a phenomenolog-
ically realistic simulation setup. My signal selection follows the strategy of Ref. [62],
but I include QCD parton showering and detector smearing effects. As a result, I find
that I need to adjust the choice of cuts to account for the effect of QCD radiation1.

Jets have been clustered via a cone algorithm with cone size 0.4. To simulate
detector resolution effects, I have smeared the jet energy with a Gaussian distribution
of width 0.5×

√
E, where E is the jet energy in units of GeV. A b-tagging efficiency

of 70% [80] has been assumed. I have applied the following set of cuts to identify the
signal signature and reduce the SM backgrounds.

Cut(1):

exactly one lepton ℓ = e, µ with Eℓ
T > 20 GeV, |ηℓ| < 2.5;

at least two light jets with Ej
T > 25 GeV, |ηj| < 2.5;

exactly two b-tagged jets with Eb
T > 30 GeV, |ηb| < 2.5;

∆Rjj ,∆Rbj ,∆Rbb > 0.4, ∆Rℓj = ∆Rℓb = 0.3;

70 GeV < mjj < 90 GeV, 120 GeV < mhad
t < 180 GeV;

E/ > 25 GeV.
(6.9)

Here b and j stand for a jet with or without a b-tag, and Ei
T and ηi are the transverse

energy and pseudorapidity of object i. ∆R =
√

(∆η)2 + (∆φ)2 describes the angular
separation between two jets. mhad

t is computed from either the bjj or the b̄jj invariant
mass, namely, whichever yields the value closer to the true top-quark mass, mt, in a
given event. E/ is the missing transverse energy.

Events for the partonic signal process and tt̄Z background have been generated
with CalcHEP 3.2.5 [81] and passed to Pythia 6.4 [42] for parton showering and
jet clustering. The tt̄ background has been simulated with Pythia. It was shown
in Ref. [62] that the Wbb̄jj background can be reduced effectively with invariant-
mass cuts on the jj for a W selection and bjj for a top-quark selection. I have thus
neglected this process in my simulation.

With the set of cuts in (6.9), which I shall refer to as Cut(1), a good signal-to-
background ratio is achieved for small values of mY , when the Y Ȳ production cross
section is large. For larger values of mY , additional cuts are required to suppress the
SM background sufficiently. It turns out that the following two variables are useful
for this purpose: the missing transverse energy, E/ , and the transverse mass of the
lepton–missing-momentum system,

M ℓ,miss
T ≡

√
(EℓT + E/ )2 − (pℓT + p/T )2. (6.10)

The optimal cut values depend on the collider energy:

1Very recently, several papers have appeared that pursue a similar goal in the context of the
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Figure 6.3: Differential cross sections for the SM backgrounds tt̄ (red, solid) and tt̄Z
(blue, dashed) and the signal scalar Y with (MY ,MX) = (600, 10) GeV (cyan, dash-
dotted) before and after the cut M ℓ,miss

T > 90 GeV. Distributions after the M ℓ,miss
T

cut are shown in bold lines.

• For
√
s = 14 TeV, the choice

Cut(2h) = Cut(1) plus E/ > 350 GeV and M ℓ,miss
T > 90 GeV

has been found to be effective for mY ∼ 600 GeV. It can be understood as
follows. The cut M ℓ,miss

T > 90 GeV is necessary because a large amount of miss-
ing energy in the SM backgrounds corresponds to neutrinos from the leptonic
decay of the W boson. From Fig. 6.3 one can see that the M ℓ,miss

T cut reduces
the SM backgrounds dramatically, especially in the low-E/ region. However, the
signal events remain virtually the same after this cut: only those in the low-E/
region are slightly affected. Moreover, for the signal there is a plateau between
200 and 400 GeV in Fig 6.3. The cut E/ > 350 GeV has been chosen because
above 350 GeV the backgrounds are suppressed considerably. In practice, I have
applied either Cut(1) or Cut(2h), whichever produces the larger statistical sig-
nificance S/

√
B for a given parameter point (mY , mX). Here, S and B denote

the number of signal and background events after cuts.

• For
√
s = 8 TeV, I have used either Cut(1), or

Cut(2l) = Cut(1) plus E/ > 200 GeV and M ℓ,miss
T > 145 GeV,

MSSM, using traditional selection cuts [64, 66] and top-jet tagging techniques [65]. The results for
the signal observability are comparable to Refs. [64, 65], but significantly better than Ref. [66].
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Figure 6.4: Expected statistical significance for model i, as a function of the masses
of X and Y . The left panel corresponds to

√
s = 8 TeV and L = 20 fb−1, while the

right panel corresponds to
√
s = 14 TeV and L = 100 fb−1. The dashed line shows

the current exclusion limit at the 95% confidence level from Ref. [75].

or

Cut(2l’) = Cut(1) plus E/ > 300 GeV and M ℓ,miss
T > 185 GeV,

whichever results in the largest significance. Cut(2l) and Cut(2l’) have been
optimized for mY ∼ 400 GeV and mY ∼ 500 GeV, respectively.

Because the signal cross section is lower for
√
s = 8 TeV than for

√
s = 14 TeV,

I have lowered the E/ cut to ensure that a sufficient number of signal events
passes. However, the looser E/ cut also results in a larger background event
yield, so that it is advantageous to apply a stronger cut on M ℓ,miss

T to improve
the signal significance.

Figure 6.4 shows the statistical significance that can be achieved with these cuts
for model i (scalar Y and fermionic X), for different values of mY and mX . The
significance is determined according to S/

√
B if B > 10, whereas Poisson statistics

is used for very low event yields (B <∼ 10). For the other model combinations, ii–iv,
the statistical significance can be obtained by scaling the values in Fig. 6.4 with the
production cross sections in Fig. 6.2.

As the figure shows, the statistical significance is relatively large in the following
two regions of the mass plane:

1. Small values of mY , in which case the signal selection efficiency is almost in-
dependent of mX . Here, the Y Ȳ pair, which recoils against an initial-state
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√
s spin-0 spin-1/2

8 TeV 480 GeV 660 GeV

14 TeV 675 GeV 945 GeV

Table 6.3: The 5σ discovery reach for spin-0 and spin-1/2 top partners at 8 and 14
TeV with integrated luminosities of 20 and 100 fb−1, respectively. mX = 100 GeV is
assumed.

jet, is typically produced with a sizeable boost. This boost leads to a fairly
large missing momentum, which helps to discriminate the signal from the tt̄
background.

2. Moderately large values of mY , mY
<∼ 600 GeV, and small values of mX . For

these values of mY , the Y Ȳ pair is produced mostly at rest and the signal
selection becomes difficult for small mass differences mY −mX , when the top
quark from the decay Y → tX is quite soft.

In comparison with Ref. [62], I obtain somewhat lower values for the significance
S/
√
B, as a consequence of having performed a more realistic simulation that includes

QCD radiation (through parton showering) and jet smearing. These effects make it
more difficult to devise clean kinematic selection variables for the signal and result
in more background from the tail of smeared distributions. I have also explored the
mass reconstruction scheme proposed in Ref. [62] and the variable MT2 [32]. I have
found them to be useful in certain respects and complementary to the combination of
my cuts. Further optimization would depend on detailed (experimental) simulations,
which I leave for future studies.

In summary, I have found that, at 14 TeV with an integrated luminosity of 100
fb−1, a scalar top partner can be observed at the 5σ level (or better) for a mass up to
675 GeV if MX = 100 GeV. This translates into 945 GeV for a spin-1/2 top partner.
At 8 TeV with an integrated luminosity of 20 fb−1, it is possible to achieve a 5σ
discovery for a scalar top with a mass up to 480 GeV. This corresponds to 660 GeV
for a spin-1/2 top partner. These results are summarized in Table 6.3.

6.6 Determination of Model Properties

6.6.1 Masses

The independent determination of the Y and X masses in processes of the type

pp→ Y Ȳ → f f̄XX, (6.11)

where f is a SM fermion, is a difficult problem because of the lack of kinematic
features for the under-constrained system. Several methods have been proposed in
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the literature [32, 49, 82–84], either based on global event variables such as Meff =∑
i∈vis. pT,i + p/T , on the variable MT2 = minpT,X1

+pT,X2
=p/T

{
max

(
M ℓ+,X1

T ,M ℓ−,X2

T

)}

[11] or variants thereof, or on likelihood fits to the complete event information [39].
It was found that, for mY ∼ O(300 GeV) and a sample of a few tens of thousands
of signal events at

√
s = 14 TeV, the mass difference mY −mX can be determined

to a precision of a few per cent, while the absolute mass scale has an uncertainty of
roughly 20–30% [49,83]. If the Y Ȳ state could arise from the decay of a new resonance
of known mass, it would help to constrain the kinematics and thus to determine the
masses of Y and X as well [84]. More details can be found in the cited papers.

6.6.2 Spin

The spin of the Y particle can be probed through the characteristics of the Y Ȳ
production process. For instance, the Y Ȳ production cross section strongly depends
on the spin [38]. However, unknown model-dependent branching fractions and the
mass uncertainty of order 30% can lead to ambiguities in the determination of the spin
from the measured total production rate. Instead, one can largely avoid such problems
by investigating the shape of suitable differential distributions. In particular, the two
variables described below are effective for this purpose.

(1) Scalar and fermion Y pair production can be distinguished with the observable

tanh(∆ytt̄/2), ∆ytt̄ = |ybjj − ybℓ|, (6.12)

which is constructed from the rapidities of the visible decay products of the
hadronically decaying and the leptonically decaying top quarks. In general,
there is a combinatorial ambiguity in identifying the b-jets and light-flavor jets
as the decay products from one of the two top quarks. Given the event recon-
struction scheme discussed in the previous section, one can resolve this ambigu-
ity by assuming that the hadronically decaying top quark is made up from the
two light-quark jets and the b-jet for which mbjj is closest to mt. The remaining
b-jet and the lepton are then identified as the decay products of the other top
quark.

The variable in (6.12) is closely related to the proposal by Barr in Ref. [37],
tanh(|ηf − ηf̄ |/2), where ηf is the pseudorapidity of the SM fermion from the
decay Y → Xf . This variable approximately traces the production angle θ∗

between one Y and the beam axis in the center-of-mass frame. In the qq̄ → Y Ȳ
channel, the θ∗ distribution has a clear dependence on the Y spin, as can be
seen in the formulae

dσ

d cos θ∗
[qq̄ → Y Ȳ ] ∝ 1− cos2 θ∗, for scalar Y (spin 0), (6.13)

dσ

d cos θ∗
[qq̄ → Y Ȳ ] ∝ 2 + β2

Y (cos2 θ∗ − 1), for fermionic Y (spin 1
2
), (6.14)

69



y/2)∆Tanh(
0.0 0.2 0.4 0.6 0.8 1.0

y/
2)

∆
d 

T
an

h(σ
d 

 
σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 models
model i
model ii
model iii
model iv

Figure 6.5: Distribution of tanh(∆ytt̄/2) for the different top-partner scenarios listed
in Table 6.1, formY = 300 GeV, mX = 100 GeV, and

√
s = 14 TeV. For comparison,

all distributions have been normalized to unity.

where βY is the velocity of the produced Y particles. The difference stems from
the fact that scalars are produced in a p-wave, whereas for fermions the s-wave
contribution is dominant. In contrast to Ref. [37], the definition (6.12) is based
on the rapidities rather than the pseudorapidities, to account for the fact that
the produced top quarks are massive.

In the physical process pp → Y Ȳ , only a subdominant fraction of the events
originates from qq̄ annihilation, but as can be seen in Fig. 6.5 the effect is still
noticeable (compare the lines for model i with the other cases).

(2) There is no appreciable difference between fermionic and vector Y pair pro-
duction in the tanh(∆ytt̄/2) distribution. However, these two cases can be
disentangled by means of a variable that measures the effective hard scatter-
ing energy [46]. One such observable is the effective mass, a scalar sum over
momenta:

Meff =
∑

i∈vis.

pT,i + p/T , (6.15)

where the sum runs over all visible objects (jets and leptons in this case).

The usefulness of this variable follows from the fact that the partonic cross sec-
tion for the pair production of massive vector particles grows with the partonic
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Figure 6.6: Distribution of Meff for the different top-partner scenarios listed in
Table 6.1, for mY = 300 GeV, mX = 100 GeV, and

√
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center-of-mass energy like ŝ/m4
Y , whereas for fermions it has the usual 1/ŝ be-

havior in the high-energy limit. In fact, for very large values of ŝ the vector Y Ȳ
production would violate the perturbative unitarity limit, a sign that additional
new massive resonances will appear and modify the production amplitude. The
presence of such resonances is generally expected in dynamical models such as
the one proposed in Ref. [68]. However, their masses may be beyond the reach
of the LHC, depending on the value of ŝ when the unitarity limit is eventually
reached. I have estimated this limit for vector Y pair production, conserva-
tively assuming s-channel dominance in obtaining ŝ >∼ (4.8 TeV)2. Thus, one
can assume that the new heavy resonances have masses of O(5 TeV), which
make their potential contribution to the process pp → Y Ȳ completely negligi-
ble, since only a fraction of order 10−6 of events have partonic center-of-mass
energy of this size or larger at

√
s = 14 TeV.

The Meff distribution is shown in Fig. 6.6 for the different model scenarios.
A very distinctive difference can be observed between the cases of vector and
fermionic or scalar top partners.

Let us quantify the discriminative power of these variable in an example: the
process pp→ Y Ȳ → tt̄XX for mY = 300 GeV and mX = 100 GeV at

√
s = 14 TeV.

The simulation and event selection have been performed as described in the previous
section, with Cut(1) in Eq. (6.9). I have assumed the cross section for scalar Y pair
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production (model i). Note that this scenario is not ruled out by current LHC results.
I have not used the total event rate for model discrimination, to avoid ambiguities
due to unknown branching fractions.

I have carried out the discrimination between two different spin assignments by
computing the χ2 value for the binned tanh(∆ytt̄/2) and Meff distributions, using
three bins in both cases. The result can be expressed in terms of the integrated
luminosity L5σ necessary for achieving a 5σ statistical significance:

14 TeV: scalar Y versus fermion Y : L5σ = 9.4 fb−1,

scalar Y versus vector Y : L5σ = 0.8 fb−1,

fermion Y versus vector Y : L5σ = 0.7 fb−1.

For the current 8 TeV run, a 5σ discrimination requires the following integrated
luminosities:

8 TeV: scalar Y versus fermion Y : L5σ = 72 fb−1,

scalar Y versus vector Y : L5σ = 8.1 fb−1,

fermion Y versus vector Y : L5σ = 5.2 fb−1.

The numbers refer to the purely statistical significance. However, at this level of
precision, systematic errors may be important. A potentially large systematic effect
stems from the uncertainty of the new-particle masses, mY and mX . While the
mass difference mY −mX can be determined rather precisely, the overall mass scale
can be measured with only 20–30% accuracy; see section 6.6.1. I have estimated
the effect of this uncertainty by comparing two event samples with (mY , mX) =
(300, 100) GeV and (mY , mX) = (400, 200) GeV, which differ in mY by roughly 30%.
I have found that this mass uncertainty reduces the statistical significance of the spin
discrimination by about 20%; the values of L5σ that account for this systematic error
are about 50% greater than those quoted above.

In conclusion, the determination of the spin of the top partner, Y , is possible with
very moderate amounts of data. On the other hand, the distinction between models
ii and iii, which both have a fermionic Y but differ in the spin of the singlet X, is
much more difficult. After surveying more than a dozen different kinematic variables
based on the top-quark momenta, I found no significant difference between scenarios
ii and iii for any of them. This finding agrees with the results of Ref. [46].

However, more information can be obtained from observables that are sensitive to
the top-quark polarization, as will be discussed next.

6.6.3 XY Couplings

The chirality structure of the decay Y → tX (that is, the relative contributions of left-
and right-handed chiral couplings) leaves an imprint on the polarization of the top
quark, which can be analyzed through angular distributions of the top-quark decay
products. This method is particularly effective when the mass difference between Y
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and X is large (mY −mx ≫ mt), so that the top quark is energetic and therefore the
helicity is preserved, reflecting the chirality. For instance, one can look at the angle
θ′b (θ′ℓ) of the b quark (lepton) with respect to the top-quark boost direction in the top
rest frame. Because the b quark is always left-handed, it is emitted predominantly in
the forward direction (cos θ′b > 0) if the top quark is left-handed, but mostly in the
backward direction (cos θ′b < 0) if the top quark is right-handed.

In practice, even if the top quark is produced fully polarized in the decay Y → tX,
some of the polarization is washed out by the mass of the top, but the cos θ′b < 0
distribution will still exhibit a characteristic difference between left- and right-handed
XY t couplings.

In the following, I shall illustrate this behavior using a parton-level simulation
with CalcHEP2. I shall focus on the leptonically decaying top quark, since it has
a cleaner final state. The top-quark rest frame cannot be reconstructed because of
the unobserved neutrino momentum, so I analyze the angular distribution in the rest
frame of the visible bℓ system instead. The results are shown in Fig. 6.7.

As Fig. 6.7 shows, the distribution is skewed to smaller values of cos θ′ℓ or, equiva-
lently, larger values of cos θ′b in the case of a left-handed XY t coupling (black curves)
than in the right-handed case (red curves). For a mixed case with non-zero left- and
right-handed components, one obtains a distribution that lies between the black and
red curves. This qualitative behavior is the same for all four spin combinations in
Table 6.1, although they differ from each other in the detailed shape of the distribu-
tion. In particular, cases ii and iii have distinctly different shapes; hence, the analysis
of this observable may allow one to determine not only the chirality of the XY t cou-
pling but also the spin of the X particle. Such a determination is not possible with
observables that treat the top quarks as basic objects.

Furthermore, one can probe the chirality even with limited statistics by using two
bins and forming the asymmetry

A(x) =
σ(cos θ′ℓ > x)− σ(cos θ′ℓ < x)

σ(cos θ′ℓ > x) + σ(cos θ′ℓ < x)
. (6.16)

From Fig. 6.7, one can see that when x is about −0.5 A(x) will be most sensitive
to the chirality of the coupling. Table 6.4 shows the asymmetry A(−0.5) for models
i–iv with two choices of the masses mY and mX . The usefulness of A(−0.5) for the
determination of the coupling is enhanced by its relative insensitivity to the spin and
mass combinations.

2A more realistic simulation at the level of the previous section, including parton showering and
signal selection cuts, would require the modification of Pythia to include top-quark spin correlation
effects, which I have not attempted to carry out.
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Figure 6.7: Parton-level angular distribution of the top-quark decay products in
the bℓ rest frame, for the decay chain Y → Xt → Xbℓ+ν. The four panels show the
results for the four scenarios in Table 6.1, for the two coupling choice aL = 1, aR = 0
(black) and aL = 0, aR = 1 (red). The input mass parameters are mY = 400 GeV
and mX = 10 GeV. The distributions have been normalized to unity.

mY = 400 GeV, mX = 10 GeV mY = 300 GeV, mX = 100 GeV

Model Model

aL, aR i ii iii iv i ii iii iv

1, 0 −0.10 0.02 −0.10 −0.03 0 0.15 0.04 0.10

0, 1 0.68 0.55 0.68 0.61 0.54 0.39 0.50 0.45

1, 1 0.29 0.28 0.29 0.29 0.28 0.27 0.28 0.27

Table 6.4: Asymmetry A(−0.5) for models i–iv and two choices of the masses mY

and mX .

6.7 Conclusions

The SM-like Higgs boson has been observed at the LHC with a relatively light mass of
about 125 GeV. The “naturalness” argument of the Higgs sector suggests the existence
of partners of the SM particles, especially the heavy top quark. The top quark may
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thus hold the key to new physics associated with the electroweak symmetry-breaking
sector, because of its enhanced coupling to the Higgs sector. In this chapter, I have
systematically categorized the generic interactions of a new particle that couples to
the top quark and a stable neutral particle, which serves as a candidate for cold dark
matter. I have considered all possible assignments of spin 0, 1

2
and 1 for either of the

two new particles.
In the search for new physics involving top quarks and its partners at the LHC,

the experimental signatures may be distinctive, but challenging to disentangle. Pair
production of the massive top partners leads to a signature of a tt̄ pair plus missing
energy, which is difficult to separate from the large SM tt̄ background. I have pre-
sented a set of optimized selection cuts for isolating this new physics signal at the
8 and 14 TeV runs of the LHC. I have found that, at 14 TeV with an integrated
luminosity of 100 fb−1, a spin-zero top partner can be observed at the 5σ level up to
a mass of 675 GeV, while for a spin-1

2
top partner the reach extends to 945 GeV.

If a process of this type is discovered at the LHC, it will be imperative to determine
the spins and couplings of the new particles, in order to understand the underlying
physics mechanism. I have proposed a strategy to extract these properties from
experimental data by means of suitable differential distributions of the final-state
products. With this approach, a spin-0 top partner with mass of about 300 GeV can
be discriminated from spin-1

2
and spin-1 particles at the 5σ level with a luminosity of

10 fb−1 at 14 TeV. Furthermore, the structure of the coupling that mediates the decay
of the top partner into a top quark and a massive neutral particle can be analyzed
by measurement of the polarization of the final-state top quarks. This method allows
one to distinguish clearly between left-handed, right-handed, and vector couplings.
Most importantly, the proposed observables for spin and coupling determination are
insensitive to unknown branching fractions and depend only mildly on the masses of
the new particles.

In conclusion, the LHC will allow us to observe and study top partners with mass
up to about 1 TeV. This program will shed light on the interplay of the Higgs-boson
and top-quark sectors and may elucidate the concept of naturalness.
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Appendix A

Model cross sections

The following table lists the tree-level parton-level production cross sections σprod for
the process pp → Y +Y − → ℓ+ℓ−X0X̄0 (ℓ = e, µ), for the 11 independent combina-
tions from Tab. 4.1. Also shown are the measurable cross sections σmeas after inclusion
of detector effects and the cuts in eq. (4.9). The cross sections have been computed
with CompHEP.

Combination σprod [fb] σmeas [fb]

1 3.62 1.45

2 8.50 3.36

3 9.65 3.11

4 41.4 11.45

5 41.4 11.70

6 41.4 14.05

7 89.6 25.0

8 29.9 8.47

9 89.6 31.4

10 112 31.2

11 [MQ̂=0.5 TeV] 179 48.3

11 [MQ̂=1 TeV] 445 137
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Appendix B

Sample supersymmetry scenarios

In supersymmetric models, large regions of parameter space can lead to sizeable
branching fractions for the decay chain in Fig. 5.1. Here two explicit examples are
given, one involving a dominant contribution from the exchange of a new-physics
particle B in the three-body decay, and a second where the decay is dominantly
mediated by the Z boson. The branching fractions have been calculated with the
program SUSY-HIT [58].

a) A = χ̃0
1, B = ẽL, µ̃L, C = χ̃0

2, D = q̃L
M1 = 102 GeV, M2 = 192 GeV, µ = 435 GeV, tanβ = 3,
mχ̃0

1
= 96 GeV, mχ̃0

2
= 181 GeV,

mẽR
= mẽR

= 197 GeV ≈ mτ̃1 , mẽL
= mẽL

= 242 GeV ≈ mτ̃2 , q̃L =
570 GeV;

BR[χ̃0
2 → e+e−χ̃0

1] = BR[χ̃0
2 → µ+µ−χ̃0

1] = 9.7%, BR[q̃L → qχ̃0
2] = 33%

b) A = χ̃0
1, B = ẽL, µ̃L, C = χ̃0

2, D = q̃L
M1 = 95 GeV, M2 = 179 GeV, µ = 547 GeV, tan β = 10,
mχ̃0

1
= 94 GeV, mχ̃0

2
= 182 GeV,

mẽR
= mẽR

= 500 GeV ≈ mτ̃1 , mẽL
= mẽL

= 510 GeV ≈ mτ̃2 , q̃L =
570 GeV;

BR[χ̃0
2 → e+e−χ̃0

1] = BR[χ̃0
2 → µ+µ−χ̃0

1] = 2.7%, BR[q̃L → qχ̃0
2] = 33%
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Appendix C

Formulae for invariant-mass

distributions

Explicit expressions for the functions f
(ℓℓ)
i and f

(jℓ)
i are available in Mathematica

format at http://www.pitt.edu/~afreitas/dec3.tgz. Note that the expressions
in this file are not normalized, since in practice the normalization is best carried out
numerically as described in section 5.3.1. The results for f

(ℓℓ)
i are given as analytical

formulae, while f
(jℓ)
i are presented in terms of one-dimensional integral representations

of the form

f
(jℓ)
i =

∫ m2
C [1−m2

qℓ+
/(m2

D−m2
C)]

m2
A

dm2
Aℓ− F

(jℓ)
i . (C.1)
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[58] A. Djouadi, M. M. Mühlleitner, M. Spira, Acta Phys. Polon. B 38, 635 (2007).

[59] J. Incandela [for the CMS Collaboration] and F. Gianotti [for the
ATLAS Collaboration], talks at CERN LHC seminar, July 4, 2012
[http://indico.cern.ch/event/197461].

[60] G. F. Giudice, in “Perspectives on LHC physics,” eds. G. Kane, A. Pierce, 155–
178 [arXiv:0801.2562 [hep-ph]].

[61] P. Meade and M. Reece, Phys. Rev. D 74, 015010 (2006).

[62] T. Han, R. Mahbubani, D. G. E. Walker and L. T. E. Wang, JHEP 0905, 117
(2009).

[63] T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, JHEP 1010, 078 (2010);
T. Plehn, M. Spannowsky and M. Takeuchi, JHEP 1105, 135 (2011).

[64] Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, arXiv:1203.4813 [hep-ph];
D. S. M. Alves, M. R. Buckley, P. J. Fox, J. D. Lykken and C. -T. Yu,
arXiv:1205.5805 [hep-ph];
Z. Han, A. Katz, D. Krohn and M. Reece, arXiv:1205.5808 [hep-ph];
D. E. Kaplan, K. Rehermann and D. Stolarski, arXiv:1205.5816 [hep-ph].

[65] T. Plehn, M. Spannowsky and M. Takeuchi, arXiv:1205.2696 [hep-ph].

[66] J. Cao, C. Han, L. Wu, J. M. Yang and Y. Zhang, arXiv:1206.3865 [hep-ph].

[67] B. Dutta, T. Kamon, N. Kolev, K. Sinha and K. Wang, arXiv:1207.1873 [hep-ph].

[68] H. Cai, H.-C. Cheng and J. Terning, Phys. Rev. Lett. 101, 171805 (2008).

[69] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung,
JHEP 0207, 012 (2002).
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