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Abstract

There is a growing trend in monitoring residential infrastructures to provide inhabitants with more

information about their energy consumption and help them to reduce usage and cost. Device-level

power consumption information, while a functionality in newer smart appliances, is not generally

available to consumers.

In electricity consumption disaggregation, Non-Intrusive Load Monitoring (NILM) refers to

methods that provide consumers estimates of device-level energy consumption based on aggregate

measurements usually taken at the main circuit panel or electric meter. The traditional NILM

approach characterizes changes in the power signal when devices turn on or off, and it infers the

consumption of different devices present in the home based on these changes. Generally, these

NILM methods require training and models of the devices present in the home in order to function

properly. Because of these challenges, much of the NILM literature does not address the actual

energy disaggregation problem but focuses on detecting events and classifying changes in power.

In this dissertation, we propose a relaxation to the traditional NILM problem and provide

an unsupervised, data-driven algorithm to solve it. Specifically, we propose Power Consumption

Clustered Non-Intrusive Load Monitoring (PCC-NILM), a relaxation that reports on the energy

usage of devices grouped together by power consumption levels. In order to solve the PCC-NILM

problem, we provide the Approximate Power Trace Decomposition Algorithm (APTDA). Unlike

other methods, APTDA does not require training and it provides estimated energy consumption

for different classes of devices.

v
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Chapter 1

Introduction

1.1 Motivation

Reducing energy consumption and cutting costs is an important issue today that affects everyone.

In residential environments, saving on electricity can be difficult because the user does not often

have an easily accessible frame of reference for how much power devices in their home consume,

or even what their overall power consumption is. The only power consumption feedback most

residential consumers receive is an aggregate power bill at the end of each month. Studies have

shown, however, that providing consumers with real-time power consumption information, at the

aggregate level, helps them to change their behavior and save 10-15% on power costs [1], [2], [3].

Others suggest that even more power could be saved if accurate, real-time, disaggregated power

information were available to consumers [4].

Recently, there has been increased popular interest in home automation systems and monitoring.

For example, Nest Labs, creator of the Nest Learning Thermostat, was acquired by Google in

January 2014. There is a growing awareness about renewable energy and ecological reasons for

reducing power consumption. There is also a growing number of companies interested in providing

consumers with more detailed electricity consumption feedback and commercial electricity monitors:

The Energy Detective (TED), PlotWatt, Bidgely, and Opower, to list a few.

Non-intrusive load monitoring (NILM) is a term used to describe a set of techniques for obtaining

1
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estimates of the electrical power consumption of devices in a building based on measurements of

current and/or voltage taken at a limited number of locations of the power distribution system

in a building. It is a tool that can potentially provide real-time power consumption feedback to

consumers, thus enabling them to make changes in their behavior that will conserve resources and

save them money. The information can also be leveraged by power companies, automated building

controllers, and other parties to increase efficiency of electricity usage and to better study how

electricity is used.

The idea behind NILM is simple: help people to know how much power they are consuming

and where that power is going. Today, many cars have real-time gas mileage feedback, but there

is no analog for power consumption in the home. Before this feedback for cars was available, the

only indication of gas consumption was how frequently one had to refill the tank. Increased fuel

prices have spurred advancements in internal combustion engines that have not only improved their

efficiency, but have also sought to instruct the user on how to drive more efficiently. This is the

type of impact that NILM systems could potentially have in the home. Instead of paying the vague

monthly power bill, consumers can take control of the situation and be more sure of where their

money is going and exactly what they are paying for.

We now turn to a review of NILM literature and provide some historical context for the problem.

Following the literature review we briefly discuss the main contributions of this thesis, then we

present some ways in which the work in this thesis may be used in practical settings, and we close

the introduction by providing an overview of the structure of the thesis.

1.2 Literature Review

We present here a brief and by no means exhaustive history of non-intrusive load monitoring

research1. After this history, we focus on how the NILM literature touches on the availability of

public datasets for conducting research (section 1.2.1), metrics for evaluating performance (1.2.2),

and a discussion of supervised and unsupervised methods (section 1.2.3).

1It is worth noting that NILM is variously referred to in the literature as NIALM or NALM (both acronyms for

Non-Intrusive Appliance Load Monitoring).
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Non-Intrusive Load Monitoring has been an active research area since the mid 1980’s. George

Hart [5] is widely recognized as the founder of NILM with his research at MIT conducted for the

Electric Power Research Institute (EPRI). His work focused on distinguishing appliances based on

the changes in their steady-state real and reactive power consumption levels.

The standard approach proposed by Hart for NILM follows a four-step time-domain method:

event detection, feature extraction, classification, and energy disaggregation. This last stage of

energy disaggregation requires some sort of appliance modeling to be able to track the operation

of different devices. We refer to NILM algorithms that follow this general scheme as event-based

methods.

Building on Hart’s work, during the 1990s, other researchers at MIT began to develop event-

based systems that distinguished appliances based on their transient characteristics [6]. In [7]

and [8] a hybrid system for using both the steady-state and transient characteristics is proposed

and developed. The work in [7] also proposes a method for distinguishing overlapping transients,

a problem that is still challenging for event-based systems.

More sophisticated classification methods were also explored, including neural networks in [9]

and [10], a rule-based pattern recognition approach [11], and Support Vector Machines [12].

Apart from the standard power-based NILM approaches described above, there has also been

work that seeks to disaggregate appliances based on the spectrum of electrical noise on the voltage

signal [13]. An advantage of this method is that overlapping transients in the time domain may be

separated in the frequency domain. However, this requires sampling in the MHz range which can

require expensive hardware that may be cost prohibitive as a commercial solution.

For a more thorough overview of many of the methods described above, see [14].

More recently, especially within the past three years, there has been a growth in model-based

methods that move away from the standard event-based framework. In particular, Hidden Markov

Models (HMMs) have been applied to the problem with some success in both supervised and

unsupervised settings. The first work that we are aware of that uses HMMs is Kim et al. in [15]

where they apply a Factorial HMM (FHMM) to the energy disaggregation task. Kolter et al. also

explore FHMMs in 2011 [16], and in [17] they apply Additive Factorial HMMs using an unsupervised
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method for extracting signal portions where individual devices are isolated. Parson et al. have also

applied HMM-based methods in [18] and [19] where they combine prior models of general appliance

types (e.g., refrigerators, clothes dryers, etc.) with HMMs and Difference HMMs.

1.2.1 NILM Datasets

Many research areas concerned with classification and other machine learning tasks have publicly

available datasets on which researchers can compare performance results. This has not been the

case, however, for NILM research, until very recently. Prior to 2011 there were no publicly available

datasets that were appropriate for NILM research. Researchers interested in the problem were

tasked with collecting or creating data on which to develop and test their methods. This lack of

common data also meant that results could not be directly compared among different approaches.

A related problem of determining metrics to use in comparing results is discussed in section 1.2.2.

Here, we are concerned with discussing a few of the datasets for NILM research that have been

made available recently.

The Reference Energy Disaggregation Dataset (REDD) [16], released in 2011, was the first

public dataset released specifically for NILM research. It contains data from six houses in the

Boston, Massachusetts area with aggregate power consumption and power on the subcircuits in the

house reported at 1 Hz; higher frequency aggregate current and voltage are also available.

Another important dataset is the Tracebase repository [20]. It does not provide any aggregate

measurements, but it has over 1,000 power traces sampled at 1 Hz across more than 100 individual

devices. Instead of being used directly for disaggregation, since it does not contain any aggregate

data, it is meant to aid in recognizing different devices. Parson uses Tracebase in [21] to train

generalized appliance models and applies these to the REDD dataset.

The Building-Level fUlly labeled Energy Disaggregation dataset (BLUED) [22] was released in

2012 and contains current and voltage sampled at 12 kHz for one house for a week along with

approximately 2,400 ground truth timestamped events indicating device activity. The BLUED

dataset was collected by our group at Carnegie Mellon University in Pittsburgh, Pennsylvania,

and it is discussed extensively in chapter 2. It differs from the REDD dataset in that BLUED
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contains extensive timestamped and labeled events on the device level. These labels were obtained

by extensive ground truth monitoring of individual devices and circuits.

These three datasets encompass three different philosophies for approaching data collection for

the NILM problem. Other datasets exist, and they vary in number of houses collected, length of

collection, extent of submetering for ground truth, and sampling rates. A short summary of most

of the existing datasets is available in [23].

1.2.2 Energy Disaggregation and Performance Metrics

We stress that in electricity usage and monitoring, the most important quantity to estimate is energy

consumption, not power consumption. Although the two are related, energy consumption is what

determines how much the consumer pays. Energy is usually reported in terms of kilowatt-hours

(kWh) consumed over a given amount of time. For monthly electricity bills this is the kWH per

month. Power, reported in Watts, is the rate of energy consumption. In disaggregating electricity

consumption by different devices, it is important to remember that we ultimately want to know

how many kWh they consume over a given period of time, be it in an hour, a day, a week, a month,

or a year.

We emphasize this because the generic NILM energy disaggregation problem is notoriously

challenging. For two-state devices, those with only ‘on’ and ‘off’ states, the energy tracking problem

was approached very early on in the earliest technical report from George Hart in 1985 [24]. The

challenge of “multi-state” devices is mentioned frequently in the report as a subject of active work.

The primary difficulty associated with multi-state devices is in learning their operational structure.

Hart provides a “method which can follow the activities of each appliance, if their structure is

known.” However, “the more difficult aspects of the multi-state algorithm involve learning the

structure of each appliance.” Seven years later, he writes in [5], “Our prototype NALMs have used

only the ON/OFF model so far, and therefore have not been able to properly account for multistate

appliances. When an FSM device is analyzed with the NALM algorithms designed for ON/OFF

devices, field tests show that a number of different errors can result.”

The Electric Power Research Institute (EPRI), writing in their 1997 report [25], says, “NIALMS
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has proven to be a reliable technology for monitoring two-state appliances. NIALMS technology

does not, however, accurately monitor multi-state appliances such as variable speed HVACs, dish-

washers or clothes washers.” Today, nearly thirty years since Hart’s technical report in 1985, there

is still no method for learning generic multi-state device power consumption models in event-based

NILM systems.

The problem of which metrics to use to measure performance is also well documented. In a

2011 review paper of the state of the art of NILM research, Zeifman observes, “A direct comparison

of the approach performances based on the literature data is not possible because of the ambiguity

in the performance measures used. . . ” [14]. In the review paper, metrics mentioned include “frac-

tion of total energy explained,” “difference in estimated and true power draw of an appliance,”

“classification accuracy,” and “fraction of explained energy of each appliance.” He concludes, “The

diversity of accuracy metrics makes meaningful comparisons between different NIALM algorithms

difficult.”

It is notable that much of the event-based NILM literature focuses on detection and classification

accuracy and frequently does not even give estimates of actual energy disaggregation. This, in part,

reflects the lack (until recently) of common datasets available for testing. But it also reflects the

difficulty of modeling devices and tracking their energy consumption even with good detection and

classification results.

The review paper by Zeifman was published before any of the model-based HMM approaches

were created. The model-based approaches we are referring to were tested on the REDD dataset,

and they do report on energy disaggregation for at least a subset of devices present in the data.

In the private commercial sector, companies such as Opower2, PlotWatt3, and Bidgely4 claim to

report device-level disaggregation, but to our knowledge their claims have not been independently

verified, nor do they report on how accurate their methods are.

2http://www.opower.com
3http://www.plotwatt.com
4http://www.bidgely.com

http://www.opower.com
http://www.plotwatt.com
http://www.bidgely.com
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1.2.3 Supervised vs. Unsupervised Methods

Another widely recognized difficulty in NILM research is that of training. Both event-based and

model-based methods require some level of training in order to report to the user on the actual

devices in the home. This may be as simple as the user specifying types of devices present in the

home, or as complicated as requiring a user to turn on and off devices in isolation so that the

system can learn each one.

Systems that require significant user interaction are not practical for wide use. Consumers desire

technology that can be installed and left alone. The model used by the Nest Learning Thermostat5,

that of automatically learning without requiring users to change their habits, helps to explain the

popularity of their system. In some sense, the “Non-Intrusive” aspect of NILM should not refer

only to the physical method of measuring data, but, in a successful system, it should also refer to

how much user interaction it requires.

To address this problem, research has been carried out on a few different fronts. There seems

to be a growing consensus that a semi-supervised approach is a reasonable path to take. In this

approach, unsupervised clustering is performed on aggregate data to isolate potential devices. The

user is only asked to provide labels after this clustering and disaggregation has taken place so that

the disaggregated energy can be linked to particular devices. Such a method is discussed in [26].

Parson et al. propose circumventing the training process by using generalized appliance models

for a small set of common devices in [23].

1.3 Research Contributions

Our primary contribution is presenting a meaningful relaxation to the NILM problem and providing

an unsupervised algorithm for solving it. Specifically, we propose the Power Consumption Clus-

tered Non-Intrusive Load Monitoring (PCC-NILM) problem in which the goal is to determine the

energy consumed by devices operating in different power consumption ranges, instead of trying to

disaggregate each individual device. Our solution to this problem is the Approximate Power Trace

Decomposition Algorithm (APTDA). It is an unsupervised, data-driven approach that separates

5http://www.nest.com

http://www.nest.com
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device activity according to different power consumption levels. These power consumption levels

are learned from the data.

As seen in the literature review, previous NILM work, until recently, has largely not provided

results concerning the actual disaggregation of energy consumed by devices. Much of the work

has focused on the ability to correctly detect and classify activity from different devices. Our

relaxation of NILM, PCC-NILM, while moving the problem away from per-device disaggregation,

creates meaningful classes of devices and is able to follow the problem to the end to make a

statement about the energy consumption of each class. For the end user, the energy consumed is

of ultimate importance; other metrics are useful only in as much as they provide information about

the energy consumption of different devices. Frequently in the literature, metrics of detection and

classification accuracy are not linked with energy consumption.

The Approximate Power Trace Decomposition Algorithm (APTDA), our solution to the relaxed

problem of PCC-NILM, is an unsupervised solution. The literature review shows the challenges

associated with supervised NILM methods, both technical challenges and logistical challenges.

Supervised methods are inherently less scalable than unsupervised methods; the need to train for

each environment is prohibitive and unrealistic in the context of NILM. While supervised methods

are in theory capable of providing more information, there is a tradeoff between the difficulty of

implementing them versus the amount of information that can be obtained using an unsupervised

method. Of course, in order to provide users with information about their consumption, it is

necessary to have some information about which devices are in their home. The supervised versus

unsupervised question hinges on what information is needed and at which stage that information

becomes necessary. For example, in our solution, we report the energy consumption of devices

grouped together by power consumption. We envisage the user being presented with a list of

devices that typically consume power in these ranges. Were the user to then select particular

devices actually present, the information would be more specific. Asking the user to label or report

when specific devices are operating is not necessary in our scenario.

In order to motivate the appeal of PCC-NILM, we provide a comprehensive analysis of a

likelihood-ratio based event detector on the BLUED dataset. The analysis characterizes the ef-
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fects of different parameters on detection, and it highlights the difficulty of achieving detection

rates that would enable event-based NILM methods to be reasonable and scalable. This analysis

does not lead us to dispense with the event detector, but instead we use it as a source of starting

points for the APTDA algorithm. The final energy disaggregation is obtained by crowdsourcing

a large number of event detectors. This eliminates the dependence on finding the optimal event

detector.

The literature review discussed the problem of the lack of publicly available NILM datasets.

The collecting of the Building Level fUlly Labeled dataset for Energy Disaggregation (BLUED) is

not our contribution, but we were responsible for the post-processing and labeling of the data. It

remains, to our knowledge, the only publicly available dataset with timestamped events for nearly

all of the devices in the home. The APTDA algorithm was conceived of and developed because of

the difficulties faced in working with the BLUED dataset. Synthetic data, laboratory data, and

other data created under highly supervised conditions do not exhibit the intricacies that real data

contain.

In summary, we claim the following as our primary contributions to NILM:

• Power Consumption Clustered Non-Intrusive Load Monitoring (PCC-NILM): Relaxation of

the NILM problem. Moves focus away from challenging per-device disaggregation towards

classes of devices based on power consumption.

• Event Detection: Crowdsourcing detectors based on a parameter sweep of a likelihood ratio

detector and moving away from problem of finding one optimal detector. Fast algorithm for

implementing the detector makes the parameter sweep efficient.

• Unsupervised Approach: Power consumption classes learned from crowdsourced event detec-

tors. Decomposition of power signal based on power classes learned from data.

• Energy Disaggregation: The Approximate Power Trace Decomposition Algorithm (APTDA)

combines all of the above to provide meaningful feedback of energy consumption for the power

classes learned from the data.

• BLUED Dataset: Development and validation of APTDA on real data.
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1.4 Use Cases

With the research contributions we claim in this thesis in mind, we now present a discussion of

potential use cases for utilizing PCC-NILM via its solution, the APTDA algorithm.

PCC-NILM provides feedback about energy consumption to consumers so that they can make

more informed decisions about how they use devices in their home. A potential implementation for

a PCC-NILM system would have sensing equipment installed at the main circuit panel in the home

and some sort of in-home display (IHD) for presenting the users with information and allowing

them to interact with the system. In addition to the IHD, the user may also interface with a smart

phone or tablet app.

The user can choose to specify what types of devices they have in their home. The more devices

specified, the more tailored the feedback can be for a particular home. For example, a user who has

a gas stove and an electric dryer may specify this so that the system knows not to include an electric

stove as a potential device consuming power. However, if a user is not interested in specifying what

devices they have, useful information can still be provided regarding energy consumption.

Regardless of how much information the user provides about which devices are present in the

home, the energy consumed by background devices, those that are always on and consuming some

amount of power, will be reported. This represents all electronics that are plugged in and have

standby modes, electronic displays, or clocks; it also includes any device that is always left on in a

state of constant power consumption, perhaps a light or a fan. It is not possible for the system to

detect exactly what devices are contributing to the background power, but this quantity will tell

the user how much they are paying for electricity even when they are not doing anything.

At the end of a billing cycle, the user may input the dates of meter readings from the bill, so

that the system can provide a breakdown of electricity usage for the time period lining up with

the bill received. The user may also be interested in comparing consumption from month to month

to see how they are doing with respect to energy consumption in different power classes or the

background class.

The system could be configured to alert the user to abnormal power consumption. For example,

if a device is accidentally left on, resulting in an increased background power consumption level, the
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user could be notified of the change. If the user is away from home, abnormal power consumption

patterns indicating a potential intruder, could be reported as well.

We have presented here a brief summary of ways in which the information that is provided by

PCC-NILM could be used by consumers, but there are many other ways in which this information

could be leveraged.

1.5 Dissertation Outline

In chapter 2, we discuss data collection for developing NILM algorithms, and in particular we

present a detailed account of how the publicly available BLUED (Building-Level fUlly-labeled

Energy Disaggregation) dataset was collected and labeled.

In chapter 3, we present a detailed description of a modified likelihood ratio event detector. We

perform a parameter sweep of the detector over the BLUED dataset and study how each parameter

affects detection. The paramter sweep encompasses 1,456 unique parameter combinations. We

consider the performance of the detector in terms of traditional event detection metrics on the

BLUED dataset; the large number of false positives and misses, even by the best detector tested,

motivates us to look for NILM solutions that are robust to poor event detector performance.

In chapter 4, we formulate Power Consumption Clustered Non-Intrusive Load Monitoring (PCC-

NILM), a relaxation of the NILM problem, and we propose the Approximate Power Trace Decom-

position Algorithm (APTDA) as a means of solving the relaxed problem in an unsupervised way.

Chapter 5 presents detailed experiments and results carried out by applying the APTDA al-

gorithm to the BLUED dataset. We show how the 1,456 event detectors tested in chapter 3 are

used as starting points for the APTDA algorithm. These detectors are crowdsourced to learn,

in a completely unsupervised way, the power consumption classes specified by the PCC-NILM

relaxation.

In chapter 6, we offer conclusions and summarize the contributions of this thesis as well as draw

attention to areas in which future work may be pursued.



Chapter 2

Data Collection

In the literature review, in section 1.2.1, we discussed the importance of publicly available data for

NILM research. Data is necessary for testing algorithms and comparing performance results against

other research. In this chapter, we describe the Building-Level fUlly labeled dataset for Energy

Disaggregation (BLUED), a dataset collected specifically for event-based NILM research. The

collection encompassed monitoring aggregate power as well as approximately 50 separate devices

or subcircuits for tracking ground truth operation.

The chapter is structured as follows. First, we present a primer on AC power to familiarize

the reader with the basic concepts for understanding how power consumption is monitored. Then,

we move on to a discussion of how ground truth for NILM datasets can be obtained. This is

an important stage because the evaluation of NILM algorithms depends on knowing the actual

operation of the devices being monitored. After this, we describe in detail the BLUED dataset,

both how it was collected and how the many ground truth data streams were leveraged to label

the event locations on the aggregate power signal. Appendix A contains a table listing all of the

devices monitored along with information about their power consumption and number of events

for each one.

12
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Figure 2.1: The three voltage signals vA(t), vB(t), and vAB(t) commonly found in American res-

idential buildings. vA and vB have peak to peak voltages of 170 V corresponding to 120 V RMS

and vAB has a peak to peak voltage of 340 V corresponding to 240 V RMS.

2.1 AC Power Primer

In the United States, residential buildings typically have an AC power distribution system that

is supplied by three wires: two live wires and one neutral/ground wire. The live wires each have

voltage signals, with reference to the neutral wire, at 60 Hz and 120 V RMS (approximately 170 V

peak to peak). There is a phase difference between the two voltages of 180 degrees and the two

phases are commonly referred to as phase A and phase B. Equations (2.1) and (2.2) describe these

two voltage signals, vA(t) and vB(t). Standard 120 V outlets are supplied by either of these phases.

Larger appliances that require 240 V are supplied by both phases simultaneously by taking the two

phases in reference to each other instead of to the neutral. The voltage in this scenario is described

by vAB(t) in equation (2.3). Figure 2.1 shows what each of these signals looks like.

vA(t) =
√

2 · 120 · sin(2π · 60 · t) (2.1)

vB(t) =
√

2 · 120 · sin(2π · 60 · t− π) = −vA(t) (2.2)

vAB(t) = vA(t)− vB(t) =
√

2 · 240 · sin(2π · 60 · t) (2.3)

When a device is connected and turned on, the voltage induces a current, i(t). In devices that

contain only linear circuit elements (resistors, capacitors, and inductors), i(t) will be sinusoidal

with the same fundamental frequency as the voltage signal, though its amplitude and phase may
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differ. In general, for devices with non-linear elements, the induced current will be periodic but will

include additional harmonic content that precludes it from being modeled by a simple sinusoid. The

current on a particular phase of the power distribution system is the superposition of the current

drawn by all of the devices on that phase. For example, on phase A this is expressed as:

iA(t) =
∑
d∈DA

id(t) (2.4)

where DA represents the set of all devices connected to phase A.

The power consumed by a device over some period of time is calculated as the average of the

product of the current and voltage:

Pavg =
1

t2 − t1

∫ t2

t1

v(t)i(t) dt (2.5)

Chapter 2 of [8] provides an excellent treatment on how this power may be computed robustly using

a DFT-based approach based on the assumption that the voltage signal is accurately modeled by

a sinusoid, as in (2.1).

2.2 Methods for Monitoring Device-Level Ground Truth

In this section, we consider the tasks of collecting power data and of monitoring all of the electrical

devices in a home. For our purposes, we are interested in tracking when each device turns on or

off, not necessarily capturing the device’s power consumption.

First, it is not trivial to exhaustively catalog all of the electrical devices that are present in

a home. A more exhaustive cataloging would also include tracing each of the outlets and light

switches to determine which circuit from the panel they belonged to and also what phase that

circuit is on. This is a procedure that takes time and is highly intrusive.

Second, it must be determined for each device how to track its operation so that its contribution

to the aggregate power can be labeled. Different devices must be monitored in different ways. We

can broadly differentiate the devices according to how they connect to the power of the home

and thus how they can be monitored. We differentiate between simply monitoring activity and

monitoring power consumption. Monitoring activity refers to being able to distinguish when a
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device changes operating states (for two-state devices this would be either turning on or off).

Monitoring power consumption means measuring the actual consumption of the device at all times.

We distinguish 4 classes into which most devices in a home can be placed. They are as follows:

• Plug devices

• Split-phase devices (240 V)

• Hardwired devices (single phase)

• Lights on switches

Here, for each of these four classes, we describe what they are and also how they can be

monitored both for activity and power consumption. Where informative, we include a few examples

of each type of device, but these example devices are by no means exhaustive.

We begin with plug devices. These generally make up the majority of devices in a home:

everything that plugs into an outlet. We can further break them down into stationary and movable

devices. Stationary devices are those that are plugged into one outlet and are never relocated.

Movable devices encompass those that do not have a permanent home but may be relocated and

plugged as needed and where needed. Some examples of movable plug devices include cell phone

chargers, laptops, vacuum cleaners, and irons.

The activity of plug devices is most accurately monitored with some sort of plug meter that

reports the power consumption of the device plugged into it. Movable plug devices present a special

challenge because care must be taken to ensure that the plug meter is always kept with the same

device.

Next, we consider split-phase devices, appliances that require 240 V and are wired on a dedicated

circuit across both phases of the home’s power distribution panel. Examples include HVAC systems,

large window air conditioner units, stoves, ovens, dryers, water heaters, and heat pumps. Many of

these appliances may also have natural gas powered versions in which case they may then consume

much less electricity and perhaps be only a plug-in or hardwired single phase device.

It is common for these devices to be placed on dedicated circuits where no other devices are

present. In this case, their activity may be monitored by monitoring the current on each of the



CHAPTER 2. DATA COLLECTION 16

circuits at the panel using current clamps. Monitoring the voltage for each of the circuits would

allow for their power consumption to be monitored as well.

Some split-phase devices (typically dryers and large window air conditioners but some others

as well) use special 240 V plugs and are not hardwired to the circuit panel, but monitoring them

at the panel is preferable for uniformity. The shapes of 240 V plugs also vary according to the

amperage that the device requires, so 240 V plug meters would need to take this additional detail

into account.

We now consider hardwired single-phase devices. These are devices that are hardwired to a

single phase of the distribution panel; they do not have plugs. They may be located on a dedicated

circuit, but this may depend on the particular device, local building code standards, and the

electrician that wired it. There are usually not more than a few of these per home, and some

homes may not contain any such devices. Typical examples of these include garage door openers,

dishwashers, and garbage disposals.

These are more difficult to isolate unless they have a dedicated circuit that is not shared with

other devices. In this case, their activity can be monitored much like the split-phase devices, by

monitoring their voltage and current at the panel. For situations where they are not on dedicated

circuits, their activity must be monitored at the device. This can be done by using sensors that

monitor other externals that would indicate that the device is in operation (such as sound or

vibration). Such sensing would not monitor power consumption but only whether the device is

operating or not. The difficulty of monitoring power consumption for these devices varies depending

on how accessible the wires connecting the device are. Dishwashers, for example, are particularly

challenging in this regard.

The final category of devices that we consider are lights on switches. In this category, we do

not include lamps that plug in but only those lights that are controlled by light switches. These are

in some sense a special case of single-phase hardwired devices because they don’t have plugs, but

because they are typically present in most rooms and have certain distinguishing characteristics, we

treat them as a separate category. The lights may be of any type: fluorescent (tube and compact),

incandescent, or LED, to name a few. Some lights may be actuated by motion sensors, and these
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would be included in this category as well.

It is not typical for light switches to be on dedicated circuits. They are normally present on

circuits that also provide power to outlets as well. For this reason monitoring the circuit may not

be sufficient for isolating the lights. Light intensity sensors are a reasonable solution for monitoring

the activity of these types of lights, but this will not monitor the power consumed by the lights.

We now proceed to describe the system we used for measuring the aggregate power consumption

for the BLUED dataset and monitoring the ground truth activity of devices in the house.

2.3 BLUED Dataset

The BLUED dataset (Building-Level fUlly labeled dataset for Electricity Disaggregation) was col-

lected during October 2011 at a single family house in Pittsburgh, Pennsylvania. There were

approximately 50 electrical devices monitored in the home. The goal of the data collection was to

collect the aggregate power for each phase of the house and label it with timestamps of when each

device turned on or off.

When we first set out to collect this data, we did not consider fully submetering the house in

order to have ground truth power consumption for each of the devices or subcircuits. Our primary

concern was to monitor the devices in the home in such a way as to be able to label the aggregate

signal with the locations of events.

In this section, we provide a detailed description of the process used to collect and label the

data. It is important to understand that two independent data collection tasks were happening

simultaneously, one for making aggregate measurements and the other for monitoring the ground

truth activity of devices. We will refer to these two processes as aggregate measurement and ground

truth monitoring.

2.3.1 Measurement and Monitoring

Figure 2.2 shows the overall system architecture for the BLUED data collection. Two computers

were used to collect data. At the top of the figure is the panel-level computer; this was used for

monitoring all of the measurements made directly at the circuit panel. These include the aggregate
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Figure 2.2: System architecture for data and ground truth collection for the BLUED dataset.

current and voltage of the entire house and the RMS current on some of the subcircuits. The

bottom of the figure shows the appliance-level computer that was used to collect the data from

sensors placed around the house to monitor the ground truth activity of plug devices and lights.

The aggregate voltage and current measurements were collected at the circuit panel on a Win-

dows machine running LABView using a 16-bit data acquisition (DAQ) device from National In-

struments (NI USB-9215A). The voltage and current were sampled at 12 kHz simultaneously. We

assumed that the voltage signals would be phase-shifted copies of each other, per equations (2.1)

and (2.2), and so we only sampled one phase of the voltage. We designated this phase as phase A.

The aggregate measurements required 96 kB per second or about 8.3 GB per day. Stored in text

files on a Windows machine, this becomes approximately 46 GB per day1. This includes time-

stamps, voltage on one phase, and current on two phases, so in total 4 streams of 16-bit data

collected at a rate of 12 kHz. The full week of aggregate data, therefore, comprises approximately

300 GB of data and is compressible to approximately 56 GB. It is publicly available for download

at http://nilm.cmubi.org/.

1This is using the definition of 1GB=109 Bytes. Microsoft Windows platforms define 1 GB as 10243 Bytes and

this would translate to approximately 43GB per day.

http://nilm.cmubi.org/
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To measure the aggregate current, we used two QX 201-CT split-core current transformers

from The Energy Detective2. The current clamps were placed around the two incoming power

mains and connected to the DAQ. For voltage measurements, a voltage transformer from Pico

Technology3 (PICO PROBE TA041) was used to step down the 120V AC voltage to ±7V AC. The

voltage was monitored at an outlet close to the circuit panel. After completing the data collection,

we discovered that the current sensors used for measuring the electrical current in the mains had a

cutoff frequency of approximately 300 Hz, which meant that the current signals, although sampled

at 12 kHz, would only provide useful information for up to the 5th harmonic of the current.

Figure 2.3 shows the panel-level computer on the left and the circuit panel on the right. The

yellow device just above the computer inside the box is the voltage transformer that was used to

measure the voltage on phase A. Above that, attached to the inside top of the box is the DAQ

that was used for simultaneously sampling the aggregate current and voltage. Outside of the box

on the right is a larger 16-channel DAQ that was used to monitor the RMS current on some of the

subcircuits of the panel; this was for monitoring ground truth activity and is described near the end

of this subsection. On the right figure we see the electrical panel. The large black wires coming in

from the top of the panel are the live wires corresponding to phases A and B. They connect to the

circuit panel just the left and right of the red A and B, respectively. The red arrows are pointing

to the current clamps that were installed for measuring the aggregate current on each phase. To

the right of the red N is where the white neutral wire connects to the panel.

We now turn our attention to the monitoring of the ground truth activity of the devices. In

section 2.2 we identified four types of devices commonly present in homes and distinguished them

by how they could be monitored. The four types were plug devices, split-phase devices (240 V),

hardwired devices (single phase), and lights on switches. To monitor these devices we employed

three different sensing strategies comprising plug-level power meters, environmental sensors, and

subcircuit current clamps. Plug-level and environmental data were collected using the FireFly

wireless sensor networking platform [27]; these were monitored at the appliance-level computer in

figure 2.2. Subcircuit RMS current was collected using current clamps on selected circuits at the

2http://www.theenergydetective.com
3http://accessories.picotech.com/active-oscilloscope-probes.html

http://www.theenergydetective.com
http://accessories.picotech.com/active-oscilloscope-probes.html
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N

Figure 2.3: Left: The panel-level computer setup. Right: The circuit panel in the house where

BLUED was collected. The red arrows point out the two current clamps monitoring the current

on phases A and B. The white neutral wire is visible to the right of the red N.

panel and stored by the panel-level computer. We will first describe the collection scheme for the

FireFly devices and then the subcircuit monitoring.

Figure 2.4 shows what the FireFly sensors look like. On the left is the plug sensor. It plugs

into an outlet and the device to be monitored is plugged into it. The environmental sensor is

battery powered and operates on AA batteries. While they are capable of measuring a variety

of characteristics, we only used them to monitor light intensity for lights that were not able to

be monitored by plug meters. We used 28 FireFly plug meters and 12 FireFly environmental

sensors in the ground truth monitoring. Each of the FireFly devices reported values every 640 ms

(approximately 1.5 Hz). A central gateway connected to the appliance-level computer timestamped

each incoming message and locally stored the data.

The plug meters measured voltage and current internally at a rate of 1 kHz and locally computed

real power averaged over one second. The devices also reported other quantities such as voltage

frequency, RMS voltage, RMS current, and energy accumulation, but for our purposes we were

only interested in the real power consumption. Figure 2.5 shows a 9-hour sample of data taken

from phase A of the BLUED dataset. The top plot shows the output of the FireFly plug meter

that monitored the refrigerator and the bottom plot shows the aggregate power on phase A for the
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Figure 2.4: Left: FireFly Plug Meter and Control Board. Right: Firefly Environmental Sensor.

28 plug meters and 12 environmental sensors were used in the ground truth monitoring.

same 9-hour period. Isolating the refrigerator allows for the labeling of the aggregate power signal.

Note the small events on the fridge just before 9pm, these are instances of the light in the fridge

turning on when the door is opened.

The environmental sensors were placed around the house to capture the activity of lights con-

trolled by switches. These sensors were carefully placed to target specific light sources. Figure 2.6

shows the output of two different light sensors over the full week of the BLUED dataset. The sensor

output is scaled from 0 to 1023 where 0 is darkest and 1023 is brightest. We can see in this figure

that each of the sensors is affected by the cycle of the sun that can be seen around noon on each

day. In contrast to the activity of the sun, lights turning on are sharply delineated. Difficulties in

labeling may arise, however, when lights are turned on or off during sunny parts of the day.

In the top plot there is a spike that occurs on the sunnier days just before noon, namely on the

third, fourth, and sixth cycles present. At first glance this may appear to be due to a light turning

on, particularly because of its sharp character. But when comparing this with the aggregate power

signal we found that there was no corresponding change in power at those times. The recurrence

of the event at the same time each day further led us to believe that this is actually due to the sun

reflecting off of something in the house and striking the light sensor. The sensors were placed so as

to avoid direct exposure to windows, so we point this out to indicate an unforeseen challenge that

was encountered in this aspect of the data analysis.

Finally, we come to the third and final source of ground truth monitoring that we deployed:
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Figure 2.5: Top: Power consumption of a refrigerator as reported by a FireFly plug sensor.

Bottom: Aggregate power consumption over the same time period on phase A.
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Figure 2.6: This figure shows two different light sensors operating over the full week that the

BLUED dataset was collected. Note the effect of daylight on each sensor. The scaling on the

sensors goes from 0 to 1023 where 0 is the darkest and 1023 is brightest.
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Figure 2.7: Top: RMS current for one of the subcircuits, perhaps monitoring the dishwasher.

Bottom: Corresponding aggregate power from phase B.

the RMS current of 11 selected subcircuits. These subcircuits were monitored to capture the

activity of hardwired and larger 240 V split-phase devices. The current was monitored using current

transformers from CR Magnetics (CR 3110-3000 C1) and a 16-channel, 1.25 MS/s, 16-bit, USB-

based DAQ (National Instruments NI USB-6251) that was connected to the panel-level computer.

This DAQ can be seen in the left picture of figure 2.2. The RMS current for each of these circuits

was recorded at 20 Hz but the corresponding voltage was not monitored, so we do not have the

power consumption of these circuits. Figure 2.7 shows a 90-minute sample of data taken from

phase B of the BLUED dataset. The top plot shows the RMS current on one of the subcircuits

monitored and the bottom plot shows the aggregate power on phase B for the same 90-minute

period.

At this point we have a total of 54 separate streams of data, three of which pertain to the

aggregate consumption of the entire house and from which the power on phases A and B will be

computed. This leaves 51 streams that pertain to monitoring devices and subcircuits in the house:

28 FireFly plug meters, 12 FireFly environmental sensors, and 11 subcircuit RMS current sensors.

Table 2.1 summarizes the different types of data that was collected. In the next section we will

describe how we use these 51 ground truth sources to label the locations of events in the aggregate

power signal.
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Measurement # Sources fs Quantity(ies) Measured

Aggregate 3 12 kHz iA, iB, vA

FF Plug Meter 28 1.5 Hz P

FF Env. Sensor 12 1.5 Hz Light

Subcircuit RMS Current 11 20 Hz iRMS

Table 2.1: Summary of the different types of data collected during the week of the BLUED dataset.

There are 54 data streams collected with three different sampling frequencies.

2.3.2 Labeling Task

Once all of the data was collected (aggregate current and voltage along with all of the plug and

environmental sensors and subcircuit data), we began the task of labeling the data. As noted in the

previous section we, at this point, had 51 streams of ground truth data and 3 streams of aggregate

data.

Preliminary analysis of the data revealed a drift in the timestamps between the aggregate data

and the ground truth data. As the week progressed, the timestamps of the ground truth streams

(both from the FireFlys and the subcircuits) lagged further and further behind the aggregate data.

This influenced our approach towards labeling the data. Instead of only labeling the locations of

events on the ground truth streams and keeping these locations for the aggregate stream, it became

necessary to make a second pass for each ground truth stream to adjust the locations of the events

to reflect the timestamps of the aggregate power.

The first stage, that of manually marking all of the events across the 51 ground truth data

streams, yielded approximately 2900 hand-labeled events across the 51 ground truth data streams.

The FireFly plug meter monitoring the refrigerator had the most labels of any single device with

610 events marked for consideration. Figures 2.5, 2.6, and 2.7 show examples of each of the ground

truth streams before labeling.

Once the ground truth streams were all labeled we proceeded to the second stage of labeling the

aggregate data. Instead of working directly with the aggregate current and voltage, we computed

the real and reactive power for each phase with a sampling frequency of 60 Hz. It was on top of
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this 60 Hz power data that we overlaid the locations of the events that had been labeled on each

of the 51 ground truth streams.

Because of the time delay between the aggregate monitoring system and the ground truth data

the locations of the overlaid events did not line up with the observed changes in the aggregate

power signal. It was therefore necessary to manually adjust the locations of every event so that it

would correspond to the proper location in the aggregate power. Unfortunately the offset was not

constant so it was necessary to handle each event individually.

Figure 2.8 shows a close-up of one of the refrigerator compressor cycles and highlights where

the FireFly events and aggregate events are with respect to each other. The top plot shows the

cycle of the refrigerator as measured by the FireFly plug meter and the bottom plot shows the

corresponding aggregate power consumption on phase A. The red circles indicate where the ground

truth event locations were placed during the first stage of labeling and the green squares represent

the adjusted locations of the events on the aggregate power. In this example the gap between the

two timestamps is approximately 19 seconds but it would grow to nearly 50 seconds before the data

collection was over.

Figure 2.9 shows, for each of the refrigerator’s events, the difference in seconds between the

timestamp in the aggregate power and the timestamp in the FireFly plug meter ground truth. With

reference to figure 2.8 above this is the difference between the green square and the corresponding

red circle. We fit a linear model to the drift and discovered that the timestamps drift apart at a

rate of approximately 8 seconds per day. Early in the morning of the 6th day of data collection the

aggregate collection system went down for approximately 70 seconds. When it came back online

we see that the time gap went from 46 seconds to 7 seconds, but it promptly continued increasing

at the same rate.

Figure 2.10 shows that the problem was not isolated to the FireFly sensors but that the RMS

current captured on the subcircuits of the panel also experienced the same drift of 8 seconds per

day with respect to the aggregate timestamps. This was surprising because the same computer was

simultaneously capturing the aggregate current and voltage on each phase as well as the subcircuits,

though with two different data acquisition devices.
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Figure 2.8: Top: One compressor cycle of the refrigerator as monitored by a FireFly plug meter.

The red circles were manually labeled to mark the start and end of the cycle. Bottom: The same

cycle as captured by the aggregate power of phase A at the circuit panel. The green squares were

manually labeled to adjust for the time difference between the two systems. Both markers are

overlaid on the plots to show the gap in the timestamps clearly.
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Figure 2.9: Time drift of the FireFly plug meter monitoring the refrigerator with respect to the

aggregate power measurements. The FireFly sensors all lagged behind the timestamps of the

aggregate collection system and increased at a rate of approximately 8 seconds per day.
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Figure 2.10: Time drift of one of the subcircuits’ RMS current with respect to the aggregate

power measurements. Like the FireFly sensors, the RMS current also experienced a lag behind the

aggregate power that increased at the same rate of approximately 8 seconds per day.

After the second labeling stage, adjusting all of the event timestamps to line up with the

aggregate power signal, a final visual inspection of the aggregate power signal was made to determine

if there was any unlabeled activity not captured by the ground truth sensors. This check revealed

an additional 127 events from unknown sources for a total of 2,482 events (904 on phase A and 1,578

on phase B) during the week of collection. This means that the sensing infrastructure (FireFlys

and subcircuit monitoring) captured 94.9% of the total number of events.

2.4 Conclusion

The BLUED dataset is the only publicly available dataset we are aware of that has ground truth

locations for device activity. Other datasets available have aggregate power plus some submetering

of circuits in the home (REDD, e.g., was released before BLUED) and some devices. These sub-

metered data are included in the datasets whereas with BLUED we took on the task of labeling

the data from the devices we submetered but do not provide the data of the submetered devices

directly.
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Event Detection

In this chapter, we turn our attention to the problem of event detection for the Non-Intrusive

Load Monitoring (NILM) problem. In the literature review, in section 1.2, we mentioned the

standard event-based approach to NILM that contains four distinct stages: event detection, feature

extraction, classification, and energy disaggregation. Because each stage builds on the previous

ones, event detection is extremely important. Errors in detection propagate to each of the other

stages.

We begin this chapter with a detailed treatment of a log-likelihood ratio detector. In this

treatment, we define the detector and its parameters and walk through an example of how it

works. After the initial presentation of the detector, we do a parameter sweep on phase A of the

BLUED dataset. The parameter sweep generates 1,456 unique detectors and will provide more

insight into how the various parameters affect detection. Then, using the results of the parameter

sweep, we present performance results in terms of traditional detection metrics, i.e., false positive

and false negative rates. This discussion of performance will then lead us to consider the challenges

that the traditional event-based NILM approach faces. It will also help to motivate the desire for

a NILM solution that is robust to errors in event detection.

The chapter is organized as follows. Section 3.1 defines the log-likelihood ratio detector and

illustrates how each of its parameters affect its output. Section 3.2 describes a parameter sweep

of the log-likelihood ratio detector conducted on phase A BLUED dataset. It contains a more in-

28
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depth discussion of how the detector parameters affect detection in practice. Section 3.3 continues

analysis of the results from the parameter sweep but in the context of traditional detection metrics

relating to true positives, false positives, and misses. We conclude the chapter in section 3.4 and

motivate the need to develop techniques that are robust to errors in event detection.

3.1 Log-Likelihood Ratio Detector

In this section, we present a modified version of the log-likelihood ratio event detector. A version

of this detector first appeared in [28] with the modified version that we are using appearing in [29].

In much of the NILM detection literature, the focus has been on developing detection algo-

rithms that perform well under traditional detection metrics. For reasons that will be discussed

during the course of this chapter, this is a difficult approach because power signals in different

environments will require different event detectors and without some sort of ground truth (which

can be difficult, expensive, and time consuming to obtain) training these parameters may not be

possible. Changes in power consumption patterns will also change the best parameters to use when

good event detection metrics are the goal.

The event detection algorithm takes as input a power signal, P , and outputs an events vector,

e = [e1, . . . , eM ], that contains indices of locations of “events.” For the non-intrusive load monitor-

ing problem, these events correspond to abrupt changes in the power signal that indicate a device

turning on or off. Figure 3.1 shows a zoomed-in view of a 1 Hz power signal with a device, in this

case a refrigerator, turning on. We see in the figure that the power level is fairly constant at around

40 Watts for the first 18 samples and then power consumption increases starting at sample 19.

There is transient activity during samples 19 and 20, before the power levels out again beginning at

sample 21. An event detector should recognize the abrupt change in behavior and flag the presence

of an event. In this case, we would consider the detection a success if the event is returned at

sample 18, 19, 20, or 21.

We now proceed with a walk through example of how the detector works. We present the

algorithm in an offline version in which all of the datapoints of the power signal are stored in

memory and are available to us. The algorithm can also be run on streaming data with the
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Figure 3.1: Example of an ‘on’ event.

necessary modifications.

We begin with a power signal P [n], n = 1, . . . , N , with sampling rate fs. For each point of the

power signal, P [n], we want to determine whether P [n] is more likely to belong to the w0 points

preceding P [n] or the w1 points following P [n]. We first recognize that electrical noise on the power

signal, due to the law of large numbers, can be approximated as a normal distribution. When we

ask, then, whether P [n] is more likely to belong to either a window of events before or after P [n], we

can evaluate the likelihood that P [n] belongs to a Gaussian distribution with mean and variance

of the sample mean and variance of the pre- and post-windows, respectively. This allows us to

formulate the test statistic S[n], n = w0 + 1, . . . , N − w1, as the log of the ratio of the likelihood

that P [n] belongs to the post-window to the likelihood that it belongs to the pre-window:

S[n] = ln

(
N (P [n]|µ1,n, σ1,n)

N (P [n]|µ0,n, σ0,n)

)
= ln

(
σ0,n
σ1,n

)
+

(P [n]− µ0,n)2

2 · σ20,n
− (P [n]− µ1,n)2

2 · σ21,n
(3.1)

where N indicates the normal distribution and µ0,n, σ20,n, µ1,n, and σ20,n are the sample mean and
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variance of the pre- and post-windows, respectively:

µ0,n =
1

w0

n−1∑
k=n−w0

P [k]

µ1,n =
1

w1

n+w1∑
k=n+1

P [k]

σ20,n =
1

w0 − 1

k−1∑
k=n−w0

(P [k]− µ0,n)2

σ21,n =
1

w1 − 1

n+w1∑
k=n+1

(P [k]− µ1,n)2

Note that S[n] is not defined for n ≤ w0 or for n > N −w1 because these samples are necessary

for computing the mean and variance of the pre- and post-windows at the ends of the power signal.

By convention, we will assign these values to 0 so that the lengths of S and P are identical. This

gives the full definition of S[n] then, as:

S[n] =


0 , n < w0 + 1

ln
(
σ0,n
σ1,n

)
+

(P [n]−µ0,n)2

2·σ2
0,n

− (P [n]−µ1,n)2

2·σ2
1,n

, w0 + 1 ≤ n ≤ N − w1

0 , n > N − w1

(3.2)

Figure 3.2 shows the same event as figure 3.1 in the top plot but the bottom plot shows the

corresponding S[n] when the pre- and post-event window lengths are both 6 samples, that is,

w0 = w1 = 6. The x’s at the beginning and end of S[n] show where S is forced to be zero because

the head and tail must be reserved for computing the pre- and post-window mean and variance.

From the test statistic, S[n], we create a modified log-likelihood ratio l[n] by forcing it to be

zero when the difference between the pre- and post-window means is below a threshold θP . In the

remainder of the discussion when we refer to the log-likelihood ratio, we mean this signal l[n]:

l[n] =


S[n] |µ1,n − µ0,n| ≥ θP

0 else

(3.3)

Traditionally in likelihood ratio tests, the likelihood ratio is compared to a desired threshold

value and an event is indicated when that threshold is exceeded. Instead of attempting to find a

threshold for the likelihood ratio we, following the method used in [29], employ a voting scheme on
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Figure 3.2: Top: Power signal for a refrigerator ’on’ event. Bottom: corresponding S[n] computed

with the pre- and post-window lengths both equal to 6 samples.

the likelihood ratio. Specifically, we slide a voting window of length wV across the log-likelihood

l[n] and assign a vote in each shift of the window to the point with the largest magnitude (in

absolute value). These votes are accumulated in a signal V such that the value V [n] contains the

number of votes that the nth sample has registered. If there is no maximum in a particular shift of

the voting window, i.e., all of the l[n] for that window are 0, then no vote is assigned.

Figure 3.3 shows the same ‘on’ event from figures 3.1 and 3.2, but here in the middle we show

the absolute value of the modified log-likelihood ratio, l[n], and on the bottom we show the number

of votes that each point receives, V [n]. The pre- and post-window lengths are both 6 samples,

and the voting window length is 10 samples. The middle figure also has superimposed on it the

voting window to indicate that it is over |l[n]| that the votes are counted. In the bottom figure

there are wV -1 indices that have x’s at the beginning and end of the plot. This indicates that the

voting window will not fully traverse these points, so they are omitted from the voting results. This

example is shown for illustrative purposes. In practice the length of the power signal, N , is much

larger than the voting window so the ignored points are negligible.

In this figure, we see that sample 19 has the largest magnitude likelihood and therefore receives

the maximum 10 votes. Sample 26, though visually no event is present, receives 6 votes and

sample 15 receives 3 votes. We can see here that, while we avoided thresholding the value of l[n]
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Figure 3.3: Top: Power signal for a refrigerator ‘on’ event. Middle: Corresponding |l[n]| computed

with the pre- and post-window lengths both equal to 6 samples. Bottom: The number of votes

received by each point with a voting window length of 10 samples. The voting window is shown on

the middle plot to indicate that it is over |l[n]| that the votes are accumulated.

as is typically done in likelihood ratio testing, the voting threshold, θV , can be a very influential

parameter.

With all of this in place, the final step of the detector is to tally up the votes and assign events.

The final list of events, e, is determined by taking all of the indices that received a number of votes

greater than or equal to the voting threshold, θV :

e = {n ∈ {1, . . . , N} : V [n] ≥ θV } (3.4)

Note that the voting threshold θV must be less than or equal to the length of the voting window, wV ,

because each point can receive at most one vote per shift of the voting window. We turn our

attention now to a discussion of each of the parameters in the LLR detector in the context of a

parameter sweep on the BLUED dataset.
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Parameter Symbol Min Max

Voting window wV 3 15

Pre/post-window w0, w1 2 15

Voting threshold θV 2 15

Table 3.1: LLR event detector parameter ranges used for testing the APTDA algorithm across a

spectrum of event locations.

3.2 Likelihood Ratio Detector Parameter Sweep on BLUED

In this section, we perform a parameter sweep of the detector presented above by varying the voting

window length, the pre- and post-window lengths, and the voting threshold. This will provide us

more insight into how the different parameters affect detection.

3.2.1 Experimental Setup

Recall from section 3.1 that the LLR detector has 5 parameters: Power threshold, voting window

length, pre-window length, post-window length, and voting threshold. For these experiments we

fix the power threshold constant at 30 Watts and force the pre- and post-window lengths to be the

same. Thus we have three degrees of freedom in the tests that we run: voting window length, pre-

and post-window length, and voting threshold. Table 3.1 gives the ranges for the parameters that

were used in the 1,456 combinations that we ran. All of the tests were run on power data sampled

at 1Hz, so for the window parameters, the number of samples corresponds directly to duration in

seconds. Recall also that the voting threshold can not be greater than the length of the voting

window but we do allow the pre- and post-window lengths to be longer than the voting window.

Figure 3.4 shows a plot illustrating the number of events returned by each of the event detectors.

In phase A of the BLUED dataset there are 867 ground truth events. This is shown in the figure

as the dashed black reference line. The number of events returned by the event detectors ranges

from 681 to 3972. 668 of the 1,456 detectors return fewer events than the ground truth and the

remaining detectors return more. The x-axis of the plot is labeled as “detector sensitivity,” meaning
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Figure 3.4: Number of events detected by each of the 1,456 event detectors on phase A of the

BLUED dataset. The detectors are ordered from least to most sensitive. The dashed line shows

the number of ground truth events in the dataset, 867.

Gr. Truth Most Sensitive Least Sensitive

Number of events 867 3972 681

Voting window N/A 3 15

Pre/post-window N/A 15 12

Voting threshold N/A 2 15

Table 3.2: Event detector parameters for the most and least sensitive event detectors used.

an ordering of the detectors in terms of number of events returned. Table 3.2 shows the parameters

corresponding to the most and least sensitive detectors.

Figure 3.5 shows how many detectors there are for a particular value of a parameter. The

pre/post-window length remains constant because it is independent of both the voting window

length and voting threshold. The voting threshold, as mentioned above, can not exceed the voting

window length. This explains why there are more detectors with lower voting thresholds than

higher ones and also why there are more detectors with longer voting windows than shorter ones.

The voting threshold of 15, for example, only occurs in 14 detectors, once for each of the pre/post

window lengths when the voting window is also 15 samples long. When the voting window is 15

samples long, however, any of the voting thresholds may be used with all of the pre/post window

lengths giving a total of 142 = 196 detectors with a voting window length of 15.
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Figure 3.5: The number of detectors with each of the given parameters.

3.2.2 Discussion of LLR Detector Parameters

As we saw above, the LLR detector has 5 tunable parameters. Here, we will discuss each of them

and the effect they have on the LLR detector. For reference, table 3.3 lists all of the parameters

with a short description of each one.

The first parameters we consider are the pre- and post-event window lengths, w0 and w1,

respectively. These determine the number of samples to be used in estimating the mean and

Parameter Description

w0 Pre-event window length (Samples)

w1 Post-event window length (Samples)

θP Power threshold (Watts)

wV Voting window length (Samples)

θV Voting threshold (Count)

Table 3.3: Tunable parameters for the log-likelihood ratio detector. A short description for each

parameter is given for reference along with its units in parentheses.
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Figure 3.6: Among the 1,456 detectors tested on phase A of the BLUED dataset, the maximum,

mean, minimum, and median number of events detected when fixing the pre- and post-window

lengths and allowing the other parameters to vary. The black dotted line indicates the number of

ground truth events: 867.

variance of the power signal before and after the current point for computing the log-likelihood

ratio.

Figure 3.6 shows, for each value tested on phase A of the BLUED dataset, the maximum, mean,

minimum, and median number of events returned by all detectors holding this parameter constant

allowing the others to vary. In this figure, we see that the maximum number of events returned

increases rather dramatically with the pre/post-window length.

When the pre/post-window length is short, the log-likelihood ratio around events is very tight.

The refrigerator ‘on’ event that we saw in figures 3.2 and 3.3 above when w0 and w1 were set at 6

samples gave a log-likelihood ratio that had a range of non-zero values that spread over 14 samples.

When w0 = w1 = 2 this range is reduced to 6 samples and when w0 = w1 = 15, the range spreads

over 23 samples (one might expect this to be more than twice the length of the pre/post-window,

but this is not necessarily the case because l[n] is forced to be zero when the magnitude of the

change in mean is less than θP Watts). We see in figure 3.3 that with a voting threshold of 2 or

3 the single refrigerator ‘on’ event would trigger three events by the event detector. When the

length of the pre/post-window is 15, a voting threshold of 2 would trigger 5 events with these same

settings. This gives some insight into the drastic increase in the maximum number of events among

detectors as w0 and w1 increase. We also note that the median in this figure is consistently below
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Figure 3.7: Among the 1,456 detectors tested on phase A of the BLUED dataset, the maximum,

mean, minimum, and median number of events detected when fixing the voting window length and

allowing the other parameters to vary. The black dotted line indicates the number of ground truth

events: 867.

the mean number of events. This indicates the presence of outliers whose number of detected events

is significantly higher than most of the other detectors with a given pre/post-window length.

Next we consider the length of the voting window, wV . This is the length of a sliding window that

traverses the likelihood ratio for accumulating votes on samples that may be an event. Figure 3.7

shows, for each value tested on phase A of the BLUED dataset, the maximum, mean, minimum, and

median number of events returned by all detectors holding this parameter constant and allowing

the others to vary. The figure shows that neither the maximum nor minimum number of events

detected is explicitly affected by the voting window length.

A longer voting window prevents events that are too close (within the distance of the voting

window) from each getting the maximum number of votes. The event with a higher likelihood

will always obtain the maximum number of votes. This may be undesirable when trying to detect

events in rapid succession. Shortening the window in this type of scenario will cause both events

to obtain the maximum number of votes. Shorter voting windows, however, particularly paired

with longer pre- and post-windows with sprawling likelihood ratios, can lead to a high number of

false positives. In figure 3.3, for example, if the voting window length were 6 instead of 10, then

both points 19 and 26 would receive the maximum 6 votes when only point 19 should be flagged as

an event. We note also in this parameter that the mean consistently exceeds the median number
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Figure 3.8: Among the 1,456 detectors tested on phase A of the BLUED dataset, the maximum,

mean, minimum, and median number of events detected when fixing the voting threshold and

allowing the other parameters to vary. The black dotted line indicates the number of ground truth

events: 867.

of events detected, indicating the presence of outliers with significantly more detected events than

most of the detectors.

We come now to the voting threshold, θV . This is the number of votes that a point must receive

in order to be considered an event. Note that the voting threshold must be less than or equal to

the length of the voting window because no point can receive more votes than the length of the

voting window. As with the first two parameters we looked at, Figure 3.8 shows, for each value

tested on phase A of the BLUED dataset, the maximum, mean, minimum, and median number of

events returned by all detectors holding θV constant and allowing the others to vary. Unlike the

above parameters, we see that there is a clear trend towards fewer detected events as the number

of votes increases.

When the number of votes is large, we must keep in mind that this also means that the length

of the voting window is at least as large, while the length of pre- and post-windows may take on any

value. When the number of votes is small, this means that any point receiving just a few votes will

be reckoned as an event. We note that for θV = 2, the lowest parameter value tested, the minimum

number of events is 1,481, which is more than the minimum for either of the other two parameters.

We also see in the voting threshold that the mean and median numbers of events detected are

consistently close. This indicates that there is an even spread in the number of detected events for
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each value of the voting threshold. At the extreme right of the figure, when θV = 15, the maximum

and minimum number of events detected differ by only 25. From all of this, we can see that among

the parameters we have considered the voting threshold is the best indicator as to the number of

events that will be detected regardless of the parameter selection for the window lengths. At the

end of section 5.2, we will also see results that show the voting threshold to be the best indicator

for performance of the Approximate Power Trace Decomposition Algorithm.

The final parameter that we have not spoken much about is the power threshold, θP ≥ 0. Any

changes in power less than this threshold, as measured by the change in pre- and post-window

means, are ignored. Setting the threshold too low can allow noise on the power signal to trigger

an event, while setting it too high can cause events to be missed. For the detectors that we tested,

we kept this parameter fixed at 30 Watts. Unlike the other parameters, it has a clear physical

interpretation that is immediately apparent in the power signal, and thus we did not include it in

our parameter sweep.

In this section we have defined the log-likelihood ratio (LLR) detector and provided a discussion

of its parameters in order to build some intuition for how each of the parameters affects the

sensitivity of the detector. We now move on to analyzing the performance of the detectors on

phase A of the BLUED dataset.

3.3 Event Detection on BLUED

The previous section attempted to provide some intuition about how the different parameters of

the LLR event detector affect the sensitivity of the detector. In this section, we give results for

how the different detectors perform with respect to more traditional detection metrics on phase A

of the BLUED dataset. Specifically, we are interested in the tradeoffs among the detectors of true

positives, false positives, and misses. Earlier work in which we proposed some of the metrics we

use in this chapter can be found in [30].

Before we can begin a discussion on event detection results, we first need to comment on how we

count true positives, false positives, and misses. One could require that the event detector detect

exactly the point that is labeled as an event in order for it to be considered a successful detection.
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In this case, missing by just one sample would be considered as a false positive and the event would

be missed. For some applications, this may be a reasonable approach. For our purposes, though, we

introduce a detection tolerance and allow any event that falls within an allowed number of samples

from the ground truth event to be considered as a successful detection. In this scenario, an event

would be missed if there were no detections occurring within the specified tolerance.1

In the BLUED dataset, we are using a sampling frequency of 1 Hz, so increasing the tolerance

allowed for detecting events by a few samples does not significantly impact any calculation done

concerning energy. For example, an error of 4 seconds in placing an event from a device that

operates at 1,000 Watts would create an energy error of only 0.001 kWh. Another reason to allow

a tolerance in work with NILM power data is that there is a certain ambiguity in defining exactly

where an event occurs.

In the following discussion we assume a tolerance of 1 sample and will compare how larger

tolerances affect the results afterward in section 3.3.1.

Figure 3.9 shows, in order of detector sensitivity, the true positives, false positives, and misses

for each detector tested on phase A of the BLUED dataset with a detection tolerance of 1 sample

allowed. The dotted black line indicates the number of ground truth events: 867. We see in this

figure that there is a general trend for the number of true positives to increase as the sensitivity

of the detector increases. Recall that the detector sensitivity is simply an ordering of the 1,456

detectors tested in terms of how many detected events they return.

A standard method for evaluating an event detector is to compare its true positive rate (TPR) to

its false positive rate (FPR) and visualizing this by using the standard receiver operating character-

istic (ROC) curve. True positive and false positive rate are defined in (3.5) and (3.6), respectively,

where TP is the number of true positives, FP is the number of false positives, TN is the number of

1This is a slightly oversimplified view of the process. For those interested in reproducing our results a few comments

are necessary. Situations arise where a detection is made within the tolerance range of two different events. In such a

case there are two principles at play that govern which event to assign a detection to. First, a detection may only be

assigned to the ground truth event to which it is closest. Second, if a detection occurs equidistant between two events

and both are within the specified tolerance, the earlier event is chosen by convention and the latter event would be

considered a miss unless there is another detection close to it.
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Figure 3.9: In order of detector sensitivity, the number of true positives, false positives, and misses

returned by each of the 1,456 detectors tested with a detection tolerance of 1 sample allowed. The

dotted black line indicates the number of ground truth events: 867.

true negatives, and M is the number of misses or false negatives.

TPR =
TP

TP + M
∈ [0, 1] (3.5)

FPR =
FP

FP + TN
∈ [0, 1] (3.6)

Figure 3.10 shows, for each of the 1,456 detectors tested, where they perform in the ROC space.

There is a visible tradeoff between having a high true positive rate while keeping the false positive

rate low. The yellow circles show the Pareto front. We can see in this figure that the most sensitive

detectors, i.e., those that return the most number of detected events, have relatively poor true

positive rates on this dataset. The points lying on the Pareto front represent detectors for which

there are no other detectors that have simultaneously a higher true positive rate and lower false

positive rate.

This brings up the question of how to decide which detector among those on the Pareto front

to choose. The perfect detector would have a true positive rate of 1 and a false positive rate of 0,

so the best detector, in terms of a rate metric among all detectors tested, can be found by choosing

the detector with performance closest to the optimal point:

d̂Rate = argmin
d∈D

∥∥∥(0, 1)−
(

FPR(d),TPR(d)
)∥∥∥2

2

= argmin
d∈D

FPR(d)2 + TPR(d)2 − 2 · TPR(d) + 1 (3.7)
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Figure 3.10: Receiver operating characteristics (ROC) for each of the 1,456 event detectors tested,

marked with blue x’s. Points on the Pareto front are shown in yellow circles. A detection tolerance

of 1 sample was used for counting the true and false positives.

Here, the argmin is computed over the set of all detectors tested, D. Note that in (3.7) there is a

tradeoff between the false positive and true positive rates. In residential power data, however, the

events are sparsely distributed leading to a large number of true negatives. For an event detector

with reasonable performance, the sparsity of actual events means that the number of true negatives

will be much greater than the number of false positives, i.e., TN � FP. When this is the case we

can see that the false positive rate in (3.6) tends to 0:

FPR =
FP

FP + TN

TN�FP−−−−−→ 0 (3.8)

The minimization in (3.7) thus becomes only a function of the true positive rate:

d̂Rate = argmin
d∈D

f(TPR)

f(TPR) = TPR2 − 2 · TPR + 1 (3.9)

On the interval [0, 1] this is a monotonically decreasing function. Therefore the best event detector,

d̂Rate will be the one with the highest true positive rate, regardless of how many false positives

it has (provided that the assumption TN � FP holds). We can see in figure 3.10 that the false

positive rate varies between 1.08× 10−4 and 5.3× 10−3 while the true positive rate varies between

0.64 and 0.98.
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Figure 3.11: This figure is the same as figure 3.10 with the addition of a star highlighting the

detector d̂Rate with optimal performance according to the criteria of (3.7).

The rate metric depends on a tradeoff between the true positive and false positive rates, but

we see here that, for the NILM application, this tradeoff may be rendered meaningless due to the

sparsity of events. Figure 3.11 is the same as figure 3.10, but we have highlighted with a star the

location of the optimal detector as determined by (3.7). As predicted, we see clearly in this figure

that the optimal rate detector, d̂Rate, is the detector with the greatest true positive rate. It has a

voting window, wV , of 3 samples, pre/post-window lengths, w0 and w1, of 2 samples, and a voting

threshold, θV , of 2 votes. It returns a total of 1,601 detected events with 851 true positives, 750

false positives, and 16 misses. The high number of false positives seems particularly undesirable,

so we now turn to a different metric for analyzing the event detectors.

Instead of looking at the true and false positive rates, we define a new metric that we call the

‘percentage’ metric [30]. It compares both the true and false positives to the number of ground

truth events in the data. We define the true positive percentage (TPP) and false positive percentage

(FPP) as:

TPP =
TP

E
(3.10)

FPP =
FP

E
(3.11)

where E is the number of ground truth events. Note that the FPP can not be properly called a
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Figure 3.12: Performance under the percentage metric for each of the 1,456 event detectors tested

using a detection tolerance of 1 sample. The circles show the Pareto front and the star shows the

optimal detector, d̂Perc obtained using this metric.

percentage because the number of false positives can be larger than the number of ground truth

events. Note also that the TPR and TPP are identical, so this metric amounts essentially to a

change in the scale of how the false positives are counted.

Similar to the rate metric above, the perfect detector would have a TPP of 1 and a FPP of 0.

Therefore the optimal detector, d̂Perc, can be expressed as:

d̂Perc = argmin
d∈D

∥∥∥(0, 1)−
(

FPP(d),TPP(d)
)∥∥∥2

2

= argmin
d∈D

FPP(d)2 + TPP(d)2 − 2 · TPP(d) + 1 (3.12)

Unlike the rate metric, the optimal detector according to this metric does not degenerate into the

detector with the most true positives. Figure 3.12 plots the performance for each of the 1,456 event

detectors tested under the percentage metric using a detection tolerance of 1 sample. The false

positive percentage varies between 0.076 and 3.75 while the true positive percentage varies between

0.64 and 0.98. The optimal detector, d̂Perc, has a voting window, wV , of 11 samples, pre/post-

window lengths, w0 and w1, of 2 samples, and a voting threshold, θV , of 4 votes. It returns 826

detected events with 716 true positives, 110 false positives, and 151 misses.

Before moving on to a discussion of how increasing detection tolerance affects these results,

we make some remarks on the structure observed in the ROC plots. Figures 3.13 and 3.14 show
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Figure 3.13: Receiver operating characteristics for each of the 1,456 detectors tested with a detection

tolerance of 1 sample. Lines overlaid on the figure show the performance trends for detectors with

different voting thresholds, θV .

the same points as figure 3.11 with lines overlaid indicating performance trends for detectors with

different voting thresholds and pre- and post-window lengths, respectively.

In figure 3.13 we see, particularly with the lower values of the voting threshold, how the perfor-

mance falls nicely into bands. As the voting threshold increases, the performance of the detectors

moves down and to the left, denoting a decrease in both true and false positive rates. This is

consistent with the discussion of the parameters in section 3.2.2 where we saw that larger voting

thresholds indicate less sensitive detectors.

In figure 3.14, we see how the performance moves down and to the right as w0 and w1 increase

from 2 to 15. The green curve indicating the performance of w0,1 = 2 captures many of the points

on the Pareto curve of figures 3.10 and 3.11.

Returning to figure 3.13, and interpreting it in light of figure 3.14, we observe, in the band

corresponding to θV = 2, 14 distinct smaller bands, each one corresponding to a different pre- and

post-window length. Within these subbands, there are 13 detectors that correspond to the voting

window length wV ranging from 3 to 15 samples. This trend is present for each of the bands in the

figures, but it is most pronounced among the detectors with the voting threshold of 2 votes.

Having developed some intuition for how these parameters affect detector sensitivity, we now
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Figure 3.14: Receiver operating characteristics for each of the 1,456 detectors tested with a detection

tolerance of 1 sample. Lines overlaid on the figure show the performance trends for detectors with

different pre- and post-window lengths, w0 and w1. The shorthand notation w0,1 shown on the

figure is used to indicate that w0 and w1 are constrained to have the same value, i.e., w0 = w1.

turn our focus to the question of detection tolerance.

3.3.1 Detection Tolerance

In the above analysis of detection results the detection tolerance was fixed at 1 sample. Here we

consider how the results change if we allow the tolerance to increase.

Recall that the detection tolerance refers to the number of samples we allow a detected event to

deviate from the ground truth location of the event and still be counted as a correct detection (true

positive). For example, if the detection tolerance is 5 samples, then an event will be considered

as being detected if the event detector reports an event within 5 samples prior to or following the

actual location of the ground truth event. This means that there is effectively a window of 11

samples in which a detection may occur for that event to be considered as correctly detected.

Using the same 1,456 detectors presented in section 3.2, we allowed the detection tolerance to

range from 1 to 6 samples. Tables 3.4 and 3.5 present results from evaluating the performance of

the event detectors under different detection tolerances.

Table 3.4 shows how the number of true positives, false positives, and misses found by the
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d̂Rate d̂Perc

Detection Tolerance (samples) TP FP M TP FP M

1 851 750 16 716 110 151

2 854 726 13 812 17 55

3 856 906 11 814 15 53

4 856 906 11 814 15 53

5 856 906 11 814 15 53

6 856 906 11 814 15 53

Table 3.4: Table comparing the number of true positives, false positives, and misses found by

optimal detectors d̂Rate and d̂Perc under detection tolerances ranging from 1 to 6 samples.

optimal detectors d̂Rate and d̂Perc change under the varying detection tolerances, and table 3.5

shows what the detection parameters for these optimal detectors are under each of the tolerances

tested. We see in table 3.4 that the d̂Rate detector is not significantly affected by the increase in

detection tolerance. With the detection tolerance set to 1 sample, d̂Rate returns 851 true positives

and misses only 16 events. Increasing the tolerance to 2 samples results in 3 more detections and

24 fewer false positives. Allowing the tolerance to increase to 3 samples adds 2 more true positives

but at the expense of 180 more false positives. Increasing the tolerance to 4, 5, or 6 samples

does not affect the performance at all. This serves mainly to highlight the problems with d̂Rate as

discussed above in relation to (3.9). Here, we can see concretely that the d̂Rate detector is that with

the highest number of true positives regardless of the increase of false positives.

The situation for d̂Perc is quite different. Here we see that an increase in detection tolerance

from 1 to 2 samples immediately gains 96 true positives with 93 fewer false positives. Increasing

the tolerance again to 3 samples adds another 2 true positives and 2 fewer false positives. We also

see that the performance is identical for tolerances of 3 samples through 6 samples.

In table 3.5, we see that for d̂Rate the optimal parameters change very little. Each of them

notably has a voting threshold, θV , of 2 votes. This is consistent with figure 3.8 where we saw that

detectors with a voting threshold of 2 were the most sensitive. For d̂Perc, we see that for each of the
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d̂Rate d̂Perc

Detection Tolerance (samples) wV w0,1 θV wV w0,1 θV

1 3 2 2 11 2 4

2 4 2 2 (4,5,6,7) 2 4

3 4 3 2 (4,5,6,7) 2 4

4 4 3 2 (4,5,6,7) 2 4

5 4 3 2 (4,5,6,7) 2 4

6 4 3 2 (4,5,6,7) 2 4

Table 3.5: Table comparing the parameters of the optimal detectors d̂Rate and d̂Perc as detection

tolerance changes.

detection tolerances the pre- and post- windows are always 2 and the voting threshold is always

4. With these two parameters held constant, the optimal d̂Perc detector can have a voting window

length, wV , of either 4, 5, 6, or 7 samples with identical performance.

We can also look at the receiver operating characteristics under the additional tolerances. Here,

we show, in figures 3.15 and 3.16, the performance of the detectors with a detection tolerance of

3 samples under the rate and percentage metrics, respectively. Note that, in each figure, the Pareto

front has shifted up and to the left in comparison with figures 3.11 and 3.12, where a tolerance of

1 sample was used. In figure 3.15, d̂Rate indeed is the detector with the greatest true positive rate

despite the larger false positive rate.

3.4 Conclusion

In this chapter, we have given an in-depth description and analysis of the log-likelihood ratio

event detector for non-intrusive load monitoring. We began by defining the detector and then

provided intuition about how its parameters affect its sensitivity by performing a parameter sweep

on phase A of the BLUED dataset. We then continued the discussion of results on the BLUED

dataset by looking into more traditional detection metrics. We specifically considered the tradeoffs
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optimal detector, d̂Perc obtained using this metric.
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between the standard true positive rate (TPR) and false positive rate (FPR) visualized in the

receiver operating characteristics (ROC). The large number of true negatives in the dataset led to

a detector that had a very high number of false positives, so we turned to a different metric for

choosing a detector. This led us to define the notion of false positive percentage (FPP) and avoid

the problems caused by the large number of true negatives.

Among the 1,456 detectors tested on phase A of the BLUED dataset, the best detector that

was found under our ‘percentage’ metric had 814 true positives, 15 false positives, and 53 missed

events.

In the non-intrusive load monitoring problem, we are primarily concerned not with event de-

tection for its own sake but only insofar as it leads to good estimates of energy consumption for

different devices. In the traditionally formulated NILM algorithm, the event detector is used as a

starting point to capture transients of devices so that they can be classified. This classification is

then used as the starting point for tracking the power consumption of the devices. We can see,

then, how fundamental correct detection of transients is to this type of NILM algorithm. A missed

detection or a false positive can potentially cause significant challenges in both classification and

energy tracking. In the next chapter, we pursue a NILM technique that will be more robust to

errors in event detection by relaxing the problem of trying to track the energy of individual devices.



Chapter 4

Approximate Power Trace

Decomposition Algorithm

In this chapter, we begin by motivating a relaxation of the non-intrusive load monitoring problem

that moves away from per-device energy disaggregation in favor of grouping devices into classes

based on their power consumption levels and disaggregating the overall energy consumed by each

of these classes. We call this relaxation Power Consumption Clustered Non-Intrusive Load Mon-

itoring (PCC-NILM). We then describe the Approximate Power Trace Decomposition Algorithm

(APTDA), our solution to the PCC-NILM problem that decomposes the power signal according to

power consumption classes.

The chapter is organized as follows. Section 4.1 discusses the motivation for PCC-NILM and the

APTDA algorithm. Next, section 4.2 contains an overview of the entire algorithm. The remaining

sections of the chapter describe each of the stages of the algorithm in detail. Section 4.3 describes

the approximation of the power trace; section 4.4 describes how the background power consumption

is estimated; section 4.5 describes the separation of active and background segments in the power

trace; section 4.6 explains how the power consumption classes are learned; section 4.7 describes how

the power trace is initially decomposed according to the power consumption classes; and finally,

section 4.8 describes a method to correct errors in the component decomposition.

To aid the explanation of the algorithm presented in this chapter, we use examples drawn from

52



CHAPTER 4. APTDA ALGORITHM 53

phase A of the BLUED dataset.

4.1 Motivation

In general, the non-intrusive load monitoring problem is to decompose the aggregate energy con-

sumed over a time period of interest into energy consumed by relevant components during that

time. The overall energy consumed by electrical devices in a home is a superposition of their

individual energy consumptions. So, we consider a disaggregation model that is additive, namely:

E[1,T ] =

K∑
k=1

E
[1,T ]
k (4.1)

This equation decomposes the total energy consumed during the time period [1, T ], E[1,T ], into

K components, E
[1,T ]
k . What these components are and how many to choose depends on the

application and the end goal. In the remainder of the discussion, we simplify notation by dropping

the time interval [1, T ] with the understanding that when energy is mentioned it must refer to

energy consumed over a fixed period of time.

There are many potentially interesting decompositions, and we discuss a few here. In the full

appliance disaggregation problem, K is equal to the number of electrical devices in the installation

and each Ek represents the energy consumed by each individual device. A second possibility is

an activity-based decomposition where each Ek represents the energy consumed by a different

activity such as cooking, watching television, heating/cooling the home, etc. Next, we could have a

room-based decomposition where K is the number of rooms in the home, and each Ek represents the

power consumption of an individual room. Another potential decomposition is an appliance-type

grouping, where appliances of similar functionality (e.g., lighting, cooking, entertainment, laundry,

etc.) are grouped together. One last example we mention is a person-based grouping, where each

Ek represents the energy consumed by a particular individual in the home. We note that not all of

the scenarios presented here fit perfectly into the model in (4.1), given that they are not all strictly

additive, but the main point of potential alternative decompositions is still valid.

Apart from these examples, there are certainly many other conceivable decompositions that

may be of interest to consumers, some more feasible to achieve than others. We are particularly
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Ek Power consumption range (Watts)

E0 Background

E1 0–105

E2 105–720

E3 720+

Table 4.1: Potential power consumption ranges for a power consumption-based decomposition.

interested in decompositions that exploit the nature of the power signal and make few assumptions

about what devices, rooms, or people are or are not present in the home.

With this in mind, we propose an energy decomposition by power consumption level. We

consider K ranges of power consumption and define each Ek to represent the energy consumed by

appliances that consume power in the kth range. For example, the power consumption ranges could

be as in table 4.1. Here, E0 represents the total energy used by background devices. E1 represents

the total energy used by devices that consume power in the range of 0-105 Watts; examples of devices

in this range are individual light bulbs and small electronics; E2 represents the total energy used by

appliances that consume power in the range of 105-720 Watts; examples of devices in this range are

televisions, refrigerators, coffee makers, dishwashers, and washing machines. Finally, E3 represents

the total energy used by devices that consume power at a rate of greater than 720 Watts; examples

of such devices are microwaves, vacuum cleaners, electric heaters, dryers, stoves, and ovens.

This approach is advantageous for many reasons. First, the power ranges can be learned from

the data itself without any training or input from the users. Second, while the ranges do not

specifically tell the user which devices are in each range, the information can be used to suggest to

the user which devices may be in each range based on standard power consumption levels for various

appliances. Third, the energy usage of each component of the decomposition can be compared over

different time intervals, e.g., from one week or month to the next.

We call this relaxation of the NILM problem Power Consumption Clustered Non-Intrusive Load

Monitoring (PCC-NILM). The goal is to non-intrusively determine the energy consumption of elec-

trical loads that are grouped together in classes containing devices with similar power consumption
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Figure 4.1: The power trace of phase A in the BLUED dataset with the locations of the ground

truth events provided with the data.

levels. In order to solve the PCC-NILM problem, we propose the Approximate Power Trace De-

composition Algorithm (APTDA), an unsupervised, data-driven approach to learning the power

consumption clusters and determining their energy consumption.

We see in figures 4.1 and 4.2 what the APTDA algorithm takes as input and produces as its

output, respectively. Figure 4.1 shows the power signal, P , from phase A of the BLUED dataset

along with the ground truth event locations provided with the dataset (we use the ground truth

edges for simplicity here, but later show how the algorithm is robust to errors in the event locations).

A piecewise-constant approximation, P , is made of the power signal and this P is decomposed by

the APDTA algorithm into the four signals shown in figure 4.2. The top signal, P 0 is the estimate

of background power consumed in the building during the week. The following signals, P 1, P 2,

and P 3, are estimates of the power consumed by appliances operating in each of the 3 ranges

from table 4.1: 0-105 Watts, 105-720 Watts, and greater than 720 Watts. The sum of the K + 1

decomposed signals (in our example K = 3), as shown in (4.2), is equal to the approximation,
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Figure 4.2: These plots show the final decomposition of the APTDA algorithm on phase A of the

BLUED dataset. The plots, from top to bottom, are as follows:

P 0: Background power.

P 1: Devices consuming between 0 and 105 Watts.

P 2: Devices consuming between 105 and 720 Watts.

P 3: Devices consuming greater than 720 Watts.

P , made of the original power signal. We will refer to P 0 as the background component and

P 1, . . . , PK as active components.

P =
K∑
k=0

P k (4.2)

Returning to the initial energy disaggregation formulation from (4.1), table 4.2 shows how the

energy consumption by difference appliance classes varies throughout the week of the BLUED

dataset.

The output can also be used to view the breakdown of energy consumed by different compo-
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k Ek (kWh)

0 6.87

1 0.98

2 7.57

3 0.44

Table 4.2: The energy estimate of each component for the entire week of phase A of the BLUED

dataset.
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Figure 4.3: Energy in kWh consumed by each component per day in phase A of the BLUED

dataset.
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Figure 4.4: Block diagram for the APTDA algorithm with the main quantities labeled. In the first

stage of the algorithm, the piecewise-constant approximation, P , is created from the original power

trace, P , and a set of event locations e (Figure 4.5 shows a sample of the approximation). The

final outputs of the algorithm are the K + 1 components, P k, that are distinguished according to

power consumption ranges.

nents during selected time intervals. Figure 4.3 shows how much energy in kWh each component

uses per day of phase A of the BLUED dataset. We see that the background component, E0, is

very constant throughout the week. Component E2, those devices consuming between 105 and

720 Watts, consumes much more energy than either components 1 or 3, and this is because the

refrigerator’s compressor cycle falls in this range. Note that the refrigerator is not included in the

background component because it is not on all of the time but rather cycles on and off. We can see

in this dataset, for phase A, at least, that the refrigerator and background consumption account

for most of the energy as is also clear from the weekly totals in table 4.2.

4.2 APTDA Overview

The APTDA algorithm takes as input the power trace of a building and a set of event locations and

outputs a decomposition of the power signal into components based on how much power devices in

different ranges use, as discussed in section 4.1 above. In this section, we provide a brief sketch of

the algorithm before explaining each block of the diagram in more detail in the subsequent sections.

In the first stage of the APTDA algorithm, “Power Trace Approximation”, the original power

signal, P , and a set of event locations, e, are used to compute a piecewise-constant approximation

of the power signal, P . Figure 4.5 shows an example input and output for this stage. The top plot
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Figure 4.5: Top: The original power signal P with event locations e. Bottom: The piecewise-

constant approximation P that forms the basis for the APTDA algorithm.

shows the original power signal for a small portion of phase A of the BLUED dataset with the ground

truth events marked with circles. The bottom plot shows the piecewise constant approximation,

P , that is computed from the original power signal and event locations. The event locations serve

as starting points to create the endpoints of the piecewise-constant segments in P . Furthermore, P

is computed such that it preserves the energy content of the original power signal, P . Section 4.3

below details how P is computed from P and e. This stage can be viewed as a pre-processing step

in the algorithm as P is the signal that serves as the basis for most of the rest of the algorithm.

An important concept that figures prominently in the APTDA algorithm is the separation of

background and active power consumption by devices. The next two stages in the algorithm,

“Background Power Estimation” and “Active, Background Segment Labeling,” deal with this and

are explained in sections 4.4 and 4.5, respectively. The background power level in a building is

the amount of power consumed by any devices that are always left on or in a standby mode. This

includes any devices with digital displays, most electronics, any lights always left on, etc. By “active

power,” we mean the power consumed by appliances whose turning on and off is observable in the

power signal.

The background power level is easily identified visually as the lowest level to which the power

signal always returns. It can be seen in figure 4.6 that for phase A of the BLUED dataset the
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Figure 4.6: Zoomed in view of phase A of the BLUED dataset shows that the background power

level is approximately 40 Watts.

background power level is approximately 40 Watts.

The background power consumption is a useful quantity for the consumer to know, but it is also

important in the APTDA algorithm for distinguishing which portions of the power signal represent

consumption only due to background devices from portions that represent power consumption due

to both background and active devices. This can more clearly be seen in figure 4.7. This figure

shows a zoomed-in, color-coded version of P from phase A of the BLUED dataset. The solid

blue line marks portions of the power consumption where active power consumption occurs and

the green dashed line marks portions where there is only power consumption due to background

devices.

Recalling (4.2) above, we can see that during background segments the active components,

P 1, . . . , PK , must be identically zero since there is no active power consumption. This means that

in order to produce the desired decomposition, each active segment can be treated separately since

the active components must begin from zero and return to zero during each segment. We can see

this clearly in figure 4.8, the decomposition for the same portion of the signal shown in figure 4.7.

Notice that the active components are always zero during the background segments.

Up until this point we have not explained how the power consumption ranges used for the

active components, P 1, . . . , PK , are obtained. This takes place in the “Power Consumption Bin

Clustering” stage in the block diagram, and it is described in section 4.6. This clustering is done in

an unsupervised manner from the piecewise constant approximation to the power signal, P . Each
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Figure 4.7: Zoomed-in portion of P from phase A of the BLUED dataset shows active segments

as solid blue lines and background segments as a dashed green line. Note that there is no active

consumption during the background segments and that the active segments may contain one or

more events.
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Figure 4.8: The decomposition of the segment of P shown in figure 4.7. Note that the active

components are zero during all of the background segments. We also recall from above that P 1,

P 2, and P 3, are estimates of the power consumed by appliances operating in each of the 3 ranges

from table 4.1: 0-105 Watts, 105-720 Watts, and greater than 720 Watts.
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Figure 4.9: Histogram of the positive changes in P from phase A of the BLUED dataset. The red

triangles denote the cluster centroids, µk, found by applying the k-means algorithm to all of the

∆P > 0 for k = 3.

change in P denotes activity corresponding to an electrical device in the building. If the change

is positive, then we assume a device has turned on (or if it was already on, entered a state in

which it consumes more power: a fan being turned from low to high, for example). If the change

is negative, then a device has turned off (or decreased its power consumption). In general, we will

refer to positive and negative changes as devices turning on and off, respectively. Figure 4.9 shows

the histogram of all of the positive changes in P on phase A of the BLUED dataset.

We denote the set of all these changes as ∆P and note again that here we are only considering

∆P > 0. A k-means clustering is performed on these ∆P with k = 3 because we are using

3 active components in this demonstration. The centroids of these clusters, µk, determine the

power consumption ranges for the active components P 1, P 2, and P 3. We also refer to the power

consumption ranges as “power consumption bins” or just “power bins” for short. Specifically, the

limits of the power ranges for the active components are determined by the midpoints between the

µk. Thus, with µ1, µ2, and µ3 equal to 69.2 Watts, 140.8 Watts, and 1300.8 Watts, respectively,

the ranges for P 1, P 2, and P 3 are 0-105 Watts, 105-720 Watts, and greater than 720 Watts.

The next stage in the algorithm, “Component Decomposition,” deals with the initial creation

of the active components and is described in section 4.7. The absolute value of each change in P

determines which active component, P 1, . . . , PK , it belongs to. Recall that each active component

tracks the power consumption of devices in different power consumption ranges. All of the changes

that fall within the same range are used to begin forming each of the active components. It can
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be seen in figure 4.8 that the smallest power changes have been classified into P 1 and the larger

changes into P 2 while P 3, during the segment shown, is empty.

The final stage of the algorithm, “Component Balancing,” is concerned with correcting the

decomposition performed in the previous stage so that each active component satisfies certain

criteria that must be imposed in order to ensure that a reasonable decomposition is obtained.

Examples of these criteria include, among others, non-negativity in each active component and net

positive energy consumption of each component during each active segment. This is treated in

depth in section 4.8.

We have attempted to provide a brief overview of the entire APTDA algorithm, so that the

reader may understand how the different parts fit together while entering into the details of each

stage in the following sections. To recap, the APTDA algorithm begins by forming a piecewise

constant estimate, P , of the original power trace, P , and a given set of events, e. After estimating

the background power consumption of the building, P is split into segments of either active or

background power consumption. Next, the distribution of all the changes in P is analyzed in order

to establish relevant power consumption ranges. Finally, these ranges are used to process each of

the active segments and decompose P into relevant components useful for tracking the total energy

consumed by devices operating in each power range.

4.3 Power Trace Approximation

In this section, we describe the first stage of the APTDA algorithm, the construction of a piecewise-

constant approximation of the observed power signal. This stage can be seen as a pre-processing step

used to transform the original power signal, P , into a form that captures the relevant information

we are interested in and is easier to work with.

As seen in the block diagram of figure 4.4, this stage of the algorithm takes as input a power

signal, P , and set of events, e, and outputs P , a piecewise constant approximation of P . Before

describing how P is constructed, we begin with some definitions and notational clarifications:

We assume a fixed-size power signal throughout the explanation of the algorithm. The notation

P used in the overview above is shorthand for the discrete power signal P [n], n ∈ [1, . . . , N ] with
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sampling rate fs and sampling period Ts. Likewise, P is shorthand for P [n], n ∈ [1, . . . , N ]. When

useful, we will denote the corresponding timestamps of the power signal as t[n], n ∈ [1, . . . , N ].

The number of events in e is M . Due to the fact that a fixed-length signal is being used in this

analysis, we define the first and last events as sample numbers 1 and N , respectively. Thus, the M

events may be gathered into a vector according to:

e = [1, e2, . . . , eM−1, N ]T (4.3)

Before proceeding to the construction of P , we recall that P must be an energy-preserving approx-

imation of P . That is:

EP = Ts ·
N−1∑
n=1

P [n] = Ts ·
N−1∑
n=1

P [n] = EP (4.4)

Note that we define the sums in (4.4) to be from 1 to N − 1 and not to N . This is because the

end point, the N th sample, has no duration and thus has no contribution to the overall energy

consumption.

We can now define how P is constructed. The M events in e split the power signal, P , into

M − 1 intervals of various lengths determined by the spacing between consecutive events. The

value of P during the mth interval, given in (4.5), is πm, where πm is the mean power consumption

during said interval, as shown in (4.6):

P [n] = πm, em ≤ n ≤ em+1 − 1, m ∈ [1, . . . ,M − 1] (4.5)

πm =
1

(em+1 − em)
·
em+1−1∑
n=em

P [n], m ∈ [1, . . . ,M − 1] (4.6)

Note that, in (4.5), the mth interval is defined as beginning with the index of event em and ending

with the sample before the index of the next event, em+1. Thus, the segments are disjoint, and the

length of the mth interval is em+1− em samples. This is precisely the divisor in the computation of

the mean πm in (4.6). P constructed in this way preserves the energy of the original power signal,
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P , since:

EP = Ts ·
N−1∑
n=1

P [n]

= Ts ·
M−1∑
m=1

(em+1 − em) · πm

= Ts ·
M−1∑
m=1

(em+1 − em) · 1

(em+1 − em)
·
em+1−1∑
n=em

P [n] (4.7)

= Ts

N−1∑
n=1

P [n]

= EP

The second and fourth equalities, with the changes in summation variable, arise because the M −1

segments are disjoint.

It will be useful later to gather all of the πm into a single vector, Π. Thus we define:

Π = [π1, π2, . . . , πM−1] (4.8)

All of the changes in P occur only at the locations of the edges in e and can be obtained by looking

at the discrete difference of Π. That is:

∆P = [δ1, δ2, . . . , δM−2] (4.9)

δm = πm+1 − πm, m = 1, . . . ,M − 2 (4.10)

∆P is used for clustering in section 4.6 to obtain reasonable power consumption ranges for devices

present in the building.

4.4 Background Power Estimation

An important category of power consumption homes is the amount of energy consumed by devices

that are always left on or consume power continuously though in a standby mode. While the NILM

algorithm is unable to characterize these background loads because they are never observed turning

on or off, it can still be beneficial to the consumer to know what their background load is.
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Figure 4.10: Empirical cumulative distribution function (CDF) for phase A of the BLUED dataset

with a zoom in in the bottom figure.

In the formulation of the disaggregation problem in (4.2), copied here:

P =

K−1∑
k=0

P k (4.11)

P 0 is the background component that represents the estimate of the background power consumption

of the building.

By visual inspection, it is easy to describe what the background power level of a home is. In

figure 4.6, we saw the zoomed-in version of the aggregate power of phase A in the BLUED dataset

and noted that the background power consumption was about 40 Watts and remained the same

throughout the week. Figure 4.10 shows the empirical cumulative distribution function (CDF) of

the power values in phase A of the BLUED dataset. Here, we can see more clearly that on phase A

just over 60% of the measured power values are less than 42 Watts.

In [31] Pattem describes what he calls the “always-on component” and says about it: “It is

observed that the aggregate power consumption almost always stays above a certain threshold,
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specific to the corresponding household/mains. In some cases, this threshold is close to the mode

statistic for the aggregate time series waveform.” He uses the median to determine the value of the

“always-on component.” For phase A of the BLUED dataset the median, i.e., the 50th percentile

in figure 4.10, works well for estimating the background power level.

Note that event locations are not used to determine the background power consumption level,

it is only a function of the aggregate data over some period of time. We combine the segmentation

achieved above with background power consumption estimation in the next section as we label each

segment as either ‘active’ or ‘background’.

4.5 Active and Background Segment Labeling

In this section, we use the background power consumption level to distinguish between active and

background segments in the power signal. The main idea behind this is to segment the approxi-

mated power trace, P , into parts containing active appliance activity and parts that represent only

background consumption.

We define a background segment as a segment where the only contribution in the aggregate

power signal is that of the home’s background power consumption level. We can think of this as

the house being at rest: everything that is consuming power is presumably in a stand-by mode or

is a device that is always left on (e.g., computer, light, etc.).

If a background segment is characterized by a lack of activity, then we define an active segment

to be segments that contain a level of power consumption higher than the background power

consumption level.

As mentioned above in section 4.1, this segmentation is important for the relaxed disaggregation

problem because it allows each segment to be handled independently. For the background segments

this means that the only contribution to the final disaggregation lies in the background component,

P 0, and the active components P 1, . . . , PK are all equal to 0. During the active segments, P 0

remains constant at the background power level, but the active components now reflect the device

activity present. At the end of the active segment, that is when the aggregate power has returned

to the background power level, all of the active components must return to 0 power consumption.
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To label each segment we introduce a binary background indication vector, b, of size M − 1:

b = [b1, b2, . . . , bM−1], bm ∈ {0, 1}, m = 1, ...,M − 1 (4.12)

When bm = 1, this means that the segment m, that is the portion of the signal lying between

events em and em+1, is a background segment. bm = 0 indicates that the mth segment is an active

segment, that is, there is likely some device currently on during the segment.

A simple test is used on each segment to determine whether it is an active or background

segment:

bm =


1 if µm − sm < 1.1 · Pback and µm < 1.5 · Pback

0 else

(4.13)

where Pback is the background power level found in section 4.4 and µm and s2m, given below, are

the sample mean and variance, respectively, of the mth segment of the original power signal. We

note that µm is exactly the value of πm from (4.6).

µm = πm =
1

em+1 − em
·
em+1−1∑
n=em

Pn, m = 1, . . . ,M − 1 (4.14)

s2m =
1

em+1 − em − 1
·
em+1−1∑
n=em

(Pn − µm)2 , m = 1, . . . ,M − 1 (4.15)

The parameters 1.1 and 1.5 from the background test in (4.13) were hand-tuned for phase A of the

BLUED dataset. Further work and more data is needed to create a test that is suitable for any

given dataset.

We will refer to the set of background segments as B and the set of active segments as A. That

is:

B = {m : bm = 1} (4.16)

A = {m : bm = 0} (4.17)

Figure 4.11 shows a color-coded version of P to illustrate the portions of the signal that represent

background and active segments.
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Figure 4.11: Zoomed-in portion of P from phase A of the BLUED dataset shows active segments

as solid blue lines and background segments as a dashed green line. Note that there is no active

consumption during the background segments and that the active segments may contain one or

more events.

4.6 Power Consumption Bin Clustering

In this section we describe how changes observed in the piecewise constant power signal P are used

as the basis for establishing categories of devices based on similar power consumption properties.

Since we are working in an unsupervised framework, we are unable to identify the individual devices,

but by using clustering techniques on the changes observed we can group together changes of similar

magnitudes. These groups represent different levels of power consumption and instead of trying

to determine how much each energy individual device consumes, we estimate how much power is

consumed by devices operating in each power consumption bin.

This system could be made even more useful with a small amount of user interaction to help

determine which devices belong to each class. For example, if the user were able to view the

real-time aggregate power consumption of the home and see how much it changed upon turning

a particular device on or off, they could interact with the system to specify this amount. Upon

viewing the disaggregated energy consumption of the different bins, then, possible devices falling

in each bin as specified by the user’s interaction could be presented as a means of helping the user

to determine more precisely where power consumption can be reduced. With this scenario in mind,

we proceed with the discussion of how these bins are obtained. The following section will discuss
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Figure 4.12: Histogram of ∆P for all of the on events in phase A of the BLUED dataset.
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Figure 4.13: Zoom on the histogram from the above figure

details of how, once bins are established, we track the energy consumed by the devices in each class.

Section 4.3 detailed how P is computed from the original power signal, P , and the set of M

edges, e. We recall that P is a piecewise-constant function and the value it takes during the

mth segment is denoted as πm as given in (4.6). In this section, we are interested in the changes in

P , ∆P , defined in (4.9).

Figures 4.12 and 4.13 show the histogram of the power changes where appliances turn on (i.e.

δPm is positive) that exist in Pm. In the zoomed-in histogram in figure 4.13, the spike at around

130 Watts primarily represents activity from the refrigerator compressor.

We perform clustering on the ∆P using a modified k-means algorithm to distinguish groups of

appliance activity based on power consumption level. With k = 3, the cluster centroids, µk, occur

at 69.2 Watts, 140.8 Watts, and 1300.8 Watts. This result is shown overlayed on the histogram in

figure 4.14. These centroids establish the power consumption ranges or bins that define the active

components P k from (4.11).
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Figure 4.14: The histogram from figure 4.12 with the cluster centroids found from performing

k-means with k = 3.

4.7 Component Decomposition

At this stage of the algorithm, all that remains is the construction of the background and active

components, P k. Before we begin this process, some more notational definitions are required.

First, recall from section 4.3 that P is a piecewise constant signal with M − 1 segments defined

by the M event locations in e. In the construction of P , the mth segment has a value of πm.

In the formulation of the disaggregation problem, copied here again in (4.18), the P k must sum

to equal P at every point. Therefore, we take the P k to also be piecewise constant with the same

structure as P , that is, all of the M − 1 segments are in the same locations determined by the M

events in e.

P [n] =
K∑
k=0

P k[n] (4.18)

The problem can now be stated as needing to determine the values of the M − 1 segments for each

of the K + 1 components. Consider the matrix Π:

Π =



π0

π1

...

πK


=



π0,1 π0,2 . . . π0,M−1

π1,1 π1,2 . . . π1,M−1

...
...

...
...

πK,1 πK,2 . . . πK,M−1


(4.19)

Here, πk,m is the value that the kth component takes during the mth segment. We refer to the

entries of Π simply as component values and Π itself as the component matrix. Furthermore, (4.18)
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Figure 4.15: An example of an active interval with three active segments surrounded on each side

by background segments.

requires that each of the columns must sum to πm, the value that P takes during the mth segment:

K∑
k=0

πk,m = πm (4.20)

Recall also the changes in the M −2 interior edges of P , the δm given in (4.9) and (4.10), that were

used in 4.6 for determining the cluster centroids µk.

We need to introduce one more concept before describing the algorithm for determining the

(K + 1)× (M − 1) entries of the Π matrix. Up until this point we have been considering each of

the M − 1 segments of P in isolation, but we now define an active interval as a sequence of one

or more consecutive active segments immediately preceded and followed by a background segment.

Figure 4.15 shows an example of what we mean by this. In the figure, a portion of P is shown where

there is first a background segment with a green dashed line followed by three consecutive active

segments and then another background segment. The concatenation of the three active segments

is an active interval because it is preceded and followed by background segments.

We are now prepared to solve for the component values of Π in (4.19). For the background

segments, we know that the background component is the only component contributing to the

power consumption, so the active components must always be zero during a background segment.
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Figure 4.16: The active interval from figure 4.15 with each segment annotated. Segment ma is the

first segment in the active interval. The πm show the level of the power for each segment and the

δm denote the change in power from one segment to the next. The number of active segments in

this interval, usually denoted as S, is 3.

This gives us:

πk,m =


πm, k = 0 and m ∈ B

0, k > 0 and m ∈ B
(4.21)

Each background segment, therefore, corresponds to a single column of the component value matrix

Π.

For the active segments the situation is more complicated. They can not be handled in isolation

like the background segments, but they must be handled as part of the active interval to which

they belong. The active interval is important because the active components all begin at 0 and

should return to 0 at the end of it.

Consider an active interval with S segments and let ma be the index of the first segment. The

active interval is then comprised of segments ma,ma + 1, . . . ,ma + S − 1, and the segments just

before and after the interval, ma − 1 and ma + S, respectively, must by definition be background

segments. Figure 4.16 shows the same active interval as figure 4.15 with each segment number

labeled. In this example, S = 3.
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The submatrix of Π that corresponds to this interval is:

Π
ma+2
ma =



π0,ma π0,ma+1 π0,ma+2

π1,ma π1,ma+1 π1,ma+2

π2,ma π2,ma+1 π2,ma+2

π3,ma π3,ma+1 π3,ma+2


(4.22)

To solve for the S background components of this interval, the π0,m, we assume that the background

power of the house does not change during the active interval. Thus it remains constant at the

value, πma−1, of the preceding background segment.

At this point there remain S segments for each of the K active components to solve for. The

main idea in solving for them is to use the power changes δm to determine which active component

a particular change belongs to. We express this using a matrix B, the balancing matrix:

B = {βk,m} =


β1,1 . . . β1,S+1

...
...

...

βK,1 . . . βK,S+1

 (4.23)

Using the notation from figure 4.16, the first column of B corresponds to the edge with power

change δma−1. This is the first turning on of a device that goes from the background power level

and begins the active interval. The balancing matrix for figure 4.16 is as follows:

B =


0 0 0 0

125.9 125.6 −131.9 −121.4

0 0 0 0

 (4.24)

The values in the second row of B are the values of the δma−1, . . . , δma+2 in the figure. They are

placed in the second row because they all occur in the range of active component 2, that is, 105-720

Watts. Note that there is only one non-zero entry per column of B. Accumulating the values across
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each row of B gives the desired entries of the active components in Π:

Π
ma+2
ma =



41.6 41.6 41.6

0 0 0

125.9 251.5 119.6

0 0 0


(4.25)

This process is repeated for each active interval in order to solve for all of the K + 1 ×M − 1

segments in the entire signal.

4.8 Component Balancing

For most active intervals, the algorithm in the previous section is sufficient for decomposing P into

components that behave well. By behaving well, we mean that each of the active components, dur-

ing an active interval, each begin and end at zero and do not have negative power consumption. For

most active intervals, the process of grouping power changes into their appropriate active compo-

nents suffices to produce such a decomposition. Situations arise, however, where the decomposition

does not display the desired characteristics.

In this section we begin with an example showing an active segment where the algorithm from

the previous section breaks down, how it may be recognized, and how it may be fixed. We then

present a greedy algorithm aimed at repairing decompositions that contain a component with a net

negative energy consumption during an active interval. We conclude by discussing the necessity

of using a greedy algorithm and some of the factors that cause the undesirable decompositions to

arise.

Figure 4.17 shows an example of an active interval with S = 2 active segments. In this interval

the component decomposition algorithm described in section 4.7 creates a decomposition where P 1

has an overall negative energy contribution during the interval. This can be seen by analyzing the
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Figure 4.17: Example of an active interval that has net negative energy consumption in the first

active component.

balancing matrix, B, for this interval:

B =


0 −65.4 −63.7

129.0 0 0

0 0 0

 (4.26)

The first change, δma−1, is 129.0 Watts. This puts it in the 2nd active component, P 2. The next two

changes, δma and δma+1, both fall into P 1 at -65.4 and -63.7 Watts, respectively. The component

matrix, Π, for this interval and the surrounding background segments, then, is:

Π =



40.1 40.1 40.1 40.0

0 0 −65.4 0

0 129.0 129.0 0

0 0 0 0


(4.27)

Figure 4.18 shows the P k represented by this Π. We immediately see that there is a problem in P 1.

It is 0 Watts everywhere except for about 45 seconds between 03:00 and 03:01. This means that the

overall energy contribution of P 1 during this active interval is reported as negative, which would

mean that something is generating energy. In P 2 we see that it stays on at the level of 129.0 Watts

until the end of the active interval. When the two components are added together, of course, we
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Figure 4.18: The decomposition obtained for the active interval in figure 4.17. Note that P 1 is

negative starting just before 3 AM.

see that there is no net negative energy during this interval, but for our method to be meaningful

each of the components should remain positive because we are only dealing with passive devices,

i.e., devices that consume and do not generate power.

In order to better understand what is happening during this interval, it is helpful to know

what the devices causing this behavior are. At the beginning of the active interval, the device

that turns on just before 02:59 with the 129 Watt consumption is actually two devices turning on

simultaneously: the light and fan in a bathroom. They both stay on for about 1 minute, then the

fan is turned off, and about 45 seconds later the light is also turned off. If both had been turned

off simultaneously then the off power change would also have been 129 Watts and only P 2 would

have displayed activity. In this case, there would be no problem with reporting negative power and

energy values.

However, because each device operates in the range of P1 (between 0 and 105 Watts) when

they turn off separately they are placed appropriately into P1 and not P 2. The solution that would

make the most sense, given the knowledge of what the devices actually are, would be to move the

129 Watt transition into the first active component, P 1, because it is actually due to two devices
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that both operate in that range turning on simultaneously. Let us call this solution B?:

B? =


129.0 −65.4 −63.7

0 0 0

0 0 0

 (4.28)

This gives a component matrix Π
?

of

Π
?

=



40.1 40.1 40.1 40.0

0 129.0 63.6 0

0 0 0 0

0 0 0 0


(4.29)

Of course, this information is not actually available to solve the problem, so we must resort to

another way to rectify the negative energy situation. The only option to correct this is to reas-

sign power changes in the balancing matrix B in such a way that the active components behave

appropriately. We call this component balancing and use a greedy algorithm to achieve it.

There are two factors that must be weighed against each other in considering how to balance

the values in B to achieve the desired decomposition. The first consideration, as we have seen in

the example above, is that each component should have a net positive energy consumption when

taken over the entire active interval. The second consideration, which we have mentioned but not

considered in the implementation of the algorithm thus far, is that the power of each component

should return to 0 at the end of each active interval. Each active interval, however, is followed

by a background segment which forces each of the active components to have 0 power regardless

of what their value at the end of the last active segment was. Thus, we can see in the example

above in figure 4.18 that, at the end of the active segment, P 1 actually has to increase in power

to return to 0, while B in (4.26) indicates that it should have a negative power change at the end

of the interval. To remedy this, we introduce the concept of the natural final power value of each

component.

For each component, the natural final power value is the sum of all the changes occurring in

that component during an active interval. The hard reset of each component to 0 during the
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background segments means that this power level is not reflected in the final decomposition, but

it is useful to us for balancing the components in a reasonable way. We denote this final power

value of component k during an active interval as ωk. We choose ω because it is the last letter of

the Greek alphabet and hence makes it easier to remember that this is the last power value of the

active interval. We gather the ωk into a vector, ω. Using the notation from (4.23), then:

ω = [ω1, . . . , ωK ]T (4.30)

ωk =
S+1∑
m=1

βk,m (4.31)

Because each active component should return to 0, each ωk should be small. This in turn means

that ||ω||2 should also be small.

For the above example, the B from (4.26) gives:

ω =


−129.1

129

0

 , with ||ω||2 = 182.6 (4.32)

whereas B? gives:

ω? =


−.1

0

0

 , with ||ω?||2 = 0.1 (4.33)

The low norm of ω? is a clear indication that B? gives a decomposition that is superior to B because

each of the active components returns to 0 at the end of the active interval. The reason that it does

not return exactly to 0 is because there is a slight change in the background power level between

the background segments before and after the active interval. This can be seen in (4.29) where the

background power level is 40.1 Watts during the first background segment but only 40 Watts after

the active interval. It is normal for the background power level to have small fluctuations and so

the active components will never naturally return to exactly 0. The hard reset is used to enforce

this and eliminate the jitter that would result otherwise.

At this point, we have described what the desired solution looks like, we now give the Greedy

Component Balancing Algorithm (GCBA) that we use in each active interval that contains a
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component with a negative energy balance to achieve this. We use the notation B̂ and Π̂ to denote

the solution found by the GCBA.

1. Construct B according to the procedure in section 4.7. Initialize B̂ = B.

2. Compute ω̂ = ω according to (4.31).

3. Let B = GreedySwap
(
B̂
)

. This is a greedy swap: For each component with net negative

energy consumption, find the βk,m in B most likely to have been misplaced, i.e., closest to

the power range boundary, and move it to the appropriate component.

4. Compute ω from B.

5. If ||ω||2 > ||ω̂||2 stop and keep B̂ as the solution.

6. If ||ω||2 ≤ ||ω̂||2 let ω̂ = ωt+1 and repeat steps 2-5.

At this point, the APTDA algorithm is complete and the energy of each component, Ek, can

be obtained by integrating the corresponding P k.

4.9 Conclusion

In this chapter, we began by taking a fresh look at the NILM disaggregation problem and recognized

that the additive disaggregation scheme could be viewed in ways other than a strict device-by-

device disaggregation. We presented some ideas for different disaggregation schemes and then

formulated the Power Consumption Clustered NILM (PCC-NILM) problem because of its potential

for unsupervised, data-driven solutions.

We described how the PCC-NILM decomposition could be beneficial to consumers in terms

of comparing energy consumption for different power ranges over time and for determining what

devices potentially belonged to each range. One of the most important benefits of such a relaxation

is that the need for training is eliminated because the power ranges can be learned from the power

consumption of the building in a completely unsupervised fashion. In section 4.2, we gave an

overview of our solution, the Approximate Power Trace Decomposition Algorithm (APTDA), for
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generating such a decomposition according to power consumption ranges. We then went on, in

sections 4.3 through 4.8, to describe the algorithm in detail. In chapter 5, we go on to analyze the

output of experiments using the APTDA algorithm on phase A of the BLUED dataset.



Chapter 5

Experiments and Results

In chapter 4, we described the Approximate Power Trace Decomposition Algorithm (APTDA) as a

solution to the Power Consumption Clustered NILM (PCC-NILM) problem. The chapter described

how the algorithm takes only two inputs, the power signal P [n] and a set of M events, e, and esti-

mates the energy consumed by devices operating in different ranges of power consumption. While

describing the algorithm, we assumed the presence of the events e without concerning ourselves

with where they came from.

In this chapter, however, we turn our focus to the performance of the APTDA algorithm under

different sets of event locations. We present experiments applying the APTDA algorithm to phase A

of the BLUED dataset using the 1,456 sets of event locations obtained by doing a parameter sweep

of the log-likelihood ratio (LLR) event detector. The parameter sweep was described in detail in

chapter 3. The parameter sweep ultimately becomes the vehicle for crowdsourcing the output of

the APTDA algorithm and providing completely unsupervised energy estimates for the devices in

each power consumption class.

We begin the chapter in section 5.1 with an in-depth walkthrough of the APTDA algorithm

focusing on the events obtained by one combination of event detector parameters. While the

algorithm was described in detail in chapter 4, this walkthrough is intended to show a concrete

example of what the output of each stage is so that the reader is better prepared to understand

the results that follow when we compare the performance of the algorithm across a broad sweep of

82
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the event detector parameters.

Following the walkthrough, we present, in section 5.2, results encompassing the 1,456 log-

likelihood ratio event detectors obtained by varying the voting window length, pre- and post-window

lengths, and voting threshold. In this section, we will compare the results of the APTDA algorithm

when run on the events generated by each of these detectors. We also analyze the parameter space

of the event detectors to see exactly how different parameters of the LLR detectors affect the output

of the APTDA algorithm and show that the parameter of number of votes has the most significant

impact. Most previous work on event detection in NILM work has focused on traditional detection

metrics such as false positives and false alarms. Here, we are not concerned with these metrics

but rather with how the detectors correspond to giving consistent power ranges for the active

components defined by the APTDA algorithm and consistent estimates of energy consumption for

these power ranges.

Finally, in section 5.3, we present a method for crowdsourcing the output of the APTDA

algorithm across all of the event detectors from the parameter sweep. In particular, we use crowd-

sourcing to determine the power ranges of the power consumption classes in PCC-NILM and then

to obtain the energy consumption for those classes.

5.1 APTDA Walkthrough

We begin by walking step-by-step through the APTDA algorithm to show exactly how it is carried

out using a particular event detector, and then we will present results comparing all of the event

detectors. The detector we will use for our example has the following parameters: the voting

window, wvote = 7, the pre and post windows, wpre = wpost = 3, and the voting threshold vthr = 7.

The number of events returned by this detector is M = 771.

The first step in the APTDA algorithm is to compute the approximate power trace P [n] from

the original signal P [n] and e. This is described in detail in section 4.3. P [n] is a piecewise-

constant, energy-preserving approximation of P [n] with M−1 disjoint segments determined by the

M event locations. We refer to the power level of the mth segment of P as πm. Figure 5.1 shows

a representative example of what P and P look like. The next step is to compute the background
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Figure 5.1: Top: The original power signal P with event locations e. Bottom: The piecewise-

constant approximation P .

power level, Pback, as in section 4.4. The background power level will be used to determine whether

each of the M − 1 segments of P is a background or active segment.

Next, the changes in the power levels of P [n], the δm from (4.10), are used to determine

representative power ranges in which the observed power signal has devices operating. This is done

by clustering the δm using a k-means algorithm. In particular, we run a Monte-Carlo simulation

performing k-means 250 times each with random starting cluster centroids and choosing the mode

of the resulting cluster centroids to avoid selecting anomalous power ranges. Figure 5.2 shows the

result of a Monte-Carlo trial for the event detector we are considering. Note that out of the 250

trials, the same value for µ3 is found each time and µ1 and µ2 only have 10 trials each where they

are not constant. This illustrates why the mode of these trials is useful to avoid outliers.

The cluster centroids obtained in this example are 56.2 Watts, 138.6 Watts, and 1297.4 Watts,

giving power ranges of 0–97.4 Watts, 97.4–718.0 Watts, and greater than 718 Watts. Table 5.1

shows a comparison of these centroids with those found using the ground truth events. Notice that

each of them is slightly less but overall very close to the ground truth centroids. Table 5.2 compares

the power ranges resulting from the ground truth events and the detected events of this example.

Figure 5.3 shows zoomed-in portions of histograms of the ∆P obtained using both the ground

truth events and the detected events as well as their difference. The histograms are very similar,
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Figure 5.2: Example

Centroid Ground Truth Event Detection Difference

µ1 69.2 56.2 13.0

µ2 140.8 138.6 2.2

µ3 1300.8 1297.4 3.4

Table 5.1: Comparison of the centroids found by using the ground truth events and the example

event detector presented here.

k Ground Truth Event Detection

1 0-105.0 W 0-97.4 W

2 105.0-720.8 W 97.4 - 718.0 W

3 720.8+ W 718.0+ W

Table 5.2: Comparison of the power ranges found by using the ground truth events and the example

event detector presented here.



CHAPTER 5. EXPERIMENTS AND RESULTS 86

0 50 100 150 200 250

0

50

100

150

G
T

C
o
u
n
t

0 50 100 150 200 250

0

50

100

150

E
D

C
o
u
n
t

0 50 100 150 200 250

0

50

100

150

G
T
-E

D

∆P

Figure 5.3: Comparison of zoomed-in portions of histograms of all ‘on’ events. Top shows the

histogram obtained by using the ground truth events. Middle shows the histogram obtained by

using the example event detector. Bottom shows the difference of the two histograms. The bins

are 10 Watts wide.

which is expected since the µk found by the k-means algorithm differ only by a small amount (see

table 5.1).

Once the power ranges are determined, the APTDA algorithm can complete the final stages of

Component Decomposition and Component Balancing in which the active and background compo-

nents P k[n] are created. Recall that each P k represents the power consumption of devices falling

within the kth power consumption range. The P k are then used to calculate the energy consumed

by devices in each range, Ek, over a desired period of time. Table 5.3 shows the estimate given

by the APTDA algorithm of the amount of energy consumed by each component on phase A of

the BLUED dataset when the ground truth events are used as well as the event detector of this

example.

At this point, the APTDA algorithm has been completed, that is, the orignal power signal P [n]

has been approximated by P [n] in a piece-wise constant fashion with the events in e determining

the segment sizes and locations. The changes in P , ∆P , determined the power ranges of the
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Ek Ground Truth Event Detection Error % Error

E0 6.87 kWh 6.88 kWh 0.01 kWh 0.12%

E1 0.89 kWh 0.73 kWh -0.16 kWh -18.00%

E2 7.66 kWh 7.82 kWh 0.16 kWh 2.12%

E3 0.44 kWh 0.43 kWh -.01 kWh -1.33%

Table 5.3: The energy in kilowatt-hours estimated by the APTDA algorithm for both the ground

truth events and the example event detector.

active components P k. And the construction of the P k allowed us to compute the energy of each

component. In this example the energy was reported over 1 week of data, but it could be broken

down into any desirable time period.

Notice that the energy reported in table 5.3 for each of the components is almost identical

between the ground truth events and the detected events. This is expected in this case because the

power consumption ranges returned in both cases were very similar (see table 5.2). It is important

to remember in these results that the energy reported depends on the particular power range of

the component in question and the power range in turn depends depend on the events, e, used to

compute P . This means in general, then, for a fixed K, the components obtained by different event

detectors are not directly comparable because the underlying power ranges for the components are

not guaranteed to be identical.

5.2 Robustness of APTDA to Event Locations

In the previous section, we gave a detailed account of exactly how the APTDA algorithm starts

from the original power signal and a set of event locations, computes appropriate power ranges,

and estimates energy consumption for all of the devices occurring in those ranges. In this section,

we present the results of the APTDA algorithm when run on different sets of event locations

obtained by doing a parameter sweep of the log likelihood ratio (LLR) event detector (presented

in chapter 3). In total, 1,456 parameter combinations were run by varying the voting window,
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Figure 5.4: Cluster centroids found using k-means with k = 3 for each event detector ordered from

least to most sensitive. The dashed lines show the location of the µk when the ground truth events

are used.

pre- and post-window, and voting threshold parameters. We first describe the setup for the tests

performed and then present results showing the robustness of the APTDA algorithm to different

event detectors.

The next series of figures focuses on comparing the performance of the APTDA algorithm

among the 1,456 event detector parameter combinations that we tested. The results are ordered

on the x-axis by detector sensitivity according to the number of events returned by each detector

(see figure 3.4 for reference).

The first two figures, 5.4 and 5.5, show how the centroid clusters, and thus the power ranges

for each of the active components, are affected by each of the event detectors. Figure 5.4 shows, in

the solid lines, the location of the cluster centroids, µk, for each of the event detectors tested. The

dashed lines show the corresponding µk for the ground truth event locations.

The power level of the cutoff between two adjacent components P k and P k+1 is defined as ηk:

ηk =
µk+1 − µk

2
, k = 1, . . . ,K − 1 (5.1)

This cutoff value, ηk is simply the midpoint between µk and µk+1. The region between the cutoff

values determines the power range of each component P k. These ranges are shown explicitly in

figure 5.5. The dashed lines overlayed on this figure, η∗k, show the cutoff power levels for when the

ground truth events are used.
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Figure 5.5: Similar in shape to figure 5.4, this figure shows the power consumption ranges for each

of the active components. The cutoff between ranges is simply the midpoint between the adjacent

µk from figure 5.4. The dashed lines indicate the cutoff levels when the ground truth events were

used and are simply color coded for better visibility.

The next figure, figure 5.6, shows the estimated energy for each of the components across the

different event detectors. It is important to understand in this figure that, because the power

ranges found by each of the different detectors are not the same, as seen in figure 5.5, we do not

expect the energy consumed by each component to be the same either. Note, however, that there

is stability in the estimated energy consumed by each component for those detectors that returned

power ranges similar to those of the ground truth events.

It is also notable that the background energy consumption is almost unchanged across all of

the different detectors. This is expected and occurs for two reasons. First, the estimation of the

background power level, explained in section 4.4, is independent of the events used in the algorithm.

It is simply a function of the original power signal. The second reason this happens is because of

how the active and background segments are labeled as explained in section 4.5. During an active

segment, the background power level is assumed to remain constant at the level of the immediately

preceding background segment. Changes in event locations, then, only change the positions of the

active and background segments, but have almost no bearing on the estimate of energy consumed
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Figure 5.6: Estimate of energy consumed by each component across the different event detector

parameter combinations tested. The large variation in the values, particularly among the more

sensitive detectors, occurs because the power ranges obtained by each detector are not the same.

The stability on the left portion of the plot is due to the stability of the power ranges as shown in

figures 5.5.

by the background component.

Immediately noticeable in the previous three figures (5.4, 5.5, and 5.6) is that there is a large

region of stable behavior. To quantize this let us focus on how the power ranges shown in figure 5.5

found by detectors compare with those of the ground truth. In particular, we will focus on how

closely the cutoff value between components compares with the ground truth cutoff values. To do

this we introduce the notion of power cutoff tolerance.

A detector, d, is considered as falling in the pth percentage of power cutoff tolerance if the all of

the power cutoffs, ηk,d, found using that detector fall within p percent of the ground truth power

cutoffs, η∗k. Let D be the set of all 1,456 detectors and Dp ⊂ D be the set of all detectors with

power cutoffs occuring within p percent of the the ground truth cutoffs:

Dp =
{
d ∈ D :

(
1− p

100

)
· η∗k ≤ ηk,d ≤

(
1 +

p

100

)
· η∗k, p ≥ 0, ∀k ∈ 1, . . . ,K − 1

}
(5.2)

Note that in this definition p is not restricted to be between 0 and 100 because it is possible for

some ηk,d to differ from η∗k by greater than 100%. Table 5.4 shows, for phase A of the BLUED

dataset, what the ground truth η∗k are and the resulting 10% and 25% ranges for those η∗k.

With the idea of power cutoff tolerance now defined, we are interested in how many detectors
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η∗k 10% Range 25% Range

105.0 W 94.5–115.5 W 78.8–131.3 W

720.0 W 648.7–792.9 W 540.6–901 W

Table 5.4: Example of allowable range of cutoff power values, ηk,between active components with

tolerance levels of 10% and 25%.
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Figure 5.7: Out of the 1456 parameter combinations tested for the LLR detector, the number of

detectors that give power ranges within different percentages of tolerance from the cutoff values

found by the ground truth events.

fall within each power cutoff tolerance percentage, i.e., |Dp|, the cardinality of Dp. We are also

interested in what the performance of these detectors is. Figure 5.7 shows the number of detectors

that fall in each Dp for p going from 1% to 50%. In this figure, we see that there is a plateau that

occurs between 12% and 26%. Of the 1,456 event detectors tested, there are 583 that have cutoff

values within 12% of the cutoff values when the ground truth events are used and 600 that have

cutoff values within 26% of the ground truth cutoff values.

So far we have looked at how the detectors perform with respect to the cutoff power levels

found between active components, but the energy consumption per component that they report is

of more interest. We turn now to analyzing the error of energy reported per component for all of

the detectors in each power cutoff percentage from figure 5.7. For example, we would like to know,

for all of the detectors in the pth percentage of power cutoff tolerance, i.e., for all d ∈ Dp, what is
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Figure 5.8: The RMS energy percentage error, εRMS,d, for each of the 1,456 detector parameter

combinations tested.

the average percentage of error in energy estimation across the components Ek. To answer this, we

first need some definitions.

The error in energy estimated for a particular component, k, under a given detector, d, is given

as:

ek,d = Ek,d − E∗k , k = 0, . . . ,K (5.3)

This is the difference between the energy reported using events obtained by detector d for the kth

component, Ek,d, and that of the energy reported for the same component using the ground truth

event locations, E∗k . If we divide this by E∗k we obtain the relative energy error for each component

k under detector d. We will denote the percentage of energy error as εk,d:

εk,d =
ek,d
E∗k
· 100 (5.4)

Next, we define the RMS energy percentage error for a particular detector, d, across its K + 1

components (1 background component plus K active components):

εRMS,d =

(
1

K + 1

K∑
k=0

ε2k,d

) 1
2

(5.5)

Figure 5.8 shows this error computed for each of the 1,456 detectors, i.e., for every d ∈ D. We can

see in this figure the same region of stability that was seen in figures 5.4, 5.5, and 5.6 above.

With all of this in place, we are now ready to analyze the errors in the energy estimated by

detectors that fall within different cutoff tolerance percentages, the Dp. We define εRMS,Dp to be the
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Figure 5.9: For all of the detectors at each power cutoff tolerance percentage the mean (top) and

standard deviation (bottom) of RMS energy percentage error, εRMS,Dp from (5.6).

collection of RMS energy percentage error for all of the detectors that fall within the pth percentage

of cutoff power tolerance, i.e., all d ∈ Dp :

εRMS,Dp = {εRMS,d : d ∈ Dp} (5.6)

Figure 5.9 shows, for power cutoff tolerances from 1%–50%, both the mean and standard deviation

of the RMS energy percentage error εRMS,Dp from (5.6). In this figure, we see that the average error

remains below 6% for all p ≤ 30 and that the standard deviation remains below 5% in this same

range. Both quickly rise after this point, however, reflecting the instability of the performance of

the more sensitive detectors seen in the earlier plots as well.

Table 5.5 shows a sampling of the mean and standard deviation of εRMS,Dp for power cutoff

tolerances, p, ranging from 1% to 50%. We see in this table that there is an appreciable jump in

the average error from p = 30 to p = 35. We also see that D100 contains 1,337 detectors which

means that there are 119 detectors for which at least one of the cutoffs differs from the ground

truth cutoffs by more than 100%.

In order to see the stability of the energy estimates found by the detectors in D30, i.e., those
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p |Dp| εRMS,Dp σ
(
εRMS,Dp

)
5 217 5.11% 3.49%

10 501 5.67% 3.86%

15 589 5.49% 3.71%

20 590 5.51% 3.74%

25 600 5.61% 3.81%

30 640 5.85% 4.35%

35 763 28.30% 63.58%

40 880 45.71% 75.73%

100 1337 115.61% 117.02%

Table 5.5: Sampling of properties of detectors of difference cutoff tolerance percentages, p. |Dp| is

the number of detectors in Dp. εRMS,Dp and σ
(
εRMS,Dp

)
are the mean and standard deviation of

the energy percentage error across all the detectors in each Dp.

with an average error of 5.85% across all components, we have split the plot shown in figure 5.6 into

two plots. In the top plot we see the energy per component estimated by all of the 640 detectors in

D30, that is, all of the detectors with power cutoff values within 30% of the ground truth cutoffs.

The bottom plot shows the energy per component estimated by the remaining 816 detectors, those

that have power cutoff values that differ from the ground truth cutoffs by greater than 30%, i.e.,

the members of Dc30. The average RMS energy error percentage for D30 is 5.85% with a standard

deviation of 4.35% while for Dc30 it is 230.09% and 75.26%, respectively.

Alongside the error analysis, we can also look at the parameters of the event detectors falling in

different Dp. We want to see if there are any patterns in the detection parameters to determine if

there are any parameters of particular significance. Figure 5.11 shows, for all of the detectors in D30,

a breakdown of the occurrences of each parameter. Recall, from the discussion in section 3.2.1,

that there were three parameters of the LLR detector varied in our testing of 1,456 parameter

combinations: voting window length (top), pre/post-window length (middle) , and voting thresh-

old (bottom). The figure shows, for each parameter, what percentage of detectors with a particular
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Figure 5.10: Top: Estimated energy per component with ≤ 30% power cutoff tolerance, i.e., d ∈

D30. Bottom: Estimated energy per component for detectors with > 30% power cutoff tolerance,

i.e., d ∈ Dc30. The dashed lines in both plots show the ground truth energy for each component for

comparison.
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Figure 5.11: Percentage of detectors with the given parameters that occur in Dp. The proper way

to read this plot, using the pre/post-window length as an example, is: “Of all the detectors with a

pre/post-window length of 2, about 75% of them fall within the 30% power cutoff tolerance range.”

parameter setting occurs in D30. For example, there are 196 detectors that have a voting window

length of 15 (see figure 3.5 for a breakdown of the number of detectors with each parameter value).

Of these 196, there are 124 or 63.27% that occur in D30.

We see in figure 5.11, then, that 100% of the detectors that have voting thresholds of 9 or

greater all belong to D30. These represent 392 of the 640 detectors in D30. This also indicates

that the voting threshold is the parameter that has the most impact on whether a detector will

exhibit desirable performance under the APTDA algorithm for phase A of the BLUED dataset.

Specifically, this means that any detector having a voting threshold of 9 or more reports, on average,

energy consumption for which the RMS error across the 4 components differs from the ground truth

by only 5.85%.

5.3 Crowdsourcing Event Detectors

In section 5.2, we showed how the APTDA algorithm on the 1,456 event detectors compared to using

the ground truth event locations in phase A of the BLUED dataset, and we saw regions of stability
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in both solving for the µk and the Ek across all 1,456 event detectors. These results are interesting,

but there are two difficulties that we solve in this section. First, the sets of event detectors with

acceptable performance, the Dp from equation (5.2), explicitly require using the ground truth

events. While interesting for analyzing the problem, it is unacceptable for an algorithm in practice

because the ground truth is generally unknown.

The second difficulty that we address here is the problem of the power consumption cluster

centroids, the µk, differing for each event detector. The µk found by each of the detectors are not

necessarily the same. This means that for a fixed k, the Ek,d, the energy consumption of component

k reported by detector d, are not strictly commensurate because they are not reporting energy on

devices in the same consumption classes. Again, the use of the Dp from equation (5.2), reveals the

nature of this problem in practice. Dp contains by definition detectors that report similar power

ranges, but these ranges are not identical.

In this section, we provide solutions for both of these problems based on crowdsourcing the

output of the APTDA algorithm across all of the detectors tested. This essentially means that

we use an unsupervised method to find the regions of stable performance across all of the event

detectors tested. Specifically, we want to find µ̂k and Êk, where µ̂k is an unsupervised estimate

of the power consumption clusters that define the active components, and Êk is an unsupervised

estimate of the energy consumed by devices contained in each of these active components.

Figure 5.12 shows, for each of the three active components, a histogram of the µk across the

1,456 detectors tested on phase A of the BLUED dataset. These µk can be seen in figure 5.4. The

bins in these histograms have a width of 1 Watt. For each active component, we choose µ̂k to be

the most frequently occurring value across all of the event detectors tested, i.e., the highest point

in each of the histograms.

In order to generate energy estimates that are over the same power consumption classes, we can

force the APTDA algorithm to use the crowdsourced µ̂k instead of the µk learned by each detector.

This is done by skipping the Power Consumption Bin Clustering stage in APTDA and using the

crowdsourced µ̂k in the Component Decomposition stage. In this way, the energy consumption

reported by each detector will be an estimate of energy consumed by the same power consumption
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Figure 5.12: Histogram of the power consumption cluster centroids, µk, found by the APTDA

algorithm across the 1,456 detectors tested on phase A of the BLUED dataset with k=3. The

x-axis has bins that are each 1 Watt wide.
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Ê0

Ê1
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Figure 5.13: Estimate of energy consumed by each component when the crowdsourced µ̂k are used

across all of the different event detector parameter combinations tested. Compare with figure 5.6

to see the stabilizing effect that using the same power consumption bins has on the reported energy

consumption.

classes.

Figure 5.13 shows the resulting energy consumption, Êk, reported by each of the 1,456 detectors

when the APTDA algorithm is forced to use the crowdsourced µ̂k. This figure is best understood

in light of figure 5.6 from page 90, the energy consumption as reported by each of the detectors

using their own µk. In figure 5.6 we saw that there was a region of stability reflecting the stability

of the µk returned by each detector. However, after the stable region, the energy reported became

extremely unstable. Here, in this figure, we can see that the region of stability encompasses more

detectors, and the values reported by the more sensitive detectors are much more stable.

To reiterate, we first found the µ̂k by crowdsourcing the µk,d found by each of the detectors in

the Power Consumption Bin Clustering stage of APTDA. We now have energy consumption,Êk,d,

reported by each of the detectors using these crowdsourced µ̂k. There is still instability across the

detectors in this energy, though, so we would like to select a subset of the detectors that exhibit

stability across each of the k components to obtain, in an unsupervised way, the energy consumed

by the devices occurring in each power consumption range.

Here is the problem we want to solve. Given Êk,d, the energy estimated by each detector,

find a subset of the detectors D̂ ⊂ D (where D is the set of all detectors) for which the energy
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Figure 5.14: Sorted versions of Êk are helpful for seeing the more stable (i.e., flatter) intervals of

the energy estimates across the 1,456 detectors tested.

consumption across each of the k active components exhibits stability. To help understand this,

consider figure 5.14. In this figure, each subplot shows a sorted version of Êk for each of the active

components. These are simply the curves from figure 5.13 separated and sorted. We emphasize

that the ordering for each of the curves is different. We want to find the interval in each of these

plots that is in some sense the most stable. This stable interval will correspond to a different set

of detectors for each of the components. In order to find the detectors that are stable across all

components, we take the intersection of the sets stable detectors for each component.

To quantize the stability of the energy estimates, we first consider the range that each of the

Êk takes. Table 5.6 gives, for each estimate, the minimum, maximum, and the overall range of

these values. The values in the table can be seen clearly in figure 5.14. Ê1 and Ê2 both have a

total range of about 2.5 kWh over which estimates occur while Ê3 has a smaller range of 0.34 kWh.

∆Êk is defined as:

∆Êk = max
d∈D

(
Êk,d

)
−min

d∈D

(
Êk,d

)
(5.7)
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k min Êk (kWh) max Êk (kWh) ∆Êk (kWh)

1 0.56 3.15 2.58

2 5.28 7.99 2.70

3 0.32 0.66 0.34

Table 5.6: For each of the active components, across the 1,456 event detectors, the first two

columns show the minimum and maximum energy estimates returned, and the third column gives

the difference between these two.

As we mentioned above, we want to find the largest interval in the sorted Êk that has stable

performance, i.e., the range of values that Êk takes in that interval must be bounded, and there is

no other interval with the same bounds that has more detectors in it. A natural selection for the

tolerance for the bounds is some percentage of the overall range that the Êk take. For example, if

we chose a tolerance of 10 percent, then we would be looking for intervals in Ê1 where the values

deviate by less than 0.26 kWh, where they deviate by less than 0.27 kWH in Ê2, and less than

0.034 kWH in Ê3.

Figure 5.15 shows, for Ê2, what this longest stable region looks like. In the figure, the values of

Ê2 are sorted just as in figure 5.14. A bold red dashed line indicates the longest interval for which

the Êk deviates by less 0.27 kwH, 10 percent of the total energy range reported across all 1,456

detectors. In the figure, the notation D̂0.1,2 is used to denote this set. Namely, it is the largest

set of detectors with energy that is within 10 percent of the range of values for the second active

component. This notation is defined formally in equation (5.9); we present the concept here to

build intuition.

We now formalize this discussion of stability. We call a set, S, of detectors p-stable in the

kth component, for 0 ≤ p ≤ 1, if all of the energy estimates are within a range of p ·∆Êk. That is,

S is p-stable if:

|Êk,da − Êk,db | ≤ p ·∆Êk, ∀da, db ∈ S (5.8)
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Figure 5.15: Close up of Ê2, the middle plot from figure 5.14. The largest 0.1-stable set of detectors,

D̂0.1,2 is shown in red. The top and bottom of the box indicate the upper and lower bounds of the

acceptable range 0.1 ·∆Ê2. There are 665 detectors within this set.

We define the largest set of p-stable detectors for component k as:

D̂p,k = arg max
D̂p,δ,k

∣∣∣D̂p,δ,k

∣∣∣ (5.9)

where

D̂p,δ,k =
{
d ∈ D : Êk,δ − 0.5 · p ·∆Êk ≤ Êk,d ≤ Êk,δ + 0.5 · p ·∆Êk

}
(5.10)

That is, D̂p,δ,k is by construction a p-stable set of detectors in the kth component centered on the

energy consumption, Êk,δ, of a particular detector, δ ∈ D. In our setup, D̂p,δ,k can be explicitly

computed for each of the 1,456 detectors according to (5.10). Thus, equation (5.9) selects among

these the set that has the most members. When the detectors are ordered according to energy

consumption as in figures 5.14 and 5.15, this set will necessarily correspond to an interval in that

ordering.

The final set that we are interested,in, D̂p, must capture all of the detectors that are in common

across the k components. It is obtained by taking the intersection:

D̂p =

K⋂
k=1

D̂p,k (5.11)

By construction it is p-stable in each of the components, so we refer to D̂p as the maximum p-stable

set of detectors.
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Ê2

Ê3

Figure 5.16: Top: Estimated energy per component for the p = 0.1-stable set of detectors, i.e.,

d ∈ D̂0.1. Bottom: Estimated energy per component for all remaining detectors not contained in

D̂0.1.

Figure 5.16 shows on top the estimated energy consumption per component for all of the de-

tetctors that are p = 0.1-stable. There are 518 detectors in this class. On bottom, it shows the

energy consumption reported by all of the remaining detectors.

5.4 Conclusion

In this chapter, we began in section 5.1 by walking through the APTDA algorithm using event

locations from one of the event detectors that were among the 1,456 detectors tested. This walk-

through showed detailed intermediate results in the APTDA algorithm to give the reader more

intuition about about how the algorithm works. It also provided context for understanding the

aggregate results presented across the 1,456 detectors tested in section 5.2.

In section 5.2, we presented the results of testing the APTDA algorithm across 1,456 different

parameter combinations of the LLR detector on phase A of the BLUED dataset. These tests
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showed the APTDA algorithm to be robust to the event locations in its estimation of the power

consumption clusters and energy consumed by each cluster.

In section 5.3, we showed how estimates of the power consumption ranges and the energy

consumed by each of these ranges may be obtained in an unsupervised way by crowdsourcing all

of the event detectors from the parameter sweep. We defined a notion of sets of detectors that

exhibit stability as a percentage of the range of values reported across all of the detectors tested.

This result is valuable because it eliminates the dependency on finding parameters for a particular

detector to use while still providing stable estimates of energy consumption..

These results are important because in much of the event-based NILM literature there is little

to no reporting of actual energy disaggregation. The relaxation of the problem from attempting to

disaggregate the consumption of every device present to estimating consumption for power ranges

learned from the data allows us to bypass the difficult energy tracking problem and obtain estimates

that are very consistent.



Chapter 6

Conclusion and Future Work

We now summarize the content of this thesis, highlight our primary contributions, and discuss

avenues of future work for the PCC-NILM problem and the APTDA algorithm.

6.1 Chapter Summaries

In chapter 2, we presented considerations for collecting data for use in event-based NILM systems.

In particular, we presented the one week long BLUED dataset, which served as the basis for

the development of our algorithm in the remainder of the thesis. We described in detail the

infrastructure used for collecting the data and the methodology employed in labeling it. The data

contains timestamped labels indicating device activity rather than power streams for individual

devices, though this was collected for plug-level devices. At a sampling rate of 1 Hz, phase A of

the BLUED dataset contains 867 events, while phase B contains 1,529 events. Phase A has a total

energy consumption of 15.9 kWh and phase B has a consumption of 78.9 kWh.

In chapter 3, we presented a detailed description and analysis of a modified likelihood ratio

detector for use on power data. The detector has five parameters, and we performed a parameter

sweep generating 1,456 detectors that were each tested on the BLUED dataset. This parameter

sweep showed the difficulty of the event detection problem for event-based NILM systems. In

particular, the number of false positives and misses that even the best detectors allow is prohibitive

for event-based NILM algorithms. The problem is two-fold: not only must the optimal parameters

105
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be learned for a particular environment, but even the best detector exhibits performance that makes

traditional event-based NILM algorithms challenging to achieve. The broad parameter sweep that

we carried out motivated the move away from the traditional approach towards finding a different

solution to the problem.

In chapter 4, we began by motivating the relaxation of Power Consumption Clustered Non-

Intrusive Load Monitoring (PCC-NILM) as a reasonable alternative to the full device disaggregation

problem. This relaxation proposes to report energy consumption to the user based on grouping

devices of similar power consumption together. The chapter then described the Approximate

Power Trace Decomposition Algorithm (APTDA) as an unsupervised, data-driven solution to the

PCC-NILM problem. The algorithm starts from a set of events and constructs a piecewise-constant

approximation of the power signal; the changes in this approximation are used to find naturally

occurring clusters of power changes. The power trace approximation is then decomposed based

on these power change clusters, and the energy consumed by each component is then obtained by

integrating each of the decomposed power signals separately.

Chapter 5 presented experiments and results pertaining to the APTDA algorithm on phase A

of the BLUED dataset. The chapter began by walking through the entire APTDA algorithm using

the events from a randomly selected event detector from the 1,456 detectors that were tested in

chapter 3. This walkthrough provided context for analyzing the robustness of APTDA to event

locations provided by event detectors. This analysis was carried out by comparing the results of the

APTDA algorithm using event detectors against using the ground truth events labeled in phase A

of the BLUED dataset. We then provided an unsupervised method for determining the power

consumption classes and estimating their energy consumption. This was based on crowdsourcing

the output of the APTDA algorithm across all of the detectors that were used. It is a particularly

attractive approach because it provides stable estimates of energy consumption and eliminates the

need for finding event detector parameters that are optimal.
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6.2 Contributions

Our major achievement is to develop an unsupervised method for energy disaggregation in the home

that is validated with a real dataset. We summarize, in bullet form, our research contributions to

the Non-Intrusive Load Monitoring problem:

6.2.1 Power Consumption Clustered Non-Intrusive Load Monitoring

• Proposed PCC-NILM that relaxes the traditional device-based disaggregation model to dis-

aggregating energy by grouping together devices that consume power at similar levels.

6.2.2 Event Detection

• In-depth analysis of the likelihood ratio detector and its parameters on phase A of the BLUED

dataset. Demonstrated the difficulty of finding a detector with reasonable performance with

respect to traditional detection metrics.

• Crowd sourcing of event detectors for use in the APTDA algorithm. Generates more confi-

dence in power consumption class ranges and in estimates of per class energy consumption.

6.2.3 Unsupervised PCC-NILM: Approximate Power Trace Decomposition Al-

gorithm

• Method for decomposing a power signal into distinct power traces that track the power

consumption of devices grouped according to the power consumption classes proposed by the

PCC-NILM relaxation.

• Robustness of APTDA to event detection algorithms that makes it possible to crowd source

results based on running the algorithm across many detectors.

• Elimination of the need for training and for finding an optimal detector.

• Estimation of energy consumption and not stopping at analyzing detection and classification

performance.
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6.2.4 Validation of PCC-NILM

• Testing of APTDA on real data, not synthetic or contrived datasets.

6.3 Use Case

In section 1.4, we discussed some ways in which PCC-NILM could be used by consumers to learn

more about their power consumption. In that discussion, we highlighted the usefulness of learning

about the energy consumed by background devices, that is, those that are always on and consuming

some amount of power.

In phase A of the BLUED dataset, the background power level for the entire week is approxi-

mately 40 Watts, and this accounts for 40% of the total energy consumed.

Providing consumers with the actual percentage of their electricity bill that is composed of

devices in the background that are always drawing power may drive them to implement long-term

changes for reducing this amount. Televisions and digital video recorders (DVRs) are well-known

for having high power consumption in standby modes, and in homes that have multiple TVs and

DVRs, reporting the actual percentage of background energy may be surprising.

6.4 Future Work

In this thesis, we have presented Power Consumption Clustering Non-Intrusive Load Monitoring

(PCC-NILM) and the Approximate Power Trace Decomposition Algorithm (APTDA) as a way of

solving it. The block diagram of the APTDA algorithm is shown here, in figure 6.1, as a reference

point for discussing future work directions.

This thesis has focused on the creation of an end-to-end system, starting from the aggregate

power signal and ending with disaggregated energy for each class of devices, for solving the PCC-

NILM problem. This was accomplished with the APTDA algorithm. If we step back, now, and

consider the framework of the APTDA algorithm, as represented by the block diagram of figure 6.1,

we can see that future work consists in further analysis and development of improved algorithms

in each of the blocks.
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Figure 6.1: The block diagram for the APTDA algorithm, as also seen in figure 4.4, is presented

here for reference as future work is discussed.

Broad categories for future work can be broken into three groups: further development of the

APTDA algorithm (section 6.4.1), practical implementation and use of the APTDA algorithm

(section 6.4.2), and more general perennial NILM challenges (section 6.4.3).

6.4.1 Further Development of APTDA

In this section, we discuss future work specifically related to further development of the APTDA

algorithm.

Testing on Additional Datasets

The development and testing of the APTDA algorithm on the BLUED dataset, in particular on

phase A, validated it as a proof of concept. We expect that other datasets will have features that

were not present on phase A of the BLUED dataset, and that these features may be useful for

extending functionality of the APTDA algorithm.

Phase B of the BLUED dataset, for example, differs from phase A in that it returns much less

frequently to the background power level. It also has a segment lasting approximately four days in

which a 40 Watt device is left on, effectively changing the background power level for those days.

Additional datasets are also necessary for comparing the effectiveness of different implementa-

tions of the APTDA algorithm against each other. The following sections deal with future work

pertaining to different parts of APTDA. We envision a framework in which these different imple-

mentations of particular stages of the APTDA algorithm could be easily swapped out and tested

against each other. For these comparisons to be meaningful, a large number of datasets for testing
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would be necessary.

Background Power Estimation

Estimating the background power level of a home is of critical importance for the APTDA algorithm.

Further work is necessary for handling changes in the background power level. The related problem

of handling power traces where the background power level is not returned to frequently is also

important future work.

Power Consumption Bin Clustering

Within this stage of the APTDA algorithm, work could be done to study the effectiveness of

different types of clustering algorithms and how to choose the number of active components, K. In

particular, hierarchical clustering and Gaussian mixture models may be of interest.

In addition to the use of different clustering algorithms, it would be interesting to conduct

further analysis of the devices that fall within each of the active components P k. For example, it

could be possible to estimate the number of devices in each component. In the case of a component

with a few well-separated clusters, it may be possible to isolate each of the devices. This could be

particularly useful for higher power-consuming devices where the separation in power consumption

is more pronounced.

Component Balancing

In this thesis, we presented a greedy algorithm for balancing components in order to avoid the

problem of having negative power consumption reported in each component. Further study is

necessary for formalizing this task and treating it as optimization problem that works not in a

greedy fashion but by minimizing some cost function.

Incorporating Other Features

In the APTDA algorithm presented, only real power is taken into account. Further work could

explore the use of additional features such as reactive power or higher-order harmonics of the power
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signal. Each of these features could be useful in determining what types of devices make up each of

the active components. For example, purely resistive devices such as incandescent lights or electric

heaters have negligible reactive power consumption, whereas motors and other devices that are

not purely resistive have a more significant consumption of reactive power. Additionally, devices

containing only linear circuit elements may be distinguished from other types of electronics based

on the use of higher order harmonics that are induced by non-linear circuit elements.

Sampling Period Analysis

In this thesis, all of our work was done on power signals sampled at 1 Hz. The APTDA algorithm

relies on a sampling period short enough so that events usually correspond to activity from one

device. When the sampling period is lengthened, power values are averaged over longer periods

of time and multiple changes may be averaged together. Further work may be done to determine

acceptable ranges for the sampling period.

6.4.2 Practical Implementation and Use of APTDA

In order for PCC-NILM and APTDA to be an effective technology in residential environments,

there are human computer interaction issues that must be studied. The APTDA algorithm has

the potential to provide rich information to consumers; determining what information is most

actionable, and how to best present it, is another area of research to be explored.

6.4.3 Broader NILM Challenges

In this section, we discuss the problem of variable load devices as well as the potential for incorpo-

rating usage data from smart appliances into NILM solutions.

Variable Load Devices

Non-intrusive load monitoring solutions have recognized, since the earliest work done by George

Hart [5], the difficulty of handling devices with variable power consumption. In residential en-

vironments, this most commonly refers to HVAC systems with variable speed fans. These types
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of devices pose a problem to event-based NILM systems because they are not modeled well by

a step function. They may have slow ramping times that are difficult to detect and, while they

may have intervals of constant power consumption, their power consumption could potentially vary

continuously.

Very little research has been conducted regarding the isolation of these devices or how their

presence affects the operation of a NILM system on other devices present.

Hybrid NILM Systems

By hybrid NILM systems, we mean systems that combine an aggregate NILM system with indi-

vidual monitoring of some devices in the home. As more appliances become smart and capable of

reporting their own usage data, this information should be incorporated into NILM solutions.



Appendix A

BLUED

In this appendix, we provide tables for each of the devices monitored in the BLUED dataset. The

tables provide the name of each device, the average power that the device consumes when on, the

number of events observed, and the phase that the device is on. Tables A.1 and A.2 contain devices

that were monitored using FireFly plug sensors. Table A.3 contains lights monitored using the

FireFly environmental sensors. Table A.4 contains devices that were at the subcircuit level.

Many of the devices were not operated during the week that BLUED was collected, but we

include them here for completeness.

113



APPENDIX A. BLUED 114

Index Device Name Average Power (Watts) Number of events Phase

1 Desktop Lamp 30 25 B

2 Tall Desk Lamp 30 25 B

3 Garage Door 530 24 B

4 Washing Machine – 0 –

5 Kitchen Music – 0 –

6 Kitchen Aid Chopper 1500 16 A

7 Tea Kettle – 0 –

8 Toaster Oven – 0 –

9 Fridge 120 616 A

10 A/V Living Room 45 8 B

11 Subwoofer Living Room – 0 –

12 Computer 1 60 45 B

13 Laptop 2 40 14 B

14 Dehumidifier – 0 –

15 Vacuum Cleaner – 0 –

16 DVR, A/V, Blueray Basement 55 34 B

17 Subwoofer Basement – 0 –

18 Apple TV – 0 –

19 Air Compressor 1130 20 A

20 LCD Monitor 1 35 77 B

Table A.1: Devices in the BLUED dataset with their average power consumption when on, the

number of events present in the dataset, and which phase of the data the device was on. These

devices were monitored using FireFly plug sensors.
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Index Device Name Average Power (Watts) Number of events Phase

21 TV Basement 190 54 B

22 Hard Drive 2 – 0 –

23 Printer 930 150 B

24 Hair Dryer 1600 8 A

25 Iron 1400 40 B

26 Empty Living Room Socket 1 60 2 B

27 Empty Living Room Socket 2 – 0 –

28 Monitor 2 40 150 B

Table A.2: Devices in the BLUED dataset with their average power consumption when on, the

number of events present in the dataset, and which phase of the data the device was on. These

devices were monitored using FireFly plug sensors.

Index Device Name Average Power (Watts) Number of events Phase

29 Backyard Lights 60 16 A

30 Washroom Lights 110 6 A

31 Office Lights 30 54 B

32 Closet Lights 20 22 B

33 Upstairs Hallway Light 25 17 B

34 Kitchen Hallway Light 15 6 B

35 Kitchen Light 65 56 B

36 Bathroom Light 65 98 A

37 Dining Room Light 65 32 B

38 Bedroom Lights 190 19 A

39 Basement Light 35 39 B

Table A.3: Lights in the BLUED dataset with their average power consumption when on, the

number of events present in the dataset, and which phase of the data the device was on. These

lights were monitored using FireFly environmental sensors.
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Index Device Name Average Power (Watts) Number of events Phase

40 Microwave 1550 70 B

41 HVAC A - 0 A

42 HVAC B - 0 B

43 Dryer A - 0 A

44 Dryer B - 0 B

45 Dishwasher 130, 700 95 B

Table A.4: Devices in the BLUED dataset with their average power consumption when on, the

number of events present in the dataset, and which phase of the data the device was on. These

devices were monitored at the subcircuit level.



Bibliography

[1] S. Darby, “The effectiveness of feedback on energy consumption,” Environmental Change

Institute, University of Oxford, Oxford, UK, Tech. Rep., 2006.

[2] C. Fischer, “Feedback on household electricity consumption: a tool for saving

energy?” Energy Efficiency, vol. 1, no. 1, pp. 79–104, Feb. 2008. [Online]. Available:

http://dx.doi.org/10.1007/s12053-008-9009-7

[3] D. Parker, D. Hoak, A. Meier, and R. Brown, “How much energy are we using? potential of

residential energy demand feedback devices,” in Proceedings of the 2006 Summer Study on En-

ergy Efficiency in Buildings, American Council for an Energy Efficiency Economy, Asilomar,

CA, Aug. 2006.

[4] M. Berges, E. Goldman, H. S. Matthews, and L. Soibelman, “Enhancing electricity audits

in residential buildings with Non-Intrusive load monitoring,” Journal of Industrial Ecology:

Special Issue on Environmental Applications of Information and Communication Technologies

(ICT), 2010.

[5] G. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the IEEE, vol. 80, no. 12,

pp. 1870–1891, 1992.

[6] S. Leeb and J. Kirtley, “Transient event detector for use in nonintrusive load

monitoring systems,” U.S. Patent 5 483 153, Jan. 9, 1996. [Online]. Available: http:

//www.google.com/patents/US5483153

117

http://dx.doi.org/10.1007/s12053-008-9009-7
http://www.google.com/patents/US5483153
http://www.google.com/patents/US5483153


BIBLIOGRAPHY 118

[7] L. K. Norford and S. B. Leeb, “Non-intrusive electrical load monitoring in commercial

buildings based on steady-state and transient load-detection algorithms,” Energy and

Buildings, vol. 24, no. 1, pp. 51–64, 1996. [Online]. Available: http://www.sciencedirect.com/

science/article/B6V2V-3WCT00V-6/2/4e27e85222b23c7341fd3b9201e4a378

[8] K. D. Lee, “Electric load information system based on non-intrusive power monitoring,”

Ph.D. Thesis, Massachusetts Institute of Technology, 2003. [Online]. Available: http:

//dspace.mit.edu/handle/1721.1/29633

[9] J. Roos, I. Lane, E. Botha, and G. Hancke, “Using neural networks for non-intrusive monitoring

of industrial electrical loads,” in Instrumentation and Measurement Technology Conference,

1994. IMTC/94. Conference Proceedings. 10th Anniversary. Advanced Technologies in I &

M., 1994 IEEE, 1994, pp. 1115–1118 vol.3.

[10] A. Prudenzi, “A neuron nets based procedure for identifying domestic appliances pattern-of-

use from energy recordings at meter panel,” in Power Engineering Society Winter Meeting,

2002. IEEE, vol. 2, 2002, pp. 941–946 vol.2.

[11] L. Farinaccio and R. Zmeureanu, “Using a pattern recognition approach to disaggregate the

total electricity consumption in a house into the major end-uses,” Energy and Buildings, vol. 30,

no. 3, pp. 245–259, Aug. 1999.

[12] T. Onoda, H. Murata, G. Ratsch, and K. Muller, “Experimental analysis of support vector

machines with different kernels based on non-intrusive monitoring data,” in Neural Networks,

2002. IJCNN ’02. Proceedings of the 2002 International Joint Conference on, vol. 3, 2002, pp.

2186–2191.

[13] S. Patel, T. Robertson, J. Kientz, M. Reynolds, and G. Abowd, “At the flick of a switch:

Detecting and classifying unique electrical events on the residential power line,” in UbiComp

2007: Ubiquitous Computing, ser. Lecture Notes in Computer Science, J. Krumm, G. Abowd,

A. Seneviratne, and T. Strang, Eds. Springer Berlin Heidelberg, 2007, vol. 4717, pp.

271–288. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-74853-3 16

http://www.sciencedirect.com/science/article/B6V2V-3WCT00V-6/2/4e27e85222b23c7341fd3b9201e4a378
http://www.sciencedirect.com/science/article/B6V2V-3WCT00V-6/2/4e27e85222b23c7341fd3b9201e4a378
http://dspace.mit.edu/handle/1721.1/29633
http://dspace.mit.edu/handle/1721.1/29633
http://dx.doi.org/10.1007/978-3-540-74853-3_16


BIBLIOGRAPHY 119

[14] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring: Review and outlook,”

IEEE Transactions on Consumer Electronics, vol. 57, no. 1, pp. 76 –84, Feb. 2011.

[15] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, “Unsupervised disaggregation of low

frequency power measurements,” in Proceedings of the 2011 SIAM International Conference

on Data Mining, 2011, pp. 747–758. [Online]. Available: http://epubs.siam.org/doi/abs/10.

1137/1.9781611972818.64

[16] J. Z. Kolter and M. J. Johnson, “Redd: A public data set for energy disaggregation research,”

in Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, 2011.

[17] J. Z. Kolter and T. Jaakkola, “Approximate inference in additive factorial hmms with ap-

plication to energy disaggregation,” in International Conference on Artificial Intelligence and

Statistics, 2012, pp. 1472–1482.

[18] O. Parson, S. Ghosh, M. Weal, and A. Rogers, “Using hidden markov models for

iterative non-intrusive appliance monitoring,” in Neural Information Processing Systems

workshop on Machine Learning for Sustainability, December 2011. [Online]. Available:

http://eprints.soton.ac.uk/272990/

[19] ——, “Non-intrusive load monitoring using prior models of general appliance types,” in

Proceedings of theTwenty-Sixth Conference on Artificial Intelligence (AAAI-12), July 2012,

pp. 356–362. [Online]. Available: http://eprints.soton.ac.uk/336812/

[20] A. Reinhardt, P. Baumann, D. Burgstahler, M. Hollick, H. Chonov, M. Werner, and R. Stein-

metz, “On the Accuracy of Appliance Identification Based on Distributed Load Metering

Data,” in Proceedings of the 2nd IFIP Conference on Sustainable Internet and ICT for Sus-

tainability (SustainIT), 2012, pp. 1–9.

[21] O. Parson, S. Ghosh, M. Weal, and A. Rogers, “An unsupervised training method for non-

intrusive appliance load monitoring,” Artificial Intelligence, vol. 217, no. 0, pp. 1 – 19, 2014.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0004370214001003

http://epubs.siam.org/doi/abs/10.1137/1.9781611972818.64
http://epubs.siam.org/doi/abs/10.1137/1.9781611972818.64
http://eprints.soton.ac.uk/272990/
http://eprints.soton.ac.uk/336812/
http://www.sciencedirect.com/science/article/pii/S0004370214001003


BIBLIOGRAPHY 120

[22] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, “BLUED: a fully

labeled public dataset for Event-Based Non-Intrusive load monitoring research,” in Proceedings

of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing,

China, Aug. 2012.

[23] O. Parson, “Unsupervised training methods for non-intrusive appliance load monitoring from

smart meter data,” Ph.D. dissertation, University of Southampton, April 2014. [Online].

Available: http://eprints.soton.ac.uk/364263/

[24] G. Hart, “Prototype nonintrusive appliance load monitor,” MIT Energy Laboratory, Concord,

Massachusetts, Tech. Rep., 1985.

[25] Electric Power Research Institute, “Low-Cost NIALMS technology: Market issues & product

assessment,” Electric Power Research Institute, Palo Alto, California, Tech. Rep. TR-108918-

V1, Sep. 1997. [Online]. Available: http://mydocs.epri.com/docs/public/TR-108918-V1.pdf

[26] F. Jazizadeh, B. Becerik-Gerber, M. Berges, and L. Soibelman, “An unsupervised hierarchical

clustering based heuristic algorithm for facilitated training of electricity consumption

disaggregation systems,” Advanced Engineering Informatics, vol. 28, no. 4, pp. 311 – 326, 2014.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1474034614000913

[27] M. Buevich, A. Rowe, and R. Rajkumar, “Saga: Tracking and visualization of building energy,”

in IEEE 17th International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA), vol. 2, Aug 2011, pp. 31–36.

[28] D. Luo, L. Norford, S. Shaw, and S. Leeb, “Monitoring HVAC equipment electrical loads from

a centralized location - methods and field test results,” ASHRAE Transactions, vol. 108, no. 1,

pp. 841–857, 2002.

[29] M. Berges, “A framework for enabling energy-aware facilities through minimally-intrusive

approaches,” Ph.D. Thesis, Carnegie Mellon University, 2010. [Online]. Available:

http://gradworks.umi.com/34/38/3438459.html

http://eprints.soton.ac.uk/364263/
http://mydocs.epri.com/docs/public/TR-108918-V1.pdf
http://www.sciencedirect.com/science/article/pii/S1474034614000913
http://gradworks.umi.com/34/38/3438459.html


BIBLIOGRAPHY 121

[30] K. Anderson, M. Berges, A. Ocneanu, D. Benitez, and J. M. F. Moura, “Event detection

for non intrusive load monitoring,” in Proceedings of the 38th Annual Conference on IEEE

Industrial Electronics Society (IECON). Montreal, Canada: IEEE, Nov. 2012.

[31] S. Pattem, “Unsupervised disaggregation for non-intrusive load monitoring,” in 11th Inter-

national Conference on Machine Learning and Applications (ICMLA), vol. 2, Dec 2012, pp.

515–520.

[32] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128610001568

http://www.sciencedirect.com/science/article/pii/S1389128610001568

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Literature Review
	NILM Datasets
	Energy Disaggregation and Performance Metrics
	Supervised vs. Unsupervised Methods

	Research Contributions
	Use Cases
	Dissertation Outline

	Data Collection
	AC Power Primer
	Methods for Monitoring Device-Level Ground Truth
	BLUED Dataset
	Measurement and Monitoring
	Labeling Task

	Conclusion

	Event Detection
	Log-Likelihood Ratio Detector
	Likelihood Ratio Detector Parameter Sweep on BLUED
	Experimental Setup
	Discussion of LLR Detector Parameters

	Event Detection on BLUED
	Detection Tolerance

	Conclusion

	Approximate Power Trace Decomposition Algorithm
	Motivation
	APTDA Overview
	Power Trace Approximation
	Background Power Estimation
	Active and Background Segment Labeling
	Power Consumption Bin Clustering
	Component Decomposition
	Component Balancing
	Conclusion

	Experiments and Results
	APTDA Walkthrough
	Robustness of APTDA to Event Locations
	Crowdsourcing Event Detectors
	Conclusion

	Conclusion and Future Work
	Chapter Summaries
	Contributions
	Power Consumption Clustered Non-Intrusive Load Monitoring
	Event Detection
	Unsupervised PCC-NILM: Approximate Power Trace Decomposition Algorithm
	Validation of PCC-NILM

	Use Case
	Future Work
	Further Development of APTDA
	Practical Implementation and Use of APTDA
	Broader NILM Challenges


	BLUED
	Bibliography

