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Abstract

Model based control schemes, such as nonlinear model predictive control, assume that the full
state vector of the plant is known for feedback control. However, in reality this is not always
true. Most times only a set of noisy measurements are available, and thus, the unmeasured states
need to be inferred from these measurements. This is done in combination with a detailed model
of the system. The most common nonlinear state estimation methods do not have a means to
deal with bounds or constraints on the states in an efficient or systematical way. These bounds
and constraints are important in chemical engineering processes since states usually have physical
meaning, for example, concentrations, molecular weights, and conversions are always positive.
Therefore, state estimates must be physically feasible. Since Moving Horizon Estimation (MHE)
is optimization based it has become a superior strategy for constrained state estimation because
bounds are handled optimally by theNonlinear Programming (NLP) solver. In the present workwe
develop strategies for MHE based on NLP sensitivity to reduce the on-line computational expense
of solving these problems. These formulations are intended to make the on-line application of
MHE feasible, by reducing the potential of delays due to the computational expense of solving the
associated NLP.

Here we discuss two approaches to update certain tuning parameters in MHE: one of them al-
lows us to reduce the size of the NLP that is being solved, while the other provides a fast approxi-
mation of the covariance of the initial condition. The former method is only suitable for small and
medium sized problems, while the latter one is better suited for large-scale systems. Additionally,
we also discuss NLP sensitivity theory and extensions that apply to the Interior Point solver we
use (i.e., IPOPT). With these extensions we are able to develop fast on-line strategies for NMPC
and MHE. However, in this work we focus only in the application of these developments to the
latter.

To reduce the horizon window we propose methods to approximate the initial condition param-

eters based on particle filters and sample based statistics to approximate the conditional probability

density function (or its parameters) of the initial condition of the states in the MHE horizon win-

dow (i.e., the so-called arrival cost). As mentioned above, this approach is suitable mostly for only

certain classes of systems that have few states or almost Gaussian behaviors. Therefore, we also de-

velop other methods for on-lineMHE suitable for large-scale systems that uses moremeasurements

to reduce any effects of the simplifications done to approximate the initial condition terms. Thus,

using NLP sensitivity we develop strategies that leverage the parametric properties of the MHE

problem to formulate fast on-line methods applicable to large-scale systems. Moreover, using NLP

sensitivity also allows us to relate the optimality conditions of the associated NLP problem to the

stochastic origin of MHE. For example, we show the relationship of the covariance of the state es-

timates with the reduced Hessian matrix of the NLP. This information can also be used to update

the parameters if the initial condition penalty term. Moreover, we also discuss the use of Robust

M-Estimators to reduce the effects of outliers or gross errors in the measurements. Finally, we illus-

trate the use and benefits of these strategies through several small and large-scale examples taken

from the literature.

ABSTRACT ii



Contents

Acknowledgments i

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation for Constrained State Estimation . . . . . . . . . . . . . . . . . . 5
1.3 Research Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Computational Framework 13

2.1 IPOPT - Interior Point Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Optimal Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Sensitivity Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Barrier Sensitivity Calculation . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2.1 Active Set Changes . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2.2 Fix-Relax Strategy . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2.3 General Upper and Lower Bounds . . . . . . . . . . . . . . 26
2.2.2.4 Multiple Sequential Parameter Perturbations . . . . . . . . 27
2.2.2.5 Sensitivity Example . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Extraction of Reduced Hessian Information . . . . . . . . . . . . . . . 31
2.2.3.1 Reduced Hessian Example . . . . . . . . . . . . . . . . . . . 33

3 Bayesian State Estimation 35

3.1 Bayesian Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Ensemble Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

CONTENTS iii



4 Moving Horizon Estimation 53

4.1 Derivation of MHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Filtered Update of the Arrival Cost . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Smoothed Update of the Arrival Cost . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Filtering Approach for Arrival Cost 64

5.1 Posterior PDF for Arrival Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Approximation of Arrival Cost Parameters . . . . . . . . . . . . . . . . . . . 67
5.3 Approximation of Arrival Cost Conditional Density . . . . . . . . . . . . . . 69
5.4 Examples and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Example 1: CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Example 2: Constrained Batch Reactor . . . . . . . . . . . . . . . . . . 74

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Smoother Approach for Arrival Cost 83

6.1 Derivation of MHE with Smoothed Arrival Cost . . . . . . . . . . . . . . . . 84
6.1.1 Optimality Conditions of MHE . . . . . . . . . . . . . . . . . . . . . . 88
6.1.2 Covariance-Reduced Hessian Relation . . . . . . . . . . . . . . . . . . 91
6.1.3 Sensitivity Based MHE . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.1 CSTR Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.2 Large-Scale Distillation Example . . . . . . . . . . . . . . . . . . . . . 99

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Multi-Rated State Estimation 104

7.1 Multi-rated MHE with Smoothing Update of Arrival Cost . . . . . . . . . . 105
7.2 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Example 1: Styrene Polymerization Reactor . . . . . . . . . . . . . . . 110
7.2.2 Example 2: Large Scale Binary Distillation Column . . . . . . . . . . 113

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Advanced Step Moving Horizon Estimation 118

8.1 asMHE and asMMHE Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2.1 Example 1: asMHE with a Binary Distillation Column . . . . . . . . 121
8.2.2 Example 2: asMMHE with a Binary Distillation Column . . . . . . . 124

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9 Robust M-Estimators for MHE 127

9.1 Robust Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.2 Robust M-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.3 M-Estimators in MHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

CONTENTS iv



9.4 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4.1 Example 1: CSTR Case Study . . . . . . . . . . . . . . . . . . . . . . . 133
9.4.2 Example 2: Distillation Column Case Study . . . . . . . . . . . . . . . 134

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Conclusions 139

10.1 Summary of the Dissertation and Contributions . . . . . . . . . . . . . . . . 139
10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendices 159

A Derivation of the Discrete-Time Kalman Filter 160

A.1 Prediction/Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2 Moving Horizon Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.2.1 Horizon LengthN = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.3 Kalman Filter Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.4 Horizon length N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B Mathematical Models 170

B.1 Isothermal Gas Phase Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.2 General 3 State CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.3 Styrene Polymerization CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.4 Distillation Column Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
B.5 CSTR Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C Auxiliary Theorems 179

D Expressions for Y , O, andW 180

CONTENTS v



List of Tables

5.1 Sampling types and bounds for the different filters used to update the ar-
rival cost. ∗PF with importance distribution. In these cases sampling and
update bounds are enforced through importance density/particle filter. . . . . . 71

6.1 Parameters of noise variables used in Example 6.2.1. . . . . . . . . . . . . . . 97
6.2 Summary of parameters for the noise variables for the distillation column

example in Chapter 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 State and measurement covariance values for the polymerization CSTR ex-
ample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 State and measurement covariance values for the distillation example. . . . 115

8.1 Summary of parameters for the noise variables for the distillation column
example in Chapter 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.2 State and measurement covariance values for asMMHEwith the distillation
column in Chapter 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.1 Parameters of noise variables for the CSTR example using M-Estimators
with MHE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.2 Summary of parameters for the noise variables for the distillation column
example in Chapter 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

LIST OF TABLES vi



List of Figures

1.1 Hierarchy of decisions in plant operations. . . . . . . . . . . . . . . . . . . . 2
1.2 On-line optimization structure. The highlighted block is the main topic of

this dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Illustration of the relationship between smoothing, filtering, and predicting. 37
3.2 Nonlinear transformation of Gaussian samples. . . . . . . . . . . . . . . . . . 43
3.3 Illustration of propagation of sigma points using a nonlinear model. . . . . 44
3.4 Comparison between the curves of a typical and a truncated Gaussian dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Illustration of how the information is split between the arrival cost and the
horizon window in MHE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Illustration of the moving horizon in MHE. . . . . . . . . . . . . . . . . . . . 58
4.3 Illustration the filtered update of the arrival cost. . . . . . . . . . . . . . . . . 60
4.4 Illustration the filtered update of the arrival cost. . . . . . . . . . . . . . . . . 61

5.1 Illustration of sample based filter approximation of arrival cost parameters. 68
5.2 Manipulated variable changes for the CSTR example. . . . . . . . . . . . . . 74
5.3 MSE as a function of horizon length when using (a) unconstrained filters

and (b) constrained filters for the arrival cost approximation for the CSTR
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 EKF with different horizon lengths for the isothermal batch reactor. . . . . . 77
5.5 Comparison of MHE with horizon length 5 with all methods using uncon-

strained filters (a) and constrained filters for arrival cost approximation (b). 78
5.6 SSE as a function of horizon length for the isothermal batch reactor with all

methods using unconstrained filters (a) and constrained filters for arrival
cost approximation (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Illustration of the shared information between smoothed state estimate and
the horizon window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Illustration of the propagation of covariances in the smoothing arrival cost
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Concentration (a) and Temperature (b) profiles with 6 reactors in the CSTR
network example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Approximate number of operations required to estimate the arrival cost co-
variance matrix for the CSTR network example. . . . . . . . . . . . . . . . . 99

6.5 Liquid composition for light component (a) and liquid molar holdup (b) on
tray 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

LIST OF FIGURES vii



6.6 Liquid composition for light component (a) and liquid molar holdup (b) on
tray 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Illustration of multi-rated signals: (a) without delay (the sampling and mea-
surement are simultaneous) and (b) with delay (sampling andmeasurement
are obtained at different sampling times). . . . . . . . . . . . . . . . . . . . . 105

7.2 Polymerization CSTR simulation example. Estimated states using only fast
measurements and multi-rated signals are compared for: (a) initiator con-
centration, (b) monomer concentration, (c) reactor temperature, (d) cooling
jacket temperature, (e) weight average, and (f) number average molecular
weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Large scale binary distillation example: vapor and liquid compositions for
tray 14 (a) and tray 28 (b), log10 of estimation error of vapor composition for
trays 14 (c) and 28 (d), log10 of estimation error of tray efficiency for trays 14
(e) 28 (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1 Illustration of the asMHE strategy, where the purple dashed line represents
the solution of the approximate problem, and the solid red line represents
the updated solution using NLP sensitivity. . . . . . . . . . . . . . . . . . . . 119

8.2 Comparison of the estimated states using MHE and asMHE for the distilla-
tion column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 Comparison of the estimated states and parameters using MHE and as-
MMHE for the distillation column. . . . . . . . . . . . . . . . . . . . . . . . . 126

9.1 Comparison of the values of the Least Square Function, the Fair Function,
and the re-descending estimator. . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2 Comparison of the Fair Function, re-descending estimator, and least squares
estimator MHE using the CSTR example. . . . . . . . . . . . . . . . . . . . . 135

9.3 Comparison of the Fair Function, re-descending estimator, and least squares
estimator MHE using the distillation column example. . . . . . . . . . . . . 137

B.1 Illustration of the flows between any two given trays in the distillation column.173
B.2 Illustration of a network of CSTRs. . . . . . . . . . . . . . . . . . . . . . . . . 178

LIST OF FIGURES viii



Chapter 1

Introduction

In this chapter we discuss the hierarchal organization of decisions taken for process oper-

ations. This sets the state to introduce the problem of state estimation and its importance

in decision making. During plant operations it is very important to know the current state

of the system because this information is used to monitor the behavior of the plant. Addi-

tionally, this information is used in conjunction with control strategies such as Nonlinear

Model Predictive Control (NMPC), to compute the inputs that should drive the plant into

satisfying the specified set points. Therefore, it is important that the state estimates are ac-

curate, and that they can be generated fast enough so that very little delays are introduced

to the system.

The rest of this chapter is organized as follows. In Section 1.1 we introduce the hierar-

chy of decisions in plant operations, and we situate the state estimation problem in this

framework. In Section 1.2 we motivate the benefits of using constrained state estimation

methods in chemical engineering. In Section 1.3 we discuss the main objectives and results

of the present work, and Section 1.4 contains a summary of previous work related to the

topics discussed in this thesis. Finally, an overview of the rest of the chapters is presented

in Section 1.5.

1.1 Background

Operation of chemical processes requires a large amount of decisions that need to be taken

at different rates and that consider very different time frames. These decisions can be or-
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1.1 BACKGROUND

ganized depending on the frequency in which they are taken and time frames considered.

In Figure, 1.1 we illustrate this organization, where as we move towards the upper layers

decisions are taken less frequently, but they consider longer time horizons. On the other

hand, as we move down to the lower layers decisions are taken more frequently and usu-

ally consider shorter time periods [1]. For example, scheduling and planning problems

consider time frames of few weeks or months, and these decisions are not taken very fre-

quently (e.g., every fewweeks ormonths). Then again, Real-Time Optimization (RTO) and

Model Predictive Control (MPC) problems are solved every few seconds or minutes, and

these problems consider time horizons of a few seconds or minutes. Moreover, even the

classes of optimization problems solved are different. Planning and scheduling problems

usually consist of Mixted-Integer Nonlinear programming problems (MINLP) or Mixed-

Integer Linear Problems (MIP). On the other hand, RTO and MPC problems are usually

Nonlinear Programming Problems (NLP). Therefore, the solution strategies used for the

different layers are very different.

Figure 1.1: Hierarchy of decisions in plant operations.

Figure 1.2 illustrates how the top layers communicate with the bottom ones. Here, the

planning and scheduling layers set targets that are sent to the RTO and MPC layers. Note
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that the only requirement for interaction between the layers is that decision remain feasible

at lower levels. The bottom layers compute values for the inputs that are injected into the

plant and managed through the regulatory level. Combining measurement data from the

plant and the state and parameter estimation block we generate information about the

current state of the plant which is used for model maintenance, feedback and monitoring

purposes.

Figure 1.2: On-line optimization structure. The highlighted block is the main topic of this
dissertation.

The work presented in this dissertation focuses on problems in the RTO and MPC lay-

ers. These blocks are characterized by the types of problems that are used in the decision

making process. For example, for NMPC, Dynamic RTO (DRTO) and state estimation the

optimization problems are dynamic in nature and constrained with the a first principle

predictive model of the plant. However, the objectives used in each case can be very dif-

ferent than in the others. For example, for NMPC the objective could be to minimize the

error between the state of the plant and a set point [2], or it could consider some types of

economic objectives [3, 4]. On the other hand, state and parameter estimation problems
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1.1 BACKGROUND

minimize the error between predictions and measurements taken from the plant.

In particular, for this dissertation we focus on the State and Parameter Estimation Block

(highlighted in gray in Fig. 1.2). Here, we are especially interested in moving horizon

methods that use measurement data from the past and current behavior of the plant to

compute estimates of the actual state (and parameters) of the system. Moving Horizon Es-

timation (MHE) is of particular interest for this work because at the core of these strategies

a constrained NLP is solved [5]. Thus, constraints on the states are handled optimally by

the NLP solver. Constraints are important since for chemical processes the states that are

being estimated have a physical meaning. Thus, for example, concentrations and flows

are always positive, mole and mass fractions are always between 0 and 1, or we may even

have that some other states are always within a certain range (e.g., temperatures having

upper and lower bounds). Not taking into account these bounds and constraints can cause

the estimator to diverge, and thus, the estimation error increases [6]. Since monitoring

and control strategies depend on these estimates, it is important to have small estimation

errors, or their performance would be severely reduced.

In the present work we deal with two of the main problems associated with MHE: Com-

putational expense of solving the problem, and consistency with the stochastic properties

of the constrained state estimation problem. For the former we develop methods that are

based on interior point NLP solvers to extract NLP sensitivity information that can be used

to generate fast approximations of neighboring solutions of the optimization problem. In

addition, here we also show how NLP sensitivity can be used to extract fast approxima-

tions of covariance matrix information of the state estimates that can be used to update

some important tuning parameters of MHE. On the other hand, we also provide some

analysis on the stochastic properties of the so-called arrival cost. We show that if this term

is correctly approximated we no longer need very long horizon windows, and thus we can

reduce the computational expense of solving the MHE problems.
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1.2 MOTIVATION FOR CONSTRAINED STATE ESTIMATION

1.2 Motivation for Constrained State Estimation

As mentioned above constrained state estimation is important for computing predictions

of states in chemical plants. Bounds and constraints are of particular interest here since

states represent physical quantities. However, the most common nonlinear state estima-

tion methods cannot handle them in a systematic way. For example, the Extended Kalman

Filter (EKF), which is the most common state estimation method used in industry [7, 8],

has no way of systematically handling them. State estimates computed with EKF have

been shown to diverge for certain classes of systems [6]. On the other hand, some EKF for-

mulations handle bounds through clipping. In other words, when a state estimate violates

the bounds it is projected back onto it. Nevertheless, this strategy is suboptimal at best,

and the performance of the estimator is greatly reduced.

Another consequence of states being bounded is that they will no longer be Gaussian,

which is the most common assumption used [8]. Assuming that states remain Gaussian,

even when the system is nonlinear or when bounds are present, mostly affects stochastic

quantities associated with the estimates, and not so much the performance of the estima-

tor. For example, confidence intervals associated with the estimates may not represent the

true ones. However, neglecting to consider the non-Gaussian nature of the states will not

impact the estimation error as much as when bounds are not included.

Several methods have been developed that deal with constrained state estimation, non-

Gaussian systems, or both. For example, for constrained state estimation clipping can be

applied to any method, but Nonlinear Recursive Dynamic Data Reconciliation (NRDDR)

has been proposed as a more consistent approach [9]. On the other hand, for non-Gaussian

systems sample based filters are used such as the UnscentedKalman Filter UKF [10, 11, 12],

Ensemble Kalman Filters (EnKF) [13, 14], and Particle Filters (PF) [15, 16]. Finally, con-

strained sample base filters also exist to deal with non-Gaussian systems and constrained
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states. Among these we have the Unscented Recursive Nonlinear Dynamic Data Recon-

ciliation (URNDDR) [9, 17], Constrained Ensemble Kalman Filters (CEnKF) [18], and Con-

strained Particle Filters (CPF) [19, 20].

In contrast to these methods, MHE processes a batch of past measurements to generate

the state estimate. By doing this, we avoid problems that could arise if a few measure-

ments are biased. Methods that only use one measurement at a time give full weight to

that observation, and this could bias the estimate if there is a large error in it. MHE, on

the other hand, distributes the weight of the observation data onto several measurements.

That way, if a few of the observed variables are skewed, the rest of the measurements mit-

igate the effects of the bad ones. Furthermore, since MHE solves a constrained nonlinear

program at each sample time, then bounds and constraints are handled systematically by

the optimizer. Thus, providing optimally constrained state estimates. It is because of this

that MHE also provides a good framework for constrained multi-rated state estimation.

Since several measurements in the past are being used, it is possible to introduce slower

measurements at the correct sample times to include them.

1.3 Research Statement

In this section we highlight the main objectives of this dissertation. The main objectives

of the present work deal with two main topics: develop fast strategies for NLP sensitivity,

and propose efficient MHE methods for constrained state estimation.

We were particularly interested in developing efficient NLP sensitivity strategies based

on IPOPT since this solver is particularly well suited for large-scale dynamic optimization

problems. This sensitivity information we then use to generate fast approximations of

neighboring solutions of the NLP that can be used to make fast MHE or NMPC strategies.

Furthermore, we were also interested in extracting reduced Hessian information from the
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solver, which is not normally formed by IPOPT. Reduced Hessian information provides

insights into the quality of the solutions, and we were also interested in associating this

information to the stochastic properties of MHE.

On the other hand, we also analyzed common MHE formulations to build on top of

them to provide faster, more efficient strategies. We reduced the computational expense of

solving the MHE problem by reducing the required horizon window, without sacrificing

the quality of the state estimates, by generating better approximations of the arrival cost

term. Additionally, we shifted the computational expense of solving a large-scale NLP

problem to the background through the use of NLP sensitivity. Also, through sensitivity,

we show a relationship between the optimality conditions of the NLP and the stochastic

properties of the MHE problem, which can be exploited to extract covariance information

of the state estimates. Furthermore, we also analyzed formulations that can deal with

multi-rated measurements and that can deal with outliers or gross errors.

This dissertation is based on the work of others, and in the following section we provide

a summary of previous work done in relation to NLP sensitivity and MHE. However, if

the reader is interested in delving deeper into some of these topics, he or she is encouraged

to also follow the references cited in the following chapters.

1.4 Literature Review

In this section we summarize previous work that has been done in relation to Moving

Horizon Estimation and related topics. The main focus of the work has been on efficient

solution methods for dynamic optimization problems, efficient formulations for on-line

implementation, and better understanding of the properties of the MHE problems.

There are vast amounts of work related to nonlinear programming, dynamic optimiza-

tion, and efficient solution methods of these problems. These topics are widely researched
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areas, and it would be impossible to give a complete summary of the state of the art here.

Thus, the reader is referred to the work of Nocedal andWright [21], Biegler [22], Edgar and

Himmelblau [23] for NLP theory and its application to chemical processes. For details on

efficient formulations and numerical solution of dynamic optimization, we refer the reader

to the work of Biegler [22], Biegler et al. [24], Biegler [25, 26], and the references therein.

For NLP Sensitivity the work of Fiacco [27] and the references cited in Chapter 2, are good

sources of information. On the other hand, applications of these techniques to Nonlinear

Model Predictive Control can be found in Zavala [28] and Zavala et al. [29]. Moreover,

process synthesis and control applications of Parametric Programming, which is closely

related to sensitivity, are discussed in Pistikopoulos [30], Pistikopoulos et al. [31, 32], and

the citations therein.

In recent literature, the problem of approximating the initial condition penalty term (or

arrival cost) in theMHE objective function still remains an open issue. The arrival cost term

appears in the MHE formulation because it was developed to approximate the full infor-

mation problem by only considering a fixed size moving window of past measurements,

also called a horizon window. This is discussed in more details in Chapter 4. This term

in the objective function is used to incorporate information from previous measurements

that are not included in the horizon window. In other words, it represents the distribution

of the state at the beginning of the window given the prior measurement information. The

most common way of approximating it is through a weighted 2-norm. For example, for

linear systems Rao et al. [33] assume that the distribution is Gaussian, and propose the use

of a KF and also a Kalman Smoother update of the covariance matrix in the arrival cost

term. Moreover, they use both methods to prove that for a linear unconstrained system,

the KF solution is obtained from the MHE formulation. They also show that the stability

of the MHE can be proved directly from the stability of KF and the stability of the full

information problem, thus validating their approach for unconstrained estimates. On the
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other hand, for nonlinear systems, Rao and Rawlings [34] use an EKF approximation of the

arrival cost term, and show that when bounds are not considered the EKF solution can be

obtained. Moreover, Tenny and Rawlings [35] compare both the EKF and corresponding

smoothing strategies for constrained nonlinear systems, and conclude that the smoothing

scheme is superior since the EKF based method induces oscillations due to errors in the

arrival cost approximation that are propagated through the horizon. Furthermore, both of

these methods assume that the conditional probability densities of the states are well rep-

resented with Gaussian distributions. However, if there are bounds on the states the prior

and posterior distributions will not remain Gaussian even if the state and measurement

noises are. Moreover, both methods are unconstrained estimators, and using them to ap-

proximate the parameters of the arrival cost in constrained MHE results in an inconsistent

approximation.

On the other hand, if the system is nonlinear the propagation of a normally distributed

random variable through the model will not remain Gaussian. To address this Qu and

Hahn [36] propose the use of the Unscented Kalman Filter, that uses sigma points to bet-

ter approximate the distribution, to update only the covariance matrix in the arrival cost.

This resulted in a slight improvement in performance. However, they do not show the

effects of using such an update on the horizon window size. Moreover, they also use

an unconstrained estimator which, as mentioned earlier, is an inconsistent approach for

approximating the arrival cost when states have bounds. Ungarala [37] addresses this dif-

ficulty by employing a constrained version of the UKF where clipping is used to satisfy

bounds. However, this approach is ad hoc, and leads to suboptimal solutions at best. He

also developed approaches for estimating the arrival cost using a constrained type of Par-

ticle Filter (PF )[38] and Cell Filter (CF). For the former, the selection of a suitable form of

importance function to represent the true posterior density is a crucial step in the parti-

cle filter [16, 37, 39]. In the conventional approach, the state transition density (or prior)
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is used as the importance distribution/importance function. Because the state transition

density (being used as importance density function) does not take into account the most

recent observation, the particles drawn from the transition prior may have very low like-

lihood, and their contributions to the posterior estimation become negligible. While this

limitation is acknowledged by the author, there is no attempt to overcome this difficulty

[37]. It may be noted that the use of appropriate importance functions can significantly re-

duce the number of particles required for generating accurate estimates, when compared

with the conventional particle filter [16], and thereby reduce the computational cost, while

providing a better approximation of the density. Specifically, for systems whose states

are bounded we need to take special care in choosing the appropriate importance distri-

bution, and it should be updated in a way that is consistent with the bounds. Among

the constrained UKF, PF and CF used by Ungarala [37], the latter turns out to be the best

choice for arrival cost estimation in the simulation examples considered. However, as also

acknowledged by the author, the computational burden associated with CF renders it suit-

able only for very small dimensional systems (for example, a two state system required 500

cells with 500 particles per cell). Thus, most of the approaches available in the literature for

approximation of the arrival cost propose to employ unconstrained filters, and implicitly

assume that the conditional densities of the states can be approximated as Gaussian, which

is inconsistent when the states are constrained. While PF and CF proposed recently by Un-

garala [37] addresses this problem through the use of constrained PF, the version of PF

used does not use the measurement information while constructing importance density.

In some cases the plant measurements are not available at the same rate. For exam-

ple, temperatures or pressures can be measured very quickly, while, molecular weights or

biomass measurements take longer and may even be delayed. The most common state

estimation methods usually use only the fast measurements under the assumption that

the all states of interest are observable through them. Unfortunately, this assumption does
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not always hold, and in some cases there are states that are not observable through the

fast measurements alone. However, it is sometimes possible to combine different mea-

surements that are available at different rates to change the observability properties of the

system, and make some of the unobservable states observable [40, 41]. Therefore, meth-

ods that can handle multi-rated measurements with or without delays should be used to

take advantage of the slower measurements to improve the quality of the state estimates

or their observability.

Several methods have been developed to handle multi-rated measurements, and they

can be classified in two possible ways depending on how they deal with the multi-rated

measurements. For example, in [42] two possible classes of methods for EKF based state

estimation are defined: (i) state augmentation methods, and (ii) methods that fuse the

slow (possibly delayed) measurement at the moment it arrives. In their manuscript, the

authors describe in detail the differences between these methods, and show the differ-

ences using simulation examples. In [40, 43] continuous and discrete time reduced order

nonlinear observers are used for state estimation in polymerization reactors. The authors

propose that, using polynomial extrapolation, the slow measurements be predicted for

those sample times where only fast measurements are available. Moreover, the authors

also describe a method for tuning the observer gains that makes sure that the estimation

error decays to zero asymptotically. Finally, in [44] the authors show a real-time imple-

mentation of the observer to estimate molecular weights in a pilot-plant scale reactor. In

[45] a state augmentation method is used to estimate states and parameters in a bioreactor

using multi-rated measurements. State augmentation is used to take into account delayed

slow measurements by generating smoothed state estimates in between major and minor

sampling times, where the major sampling time corresponds to the moment when both

fast and slow measurements are available; at the minor sampling times only fast measure-

ments are obtained. Also, since the output equation in their case study is nonlinear, they
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use an iterated EKF to improve the quality of the estimates. Furthermore, the authors ana-

lyze the observability of the system using only fast measurements and also, both fast and

slow measurements. They conclude that the states of interest are only observable when

using multi-rated measurements.

1.5 Dissertation Overview

The rest of this dissertation is organized as follows. In Chapter 2 we give an introduction to

the computational framework this work is based on. In particular we discuss properties of

the NLP solver IPOPT, and the sensitivity results that have been extended to deal with the

particulars of the solver. In Chapter 3, we discuss Bayesian state estimation to set the stage

for constrained state estimation through MHE. Chapters 4, provides a detailed discussion

of the stochastic origin of MHE, while Chapters 5-8 discuss the main results of the present

work in relation to making MHE efficient for on-line application. In Chapter 9 we provide

insights into Robust M-Estimators that can be used with MHE to reduce the effects that

outliers and gross errors in the measurements have on the state estimates. Finally, we

conclude in Chapter 10, where we provide a summary of the main results described in the

thesis, and a few suggestions for future work.
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Chapter 2

Computational Framework

In this chapter we describe the Interior Point algorithm implemented in IPOPT [46] which

is used to to solve the nonlinear programs that arise from the state estimation methods

described in this work. In addition, we also show some properties related to nonlinear

programming sensitivity, which we can use to obtain fast approximations to the solutions

of NLPs when parameter values change. Furthermore, we show a simple method to ex-

tract reduced Hessian, which is not generated as part of the algorithm used in IPOPT,

and that we will use in future chapters to approximate important information of the state

estimators.

The rest of the chapter is organized as follows. In Section 2.1 we describe some of the

main characteristics of the algorithm implemented in IPOPT (the Interior Point solver),

and in Section 2.2 we discuss in detail some important properties of NLPs. Moreover,

in this section we also discuss how to extract sensitivity information from the linearized

optimality conditions used in IPOPT, and we discuss the implementation of these methods

in combination with the solver which leads to sIPOPT.

2.1 IPOPT - Interior Point Solver

In this section we discuss some of the details of the IPOPT algorithm [46] used to solve the

large-scale NLPs that arise form the DAE-constrained optimization problems used in this

work. For this we consider the optimization problem of the form
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min
x

f(x; p) (2.1a)

s.t. c(x; p) = 0 (2.1b)

x ≥ 0 (2.1c)

with the vectors x ∈ Rnx , p ∈ Rnp , and c(x; p) : Rnx+np → Rm. Note that p represents the

parameters of the NLP, and they are fixed during the solution of the problem. Also, to sim-

plify notation, here we only consider upper bounds on the variables. NLPs with general

upper and lower bounds can be transformed into this form with a simple change of vari-

ables, and also, the following derivations can be rewritten to handle both types of bounds

as shown in Section 2.2.2.3. Furthermore, IPOPT handles the aforementioned bounds im-

plicitly by substituting a barrier function for the inequality constraints (Eq. (2.1c)). In this

way, the barrier problem is defined as follows,

minx B(x; p, µℓ) = f(x; p)− µℓ

nx
∑

i=1

ln(xi) (2.2a)

s.t. c(x; p) = 0, (2.2b)

µℓ represents the barrier parameter. Solving NLP (2.2) for a decaying sequence of values of

the barrier parameter, where µℓ → 0, results in the solution of NLP (2.1). Since the barrier

approach handles the bounds implicitly, we avoid the combinatorial complexity of finding

the active set of the NLP. At each major iteration ℓ of IPOPT we need the solution of the

barrier problem for a given value of the barrier parameter µℓ. For this we solve NLP (2.2)

using this value of the barrier parameter, and for which the optimality conditions are given

by

∇xL (x, λ, ν; p) = ∇xf(x; p) +∇xc(x; p)λ − ν = 0 (2.3a)

c(x; p) = 0 (2.3b)

XV e− µℓe = 0, (2.3c)
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where X = diag {x}, V = diag {ν}, e ∈ ℜnx is a vector of ones, and L (x, λ, ν; p) is the

associated Lagrange function of the form

L = f(x; p)− µℓ

nx
∑

i=1

ln(xi) + λT c(x; p). (2.4)

Moreover, λ ∈ ℜnλ and ν ∈ ℜnx represent the vectors of Lagrange multipliers related to

the equality constraints and bounds, respectively. To find the solution of the primal-dual

system described with Equation (2.3), IPOPT implements an exact Newton’s method with

an initial solution iterate given by sT0 =
[

xT0 , λ
T
0 , ν

T
0

]

. Therefore, for the i-th Newton itera-

tion, the search direction ∆si = si+1 − si is computed with the solution of the linearized

KKT conditions (2.3), which are given by





Wi AT
i −I

Ai 0 0
Vi 0 Xi









∆xi
∆λi
∆νi



 = −





∇xfi +AT
i λi − νi

c (xi; p)
XiVie− µℓe



 , (2.5)

where Ai = ∇xc (xi; p)
T ∈ ℜnλ×nx is the Jacobian matrix of the constraints, and Wi =

∇xxL (xi; p) ∈ ℜnx×nx is the Hessian matrix of the Lagrangian. Also, I represents the iden-

tity matrix of appropriate dimensions. In addition, the left hand side matrix in Equation

(2.5) is also known as the KKT or primal-dual matrix. Note that Eq. (2.5) is solved sev-

eral times at each iteration of IPOPT. Therefore, this is a crucial step in the algorithm, and

to make it much more efficient, IPOPT uses state-of-the-art sparse linear solvers. These

types of solvers can be very fast since they make efficient use of sparse algebra, and they

take advantage of the sparse nature of the system to reduce the amount of memory space

required to store the matrices.

Provided that we can can supply IPOPT with exact first and second order derivatives,

it is possible to guarantee fast local convergence of Newton’s method. Furthermore, it is

possible to handle problems with large amounts of degrees of freedom without altering

the local convergence properties (as opposed to Quasi-Newton methods). Supplying exact

derivatives is easily achievable when using mathematical programming platforms such as
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AMPL [47], that generate derivative information using automatic differentiation. More-

over, IPOPT implements a filter line search method as a globalizing strategy to promote

convergence from bad starting points [48, 49].

2.2 Optimal Sensitivity

When analyzing the solution of nonlinear programming problems, optimal sensitivity is

a key tool which can provide information about regularity and curvature of the optimal

points. Moreover, these methods are useful to assess which variables play a dominant role

in the optimization, and they can be used to provide first order estimates for parametric

NLPs. Furthermore, when using NLP algorithms that take advantage of exact derivatives,

sensitivity can be calculated very efficiently and with very little added computational cost.

In this section we discuss how these calculations can be done in the context of IPOPT [50].

The basic strategy for optimal sensitivity for NLP solvers is derived through the use of

the Implicit Function Theorem (IFT) on the KKT conditions of a parametric NLP. Origi-

nally, Fiacco [51] showed that sensitivities could be obtained by solving a linearization of

the optimality conditions, when some suitable regularity conditions are satisfied. Never-

theless, relaxation of some of these regularity conditions induces singularity and incon-

sistency in this linearized system, and may make the sensitivity calculation much more

difficult. Reviews of sensitivity analysis can be found in Fiacco [51], Fiacco and Ishizuka

[52], and Büskens and Maurer [53]. More advanced cases have been analyzed by Kyparsis

[54], Kojima [55], Kojima and Hirabayashi [56], and Jongen et al. [57, 58]. An early imple-

mentation of sensitivity analysis applied to barrier methods can be found in Fiacco and

Ghaemi [59].

For over 25 years, NLP sensitivity analysis has been applied to numerous applications

in process engineering, as these can be viewed as parametric programs, with parameters
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that represent uncertain data or unknown inputs. These applications include flow-sheet

optimization [60, 61], steady state real-time optimization [62], robust optimization and

parameter estimation, nonlinear model predictive control [63], and dynamic real-time op-

timization [64].

With improvements in fast Newton-based barrier methods, such as IPOPT, sensitivity

information can be obtained very easily. As a result, fast on-line algorithms can be con-

structed where more expensive optimization calculations can be solved in advance, and

fast updates to the optimum can be made on-line. This has motivated algorithms for con-

trol, estimation and dynamic optimization that execute large optimization models with

very little on-line computation [65]. This has been especially successful for so-called ad-

vanced step strategies that work with large, sparse NLP solvers. To obtain the sensitivity

information, we exploit the full space information available through the linearization of

the KKT conditions that appears naturally in the solution process.

In the following sections some well known concepts associated to optimal NLP sensitiv-

ity are described. These will be helpful to derive the state estimation strategies described

in the next few chapters. For these strategies, we are interested in a parametric nonlinear

program with the same form as in (2.1), and the associated barrier problem (2.2). At a

solution with parameter p = p0 (the nominal value) we compute the sensitivities dx∗(p0)
dp

and

df(x∗; p0)

dp

T

=
∂f(x∗; p0)

∂p

T

+
dx(p0)

dp

T ∂f(x∗; p0)

∂x

T

(2.6)

Thus, to calculate these sensitivities, we first need to consider the properties of the solu-

tions of (2.1) obtained by IPOPT when p = p0 [51, 66].
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2.2.1 Sensitivity Properties

For the NLP (2.1) with parameter p = p0, the Karush-Kuhn-Tucker (KKT) conditions are

defined as:

φ (s∗; p0) =





∇xf (x
∗; p0) +∇xc (x

∗; p0)λ
∗ − ν∗

c (x∗; p0)
X∗V ∗e− µ∗ℓe



 = 0. (2.7)

For the KKT conditions to serve as necessary conditions for a local minimum of (2.1),

constraint qualifications are needed, such as Linear Independence Constraint Qualifica-

tion (LICQ) or Mangasarian-Fromowitz Constraint Qualification (MFCQ). Note that in the

following definitions Qj means the j-th column of a given matrix Q, and I represents the

identity matrix of appropriate dimensions.

Definition 2.1 (Linear Independence Constraint Qualification (LICQ)): Given a local solu-

tion of (2.1), x∗ and an active constraint set, consisting of equalities and nb bound constraints with

ETx∗ = 0, where Ei = Ij if x
∗
j = 0 is the i-th bound constraint with j = 1, . . . , n, i = 1, . . . , nb.

LICQ is defined by linear independence of the active constraint gradients, i.e.

[∇c (x∗; p0) | E]

is full column rank. Satisfaction of LICQ leads to unique multipliers λ∗, ν∗ at a KKT point.

Definition 2.2 (Mangasarian-Fromowitz Constraint Qualification (MFCQ)): Given a local

solution of (2.1), x∗ and an active set, MFCQ is defined by linear independence of the equality

constraint gradients and the existence of a search direction d, such that:

ETd > 0,∇c(x∗; p0)
Td = 0.

Satisfaction of MFCQ leads to bounded (but not necessarily unique) multiplers λ∗, ν∗ at a KKT

point. As noted in [54], these multipliers lie in a bounded, polyhedral set denoted by P (x∗; p0).

For a KKT point x∗ that satisfies either of the above constraint qualifications the follow-

ing conditions are sufficient to guarantee a local solution to (2.1).
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Definition 2.3 (Strong Second Order Sufficient Conditions (SSOSC)): SSOC is defined at x∗

and some multipliers λ∗, ν∗ that satisfy the KKT conditions (2.3), and where

dT∇xxL (x∗, λ∗, ν∗; p0) d > 0 for all d 6= 0 with ∇c (x∗)T d = 0, di = 0 for ν∗i > 0. (2.8)

Property 2.1 (Properties of the central path/barrier trajectory): Consider problem (2.1) with

f(x; p) and c(x; p) at least twice differentiable in x and once in p. Let x∗ be a local constrained

minimizer of (2.1) with the following sufficient optimality conditions at x∗:

1. x∗ is a KKT point that satisfies (2.3)

2. LICQ holds at x∗

3. Strict complementarity (SC) holds at x∗ for the bound multipliers ν∗, i.e., x∗i + ν∗i > 0

4. SSOSC holds for x∗, λ∗, and ν∗ that satisfy (2.3)

If we now solve a sequence of barrier problems (2.2) with µℓ → 0, then:

• There is at least one subsequence of unconstrained minimizers (x(µℓ)) of the barrier function

converging to x∗

• For every convergent subsequence, the corresponding sequence of barrier multiplier approxi-

mations is bounded and converges to multipliers satisfying the KKT conditions for x∗.

• A unique, continuously differentiable vector function x(µ) of the minimizers of (2.2) exists

for µ > 0 in a neighborhood of µ = 0

• limµ→0+ x(µ) = x∗

• ‖x(µ)− x∗‖ = O(µ)

Proof: The proof follows by noting that LICQ implies MFCQ and invoking Theorem 3.12

and Lemma 3.13 in [66].
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This theorem indicates that nearby solutions of (2.2) provide useful information for

bounding properties for (2.1) for small positive values of µ. For such cases we now con-

sider the sensitivity of these solutions with respect to changes in values of p.

Property 2.2 (Sensitivity Properties): For problem (2.1) assume that f(x; p) and c(x; p) are k

times differentiable in p and k + 1 times differentiable in x. Also, let the assumptions of Property

2.1 hold for problem (2.1) with p = p0, then at the solution:

• x∗ = x(p0) is an isolated minimizer and the associated multipliers λ∗ and ν∗ are unique.

• For some p in a neighborhood of p0 there exists a k times differentiable function

s(p)T =
[

x(p)T λ(p)T ν(p)T
]

that corresponds to a locally unique minimum for (2.1) and s(p0) = s∗.

• For p near p0 the set of binding inequalities is unchanged and complementary slackness holds.

Proof: The result follows directly from Theorem 3.2.2 and Corollary 3.2.5 in [51].

We now consider the barrier formulation and relate sensitivity results between (2.1) and

(2.2) with the following result.

Property 2.3 (Barrier Sensitivity Properties): For the barrier problem (2.2) assume that f(x; p)

and c(x; p) are k times differentiable in p and k + 1 times differentiable in x. Also, let the as-

sumptions of Property 2.1 hold for problem (2.1), then at the solution of (2.2) with a small positive

µ:

• x(µ; p0) is an isolated minimizer and the associated barrier multipliers λ(µ; p0) and ν(µ; p0)

are unique.

• For some p in a neighborhood of p0 there exists a k times differentiable function

s(µ; p)T =
[

x(µ; p)T λ(µ; p)T ν(µ; p)T
]

that corresponds to a locally unique minimum for (2.2).
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• limµ→0,p→p0 s(µ; p) = s(0, p0) = s∗

Proof: The result follows from Theorem 6.2.1 and Corollary 6.2.2 in [51]. These were orig-

inally proved for a mixed penalty function but the proofs are easily modified to deal with

barrier functions.

2.2.2 Barrier Sensitivity Calculation

Calculation of the sensitivity of the primal and dual variables with respect to p now pro-

ceeds from the implicit function theorem (IFT) applied to the optimality conditions of (2.2)

at p0. In other words, we apply IFT to (2.7) to yield

dφ (p; s)

dp

T

=
∂φ (p; s)

∂p

T

+
dφ (p; s)

ds

T ∂s (p)

∂p

T

= 0. (2.9)

Thus, defining the quantities:

M(s(µ; p0)) =
∂φ (p; s)

∂s

T

=





W (s (µ; p0)) A (x (µ; p0))
T −I

A (x (µ; p0)) 0 0
V (µ; p0) 0 X(µ; p0)



 (2.10)

and

Np(s(µ; p0)) =
∂φ (p; s)

∂p

T

=





∇xpL (s (µ; p0))
T

∇pc (x (µ; p0))
T

0



 , and Nµ =





0
0

−µe



 (2.11)

whereW (s(µ; p0)) denotes theHessian∇xxL (x, λ, ν) of the Lagrangian function evaluated

at s(µ; p0), A(x(µ; p0)) = ∇xc(x)
T evaluated at x(µ; p0), X = diag {x} and V = diag {ν},

and making substitutions into (2.9) leads to:

M(s(µ; p0))
∂s(µ; p0)

∂p

T

+Np(s(µ; p0)) = 0. (2.12)

When the assumptions of Property 2.1 hold,M(s(µ; p0)) is nonsingular and the sensitiv-

ities can be calculated from:
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∂s(µ; p0)

∂p

T

= −M (s (µ; p0))
−1Np (s (µ; p0)) . (2.13)

We note that at the solution of (2.2) these assumptions can be checked by the inertia

of M as well as other information in IPOPT (see [50]). Moreover, in IPOPT M(s(µ; p0))

is directly available in factored form from the solution of (2.2), so the sensitivity can be

calculated through a simple backsolve. For small values of µ and ‖p− p0‖ it can be shown

from the above properties [51] that

s (µ; p) = s (µ; p0)−M(s(µ; p0))
−1Np(s(µ; p0))(p − p0) + o‖p− p0‖ (2.14)

or

s(0; p) = s(µ; p0)−M(s(µ; p0))
−1 [Np(s(µ; p0))(p − p0) +Nµ] + o‖p − p0‖+ o‖µ‖. (2.15)

Finally, the implementation of NLP sensitivity is simplified if the parameters can be

localized in the NLP formulation, so that we write:

minx,w f(x,w) (2.16a)

s.t. c(x,w) = 0, x ≥ 0 (2.16b)

w − p0 = 0 (2.16c)

Note that the NLP solution is equivalent to (2.1), and it is easy to see that the NLP

sensitivity is equivalent as well. Writing the KKT conditions for (2.16) leads to:

∇xf(x,w) +∇xc(x,w)λ − ν = 0 (2.17a)

∇wf(x,w) +∇wc(x,w)λ + λ̄ = 0 (2.17b)

c(x) = 0 (2.17c)

XV e = 0 (2.17d)

w − p0 = 0 (2.17e)

In this definition λ̄ represents the Lagrange multiplier corresponding to the equation

w − p0 = 0. For the Newton step we write:
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











W ∇xwL (x,w, λ, ν) AT −I 0
∇wxL (x,w, λ, ν) ∇wwL (x,w, λ, ν) ∇wc(x,w)

T 0 I
A ∇wc(x,w) 0 0 0
V 0 0 X 0
0 I 0 0 0

























∆x
∆w
∆λ
∆ν
∆λ̄













=













0
0
0
0
∆p













.

(2.18)

Since∆w = ∆p, the sensitivity computed by this matrix (without the second row) is the

same as the optimal sensitivity stated in (2.12). These sensitivity features are embedded in

the software sIPOPT [67, 68].

2.2.2.1 Active Set Changes

From Property 1, existence of ds∗/dp requires SSOSC, SC and LICQ. Nevertheless, direc-

tional derivatives can still be obtained even if these assumptions are relaxed. This issue

becomes important if we want to approximate NLP solutions that result from perturba-

tions (∆p = pf − p0) that lead to active set changes for the perturbed solution of (2.1).

When ∆p provokes an active set change, a positive variable may become active at zero

or a zero variable may need to become positive. Moreover, even if LICQ and SC hold at

the solution at p0, ∆p may be too large to maintain the same active set for the perturbed

estimate. This case requires special treatment in the sensitivity calculation.

NLP sensitivity with active set changes has been considered through the stepwise appli-

cation of (2.12); this was developed and described in [53, 69]. On the other hand, a natural

extension of (2.12) to deal with active set changes, is through the solution of the quadratic

programming problem [60, 61, 64, 70]:

min∆x Φ = ∆xT∇xpL (s∗(p0); p0)∆p+
1

2
∆xT∇xxL (s∗(p0); p0)∆x (2.19a)

s.t. ∇pc(x
∗; p0)

T∆p+∇xc(x
∗; p)T∆x = 0, x∗ +∆x ≥ 0 (2.19b)

To justify this approach, we consider the following property due to Kyparsis [54], which
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allows the calculation of directional derivatives.

Property 2.4 (Directional Derivatives): Suppose that MFCQ holds at the solution of (2.1) and

that SSOSC holds for all values of multipliers that satisfy the KKT conditions for (2.1) (i.e., in

P (x∗; p0)). Also, assume that for any subset of the active constraints at the solution of (2.1), the

rank of these constraint gradients remains constant near (x∗; p0). and Kx is the set of extreme

points of the multiplier values in P (x∗; p0). Under these conditions, the following quadratic pro-

gram:

min∆x Φ = ∆xT∇xpL (s(p0))∆p+
1

2
∆xT∇xxL (s(p0))∆x (2.20a)

s.t. ∇pc(x
∗; p0)

T∆p+∇xc(x
∗; p0)

T∆x = 0,∆xj ≥ 0 for x∗j = 0 (2.20b)

∆xj = 0, for some ν∗j > 0 ∈ Kx (2.20c)

uniquely determines the directional derivative ∆x that corresponds to∆p.

This property provides the weakest conditions under which a unique directional deriva-

tive can be shown [54, 55]. Therefore we note that if LICQ is not satisfied at s(p0) but the

assumptions of Property 2.4 hold, then two observations hold for (2.19) and (2.20).

• The solution,∆xK , of (2.20) (with ‖∆p‖ sufficiently small) is also feasible for (2.19).

• For the solution,∆xQP of (2.19), we have Φ(∆xK) ≥ Φ(∆xQP ), and therefore,∆xQP

provides the optimal first order perturbation for ∆p.

Moreover, if the NLP (2.1) satisfies LICQ at p0, for p = p0 + t (pf − p0) , t ∈ (0, 1], we

note that there exists a t ∈ (0, 1] for which LICQ no longer applies at the solution of the

NLP with p = p0+ t∆p, due to an active set change. Nevertheless, we can still apply (2.19)

directly, by considering the following stepwise application of the sensitivity analysis. We

first consider a QP for ∆p1 = p1 − p0 with p1 corresponding to a solution where the active

set of the QP changes and LICQ no longer holds. Next, we solve the QP (2.19) at p1 with

∆p2 = pf −p1, and all other quantities unchanged. Adding the solutions of these two QPs,
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i.e., ∆x = ∆x1 + ∆x2, can be shown to be feasible for (2.19). Therefore, for this case, the

solution of (2.19) provides an optimal first order perturbation for∆p.

2.2.2.2 Fix-Relax Strategy

The current version of sIPOPT does not include an implementation of (2.19). Nevertheless,

from the solution of the barrier problems, sIPOPT provides the elements of a QP-based

sensitivity approach through the use of a “fix-relax strategy” which accounts for active set

changes [71, 72]. This is illustrated for two cases.

• When the perturbed variable violates its bound, i.e., xi = x∗i +∆xi < 0, an additional

condition is introduced that sets the perturbed variable xi to its bound (i.e., we write

ET
x (∆x+ x∗) = 0). At the same time, the corresponding complementarity condition

in (2.12) has to be relaxed with the addition of a new variable ∆ν̄.









W AT −In 0
A 0 0 0
V 0 X Ex

ET
x 0 0 0

















∆x
∆λ
∆ν

∆ν̄









= −









∇pxL
T∆p

∇pc
T∆p
0

ET
x x

∗









(2.21)

• Similarly in case a perturbed bound multiplier becomes negative because of the new

step, the bound multiplier is set to zero (i.e., Eν∆(ν + ν∗) = 0), the complementarity

condition has to be relaxed, and again a new variable ∆ν̄ is added.









W AT −In 0
A 0 0 0
V 0 X Eν

0 0 ET
ν 0

















∆x
∆λ
∆ν

∆ν̄









= −









∇pxL
T∆p

∇pc
T∆p
0

ET
ν ν

∗









(2.22)

With suitable definition of E, rs and r1, the systems (2.21) and (2.22) can be written in

the following form:

[

K∗ E

ET 0

] [

∆s

∆ν̄

]

= −

[

rs
r1

]

(2.23)
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and can be solved using a Schur decomposition for ∆s. This system can be solved in two

steps by defining a Schur Matrix C :

C = −ETK∗−1E (2.24)

and solving two linear systems

C∆ν̄ = ETK∗−1rs − r1 (2.25)

K∗∆s = − (rs + E∆ν̄) . (2.26)

An example for relaxing a bound is given by [71], and the process of activating a bound

is illustrated in Section 2.2.2.5.

2.2.2.3 General Upper and Lower Bounds

For simplicity the derivations abovewere described using problemswith only lower bounds.

However, as shown in [50], the extension for the case with general upper and lower bounds

is straightforward. For this case, the barrier function will be

min B(x; p, µ) = f (x; p)− µ
n
∑

i=1

ln
(

xi − xLi
)

− µ
n
∑

i=1

ln
(

xUi − xi
)

(2.27a)

s.t. c (x; p) = 0. (2.27b)

For this case we define the following quantities:

M (s (µ; p)) =









W (s (µ; p0)) A (x (µ; p0))
T −I I

A (x (µ; p0)) 0 0 0
VL (µ; p0) 0 X −XL 0
VU (µ; p0) 0 0 XU −X









(2.28)

and

Np (s (µ; p)) =









∇xpL (s (µ; p0))
T

∇pc (x (µ; p0))
T

0
0









, Nµ =









0
0

−µe
−µe









, (2.29)
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where νL and νU are bound multipliers associated with the lower and upper bounds re-

spectively. Also, here we define XL = diag
{

xL
}

, XU = diag
{

xU
}

, VL = diag
{

νL
}

and

VU = diag
{

νU
}

, and we use the same definitions for W (s (µ; p0)), A (x (µ; p0)) and X as

in (2.10) and (2.11). Thus, with Equations (2.28), (2.29), along with (2.14) or (2.15) we can

obtain the perturbed update when there are both upper and lower bounds. Moreover,

since IPOPT handles both upper and lower bounds, this is the way sIPOPT calculates the

updates.

2.2.2.4 Multiple Sequential Parameter Perturbations

In the derivations in the previous sections we considered changes to the parameter vector.

However, in some cases we may be interested in making multiple parameter perturba-

tions in a sequential manner. For example we may want to perturb the current solution

s (µ; p0) using the parameter vectors p1, . . . , pnpert . This amounts to solving system (2.12)

with different right hand sides Np (s (µ; p0)) (Eq. (2.11)). Note that, because we already

have (2.10) factorized at the solution, it is cheap to obtain the npert sensitivities. From these

and Equation (2.14) (or (2.15)) we can determine the approximated solutions s (µ; p1), . . . ,

s
(

µ; pnpert

)

.

2.2.2.5 Sensitivity Example

To conclude this section we consider a small parametric optimization problem from [60]

and also considered in [71]. Here we discuss in detail the updating procedure, and also

cover a change in the active set. This problem illustrates the capabilities of the fix-relax

strategy described above.

Consider the parametric programming problem:
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min x21 + x22 + x23 (2.30)

s.t. 6x1 + 3x2 + 2x3 − p1 = 0

p2x1 + x2 − x3 − 1 = 0

x1, x2, x3 ≥ 0,

with variables x1, x2, and x3 and parameters p1, and p2. As programmed, the IPOPT

code does not distinguish variables from parameters, but the problem can be reformulated

as (2.16) by introducing equations that fix the parameters p1, p2 to their nominal values

p1,a, p2,a.

min x21 + x22 + x23 (2.31a)

s.t. 6x1 + 3x2 + 2x3 − p1 = 0 (2.31b)

p2x1 + x2 − x3 − 1 = 0 (2.31c)

p1 = p1,a (2.31d)

p2 = p2,a (2.31e)

x1, x2, x3 ≥ 0. (2.31f)

The KKT conditions for this problem are
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2x1 + 6λ1 + p2λ2 − ν1 = 0 (2.32a)

2x2 + 3λ1 + λ2 − ν2 = 0 (2.32b)

2x3 + 2λ1 − λ2 − ν3 = 0 (2.32c)

−λ1 + λ3 = 0 (2.32d)

λ2x1 + λ4 = 0 (2.32e)

6x1 + 3x2 + 2x3 − p1 = 0 (2.32f)

p2x1 + x2 − x3 − 1 = 0 (2.32g)

p1 − p1,a = 0 (2.32h)

p2 − p2,a = 0 (2.32i)

ν1x1 − µ = 0 (2.32j)

ν2x2 − µ = 0 (2.32k)

ν3x3 − µ = 0 (2.32l)

x1, x2, x3, ν1, ν2, ν3 ≥ 0. (2.32m)

The corresponding Newton step is









































2 λ2 6 p2 −1
2 3 1 −1

2 2 −1 −1
−1 1

λ2 x1 1
6 3 2 −1
p2 1 −1 x1
ν1 x1

ν2 x2
ν3 x3

1
1

















































































∆x1
∆x2
∆x3
∆p1
∆p2
∆λ1
∆λ2
∆ν1
∆ν2
∆ν3
∆λ3
∆λ4









































= −









































2x∗
1
+ 6λ∗

1
+ p2λ

∗

2
− ν∗

1

2x∗2 + 3λ∗1 + λ∗2 − ν∗2
2x∗

3
+ 2λ∗

1
− λ∗

2
− ν∗

3

−λ∗1 + λ∗3
λ∗
2
x∗
1
+ λ∗

4

6x∗
1
+ 3x∗

2
+ 2x∗

3
− p∗

1

p∗2x
∗

1 + x∗2 − x∗3 − 1
ν∗
1
x∗
1
− µ

ν∗
2
x∗
2
− µ

ν∗3x
∗

3 − µ
p∗
1
− p1,a

p∗2 − p2,a









































(2.33)

where the right hand side is zero at the solution (note that the ordering of the variables is

now as in Eq. (2.18)). Also, note that this Newton step can easily be transformed into (2.18)

by rearranging rows and columns. Now consider the exact solutions of two neighboring

parameter sets pa = [p1,a, p2,a] = [5, 1] and pb = [4.5, 1]. The corresponding NLP solutions

are
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s(pa) = [0.6327, 0.3878, 0.0204, 5, 1, | − 0.1633,−0.2857, |0, 0, 0, | − 0.1633, 0.1808] ,

and

s(pb) = [0.5, 0.5, 0, 4.5, 1, |0,−1, |0, 0, 1, |0, 0.5] .

Clearly, there is a change in the active set, when changing the parameters from pa to

pb. This is easily verified from the decrease of x3 to zero. When using pb the bound is

active, while it is inactive when the parameters are set to pa. This change in the active

set is not captured by the linearization of the KKT conditions. For example, using (2.14)

would require that we first solve the linear system (2.13), and use the solution to update

the values of the variables. In this example we would solve the linear system











































2 λ2 6 p2 −1
2 3 1 −1

2 2 −1 −1
−1 1

λ2 x1 1
6 3 2 −1
p2 1 −1 x1
ν1 x1

ν2 x2
ν3 x3

1
1





















































































∆x1
∆x2
∆x3
∆p1
∆p2
∆λ1
∆λ2
∆ν1
∆ν2
∆ν3
∆λ3
∆λ4











































= −











































0
0
0
0
0
0
0
0
0
0

∆p1
0











































,

(2.34)

where∆p1 = p1,a − p1,b = 5− 4.5. This Newton step yields an updated iterate of

s(pb) = [0.5765, 0.3775,−0.0459, 4.5, 1, | − 0.1327,−0.3571, |0, 0, 0, | − 0.1327, 0.2099]+o(‖∆p‖)
(2.35)

which violates the bounds on x3. On the other hand, taking into consideration this active

set change, we use (2.21) and augment the KKT system fixing the variable to the bound,

and relaxing the complementarity condition. The Newton step is now
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6 3 2 −1
p2 1 −1 x1
ν1 x1

ν2 x2
ν3 x3 1

1
1

1





























































































∆x1
∆x2
∆x3
∆p1
∆p2
∆λ1
∆λ2
∆ν1
∆ν2
∆ν3
∆λ3
∆λ4
∆ν̄3















































= −















































0
0
0
0
0
0
0
0
0
0
δp1
0

x∗3















































,

(2.36)

which yields an updated iterate of

s(pb) = [0.5, 0.5, 0, 4.5, 1, |0,−1, |0, 0, 0, |0, 0.5948] + o(‖∆p‖), (2.37)

and this is a very good approximation to the optimal solution to the problemwith problem

data pb. Some differences are expected for the linear system, as λ4, x1 and λ2 appear in the

nonlinear constraint (2.32e) in the KKT conditions.

2.2.3 Extraction of Reduced Hessian Information

An important byproduct of the sensitivity calculation is information related to the Hessian

of the Lagrange function pertinent to the second order conditions. At the solution of (2.1)

we consider a sensitivity system, MS = Nrh, with M defined in (2.10), and partition the

variables into free and bounded variables, i.e., x∗ = [xTf x
T
b ] where x∗f > 0, x∗b = 0. Assum-

ing strict complementarity (SC), the IFT sensitivity system using (2.10) can be partitioned

with:
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M =













Wff (x
∗, λ∗) Wfb(x

∗, λ∗) Af (x
∗)T −If 0

Wbf (x
∗, λ∗) Wbb(x

∗, λ∗) Ab(x
∗)T 0 −Ib

Af (x
∗) Ab(x

∗) 0 0 0
0 0 0 X∗

f 0

0 V ∗
b 0 0 0













, S =













Sxf

Sxb

Sλ
Sνf
Sνb













, and Nrh =













Ē
0
0
0
0













(2.38)

where Ē is defined below. From (2.38) it is easy to see that Sxb
= 0, Sνf = 0. These variables

and the last two rows can therefore be removed, leading to:





Wff (x
∗, λ∗) Af (x

∗)T 0
Af (x

∗) 0 0
Wbf (x

∗, λ∗) Ab(x
∗)T −Ib









Sxf

Sλ
Sνb



 =





Ē
0
0





We now define Sxf = ZSZ + Y SY , with Af (x
∗)Z = 0, and Af (x

∗)Y and R = [Y | Z]

nonsingular. Using the similarity transform, HTMHS̃ = HTNrh with H =













R 0 0

0 I 0

0 0 I













leads to:









Y TWff (x
∗, λ∗)Y Y TWff (x

∗, λ∗)Z Y TAf (x
∗)T 0

ZTWff (x
∗, λ∗)Y ZTWff (x

∗, λ∗)Z 0 0
Af (x

∗)Y 0 0 0
Wbf (x

∗, λ∗)Y Wbf (x
∗, λ∗)Z Ab(x

∗)T −Ib

















SY
SZ
Sλ
Sνb









=









Y T Ē
ZT Ē
0
0









. (2.39)

From (2.39) we have SY = 0 and SZ = (ZTWffZ)
−1ZTE. Choosing ZT Ē = I reveals

SZ as the inverse of the reduced Hessian matrix HR = ZTWffZ. Convenient choices for

this transform arise from partitioning xTf =
[

xTD xTI
]

with dependent and independent

variables xD ∈ Rm, xI ∈ RnI , so that Af = [AD | AI ] with AD square and nonsingular.

This leads to Y T = [Im | 0] and ZT =
[

−AT
I A

−T
D | InI

]

.

Note that the transformation of the sensitivity system (2.39) need not be implemented.

Instead, for a chosen set of nI ≤ nx − m independent variables, AD nonsingular, ĒT =

[0 | InI
] and the matrices defined in (2.38), the reduced Hessian can be found directly by

solving the following system
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MS = Nrh. (2.40)

The computation of S from the above system can be achieved by solving a linear system

for each column ofNrh. In other words, for the i-th column in S we solve the linear system

MS = Ni, where Ni is the i-th column of Nrh. From the choice of Z, Sxf
= ZSZ in (2.38)

and SZ = HR, the reduced Hessian can be extracted easily from the rows of S.

2.2.3.1 Reduced Hessian Example

Here we illustrate the use of the methods described above to extract the reduced Hessian

information from the KKT system at an optimal point. In this case we use a small example

given by

min (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

s.t. x1 + 2x2 + 3x3 = 0.
(2.41)

The linearized KKT conditions of the above problem are given by









2 1
2 2

2 3
1 2 3

















∆x1
∆x2
∆x3
∆λ









= −









rx1

rx2

rx3

rλ









. (2.42)

Note that for this example there are no bounds, and therefore the Hessian with respect

to the free variablesWff is the same as the Hessian of the Lagrange function. If we choose

xD = x3 and xTI = [x1, x2], then the rows in the solution of (2.42) that correspond to the

rows of the reduced Hessian are those corresponding to [∆x1 ∆x2].

To show this we first compute the reduced Hessian at the optimal point, which is given

by

HR = ZTWffZ =

[

−1
3 1 0

−2
3 0 1

]





2
2

2









−1
3 −2

3
1 0
0 1



 =

[

2.2222 0.4444
0.4444 2.8889

]

,

and the inverted reduced Hessian matrix is
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H−
R =

[

0.4643 −0.0714
−0.0714 0.3571

]

. (2.43)

From the partition of dependent and independent variables done above we can define

Ē as

Ē =









1 0
0 1
0 0
0 0









,

and using the columns of this matrix as the right hand side values in (2.42), we can com-

pute the inverted reduced Hessian. Thus for the first column of H−
R we have









2 1
2 2

2 3
1 2 3

















∆x1
∆x2
∆x3
∆λ









= −









1
0
0
0









(2.44)

which yields a solution vector of ST
1 = ∆xT = [0.4643 − 0.0714 − 0.10710.0714], and sim-

ilarly, if we use the second column of Ē, we compute the other solution vector ST
2 =

[−0.07140.3571 − 0.21430.1429]. In other words we have that

S =









0.4643 −0.0714
−0.0714 0.3571

−0.1071 −0.2143
0.0714 0.1429









where we note that the values of the inverted reduced Hessian are those of S if we look

at the rows associated with xI . This is easily verified by comparing the values of S above

with those of (2.43).
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Chapter 3

Bayesian State Estimation

In this chapter we discuss the problem of state estimation from the Bayesian perspective,

in which we take into consideration prior (initial) data about the states and combine it

with measurement information to generate posterior data of the states. In its most general

form, the data used for prior, measurement, and posterior information comes in the form of

probability density functions, and the state estimates are given by (some of) the moments

of these distributions. For example, we may be interested in the mean (minimum variance

estimate) or the mode (maximum likelihood estimate), and some means to characterize

the goodness of the estimate. The latter of which can be obtained through the covariance

matrix of the estimates, which can be used to determine confidence intervals that provide

information on the error associated to the estimates.

In the following section we describe a general Bayesian framework, and in the rest of the

sections we provide some details on some of the most common state estimation methods

used. These descriptions are provided here for convenience since in later chapters they

will be used to approximate important quantities required in Moving Horizon Estimation.

This chapter is organized as follows: Section 3.1 describes the Bayesian Framework and

the well known Kalman Filter (KF). In Section 3.2 a nonlinear extension of the KF is de-

scribed, Sections 3.3, 3.4, and 3.5 describe the Unscented Kalman Filter, Particle Filters, and

the Ensemble Kalman Filter, respectively. Finally, some concluding remarks are given in

Section 3.6.
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3.1 Bayesian Framework

The process in this case is modeled with the following set of equations:

zl+1 = f (zl, ul) + wl (3.1a)

yl = h (zl) + vl, (3.1b)

where zl ∈ ℜnz is the vector of state variables, ul ∈ ℜnu is the vector of known inputs,

yl ∈ ℜny is the vector of measurements or observations,wl ∈ ℜnw is the vector of unknown

disturbances, vl ∈ ℜny is the vector of measurement noise, f : ℜnz 7→ ℜnz is the system

function, and h : ℜnz 7→ ℜny is the measurement model. Note that wl and vl can be consid-

ered deterministic errors of unknown character, i.e., without any stochastic interpretation.

However, herewl and vl are considered zero mean, independent, and normally distributed

random variables. In other words, we have that wl ∼ N (0, Ql), and vl ∼ N (0, Rl). Also,

since the inputs ul are known we can use short hand notation for the state model, i.e.,

zl+1 = f (zl) + wl.

Since the state and measurements are affected by random variables the state estimate

is best described with the conditional probability density function (PDF) p (zk |y0, . . . , yl ).

Depending on the relationship between the time indexes l and k we can generate 3 types

of estimates. This is illustrated in Figure 3.1, where we note that if the measurements are

all in the past with respect to time k then we are predicting the states; if k = l we are

filtering the states, and if the measurements are in the future with respect to k then we are

smoothing the states. For control and monitoring purposes we are usually interested in

filtering and prediction, while for analyzing the past behavior of the system we use the

smoothed state estimates. Finally, these estimates are summarized below:

1. If l > k we obtain the smoothed state estimate,

2. If l = k we obtain the filtered state estimate,
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3. If l < k we obtain the predicted state estimate.

Figure 3.1: Illustration of the relationship between smoothing, filtering, and predicting.

Determining the full structure of this PDF for a general nonlinear system is usually not

possible. However, it is possible to make some assumptions in order to simplify the prob-

lem. These assumptions are:

Assumption 3.1: Assumptions on states and noise variables [15, 73].

(i) The states follow a first order Markov Process (i.e., p (zl |zl−1, . . . , z0 ) = p (zl |zl−1 ) ),

(ii) The noises in the observations are independent of those of the states.

(iii) The measurements are mutually independent.

(iv) The noise variables have zero mean.

In order towrite the posterior PDF as a function of the prior informationwe apply Bayes’

rule. We thus get

p (zk |y0, . . . , yk ) =
p (y0, . . . , yk|zk) p (zk)

p (y0, . . . , yk)
= (3.2a)

=
p (yk|y0, . . . , yk−1, zk) p (y0, . . . , yk−1|zk) p (zk)

p (yk|y0, . . . , yk−1) p (y0, . . . , yk−1)
(3.2b)

p (zk|y0, . . . , yk) =
p (yk|zk) p (zk|y0, . . . , yk−1)

p (yk|y0, . . . , yk−1)
. (3.2c)

Note that the information from the measurements is introduced through the likelihood

p (yk|zk), and that p (yk|y0, . . . , yk−1) does not depend on the states. If we assume that

the posterior distribution p (zk−1|y0, . . . , yk−1) is known at sampling time k then using the
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Chapman-Kolmogorov equation we can propagate the probability density function for-

ward between sampling times to obtain the prior distribution p (zk|y0, . . . , yk−1) [8].

p (zk|y0, . . . , yk−1) =

∫

p (zk|zk−1) p (zk−1|y0, . . . , yk−1) dzk−1 (3.3)

Thus, using Equation (3.3) we can predict the prior probability density function, which

we can then update applying Bayes’ rule and the newest measurement (Eq. (3.2c)). These

two steps, prediction and correction, are common between the filters that share a Bayesian

origin. Furthermore, using Equations (3.2c) and (3.3) we can obtain a difference equation

that describes the time evolution of the posterior density function [8].

p (zk|y0, . . . , yk) =
p (yk|zk)

∫

p (zk|zk−1) p (zk−1|y0, . . . , yk−1) dzk−1
∫ ∫

p (yk|zk) p (zk|zk−1) p (zk−1|y0, . . . , yk−1) dzk−1dzk
(3.4)

Once the posterior distribution is found, the optimal state estimate can be obtained from

minimizing a chosen loss function (Eq. (3.5)) [8, 73]. There are several types of loss func-

tions available, but some of the most common are used to obtain the mean, median, or

mode of the distribution. For example, the minimum variance state estimate is given by the

conditional mean, and it can be evaluated with

minE [L (zk)] =

∫

L (zk) p (zk|y0, . . . , yk) dzk, (3.5)

where, for example, the loss function is L (zk) = γTk Sγk. S is a positive definite weight

matrix, and γk is the vector of errors between the predicted and true state. Minimizing this

loss function will result in the minimum variance estimate (i.e., the conditional mean) [8].

Unfortunately, closed form solutions to (3.5) or explicit expressions for the Chapman-

Kolmogorov Equation and the probability density functions used in Equation (3.3), cannot

be determined easily for general nonlinear systems. Nevertheless, for some restrictive

cases, such as linear Gaussian systems, it is possible to find expressions that allow us to

propagate the full posterior distribution forward in time. For example, in the linear Gaus-

sian case, the solution to (3.5) and also for the Maximum a Posteriori Probability (MAP)
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problem, yields the well known Kalman Filter [74]. This filter is summarized in the fol-

lowing theorem.

Theorem 3.1 (Discrete time Kalman Filter (KF) [8]): The optimal (minimum variance) filter for

the discrete time linear system

zk+1 = Akzk + Γkwk

yk = Hkzk + vk
(3.6)

consists of difference equations for the conditional mean and covariance matrix. Between observa-

tions predictions are generated with,

zk+1|k = Akzk|k

Mk+1|k = AkPk|kA
T
k + ΓkQkΓ

T
k ,

(3.7)

whereMk+1|k is the prior covariance matrix. At observations, the predictions are corrected with

zk|k = zk|k−1 +Kk

[

yk −Hkzk|k−1

]

Pk|k =Mk|k−1 −KkHkMk|k−1,
(3.8)

where Pk|k is the posterior covariance matrices, and where

Kk =Mk|k−1H
T
k

[

HkM
−1
k|k−1H

T
k +Rk

]

(3.9)

is the Kalman gain.

Proof: There are several well known proofs and derivations of this theorem. Some of them

can be found in [7, 8, 74, 75].

For the previous theorem, the noise variables in system (3.6) are also white noise se-

quences where Qk and Rk are the covariance matrices for the states and measurements,

respectively. There are several ways to derive the equations in Theorem 3.1: through or-

thogonal projections, as a recursive solution of a least squares problem, etc [8]. However

here we derive them using a more intuitive path. Assuming that the plant and measure-

ments are given by Equations (3.6), then conditional mean is found with
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zk+1|k = E

[

zk+1

∣

∣

∣Y k
0

]

= E

[

Akzk +Bkuk +Gkwk

∣

∣

∣Y k
0

]

= (3.10a)

= AkE

[

zk

∣

∣

∣
Y k
0

]

+Bkuk = (3.10b)

= Akzk|k +Bkuk (3.10c)

where zk|k = E
[

zk
∣

∣Y k
0

]

and zk|k−1 = E

[

zk

∣

∣

∣
Y k−1
0

]

, E
[

wk

∣

∣Y k
0

]

= 0, Y k
0 = {y0, . . . , yk},

and for future reference, we define Zk
0 = {z0, . . . , zk}. Furthermore, the prior covariance is

determined by

Mk+1|k = E

[

(

zk+1 − zk+1|k

) (

zk+1 − zk+1|k

)T
∣

∣

∣Y k
0

]

= (3.11a)

= E

{

[

Ak(zk − zk|k) +Gkwk

] [

Ak(zk − zk|k) +Gkwk

]T
∣

∣

∣
Y k
0

}

(3.11b)

= AkPk|kA
T
k +GkQkG

T
k (3.11c)

where Pk|k is the posterior covariance matrix obtained with the following conditional

expectation: E

{

(

zk − zk|k
) (

zk − zk|k
)T ∣
∣Y k

0

}

. Also, we have that Qk = E
[

wkw
T
k

∣

∣Y k
0

]

,

Rk = E
[

vkv
T
k

]

, and E
[

wkv
T
k

∣

∣Y k
0

]

= E
[

vkw
T
k

∣

∣Y k
0

]

= 0. This propagates the prior dis-

tribution forward in time avoiding the Chapman-Kolmogorov equation. When the new

measurement becomes available we can correct the prior using the new information by

applying the corrector equations:

zk+1|k+1 = zk+1|k +Kk+1

[

yk+1 −Hkzk+1|k

]

(3.12a)

Pk+1|k+1 =Mk+1|k −Kk+1Hk+1Mk+1|k (3.12b)

Kk+1 =Mk+1|kH
T
k+1

(

Hk+1Mk+1|kH
T
k+1 +Rk+1

)−1
(3.12c)

where Kk is the Kalman gain. These equations can be derived by solving the maximum

likelihood problem, for example, as shown in [7, 8, 76]. A derivation of these equations is

also shown in Appendix A.

As mentioned above, the KF avoids the formation of the Chapman-Kolmogorov Equa-

tion, and provides the optimal solution to the minimum variance, and, for a linear sys-

tem, also the MAP problem. For the latter case, the problem results in a large-scale least
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squares problem, for which the KF provides a recursive solution. This will be shown in the

following chapters when we discuss the optimality conditions related to the Moving Hori-

zon Estimation (MHE) problem. However, for general nonlinear systems it is not always

possible to find the probability density functions associated to the correct noise structure

of the system, and therefore some simplifications are required. In the following sections

some state estimation methods are described which we will also use with MHE to make it

more efficient.

3.2 Extended Kalman Filter

The Extended Kalman Filter (EKF) is probably the most common state estimation method

used for nonlinear systems in industry [7]. This method assumes that the noise variables

wk and vk are independentGaussian random variables, even after propagation through the

nonlinear system. Thus, only the mean and covariance are required to completely describe

their distributions, as in the KF. Moreover, it assumes that the linearized model provides

a good representation of the system which can be used to propagate the covariance of the

noise. Also, themean of the nonlinear function is approximated by evaluating the function

using the mean of its arguments. In this way the prediction of the mean is done with

zk+1|k = E

[

f (zk) + wk

∣

∣

∣Y k
0

]

≈ f
(

E

[

zk

∣

∣

∣Y k
0

])

+ E

[

wk

∣

∣

∣Y k
0

]

(3.13a)

= f
(

zk|k
)

, (3.13b)

where E
[

wk

∣

∣Y k
0

]

=0. The propagation of the covariance is done with Equation (3.11c), and

the correction equations also remain the same. However, the following substitutions are

done:
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Ak = ∇zkf (zl, ul)
T
∣

∣

∣

zk−1|k−1,uk−1

(3.14a)

Hk = ∇zkh (zl)
T
∣

∣

∣

zk−1|k−1

. (3.14b)

The measurement update equations used are the same as in the KF (Eqs. (3.8)), but with

the same substitutions for Ak and Hk used above.

The main drawbacks from using the EKF are the loss of information from using the lin-

earized model, the assumption that Gaussianity will prevail even after nonlinear transfor-

mations (e.g., Eqs. (3.13)), and the lack of bounds enforced during the estimation process.

These can cause performance problems at best, and at worse the state estimates can di-

verge from the true values. For example, Haseltine and Rawlings [6], shows a simple two

state isothermal gas reactor (see Appendix B.1), where the state estimates become negative.

These states represent partial pressures, and therefore, negative values are not physically

possible. Moreover, they show that this could be avoided using a constrained state esti-

mator, such as MHE. Nevertheless, it is also possible to use ad-hoc methods for bound

handling. For example, when a state estimate violates bounds, it can be projected onto

the bound. However, these strategies yield suboptimal estimates, and are usually plagued

with bad performance issues [9, 10, 77]. Finally, some of these issues can also be attributed

to the inconsistent assumption that the noise structure remains Gaussian, even after non-

linear transformations. For example, this is illustrated in Figure 3.2 where we show a set of

points that undergo a nonlinear transformation, and the propagated points are no longer

Gaussian. In order to address this issue sample based filters are used. They make use of

samples to approximate the distributions and make few assumptions on their structure.

Some of these methods will be described below since they will also be used to improve on

the moving horizon estimation methods derived in this thesis.
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Figure 3.2: Nonlinear transformation of Gaussian samples.

3.3 Unscented Kalman Filter

The UKF is based on the idea that “it is easier to approximate a probability distribution than

it is to approximate an arbitrary nonlinear function or transformation” [10, 12, 78]. Thus, the

distribution is approximated using a set of deterministically chosen points called sigma

points. These are selected so that they have a predetermined mean and covariance (e.g.,

zk−1|k−1 and Pk−1|k−1), and they will be symmetrically distributed around the previous

state estimate zk−1|k−1.

The sigma points are generatedusing an augmented state vector ζT = [zTk−1|k−1, w
T
k , v

T
k ]

with mean ζ̄ ∈ ℜna and covariance Pk−1|k−1 = diag
{

Pk−1|k−1, Qk, Rk

}

in the following

way.

Z0 = ζ̄ (3.15a)

Zi = ζ̄ +
(√

(na + κ)Pk−1|k−1

)

i
∀ i = 1, . . . , na (3.15b)

Zi+na = ζ̄ −
(√

(na + κ)Pk−1|k−1

)

i
∀ i = 1, . . . , na (3.15c)

where κ ∈ ℜ is a tuning parameter that allows us to determine the spread of the sigma

points around the mean ζ̄,
(√

(na + κ)Pk−1|k−1

)

i
means the i-th column of the matrix

square root (usually obtained through Cholesky factorization), and Z ∈ ℜna×(2na+1) is

a matrix that contains the 2na+1 sigma points (Zi refers to the i-th column ofZ). Once the

sigma points are determined they are propagated forward using the nonlinear model of

the system (Eq. (3.1)) to determine a set of predicted states and measurements z
(i)
k|k−1 and
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y
(i)
k|k−1 (as illustrated in Figure 3.3), respectively. The weighted mean of these propagated

points is used with the new measurement, when it becomes available, to determine the

state estimate at the current time point. In other words, there are two steps in this method:

first a prediction using the sigma points around the previous estimate and a correction

using the means of the propagated points and the new measurement.

Figure 3.3: Illustration of propagation of sigma points using a nonlinear model.

For the prediction step we generate the sigma points around the previous state estimate

ẑk−1|k−1 using Equation (3.15), and then they are propagated forward using the mathemat-

ical model of the system (3.16) to yield a set of predicted points (z
(i)
k|k−1 and y

(i)
k|k−1).

z
(i)
k|k−1 = f

(

ζ(i)z

)

+ ζ(i)w ∀ i = 1, . . . , 2na (3.16a)

y
(i)
k = h

(

ζ(i)z

)

+ ζ(i)v ∀ i = 1, . . . , 2na (3.16b)

where ζ
(i)
z , ζ

(i)
w , and ζ

(i)
v correspond to the elements that refer to the states, the model noise,

andmeasurement noise of the augmented vector ζ(i) for the i-th sigma point. Theweighted

mean of the predicted states and measurements, as well as their covariance matrices, are

obtained using equations (3.17) and (3.18) respectively.
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zk|k−1 =

2na
∑

i=0

Wiz
(i)
k|k−1 (3.17a)

ȳk =

2na
∑

i=0

Wiy
(i)
k (3.17b)

Pk|k−1 =

2na
∑

i=0

Wi

(

z̄k|k−1 − z
(i)
k|k−1

)(

z̄k|k−1 − z
(i)
k|k−1

)T
(3.18)

where Pk|k−1 is the prior covariance matrix of the states and the weights are determined

with

W0 =
κ

na + κ
(3.19a)

Wi =
1

2(na + κ)
∀ i = 1, . . . , 2na (3.19b)

Once the new measurement becomes available the predicted mean and covariance can

be updated. This is done in a similar way as in the EKF using expression (3.20).

Kk = PzȳP
−1
ȳȳ (3.20a)

zk|k = zk|k−1 +Kk

(

yk − ȳk|k−1

)

(3.20b)

Pk|k = Pk|k−1 −KkPȳȳK
T
k (3.20c)

where Pȳȳ and Pzȳ are determined as follows.

Pȳȳ =

2na
∑

i=0

Wi

(

y
(i)
k|k−1 − ȳk|k−1

)(

y
(i)
k|k−1 − ȳk|k−1

)T
(3.21a)

Pzȳ =

2na
∑

i=0

Wi

(

z
(i)
k|k−1 − zk|k−1

)(

y
(i)
k|k−1 − ȳk|k−1

)T
(3.21b)

Also, note that UKF does not have a direct way to handle bounds. Similarly to EKF

clipping can be performed, but this also inherits similar performance issues as described

before.
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3.4 Particle Filters

Particle Filters (PF) take advantage of Sequential Monte Carlo Sampling and integration

techniques to approximate the distributions and expectations needed for the estimation

problem. Because of this, particle filters are also known as Sequential Monte Carlo Filters.

In general, PFs assume that the posterior distribution is represented by the weighted sum

of Np samples [15, 16]:

p
(

zk

∣

∣

∣
Y k
0

)

≈
1

Np

Np
∑

n=1

δ
(

zk − z
(i)
k

)

≡ p̂
(

zk

∣

∣

∣
Y k
0

)

, (3.22)

where z
(i)
k are assumed to be independent and identically distributed particles drawn from

p
(

zk
∣

∣Y k
0

)

. When Np is sufficiently large p̂
(

zk
∣

∣Y k
0

)

approximates the true posterior, and

with this approximation we can estimate the expected value of a given nonlinear function

F (zk),

E [F (zk)] ≈

∫

F (zk) p̂
(

zk

∣

∣

∣Y k
0

)

dzk

=
1

Np

Np
∑

n=1

∫

F (zk) δ
(

zk − z
(i)
k

)

dzk

=
1

Np

Np
∑

n=1

F
(

z
(i)
k

)

(3.23)

This requires sampling from a posterior distribution which can be a difficult task if we do

not know the shape or type of the distribution. Instead, it is possible to sample from a trial

or proposal distribution (also called importance distribution) from which we assume that

we know all that is needed to define it [16]. At each sampling time, particles are drawn

from the importance density π
(

zk
∣

∣Y k
0

)

, and the expectation approximation in Equation

(3.23) is modified as follows:
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E [F (zk)] =

∫

F (zk) p
(

zk

∣

∣

∣
Y k
0

)

dzk

=

∫

F (zk)
p
(

zk
∣

∣Y k
0

)

π
(

zk
∣

∣Y k
0

)π
(

zk

∣

∣

∣Y k
0

)

dzk

≈
1

Np

Np
∑

n=1

F
(

z
(i)
k

)

ω
(i)
k (zk)

(3.24)

where

ω
(i)
k

(

z
(i)
k

)

=
p
(

z
(i)
k

∣

∣Y k
0

)

πi

(

z
(i)
k

∣

∣Y k
0

) (3.25)

is the weight function for the samples drawn from π
(

zk
∣

∣Y k
0

)

. This can be applied sequen-

tially to update the weights at each sampling time. For that we assume that the chosen

importance distribution has the following recursive form [73].

π
(

zk

∣

∣

∣
Y k
0

)

= π (zk|zk−1, yk)π
(

zk−1|Y
k−1
0

)

π (z0) ∼ p (z0)
(3.26)

Thus, the weight function can be updated with [73]

ω
⋆(i)
k

(

z
(i)
k

)

=
p
(

z
(i)
k

∣

∣Y k
0

)

πi

(

z
(i)
k

∣

∣Y k
0

) ∝
p
(

yk|z
(i)
k

)

p
(

z
(i)
k |z

(i)
k−1

)

p
(

Zk−1
0 |Y k−1

0

)

πi

(

z
(i)
k |Zk−1

0 , Y k−1
0

)

πi

(

Zk−1
0 |Y k−1

0

)

∝ ω
⋆(i)
k−1

(

z
(i)
k−1

) p
(

yk|z
(i)
k

)

p
(

z
(i)
k |z

(i)
k−1

)

πi

(

z
(i)
k |Zk−1

0 , yk

)

(3.27)

Finally, the propagated weights are normalized with

ω
(i)
k

(

z
(i)
k

)

=
ω
⋆(i)
k

(

z
(i)
k

)

∑Np

j=1 ω
⋆(j)
k

(

z
(j)
k

) (3.28)

The normalized weights can now be used with (3.24) to approximate the required mo-

ments.
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We can now outline how the recursive Sequential Monte Carlo Filter works. We begin

by assuming that p
(

yk|z
(i)
k

)

and p
(

z
(i)
k |z

(i)
k−1

)

are known. This means that wk and vk from

(3.1) are random variables with known distributions. The importance distribution can be

obtained with the aid of another type of filter such as EKF, UKF, or an ensemble filter. For

example if the EKF is chosen, the proposal distribution it is equivalent to

πi

(

z
(i)
k

∣

∣

∣Y k
0

)

= N
(

z
(i)
k|k, P

(i)
k|k

)

(3.29)

where z
(i)
k|k is the filtered state estimate for the i-th particle, and P

(i)
k|k is the covariance asso-

ciated with the posterior state estimate, both obtained from EKF. For this outline EKF was

chosen for simplicity, however, this can be generalized to any other method as long as it

generates enough information to determine πi

(

z
(i)
k

∣

∣Y k
0

)

. The filter is first initialized by

drawing samples around z0|0, assuming that this is a random variable with known statis-

tics. At sampling time k, when a new measurement becomes available, EKF using yk is

applied to each sample z
(i)
k−1|k−1, to generate the set of prior points z

(i)
k|k−1, a set of state

estimates z
(i)
k|k, and their associated covariance matrices P

(i)
k|k, which is enough information

to update the weights using (3.27) and (3.28). With these we can now determine the new

state estimate given by the conditional mean evaluated with (3.24) using F
(

zk|k
)

= zk|k.

The updated samples z
(i)
k|k are used again at k+ 1when the newmeasurement is obtained,

and the process is repeated.

Unfortunately, samples updated this way suffer from a common problem called sam-

ple degeneracy (or weight degeneracy), where after some iterations most of the weights

become negligible. This implies that most of the computational work is being applied to

particles that have no weight in the approximation of the distributions. A simple way to

remedy this is through the use of re-sampling that consists of drawing new samples from

a weighted sample pool based on the sample weights at each iteration. More samples will

be drawn from the region with high weights, and therefore more information from the

CHAPTER 3. BAYESIAN STATE ESTIMATION 48



3.5 ENSEMBLE KALMAN FILTERS

samples with more importance will be used [73]. There are several methods described for

re-sampling [15, 16]; here we use the Residual Systematic Re-sampling (RSR) algorithm

described by Arulampalam et al. [16]. The basic idea behind RSR is that at the end of the

re-sampling step there will be multiple replicas of the samples with higher weights, there-

fore increasing their effect in the group. Therefore, after re-sampling the state estimate will

be evaluated using (3.30) (where z
(i)
k are the re-sampled set).

zk|k = E

[

zk

∣

∣

∣
Y k
0

]

=
1

Np

Np
∑

i=1

z
(i)
k (3.30)

3.5 Ensemble Kalman Filters

The Ensemble Kalman Filter (EnKF) also belongs to the family of Monte Carlo Filters, and

was first introduced by Evensen [13]. This method was developed to approximate the co-

variance propagation in EKF using randomly sampled particles instead of the commonly

used Riccati Equation. Thus, EnKF is first initialized assuming that z0|0 is a random vari-

able with known statistics. It may be noted that the probability densities associated with

the initial condition, the state disturbance, and the measurement noise can be arbitrary

and need not be Gaussian. EKF is applied to each particle in the ensemble at any given

sampling time, and between measurements the particles are propagated forward using

the nonlinear model. Therefore the obtained prior (approximated with the samples in the

ensemble) will not remain Gaussian as illustrated in Figure 3.2. Also, because each cor-

rected particle comes from a different prediction, the posterior distribution approximated

by the EnKF could be non-Gaussian. Notice that this method also consists of the prediction

and correction steps of Bayesian Estimation, which it inherits from the EKF and is applied

individually to each particle in the ensemble.

EnKF is first initialized assuming that z0|0 is a random variable with known statistics

(e.g., z0|0 ∼ N (z0|0, Q0)). Np samples are drawn for the initial condition, as well as for the
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model and measurement noise variables to generate the sets of particles z
(i)
k|k, w

(i)
k , and v

(i)
k .

These particles are propagated forward using the mathematical model of the system (Eq.

(3.31)) which generates a set of predicted states and measurements.

z
(i)
k|k−1 = f

(

z
(i)
k−1|k−1

)

+ w
(i)
k−1 (3.31a)

y
(i)
k = h

(

z
(i)
k

)

+ v
(i)
k (3.31b)

The prior distribution is then represented by this ensemble. When the new measurement

becomes available, each particle is corrected using Equations (3.12), where Pk+1|k is the

covariance of the ensemble. In this way, the posterior distribution will be approximated by

the set of corrected points. The state estimate will be given by the mean of these corrected

points, and the covariance associated to the state estimate will be given by the sample

covariance.

Figure 3.4: Comparison between the curves of a typical and a truncated Gaussian distri-
bution.

A constrained version of the EnKF also exists called Constrained Ensemble Kalman Fil-

ter (CEnKF) [19]. It works in a very similar way as the EnKFwith the following exceptions.

To satisfy bounds, the initial condition is now assumed to belong to a truncated Gaussian
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distribution. This distribution can be formed by setting the probability of the random

variable outside of the bounds to zero as illustrated in Figure 3.4. The other main differ-

ence is in the measurement update of the samples. In this case, instead of using (3.12), a

constrained Quadratic Program (QP) is solved for each particle as follows.

ẑ
(i)
k|k = arg min

zk

(

z
(i)
k|k−1 − zk

)T (

P
(i)
k|k−1

)−1 (

z
(i)
k|k−1 − zk

)T
+

{

yk −
[

h (zk) + v
(i)
k

]}T
R−1

k

{

yk −
[

h (zk) + v
(i)
k

]}

(3.32a)

s.t. zLB ≤ z
(i)
k ≤ zUB (3.32b)

Again, the state estimate will be given by the sample mean of the corrected points, and its

covariance can be evaluated from the sample covariance.

3.6 Conclusions

State estimation is an important aspect of process monitoring and process control because

we do not always have the possibility to measure all of the states in the system. In some

cases, some measurements can be obtained only through long laboratory assays, and thus

the delays introduced by state estimation can potentially destabilize the system. All the

state estimation methods described above deal with the fast available measurements in

order to compute current estimates of the unmeasured states. However, these methods do

not possess strategies to deal with bounds on the states in a systematic way, and thus may

have performance issues such as large biases, or the estimated states may violate phys-

ical bounds (e.g., concentrations cannot be negative, temperatures must be in a specific

operating region, etc.).

EKF is probably the most commonly used method in industry because of its simplicity.

However, implementation of this method tends to be cumbersome due to the need of the

Jacobian matrices used in the linearization. On the other hand, the assumptions made
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in developing this method are inconsistent with the stochastic properties of the nonlinear

system. Sample based methods are developed to deal with the latter. It is possible to

represent the distribution of the states through particles, and therefore, approximate the

moments of the PDFs through the samples. These methods also use the nonlinear model

directly which helps provide a better representation of the probability density function.

Unfortunately, neither sample based filters nor EKF can handle bounds in a systematic

way, and thus these strategies are sensitive to errors in the measurements or disturbances.

In order to deal with such problems Moving Horizon Estimation was developed [5, 33].

MHE provides a means to do constrained state estimation in a systematic way, without

many of the inconsistent assumptions done above. In the next chapter we will describe

MHE in detail, and the methods proposed in this dissertation to make it faster and more

robust to measurement errors.
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Chapter 4

Moving Horizon Estimation

In this chapter we derive the Moving Horizon Estimator from the Bayesian perspective

described in Chapter 3. Here we will show how MHE can be derived of as an approxima-

tion of the so-called full information problem, which uses all the available measurements

(present and past) to estimate the trajectory of the states from the first sample time l = 0

to the current one l = k. In addition, we will show that MHE provides a good framework

for constrained state estimation since at each sample time the estimates are computed by

solving an NLP problem. This implies that bounds and constraints can be added, and they

are handled systematically by the NLP solver. In this way we avoid the use of suboptimal

approaches such as clipping. Furthermore, we are able to use the nonlinear systemdirectly

to avoid the loss of information due to linearization. Moreover, some discussion is given

to highlight some of the strengths and weaknesses of these methods.

The rest of the chapter is organized as follows: in Section 4.1 the most commonly used

MHE is derived, Sections 4.2 and 4.3 describe two other possible derivations of the estima-

tor.

4.1 Derivation of MHE

Moving Horizon Estimation can be seen as an approximation of the full information prob-

lem where all the measurements are used to estimate the full trajectory of the states. In

other words, we are interested in finding the conditional probability density function of

the trajectory of the states Zk
0 = {z0, . . . , zk} given the measurements Y k

0 = {y0, . . . , yk}.
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Thus we are interested in finding p
(

Zk
0

∣

∣Y k
0

)

. The derivation of the full information prob-

lem is done by applying Bayes’ rule to this conditional density function. Thus we have

p (z0, . . . , zk|y0, . . . , yk) =
p (y0, . . . , yk|z0, . . . , zk) p (z0, . . . , zk)

p (y0, . . . , yk)
=
p
(

Y k
0

∣

∣Zk
0

)

p
(

Zk
0

)

p
(

Y k
0

) , (4.1)

where the PDF in the denominator is a scaling constant since it is not a function of the

states (only of the known measurements). On the other hand, the terms in the numerator

can be manipulated using the properties of PDFs and Assumptions 3.1, from the previous

chapter. Thus taking the likelihood function p
(

Y k
0

∣

∣Zk
0

)

, and applying the product rule we

have

p
(

Y k
0

∣

∣

∣
Zk
0

)

= p
(

y0

∣

∣

∣
Y k
1 , Z

k
0

)

p
(

Y k
1

∣

∣

∣
Zk
0

)

. (4.2)

Note that measurements are independent of each other, and also, the measurement at

time l is only dependent of the state at the same sample time. Therefore, the above expres-

sion can be simplified to

p
(

Y k
0

∣

∣

∣
Zk
0

)

= p (y0 |z0 ) p
(

Y k
1

∣

∣

∣
Zk
0

)

= p (y0 |z0 ) p (y1 |z1 ) p
(

Y k
2

∣

∣

∣
Zk
0

)

=

=
k
∏

l=0

p (yl |zl ) .
(4.3)

On the other hand, the second term in the numerator of Equation (4.1) can also be sim-

plified. In this case, using the product rule of PDFs we can rewrite that expression as

follows

p
(

Zk
0

)

= p
(

zk

∣

∣

∣Zk−1
0

)

p
(

Zk−1
0

)

. (4.4)

Note that the conditional PDF in the right hand side of Equation (4.4) can be simplified

from Assumption 3.1-(i), since the state sequence is a Markov chain, then the state at time

l only depends on the state at the previous time (l − 1). Therefore Equation (4.4) can be

simplified to
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p
(

Zk
0

)

= p
(

zk

∣

∣

∣Zk−1
0

)

p
(

Zk−1
0

)

= p (zk |zk−1 ) p (zk−1 |zk−2 ) p
(

Zk−2
0

)

=

= p (z0)

k−1
∏

l=0

p (zl+1 |zl ) .
(4.5)

Substituting Equations (4.3) and (4.5) into (4.1), and defining K1 = p
(

Y k
0

)−1
we get

p
(

Zk
0

∣

∣

∣Y k
0

)

= K1 p (z0)

[

k−1
∏

l=0

p (zl+1 |zl )

][

k
∏

l=0

p (yl |zl )

]

, (4.6)

where the expressions in the products can be related to the process andmeasurementmod-

els (i.e., Eqs. (3.1)) through the probability transfer function theorem (see Theorem C.1 in

Appendix C). This implies that we can substitute those terms for the probability density

functions associated to the noise variables, thus we obtain

p
(

Zk
0

∣

∣

∣
Y k
0

)

= K2 p (z0)

[

k−1
∏

l=0

p (wl)

][

k
∏

l=0

p (vl)

]

, (4.7)

where K2 includes the Jacobian determinant of the nonlinear transformation from Eq.

(C.1), which in this case is constant. For a nonlinear system where the noise dynamics

are not additive this term might not be constant and a more general treatment of these

functions might be needed [79].

The full information problem assumes that the state estimate is given by most probable

state, or the mode. Thus we generate the estimates by maximizing the probability density

function (4.7) (or in this case its logarithm). This leads to the following expression,

{ẑ0|k, . . . , ẑk|k} = arg max
{z0,...,zk}

p
(

Zk
0 |Y

k
0

)

=

= arg max
{z0,...,zk}

log p (z0) +

l=k
∑

l=0

log p (vl) +

l=k−1
∑

l=0

log p (wl) ,

(4.8)

where the constant K2 has been removed since it does not affect the values of the state

estimates. Note that in the expression above, the noise variables are functions of the states,
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where the relationship comes from Theorem C.1. Finally, we know (from Assumptions

3.1) that the noise variables follow Gaussian distributions of the form wk ∼ N (0, Qk) and

vk ∼ N (0, Rk). Moreover, we also assume that the initial condition is a Gaussian random

variable with normal distribution given by z0 ∼ N (ẑ0,Π0). Therefore, substituting the

distributions and eliminating constant terms we can rewrite (4.8) as

{ẑ0|k, . . . , ẑk|k} =arg min
{z0,...,zk}

1

2
(z0 − ẑ0)

T Π−1
0 (z0 − ẑ0)+

1

2

l=k
∑

l=0

vTl R
−1
l vl +

1

2

l=k−1
∑

l=0

wT
l Q

−1
l wl

s.t. zl+1 = f (zl) + wl

yl = h (zl) + vl.

(4.9)

FromEquation (4.9) we can obtain optimal estimates of the evolution of the states {ẑ0|k, . . . , ẑk|k}.

Upper and lower bounds on zl, wl, and vl can also be added to the problem in Eq. (4.9) to

include information on the physical properties of the system (e.g., positive concentrations,

mole fractions between 0 and 1, etc.). These bounds project the variables onto the feasi-

ble space thus yielding a truncated Gaussian distribution (illustrated in Figure 3.4) [5, 34].

Although Rao and Rawlings [34] warn against bounding the measurement noise variables

because this may amplify the effects of outliers, adding bounds on the other variables will

allow us to introduce pertinent information that we know about the system which could

potentially help improve the quality of the state estimates.

The main drawback of Problem (4.9) is that it will grow as more measurements become

available; it will grow up to a point when solving it between sample times will be imprac-

tical if not impossible. This is especially bad if the state estimates are intended for on-line

monitoring or control since the introduced delays could destabilize the closed-loop sys-

tem. However, it is possible to approximate the solution of the full information problem

using ideas fromDynamic Programming [80]. Thus, following Rao [5], we derive theMov-

ing Horizon Estimator. First we split the time into two sets t1 = {l| 0 ≤ l < k − N} and
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t2 = {l| k − N ≤ l ≤ k}, where N represents the number of simultaneous measurements

we wish to consider (or horizon length), and then we rewrite the objective function of

Problem (4.9) using standard dynamic programming methods to yield

Ψ(z0, . . . , zk+1) = Φ (zk−N ) +
1

2

l=k
∑

l=k−N

‖yl − h (zl)‖
2
R−1

l

+
1

2

l=k−1
∑

l=k−N

‖zl+1 − f (zl, ul)‖
2
Q−1

l

,

(4.10)

where the norms used here are defined as ‖x‖2A = xTAx and Φ (zk−N ) is defined below.

This is possible because the states, by assumption, are a Markov process, and therefore the

quantity

1

2

l=k
∑

l=k−N

‖yl − h (zl)‖
2
R−1

l

+
1

2

l=k−1
∑

l=k−N

‖zl+1 − f (zl, ul)‖
2
Q−1

l

(4.11)

only depends on the state zk−N , the noise sequence {wl|l = k −N, . . . , k − 1}, and themea-

surements {yl|l = k −N, . . . , k}. Furthermore, the term Φ(zk−N ) is given by

Φ(zk−N) =















































min
z0,...,zk−N

1

2
(z0 − ẑ0)

T Π−1
0 (z0 − ẑ0) +

1

2

l=k−N−1
∑

l=0

vTl R
−1
l vl +

1

2

l=k−N−1
∑

l=0

wT
l Q

−1
l wl

s.t. zl+1 = f (zl) + wl

yl = h (zl) + vl















































, (4.12)

and is known as the arrival cost. This term represents all the information not considered

in the horizon, and from the stochastic point of view it represents the conditional prob-

ability function of the prior (or initial condition) information. In other words Φ(zk−N ) is

directly related to p
(

zk−N

∣

∣

∣Y k−N−1
0

)

. In Figure 4.1 we illustrate the relationship between

the arrival cost and the rest of the terms in Problem (4.10).

On the other hand, note that the objective function of NLP (4.10) only considers the

states, noise variables, and measurements in the horizon (i.e., the last N in the sequence).
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...

Past Horizon window

Figure 4.1: Illustration of how the information is split between the arrival cost and the
horizon window in MHE.

Therefore, the NLP that we need to solve has been reduced in size, provided that we can

supply the arrival cost term or an approximation of it. As time moves forward, when a

new measurement becomes available it is appended to the horizon window, and the first

measurement is dropped. This is illustrated in Figure 4.2. Furthermore, it is important

to note that the arrival cost term will be changing as time moves forward. This is due to

the fact that the initial condition will be changing as the horizon window moves forward.

Thus, the most common MHE formulation is given by

New

Previous

Figure 4.2: Illustration of the moving horizon in MHE.
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min
zk−N ,...,zk

Φ(zk−N ) +
1

2

l=k
∑

l=k−N

vTl R
−1
l vl +

1

2

l=k−1
∑

l=k−N

wT
l Q

−1
l wl

s.t. zl+1 = f (zl) + wl

yl = h (zl) + vl

zLBl ≤ zl ≤ zUB
l ,

(4.13)

where the arrival cost term Φ(zk−N ) has been purposely left as a general expression. How-

ever, this term represents − log
[

p
(

zk−N

∣

∣

∣
Y k−N−1
0

)]

, and it is also possible to rewrite the

above derivation so that the arrival cost term is associated with the posterior distribu-

tion p
(

zk−N

∣

∣

∣Y k−N
0

)

[81] or the smoothed PDF p
(

zk−N

∣

∣

∣Y k−1
0

)

. Nevertheless, it is still

necessary to find an approximation of the probability density function associated with the

arrival cost, regardless of the derivation used. Finally, note that there are twomain types of

arrival cost formulations: filtered (prior or posterior) or smoothed. Thus in the following

subsections we will describe briefly the two main types, and in the following chapters we

will describe techniques used to get efficient methods for approximating these probability

density functions.

4.2 Filtered Update of the Arrival Cost

In the previous section we derived the most common type of Moving Horizon Estimator.

In that case the arrival cost term is associated with the prior PDF of the initial state given

all the past measurements not included in the horizon window. This formulation is given

by the following NLP

min
zk−N ,...,zk

Φ(zk−N ) +
1

2

l=k
∑

l=k−N

vTl R
−1
l vl +

1

2

l=k−1
∑

l=k−N

wT
l Q

−1
l wl (4.14a)

s.t. zl+1 = f (zl) +wl (4.14b)

yl = h (zl) + vl (4.14c)

zLBl ≤ zl ≤ zUB
l , (4.14d)
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where Equation (4.14d) represents bounds on the states. It is common practice to assume

that the arrival cost term is Gaussian, and therefore, it is possible to make the following

substitution Φ(zk−N ) = 1
2

∥

∥zk−N − ẑk−N |k−N−1

∥

∥

2

Π−1
k−N|k−N−1

, where ẑk−N |k−N−1 is a model

prediction of the initial condition that is computed using the state estimate zk−N−1|k−N−1

and the model of the system. The relationship between the predicted initial condition and

theMHE that provides it is given in Figure 4.3. The covariance associated with this predic-

tion (Πk−N |k−N−1) is generated using the covariance propagation equations from EKF (i.e.,

Eq. (3.8)) and the linearized system. However, from Chapter 3 we know that this assump-

tion is not consistent when the system is nonlinear or when there are bounds on the states.

In reality, the arrival cost termwill not remain Gaussian as timemoves forward. Moreover,

the loss of information due to the linearized model used to propagate the covariance will

also introduce errors into the arrival cost term. These errors will propagate through the

horizon resulting in errors in the state estimates. The only ways to reduce the effects of

these errors are to do a better approximation of the arrival cost or to increase the horizon

length. The latter works since the effects of the measurements and model out-weigh the

effects of the arrival cost as N increases.

Figure 4.3: Illustration the filtered update of the arrival cost.
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4.3 Smoothed Update of the Arrival Cost

A second approach for arrival cost estimation is the so-called smoothed approximation of

the arrival cost. For this we re-derive the estimator so that the arrival cost term becomes

p
(

zk−N

∣

∣

∣Y k−1
0

)

. This derivation is done in detail in Chapter 6, and therefore, here we will

just show the PDF of the states that gives rise to the MHEwith smoothed arrival cost. This

PDF is

p
(

Zk
k−N

∣

∣

∣Y k
0

)

= K
p
(

zk−N |Y k−1
0

)

p
(

Y k−1
k−N

∣

∣

∣
zk−N

)

[

k
∏

l=k−N

p (yl| zl)

][

k−1
∏

l=k−N

p (zl+1| zl)

]

, (4.15)

where K represents a scaling constant and the fraction on the right hand side represents

the arrival cost. Here the numerator is the smoothed PDF of the initial condition, while

the denominator is a function that allows us to not overweight the measurements that are

shared between horizon window and the smoothed initial condition. The relationship be-

tween themeasurements that are shared between the predicted initial condition (zk−N |k−1)

and the current horizon window is illustrated in Figure 4.4.

Figure 4.4: Illustration the filtered update of the arrival cost.

In a similar fashion as in the filtered update MHE we can maximize the PDF in (4.15).

This results in a similar NLP as in (4.14). However in this case the arrival cost term be-
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comes Φ(zk−N ) = − log
[

p
(

zk−N |Y k−1
0

)

/p
(

Y k−1
k−N

∣

∣

∣ zk−N

)]

. Furthermore, in the original

derivation of this method the PDFs in the arrival cost are assumed Gaussian [82]. Thus,

after taking this into consideration, the MHE with smoothed arrival cost is given by

min
zk−N

1

2

∥

∥zk−N − ẑk−N |k−1

∥

∥

2

Π−1
k−N|k−1

−
1

2
‖Y − Ozk−N‖2W−1 +

1

2

k
∑

l=k−N

vTl R
−1
l vl +

1

2

k−1
∑

l=k−N

wT
l Q

−1
l wl (4.16a)

s.t. zl+1 − f (zl) + wl = 0 (4.16b)

yl − h (zl) + vl = 0 (4.16c)

zLB ≤ zl ≤ zUB , (4.16d)

where the terms Y , O, and W are all functions of the shared measurements Y k−1
k−N . Expres-

sions for these terms are derived in Appendix D. In addition, the smoothed state estimate

ẑk−N |k−1 is used as the predicted initial condition, and Πk−N |k−1 is the covariance asso-

ciated with the prediction. The latter can be approximated using the EKF and Extended

Kalman Smoothing (EKS) equations, and the linearized model. This requires the forward

propagation of a prior covariance Mk−N |k−N−1 up to Πk−1|k−1, and then the backward

smoothing of Πk−1|k−1 to generate Πk−N |k−1. This can be very computationally expensive

since the covariance matrices formed can be very large depending on the number of states,

and the EKF and EKS equations require matrix inversions that can be very costly.

4.4 Conclusions

In this chapter we derived a general MHE formulation by applying standard dynamic

programming techniques to the full information problem. From doing this a term that

represents the PDF of the initial condition of the plant at the beginning of the horizon,

arises. This so-called arrival cost compresses the information of the measurements that

have not been considered in the horizon. Furthermore, since the initial condition moves
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forward with the horizon, then it is necessary to update the PDF associatedwith the arrival

cost.

In this chapter we also presented two possible ways to represent the arrival cost term.

It can be described with a prior distribution (or even a posterior PDF as shown in the next

chapter), or a smoothed distribution. However, since the system is nonlinear and there

are bounds on the state estimates, the arrival cost PDF is not Gaussian. Thus it impor-

tant to generate approximations of this term that are consistent with the enforced bounds

and constraints, and with the non-Gaussian nature of the states. This will be addressed in

Chapter 5, where we will show that it is possible to reduce the size of the horizon window

by using the constrained sample based filters described in Chapter 3, to update the param-

eters of the arrival cost term. Moreover, in Chapter 6 we will show a very efficient strategy

to extract arrival cost information directly from the KKT conditions of the NLP. This will

be used with the smoothed approach to develop efficient NLP sensitivity based strategies

for constrained state estimation.
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Chapter 5

Filtering Approach for Arrival Cost

In previous chapters we derived the Moving Horizon Estimator, and discussed the ori-

gin of the arrival cost term through the Markov property and dynamic programming ap-

proach to approximate the full information problem. The arrival cost term compresses the

information of the past measurements not included in the horizon, and represents the in-

formation given by the probability density function p
(

zk−N |Y k−N−1
0

)

. However, in this

chapter we will provide a more general form of the arrival cost probability density func-

tion so that it may be represented by a prior or a posterior PDF. This allows us to provide

different ways to approximate it through the use of constrained and unconstrained sample

based filters (see Chapter 3). Moreover, we will show that the required horizon length to

reduce the error in the estimates is directly related to howwell the arrival cost information

is approximated.

The rest of this chapter is organized as follows. In Section 5.1 we derive the filtering ap-

proach for arrival costwhere the associated distribution is the posterior PDF p
(

zk−N |Y k−N
0

)

,

this is useful when using different types of sample based filters to approximate the param-

eters of this term, in order to make better use of the information provided by them. In

Section 5.2 we discuss the use of sample based filters to approximate the first two mo-

ments in the arrival cost when using the quadratic form of this term that, because of its

simplicity, is the most commonly used approach. In Section 5.3 we use ideas taken from

Particle Filters to directly approximate the conditional density of the arrival cost term, and

we illustrate the benefits of these methods through two examples in Section 5.4. Finally,
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Section 5.5 concludes this chapter.

5.1 Posterior PDF for Arrival Cost

In Chapter 4 we derived MHE using the filtering approach for arrival cost as a result of

applying dynamic programming techniques to the full information problem. In that case,

after having split the objective function term for the two time sets, the arrival cost term

involves a prior conditional density function of the initial condition. In other words, the

term Φ (zk−N) = − log
[

p
(

zk−N |Y k−N−1
0

)]

represents the penalization of the prediction

of the initial condition of the dynamic system in the horizon. However, it is possible to

also represent the arrival cost term with a posterior PDF. This can be achieved by splitting

the objective function of Problem (4.9) in the following way

min

[

(z0 − ẑ0)
T Π−1

0 (z0 − ẑ0) +

l=k−N
∑

l=0

vTl R
−1
l vl +

l=k−N−1
∑

l=0

wT
l Q

−1
l wl

]

+

[

l=k
∑

l=k−N+1

vTl R
−1
l vl +

l=k−1
∑

l=k−N

wT
l Q

−1
l wl

]

s.t. model constraints and bounds,

(5.1)

where the first term in brackets has one more measurement (i.e., yk−N ) than Equation

(4.10). Also note that the objective function has been scaled to remove the 1
2 , and simplify

notation. However, this will not affect the values of the states at solution of the optimiza-

tion problem, only the value of the objective function which has been doubled. Moreover,

to simplify notation this has been done throughout the rest of the dissertation. Further-

more, after applying the forward dynamic properties used previously, we obtain the ar-

rival cost term Φ (zk−N ) = − log
[

p
(

zk−N |Y k−N
0

)]

, and the MHE problem with posterior

distribution becomes
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min Φ (zk−N ) +

l=k
∑

l=k−N+1

‖yl − h (zl)‖
2
R−1

l

+

l=k
∑

l=k−N

‖zl+1 − f (zl, ul)‖
2
Q−1

l

s.t. zLBl ≤ zl ≤ zUB
l .

(5.2)

The arrival cost terms in Problems (4.10) and (5.2) require probability density functions

that are generated in the filtering problem (see Chapter 3), which is why we call these the

filtering approach for arrival cost approximation. Unfortunately, as described in Chapter

3 for general nonlinear systems the structure and type of PDFs that describe the states are

very hard, if not impossible, to determine. Because of this, in the first descriptions of MHE

[34, 83, 84, 85], these terms were assumed Gaussian. This leads to further simplifications,

and most importantly, a closed form quadratic expression for the arrival cost. Thus, this

well known MHE formulation is given by

min
∥

∥zk−N − ẑk−N |k−N

∥

∥

2

Π−1
k−N|k−N

+

l=k
∑

l=k−N+1

‖yl − h (zl)‖
2
R−1

l

+

l=k
∑

l=k−N

‖zl+1 − f (zl, ul)‖
2
Q−1

l

s.t. zLBl ≤ zl ≤ zUB
l ,

(5.3)

where the parameters of the arrival cost, i.e., mean and covariance, are generated from

the solution of an MHE problem k − N sample times in the past and the EKF equations,

respectively.

Unfortunately, approximating the mean and covariance in this fashion causes the state

estimates to oscillate as shown in [35, 82]. This is due to the fact that the predicted initial

condition and the current state estimate basically share no measurement information, as

in the formulation in Eq. (5.3), or only one measurement as in (4.14) with a Gaussian

arrival cost term. A second possibility for generating the initial condition prediction is by

generating it with a second filtering algorithm such as EKF or UKF, and the covariance

information can be approximated as before. For the rest of this chapter we will focus on
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using the posterior covariance with the filtering approach.

5.2 Approximation of Arrival Cost Parameters

Incorrect approximations of the arrival cost (as with the Gaussian assumption) introduce

errors that propagate through the horizon. It is therefore necessary to add more mea-

surement information in order to reduce the weight of the initial condition with respect

to the model information and measurement error terms. Furthermore, when bounds are

imposed on the states the Gaussian assumption no longer holds. This is sometimes dealt

with through the use of truncated distributions, which translates to adjusting the covari-

ance matrix, Pk−N |k−N to account for the bounds. The main difficulty with this approach

is that multivariate Gaussian or truncated Gaussian distributions may not prove to be a

good approximation of the conditional densities for a highly nonlinear system. In fact, in

some special cases the conditional densities have been shown to be multi-modal. Never-

theless, in this section we discuss how to approximate the parameters of the arrival cost

when using its quadratic form through the use of constrained and unconstrained sample

based filters such as UKF and CEnKF (see Sections 3.3 and 3.5).. In the following section

we deal with the problem of approximating the conditional densities directly using ideas

taken from particle filters (see Section 3.4).

The 2-norm arrival cost is often used because it is simpler to implement, and to generate

the information required for it. Even if more measurements are required in the horizon to

compensate for the errors in arrival cost estimation. Thus, if for simplicity we choose to use

the quadratic form, then we need good approximations of the mean and covariance. For

consistency, these should satisfy the bounds and constraints imposed on the states. Since

bounds are present the distribution associated with the initial condition p
(

zk−N

∣

∣

∣Y k−N
0

)

will no longer be Gaussian. Thus we use constrained filters to generate parameters that
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are consistent with these bounds. Moreover, we also use sample based filters that allow us

to approximate the moments of the non-Gaussian distribution. These filters are described

in Chapter 3 and are also summarized in Table 5.1 below. Here we propose to approximate

both mean and covariance of the arrival cost term from the values generated using these

filters, because of this we need to run the filter in parallel to MHE. However, since the

initial condition lies in the past, all the measurement information is known. Thus the

computational cost of having this second filter is shifted to the background. In fact, it is

possible to generate the arrival cost information at every point in the horizon, and store it

so it can be used as it is required.

Figure 5.1: Illustration of sample based filter approximation of arrival cost parameters.

Figure 5.1 illustrates how samples are used to approximate the moments of the arrival

cost term. Note that the idea is simple, the secondary filter generates approximations of

the mean and the covariance, these are then used as ẑk−N |k−N and Πk−N |k−N respectively.

However, since these parameters are now consistent with bounds and constraints (e.g.,

when using a constrained filter), and the non-Gaussian nature of the arrival cost term is

taken into account through the use of samples, then it is possible to reduce the amount

of measurements required in the MHE, and have small estimation errors. Finally, these
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methods will be illustrated in Section 5.4 with two case studies.

5.3 Approximation of Arrival Cost Conditional Density

In the Sections 3.5 and 3.4 different sample based filters (e.g., CEnKF and PF) were de-

scribed, and they were used in the previous section to approximate the first two moments

of the conditional density of the arrival cost term. For those cases, the arrival cost used

is the well known 2-norm quadratic expression. However, in this section we describe an

alternate approach where we find an approximation of Φk−N = − log
[

p(zk−N |Y k−N
0 )

]

us-

ing constrained PFs. Some PF formulations construct an approximation of the conditional

density using random samples {z
(i)
k−N : i = 1, 2, . . . , Np} together with the set of weights

{ω
(i)
k−N : i = 1, 2, . . . , Np}, as follows:

p
(

zk−N |Y k−N
0

)

≈

Np
∑

i=1

ω
(i)
k−Nδ

(

zk−N − z
(i)
k−N

)

, (5.4)

where δ (·) denotes the Dirac delta function. The weights can be viewed as approximations

to the relative posterior probabilities of the particles. Since the finite sample approxima-

tion of the conditional density involves Dirac delta functions, it is difficult to compute

Φk−N = − log
[

p(zk−N |Y k−N
0 )

]

directly using this density approximation. However, it is

possible to develop an estimate of the quantityΦk−N through an approximation analogous

to (5.4). Here we approximate − log
[

p
(

zk−N |Y k−N
0

)]

from particle samples, with Dirac

delta terms associated with the distribution of each particle. This leads to:

− log
[

p
(

zk−N |Y k−N
0

)]

≈

Np
∑

i=1

ω
(i)
k−N

{

− log
[

pi

(

z
(i)
k−N |Y k−N

0

)]}

. (5.5)

If we approximate pi

(

z
(i)
k−N |Y k−N

0

)

for each particle to be Gaussian, then

pi

(

z
(i)
k−N |Y k−N

0

)

≈ N
(

ẑ
(i)
k−N |k−N , P̂

(i)
k−N |k−N

)

,

CHAPTER 5. FILTERING APPROACH FOR ARRIVAL COST 69



5.4 EXAMPLES AND DISCUSSION

where ẑ
(i)
k−N |k−N and P̂

(i)
k−N |k−N are the mean vector and the covariance matrices associated

with i-th particle. Since it is proposed to propagate the particles using CEnKF, it is possi-

ble to estimate these quantities from the samples associated with each particle. With this

assumption, it follows that

− log
[

pi

(

z
(i)
k−N |Y k−N

0

)]

≈
∥

∥

∥
zk−N − ẑ

(i)
k−N

∥

∥

∥

2
[

P̂
(i)
k−N|k−N

]−1 ,

and the expression for approximation of Φk−N given by (5.5) reduces to

Φk−N ≈

Np
∑

i=1

ω
(i)
k−N

∥

∥

∥zk−N − ẑ
(i)
k−N

∥

∥

∥

2
[

P̂
(i)
k−N|k−N

]−1 . (5.6)

The resulting expression is qualitatively similar to a Gaussian sum approximation, which

is often used for approximating non-Gaussian densities. Similar expressions have been de-

rived by Gopaluni [86] in a completely different context (i.e., identification of a nonlinear

black box model using the expectation maximization algorithm that employs a particle

filter and a particle smoother). When bounds are imposed on the estimated states and

P̂
(i)
k−N |k−N is estimated using some constrained filter (such as CEnKF or some constrained

EKF), we can continue to use the proposed approximation. The estimates of P̂
(i)
k−N |k−N

generated using the constrained filter are consistent with the bounds.

5.4 Examples and Discussion

In this section two examples are shown where the arrival cost has been estimated accord-

ing to the descriptions given above using unconstrained and constrained sample based

filters. The list of methods used is given in Table 5.1. Also, this table shows how samples

are generated and constraints are handled for each of the filters. Some of these filters have

not been described in Chapter 3, however they have been discussed extensively in the liter-

ature, and information on them can be found in the following references: UKF [10, 11, 12],
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Unscented Recursive Nonlinear Dynamic Data Reconciliation (URNDDR) [9, 17], Ensem-

ble Kalman Filter (EnKF) [13, 14], Constrained Ensemble Kalman Filter (CEnKF) [18], and

PFs [15, 16]. In addition, some of these methods are not constrained, however they are

included here to highlight the effects of not taking bounds into account when updating

the arrival cost. Note that in the following figures the labels of each curve are taken from

column 1 of Table 5.1. Also, MHEN represents the case in which only the covariance is ap-

proximated using EKF, while the mean is obtained by propagating forward one sampling

time the filtered estimate of an MHE solution k −N − 1 sampling times in the past as was

originally described by Rao et al. [33].

Filter Sampling Sample bounds Update type Update bounds

EKF none none linear unconstrained

UKF sigma points none linear unconstrained

EnKF random none linear unconstrained

EnKFPF∗ random/random none linear unconstrained

UKFPF∗ sigma points/random none linear unconstrained

ωEnKFPF∗ random/random none linear unconstrained

URNDDR sigma points clipping nonlinear QP

URNDDRPF∗ sigma points/random clipping weights QP/through density

CEnKF random clipping weights QP

CEnKFPF∗ random/random clipping weights QP/through density

ωCEnKFPF∗ sigma points/random clipping weights QP/through density

Table 5.1: Sampling types and bounds for the different filters used to update the arrival
cost. ∗PF with importance distribution. In these cases sampling and update bounds are
enforced through importance density/particle filter.

Since it is assumed that the state and measurement noises are random variables with

known statistics, then it is possible to compare each of the methods using the normalized

Sum of Squared Errors (SSE). For the i-th method and n-th horizon length we evaluate the
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SSE with

SSE(i)
n =

∑

l∈T

∑

j∈S

(

ẑj,l|l − zj,l
)2
, (5.7)

where ẑj,l|l is the j-th element of the estimated state vector at time l, zj,l is the j-th element

of the true state vector at time l, T is the set of sampling times and S is the set of state

variables. Note that for this the state vectors were also normalized to values between 0

and 1 using the upper and lower bounds, and thus they are dimensionless. Since, for each

pair (i, n), 10 repetitions were done, we take the mean (SSE
(i)
n ). Finally, this is normalized;

thus for each method and horizon length we do the following.

ŜSE
(i)

n =
SSE

(i)
n

SSEmax
(5.8)

where SSEmax is the highest average error of all methods and all cases (repetitions) used.

In other words, we set the highest average error to one with the normalizing factor ob-

tained from

SSEmax = max
{

SSE
(i)
n

}

(5.9)

5.4.1 Example 1: CSTR

As a first example we use the non-isothermal Continuously Stirred Tank Reactor (CSTR)

described in Appendix B.2, where the exothermic reaction between thiosulfate and hydro-

gen peroxide takes place. In this case the states are the concentration of thiosulfate (CA),

the reactor temperature (TR), and the cooling water temperature (Tcw). For the CEnKF

and EnKF based MHE 20 particles were used, and for the particle filters 20 samples were

used. In addition, 15 particles were used for the ensemble filters used for the importance

distribution, giving a total of 300 particles for (ω)EnKFPF and (ω)CEnKFPF. Finally, the

statistical parameters and initial conditions were set to
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wk ∼ N (0, Qk),

vk ∼ N (0, Rk),

z0|0 ∼ N (0, P0),

Qk = diag(10−8, 0.25, 0.25)

Rk = 0.25

P0 = diag(10−7, 2.5, 2.5), z0|0 = [0.0192, 384.0072, 371.2735]T .

In Figure 5.3, ŜSE
(i)

n as a function of horizon length (N ) is shown for both unconstrained

(5.3(a)) and constrained (5.3(b)) filters. Here it is also shown that using EKF to approximate

the arrival cost, using MHEN or EKF, has the worst performance. As expected, on the

other hand, using any of the other filters proposed here works better in the sense that the

prediction errors are lower. In this example no bounds become active during the time

period chosen for the simulation. Thus the difference between using an unconstrained

or a constrained filter is not as clear. Moreover, for most of the methods shown after a

horizon length of 5, little is gained by extending the number of measurements used. For

this case, this suggests that it would be possible to use MHE with a horizon length smaller

than that when EKF is used, and still get much better performance. In other words, the

computational expense of solving a larger Nonlinear Program (NLP) on-line is traded for

simulations required by the sample based filter, which can be carried out using the past

measurements in the time interval between two samples.

Moreover, since this process is described by a system of nonlinear Differential Algebraic

Equations (DAE), it needs to be transformed into a discrete time model. For this we used

the simultaneous approach for dynamic optimization, where we used orthogonal colloca-

tion on finite elements to transform the DAE model into a set of algebraic constraints [24].

Because of this the number of variables in the NLP increases with the size of the horizon

as nv = 2Nnz(ncp + 1) (where ncp is the number of collocation points used, here we used

ncp = 3). Therefore, a considerable reduction in problem size is achieved when using a

better approximation of the arrival cost. For example, in this case if N = 2, the number

of variables is 19, while if N = 10 we get nv = 83. Clearly a reduction in problem size
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will result in a reduction in computational time. For example, using an Intel Quad-core i7

computer running Linux at 2.8Gz with 9Gb RAM, for a horizon length of 6, the average

time to solve the problem was 8.41 × 10−3 CPU s, while for N = 7 and N = 8 it took an

average of 9.120 × 10−3 CPU s and 9.63 × 10−3 CPU s respectively. Note that this is the

time for solving the NLP only, the time for approximating the arrival cost is not considered

since it is done in the background. Therefore, using a better approximation of the arrival

cost will allow us to use a smaller horizon window, and thus there will be a reduction in

the on-line computational effort.
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Figure 5.2: Manipulated variable changes for the CSTR example.

5.4.2 Example 2: Constrained Batch Reactor

In this example the bounds are active, and they play an important part in the performance

of the estimator. Thus in this case the benefit of using constrained filters to approximate

the arrival cost will be obvious. This example was chosen because it is known that EKF

fails for this system [6]. It is a simple isothermal batch reactor in which an irreversible gas
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Figure 5.3: MSE as a function of horizon length when using (a) unconstrained filters and
(b) constrained filters for the arrival cost approximation for the CSTR example.
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phase reaction takes place at constant volume. The discrete time model of this system is

described in Appendix B.1. However, note that CA,k and CB,k are the partial pressures of

components A and B, ∆t = tk − tk−1 = 0.1, k̄ = 0.16 is the kinetic rate constant, and the

measurement is given by the total pressure CT,k (Eq. (5.10)).

CT,k = CA,k + CB,k + vk (5.10)

The parameters of the noise variables statistics are wk ∼ N (0, Qk), vk ∼ N (0, Rk), where

Qk = diag(10−6, 10−6) and Rk = 10−2. Finally, the initial state estimate and the covariance

associated with it are ẑ0 = [0.1, 4.5]T and P0 = diag(36, 36). Note that the state estimate is

far from the true initial condition given by z0 = [1, 3]T . Here, 20 particles were used for

the CEnKF and EnKF, and for the (ω)EnKFPF and (ω)CEnKFPF 15 particles were used plus

10 particles for the importance distribution (i.e., a total of 150 particles).

Figure 5.4 shows the effect of increasing the horizon length when using an inconsistent

approximation of the arrival cost. In this case EKF, which is known to fail for the chosen

simulation conditions, was selected for approximating the arrival cost. This figure shows

that as the horizon length increases, the effects of the arrival cost on the estimator perfor-

mance decreases, and eventually correct state estimates are obtained. Figure 5.5 shows

the simulation results of applying all of the methods for arrival cost approximation used

in the previous example with a horizon length of 5. Here the unconstrained filter based

methods have the worst performance. In particular, when using UKF, the concentration

oscillates between the upper and lower bound. This happens because the MHE tries to

find initial conditions that are close to the predicted ones in the arrival cost, and that also

yield trajectories close to the measurements in the horizon. However, in some sampling

times it is not possible to go beyond the upper bound or below the lower bound in order

to satisfy the measurement model. On the other hand, Figure 5.5 also shows that using an

approximation of the arrival cost, that is consistent with bounds, improves the quality of
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the state estimate. In fact, using any of the constrained methods described here provides

much better state estimates and results in better performance of the estimator.
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Figure 5.4: EKF with different horizon lengths for the isothermal batch reactor.

Figure 5.6 shows ŜSE
(i)

n as a function of horizon length when using unconstrained

(5.6(a)) and constrained filters (5.6(b)). In this case it is clear that using a constrained filter

greatly improves the performance of MHE. Note, that using MHEN also results in better

performance than taking both mean and covariance from EKF as the parameters of the

arrival cost. This is because for MHEN the predicted initial condition of the arrival cost

is taken from a previous MHE (i.e., a constrained prediction), whereas for EKF the initial

condition comes from EKF which has been shown to fail for this system. Moreover, since

the process is described by a discrete time model, the number of variables in the MHE

problem increases as nv = 2N(nz + 1). Therefore, when N = 2 the problem will have 12

variables, while ifN = 10 it will have 60 variables. Again, this means that when using con-

strained sample based filters there will be a reduction in the on-line computational effort,

while obtaining better estimates of the states.
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Figure 5.5: Comparison of MHE with horizon length 5 with all methods using uncon-
strained filters (a) and constrained filters for arrival cost approximation (b).
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Figure 5.6: SSE as a function of horizon length for the isothermal batch reactor with all
methods using unconstrained filters (a) and constrained filters for arrival cost approxima-
tion (b).

It is important to have a smaller horizon length so that the MHE problem can be solved

faster on-line, as soon as the new measurement becomes available. On the other hand, the
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approximation of the arrival cost can be done in the background (i.e., between sampling

times) because this only deals with information in the past which we already have. The

size of the NLP required for MHE when using the full discretization scheme (used here)

grows linearly with the number of states. Moreover, the computational complexity of these

schemes scales as O((nz + nw)
β) (with β = 1 or at most 2) when using a collocation

based approach to discretize the model, and a solver that takes advantage of sparsity and

problem structure such as IPOPT [46, 87]. On the other hand, since the sigma points in UKF

are deterministically chosen, the problem size grows linearly with the number of states as

O(nz+ny+nw). Finally, there is still no property that bounds the computational complexity

of PF [88]. The particle filters shown heremay suffer from the “curse of dimensionality.” In

other words, the number of particles required to approximate the distributions can grow

exponentially with the number of states [39]. However, this may be avoided by a proper

selection of the importance distribution or if the system is “vaguely” Gaussian. For an

insightful discussion on this the reader is referred to Daum and Huang [88]. In the present

case the importance distribution was chosen because it satisfies constraints (CEnKF) and

uses samples to approximate the distributions. Thus it should give close approximations of

the real distributions, and therefore aid in avoiding the dimensionality problem associated

with PF. Moreover, because the sample based filters are only applied in the background,

these types of arrival cost approximations should still be viable for problems of relatively

low dimensionality.

5.5 Conclusions

Extended Kalman Filter (EKF) approximations of the arrival cost parameters in moving

horizon estimation (MHE) introduce unwanted errors that propagate through the horizon

window. These errors require the choice of longer horizon lengths that also require a larger
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optimization problem to be solved on-line. The errors are due to the assumption in EKF

that the probability density function of the states, given the previous measurements at the

beginning of the horizon, p
(

zk−N |Y k−N
0

)

, is Gaussian. In addition, since the states often

have bounds, this implies that the EKF propagation of covariance matrices in the arrival

cost is inconsistent.

On the other hand, particle-based filters can approximate arrival cost distributions us-

ing samples, and thus require few assumptions on the type of distribution. In addition,

these methods use the nonlinear model directly. Thus, we also avoid forming the Jacobian

matrices needed for EKF. Moreover, CEnKF and constrained PFs handle bounds on the

states, and thus provide a more consistent approximation of the arrival cost. Here, we use

these features to develop constrained methods for approximating the arrival cost in MHE.

Specifically, in the traditional 2-norm approximation, constrained particle based filters are

used to generate the first two moments of the arrival cost distribution. In addition, we

also develop a method to approximate the arrival cost distribution from the explicit log

likelihood approximation of the conditional PDF, using concepts from particle filtering.

The resulting improvements in the arrival cost approximation allow us to use a smaller

horizon window for MHE, and a smaller NLP can be solved on-line. Here, different

sample-based filters are tested with two benchmark examples taken from the literature,

and we show the benefit of using these constrained particle-based arrival cost approxima-

tions. As measured by the sum of squares error (SSE), these filters give a better approx-

imation of the arrival cost and demonstrate that a much smaller horizon achieves good

performance of the MHE.

Finally, we observe that even when bounds do not become active in the MHE, the con-

strained filters do not reduce to unconstrained filters. When constrained filters are em-

ployed, the particles used in the estimation of arrival cost remain within the specified

bounds, which, in turn, significantly improve the estimates of the arrival cost (see Example
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5.4.2). Having bounds on the particles used for estimation of the arrival cost also implies

that the non-Gaussian nature of the conditional state density is implicitly consideredwhile

constructing the estimate. As a consequence, the mean square errors remain smaller for

shorter horizons when constrained filters are used to estimate the arrival cost.
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Chapter 6

Smoother Approach for Arrival Cost

In this chapter we derive the MHE estimator formulation where the arrival cost term is

defined by the smoothed density p
(

zk−N |Y k−1
0

)

. The motivation behind this approach is

that, for a large enough system, using a sample based approach to approximate the filtered

arrival cost would require a massive amount of particles. The computational expense for

computing these parameters might not be easily justified in such a case. On the other

hand, for such a system it might be better to use a larger horizon and approximations of

the arrival cost parameters based on EKF. For example, using the prediction of the initial

condition using theMHE state estimate obtained k−N−1 sample times in the past and the

covariance from EKF, as originally proposed by [83]. However, this formulation has been

shown to produce oscillating state estimates [35], because the filtered arrival cost and the

rest of the state estimates in the horizon window share only one measurement. In fact, in

the same manuscript, the authors suggest the use of the smoothing arrival cost as a better

alternative. However, they propose the approximation of the arrival cost covariance using

both the EKF and Extended Kalman Smoother (EKS) equations.

This chapter is organized as follows. In Section 6.1 we derive MHE with the smoothed

arrival cost update, and we discuss how we can generate covariance information for the

initial condition with the use of the Riccati equations. Additionally, in this section we

introduce a property that relates the covariance of the state estimates with the reduced

Hessian which we then use to approximate the smoothed covariance. Then, in Section

6.2 we illustrate the use of these strategies in two simulation examples, and finally we
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conclude in Section 6.3.

6.1 Derivation of MHE with Smoothed Arrival Cost

This derivation follows closely the one used for the full information problem. However,

in this case we note that the density function of the states in the horizon window is given

by p
(

Zk
k−N

∣

∣Y k
0

)

. Therefore we can apply the properties of probability density functions

to rewrite this density as

p
(

Zk
k−N

∣

∣

∣
Y k
0

)

=
p
(

Zk
k−N , Y

k
0

)

p
(

Y k
0

) = K1p
(

Zk
k−N , Y

k
0

)

= (6.1a)

= K1p
(

zk, yk|Z
k−1
k−N , Y

k−1
0

)

p
(

Zk−1
k−N , Y

k−1
0

)

= (6.1b)

= K1p
(

zk, yk|Z
k−1
k−N , Y

k−1
0

)

p
(

Zk−1
k−N

∣

∣

∣
Y k−1
0

)

p
(

Y k−1
0

)

= (6.1c)

= K2p
(

zk, yk|Z
k−1
k−N , Y

k−1
0

)

p
(

Zk−1
k−N

∣

∣

∣
Y k−1
0

)

, (6.1d)

where K1 and K2 are scaling constants that do not depend on the states. We can further

simplify this using the Assumptions 3.1. Therefore, we can apply the Markov property to

Eq. 6.1d, and since measurements are independent of each other we have

p
(

Zk
k−N

∣

∣

∣
Y k
0

)

= K2p (yk| zk) p (zk| zk−1) p
(

Zk−1
k−N

∣

∣

∣
Y k−1
0

)

. (6.2)

In order to obtain the smoothed covariance we nowapply the product rule to p
(

Zk−1
k−N

∣

∣

∣
Y k−1
0

)

,

which leads to

p
(

Zk−1
k−N

∣

∣

∣Y k−1
0

)

= p
(

Zk−1
k−N+1

∣

∣

∣ zk−N , Y
k−1
0

)

p
(

zk−N |Y k−1
0

)

= (6.3a)

=
p
(

Zk−1
k−N+1, Y

k−1
0

∣

∣

∣ zk−N

)

p
(

Y k−1
0

∣

∣

∣ zk−N

) p
(

zk−N |Y k−1
0

)

, (6.3b)

where Eq. (6.3b) comes from applying Bayes’ rule. Note that this final expression has

the smoothed probability function of the initial condition. We now derive the MHE with
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smoothed arrival cost by further manipulating the distribution functions. Thus, we apply

the product rule to the density function on the numerator of (6.3b) to yield

p
(

Zk−1
k−N+1, Y

k−1
0

∣

∣

∣ zk−N

)

= p
(

Y k−1
0

∣

∣

∣Zk−1
k−N

)

p
(

Zk−1
k−N+1

∣

∣

∣ zk−N

)

. (6.4)

We substitute Equation (6.4) into (6.3b), and reorganize the expressions to form

p
(

Zk−1
k−N

∣

∣

∣
Y k−1
0

)

=
p
(

zk−N |Y k−1
0

)

p
(

Y k−1
k−N

∣

∣

∣ zk−N

)p
(

Y k−1
k−N

∣

∣

∣
Zk−1
k−N

)

p
(

Zk−1
k−N+1

∣

∣

∣
zk−N

)

, (6.5)

where we have substituted Equations (6.6) to simplify the density functions. Note that the

latter expressions are possible because of theMarkov property, and because measurements

are independent from each other, and they are given by

p
(

Y k−1
0

∣

∣

∣
zk−N

)

= p
(

Y k−1
k−N

∣

∣

∣
zk−N

)

p
(

Y k−N−1
0

)

(6.6a)

p
(

Y k−1
0

∣

∣

∣
Zk−1
k−N

)

= p
(

Y k−1
k−N

∣

∣

∣
Zk−1
k−N

)

p
(

Y k−N−1
0

)

. (6.6b)

The density functions p
(

Y k−1
k−N

∣

∣

∣Zk−1
k−N

)

and p
(

Zk−1
k−N+1

∣

∣

∣ zk−N

)

in Equation (6.5) can be

treated similarly to Eqs. (4.3) and (4.5), respectively. Thus we can write

p
(

Y k−1
k−N

∣

∣

∣
Zk−1
k−N

)

=
k−1
∏

l=k−N

p (yl| zl) (6.7a)

p
(

Zk−1
k−N+1

∣

∣

∣ zk−N

)

=

k−2
∏

l=k−N

p (zl+1| zl) . (6.7b)

Finally, we now substitute Equations (6.7) and (6.5) into (6.2) to obtain the MHE with

smoothed arrival cost. This is given by

p
(

Zk
k−N

∣

∣

∣Y k
0

)

= K2

p
(

zk−N |Y k−1
0

)

p
(

Y k−1
k−N

∣

∣

∣
zk−N

)

[

k
∏

l=k−N

p (yl| zl)

][

k−1
∏

l=k−N

p (zl+1| zl)

]

, (6.8)

where the arrival cost term is represented by
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p
(

zk−N |Y k−1
0

)

p
(

Y k−1
k−N

∣

∣

∣ zk−N

) . (6.9)

Note that in the numerator of this expression we have the smoothed PDF, while the

denominator is a correction term that is used to not overweight the measurements that

are shared between the smoothed estimate and the horizon window. This is illustrated in

Fig. 6.1, where the shared information is represented by the shadowed area, and the dot

represents the smoothed state estimate used to predict the initial condition of the system.

Figure 6.1: Illustration of the shared information between smoothed state estimate and the
horizon window.

Finally, to calculate the state estimates we maximize the probability of the states in the

horizon given the measurements, in other words we maximize the PDF in (6.1). However,

since the noise variables have been assumed Gaussian, maximizing Equation (6.8) can be

computed with
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min
zk−N

1

2

∥

∥zk−N − ẑk−N |k−1

∥

∥

2

Π−1
k−N|k−1

−
1

2
‖Y − Ozk−N‖2W−1 +

1

2

k
∑

l=k−N

vTl R
−1
l vl +

1

2

k−1
∑

l=k−N

wT
l Q

−1
l wl (6.10a)

s.t. zl+1 − f (zl)− wl = 0 (6.10b)

yl − h (zl)− vl = 0 (6.10c)

zLB ≤ zl ≤ zUB , (6.10d)

where a further simplification is done by assuming that the densities in the arrival cost

term are Gaussian. Also, expressions Y , O, and W in the objective function (Eq. (6.10a))

are generated using the data that the two windows share (see Fig. 6.1), that is Y k−1
k−N . These

values can then be computed directly using the data and the model, and updating them is

therefore not a problem. In Appendix D we show expressions that can be used to generate

these terms. On the other hand, the arrival cost term parameters need to be generated

In this case, the initial condition is predicted with the smoothed MHE solution at sample

time k − 1. Following Tenny and Rawlings [35], the covariance associated with the initial

condition is computed using the EKF and EKS equations in combination with a linearized

version of the model. To do so, the initial prior covariance Mk−N−1|k−N−2 is propagated

forward up to sample time k − 1 using

Mk+1|k = AkPk|kA
T
k +Qk

Pk+1|k+1 =Mk+1|k −Mk+1|kH
T
k+1

(

Hk+1Mk+1|kH
T
k+1 +Rk+1

)−1
Hk+1Mk+1|k,

(6.11)

where Al = ∇zf (zl)
T and Hl = ∇zh (zl)

T . The final posterior covariance Πk−1|k−1 is

smoothed backwards to generate Πk−N |k−1 with (i.e., EKS equation)

Πl|k = Πl|l +Πl|lA
T
l M

−1
l+1|l

(

Πl+1|k −Ml+1|l

)

M−1
l+1|lAlΠl|l, (6.12)

where the same definitions apply for Al. The propagation of the covariances is illustrated

in Figure 6.2. However, it is important to note that this propagation requires multiple
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matrix inversions, and these are repeated at each sample time in the horizon. This could

be very computationally expensive for a large scale system, and more importantly it is

possible to show that the smoothed covariance information can be extracted directly from

the KKT conditions of NLP (6.10), which is the subject of the following sections.

Figure 6.2: Illustration of the propagation of covariances in the smoothing arrival cost
approach.

6.1.1 Optimality Conditions of MHE

In this sectionwe show how the linearized optimality conditions of NLP (6.10) relate to the

Riccati equations used in EKF and EKS (Eqs. (6.11) and (6.12)). This analysis will help us

show that it is possible to extract the covariance information from the linearized KKT con-

ditions of the NLP by using ideas from optimal sensitivity of the solutions. Furthermore,

we show that this forward and backward propagation of the covariance matrices is done

internally in the KKT conditions of MHE at the solution. Thus, we can avoid the expensive

propagations using the aforementioned Riccati equations, since this is taken care of by the

optimizer.

We establish these relationships using the sensitivity ideas implemented on the solver
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IPOPT [67], and using the KKT conditions of NLP (6.10). The KKT conditions are found

by finding stationary points of the Largrange function

L =
1

2

∥

∥zk−N − ẑk−N |k−1

∥

∥

2

Π−1
k−N|k−1

−
1

2
‖Y − Ozk−N‖2W−1 +

1

2

k
∑

l=k−N

‖yl − h (zl)‖R−1
l

+
1

2

k−1
∑

l=k−N

wT
l Q

−1
l wl +

k−1
∑

l=k−N

λTl+1

[

zl+1 − f (zl)− wl

]

(6.13)

where λl represent the vectors of Lagrange multipliers associated with the model con-

straints (Eq. (6.10b)). Thus, the KKT conditions are given by Equations (6.14a)-(6.14e).

Also, to simplify the discussion, we have dropped the bound inequalities, which we as-

sume are handled implicitly through the logarithmic barrier function in IPOPT [46].

∇zk−N
L = Π−1

k−N |k−1 (zk−N − ẑk−N ) +OTW−1 (Y −Ozk−N )−

AT
k−Nλk−N+1 −HT

k−NR
−1
k−N

[

yk−N − h (zk−N )
]

= 0 (6.14a)

∇zlL = −HT
l R

−1
l

[

yl − h (zl)
]

+ λl −AT
l λl+1 = 0, (6.14b)

∀ l = k −N + 1, . . . , k − 1

∇zkL = −HT
k R

−1
k

[

yk − h (zk)
]

+ λk = 0 (6.14c)

∇wl
L = Q−1

l wl −AT
l λl+1 = 0, ∀ l = k −N, . . . , k − 1 (6.14d)

∇λl
L = zl+1 − f (zl)− wl = 0, ∀ l = k −N, . . . , k − 1 (6.14e)

For the above equations, the following definitions apply: AT
l = ∇zlf (zl, wl), and H

T
l =

∇zlh (zl, vl). NLP solvers apply Newton’s method and compute search directions by lin-

earizing the KKT conditions (6.14) around the current point. This leads to the following

linear system:
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Pk−N∆zk−N − Fk−N∆wk−N −AT
k−N∆λk−N+1 = −rzk−N

(6.15a)

Pl∆zl − Fl∆wl +∆λl −AT
l ∆λl+1 = −rzl , (6.15b)

∀ l = k −N + 1, . . . , k − 1

Pk∆zk +∆λk = −rzk (6.15c)

−F T
l ∆zl +Wl∆wl −GT

l ∆λl+1 = −rwl
, (6.15d)

∀ l = k −N, . . . , k − 1

∆zl+1 −Al∆zl −Gl∆wl = −rλl+1
, (6.15e)

∀ l = k −N, . . . , k − 1,

where we define Pl = ∇2
zl
L, Wl = ∇2

wl
L, Fl = ∇wlzlL, and GT

l = ∇wl
f (zl, wl). For

the purpose of analysis we obtain a recursive solution of the above KKT system. This

is achieved through a forward Riccati decomposition of the system, which leads to the

following explicit solution of (6.15):

∆zk = −Πk

(

M−1
k rMk

+ rzk
)

(6.16a)

∆λl−1 =M−1
l−1

(

∆zl−1 + rMl−1

)

(6.16b)

∆zl−1 = Πl−1

(

Fl−1W
−1
l−1G

T
l−1 +AT

l−1

)

∆λl−

Πl−1

(

Fl−1W
−1
l−1rwl−1

+M−1
l−1rMl−1

+ rzl−1

)

(6.16c)

∆wl−1 =W−1
l−1F

T
l−1∆zl−1 +W−1

l−1G
T
l−1∆λl −W−1

l−1rwl−1
(6.16d)

∀ l = k, . . . , k −N,

where the following definitions are used

Pk =
(

Pk +M−1
k

)−1
(6.17a)

Pk−N =
(

Pk−N − Fk−NW
−1
k−NF

T
k−N

)−1
(6.17b)

Pl =
(

Pl − FlW
−1
l F T

l +M−1
l

)−1
(6.17c)

Ml+1 =
(

Al +GlW
−1
l F T

l

)

Πl

(

AT
l + FlW

−1
l GT

l

)

+GlW
−1
l GT

l (6.17d)

∀ l = k −N + 1, . . . , k − 1

and finally
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rMl
= rλl

+Gl−1W
−1
l−1rwl−1

+
(

Al−1 +Gl−1W
−1
l−1F

T
l−1

)

Πl−1

(

Fl−1W
−1
l−1r

T
wl−1

+M−1
l−1rMl−1

+ rzl−1

)

(6.18a)

rMk−N+1
= rλk−N+1

+Gk−NW
−1
k−Nrwk−N

+
(

Ak−N +Gk−NW
−1
k−NF

T
k−N

)

Πk−N

(

Fk−NW
−1
k−Nr

T
wk−N

+ rzk−N

)

(6.18b)

∀ l = k −N + 2, . . . , k.

Note that Equations (6.16) propagate the states in the horizon, and for this we use the

matrices formed with Equations (6.17). Furthermore, the latter are the forward Riccati

equations that propagate the covariance forward in time (in particular see Eqs. (6.17a-

6.17d)). In fact, if the dynamic system is linear and the noises are Gaussian, it is possible to

show that Equations (6.17)(a-d) represent the forward propagation of the covariances used

in the Kalman Filter. In addition, for a nonlinear system with additive noise, Equations

(6.17) correspond to the EKF equations used for the propagation of the covariance matrices

(if we set Fl = 0). However, note that second order information is used for both covariance

and state propagation, which is not commonly done in the design of Extended Kalman

Filters. Thus, MHE, with an NLP solver that uses exact first and second order information,

has the added benefit of including said derivative information in the calculation of the

states and covariances. This shows that the forward propagation of the covariances is done

in the optimality conditions of the problem. It is even possible to extract these matrices

directly from the linearized KKT system as shown in Zavala et al. [87]. However, we still

need the smoothed covariance, and in the following subsectionswe show that this can also

be extracted from the linearized optimality conditions of NLP (6.15).

6.1.2 Covariance-Reduced Hessian Relation

The relationship between the reduced Hessian and the covariance of the smoothed (and

filtered) state estimates is summarized in the following Property.
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Property 6.1 (Covariance of state estimates.): Assume that at the solution of (6.10) there are

no active bound constraints, and the linear independence constraint qualification (LICQ) and suf-

ficient second order condition hold. Then the inverse of the reduced Hessian of NLP (6.10) is an

approximation of the smoothed and filtered covariance of the state estimates. In other words, we

have that

Cov
(

Zk
k−N

)

≈
(

ZT∇2
xLZ

)−1
= H−

R (6.19)

where Z is the null space of the Jacobian of constraints (6.10b)-(6.10c).

Proof of Property 6.1: The proof follows by introducing stochastic perturbations of the

measurements and the state estimates in the linearized optimality conditions at the optimal

point. Then solving for the state estimates and computing the expected value of the outer

product of the change in the state estimates. To simplify the notation we make a change of

variables with the following definitions

yT =
[

yTk−N , . . . , y
T
k

]

θT =
[

zTk−N , . . . , z
T
k

]

and

c (y, θ) =





















yk−N − h (zk−N)− vk−N
...

yk − h (zk)− vk
zk−N+1 − f (zk−N )− wk−N

...
zk − f (zk−1)− wk−1





















Vy = diag (Rk−N , . . . , Rk, Qk−N , . . . , Qk−1)

= E
[

δyδ
T
y

]

Vθ = diag
(

Πk−N |k−1, 0, . . . , 0
)

= E
[

δθδ
T
θ

]

.

Also note that E
[

δyδ
T
θ

]

= 0, and thus with the previous definitions we rewrite NLP

(6.10) as

min
θ,y

1

2

[

(y − ŷ)TV −1
y (y − ŷ) + (θ − θ̂)T V̂ −1

θ (θ − θ̂)
]

(6.20a)

s.t. c(θ, y) = 0, (6.20b)
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and the optimality conditions of this NLP are given by the following system of nonlinear

equations evaluated at the optimal point

∇yL = V −1
y (y∗ − ŷ) +∇yc (θ

∗, y∗)λ∗ = 0 (6.21a)

∇θL = V −1
θ

(

θ∗ − θ̂
)

+∇θc (θ
∗, y∗)λ∗ = 0 (6.21b)

c (θ∗, y∗) = 0. (6.21c)

From the above equations and LICQ [21] we can define λ∗ as

λ∗ = −
(

ATA
)−1

AT





V −1
y

(

y∗ − ŷ
)

V −1
θ

(

θ∗ − θ̂
)



 , (6.22)

where AT = ∇c (θ∗, y∗). In addition, a suitable maximum likelihood assumption on (6.20)

is that E [y∗ − ŷ] = 0 and E

[

θ∗ − θ̂
]

= 0. Therefore, this leads to E [λ∗] = 0.

Using the expected value λ∗ = 0, and introducing stochastic perturbations (δy , δθ) of the

measurements (ŷ) and data (θ̂), the linearized KKT conditions given by (6.21) are





V −1
y 0 AT

y

0 V −1
θ AT

θ

Ay Aθ 0









∆y
∆θ
∆λ



 =





V −1
y δy
V −1
θ δθ
0



 . (6.23)

where the null space is defined with

Z =

[

−A−1
y Aθ

I

]

, (6.24)

and we have that

ZT

[

AT
y

AT
θ

]

= 0.

Then, assuming Ay is non-singular, we can use the last row of (6.23) to solve for ∆y =

A−1
y Aθ∆θ. We then substitute the latter into (6.23), we drop the last row, and pre-multiply

by ZT to get

ZT

[

V −1
y 0

0 V −1
θ

] [

−A−1
y Aθ

I

]

∆θ = ZT

[

V −1
y δy
V −1
θ δθ

]

. (6.25)

Finally, we solve for ∆θ, which yields
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∆θ =

{

ZT

[

V −1
y 0

0 V −1
θ

]

Z

}−1

ZT

[

V −1
y δy
V −1
θ δθ

]

= H−
R ZT

[

V −1
y δy
V −1
θ δθ

]

. (6.26)

We can now compute the covariance of the state estimates with the expected value

E
[

∆θ∆θT
]

,

E
[

∆θ∆θT
]

= H−
R ZT

[

V −1
y 0

0 V −1
θ

]

E

{[

δyδ
T
y δyδ

T
θ

δθδ
T
y δθδ

T
θ

]}[

V −1
y 0

0 V −1
θ

]

ZH−
R . (6.27)

Finally, after canceling out terms, we establish that

E
[

∆θ∆θT
]

= Cov
(

Zk
k−N

)

≈ H−
R , (6.28)

and this concludes the proof of Property 6.1.

The approximation shown in Property 6.1 is similar to using the EKS (e.g., Equation

(6.12)). This is easily verified by extracting the reduced Hessian from the linearized opti-

mality conditions in Eq. (6.15), or the recursive solution given by (6.16)-(6.18).

For example we can extract the covariance of the filtered state estimate by setting rzk =

−I, rzl = rwl
= rλl+1

= 0 for l = k − N, . . . , k − 1, and solving for ∆zk using Equations

(6.16)-(6.18). Thus, we have that rMk
= 0, and from (6.16a)

∆zk = Πk. (6.29)

As another example, the covariance of the smoothed state estimate at k − 2 can be com-

puted in a similar fashion. If we set rzk−2
= −I, rwl

= rλl+1
= 0 for l = k − N, . . . , k − 1,

and rzl = 0 for all l 6= k − 2. Therefore, we have that rMl
= 0 for l ≤ k − 2, and, to sim-

plify notation, we define Γl = Πl

(

AT
l + FlW

−1
l GT

l

)

M−1
l+1. Now we can solve for∆zk,∆λk,

∆zk−1, ∆λk−1, then after making all the substitutions into ∆zk−2 and grouping terms, we

get

∆zk−2 = Πk−2 + Γk−2

[

Πk−1 −Mk−1 + Γk−1 (Πk −Mk) Γ
T
k−1

]

ΓT
k−2. (6.30)
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This is further simplified if we define Πk−1|k = Πk−1 + Γk−1 (Πk −Mk) Γ
T
k−1, thus, we

finally get

∆zk−2 = Πk−2 + Γk−2

(

Πk−1|k −Mk−1

)

ΓT
k−2. (6.31)

Note that Equation (6.31) is analogous to (6.12), and the same could be done for all ∆zl,

where similar expressions can be found. Furthermore, when using the reduced Hessian to

approximate the covariance matrices, as described above, we use second order informa-

tion, which is not usually done in typical EKS (or EKF) formulations. Finally, depending

on the characteristics of the process andmeasurements models, we have the two following

corollaries to Property 6.1.

Corollary 6.1 (Covariance of nonlinear system with additive noise.): For a nonlinear sys-

tem with additive noise models (i.e., zl = f (zl−1) + wl−1 and yl = h (zl) + vl), the covariance

approximation in Property 6.1 is the Extended Kalman Smoother (with second order information).

Corollary 6.2 (Covariance of unconstrained linear Gaussian systems.): For a linear uncon-

strained Gaussian system the approximation given in Property 6.1 is exact. In other words, the

inverse of the reduced Hessian is the Kalman Smoothing covariance.

Therefore, using Property 6.1 we can approximate the smoothed covariance of the state

estimates in the horizon through the inverted reducedHessian. Note, however, that IPOPT

does not naturally form this matrix as part of the solution algorithm, thus we must extract

it directly from the KKT matrix using the strategy described in Section 2.2.3. This method-

ology requires a single back-solve per column in the covariance matrix. Nevertheless, at

the solution we can freeze the already factorized KKT matrix from IPOPT, and simply

solve the linear system (2.5) using different right hand sides (one for each column). This is

much cheaper than propagating matrices forwards and backwards using EKF and EKS.
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6.1.3 Sensitivity Based MHE

In the previous sections we described how to extract covariance information from the op-

timality conditions of the NLP associated with the MHE problem (Eq. (6.10)). Using these

methods, we can approximate the arrival cost parameters of the MHE formulation de-

scribed in Eq. (6.10), using the smoothed information taken directly from the optimal solu-

tion of the NLP. This formulation takes the prediction of the initial condition for the MHE

at sample time k from the solution of the previous NLP at sample time k− 1, as illustrated

in Figure 4.4. In other words, we use ẑk−N |k−1 = z∗k−N+1|k−1 to approximate the mean of

the arrival cost PDF. On the other hand, we avoid the forward and backward propagation

of covariance matrices by extracting this information directly from the reduced Hessian at

the optimal point, as described in Section 6.1.2.

6.2 Simulation Examples

In this Section we use two examples to illustrate the use and performance of the methods

described in this chapter. The first case is used as a proof of concept example to illustrate

the benefits of avoiding the propagation of matrices with EKF and EKS. The second exam-

ple deals with a large scale binary distillation column for which MHE is used to estimate

liquid molar holdups and liquid compositions for the light component, for all trays.

6.2.1 CSTR Network

To illustrate the benefits of approximating the arrival cost through the reduced Hessian

we use a CSTR network which is modeled using the system of ODEs described in Section

B.2. Each reactor in the network has two states: the concentration of component A and

the temperature of the reactor. The latter is also used as the measured state. Therefore by

increasing the number of reactors in the network, the number of states increases by 2 and
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State Model variance Measurement Variance

CA,i 10−1 –

Ti 10−1 0.5

Table 6.1: Parameters of noise variables used in Example 6.2.1.

the number of measurements increases by 1. The properties of the state and measurement

noise used here are summarized in Table 6.1.

Figure 6.3 shows the true and estimated profiles of the concentrations and temperatures

when there are 6 reactors in the network, 20 measurements in the horizon. In this ex-

ample the estimation error is very small due to the small amounts of added noise, and

therefore most curves are overlapping each other. However, it is still possible to note that

the estimate is able to estimate the states properly. Moreover, Figure 6.4 shows the ap-

proximate number of operations required to generate the approximation of the arrival cost

covariance with respect to the number of reactors in the network, for this example with 6

reactors and 20 measurements. The number of operations are computed assuming cubic

complexity for matrix inversions in EKF/EKS (i.e., o
(

n3z + n3y
)

). For the reduced Hessian

calculations, since the KKTmatrix is already factorized, we assumed the complexity scales

as o
(

n1.5x

)

where nx is the number of variables in the NLP [87]. Note that under 10 re-

actors (i.e., less than 20 states) using EKF/EKS performs slightly better than the reduced

Hessian approach. However, this could change if the ratio between states and measure-

ments changes. On the other hand, for larger systems the reduced Hessian approach is

much more efficient. For example, if we had 120 reactors in the network propagating ma-

trices forward and backward requires over 4 orders of magnitude more operations than

extracting the reduced Hessian from the KKT conditions.
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Figure 6.3: Concentration (a) and Temperature (b) profiles with 6 reactors in the CSTR
network example.
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Figure 6.4: Approximate number of operations required to estimate the arrival cost covari-
ance matrix for the CSTR network example.

6.2.2 Large-Scale Distillation Example

In this section we show the simulation results of the implementation of MHE using the

smoothed arrival cost update with the covariance obtained from the reduced Hessian.

The model of the distillation column is described in Appendix B.4. For this example we

have assumed that the measurement vector consists of the temperatures and liquid vol-

ume holdups of all the trays, and the states of interest are given by the compositions of

the light component in the liquid phase and the liquid molar holdup on each tray. For

this case study, we have considered that the sample time is 60 seconds, and also, we use a

horizon length of 10 measurements. In addition, the parameters of the noise variables are

summarized in Table 6.2.

Since we have considered a horizon length of 10 measurements and we are using Radau

collocation to transform the DAE system into a discrete time model, then the NLP that is

solved at each sample time has 21642 variables and 21642 equality constraints. However,
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Model noise variance Measurement variance

Ti – 6.25 × 10−2

V m
NT+1 – 10−8

xi 10−5 –

M0 10 –

Mi 1 –

MNT+1 5 –

Table 6.2: Summary of parameters for the noise variables for the distillation column exam-
ple in Chapter 6.

this large scale problem is solved in an average of 42.38 CPU seconds which is below the

sample time. Furthermore, the calculation of the reduced Hessian takes an average of 1.84

CPU seconds. However, note that it takes 84 back-solves of the KKT system, one for each

state, to calculate the covariance matrix.

In Figures 6.5 and 6.6 the state estimates are compared with the true trajectory of the

states. Also, the absolute value of the the estimation error is shown, which is calculated

with ǫj,k =
∣

∣

∣
ζrealj,k − ζestimated

j,k

∣

∣

∣
/ζrealj,k for the j-th state at the k-th sample time. Note that

MHE is able to estimate the states with small error, which is important if these estimates

are to be used within an NMPC application.

6.3 Conclusions

It is possible to extract the mean and covariance information for the arrival cost term di-

rectly from the optimal point of the NLP using sensitivity theory. This information can

be extracted very cheaply and efficiently from the KKT system using sIPOPT, which for

large-scale systems is much faster than propagating matrices forwards and backwards.
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Figure 6.5: Liquid composition for light component (a) and liquid molar holdup (b) on tray
14.
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Figure 6.6: Liquid composition for light component (a) and liquid molar holdup (b) on tray
28.
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Moreover, this approach avoids oscillations in the estimates, since the prediction of the

initial condition is taken from a previously solved MHE problem. Thus, the current hori-

zon and the initial condition share a lot more information than when updating it using the

filtering approach (c.f., Fig. 6.1).

It is possible to use the information of the previously solved NLP so that the covariance

of the state estimates can be approximated using the inverse of the reduced Hessian of

the NLP. If the system and measurement models are linear and Gaussian this approxima-

tion reduces to the Kalman Smoother, and MHE generates the Kalman filter solution. On

the other hand, for nonlinear systems with additive noise, this approximation reduces to

the EKS and EKF. Moreover, extracting the reduced Hessian information from the opti-

mality conditions used in Interior Point solvers can be done cheaply through a series of

back-solves. This approach is much cheaper than using EKF and EKS to propagate covari-

ances forward and backward to generate the arrival cost information. In addition, since

the solver has access to first and second derivatives computing the state estimates and

covariance matrices makes use of second order information. This is an added advantage

over traditional EKF formulations that only make use of first order derivatives.
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Chapter 7

Multi-Rated State Estimation

In previous chapters we have considered the use of measurements that come at the same

sample rate. However, in most chemical processes, some state variables (e.g., concentra-

tions, molecular weights, etc.) can be measured infrequently and, probably, with some

time delay. The most common state estimation methods usually use only the fast mea-

surements under the assumption that all states of interest are observable through them.

Unfortunately, this assumption does not always hold, and in some cases there are states

that are not observable through the fast measurements alone. However, it is sometimes

possible to combine different measurements that are available at different rates to change

the observability properties of the system, and make some of the unobservable states ob-

servable [40, 41]. Therefore, methods that can handle multi-rated measurements with or

without delays should be used to take advantage of the slower measurements to improve

the quality of the state estimates or their observability. Moving Horizon Estimation pro-

vides a framework that allows to easily incorporate these infrequent observations because

it uses a window of past measurements, where the slower ones can be introduced as they

become available. Furthermore, since MHE handles bounds and constraints in a natural

way through the solution of an NLP, a multi-rated constrained state estimator will be in-

troduced here. The rest of this chapter is organized as follows: Section 7.1 summarizes

the derivation of MHE with the smoothed update for the arrival cost, and introduces the

multi-rated state estimator in that framework, and in Section 7.2 a simulation example is

used to illustrate the benefits of combining different rated measurements for state estima-
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tion. Finally, in Section 7.3 we provide conclusions for this chapter.

7.1 Multi-rated MHE with Smoothing Update of Arrival Cost

In the previous sectionwe describe a way to implement a fast MHE that uses the smoothed

update of the arrival cost, and the covariance of the arrival cost is approximated through

the inverse of the reduced Hessian. For that implementation, only measurements with the

same sampling rate were considered. Nevertheless, it is still possible to use measurements

that come at a slower rate and that may possibly be delayed. For example, in polymeriza-

tion reactors, temperatures can be measured very quickly. In contrast, molecular weight

information could be measured through Gel Permeation Chromatography (GPC). How-

ever, compared to temperatures, these measurements are much slower. Moreover, since

the GPC takes some time to analyze the sample taken from the reactor, this measurement

will be delayed. Therefore, we can have two classes of multi-rated signals: either the sig-

nals have different rates but are obtained instantaneously, or the slower measurements

may be delayed. The two types of multi-rated signals are illustrated in Figure 7.1.

Fast measurement

Sampling

Result

(a)

Fast measurement

Sampling

Result

Delayed measurement

(b)

Figure 7.1: Illustration of multi-rated signals: (a) without delay (the sampling and mea-
surement are simultaneous) and (b) with delay (sampling and measurement are obtained
at different sampling times).
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To derive the multi-rated MHE (MMHE) we use the derivation of the MHE estimator

using the so-called smoothing update of the arrival cost described in Chapter 6, and also

in [35, 83]. In this formulation, the prediction of the initial condition of the plant at the

beginning of the horizon (at time k − N ) is given by the smoothed state estimate taken

from the solution of the previous MHE at time k − 1, that is zk−N |k−1 (see Fig. 4.4). In

addition, we are interested in the trajectory of the states in the horizon window (Zk
k−N =

{zk−N , . . . , zk}) given the measurements in the set Y k
0 = {y0, . . . , yk}. Thus, after applying

the assumptions in Assumption 3.1 to the conditional probability density function of the

states p
(

Zk
k−N

∣

∣Y k
0

)

we get

p
(

Zk
k−N

∣

∣

∣Y k
0

)

= K2

p
(

zk−N |Y k−1
0

)

p
(

Y k−1
k−N

∣

∣

∣
zk−N

)

[

k
∏

l=k−N

p (yl| zl)

][

k−1
∏

l=k−N

p (zl+1| zl)

]

, (7.1)

whereK2 is a proportionality constant. The expressions on the right hand side of the equa-

tion represent the arrival cost term, and the process and measurement noise distributions,

which are p (zl+1| zl) and p (yl| zl), respectively. These we know are Gaussian, from the

assumptions described before. To avoid the complexity of using sample based filters to

approximate the non-Gaussian arrival cost, as described in Chapter 5, here we use the re-

duced Hessian approach to generate the covariance information. Thus we assume a Gaus-

sian PDF for the arrival cost term to simplify computations. This approach is described

in detail in Chapter 6, therefore here we will summarize the main parts of the derivation

to aid in the introduction of the multi-rated estimator. Applying logarithms to Equation

(7.1), and after maximizing the probability density function of the states in the horizon we

get
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min
zk−N

1

2

∥

∥zk−N − ẑk−N |k−1

∥

∥

2

Π−1
k−N|k−1

−
1

2
‖Y − Ozk−N‖2W−1 +

1

2

k
∑

l=k−N

vTl R
−1
l vl +

1

2

k−1
∑

l=k−N

wT
l Q

−1
l wl (7.2a)

s.t. zl+1 − f (zl)− wl = 0 (7.2b)

yl − h (zl)− vl = 0 (7.2c)

zLB ≤ zl ≤ zUB , (7.2d)

where (7.2d) are bounds that allow us to constrain the state estimates to values that repre-

sent the physical properties of the system (e.g., concentrations must be positive or molar

fractions are between 0 and 1). Note, also, that Y , O, and W in the objective function (Eq.

(7.2a)) are generated using the data that the two windows share (see Fig. 6.1), that is Y k−1
k−N .

These values can then be computed directly using the data and the model. In Appendix D

we show expressions that can be used to generate these terms.

InMHE, since we have a history of past measurements, it is simple to include the signals

that come at different sample rates. For example, in Figure 7.1b the slow measurements,

can be placed in their proper locations in the measurement history. Note that even if some

of these measurements are delayed, we can still place them in their corresponding sample

times. In this case, however, the appropriate measurement covariance matrices must be

used in each sample time.

For the Multi-Rate MHE (MMHE) we can define a vector of only fast measurements yFl

and a vector of fast and slow measurements ySFl . Therefore, assuming that the first avail-

able measurement is yF0 and that every second sampling time we have a slow and delayed

measurement available, thenwe have the set ofmeasurements Y k
0 =

{

yF0 , y
SF
1 , . . . , yFk−1, y

F
k

}

.

Note that here the last two measurement vectors only have information of the fast mea-

surements. This is because the sample taken from the plant at time k still needs to be

processed, and the measurement information will not be available until time k + 2. A
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similar situation would happen if the first measurement had been of type ySF0 or if the

slow measurements are available at a different rate. However, since the analysis shown

below can be adapted to different measurement structures in a straightforward way, we

will focus on the measurement set shown above. Also, we use the following conditional

probability density functions in Equation (7.1):

pl (yl| zl) =

{

p
(

yFl
∣

∣ zl
)

if l ∈ IF

p
(

ySFl

∣

∣ zl
)

if l ∈ ISF
, (7.3)

where IF and ISF represent the set of indices for the sample times with only fast mea-

surements and fast and slow measurements, respectively. Note that the way MHE han-

dles the delayed measurements is through these sets. In the case described here we have

IF = {0, 2, . . . , k − 1, k} and ISF = {1, 3, . . . , k − 2}, assuming k is odd. However, these

sets can be tailored to account for different types of measurement rate structures. More-

over, again here we emphasize that, even thought we may have sampled the plant at time

k, the slowmeasurement information will not be available at that instant. Instead, because

it is delayed, it will be available at time k + 2, and this is why the last elements of set Y k
0

are only fast measurements. Furthermore, after applying logarithms and maximizing the

probability density function of the states (Eq. (7.1)), taking into account the availability of

fast and slow measurements as described above, we would have

min
zk−N

1

2

∥

∥zk−N − ẑk−N |k−1

∥

∥

2

Π−1
k−N|k−1

−
1

2
‖Y − Ozk−N‖2W−1 +

1

2

k−1
∑

l=k−N

wT
l Q

−1
l wl+

1

2









k
∑

l=k−N
l∈IF

∥

∥vFl
∥

∥

(RF
l )

−1 +
k
∑

l=k−N
l∈ISF

∥

∥vSFl

∥

∥

(RSF
l )

−1









(7.4a)

s.t. zl+1 − f (zl)− wl = 0 (7.4b)

yFl − hF (zl)− vFl = 0 ∀ l ∈ IF (7.4c)

ySFl − hSF (zl)− vSFl = 0 ∀ l ∈ ISF (7.4d)

zLB ≤ zl ≤ zUB , (7.4e)
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where RF
l and RSF

l represent the covariance matrices (of appropriate dimensions) for the

measurement vector with only fast measurements and the one with both, respectively.

Also, we would have measurement models for both types of measurement vectors, and

these are given by Eqs. (7.4c) and (7.4d), respectively.

The arrival cost is approximated in a similar fashion as described in Chapter 6, where the

initial condition is approximated with ẑk−N |k−1 = z∗k−N+1|k−1, i.e., taken from the solution

of the NLP at time k − 1. The covariance of the arrival cost is approximated using the

inverse of the reduced Hessian using Property 6.1. Fortunately, this is a general approach

that can handle multi-rated measurements, and it takes advantage of both slow and fast

measurements to improve the approximation of the covariance. Moreover, because of the

variable structure nature of this formulation, we need to be careful when constructing the

expressions for Y , O, and W , and we need to make sure that the correct measurement

covariance matrices are used in the objective function. Having the slowmeasurements can

provide enough information to make some of the unobservable states (if any), observable

[40, 41], which is important to be able to monitor the behavior of these states. Finally, since

more data are being used when fast and slow measurements are combined, the multi-

rated MHE should perform better in the presence of errors or large disturbances. In other

words, the multi-rated estimator will converge faster to the true states. The behavior of the

proposed method will be shown in the next section through some simulation examples.

7.2 Simulation Examples

In this section we test the proposed estimator on two simulation examples. The first ex-

ample deals with the polymerization of styrene, where we are interested in estimating the

molecular weight distributions. The second example deals with a large scale binary dis-

tillation column where parameter and state estimation is done simultaneously. Here we
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compare the application of the MHE using only fast measurements (MHEf ), and using

multi-rated measurements (MMHE).

The models used here are index 1 Differential Algebraic Equation (DAE) systems. How-

ever, the model used in (3.1) is discrete time system. Thus, to transform the continuous

time DAE systems we apply orthogonal collocation on finite elements. More information

on this techniques can be found in [22]. This increases the size of the optimization prob-

lems needed to find the state estimates, and therefore we use state-of-the-art NLP solvers.

In particular we use IPOPT [46] to solve the NLPs, and also, we use sIPOPT [67] (an op-

timal sensitivity package specifically designed to work with IPOPT) to compute reduced

Hessians.

7.2.1 Example 1: Styrene Polymerization Reactor

For this example the polystyrene Continuously Stirred Tank Reactor (CSTR) is considered.

The model is described in Appendix B.3, the example was originally described in [40].

Here the states are Ci, Cs, and Cm that represent the concentrations of the initiator, sol-

vent, and monomer, respectively. Also, TR and TJ that are the temperatures of the reactor

and cooling water, and finally λ0, λ1, and λ2 that are the first moments of the molecular

weight distributions. For this case study the molecular weight averages are of particular

importance since these are used to determine specific physical properties of the produced

materials [89]. It is therefore common to use these states as controlled variables. In addi-

tion, the molecular weight averages by weight (MW ) and number (MN ) can be calculated

with

MN =
λ1
λ0

(7.5a)

MW =
λ2
λ1

(7.5b)

.
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Here we assume that the fast measurements are given by the temperatures of the reac-

tor and the cooling jacket. The molecular weight moments are considered to be the slow

measurements, and these are obtained through GPC. We have also assumed that the fast

sampling time is 6 min, while the slow sampling time is 12 min. In addition, there is a

delay between the time when the sample is taken from the reactor and when the molecu-

lar weight moments are obtained. This delay is assumed equal or less than 12 min. The

predicted state in the arrival cost for the first sample time is assumed to be very corrupted

for the fast, single-rated MHE (MHEf ) and the multi-rated MHE (MMHE). This is done

to illustrate the benefits of having the added information from the slow and delayed mea-

surements. This scenario is not completely unrealistic, since it is possible that noise and

unmeasured disturbances may shift the plant in such a way that previous estimates are

away from the true values of the plant states. Therefore, the estimators used must be able

to recover from such an error as fast as possible.

State/Measurement RF
l RSF

l Ql Π̄0

Ci - - 10−4 10−1

Cs - - 10−4 10−1

Cm - - 10−4 10−1

TR 2.5×10−2 2.5×10−2 10−3 10−1

TJ 2.5×10−2 2.5×10−2 10−3 10−1

λ0 - 10−3 10−3 10−1

λ1 - 10−2 10−2 10−1

λ2 - 10−1 10−1 10−1

Table 7.1: State andmeasurement covariance values for the polymerization CSTR example.

Table 7.1 shows the values of the covariance values for the states, as well as the initial
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Figure 7.2: Polymerization CSTR simulation example. Estimated states using only fast
measurements and multi-rated signals are compared for: (a) initiator concentration, (b)
monomer concentration, (c) reactor temperature, (d) cooling jacket temperature, (e) weight
average, and (f) number average molecular weights.
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value of the arrival cost covariances, used during the simulations. The NLP, using 20

measurements in the horizon and the discretized model, consists of 1,832 variables and

1,729 constraints. On average this problem is solved in 1.810 CPU s, and the computation

of the arrival cost covariance takes 0.003 CPU s. In Figure 7.2 we compare the estimated

states using only the fast measurements with the estimates obtained using the combined

multi-rated measurements and with the real trajectory of the states. Note that when only

fast measurements are being used there are large errors at the first sampling times.

The benefit of using multi-rated measurements can be seen especially in the covariance

matrices approximated with the reduced Hessian. Using only fast measurements, the ar-

rival cost covariance at the first sample time has a condition number of 3.1464× 108, while

in the multi-rated case the condition number is 1.1010×104 , a decrease of 4 orders of mag-

nitude. This implies that the ill-conditioning of covariance matrix increases when we do

not consider the slow measurements, and thus the system is close to being unobservable.

On the other hand, adding the information of the measured molecular weight moments

allows the estimator to quickly recover from a bad initial value of the arrival cost. Thus,

if during normal operations a large disturbance occurs, MMHE would most likely recover

faster than MHEf . This agrees with the result in Tatiraju et al. [40], which considers the

observability of the states with respect to continuous measurements. They show that, for

example, the molecular weight moments are unobservable when only the fast measure-

ments are used. While our examples are given by discrete time models and are still observ-

able as assessed by IPOPT (see [87]), the ill-conditioning of the MHEf problem seen here

corresponds directly to their analysis.

7.2.2 Example 2: Large Scale Binary Distillation Column

In this section we present the application of the MHE to estimate states and parameters for

a large scale binary distillation problem proposed by [70] using multi-rated signals. The
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column is used to separate Methanol (1) and n-Propanol (2), and it consists of 40 trays, a

total condenser, and a reboiler. Also, for this example we show how using measurements

that are obtained at a different rate without delay, improves the performance of MHE to

estimate parameters (tray efficiencies) and the states. In particular we are interested in

estimating the tray temperatures, the compositions of the liquid and vapor phases, as well

as the molar holdup of the liquid phase for each of the trays. To achieve this we consider

that the fast measurements are given by the temperatures and liquid volume holdup for

each tray, while the slow measurements are given by adding the compositions of the light

component in the liquid and vapor phases.

The column is modeled with an index 1 DAE system consisting of the so-called MESH

equations (Mass balances, Equilibrium, Summation of compositions, and energy balances).

In this case the vapor molar holdup is assumed negligible. This assumption is well known

to yield high index DAEs, and thus index reduction must be performed. More details on

this can be found in López-Negrete and Flores-Tlacuahuac [90] and Cervantes and Biegler

[91]. Moreover, the equilibrium is modeled using Raoult’s law, and non-ideal behavior

is added through tray efficiencies. Finally, the liquid flow rate from the trays is modeled

using Francis’ weir equation. In total, the model consists of 84 differential equations and

168 algebraic equations, and it is described in Appendix B.4. Moreover, to simultaneously

estimate states and parameters, the latter are formulated as random walks. Thus the state

vector is augmented as ζTk =
[

zTk , p
T
k

]

where pTk = [α1, . . . , αNT
]T is the vector of tray

efficiencies used in Equations (B.17) and (B.18). Thus the state model equation is changed

as follows

ζk+1 =

[

zk+1

pk+1

]

=

[

f (ζk, wk)
wp
k

]

(7.6a)

yk =h (ζk, vk) , (7.6b)

where wp
k is a white noise variable associated with the parameter. For simulation purposes

CHAPTER 7. MULTI-RATED STATE ESTIMATION 114



7.2 SIMULATION EXAMPLES

it is assumed that the fast measurement sample rate is 60 s and the slow sample rate is 120

s. In Table 7.2 we show the covariance values used for this example. Here the variables

shown are molar liquid holdup, tray efficiency, light component liquid composition, tray

temperature, liquid volume, and light component vapor composition.

State/Measurement RF
l RSF

l Ql Π̄0

MR - - 10 10

Mi - - 1 10

MC - - 5 10

αi - - 10−3 10

xi - 10−6 10−3 10

Ti 2.5×10−3 2.5×10−3 - -

V m
i 10−4 10−4 - -

yi - 10−6 - -

Table 7.2: State and measurement covariance values for the distillation example.

The NLP in this case, using the discretized model, consists of 23,482 variables and 22,078

equality constraints. This optimization problem is solved on average in 41.57 CPU s, while

the covariance approximation takes around 2.62 CPU s. Figure 7.3 shows the comparison

between some of the estimated states and parameters using both MHEf and MMHE, with

respect to the true values. In particular, Figure 7.3(a,b) display the compositions of the light

component in the liquid and vapor phases of trays 14 and 28. Note that the most visible

difference can be seen in the vapor composition of tray 28. Therefore, to better show the

effects of using a combination of fast and slow measurements, we evaluate the log of the

normalized error. This is given by

log (ǫk) = log

(∣

∣

∣

∣

∣

ζk − ζ̂k
ζk

∣

∣

∣

∣

∣

)

, (7.7)
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Figure 7.3: Large scale binary distillation example: vapor and liquid compositions for tray
14 (a) and tray 28 (b), log10 of estimation error of vapor composition for trays 14 (c) and 28
(d), log10 of estimation error of tray efficiency for trays 14 (e) 28 (f).
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where ζ̂k represents the estimated quantity and ζk its true value.

In Figures 7.3(c,d) we use bar plots to show the effects of using the two types of estima-

tors on the estimation error in the composition of the light component in the vapor phase.

It is clear that there is a benefit of using the MMHE, since the estimation error for both

compositions is orders of magnitude smaller than when using MHEf . On the other hand,

in Figures 7.3(e,f) we see the estimation error for the calculated tray efficiencies. Again, in

this case, the estimation error of the parameter is greatly reduced when using multi-rated

measurements.

7.3 Conclusions

Moving Horizon Estimation provides a framework for constrained estimation that system-

atically handles bounds and constraints. Since this strategy processes a batch of measure-

ments in the past it is straightforward to combine fast, slow and even delayed measure-

ments. Using multi-rated measurements reduces the estimation error since more informa-

tion about the system is used, and, since the structure of measurement model changes, it

is possible to make some unobservable states observable.

The reduced Hessian approach for updating the covariance matrix takes into account

the changes in the measurement model and vector sizes automatically. Thus, it is a gen-

eral approach of the variable structure multi-rated MHE that generates the covariance ma-

trix using smoothed information from the horizon. Moreover, the addition of the slower

measurements makes it possible to reduce estimation errors, and this is illustrated in the

simulation examples.
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Chapter 8

Advanced Step Moving Horizon Estimation

In previous chapters we have assumed that the MHE takes a negligible amount of time to

solve, even when this is not true for some of the large scale systems used here. However,

the performance of the controllers that use these estimates could be affected when we take

into account these delays. Closed-loop stability could even be lost if the delays are long

enough. This is similar to the delay in solving the NMPC problem [29]. Moreover, the

delayed estimate will no longer correspond to the true state of the system, especially if a

non-negligible amount of time has passed from the moment the plant is sampled to the

moment we obtain the estimate fromMHE. Thus, it is important to develop fast strategies

that can overcome these limitations. To reduce the computational delay in model predic-

tive controllers an advanced step NMPC has been developed [29]. This approach takes

advantage of NLP sensitivity to approximate the solution of the NMPC problem on-line.

This method shifts the expense of solving the NLP to the background, and the only on-line

computational expense is solving the KKT system given by (2.12) (or (2.13)). A similar

approach exists for MHE, and it will be discussed here. Moreover, this approach is also

extended to handle multi-rated measurements in the advanced step Multi-Rated MHE

(asMMHE).

The rest of this chapter is organized as follows: Section 8.1 introduces the asMHE strat-

egy, and here we describe the extension to handle multi-rated measurements, in Section

8.2 we illustrate the benefits of the advanced step strategies, and finally we conclude the

chapter in Section 8.3.
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8.1 asMHE and asMMHE Strategies

The advanced step strategy takes advantage of the parametric properties of the moving

horizon NLP to reduce the on-line computational expense. If we know the the previous

state estimate we can make a model prediction of the current measurement. Using this

prediction we can solve an approximate NLP, which we update as the new measurement

becomes available using NLP sensitivity. This is illustrated in Figure 8.1. Note that this

Figure 8.1: Illustration of the asMHE strategy, where the purple dashed line represents
the solution of the approximate problem, and the solid red line represents the updated
solution using NLP sensitivity.

method has two components: the off-line solution of the NLP and the on-line update of

the solution using Equation (2.14). The details of on-line and off-line components are sum-

marized as follows.

Off-line component (at time k − 1):

1. Generate a model prediction of the measurement ŷk using the state estimate ẑk−1|k−1,

and Equations (3.1).
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2. Update the measurement sequence to yield Ŷ k
k−N = {yk−N , . . . , ŷk}.

3. Solve the approximate NLP in between sample times k − 1 and k, and hold the fac-

torized KKT matrix at the solution.

4. Generate the smoothed covariance information through the reduced Hessian.

On-line component (at time k):

1. Update the NLP parameters (measurements) with the true measurement yk.

2. Compute the updated solution using Equations (2.13) and (2.14) and the KKTmatrix

from the solution of the approximate NLP.

In this strategy, the parameter perturbation is given by
∣

∣

∣
Y k
k−N − Ŷ k

k−N

∣

∣

∣
= |yk − ŷk|. Thus,

the difference between the state estimate computed with ideal MHE, where the computa-

tional delay is assumed negligible, and the advanced step is given by

∣

∣

∣
ẑMHEi

k − ẑasMHE
k

∣

∣

∣
= O

(

|yk − ŷk|
2
)

. (8.1)

In other words, as long as the error between the true and the predicted measurements is

small, then the error in the state estimate obtained with the asMHE strategy will be very

close to the ideal case.

The advanced step strategy can also be implemented with multi-rated measurements.

The extension is simple, as long as care is taken when generating the simulated measure-

ment ŷk. For example if at sample time k the true measurement will consist of both fast

and slow observations, then ŷk = ŷSFk . On the other hand, if the true measurement will

only consist of the fast observation, then we have that ŷk = ŷFk . In the following section

we show two examples of the implementation of the asMHE strategy: one using only fast

measurements and the second case considers multi-rated measurements.
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8.2 Simulation Examples

In this section we show two simulation examples to illustrate the behavior of the asMHE;

both examples are implemented using the model for the binary distillation column de-

scribed in Appendix B.1. However, in the first case study we consider that only fast

measurement information is available, while for the second example we implement the

advanced step multi-rated MHE (asMMHE).

The column is used to separate Methanol (1) and n-Propanol (2), and it consists of 40

trays, a total condenser, and a reboiler. The model of the column is given by an index 1

DAE system that consists of the MESH equations. In total there are 84 differential equa-

tions and 168 algebraic equations. Moreover, note that the measurement equations (for

both case studies) are nonlinear functions of the states, represented by some of the alge-

braic equations of the model.

8.2.1 Example 1: asMHE with a Binary Distillation Column

For this case study we assume that the measurements are given by the temperatures and

volumetric holdups of each tray. These are used to estimate the composition of the light

component in the liquid phase and the liquid molar holdup at each tray. Additionally, we

consider that the sample time is 60 seconds, a horizon length of 10 measurements, and the

parameters of the noise variables are summarized in Table 8.1.

Since we have considered a horizon length of 10 measurements and we are using Radau

collocation to transform the DAE system into a discrete time model, then the NLP that

is solved at each sample time has 21642 variables and 21642 equality constraints. The

approximate NLP is solved on average in of 42.38 CPU sec, and the covariance for the

arrival cost is computed using the reduced Hessian approach in an average of 1.84 CPU

seconds. Note that these computations are done in the background, and in between sample
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Model noise variance Measurement variance

Ti – 6.25 × 10−2

V m
NT+1 – 10−8

xi 10−5 –

M0 10 –

Mi 1 –

MNT+1 5 –

Table 8.1: Summary of parameters for the noise variables for the distillation column exam-
ple in Chapter 8.

times. Thus, the only on-line computational expense is given by theNLP sensitivity update

which takes on average 0.529 CPU seconds. This is orders of magnitude faster than solving

the NLP on-line; thus this approach drastically reduces the delay in generating the state

estimate once the plant measurement is available.

In Figure 8.2 we compare the behavior of the estimated states using the ideal MHE

(MHEi) with those obtained with the asMHE. In the same figure we also compare the

errors in estimation using both methods. Both methods track the true trajectory of the

states properly. In fact, looking at the estimation errors, computed with ǫl = |zl − ẑl| /zl,

we can see that the largest error is 8%, for the composition in tray 14. However, when

using the ideal MHE, the mean error for the compositions in tray 14 is 2% and in tray 28 is

1.6%, while for the liquid holdups the mean errors are 0.5% and 1.4%. Moreover, the errors

when using the advanced step MHE are very close to those of the ideal case. Therefore,

the performance of the asMHE is almost identical to the performance of the ideal scenario,

but the computational delay that could be introduced by solving the full NLP on-line is

avoided.
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Figure 8.2: Comparison of the estimated states using MHE and asMHE for the distillation
column.
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8.2.2 Example 2: asMMHE with a Binary Distillation Column

For this example we implemented the asMMHE for state and parameter estimation using

the distillation column used above. Here we combine fast and slow measurements to im-

prove the performance of MHE to estimate parameters (tray efficiencies) and the states. In

particular we are interested in estimating the tray temperatures, the compositions of the

liquid and vapor phases, as well as the molar holdup of the liquid phase for each of the

trays. To achieve this we consider that the fast measurements are given by the tempera-

tures and liquid volume holdup for each tray, while the slow measurements are given by

adding the compositions of the light component in the liquid and vapor phases. Similarly

as before, we consider sample times of 60 seconds, a horizon length of 10 measurements,

and the parameters of the noise variables are summarized in Table 8.2.

State/Measurement RF
l RSF

l Ql Π̄0

MR - - 10 10

Mi - - 1 10

MC - - 5 10

αi - - 10−3 10

xi - 10−6 10−3 10

Ti 2.5×10−3 2.5×10−3 - -

V m
i 10−4 10−4 - -

yi - 10−6 - -

Table 8.2: State and measurement covariance values for asMMHE with the distillation
column in Chapter 8.

In this case, the solution of the ideal MMHE (i.e., MMHEi) takes an average of 38.26 CPU

seconds, while the on-line component of the asMMHE takes 0.78 CPU seconds. Again we

note a drastic reduction of the on-line computational expense, which implies that we are
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reducing the computational delay of estimating the states. This is important, as mentioned

above, when we use these estimates in combination with a controller because delays can

potentially destabilize the system.

In Figure 8.3 we compare the behavior and estimation errors of the ideal case (MMHEi)

with that of the asMMHE. As in the previous example we see that the estimator is able to

track the true states of the system as well as the parameters. Furthermore, the estimation

errors are very small which means that the estimates are not far from the true values.

Moreover, the estimation error of the asMMHE is very close to the ideal case. Therefore,

the behavior of both estimators is very similar, but the asMMHE introduces a negligible

delay.

8.3 Conclusions

The advanced step strategy described in this chapter is capable of drastically reducing the

computational delay associated with the solution of the MHE problem. It is also possible

to extend the asMHE to use multi-rated measurements to take advantage of fast and slow

measurement information to estimate states and parameters. For the cases shown in this

chapter, the behavior of the ideal MHE and the asMHE are basically the same. This means

that the computational delay associated with asMHE is in fact negligible, and that the

quality of the estimates is not affected by the advances step calculations.

The implementation of these strategies if further simplified with the use of sIPOPT and

AMPL. The former extends IPOPT to compute fast sensitivity updates of solutions for the

on-line component, and computes the reduced Hessian used to approximate the covari-

ance of the arrival cost. Moreover, AMPL provides exact first and second derivatives,

which improves the computations obtained with sIPOPT.
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Figure 8.3: Comparison of the estimated states and parameters using MHE and asMMHE
for the distillation column.
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Chapter 9

Robust M-Estimators for MHE

In previous chapters we have assumed that measurement information has Gaussian noise

added to it. However, outliers and gross errors occur naturally during process operations.

For example, measurement errors occur when operators make errors reading sensor infor-

mation, or during laboratory assays. Also, sensors may get stuck or fail, which introduce

gross errors in observations. Thus, it is important to take this into account to develop

strategies that can deal with outliers and gross errors systematically to obtain state esti-

mates. One possible way to do this is through the use of robust statistics, that provide

estimators less sensitive to large residual values. For example, here we introduce the use

of two types for M-Estimators: the Fair Function and Hampel’s re-descending estimator.

These functions behave as the least squares estimator for small values of the residuals,

but when residual values increase the function values increase much slower than that of

the least squares estimator. In fact, Hampel’s re-descending estimator has three regions

that behave differently; for small enough residuals it behaves as the least squares, then

it grows linearly, and finally it inflects and becomes constant for large enough residuals.

Thus, combining these types of estimators with MHE we propose a formulation that is

able to compute state estimates that are not biased by errors in measurement information.

Finally, in the next section we describe robust statistic which will allow us to introduce the

M-Estimators.

The rest of this chapter is organized as follows. In Section 9.1 we describe the con-

cept of a robust statistics. This concept is then used in Section 9.2 to describe the M-
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Estimators. Here we describe two different types of functions: the Fair Function and

Hampel’s re-descending estimator. In Section 9.3 we propose MHE strategies based on

the M-Estimators that are able to deal with gross errors and outliers to provide estimates

with low estimation errors. In Section 9.4 we illustrate the performance of these strategies

with two simulation examples, and finally this chapter is concluded in Section 9.5.

9.1 Robust Statistics

The performance of MHE is reduced in the presence of outliers and gross errors, since the

information on the true state of the system is incorrect. In order to mitigate the effects

outliers and gross errors have on the state estimates we can use robust statistics.

The errors in the measurements are assumed to follow Gaussian distributions, in which

case the associated likelihood function is the least squares estimator. However, whenmea-

surement data is corrupted with outliers or gross errors it is difficult to determine its dis-

tribution, and using a fixed distribution is not consistent. In such cases, robust estimators

may be used. These types of estimators are mostly distribution independent and produce

unbiased results in the presence of data derived from some ideal distribution, and are less

sensitive to deviations from ideality [92, 93]. Themain advantage of these estimators is that

they give less weight to measurements that have been corrupted. Suppose that {ξ1, . . . , ξn}

are drawn from a distribution f (ξ), and let T be an unbiased estimator θ̂ = T [f (ξ)] of pa-

rameter θ. If g (ξ) represents an approximate distribution model, then the estimate will be

given by θ̃ = T [g (ξ)]. The distributions of the estimators based on f (ξ) and g (ξ) will be

Υ
(

θ̂, f
)

and Υ
(

θ̃, g
)

, respectively. Thus, the estimator T (·) is robust iff

d (f, g) < η =⇒ d
[

Υ
(

θ̂, f
)

,Υ
(

θ̃, g
)]

< ǫ, (9.1)

where d (·) is a distance function. Therefore, a bounded shift from the ideal distribution

will lead to a bounded shift in the estimates. The influence function can be used to assess
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the robustness of the estimator. This function measures the importance of an observation

on the estimator and it is defined by

IF = ψ (ξ0) = lim
t→0

Υ [(1− t) f + tδ (ǫ− ǫ0)]−Υ [f ]

t
, (9.2)

where δ (ǫ− ǫ0) is the Dirac delta function centered on the particular observation ǫ0. More-

over, for the estimator to be robust, its influence function has to be bounded as the obser-

vations go to infinity. In the following section we describe two robust M-Estimators that

can be used in combination with MHE to derive a state estimator that is robust to outliers

or gross errors.

9.2 Robust M-Estimators

M-Estimators can be used as the likelihood functions for themeasurements in the objective

function of (4.13). If we define the likelihood function L (xj|p) of the observation xj depen-

dent on parameters p, then the overall likelihood function of the errors in N observations

is given by

L =

N
∏

j=1

L (xj|p) . (9.3)

The M-Estimator associated with the previous likelihood function is given by

ρM =

N
∑

j=1

ρj = − log (L) = −
N
∑

j=1

log [L (xj |p)] , (9.4)

where ρM is the overall M-Estimator, and ρj is the estimator associated with the j-th ob-

servation. There are two particular estimators that are of interest for the present work.

These are Huber’s fair function [94] and Hampel’s re-descending estimator [95], which are

defined with the following expressions:
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Huber’s Fair Function:

ρFj = C2

[

|ǫj|

C
− log

(

1 +
|ǫj|

C

)]

, (9.5)

whereC represents a tuning parameter, and ǫj = (yj − ŷj) /σy is the studentized prediction

error. Note that here σy represents the standard deviation of the residual.

Hampel’s Re-descending Estimator:

ρRj =



















































1

2
ǫ2j , 0 ≤ |ǫj | ≤ a

a |ǫj| −
a2

2
, a < |ǫj| ≤ b

ab−
a2

2
+
a (c− b)

2

[

1−

(

c− |ǫj|

c− b

)2
]

, b < |ǫj| ≤ c

ab−
a2

2
+
a (c− b)

2
, |ǫj| > c,

(9.6)

a, b, and c represent tuning parameters that satisfy c ≥ b + 2a and allow us to define 4

regions in the estimator. These regions represent different types of behavior depending on

the magnitude of the residuals. In the first region, when residuals are small, the estimator

has the idealized behavior; in this case it behaves as the least squares estimator. The value

of the estimator becomes linear with respect to the residuals in the second region, e.g., if

a < |ǫj| ≤ b. As the residuals increase in value, the function value enters the re-descending

region. Finally, when residuals are greater than c, the function becomes constant. This

is illustrated in Figure 9.1, where we compare the least squares function with the Fair

Function and Hampel’s re-descending estimator. Note that the value of the Fair Function

increases more slowly than that of the least squares function. Thus, if outliers or gross

errors are present in the observations the values of the M-Estimators are lower than that of

the least squares function. In other words, outliers and gross errors have less influence on

the estimators for these functions.
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Figure 9.1: Comparison of the values of the Least Square Function, the Fair Function, and
the re-descending estimator.

9.3 M-Estimators in MHE

In Chapters 4-6 we developed MHE considering that the measurement noise is Gaussian.

However, as mentioned above, in the presence of outliers or gross errors it is hard to de-

termine the correct distribution of the observations. Thus, it is possible to assume that the

ideal behavior of the residuals will be Gaussian, and in order to reduce the effects of errors

in the observations we can use M-Estimators. In other words, we can derive a robust MHE

using a smoothed update of the arrival cost in the following way. For this case, the PDF of

the states in the horizon is given by

p
(

Zk
k−N

∣

∣

∣
Y k
0

)

= K
p
(

zk−N |Y k−1
0

)

p
(

Y k−1
k−N

∣

∣

∣ zk−N

)

[

k
∏

l=k−N

p (yl| zl)

][

k−1
∏

l=k−N

p (zl+1| zl)

]

, (9.7)

where L =
∏k

l=k−N p (yl| zl) represents the likelihood function. Previously we have con-

sidered Gaussian noise, and thus the estimator associated with this likelihood function is
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the least squares function. However, herewe consider that the estimator can be substituted

with an M-Estimator such as the Fair Function or the re-descending Estimator. Thus, after

taking logarithms and maximizing the probability we obtain

min
zk−N

1

2

∥

∥zk−N − ẑk−N |k−1

∥

∥

2

Π−1
k−N|k−1

−
1

2
‖Y − Ozk−N‖2W−1 +

1

2

k
∑

l=k−N

ρME
l (vl) +

1

2

k−1
∑

l=k−N

wT
l Q

−1
l wl (9.8a)

s.t. zl+1 − f (zl)− wl = 0 (9.8b)

yl − h (zl)− vl = 0 (9.8c)

zLB ≤ zl ≤ zUB , (9.8d)

where ρME
l (vl) represents the robust M-Estimator of our choosing; either Eq. (9.5) or (9.6)

depending on whether we wish to use the Fair Function or the re-descending estimator.

Note that if we choose the latter, the objective function in Eq. (9.8) will be non-smooth.

Thus, it is important to use a smoothed approximation of the M-Estimator as shown in

Arora and Biegler [93]. A consequence of using Hampel’s re-descending estimator is that,

if the observations have large errors, then the estimator function will become constant.

This implies that some terms in Equation (9.8a) will be constant, and thus those measure-

ments are not considered. On the other hand, if residuals are not too large and we are using

either of the M-Estimators discussed above, then the terms associated with these observa-

tions will have less influence on the objective function. Therefore, the state estimates will

not be affected too much by outliers or gross errors. In the following section we illustrate

the behavior of these estimators on two simulation examples.

9.4 Simulation Example

In this section we illustrate the use of robust M-Estimators in combination with MHE to

showhow the state estimator handles gross errors. These errors are simulated by assuming
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Measurement Noise Variance State Noise Variance

CA – 10−8

TR 0.0625 10−4

Tcw 0.0625 10−4

Table 9.1: Parameters of noise variables for the CSTR example using M-Estimators with
MHE.

that one of the thermocouples drifts away from the true value of the measurement. In the

first example we compare the use of the Fair Function (FF-MHE) and the re-descending Es-

timator (MHERED), with the traditional least squares MHE. For this first case study we use

the 3 state CSTR model. Finally, the second example we use the binary distillation model,

and compare the use of the re-descending estimator with the least squares estimator when

the temperature measured at tray 14 drifts away from the true measurement value.

9.4.1 Example 1: CSTR Case Study

The model used in this example is described in Appendix B.2, and it describes a CSTR

where component A is transformed into B. Themodel consists of 3 states, the concentration

of A (CA), the temperature of the reactor TR, and the temperature of the cooling jacket Tcw.

The measurements here are the two temperatures. To show the effects of having gross

errors, here we assume that the observed temperature of the reactor drifts away from the

true measurement. The maximum error is 5 degrees above the true measurement, and we

increase the gross error by 0.0625 degrees per sample time. Moreover, the parameters of

the noise variables are summarized in Table 9.1.

The simulation results are shown in Figure 9.2. Note that at sample time 80 the error in

the measured temperature of the reactor is slowly added. Figures 9.2(a,c,e) show the esti-

mated states compared with the different methods, while Figures 9.2(b,d,f) show the esti-
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mation error for each state. In these figures it is clear that the MHE with the least squares

estimator has the worst performance. On the other hand, when the Fair Function is used

the effects of the measurement error has less effect on the objective function of Problem

9.8. Therefore, the estimation errors are smaller than in the least square case. Finally, the

re-descending estimatorMHE (MHERED) has the best performance. As the residuals start to

increase we can see that errors begin to grow. However, when the errors are large enough,

then Hampel’s estimator becomes constant and the measurements are ignored. Thus, the

effects of the errors are eliminated, and only the measured cooling water temperature is

used to estimate the states. Finally, the effects of the different regions in Hampel’s re-

descending estimator can be seen, for example, in Figure 9.2b. As the temperature drifts

away from the true measurement in sample times 80-150 the estimation errors increase.

Once the residuals are past the threshold, and the estimator becomes constant, the estima-

tion error drops drastically. Finally, when the gross error is eliminated after sample time

250 we can see that the estimation error starts to increase and then decrease as the residuals

move through the different regions.

9.4.2 Example 2: Distillation Column Case Study

For this case study we assume that the measurements are given by the temperatures and

volumetric holdups of each tray. These are used to estimate the composition of the light

component in the liquid phase and the liquid molar holdup at each tray. Additionally, we

consider that the sample time is 60 seconds, a horizon length of 10 measurements, and the

parameters of the noise variables are summarized in Table 9.2. Moreover, here we simulate

a drift in the measured temperature of tray 14 which starts at sample time 30. The error

is increased to a maximum of 40 degrees at a rate of 0.888 degrees per sample time. After

sample time 90, this error is reduced at the same rate until it reaches a value of zero. Finally,

here we compare the performance of the least squares MHE with the re-descending MHE
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Figure 9.2: Comparison of the Fair Function, re-descending estimator, and least squares
estimator MHE using the CSTR example.
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Model noise variance Measurement variance

Ti – 6.25 × 10−2

V m
NT+1 – 10−8

xi 10−5 –

M0 10 –

Mi 1 –

MNT+1 5 –

Table 9.2: Summary of parameters for the noise variables for the distillation column exam-
ple in Chapter 9.

(MHERED).

Figure 9.3 shows the results of the simulation example. For tray 14, when the tempera-

ture observation drifts away from the true measurement we can see that both the composi-

tion and holdup estimation errors increase when using the traditional least squares MHE.

On the other hand, when we use MHERED the effects of the gross error are reduced. In fact,

in Figures 9.3a and 9.3b we see that the estimation errors practically do not change, even in

the presence of the temperature drift. Furthermore, for the trays above tray 14, we see that

the temperature drift has a negligible effect on the liquid composition. However, for the

liquid holdup estimates (Fig. 9.3d) we see a spike in the estimation errors for MHE start-

ing at sample time 90, which coincides with the addition of the gross error. For this same

figure, we can see that, when using the MHERED, this does not happen. This is because the

M-Estimator reduces the effects of the large residuals, and the estimates are obtained using

the other measured variables.
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Figure 9.3: Comparison of the Fair Function, re-descending estimator, and least squares
estimator MHE using the distillation column example.
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9.5 Conclusions

In this chapter we introduced robust estimators that change their behavior depending on

the magnitude of the residuals. These estimators result in smaller values than the least

squares estimator when evaluated with large residuals, and thus it is possible to com-

bine them with MHE to reduce the effects of outliers and gross errors. Furthermore, here

we compared the use of the Fair Function and Hampel’s re-descending estimator with

a small CSTR example, and from the simulation results we can conclude that the latter

has better performance since very large measurement errors imply that those observa-

tions are dropped. Moreover, for the second example we see similar behavior, where the

M-Estimator greatly reduces the effects of the measurement errors, and performance in-

creases when estimation errors are compared with those of the least squares MHE. Finally,

note that it is possible to use M-Estimators in combination with any of the MHE formu-

lations shown in previous chapters. Thus it is possible to construct a robust multi-rated

MHE for state and parameter estimation by simply changing the likelihood function with

any of Equations (9.5), (9.6), or a different robustM-Estimator (e.g., contaminatedGaussian

distributions [92]).
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Conclusions

In the present work we have described techniques for constrained state estimation based

on NLP sensitivity and robust M-Estimators. These approaches make use of NLP solvers

to handle constraints on states and parameters to compute the estimates. Moreover, here

we discuss implementations that allow us to use these methods in real time by reducing

the computational expense associated with the solution of these problems. Additionally,

we show that there exists a relationship between the covariance of the state estimates and

the reduced Hessian, which can be used for further analysis on the estimates and to up-

date the arrival cost term in the objective function. Finally, usingM-Estimators we propose

formulations that are able to reduce the effects of outliers and gross errors in the measure-

ments. In this way, it is possible to efficiently compute state estimates in real time that

are not biased by the errors. Finally, in this chapter we conclude the dissertation. In the

following section we summarize the main contributions described in each chapter, and we

briefly describe the main topics discussed in each one. Finally, in Section 10.2 we suggest

possible research topics for future work related to state estimation and data reconciliation.

10.1 Summary of the Dissertation and Contributions

In Chapter 2 we discuss interior point solvers, and some properties associated with these

methods that allow us to extract sensitivity information directly from the KKT conditions.

In addition, we show how to extract reduced Hessian information, which is not normally

generated by interior point solvers, and we introduce the software sIPOPT that integrates
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these methods to extend IPOPT’s post optimal analysis capabilities.

Chapter 3 introduces the problem of Bayesian state estimation, and the most common

methods used to solve this problem. Here we also discuss some of the typical drawbacks

associated with these methods that justify the development of MHE.

In Chapter 4 Moving Horizon Estimation is introduced from the Bayesian perspective.

We also discuss how the arrival cost term is used to summarize all the measurement in-

formation that is not included in the horizon. Moreover, we describe two possible ways

to formulate MHE, where the arrival cost is either updated with filtered or with smoothed

information.

Chapter 5 introduces an MHE formulation that uses a posterior distribution to describe

the arrival cost term. In this chapter we discuss two possible ways to approximate the

initial condition penalty term. The first one assumes that this term can be approximated

with the least squares estimator resulting in the original formulation proposed in [5]. For

this approach we also show how to generate approximations of the covariance that are

consistent with bounds and the non-Gaussian properties of the initial condition, using

constrained sample based filters. Furthermore, in this chapter we introduce a novel ap-

proach to directly approximate the arrival cost density function using ideas from particle

filters. In this way we substitute the traditional 2-norm form for the approximated PDF.

Finally, using simulation examples, we illustrate how the horizon window size can be re-

duced with these approaches, and still compute estimates with low estimation error. This

is possible since a better approximation of the arrival cost will not introduce errors in the

initial condition. Thus, we no longer need to use a lot of measurement information to

reduce the weight of the initial condition decreasing the size of the horizon window.

Chapter 6 discusses a second MHE formulation that uses smoothed information to ap-

proximate the arrival cost term. In this chapter we introduce a novel approach that extracts

covariance information directly from the KKT conditions of the NLP problem through sen-
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sitivity. Traditionally this strategy uses EKF and EKS to propagate the covariance matrix

forwards and backwards in the horizon to approximate the smoothed covariance of the ini-

tial condition. However, here we show a property of the MHE optimization problem that

relates the covariance of the state estimates with the reduced Hessian. Using this prop-

erty we avoid the propagation of covariances, which results in a cheaper approximation of

the covariance information. Moreover, this approach is superior to the one shown in the

previous chapter, since the latter requires very large amounts of samples that can increase

exponentially with the number of states.

In Chapter 7 we discuss the possibility of combining slow, possibly delayed observa-

tions with fast measurements to improve the quality of the state estimates. Multi-rated

state estimation can also help make some unobservable states observable. Furthermore,

MHE provides a framework where this slow measurements can be incorporated system-

atically for constrained state estimation. This is easily achieved since in MHE we have a

horizon of past measurements, and thus the slower observations only need to be placed

in their proper locations in the past history. Moreover, using the smoothed approach for

arrival cost approximation, we can use the reduced Hessian to generate the arrival cost co-

variance matrix. Thus, MMHE results in a superior approach for multi-rated constrained

state estimation.

Chapter 8 we describe a method that reduces on-line computational expense of solving

the MHE problem, thus making MHE suitable for real-time applications. Here we use

NLP sensitivity to generate fast approximations of the solution of the NLP, thus shifting

the solution of the problem to the background. Moreover, we discuss the application of

the advanced step strategies to multi-rated state estimation, and finally we illustrate these

methods with two simulation examples.

Finally, in Chapter 9 we describe robust statistics and robust M-Estimators. These func-

tions reduce the effects that large residuals have on the estimator, and thus decrease the
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influence that outliers or gross errors could have on the estimates. Here we also show a

novel MHE formulation leverages robust estimators overcome the effects that measure-

ment errors might have. For this strategy we also use reduced Hessian information to

update the arrival cost term. This strategies are illustrated with two simulation examples

where we show that Hampel’s re-descending estimator has superior performance when

compared to the fair function or least squares.

10.2 Future work

In this section we make some recommendations for future work in the topics discussed

in this dissertation. In particular we propose research ideas in NLP sensitivity, stability

and observability of MHE, and fault detection and identification. With these ideas we

believe that we can extend the understanding of state estimation, and propose improved

MHE strategies that can leverage the measurement information to detect faults. Moreover,

we also make suggestions that relate to NLP sensitivity that should make the detection of

active set changes more efficient.

NLP Sensitivity

In Chapter 2 we show some strategies that allow us to correct the computed sensitivities

when the parameter perturbation causes an active set change. In particular, this strategy

sets the offending variables to their bounds using the fix-relax method. To detect active set

changes we simply check if any variable or bound multiplier violates bounds. However,

this method is not scale independent, and therefore it is prone to errors due to improper

tuning parameter settings (e.g., tolerances). Thus, indicator functions have been proposed,

that exhibit specific properties that allow us to identify points that violate bounds [96, 97].

These properties basically imply that the indicator function will provide enough informa-
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tion to determine when it is evaluated at feasible or an infeasible point. Moreover, these

functions are scale independent, and presumably no parameters need to be tuned. Thus,

by evaluating them before and after the sensitivity update they provide enough informa-

tion to detect active set changes. Regardless, of scaling problems or numerical instabilities.

The use of these functions has been described in the development of interior point algo-

rithms [98]. However, to our knowledge, there is no current work that relates indicator

functions with NLP sensitivity.

On the other hand, the fix-relax strategy described in Section 2.2.2.1 can be improved.

The main drawback of the proposed method is, that once an active set change is detected

and the fix-relax step is performed, there is no guarantee that the new updated solution

will satisfy bounds. Thus, following the work of [60, 61, 64] a QP can be solved to find

an optimal search direction that results in a feasible step. Thus, we substitute the fix-

relax strategy for a QP based approach to generate sensitivity information. This is briefly

described in Section 2.2.2.1. Therefore, implementation of a QP sensitivity step in IPOPT

could prove to be superior to the current implementation in sIPOPT to deal with especially

large parameter perturbations that may cause active set changes.

Stability and Observability with Robust M-Estimators

In Chapter 9 we discuss the possibility to reduce the negative effects that outliers and gross

errors may have in the estimated states. Here we noted that Hampel’s re-descending esti-

mator deals better with these errors than the other estimators. However, it is important to

note that if there are not enough redundant measurements observability of the states may

be lost when enough measurements are dropped. Thus, the analysis of the detectability

and observability of the RobustMHE should be studied. Specifically, through the concepts

described in Soroush [99, 100] conditions for detectability and observability could be de-

rived. These could be used to better design and tune the parameters of the M-Estimators.
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Fault Detection and Identification

Detecting gross errors is an important aspect of state estimation since the quality of the

estimated is related to the quality of the measurements. These errors can severely bias the

estimates, which can cause operational problems. Using robust estimators, as shown in

Chapter 9, can greatly reduce the effects outliers and gross errors have on the estimated

states. However, it is important to be able to detect when faults occur and where, so that

they can be fixed. Some methods have been developed for Data Reconciliation Problems

(DRP), and since both state estimation and DR are similar in the sense that both use mea-

surement information to compute data of the plant, then it is natural to think that these

methods could be used to extend the MHE formulations described here. The fault detec-

tion problem has been the topic of many research projects, and several strategies have been

developed. A very complete survey of the subject is given by Venkatasubramanian et al.

[101, 102, 103].

Tjoa and Biegler [104] propose the use of tailored distribution functions that combine

the effects of gross errors and random errors. In this way, the weight of each type of error

in the objective function is chosen automatically based on the magnitude of the residuals.

Here, they also discuss specialized SQP methods that can deal with the proposed distri-

butions in an efficient way. Through simulation examples they show that the method is

able to compute unbiased estimates, and it is effective to detect gross errors. However,

this approach was developed for steady state systems. On the other hand, Albuquerque

and Biegler [92] discuss strategies for Dynamic Data Reconciliation and gross error detec-

tion based on robust estimators such as the Fair Function and the contaminated normal

function. These functions provide a certain degree of robustness towards gross errors.

Moreover, box plots are constructed using the residuals to detect faults, and they show the

efficacy of their approach with simulation examples.
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Soderstrom et al. [105] propose a different approach for fault detection and identification.

They use a Mixed-Integer Nonlinear Programming (MINLP) method in combination with

data reconciliation. In their approach they assume steady states, thus only static linear

models are considered. This approach substitutes the quadratic objective function used in

DRP with an L1 penalty function of the measurement error with a penalty term to mini-

mize the number of chosen faults. They successfully show how this approach works with

simulation examples, and they compare the accuracy of their method with other typical

methods used for fault detection and identification. They conclude that their approach is

better since it is able to make accurate predictions using less data. Thus smaller MINLP

problems are required. Finally, Arora and Biegler [93] use M-Estimators to reduce the

effects of outliers and gross errors in simultaneous dynamic data reconciliation and pa-

rameter estimation problems. Moreover, they derive a method for fault detection based

on Akaike’s Information Criterion (AIC) [106, 107]. This approach leads to MINLP formu-

lations that resemble the problems obtained by [105], however here the formulations are

supported by previous theory.

Extending MHE to provide fault detection and identification should be straightforward

if we use the work cited above. For example, using Hampel’s re-descending estimator we

can easily detect faults by looking at the residuals. All those measurements whose residu-

als lie in the constant region of the function (i.e., {ǫj : ǫj > c ∀j}) can be considered faults.

Moreover, it should be possible to extend the advanced step formulation so that when the

new measurement is available we can formulate an Mixed Integer QP (MIQP) that will

compute the optimal sensitivity and provide fault detection. This would be similar to the

MINLP formulations described above. In addition, it is important to understand the ef-

fects that M-Estimators have on the approximation of the covariance matrix through the

reducedHessian. For example, comparing the effects on the covariance matrix when using

M-Estimators and without them for linear Gaussian systems, should provide insights into
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the effects that these functions have on the noise structure. In other words, these insights

might prove useful to show whether the computed confidence intervals can be used to

determine if the estimates are accurate or not.
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[26] Biegler, L.T., An Overview of Simultaneous Strategies for Dynamic Optimization.

Comput. Chem. Eng. 46, 2007, pp. 1043–1053.

BIBLIOGRAPHY 149



BIBLIOGRAPHY

[27] Fiacco, A.V., Introduction to Sensitivity and Stability Analysis in Nonlinear Programming,

volume 165 of Mathematics in Science and Engineering. Academic Press, 1983.

[28] Zavala, V.M., Computational Strategies for the Optimal Operation of Large-Scale Chemical

Processes. Ph.D. thesis, Carnegie Mellon University, 2008.

[29] Zavala, V.M.; Laird, C.D.; and Biegler, L.T., Fast Implementations and Rigorous

Models: Can Both be Accommodated in NMPC? Journal of Robust and Nonlinear Con-

trol 18(8), 2008, pp. 800–815.

[30] Pistikopoulos, E.N., Perspectives in Multiparametric Programming and Explicit

Model Predictive Control. AIChE Journal 55(8), 2009, pp. 1918–1925.

[31] Pistikopoulos, E.N.; Georgiadis, M.C.; and Dua, V., Multi-Parametric Programming:

Theory, Algorithms, and Applications. Wiley-VCH, 2007.

[32] Pistikopoulos, E.N.; Georgiadis, M.C.; and Dua, V., Multi-Parametric Model-Based

Control: Theory and Applications. Wiley-VCH, 2007.

[33] Rao, C.V.; Rawlings, J.B.; and Lee, J.H., Constrained Linear State Estimation–AMov-

ing Horizon Approach. Automatica 37, 2001, pp. 1619–1628.

[34] Rao, C.V. and Rawlings, J.B., Constrained Process Monitoring: Moving-Horizon Ap-

proach. AIChE Journal 48(1), 2002, pp. 97–109.

[35] Tenny, M.J. and Rawlings, J.B., Efficient Moving Horizon Estimation and Nonlinear

Model Predictive Control. In Proceedings of the American Control Conference, Anchor-

age, Alaska, 2002, pp. 4475–4480.

[36] Qu, C.C. and Hahn, J., Computation of Arrival Cost for Moving Horizon Estimation

via Unscented Kalman Filtering. J. Process Control 19, 2009, pp. 358–363.

BIBLIOGRAPHY 150



BIBLIOGRAPHY

[37] Ungarala, S., Computing Arrival Cost Parameters in Moving Horizon Estimation

Using Sampling Based Filters. J. Process Control 19, 2009, pp. 1576–1588.

[38] Lang, L.; Chen, W.; Bakshi, B.R.; Goel, P.K.; and Ungarala, S., Bayesian Estimation

via Sequential Monte Carlo Sampling-Constrained Dynamic Systems.Automatica 43,

2007, pp. 1615–1622.

[39] Rawlings, J.B. and Bakshi, B.R., Particle Filtering and Moving Horizon Estimation.

Comput. Chem. Eng. 30, 2006, pp. 1529–1541.

[40] Tatiraju, S.; Soroush, M.; and Ogunnaike, B.A., Multirate Nonlinear State Estimation

with Application to a Polymerization Reactor.AIChE Journal 45(4), 1999, pp. 769–780.

[41] Zambare, N.; Soroush, M.; and Grady, M.C., Real-Time Multirate State Estimation in

a Pilot-Scale Polymerization Reactor. AIChE Journal 48(5), 2002, pp. 1022–1033.

[42] Gopalakrishnan, A.; Kaisare, N.S.; and Narasimhan, S., Incorporating Delayed and

Infrequent Measurements in Extended Kalman Filter Based Nonlinear State Estima-

tion. J. Process Control 21, 2011, pp. 119–129.

[43] Zambare, N.; Soroush, M.; and Ogunnaike, B.A., A Method for Robust Multi-Rate

State Estimation. J. Process Control 13, 2003, pp. 337–355.

[44] Zambare, N.; Soroush, M.; and Grady, M., Multi-Rate Nonlinear State Estimation in

a Polymerization Reactor: A Real-time Study. In American Control Conference, 2002.

Proceedings of the 2002, volume 4, 2002, pp. 2701–2706 vol.4.

[45] Gudi, R.D.; Shah, S.L.; and Gray, M.R., Adaptive Multirate State and Parameter Es-

timation Strategies with Application to a Bioreactor. AIChE Journal 41(11), 1995, pp.

2451–2464.

BIBLIOGRAPHY 151



BIBLIOGRAPHY
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Appendix A

Derivation of the Discrete-Time Kalman

Filter

Here we derive the discrete time Kalman Filter following the maximum likelihood ap-

proach. The prediction of the mean is obtained by propagating the previous known esti-

mate using the linear model. The correction step is done as a linear weighted minimum

least squares problem that results from applying the maximum likelihood approach.

For a linear system of the following form, where wk is a random variable that describes

the state noise:

xk = Ak−1xk−1 +Bk−1uk−1 +Gk−1wk−1, (A.1)

with measurements (vk is the measurement noise):

yk = Hkxk + vk (A.2)

For such a system the Kalman Filter equations are defined as follows.

Propagation or Prediction

xk|k−1 = Ak−1xk−1|k−1 +Bk−1uk−1 (A.3)

Γk|k−1 = Ak−1Γk−1|k−1A
T
k−1 +Gk−1Qk−1G

T
k−1 (A.4)

Correction

xk|k = xk|k−1 +Kk

(

yk −Hkxk|k−1

)

(A.5)

where
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A.1 PREDICTION/PROPAGATION

Kk = Γk|k−1H
T
k

(

HkΓk|k−1H
T
k +Rk

)−1
(A.6)

Γk|k =
(

Γ−1
k|k−1 +HT

k R
−1
k Hk

)−1
(A.7)

Here xk|k−1 and xk|k are the predicted mean before the measurement and the corrected

mean after the measurement respectively. Γk|k−1 and Γk|k are the predicted covariance

matrix before the measurement and the corrected covariance after the measurement. Kk is

the filter gain matrix and Rk is the measurement noise covariance matrix.

To derive this equations in Section A.1 we first define the way that the mean value of

the states and the covariance propagate through the linear system. Then in Section A.2

we define a recursive weighted linear least squares estimator, through the use of Moving

Horizon Estimation (MHE), that can correct previous estimates of the states using the in-

formation of a new measurement. In Section A.3 we derive the Kalman Filter equations

shown above using the tools generated in the previous sections. Finally, in the last sections

we generalize the solution of the MHE problem to obtain a recursive analytical solution.

A.1 Prediction/Propagation

The propagation of the mean value of the state is done by calculating E [xk] = x̄k, i.e. if the

model is

xk = Ak−1xk−1 +Bk−1uk−1 +Gk−1wk−1 (A.8)

Here it is assumed that E [wk] = 0, and uk is a known non-random variable, then

E [xk] =E [f (xk−1, uk−1, wk−1)] =

E [Ak−1xk−1 +Bk−1uk−1 +Gk−1wk−1] =

Ak−1E [xk−1] +Bk−1uk−1

(A.9)

therefore,
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x̄k = Ak−1x̄k−1 +Bk−1uk−1 (A.10)

For the covariance a similar approach can be taken if we assume the following

E

[

(xk − x̄k) (xk − x̄k)
T
]

= Γ̄k (A.11)

E
[

wkw
T
j

]

= δk,jQk (A.12)

Where δk,j is the Kronecker delta. Taking all of this into account we can evaluate the

error between the state and the mean by

xk − x̄k = Ak−1(xk−1 − x̄k−1) +Bk−1
(
(
(
(
(
(
(

(uk−1 − uk−1) +Gk−1wk−1 (A.13)

Thus the covariance is calculated by equation (A.11) as

Γ̄k =Ak−1E
[

(xk−1 − x̄k−1)(xk−1 − x̄k−1)
T
]

AT
k−1+

Ak−1E
[

(xk−1 − x̄k−1)w
T
k

]

GT
k−1+

Gk−1E
[

wk(xk−1 − x̄k−1)
T
]

AT
k−1 +Gk−1E

[

wkw
T
k

]

GT
k−1

(A.14)

Which finally turns out to be

Γ̄k =Ak−1Γ̄k−1A
T
k−1 +Ak−1Mk−1G

T
k−1+

Gk−1M
T
k−1A

T
k−1 +Gk−1Qk−1G

T
k−1

(A.15)

and

Mk = E
[

(xk − x̄k)w
T
k

]

(A.16)

Qk = E
[

wkw
T
k

]

(A.17)

Another possible simplifying assumption that can be done is to assume white noise,

and, therefore, E
[

(xk − x̄k)w
T
k

]

= 0. This assumption will be made throughout the rest of

this text. This way equation (A.15) becomes

Γ̄k = Ak−1Γ̄k−1A
T
k−1 +Gk−1Qk−1G

T
k−1 (A.18)
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A.2 Moving Horizon Estimation

The Kalman Filter estimation equations can be derived through the use ofMovingHorizon

Estimation [34]. The problem is to estimate the states at a certain time T . This problem,

using theMHE formulation, is defined as follows, where the horizon length isN sampling

points. In this case time point k = 0 is the time at T −N .

min
x0,{wk}

N−1
k=0

Φ(x0, {wk}
N−1
k=0 ) = Px0 +

N−1
∑

k=0

‖ vk ‖2Rk
+ ‖ wk ‖2Qk

subject to

xk+1 = Akxk +Bkuk +Gkwk, k = 0 . . . N − 1

yk = Hkxk + vk, k = 0 . . . N − 1,

(A.19)

where Px0 is the arrival cost and it is defined as follows:

Px0 =‖ x0 − x̄0 ‖
2
Π0
. (A.20)

Here x̄0 is the predicted value of x0 (i.e., the propagated mean value). From this for-

mulation we would obtain the estimate of the state at point N − 1 (i.e., xN−1 is the state

estimate at T ), and the predicted value of the state at pointN (xN in the future time T +1).

That is to say that we are evaluating the corrected (after the measurement) estimate of the

state, and the propagated value (before measurement) with this formulation.

A.2.1 Horizon Length N = 1

To generate the estimator of the Kalman Filter we first consider the Karush Kuhn Tucker

(KKT) conditions for the above problem using a horizon lengthN = 1. In this case problem

(A.19) reduces to the following:

min
x0,{w0}

Φ(x0, w0) = (x0 − x̄0)
T Π0 (x0 − x̄0) + (y0 −H0x0)

T R0 (y0 −H0x0)+

wT
0 Qkw0

(A.21)

subject to
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x1 = A0x0 +B0u0 +G0w0

To evaluate the necessary conditions for the above problem we generate the following

Lagrangian function.

L(x0, w0) = (x0 − x̄0)
T Π0 (x0 − x̄0) + (y0 −H0x0)

T R0 (y0 −H0x0) + wT
0 Qkw0+

λT1 (x1 −A0x0 −B0u0 −G0w0)
(A.22)

The KKT conditions for the problem are the following [21].

∇x0L = 0 = Π0 (x0 − x̄0)−HT
0 R0 (y0 −H0x0)−AT

0 λ1 (A.23)

∇x1L = 0 = λ1 (A.24)

∇w0L = 0 = Q0w0 −GT
0 λ1 (A.25)

∇λ1L = 0 = x1 −A0x0 −B0u0 −G0w0 (A.26)

From equation (A.23) and (A.24) we can solve for x0 to obtain.

x0 =
(

Π0 +HT
0 R0H0

)−1 (
Π0x̄0 +HT

0 R0y0
)

(A.27)

If we substitute equations (A.27) and (A.24) into (A.26) we get the following after some

algebraic manipulation.

x1 = A0(Π0 +HT
0 R0H0)

−1(Π0x̄0 +H0R0y0) +B0u0

Using the matrix inversion lemma for the above, and after some algebra we get.

x1 = B0u0 +A0

[

x̄0 +Π0H
T
0 (H0Π0H

T
0 +R0)

−1(y0 −H0x̄0)
]

(A.28)

From equation (A.28) we can extract the recursive estimator if we consider that x0|−1 = x̄0

and Π0|−1 = Π0. Thus we get the following equation.

x0|0 = x0|−1 +Π0|−1H
T
0 (H0Π0|−1H

T
0 +R0)

−1(y0 −H0x0|−1) (A.29)
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Also, from equation (A.27) and the assumptions made above, we can extract the following

covariance update equation.

Π0|0 = (Π−1
0|−1 +HT

0 R0H0)
−1 (A.30)

If we compared these last equations to equations (A.5) to (A.7) we can notice that they

are the same. Therefore, these equations will correspond to the recursive estimator that

we can use to obtain the Kalman Filter equations. This simple example also shows that the

value of x1 is the propagated mean value at N = 1 (i.e., xN |N−1), and that x0 in equation

(A.27) is in fact x0|0 (the corrected value of the state). This will help out in the final section

where we obtain the solution of the general MHE problem.

A.3 Kalman Filter Derivation

To derive the Kalman Filter equations we can use the information of the previous sections.

Here we use the following notation: for the expected value of the state at time k before the

measurement (i.e., given k− 1measurements) we use xk|k−1, for the corrected value of the

state (after the measurement) we will use xk|k, and the same will apply for the values of

the covariance matrix (Γk|k−1 and Γk|k) before and after the measurement. We also define

the following:

E [wk] = 0, and E
[

wkw
T
k

]

= Qk (A.31)

This means that wk is a random vector with mean value zero and covariance Qk. Also,

since the state xk is a random vector, and if wk and xk are independent we will be able to

use equations (A.10) and (A.18).

First let’s assume that a linear system makes a discrete transition from a state k − 1 to a

state k. This transition will occur as in equation (A.1), and we also know a value for the

mean and the covariance at k given the past knowledge of the process (xk|k−1 and Γk|k−1).
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If we now take a new measurement we can use the recursive estimator equations (A.5) to

(A.6) derived in Section A.2.1 to correct the value of the state prior to the measurement.

That is to say that we evaluate the following.

xk|k = xk|k−1 +Kk

(

yk −Hkxk|k−1

)

(A.32)

where,

Kk = Γk|k−1H
T
k

(

HkΓk|k−1H
T
k +Rk

)−1
(A.33)

We can also update (or correct) the covariance matrix using equation (A.7), thus we get the

following.

Γk|k =
(

Γ−1
k|k−1 +HT

k R
−1
k Hk

)−1
(A.34)

This gives the corrected state estimate xk|k at time point k. If we now wish to evaluate

a new estimate at time point k + 1 we would first need an estimate of the mean and co-

variance (at k+1) with all the past knowledge. For this we could use equations (A.10) and

(A.18) to propagate the corrected estimates we obtained before to the next time point. This

means that we need to evaluate the following.

xk|k−1 =Ak−1xk−1|k−1 +Bk−1uk−1

Γk|k−1 =Ak−1Γk−1|k−1A
T
k−1 +Gk−1Qk−1G

T
k−1

(A.35)

Finally, equations (A.32) to (A.35) form the discrete Kalman Filter.

A.4 Horizon length N

To derive the Kalman Filter equations (A.3) to (A.7) we can treat the general case in which

the horizon length is N . The MHE problem to solve is defined by (A.19). For this problem

the Lagrangian function is defined as follows.
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L(x0, {wk}
N−1
k=0 ) =(x0 − x̄0)

TΠ0(x0 − x̄0)+

N−1
∑

k=0

{

(yk −Hkxk)
TRk(yk −Hkxk) +wT

kQkwk

}

+

N−1
∑

k=0

λTk+1(xk+1 −Akxk −Bkuk −Gkwk)

(A.36)

The necessary or KKT conditions for this problem are defined by the following equations.

∇x0L = 0 = Π0(x0 − x̄0)−HT
0 R0(y0 −H0x0)−AT

0 λ1 (A.37)

∇xk
L = 0 = −HT

k R(yk −Hkxk) + λk −AT
k λk+1, k = 1, . . . , N − 1 (A.38)

∇xN
L = 0 = λN (A.39)

∇wk
L = 0 = Qkwk −GT

k λk+1, k = 0, . . . , N − 1 (A.40)

∇λk+1
L = 0 = xk+1 −Bkuk −Akxk −Gkwk, k = 0, . . . , N − 1 (A.41)

These equations can be solved to obtain a recursive analytical solution. The recursive

solution is based on assuming an affine relation xk =Mkλk+rMk
which can be substituted

to solve for xN . To do this we can start by solving equation (A.37) for x0, and substituting

it into equation (A.41) along with the values of λ1 andw0 from equations (A.38) and (A.40),

respectively using the relation between xk and λk. If we do this for all xk, and each time

we substitute each xk−1, λk and wk−1 in equation (A.41) a solution for xN can be obtained.

Once this value is calculated we can recursively evaluate the rest of the states (xk) starting

from k = N − 1 to k = 0. The solution is as follows.
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λN = 0 (A.42)

xN = rMN
(A.43)

λk = Mk(xk − rMk
), k = N − 1, . . . , 1 (A.44)

xk = PkA
T
k λk+1 + Pk(MkrMk

+HT
k Rkyk), k = N − 1, . . . , 0 (A.45)

wk = QkG
T
k λk+1, k = N − 1, . . . , 0, (A.46)

where the following definitions have been used.

M0 = Π0 (A.47)

Mk+1 = AkPkA
T
k +GkQkG

T
k (A.48)

Pk = (Mk +HT
k RkHk)

−1, k = 0, . . . , N − 1 (A.49)

rM0 = x̄0 (A.50)

rMk+1
= Bkuk +AkPk(MkrMk

+HT
k Rkyk), k = 0, . . . , N − 1 (A.51)

In this caseMk is the propagated matrix Γk|k−1 (before measurement) through the sam-

pling points in the MHE, while Pk is its corrected value Γk|k. Again, the estimated state

(after measurement) is given by xN−1, while x1 is the propagated state used as x̄0 for the

newMHE problem that will be solved when the newmeasurement is available at the next

time point. The solution will be given by xN−1, that is we will obtain xN−1|N−1. This can

be shown by applying Equation (A.42) to (A.45) for k = N − 1 to get the following:

xN−1 = PN−1

(

MN−1rMN−1
+HN−1RN−1yN−1

)

(A.52)

Also we can apply Equation (A.49) to the above to get:

xN−1 =
(

MN−1 +HT
N−1RN−1HN−1

)−1 (
MN−1rMN−1

+HN−1RN−1yN−1

)

(A.53)
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We can use thematrix inversion lemma for the first term of Equation (A.53), and after some

algebraic manipulation we get the following equation.

xN−1 =rMN−1
−MN−1H

T
N−1

(

HN−1MN−1H
T
N−1 +RN−1

)−1
HN−1rMN−1

+

MN−1H
T
N−1

[

I−
(

HN−1MN−1H
T
N−1 +RN−1

)−1
HN−1MN−1H

T
N−1

]

RN−1yN−1

(A.54)

Here I is the identity matrix of proper dimensions. We can proceed now by defining the

following equality.

I−
(

HN−1MN−1H
T
N−1 +RN−1

)−1
HN−1MN−1H

T
N−1 =

(

HN−1MN−1H
T
N−1 +RN−1

)−1
RN−1

(A.55)

If we apply this to Equation (A.54), and after grouping terms we get the following.

xN−1 = rMN−1
+MN−1H

T
N−1

(

HN−1MN−1H
T
N−1 +RN−1

)−1 (
yN−1 −HN−1rMN−1

)

(A.56)

Equation (A.56) is clearly equal to Equation (A.5) with xN−1|N−2 = rMN−1
, ΓN−1|N−2 =

MN−1, and a gain matrix defined as follows.

KN−1 =MN−1H
T
N−1

(

HN−1MN−1H
T
N−1 +RN−1

)−1
(A.57)

Finally, we can also see that if xN−1 is the corrected value of the state, then by substituting

Equations (A.51) and (A.52) into (A.43), we will obtain the predicted mean value at k = N

as if using Equation (A.3).
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Appendix B

Mathematical Models

The mathematical models of the different examples used are described in this chapter.

The first system is a discrete time model, and the last three are index 1 DAE systems that

describe the dynamic behavior of 4 different processes. The systems are:

1. Isothermal gas phase batch reactor

2. General 3 state CSTR

3. Styrene polymerization CSTR

4. Binary distillation column

5. CSTR Network

B.1 Isothermal Gas Phase Reactor

This model is of a simple isothermal batch reactor in which an irreversible gas phase reac-

tion takes place at constant volume. The reaction taking place here is

2A
k̄

−−→ B.

Thus, the discrete time model of this system is given by

CA,k =
CA,k−1

2k̄∆tCA,k−1 + 1
(B.1a)

CB,k = CB,k−1 +
k̄∆tC2

B,k−1

2k̄∆tCA,k + 1
(B.1b)

CA,k ∈ [0, 1.5], CB,k ∈ [0, 2.5], (B.1c)
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whereCA,k andCB,k are the partial pressures of components A and B,∆t = tk−tk−1 = 0.1,

k̄ = 0.16 is the kinetic rate constant.

B.2 General 3 State CSTR

This model describes the dynamic behavior of a non-isothermal CSTR where the exother-

mic reaction between thiosulfate and hydrogen peroxide takes place. For this example the

states are the concentration of thiosulfate (CA), the reactor temperature (TR), and the cool-

ing water temperature (Tcw). The model, as reported by Qu and Hahn [36] is given by the

following index 1 system of differential-algebraic equations, where the model parameters

are given in Rajaraman et al. [108].

dCA

dt
=
F

V

(

Cin
A − CA

)

− 2k (TR)C
2
A (B.2a)

dTR
dt

=
F

V

(

T in
R − TR

)

+
2(−∆HR)k (TR)C

2
A

ρCP
−

UA

V ρCp
(TR − Tcw) (B.2b)

dTcw
dt

=
Fcw

Vcw

(

T in
cw − Tcw

)

+
UA

VcwρcwCpcw
(TR − Tcw) (B.2c)

k (TR) = ko exp

[

−Ea

RTR

]

(B.2d)

CA ∈ [0, 1], TR ∈ [200, 420], Tcw ∈ [200, 420], (B.2e)

where the feed and cooling water flow rates, F and Fcw, are considered known inputs, Cin
A

and T in
R are the concentration of A and the temperature of the inlet stream, and the inlet

temperature of the cooling water is given by T in
cw. Moreover, the following are parameters:

reactor volume and area (V and A, respectively), reaction heat (∆HR), inlet feed stream

density and heat capacity (ρ and CP , respectively), global heat transference coefficient (U ).

Finally, similar parameters are used for the dynamics of the cooling water, and these have

the subindex cw.
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B.3 Styrene Polymerization CSTR

The polystyrene CSTR considered here is the same as the system described in [40]. The

model describes the mass and energy balances of the CSTR, and it consists of the following

set of differential-algebraic equations:

dCi

dt
=
QiCii

V
−

(

ki +
1

τ

)

Ci (B.3a)

dCs

dt
=
QmCss +QiCsi

V
−
Cs

τ
(B.3b)

dCm

dt
=
QmCmm −QtCm

V
− kpCmP (B.3c)

dTR
dt

=γkpCmP −
UA (TR − Tj)

ρCpV
+
Qt (Tin − TR)

V
(B.3d)

dTj
dt

=
UA (TR − Tj)

ρwCpwVj
+
Qw (Twin − Tj)

Vj
(B.3e)

dλ0
dt

=−
λ0
τ

+ (kfmCm + ktdP + kfsCs)αP +
1

2
ktcP

2 (B.3f)

dλ1
dt

=−
λ1
τ

+
[

(kfmCm + ktdP + kfsCs)
(

2α− α2
)

+ ktcP
] PMm

1− α
(B.3g)

dλ2
dt

=−
λ2
τ

+
[

(kfmCm + ktdP + kfsCs)
(

α3 − 3α2 + 4α
)

+ ktcP (α+ 2)
] PM2

m

(1− α)2

(B.3h)

α =
kpCm

(kp + kfm)Cm + kfsCs + ktP
(B.3i)

P =

√

2f⋆Ciki
kt

(B.3j)

kj =k0,je
−

Ej

RT ∀ j ∈ {i, p, t, fm, fs, td, tc} (B.3k)

where Ci, Cs, and Cm represent the concentrations of the initiator, solvent, and monomer,

respectively. TR and Tj are the temperatures of the reactor and cooling water, and finally

λ0, λ1, and λ2 are the first moments of the molecular weight distributions. In addition, Cii,

Css, and Cmm represent the concentrations of the initiator, solvent, and monomer in their

respective feed streams. Csi is the concentration of the solvent in the initiator feed stream,

and P represents the concentration of the live polymer. Finally, the inlet temperatures of
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the reactor and cooling water are Tin and Twin, respectively. In this case, the molecular

weight averages are of particular importance since these are used to determine specific

physical properties of the produced materials [89]. It is therefore common to use these

states as controlled variables. Thus, the molecular weight averages by weight (MW ) and

number (MN ) can be calculated with

MN =
λ1
λ0

(B.4a)

MW =
λ2
λ1

(B.4b)

.

B.4 Distillation Column Model

Here a detailed description of the mathematical model for the binary distillation column

used in the examples is given. Note that coefficients for the physical property equations

(enthalpy, Antoine equation, etc.) can be found in [70, 109]. The top tray is indexed with

i = NT , the condenser with i = NT + 1, and the reboiler with i = 0. Figure B.1 illustrates

the flows between any two given trays in the column.

Figure B.1: Illustration of the flows between any two given trays in the distillation column.
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Mass balances: For each stage, the overall mass balance must hold, and the rate of

change of the molar hold-up (Mi) is given by the difference in the flows to and from the

adjacent stages

Ṁi = Vi−1 − Vi + Li+1 − Li + Fi, (B.5)

with Vi and Li being the vapor and liquid flow rates. Here the molar feed flow Fi is

entering the column at stage i = 21 (all other feeds are set to zero). For the condenser, the

distillate is given by D, thus we have

ṀNT+1 = VNT
−D − LNT+1. (B.6)

On the other hand, for the reboiler the bottoms flow rate is B.

Ṁ0 = −V0 −B + L1 (B.7)

Moreover, the reflux stream is modeled with

R =
D

LNT+1
(B.8)

Additionally, the tray component-wise mass balance, assuming that only liquid molar

holdup is of importance, is given by

Ṁixi +Miẋi = Vi−1yi−1 − Viyi + Li+1xi+1 − Lixi + Fizf,i, (B.9)

where xi is the molar fraction of the volatile component in the liquid phase. Using (B.5)

the above equation yields

Miẋi = Vi−1 (yi−1 − xi) + Li+1 (xi+1 − xi)− Vi(yi − xi) + Fi (zf,i − xi) . (B.10)

For the reboiler and condenser we have,

M0ẋ0 = L1 (x1 − x0)− V0 (y0 − x0) (B.11)

MNT+1ẋNT+1 = VNT
(yNT

− xNT+1) , (B.12)

respectively.
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Equilibrium and Summation Equations: The total pressure Pi on each tray is assumed

to be constant, with a pressure drop∆Pi from top to bottom.

Pi−1 = Pi +∆Pi, i = 1, . . . , NT + 1 (B.13)

The pressure of the condenser is set to PNT+1 = 93.9 KPa, while the pressure drop was

set to 250 Pa per tray for the stripping section and 190 Pa per tray for the rectifying section.

Thermodynamic equilibriumwasmodeled using Raoult’s Law, so that the pressure of each

tray is

Pi = P s
i,1(Ti)xi + (1− xi)P

s
i,2(Ti), (B.14)

where the vapor pressures are computed using Antoine’s Equation

P s
i,j = exp

(

Aj −
Bj

Ti + Cj

)

. (B.15)

Note that the tray temperatures are implicitly defined by Equation (B.14). However, to

reduce the index of the model, we need the time derivative of the temperature, which is

determined by applying the implicit function theorem to Equation (B.14) to yield

Ṫi = −

(

P s
i,1 − P s

i,2

)

ẋi

∂P s
i,1

∂Ti
xi +

∂P s
i,1

∂Ti
(1− xi)

(B.16)

The partial derivatives of the vapor pressures can be obtained from the Antoine Equa-

tions above.

Moreover, to account for non-equilibrium behavior in the mixtures tray efficiencies αi

are considered in the summation equations. Thus for each tray we have

yi = αixi
P s
i,1

Pi
+ (1− αi)yi−1, (B.17)

and for i = 0 the term simplifies to

y0 = x0
P s
0,1

P0
. (B.18)
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Energy balances: The liquid enthalpy is determined with

hLi (xi, Ti) = xih̄
L
i,1(Ti) + (1− xi)h̄

L
i,2(Ti), (B.19)

and the vapor enthalpy is given by

hVi (yi, Ti, Pi) = yih̄
V
i,1(Ti, Pi) + (1− yi)h̄

V
i,2(Ti, Pi). (B.20)

In addition, the pure liquid and vapor enthalpies required in the above equations are

defined by the following terms

h̄Li,j(Ti) = C
[

gj,1 (Ti − Tref, j) + gj,2 (Ti − Tref,j)
2 + gj,3 (Ti − Tref,j)

3
]

h̄Vi,j(Ti, Pi) = h̄Li,j(Ti) + α̂RT c
j

√

√

√

√1−
Pi

P c
j

(

Ti
T c
j

)−3

α̂ =



â− b̂
Ti
T c
j

+ ĉ

(

Ti
T c
j

)7

+Ωj



d̂− ê
Ti
T c
j

+ f̂

(

Ti
T c
j

)7






 .

(B.21)

The energy balance for the trays are given by

Ṁih
L
i +Mi

(

ẋi
∂hLi
∂xi

+ Ṫi
∂hLi
∂Ti

)

=Vi−1h
V
i−1 − Vih

V
i +

Li+1h
L
i+1 − Lih

L
i + Fih

L (zf,i, Tf,i, Pf,i) .

(B.22)

For the reboiler the added heat duty is QR, and a loss term (Qloss) is also considered.

Ṁ0h
L
0 +M0

(

∂hL0
∂x0

ẋ0 +
∂hL0
∂T0

Ṫ0

)

= QR −Qloss − V0h
V
0 + L1h

L
1 −BhL0 (B.23)

The energy balance for the condenser is

ṀNT+1h
L
NT+1 +MNT+1

(

∂hLNT+1

∂xNT+1
ẋNT+1 +

∂hLNT+1

∂TNT+1
ṪNT+1

)

= VNT

(

hVNT
− hLNT+1

)

−QC ,

(B.24)

where the condenser heat duty isQc. The partial derivatives of the previous equations can

be derived from Equations (B.19) and (B.21). Note that substituting equations (B.5)-(B.7),

(B.10)-(B.12), and (B.16) into the energy balance equations yields a set of purely algebraic

equations for the vapor flow rates and the condenser heat duty.
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B.5 CSTR NETWORK

Hydrodynamics: To determine the liquid flow rates from each tray we use Francis weir

formula. For that first we need to determine the liquid volume holdup of each tray. These

are related the molar volume V m
i (xi, Ti) by the following equation

nvi =MiV
m
i (xi, Ti), (B.25)

and the molar volumes are computed as the sum of the molar volumes of the pure compo-

nents weighted by their molar fraction

V m
i (xi, Ti) = xiV̄

m
i,1(Ti) + (1− xi)V̄

m
i,2(Ti), (B.26)

where V̄m,1(Ti) and V̄m,2(Ti) are the temperature dependentmolar volumes of pureMethanol

and n-Propanol. These are computed using

V̄ m
i,j (Ti) =

1

āj
b̄
1+(1−Ti/c̄j)

d̄j

j . (B.27)

Finally, the liquid flow rates are calculated by the so-called Francis weir equation given

by

LiV
m
i (xi, Ti) =Wi

(

nvi − nv,refi

) 3
2
, (B.28)

whereWi is the Francis weir constant.

B.5 CSTR Network

This model consists of the mass and energy balance of each reactor in a network where the

reaction that is occurring is given by A −→ B. The network is depicted in Figure B.2, and

the model is given by

dCi

dt
=
Ci−1 − Ci

θi
− koCie

−
ER
RTi (B.29a)

dTi
dt

=
Ti−1 − Ti

θi
−

∆Hreac
ρCp

koCie
−

ER
RTi +

2U

rρCp
(Tcw − Ti) (B.29b)
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B.5 CSTR NETWORK

where Ci and Ti are the concentration and temperature for the i-th reactor, respectively.

Also, C0 and T0 are the feed concentration and temperature. Other model parameters are

taken from [110].

Figure B.2: Illustration of a network of CSTRs.
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Appendix C

Auxiliary Theorems

In this appendix some general theorems and proofs are collected. These are used through-

out the thesis, and for convenience they are shown here. The theorems collected here are

related to Probability Theory.

Theorem C.1 (Probability transfer function theorem [8].): Let x, y be random n-vectors with

y = f (x). Suppose f−1 exists and that both f and f−1 are continuously differentiable. Then

py (y) = px
(

f−1 (y)
)

∥

∥

∥

∥

∂f−1 (y)

∂y

∥

∥

∥

∥

, (C.1)

where
∥

∥∂f−1 (y)/∂y
∥

∥ > 0 is the absolute value of the Jacobian determinant.

Proof: The proof follows directly from well known integral transformations and Theorem

2.7 in Jazwinski [8].
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Appendix D

Expressions for Y , O, and W

In the objective function of NLP (6.10) the initial condition penalty term includes expres-

sions that use Y , O, and W . These can be obtained by assuming that p
(

Y k−1
k−N

∣

∣

∣
zk−N

)

is

Gaussian, and from the properties of stochastic difference equations. Moreover, we use the

linearized versions of the model to generate the expression that follow. Also, we assume

that for the linear model the noise variables are additive. Thus, linearized model is given

by

zl = Al−1zl−1 + ωl−1 (D.1a)

yl = Hlzl + νl, (D.1b)

and since p
(

Y k−1
k−N

∣

∣

∣
zk−N

)

is Gaussian, we also have that

p
(

Y k−1
k−N

∣

∣

∣ zk−N

)

∼ N
(

Ȳ,W
)

. (D.2)

The parameters of this Gaussian distribution are generated as follows. The mean (Ȳ) is

obtained from

Ȳ =















ȳk−N

ȳk−N+1

ȳk−N+2
...

ȳk−1















=















Hk−N

Hk−N+1Ak−N

Hk−N+2Ak−N+1Ak−N
...
Hk−1Ak−2Ak−3 · · ·Ak−N















zk−N = Oz̄k−N , (D.3)

where we note thatO is the observability matrix. On the other hand, the covariance matrix

(W) is given by E

[

(

Y − Ȳ
) (

Y − Ȳ
)T
]

. For this, we now define the following equation

Y = Ozk−N +Mω + ν, (D.4)
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and, also, the following definition holds

M =















0 0 0 0
Hk−N+1 0 0 0

Hk−N+2Ak−N+1 Hk−N+2 0 0
...

...
. . .

...
Hk−1Ak−2Ak−3 · · ·Ak−N+1 Hk−1Ak−2Ak−3 · · ·Ak−N+2 . . . Hk−1















, (D.5)

where, the vectors in Eq. (D.4) are defined by

ω =



























ωk−N

ωk−N+1

ωk−N+2

...

ωk−1



























and ν =



























νk−N

νk−N+1

νk−N+2

...

νk−1



























.

Finally, taking the expected value ofE
[

(

Y − Ȳ
) (

Y − Ȳ
)T
]

and usingAssumptions 3.1(ii–

iii) we obtain the expression forW :

W = OΠ̄k−N |k−1O
T +MQMT +R, (D.6)

where Q = diag (Qk−N , . . . , Qk−1) and R = diag (Rk−N , . . . , Rk−1).
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