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CHAPTER 1

Introduction

In this thesis we introduce a new weighted-averaging variant of the familiar �nonlocal biological

aggregation equation� in Euclidean space, with weights dependent on the nearness of neighbors,

which are added for more realism and �exible modeling. We discover how the gradient �ow structure

of the original equation is realized again via the introduction of a new metric tensor, one that

penalizes movement in crowded con�gurations (nonlocally). We interpret this metric tensor and its

global metric, examine the formal di�erential geometry structure, understand its boundedness when

in�nite spreading can occur, and �nally establish the topology for a version of the metric de�ned in

a bounded set. Numerical simulations follow to illustrate the behavior of the aggregation dynamics

and the metric's geodesics.

1.1. Collective dynamics

We begin with the general concept of collective behavior dynamics. Collective dynamics, as used in

the scienti�c literature, always seems to refer to groupings of individuals of some kind who follow

rules on an individual basis, usually identical, that lead to overall group behavior without centralized

or external governance. An immediate tangible example might be the clustering of �sh into schools,

whose schooling evolutions of shape and density and size demonstrate remarkable response to their

environments, seemingly intelligently as a collective, despite that no central intelligence seems to be

present and that no communication between �sh beyond near neighbors seems to occur.

The emergence of such group behavior, group patterns, group disposition, and group anything from

a limited set of speci�c individual rules is often called emergent behavior. Emergent behavior is a

fascinating mechanism which may explain many large-scale phenomena in the natural world, with

deep philosophical meaning and much to study.

This is a broad general principle and a broad topic of discourse, no doubt, within all the sciences

including math. Keeping the theme in mind, let us narrow it to the kinds of dynamic models under

much study in the math literature in recent years, in particular limited to spatial models tracking the

positions or distribution of individuals/mass of a group under simple interaction rules that encourage

their grouping.

For example, let us consider models which might be applicable to track the �point� locations of

schooling �sh, or �ocking birds, or herding penguins, or clustering bacteria, or unusual particles
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in physics, or traveling formations of search-and-rescue robots. The �rst note about these models

is that they are aspirational; as far as this author can tell, limited success has been met so far in

applying the mathematical models discussed in this chapter to actual application-bene�tting data-

�tting scienti�c usage. That is not to say they are not useful; indeed, many interesting phenomena

are observed which align with and possibly explain the striking emergent phenomena observed within

experimental scienti�c disciplines.

This raises the second note about these models. A common theme surrounding them is simplicity.

As far as this author can tell, simplistic models�which is a nice way of saying overly simplistic,

from a practical point of view�is a hallmark of applied mathematical modeling for two legitimate

reasons. First is the issue of mathematical tractability. This is clearly a bene�t for useful analysis

to proceed. However, it does not quite justify the large focus and e�ort given to models which are

without a doubt very, very simplistic, to the point that nobody would believe the application can

be governed by such a thing. The second more subtle reason is about simplicity of explanation: if a

phenomenon observed in the world is also observed in a very simple model, a model which perhaps

captures the important characteristics of the system, this can be very appealing as an explanation

of the world phenomenon, despite that the world is of course more complicated. This is some kind

of scienti�c principle of simplest explanation, perhaps simply what is known as Ockham's razor.

We now take a look at the distinguishing characteristics of spatial tracking models studied in recent

decades, as mentioned above, which set the backdrop for the new model of this thesis.

1.2. The variety of spatial collective dynamics models

Again, we are interested in collective dynamics models that track the positions or distribution of

individuals/mass of a group. The physical space is presumed to be Euclidean space Rd, with practical
applicability for d = 2 or 3.

Looking through the literature, we notice the following distinguishing characteristics between models,

which may help to classify them and the resulting investigations:

� particles vs. density or measure distribution

ODE models are used to track individuals as particles, whereas PDE or nonlocal PDE (integro-

di�erential) are used to track the distribution of group members from a higher-level mean-�eld

perspective. Examples of the former are found in [78, 33, 32] and the latter in [37, 12, 36].

� position matching (�aggregation�) vs. velocity matching (��ocking�) vs. combination of the two

Position matching represents the attempt of individuals to be near others (but not too near, some-

times), without taking into account where those neighbors are headed; whereas velocity matching

represents an attempt to move under (any) formation with others, without regard to separation.
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When both are employed by a model, usually zones of activation are used, with attractive position

matching used in an outer distance zone, and velocity matching used within an intermediate zone,

and repulsive position matching within a nearest zone. Examples of position matching are found in

[55, 43], velocity matching in [78, 33], and their combination in [67, 32].

� when position matching is included : attractive vs. repulsive vs. combination of the two

Position matching may in general involve only attraction, or only repulsion, or both. For example,

attractive-only and repulsive-only phenomena are considered in [11].

� when repulsion is included, in the case of density or measure distribution: nonlocal repulsion

(integro-spatial) vs. local repulsion (di�erential operator)

For PDEs, repulsion may be obtained by either a local PDE operator or by nonlocal integration over

nearby mass. For example, the former in [73] and the latter in [61].

� radially symmetric interaction vs. asymmetric

Interactions may be taken symmetrically around the individual, which is the most common case

considered in models, or asymmetrically, as in [53, 60].

� homogeneous individuals vs. heterogeneous

Individuals may interact with all other individuals identically, which is the most common case

considered in models, or di�erent �species� may be present.

� equal averaging of pairwise interactions vs. weighted averaging

Usually, interactions are de�ned �rst pairwise, and then the whole of pairwise interactions are

resolved through some averaging. The most common case considered is equal averaging of these

interactions. Alternatively, weights may be calculated, as in [63, 64].

� First-order time derivative (non-inertial) vs. second-order time derivative (inertial)

Interactions may directly impact an individual's velocity, as in �rst-order models, or may impact

the individual's acceleration, as in second-order. Examples of the former are found in [78, 81] and

the latter in [23].

� velocity preference (�self-propelled�) vs. without

A preferred velocity may be built into the model, to represent typical �ock motion, which is most

common in second-order models such as in [30].

� other modeling ingredients: di�usion, external potential, density constraints, speed constraints,

spatial boundary, ...
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Other modeling ingredients are sometimes combined with the above, such as di�usion in [76], exter-

nal potential in [6], limits on density �packing�, limits on attainable speed, and spatial boundaries

as in [82].

� spatial dimension d

Speci�c dimensions are sometimes studied for phenomena particular to them, such as 2D patterns

and double milling in [23, 30].

1.3. Nonlocal aggregation

Let us now turn to the traditional nonlocal aggregation model, studied for example in [55, 21, 12]

in its density/measure version. We call this model �pure� aggregation to distinguish from the new

�weighted� aggregation introduced in this thesis.

1.3.1. Particle model.

Pure aggregation is well studied, with particle model

(1.3.1) ẋi = − 1

N

∑
j 6=i
∇W (xi − xj)

which is an ODE in the con�guration space X = RdN , for N particles positioned at locations

x1, ... xN in physical space Rd as a function of time.

In the classi�cation scheme above of section 1.2, this model is particle, position matching, attractive

or repulsive or combination of the two, radially symmetric or asymmetric, homogeneous in individ-

uals, equal averaging, �rst order, without velocity preference, without other modeling ingredients,

and in arbitrary dimension.

W is always taken in this thesis to be radially symmetric in C1
(
Rd \ {0}

)
, with possible singularity

at the origin. In this thesis the radial pro�le of any radially symmetric function is notated with a

raised circle, so that W • is the radial pro�le of W , i.e. for all x

W (x) = W •(|x|) .

The potential function W describes the �pairwise interaction� between particles, the whole of which

are resolved through equal averaging. As a �potential�, it acts modulo addition by a constant, as

seen in the model by the appearance of its derivative only. The choice to model interaction forces by

the gradient of a potential function is motivated to allow energy considerations, so that W appears

without derivative in an appropriate energy functional as seen in chapter 3. W is often chosen to

be attractive at long range and repulsive at short range, i.e. W • decreasing near the origin and
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later increasing, modeling individuals' desires to aggregate in clusters while retaining some personal

space. In other cases W may be purely attractive or repulsive, to model a collapsing aggregate or

an expanding one.

This is a �rst-order model in time. That is, there is no acceleration or inertia involved. This modeling

treats the interaction magnitude from ∇W directly as an implied velocity for the particle, which

makes sense for applications in which individuals may rapidly accelerate to their typical velocities.

In a slight abuse of terminology, the magnitude of ∇W experienced by a particle is still called �force�.

The optional 1
N scaling prevents additivity of the forces. This is desirable if forces are presumed to

be encoded in ∇W with reasonable magnitudes for the application, in which case they should not

be multiplied by a large number in the presence of a large number of neighbors. In particular, this

allows varying N , such as studying N →∞. The 1
N scaling may also be interpreted as assigning 1

N

mass to each particle (in the sense of magnitude of in�uence), which corresponds to using probability

measures in a measure-valued model, or equivalently as simply making the summation in the model

an average.

This brings us to the density/measure model of pure aggregation.

1.3.2. Density and measure model.

The measure-valued counterpart of (1.3.1) may be obtained by representing the particles as Dirac

measures, discarding particle labeling, which is given by the probability measure

µt =
1

N

∑
i

δxi(t).

Then the right-hand side of (1.3.1) may be written as a convolution with this measure,

− (∇W ∗ µt) (xi (t)) .

This presumes for now that W is radially symmetric with ∇W (0) = 0. The resulting continuity

equation

(1.3.2) ∂tµt + div (µtv) = 0

v = −∇W ∗ µt

then has the bene�t of also allowing more general measures. In particular, it allows the modeling of

a continuum density µ (with respect to Lebesgue measure), and indeed more generally any suitable

�nite measure µ in Rd, with the dependent velocity �eld v advecting µ through time according to

the spatial convolution.
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The measure model has the advantage over the original ODE in representing individuals at the large

scale, on average, in the way that PDEs and continuum models frequently are used (such as for �uid

dynamics instead of tracking individual molecules). But both models have their utility.

Because the measure model's attractive and repulsive forces are both modeled nonlocally by inte-

gration, the label �nonlocal aggregation� is well motivated.

1.4. Gradient �ow and optimal transport

Pure aggregation (1.3.2) is an example of a gradient �ow. This means there exists a functional on

the con�guration space of measures which is not only a Lyapunov function but which also dissipates

maximally, by the direction of evolution in the con�guration space. That is, the evolution is a

steepest descent, as identi�ed in chapter 3. To de�ne such maximal dissipation one also needs

a metric on the con�guration space, which here is the 2-Wasserstein metric, also known as the

quadratic Monge-Kantorovich distance, elaborated below.

Note pure aggregation's ODE (1.3.1) also is a gradient �ow, under an analogous energy and metric

on its con�guration space.

Many classical PDEs of probability densities are in fact gradient �ows with respect to the 2-

Wasserstein metric, such as the heat equation (di�usion) and the Fokker-Planck equation, inves-

tigated by Jordan, Kinderlehrer, Otto [49]. A quite general theory for gradient �ows in metric

spaces, and particularly in spaces of probability measures, has been elucidated by Ambrosio, Gigli,

and Savaré [3].

The basis of the 2-Wasserstein metric lies within the other general theory to be mentioned here, that

of optimal transport. The rudimentary basics of optimal transport are presumed background for this

thesis, as can be found in the introductory chapter of a book like Villani's [79]. The 2-Wasserstein

distance between two measures is none other than the square root of their optimal transport cost,

using cost function equal to the square of Euclidean distance.

Optimal transport traces back to Monge's original formulation [62], which was picked up over a

century later by Kantorovitch [50, 51, 52] at �rst unaware of the former. Kantorovitch's formulation

relaxed Monge's into the modern one considered today, with Monge's problem a constrained version

which is often more di�cult. Two decades later Sudakov [72] advanced the theory with an almost-

correct proof of existence of a minimizer to Monge's problem.

Optimal transport theory has undergone rapid advancement in recent decades, with noteworthy

advancements: by Brenier [16] with his polar factorization of L2 vector-valued maps to yield re-

arrangements to gradients of convex maps; by Ca�arelli [18] on regularity conditions for these; by

Gangbo and McCann [44, 45] for cost functions strictly convex or a strictly concave function of
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Euclidean distance; by McCann [59] with his displacement interpolation and displacement convex-

ity; by Evans and Gangbo [42] on formulating optimal transport through di�erential equations; by

Cordero-Erausquin, McCann, and Schmuckenschläger [31] on characterization of the optimal trans-

port maps and displacement interpolation on manifolds; and by Benamou and Brenier [5] for their

connection of the 2-Wasserstein optimal transport to a �least action� Eulerian (��uid mechanics�)

displacement formulation.

Summary works on optimal transport include that by Rachev and Rüschendorf [66]; those by Am-

brosio and later with Gigli [1, 2]; those by Villani [79, 80]; and that by Santambrogio [68].

Another novel direction was taken by Otto [65], with the point of view that Eulerian displacement

interpolations may be taken formally as curves in Riemannian manifolds. The formal tangent vector

at a con�guration in the space of measures is taken as an equivalence class of velocity �elds: those

that via the continuity equation yield the instantaneous measure evolution. Textbooks, such as [38],

contain the di�erential geometry theory alluded to.

Lastly, as an example of the possible variety of gradient �ows using atypical metrics, we mention

Erbar's recent work [40] which introduces another nonlocal modi�cation of the 2-Wasserstein metric,

as this thesis does, to identify a gradient �ow where a gradient �ow was otherwise not obviously

present. He considers a nonlocal continuity equation, in contrast to the nonlocal mobility considered

here. The �jump� continuity equation therein indeed exempli�es the possible variety of gradient �ows

yet to be noticed.

1.5. The contributions and content of this thesis

The principal contributions of this thesis are regarded as follows.

� The case is made for weighted averaging as an important improvement to the traditional pure

aggregation equation.

� It is discovered that such weighted aggregation is a gradient �ow under a new metric tensor for

measures.

� Such new metric tensor and its global metric are introduced, which penalize motion in �crowded�

con�gurations as a generalization of the 2-Wasserstein metric.

� Mass spreading is studied in this metric space of measures, and it is found that conditions for

�nite-cost in�nite spreading imply boundedness of the metric.

� Topological equivalence to weak (-*) convergence of measures is established for a version of the

metric on a bounded set that is �rst de�ned for regular measures and then extended by completion.
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The remainder of the thesis is organized as follows.

Chapter 2 concerns the motivational development of weighted aggregation from pure aggregation

with its weaknesses. In chapter 3 it is discovered that weighted aggregation is a gradient �ow with

the introduction of a new metric tensor. Chapter 4 develops this new geometry of measures with

its global metric and geodesics. In chapter 5 the possibility of �nite-cost in�nite spreading is noted,

which leads to an examination of the conditions for such and the implications on boundedness of the

metric. Chapter 6 introduces an alternative development of the desired metric using regular measures

and extending by completion, with the development limited to measures on a given bounded set,

and establishes topological and uniform equivalence to the 2-Wasserstein metric there. Chapter

7 brie�y lists some open directions of research following the developments in this thesis. Finally,

chapter 8 contains the visual results of numerical experimentation performed on the geodesics of

the particle version of the metric as well as on the weighted aggregation ODE. Of particular note is

an interesting behavior found experimentally we call �polar milling�, which involves recirculation of

individuals inside clusters during their migration to merge with other distant clusters.



CHAPTER 2

Development of the aggregation model

2.1. Motivation for a change

From a modeling point of view, the pure aggregation equation (1.3.1) su�ers from a weakness similar

to one already identi�ed in the Cucker-Smale model for biological �ocking [63]. Here however, at

issue is position attraction-repulsion (�aggregation�) instead of velocity matching (��ocking�). The

weakness can be seen as follows.

Consider a rather typical W with a repulsive regime near the origin and an attractive regime on the

rest of its domain, and suppose W �attens at large distance, meaning the attraction diminishes to

near zero. This commonly models a diminishing bene�t or interest in aggregating far away. The

catch is that the nearly-zero forces from distant particles have a diluting e�ect on close-proximity

forces where W is more active. (The model is averaging, not additive.) This unduly slows the

motion of a particle aggregating with nearby neighbors, relative to the motion of other particles not

much diluted.

For instance, given a local cluster not yet in equilibrium, joined by a more massive companion

cluster far away, there exists su�ciently large separation such that the small cluster's dynamics will

be dominated by itself, and thus it will aggregate, yet it will act in slow motion compared to the

motion occurring in the larger cluster. Indeed, slower than it would act if the larger cluster were

not present. This seems undesirable.

So, one may wonder: Why are we treating the near-zero forces at large distance, which model

diminishing bene�t, the same as the near-zero forces at near distance which model desirable spacing?

Both tip the average toward �do nothing�, but one seems to be important to the agents to �do noth-

ing�, whereas the other seems to be about unimportance. Perhaps it should be paid less attention.

A modest adaptation to the model, then... Why not weighted averaging?

15
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2.2. Adapting the model: weighting1

Let us replace the 1
N in equation (1.3.1) with a weight on each term in the summation, to form a

more general convex combination.

The only information at our disposal is particle positions, so let us assign weight according to

proximity: Let nonnegative a•∈ C ([0,∞)) prescribe relative �attention� given at distance, to be

used for the weights of neighbors. For example, attention function a• (r) := 1
1+r would represent a

diminishing attention with distance, favoring near neighbors.

As hinted at by the notation, a• is then revolved about the origin to produce radially symmetric

nonnegative a ∈ C
(
Rd
)
with a• as its radial pro�le.

The sought convex combination is then written

(2.2.1) ẋi =
∑
j 6=i

θ̄ij (~x)∇W (xj − xi)

θ̄ij (~x) :=
a (xi − xj)∑
k 6=i a (xi − xk)

with ~x denoting the vector of x1, ... xN .

From the model it is seen that attention values a (·) are relative (to each other), meaning the model

is invariant to scaling of a, and a therefore may be normalized. For example, whenever a is bounded,

we normalize to sup a
(
Rd
)

= 1. Note we do not write ‖a‖∞ for reasons of generalization later when

a may be discontinuous, and an almost-everywhere description of a is insu�cient.

We keep W in its role prescribing pairwise interaction, which in particular is an agent's behavior

when seeing only one other agent. The whole of pairwise interactions are resolved through weighted

average.

The reader will note that weighted averaging is precisely the remedy applied by Motsch and Tadmor

to the Cucker-Smale model of �ocking under velocity matching [63], to improve its weaknesses

similar to those of pure aggregation cited here. The same authors also recently applied this to a

�consensus� model in opinion dynamics [64], which is more like the position aggregation of this

thesis. The methods and objectives in those works were slightly di�erent than here. Both rely on

an attractive-only interaction potential W , with the consensus model, a special case of the model

here, speci�cally focused on W •(r) := r2 as the radial pro�le of W .

1Note the adapted model of this section becomes modi�ed once further in the next section.



2.3. SELF ATTENTION 17

We must also note that the landmark �ocking model of Vicsek et al [78] itself can be seen to have

used weighting, albeit of a discrete kind: neighbors are included or excluded depending on proximity.

This is none other than the attention function a = χB(0,R), the characteristic function of a ball. No

doubt many modern simulations also share this practicality. The model here can approximate this

attention function by continuous functions a.

2.3. Self attention

The model (2.2.1) is �ne for functions a that are strictly positive. However, we may also wish to

consider nonnegative functions a allowed to take value zero, as motivated for example in the previous

paragraph. This would allow in general the modeling of �nite �attention horizons�, meaning functions

a with bounded support, which may be a reasonable desire in applications.

We can see that if a vanishes somewhere, then the right hand side of (2.2.1) is unde�ned in many

con�gurations. Indeed, conceptually, we have not imagined what a particle should do when it can

�see� no others, meaning when all neighbors are assigned attention zero for this particle. If we

prescribe a rule for this situation, the only justi�able rule seems to be �do nothing�. Any other

rule would involve a direction chosen arbitrarily. Of course, the rule �do nothing� is also pure

aggregation's description for an isolated particle.

How do we revise (2.2.1) for this?

If we de�ne the form 0/0 as zero, or equivalently if we provide cases on the right hand side of (2.2.1)

to yield zero for this case, then the ODE becomes generally not well-posed. For example, in a

2-particle world initialized by separation of distance one, with attractive W and with a• positive on

[0, 1) and zero at one, there is no uniqueness of solutions on future time. And of course the equation

with exceptions becomes harder to study.

Another natural way may be to give some attention to self. Self interaction is then of course de�ned

to be zero. One may call it the �laziness� tendency, a bit of zero inertia that must continually be

overcome by neighbors to excite the individual. It can be chosen arbitrarily small.

Wishfully thinking, perhaps experimentalists may even �nd bene�t from such a parameter which is

not arbitrarily small.

Thus we add regularizing constant a0 ≥ 0 to the denominator of θ̄ij and remove the bar for notation:

θij (~x) :=
a (xi − xj)

a0 +
∑

k 6=i a (xi − xk)
.

The new ODE taken with the new θij ,
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(2.3.1) ẋi =
∑
j 6=i

θij (~x)∇W (xj − xi) ,

then remains a convex combination by thinking of the summation over j 6= i as including an implicit

�j = i � term of zero.

Hereafter we assume one of a, a0 is strictly positive, for the denominator of θij (~x). This expression

arises often, so we give it notation

αi (~x) := a0 +
∑
k 6=i

a (xi − xk) > 0

�the total attention of (or mass seen by) particle i in con�guration ~x �.

Note the case a0 = 0 is allowed, so no restriction has been made by incorporating a0 into the model

when a is positive.

One way to interpret the term a0 when positive is as the simplest way to interpolate between the

new �do nothing� instruction and the expected behavior as neighbors increase. More complicated

schemes may be desirable in another study, for example scaling a0 with N .

Note a � 1
N �-type term scaling each ẋi is not necessary in this model and is absent, as had been

seen in the pure aggregation model (1.3.1) for purposes of scaling N . Namely, as more particles are

added to a system, and N therefore increases, the particles do not feel greater and greater forces

as they would in the pure aggregation model without its 1
N term. Pure aggregation's 1

N makes its

summation an average, which the new weighted aggregation model already has with its weighted

sum.

Finally, in support of the new self-attention term a0, let us observe that pure aggregation itself as

written in equation (1.3.1) already essentially contains self attention. Indeed, the care that would

be necessary to avoid it, namely by scaling the model with 1
N−1 instead of with 1

N , is never normally

taken.

Attention function a will frequently be chosen to be radially decreasing, though not required at this

point. Radially decreasing a represents the natural case of individual particles paying more attention

to nearer neighbors, and is the basis for the idea of modifying the original aggregation equation to

resolve its motivating weaknesses.

The ODE (2.3.1) may be given classical ODE existence and uniqueness through suitable conditions

on a and W , such as locally Lipschitz a and ∇W .
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2.4. Features of the new model

With modeling complete for the particle version of weighted aggregation, let us collect a few imme-

diate observations in comparison with pure aggregation.

• Weighted aggregation generalizes pure aggregation: A constant function a in the model

(2.3.1) yields the model (1.3.1) with possibly di�erent scaling from N , which is asymp-

totically the same for large N . In particular, if a0 = a (0) then the 1
N is obtained, and

a0 = 0 yields scaling 1
N−1 . Constant a has the interpretation of equal attention to all other

particles, i.e. pure aggregation.

• As with pure aggregation written with the the 1
N factor, weighted aggregation always pro-

duces a net force of reasonable magnitude for an individual, as encoded in the magnitudes

of ∇W ; in this case within the convex hull of the pairwise forces.

• Unlike in pure aggregation, N is no longer explicit in the formulation, aside from summation

lengths.

• θij is not generally symmetric: The weight of particle i in�uencing particle j is not the

same as the weight of particle j in�uencing particle i.

• Unlike in pure aggregation, center of mass is not generally conserved.

Let us also elaborate the possible behavioral improvements brought on by weighted averaging. Revis-

iting the weakness described in section 2.1, it should be apparent that the issue has been addressed,

if function a is shaped appropriately: namely, that a radially decays with su�cient rates over the

length scales to attenuate unwanted distant forces while preserving wanted local ones. Besides this

motivating reason, the weighting may introduce other modeling bene�ts:

• Paying more attention to nearby individuals may be a modeling advantage in a variety of

circumstances. For example, the pairwise interaction force need not decay with distance to

bene�t from this.

• Paying more attention to nearby individuals may allow more spread-out equilibria, which

may be desirable. Consider, for example, an attractive-repulsive interaction potential W

containing a �sweet spot� distance of zero force that represents desirable aggregation spac-

ing. If an attention function is chosen that attenuates beyond this distance, it may better

allow such consistent lattice-like spacing in aggregate packs without as much incentive to

pack tighter due to distant neighbors attracting each other. This is especially promising if

the number of individuals is caused to increase.

• Attention shaping may be �exible for many purposes, not only those focusing larger atten-

tion on nearer neighbors.

• Allowing asymmetric a has the further potential to incorporate a �directed attention�, such

as animals' �elds of vision or one-sided attention in tra�c modeling.
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Finally, a feature of signi�cance from the point of view of analysis is that the new model remains a

gradient �ow, as is pure aggregation, under an appropriate new metric. This is described in the next

chapter after �rst in this chapter attending to the measure-valued side of everything just discussed.

2.5. The model on measures

Let us catch up the modeling as it applies to a measure-valued version for weighted aggregation,

which modi�es that for pure aggregation in equation (1.3.2).

Again using the attention function a to prescribe relative �attention� given at each distance, we write

the corresponding measure-valued model

(2.5.1) ∂tµt + div (µtv) = 0

v = −(a∇W ) ∗ µt
a ∗ µt

where convolutions are in space, the �nite measures (µt)t vary in time, and velocity �eld v varies in

space and time.

If (µt)t through all time is a Lebesgue density, meaning absolutely continuous with respect to

Lebesgue measure, the continuity equation reads as a PDE with µt the density function. Existence

may be taken in the sense of Lp solutions, as in [12].

Alternatively, if (µt)t through time is a �nite Borel measure in Rd, and if a and W are smooth

enough, such as a and ∇W locally Lipschitz, the continuity equation may be interpreted as a

measure evolution in the Lagrangian sense by taking µt = Φ (t, ·)# µ0, the push-forward of the

initial measure µ0, where Φ (t, x) ∈ Rd denotes the time t solution of the IVP

ξ̇ (s) = v (s, ξ (s)) , ξ (0) = x ∈ Rd.

Or, in more generality, equation (2.5.1) may be taken to have existence in the sense of distributions,

as the basis in [21, 3].

In any case, v must satisfy the prescribed dependence on µ in the second equation of (2.5.1).

Some conditions are also needed on a and W to de�ne the expression for v. Nonnegative radially

symmetric a ∈ C
(
Rd
)
which arose in the particle model is here taken also to be bounded with

a (0) > 0; the latter to ensure by continuity at the origin that a ∗ µt is nonzero on the support of

µt, i.e. where v must be de�ned; and the former to provide that the convolution is �nite. W is also

taken Lipschitz for the convolution in the numerator to be �nite.
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We must also comment about W at the origin. We presume W ∈ C1
(
Rd \ {0}

)
as mentioned in

the background describing the pure aggregation model. However, it should be noted that in both

pure aggregation as well as the new weighted aggregation, singularities at the origin are not as easily

feasible in the measure-valued model as in the particle model. Namely, in the event that (µt)t begins

with or develops a point mass. (This of course does happen when the model is used to represent

particles.) For such measure �ows it is convenient to have ∇W (0) = 0. However, this may be

relaxed, taking the gradient as the minimal element of the subdi�erential to allow pointy W at the

origin, as developed in [21]. This approach allows continuation of the solution after point masses

develop.

Note we have little choice regarding so-called �self attention� in the measure-valued model. If a

measure µ contains a point mass, necessarily it has a �built-in� self attention �a0 = a (0)�. This

corresponds to each in�nitesimal unit of that mass paying attention to the remainder of that mass

according to function a taken at distance zero. On the other hand, if µ contains components that

are absolutely continuous with respect to Lebesgue density, these have no self attention, we might

say.

Similarly to what occurs with the pure aggregation models, the new weighted aggregation models

for the particle case and the measure case match for point masses: If we assume ∇W (0) = 0, and

if µt is the Dirac sum µt = 1
N

∑
i δxi(t), or indeed µt =

∑
i δxi(t) without the �

1
N �, then the measure

model (2.5.1) reduces to the particle model (2.3.1) with a0 = a (0).



CHAPTER 3

Gradient �ow structure

In this chapter we examine the gradient-�ow structure of the weighted aggregation models developed

in chapter 2. We �rst illustrate the intuition as applied to the particle model, and proceed to develop

the same in the general measure-valued model.

3.1. Energy dissipation

The dissipative free energy (Lyapunov function) for pure aggregation equation (1.3.1) has the struc-

ture of an �interaction energy� [79], which generally takes the form

EW (~x) :=
1

2

∑
ij

W (xi − xj)

whenever W represents a pairwise potential energy on particles. This is exactly the case for pure

aggregation (1.3.1) with its potential W .

Does the weighted aggregation model (2.3.1) have a dissipative energy? We might expect any such

to also be an interaction energy, based on the interactive nature of the equation, as opposed to an

internal energy, external potential energy, or combination thereof [79]. The answer is a�rmative,

although a naive guess like

Eguess (~x) :=
∑
ij

θij (~x)W (xi − xj)

would not work. Recall θij is not even symmetric.

An energy is quickly noticed by writing equation (2.3.1) as

ẋi = − 1

αi (~x)

∑
j 6=i

a (xi − xj)∇W (xi − xj)

where due to the radial symmetry of a and W , one observes that

a∇W = ∇W̃
22
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for some radially symmetric W̃ ∈ C1
(
Rd \ {0}

)
, namely with radial pro�le

W̃ •(r) =

ˆ r

0
a•W •

′

using normalization W̃ (0) = 0.

Thus

(3.1.1) ẋi = − 1

αi (~x)

∑
j 6=i
∇W̃ (xi − xj) .

Apparently W̃ then is the potential for an interaction energy

(3.1.2) E (~x) :=
1

2

∑
ij

W̃ (xi − xj)

which we brie�y verify.

Let ~x, ~u ∈ RdN be an arbitrary con�guration and tangent vector to the con�guration, respectively.

The di�erential of E in direction ~u is

dE (~x) (~u) =
∑
i

∇xiE (~x) · ui =
∑
i

∑
j 6=i
∇W̃ (xi − xj)

 · ui
by symmetry, and

= −
∑
i

αi (~x) vi (~x) · ui

written in terms of the evolution vector �eld

vi (~x) = − 1

αi (~x)

∑
j 6=i
∇W̃ (xi − xj) ,

the right-hand-side of (3.1.1).

In the direction of evolution ~u = ~v (~x), the di�erential

dE (~x) (~v (~x)) = −
∑
i

αi (~x) |vi (~x) |2 < 0
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at non-equilibria ~x. Thus E is dissipative, i.e. a Lyapunov function.

3.2. Gradient energy dissipation

However, there is further structure to the di�erential. Consider momentarily the di�erential for pure

aggregation:

dEW (~x) (~u) = −~v (~x) · ~u

in which case

~v (~x) = −∇~xEW (~x) .

That is, the evolution is a gradient �ow of the functional EW .

More generally, if the di�erential can be written as any inner product with ~v (~x), possibly con�guration-

dependent and varying continuously, which is to say a Riemannian metric, then a gradient-�ow

structure remains. Such inner product more precisely is the tensor of the metric, which leads the

con�guration space RdN to be taken as a Riemannian manifold.

Indeed, our di�erential from the previous section is

dE (~x) (~u) = −g~x (~v (~x) , ~u)

where

g~x (~v, ~u) :=
∑
i

αi (~x) vi · ui

which is a Riemannian metric tensor, recalling that αi (~x) > 0.

Thus our evolution vector �eld

~v (~x) = −gradg E (~x)

is a gradient �ow.
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3.3. The model on measures

The dissipative energy for the measure-valued model is

E (µ) :=
1

2

ˆ (
W̃ ∗ µ

)
dµ

at measure (con�guration) µ.

For this model, the �tangent vectors� of an evolution are taken formally as the velocity �eld v : Rd →
Rd in the continuity equation,

∂tµt + div (µtv) = 0,

following the submersion formalism introduced by Otto [65]. However, it is clear that many distinct

velocity �elds in general may satisfy this equation for a given measure µ, meaning they contribute the

same instantaneous change to the measure. This necessitates an equivalence relation between vector

�elds which yield the same divergence. That is, at a con�guration µ, vector �elds v, v̂ : Rd → Rd

are considered equivalent if

div (µv) = div (µv̂) .

We formally show the energy E provides a gradient �ow as follows.

Given arbitrary con�guration µ and tangent vector u : Rd → Rd, we wish to calculate that

dE (µ) (u) = −gµ (v (µ) , u)

for some �Riemannian� metric tensor g, where

v (µ) := −(a∇W ) ∗ µ
a ∗ µ

.

Let µt := Φ (t, ·)# µ where Φ (t, x) ∈ Rd denotes the time t solution of the IVP

ξ̇ (s) = u (ξ (s)) , ξ (0) = x ∈ Rd.

Note at time zero this evolution has con�guration µ with tangent vector u, though it is simpler than

the aggregation evolution.

Its energy is
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E (µt) =
1

2

¨
W̃ (x− y) dµt (x) dµt (y)

=
1

2

¨
W̃ (Φ (t, x)− Φ (t, y)) dµ (x) dµ (y)

as the integral of a push-forward measure, or two nested, and

dE (µ) (u) = δtE (µt) |t=0

=
1

2

¨
∇W̃ (Φ (t, x)− Φ (t, y)) · [δtΦ (t, x)− δtΦ (t, y)] dµ (x) dµ (y) |t=0

=
1

2

¨
∇W̃ (Φ (t, x)− Φ (t, y)) · [u (Φ (t, x))− u (Φ (t, y))] dµ (x) dµ (y) |t=0

=
1

2

¨
∇W̃ (x− y) · [u (x)− u (y)] dµ (x) dµ (y)

=

¨
∇W̃ (x− y) · [u (x)] dµ (x) dµ (y)

=

ˆ (
∇W̃ ∗ µ

)
· u dµ

= −
ˆ

(a ∗ µ) v (µ) · u dµ.

This motivates a candidate metric tensor of the form

gµ (u, v) :=

ˆ
(a ∗ µ)u · v dµ

for the Lagrangian description of the dynamics, to provide the anticipated gradient �ow. For an

Eulerian formulation, which is needed to develop the PDE theory, we need to introduce into this

metric tensor form the equivalence relation mentioned above, which we pick up in the next chapter.



CHAPTER 4

The Riemannian geometry

In this chapter we consider the metric tensor that led to gradient �ow in the previous chapter as

well as the resulting global metric from the tensor. We also attempt to interpret these and their

properties. In doing so we again proceed �rst with the particle version, i.e. the �particle metric�, and

subsequently the �measure metric� suitable for densities and more general measures. The measure

metric is seen to generalize the well-known 2-Wasserstein metric on Rd, with specialization to it

when a is constant. This, again, is also the condition for weighted aggregation to specialize to pure

aggregation.

4.1. Measure metric over equivalence classes

First we should be more precise about the measure metric. Above it is noted that at a �con�guration�

measure µ, vector �elds v, v̂ : Rd → Rd taken as formal tangent vectors must be considered equivalent

if

div (µv) = div (µv̂) ,

meaning they instantaneously evolve µ in the same way. In light of this we must de�ne metric tensor

g on equivalence classes of vector �elds, not on the vector �elds. So, which representative should be

used to de�ne g in the formula for g of the previous chapter? The answer is the minimal one, in the

sense of yielding the minimum norm on the equivalence class. The interpretation is that no fruitless

advecting should be regarded. Thus g should be de�ned

gµ (v, v) := inf

{ˆ
(a ∗ µ) |v̂|2 dµ

∣∣∣∣ v̂ : Rd → Rd with div (µv̂) = div (µv)

}
.

This su�ces to characterize g fully, since in general an inner product is characterized fully by its

norm via the polarization identity.

4.2. Riemannian manifold structure

4.2.1. Basic theory.

27
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Let us call X the con�guration space, whether we are working with the particle case or the measure-

valued case: either RdN in the particle case, or some space of Borel probability measures in Rd in the

measure-valued case. In the measure-valued case we suppose only to have a formal metric tensor,

leading to a formal Riemannian manifold.

In the particle case, note X is a di�erentiable manifold with single chart: identity.

In either case, a metric tensor g was identi�ed in the previous chapter, making X a Riemannian

manifold, as follows.

Following the classical theory of di�erential geometry, a smooth curve γ : [0, 1] → X has length

de�ned

L (γ) :=

ˆ 1

0
‖γ̇ (t)‖γ(t) dt

where γ̇ (t) is the tangent vector of γ (t) and

‖·‖γ(t) :=
√
gγ(t) (·, ·).

X is then made a metric space by de�ning distance

d (~y, ~z) := inf {L (γ) | smooth curve γ is such that γ (0) = ~y, γ (1) = ~z}

where ~y, ~z are replaced by µ, ν in the measure-valued case. We often speak of a source con�guration

~y or µ, and a target con�guration ~z or ν. This implies that the curves connecting them are under

study.

Geodesics, then, are de�ned as the curves that locally connect their points with minimum length. At

any point on a geodesic, there is a ball within which all other points on the geodesic lie at distance

equal to the length of the geodesic's segment connecting them. That is, the geodesic is �global�

within the ball.

4.2.2. Global metric.

From this abstract theory we now state the resulting global particle metric and global measure met-

ric that arise from the metric tensors identi�ed in chapter 3. The latter metric is �rst de�ned on a

space of measures too large for it generally to be �nite, and then restricted as a way of characterizing

the appropriate space. This in fact allows dependence on function a for the metric's natural space,

which is not as straightforward as P2

(
Rd
)
that suits the 2-Wasserstein metric.
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For a0 ≥ 0 and nonnegative radially symmetric a ∈ C
(
Rd
)
with one of a, a0 strictly positive, the

metric given to RdN is

de (~y, ~z) := inf


ˆ 1

0

√∑
i

αi (~x (t)) |ẋi (t)|2dt

∣∣∣∣∣∣ ~x ∈ C1
(

[0, 1] ;RdN
)

with ~x (0) = ~y, ~x (1) = ~z


where αi (~x) := a0 +

∑
k 6=i a (xi − xk) > 0.

This metric may be read intuitively as �the in�mum time-integral of the attention-weighted-`2 norm

on particle speeds.�

Let A =
{
a : Rd → [0,∞)

∣∣ a is Borel measurable, radially symmetric, bounded, continuous at the

origin with a (0) > 0, and normalized to sup a
(
Rd
)

= 1
}
.

For a ∈ A the metric on measures is de�ned by �rst establishing it as a function on P
(
Rd
)
×P

(
Rd
)
,

possibly taking value ∞ when the in�mum is empty,

d̂E (µ, ν) := inf

{ˆ 1

0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x)dt

∣∣∣∣∣ (
(µt)t∈[0,1] , v

)
∈ Vµ,ν

}

where Vµ,ν is de�ned as the set of
(

(µt)t∈[0,1] , v
)
such that the curve (µt)t∈[0,1] in P

(
Rd
)
satis�es

µ0 = µ, µ1 = ν, and such that v ∈ L1
(
[0, 1] ;L2 ((a ∗ µt) dµt)

)
gives ∂tµt + div (µt v) = 0 in the

sense of distributions.

Let

PE

(
Rd
)

=
{
µ ∈ P

(
Rd
) ∣∣∣ d̂E (µ, δ0) <∞

}
where δ0 is the Dirac measure at the origin, and on PE

(
Rd
)
de�ne dE = d̂E.

The metric may be read intuitively as �the in�mum time-integral of the attention-weighted-L2 (dµt)

norm on the speed functional.�

Immediately we must observe the Eulerian versus Lagrangian viewpoint here. The de�nition as

written is Eulerian, in that a velocity �eld describes the measure evolution locally via the continuity

equation. Or one might say that the point paths in Rd that are transporting the measure are

tracked according to their velocity distribution over Rd. The alternative Lagrangian viewpoint is

to track these point paths according to their dynamic positions in Rd (and therefore also their

velocities) in the same way that characteristics are used in classical PDE theory. Either viewpoint

leads essentially to the same objects, at least for the Wasserstein metrics as shown in [3], which
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develops more technically than we get into here. Ideally a comparable theory might be developed

for the more complicated metric here, which we do not attempt.

When Vµ,ν is de�ned in chapter 6 for a class of smooth measures, the Eulerian velocity �eld is tied

directly to the Lagrangian paths by the obvious ODE.

Similarly, when d̂E above is compared to the 2-Wasserstein metric's displacement interpolation form

with its corresponding Lagrangian interpretation as described in [79] and [3], it is clear d̂E yields

the 2-Wasserstein metric when a ≡ 1. Thus because a ≤ 1 we have d̂E ≤ dW2 < ∞ on P2

(
Rd
)
, so

P2

(
Rd
)
⊂ PE

(
Rd
)
and dE ≤ dW2 on P2

(
Rd
)
.

Incidentally, absolute continuity of curves in
(
P2

(
Rd
)
, dW2

)
is inherited by dE, following the de�-

nition in [3] since dE ≤ dW2 .

On another note, observe the role continuity of a has played up to now. In the aggregation modeling,

for convenience a was assumed continuous, with the e�ect that the modi�ed interaction potential

W̃ then is continuously di�erentiable as we expected of an interaction potential. Subsequently, in

the development of the gradient �ow structure, continuous a turned out to be necessary in the

particle case to make a continuously varying metric tensor, thereby resulting in a true Riemannian

manifold. However, on the measure metric side, this seems not so necessary to lead to our formal

Riemannian manifold, as is especially intuitive for curves in the measure space consisting entirely

of Lebesgue densities. To examine this formal measure geometry in su�cient generality, continuity

of a has no longer been assumed, with the exception of continuity at the origin. This allows such

attention function favorites as a = χB(0,1). Of course, smoother attention functions are expected for

calculating Euler-Lagrange geodesics, below.

4.2.3. Cost and cost rate.

Finally, as a convenience of terminology in both the particle and measure cases, we use the term

cost to refer to the time integral above for a speci�c curve through the con�guration space, and a

speci�c corresponding velocity �eld (in the case of dE), not necessarily the in�mum of such. That

is, a particular curve ~x ∈ C1
(
[0, 1] ;RdN

)
has cost

ˆ 1

0

√∑
i

αi (~x (t)) |ẋi (t)|2dt

and a particular curve (µt)t∈[0,1] with a corresponding velocity �eld v has cost

ˆ 1

0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x)dt.
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Similarly, but in an abuse of terminology, the square of the integrand in the time integral will be

referred to as the cost rate. Thus the cost is actually the time integral of the square root of the cost

rate.

The cost terminology allows convenient discussion of speci�c con�guration curves, including the

bounds they imply on the above global metrics, and is preferred in this thesis over the di�erential

geometry terminology length or arclength of the curve, helping to distinguish from the terminology

of length and distance in Rd.

4.3. Interpretations

4.3.1. Comparison to 2-Wasserstein.

First let us compare the new metric to the 2-Wasserstein.

The measure metric generalizes the 2-Wasserstein metric on Rd, as seen by the displacement inter-

polation formulation of the 2-Wasserstein established by Benamou and Brenier [5] which has metric

tensor

ḡµ (v, v) :=

ˆ
|v|2 dµ.

The new metric tensor

gµ (v, v) :=

ˆ
(a ∗ µ) |v|2 dµ

reduces to it (up to a factor) precisely when a is a constant function. This is consistent with the

gradient �ow story above, since in this case the modi�ed potential W̃ also reduces to W , reducing

the energy E to the standard interaction energy, which is traditionally paired with the 2-Wasserstein

to yield gradient �ow of pure aggregation. This also matches intuition; constant attention function

a corresponds to the ability of mass to �see� all other mass, at all distances, thereby eliminating the

reward in the metric given to movement that is away from other mass. This also suggests a reverse

way of thinking about the Wasserstein metric, that mass is penalized for moving within the same

Euclidean space as all other mass�when really, the metric is intended to penalize movement for

movement's sake.

Note the new metric has only a displacement interpolation formulation, unlike the 2-Wasserstein

metric which also has an optimal transportation formulation. The simplicity of the 2-Wasserstein

displacement interpolation formulation explains why it admits an optimal transportation formulation

with the displacement interpolation removed, �statically�. In the new metric the complexity of

attention interaction along the curve of displacement generally precludes this.
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4.3.2. Interpretation of the function a.

The e�ect of the new term in the integrand is to make the metric tensor �doubly� nonlocal, with an

inner integration determining the penalty size at each location of the outer integral. The so-called

attention function a has changed roles from �attention� dependent on distance, in aggregation, to

penalty dependent on distance. Mass in motion is charged a cost rate for its speed squared times a

penalty for proximity to nearby mass.

The metric thus has interesting interpretations, and potential use in other applications besides

the classic aggregation equation. Recall a is frequently taken in this thesis as radially decreasing,

meaning greater penalty for motion when near large mass. Perhaps in some applications it is

dangerous for mass to move rapidly near other mass. Or in other applications, perhaps mass simply

faces resistance moving near other mass, such as with animals moving in congested areas or crowded

particles in physics. So, �crowd motion� seems to be a relevant concept for the metric.

Observe also the role the metric plays in weighted aggregation. One goal of the introduction of

weighting was to alleviate pure aggregation's tendency of diluting: that distant large clusters can

cause a slow-motion e�ect on a small cluster. However, the e�ect of the new tensor (with suitable

radially decreasing a) is to slow the members of the large cluster. This is relative to the speeds

found in the members of the small cluster, which gives the e�ect of speeding up the small cluster.

So slowing dense crowds is again the purpose of the metric.

4.3.3. Relation between the particle metric and the measure metric.

Finally, let us examine again the relationship between the new measure metric and the new particle

metric for some N , when a0 = a (0). The value a (0) is e�ectively self-attention under the measure

metric, under which the mass inside a point mass sees all the rest of the point mass. If a point mass

happens to remain intact, under the measure metric, the cost of its travel is exactly the same as

with the particle metric.

In some sense, the particle metric represents a kind of submanifold in the space of measures under

the measure metric, a submanifold which is a true Riemannian manifold inside the larger formal

Riemannian manifold that is the latter. The submanifold would be taken as all measures that are a
1
N normalization of an N -sum of Dirac measures, µ = 1

N

∑
i δxi . That is, the point masses share the

same fraction of mass. The particle metric's cost in�mum is a constrained version of the measure

metric's: interpolating curves must maintain the same form, i.e. the point masses cannot split. In

this viewpoint the submanifold is �curved� within the larger space: to connect a source measure and

a target measure in the submanifold, the measure metric may in general �nd shorter curves within

the larger space by leaving the submanifold; that is, by spreading (smearing) point masses into

densities during the transit that the point masses otherwise must traverse. Indeed, with appropriate

attention function a, always such spreading will occur.
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But the wrinkle is in particle labeling. Every particle con�guration under the particle metric cor-

responds to precisely one measure under the measure metric; but a given measure so described

corresponds to many particle con�gurations, due to particle ordering. Indeed, swapping the order

of particles represents nontrivial distance under the particle metric, but zero distance to the mea-

sure metric. This is the limited sense in which the larger formal Riemannian manifold has this

Riemannian manifold as a submanifold.

The particle metric, though simple, may be seen to have value in two aspects: Firstly, it provides

insight into the more interesting measure metric and suggests dynamics and structure and charac-

teristics for the measure metric to satisfy. Secondly, the particle metric is itself a description of the

geometry underlying the ODE model of weighted aggregation developed in chapter 2, a model which

may well be of value to scienti�c modeling, despite itself being less interesting mathematically than

the nonlocal PDE model of the same.

4.4. Geodesic equations

The qualitative nature of this metric's geodesics should now be apparent. As opposed to the geodesics

of 2-Wasserstein, which have mass follow straight lines, the mass is now encouraged to spread radially

as it travels, and in particular for radially decreasing function a, the mass is encouraged to spread

out. In this case much of the mass is likely to invest in spatial paths a bit longer, at a cost for that of

course, in order to travel much of that distance in less crowdedness, making up the cost in penalty

savings.

We can especially imagine this whenever a �nal con�guration in RdN is merely some translation of

the source con�guration: the likely geodesic would be expected to spread out a bit initially as it

begins to traverse the needed translation, and then to complete most of that translation at some

spread arrangement, before �nally settling back into tighter formation as it reaches its destination

con�guration.

Now, calculations.

4.4.1. The particle metric.

The particle metric is a classical Riemannian metric on X = RdN , so by classical di�erential geom-

etry, the curve energy de�ned for a smooth curve γ : [0, 1]→ X,

ˆ 1

0
‖γ̇ (t)‖2γ(t) dt,

can be minimized to obtain length-minimizing geodesics parametrized proportionally to arclength,

or in our terminology, cost-minimizing.



4.4. GEODESIC EQUATIONS 34

For geodesics calculations we further take a ∈ C1
(
Rd
)
, or possibly only a ∈ C1

(
Rd \ {0}

)
whenever

particles along a geodesic curve never coincide.

The corresponding Euler-Lagrange equations are as follows. For all j ∈ {1 . . . N}

0 =
(
∇γj − ∂t∇γ̇j

)
‖γ̇‖2γ

=
(
∇γj − ∂t∇γ̇j

)∑
i

αi (γ) |γ̇i|2

= |γ̇j |2
∑
k 6=j
∇a (γj − γk) +

∑
i 6=j
|γ̇i|2∇a (γj − γi)− 2∂t [αj (γ) γ̇j ]

with

∂t [αj (γ) γ̇j ] = γ̈jαj (γ) + γ̇j
∑
k 6=j
∇a (γj − γk) · (γ̇j − γ̇k) .

Changing indices and grouping, we may write the ODE succinctly as

(4.4.1) ∀i αi (γ) γ̈i =
∑
j 6=i

|γ̇i|2 + |γ̇j |2

2
∇a (γi − γj) +

∑
j 6=i
∇a (γi − γj) · (γ̇j − γ̇i)

 γ̇i.
This is the fully simpli�ed formulation of the geodesics. It is, however, also worth keeping in mind

some intermediary formulations of the above, namely with a �∂t� kept unexpanded:

(4.4.2) ∀i ∂t [αi (γ) γ̇i] =
∑
j 6=i

|γ̇i|2 + |γ̇j |2

2
∇a (γi − γj)

as well as, more expanded,

(4.4.3) ∀i αi (γ) γ̈i =
∑
j 6=i

|γ̇i|2 + |γ̇j |2

2
∇a (γi − γj)− ∂t [αi (γ)] γ̇i.

Each of these three formulations of varying expandedness provides some insight.

Equation (4.4.1) is the expanded expression showing how individual particle acceleration is deter-

mined by the whole of particle positions, velocities, the gradient of the penalty/attention function,

and total mass/attention seen by the particle in question.
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Equation (4.4.2) is most compact, with the Euler-Lagrange time derivative unexpanded, showing its

relation to particle speeds and changing attention.

Equation (4.4.3) keeps the large bracket from equation (4.4.1) unexpanded, as the time derivative

of �total attention�, providing perhaps the most insightful view on what is happening. Consider the

expressions of this equation. Each particle experiences acceleration in precisely two ways: Firstly, as

seen in the summation term, toward every other particle, supposing attention function a is radially

decreasing. This matches the intuition above that expects particles to often �rst spread apart

and later collapse together. Indeed, velocity away from a neighbor particle, followed by slowing

and then reversing to become velocity toward the neighbor, is precisely acceleration toward the

neighbor throughout. Secondly, as seen in the �∂t� term, each particle experiences acceleration in

its current direction based on changing crowdedness. This is positive acceleration when leaving

crowdedness and deceleration when entering. Indeed, αi (γ) represents �total attention of (or mass

seen by) particle i in con�guration γ�, so its derivative is the changing crowdedness as seen by the

particle. Interestingly, the magnitude of this acceleration is such that relative rate-of-uncrowding

yields relative acceleration (due to the �αi (γ)� term on the left side of the equation, and due to γ̇i

containing its own magnitude).

4.4.2. The measure metric.

We next write the equations we expect to be geodesics for the measure metric, obtained directly

as a formal limit of equation (4.4.2). We write it for a density ρ varying in time, in relation to its

formal tangent vector, the velocity �eld v varying in time. The time derivative ∂t in equation (4.4.2)

becomes the material derivative ∂t + v · ∇:

∀x (∂t + v (x) · ∇) [(a ∗ ρ) (x) v (x)] =

ˆ
|v (x) |2 + |v (y) |2

2
∇a (x− y) ρ (y) dy

which is rewritten

(4.4.4) 0 = (∂t + v (x) · ∇) [(a ∗ ρ) (x) v (x)]− |v (x) |2

2
∇ (a ∗ ρ) (x)− 1

2
∇
[
a ∗
(
ρ|v|2

)]
(x)

This equation couples with the continuity equation

∂tρ+ div (ρv) = 0

to formally yield the expected geodesics.

Next observe that any such v corresponding to a geodesic has a bit of structure, due to a Helmholtz-

like decomposition of L2 ((a ∗ ρ) ρ dx): Formally, we can take
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v =
∇p
a ∗ ρ

for some �pressure� p varying in space and time. To see this, consider alternatively that a geodesic

exists having ρ, v with v = ∇p
a∗ρ + w for some p and for nonzero w that is orthogonal in space, with

respect to L2 ((a ∗ ρ) ρ dx), to the set of vector �elds of the form ∇q
a∗ρ . Recall that the geodesic locally

minimizes the cost

ˆ 1

0

ˆ
(a ∗ ρ) |v|2ρ dx dt

=

ˆ 1

0

ˆ
(a ∗ ρ) | ∇p

a ∗ ρ
+ w|2ρ dx dt

=

ˆ 1

0

ˆ
(a ∗ ρ)

[
| ∇p
a ∗ ρ

|2 + |w|2
]
ρ dx dt.

Also by orthogonality, for all q ∈ H1
(
Rd
)

0 =

ˆ
(a ∗ ρ)

∇q
a ∗ ρ

· wρ dx

= −
ˆ
q div (wρ) dx.

Thus

div (wρ) = 0

which means that ṽ = ∇p
a∗ρ shares the same equivalence class as v, and ṽ yields better cost, thus ṽ

could be taken instead of v.

Setting v = ∇p
a∗ρ in the Euler-Lagrange equation (4.4.4) yields formally

0 = ∂t∇p+
1

a ∗ ρ
∇p · ∇∇p− |∇p|2

2 (a ∗ ρ)2
∇ (a ∗ ρ)− 1

2
∇
[
a ∗ ρ|∇p|

2

(a ∗ ρ)2

]
= ∂t∇p+

1

2

(a ∗ ρ)∇|∇p|2 − |∇p|2∇ (a ∗ ρ)

(a ∗ ρ)2
− 1

2
∇
[
a ∗ ρ|∇p|

2

(a ∗ ρ)2

]
= ∂t∇p+

1

2
∇|∇p|

2

a ∗ ρ
− 1

2
∇
[
a ∗ ρ|∇p|

2

(a ∗ ρ)2

]
= ∇

{
∂tp+

1

2

|∇p|2

a ∗ ρ
− 1

2

[
a ∗ ρ|∇p|

2

(a ∗ ρ)2

]}
.
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Thus the expression

∂tp+
1

2

|∇p|2

a ∗ ρ
− 1

2

[
a ∗ ρ|∇p|

2

(a ∗ ρ)2

]
is a function of time uniform in space, which may be chosen to be zero (because any other time

function would merely give a di�erent p with the same spatial derivative at each time).

Thus another description of our formal geodesics, using pressure p, is the coupled system

∂tρ+ div

(
ρ
∇p
a ∗ ρ

)
= 0

∂tp+
1

2

|∇p|2

a ∗ ρ
− 1

2

[
a ∗ ρ|∇p|

2

(a ∗ ρ)2

]
= 0.



CHAPTER 5

Finite-cost in�nite spreading

In our consideration of the geometry of the particle metric and measure metric, we now turn to a

narrower study: that of �spreading�.

Mass spreading has been motivated in the prior sections as a primary phenomenon of this geometry,

as observed by the geodesic equation behavior and by the intuitive interpretation of the e�ects of

the penalty function a, namely in the case of radially decreasing a. The �spread out and translate�

strategy is clearly evident for curves between a source con�guration and a target con�guration when

the target con�guration is merely a translation of the source. This strategy also is a plausible

description of curves between other source and target con�gurations, whenever various translations

must be pursued by components of the source con�guration. (Note under the 2-Wasserstein metric

in displacement interpolation form, components of the source con�guration must in general pursue

translations toward target positions as determined by the optimal coupling.)

The penalty function a may be regarded as a lessening of the cost of the 2-Wasserstein, since

a ≡ 1 corresponds to the 2-Wasserstein and for convenience we have normalized bounded a to

sup a
(
Rd
)

= 1. The introduction of penalty a then raises the possibility that mass motion may

become dramatically cheaper as the mass spreads, corresponding to decaying a, possibly to the point

that a bound exists on the cost of a spreading plan regardless of the amount of that spreading.

Said another way, the possibility has been introduced that mass may be able to spread �in�nitely�

at �nite cost.

5.1. Conventions

We identify here a few key conventions used in this chapter.

Pc
(
Rd
)
denotes the space of compactly supported Borel probability measures in Rd.

e1 denotes (1, 0, 0, . . . 0) ∈ Rd, used frequently in the inputs of radially symmetric functions.

Ld denotes Lebesgue measure in Rd.

For x ∈ Rd, δx denotes the Dirac measure at x: for all Borel A ⊂ Rd, δx (A) = χA (x).

38
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For Borel probability measures µ, ν in Rd, Π (µ, ν) denotes the set of couplings of µ and ν, i.e. the

set of Borel measures in Rd × Rd having marginals µ and ν: for all π ∈ Π (µ, ν) and Borel A ⊂ Rd,
π
(
A× Rd

)
= µ (A) and π

(
Rd ×A

)
= ν (A).

C > 0 is used for �adaptive constant C � notation in this chapter, so that it may change value from

one expression to the next when present. Our constants C are always independent of time t found

in the expressions, since we frequently estimate an expression of t before later time integrating it,

and any other independences may be seen from context.

5.2. Examples

5.2.1. Particle example.

For a �rst example of �nite-cost in�nite spreading, consider the simplest: two particles in Rd begin

coincident, and then head in opposite directions. Self attention is set as zero (because otherwise

�nite-cost in�nite spreading cannot occur). Parametrizing time by separation distance, we �nd the

cost at time T to be ˆ T

0

√
2a• (t)

(
1

2

)2

dt

where for convenience we do not restrict the time interval to be [0, 1]. A bound exists on this for all

T precisely when ˆ ∞
0

√
a• (t)dt <∞.

That is, we have �nite-cost in�nite spreading if and only if
√
a• is integrable and a > 0, the latter

required because a0 = 0.

5.2.2. Measure example.

Likewise, examples are not di�cult to �nd for the measure metric of this thesis. The measure metric

has the disadvantage that �self attention� is inherently built-in and cannot be set to zero. Here we

say �disadvantage� meaning from the point of view of the curve attempting to cut cost. On the

other hand, the measure metric has the advantage that it can spread all its mass in�nitesimally, in

a smearing sort of way, not being stuck with clumps of mass as with the particle metric.

For the simplest example consider again a penalty function a with bounded support, and in fact the

simplest such,

a = χB(0,1)

the characteristic function of the unit ball at the origin. Consider a measure curve that begins as

the Dirac measure at the origin and then spreads mass in all directions uniformly. This is described

by an expanding sphere which on its surface holds uniform distribution of the probability measure.
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For this curve and often throughout this chapter, we �nd a Lagrangian description of the curve

useful. Notice here for our expanding sphere the normal practice of initializing Lagrangian paths at

the start of the curve evolution does not work. This is due to the singularity we have speci�ed at

that time: a point mass which must instantaneously disintegrate into many (all) directions, which

Lagrangian paths starting there cannot achieve. Instead, any other time may be chosen to specify

an initial measure which is then pushed forward and backward in time.

Let us prescribe at t = 1 initial measure the unit sphere Sd−1 bearing uniform distribution of mass

one. Let us evolve it forward and backward in time by Lagrangian paths originating on the sphere,

directed radially outward forward in time with speed one. The result is the desired measure curve

(µt)t∈[0,∞) in Pc
(
Rd
)
which at time t is uniformly concentrated on the sphere of radius t, for all

t ∈ (0,∞), and which at time zero is the Dirac measure at the origin due to �nite-time collapse of

paths.

For t > 0 the resulting cost rate

ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x) ,

with v ≡ 1, simpli�es to

(a ∗ µt) (te1)

by symmetry of the integrand on the support of µt; which for our function a is then

(
χB(0,1) ∗ µt

)
(te1)

which equals the fraction of the surface of t Sd−1 that is within distance one of its pole at te1.

For t > 1 this has both upper and lower bound of the form, under di�erent constants C independent

of t,

C
1

td−1
.

Thus the total cost

ˆ ∞
0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x) dt,

when split as an integral from 0 to 1 and from 1 to ∞, has the latter bounded above and below by,

under di�erent constants C,



5.3. CANONICAL SPREADING: THE UNIT EXPLOSION 41

C

ˆ ∞
1

t
− d−1

2 dt

which is �nite if and only if d ≥ 4 because d ∈ N.

Note we have integrated to ∞ in the cost integral, as a convenience, rather than to 1 as in the

de�nition. The meaning can be interpreted as follows. For any time T > 0 specifying a truncation

of the (unending) measure curve (µt)t∈[0,∞), the resulting truncated curve (µt)t∈[0,T ] may then be

time reparametrized to the interval [0, 1] to meet the de�nition, without changing its cost. If the cost

integral taken from zero to ∞ of the unending curve is �nite, such ��nite-cost in�nite spreading�

merely represents a bound on the costs of all truncated curves of this spreading, independent of

spreading size.

5.3. Canonical spreading: the unit explosion

The previous example showed that for cuto� penalty a = χB(0,1), four spatial dimensions provide

su�cient �directions� for the mass to spread in�nitely at �nite cost, and any fewer number of

dimensions does not�for spherical expansion.

This leads to the question of whether there are better geometric spreading strategies. The unsurpris-

ing improvement to spherical spreading and the likely overall best candidate seems to be spreading

out as a ball, namely a uniformly dense one. We give this a name.

De�nition. The unit explosion in Rd is the curve (µt)t∈[0,∞) in Pc
(
Rd
)
de�ned by µ0 = δ0, the

Dirac measure at the origin, and for t ∈ (0,∞)

dµt =
χB(0,t)

Ld (B (0, t))
dLd.

We say the explosion at x ∈ Rd to mean the de�nition modi�ed by centering at x instead of the

origin.

We say the explosion to size R > 0 to mean the truncation of the curve to (µt)t∈[0,R].

We say the mass m ≥ 0 explosion to mean a scaling of all the measures by m, giving a curve in the

space of �nite measures but not necessarily probability measures.

The Lagrangian description of the unit explosion is as follows. At t = 1 let the initial measure be

taken from above,

dµ1 =
χB(0,1)

Ld (B (0, 1))
dLd
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i.e. the unit ball with uniform density. Let the Lagrangian paths originate from B (0, 1) and for each

such x0 ∈ B (0, 1) let x0t be its location at time t ∈ [0,∞), forward and backward in time. Note the

preservation of uniform density in the push-forward measure by scaling, and the �nite-time collapse

at t = 0 giving µ0 = δ0.

Let us see whether this spreading strategy improves upon spherical spreading for the cuto� penalty

a = χB(0,1).

First, calculating for arbitrary penalty a, the unit explosion (µt)t∈[0,∞) has cost rate for t > 0

ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x)

with v (t, x) := x
t ; which equals

C
1

td

ˆ
B(0,t)

(a ∗ µt) (x)
∣∣∣x
t

∣∣∣2 dx
= C

1

td

ˆ t

0
(a ∗ µt) (re1)

(r
t

)2
rd−1 dr

(by radial symmetry)

= C
1

td

ˆ 1

0
(a ∗ µt) (pte1) p

2 (pt)d−1 t dp

= C

ˆ 1

0
pd+1

ˆ
Rd

a (y − pte1) dµt (y) dp

= C

ˆ 1

0
pd+1 1

td

ˆ
B(0,t)

a (y − pte1) dy dp

= C
1

td

ˆ 1

0
pd+1

ˆ
B(pte1,t)

a (y) dy dp.(5.3.1)

Inserting a = χB(0,1) and bounding from above, the cost rate expression (5.3.1) is less than or equal

to

C
1

td

ˆ 1

0
pd+1

ˆ
Rd

χB(0,1) (y) dy dp

= C
1

td
.

Whereas instead bounding from below, for t > 2 the cost rate expression (5.3.1) is greater than or

equal to

C
1

td

ˆ 1
2

0
pd+1

ˆ
B(pte1,t)

χB(0,1) (y) dy dp
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= C
1

td

noting for all p ∈
(
0, 12
)
, B (0, 1) ⊂ B (pte1, t).

Thus the total cost

ˆ ∞
0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x) dt,

when split as an integral from 0 to 2 and from 2 to ∞, has the latter bounded above and below by,

under di�erent constants C,

C

ˆ ∞
2

t
− d

2 dt

which is �nite if and only if d ≥ 3 because d ∈ N.

So we �nd that expansion as a ball allows one fewer dimension than spherical expansion, for su�cient

�directions� for the mass to spread in�nitely at �nite cost, for cuto� penalty a.

5.4. Explodability

De�nition. Let a ∈ A, de�ned in section 4.2.2. We say a is explodable if

ˆ ∞
0

√ˆ
Rd

(a ∗ µt) (x)
∣∣∣x
t

∣∣∣2 dµt (x) dt <∞

for unit explosion (µt)t∈[0,∞).

Let us note some of the situations in which a is explodable or not.
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5.4.1. Simple conditions.

The calculation of the previous section showed that χB(0,1) is explodable if and only if the spatial

dimension is three or higher. An immediate consequence is that no a ∈ A is explodable in dimensions

one or two. This is noted by recalling a ∈ A is continuous at the origin with a (0) > 0, so that

a ≥ ε χB(0,δ) for some ε, δ > 0, while noting ε χB(0,δ) shares the same cost calculation as χB(0,1).

A second immediate consequence is that any a ∈ A with bounded support is explodable if and only

if the spatial dimension is three or higher. This follows from the previous observation and from the

boundedness requirement of a ∈ A, so that a ≤ χB(0,δ) for some δ > 0.

So then, we consider a ∈ A with unbounded support in Rd with d ≥ 3. A simple su�cient condition

for explodability is that a is integrable. This is evident from expression (5.3.1), so that the total

cost

ˆ ∞
0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x) dt

= C

ˆ ∞
0

√
1

td

ˆ 1

0
pd+1

ˆ
B(pte1,t)

a (y) dy dp dt,

which when split as an integral from 0 to 1 and from 1 to ∞, has the latter bounded above by

C

ˆ ∞
1

√
1

td

ˆ 1

0
pd+1

ˆ
Rd

a (y) dy dp dt

= C

ˆ ∞
1

t
− d

2 dt <∞.

However, this asks a rather conservative decay of penalty a, especially when the dimension d is large,

as seen by a consideration of power laws.

5.4.2. Power law decay.

Again assume d ≥ 3. Consider penalty function a ∈ A

a (x) := (|x|+ 1)−q

for some q ≥ 0.
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Cost rate expression (5.3.1) is written

C
1

td

ˆ 1

0
pd+1

ˆ
B(pte1,t)

a (y) dy dp

= C

ˆ 1

0
pd+1

ˆ
B(pe1,1)

a (tz) dz dp

= C

ˆ 1

0
pd+1

ˆ
B(pe1,1)

(t |z|+ 1)−q dz dp.(5.4.1)

Suppose q > 2. This expression is bounded above by

C

ˆ 1

0
pd+1

ˆ
B(pe1,1)

(t |z|+ 1)−q̂ dz dp

for q̂ = min {2.5, q}, which then is bounded above by

C

ˆ 1

0
pd+1

ˆ
B(pe1,1)

(t |z|)−q̂ dz dp

= Ct−q̂
ˆ 1

0
pd+1

ˆ
B(pe1,1)

|z|−q̂ dz dp

= Ct−q̂

noting |z|−q̂ is integrable at the origin because q̂ < d.

So the total cost

ˆ ∞
0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x) dt,

when split as an integral from 0 to 1 and from 1 to ∞, has the latter bounded above by

C

ˆ ∞
1

t
− q̂

2 dt <∞

because q̂ > 2.

Conversely, suppose 0 ≤ q ≤ 2. For t > 1 the cost rate expression (5.4.1) is bounded below by
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C

ˆ 1

0
pd+1

ˆ
B(pe1,1)

(t |z|+ t)−q dz dp

= Ct−q
ˆ 1

0
pd+1

ˆ
B(pe1,1)

(|z|+ 1)−q dz dp

= Ct−q.

So the total cost
ˆ ∞
0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x) dt

≥ C

ˆ ∞
1

t
− q

2 dt =∞.

Thus the power law is explodable if and only if q > 2 and d ≥ 3. This gives a rough characterization

of explodability in A.

5.5. Cheap translation

Up to now in this chapter we have examined the cost for which mass concentrated at a point may

spread in�nitely. We should ask now what bene�ts may be reaped from this spreading when it can

occur, from the curve's point of view as far as connecting source and target con�gurations with short

curves, i.e. low cost.

It is natural to wonder whether arbitrarily large spreading may in fact cause the cost of subsequent

translation to be arbitrarily small. Speci�cally, whether an explosion to an arbitrarily large size

might control the cost of subsequent translation of that large ball to be arbitrarily small per distance

translated.

This together with explodability would imply that a Dirac measure can be transported over arbitrary

distance in Rd to a target Dirac measure, at barely above twice the cost of the unit explosion: the

Dirac would merely explode to appropriate size, then translate exactly the displacement between

the source and target Dirac measures, at little cost, and �nally implode back to a Dirac measure.

That is, we would have a bound on the pairwise metric distance between all Dirac measures.

Of course, the explosion size might well dwarf the size of the translation, engul�ng the target loca-

tion during spreading. But no matter. The center still translates the displacement.

It turns out the answer is a�rmative for every explodable a ∈ A. Note this does not require a to

be radially decreasing nor its radial pro�le to have a limit at in�nity (of zero, as it would).
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The answer should be quali�ed, however: arbitrarily cheap translation is not obtained from suf-

�ciently large explosion size, but rather from some large sizes, with always such a size available

beyond any current or given size.

To see this, consider the concluding measure after explosion at the origin to size R > 0,

dµR =
χB(0,R)

Ld (B (0, R))
dLd.

Consider a curve in Pc
(
Rd
)
that is a constant-speed translation of this measure in some direction

in Rd for some duration of time. Such curve has cost rate independent of time

ˆ
Rd

(a ∗ µR) (x) |v0|2 dµR (x)

= C
1

Rd

ˆ
B(0,R)

(a ∗ µR) (x) dx

= C
1

Rd

ˆ R

0
(a ∗ µR) (re1) r

d−1 dr

= C
1

Rd

ˆ 1

0
(a ∗ µR) (pRe1) (pR)d−1R dp

= C
1

Rd

ˆ 1

0
pd−1

ˆ
B(pRe1,R)

a (y) dy dp

≤ C
1

Rd

ˆ 1

0
pd−1

ˆ
B(0,2R)

a (y) dy dp

= C
1

Rd

ˆ
B(0,2R)

a (y) dy.(5.5.1)

If a is explodable, from expression (5.3.1) we have for unit explosion (µt)t∈[0,∞)
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∞ >

ˆ ∞
0

√ˆ
Rd

(a ∗ µt) (x)
∣∣∣x
t

∣∣∣2 dµt (x) dt

= C

ˆ ∞
0

√
1

td

ˆ 1

0
pd+1

ˆ
B(pte1,t)

a (y) dy dp dt

≥ C

ˆ ∞
0

√√√√ 1

td

ˆ 1
2

0
pd+1

ˆ
B(0, t2)

a (y) dy dp dt

= C

ˆ ∞
0

√
1

td

ˆ
B(0, t2)

a (y) dy dt

= C

ˆ ∞
0

√
1

(4s)d

ˆ
B(0,2s)

a (y) dy ds

= C

ˆ ∞
0

√
1

sd

ˆ
B(0,2s)

a (y) dy ds.

Thus

lim inf
s→∞

1

sd

ˆ
B(0,2s)

a (y) dy = 0

which provides the claimed control of bound (5.5.1).

5.6. Metric boundedness

In the previous section we found that for all explodable a ∈ A the set of Dirac measures in Rd is

bounded with respect to the measure metric of this thesis dE.

We should ask, then, how this applies to other measures in PE
(
Rd
)
. It is natural to wonder whether

any given measure can �nd geometric means to spread �in�nitely� in some sense, at �nite cost. The

intuition certainly is there: mass concentrated at a point, i.e. a Dirac measure, seems to be about

the worst case for mass attempting to escape from itself, at least in the case of radially decreasing

penalty function a. But in what directions would the mass components of a more arbitrary measure

spread, and in what �in�nitely spreading� geometric formation?

It is also natural to wonder, if such �nite-cost in�nite spreading is available to more arbitrary mea-

sures, whether they may also enjoy arbitrarily cheap translation after spreading as do the Dirac

measures; and then whether this results in a bounded metric space on the whole.

It turns out the answers are a�rmative for the subspace P2

(
Rd
)
⊂ PE

(
Rd
)
, for radially decreasing

explodable a ∈ A. A bound on the diameter of P2

(
Rd
)
is given by a factor of the cost of the unit
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explosion, with the factor dependent on dimension d. The �in�nitely spreading formation� mentioned

above is seen shortly within the argument.

5.6.1. Radial monotonicity lemma.

To name the bound on diameter we need �rst to collect an observation of monotonicity when

integrating radially symmetric, radially decreasing functions on balls. Fix ball size r̂ > 0, and

consider the convolution function of x

a ∗ χB(0,r̂) (x) =

ˆ
B(x,r̂)

a.

The convolution is radially symmetric by radial symmetry of a. Further, the convolution is radially

decreasing by radially decreasing, radially symmetric a, as a result of rearrangement theory.

Next observe B (0, r̂) can be covered by a �nite number of copies of itself where each is translated

to have its center on the boundary of B (0, r̂). This is evident by noting that any such translated

copy contains a nontrivial sector of B (0, r̂) : namely, the intersection of B (0, r̂) with the convex cone

generated by a nonempty nonsingleton spherical cap, which is the boundary of B (0, r̂) intersected

with the copy.

The number of copies required for the cover depends only on dimension d; since d is constant in this

section let Ξ denote the minimum number.

The closure of B (0, r̂) was used for convenience to cover the origin and its cones, but of course does

not matter when we now integrate over it and its copies.

Thus for all r̂ > 0, x ∈ Rd, y ∈ B (0, r̂)

(5.6.1)

ˆ
B(x,r̂)

a ≤
ˆ
B(0,r̂)

a ≤ Ξ

ˆ
B(r̂e1,r̂)

a ≤ Ξ

ˆ
B(y,r̂)

a.

5.6.2. Theorem statement and beginning of the proof.

Theorem. Let radially decreasing, explodable a ∈ A. Let Ξ be de�ned as above. Let P2

(
Rd
)

denote the closure of P2

(
Rd
)
in
(
PE
(
Rd
)
, dE
)
de�ned in section 4.2.2. Then P2

(
Rd
)
is a bounded

metric space with diameter less than or equal to 2
√

Ξ times the cost of the unit explosion.

Proof.

Let µ, ν ∈ P2

(
Rd
)
, ε > 0, and let C ∈ (0,∞) be the cost of the unit explosion.

We show dE (µ, ν) < 2
√

Ξ C + 24ε by identifying an intermediate measure µ∗ ∈ Pc
(
Rd
)
such that

dE (µ, µ∗) <
√

Ξ C+12ε and dE (ν, µ∗) <
√

Ξ C+12ε. The bound on the distance between µ and µ∗ is
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shown by identifying 5 intermediate measures in sequence between them. By identical construction

using ν in place of µ, the distance ν to µ∗ may likewise be bounded.

First we approximate µ and ν each by a �nite sum of partial Dirac measures, using the denseness

of such in
(
P2

(
Rd
)
, dW2

)
. Let

µ0 =
M∑
i=1

miδxi

where mi > 0,
∑
mi = 1, ∀i 6= j xi 6= xj , and dW2 (µ, µ0) < ε. We have

dE (µ, µ0) < ε

because dE ≤ dW2 .

Likewise let ν0 approximate ν with its own sum, which we do not label.

Let D > 0 such that the supports of µ0 and ν0 lie within B (0, D).

Let R > 0 such that an explosion at the origin to size R concludes as a measure that may translate

at speed D with cost rate less than ε2 Ξ−1, as provided in section 5.5; and let µ∗ ∈ Pc
(
Rd
)
be this

concluding measure.

Let curve (µt)t∈[0,R] in Pc
(
Rd
)
be de�ned as the sum over i of the mass mi explosion at xi to size

R. Note µ0 so de�ned matches the µ0 we already have. For all t ∈ (0, R],

dµt =
∑
i

mi ρi,t dLd

where ρi,t (x) := ρ̄t (x− xi) with ρ̄t the Lebesgue density function of the unit explosion at time t.

Some discussion now to explain what comes next. Intuitively, this �simultaneous explosion� (µt)t∈[0,R]

is precisely the curve we want in order to progress from µ0 to a measure spread out in all direc-

tions. This is the �in�nitely spreading formation� mentioned in the introduction of this section. Its

concluding measure µR, like µ0, is one of our 5 intermediate measures from µ to µ∗. However, the

velocity �elds of the individual explosion components begin to overlap at some time, possibly before

time R. These con�icting velocity �elds are resolved by approximating the explosion components of

(µt)t∈[0,R] with �particle explosion� components which encounter no con�ict with each other. First,

the original explosion components expand from their point masses to some small size for which none

have yet overlapped; then such concluding measures are approximated by �nite sums of partial Dirac

measures, and these massed particles continue to expand precisely along the point paths that had
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been transporting the continuum explosion components, to time R; and �nally those spread-out

massed particles are noted to approximate µR.

We continue the proof in the next subsection.

5.6.3. The explosion phase.

Let T ∈ (0, R) such that ∀i 6= j, T < 1
3 |xi − xj |. T is the time (and size) at which the continuum

explosion components are stopped and approximated.

Let δ > 0 such that δR < ε, 2δ < ε2

R2 , and such that for all q ∈ [−2δR, 2δR],∣∣∣∣ˆ
Rd

[
a• − a•q

]
(|x|) dx

∣∣∣∣ <
ε2

R2
Ld (B (0, T ))

where for q ∈ R and r ≥ 0, a•q (r) := a•
(
(r − q)+

)
with s+ := max {s, 0}.

The last condition is justi�ed because

lim
q→0

ˆ
Rd

[
a• − a•q

]
(|x|) dx = 0

from the theory of such shift functions.

For t ∈ (0, R] let Bt :=
⋃
i B (xi, t), and for x ∈ BT let x� denote the nearest member of {x1 , . . . xM }

to x.

Let Φ : [0, R]×BT → Rd by

Φt (x) :=
t

T

(
x− x�

)
+ x� .

Note ΦT (·) is the identity map on BT , and for all t ∈ [0, R],

µt = Φt (·)# µT .

Let �nite collection of Borel sets (Aij)i,j in Rd be such that for each i, (Aij)j is a partition of

B (xi, T ), and for all i, j, diam (Aij) < δT and µT (Aij) > 0. For each i, j let yij ∈ Aij , and let

σT =
∑
ij

µT (Aij) δyij .

Let πT ∈ Π (µT , σT ) be the coupling resulting from the map for which for all i, j each member of

Aij maps to yij .

For t ∈ [T,R] let

σt := Φt (·)# σT
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and

πt := (Φt (·)× Φt (·))# πT .

Our 3 intermediate measures between µ0 and µR are now identi�ed: µT , σT , σR.

Note for all t ∈ [T,R] and (x, y) in the support of πt,

|x− y| < δt.

Also note for all t ∈ [T,R],

dE (µt, σt) ≤ dW2 (µt, σt) ≤
t

T
diam (Aij) < δt ≤ δR < ε.

Thus dE (µT , σT ) < ε and dE (σR, µR) < ε.

We have left to bound dE (µ0, µT ), dE (σT , σR), and dE (µR, µ∗). The third is done in section 5.6.6,

whereas the former two we take up now and through the next two sections, which are achieved by

bounding the costs of the curves (µt)t∈[0,T ] and (σt)t∈[T,R] in Pc
(
Rd
)
.

Note both curves admit a global velocity �eld from the de�nition of dE given directly by the La-

grangian paths of Φ, although with a wrinkle in the case of the latter curve. The Lagrangian paths

of Φ are not guaranteed to be free of intersections after time T . However, note no pair of paths may

intersect twice, due to their linear paths. Thus the �nitely many paths characterizing (σt)t∈[T,R]

experience intersections at �nitely many times. The velocity �eld from the de�nition of dE be-

longs to L1
(
[0, 1] ;L2 ((a ∗ σt) dσt)

)
; thus the velocity �eld here needn't be de�ned at any times of

intersections, and our cost estimates are not disturbed by these times.

The curve (µt)t∈[0,T ] admits a velocity �eld v satisfying for all t ∈ (0, T ) and x ∈ BT ,

v (t,Φt (x)) = ∂tΦt (x) =
x− x�

T
.

Whereas the curve (σt)t∈[T,R] admits a velocity �eld v satisfying the very same condition for a.e.

t ∈ (T,R) and all x in (yij)i,j .

We use the same variable v for both because the time intervals (0, T ) and (T,R) are disjoint.

For all t ∈ (0, T ), the cost rate of the curve (µt)t∈[0,T ] isˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x)

=

ˆ
BT

(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 dµT (x̃)
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and for a.e. t ∈ (T,R), the cost rate of the curve (σt)t∈[T,R] isˆ
Rd

(a ∗ σt) (y) |v (t, y)|2 dσt (y)

=

ˆ
BT

(a ∗ σt) (Φt (ỹ)) |∂tΦt (ỹ)|2 dσT (ỹ) .

We now compare the latter cost rate expression from each of these on the interval (T,R), despite

that (µt) is not employed on [T,R]. After �nding the two to be within 2ε2

R2 , we subsequently bound

the one from (µt) on the whole interval (0, R) as a means of bounding the sum of the costs of the

two curves.

5.6.4. Cost rate comparison during the approximated explosion.

For a.e. t ∈ (T,R),∣∣∣∣ˆ
BT

(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 dµT (x̃)−
ˆ
BT

(a ∗ σt) (Φt (ỹ)) |∂tΦt (ỹ)|2 dσT (ỹ)

∣∣∣∣
=

∣∣∣∣∣
¨
B2

T

[
(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 − (a ∗ σt) (Φt (ỹ)) |∂tΦt (ỹ)|2

]
dπT (x̃, ỹ)

∣∣∣∣∣
which, following the form �bc− de = b [c− e] + e [b− d] �, equals∣∣∣∣∣
¨
B2

T

[
(a ∗ µt) (Φt (x̃))

[
|∂tΦt (x̃)|2 − |∂tΦt (ỹ)|2

]
+ |∂tΦt (ỹ)|2 [(a ∗ µt) (Φt (x̃))− (a ∗ σt) (Φt (ỹ))]

]
dπT (x̃, ỹ)

∣∣∣∣∣
which is less than or equal to¨
B2

T

[
(a ∗ µt) (Φt (x̃))

∣∣∣|∂tΦt (x̃)|2 − |∂tΦt (ỹ)|2
∣∣∣+ |∂tΦt (ỹ)|2

∣∣∣(a ∗ µt) (Φt (x̃))− (a ∗ σt) (Φt (ỹ))
∣∣∣] dπT (x̃, ỹ) .

For a.e. t ∈ (T,R) and all (x̃, ỹ) in the support of πT ,

(a ∗ µt) (Φt (x̃))
∣∣∣|∂tΦt (x̃)|2 − |∂tΦt (ỹ)|2

∣∣∣
≤

∣∣∣|∂tΦt (x̃)|2 − |∂tΦt (ỹ)|2
∣∣∣

=
1

T 2

∣∣∣∣∣x̃− x̃�

∣∣2 − ∣∣ỹ − ỹ�∣∣2∣∣∣
=

1

T 2

∣∣∣∣∣x̃− x̃�

∣∣2 − ∣∣ỹ − x̃�

∣∣2∣∣∣
because x̃, ỹ belong to the same Aij ⊂ B (xi, T ) for some i, j. Following the form∣∣∣|u|2 − |w|2∣∣∣ =

∣∣∣|u|+ |w|∣∣∣ ∣∣∣|u| − |w|∣∣∣ ≤ (|u|+ |w|) |u− w|
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for u,w ∈ Rd, the previous expression is then less than or equal to

1

T 2

(∣∣x̃− x̃�

∣∣+
∣∣ỹ − x̃�

∣∣) ∣∣(x̃− x̃�

)
−
(
ỹ − x̃�

)∣∣
<

1

T 2
(T + T ) δT <

ε2

R2

because |x̃− ỹ| < δT .

Also for a.e. t ∈ (T,R) and all (x̃, ỹ) in the support of πT ,

|∂tΦt (ỹ)|2
∣∣∣(a ∗ µt) (Φt (x̃))− (a ∗ σt) (Φt (ỹ))

∣∣∣
=

1

T 2

∣∣ỹ − ỹ�∣∣2
∣∣∣∣∣
¨
B2

t

[a (x− Φt (x̃))− a (y − Φt (ỹ))] dπt (x, y)

∣∣∣∣∣
<

∣∣∣∣∣
¨
B2

t

[a (x− Φt (x̃))− a (y − Φt (ỹ))] dπt (x, y)

∣∣∣∣∣ .

For a.e. t ∈ (T,R) and all (x̃, ỹ) in the support of πT and (x, y) in the support of πt,

a (y − Φt (ỹ))

= a•
(∣∣∣(x− Φt (x̃)) + (Φt (x̃)− Φt (ỹ)) + (y − x)

∣∣∣)
≥ a•

(∣∣∣x− Φt (x̃)
∣∣∣+ δR+ δR

)
because radial pro�le a• of a is decreasing, and (Φt (x̃) ,Φt (ỹ)) belongs to the support of πt.

This equals, using the shift notation de�ned above,

a•−2δR

(∣∣∣x− Φt (x̃)
∣∣∣) .
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Thus for a.e. t ∈ (T,R) and all (x̃, ỹ) in the support of πT ,¨
B2

t

[a (x− Φt (x̃))− a (y − Φt (ỹ))] dπt (x, y)

≤
¨
B2

t

[
a•
(∣∣∣x− Φt (x̃)

∣∣∣)− a•−2δR (∣∣∣x− Φt (x̃)
∣∣∣)] dπt (x, y)

=

ˆ
Rd

[
a• − a•−2δR

] (∣∣∣x− Φt (x̃)
∣∣∣) dµt (x)

=

ˆ
Rd

[
a• − a•−2δR

]
(|x̂|) dµt (x̂)

=
∑
i

mi

ˆ
Rd

[
a• − a•−2δR

]
(|x̂|) ρi,t (x̂) dx̂

≤ 1

Ld (B (0, T ))

ˆ
Rd

[
a• − a•−2δR

]
(|x̂|) dx̂

<
ε2

R2

noting a• − a•−2δR ≥ 0.

Similarly, for a.e. t ∈ (T,R) and all (x̃, ỹ) in the support of πT and (x, y) in the support of πt,

a (y − Φt (ỹ))

= a•
(∣∣∣(x− Φt (x̃)) + (Φt (x̃)− Φt (ỹ)) + (y − x)

∣∣∣)
≤ a•

([ ∣∣∣x− Φt (x̃)
∣∣∣− ∣∣∣(Φt (x̃)− Φt (ỹ)) + (y − x)

∣∣∣ ]
+

)
≤ a•

([ ∣∣∣x− Φt (x̃)
∣∣∣− δR− δR ]

+

)
= a•2δR

(∣∣∣x− Φt (x̃)
∣∣∣)

and so ¨
B2

t

[a (x− Φt (x̃))− a (y − Φt (ỹ))] dπt (x, y)

≥
¨
B2

t

[
a•
(∣∣∣x− Φt (x̃)

∣∣∣)− a•2δR (∣∣∣x− Φt (x̃)
∣∣∣)] dπt (x, y)

=
∑
i

mi

ˆ
Rd

[a• − a•2δR] (|x̂|) ρi,t (x̂) dx̂

≥ 1

Ld (B (0, T ))

ˆ
Rd

[a• − a•2δR] (|x̂|) dx̂

> − ε
2

R2

noting a• − a•2δR ≤ 0.
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Thus ∣∣∣∣∣
¨
B2

t

[a (x− Φt (x̃))− a (y − Φt (ỹ))] dπt (x, y)

∣∣∣∣∣ < ε2

R2

and so we obtain a bound on the original expression of this section: For a.e. t ∈ (T,R),∣∣∣∣ˆ
BT

(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 dµT (x̃)−
ˆ
BT

(a ∗ σt) (Φt (ỹ)) |∂tΦt (ỹ)|2 dσT (ỹ)

∣∣∣∣
<

¨
B2

T

[
ε2

R2
+
ε2

R2

]
dπT (x̃, ỹ) =

2ε2

R2
.

5.6.5. Final bound on the explosions.

Now, time integrating the square roots of these cost rates,

∣∣∣∣∣
ˆ R

T

√ˆ
BT

(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 dµT (x̃)dt−
ˆ R

T

√ˆ
BT

(a ∗ σt) (Φt (ỹ)) |∂tΦt (ỹ)|2 dσT (ỹ)dt

∣∣∣∣∣
≤
ˆ R

T

∣∣∣∣∣
√ˆ

BT

(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 dµT (x̃)−

√ˆ
BT

(a ∗ σt) (Φt (ỹ)) |∂tΦt (ỹ)|2 dσT (ỹ)

∣∣∣∣∣ dt
≤
ˆ R

T

[
ε

R
+
R

ε

∣∣∣∣ˆ
BT

(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 dµT (x̃)−
ˆ
BT

(a ∗ σt) (Φt (ỹ)) |∂tΦt (ỹ)|2 dσT (ỹ)

∣∣∣∣ ] dt
following the form �

∣∣∣√b−√c∣∣∣ ≤ d+ 1
d |b− c|�. This then is less than

ˆ R

T

[
ε

R
+
R

ε

2ε2

R2

]
dt < 3ε.

Thus

dE (µ0, µT ) + dE (σT , σR) < 3ε+

ˆ R

0

√ˆ
BT

(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 dµT (x̃) dt.

For all t ∈ (0, R),
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ˆ
BT

(a ∗ µt) (Φt (x̃)) |∂tΦt (x̃)|2 dµT (x̃)

=

ˆ
BT

(a ∗ µt) (Φt (x̃))

∣∣∣∣ x̃− x̃�

T

∣∣∣∣2 dµT (x̃)

=

ˆ
Rd

(
a ∗
∑
i

mi ρi,t

)
(x)
∑
j

∣∣∣∣x− xjt

∣∣∣∣2mj ρj,t (x) dx

=
∑
i

mi

∑
j

mj

ˆ
Rd

(a ∗ ρi,t) (x)

∣∣∣∣x− xjt

∣∣∣∣2 ρj,t (x) dx

=
∑
i

mi

∑
j

mj

ˆ
Rd

(a ∗ ρ̄t) (x− xi)
∣∣∣∣x− xjt

∣∣∣∣2 ρ̄t (x− xj) dx

=
∑
i

mi

∑
j

mj

ˆ
Rd

(a ∗ ρ̄t) (y + xj − xi)
∣∣∣y
t

∣∣∣2 ρ̄t (y) dy

=
∑
i

mi

∑
j

mj

ˆ
B(0,t)

(a ∗ ρ̄t) (y + xj − xi)
∣∣∣y
t

∣∣∣2 ρ̄t (y) dy

≤
∑
i

mi

∑
j

mj

ˆ
B(0,t)

Ξ (a ∗ ρ̄t) (y)
∣∣∣y
t

∣∣∣2 ρ̄t (y) dy

by inequality (5.6.1) applied to a ∗ ρ̄t. Because
∑

imi = 1, this equals

Ξ

ˆ
B(0,t)

(a ∗ ρ̄t) (y)
∣∣∣y
t

∣∣∣2 ρ̄t (y) dy

which is Ξ times the cost rate for the unit explosion.

Thus

dE (µ0, µT ) + dE (σT , σR) < 3ε+
√

Ξ C.

5.6.6. The translation phase.

Finally, we bound dE (µR, µ∗).

Let curve (µt)t∈[R,R+1] in Pc
(
Rd
)
be obtained by translating each density component mi ρi,R to

mi ρ̄R simultaneously during one unit of time. That is, for all t ∈ [R,R+ 1],

dµt =
∑
i

mi σi,t dLd

where σi,t (x) := ρ̄R (x− (R+ 1− t)xi) with ρ̄t still de�ned as above, i.e. the Lebesgue density

function of the unit explosion at time t. Note σi,t is unrelated to σt despite the similar label.
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Observe that µR so de�ned matches the µR already de�ned above, because σi,R = ρi,R.

Moreover,

dµR+1 =
∑
i

mi σi,R+1 dLd

=
∑
i

mi ρ̄R (x) dLd

= ρ̄R (x) dLd

= dµ∗.

The situation is now analogous to that for the simultaneous explosion above. The curve (µt)t∈[R,R+1]

at some times experiences overlap of its density components mi σi,t, with di�ering velocity �elds for

those components. The identical approximation procedure is again applied as before, approximating

the continuum translations curve (µt)t∈[R,R+1] by a massed-particle translations curve which we do

not here label. Note in this case there is no need for an initial continuum evolution before the

massed-particle approximation begins.

Omitting the repeated details, the distance between µR and its massed-particle approximation is

again bounded by ε, as is the distance between the translated massed particles and µR+1. The

di�erence of the cost expressions along the way is again bounded by 3ε.

The cost rate expression for (µt)t∈[R,R+1] is then bounded as follows. Noting that for each i, σi,t

through time is a translation with constant velocity −xi, we write the cost rate expression directly

as ˆ
Rd

(
a ∗
∑
i

mi σi,t

)
(x)
∑
j

|xj |2mj σj,t (x) dx

=
∑
i

mi

∑
j

mj

ˆ
Rd

(a ∗ ρ̄R) (x− (R+ 1− t)xi) |xj |2 ρ̄R (x− (R+ 1− t)xj) dx

=
∑
i

mi

∑
j

mj

ˆ
B(0,R)

(a ∗ ρ̄R) (y + (R+ 1− t) (xj − xi)) |xj |2 ρ̄R (y) dy

<
∑
i

mi

∑
j

mj

ˆ
B(0,R)

Ξ (a ∗ ρ̄R) (y)D2 ρ̄R (y) dy

= Ξ

ˆ
B(0,R)

(a ∗ ρ̄R) (y)D2 ρ̄R (y) dy

< Ξ ε2 Ξ−1 = ε2

by the de�nition of R above.



5.6. METRIC BOUNDEDNESS 59

Thus ˆ R+1

R

√√√√ˆ
Rd

(
a ∗
∑
i

mi σi,t

)
(x)
∑
j

|xj |2mj σj,t (x) dx dt < ε

and

dE (µR, µ∗) < 2ε+ 3ε+ ε.

This concludes the �nal bound on the distances between the intermediate measures. We have shown

dE (µ, µ∗) <
√

Ξ C + 12ε. Since dE (ν, µ∗) may be bounded likewise, this completes the proof. �



CHAPTER 6

The measure metric obtained by extension, and its topology

In this chapter we would like to obtain a version of the measure metric of this thesis in a di�erent

way, by �rst de�ning it for a moderate class of measures where we can understand it well and its

topology, and then by extending this via metric completion to work on more general measures. This

allows the topological understanding of the simple metric to be inherited by the more general metric.

The more general measures we limit also, for simplicity, to those taking support inside a large ball

in Rd.

6.1. Conventions

We identify here a few key conventions used in this chapter.

In this thesis and particularly used this chapter, the symbol �⊂� means subset, not necessarily strict.

Subscripts on sets, when not used for indices, are used to denote set neighborhood in Rd, as in

Aε :=
{
x ∈ Rd

∣∣∣ ∃y ∈ A with |y − x| < ε
}
.

The terminology of topologically stronger and uniformly stronger metrics is followed as in [70].

Topologically stronger simply means �has a �ner topology�, i.e. the identity map from the stronger

metric to the weaker metric is continuous. Uniformly stronger means more: such identity map is

uniformly continuous.

6.2. Development

Fix a closed ball K ⊂ Rd and let P (K) denote the set of Borel probability measures with support

in K.

Let dW2 denote the 2-Wasserstein metric on P (K) from optimal transport theory,

dW2 (µ, ν) := inf

{√ˆ
K×K

|x− y|2 dπ (x, y)

∣∣∣∣∣ π ∈ Π (µ, ν)

}
60
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where Π (µ, ν) is the set of couplings of µ and ν.

Let dLP denote the Lévy-Prokhorov metric on P (K),

dLP (µ, ν) := inf {ε > 0 | ∀Borel A ⊂ K, µ (A) ≤ ν (Aε) + ε and ν (A) ≤ µ (Aε) + ε} .

For r > 0 de�ne a modi�cation of the Lévy-Prokhorov metric (which will be shown to be a metric)

on P (K) as

dLPr (µ, ν) := inf {ε > 0 | ∀Borel A ⊂ K with diam (A) ≤ r, µ (A) ≤ ν (Aε) + ε and ν (A) ≤ µ (Aε) + ε} .

Of course for all r, dLPr ≤ dLP, and for r ≥ diam (K) , dLPr = dLP.

First we make a needed comparison of the above.

Lemma. For all r, dLPr is topologically stronger than dW2 on P (K).

Proof.

Let r > 0, µ ∈ P (K) , and ε ∈ (0, r).

Let disjoint Borel cover (Ai)
m
i=1 of K such that ∀i diam (Ai) ≤ ε and µ (∂Ai) = 0 where ∂ denotes

boundary.

(For example, all boundaries may be established by a collection of hyperplanes, each of which

may translate to all but a countable number of shifts while avoiding positive measure, its shifts

partitioning Rd.)

Let δ = ε
m > 0 and let δ ∈

(
0, δ
)

s.t. ∀i µ ((∂Ai)δ) < δ.

(monotone convergence of µ on intersections of sets of the form (∂Ai) 1
n
, uniform over �nite i)

Let ν ∈ P (K) s.t. dLPr (µ, ν) < δ. ∀i ν (Ai) ≤ µ ((Ai)δ)+δ ≤ µ (Ai)+µ ((∂Ai)δ)+δ < µ (Ai)+2δ

so
(
ν (Ai)− 2δ

)
∨ 0 ∈ [0, µ (Ai) ∧ ν (Ai)].

Let π ∈ Π (µ, ν) such that for all i at least
(
ν (Ai)− 2δ

)
∨0 mass is coupled within Ai, the remainder

coupled arbitrarily.

For all i at most 2δ of ν's mass in Ai is coupled outside Ai. Thus at most 2δm of ν's total mass is

coupled at distance greater than ε.
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dW2 (µ, ν) ≤
√´

K×K |x− y|
2 dπ (x, y) ≤

√
2δm · diam (K)2 + 1 · ε2 =

√
2diam (K)2 ε+ ε2. �

dLPr is a metric (shown nondegenerate by the lemma, i.e. distinct measures have nonzero distance),

with dLPr ≤ dLP, so (P (K) , dLPr) is compact since (P (K) , dLP) is. Thus dLPr is uniformly stronger

than dW2 on P (K) by the lemma that it is topologically stronger.

Next we de�ne the measure metric, �rst in limited scope on �nice� measures.

Let P̃ (K) denote the following subset of P (K): each measure absolutely continuous with respect to

Lebesgue measure with C∞ density bounded above & below (by positive constant) on K.

Fix a ∈ A, de�ned in section 4.2.2, and from it de�ne d̃E (which will be shown to be a metric) on

P̃ (K) as

d̃E (µ, ν) := inf

{ˆ 1

0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x)dt

∣∣∣∣∣ (
(µt)t∈[0,1] , v

)
∈ Ṽµ,ν

}

where Ṽµ,ν is de�ned as the set of
(

(µt)t∈[0,1] , v
)
such that v ∈ C1

(
[0, 1]× Rd;Rd

)
, µ1 = ν, and

∀t µt = Φ (t, ·)# µ where Φ (t, x) ∈ Rd denotes the time t ∈ [0, 1] solution of the IVP

ξ̇ (s) = v (s, ξ (s)) , ξ (0) = x ∈ Rd

given by classical ODE theory.

We now compare this to the modi�ed Lévy-Prokhorov metric on P̃ (K).

Lemma. For su�ciently small r, d̃E is uniformly stronger than dLPr on P̃ (K).

Proof.

Let r, β > 0 such that on [0, 3r], a• > β where a• is the radial pro�le of a.

Let ε ∈ (0, r), and suppose there exist µ, ν ∈ P̃ (K) s.t. dLPr (µ, ν) > ε.

Let Borel A ⊂ K such that diam (A) ≤ r and µ (A) > ν (Aε) + ε, swapping the labels of µ, ν if

necessary.

Suppose there exists
(

(µt)t∈[0,1] , v
)
∈ Ṽµ,ν , and let the corresponding map Φ be as de�ned above.
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Let Φ−1 denote the inverse of Φ in its second argument given by the classical theory, i.e. ∀t ∈
[0, 1] , x ∈ Rd Φ−1 (t,Φ (t, x)) = x and Φ

(
t,Φ−1 (t, x)

)
= x.

Let

T = min
{
t ∈ [0, 1]

∣∣∣ µ (A ∩ Φ−1 (t, Aε
c)
)
≥ ε

2

}
∈ (0, 1] .

(The bracketed set is nonempty because µ
(
A ∩ Φ−1 (1, Aε

c)
)

= µ (A) − µ
(
A ∩ Φ−1 (1, Aε)

)
=

µ (A) − ν (Φ (1, A) ∩Aε) ≥ µ (A) − ν (Aε) > ε, and is closed by closedness of
[
ε
2 , 1
]
and smooth

µAt := Φ (t, ·)# µ|A .)

Let

B = A ∩ Φ−1
(
T ,Aε

c
)

and for x ∈ B let

T (x) := min {t ∈ [0, 1] | Φ (t, x) ∈ Aε c } ∈
(
0, T

]
.

(The bracketed set is nonempty by T membership and closed by continuity of Φ.)

ˆ 1

0

√ˆ
Rd

(a ∗ µt) (x) |v (t, x)|2 dµt (x) dt

≥
ˆ 1

0

ˆ
Rd

√
(a ∗ µt) (x) |v (t, x)| dµt (x) dt

(Jensen)

=

ˆ 1

0

ˆ
Rd

√ˆ
Rd

a (y − Φ (t, x)) dµt (y) |v (t,Φ (t, x))| dµ (x) dt

=

ˆ
Rd

ˆ 1

0

√ˆ
Rd

a (y − Φ (t, x)) dµt (y) |v (t,Φ (t, x))| dt dµ (x)

(Tonelli)

≥
ˆ
B

ˆ T (x)

0

√ˆ
Aε

a (y − Φ (t, x)) dµt (y) |v (t,Φ (t, x))| dt dµ (x)

>

ˆ
B

ˆ T (x)

0

√
βµt (Aε) |v (t,Φ (t, x))| dt dµ (x)

(a di�erence of members of Aε having been given to a, with diam (Aε) < 3r)

>

√
β
ε

2

ˆ
B

ˆ T (x)

0
|v (t,Φ (t, x))| dt dµ (x)
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(noting µt (Aε) ≥ µt (Φ (t, A) ∩Aε) = µ
(
A ∩ Φ−1 (t, Aε)

)
= µ (A) − µ

(
A ∩ Φ−1 (t, Aε

c)
)
> ε − ε

2

for all t < T (x) ≤ T )

≥
√
β
ε

2

ˆ
B
ε dµ (x)

(arclength of path Φ (·, x) bounded below by the distance between its endpoints, the �rst of which

lies in B ⊂ A and the second in Aε
c)

≥
√
β

1

2

1

2
ε2.5.

Thus d̃E (µ, ν) is greater than or equal to the previous line. �

The following elementary observation of metric completion is deduced since not readily found in a

reference.

Lemma. Uniformly equivalent metrics have uniformly equivalent completions, and in particular,

topologically equivalent completions.

Proof.

Let uniformly equivalent metrics d1, d2 on a set X and let continuous moduli of continuity σ1, σ2

for the identity maps (X, d1)→ (X, d2) and (X, d2)→ (X, d1). From d2 ≤ σ1 ◦ d1 and d1 ≤ σ2 ◦ d2
we see the d1-Cauchy sequences are precisely the d2-Cauchy sequences, and for two such Cauchy

sequences (xn) , (yn),

d∗2 ((xn) , (yn)) = lim
n
d2 (xn, yn) ≤ lim

n
σ1 (d1 (xn, yn)) = σ1

(
lim
n
d1 (xn, yn)

)
= σ1 (d∗1 ((xn) , (yn)))

where star denotes the metric completed, and likewise d∗1 ≤ σ2 ◦ d∗2. �

6.3. Completion of the metric

Theorem. Let P̃ (K) and d̃E be de�ned as above for a ∈ A. Then the completion of
(
P̃ (K) , d̃E

)
is the space P (K) with metric that is uniformly equivalent to (P (K) , dW2), and so metrizes the

topology of weak (-*) convergence of measures.

Proof.

Claim: for µ, ν ∈ P̃ (K),
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dW2 (µ, ν) = inf

{ˆ 1

0

√ˆ
Rd

|v (t, x)|2 dµt (x)dt

∣∣∣∣∣ (
(µt)t∈[0,1] , v

)
∈ Ṽµ,ν

}
.

That is, the optimal transport formulation of the 2-Wasserstein metric matches its displacement

interpolation form on P̃ (K) for Ṽµ,ν as de�ned above.

To see this, note for the 2-Wasserstein metric there exists an optimal coupling of µ, ν given by

a map from K to K that is a C∞ di�eomorphism due to the smoothness of µ and ν, as in De

Philippis and Figalli's Thm 3.3 [35] and earlier developed by Ca�arelli [18, 19]. This results in

linear displacement-interpolation Lagrangian paths between µ, ν that are smooth and invertible in

space, as noted in Santambrogio's Lemma 5.29 [68]. The resulting induced Eulerian velocity �eld v,

as formed in Santambrogio's Proposition 5.30 [68], inherits this smoothness and achieves the above

in�mum as a minimum, with associated curve (µt)t∈[0,1] de�ned by the push-forward of µ along those

Lagrangian paths.

Thus

dW2 (µ, ν) = inf

{ˆ 1

0

√ˆ
Rd

(1 ∗ µt) (x) |v (t, x)|2 dµt (x)dt

∣∣∣∣∣ (
(µt)t∈[0,1] , v

)
∈ Ṽµ,ν

}
≥ d̃E (µ, ν)

because a ≤ 1.

Thus d̃E is a metric on P̃ (K) under the metric axioms as follows. d̃E <∞ by the previous inequality.

The distance between any measure and itself is evidently zero from the de�nition of d̃E using v ≡ 0.

d̃E is nondegenerate, i.e. distinct measures have nonzero distance, by the lemma that it is uniformly

stronger than dLPr . Metric symmetry and the triangle inequality are evident from the de�nition of

d̃E as a displacement interpolation; the former by the invertibility of the ODE, and the latter by any

intermediate measure serving as a constraint on the original curve, with the two legs of the curve

optimized independently and using time reparametrization.

By the �rst two lemmas and the fact that d̃E ≤ dW2 on P̃ (K), on P̃ (K) we have that dW2 is

uniformly stronger than d̃E which is uniformly stronger than dLPr for some r, which is uniformly

stronger than dW2 . By the completion lemma,
(
P̃ (K) , d̃E

)
and

(
P̃ (K) , dW2

)
have uniformly

equivalent completions, and therefore topologically equivalent completions. The resulting topology

is therefore the topology of dW2 on P (K), by denseness of P̃ (K) in P (K) with respect to dW2 .

�



CHAPTER 7

Open directions for further research

To close out the discussion before the numerical results of chapter 8, we collect here a short list of

research directions open for the taking, as motivated by the developments in this thesis.

� Development of a well-posedness theory for weighted aggregation (2.5.1). For example, weak

solutions set in Sobolev spaces as developed in [12] for pure aggregation.

� An understanding of the e�ects that attention functions have on the H-stability of weighted

aggregation (2.5.1) . (See H-stability in for example [30].)

� Investigation of the curvature of the formal Riemannian manifold
(
PE
(
Rd
)
, dE
)
.

� A study of displacement convexity for internal, potential, and interaction energies along the

geodesics of dE. (Note when semi-convex, the gradient �ow theory of [3] may provide well-posedness.)

� On P (K) does the completion of metric d̃E in chapter 6 match the metric dE de�ned in chapter

4?

� Metric space completion: When a is explodable, the unit explosion yields a Cauchy sequence in(
PE
(
Rd
)
, dE
)
lacking a limit. Plausibly this space's completion may be characterized in a natu-

ral way by accounting for portions of mass that have spread out to have negligible concentration

everywhere, leaving sub-probability measures. A candidate space might be

P′E

(
Rd
)

:=
{
mµ

∣∣∣m ∈ [0, 1] , µ ∈ PE

(
Rd
)}

together with a metric like

DE (mµ, m̃ν) := lim
n→∞

dE (µn, νn)

where µn and νn are Cauchy sequences in
(
PE
(
Rd
)
, dE
)
weakly converging in measure to mµ and

m̃ν, respectively.

� Metric tensor localization: Consider a sequence of attention functions that converge as molli�ers

to the Dirac delta distribution. These belong to A except for the normalization sup a
(
Rd
)

= 1

which must be dropped. The limit of the corresponding metric tensors is

gρ (v, v) :=

ˆ
|v|2ρ2 dLd

66
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which is a local (no longer nonlocal) metric tensor with simple yet interesting metric, indeed admit-

ting characterization as the homogeneous H−1 distance (and also corresponding to constant �mobility

function� in [27].)



CHAPTER 8

Simulation and visualization

In this �nal chapter, the graphical results of various numerical experiments are provided to evidence

and illustrate the theory of this thesis. Additionally, a concept application �hierarchical clustering�

is tested out, and additionally after that, an interesting behavior is discovered for aggregation which

we call �polar milling�.

Experiments are shown for the geodesics of the particle metric that was de�ned in section 4.2.2, as

well as for the weighted aggregation ODE (2.3.1). Both are kept to 2D simulations for purposes

of displaying the resulting graphics in this 2D thesis, although arbitrary dimension may be run

numerically.

All numerics and plotting were performed in MATLAB licensed by Carnegie Mellon University, and

coded by this author, using mostly built-in commands and solvers as named below.

8.1. Geodesics visualization

For geodesics, the derived Euler-Lagrange equation (4.4.1) of section 4.4 is numerically solved as a

boundary value problem.

MATLAB's boundary value solver �bvp5c� was used, which is described as a �nite di�erence code

that implements the four-stage Lobatto IIIa formula. Relative tolerance and absolute tolerance of

10−3 and 10−6 respectively were used, with number of mesh points allowed to 109.

Attention a for this section is chosen to have exponential decay with a (0) = 1, pictured in �gure

8.1.1. Self attention is set at a0 = a (0).

For the �rst experiment, see �gure 8.1.2. The convention of ordering sub�gures in this chapter is:

From the upper-left sub�gure, sub�gures are chronological left-to-right, and then the next row down

left-to-right, etc.

A source con�guration of �ve particles has been chosen, shown in the upper-left sub�gure; and a

target con�guration has also been speci�ed, which is that same formation translated from its start,

shown in the lower-right sub�gure. The sequence of sub�gures shows snapshots of the resulting

geodesic curve in the con�guration space. Observe how the pentagon-like shape spreads out as it

68
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begins to translate in formation, then does most of its translating in that spread-out formation, and

�nally collapses back to the tight pentagon-like shape.

Figure 8.1.3 shows the paths that were taken by each of the �ve particles.

Next see �gure 8.1.4 for the second experiment. Here two particles are required to swap positions.

Observe that they do so while keeping some separation rather than passing through each other.

Figure 8.1.5 shows their paths. Naturally, by symmetry, another geodesic may be obtained by

re�ection through the line joining the two points.

Finally for this section, a more �arbitrary� geodesic is shown. See �gure 8.1.6. A loose pile of

particles is the source con�guration, and two of them are required to end at the right side-by-side,

whereas the other three are required to end at the left in a triangular formation, as shown in the

�nal sub�gure. Figure 8.1.7 of their paths reveals the characteristic spreading, in this case spreading

within two separate �components� of the source con�guration which must travel in generally the

same direction.

Figure 8.1.1. Attention pro�le a•
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Figure 8.1.2. When the target con�guration is merely a translation of the source con�guration.

Figure 8.1.3. The same curve through the con�guration space, drawn with tracer lines.
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Figure 8.1.4. Two particles must swap places.

Figure 8.1.5. The same curve through the con�guration space, drawn with tracer lines.
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Figure 8.1.6. More arbitrary source and target con�gurations. Spreading still oc-
curs between components headed in the same direction.

Figure 8.1.7. The same curve through the con�guration space, drawn with tracer lines.
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8.2. Weighted aggregation visualization

For weighted aggregation, the ODE (2.3.1) of section 2.3 is numerically solved as an initial value

problem.

MATLAB's initial value solver �ode113� was used, which is described as a variable-step, variable-

order (VSVO) Adams-Bashforth-Moulton PECE solver of orders 1 to 13. Relative tolerance and

absolute tolerance of 10−5 and 10−6 respectively were used.

Attention a for this section is chosen to have bounded support, with a 3rd degree polynomial sloping

downward from a• (0) = 1 through a• (2) = 1
2 to a• (4) = 0. W for this section is chosen as a Morse

potential. Both are pictured in �gure 8.2.1. Self attention is set at a0 = a (0).

Figure 8.2.1. Attention pro�le a• (red) and interaction-potential pro�leW • (blue).
The vertical axis is used for W •, whereas a• varies from 0 to 1.

First see �gure 8.2.2. The initial con�guration is on the average a bit too tightly packed for comfort,

according to the preferred spacing established by W . This causes the resulting aggregation to be

a generally spreading-out evolution, settling into a comfortable lattice-like ball by the time of the

�nal sub�gure. Observe that this lattice spacing roughly matches the pairwise comfort separation

established byW , which is facilitated by the attention function which does not allow much attention

beyond roughly this separation distance, as seen in �gure 8.2.1.

Next, in �gure 8.2.3 an initial con�guration is on the average too spread out for comfort, according

to the preferred spacing established by W . This causes the resulting aggregation to be a generally

collapsing evolution, which does not yet reach a comfortable con�guration by the time of the �nal

sub�gure. Observe the temporary ��lament-like� formations, as particles �rst attempt to reach

comfort spacing with primarily their nearest neighbors, before seeking more distant aggregations,
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thanks again to the attention function which does not allow much attention beyond roughly the

pairwise comfort separation.

Figure 8.2.2. Evolution from an initial con�guration having average group spacing
smaller than that preferred by W .

Figure 8.2.3. Evolution from an initial con�guration having average group spacing
larger than that preferred by W .
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The next two �gures, 8.2.4 and 8.2.5, compare pure aggregation (in the former) to weighted ag-

gregation (in the latter). Both begin with the same initial con�guration: Three remote particles

separated a fair distance from a much larger crowd.

Figure 8.2.4. A weakness of pure aggregation evidenced: a distant large group
diluting the interaction of a small group.

Figure 8.2.5. The introduction of weighting improves the aforementioned weakness.
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Observe two e�ects. First, the aggregation that occurs within the large crowd, which does not have

much to do with the three remote particles, packs much tighter in the case of pure aggregation than in

this weighted aggregation, as seen by comparing the �nal sub�gure from each �gure. This evidences

the e�ect of attention on maintaining a lattice-like spacing that is more similar to the pairwise

comfort distance established by W . Theoretically this is expected because without attention limited

to mostly one's next neighbors, particles experience that most of the lattice is too far from them.

Second, observe the slower response of the three remote particles in the case of pure aggregation.

In both cases they begin to approach a comfort spacing with each other, though this evolution is

�unrealistically� slowed in the case of pure aggregation. The �nal sub�gure helps to see the di�erent

amounts of progress, though it is slightly subtle. Figure 8.2.6 helps to see this by indicating the

particle velocities at the start of evolution. Of course, this experiment setup does not involve a

very large distant cluster, at very large distance, so the �unrealistic� e�ects can be worse in more

dramatic situations.

Figure 8.2.6. Close-up of the smaller group with initial velocities shown. On the
left, pure aggregation, and on the right, weighted aggregation.

8.3. Application: hierarchical clustering

This section again simulates weighted aggregation as was done in the previous section. The section

should not be taken too seriously, but instead is just a �rst trial of an interesting idea.

The idea derives from the modern computer science discipline of machine learning. One task there

which needs solution methods is the problem of �clustering� for automated classi�cation. In its

simplest form, given data points in Rd one wishes to group them as a means of classifying which

belong together in association.



8.3. APPLICATION: HIERARCHICAL CLUSTERING 77

Thus a toy application (for now) for aggregation, and especially weighted aggregation, might be the

conducting of this information-theoretic clustering via actual clustering in the dynamical sense of

evolution equations. An attractive-only interaction potential W would be chosen. The attention

function provides means for particles to �rst focus strongly on joining their nearest neighbors, and

then look around in bigger and bigger length scales. This in fact provides information-theoretic

clustering known as hierarchical clustering, because a hierarchy of grouping may be determined

from which particles join which others �rst.

See references such as [48, 84, 83, 69] for a proper understanding of this problem and its recent

state of the art.

Attention a for this section is chosen to be zero near the origin and then jump to one before

exponentially decaying. The narrow zone of zero allows for particle merging within that tolerance.

W is chosen for this section to be the 2-norm function, i.e. W • is the identity function, providing

simple �nite-time collapse. (Although, collapse is precluded due to particle attention dropping to

zero.) Both are pictured in �gure 8.3.1. Self attention is set at a0 = 10−6 for regularity.

See �gure 8.3.2 for the result of the experiment, although it is di�cult to visually track in a few

snapshots. The particle paths �gure 8.3.3 is more revealing, showing the actual hierarchy of grouping

that occurred.

Figure 8.3.1. Attention pro�le a• (red) and interaction-potential pro�leW • (blue).
The vertical axis is used for W •, whereas a• varies from 0 to 1.
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Figure 8.3.2. Interesting aspirational application: agglomerative hierarchical clus-
tering (unsupervised machine learning).

Figure 8.3.3. The previous graphic shown with tracer lines.

8.4. Polar milling of distant traveling aggregates

Finally, this section again simulates weighted aggregation as was done in the previous two sections.

Here we discover an interesting behavior we call �polar milling�.
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The same numeric solver and settings were used in this experiment as in the previous two sec-

tions, with the exception that relative tolerance was tightened to 10−6 to increase con�dence in the

phenomenon.

Attention a is chosen for this section to have exponential decay with a (0) = 1. W is chosen as a

Morse potential. Both are pictured in �gure 8.4.1. Self attention is set at a0 = a (0).

Consider an aggregate of particles that has settled into a lattice-like ball corresponding to its own

equilibrium, but which lies in the same Euclidean space as a very distant aggregate of other particles.

Imagine this distance is so great that during the duration of our experiment, the separating distance

won't change signi�cantly, despite that our ball will be moving toward the distant aggregate (and

it toward our ball, presumably). Our ball will move toward the distant aggregate whenever our ball

is roughly in self-equilibrium.

The idealized approximate model is found by substituting all displacements between distant particles

with one large unchanging displacement. Doing so in equation (3.1.1) from section 3.1 yields the

following.

For all i ∈ B where B is the set of indices making up our ball,

ẋi =
1

αi (~x)

∑
j 6=i
∇W̃ (xj − xi)

=
1

αi (~x)

∑
j∈B\i

∇W̃ (xj − xi) +
∑
j∈BC

∇W̃ (xj − xi)


≈ 1

αi (~x)

∑
j∈B\i

∇W̃ (xj − xi) +
∑
j∈BC

∇W̃ (y)


=

1

αi (~x)

∑
j∈B\i

∇W̃ (xj − xi) + z


for some y, z ∈ Rd.

Noteworthy is that this ODE too is a gradient �ow with respect to the metric of this thesis. The

energy is a sum of the interaction energy we have used previously and a new external potential

energy,

EU (~x) :=
1

2

∑
ij

W̃ (xi − xj) +
∑
i

U (xi)

where external potential U : Rd → R is simply U (x) := −z · x.
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Figure 8.4.1. Attention pro�le a• (red) and interaction-potential pro�leW • (blue).
The vertical axis is used for W •, whereas a• varies from 0 to 1.

This makes sense: U with its simple downward slope in the direction of z causes particles to drift

in that direction, subject to the metric tensor on the con�guration space which provides the 1
αi(~x)

term in the above ODE as before.

This ODE was numerically simulated using z = e1, with evolution shown in �gure 8.4.2. It is di�cult

to see, but something is happening dynamically within the ball as it translates. Figure 8.4.3 helps

see slightly more, but still this is di�cult to visually track without continuum-time animation. Thus

the author reports observing milling in which particles near the leading (rightmost) pole move into

the ball interior, and subsequently exit the interior at the trailing (leftmost) pole, and then migrate

around the outside to the rightmost pole again.

Figure 8.4.4 helps identify this visually.

The 3D case was also simulated, with the resulting graphics capable of rotation during the evolution,

which allowed observation of the 3D milling from varying angles: particles entered the ball interior

at the leading pole, and exited at the trailing pole, and migrated around the 2D exterior to repeat.

The 3D case especially motivates the term �polar mill� as opposed to the 2D case which may appear

to fall under the preexisting term �double mill�.
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Figure 8.4.2. Polar milling of an aggregate as it translates, although di�cult to see
the milling without animation.
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Figure 8.4.3. �Zoom in� on the polar milling during translation, by plotting co-
ordinates with respect to center of mass. Still somewhat di�cult to see the milling
without animation.
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Figure 8.4.4. On the left, tracer lines show the particle paths of polar milling.
On the right, velocities are shown at the end of the polar milling evolution of the
previous �gure. Both are in coordinates with respect to center of mass.
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