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Chapter 1

Introduction

In this Thesis, we present two results on nonlocal interaction equations in heterogeneous

environments with boundaries and on general non-convex, non-smooth domains.

Nonlocal interaction equations arise in modeling systems with long range interactions.

Such systems serve as basic models to a wide range of phenomena ranging from crystal-

lization [7, 42, 106], statistical mechanics [100, 104], chemotaxis [68, 93], granular media

[12, 32, 111], coordinated control [10, 71] to biological aggregation [24, 84, 86].

Biological aggregation describes self-organized behavior of large system of biological

agents such as swarming insects and flocking birds. The basic assumptions in modeling bio-

logical aggregation are long range attraction, short range repulsion and intermediate range

alignment. To be more precise, the pairwise interaction between two agents is attractive

when they are far from each other to stay in a social group; they are repulsive to each other

when they are too close to avoid collision; in the intermediate distance range, they adjust

their velocity to align with other agents. Di↵erent models on how long range interaction ap-

plies have been proposed: by assuming that velocity of an agent is proportional to the force

it is subject to, Bertozzi, Topaz and collaborators studied first-order models [107, 108, 109];

when acceleration of the agent is proportional to the force, second-order (self-propelled and

alignment) models such as Vicsek model [113], Cucker-Smale model [37, 38] and Motsch-

Tadmor model [88] were introduced. These models have been extensively investigated to

predict and study flocking [60, 61, 89, 105] and pattern formation in biological aggregation

[8, 30, 69, 116, 117].

The dynamics of such systems is governed by long range interactions among agents,

therefore such systems are intrinsically nonlocal and lead to the study nonlocal interaction

equations. In this Thesis, we study nonlocal interaction equations in heterogeneous envi-

ronments with boundaries and on general non-convex, non-smooth domains in the gradient

flow framework in the space of probability measures.

Optimal transport and gradient flows in the space of probability measures have provided
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a novel way to establish well-posedness for a class of dissipative equations. Optimal trans-

port [114, 115] defines a metric on the space of probability measures, namely the Wasserstein

metric. In [91], Otto explored the di↵erential structure of the metric and used it to study

porous media equations. Gradient flow theory in the space of probability measures was

further developed to other types of energies, see the book [4, 5] by Ambrosio, Gigli and

Savaré and references therein.

Recently, optimal transport and gradient flow theory in Wasserstein metric space have

been extensively used to understand Ricci curvature of metric space [77, 102, 103] and

discrete graphs (Markov chains) [46, 47, 58, 78, 83], and to solve many di↵erent types of

PDEs including Keller-Segel system [19, 20, 21, 22, 23], reaction-di↵usion equations [59, 74],

thin film and quantum drift equations [55, 76, 79]. In biological aggregation, gradient flow

theory unifies discrete (particle) and continuum models, and allows mass concentration

(blow-up). Motivated by biological aggregation in heterogeneous environments and on gen-

eral non-convex, non-smooth domains, we develop gradient flow theory of interaction energy

in the space of probabilities on Riemannian manifolds with boundaries and on non-convex,

non-smooth domains, which applies to several interesting phenomena.

In this Thesis, we are interested in the first order biological aggregation models in

heterogeneous environments and non-convex, non-smooth domains, and the well-posedness

of the resulting nonlocal interaction equations. In traditional first order models (where

velocity of an agent is proportional to the force it is subject to) which we introduce in more

detail in Section 2.3, the settings are: let xi 2 Rd,m
i

� 0 be the position and mass of the

i-th agent with
P

N

i=1

m
i

= 1 (after normalization), W,V be the interaction and external

potential functions, the dynamics of the configuration follows

ẋi(t) = �
N

X

j 6=i

m
j

rW (xi(t)� xj(t))�rV (xi(t)) 8i 2 {1, . . . , N}. (1.0.1)

Agents are autonomous in the system and there is no leader in the group. We are

interested in large scale collective behavior (well-defined clusters, sharp boundaries) of the

system with large number of agents N . Determining the behavior of the system by tracking

each individual would involve solving a large system of mutually dependent ODEs, which

is computationally expensive. Thus we consider dynamics of the distribution of agents.

Denote the empirical distribution by

µ(t) =
N

X

i=1

m
i

�
x

i

(t)

,

direct calculations show it satisfies the following nonlocal interaction equation

@

@t
µ(t, x)� div (µ(t, x) (rW ⇤ µ(t)(x) +rV (x))) = 0 (1.0.2)
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in the sense of distributions. Note that (1.0.2) is more general than the system of ODEs

(1.0.1) since it includes both discrete and continuum distributions, and is independent of

the number of agents N .

Nonlocal interaction equations in heterogeneous environments with boundaries.

In nature, space heterogeneity and boundary should be considered to better model bio-

logical aggregations in environments, including factors such as variations in mobility of

biological agents depending on the environment and physical boundaries. Interesting phe-

nomena (rolling swarm, boundary concentration) emerge from biological aggregations in

heterogeneous environments with boundaries which are not seen in traditional homogenous

setting. It suggests that space heterogeneity can be used to explain some phenomena such

as rolling swarms in locust swarm observed in nature.

The space heterogeneity makes mobility (factor indicating how agents move in response

to the force they are subject to) of an individual agent depend on its location in space, while

the interaction with other agents is not a↵ected. That is, the agents can still see (interact)

with each other directly, only their ability to move depends on their physical location in

the environment.

We also assume, naturally, that agents on the boundary cannot go through the boundary,

but they can move along it or reenter interior of the domain. In other words, the set of

admissible velocities for the agents on the boundary is the tangent cone (inward going

directions) at that boundary point (refer to (3.1.3)). In this case the total mass of the

agents is preserved (i.e. the agents are not allowed to leave the space), and this induces

a projection of the velocities of the agents on the boundary onto the set of admissible

velocities. When considered on a subset M ⇢ Rd (environment), the resulting equation we

propose has the form

@

@t
µ(t, x) + div (µ(t, x)P

x

A(x) (�rW ⇤ µ(t)(x)�rV (x))) = 0, µ(0) = µ
0

, (1.0.3)

where A(x) is the mobility of agents, r, div are Euclidean gradient and divergence, and

rW ⇤ µ is defined as

rW ⇤ µ(t)(x) =
Z

M
rW (x� y)dµ(t, y).

We are interested in existence and stability of the nonlocal interaction equations (1.0.3).

In the usual Euclidean setting (i.e. A(x) ⌘ I
d

), well-poseness of weak measure solutions to

(1.0.2) was obtained by considering solutions as gradient flows to some energy functional

in the space of probability measures endowed with (Euclidean) Wasserstein distance, see

[5, 28]. Here we follow the ideas and establish well-posedness of weak measure solutions
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to (1.0.3) by gradient flows to interaction and potential energy functionals in the space of

probability measures endowed with Riemannian Wasserstein distance.

To be more specific, assume that A(x) > 0 (i.e. symmetric, positive definite) for all

x 2 M and let G(x) = A�1(x) be the inverse matrix of A. We assume that (M, g) is a

complete and geodesically convex Riemannian manifold with C2 boundary under the metric

induced by g, where g
x

(v, v) = vTG(x)v (refer to Subsection 3.1 for exact conditions on

(M, g)). We denote the space of probability measures with finite second moments (with

respect to the Riemannian distance) by P
2

(M) and the Riemannian Wasserstein distance

by d
W

(refer to (2.1.1), (2.1.3) where d is the Riemannian distance in this case), that is, for

any µ, ⌫ 2 P
2

(M)

d2
W

(µ, ⌫) = inf
�2�(µ,⌫)

⇢

Z

M⇥M
dist2(x, y)d�(x, y)

�

, (1.0.4)

where dist(x, y) is the Riemannain distance induced by g between x, y 2 M, and �(µ, ⌫) is

the set of transport plans between µ, ⌫ (i.e. the set of joint probability measures on M⇥M
with first marginal µ and second marginal ⌫, see (2.1.2)).

For interaction and external potentials W and V , and µ 2 P
2

(M), we define the inter-

action energy

W(µ) =
1

2

Z

M⇥M
W (x� y)dµ(x)dµ(y), (1.0.5)

and potential energy

V(µ) =
Z

M
V (x)dµ(x). (1.0.6)

We denote the total energy by

E(µ) = W(µ) + V(µ). (1.0.7)

We develop suitable concepts of subdi↵erential and gradient flow in our Riemannian setting

(refer to Chapter 3) which generalize the notions in the usual Euclidean framework. We

then show well-posedness of weak measure solutions to (1.0.3) by establishing existence

and stability of gradient flows to the energy functional E in (P
2

(M), d
W

) given that W,V

are geodesically (semi-)convex (with respect to the Riemannian metrc g). To be precise,

we use JKO scheme and lower semicontinuity arguments to show the existence of curve of

maximal slope. We carry out subdi↵erential calculus and approximation schemes to get a

chain rule, which combined with curve of maximal slope yields gradient flows. We also show

quantitative stability estimates of solutions in d
W

by generic di↵erentiability of Riemannian

Wasserstein distance and (semi-)convexity of the potentials.

There are several challenges in proving the existence and stability of gradient flows

(for the interaction energy in particular) in our Riemannian setting. First, existence of the

subdi↵erential requires (semi-)geodesic convexity of the interaction potential on the product
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manifold M ⇥ M (as opposed to (semi-)convexity of W on Rd su�ces in the Euclidean

setting) due to the fact that we cannot directly identify tangent spaces at di↵erent points as

in the Euclidean case. Second, since projection P breaks the continuity of the subdi↵erential,

we have to find a new proof for the lower semicontinuity of the local slope with respect to

narrow convergence of probability measures. Last, the breakdown of continuity of the

velocity field (due to projection P ) raises problems in showing existence of the flow map

associated to the velocity field when we try to prove generic di↵erentiability of d
W

. Thus

we need to use approximations instead to show stability estimates.

It turns that for mildly heterogeneous environments, even some natural interaction

potentials (for exampleW (x) = 1

2

|x|2) are not globally geodesically (semi-)convex. However,

in many applications from biology, the initial distributions µ
0

of biological agents have

compact support. In this case, we develop gradient flow theory that applies to a much

wider class of interaction potentials (with only weaker, local conditions imposed). The key

observation is that we can control the support of discrete solutions from JKO scheme and

then show that the limit curve also has compact support for any fixed time, thus local,

weaker conditions on W still imply well-posedness.

Nonlocal interaction equations on non-convex, non-smooth domains.

In reality environments have obstacles (such as rivers or mountains) and irregular bound-

aries. Thus neither convexity nor smoothness of the domain is guaranteed. Therefore, we

consider biological aggregations on non-convex domains ⌦ ⇢ Rd with low regularity (in the

Euclidean setting i.e., A(x) ⌘ I
d

the identity matrix).

The space P(⌦) of probability measures on ⌦ endowed with the Euclidean Wasserstein

distance is not geodesically convex, thus general existence of gradient flow theory [5] fails

to apply. We instead obtain gradient flows via particle approximations. That is, we ap-

proximate the initial data µ
0

by a sequence of sums of Dirac measures (particle measures)

µn

0

=
P

k(n)

i=1

mn

i

�
x

n

i

in Wasserstein distance d
W

and solve the resulting systems of ODEs for

solutions µn( · ) with initial data µn

0

. We then show that the solutions µn( · ) satisfy quan-

titative stability estimates (with respect to d
W

) and thus the sequence of solutions µn( · )
converges to a limit curve µ( · ). The goal is to show that µ( · ) is a weak measure solution

to (1.0.3) with A ⌘ I
d

. However, we can not directly take limit in the weak formulation

of (1.0.3) again because the projection P breaks the continuity of the velocity fields, and

weak convergence of µn( · ) to µ( · ) is not su�cient for us to take limit in the weak formu-

lation, see Remark 5.3.2. We instead prove µ( · ) is a solution to (1.0.3) (with A(x) ⌘ I
d

)

by establishing that it satisfies the steepest descent property with respect to E . It turns

out the notion of domain prox-regularity from the theory of non-convex sweeping process

[43, 44, 112] plays a key role in showing both the well-posedness of the system of ODEs

5



(with discontinuous velocity field due to projection) from the particle approximation, and

quantitative stability estimates of solutions µn( · ) in d
W

.

A closed set ⌦ ⇢ Rd is ⌘-prox-regular if any point in the ⌘-neighborhood of ⌦ has unique

projection onto it. Prox-regularity is an important concept in non-convex analysis; refer to

[35, 43, 44, 95, 112] and references therein for details. The first advantage of ⌦ being prox-

regular is that even though ⌦ is not smooth, we can still define the tangent cone T (⌦, x)

(inward directions) and normal cone N(⌦, x) (outward directions) which then enables us to

define the projection maps P
x

in (1.0.3) as projection onto the tangent cone T (⌦, x), see

Figure 5.1 in Chapter 5. Moreover, ⌘-prox-regularity ensures well-posedness of sweeping

process on ⌦ (5.1.17), which we show gives solutions to the ODE systems from particle

approximation; the defining property (5.1.4) of prox-regularity yields quantitative stability

property of solutions to the ODE systems (with stability constant depending explicitly on

⌘) with respect to Wasserstein distance d
W

, see (5.1.8).

Outline

This Thesis is organized as follows:

In Chapter 2, we introduce the background knowledge about optimal transport, gradient

flow theory and biological aggregations. We present the Monge’s problem and Kantorovich’s

relaxed formulation, which lead to Wasserstein distance on the space of probability mea-

sures. We then show the general gradient flow theory on the space of probability measures

via (formal) Otto Calculus and rigorous Subdi↵erential Calculus. In the last Section, we

give the basic models in biological aggregations and some known results in the resulting

nonlocal interaction equations.

In Chapter 3, we study nonlocal interaction equations in heterogeneous environments

with boundaries. We show that by modeling the heterogeneous environments as Riemannian

manifolds M with boundaries, we are solving nonlocal interaction equations (1.0.3) on

Riemannian manifolds with boundaries. We give suitable generalization of Subdi↵erential

Calculus (and thus gradient flows) in our Riemannian setting such that solutions to the

desired nonlocal interaction equations are gradient flows to the total energy E (1.0.7) with

respect to the Riemannian Wasserstein distance d
W

(1.0.4). We then show the existence and

stability of gradient flows (thus also well-posedness of the nonlocal interaction equations)

given geodesic (semi-)convexity of interaction and external potentials W,V . We also present

some numerical simulations showing that rolling swarms emerge naturally in biological

aggregations in heterogeneous environments with boudaries.

In Chapter 4, we show the well-posedness of nonlocal interaction equations (1.0.3) in

heterogeneous environments with boundaries given that initial data µ
0

has compactly sup-

port. In particular, we relax the strong, global conditions of geodesic (semi-)convexity of

6



interaction and external potentials to weak, local condition on the potentials. We control

the support of discrete (approximating) solutions from JKO scheme and show that they

have at most exponential growth. Thus a concept of local geodesic convexity of potentials

(which can be implied by the weak, local conditions) su�ces to ensure the well-posedness

of the nonlocal interaction equations (1.0.3).

In Chapter 5, we investigate nonlocal interaction equations on general non-convex, non-

smooth domains ⌦. Due to the non-convexity of the domain (thus non-geodesic-convexity

of the space of probability measures on the domain), the general existence of gradient flow

arguments fail to apply. We instead use particle approximations, that is, we approximate

the initial data by sum of delta measures (particles) and show the well-posedness of the

resulting system of ODEs given that the domain is prox-regular. We then establish the

quantitative stability estimates of solutions in Wasserstein distance (explicitly involving

convexity constants of potentials and prox-regularity constant of the domain), thus the

sequence of solutions converges to a limit curve. We obtain that the limit curve is a gradient

flow by showing that it satisfies the steepest descent property, and thus it is a solution to the

nonlocal interaction equation we start with (i.e. it satisfies the nonlocal interaction equation

(1.0.3) with the desired initial data µ
0

). We show well-posedness of nonlocal interaction

equations on ⌦ in three di↵erent settings: ⌦ bounded and ⌘-prox-regular, ⌦ unbounded and

convex (i.e. 1-prox-regular), and ⌦ unbounded, ⌘-prox-regular with initial data µ
0

having

compact support.
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Chapter 2

Background

In this Chapter, we give the background knowledge needed for later chapters. In particular,

we first introduce the Wasserstein distance on the space of probability measures via optimal

transport. We then recall the results of gradient flow theory on the space of probability

measures developed in [5] by Ambrosio, Gigli and Savaré, and the Jordan-Kinderlehrer-

Otto (minimizing movement) scheme introduced in [65] by Jordan, Kinderlehrer and Otto

to obtain gradient flows. We finish the Chapter by reviewing di↵erent models and results

in biological aggregation.

2.1 Optimal transport and Wasserstein distance

In this Section, we give the definition of Wasserstein distance between Borel probability

measures on a metric space. For general introduction of optimal transport theory we refer

to [5, 114].

The optimal transport theory was introduced in 1781 by Monge in [85], with its math-

ematical formulation, referred as Monge formulation, given in the following way on Polish

spaces (i.e. complete, separable metric spaces):

Problem 2.1.1. Given Polish spaces (X,µ), (Y, ⌫), with µ, ⌫ probability measures, and a

cost function c : X ⇥ Y �! [0,1] define

T (µ, ⌫) := {f : X �! Y Borel : f
]

µ = ⌫}

and consider the minimization problem

min
T2T (µ,⌫)

Z

X

c(x, T (x))dµ(x).

Here for a function f : X �! Y , f
]

µ is the push forward of µ by f , which is a Borel

probability measure on Y defined as f
]

µ(A) = µ(f�1(A)) for all Borel measure sets A ⇢ Y .

8



For the original formulation proposed by Monge in [85], data were X = Y = Rd, c(x, y) :=

|x � y|. Elements of T are often referred as transport maps, between µ and ⌫. When a

transport map realizes the minimization problem, we call it an optimal map between µ and

⌫, and denote it by t⌫
µ

. This formulation presents several undesirable problems:

• T (µ, ⌫) 6= ; it is not guaranteed: a very easy example isX = Y := R, c(x, y) := |x�y|,
µ := �

0

, ⌫ :=
��1

+ �
1

2
;

• minimizer may not exist, i.e. (2.1.1) can admit no minima: an easy counterexample

is X = Y := B((0, 0), 1)\{(0, 0)} ⇢ R2, µ = �
(1/2,0)

, ⌫ := �
(�1/2,0)

;

• condition f
]

µ = ⌫ is not weakly sequentially closed: a counterexample is T
n

: R �! R,
T
n

(x) := T (nx) with T : R �! R a 1-periodic function equal to 1 on [0, 1/2) and

-1 on [1/2, 1), µ := L|[0,1], ⌫ := 1

2

(��1

+ �
1

). For every n equality T
n]

µ = ⌫ is true,

but passing to the limit this becomes O
]

µ = ⌫ (O denoting the null function on R),
clearly false.

A way to overcome these di�culties is provided by the Kantorovich formulation, pro-

posed in [66, 67]:

Problem 2.1.2. Given Polish spaces (X,µ), (Y, ⌫), with µ, ⌫ probability measures, and a

cost function c : X⇥Y �! [0,1], define �(µ, ⌫) := {� 2 M(X⇥Y ) : ⇡
X]

� = µ,⇡
Y ]

� = ⌫}
where M(X ⇥Y ) denotes the set of probability measures on X ⇥Y , ⇡

X

: X ⇥Y �! X and

⇡
Y

: X ⇥ Y �! Y the natural projections, and consider the minimization problem

min
�2�(µ,⌫)

Z

X⇥Y

c(x, y)d�(x, y).

Elements of �(µ, ⌫) are often referred as “transport plans”, they have first marginal

µ and second marginal ⌫. This formulation provides several advantages over formulation

2.1.1:

• �(µ, ⌫) 3 µ⇥ ⌫, while T (µ, ⌫) can be empty,

• there exists a natural injection i : T (µ, ⌫) �! �(µ, ⌫) defined as

i(T ) = (id⇥ T )
]

µ,

• �(µ, ⌫) is convex and compact with respect to the narrow convergence, and

⇠ 7!
Z

X⇥Y

c(x, y)d⇠(x, y)

is linear,

9



• as proven in [3, 54, 97], under some additional conditions the infimum of Monge

problem is equal to the minimum of Kantorovich problem.

In this Thesis, we only need the special case X = Y a Polish space and c(x, y) = d2(x, y),

where d is the metric on X. Let P(X) be the space of Borel probability measures on X.

Denote by P
2

(X) the space of Borel probability measures with finite 2-moment, i.e.

P
2

(X) =

⇢

µ 2 P(X) :

Z

X

d2(x, x
0

)dµ(x) < 1
�

, (2.1.1)

where x
0

2 X is an arbitrary point on X.

Given µ, ⌫ 2 P(X) we define �(µ, ⌫) as the set of joint distributions on X⇥X with first

marginal µ, second marginal ⌫, i.e.

�(µ, ⌫) = {� 2 P(X ⇥X) : (⇡
1

)
]

� = µ, (⇡
2

)
]

� = ⌫} , (2.1.2)

where ⇡
1

(x, y) = x and ⇡
2

(x, y) = y are projection operators onto the first and second

coordinates, and (⇡
1

)
]

�, (⇡
2

)
]

� are push forward of � by ⇡
1

,⇡
2

.

The 2-Wasserstein distance d
W

between µ, ⌫ 2 P
2

(X) is defined as the minimum from

Problem 2.1.2 as

d2
W

(µ, ⌫) = min

⇢

Z

X⇥X

d2(x, y)d�(x, y) : � 2 �(µ, ⌫)

�

. (2.1.3)

The existence of the minimum is a direct consequence of direct method in calculus of

variations. We denote

�
o

(µ, ⌫) =

⇢

� 2 �(µ, ⌫) :

Z

X⇥X

d2(x, y)d�(x, y) = d2
W

(µ, ⌫)

�

(2.1.4)

the set of optimal plans between µ and ⌫.

Here we recall that, give a sequence µ
n

2 P
2

(X) and µ 2 P
2

(X),

lim
n!1

d
W

(µ
n

, µ) = 0 ()

8

<

:

µ
n

converges narrowly to µ,

lim
n!1

R

X

d2(x, x
0

)dµ
n

(x) =
R

X

d2(x, x
0

)dµ(x).
(2.1.5)

Here µ
n

converges narrowly to µ if for any bounded, continuous real function f on X,

lim
n!1

Z

X

f(x)dµ
n

(x) =

Z

X

f(x)dµ(x).

Furthermore, the space (P
2

(X), d
W

) is complete and separable. Finally, K ⇢ P
2

(X) is

relatively compact with respect to the topology induced by d
W

if and only if it is tight and

2-uniformly integrable. Refer to Theorem 2.7 from [4] for the detailed proof.
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Another interpretation of Wasserstein distance d
W

on P
2

(Rd) is the Benamou-Brenier

formulation introduced by Benamou and Brenier in [11]. It is given as the following dynamic

Riemannian-like formula: for µ
0

, µ
1

2 P
2

(Rd)

d2
W

(µ
0

, µ
1

) = inf
(⇢,v)2A(⇢0,⇢1)

⇢

Z

1

0

Z

Rd

|v(t, x)|2dµ(t, x)dt
�

, (2.1.6)

where (µ, v) 2 A(⇢
0

, ⇢
1

) if µ : [0, 1] ! P(Rd) with µ(0) = µ
0

, µ(1) = µ
1

, and Borel vector

field v : [0, 1]⇥ Rd ! Rd satisfy

@

@t
µ(t, x) + div(µ(t, x)v(t, x)) = 0,

in the sense of distributions. The Benamou-Brenier formulation actually suggests that

(P
2

(Rd), d
W

) has a formal infinite dimensional Riemannian manifold structure with Rie-

mannian metric (inner product) at a fixed µ 2 P
2

(Rd) and tangent vector s given by

g
µ

(s, s) = inf
v

⇢

Z

Rd

|v(x)|2dµ(x)
�

,

with infimum taken over all v such that s(x) + div(µ(x)v(x)) = 0. It is direct computation

(by calculating the Euler-Lagrange equation for v) to show that the infimum is attained at

v = r� for some �. Thus

g
µ

(s, s) =

Z

Rd

|r�(x)|2dµ(x), (2.1.7)

for s+ div(µ(x)r�(x)) = 0 and formally
8

<

:

d2
W

(µ
0

, µ
1

) = inf
n

R

1

0

g
µ(t)

⇣

@µ

@t

(t), @µ
@t

(t)
⌘

dt; µ(0) = µ
0

, µ(1) = µ
1

o

,

g
µ(t)

⇣

@µ

@t

(t), @µ
@t

(t)
⌘

=
R

Rd

|r�(x)|2dµ(t, x), @µ

@t

(t) + div(µ(t, x)r�(x)) = 0.
(2.1.8)

2.2 Gradient flow in the space of probability measures

We introduce the notions of curves of maximal slope, and subdi↵erential of energy functional

on the space of probability measures endowed with Wasserstein metric, which lead to the

notion of gradient flows. For gradient flow theory in Hilbertian setting we refer to [26] by

Brézis; in purely metric setting, we refer to [5] by Ambrosio, Gigli and Savaré. Here we

mainly focus on gradient flow theory in the space of probability measures and follow the

presentation in [5].

Recall that given a Riemannian manifold M , a point x
0

2 M and a smooth function

F : M �! R, the gradient flow starting from x
0

is a di↵erentiable curve x : R
+

�! M

verifying
8

<

:

x0(t) = �r
M

F (x(t)),

x(0) = x
0

,
(2.2.1)
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where r
M

is the Riemannian gradient on manifold M . An interpretation of this formulation

is that the curve x( · ) descends along the steepest descent direction of the function F , i.e.

along the opposite direction of the gradient of F . An observation is that an equivalent way

of describing x( · ) is that: x( · ) is a di↵erentiable curve on M starting at x
0

, satisfying

d

dt
F (x(t))  �1

2
|r

M

F (x(t))|2 � 1

2
|x0(t)|2, (2.2.2)

with | · | the norm under the Riemannian metric (inner product) on the tangent space of

M . Indeed, (2.2.1) implies (2.2.2) by chain rule; a direct Cauchy-Schwarz argument shows

that (2.2.2) gives (2.2.1).

We can view (P
2

(X), d
W

) as a metric space and use (2.2.2) to generalize the notion of

gradient flows in the pure metic setting (Definition 2.2.2). However, since we know formally

(P
2

(Rd), d
W

) has an infinite dimensional Riemannian manifold structure (2.1.7), this can

be used to perform the so-called (formal) Otto Calculus [91, 114] and define gradient flows,

which we describe briefly now.

By (2.1.7) one can define the scalar product of two tangent vectors @µ

@t1
and @µ

@t2
at µ:

⌧

@µ

@t
1

,
@µ

@t
2

�

µ

= g
µ

✓

@µ

@t
1

,
@µ

@t
2

◆

=

Z

Rd

hr�
1

,r�
2

idµ, (2.2.3)

where �
1

,�
2

solve

@µ

@t
1

+ div(µr�
1

) = 0,
@µ

@t
2

+ div(µr�
2

) = 0.

For F an energy functional on P
2

(Rd) and @µ

@t

a tangent vector, we can define the gradient

of F which we denote by grad
W

F via

⌧

grad
W

F (µ),
@µ

@t

�

µ

= DF (µ) · @µ
@t

. (2.2.4)

Let µ( · ) be a curve in P
2

(Rd) with µ(t) = µ and tangent @µ

@t

at time t. Assume that

grad
W

F + div(µr�
1

) = 0 and @µ

@t

+ div(µr�
2

) = 0. If all smoothness issues are left aside,

DF (µ) · @µ
@t

=
d

dt
F (µ(t))

=

Z

Rd

�F

�µ
· @µ
@t

dx

= �
Z

Rd

�F

�µ
· div(µr�

2

)dx

=

Z

Rd

⌧

r�F

�µ
,r�

2

�

dµ(x),
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where �F

�µ

is the gradient of the functional F with respect to the standard L2 Euclidean

structure. By (2.2.3), we then know r�
1

= r �F

�µ

and

grad
W

F (µ) = � div

✓

µr�F

�µ

◆

. (2.2.5)

Thus µ( · ) is a gradient flow with respect to F on (P
2

(Rd), d
W

) if

@

@t
µ(t) = � grad

W

F (µ(t)) = div

✓

µ(t)r�F

�µ
(t)

◆

. (2.2.6)

Some important examples of such gradient flows are:

E(µ) =
Z

Rd

dµ

dLd

log
dµ

dLd

dx,
@

@t
µ = �µ;

E(µ) =
Z

Rd

dµ

dLd

log
dµ

dLd

dx+

Z

Rd

V dµ,
@

@t
µ = �µ+ div(µrV );

E(µ) = 1

m� 1

Z

Rd

✓

dµ

dLd

◆

m

dx,
@

@t
µ = �µm;

E(µ) = 1

2

Z

Rd⇥Rd

W (x� y)dµ(x)dµ(y),
@

@t
µ = div (µrW ⇤ µ) .

These equations are known as heat equation, linear Fokker-Planck equation, porous medium

equation and nonlocal interaction equation.

To make the formal computations rigorous, we need to introduce gradients in metric

space and Subdi↵erential Calculus in (P
2

(X), d
W

), see Chapters 1 and 10 in [5].

For E : P
2

(X) 7! (�1,+1] an energy functional, we define the the local slope of E
with respect to d

W

at µ 2 P
2

(X) as

|@E|(µ) = lim sup
⌫!µ

(E(µ)� E(⌫))+

d
W

(µ, ⌫)
, (2.2.7)

where f+ = max{f, 0} is positive part of f .

For a locally absolutely continuous curve [0,+1) 3 t 7! µ(t) 2 P
2

(X) with respect to

the Wasserstein distance d
W

, we denote its metric derivative by

|µ0|(t) = lim sup
s!t

d
W

(µ(t), µ(s))

|s� t| . (2.2.8)

We now define the upper gradient of E as a kind of modulus of the gradient for the energy

functional E .

Definition 2.2.1 (Upper gradient). A Borel function g : P
2

(X) 7! [0,+1] is called a

strong upper gradient for the functional E if for every µ( · ) 2 AC(a, b;P
2

(X)), the function

g � µ( · ) is Borel and

|E(µ(t))� E(µ(s))| 
Z

t

s

g � µ(r)|µ0|(r)dr 8a < s  t < b. (2.2.9)
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There is also a notion of weak upper gradient, see for example Definition 1.2.2 from [5].

Since we will not use it, we omit its definition here, and all upper gradient means strong

upper gradient. We can now introduce the notion of curve of maximal slope with respect

to an upper gradient.

Definition 2.2.2. A locally absolutely continuous curve [0,1) 3 t 7! µ(t) 2 P
2

(X) is a

curve of maximal slope for the functional E with respect to upper gradient g, if E � µ( · ) is

L1-a.e. equal to a non-increasing function '( · ) and

'0(t)  �1

2
|µ0|2(t)� 1

2
g2 (µ(t)) (2.2.10)

for a.e t 2 (0,1). Here |µ0|(t) is the metric derivative defined in (2.2.8).

The general strategy of constructing curves of maximal slope in the space of probability

measures is to use the Jordan-Kinderlehrer-Otto (minimizing movement) scheme [65], which

we describe in Subsection 2.2.1.

To build connections between gradient flows in the space of probability measures and

solutions to continuity equations, recall from [5] that locally absolutely continuous curves

µ( · ) ⇢ P
2

(X) are solutions to continuity equations among which there exists a velocity field

such that the metric slope is realized by it. In particular, we cite the following Theorem

8.3.1 from [5].

Theorem 2.2.3. Let I be an open interval in R
+

, let µ : I 7! P
2

(X) be an absolutely

continuous curve and let |µ0| 2 L1(I) be its metric derivative defined in (2.2.8). Then there

exists a unique Borel vector field v : (t, x) 7! v(t, x) such that

@

@t
µ(t, x) + div(µ(t, x)v(t, x)) = 0 (2.2.11)

holds in the sense of distributions, with |µ0|2(t) =
R

X

|v(t, x)|2dµ(t, x) = kv(t)k2
L

2
(µ(t),X)

for

a.e. t 2 I.

We call the unique Borel vector field v( · ) the tangent velocity to µ( · ). To define the

concept of gradient flow in the space of probability measures, we still need to introduce the

subdi↵erential calculus in P
2

(X) following Chapter 10 from [5]. For fixed µ 2 P
2

(X), when

µ is regular (refer to Definition 6.2.2 for definition of regular measures in general Polish

space, which corresponds to absolutely continuity with respect to Ld when X = Rd), we

know the optimal map between µ and an arbitrary ⌫ 2 P
2

(X) exists which we denote by

t⌫
µ

. In that case,

Definition 2.2.4. We say that ⇠ 2 L2(µ;X) belongs to the Fréchet subdi↵erential @E(µ)
if

E(⌫) � E(µ) +
Z

X

h⇠(x), t⌫
µ

(x)� xidµ(x) + o(d
W

(µ, ⌫)). (2.2.12)
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When the reference probability measure µ is not regular, we instead use the following

generalized definition.

Definition 2.2.5. Fix µ 2 P
2

(X), a vector field ⇠ 2 L2(µ,X) is said to be an element of

the subdi↵erential of E at µ, and we denote by ⇠ 2 @E(µ), if

E(⌫)� E(µ) � inf
�2�

o

(µ,⌫)

Z

X⇥X

h⇠(x), y � xid�(x, y) + o (d
W

(µ, ⌫)) , (2.2.13)

where �
o

(µ, ⌫) is the set of optimal plans between µ and ⌫ as defined in (2.1.4).

We call a locally absolutely continuous curve µ( · ) ⇢ P
2

(X) a gradient flow with respect

to the energy functional E if for a.e. t > 0,

v(t) 2 �@E(µ(t)), (2.2.14)

where v( · ) is the tangent velocity of µ( · ) introduced in Theorem 2.2.3.

In gradient flow theory, (semi-)convexity of energy functional is important in showing the

existence and quantitative stability estimates of gradient flows. In the space of probability

measures, we define the geodesic (semi-)convexity notions as follows.

Definition 2.2.6. Given � 2 R, we say that E : P
2

(X) ! (�1,+1] is �-geosdesically

convex if for every couple µ0, µ1 2 P
2

(X) and any constant speed minimal geodesic µt

connecting µ0 and µ1

E(µt)  (1� t)E(µ0) + tE(µ1)� �

2
t(1� t)d2

W

(µ0, µ1) 8t 2 [0, 1]. (2.2.15)

Here µt is a constant speed minimal geodesic if d
W

(µt, µs) = |t � s|d
W

(µ0, µ1) for all

0  s  t  1.

For �-geodesically convex energy functional E , we can try to find solutions to a system

of variational inequalities (EVI) similar to Hilbertian settings.

Definition 2.2.7. Given a parameter � 2 R, the curve µ : [0,1) �! P
2

(X) is gradient

flow with parameter � in the Evolution Variational Inequality (EVI) sense if µ( · ) is locally
absolutely continuous and

E(µ(t)) + 1

2

d

dt
d2
W

(µ(t), ⌫) +
�

2
d2
W

(µ(t), ⌫)  E(⌫), 8⌫ 2 P
2

(X), a.e. t > 0. (2.2.16)

2.2.1 JKO scheme

In this Subsection, we introduce the JKO scheme introduced by Jordan, Kinderlehrer and

Otto in [65] (also refer to [2, 40] for minimizing movement scheme) to construct curves of

maximal slope in (P
2

(X), d
W

). Here we follow the presentation of Chapter 2 from [5].
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Fix a time step ⌧ > 0 and define µ0

⌧

= µ
0

where µ
0

are the initial data. Then define

iteratively

µk+1

⌧

2 argmin
µ2P2(X)



d2
W

(µ, µk

⌧

)

2⌧
+ E(µ)

�

. (2.2.17)

We denote the piecewise constant interpolation by µ
⌧

. To be more precise, µ
⌧

(0) = µ
0

and

µ
⌧

(t) = µk+1

⌧

, (2.2.18)

if k⌧ < t  (k + 1)⌧ for k � 0. The strategy is to show that there exists a subsequence

⌧
n

! 0, such that µ̃n( · ) = µ
⌧

n

( · ) converges narrowly to a curve of maximal slope µ( · ).
Here in order to show the well-posedness of discrete scheme (2.2.17) and the convergence of

the piecewise-constant interpolation, we present the general theory developed in [5]. The

topological conditions we need to check are given as follows.

• Lower semicontinuity. E is sequentially lower semicontinuous with respect to narrow

convergence of probability measures on d
W

bounded sets

sup
m,n

d
W

(µ
m

, µ
n

) < 1, µ
n

converges narrowly to µ ) lim inf
n!1 E(µ

n

) � E(µ).

• Coercivity. There exists ⌧⇤ > 0 and µ⇤ 2 P
2

(X) such that

inf
µ2P2(M)

⇢

E(µ) + 1

2⌧⇤
d2
W

(µ, µ⇤)

�

> �1.

• Compactness. Every d
W

bounded set contained in a sublevel of E is relatively compact

with respect to the narrow convergence of probability measures

for (µ
n

) ⇢ P
2

(X) with sup
n

E(µ
n

) < 1 and sup
m,n

d
W

(µ
m

, µ
n

) < 1,

there exists a narrowly convergent subsequence of (µ
n

).

Given that the above three conditions hold, Corollary 2.2.2 from [5] gives the existence of

minimizers to (2.2.17).

Lemma 2.2.8 (Existence of the discrete solutions). If the lower semicontinuity, coercivity

and compactness conditions are verified, then for any ⌧ < ⌧⇤ and ⌫ 2 P
2

(X) there exists

µ1 2 P
2

(X) such that

E(µ1) +
1

2⌧
d2
W

(⌫, µ1) = inf
µ2P2(X)

n

E(µ) + 1

2⌧
d2
W

(⌫, µ)
o

. (2.2.19)

Proposition 2.2.3 from [5] provides the compactness result for convergence of interpola-

tion curves from the JKO scheme.
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Proposition 2.2.9 (Compactness). If the lower semicontinuity, coercivity and compact-

ness conditions are verified, then there exist a limit curve µ 2 AC2

loc

([0,1);P
2

(X)) and a

sequence ⌧
n

! 0+ such that the piecewise constant interpolate µ̃n( · ) = µ
⌧

n

( · ) defined as in

(2.2.18) satisfies that µ̃n(t) converges narrowly to µ(t) for any t 2 [0,1).

Note that by Lemma 3.2.2 from [5], we actually have a uniform bound on the second

moments of µ̃n:

sup
n,⌧

Z

M
dist2(x, x

0

)dµ⌧

n

(x) < 1.

By Theorem 2.3.3 in [5], the limit curve µ( · ) is a curve of maximal slope with respect

to the relaxed local slope |@�E|, defined as

|@�E|(µ) = inf

⇢

lim inf
n!1

|@E|(µ
n

) : µ
n

* µ, sup
n

{d
W

(µ
n

, µ), E(µ
n

)} < 1
�

, (2.2.20)

where µ
n

* µ means that µ
n

converges narrowly to µ, provided |@�E| is a strong upper

gradient of E .

Theorem 2.2.10. Assume that E is lower semicontinuous and coercive. If

P
2

(X) 3 µ 7! |@�E|(µ) is a strong upper gradient for E , (2.2.21)

then the limit curve µ( · ) is a curve of maximal slope for E with respect to upper gradient

|@�E| and in particular µ( · ) satisfies the energy identity

1

2

Z

T

0

|µ0|2(t)dt+ 1

2

Z

T

0

|@�E|2(µ(t))dt+ E(µ(T )) = E(µ
0

). (2.2.22)

Note that when local slope |@E| is lower semicontinuous with respect to narrow conver-

gence of probability measures, |@�E| = |@E|. In general, we still need to prove the lower

semicontinuity of local slope to show that µ( · ) is a curve of maximal slope with respect to

upper gradient |@E| instead of |@�E|.

2.3 Biological aggregation

Biological aggregation describes self-organized behavior of large system of biological agents

such as swarming insects and flocking birds. The basic assumptions in modeling biolog-

ical aggregation are long range attraction, short range repulsion and intermediate range

alignment. To be more precise, there is pairwise interaction between any two agents in the

group, and the pairwise interaction between the two agents is attractive when they are far

from each other to stay in a social group; they are repulsive to each other when they are

too close to avoid collision; in the intermediate distance range, they adjust their velocity to
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align with other agents. The dynamics of such systems is governed by long range interac-

tions among agents, therefore such systems are intrinsically nonlocal and lead to the study

nonlocal interaction equations.

Di↵erent models on how long range interaction applies have been proposed: by assuming

that velocity of an agent is proportional to the force it is subject to, Bertozzi, Topaz and

collaborators studied first-order models [107, 108, 109]; when acceleration of the agent is

proportional to the force, second-order (self-propelled and alignment) models such as Vicsek

model [113], Cucker-Smale model [37, 38] and Motsch-Tadmor model [88] were introduced.

These models have been extensively investigated to predict and study flocking [60, 61, 89,

105] and pattern formation in biological aggregation [8, 30, 69, 116, 117].

First order models.

We work on the fundamental first order repulsive-attractive models , which can be used

and combined with other e↵ects to build more complex models, refer to [107, 108, 109] and

the references therein. Let xi 2 Rd be the location of the i-th agent with mass m
i

> 0

for i = 1, . . . , N . After normalization, we assume
P

N

i=1

m
i

= 1. We also assume that the

interaction force between agents i and j are through the gradient of an interaction potential

function W : Rd �! R and only depends on their relative location, i.e., the force on agent

i resulting from interaction with j is given by �rW (xi � xj). In general, we assume that

W is symmetric in the sense W (x) = W (�x). We also allow the existence of an external

force such as gravity or wind, we denote the external potential by V . Then the dynamics

of the agents follows the system of ODEs,

ẋi(t) = �
N

X

j 6=i

m
j

rW (xi(t)� xj(t))�rV (xi), 8i 2 {1, . . . , N}. (2.3.1)

In many biological relevant applications, we assume that the interaction between two agents

only depends on their distance to each other, i.e. W (x) = w(|x|). Then, for the system

to be short distance repulsive and long distance attractive, we only need to require that

w0(r) < 0 for r < R
r

and w0(r) > 0 for r > R
a

for some 0 < R
r

< R
a

.

If we denote x = (x1, . . . , xN ) 2 RdN , define the interaction energy

W(x) =
1

2

X

i 6=j

m
i

m
j

W (xi � xj), (2.3.2)

and potential energy

V(x) =
N

X

i=1

m
i

V (xi). (2.3.3)
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Then the total energy E(x) = W(x) + V(x) is a dissipative quantity along the solution

x(t) = (x1(t), . . . , xN (t)) of (2.3.1) since

d

dt
E(x(t)) = 1

2

X

i 6=j

m
i

m
j

⌦

rW (xi(t)� xj(t)), ẋi(t)� ẋj(t)
↵

+
X

i

m
i

hrV (xi(t)), ẋi(t)i

=
X

i

m
i

*

X

j 6=i

m
j

rW (xi(t)� xj(t)) +rV (xi(t)), ẋi(t)

+

= �
X

i

m
i

�

�

�

�

�

�

X

j 6=i

m
j

rW (xi(t)� xj(t)) +rV (xi(t))

�

�

�

�

�

�

2

 0,

where we used the fact that rW (�x) = �rW (x) by the symmetry of W . Note that the

empirical probability distribution defined by

µ(t) =
N

X

i=1

m
i

�
x

i

(t)

(2.3.4)

satisfies the continuity equation

@

@t
µ(t, x)� div (µ(t, x) (rW ⇤ µ(t)(x) +rV (x))) = 0 (2.3.5)

in the sense of distributions. Indeed for any � 2 C1
c

(Rd),

d

dt

Z

Rd

�(x)dµ(t, x) =
d

dt

X

i=1

m
i

�(xi(t))

=
X

i=1

m
i

⌦

r�(xi(t)), ẋi(t)
↵

=
X

i=1

m
i

*

r�(xi(t)),�
X

j 6=i

m
j

rW (xi(t)� xj(t))�rV (xi(t))

+

= �
Z

Rd

hr�(x),rW ⇤ µ(t)(x) +rV (x)i dµ(t, x),

which verifies that µ( · ) is a solution to (2.3.5) as claimed.

We remark here that the passage from discrete to continuum does not involve taking hy-

drodynamic limit, as the solutions to (2.3.1) are solutions to (2.3.5) via (2.3.4). Thus we can

consider the nonlocal interaction equation (2.3.5) to include both discrete and continuum

distributions at the same time.

If we define similarly as in discrete setting the interaction energy as

W(µ) =
1

2

Z

Rd

W (x� y)dµ(x)dµ(y), (2.3.6)
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potential energy as

V(µ) =
Z

Rd

V (x)dµ(x), (2.3.7)

and total energy

E(µ) = W(µ) + V(µ). (2.3.8)

Formal computations (ignoring all smoothness issues) show that for µ( · ) a solution to

(2.3.5), we have

d

dt
E(µ(t)) = �

Z

Rd

|rW ⇤ µ(t)(x) +rV (x)|2dµ(t, x)  0. (2.3.9)

Again E is dissipative along the solution to (2.3.5) and actually, solutions to (2.3.5) can be

viewed as gradient flows of E in the space of probability measures under some regularity

assumptions on W,V , as shown in [5, 28].

In [18], Bertozzi, Laurent and Rosado studied Lp well-posedness of the aggregation

equation (2.3.5). They considered radially symmetric interaction potential function W

where the singularity at the origin is of order |x|↵ for some ↵ > 2 � d, and proved the

local well-posedness of (2.3.5) in P
2

(Rd) \ Lp(Rd) for any p > p
s

, where p
s

= d

d+↵�2

. In

[28], Carrillo, Di Francesco, Figalli, Laurent and Slepčev showed the global well-posedness

of weak measure solutions to (2.3.5) in P
2

(Rd) given that W is (semi-)convex, Lipschitz

continuous and with at most quadratic growth at infinity. With V ⌘ 0, they considered

solutions to (2.3.5) as gradient flows of the interaction energy W in the space of probability

measures endowed with Wasserstein metric.

Other important properties of nonlocal interaction equations such as blowup (concen-

tration) [14, 15, 16, 17, 62, 64], confinement [9, 29], stability and properties of stationary

states [8, 41, 49, 50, 51, 70], asymptotic behavior [27, 63, 72, 98] and related models that

incorporate further e↵ects [13, 110] have also been extensively studied.

Second order models.

There are di↵erent second order models depending how the velocity of the agents change

according to the force they are subject to. Here we briefly introduce Vicsek model, self-

propelled interacting particle model, Cucker-Smale model and Motsch-Tadmor model.

In Vicsek model introduced by Vicsek, Czirók, Ben-Jacob, Cohen and Shochet in [113],

the i-th agent is described by its position xi and its velocity vi = v
0

ei✓i . Note that |vi(t)| =
v
0

for all i and all t > 0 in this framework. Fixing a time step �t > 0, a radius r
0

> 0, a

constant ⌘ > 0 and denote U
i

(t) = {⇠ : |⇠ � xi(t)| < r
0

}. The dynamics of the agents are
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given by

✓
i

(t+�t) = h✓(t)i
i

+ ⌘⇠
i

(t),

vi(t+�t) = v
0

ei✓i(t+�t),

xi(t+�t) = xi(t) + vi(t+�t) ·�t,

where hv(t)i
i

=
P

j:xj2U

i

(t) v
j

(t)

P
j:xj2U

i

(t) 1
, h✓(t)i

i

is the angle of hv(t)i
i

, and ⇠
i

(t) is a random variable

uniformly distributed on [�⇡,⇡]. The idea is that the i-th agent interacts with all agents

within r
0

radius of it and the mechanism it reacts is to calculate the average velocity of its

neighbors hvi
i

and adjust its direction of velocity ✓
i

to the average directionh✓i
i

plus some

noise with strength ⌘. The two main parameters of the Vicsek model are ⇢, the density of

particles, and ⌘, the noise strength. There is a phase transition from ordered to unordered

phase as ⌘ increases. Numerical results have shown that there exists an ordered phase for

0 < ⌘ < ⌘
c

and the transition line in the (⇢, ⌘) plane, follows the scaling law (expected from

a simple mean-field argument): ⌘
c

⇠ ⇢
1
d for small ⇢.

We now turn to the self-propelled interacting particle model introduced in [73] by Levine,

Rappel and Cohen, and extensively studied in [34, 41] by Chuang, D’Orsogna, Marthaler,

Chayes and Bertozzi. Given an interaction potential functionW and self-propulsion function

S, the dynamics of agents are given by

ẋi(t) = vi(t), v̇i(t) = S(|vi|)vi + 1

N

X

j 6=i

rW (xj � xi) 8i 2 {1, . . . , N}.

An example for the self-propulsion term is given by S(|vi|) = ↵ � �|vi|2,↵,� > 0 as used

in [34, 41]. When taking W (x) = w(|x|) to be the radially symmetric Morse potential

w(r) = C
A

e�r/l

A � C
R

e�r/l

R , they find several patterns for the asymptotic behavior such

as flocking, mill on a ring, and clustering when particles are milling.

The Cucker-Smale model proposed by Cucker and Smale in [37, 38] describes how agents

interact in order to align with their neighbors. The rule is that the closer two individuals are,

the more they tend to align with each other (long range cohesion and short range repulsion

are ignored). The evolution of each agent is then governed by the following dynamical

system,

ẋi(t) = vi(t), v̇i(t) =
↵

N

N

X

j=1

�
ij

(vj(t)� vi(t)). (2.3.10)

Here, ↵ is a positive constant and �
ij

quantifies the pairwise influence of agent j on the

alignment of agent i, as a function of their distance,

�
ij

= �(|xj � xi|).
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The so-called influence function, �( · ), is a strictly positive decreasing function which, by

rescaling ↵ if necessary, is normalized so that �(0) = 1. An example for such an influence

function is given by �(t) = (1+r)�s, s > 0. One important feature in the Cuker-Smale model

is that it is symmetric in the sense that the coe�cients matrix �
ij

is symmetric �
ij

= �
ji

.

As a direct consequence, we know that the average velocity v̄(t) = 1

N

P

N

j=1

vj(t) ⌘ v̄(0)

remains unchanged.

The Cuker-Smale model with a slowly decaying influence function �( · ) such that
Z 1

�(r)dr = 1

has an unconditional convergence to a so-called flocking dynamics, in the sense that the

diameter, max
i,j

|xi(t)� xj(t)|, remains uniformly bounded and all agents of this flock will

approach the same velocity v̄(0).

The description of self-organized dynamics by the Cuker-Smale model su↵ers from sev-

eral drawbacks, such as after the normalization of the model by the total number of agents

N , it is inadequate for far-from-equilibrium scenarios. In [88], Motsch and Tadmor suggest

the following modified Motsch-Tadmor model,

ẋi(t) = vi(t), v̇i(t) =
↵

P

N

k=1

�
ik

N

X

j=1

�
ij

(vj(t)� vi(t)), �
ij

= �(|xi � xj |). (2.3.11)

In this model the symmetry is lost. However, Motsch and Tadmor show dynamics of the

model would experience unconditional flocking provided the influence function � decays

su�ciently slowly such that
Z 1

�2(r)dr = 1.

Another di↵erence between the flocking behavior of Mostch-Tadmor and Cucker-Smale is

that: unlike the Cucker-Smale flocking to the initial bulk velocity v(0), the asymptotic

flocking velocity of this Mostch-Tadmor is not necessarily encoded in the initial configuration

as an invariant of the dynamics, but it is emerging through the flocking dynamics of the

model.

In these second order models, we need to take hydrodynamic limit to pass from particle

to kinetic and continuum descriptions. For example in the Mostch-Tadmor models, Motsch

and Tadmor showed in [88] the hydrodynamic limit of (2.3.11) is given by

@
t

⇢+r
x

· (⇢u) = 0,

@
t

(⇢u) +r
x

(⇢u⌦ u) = ↵⇢

✓

hui
h1i � u

◆

, hwi(x) =
Z

y

�(|x� y|)w(y)⇢(y)dy.

For other results on hydrodynamic limits of di↵erent flocking models and properties of

resulting equations, we refer to [61, 105] and references therein.
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Chapter 3

Nonlocal interaction equations in

heterogeneous environments with

boundaries

In this Chapter, we present results on nonlocal interaction equations modeling biological

aggregations in heterogeneous environments with boundaries. We study well-posedness of a

class of nonlocal interaction equations with spatially dependent mobility. This leads to the

study of the nonlocal interaction equations on subsets M ⇢ Rd endowed with a Riemannian

metric g induced by the variable mobility. We obtain conditions, relating the interaction

potential and the geometry, which imply existence, uniqueness and stability of solutions.

We study the equations in the setting of gradient flows in the space of probability measures

on M endowed with Riemannian 2-Wasserstein metric. The results presented here are

based on our paper [119].

Nonlocal interaction equations serve as basic models of biological aggregation, that is

collective motion of agents under influence of long-range interactions (via sight, sound,

etc.). In this Chapter we investigate the nonlocal interaction equation in heterogeneous

environments and also allow for the presence of domain boundaries. On the whole space

(when no boundaries are present) the equations are of the form

@

@t
µ(t, x)� div (µ(t, x)A(x)r (W ⇤ µ(t)(x) + V (x))) = 0, (3.0.1)

where µ describes the agent density, A is the mobility matrix (symmetric and positive

definite), W is the interaction potential and V is the external potential.

The mobility endows the subsets of Rd with Riemannian structure, which leads us

to study nonlocal interaction equations on manifolds. We study the well-posedness of the

equations in the setting of gradient flows in spaces of probability measures [5, 28]. To extend
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this setting to manifolds with boundary we need to overcome several challenges. Namely

”mass” can accumulate at the boundary and the velocities associated to the gradient flow

are not continuous at the boundary. This also causes the problem that in general, we do not

have the existence of optimal maps and thus we have to work with optimal plans instead.

Furthermore the velocities (of the gradient flows) lack the stability properties used to prove

the lower semicontinuity of the slope (see for example Lemma 2.7 in [28]). Studying the

equation on a manifold raises issues too. The curvature of the space can cause even the

quadratic potential not to be geodesically semi-convex. Thus a particular care and extra

conditions are needed when discussing properties like geodesic semi-convexity of energies.

Furthermore many standard tools used to study nonlocal equations rely on the linearity

of the underlying space and ability to directly identify tangent spaces at di↵erent points.

Thus these tools do not readily transfer to the manifold setting. For example the standard

proof of the characterization of the subdi↵erential of the interaction energy does not apply

in the manifold setting. We develop alternative proofs to handle these challenges.

3.1 Motivation and setup

The studies of the nonlocal equations on heterogeneous environments are in part motivated

by the desire to understand mechanisms which give rise to rolling swarms. Such swarms are

observed in a number biological swarms, notably the locust swarms (see [107] and references

therein). In [107], Topaz, Berno↵, Logan and Toolson propose a model which has a gradient

flow structure of an energy that combines the interaction energy and potential energy terms

(to model gravity and wind). The mobility in their system is as follows: consider the

upper half plan R2

+

= {x = (x
1

, x
2

) 2 R2 : x
2

� 0}, above the ground the mobility is

constant (A(x) = I
2⇥2

), while on the ground the mobility in the horizontal direction if zero

(A(x) = diag(0, 1)). They conduct numerical experiments and observe rolling swarms. Here

we introduce a model where the change in mobility is more gradual, and thus amenable to

rigorous study. The solutions still exhibit the rolling swarms when a smoothed out version

of the mobility in [107] is considered. Moreover, rolling forms are present if the horizontal

mobility is stratified (increases with height), even if gravity is not present. Figure 3.1

illustrates such a rolling swarm. The interaction potential used is among ones considered in

[70], and is given by W (z) = w(|z|) with w0(r) = tanh(3(1� r))+0.3. On the right, we also

show the corresponding traveling ”swarm” in the homogeneous environment. The velocities

of all particles are the same. Moreover the configuration seen in the moving coordinate

frame is a steady state of the energy E
2

(µ) =
RR

W (x� y)dµ(x)dµ(y).
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� �

Figure 3.1: Consider gradient flows of E(µ) =
RR

W (x � y)dµ(x)dµ(y) +
R

x
1

dµ(x), with

respect to a stratified metric G(x) = G((x
1

, x
2

)) = diag( 1

x

2
2
, 1) and the usual Euclidean

metric. The gradient flow with respect to the stratified metric admits a rolling-wave solution

made of a finite number of particles (left). The solution is given in the reference frame of

the center of mass. The overall direction of motion is indicated by the large arrow on top

(blue). The smaller arrows indicate the velocity of particles in the moving coordinates. The

gradient flow with respect to Euclidean metric admits a traveling wave (right). All particle

velocities are the same; hence in the moving coordinates the solution appears stationary.

Gradient flows in spaces of probability measures on manifolds: Back-

ground.

Let us first recall that the existence of optimal transportation maps on manifolds was first

considered by McCann [82], and subsequently generalized in [36, 48]. The regularity of these

maps has been the subject of a lot of recent activity and progress (see [52] and references

therein). For our purposes however, the results on optimal transportation plans presented

in Villani’s book [115] are su�cient.

Regarding the gradient flows there has been a significant progress in investigating the

gradient flow of entropy (i.e. the heat equation) and other internal energies on manifolds,

as well spaces with weaker geometric structure. In particular Lisini [75] considered Rd

endowed with a bounded Riemannian metric G, satisfying ⇤
1

I
d

 G  ⇤
2

I
d

, and showed

the existence of solutions to the equation

@

@t
u(t, x)� div (A(x) [r(f(u(t, x)) + u(t, x)rV (x)]) = 0, (3.1.1)

on the whole space Rd with A(x) = G�1(x). In [92] Otto and Westdickenberg used an

Eulerian calculus method to give su�cient conditions for the internal and potential energy
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to be geodesically convex in the space of probability measures endowed with Riemannian

Wasserstein metric. In [39], Daneri and Savaré refined the approach of [92] to include the

case of geodesic semi-convexity. In [101], Sturm gave the necessary and su�cient conditions

for internal and potential energies to be �-geodesically convex in the space of probability

measures endowed with Riemannian Wasserstein metric. Erbar [45] used these conditions

to establish well-posedness of heat equation on manifolds in the framework of gradient flows

in spaces of probability measures. Gradient flows of the internal energy on manifolds were

also discussed in in [115]. Connections with geometry and extensions to weaker spaces have

received significant attention, see [6, 56, 57, 90] and references therein. However, to the

best of our knowledge the gradient flow of nonlocal interaction energies on manifolds has

not been considered.

Description of the problem.

Let M be a, possibly unbounded, d-dimensional subset of Rd with C2 boundary. We

consider M with a Riemannian metric g. Throughout the paper we assume that (M, g) is

complete under the metric induced by g and geodesically convex, that is, for any two points

in M there exists a length minimizing geodesic in M connecting them. The Riemannian

structure encodes the mobility of the agents which depends on the environment. The

strength of the interaction is not a↵ected by the environment. To give an example, we

study situations where the properties of the terrain a↵ect the mobility of the agents, but

not their ability to see each other. Also the density of agents at a given location is with

respect to the standard Euclidean volume/area; it is not a↵ected by the metric g. This leads

us to study equations in a mixed formulation, where the volume and interaction are with

respect to Euclidean structure, while the mobility is with respect to the manifold structure,

g.

To study the equations we use their gradient-flow structure, which enables us to write

the equations in the form that at the same time applies both to discrete systems with finitely

many agents and continuum descriptions. This follows from the theory developed for studies

of the nonlocal interaction equations in homogeneous environments [5, 28]. More precisely

a configuration (distribution of agents) is described by a measure µ supported on M. The

system is assumed to be conservative in the sense that no agents are created or leave the

system during the evolution. In other words µ(M) does not change in time. This allows

us to, by renormalizing the problem if needed, assume that configurations µ are probability

measures.

The interaction is described by a symmetric interaction potential W . The corresponding

interaction energy is defined as in (2.3.6). In addition to interaction we model the environ-

mental influences such as gravity or food distribution by a potential V , which defines the
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potential energy (2.3.7). Again the total energy is sum of interaction and potential energy

as defined in (2.3.8).

Gradient flow structure.

We introduce the geometry on the space of configurations first on a formal level. In nonlocal

interaction equations (with no regularizing terms) mass can accumulate at the boundary

and furthermore the velocity that describes the gradient flow can be discontinuous at the

boundary. For this reason we use a more general way to introduce the gradient flow than

is typically the case in heuristic arguments. We use a Lagrangian description of tangent

vectors at a configuration. That is tangent vectors to the space of configurations are vector

fields on M. As is standard in di↵erential geometry of manifolds with boundary, even at

x 2 @M we define the tangent space T
x

M to be a vector space, in other words we do allow

vectors that point outside the manifold. However since a path in the configuration space

cannot take mass outside of M, not all of the vectors in T
x

M are admissible as values of the

tangent vector field to the path in the configuration space. To define the set of admissible

vectors for x 2 @M, let T in

x

M be the inward sector, namely the closed half-space of tangent

vectors that do not point outside M. That is let T in

x

M be the set of vectors ⇠ 2 T
x

M for

which there exists a di↵erentiable curve � : [0, �) ! M such that �(0) = x and �0(0) = ⇠.

We note that the tangent space to @M, considered as a manifold, is a subset of the inward

sector: T@M ⇢ T inM.

The e↵ort to infinitesimally move configuration µ in by a vector field v 2 TM is
Z

M
g
x

(v(x), v(x))dµ(x) =

Z

M
vT (x)G(x)v(x)dµ(x)

where G is the symmetric matrix which provides the metric g. However not all vector fields

in TM are admissible as tangent vectors to a path in the configuration space. Namely

the tangent vector fields must belong to the inward sector T inM. On the formal level,

we consider admissible tangent vectors to the space of configurations to be vector fields in

T inM which are projections via P of a continuous vector field in TM as defined in (3.1.3).

This is motivated by the fact, which we later establish, that gradient vector of energy E is

given by v = Pw where w is a continuous vector field (w = (�G�1r(W ⇤ µ+ V ))).

The di↵erential of E in the direction v is given as the directional derivative

di↵ E [v] = d

dt

�

�

�

�

t=0

E(µ
t

)

=
d

dt

�

�

�

�

t=0

✓

1

2

Z

M

Z

M
W (�

v

[t](x)� �
v

[t](y))dµ(x)dµ(y) +

Z

M
V (�

v

[t](x))dµ(x)

◆

=

Z

M
(rW ⇤ µ+rV )vdµ.
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Above we used that µ
t

= �
v

[t]
]

µ and the symmetry of W , where �
v

is the flow map

associated with the velocity field v.

One can define the gradient descent of E with respect to metric given by g by defining

� grad E to be the admissible vector field v which minimizes
Z

M
g(v, v)dµ+ di↵ E [v]

that is
Z

M

1

2
vTGv +r(W ⇤ µ+ V )vdµ. (3.1.2)

To give this an interpretation of a true gradient flow we need to describe the tangent space

to the space of configurations and endow it with an inner product. The issue is that more

than one vector field can produce the same curve in the configuration space. Thus tangent

vectors to the configuration space are defined as equivalence classes of admissible velocities

which, for at least a short time, have the same flow map. The inner product of tangent

vector fields at µ is defined as

g(v, v) = inf
ṽ

⇢

Z

M
ṽTGṽdµ : (9�̃ > 0)(8t 2 [0, �̃)) �

ṽ

[t]
]

µ = �
v

[t]
]

µ

�

.

The tangent vector field v is considered as a representative of the class of velocities which

produce the same curve. Since di↵ E[v] does not depend on the representative tangent

vector field chosen, we note that � grad E we defined is also a minimizer of

1

2
g (v, v) + di↵ E [v]

over all tangent vectors v at µ; which agrees with the standard definition of a gradient flow

on a manifold.

To determine the gradient vector we minimize the expression in (3.1.2). We obtain

v(x) = �G�1r(W ⇤ µ + V )(x) if x is in the interior of M and also when x 2 @M and

�G�1r(W ⇤µ+V )(x) is in the interior of T in

x

M. Otherwise v = ⇧
@M(�G�1r(W ⇤µ+V )),

where ⇧
@M is the orthogonal projection of T

x

M to T
x

@M with respect to g. Setting

A = G�1 and defining

P
x

⇠ =

8

<

:

⇠, if x 62 @M or ⇠ 2 T in

x

M

⇧
@M(⇠), otherwise

(3.1.3)

gives that � grad E is given by the vector field

v = P (�Ar(W ⇤ µ+ V )). (3.1.4)

The gradient flow of E is thus given by @

@t

µ+ div(µv) = 0, that is

@

@t
µ(t, x) + div (µ(t, x)P

x

(�A(x) (rW ⇤ µ(t)(x) +rV (x)))) = 0. (3.1.5)

28



Main results.

We denote the usual Euclidean inner product by h, i. On manifold (M, g), for ⇠ 2 T
x

M we

denote the norm associated to the metric g as |⇠|
g

=
p

g
x

(⇠, ⇠). We denote the Euclidean

gradient and Hessian by r and Hess and Riemannian gradient and Hessian by rM and

HessM. For a function f 2 C0(M), we say that f is �-geodesically convex on (M, g)

if for any x, y 2 M and any constant speed minimal geodesic �(t) connecting x, y with

�(0) = x, �(1) = y, we have

f(�(t))  (1� t)f(x) + tf(y)� �

2
t(1� t) dist2(x, y).

Notice that if f 2 C2(M) with HessM f(x) � �G(x) for all x 2 M, then f is �-geodesically

convex on (M, g). For M a d-dimensional subset in Rd with C2 boundary, we make the

following assumptions on manifold (M, g):

(M1) The Riemannian metric g is C2 and satisfies |⇠|2
g

� ⇤|⇠|2 for some constant ⇤ > 0 and

all ⇠ 2 TM.

(M2) (M, g) is geodesically convex in that for all x, y 2 M there exists a length minimizing

geodesic contained in M.

We also make the following assumptions on interaction potential W and external po-

tential V :

(NL1) W (x) = W (�x) and W (0) = 0.

(NL2) w(x, y) := W (x� y) is �-geodesically convex on (M⇥M, g⇥ g) for some constant �.

(NL3) W 2 C1(Rd) and W (x � y)  C
�

1 + dist2(x, x
0

) + dist2(y, x
0

)
�

for some C > 0 and

all x, y 2 M.

(NL4) lim inf
dist((x,y),(x0,x0))!1

W (x� y)

dist2(x, x
0

) + dist2(y, x
0

)
� 0.

(NL5) V is �-geodesically convex of (M, g).

(NL6) V 2 C1(M) and V (x)  C
�

1 + dist2(x, x
0

)
�

for all x 2 M.

(NL7) lim inf
dist(x,x0)!1

V (x)

dist2(x, x
0

)
� 0.

We list some remarks and direct consequences of the conditions. One can replace the

condition (NL3) by the condition thatW 2 C1(Rd\{0}), W has local minimum at x = 0 and

satisfies the quadratic growth condition as in [28]. In this case the minimal subdi↵erential,
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defined in (3.3.2), has the form @oE(µ) = �P
x

(�A(x) (@oW ⇤ µ+rV )) where @oW ⇤µ(x) =
R

y 6=x

rW (x� y)dµ(y) as defined in [28].

In (NL2) and (NL5), w and V may have di↵erent constants for convexity, but we assume

that the constants are the same since we can take the minimum of the two constants if

necessary.

Conditions (NL2) and (NL3) imply the following linear growth condition on rW ,

8(x
1

, y
1

) 2 M⇥M

hA(x
1

)rW (x
1

� y
1

),rW (x
1

� y
1

)i+ hA(y
1

)rW (x
1

� y
1

),rW (x
1

� y
1

)i

 C
�

1 + dist2(x
1

, x
0

) + dist2(y
1

, x
0

)
�

.
(3.1.6)

Similarly, (NL5) and (NL6) imply the linear growth condition on rV , 8x 2 M

hA(x)rV (x),rV (x)i  C(1 + dist2(x, x
0

)). (3.1.7)

To see that, for rV we notice that

C
�

1 + dist2(x, x
0

) + dist2(y, x
0

)
�

� V (y)� V (x)

� hrV (x), T (x, y)i+ �

2
dist2(x, y),

where T (x, y) is the tangent vector at x such that exp
x

(T (x, y)) = y and |T (x, y)|
g

=

dist(x, y), which we define in (3.3.1) in Section 3.3. So

C
�

1 + dist2(x, x
0

) + dist2(x, y)
�

� h
p

A(x)rV (x),
p

G(x)T (x, y)i+ �

2
dist2(x, y).

D

p

G(x)T (x, y),
p

G(x)T (x, y)
E

= dist2(x, y), by taking dist(x, y) = max{1, dist(x, x
0

)},
we get

hA(x)rV (x),rV (x)i  C
�

1 + dist2(x, x
0

)
�

.

Similar calculations give the growth conditions (3.1.6) on rW .

From calculations of Section 3.6, we know that if W and V satisfy (NL2) and (NL5),

then E is geodesically (semi-)convex on P
2

(M) with convexity constant 2� according to

Definition 2.2.6.

Remark 3.1.1. (Simple conditions for (NL2) and (NL5)) In Section 3.6, we give detailed

calculations and precise conditions on W,V and g which guarantee �-geodesic convexity of

V and W . Here we summarize some conclusions.

• If there exist constants c
1

> 0, c
2

> 0 such that the Riemannian metric g 2 C1(M)

with c
1

I
d

 G(x)  1

c1
I
d

, | @

@x

k

G
ij

(x)|  1

c1
for all x 2 M and W is twice di↵erentiable

with |rW (y)|  c
2

, HessW (y) � �c
2

I
d

for all y 2 M�M := {x1�x2 : x1, x2 2 M},
then w(x, y) = W (x� y) is �-geodesically convex on (M⇥M, g ⇥ g).
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• For V , if there exists a constant c
1

> 0 such that the Riemannian metric g 2 C1(M)

satisfies c
1

I
d

 G(x)  1

c1
I
d

,
�

�

�

@

@x

k

G
ij

(x)
�

�

�

 1

c1
and V 2 C2(M) satisfies that

|rV (y)|  c
2

, HessV (y) � �c
2

I
d

for all y 2 M, then V is �-geodesically convex

on (M, g).

• In general, the conditions on g,W, V to guarantee �-geodesic convexity of w, V are

more stringent than in the Euclidean space. For example: assuming g 2 C1(M) such

that c
1

I
d

 G(x)  1

c1
I
d

,
�

�

�

@

@x

k

G
ij

�

�

�

 1

c1
and HessV (y) � �c

2

I
d

, HessW (y) � �c
2

I
d

for some constants c
1

> 0, c
2

> 0 does not imply �-geodesic convexity of the energy.

We present an explicit example in Section 3.6 (Example 3.6.3) to show that.

For manifolds satisfying (M1) and (M2) and potentials W,V satisfying (NL1)-(NL7) we

consider (3.1.5) as a gradient flow of E in space of probability measures endowed with the

Riemannian Wasserstein metric. Following the notations introduced in Chapter 2, in this

Chapter and the next Chapter 4 we define the Riemannian 2-Wasserstein metric

d2
W

(⌫, µ) = min

⇢

Z

M⇥M
dist2(x, y)d�(x, y) : � 2 �(µ, ⌫)

�

(3.1.8)

and the usual Euclidean 2-Wasserstein metric

d2
W,Euc

(⌫, µ) = min
n

Z

M⇥M
|x� y|2d�(x, y) : � 2 �(µ, ⌫)

o

,

where �(µ, ⌫) is the set of joint probability distributions on M⇥M with first marginal µ

and second marginal ⌫.

Denote the set of optimal transport plans between µ and ⌫ with respect to the Rieman-

nian 2-Wasserstein metric d
W

by �
o

(µ, ⌫), that is

�
o

(µ, ⌫) =

⇢

� 2 �(µ, ⌫) :

Z

M⇥M
dist2(x, y)d�(x, y) = d2

W

(µ, ⌫)

�

. (3.1.9)

We recall some notions introduced in Chapter 2 in our Riemannian setting. In particular,

local slope of E with respect to the Riemannian 2-Wasserstein metric is defined as is defined

as

|@E|(µ) = lim sup
⌫!µ

(E(µ)� E(⌫))+

d
W

(µ, ⌫)
. (3.1.10)

For a locally absolutely continuous curve [0,+1) 3 t 7! µ(t) 2 P
2

(M) with respect to

Riemannian 2-Wasserstein metric d
W

, we denote its metric derivative by

|µ0|(t) = lim sup
s!t

d
W

(µ(t), µ(s))

|s� t| . (3.1.11)

We call a locally absolutely continuous curve [0,+1) 3 t 7! µ(t) 2 P
2

(M) a gradient flow

with respect to the energy functional E if for a.e. t > 0,

v(t) 2 �@E (µ(t))
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where @E (µ(t)) is the set of subdi↵erential of E at µ(t) and v(t) is the tangent velocity of

the curve at µ(t), which we define in Section 3.3 and Section 3.5.

Define the weak measure solutions to the continuity equation by

Definition 3.1.2. A locally absolutely continuous curve µ : [0,+1) 7! (P
2

(M), d
W

) is a

weak measure solution to (3.1.5) with initial value µ
0

if

P

✓

�A(x)

✓

Z

M
rW (x� y)dµ(t, y) +rV (x)

◆◆

2 L1

loc

([0,+1);L2(g, µ(t)))

and
Z 1

0

Z

M

@�

@t
(t, x)dµ(t, x)dt+

Z

M
�(0, x)dµ

0

(x)

= �
Z 1

0

Z

M

⌧

r�(t, x), P

✓

�A(x)

✓

Z

M
rW (x� y)dµ(t, y) +rV (x)

◆◆�

dµ(t, x)dt

(3.1.12)

for all � 2 C1
c

([0,1)⇥M).

Above we consider C1
c

([0,1)⇥M) to be the set of restrictions of functions in C1
c

([0,1)⇥
Rd) to M. In particular we note that the values of test functions on the boundary of M
may be di↵erent from zero. In this way the no-flux boundary conditions are imposed.

The main results of this Chapter are the following theorems regarding existence and

stability of gradient flows with arbitrary initial data µ
0

2 P
2

(M), which we prove in Section

4.2.

Theorem 3.1.3. Assume (M1)-(M2) and (NL1)-(NL7), then for any µ
0

2 P
2

(M) there

exists a locally absolutely continuous curve [0,+1) 3 t 7! µ(t) 2 P
2

(M) such that µ(0) = µ
0

and µ( · ) is a gradient flow of E with respect to the Riemannian 2-Wasserstein metric d
W

.

µ( · ) satisfies that for a.e. t 2 (0,+1)

|@E|2 (µ(t)) = |µ0|2(t) =
Z

M
g
x

((t, x),(t, x)) dµ(t, x) (3.1.13)

and the energy dissipation equality, for 0  s  t < 1

E(µ(s))� E(µ(t)) =
Z

t

s

Z

M
g
x

((r, x),(r, x)) dµ(r, x)dr, (3.1.14)

where we denote (r, x) = �P (�A(x) (rW ⇤ µ(r)(x) +rV (x))). Moreover, µ( · ) is a weak

measure solution to (3.1.5) with initial data µ
0

.

Theorem 3.1.4. Suppose (M1)-(M2) and (NL1)-(NL7) hold true. Let µ1( · ), µ2( · ) be two

gradient flows of the energy functional E with initial data µ1

0

, µ2

0

respectively, then

d
W

�

µ1(t), µ2(t)
�

 e�2�td
W

�

µ1

0

, µ2

0

�

(3.1.15)
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for any t � 0. Moreover, the gradient flow solution is characterized by the system of

Evolution Variational Inequalities:

1

2

d

dt
d2
W

(µ(t), ⌫) + �d2
W

(µ(t), ⌫)  E(⌫)� E (µ(t)) , (3.1.16)

for a.e. t > 0 and for all ⌫ 2 P
2

(M).

Remarks and connections.

Remark 3.1.5. Recall that for interaction and potential energy on P
2

�

Rd

�

, the gradient

flow of E with respect to the usual Euclidean 2-Wasserstein metric would be

@

@t
µ(t, x)� div

✓

µ(t, x)

✓

Z

Rd

rW (x� y)dµ(t, y) +rV (x)

◆◆

= 0. (3.1.17)

Comparing with (3.1.5), we see that the projection P
x

is due to the boundary of M and the

mobility A comes from geometry of M.

We define the set of admissible vector fields V at µ to be the set of L2(µ) sections of

T inM. That is

V =

⇢

v : M ! TM | (8x 2 M) v(x) 2 T in

x

M and

Z

M
g
x

(v(x), v(x))dµ(x) < 1
�

.

(3.1.18)

Remark 3.1.6. If we assume that M has no boundary and we use the Riemannian volume

form in defining the probability measures on M, then the gradient flow of E with respect to

the Riemannian 2-Wasserstein metric is

@

@t
µ(t, x)� divM

✓

µ(t, x)

✓

Z

M
rMW (x� y)dµ(t, y) +rMV (x)

◆◆

= 0, (3.1.19)

where the divergence and gradient should be understood as the Riemannian divergence and

gradient on M, and when test against test functions, it should be integrated against the

Riemannian volume form d!(x). Writing (3.1.19) in local coordinates, we have

@

@t
µ(t, x)� 1

p

detG(x)
div
⇣

µ(t, x)
p

detG(x)A(x) (rW ⇤ µ(t)(x) +rV (x))
⌘

= 0,

where the divergence is the Euclidean divergence now. We note that the equation above can

be reduced to the form (3.1.5). Namely the measure µ̃ defined by dµ̃(t, x) =
p

detG(x)dµ(t, x)

solves

@

@t
µ̃(t, x)� div

✓

µ̃(t, x)A(x)

✓

Z

M
rW (x� y)dµ̃(t, y) +rV (x)

◆◆

= 0,

which is exactly (3.1.5) without the projection P . So it is similar to consider the gradient

flow of E under the Riemannian and Euclidean volume form. Consequently, (NL1)-(NL7)

also imply the existence of the gradient flow of E with respect to the Riemannian volume

form.
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Outline.

In Section 3.2, we establish some important properties of the functional E and the manifold

M, in particular the lower semicontinuity of E .

In Section 3.3, we give the definition of subdi↵erential in the manifold context, which is a

natural generalization of the subdi↵erential in the Euclidean setting. We then identify the

minimal subdi↵erential of E at µ as

@oE(µ) = �P
x

✓

�A(x)

✓

Z

M
rW (x� y)dµ(y) +rV (x)

◆◆

.

Section 3.4 is devoted to the JKO scheme. We show that the discrete scheme is well-posed

and converges to a locally absolutely continuous curve µ(t) 2 P
2

(M). Together with the

fact the local slope |@E| is lower semicontinuous, we show that the limit curve µ(t) is a curve

of maximal slope.

In Section 3.5, we establish that the limit curve µ(t) we get from JKO scheme is actually

a gradient flow, thus a weak measure solution to the continuity equation (3.1.5). We then

show that geodesic (semi-)convexity of the functional E implies uniqueness and stability of

gradient flow solutions. We remark that the lack of existence of an appropriate flow map

due to discontinuity of the velocity fields, makes the proof of di↵erentiability of Wasserstein

metric more involved (Lemma 3.5.3).

In Section 3.6, we give some examples of manifolds (M, g), external and interaction po-

tentials V,W for which V,w are �-geodesically convex on (M, g) and (M ⇥ M, g ⇥ g)

respectively. These imply that functional E is gedesically (semi-)convex on (P
2

(M) , d
W

).

In the last Section 3.7, we present some numerical simulations showing that rolling swarms

emerge naturally in biological aggregations in heterogeneous environments.

3.2 Some properties of E and M

In this Section, we show some basic properties of the functionals V,W and the manifold

M, which we need in the subsequent sections. First, we show the following simple relation

between the distances of two points with respect to the Euclidean and Riemannian metric:

Lemma 3.2.1. For any x, y 2 M,

dist2(x, y) � ⇤|x� y|2. (3.2.1)

Proof. Assume that �(t) is a curve which realizes the Riemannian distance between x and

y and �(0) = x, �(1) = y, then we have

dist2(x, y) =

Z

1

0

g
�(t)

�

�0(t), �0(t)
�

dt �
Z

1

0

⇤h�0(t), �0(t)idt � ⇤|x� y|2.
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We can now compare the Wasserstein distance under Euclidean and Riemannian metric,

Lemma 3.2.2. For two Borel probability measures µ and ⌫, we have

d2
W

(µ, ⌫) � ⇤d2
W,Euc

(µ, ⌫).

Proof. Assume that � is the optimal transportation plan between µ and ⌫, that is � 2
�
o

(µ, ⌫). Then

d2
W

(µ, ⌫) =

Z

M⇥M
dist(x, y)2d�(x, y) � ⇤

Z

M⇥M
|x� y|2d�(x, y) � ⇤d2

W,Euc

(µ, ⌫).

Now we turn to the properties of W and V.

Proposition 3.2.3 (Lower semicontinuity of W). Assume (NL1)-(NL4), then

lim inf
n!1

W(µ
n

) � W(µ), (3.2.2)

given that µ
n

narrowly converge to µ and µ
n

have uniformly bounded second moments.

Proof. By (NL4), lim inf
dist(x,x0)+dist(y,x0)!1

W (x� y)

dist2(x, x
0

) + dist2(y, x
0

)
� 0, for any " > 0, there

exists R > 0 such that
W (x� y)

dist2(x, x
0

) + dist2(y, x
0

)
> �"

for all (x, y) 2 M ⇥ M such that dist(x, x
0

) + dist(y, x
0

) � R. Thus W (x � y) +

"
�

dist2(x, x
0

) + dist2(y, x
0

)
�

is continuous and bounded from below. By Lemma 5.1.7 from

[5], we know

lim inf
n!1

Z

M⇥M

�

W (x� y) + "
�

dist2(x, x
0

) + dist2(y, x
0

)
��

dµ
n

(x)dµ
n

(y)

�
Z

M⇥M

�

W (x� y) + "
�

dist2(x, x
0

) + dist2(y, x
0

)
��

dµ(x)dµ(y),

which implies
Z

M⇥M
W (x� y)dµ(x)dµ(y)  lim inf

n!1

Z

M⇥M
W (x� y)dµ

n

(x)dµ
n

(y)

+ lim sup
n!1

Z

M⇥M
"
�

dist2(x, x
0

) + dist2(y, x
0

)
�

dµ
n

(x)dµ
n

(y)

On the other hand,
Z

M⇥M
"
�

dist2(x, x
0

) + dist2(y, x
0

)
�

dµ
n

(x)dµ
n

(y)  2"C
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where C = sup
n

R

M dist2(x, x
0

)dµ
n

(x) < 1. Taking " ! 0+ yields
Z

M⇥M
W (x� y)dµ(x)dµ(y)  lim inf

n!1

Z

M⇥M
W (x� y)dµ

n

(x)dµ
n

(y).

For V the following lower semicontinuity result holds:

Proposition 3.2.4 (Lower semicontinuity of V). Assume (NL5)-(NL7), then

lim inf
n!1

V(µ
n

) � V(µ), (3.2.3)

given that µ
n

narrowly converge to µ and µ
n

have uniform bounded second moments.

The proof is analogous to the proof of lower semicontinuity of W and we omit it here.

We list some properties and observations about the projection P :

• For any tangent vector field v in L2(µ), Pv 2 V.

• In general for v, w 2 T
x

M, P (c
1

v + c
2

w) 6= c
1

Pv + c
2

Pw and g(Pv,w) 6= g(v, Pw).

• For any v, w 2 T
x

M, |Pv � Pw|
g

 |v � w|
g

.

• P can break the continuity of the velocity field. In particular if µ
n

and µ are absolutely

continuous curves in P
2

(M) and v
n

and v are corresponding velocities such that

µ
n

(t) converges narrowly to µ(t) then in the Euclidean setting (with no boundary)

vndµn converges weakly to vdµ, as was shown in Lemma 2.7 from [28]. However this

statement does not hold when boundary is present. Thus we need to use a di↵erent

method to show the lower semicontinuity of the local slope |@E|, which we do that in

Theorem 3.4.3.

• Even though P is non-linear and breaks continuity, we still have that: The function

M ⇥ Rd 3 (x, ⇠) 7! g
x

(P
x

⇠, P
x

⇠) is lower semicontinuous and for all x 2 M, the

function Rd 3 ⇠ 7! g
x

(P
x

⇠, P
x

⇠) is convex. Refer to Proposition 3.4.5 for the proof.

3.3 Minimal subdi↵erential of E

In this Section, we give the definition of subdi↵erential in the Riemannian geometric setting,

which is the natural generalization of the notion in the Euclidean setting. We then identify

the minimal subdi↵erential of E as @oE(µ) = �P (�A (rW ⇤ µ+rV )) and show that it

realizes the local slope in the sense that |@E|(µ) = k@oE(µ)k
L

2
(g,µ)

.

In order to define the subdi↵erential of a functional in the Riemannian setting, we

introduce the exponential map on the space of configurations first. Let exp
x

: T
x

M ! M
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be the exponential map on M. It is understood that the domain of exp
x

is actually a subset

of T
x

M for which the geodesics of appropriate length and direction exists. We note that if

x is in the interior of M then the domain of exp
x

is an open neighborhood of 0, while if

x 2 @M then the domain of exp
x

a subset of T in

x

M and may not be an open neighborhood

of 0 even in T in

x

M. For example if M = B(0, 1), g is the Euclidean metric, x = (1, 0),

and ⇠ = (0, 1), then ⇠ 2 T in

x

M, but exp(t⇠) is not defined for any t 6= 0. This required us

to modify a number of standard arguments so that we do not use the exponential map to

generate geodesics. We only use the exponential map to parameterize the geodesics which

we know to exist.

By our assumptions on (M, g) we know that there exists a length minimizing geodesics

connecting any two points. The problem is that such geodesics may not be unique. However,

by Aumann measurable selection theorem, see [53], geodesics can be selected in a measurable

way. More precisely there exists a Borel measurable function T : M ⇥ M ! T inM such

that for all x, y 2 M
exp

x

(T (x, y)) = y (3.3.1)

and such that �(t) = exp
x

(tT (x, y)), t 2 [0, 1] gives a minimal geodesic connecting x and

y. Note that g
x

(T (x, y), T (x, y)) = dist2(x, y). Unless otherwise specified, in the remainder

of the paper, by T we denote an arbitrary Borel measurable function satisfying the above

conditions.

Definition 3.3.1 (Subdi↵erential). Fix µ 2 P
2

(M), a vector field ⇠ 2 L2(g, µ) is said to

be an element of the subdi↵erential of E at µ, and we denote as ⇠ 2 @E(µ), if there exists

T : M⇥M ! TM as in (3.3.1) such that

E(⌫)� E(µ) � inf
�2�

o

(µ,⌫)

Z

M⇥M
g
x

(⇠(x), T (x, y)) d�(x, y) + o (d
W

(µ, ⌫)) , (3.3.2)

where �
o

(µ, ⌫) is the set of optimal plans between µ and ⌫ as defined in (3.1.9).

Remark 3.3.2. The definition of the subdi↵erential applies to general energy functionals

E, not only geodesically (semi-)convex ones. For a �-geodesically convex energy functional

E, if a vector field ⇠ 2 L2(g, µ) is an element of the subdi↵erential of E at µ then in fact

there exists T : M⇥M ! TM as in (3.3.1) such that

E(⌫)� E(µ) � inf
�2�

o

(µ,⌫)

Z

M⇥M
g
x

(⇠(x), T (x, y)) d�(x, y) +
�

2
d2
W

(µ, ⌫).

This is the case in our problem since the energy functional E (defined in (2.3.8)) we are

interested in is 2�-geodesically convex.

We denote the element in @E(µ) with minimal L2(g, µ) norm by @oE(µ).
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Remark 3.3.3. Notice that Definition 3.3.1 reduces to the usual definition of subdi↵erential

when g is the Euclidean metric. It is straightforward calculation to show that if ⇠ 2 @E(µ)
then

|@E|(µ)  k⇠k
L

2
(g,µ)

, (3.3.3)

where k⇠k2
L

2
(g,µ)

=
R

M g
x

(⇠(x), ⇠(x)) dµ(x).

We now give the following main theorem of this section regarding the existence of sub-

di↵erential and the minimal L2(g, µ) element of the subdi↵erential.

Theorem 3.3.4. Assume (M1)-(M2), (NL1)-(NL7) hold, then @E(µ) 6= ; for any µ 2
P
2

(M). Moreover the vector field

(x) = �P
x

✓

�A(x)

✓

Z

M
rW (x� y)dµ(y) +rV (x)

◆◆

(3.3.4)

is the unique element of minimal L2(g, µ)-norm in @E(µ) with

|@E|(µ) = kk
L

2
(g,µ)

. (3.3.5)

Remark 3.3.5. To consider interaction potentials W 2 C1(Rd \ {0}), one needs to notice

that 0 2 @W (0). The proof of the above theorem can be used to show that the minimal

subdi↵erential is

@oE(µ) = �P (�A (@oW ⇤ µ+rV )) , (3.3.6)

where @oW (x) = rW (x) if x 6= 0 and @oW (0) = 0.

We also remark that while in the definition of subdi↵erential Definition 3.3.1, we only

require (3.3.2) to hold for some measurable choice of T (x, y) and infimum over � 2 �
o

(µ, ⌫),

in the proof we actually show that for any � 2 �
o

(µ, ⌫) and any measurable selection T (x, y),

(3.3.2) holds true with that particular choice of T (x, y) and �.

To simplify notations, we denote rW ⇤ µ(x) =
R

MrW (x� y)dµ(y).

Before proving the theorem, we need the following

Lemma 3.3.6. Let ⇠ be a vector field in V such that there exists t
0

> 0 for which

exp
x

(t⇠(x)) 2 M for all 0  t  t
0

and µ-a.e. x 2 M. Then

lim sup
t!0

+

d
W

⇣

(exp(t⇠))
]

µ, µ
⌘

t
 k⇠k

L

2
(g,µ)

, (3.3.7)

where we denote exp(t⇠)(x) = exp
x

(t⇠(x)).
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Proof of Lemma. For 0  t < t
0

, notice that (id, exp(t⇠))
]

µ 2 �
⇣

µ, (exp(t⇠))
]

µ
⌘

, so

d2
W

⇣

µ, (exp(t⇠))
]

µ
⌘


Z

M
dist2 (x, exp

x

(t⇠(x))) dµ(x)


Z

M
t2g

x

(⇠(x), ⇠(x)) dµ(x).

Thus

lim sup
t!0

+

d2
W

⇣

µ, (exp(t⇠))
]

µ
⌘

t2

Z

M
g
x

(⇠(x), ⇠(x)) dµ(x).

We now prove the theorem.

Proof of Theorem. We divide the proof into two steps.

Step 1.  2 @E(µ). We need to prove that

Z

M
g
x

((x),(x)) dµ(x) < 1

and

E(⌫)� E(µ) � inf
�2�

o

(µ,⌫)

Z

M⇥M
g
x

((x), T (x, y)) d�(x, y) + o
�

d
W

(µ, ⌫)
�

.

To prove the first claim, note that

Z

M
g
x

((x),(x)) dµ(x)


Z

M
g (A(x) (rW ⇤ µ(x) +rV (x)) , A(x) (rW ⇤ µ(x) +rV (x))) dµ(x)

=

Z

M
hA(x) (rW ⇤ µ(x) +rV (x)) ,rW ⇤ µ(x) +rV (x)i dµ(x)


Z

M⇥M
hA(x) (rW (x� y) +rV (x)) ,rW (x� y) +rV (x)i dµ(y)dµ(x)


Z

M⇥M
C
�

1 + dist2(x, x
0

) + dist2(y, x
0

)
�

dµ(x)dµ(y)

< 1.

The first inequality above comes from the fact that projection does not increase the length

of a vector, while the third inequality holds because rW and rV have linear growth, as

shown in (3.1.6) and (3.1.7). The last inequality holds since µ has finite second moment.

To prove the second claim let µ, ⌫ 2 P
2

(M), � 2 �
o

(µ, ⌫) be any optimal plan and

T (x, y) be as in (3.3.1). Due to �-convexity of W and V , for fixed x
1

, x
2

, y
1

, y
2

2 M the
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function

f(t) =
W
�

exp
x1

(tT (x
1

, y
1

))� exp
x2

(tT (x
2

, y
2

))
�

�W (x
1

� x
2

)

2t
(3.3.8)

+
2V
�

exp
x2

(tT (x
2

, y
2

))
�

� 2V (x
2

)

2t
� �

2
t dist2(x

2

, y
2

)� �

4
t dist2 ((x

1

, x
2

), (y
1

, y
2

))

is non-decreasing on [0, 1], so f(1) � lim inf
t!0

+ f(t). We remark here that the fact that

the curve t 7! exp
x1

(tT (x
1

, y
1

)) � exp
x2

(tT (x
2

, y
2

)) is no longer a geodesic on (M, g) is

the reason why we need to assume (NL2) of W , i.e. the �-geodesic convexity of (x, y) 2
M ⇥ M 7! w(x, y) = W (x � y) instead of �-geodesic convexity of x 2 M 7! W (x) as in

the Euclidean setting. Note that

lim
t!0

+



W
�

exp
x1

(tT (x
1

, y
1

))� exp
x2

(tT (x
2

, y
2

))
�

�W (x
1

� x
2

)

2t

� �

2
t dist2 ((x

1

, x
2

), (y
1

, y
2

))

�

=
1

2
hrW (x

1

� x
2

), T (x
1

, y
1

)� T (x
2

, y
2

)i ,

and

lim
t!0

+

"

V
�

exp
x2

(tT (x
2

, y
2

))
�

� V (x
2

)

t
� �

2
t dist2(x

2

, y
2

)

#

= hrV (x
2

), T (x
2

, y
2

)i .

Then integrating over d�(x
1

, y
1

)d�(x
2

, y
2

) gives

E(⌫)� E(µ)

=

Z

M⇥M

Z

M⇥M

W (y
1

� y
2

) + 2V (y
2

)�W (x
1

� x
2

)� 2V (x
2

)

2
d�(x

1

, y
1

)d�(x
2

, y
2

)

�
Z

M⇥M

Z

M⇥M



1

2
hrW (x

1

� x
2

), T (x
1

, y
1

)� T (x
2

, y
2

)i+ hrV (x
2

), T (x
2

, y
2

)i
�

d�(x
1

, y
1

)d�(x
2

, y
2

) + �d2
W

(µ, ⌫)

=

Z

M⇥M

Z

M⇥M
hrW (x

2

� x
1

) +rV (x
2

), T (x
2

, y
2

)i d�(x
1

, y
1

)d�(x
2

, y
2

) + �d2
W

(µ, ⌫)

=

Z

M⇥M
hrW ⇤ µ(x

2

) +rV (x
2

), T (x
2

, y
2

)i d�(x
2

, y
2

) + �d2
W

(µ, ⌫)

=

Z

M⇥M
g
x2 (A(x

2

) (rW ⇤ µ(x
2

) +rV (x
2

)) , T (x
2

, y
2

)) d�(x
2

, y
2

) + �d2
W

(µ, ⌫)

� �
Z

M⇥M
g
x2 (Px2 (�A(x

2

) (rW ⇤ µ(x
2

) +rV (x
2

))) , T (x
2

, y
2

)) d�(x
2

, y
2

) + �d2
W

(µ, ⌫)

=

Z

M⇥M
g
x2 ((x2), T (x2, y2)) d�(x2, y2) + �d2

W

(µ, ⌫)
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where the second inequality comes from the fact that: If x
2

62 @M, by definition of P
x2 the

inequality becomes an equality while if x
2

2 @M, then by definition of P
x2

g
x2

✓

A(x
2

)

✓

Z

M
rW (x

2

� x
1

)dµ(x
1

) +rV (x
2

)

◆

, ⇠

◆

�g
x2

✓

�P
x2

✓

�A(x
2

)

✓

Z

M
rW (x

2

� x
1

)dµ(x
1

) +rV (x
2

)

◆◆

, ⇠

◆

for any ⇠ 2 T in

x2
M , and we notice that T (x

2

, y
2

) 2 T in

x2
M.

Step 2.  is the element of minimal L2(g, µ)-norm in @E(µ). By Remark 3.3.3, we only

need to show kk
L

2
(g,µ)

 |@E|(µ). Consider first a vector field ⇠ as in Lemma 3.3.6, i.e.

⇠ 2 L2(g, µ) and exp
x

(t⇠(x)) 2 M for all x 2 M and 0  t  t
0

,

lim
t!0

+

E
⇣

exp (t⇠)
]

µ
⌘

� E(µ)

t

= lim
t!0

+

1

2

Z

M⇥M

W (exp
x

(t⇠(x))� exp
z

(t⇠(z))) + 2V (exp
x

(t⇠(x)))�W (x� z)� 2V (x)

t

dµ(x)dµ(z)

=
1

2

Z

M⇥M
hrW (x� z), ⇠(x)� ⇠(z)i+ 2 hrV (x), ⇠(x)i dµ(x)dµ(z)

=

Z

M

⌧

Z

M
rW (x� z)dµ(z) +rV (x), ⇠(x)

�

dµ(x)

=

Z

M

⌧

A(x)

✓

Z

M
rW (x� z)dµ(z) +rV (x)

◆

, G(x)⇠(x)

�

dµ(x)

=

Z

M
g
x

✓

A(x)

✓

Z

M
rW (x� y)dµ(y) +rV (x)

◆

, ⇠(x)

◆

dµ(x)

given that we can prove the second equality. Denote �
x

(t) = exp
x

(t⇠(x)). By the linear

growth condition (3.1.7) on rV

|V (�
x

(t))� V (�
x

(0))| =
�

�

�

�

Z

t

0

hrV (�
x

(s)), �̇
x

(s)i ds
�

�

�

�


Z

t

0

hA(�
x

(s))rV (�
x

(s)),rV (�
x

(s))i
1
2 hG(�

x

(s))�̇
x

(s), �̇
x

(s)i
1
2 ds


Z

t

0

C(1 + dist(�
x

(s), x))|⇠(x)|
g

ds


Z

t

0

C(1 + s|⇠(x)|
g

)|⇠(x)|
g

ds

 C(1 + t
0

|⇠(x)|2
g

)t.

Thus
�

�

�

�

V (exp
x

(t⇠(x)))� V (x)

t

�

�

�

�

=

�

�

�

�

V (�
x

(t))� V (�
x

(0))

t

�

�

�

�

 C(1 + t
0

|⇠(x)|2
g

) 2 L1(g, µ).
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Similarly for W , by the linear growth condition (3.1.6) on rW ,

|W (�
x

(t)� �
z

(t))�W (x� z)|

=

�

�

�

�

Z

t

0

hrW (�
x

(s)� �
z

(s)) , �̇
x

(s)� �̇
z

(s)i ds
�

�

�

�


Z

t

0

✓

hA(�
x

(s))rW (�
x

(s)� �
z

(s)),rW (�
x

(s)� �
z

(s))i
1
2 hG(�

x

(s))�̇
x

(s), �̇
x

(s)i
1
2

+ hA(�
z

(s))rW (�
x

(s)� �
z

(s)),rW (�
x

(s)� �
z

(s))i
1
2 hG(�

z

(s))�̇
z

(s), �̇
z

(s)i
1
2

◆

ds


Z

t

0

C (1 + dist(�
x

(s), x) + dist(�
z

(s), z)) (|⇠(x)|
g

+ |⇠(z)|
g

) ds

 C(1 + t
0

|⇠(x)|2
g

+ t
0

|⇠(z)|2
g

)t.

Thus the second equality follows by Lebesgue’s dominated convergence theorem.

By the definition of local slope (3.1.10) and Lemma 3.3.6

|@E|(µ)k⇠k
L

2
(g,µ)

� |@E|(µ) lim inf
t!0

+

d
W

(exp(t⇠))
]

µ, µ)

t
(3.3.9)

� �
Z

M

⌧

A(x)

✓

Z

M
rW (x� z)dµ(z) +rV (x)

◆

, G(x)⇠(x)

�

dµ(x)

=

Z

M
g
x

✓

�A(x)

✓

Z

M
rW (x� z)dµ(z) +rV (x)

◆

, ⇠(x)

◆

dµ(x).

We need to plug ⇠ = � into (3.3.9), however it is possible that there exists x 2 @M, such

that there exists no t
0

> 0 with exp
x

(�t(x)) 2 M for all 0  t  t
0

. Thus we perform the

following approximation scheme. For n 2 N, denote M
n

= {x 2 M : dist(x, @M) > 1

n

},
B

n

= {x 2 M : dist(x, x
0

) < n} and n(x) the outward normal direction with respect to the

Rimmannian metric at x 2 @M. Define

⇠
n

(x) =

8

>

>

>

<

>

>

>

:

�(x) if x 2 B
n

\M
n

,

�(x)� 1

n

n(x) if x 2 B
n

\ @M,

0 Otherwise.

We claim that ⇠
n

satisfies the conditions in Lemma 3.3.6 and ⇠
n

converges to � in

L2(g, µ). Indeed, it is straightforward to see that ⇠
n

2 L2(g, µ) and ⇠
n

converges to �

in L2(g, µ). Since  is continuous in M
n

and B
n

b M, we have kk
L

1
(g,µ)

 C(n)

on B
n

\ M
n

and thus for 0  t  1

nC(n)

, exp
x

(t⇠
n

(x)) 2 M for x 2 B
n

\ M
n

. For

x 2 B
n

\ @M, we know g
x

(⇠
n

(x), n(x))  � 1

n

and B
n

\ @M is compact, so there exists

t̃(n) such that exp
x

(t⇠
n

(x)) 2 M for all 0  t  t̃(n) and x 2 B
n

\ @M. We can take

t
0

= min{ 1

nC(n)

, t̃(n)} and exp
x

(t⇠
n

(x)) 2 M for 0  t  t
0

as claimed. Using ⇠
n

in (3.3.9)
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yields

|@E|(µ)k⇠
n

k
L

2
(g,µ)

�
Z

M
g
x

✓

�A(x)

✓

Z

M
rW (x� z)dµ(z) +rV (x)

◆

, ⇠
n

(x)

◆

dµ(x).

(3.3.10)

Since g
x

(⇠(x), P ⇠(x)) = g
x

(P ⇠(x), P ⇠(x)), taking n ! 1 then gives

|@E|(µ)kk
L

2
(g,µ)

�
Z

M
g
x

✓

�A(x)

✓

Z

M
rW (x� z)dµ(z) +rV (x)

◆

,�(x)

◆

dµ(x)

=

Z

M
g
x

((x),(x)) dµ(x).

Hence

kk
L

2
(g,µ)

 |@E|(µ), (3.3.11)

which completes the proof.

3.4 JKO scheme: existence of minimizers and convergence

In this Section, we show the existence of curves of maximal slope with respect to E . The

general framework, developed in [5], uses the JKO scheme, which we describe in Subsection

2.2.1. We verify the conditions on the functional E needed to apply the general existence

theorem of [5] to get a curve of maximal slope with respect to the relaxed local slope |@�E|.
In order to show that the limit curve is a curve of maximal slope with respect to |@E|, we
proceed to prove that P

2

(M) 3 µ 7!
R

t

s

|@E|2 (µ(r)) dr is lower semicontinuous with respect

to narrow convergence of probability measures.

Recall the definitions of upper gradient in Definition 2.2.1 and curve of maximal slope

in Definition 2.2.2. The general strategy of constructing curves of maximal slope is to use

the JKO scheme as described in Subsection 2.2.1 from which we now recall some important

notions.

Fix a time step ⌧ > 0 then µk

⌧

are define iteratively

µk+1

⌧

2 argmin
µ2P2(M)



d2
W

(µ, µk

⌧

)

2⌧
+ E(µ)

�

, (3.4.1)

with µ0

⌧

= µ
0

. We denote the piecewise constant interpolation by µ
⌧

( · ). To be more precise,

µ
⌧

(0) = µ
0

and

µ
⌧

(t) = µk+1

⌧

, (3.4.2)

if k⌧ < t  (k + 1)⌧ for k � 0. In order to show that the existence of minimizer in

the minimization problem (3.4.1) and to show the convergence of the interplants µ
⌧

( · ) (as
⌧ ! 0+), we need to check the three topological conditions introduced in Subsection 2.2.1.

We now recall and check that the conditions hold true for our energy functional E .
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• Lower semicontinuity. E is sequentially lower semicontinuous with respect to narrow

convergence of probability measures on d
W

bounded sets

sup
m,n

d
W

(µ
m

, µ
n

) < 1, µ
n

converges narrowly to µ ) lim inf
n!1 E(µ

n

) � E(µ).

In Section 3.2 we already show that E is lower semicontinuous with respect to narrow

convergence of probability measures with uniformly bounded second moments.

• Coercivity. There exists ⌧⇤ > 0 and µ⇤ 2 P
2

(M) such that

inf
µ2P2(M)

⇢

E(µ) + 1

2⌧⇤
d2
W

(µ, µ⇤)

�

> �1.

To prove coercivity, let T be as in (3.3.1) and consider x
0

2 M arbitrary. Then

E(µ) + 1

2⌧
d2
W

(µ, �
x0)

=

Z

M
V (x)dµ(x) +

1

2

Z

M⇥M
W (x� y)dµ(x)dµ(y) +

1

2⌧

Z

M
dist2(x, x

0

)dµ(x)

�
Z

M

✓

V (x
0

) + hrV, T (x
0

, x)i+ �

2
dist2(x, x

0

)

◆

dµ(x)

+

Z

M⇥M

�

4
dist2 ((x, y), (x

0

, x
0

)) dµ(x)dµ(y) +
1

2⌧

Z

M
dist2(x, x

0

)dµ(x)

=

Z

M

✓✓

�+
1

2⌧

◆

dist2(x
0

, x) + hrV (x
0

), T (x
0

, x)i+ V (x
0

)

◆

dµ(x).

Notice that hrV (x
0

), T (x
0

, x)i = g
x0 (A(x

0

)rV (x
0

), T (x
0

, x)) and

g
x0 (T (x0, x), T (x0, x)) = dist2(x

0

, x),

so for any ⌧ > 0 such that �+ 1

2⌧

> 0, i.e. for 2��⌧ < 1, we have

inf
µ2P2(M)

⇢

E(µ) + 1

2⌧
d2
W

(µ, �
x0)

�

> �1,

which implies coercivity for E .

• Compactness. Every d
W

bounded set contained in a sublevel of E is relatively compact

with respect to the narrow convergence of probability measures

for (µ
n

) ⇢ P
2

(M) with sup
n

E(µ
n

) < 1 and sup
m,n

d
W

(µ
m

, µ
n

) < 1,

there exists a narrowly convergent subsequence of (µ
n

).

To check Compactness condition, note that by Prokhorov’s theorem, any sequence

(µ
n

) ⇢ P
2

(M) such that sup
m,n

d
W

(µ
m

, µ
n

) < 1, µ
n

has a narrowly convergent

subsequence.
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Thus by Lemma 2.2.8 and Proposition 2.2.9, we can show the existence of minimizers

of (3.4.1) and convergence of µ
⌧

( · ).

Lemma 3.4.1 (Existence of the discrete solutions). Suppose (M, g) satisfies assumptions

(M1)-(M2) and W,V satisfy (NL1)-(NL7). Then there exists ⌧
0

> 0 depending only on

V,W such that for all 0 < ⌧ < ⌧
0

and given ⌫ 2 P
2

(M), there exists µ1 2 P
2

(M) such

that

E(µ1) +
1

2⌧
d2
W

(⌫, µ1) = inf
µ2P2(M)

n

E(µ) + 1

2⌧
d2
W

(⌫, µ)
o

. (3.4.3)

Proposition 3.4.2 (Compactness). There exist a limit curve µ 2 AC2

loc

([0,1);P
2

(M))

and a sequence ⌧
n

! 0+such that the piecewise constant interpolate µ̃n( · ) = µ
⌧

n

( · ) defined
as in (3.4.2) satisfies that µ̃n(t) converges narrowly to µ(t) for any t 2 [0,1).

Note that by Lemma 3.2.2 from [5], we actually have a uniform bound on the second

moments of µ̃n:

sup
n,⌧

Z

M
dist2(x, x

0

)dµ⌧

n

(x) < 1.

By the general theory developed in [5], the limit curve µ( · ) is a curve of maximal slope

with respect to upper gradient |@�E| defined in (2.2.20). We still need to prove the lower

semicontinuity of the slope to show that µ( · ) is a curve of maximal slope with respect to

|@E| instead of |@�E|. We denote by n(t) the minimal subdi↵erential of E at µ̃n(t). Section

3.3 gives

n(t, x) = �P
x

✓

�A(x)

✓

Z

M
rW (x� y)dµ̃n(t, y) +rV (x)

◆◆

. (3.4.4)

Theorem 3.4.3 (Lower semicontinuity of local slope). Assume that (M1)-(M2) and (NL1)-

(NL7) hold true, then the metric slope of the piecewise constant interpolate µ̃n satisfies that

for a.e. t > 0,

lim inf
n!1

|@E|2(µ̃n(t)) � |@E|2(µ(t)).

Remark 3.4.4. By Fatou’s lemma, for any T > 0

lim inf
n!1

Z

T

0

|@E|2 (µ̃n(t)) dt �
Z

T

0

lim inf
n!1

|@E|2(µ̃n(t))dt

�
Z

T

0

|@E|2(µ(t))dt

In the case @M = ; and W 2 C1(Rd \ {0}), the lower semicontinuity of local slope can be

proved as in Lemma 2.7 from [28]. In the proof below, we allow that @M 6= ;.

In the case @M 6= ;, the argument in [28] does not work because the projection P breaks

the continuity and thus ndµn does not necessarily converge narrowly to dµ. However,

the following useful observation holds:
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Proposition 3.4.5. The function M⇥Rd 3 (x, ⇠) 7! g
x

(P
x

⇠, P
x

⇠) is lower semicontinuous.

For all x 2 M, the function Rd 3 ⇠ 7! g
x

(P
x

⇠, P
x

⇠) is convex.

Proof of Proposition. We first prove the lower semincontinuity property. Assume lim
k!1 xk =

x and lim
k!1 ⇠k = ⇠. If

�

xk
 1
k=1

⇢ M̊ then

g
x

(P ⇠, P ⇠)  g
x

(⇠, ⇠)

= lim
k!1

g
x

k

⇣

⇠k, ⇠k
⌘

= lim
k!1

g
x

k

⇣

P ⇠k, P ⇠k
⌘

.

So lower semicontinuity is verified for x 2 M̊, since for such x and any lim
k!1 xk = x,

xk 2 M̊ for all k large enough. For x 2 @M, due to the fact above, it is enough to

consider the case that xk 2 @M for all k. Let {e
1

, ..., e
d

} be a continuous orthonormal

basis of TM near x, such that on @M, e
d

= ~n where ~n is the unit outer normal vector

with respect to the inner product g. We expand ⇠k in this basis: ⇠k =
P

d

i

⇠k
i

e
i

(xk). Then

P ⇠k =
P

d�1

i=1

⇠k
i

e
i

(xk) +
�

⇠k
d

��
e
d

(xk) for xk 2 @M. By the continuity of g and smoothness

of M, we have lim
k!1 ⇠k

i

= ⇠
i

for all 1  i  d, thus

lim
k!1

g
x

k

⇣

P ⇠k, P ⇠k
⌘

= lim
k!1

"

d�1

X

i=1

⇣

⇠k
i

⌘

2

+

✓

⇣

⇠k
d

⌘�
◆

2

#

=
d�1

X

i=1

⇠2
i

+
�

⇠�
d

�

2

= g
x

(P ⇠, P ⇠) .

We now turn to the convexity property. Similarly for x 2 M̊, since P
x

⇠ = ⇠ for all

⇠ 2 Rd, it is straightforward to check that ⇠ 7! g
x

(⇠, ⇠) is convex. So we assume x 2 @M.

For any ⇠1, ⇠2 2 Rd, and 0  ✓  1 we need to show that

g
x

�

P
x

�

(1� ✓) ⇠1 + ✓⇠2
�

, P
x

�

(1� ✓) ⇠1 + ✓⇠2
��

 (1� ✓)g
x

(P
x

⇠1, P
x

⇠1) + ✓g
x

(P
x

⇠2, P
x

⇠2).

Note that we only need to check that for the last coordinate, that is we only need to prove

that
⇣

�

(1� ✓) ⇠1
d

+ ✓⇠2
d

��
⌘

2

 (1� ✓)
⇣

�

⇠1
d

��
⌘

2

+ ✓
⇣

�

⇠2
d

��
⌘

2

,

which is a direct consequence of the fact that f(x) = (x�)2 is a convex function. The

proposition is proved.

We now start to prove the lower semicontinuity of local slope
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Proof of Theorem. Since  is the minimal subdi↵erential, be Remark 3.3.3 and Theorem

3.3.4, we only need to prove

lim inf
n!1

Z

M
g (n(t, x),n(t, x)) dµ̃n(t, x) �

Z

M
g ((t, x),(t, x)) dµ(t, x).

Note that the non-negative function M ⇥ Rd 3 (x, ⇠) 7! g
x

(P
x

⇠, P
x

⇠) satisfies the lower

semicontinuity and convexity property. By Proposition 6.42 from [53], we know that for all

(x, ⇠) 2 M⇥ Rd,

g
x

(P
x

⇠, P
x

⇠) = sup
i2N

{a
i

(x) + b
i

(x)⇠}

for some bounded continuous functions a
i

, b
i

. A similar argument to one in Lemma 2.7 of

[28] gives that rW ⇤ µn converges narrowly to rW ⇤ µ. Thus for any i 2 N,

lim inf
n!1

Z

M
g
x

(n(t, x),n(t, x)) dµ̃n(t, x)

= lim inf
n!1

Z

M
g
x

(P (�rW ⇤ µ̃n(t, x)�rV (x)) , P (�rW ⇤ µ̃n(t, x)�rV (x))) dµ̃n(t, x)

� lim inf
n!1

Z

M
(a

i

(x)� b
i

(x) (rW ⇤ µ̃n(t)(x) +rV (x))) dµ̃n(t, x)

=

Z

M
(a

i

(x)� b
i

(x) (rW ⇤ µ(t)(x) +rV (x))) dµ(t, x).

Taking supremum over i 2 N and using Lebesgue’s monotone convergence theorem then

gives

lim inf
n!1

Z

M
g (n(t, x),n(t, x)) dµ̃n(t, x)

� sup
i2N

Z

M
(a

i

(x)� b
i

(x) (rW ⇤ µ(t)(x) +rV (x))) dµ(t, x)

=

Z

M
g ((t, x),(t, x)) dµ(t, x).

Lemma 3.4.6. Let µ 2 AC
loc

(0,+1;P
2

(M)) and v(t) be its tangent velocity field defined

in Lemma 3.5.1. Then for almost every t � 0

d

dt
E (µ(t)) =

Z

M
g
x

((t, x), v(t, x)) dµ(t, x), (3.4.5)

Proof. Since (t) 2 @E(µ(t)) (by Theorem 3.3.4), we know that

E (µ(t+ h)) � E (µ(t)) +

Z

M⇥M

g
x

((t, x), T (x, y)) d�h
t

(x, y) + o (d
W

(µ(t), µ(t+ h))) .
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For h > 0

lim
h!0

+

E (µ(t+ h))� E (µ(t))

h
� lim

h!0

+

Z

M⇥M
g
x

✓

(t, x),
T (x, y)

h

◆

d�h
t

(x, y)

= lim
h!0

+

Z

M
g
x

✓

(t, x),

Z

M

T (x, y)

h
d⌫h

x

(y)

◆

dµ(t, x)

=

Z

M
g
x

((t, x), v(t, x)) dµ(t, x).

Similarly, for h < 0, we have

lim
h!0

�

E (µ(t+ h))� E (µ(t))

h

Z

M
g
x

((t, x), v(t, x)) dµ(t, x).

Note that the function t ! E (µ(t)) is non-increasing and thus di↵erentiable for a.e. t > 0.

Hence
d

dt
E (µ(t)) =

Z

M
g
x

((t, x), v(t, x)) dµ(t, x),

for a.e. t > 0 as desired.

Note that by (4.2.3), we get

d

dt
E(µ(t)) =

Z

M
g
x

((t, x), v(t, x)) dµ(t, x)

 k(t)k
L

2
(g,µ(t))

kv(t)k
L

2
(g,µ(t))

= |@E|(µ(t))|µ0|(t).

(3.4.6)

Theorem 3.4.7 (Existence of curves of maximal slope). Suppose (M, g) satisfies (M1)-

(M2) and W,V satisfy (NL1)-(NL7). Then there exists at least one curve of maximal slope

for the functional E, i.e., there exists µ 2 AC
loc

([0,1);P
2

(M)) such that for all T � 0

E(µ
0

) � E(µ(T )) + 1

2

Z

T

0

�

�µ0�
�

2

(t)dt+
1

2

Z

T

0

|@E|2 (µ(t)) dt. (3.4.7)

Proof. We know that µ 7! E(µ) and µ 7! |@E| (µ) are lower semicontinuous with respect

to the narrow convergence. Since |@E| = |@�E|, in order to apply Theorem 2.2.10 (i.e.

Theorem 2.3.3 from [5]) to get existence of curves of maximal slope satisfying (3.4.7), we

only need to show that P
2

(M) 3 µ 7! |@E|(µ) is a strong upper gradient of E , according to

Definition 2.2.1.

To show that, consider µ 2 AC
loc

(0,+1;P
2

(M)). We first show that E(µ( · )) is also

locally absolutely continuous. We note that by the linear growth conditions on rV (3.1.7)

and rW (3.1.6), |V (x) � V (y)|  C(1 + dist(x, y)) dist(x, y) and |W (x � z) � W (y �
w)|  C(1 + dist(x, y) + dist(z, w))(dist(x, y) + dist(z, w)). Then for 0  s < t < 1 and
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� 2 �
o

(µ(t), µ(s)) an optimal plan,

|E(µ(t))� E(µ(s))| 
Z

M⇥M
C(1 + dist(x, y)) dist(x, y)d�(x, y)

 C(1 + d
W

(µ(t), µ(s))d
W

(µ(t), µ(s)).

(3.4.8)

Thus E(µ(t)) is locally absolutely continuous since µ(t) is locally absolutely continuous in

(P
2

(M), d
W

). Then by consequence of the chain rule (3.4.6), we have

d

dt
E(µ(t))  |@E|(µ(t))|µ0|(t).

Thus for any 0 < s  t < +1, we can integrate to get (2.2.9) and |@E|( · ) is a strong upper

gradient for E .

3.5 Existence of the gradient flow

In this Section, we first show that locally absolutely continuous curves in P
2

(M) with

respect to d
W

are solutions to continuity equations in the sense of distributions. Furthermore

velocities are in L2(g, µ) and belonging to the tangent space to the set of configurations.

We then prove the existence of gradient flow and the stability property of the gradient flow.

Lemma 3.5.1. Let µ( · ) be an absolutely continuous curve in P
2

(M) and �h
t

be an optimal

plan between µ(t) and µ(t+h), i.e. �h
t

2 �
o

(µ(t), µ(t+ h)). Denote the disintegration of �h
t

with respect to µ(t) by ⌫h
x

, then
R

M
T (x,y)

h

d⌫h
x

(y) converges weakly in L2 (g, µ(t)) to a vector

field v(t, x) for a.e. t > 0 such that (µ( · ), v) satisfy the continuity equation

@

@t
µ(t, x) + div (µ(t, x)v(t, x)) = 0 (3.5.1)

in the sense of distributions, i.e., test against � 2 C1
c

([0,1)⇥M), and among all vector

fields such that (4.2.1) holds, and v has minimal L2(g, µ)-norm with

Z

M
g (v(t, x), v(t, x)) dµ(t, x) =

�

�µ0�
�

2

(t) (3.5.2)

for a.e. t > 0.

Proof. For the existence of a unique minimal L2 (g, µ(t))-norm vector field v(t) such that

µ(t) satisfies (3.5.1) and (3.5.2), we refer to Theorem 2.29 from [4]. For a fixed t > 0 such

that the metric derivative |µ0|(t) exists, we now show that such v(t) is given by the limit of
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R

M
T (x,y)

h

d⌫h
x

(y). Note that

Z

M
g
x

✓

Z

M

T (x, y)

h
d⌫h

x

(y),

Z

M

T (x, y)

h
d⌫h

x

(y)

◆

dµ(t, x)


Z

M⇥M
g
x

✓

T (x, y)

h
,
T (x, y)

h

◆

d⌫h
x

(y)dµ(t, x)

=

Z

M⇥M
g
x

✓

T (x, y)

h
,
T (x, y)

h

◆

d�h
t

(x, y)

=
1

h2
d2
W

(µ(t), µ(t+ h)) .

Since µ(t) is absolutely continuous, we know that 1

h

2d
2

W

(µ(t), µ(t+ h))  C(t) uniformly

in h for some constant C. Thus, uniformly in h, we have

Z

M
g
x

✓

Z

M

T (x, y)

h
d⌫h

x

(y),

Z

M

T (x, y)

h
d⌫h

x

(y)

◆

dµ(t, x)  C(t).

So there exist a vector field ṽ(t, x) and a sequence {h
n

} such that
R

M
T (x,y)

h

n

d⌫hn

x

(y) converges

weakly in L2(g, µ(t, x)) to ṽ as h
n

! 0. We claim that

lim
n!1

R

M �(t, x)dµ(t+ h
n

, x)�
R

M �(t, x)dµ(t, x)

h
n

=

Z

M
g
x

(r�(t, x), ṽ(t, x)) dµ(t, x),

for a.e. t > 0 and for any � 2 C1
c

([0,1)⇥ Rn).

Indeed, for the left-hand side we know,

R

M �(t, x)dµ(t+ h
n

, x)�
R

M �(t, x)dµ(t, x)

h
n

=
1

h
n

Z

M⇥M
(�(t, y)� �(t, x)) d�hn

t

(x, y)

=
1

h
n

Z

M⇥M
hr�(t, x), T (x, y)i d�hn

t

(x, y) + o(h
n

)

=

Z

M

⌧

r�(t, x),

Z

M

T (x, y)

h
n

d⌫hn

x

(y)

�

dµ(t, x) + o(h
n

)

=

Z

M
g
x

✓

A(x)r�(t, x),

Z

M

T (x, y)

h
n

d⌫hn

x

(y)

◆

dµ(t, x) + o(h
n

)

Since A(x)r�(t, x) 2 L2 (g, µ(t)) and
R

M
T (x,y)

h

n

d⌫hn

x

(y) converges weakly in L2 (g, µ(t)) to

ṽ(t, x), we get

lim
n!1

R

M �(t, x)dµ(t+ h
n

, x)�
R

M �(t, x)dµ(t, x)

h
n

=

Z

M
g
x

(A(x)r�(t, x), ṽ(t, x)) dµ(t, x)

=

Z

M
hr�(t, x), ṽ(t, x)i dµ(t, x).
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Since µ(t) satisfies (4.2.1) with respect to the vector field v, we know that

lim
h!0

R

M �(t, x)dµ(t+ h, x)�
R

M �(t, x)dµ(t, x)

h
=

Z

M
g
x

(r�(t, x), v(t, x)) dµ(t, x),

for a.e. t > 0. Thus
R

M g
x

(r�(t, x), v(t, x)� ṽ(t, x)) dµ(t, x) = 0 for a.e. t > 0 and µ(t)

satisfies (4.2.1) with respect to ṽ(t). Now notice that
Z

M
g
x

(ṽ(t, x), ṽ(t, x)) dµ(t, x)

 lim
n!1

Z

M
g
x

✓

Z

M

T (x, y)

h
n

d⌫hn

x

(y),

Z

M

T (x, y)

h
n

d⌫hn

x

(y)

◆

dµ(t, x)

 lim
n!1

1

h2
n

d2
W

(µ(t), µ(t+ h
n

))

=
�

�µ0�
�

2

(t) =

Z

M
g
x

(v(t, x), v(t, x)) dµ(t, x).

Together with the minimal L2(g, µ(t))-norm property of v, we have ṽ(t) = v(t). Since for

any h
n

! 0 such that lim
n!1

R

M
T (x,y)

h

n

d⌫hn

x

(y) converges weakly in L2(g, µ(t)), the weak

limit is the same v(t), we have
R

M
T (x,y)

h

d⌫h
x

(y) converges weakly in L2(g, µ(t)) to v(t, x).

The lemma is proved.

Recall from Chapter 2 we call v(t) is the tangent velocity field of µ( · ), now we can

define gradient flow by

Definition 3.5.2 (Gradient flows). A locally absolutely continuous curve [0,1) 3 t 7!
µ(t) 2 P

2

(M) is a gradient flow with respect to E if for a.e. t > 0

v(t) 2 �@E (µ(t)) , (3.5.3)

where v(t) is the tangent velocity field for µ(t).

We now show the proof of Theorem 3.1.3

Proof of Theorem 3.1.3. By the chain rule (3.4.5)

d

dt
E (µ(t)) =

Z

M
g
x

((t, x), v(t, x)) dµ(t, x),

for a.e. t > 0, where v(t) is the tangent velocity field for the curve µ(t). The fact that µ( · )
is a curve of maximal slope implies

d

dt
E(µ(t))  �1

2

Z

M
g
x

(v(t, x), v(t, x)) dµ(t, x)� 1

2

Z

M
g
x

((t, x),(t, x)) dµ(t, x). (3.5.4)

Combining with (3.4.5) implies v(t, x) = �(t, x) for a.e. t > 0. Also since @oE(µ(t)) =

�(t, x), (3.1.13) is true. Togather with the fact that E(µ)( · ) is locally absolutely contin-

uous by (3.4.8), we integrate to get (3.1.14). The characterization of the subdi↵erential of
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E of Theorem 3.3.4 implies that µ(t) is a gradient flow of E . Then by Lemma 3.5.1, µ( · ) is
a weak measure solution to (3.1.5) with initial data µ

0

.

We now focus on proving Theorem 3.1.4, that is that �-convexity of E implies the

stability of the gradient flow. We first establish the following lemma:

Lemma 3.5.3. Let µ(t) be a locally absolutely continuous curve in P
2

(M) with tangent

velocity v, then for a.e. t > 0,

1

2

d

dt
d2
W

(µ(t), ⌫) = �
Z

M⇥M
g
x

(v(t, x), T (x, y)) d�
t

(x, y), (3.5.5)

for any fixed ⌫ 2 P
2

(M) and �
t

2 �
o

(µ(t), ⌫) an optimal plan.

Proof of Lemma. We first notice that the function t 7! d2
W

(µ(t), ⌫) is di↵erentiable for a.e.

t > 0 since t 7! µ(t) is locally absolutely continuous in (P
2

(M), d
W

). In the rest of the

proof, we assume that we are working on t > 0 such that the function s 7! 1

2

d2
W

(µ(s), ⌫) is

di↵erentiable at t. In the case v is locally Lipschitz in space and M has no boundary then

using the flow map with velocity field v, similar arguments as in [115, 45] imply (3.5.5).

However, in our case, we need to deal with the fact that since v is not continuous the flow

map is not readily available and furthermore that a geodesic in direction v may not exist

at the boundary. We divide the proof into two steps.

Step 1. Consider the case that µ(t), ⌫ have compact support for all t > 0. To show (3.5.5)

we modify the arguments of Theorem 8.4.7 from [5]. An issue is that, as in the proof

of Theorem 3.3.4, there may exist x 2 @M such that there exists no t > 0 for which

exp
x

(tv(x)) 2 M exists. To deal with this problem we use the following approximations.

For h 2 R with |h| small, define

v
h

(t, x) =

8

>

>

>

<

>

>

>

:

v(t, x), if x 2 B( 1

|h|) \M|h|

v(t, x)� hn(x), if x 2 B( 1

|h|) \ @M

0, otherwise.

It is direct to check that v
h

converges to v in L2(g, µ(t)). For fixed h 2 R, same ar-

gument as in the proof of Theorem 3.3.4 shows that there exists C(h) > 0 such that

exp
x

(thv
h

(t, x)) exists for all 0  t  C(h) and x 2 M. Thus there exists a function f such

that lim
h!0

f(h) = 0 and exp
x

(hv
f(h)

(t, x)) 2 M for all x 2 M. We claim that for a.e.

t > 0

lim
h!0

d2
W

⇣

�

exp
�

hv
f(h)

��

]

µ(t), µ(t+ h)
⌘

h2
= 0. (3.5.6)
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Indeed, if the claim is true, then for a.e. t > 0, we know that d2
W

(µ(t), ⌫) is di↵erentiable

and

d

dt
d2
W

(µ(t), ⌫) = lim
h!0

d2
W

(µ(t+ h), ⌫)� d2
W

(µ(t), ⌫)

h

= lim
h!0

d2
W

⇣

�

exp(hv
f(h)

)
�

]

µ(t), ⌫
⌘

� d2
W

(µ(t), ⌫)

h
.

Since (exp(hv
f(h)

), id)
]

�
t

2 �
�

exp(hv
f(h)

)
]

µ(t), ⌫
�

, we get

d2
W

⇣

�

exp(hv
f(h)

)
�

]

µ(t), ⌫
⌘


Z

M⇥M
dist2

�

exp
x

(hv
f(h)

(t, x)), y
�

d�
t

(x, y).

Recall that by the first variation formula, for any x, y 2 M, denote

D(x, y) =
�

v 2 T
x

M : exp
x

(tv) 2 M 8t 2 [0, 1], exp
x

(v) = y, g
x

(v, v) = dist2(x, y)
 

,

(3.5.7)

then

lim
h!0

+

dist2(exp
x

(h⇠), y)� dist2(x, y)

h
= min {�2g

x

(⇠, v) : v 2 D(x, y)} .

So taking h ! 0+ and using the Lebesgue’s dominated convergence theorem yields

d+

dt
d2
W

(µ(t), ⌫)  lim
h!0

+

1

h

Z

M⇥M

�

dist2
�

exp
x

(hv
f(h)

(t, x)), y
�

� dist2(x, y)
�

d�
t

(x, y)

 �2

Z

M⇥M
g
x

(v(t, x), T (x, y)) d�
t

(x, y).

Similarly, taking h ! 0� gives

d�

dt
d2
W

(µ(t), ⌫) � �2

Z

M⇥M
g
x

(v(t, x), T (x, y)) d�
t

(x, y).

Thus we have

1

2

d

dt
d2
W

(µ(t), ⌫) = �
Z

M⇥M
g
x

(v(t, x), T (x, y)) d�
t

(x, y),

for a.e. t > 0.

We now prove the claim. It is enough to show that

lim
h!0

Z

M⇥M

1

h2
dist2

�

exp
x

(hv
f(h)

(t, x)), y
�

d�h
t

(x, y) = 0 (3.5.8)

where �h
t

2 �
o

(µ(t), µ(t+ h)). Since µ(t) has compact support for all t > 0, we only need

to show (3.5.8) for compact subsets of M, i.e., to show

lim
h!0

Z

K⇥K

1

h2
dist2

�

exp
x

(hv
f(h)

(t, x)), y
�

d�h
t

(x, y) = 0
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for any compact subset K b M. On K, we have that the sectional curvature is bounded

from below say by �k, then by rescaling, we may assume the constant for the lower bounded

of sectional curvature is �1. By the comparison theorem, refer to [94] Theorem 79, we have

cosh
⇥

dist(exp
x

(hv
f(h)

(t, x)), y)
⇤

 cosh [dist(x, y)] cosh
⇥

h|v
f(h)

(t, x)|
g

⇤

� sinh [dist(x, y)] sinh
⇥

h|v
f(h)

(t, x)|
g

⇤

cos↵,

where ↵ is angle between v
f(h)

(t, x) and T (x, y), i.e., cos↵ =
g

x

(v
f(h)(t,x),T (x,y))

dist(x,y)|v
f(h)(t,x)|g

. Note that

cosh [z] = 1 +
1

2
z2 +O(z4)

and

sinh [z] = z +O(z3).

Expanding cosh, sinh in the comparison formula, we have

1 +
1

2
dist2

�

exp
x

(hv
f(h)

(t, x)), y
�

 cosh
⇥

dist(exp
x

(hv
f(h)

(t, x)), y)
⇤

 1 +
1

2
dist2(x, y) +

1

2
h2|v

f(h)

(t, x)|2
g

� h dist(x, y)|v
f(h)

(t, x)|
g

cos↵

+O(h3) +O(dist3(x, y)).

Thus

lim
h!0

Z

K⇥K

1

h2
dist2

�

exp
x

(hv
f(h)

(t, x)), y
�

d�h
t

(x, y)

 lim
h!0

Z

K⇥K

✓

1

h2
dist2(x, y)� 2

h
dist(x, y)|v

f(h)

(t, x)|
g

cos↵+ |v
f(h)

(t, x)|2
g

+ o(h)

◆

d�h
t

(x, y)

= lim
h!0

Z

K⇥K

✓

1

h2
dist2(x, y)� 2g

x

✓

T (x, y)

h
, v

f(h)

(t, x)

◆

+ |v
f(h)

(t, x)|2
g

◆

d�h
t

(x, y)

= lim
h!0

Z

K⇥K

g
x

✓

T (x, y)

h
� v

f(h)

(t, x),
T (x, y)

h
� v

f(h)

(t, x)

◆

d�h
t

(x, y) = 0.

Step 2. (3.5.5) holds for general µ(t), ⌫ 2 P
2

(M). To show that, we need to perform the

same approximation as in the proof of Theorem 23.9 from [115], which requires that notion

of dynamical coupling, refer to [115]. Here we sketch the approximation and argument,

let A
k

= {� : sup
t

dist(z, �(t))  k}, where � is a random curve � : [0, 1] ! M and e
t

is the evaluation map e
t

(�) = �(t). Define µk(t) = (e
t

)
]

⇧
k

where ⇧
k

(d�) =
�

�2A

k

⇧(d�)

⇧(A

k

)
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and ⇧ is a probability measure on the action minimizing curves. Denote Z
k

= ⇧(A
k

) then

Z
k

" 1, Z
k

µk(t) " µ(t) as k ! 1. For each k µk solves

@µk(t)

@t
+ div(µk(t)v(t)) = 0, (3.5.9)

and µn(t) has compact support in B(z, k). So by Step 1,

1

2

d

dt
d2
W

⇣

µk(t), ⌫k
⌘

= �
Z

M⇥M
g
x

(v(t, x), T (x, y)) d�k
t

(x, y).

Since d2
W

(µk(t), ⌫k) is locally absolutely continuous, integrating gives

d2
W

�

µk(t), ⌫k
�

2
=

d2
W

�

µk(0), ⌫k
�

2
�
Z

t

0

Z

M⇥M
g
x

(v(s, x), T (x, y)) d�k
s

(x, y)ds. (3.5.10)

We only need to take k ! 1. By the proof of Theorem 23.9 from [115], d
W

�

µk(t), µ(t)
�

= 0

and we only need to check

lim
k!1

Z

t

0

Z

M⇥M
g
x

(v(s, x), T (x, y)) d�k
s

(x, y)ds =

Z

t

0

Z

M⇥M
g
x

(v(s, x), T (x, y)) d�
s

(x, y)ds.

Notice that
�

�

�

�

Z

M⇥M
g
x

(v(s, x), T (x, y)) d�k
s

(x, y)

�

�

�

�


✓

Z

M⇥M
dist2(x, y)d�k

s

(x, y)

◆

1
2
✓

Z

M⇥M
g
x

(v(s, x), v(s, x)) d�k
s

(x, y)

◆

1
2

 d
W

⇣

µk(s), ⌫k
⌘

✓

1

Z
k

Z

M
g
x

(v(s, x), v(s, x)) dµk(s, x)

◆

1
2

 C

✓

Z

M
g
x

(v(s, x), v(s, x)) dµ(s, x)

◆

1
2

,

and
R

M g
x

(v(s, x), v(s, x)) dµ(s, x) 2 L1([0, t]). It is then su�cient to prove that for a.e.

s 2 (0, t)
Z

M⇥M
g
x

(v(s, x), T (x, y)) d�k
s

(x, y) !
Z

M⇥M
g
x

(v(x, s), T (x, y)) d�
s

(x, y). (3.5.11)

Since
Z

M⇥M
|g

x

(v(s, x), T (x, y))| d
�

�

�

�k
s

� �
s

�

�

�

(x, y)


✓

Z

M⇥M
g
x

(v(s, x), v(s, x)) d
�

�

�

�k
s

� �
s

�

�

�

(x, y)

◆

1
2
✓

Z

M⇥M
dist2(x, y)d

�

�

�

�k
s

� �
s

�

�

�

(x, y)

◆

1
2

 Cd
W

(µ(s), ⌫)

✓

Z

M
g
x

(v(s, x), v(s, x)) d
�

�

�

µk(s)� µ(s)
�

�

�

(x)

◆

1
2

,
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and
Z

M
g
x

(v(s, x), v(s, x)) d
�

�

�

µk(s)� µ(s)
�

�

�

(x)

 (Z�1

k

� 1)

Z

M
g
x

(v(s, x), v(s, x)) dµ(s, x)

+ Z�1

k

Z

M
g
x

(v(s, x), v(s, x)) d
�

�

�

Z
k

µk(s)� µ(s)
�

�

�

(x)

 (Z�1

k

� 1)

Z

M
g
x

(v(s, x), v(s, x)) dµ(s, x) + Z�1

k

Z

e

s

(S)\e
s

(A

k

)

g
x

(v(s, x), v(s, x)) dµ(s, x)

 (Z�1

k

� 1)

Z

M
g
x

(v(s, x), v(s, x)) dµ(s, x) + Z�1

k

Z

S\A
k

g
�(s)

(v(s, �(s)), v(s, �(s)) d⇧(�),

we know

lim
k!1

Z

M⇥M
|g

x

(v(s, x), T (x, y))| d
�

�

�

�k
s

� �
s

�

�

�

(x, y) = 0.

Thus (3.5.11) holds true. Take k ! 1 in (3.5.10) then gives (3.5.5).

We now prove Theorem 3.1.4.

Proof of Theorem 3.1.4. Let 1 2 @oE(µ1(t)), 2 2 @oE(µ2(t)) be the minimal subdi↵eren-

tials and v1, v2 be the tangent velocities of the absolutely continuous curves µ1( · ), µ2( · )
respectively. Also denote by �

t

, �̃
t

2 �
o

�

µ1(t), µ2(t)
�

optimal transportation plans between

µ1(t) and µ2(t) such that the subdi↵erential property hold for µ1(t) and µ2(t) with respect

to �
t

and �̃
t

respectively, i.e.

E
�

µ2(t)
�

� E
�

µ1(t)
�

+

Z

M⇥M
g
�

1(t, x), T (x, y)
�

d�
t

(x, y) + �d2
W

�

µ1(t), µ2(t)
�

, (3.5.12)

and

E
�

µ1(t)
�

� E
�

µ2(t)
�

+

Z

M⇥M
g
�

2(t, y), T (y, x)
�

d�̃
t

(x, y) + �d2
W

�

µ1(t), µ2(t)
�

. (3.5.13)

By Lemma 4.3.4 from [5] and Lemma 3.5.3 we have

d

dt
d2
W

�

µ1(t), µ2(t)
�

 �2

Z

M⇥M
g
�

v1(t, x), T (x, y)
�

d�
t

(x, y) + g
�

v2(t, y), T (y, x)
�

d�̃
t

(x, y)

= 2

Z

M⇥M
g
�

1(t, x), T (x, y)
�

d�(x, y) + g
�

2(t, y), T (y, x)
�

d�̃
t

(x, y)

 �4�d2
W

�

µ1(t), µ2(t)
�

.

We can use Gronwall’s inequality to get,

d
W

�

µ1(t), µ2(t)
�

 e�2�td
W

�

µ1

0

, µ2

0

�

.
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(3.1.15) is proved.

Now we turn to the relationship between gradient flow and system of evolution variational

inequalities. If µ( · ) is a gradient flow with respect to E , by Lemma 3.5.3

1

2

d

dt
d2
W

(µ(t), ⌫) = �
Z

M⇥M
g
x

(v(t, x), T (x, y)) d�
t

(x, y)

=

Z

M⇥M
g
x

((t, x), T (x, y)) d�
t

(x, y)

 E(⌫)� E (µ(t))� �d2
W

(µ(t), ⌫) ,

for a.e. t > 0 and �
t

2 �
o

(µ(t), ⌫), which implies the system of evolution variational

inequalities.

If µ( · ) satisfies the system of evolution variational inequalities (3.1.16), then

1

2

d

dt
d2
W

(µ(t), ⌫) = �
Z

M⇥M
g
x

(v(t, x), T (x, y)) d�
t

(x, y)

 E(⌫)� E(µ(t))� �d2
W

(µ(t), ⌫).

By the definition of subdi↵erential of E , we know that v(t) 2 �@E (µ(t)) for a.e. t > 0, and

thus µ( · ) is a gradient flow with respect to E .
Thus gradient flow is characterized by the system of evolution variational inequalities.

3.6 �-geodesic convexity of E

In this Section, we present the details on obtaining conditions on g,W, V to guarantee

�-geodesic convexity of W,V and thus E . We also give some examples of Riemannian

manifolds (M, g), on which we derive explicit conditions on W,V for E to be �-geodesically

convex. In particular we consider examples which explore how far can the conditions for

�-convexity be extended. Let us also mention that the general conditions when only the

external potential, V , is present follow from the work of Sturm [101], who studied them

together with internal energy.

We first show that conditions (NL2) and (NL5) imply the geodesic (semi-)convexity of

W and V respectively. For any µ, ⌫ 2 P
2

(M) and µ(t) a constant speed geodesic connecting

them,

µ(t) = (�
t

)
]

⇡ for some ⇡ 2 �
o

(µ, ⌫),

where for any x, y 2 M, �
t

is some constant speed minimal geodesic on M connecting them,
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see [39] and reference therein for details. Then by (NL2)

W(µ(t)) =
1

2

Z

M⇥M
W (x� y)dµ(t, x)dµ(t, y)

=
1

2

Z

M⇥M

Z

M⇥M
W (�

t

(x, z)� �
t

(y, w))d⇡(x, z)d⇡(y, w)

 1

2

Z

M⇥M

Z

M⇥M

✓

(1� t)W (x� y) + tW (z � w)

� �

2
t(1� t) dist2((x, y), (z, w))

◆

d⇡(x, z)d⇡(y, w)

= (1� t)W(µ) + tW(⌫)� �

2
t(1� t)d2

W

(µ, ⌫).

Similarly for V, by (NL5)

V(µ(t))  (1� t)V(µ) + tV(⌫)� �

2
t(1� t)d2

W

(µ, ⌫).

ThusW is 2�-geodesically convex, V is �-geodesically convex and E is 2�-geodesically convex

(i.e. E is geodesically (semi-)convex with convexity constant 2�).

We now turn to more detailed investigation of conditions for geodesic convexity. By

Proposition 9.1.3 of [5] it is su�cient to verify the convexity along geodesics starting at

absolutely continuous measure, µ. We derive the general formula of d

2

dt

2E (µ(t)) for µ(t)

geodesics in P
2

(M) with µ(0) = µ. By [82, 39, 115], we know that geodesics starting from

µ in P
2

(M) are of the form

µ(t) = (F
t

)
]

µ

where F
t

(x) = exp
x

(tr�) is the geodesic on M. We write x
t

= F
t

(x), for simplicity. By

definition of push forward of measures and recalling w(x, y) = W (x� y),

E (µ(t)) = W (µ(t)) + V (µ(t)) =
1

2

Z

M⇥M
w(x

t

, y
t

)dµ(x)dµ(y) +

Z

M
V (x

t

)dµ(x). (3.6.1)

Since x
t

and y
t

are geodesics on M, (x
t

, y
t

) is a geodesic on the product manifold M⇥M.

When W,V are twice di↵erentiable direct computation shows:

d2

dt2
E (µ(t)) =

Z

M
HessM V (x

t

)(ẋ
t

, ẋ
t

)dµ(x) (3.6.2)

+
1

2

Z

M⇥M
HessM⇥Mw(x

t

, y
t

)(ẋ
t

, ẏ
t

)(ẋ
t

, ẏ
t

)dµ(x)dµ(y)

where HessM,HessM⇥M are Hessian on (M, g) and (M⇥M, g⇥g). So to verify convexity

it su�ces to show that there exists � 2 R such that for all vector fields ẋ
t

as above that

d2

dt2
E (µ(t)) � �

Z

M
g
x(t)

(ẋ
t

, ẋ
t

)dµ(x).
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So in general, �-geodesic convexity of V on (M, g) and w on (M ⇥ M, g ⇥ g) implies �-

geodesic convexity of E . Actually, by [101], the potential energy V is �-geodesic convex if

and only if HessM V � �g. Since M is a subset of Rd and w(x, y) = W (x � y), we can

expand d

2

dt

2E (µ(t)) in local coordinates,

d2

dt2
E (µ(t)) =

1

2

Z

M⇥M

⇣

HessW (x
t

, y
t

) (ẋ
t

, ẏ
t

) (ẋ
t

, ẏ
t

)

+
X

k,i,j

@W

@z
k

(x
t

� y
t

)
⇣

��k

ij

(x
t

)(ẋ
t

)
i

(ẋ
t

)
j

+ �k

ij

(y
t

)(ẏ
t

)
i

(ẏ
t

)
j

⌘⌘

dµ(x)dµ(y)

(3.6.3)

+

Z

M

⇣

HessV (x
t

) (ẋ
t

, ẏ
t

) +
X

k,i,j

@V

@z
k

(x
t

)(�1)�k

ij

(x
t

)(ẋ
t

)
i

(ẋ
t

)
j

⌘

dµ(x),

where �k

ij

are the Christo↵el symbols on (M, g). This verifies the simple conditions we give

in Section 3.1. Indeed, HessM V
ij

= HessV
ij

� @V

@z

k

�k

ij

and �k

ij

= 1

2

A
km

⇣

@G

mi

@x

j

+ @G

mj

@x

i

� @G

ij

@x

m

⌘

,

the formula (3.6.3) allows us to conclude:

• If (M, g) is geodesically convex and compact with G 2 C1(M), then any V 2
C2(M) is �-geodesically convex and W 2 C2(Rd) is �-geodesically convex. Indeed,

HessV
ij

,rV and �k

ij

are bounded on M, so HessM V � CI
d

� C̃G for all x 2 M.

• If g is C1 bounded from below with bounded first derivative, and V 2 C2(M) with

bounded first and second derivative, then V is �-geodesically convex on (M, g).

• If g is C1 bounded from below and V 2 C2(M) with HessV � cI
d

such that �k

ij

@V

@z

k

is bounded from above on M, then V is �-geodesically convex.

One obtains similar conditions on W :

• If g is C1 bounded from below with bounded first derivative, and W 2 C2(M) with

bounded first and second derivative, then w(x, y) = W (x�y) is �-geodesically convex

on (M⇥M, g ⇥ g).

• If (M, g) is geodesically convex and compact with g 2 C1(M), then for any W twice

di↵erentiable with HessW (y) � �cI
d

for all y 2 M �M = {x1 � x2 : x1 2 M, x2 2
M} and some constant c > 0. Note that sinceM is compact, g 2 C1(M) andW twice

di↵erentiable imply there exist constants c
1

> 0, c
2

> 0 such that c
1

I
d

 G(x)  1

c1
I
d

,

| @

@x

k

G
ij

|  1

c1
and |rW (y)|  c

2

for all x 2 M and y 2 M�M, w is �-geodesically

convex on (M⇥M, g⇥ g). In particular, for any W 2 C2(Rd), w(x, y) = W (x� y) is

�-geodesically convex on (M⇥M, g⇥ g) for (M, g) geodesically convex and compact

with g 2 C1(M).
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Note that the coupling between rW and �k

ij

is of the form @W

@z

k

(x� y)�k

ij

(x), so we do not

have the same conditions as the second item for the �-geodesic convexity of V . This coupling

prevents us from getting some simple conditions of W, g to ensure �-geodesic convexity of

W , even in the 1-D case. It is more transparent in the 1-D examples of W , Example 3.6.3.

We now investigate conditions on V,W . Let us first focus on potential V :

Example 3.6.1. Consider d = 1 and (M, g) = (R1

+

, g(x)), then conditions for �-geodesic

convexity of V is

V 00(x)� g0(x)

2g(x)
V 0(x) � �g(x). (3.6.4)

• g(x) = xp for some p < 0, then V (x) = V
0

+
R

x

1

y
p

2U(y)dy is �-geodesically convex if

U 2 C1(R1

+

) with x�
p

2U 0(x) � C for all x > 0 and some constant C. Moreover, V is

geodesically convex if U 0(x) � 0 for all x > 0. In particular, it is straightforward to

check V (x) = xq for q � max{0, p
2

+ 1} or q  min{0, p
2

+ 1} is geodesically convex.

Indeed, (3.6.4) becomes

V 00(x)� p

2x
V 0(x) � �xp,

which is
⇣

x�
p

2V 0(x)
⌘0

� �x
p

2

for x > 0. Since U(x) = x�
p

2V 0(x), the last condition becomes U 0(x) � �x
p

2 . So for

any U 2 C1

�

R1

+

�

with x�
p

2U 0(x) � C for some constant C, V (x) = V
0

+
R

x

1

y
p

2U(y)dy

is �-geodesically convex on (M, g). If U 0(x) � 0, then V is geodesically convex on

(M, g).

• g(x) = e
p

x for some p > 0, then V = V
0

+
R

x

1

e
p

2yU(y)dy is �-geodesically convex on

(M, g), if U 2 C1

�

R1

+

�

with e�
p

2xU 0(x) � C for all x > 0 and some constant C.

If U 0(x) � 0 for all x > 0, then V is geodesically convex on (M, g). In particular,

V (x) = xq is geodesically convex for q � 1 and �-geodesically convex for q < 1.

Similarly to the above case , the di↵erential inequality (3.6.4) becomes

V 00(x) +
p

2x2
V 0(x) � �e

p

x ,

which implies
⇣

e�
p

2xV 0(x)
⌘0

� �e
p

2x ,

for all x > 0. Take U(x) = e�
p

2xV 0(x), we have U 0(x) � �e
p

2x and V (x) = V
0

+
R

x

1

e
p

2xU(y)dy. Notice that for any U 2 C1 (R
+

) with U 0(x) � C for some constant C,

we have there exists � 2 R such that U 0(x) � �e
p

2x since e
p

2x is bounded from below.

And if U 0(x) � 0 we can take � = 0. So for any U 2 C1(R
+

), such that U 0 is bounded

from below, then V (x) = V (0) +
R

x

0

e
p

2yU(y)dy is �-geodesically convex on (M, g).
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Example 3.6.2. Consider the upper half space, Rd�1⇥ [0,1) endowed with a Riemannian

metric given by

G(x) =

"

g(x
d

)I
d�1

0

0 1

#

.

Then

�k

ij

=

8

>

>

>

<

>

>

>

:

1

2

g�1(x
d

)g0(x
d

) if {i, j} = {k, d}, k < d,

�1

2

g0(x
d

) if i = j < d, k = d,

0 otherwise.

(3.6.5)

Let M be a compact, geodesically convex subset of Rd

+

with C1 boundary. For any V 2
C2(Rd

+

),W 2 C2(Rd), V,w are �-geodesically convex on (M, g) and (M⇥M, g ⇥ g).

Consider now d = 2 and g(x
2

) = xp
2

with p < 0. For simplicity, we assume that M
contains portion of x

2

= 0. We note that the metric is degenerate. Nevertheless investigate

if V (x) = |x|2 should be �-convex in some generalized sense. Direct computation shows

HessM V (x) =

"

2 + pxp
2

�px
1

x�1

2

�px
1

x�1

2

2

#

.

For V to be �-convex it is necessary that

2 � �,

(2� �) (2 + (p� �)xp
2

)� p2x2
1

x�2

2

� 0.

By taking x
2

! 0+ shows that no � 2 R can satisfy these conditions.

In general the conditions for the �-geodesic convexity of V and w are rather restrictive,

as claimed in Remark 3.1.1. The next example illustrates why.

Example 3.6.3. Take (M, g) to be (R, g). Then the �-geodesic convexity condition for

w(x, y) = W (x� y) is
"

W 00(x� y)� 1

2

W 0(x� y)g�1(x)g0(x) �W 00(x� y)

�W 00(x� y) W 00(x� y) + 1

2

W 0(x� y)g�1(y)g0(y)

#

� �

"

g(x) 0

0 g(y)

#

.

In particular it is necessary that for all x, y 2 R

W 00(x� y)� 1

2
W 0(x� y)g�1(x)g0(x) � �g(x).

One should contrast this condition with condition (3.6.4) for potential V . In particular the

condition above shows the presence of long-range e↵ects which make it hard for the condition

to be satisfied. For example, if W (z) = z2, and g(z) = 2 + sin(z)

1+z

2 then the condition above

becomes

2� (x� y)
(1 + x2) cos(x)� 2x sin(x)

2(1 + x2) + sinx
� �g(x)
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taking x such that the term next to (x � y) is negative and then taking y ! 1 shows that

there is no � for which the condition is satisfied.

Nevertheless a usable su�cient condition for w(x, y) = W (x�y) to be �-convexity can be

found. For example W 2 C2(R), with W even, W 0,W 00 bounded, g 2 C1(R) with g � C > 0

and g0 bounded su�ces.

3.7 Numerical simulations

In this Section, we study rolling swarms from (3.1.5) and show some numerical simulations

giving rolling swarms in heterogeneous environments with boundaries.

The rolling motion is an interesting phenomenon observed in real locust swarms, where

locusts at the front of the swarm fly downward and those at the back fly upward while all

of them are moving forward in pursuit of food. The mathematical models and numerical

simulations of rolling locust swarms have been investigated in [13, 107, 110]. In particular,

in [13] Berno↵ and Topaz introduced a model and performed numerical simulations on

the upper half plane R2

+

showing the existence of rolling swarms by imposing that on the

boundary, the horizontal velocity is zero.

We observe that, unlike in homogeneous environments, rolling swarms often emerge in

heterogeneous environments. Here we consider the simple heterogeneous environments with

stratified mobility

A(x) =

"

x2
2

0

0 1

#

for x = (x
1

, x
2

) on R2

+

. We use radially symmetric, repulsive-attractive interaction forces

as used in [70],

F (r) = tanh[(1� r)a] + b; 0 < a; � tanh(a) < b < 1.

With external potential V and equal mass 1

N

for every agent, the dynamics become

ẋi(t) =
1

N

N

X

j 6=i

F (|xi(t)� xj(t)|) xi(t)� xj(t)

|xi(t)� xj(t)| �rV (xi(t)), 8i 2 {1, . . . , N}.

In our simulations, we take the number of agents N to be 200; we put the external force to

move agents to the left; we either use rV = (0.1, 0) (without gravity) or rV = (0.1, 0.005)

(with gravity); we take random initial data from the upper half plane. We perform numerical

simulations with di↵erent parameters a, b in the interaction force F , it turns out that for a

large range of a, b, rolling swarms emerge naturally (with or without gravity). Depending on

the strength of interaction potential, external force and the mobility, numerical simulations

show various rolling patterns such as rolling with 1-dimensional support and rolling swarms
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with 2-dimensional support. With gravity, and appropriate scaling between interaction and

external force, the rolling swarm has a bubble shape with some portion of agents on the

ground (boundary of the domain) and another portion in the air, as desired in locust swarm,

see [13] and references therein.

Here we present some results of the numerical simulations of the dynamics for a = 5,

b = �0.3,�0.1, 0.1, 0.3, and with or without gravity at t = 100.

rV = (0.1, 0.005) rV = (0.1, 0)

a = 5, b = �0.3
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In the figures, the black points and red arrows are positions and velocities of the agents.

We can observe from the simulations that, rolling swarms emerge natural from simulations;

with the presence of gravity, the swarms have a portion of agents on the boundary (ground)

forming a bubble shape; as b increases, the shape of the swarms change from rolling rings

(with 1-dimensional support) to rolling swarms with 2-dimensional support.
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Chapter 4

Nonlocal interaction equations in

heterogeneous environments with

boundaries: compactly supported

initial data case

We devote this Chapter to the well-posedness of nonlocal interaction equations in hetero-

geneous environments with boundaries given that the initial data µ
0

has compact support,

i.e., supp(µ
0

) b M. The motivation is that, it turns out that for mildly heterogeneous

environments, even some natural interaction potentials (for example W (x) = 1

2

|x|2) are not
globally geodesically (semi-)convex, thus we cannot use our previous general well-posedness

results established in Chapter 3. However, in many applications from biology, the initial

distributions µ
0

of biological agents have compact support. In this case, we develop gradient

flow theory that applies to a much wider class of interaction potentials (with only weaker,

local conditions imposed). The strategy is to control the growth of support of the discrete

solutions from JKO scheme, thus weaker, local conditions on interaction potential still im-

ply the well-posedness of the nonlocal interaction equations. We are using the notations

developed in the previous Chapter 3 and following our paper [118] in this Chapter.

Main assumptions and results.

In the rest of this Chapter, we assume that µ
0

has compact support, i.e., supp(µ
0

) b M.

For M a d-dimensional subset in Rd with C2 boundary, we still assume:

(M1) The Riemannian metric g is C2 and satisfies |⇠|2
g

� ⇤|⇠|2 for some constant ⇤ > 0 and

all ⇠ 2 TM.
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(M2) (M, g) is geodesically convex in that for all x, y 2 M there exists a length minimizing

geodesic contained in M.

On the interaction and external potentials W,V , we make the following assumptions:

(LNL1) W (0) = 0 and W is symmetric: W (x) = W (�x).

(LNL2) W 2 C2(Rd) is semi-convex on Rd with respect to the Euclidean metric (with semi-

convexity constant ⇥ 2 R) and rW has the linear growth condition |rW (x)| 
C(1 + dist(x, x

0

)) for some constant C � 0.

(LNL3) lim inf
dist((x,y),(x0,x0))!1

W (x� y)

dist2(x, x
0

) + dist2(y, x
0

)
� 0.

(LNL4) V 2 C2(M) is semi-convex on M with respect to the Euclidean metric (with semi-

convexity constant ⇥ 2 R) and rV has the linear growth condition |rV (x)|  C(1+

dist(x, x
0

)) for all x 2 M.

(LNL5) lim inf
dist(x,x0)!1

V (x)

dist2(x, x
0

)
� 0.

Remark 4.0.1. About (LNL2) and (LNL3), both Lemma 4.1.3, Theorem 4.1.4 and The-

orem 4.1.8 still work for the case when (LNL2) and (LNL3) are replaced by the following

repulsive-attractive condition: W (x) = w(|x|) with w 2 C2 ((0,1)) satisfying that there

exists constants R
a

> 0, C
W

> 0, such that w0(r) � 0 for r > R
a

and w0(r) � �C
W

for

0 < r < R
a

.

Thus we still have existence of weak measure solutions for such W , i.e., Theorem 4.0.3

holds for such W .

For such potentials W,V and Riemannian manifold (M, g), we still want to show (3.1.5)

as a gradient flow of E in space of probability measures endowed with the Riemannian

Wasserstein metric, refer to Remark 4.0.2.

Remark 4.0.2. In Chapter 3, when W,V are geodesically convex on (M⇥M, g ⇥ g) and

(M, g), for any initial data µ
0

2 P
2

(M), we obtain the existence and stability of gradient

flows of E in (P
2

(M), d
W

). Then we also prove that the gradient flows are weak measure

solutions to (3.1.5) and satisfies the system of evolution variational inequalities. In this

Chapter we show that under weaker conditions on W,V , namely only locally �-geodesic

convexity of W,V implies the existence of weak measure solutions to (3.1.5) given that the

initial data µ
0

has compact support, i.e. supp(µ
0

) b M. We also get the stability of

weak measure solutions with specific support growth conditions. Note that in general, the

�-geodesic convexity of W,V can be di�cult to check, refer to Section 3.6. However, the

local �-geodesic convexity is implied by the smoothness conditions of W,V see Proposition
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4.1.7. The weak measure solution we get is not necessarily a gradient flow, in the sense

that the tangent velocity v(t) of the absolutely continuous curve µ( · ) only satisfies the local

slope definition

E(⌫)� E(µ(t)) �
Z

M⇥M
g
x

(�v(t, x), T (x, y)) d�
t

(x, y) + o (d
W

(µ(t), ⌫)) (4.0.1)

for ⌫ 2 P
2

(M) with compact support and �
t

2 �
o

(µ(t), ⌫) an optimal plan. Refer to Section

3.3 for the definitions of T (x, y) and local slope, and Section 3.5 for the definitions of

tangent velocity and gradient flow. The advantage is the that we still get the desired energy

dissipation (4.0.3) for the weak measure solution even though it is possibly not a gradient

flow.

The main result in this Chapter is the following theorem about existence and stability

for weak measure solutions for initial data with compact support.

Theorem 4.0.3. Given that (M1)-(M2), (LNL1)-(LNL5) hold and supp(µ
0

) is compact,

i.e., supp(µ
0

) b M, then there exists a weak measure solution µ( · ) to (3.1.5) satisfying for

a.e. t > 0

|µ0|2(t) =
Z

M
g
x

((t, x),(t, x)) dµ(t, x), (4.0.2)

and the following energy dissipation equality, for any 0  s < t < 1

E (µ(s)) = E (µ(t)) +

Z

t

s

Z

M
g
x

((r, x),(r, x)) dµ(r, x)dr, (4.0.3)

where (t, x) = �P
x

(�A(x) (rW ⇤ µ(t)(x) +rV (x))). Moreover, if we have two such so-

lutions µi( · ) with initial data µi

0

satisfying for i = 1, 2, supp(µi

0

) ⇢ B(r
0

) and supp(µi(t)) ⇢
B (r(t)) for all t > 0, then

d
W

�

µ1(t), µ2(t)
�

 exp(��
k

t)d
W

�

µ1

0

, µ2

0

)
�

, (4.0.4)

where �
k

is the geodesic convexity constant of W,V in K
k

� B (2r(t)).

Outline.

Section 4.1 is devoted to the JKO scheme. We show that the discrete scheme is well-posed

and converges to a locally absolutely continuous curve µ( · ) in P
2

(M). We then show

that the support of the limit curve has exponential growth and lower semi-continuity of

kk
L

2
(g,µ)

, which implies the limit curve µ( · ) is a curve of maximal slope with respect to

kk
L

2
(g,µ)

.

In Section 4.2, we establish that the limit curve µ( · ) we get from JKO scheme is actually

a weak measure solutio to (5.0.1) by showing that E(µ( · )) satisfies the desired chain rule.

We then show that local �-convexity of the functional E implies the stability of the weak

measure solutions with growth conditions on supports.
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4.1 Existence and Convergence of JKO scheme

In this Section, we check the topological conditions about the functional E to apply the

general existing theorem in Subsection 2.2.1 to get a curve of maximal slope with respect

to the relaxed local slope |@�E|. We then show the exponential growth of support of the

limit curve µ( · ) and the lower semi-continuity of kk
L

2
(g,µ)

.

Recall from Subsection 2.2.1 and Section 3.4 the notations we use in JKO scheme (3.4.1).

The strategy is to show that there exists a subsequence ⌧
n

! 0, such that µ̃n( · ) = µ
⌧

n

( · )
converges narrowly to a curve of maximal slope µ( · ). We now again check that the topo-

logical conditions (Lower semicontinuity, Coercivity and Compactness) introduced in Sub-

section 2.2.1 and used in Section 3.4 for the general theory to apply still hold true for our

energy functional E in this compactly supported setting.

Notice that by the same arguments as in Proposition 3.2.3 and Proposition 3.2.4 from

Chapter 3 give that E is lower semicontinuous with respect to narrow convergence of proba-

bility measures, thus Lower semicontinuity condition is checked. To check Compactness

condition, note that by Prokhorov’s theorem, any sequence (µ
n

) ⇢ P
2

(M) such that

sup
m,n

d
W

(µ
m

, µ
n

) < 1, µ
n

has a narrowly convergent subsequence. Thus we only need to

check Coercivity, that is, there exists ⌧⇤ > 0 and µ⇤ 2 P
2

(M) such that

inf
µ2P2(M)

⇢

E(µ) + 1

2⌧⇤
d2
W

(µ, µ⇤)

�

> �1.

To show it is true for E , by (LNL3) and (LNL5), for any ✏ > 0 we know W (x � y) +

✏
�

dist2(x, x
0

) + dist2(y, x
0

)
�

> C and V (x)+✏ dist2(x, x
0

) > C for some constant C = C(✏).

So for any fixed ✏ > 0 and x
0

2 M,

E(µ) + 1

2⌧
d2
W

(µ, �
x0)

=
1

2

Z

M⇥M
W (x� y)dµ(x)dµ(y) +

Z

M
V (x)dµ(x) +

1

2⌧

Z

M
dist2(x, x

0

)dµ(x)

�1

2

Z

M⇥M

�

�✏
�

dist2(x, x
0

) + dist2(y, x
0

)
�

+ C
�

dµ(x)dµ(y)

+

Z

M

�

�✏ dist2(x, x
0

) + C
�

dµ(x) +
1

2⌧

Z

M
dist2(x, x

0

)dµ(x)

=
3

2
C +

Z

M

✓

1

2⌧
� 2✏

◆

dist2(x, x
0

)dµ(x).

So for any ⌧ such that 1

2⌧

� 2✏ i.e. ⌧  1

4✏

, we have

inf
µ2P2(M)

⇢

E(µ) + 1

2⌧
d2
W

(µ, �
x0)

�

> �1,

which implies Coercivity condition for E . Thus we again get the following existence and

compactness results by Lemma 2.2.8 and Proposition 2.2.9.
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Lemma 4.1.1 (Existence of the discrete solutions). Suppose (M, g) satisfies assumptions

(M1)-(M2) and W,V satisfy (LNL1)-(LNL5). Then there exists ⌧
0

> 0 depending only on

W such that for all 0 < ⌧ < ⌧
0

and given ⌫ 2 P
2

(M), there exists µ1 2 P
2

(M) such that

E(µ1) +
1

2⌧
d2
W

(⌫, µ1) = inf
µ2P2(M)

n

E(µ) + 1

2⌧
d2
W

(⌫, µ)
o

. (4.1.1)

Proposition 4.1.2 (Compactness). There exist a limit curve µ 2 AC2

loc

([0,1);P
2

(M))

and a sequence ⌧
n

! 0+such that the piecewise constant interpolate µ̃n = µ
⌧

n

defined as in

(3.4.2) satisfies that µ̃n(t) converges narrowly to µ(t) for any t 2 [0,1).

Again the limit curve µ( · ) is a curve of maximal slope with respect to |@�E| defined in

(2.2.20). We also recall the following definition of

G
⌧

(t) =
d
W

�

µn�1

⌧

, µn�1

�

�

�
(4.1.2)

for t = tn�1

⌧

+ � 2 (tn�1

⌧

, tn
⌧

], where µn�1

�

2 argmin
µ2P2(M)

h

d

2
W

(µ,µ

n�1
⌧

)

2�

+ E(µ)
i

. Refer to

(3.2.2) from [5] for the details.

We now get some properties of the minimizer from the JKO scheme (3.4.1), in particular,

the control of the support. Since the support of the initial data µ
0

satisfies supp(µ
0

) ⇢
B

r0(x0) for some x
0

2 M and B
r0(x0) = {x 2 M : dist(x, x

0

)  r
0

}, we now estimate the

support of µ(t) in terms of r
0

and t. Without loss of generality, we assume x
0

= 0 2 M
and denote B

0

(r
0

) by B(r
0

) for short.

Lemma 4.1.3. For 0 < ⌧  ⇤

8⇥

� , we have supp(µ⌧

1

) ⇢ B(r
1

) where

r
1

 r
0

+ C⌧

1� C⌧
, (4.1.3)

for some constant C depending only on W,V and the Riemannian metric g.

Proof. Let r
1

> r
0

, and assume that µ⌧

1

⇣

B(r
1

){
⌘

> 0. We consider the variation of µ⌧

1

defined by

µ̃⌧

1

= µ⌧

1

b
B(r1)

+(⇡
1

)
]

⇣

�bM⇥B(r1)
{

⌘

,

where � 2 �
o

(µ
0

, µ⌧

1

) is an optimal plan between µ
0

and µ⌧

1

. Since µ⌧

1

is a minimizer of the
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JKO scheme,

E (µ⌧

1

) +
1

2⌧
d2
W

(µ⌧

1

, µ
0

)  E (µ̃⌧

1

) +
1

2⌧
d2
W

(µ̃⌧

1

, µ
0

) (4.1.4)

 E (µ⌧

1

) +
1

2⌧
d2
W

(µ⌧

1

, µ
0

)� 1

2⌧

Z

M⇥B(r1)
{
dist2(x, y)d�(x, y)

+

Z

(y,ỹ)2B(r1)
{⇥B(r1)

{
(W (x� x̃)�W (y � ỹ)) d�(x, y)d�(x̃, ỹ)

+ 2

Z

(y,ỹ)2B(r1)
{⇥B(r1)

(W (x� ỹ)�W (y � ỹ)) d�(x, y)dµ⌧

1

(ỹ)

+

Z

M⇥B(r1)
{
(V (x)� V (y)) d�(x, y).

For (x, y) 2
⇣

M⇥B(r
1

){
⌘

\ supp(�),

V (x)� V (y)  C(1 + r
0

)|x� y|� ⇥

2
|x� y|2. (4.1.5)

To see that, since V is ⇥ convex, we know

V (x)� V (y)  hrV (x), x� yi � ⇥

2
|x� y|2

and

|rV (x)|  C(1 + dist(x, x
0

))  C(1 + r
0

)

for x 2 supp(µ
0

). So

V (x)� V (y)  C(1 + r
0

)|x� y|� ⇥

2
|x� y|2

as claimed. Similarly, for W we know:

For (y, ỹ) 2 B(r
1

){ ⇥B(r
1

) and x 2 supp(µ
0

),

W (x� ỹ)�W (y � ỹ)  hrW (x� ỹ), x� yi � ⇥

2
|x� y|2 (4.1.6)

 C(1 + r
0

+ r
1

)|x� y|� ⇥

2
|x� y|2.

For (y, ỹ) 2 B(r
1

){ ⇥B(r
1

){ and x, x̃ 2 supp(µ
0

),

W (x� x̃)�W (y � ỹ)  hrW (x� x̃), x� y � (x̃� ỹ)i � ⇥

2
|x� y � (x̃� ỹ) |2 (4.1.7)

 C(1 + r
0

) (|x� y|+ |x̃� ỹ|)�⇥
�

|x� y|2 + |x̃� ỹ|2
�

.
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Plugging back into (4.1.4) and noticing that r
1

> r
0

, we know for ⌧ > 0 such that ⌧  ⇤

8⇥

�

✓

1

2⌧
+

4⇥

⇤

◆

Z

M⇥B(r1)
{
dist2(x, y)d�(x, y)


Z

M⇥B(r1)
{
C(1 + r

0

+ r
1

)|x� y|d�(x, y)

 C(1 + r
1

)

Z

M⇥B(r1)
{
dist(x, y)d�(x, y)

 C(1 + r
1

)

 

Z

M⇥B(r1)
{
dist2(x, y)d�(x, y)

!

1
2
⇣

µ⌧

1

⇣

B(r
1

){
⌘⌘

1
2
.

Since for any (x, y) 2 supp(�) \
⇣

M⇥B(r
1

){
⌘

⇢ B(r
0

)⇥B(r
1

){, dist(x, y) � r
1

� r
0

,

✓

1

2⌧
+

4⇥

⇤

◆

2

(r
1

� r
0

)2 µ⌧

1

⇣

B(r
1

){
⌘


✓

1

2⌧
+

4⇥

⇤

◆

2

Z

M⇥B(r1)
{
dist2(x, y)d�(x, y)

 C(1 + r
1

)2µ⌧

1

⇣

B(r
1

){
⌘

,

yielding

r
1

 r
0

+ C⌧

1� C⌧
,

for C a constant depending on W,V and g.

So after k iterations we have supp(µ⌧

k

) ⇢ B(r
k

) with

r
k

 r
0

+ 1� (1� C⌧)k

(1� C⌧)k
. (4.1.8)

Fix t > 0 such that (k � 1)⌧ < t  k⌧ , denote k = d t

⌧

e, we have

supp (µ⌧ (t)) = supp (µ⌧

k

) ⇢ B(r
k

)

with r
k

 r0+1�(1�C⌧)

k

(1�C⌧)

k

. By taking ⌧
n

! 0 we have for the limit curve µ(t), supp (µ(t)) ⇢
B (r(t)) with

r(t)  lim
⌧

n

!0

r
0

+ 1� (1� C⌧
n

)d
t

⌧

n

e

(1� C⌧
n

)d
t

⌧

n

e
=

r
0

+ 1� exp(�Ct)

exp(�Ct)
. (4.1.9)

That is, µ( · ) has at most exponential growth of support.

We now show that for any µ 2 P
2

(M) with supp(µ) ⇢ B(r) b M for some r > 0,

denote

(x) = �P
x

✓

�A(x)

✓

Z

M
rW (x� y)dµ(y) +rV (x)

◆◆

,

we have
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Theorem 4.1.4. Assume (M1)-(M2), (LNL1)-(LNL5) hold, then for any µ 2 P
2

(M) with

supp(µ) ⇢ B(r) b M,
Z

M
g
x

((x),(x)) dµ(x)  |@E|2(µ). (4.1.10)

Remark 4.1.5. Since we already know that supp (µ) ⇢ B (r), together with the regularity

assumptions on W and V , we know that  2 L2 (g, µ).

Before proving the theorem, we need the following definition of local �-geodesic convexity

and proposition about the local �-geodesic convexity property of W,V .

Definition 4.1.6. A function f 2 C0(M) is called locally �-geodesically convex if there

exist a sequence of compact subsets {K
n

}
n2N and a sequence of real numbers {�

n

}
n2N such

that K
n

b M, K
n

⇢ K
n+1

,
S

n

K
n

= M and f is �
n

-geodesically convex on K
n

.

We now show that W,V are locally �-geodesically convex.

Proposition 4.1.7. Given that (M1)-(M2) hold true for M and W,V satisfy (LNL1)-

(LNL5), then W is locally �-geodesically convex on M⇥M and V is locally �-geodesically

convex on M.

Proof. For V , fix x
0

2 M consider

B(n) = {x 2 M : dist(x, x
0

)  n} b M.

We know that (HessM V )
ij

(x) = (HessV )
ij

(x) + �k

ij

@V

@x

k

in local coordinates. Since V 2
C2(M) we have that (HessM V )

ij

is uniformly bounded on B(2n), thus HessM V (x) �
�
n

G(x) for all x 2 B(n) some �
n

depending on W,V,G. So V is �
n

-geodesically convex

on B(n), and V is locally �-geodesically convex on M. The proof for W is similar and we

omit it here.

We can now prove the theorem.

Proof of Theorem. We claim that for any ⇠ 2 L2(g, µ) such that there exists t
0

> 0 with

exp
x

(t⇠(x)) 2 M for all 0  t  t
0

and x 2 M and g
x

(⇠(x), ⇠(x))  n,

lim
t!0

+

E
⇣

exp (t⇠)
]

µ
⌘

� E(µ)

t
=

Z

M
g
x

✓

A(x)

✓

Z

M

rW (x� y)dµ(y) +rV (x)

◆

, ⇠(x)

◆

dµ(x).

(4.1.11)

Indeed, note that if x 2 supp (µ) ⇢ B (r) and g
x

(⇠(x), ⇠(x))  n2, then dist2 (x, exp
x

(t⇠(x))) 
t2g

x

(⇠(x), ⇠(x))  n2 for any 0  t  t
0

 1, which implies exp
x

(t⇠(x)) 2 B(r + n) for

any 0  t  t
0

and x 2 supp (µ). Since W,V are locally �-geodesically convex, let � = �
k

be such that B(r + n) ⇢ K
k

where W,V are �-geodesically convex on K
k

⇥ K
k

and K
k
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respectively. Then by the same argument as in Step 2 in the proof of Theorem 3.3.4 from

Chapter 3, we know

lim
t!0

+

E
⇣

exp (t⇠)
]

µ
⌘

� E(µ)

t

= lim
t!0

+

✓

Z

M⇥M

W (exp
x

(t⇠(x))� exp
z

(t⇠(z)))�W (x� z)

2t
dµ(x)dµ(z)

+

Z

M

V (exp
x

(t⇠(x)))� V (x)

t
dµ(x)

◆

=
1

2

Z

M⇥M
hrW (x� z), ⇠(x)� ⇠(z)i+ 2 hrV (x), ⇠(x)i dµ(x)dµ(z)

=

Z

M

⌧

Z

M
rW (x� z)dµ(z) +rV (x), ⇠(x)

�

dµ(x)

=

Z

M

⌧

A(x)

✓

Z

M
rW (x� z)dµ(z) +rV (x)

◆

, G(x)⇠(x)

�

dµ(x)

=

Z

M
g
x

✓

A(x)

✓

Z

M
rW (x� y)dµ(y) +rV (x)

◆

, ⇠(x)

◆

dµ(x).

For n 2 N, fix x
0

2 M define B(n) = {x 2 M : dist(x, x
0

) < n} and M 1
n

= {x 2 M :

dist(x, @M) � 1

n

}. For x 2 @M, denote n(x) the unit outward normal with respect to the

Riemannian metric g. Then define

⇠
n

(x) =

8

>

>

>

<

>

>

>

:

�(x) if x 2 {x : g
x

((x),(x))  n2}
T

B(n)
T

M 1
n

,

�(x)� 1

n

n(x) if x 2 {x : g
x

((x),(x))  n2}
T

B(n)
T

@M,

0 Otherwise.

Note that  is continuous on {x : g
x

((x),(x))  n2}
T

B(n)
T

M 1
n

, thus there exists

t
1

> 0 such that exp
x

(t⇠
n

(x)) 2 M for all x 2 {x : g
x

((x),(x))  n2}
T

B(n)
T

M 1
n

and

0  t  t
1

. Since {x : g
x

((x),(x))  n2}
T

B(n)
T

@M is compact and g
x

(⇠
n

(x), n(x)) 
� 1

n

, so there exists t
2

> 0 such that exp
x

(t⇠
n

(x)) 2 M for all x 2 {x : g
x

((x),(x)) 
n2}

T

B(n)
T

@M. Take t
0

= min{t
1

, t
2

}, then for ⇠
n

, we have g
x

(⇠
n

(x), ⇠
n

(x))  n2 and

exp
x

(t⇠
n

(x)) 2 M for all x 2 M and 0  t  t
0

. It is direct to check that ⇠
n

2 L2(g, µ)

and ⇠
n

! � in L2(g, µ) as n ! 1. Recall that from Lemma 3.3 of [119],

lim sup
t!0

+

d
W

⇣

(exp(t⇠
n

))
]

µ, µ
⌘

t
 k⇠

n

k
L

2
(g,µ)

, (4.1.12)
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where exp(t⇠
n

)(x) = exp
x

(⇠
n

(x)). We get

|@E|(µ)k⇠
n

k
L

2
(g,µ)

� |@E|(µ) lim inf
t!0

+

d
W

⇣

exp (t⇠
n

)
]

µ, µ
⌘

t

� �
Z

M

⌧

A(x)

✓

Z

M
rW (x� z)dµ(z) +rV (x)

◆

, G(x)⇠
n

(x)

�

dµ(x)

= �
Z

M
g
x

✓

A(x)

✓

Z

M
rW (x� z)dµ(z) +rV (x)

◆

, ⇠
n

(x)

◆

dµ(x).

Taking n ! 1 and noting that g
x

(⇠, P ⇠) = g
x

(P ⇠, P ⇠) then yields

|@E|(µ)kk
L

2
(g,µ)

�
Z

M
g
x

((x),(x)) dµ(x).

Thus

kk
L

2
(g,µ)

 |@E|(µ).

We now show the lower semi-continuity of  with respect to the narrow convergence.

Denote

n(x) = �P
x

✓

�A(x)

✓

Z

M
rW (x� y)dµ̃n(y) +rV (x)

◆◆

, (4.1.13)

Theorem 4.1.8. Given that (LNL1)-(LNL5) hold, for a.e. t > 0,

lim inf
n!1

Z

M
|n(t, x)|2 dµ̃n(t, x) �

Z

M
|(t, x)|2 dµ(t, x).

For the proof of the theorem, refer to Theorem 3.4.3 and Proposition 3.4.5 in Chapter

3. We now give the main result of this Section regarding the existence of curves of maximal

slope with respect to kk
L

2
(g,µ)

.

Theorem 4.1.9. Suppose (M, g) satisfies (M1)-(M2) and W,V satisfy (LNL1)-(LNL5).

Then the limit curve µ( · ) 2 AC
loc

([0,1);P
2

(M)) from JKO scheme satisfies for all T � 0

E(µ
0

) � 1

2

Z

T

0

|µ0|2(t)dt+ 1

2

Z

T

0

k(t)k2
L

2
(g,µ(t))

dt+ E (µ(T )) . (4.1.14)

Proof. Since supp (µ̃n(t)) ⇢ B (r(t)) b M for n big enough, we have

kn(t)k
L

2
(g,µ̃

n

(t))

 |@E| (µ̃n(t)) . (4.1.15)

Also straightforward calculation gives

Z

T

0

�

�µ0�
�

2

(t)dt  lim inf
n!1

Z

T

0

�

�(µ̃n)0
�

�

2

dt. (4.1.16)
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Recall that from the proof of Theorem 2.3.3 in [5] we have

1

2

Z

T

0

|µ0|2(t)dt+ 1

2

Z

T

0

k(t)k2
L

2
(g,µ(t))

dt+ E (µ(T ))

 1

2

Z

T

0

|µ0|2(t)dt+ 1

2

Z

T

0

lim inf
n!1

kn(t)k2
L

2
(g,µ̃(t))

dt+ E (µ(T ))

 lim inf
n!1

1

2

Z

T

0

| (µ̃n)0 |2(t)dt+ 1

2

Z

T

0

lim inf
n!1

|@E|2 (µ̃(t)) dt+ lim inf
n!1

E (µ̃n(T ))

 lim inf
n!1

✓

1

2

Z

T

0

(µ̃n)0 |2(t)dt+ 1

2

Z

T

0

G2

⌧

n

(t)dt+ E (µ̃n(T ))

◆

 E (µ
0

) ,

where we use the lower semi-continuity of  and G
⌧

n

is defined as in (4.1.2).

4.2 Existence and stability of weak measure solutions

In this Section, we show that the limit curve µ( · ) is a solution to continuity equation (3.1.5)

in the sense of distributions (i.e. a weak measure solution). We then prove the stability

properties of weak measure solutions to (3.1.5).

Recall from (3.3.1) of Chapter 3 that, for x, y 2 M, T (x, y) 2 T
x

M is defined such that

the inverse exponential map of x evaluated at y. We also recall from Lemma 3.5.1 that for

every µ( · ) 2 AC
loc

(P
2

(M), d
W

),
R

M
T (x,y)

h

d⌫h
x

(y) converges weakly in L2 (g, µ(t)) to the

tangent velocity field v(t, x) for a.e. t > 0 such that µ( · ) satisfies the continuity equation

@

@t
µ(t, x) + div (µ(t, x)v(t, x)) = 0 (4.2.1)

in the sense of distributions and
Z

M
g (v(t, x), v(t, x)) dµ(t, x) =

�

�µ0�
�

2

(t) (4.2.2)

for a.e. t > 0.

Now we can show the proof of Theorem 4.0.3.

Proof of Theorem 4.0.3. We only need to prove the following chain rule

d

dt
E (µ(t)) =

Z

M
g
x

((t, x), v(t, x)) dµ(t, x), (4.2.3)

for a.e. t > 0, where v is the tangent velocity field for the absolutely continuous curve µ( · ).
Indeed, the fact that µ( · ) satisfies (4.1.14) implies

d

dt
E(µ(t))  �1

2

Z

M
g
x

(v(t, x), v(t, x)) dµ(t, x)� 1

2

Z

M
g
x

((t, x),(t, x)) dµ(t, x). (4.2.4)

75



If (4.2.3) holds, then together with (4.2.4), we have v(t, x) = �(t, x) for a.e. t > 0 and

µ( · ) is a weak measure solution to (3.1.5) with |µ0|2(t) =
R

M g
x

((t, x),(t, x)) dµ(t, x).

We now prove the chain rule (4.2.3). We first claim that

E (µ(t+ h)) � E (µ(t)) + inf
�2�

o

(µ(t),µ(t+h))

Z

M⇥M
g
x

((t, x), T (x, y)) d�h
t

(x, y)

+ o (d
W

(µ(t), µ(t+ h))) .

(4.2.5)

For general µ, ⌫ 2 P
2

(M) with supp(µ) [ supp(⌫) ⇢ B(r(T )), let k 2 N be such that

B(2r(T )) ⇢ K
k

withW is �
k

-geodesically convex onB(r(T ))⇥B(r(T )) and V �
k

-geodesically

convex on B(r(T )). Denote � = �
k

and � 2 �
o

(µ, ⌫) an optimal plan between µ and ⌫, we

then know that the function

f(t) =
W
�

exp
x1

(tT (x
1

, y
1

))� exp
x2

(tT (x
2

, y
2

))
�

�W (x
1

� x
2

)

2t
(4.2.6)

+
2V
�

exp
x2

(tT (x
2

, y
2

))
�

� 2V (x
2

)

2t
� �

2
t dist2(x

2

, y
2

)� �

2
t dist2 ((x

1

, x
2

), (y
1

, y
2

))

is non-decreasing on [0, 1] for all (x
1

, y
1

), (x
2

, y
2

) 2 supp(�). So f(1) � lim inf
t!0

+ f(t).

Integrating over d�(x
1

, y
1

)d�(x
2

, y
2

) gives

E(⌫)� E(µ)

=

Z

M⇥M

Z

M⇥M

W (y
1

� y
2

) + 2V (y
2

)�W (x
1

� x
2

)� 2V (x
2

)

2
d�(x

1

, y
1

)d�(x
2

, y
2

)

�
Z

M⇥M

Z

M⇥M
hrW (x

2

� x
1

) +rV (x
2

), T (x
2

, y
2

)i d�(x
1

, y
1

)d�(x
2

, y
2

) + o (d
W

(µ, ⌫))

=

Z

M⇥M

⌧

Z

M
rW (x

2

� x
1

)dµ(x
1

) +rV (x
2

), T (x
2

, y
2

)

�

d�(x
2

, y
2

) + o (d
W

(µ, ⌫))

=

Z

M⇥M
g
x2

✓

A(x
2

)

✓

Z

M
rW (x

2

� x
1

)dµ(x
1

) +rV (x
2

)

◆

, T (x
2

, y
2

)

◆

d�(x
2

, y
2

)

+ o (d
W

(µ, ⌫))

��
Z

M⇥M
g
x2 (Px2 (�A(x

2

) (rW ⇤ µ(x
2

) +rV (x
2

))) , T (x
2

, y
2

)) d�(x
2

, y
2

) + o (d
W

(µ, ⌫))

=

Z

M⇥M
g
x2 ((x2), T (x2, y2)) d�(x2, y2) + o (d

W

(µ, ⌫))

where the second inequality comes from the fact that: If x
2

62 @M, then by definition of P
x2

the inequality becomes an equality while if x
2

2 @M, then by definition of P
x2 . Now note

that for T > 0 such that 0  t  T and 0  t+h  T , we have supp (µ(t))[supp (µ(t+ h)) ⇢
B(r(T )), thus by taking µ = µ(t), ⌫ = µ(t+ h) we get (4.2.5). The claim is proved.
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By (4.2.5) and Lemma 3.5.1, we have

lim
h!0

+

E (µ(t+ h))� E (µ(t))

h
�
Z

M⇥M
g
x

✓

(t, x),
T (x, y)

h

◆

d�h
t

(x, y)

=

Z

M
g
x

✓

(t, x),

Z

M

T (x, y)

h
d⌫h

x

(y)

◆

dµ(t, x)

=

Z

M
g
x

((t, x), v(t, x)) dµ(t, x).

Similarly

lim
h!0

�

E(µ(t+ h))� E(µ(t))
h


Z

M
g
x

((t, x), v(t, x)) dµ(t, x).

Since the function t 7! E(µ(t)) is non-increasing, it is di↵erentiable for a.e. t > 0, so

d

dt
E (µ(t)) =

Z

M
g
x

((t, x), v(t, x)) dµ(t, x)

for a.e. t > 0 as desired.

To prove the energy dissipation equality (4.0.3), we only need to show that E(µ(t)) is

locally absolutely continuous. By ⇥-convexity and linear growth condition on gradient of

W,V , we know |V (x) � V (y)|  C(1 + dist(x, y))|x � y|  C(1 + dist(x, y)) dist(x, y) and

|W (x � z) � W (y � w)|  C(1 + dist(x, y) + dist(z, w))(dist(x, y) + dist(z, w)), then for

0  s < t < 1 and � 2 �
o

(µ(t), µ(s)) an optimal plan

|E(µ(t))� E(µ(s))| 
Z

M⇥M
C(1 + dist(x, y)) dist(x, y)d�(x, y)

 C (1 + d
W

(µ(t), µ(s))) d
W

(µ(t), µ(s)) .

Thus E(µ( · )) is locally absolutely continuous since µ( · ) is locally absolutely continuous in

(P
2

(M), d
W

).

We now turn to the contraction property, denote �(t) 2 �
o

�

µ1(t), µ2(t)
�

an optimal

plan. Since supp
�

µ1(t)
�

[ supp
�

µ2(t)
�

⇢ B(r(t)) b M, by (4.2.6) we have

E
�

µ2(t)
�

� E
�

µ1(t)
�

+

Z

M⇥M
g
x

�

1(t, x), T (x, y)
�

d�
t

(x, y)+
�
k

2
d2
W

�

µ1(t), µ2(t)
�

, (4.2.7)

and

E
�

µ1(t)
�

� E
�

µ2(t)
�

+

Z

M⇥M
g
y

�

2(t, y), T (y, x)
�

d�
t

(y, x)+
�
k

2
d2
W

�

µ1(t), µ2(t)
�

, (4.2.8)

for all k such that B(2r(t)) ⇢ K
k

and �
k

the geodesic convexity constant ofW,V onK
k

⇥K
k

and K
k

. Adding them together gives

� �
k

d2
W

�

µ1(t), µ2(t)
�

�
Z

M⇥M

�

g
x

�

1(t, x), T (x, y)
�

+ g
y

�

2(t, y), T (y, x)
��

d�
t

(x, y).

(4.2.9)
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Now since µ1( · ), µ2( · ) are solutions for (3.1.5), we have i(t) = �vi(t) for i = 1, 2. By

Lemma 5.3 from [119] and Lemma 4.34 from [5] we then have

d

dt
d2
W

�

µ1(t), µ2(t)
�

 �2

Z

M⇥M

�

g
x

�

v1(t, x), T (x, y)
�

+ g
y

�

v2(t, y), T (y, x)
��

d�
t

(x, y)

= 2

Z

M⇥M

�

g
x

�

1(t, x), T (x, y)
�

+ g
y

�

2(t, y), T (y, x)
��

d�
t

(x, y)

 �2�
k

d2
W

�

µ1(t), µ2(t)
�

.

Thus

d
W

�

µ1(t), µ2(t)
�

 exp(��
k

t)d
W

�

µ1

0

, µ2

0

�

. (4.2.10)
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Chapter 5

Nonlocal interaction equations on

non-convex, non-smooth domains

In this Chapter, we discuss well-posedness of a class of nonlocal interaction equations on

general non-convex, non-smooth domains. We want to model macroscopic behavior of

biological agents interacting in geometrically confined domains ⌦ with irregular boundaries.

The domain boundary may be an environmental obstacle, like a river, or the ground itself,

as in the models of locust patterns discussed in [13, 107, 110]. In Chapter 3 systems of

interacting agents on domains with boundary are considered in a setting which allows for

heterogeneous environments via gradient flow theory developed in [5], but requires the

domain (manifold M) to be (geodesically-)convex with C1 boundary. Here we consider the

problem in homogeneous environments (Euclidean setting) but on general domains which

are not required to be convex and whose boundary may not be di↵erentiable. Again,

the geometrical confinement introduces a constraint on the possible velocity fields of the

agents at the boundary. The measure µ( · ) describing the agent configuration becomes a

distributional solution of the equation

8

>

<

>

:

@

@t
µ(t, x) + div

✓

µ(t, x)P
x

✓

�
Z

⌦

rW (x� y)dµ(t, y)�rV (x)

◆◆

= 0,

µ(0) = µ
0

,

(5.0.1)

where P
x

is the projection of the velocities to inward pointing ones. Since the domain ⌦

is non-convex, the space P
2

(⌦) of probability measures with finite second moments on ⌦

is not geodesically convex, thus the energy functional E is not geodesically (semi-)convex

and general existence of gradient flow theory [5] (which we introduce in Chapter 2, and use

in Chpater 3 and Chapter 4) fails to apply. We instead obtain gradient flows and weak

measure solutions via particle approximations. The results presented in this Chapter are

obtained in our paper [33].
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5.1 Domain regularity and constrained gradient flow struc-

ture

When considering domains which are not C1 the first question is what should the velocity of

agents be at a boundary point where the domain is not di↵erentiable. Similar questions have

been encountered in studies of di↵erential inclusions on moving domains (general sweeping

processes), see [43, 44, 112] and references therein. We rely on notions developed there to

properly define the cone of admissible directions at a boundary points and the proper way

to project the velocity to the allowable cone. In particular we consider the equation (5.0.1)

with projection P
x

defined in (5.1.5) and when there is no confusion we denote P
x

= P
T (⌦,x)

.

While one would like to consider very general domains there are limits to possible

domains on which well-posedness of weak measure solutions can be developed. Namely,

if the domains have an inside corner, then it is not possible for the measure solutions of

(5.0.1) to be stable, as we discuss in Remark 5.1.11. It turns out that a class of domains

which is rather general and allows for a well-posedness theory are the (uniformly) prox-

regular domains (see Definition 5.1.3). Prox-regular domains are the sets which have an

outside neighborhood such that for each of its points there exists a unique closest point

on the boundary (unique projection). In particular prox-regular domains can have outside

corners and outside cusps, but not inside corners.

Our main result is the well-posedness of weak measure solutions of the nonlocal-interaction

equation (5.0.1) on uniformly prox-regular domains. We recall from (2.3.6), (2.3.7) and

(2.3.8) in Chapter 2 the total energy E is defined as

E(µ) = W(µ) + V(µ) = 1

2

Z

⌦

Z

⌦

W (x� y)dµ(x)dµ(y) +

Z

⌦

V (x)dµ(x). (5.1.1)

The energy E is a dissipated quantity of the evolution (5.0.1), and furthermore the equation

can be interpreted as the gradient flow of the energy with respect to the Euclidean Wasser-

stein metric with the constraint that mass cannot leave the domain ⌦. The gradient flow

approach was used to study systems in which there are state constraints that determine

the set of possible velocities, in particular in crowd motion models [1, 80, 81] where the

constraint on the L1-norm of the density of agents leading to an L2-projection of velocity

field.

To show the existence of gradient flows, we use particle approximations, that is we use

a sequence of delta masses µn

0

=
P

k(n)

j=1

m
j

�
x

n

j

to approximate the initial data µ
0

and solve

(5.0.1) with initial data µn

0

. Here the notion of gradient flow solutions (and weak measure

solutions) provides the advantage that we can work with delta measures, which makes the

particle approximation meaningful. With discrete initial data µn

0

, (5.0.1) becomes a system

of ordinary di↵erential equations. We solve the ODE system and prove that the solutions
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µn( · ) converges to some µ( · ) by establishing the stability property of solutions to (5.0.1)

with di↵erent initial data. We then show that the limit curve µ( · ) is a gradient flow with

respect to E swith initial data µ
0

by proving that µ( · ) achieves the maximal dissipation of

the associated energy, and is thus the steepest descent of the energy.

The novelty here is that even though the domain ⌦ is only prox-regular (not necessarily

convex or C1) and the velocity field is discontinuous (due to the projection P ), the ODE

systems are still well-posed (refer to Theorem 5.2.6) and the stability of solutions µn( · )
in Wasserstein metric d

W

is valid with explicit dependence on the prox-regularity constant

(refer to Proposition 5.3.1). Under semi-convexity assumptions on the potential functions

W and V , this enables us to show the well-posedness, that is existence and stability of weak

measure solutions to (5.0.1) in three di↵erent cases: ⌦ bounded and prox-regular (Theorem

5.1.5 and Thorem 5.1.6), ⌦ unbounded and convex (Theorem 5.1.9), and ⌦ unbounded

and prox-regular with compactly supported initial data µ
0

(Theorem 5.1.10). We can also

generalize the well-posedness results to time-dependent interaction and external potentials

W = W (t, x), V = V (t, x) (Remark 5.5.3). We also give su�cient conditions on the shape of

⌦ to ensure the existence of an interaction potentials W such that solutions µ( · ) to (5.0.1)

aggregate to a single delta mass as time goes to infinity (Theorem 5.1.11 and Remark 5.6.1).

Description of weak measure solutions.

Since we are working in the Euclidean setting, we denote in this Chapter

d2
W

(µ, ⌫) = min

⇢

Z

⌦⇥⌦

|x� y|2d�(x, y) : � 2 �(µ, ⌫)

�

(5.1.2)

the Euclidean Wasserstein distance and �
o

(µ, ⌫) the set of optimal plans with respect to

this Euclidean d
W

, i.e.

�
o

(µ, ⌫) =

⇢

� 2 �(µ, ⌫) :

Z

⌦⇥⌦

|x� y|2d�(x, y) = d2
W

(µ, ⌫)

�

. (5.1.3)

We now recall definition of weak measure solutions to the continuity equation to (5.0.1).

To be precise, in our Euclidean setting,

Definition 5.1.1. A locally absolutely continuous curve µ( · ) 2 P
2

(⌦) is a weak measure

solution to (5.0.1) with initial value µ
0

if

v(t, x) = �P
x

✓

Z

⌦

rW (x� y)dµ(y) +rV (x)

◆

2 L1

loc

([0,+1);L2(µ(t)))

and
Z 1

0

Z

⌦

@�

@t
(t, x)dµ(t, x)dt+

Z

⌦

�(0, x)dµ
0

(x) +

Z 1

0

Z

⌦

hr�(t, x), v(t, x)i dµ(x) = 0 ,
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for all � 2 C1
c

([0,1) ⇥ ⌦). The projection P
x

is described below and formally defined in

(5.1.5) with P
x

= P
T (⌦,x)

.

Note that the test function � does not have to be zero on the boundary of ⌦, and thus

the no-flux boundary condition is imposed in a weak form.

We now define the projection P
x

. When @⌦ 2 C1 is smooth and oriented, the definition

of P
x

is given in Chapter 3 by P
x

(v) = v � hv, ⌫(x)i⌫(x) if hv, ⌫(x)i > 0 and P
x

(v) = v

otherwise, where ⌫(x) is the unit outward normal vector to the boundary at x 2 @⌦.

When ⌦ is only prox-regular, to define P
x

, we need to recall some notations from non-

smooth analysis, see [25, 35], in order to replace the normal vector field, and the inward

and outward directions.

Definition 5.1.2. Let S be a closed subset of Rd. We define the proximal normal cone to

S at x by,

NP (S, x) =
n

v 2 Rd : 9↵ > 0, x 2 P
S

(x+ ↵v)
o

,

where

P
S

(y) =

⇢

z 2 S : inf
w2S

|w � y| = |z � y|
�

is the projection of y onto S.

Note that for x 2 S \ @S,NP (S, x) = {0} and by convention for x 62 S,NP (S, x) = ;.
The notion of normal cone extends the concept of outer normal of a smooth set in the sense

that if S is a closed subset of Rd with boundary @S an oriented C2 hypersurface, then for

each x 2 @S, NP (S, x) = R+⌫(x) where ⌫(x) is the unit outward normal to S at x. We

now recall the notion of uniform prox-regular sets.

Definition 5.1.3. Let S be a closed subset of Rd. S is said to be ⌘-prox-regular if for all

x 2 @S and v 2 NP (S, x), |v| = 1 we have

B
⌘

(x+ ⌘v) \ S = ;,

where B
⌘

(y) denotes the open ball centered at y with radius ⌘ > 0.

Note that an equivalent characterization, see [35, 96], is given by: S is ⌘-prox-regular if

for any y 2 S, x 2 @S and v 2 NP (S, x),

hv, y � xi  |v|
2⌘

|y � x|2. (5.1.4)

Observe that if S is closed and convex, then S is 1-prox-regular, thus ⌘-prox-regularity is

a relaxed condition on convexity. We now turn to the tangent cones.
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Definition 5.1.4. Let S be a closed subset of Rd and x 2 S, define the Clarke tangent cone

by

TC(S, x) =
n

v 2 Rd : 8t
n

& 0, 8x
n

2 S, s.t. x
n

! x, 9v
n

! v s.t. (8n)x
n

+ t
n

v
n

2 S
o

,

and denote the Clarke normal cone by

NC(S, x) =
�

⇠ 2 Rn : h⇠, vi  0 8v 2 TC(S, x)
 

.

S

T (S, x) N(S, x)

x

Figure 5.1: The set S is prox-regular but not convex. At the corner point x 2 @S, the

tangent and normal cones are denoted by T (S, x) and N(S, x).

Note that TC(S, x), NC(S, x) are closed convex cones, also by convention NC(S, x) = ;
for all x 62 S. In general, we only have NP (S, x) ⇢ NC(S, x) and the inclusion can be

strict. However, for ⌘-prox-regular set S, we have NP (S, x) = NC(S, x), see [35, 96]. In

that case, we denote the normal cone and tangent cone as N(S, x) = NP (S, x) = NC(S, x)

and T (S, x) = TC(S, x) = TP (S, x) respectively, and for any vector w 2 Rd, we define the

projection onto the tangent cone by P
T (S,x)

(w), i.e.,

P
T (S,x)

(w) =

⇢

v 2 T (S, x) : |v � w| = inf
⇠2T (S,x)

|⇠ � w|
�

. (5.1.5)

Since T (S, x) is a closed convex cone, the infimum is always attained, and P
T (S,x)

is well-

defined. For notation simplicity, since the set we are considering ⌦ is not changing, we

write P
x

instead of P
T (⌦,x)

and when the context is clear, we put P for P
x

. With these

preliminaries, we can now state the main results of this work.
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Main results.

For any set A ⇢ Rd, we denote by A�A = {x� y : x, y 2 A}, and the convex hull of A by

Conv (A) = {✓x+ (1� ✓)y : x, y 2 A, 0  ✓  1}. For a function f 2 C1(Rd), we say that f

is �-geodesically convex on a convex set S if for any x, y 2 S we have

f(y) � f(x) + hrf(x), y � xi+ �

2
|y � x|2.

We call f locally �-geodesically convex if there exist a sequence of compact convex sets

K
n

⇢ Rd and a sequence of constants �
n

such that K
n

⇢ K
n+1

,
S

n

K
n

= Rd and f is �
n

-

geodesically convex on K
n

. Note that f is �-geodesically convex on a convex set S implies

for any x, y 2 S

hrf(x)�rf(y), x� yi � �|x� y|2.

The main assumptions depend on the domain ⌦ and the support of initial data. In

fact, we separate our results in three cases: ⌦ bounded, ⌦ unbounded and convex, and

⌦ unbounded with compactly supported initial data. The assumptions are very similar in

nature based on the convexity of the potentials V and W and on their growth behavior

at 1 in the unbounded cases. We assume that both potentials V and W are �
V

- and

�
W

-convex respectively, possibly locally convex. Finally, in case V and W are �-locally

convex, we can assume, without loss of generality, that V and W share the same sequence

of compact convex sets, K
k

in the definition of locally �-geodesic convexity, i.e., K
k

⇢ K
k+1

,
S

k2NK
k

= Rd with V and W being �
V,k

and �
W,k

-geodesically convex on K
k

.

Recall the elements of the theory of gradient flows in the space of probability measures

in the Euclidean setting (introduced in Chapter 2). In particular the Definition of metric

derivative (2.2.8), subdi↵erenial (Definition 2.2.5), and gradient flow (2.2.14). By Theorem

2.2.3, given a locally absolutely continuous curve [0,1) 3 t 7! µ(t) 2 P
2

(⌦), there exists a

unique tangent velocity field such that µ( · ) satisfies the continuity equation in the sense of

distributions.

In case ⌦ is bounded, we assume that

(M1) ⌦ ⇢ Rd is ⌘-prox-regular with ⌘ > 0.

(A1) W 2 C1(Rd) is �
W

-geodesically convex on Conv (⌦�⌦) for some �
W

2 R.

(A2) V 2 C1(Rd) is �
V

-geodesically convex on Conv (⌦) for some �
V

2 R.

The main results of this paper is the well-posedness of weak measure solutions: existence

and stability, with arbitrary initial data. We establish it using an approximation scheme

and the theory of gradient flows in spaces of probability measures.
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Theorem 5.1.5. Assume ⌦ is bounded and satisfies (M1) and W,V satisfy (A1), (A2).

Then for any initial data µ
0

2 P
2

(⌦), there exists a locally absolutely continuous curve

µ( · ) 2 P
2

(⌦) such that µ( · ) is a gradient flow with respect to E and a weak measure

solution to (5.0.1).

Furthermore for a.e. t > 0

|µ0|2(t) =
Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(t, x), (5.1.6)

and for any 0  s  t < 1

E(µ(s)) = E(µ(t)) +
Z

t

s

Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(r, x)dr. (5.1.7)

Theorem 5.1.6. Assume ⌦ is bounded and satisfies (M1) and W,V satisfy (A1), (A2). Let

µ1( · ), µ2( · ) be two weak measure solutions to (5.0.1) with initial data µ1

0

, µ2

0

respectively.

Then

d
W

�

µ1(t), µ2(t)
�

 exp

✓✓

���
W

� �
V

+
krWk

L

1
(⌦�⌦)

+ krV k
L

1
(⌦)

⌘

◆

t

◆

d
W

�

µ1

0

, µ2

0

�

.

(5.1.8)

for any t � 0 where ��
W

= min{�
W

, 0}. Moreover, the weak measure solution is character-

ized by the system of Evolution Variational Inequalities:

1

2

d

dt
d2
W

(µ(t), ⌫)+

✓

��
W

2
+

�
V

2
�

krWk
L

1
(⌦�⌦)

+ krV k
L

1
(⌦)

2⌘

◆

d2
W

(µ(t), ⌫)  E(⌫)�E(µ(t)),

(5.1.9)

for a.e. t > 0 and for all ⌫ 2 P
2

(⌦).

Observe that in the stability estimate for solutions (5.1.8), we find two contributions

due to the �-convexity of the potentials and the ⌘-prox-regular property of the domain ⌦

respectively. We also make a remark here that when ⌦ bounded, ⌘-prox-reguar (Theorem

5.1.5, Theorem 5.1.6 ), or unbounded, convex (Theorem 5.1.9), weak measure solutions to

(5.0.1) and gradient flows with respect to E are equivalent, see Remark 5.3.6.

On Rn when µ1(0) and µ2(0) have the same center of mass ��
W

can be replaced by �
W

in (5.1.8). Thus when the potential W is uniformly geodesically convex, �
W

> 0 and thus

there is exponential contraction of solutions. On bounded domains this is not the case since

interaction with boundary can change the center of mass of a solution. Nevertheless part of

the claim can be recovered. We consider the case that V ⌘ 0. Denote the set of singletons

by ⌅ = {�
x

: x 2 Rd}. Note that we included the singletons which are not in the set ⌦,

since the center of mass for measures on a non-convex ⌦ may lie outside the domain.
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Proposition 5.1.7. Assume ⌦ is bounded and satisfies (M1) and W satisfies (A1). Let

µ( · ) be a weak measure solutions to (5.0.1) with V ⌘ 0. Then

d
W

(µ(t),⌅)  exp

✓✓

��
W

+
krWk

L

1
(⌦�⌦)

⌘

◆

t

◆

d
W

(µ
0

,⌅) . (5.1.10)

for any t � 0.

The proposition implies that solution can aggregate to a point (in perhaps infinite time)

even on a nonconvex domain. We ask on what domains there exists a potential for which

for any initial datum this aggregation property holds. We provide a su�cient condition on

the shape of ⌦ for aggregation to hold: Let diam(⌦) = sup
x,y2⌦ |x� y|.

Theorem 5.1.8. Assume that ⌦ is bounded and satisfies (M1). If ⌘ > 1

2

diam(⌦), then for

external potential V ⌘ 0, there exists an interaction potential W satisfying (A1) for some

�
W

> 0, and constant C(⌦) < 0 such that

d
W

(µ(t),⌅)  d
W

(µ
0

,⌅) exp (C (⌦) t) , (5.1.11)

for all t � 0. In particular, the solution aggregates to a singleton:

lim
t!1

d
W

(µ(t),⌅) = lim
t!1

d
W

�

µ(t), �
x̄(t)

�

= 0 , (5.1.12)

where x̄(t) =
R

⌦

xdµ(t) is the center of mass for µ(t).

Note that the constant in ⌘ > 1

2

diam(⌦) cannot be improved, as the example in Remark

5.6.1 shows.

Next we generalize the two existence and stability results to the unbounded domain

⌦ case in two di↵erent settings. In case ⌦ is unbounded, and for general initial data µ
0

,

possibly with noncompact support, we give the global assumptions: for some constants

�
W

,�
V

2 R and C > 0,

(GM1) ⌦ ⇢ Rd is convex, i.e., ⌦ is 1-prox-regular.

(GA1) W 2 C1(Rd) is �
W

-geodesically convex on Conv (⌦�⌦) = ⌦�⌦.

(GA2) rW has linear growth, i.e., |rW (x)|  C(1 + |x|) for all x 2 Rd.

(GA3) V 2 C1(Rd) is �
V

-geodesically convex on Conv (⌦) = ⌦.

(GA4) rV has linear growth, |rV (x)|  C(1 + |x|) for all x 2 Rd.

The main result in this setting reads as:
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Theorem 5.1.9. Assume ⌦ is unbounded and satisfies (GM1) and W,V satisfy (GA1)-

(GA4), then for any µ
0

2 P
2

(⌦), there exists a gradient flow µ( · ) with respect to E such

that µ( · ) is a weak measure solution to (5.0.1). Moreover, for a.e. t > 0

|µ0|2(t) =
Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(t, x),

and for any 0  s  t < 1

E(µ(s)) = E(µ(t)) +
Z

t

s

Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(r, x)dr.

Similarly, if µ1( · ), µ2( · ) are two weak measure solutions to (5.0.1) with initial data µ1

0

, µ2

0

respectively, then

d
W

�

µ1(t), µ2(t)
�

 exp
�

�
�

��
W

+ �
V

�

t
�

d
W

�

µ1

0

, µ2

0

�

. (5.1.13)

for any t � 0. Also the weak measure solution is characterized by the system of Evolution

Variational Inequalities:

1

2

d

dt
d2
W

(µ(t), ⌫) +

✓

��
W

2
+

�
V

2

◆

d2
W

(µ(t), ⌫)  E(⌫)� E(µ(t)), (5.1.14)

for a.e. t > 0 and for all ⌫ 2 P
2

(⌦).

Since ⌦ is convex means ⌦ is 1-prox-regular, the stability estimate (5.1.13) and EVI

(5.1.14) in the convex setting are consistent with the estimates in the ⌘-prox-regular setting

by taking ⌘ = 1 in (5.1.8) and (5.1.9).

The convexity assumption is needed since on nonconvex unbounded domains we do

not know how to control the error due to lack of convexity (as measured by the prox-

regularity (5.1.4)) in the stability of solutions. However, we can show that control assuming

compactly supported initial data. Therefore, when ⌦ is unbounded and the initial data µ
0

has compact support, we assume there exist some constants ⌘ > 0,�
W

,�
V

2 R, C > 0 such

that the following local assumptions hold

(M1) ⌦ ⇢ Rd is ⌘-prox-regular.

(LA1) W 2 C1(Rd) is locally �-geodesically convex on Rd.

(LA2) rW has linear growth, i.e., |rW (x)|  C(1 + |x|) for all x 2 Rd.

(LA3) V 2 C1(Rd) is locally �-geodesically convex on Rd.

(LA4) rV has linear growth, |rV (x)|  C(1 + |x|) for all x 2 Rd.
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Note that the conditions (LA1) and (LA3) are satisfied whenever V and W are C2 functions

on Rd, which is the case in many practical applications.

We show in this setting the following theorem about existence and stability for weak

measure solutions for initial data with compact support.

Theorem 5.1.10. Given that ⌦ is unbounded and satisfies (M1), and W,V satisfy (LA1)-

(LA4). If supp(µ
0

) ⇢ ⌦ is compact, say supp(µ
0

) ⇢ B(r
0

) \ ⌦, then there exists a weak

measure solution µ( · ) to (5.0.1) such that supp(µ(t)) ⇢ B(r(t)) for r(t) = (r
0

+1) exp(Ct),

where C = C(W,V ) and µ( · ) satisfies for a.e. t > 0

|µ0|2(t) =
Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(t, x),

and for any 0  s  t < 1

E(µ(s)) = E(µ(t)) +
Z

t

s

Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(r, x)dr.

Moreover if we have two such solutions µi( · ) with initial data µi

0

satisfying for i = 1, 2,

supp(µi

0

) are compact and supp(µi(t)) ⇢ B (r(t)) for all t > 0, then for all k 2 N such that

B(r(t)) ⇢ K
k

we have

d
W

�

µ1(t), µ2(t)
�

 exp

✓✓

���
W,k

� �
V,k

+
krWk

L

1
(⌦

k

�⌦
k

)

+ krV k
L

1
(⌦

k

)

⌘

◆

t

◆

d
W

(µ1

0

, µ2

0

).

(5.1.15)

where �
W,k

,�
V,k

are the geodesic convexity constants of W and V in K
k

and ⌦
k

= ⌦\K
k

.

Let us point out that we are not able to get the system of Evolution Variational Inequal-

ities in its whole generality although they hold for compactly supported reference measures.

Remark 5.1.11. Here we illustrate on an example that well-posedness of weak measure so-

lutions cannot hold on domains which have an inside corner. Let ⌦ = {(r cos(✓), r sin(✓)) 2
R2 : 0  r  1, ⇡

4

 ✓  7⇡

4

} be as in Figure 5.2. Let V (x) = �2x
1

be the external potential

and W be any C2 convex interaction potential with rW (0) = 0. Define �
1

(s) = (1,�1) s

and �
2

(s) = (1, 1) s for 0  s  1. Then for initial datum µ
0

= �
0

both µ
1

(t) = �
�1(t)

and

µ
2

(t) = �
�2(t)

are weak measure solutions. Thus uniqueness and hence stability of solutions

cannot hold.

Strategy of the proof.

The strategy to construct weak measure solutions to (5.0.1) is to show the existence of

gradient flow with respect to E . We approximate the initial data µ
0

in Wasserstein metric
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Ω
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Ω

T

Ω

⌦

v
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Pv�
1

�
2

Figure 5.2: The red arrows show the projected velocity field Pv on �
1

and �
2

, which are

driving the particles apart from each other.

by µn

0

=
P

k(n)

i=1

mn

i

�
x

n

i

for xn
i

2 ⌦
T

B(n), and solve (5.0.1) with µn(0) = µn

0

. Then (5.0.1)

becomes a discrete projected system, for 1  i  k(n)

8

>

>

>

<

>

>

>

:

ẋn
i

(t) = P
x

n

i

(t)

0

@�
X

j

mn

j

rW
�

xn
i

� xn
j

�

�rV (xn
i

)

1

A a.e. t � 0,

xn
i

(0) = xn
i

2 ⌦,

(5.1.16)

which we show its well-posedness based on the well-posedness theory from non-convex

sweeping process di↵erential inclusions with perturbations. For the general theory of sweep-

ing processes we refer to [43, 44, 112] and references therein. To be precise, based on [44]

there exists a locally absolutely continuous curve [0,1) 3 t 7! x(t) = (xn
1

(t), · · · , xn
k(n)

(t)) 2
⌦k(n) = ⌦⇥ ...⇥ ⌦, such that for a.e. t > 0,

� ẋ(t) 2 N(⌦k(n), x(t))� v(t, x(t)), (5.1.17)

where v(t, x(t)) = �
P

j

mn

j

rW
⇣

xn
i

� xn
j

⌘

�rV (xn
i

) in our case. We then show that the

solution to (5.1.17) is actually a solution to (5.1.16). We denote µn(t) =
P

k(n)

i=1

mn

i

�
x

n

i

(t)

.

Next we explore the properties of the sequence of solutions {µn( · )}
n

. In particular,

• When ⌦ is bounded or ⌦ is unbounded but convex, we first prove the stability of µn(t)

d
W

(µn(t), µm(t))  exp(Ct)d
W

(µn

0

, µm

0

), (5.1.18)
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where C = C(W,V ) is a constant depending only on W,V . Thus µn( · ) converges to
some µ( · ) in P

2

(⌦) as n ! 1. Since µn( · ) satisfies the energy dissipation inequality,

E(µn(s)) � E(µn(t)) +
1

2

Z

t

s

| (µn)0 |2(r)dr

+
1

2

Z

t

s

Z

⌦

|P
x

(�rW ⇤ µn(r)(x)�rV (x)) |2dµn(r, x)dr,

by the lower semicontinuity property, we are able to show that µ( · ) also satisfies the

desired energy dissipation inequality

E(µ(s)) � E(µ(t)) + 1

2

Z

t

s

|µ0|2(r)dr

+
1

2

Z

t

s

Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x)) |2dµ(r, x)dr.
(5.1.19)

We then show the chain rule, for ṽ(t) is the tangent velocity of µ( · ) at time t

d

dt
E(µ(t)) =

Z

⌦

h�P
x

(�rW ⇤ µ(t)(x)�rV (x)) , ṽ(t, x)i dµ(t, x), (5.1.20)

which together with the energy dissipation inequality yields that µ( · ) is a gradient

flow with respect to E and a weak measure solution to (5.0.1).

• When ⌦ is unbounded and only ⌘-prox-regular, we first show that the support of the

solutions µn( · ) grows at most exponentially, i.e.

supp (µn(t)) ⇢ B(r(t)), (5.1.21)

for r(t) = (r
0

+ 1) exp(Ct) given that supp(µ
0

) ⇢ B(r
0

). We then show that, given

supp (µn(t)) has the same growth condition for all n 2 N, µn( · ) still converges to a

locally absolutely continuous curve µ( · ) satisfying (5.1.19) and (5.1.20). Thus µ( · )
is a weak measure solution to (5.0.1).

Outline

This rest of this Chapter is organized as follows.

In Section 5.2, we show the properties of the projection P and then give the existence

results for the discrete projected systems (5.1.16).

In Section 5.3, under the assumption that ⌦ is bounded, we prove the stability of

solutions to the discrete projected systems µn( · ), i.e. (5.1.18). Thus µn( · ) converge to

an absolutely continuous curve µ( · ). We show that µ( · ) is curve of maximum slope for

the energy E and moreover a gradient flow with respect to E . We then show that µ( · ) is

also a weak measure solution and that weak measure solutions satisfy the stability property
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(5.1.8). At the end of the section, we show that solutions are characterized by the system

of Evolution Variational Inequalities (5.1.9).

Section 5.4 addresses the case of unbounded, convex ⌦ and general initial data µ
0

2
P
2

(⌦), that is Theorem 5.1.9. The proof of Theorem 5.1.9 is similar to Theorem 5.1.5 and

Theorem 5.1.6, we only concentrate on the key di↵erences.

Section 5.5 is devoted to the case when ⌦ is unbounded and only ⌘-prox-regular with

supp(µ
0

) compact. We show that the support of the solutions to the discrete projected

systems (5.1.16) satisfy exponential growth condition (5.1.21). By similar stability results

as in Section 5.3, µn( · ) still converges to a locally absolutely continuous curve µ( · ) and

µ( · ) is a solution to (5.0.1) with the desired energy dissipation (5.1.19). We then give the

proof of the stability result (5.1.15) for solutions with control on growth of supports. We

end the section by making a remark about well-posedness of (5.0.1) with time-dependent

potentials W,V .

In the last Section 5.6, we prove Proposition 5.1.7 and discuss the conditions on the

shape of the domain ⌦ such that there exist interaction potentials W for which solutions

µ( · ) of (5.0.1) aggregate to a singleton (a single delta mass).

5.2 Existence of solutions to discrete systems

In this Section, we first show properties of the projection P , in particular the lower semi-

continuity and convexity property of P . Then we give the existence result of solutions to

the discrete projected systems (5.1.16).

Recall that the tangent and normal cones T (⌦, x) and N(⌦, x) are closed convex cones

by Definition 5.1.4.

Proposition 5.2.1. Suppose ⌦ satisfies (M1) and x 2 @⌦. Then for any v 2 Rd, there

exist a unique orthogonal decomposition (v
T

, v
N

) 2 T (⌦, x)⇥N(⌦, x) of v such that

hv
T

, v
N

i = 0 and v = v
T

+ v
N

.

Moreover, v
T

= proj
T (⌦,x)

(v) = P
x

(v), v
N

= proj
N(⌦,x)

(v).

Proposition 5.2.1 is a direct consequence of Moreau’s decomposition theorem, see [87, 99]

for the proof.

Proposition 5.2.2. Assume ⌦ satisfies (M1), then the map ⌦⇥ Rd 3 (x, v) 7! |P
x

(v)|2 is

lower semicontinuous and for any fixed x 2 ⌦, Rd 3 v 7! |P
x

(v)|2 is convex.

Proof. We first show the lower semicontinuity property. Let {x
n

}
n

⇢ ⌦, {vn}
n

⇢ Rd be

such that lim
n!1 x

n

= x 2 ⌦, lim
n!1 vn = v. If x

n

2 ⌦̊ for all n su�ciently large, then
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P
x

n

(vn) = vn and we have |P
x

(v)|2  |v|2 = lim
n!1 |vn|2. And for any x 2 ⌦̊, we have

x
n

2 ⌦̊ for n su�ciently large, thus

lim inf
n!1

|P
x

n

(vn) |2 � |P
x

(v)|2.

So we only need to check for x 2 @⌦ and {x
n

}
n

⇢ @⌦ such that lim
n!1 x

n

= x. Denote

the decomposition of vn as in Proposition 5.2.1 by

vn = vn
T

+ vn
N

where vn
T

2 T (⌦, x
n

), vn
N

2 N(⌦, x
n

) and hvn
T

, vn
N

i = 0. For any subsequence, which we

do not relabel, such that there exists w
N

2 Rd and lim
n!1 vn

N

= w
N

, we claim that

w
N

2 N(⌦, x) and hv � w
N

, w
N

i = 0. Indeed, since ⌦ is ⌘-prox-regular,

B
⌘

✓

x
n

+ ⌘
vn
N

|vn
N

|

◆

\ ⌦ = ;.

Taking n ! 1 implies

B
⌘

✓

x+ ⌘
w
N

|w
N

|

◆

\ ⌦ = ;,

which then implies w
N

2 N(⌦, x). Also by taking n ! 1 in hvn � vn
N

, vn
N

i = 0 we get

hv � w
N

, w
N

i = 0. We then know

|P
x

(v)|2 = |v
T

|2

= |v � v
N

|2

 |v � w
N

|2

= lim
n!1

|vn � vn
N

|2

= lim
n!1

|P
x

n

(vn) |2

So

lim inf
n!1

|P
x

n

(vn) |2 � |P
x

(v)|2.

We turn to the convexity property. For any fixed x 2 ⌦, if x 2 ⌦̊ then P
x

(v) = v for all

v 2 Rd and v 7! |v|2 is convex. Now for fixed x 2 @⌦, and any v1, v2 2 Rd, 0  ✓  1,

denote the unique projection of v1, v2 defined in Proposition 5.2.1 by

vi = vi
N

+ vi
T

for i = 1, 2. Then

(1� ✓)v1 + ✓v2 =
�

(1� ✓)v1
T

+ ✓v2
T

�

+
�

(1� ✓)v1
N

+ ✓v2
N

�

.
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Note that (1� ✓)v1
T

+ ✓v2
T

2 T (⌦, x) and (1� ✓)v1
N

+ ✓v2
N

2 N(⌦, x), by Proposition 5.2.1

we have

|P
x

�

(1� ✓)v1 + ✓v2
�

|2  |(1� ✓)v1
T

+ ✓v2
T

|2

 (1� ✓)|v1
T

|2 + ✓|v2
T

|2

= (1� ✓)|P
x

�

v1
�

|2 + ✓|P
x

�

v2
�

|2.

Convexity is verified.

We cite the following result from [43, 44] about the existence of di↵erential inclusions

Theorem 5.2.3. Assume that S is ⌘-prox-regular as defined in Definition 5.1.3 and F :

Rd 3 x 7! F (x) 2 Rd is a continuous function with at most linear growth, i.e., there exists

some constant C > 0 such that

|F (x)|  C(1 + |x|).

Then the di↵erential inclusion

(

�ẋ(t) 2 N(S, x(t)) + F (x(t)) a.e. t � 0,

x(0) = x
0

2 S.
(5.2.1)

has at least one locally absolutely continuous solution.

Note that the theorems, for example Theorem 5.1 from [44], are more general than

Theorem 5.2.3. However, we only need the simplified version for our purpose. We also

notice that (5.2.1) implies that x(t) 2 S for all t � 0. Indeed, since N(S, x) = ; for all

x 62 S we know x(t) 2 S for a.e. t � 0. Then the continuity of x(t) and the fact that S is

closed imply that x(t) 2 S for all t � 0. For completeness, we give a sketch of proof here.

Proof. For T < 1

2C

where C is constant in the growth condition of F . For n 2 N, take the

partition 0 = tn
0

< tn
1

< ... < tn
n

= T and define �n
i

= tn
i+1

� tn
i

, xn
0

= x
0

, Zn

0

= F (xn
0

). Then

define iteratively for 0  i  n� 1

xn
i+1

= proj
S

(xn
i

� �n
i

Zn

i

)

and

Zn

i+1

= F (xn
i+1

).

Note that we have then

kxn
i+1

k  kxn
i

k+ 2�n
i

kZn

i

k

and

kZn

i

k  C (1 + kxn
i

k) .
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Thus

kxn
i+1

k  kx
0

k+
i

X

j=0

2�n
j

C(1 + kxn
j

k)

 kx
0

k+ 2CT (1 + max
0ji

kxn
j

k),

which implies

max
0in

kxn
i

k  kx
0

k+ 2CT (1 + max
0in

kxn
i

k).

Since 2CT < 1 we have uniformly in n

max
0in

kxn
i

k  kx
0

k+ 2CT

1� 2CT
< 1,

and

max
0in

kZn

i

k  C(1 + max
0in

kxn
i

k) < 1.

We now define the approximation solution by

x
n

(t) = un
i

+
xn
i+1

� xn
i

+ �n
i

Zn

i

�n
i

� (t� tn
i

)Zn

i

,

for tn
i

 t < tn
i+1

. Notice that x
n

can also be written as

x
n

(t) = x
0

+

Z

t

0

[⇧
n

(s)� Z
n

(s)]ds (5.2.2)

where

⇧
n

(t) =
n

X

i=0

xn
i+1

� xn
i

+ �n
i

Zn

i

�n
i

�
(t

n

i

,t

n

i+1]
(t)

and Z
n

(t) = Zn

i

for tn
i

 t < tn
i+1

. We have for a.e. t 2 [tn
i

, tn
i+1

)

ẋ
n

(t) + Z
n

(t) = ⇧
n

(t) 2 N (S, x
n

(tn
i

)) .

Since k⇧
n

(t)k  kZn

i

k for t 2 (tn
i

, tn
i+1

], we know there exists a subsequence of n, which we

do not relabel, such that

⇧
n

* ⇧, Z
n

* Z as n ! 1

weakly in L2[0, T ]. We then have by (5.2.2) that x
n

converges locally uniformly to x with

x(t) = x
0

+

Z

t

0

[⇧(s)� Z(s)]ds.

We now claim that x(t) is a solution to the di↵erential inclusion on [0, T ]. First we check

that x(t) 2 S for all t 2 [0, T ]. Since

kx
n

(tn
i

)� x(t)k  kx
n

(t)� x(t)k+ c|tn
i

� t|,
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x(t) = lim
n!1 x

n

(tn
i

) 2 S. We then verify that ẋ(t)+Z(t) 2 �N(S, x(t)) for a.e. t 2 [0, T ].

Since ẋ
n

+ Z
n

= ⇧
n

* ⇧ weakly in L2 ([0, T ]) and ⇧
n

(t) 2 N (S, x
n

(tn
i

)) for tn
i

< t  tn
i+1

,

by Mazur’s lemma, for a.e. t 2 [0, T ]

ẋ(t) + Z(t) 2
\

n

{ẋ
k

(t) + Z
k

(t) : k � n}.

Then by Proposition 2.1 from [44], we know for a.e. t 2 [0, T ],

ẋ(t) + Z(t) 2 N(S, x(t)).

Now we only need to check that Z(t) = F (x(t)). We know that Z
n

(t) = F (xn(tn
i

) for

tn
i

 t < tn
i+1

. Define ũ
n

by x̃
n

(t) = xn(tn
i

) for tn
i

 t < tn
i+1

and note Z
n

(t) = F (xn(tn
i

) =

F (x̃
n

(t)). Then x̃
n

converges locally uniformly to x. Together with the fact that F is

continuous, F (x̃
n

) converges to F (x) in L2 ([0, T ]). Since it is direct to check Z
n

converges

weakly to Z in L2 ([0, T ]), we get Z(t) = F (x(t)) for a.e. t 2 [0, T ]. The claim is proved.

We now show that the solutions for the di↵erential inclusions are actually solutions for

the projected systems.

Lemma 5.2.4. Assume that S is ⌘-prox-regular by Definition 5.1.3 and x(t) is a locally

absolutely continuous solution to the di↵erential inclusion (5.2.1). Then

ẋ(t) = P
x(t)

(�F (x(t))) a.e. t � 0. (5.2.3)

Proof. Since S is ⌘-prox-regular, it is tangentially regular, that is

T (S, x) = K(S, x)

where T (S, x) is defined in Definition 5.1.4 and K(S, x) is the contingent cone defined as

K(S, x) = {v 2 Rd : 9t
n

& 0 9v
n

! v s.t. (8n) x+ t
n

v
n

2 S}.

We refer to [25] for the details. Now note that for a.e. t

ẋ(t) = lim
h!0

+

x(t+ h)� x(t)

h
2 K(S, x(t))

and

ẋ(t) = lim
h!0

�

x(t+ h)� x(t)

h
2 �K(S, x(t)).

Thus hẋ(t), n(x(t))i = 0 for any n(x(t)) 2 N(S, x(t)). From the di↵erential inclusion

(5.2.1),we know that �F (x(t)) = ẋ(t) + n(x(t)) for some n(x(t)) 2 N(S, x(t)). Together

with fact that ẋ(t) 2 T (S, x(t)) and hẋ(t), n(x(t))i = 0, by Proposition 5.2.1

ẋ(t) = P
x(t)

(�F (x(t))) ,

as claimed.
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We turn to the existence of solutions to the discrete projected system (5.1.16), which

we write as
(

ẋ
i

(t) = P
x

i

(t)

(v(xn(t))) ,

x
i

(0) = x
i

2 S.
(5.2.4)

for i = 1, · · · , n. For that purpose we apply Theorem 5.2.3 and Lemma 5.2.4 for S = ⌦n

and x
0

= (x
1

, · · · , x
n

) with F (x) = (�v
1

(x(t)), · · · ,�v
n

(x(t))), where v
i

(x(t)) = �rW ⇤
µ(t)(x

i

(t))�rV (x
i

(t)) = �
P

n

j=1

m
j

rW (x
i

(t)� x
j

(t))�rV (x
i

(t)). To do that, we first

check that ⌦n is ⌘-prox-regular.

Proposition 5.2.5. If ⌦ ⇢ Rd is ⌘-prox-regular by Definition 5.1.3, then

⌦n = {(x
1

, · · · , x
n

) : x
i

2 ⌦, i = 1, . . . , n}

is ⌘-prox-regular; Also for any x = (x
1

, · · · , x
n

) 2 ⌦n we have

N(⌦n, x) = N(⌦, x
1

)⇥ · · ·⇥N(⌦, x
n

).

Proof. To see ⌦n is also ⌘-prox-regular, first it is direct that ⌦n is a closed set. Now for any

x = (x
1

, · · · , x
n

) 2 @⌦n and v = (v1, · · · , vn) 2 N(⌦n, x), by Definition 5.1.4 there exists

↵ > 0 such that

x 2 P
⌦

n (x+ ↵v) ,

which implies

x
i

2 P
⌦

�

x
i

+ ↵vi
�

for 1  i  n. By the equivalent definition of ⌘-prox-regularity of ⌦ (5.1.4), we then have

hvi, y
i

� x
i

i  |vi|
2⌘

|y
i

� x
i

|2

for any y
i

2 ⌦. Thus

hv, y � xi =
n

X

i=1

hvi, y
i

� x
i

i


n

X

i=1

|vi|
2⌘

|y
i

� x
i

|2

 |v|
2⌘

|y � x|2,

for any y = (y
1

, · · · , y
n

) 2 ⌦n. Thus ⌦n is ⌘-prox-regular by (5.1.4). We now turn to the

relations between the normal cones. For x = (x
1

, · · · , x
n

) 2 ⌦n and v = (v1, · · · , vn)

v 2 N(⌦n, x) , 9↵ > 0 s.t. x 2 P
⌦

n (x+ ↵v)

, x
i

2 P
⌦

�

x
i

+ ↵vi
�

, i = 1, . . . , n

, v
i

2 N(⌦, x
i

), i = 1, . . . , n.

Thus N(⌦n, x) = N(⌦, x
1

)⇥ · · ·⇥N(⌦, x
n

).
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Now we give the main result regarding the existence of solutions to projected discrete

systems.

Theorem 5.2.6. Assume that ⌦ is ⌘-prox-regular by Definition 5.1.3. If either ⌦ is bounded

and W,V satisfy (A1)-(A2) or ⌦ is unbounded and W,V satisfy (GA2) and (GA4) i.e.

(LA2) and (LA4), then for any n 2 N and any (x
1

, · · · , x
n

) 2 ⌦n, (m
1

, · · · ,m
n

) 2 Rn with

m
i

� 0,
P

n

i=1

m
i

= 1, the projected discrete system

(

ẋ
i

(t) = P
x

i

(t)

(v
i

(x(t))) ,

x
i

(0) = x
i

2 ⌦,
(5.2.5)

for i = 1, · · · , n, where v
i

(x(t)) = �rW ⇤µ(t)(x
i

(t))�rV (x
i

(t)) = �
P

n

j=1

m
j

rW (x
i

(t)�
x
j

(t))�rV (x
i

(t)), has a locally absolutely continuous solution.

Proof. We just need to check the conditions for Theorem 5.2.3 to apply. We already know

that ⌦n is ⌘-prox-regular. If ⌦ is bounded and W,V satisfy (A1)-(A2), then the mapping

⌦n 3 y = (y
1

, · · · , y
n

) 7! F (y) = (rW ⇤ µ(y
1

) +rV (y
1

), · · · ,rW ⇤ µ(y
n

) +rV (y
n

))

where µ =
P

n

i=1

m
i

�
y

i

, is continuous and bounded. Extend F to Rdn so that F is still

continuous and bounded. Then by Theorem 5.2.3 there exists an absolutely continuous

solution to the di↵erential inclusion
(

�ẋ(t) 2 N(⌦n, x(t)) + F (x(t)),

x(0) = (x
1

, · · · , x
n

) 2 ⌦n.
(5.2.6)

Similarly, if ⌦ is unbounded and rW,rV satisfy liner growth conditions (GA2) and (GA4),

then the mapping

Rdn 3 y = (y
1

, · · · , y
n

) 7! F (y) = (rW ⇤ µ(y
1

) +r(y
1

), · · · ,rW ⇤ µ(y
n

) +rV (y
n

))

where µ =
P

n

i=1

m
i

�
y

i

, is continuous and has linear growth on Rdn. By Theorem 5.2.3, we

still have an absolutely continuous solution to (5.2.6).

Now consider (5.2.6) in components yields for 1  i  n and v
i

(x) = �
P

n

j=1

rW (x
i

�
x
j

)m
j

�rV (x
i

),
(

�ẋ
i

(t) 2 N(⌦, x
i

(t))� v
i

(x(t)),

x
i

(0) = x
i

2 ⌦.

Then similar argument as in Lemma 5.2.4 gives

(

ẋ
i

(t) = P
x

i

(t)

(v
i

(x(t))) ,

x
i

(0) = x
i

2 ⌦.
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Remark 5.2.7. Here we make a remark that for any continuous vector filed ⇠ on ⌦, if we

define

X(t, x) = P
⌦

(x+ t⇠(x))

for all t � 0 and x 2 ⌦, then X(t, · ) : ⌦ ! ⌦ is continuous in t for t small and it satisfies

d+

dt
X(t, x)|

t=0

= lim
t!0

+

X(t, x)� x

t
= lim

t!0

+

P
⌦

(x+ t⇠(x))� x

t
= P

x

(⇠(x)), (5.2.7)

for all x 2 ⌦. We need this in Remark 5.3.6. Local continuity of X with respect to t follows

from the local Lipschitz property of P
⌦

, see [96].

To see (5.2.7), for any fixed x 2 ⌦, we make the following two claims.

Claim 1: For any fixed ⇠ 2 T (⌦, x),

lim
t!0

+

P
⌦

(x+ t⇠)� x

t
= ⇠.

Claim 2: For any fixed ⇠ (not necessarily in T (⌦, x)),

lim
t!0

+

P
⌦

(x+ t⇠)� P
⌦

(x+ tP
x

(⇠))

t
= 0.

If Claim 1 and 2 are true, then

lim
t!0

+

P
⌦

(x+ t⇠(x))� x

t
= lim

t!0

+

P
⌦

(x+ t⇠(x))� P
⌦

(x+ tP
x

(⇠(x)))

t

+ lim
t!0

+

P
⌦

(x+ tP
x

(⇠(x)))� x

t

= 0 + P
x

(⇠(x)) = P
x

(⇠(x)) .

For Claim1, recall from [25] that for any fixed ⇠ 2 T (⌦, x) and any sequence t
n

decreasing

to 0, there exists a sequence ⇠
n

such that x + t
n

⇠
n

2 ⌦ for all n and lim
n!1 ⇠

n

= ⇠. Now

fix x 2 ⌦, for any t
n

positive, decreasing to 0, take ⇠
n

! ⇠ such that x+ t
n

⇠
n

2 ⌦ for all n.

Then

lim
n!1

P
⌦

(x+ t
n

⇠)� x

t
n

= lim
n!1

P
⌦

(x+ t
n

⇠)� P
⌦

(x+ t
n

⇠
n

) + P
⌦

(x+ t
n

⇠
n

)� x

t
n

.

We note that

lim
n!1

P
⌦

(x+ t
n

⇠
n

)� x

t
n

= lim
n!1

x+ t
n

⇠
n

� x

t
n

= lim
n!1

⇠
n

= ⇠,

and

lim
n!1

P
⌦

(x+ t
n

⇠)� P
⌦

(x+ t
n

⇠
n

)

t
n

 lim
n!1

|x+ t
n

⇠ � x� t
n

⇠
n

|
t
n

= lim
n!1

|⇠ � ⇠
n

| = 0,
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where we used the local Lipschitz property of the projection P
⌦

onto ⌦, refer to [96]. Thus

Claim 1 holds true.

We now turn to Claim 2. By the proof of Proposition 3.1 of [96], we take � > 0 small

enough in the proof, then there exists a constant C = C(�) > 0 such that for t small enough

lim
t!0

+

C

t2
|P

⌦

(x+ t⇠)� P
⌦

(x+ tP
x

(⇠))|2

 lim
t!0

+

1

t2
hP

⌦

(x+ t⇠)� P
⌦

(x+ tP
x

(⇠)), x+ t⇠ � x� tP
x

(⇠)i

= lim
t!0

+

1

t
hP

⌦

(x+ t⇠)� P
⌦

(x+ tP
x

(⇠)), ⇠ � P
x

(⇠)i

= lim
t!0

+

1

t
hP

⌦

(x+ t⇠)� x+ x� P
⌦

(x+ tP
x

(⇠)), ⇠ � P
x

(⇠)i

Since ⇠ � P
x

(⇠) 2 N(⌦, x), by prox-regular property of ⌦ and local Lipischitz property of

P
⌦

,

lim
t!0

+

1

t
hP

⌦

(x+ t⇠)� x, ⇠ � P
x

(⇠)i  lim
t!0

+

1

t

|⇠ � P
x

(⇠)|
2⌘

|P
⌦

(x+ t⇠)� x|2

 lim
t!0

+

1

t

|⇠ � P
x

(⇠)|
2⌘

t2|⇠|2

= lim
t!0

+
t
|⇠ � P

x

(⇠)|
2⌘

|⇠|2 = 0.

Since P
x

(⇠) 2 T (⌦, x) and hP
x

(⇠), ⇠ � P
x

(⇠)i = 0, by Claim 1

lim
t!0

+

1

t
hx� P

⌦

(x+ tP
x

(⇠)), ⇠ � P
x

(⇠)i = �hP
x

(⇠), ⇠ � P
x

(⇠)i = 0.

So

lim
t!0

+

1

t2
|P

⌦

(x+ t⇠)� P
⌦

(x+ tP
x

(⇠))|2 = 0.

5.3 Existence and stability of solutions with ⌦ bounded

In this Section, we show the existence and stability of solutions to (5.0.1) for the case when

⌦ is bounded, prox-regular and W,V satisfy (A1)-(A2).

We approximate µ
0

2 P
2

(⌦) by µn

0

=
P

k(n)

i=1

mn

i

�
x

n

i

such that lim
n!1 d

W

(µ
0

, µn

0

) = 0

with xn
i

2 ⌦. By Theorem 5.2.6, for each n 2 N there exists a a locally absolutely continuous

solution to
(

ẋn
i

(t) = P
x

n

i

(t)

(vn
i

(x(t))) , 1  i  k(n)

xn
i

(0) = xn
i

2 ⌦,
(5.3.1)
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for t � 0, where

vn
i

(x(t)) = �rW ⇤ µn(t)(xn
i

(t))�rV (xn
i

(t)) = �
k(n)

X

j=1

mn

j

rW
�

xn
i

(t)� xn
j

(t)
�

�rV (xn
i

(t))

and µn(t) =
P

k(n)

j=1

mn

j

�
x

n

j

(t)

. It is a straightforward calculation to see that for any � 2
C1
c

(Rd)

d

dt

Z

Rd

�(x)dµn(t, x) =

Z

Rd

hr�(x), P
x

(vn(t, x))i dµn(t, x).

Thus µn(t) satisfies

@

@t
µn(t, x) + div (µn(t, x)P

x

(vn(t, x))) = 0,

in the sense of distributions for vn(t, x) = �rW ⇤ µn(t)(x)�rV (x).

The following proposition contains the key estimate on the stability of solutions in the

discrete case. In particular it shows how the stability in Wasserstein metric d
W

defined in

(5.1.2) is a↵ected by the lack of convexity of the domain.

Proposition 5.3.1. Assume that ⌦ is bounded and satisfies (M1), W,V satisfy (A1) and

(A2). Then for two solutions µn( · ) and µm( · ) to the discrete system with di↵erent initial

data µn

0

, µm

0

, we have for all t � 0

d
W

(µn(t), µm(t))  exp

✓✓

���
W

� �
V

+
krWk

L

1
(⌦�⌦)

+ krV k
L

1
(⌦)

⌘

◆

t

◆

d
W

(µn

0

, µm

0

) .

(5.3.2)

Proof. Note that µn( · ) is solution to the continuity equation

@
t

µn(t, x) + div (µn(t, x)P
x

(vn(t, x))) = 0, (5.3.3)

for vn(t, x) = �rW ⇤ µn(t)(x) � rV (x). Since the discrete solutions may have di↵erent

numbers of particles we use a transportation plan to relate them. Let �
t

2 �
o

(µn(t), µm(t))

be the optimal plan between µm and µn defined in (5.1.3). By Theorem 8.4.7 and Lemma

4.3.4 from [5]

1

2

d

dt
d2
W

(µn(t), µm(t)) 
Z

⌦

hP
x

(vn(t, x))� P
y

(vm(t, y)) , x� yi d�
t

(x, y). (5.3.4)

We first establish the contractivity the solutions would have if the boundary conditions were

not present and then account for the change due to velocity projection at the boundary.
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For vn, vm, by (A1) and (A2), that is the convexity of W and V ,

Z

⌦⇥⌦

hvn(t, x)� vm(t, y), x� yid�
t

(x, y)

=

Z

⌦⇥⌦

h�rW ⇤ µn(t)(x)�rV (x) +rW ⇤ µm(t)(y)�rV (y), x� yid�
t

(x, y)

=
1

2

Z

⌦⇥⌦

Z

⌦⇥⌦

h�rW (x� z) +rW (y � w), x� y � z + wid�
t

(z, w)d�
t

(x, y)

+

Z

⌦⇥⌦

h�rV (x) +rV (y), x� yid�
t

(x, y)

� 1

2
�
W

Z

⌦⇥⌦

Z

⌦⇥⌦

|x� z � y + w|2d�
t

(z, w)d�
t

(x, y)� �
V

Z

⌦⇥⌦

|x� y|2d�
t

(x, y)

(5.3.5)


�

���
W

� �
V

�

Z

⌦⇥⌦

|x� y|2d�
t

(x, y)

=
�

���
W

� �
V

�

d2
W

(µn(t), µm(t)) .

For the boundary e↵ect, by the fact that ⌦ is ⌘-prox-regular we have (5.1.4), thus

Z

⌦⇥⌦

hP
x

(vn(t, x))� vn(t, x)� P
y

(vm(t, y)) + vm(t, y), x� yid�
t

(x, y)


Z

⌦⇥⌦

kvn(t)k
L

1
(⌦)

+ kvm(t)k
L

1
(⌦)

2⌘
|y � x|2d�

t

(x, y)

=
kvn(t)k

L

1
(⌦)

+ kvm(t)k
L

1
(⌦)

2⌘
d2
W

(µn(t), µm(t)) .

(5.3.6)

Notice that vi(x) = �rW (x) ⇤ µi(t)(x)�rV (x) implies that for i = n,m

kvik
L

1
(⌦)

 krWk
L

1
(⌦�⌦)

+ krV k
L

1
(⌦)

< 1.

Plugging back into (5.3.4) we have

1

2

d

dt
d2
W

(µn(t), µm(t))


Z

⌦

hP
x

(vn(t, x))� P
y

(vm(t, y)) , x� yi d�
t

(x, y)

=

Z

⌦⇥⌦

hvn(t, x)� vm(t, y), x� yi d�
t

(x, y)

+

Z

⌦⇥⌦

hP
x

(vn(t, x))� vn(t, x)� P
y

(vm(t, y)) + vm(t, y), x� yi d�
t

(x, y)


✓

���
W

� �
V

+
krWk

L

1
(⌦�⌦)

+ krV k
L

1
(⌦)

⌘

◆

d2
W

(µn(t), µm(t)) .

By Gronwall’s inequality, we know (5.3.2) for all t � 0.
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Since n ! 1, d
W

(µn

0

, µ
0

) ! 0, by Proposition 5.3.1 the solutions µn( · ) of (5.3.1) form
a Cauchy sequence in n, with respect to Wasserstein metric. Thus

µn(t)
d

W�! µ(t) as n ! 1, (5.3.7)

for all t � 0 and some µ(t) 2 P
2

(⌦).

Remark 5.3.2. Our goal is to show that µ( · ) is a weak measure solution of (5.0.1). The

most immediate idea would be to try to pass to limit directly in Definition 5.1.1. However

note that since P
x

is not continuous in x and thus the velocity field governing the dynamics

is not continuous (at the boundary of ⌦). Given that µn( · ) converge to µ( · ) only in the

weak topology of measures, the lack of continuity of velocities prevents us to directly pass

to limit in the integral formulation given in Definition 5.1.1. To show that µ( · ) is a weak

measure solution of (5.0.1) we use the theory of gradient flows in the spaces of probability

measures P
2

(⌦). Namely, we establish that µ( · ) satisfies the steepest descent property with

respect to the total energy E defined in (5.1.1) by showing µn( · ) satisfies such property and

the property is stable under the weak topology of measures (convergence in the Wasserstein

metric d
W

).

We show that the limit curve µ( · ) we get from particle approximation is a curve of

maximal slope with respect to E .

Theorem 5.3.3. µ( · ) satisfies for any 0  s < t < 1

E (µ(s)) � E (µ(t)) +
1

2

Z

t

s

|µ0|2(r)dr + 1

2

Z

t

s

Z

⌦

|P
x

(v(r, x)) |2dµ(r, x)dr, (5.3.8)

where v(r, x) = �
R

⌦

rW (x� y)dµ(r, y)�rV (x).

Before proving the theorem, we need the following lower semi-continuity result.

Lemma 5.3.4. Assume (M1) holds for ⌦ and ⌫n 2 P
2

(⌦) converges narrowly to ⌫ 2 P
2

(⌦)

with sup
n

R

⌦

|x|2d⌫n(x) < 1, then

Z

⌦

|P
x

(v(x)) |2d⌫(x)  lim inf
n!1

Z

⌦

|P
x

(vn(x)) |2d⌫n(x), (5.3.9)

where vn(x) = �
R

⌦

rW (x�y)d⌫n(y)�rV (x) and v(x) = �
R

⌦

rW (x�y)d⌫(y)�rV (x).

Proof. Similar argument as in Lemma 2.7 from [28] yields that rW ⇤ ⌫n converges weakly

to rW ⇤ ⌫, i.e., for any � 2 C0

b

�

Rd

�

lim
n!1

Z

⌦

rW ⇤ ⌫n(x) · �(x)d⌫n(x) =
Z

⌦

rW ⇤ ⌫(x) · �(x)d⌫(x).
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Then by Proposition 5.2.2 we proved in Section 5.2 and Proposition 6.42 from [53], we

know that there exist two sequences of bounded continuous functions a
i

, b
i

such that for all

x 2 ⌦, v 2 Rd

|P
x

(v) |2 = sup
i2N

{a
i

(x) + b
i

(x) · v} .

Thus

lim inf
n!1

Z

⌦

|P
x

(vn(x)) |2d⌫n(x) = lim inf
n!1

Z

⌦

sup
i

{a
i

(x) + b
i

(x) · vn(x)} d⌫n(x)

� lim inf
n!1

Z

⌦

(a
i

(x) + b
i

(x) (�rW ⇤ ⌫n(x)�rV (x))) d⌫n(x)

=

Z

⌦

(a
i

(x) + b
i

(x) (�rW ⇤ ⌫(x)�rV (x))) d⌫(x).

Taking supremum over i 2 N and using Lebesgue’s monotone convergence theorem then

gives

lim inf
n!1

Z

⌦

|P
x

(vn(x)) |2d⌫n(x) � sup
i2N

Z

⌦

(a
i

(x) + b
i

(x) (rW ⇤ ⌫(x) +rV (x))) d⌫(x)

=

Z

⌦

|P
x

(v(x)) |2d⌫(x).

We now start to prove the theorem.

Proof of Theorem 5.3.3. We first show that the map t 7! E(µn(t)) is locally absolutely

continuous. Indeed, for 0  s < t < 1

|E(µn(t))� E(µn(s))| (5.3.10)

=

�

�

�

�

�

�

k(n)

X

i=1

mn

i

(V (xn
i

(t))� V (xn
i

(s))) +
1

2

k(n)

X

i,j=1

mn

i

mn

j

�

W (xn
i

(t)� xn
j

(t))�W (xn
i

(s)� xn
j

(s))
�

�

�

�

�

�

�


k(n)

X

i=1

mn

i

�

�V (xn
i

)� V (xn
j

)
�

�+
1

2

k(n)

X

i,j=1

mn

i

mn

j

�

�W (xn
i

(t)� xn
j

(t))�W (xn
i

(s)� xn
j

(s))
�

�


k(n)

X

i=1

mn

i

krV k
L

1
(Conv(⌦))

|xn
i

(t)� xn
i

(s)|+
k(n)

X

i=1

mn

i

krWk
L

1
(Conv(⌦�⌦))

|xn
i

(t)� xn
i

(s)|


�

krV k
L

1
(Conv(⌦))

+ krWk
L

1
(Conv(⌦�⌦))

�

k(n)

X

i=1

mn

i

|xn
i

(t)� xn
i

(s)|.

Thus t 7! E(µ(t)) is locally absolutely continuous since t 7! xn
i

(t) is locally absolutely

continuous.
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Since µn( · ) are solutions to the discrete systems, it is direct to calculate that

d

dt
E(µn(t)) = �

Z

⌦

|P
x

(vn(t, x))|2dµn(t, x),

and | (µn)0 |2(t) 
R

⌦

|P
x

(vn(t, x))|2dµn(t, x) for a.e. t > 0. Combining with the fact that

t 7! E(µn(t)) is locally absolutely continuous then gives,

E (µn(s)) � E (µn(t)) +
1

2

Z

t

s

| (µn)0 |2(r)dr + 1

2

Z

t

s

Z

⌦

|P
x

(vn(r, x)) |2dµn(r, x)dr. (5.3.11)

Note that ⌦ is bounded, W,V 2 C1(Rd) and lim
n!1 d

W

(µn(r), µ(r)) = 0 for any 0  r <

1, we get

lim
n!1

E(µn(r)) = E(µ(r)).

Also by Lemma 5.3.4, for any 0  r < 1

lim inf
n!1

Z

⌦

|P
x

(vn(r, x)) |2dµn(r, x) �
Z

⌦

|P
x

(v(r, x)) |2dµ(r, x).

By Fatou’s lemma, we then have

lim inf
n!1

Z

t

s

Z

⌦

|P
x

(vn(r, x)) |2dµn(r, x)dr �
Z

t

s

Z

⌦

|P
x

(v(r, x)) |2dµ(r, x)dr. (5.3.12)

We now claim that

lim inf
n!1

Z

t

s

| (µn)0 |2(r)dr �
Z

t

s

|µ0|2(r)dr. (5.3.13)

To see that, first notice that sup
n

R

t

s

| (µn)0 |2(r)dr < 1, so | (µn)0 | 2 L2([s, t]) and converges

weakly in L2([s, t]) to some function A as n ! 1. We then have for any 0  s  S  T 
t < 1

d
W

(µ(S), µ(T )) = lim
n!1

d
W

(µn(S), µn(T ))

 lim inf
n!1

Z

T

S

| (µn)0 |(r)dr

=

Z

T

S

A(r)dr.

Thus we have

|µ0|(r)  A(r)

for s  r  t, which then implies
Z

t

s

|µ0|2(r)dr 
Z

t

s

A2(r)dr

 lim inf
n!1

Z

t

s

| (µn)0 |2(r)dr.
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The claim is proved. Now take n ! 1 in (5.3.11)gives

E (µ(s)) � E (µ(t)) +
1

2

Z

t

s

|µ0|2(r)dr + 1

2

Z

t

s

Z

⌦

|P
x

(v(r, x)) |2dµ(r, x)dr,

as desired.

Note that as a byproduct of the proof, we obtain that µ( · ) is a locally absolutely

continuous curve in P
2

(⌦). We now show the proof of the main Theorem 5.1.5

Proof of Theorem 5.1.5. Since µ( · ) 2 P
2

(⌦) is locally absolutely continuous, by Theorem

2.2.3, there exists a unique Borel vector field ṽ such that the continuity equation

@
t

µ(t) + div (µ(t)ṽ(t)) = 0, (5.3.14)

holds in the sense of distributions, i.e., tested against all � 2 C1
c

�

[0,1)⇥ Rd

�

, and

Z

⌦

|ṽ(t, x)|2dµ(t, x) = |µ0|2(t),

for a.e. t � 0. Then by Proposition 8.4.6 from [5], for a.e. t > 0

lim
h!0

✓

⇡1,
1

h

�

⇡2 � ⇡1

�

◆

]

�h
t

= (Id⇥ṽ(t))
]

µ(t), (5.3.15)

in (P
2

(⌦), d
W

) for any �h
t

2 �
o

(µ(t), µ(t + h)). Here we also need the following stronger

convergence: Denote the disintegration of �h
t

with respect to µ(t) by ⌫h
x

, then as h ! 0,
R

⌦

y�·
h

d⌫h· (y) converges to the vector field ṽ(t, ·) weakly in L2(µ(t)). The observation is that

lim
h!0

�

�

�

�

Z

⌦

y � ·
h

d⌫h· (y)

�

�

�

�

2

L

2
(µ(t))

= lim
h!0

Z

⌦

�

�

�

�

Z

⌦

y � x

h
d⌫h

x

(y)

�

�

�

�

2

dµ(t, x)

 lim
h!0

Z

⌦⇥⌦

|y � x|2

h2
d�h

t

(x, y)

= lim
h!0

d2
W

(µ(t), µ(t+ h))

h2

< 1.

Thus
R

⌦

y�·
h

d⌫h· (y) converges weakly in L2(µ(t)) to some vector field v̂(t, ·). This together

with (5.3.15) implies v̂ = ṽ and we have the weak L2(µ(t)) convergence of
R

⌦

y�·
h

d⌫h· (y) to

ṽ(t) as stated.

We now claim the following chain rule: for a.e. t > 0

d

dt
E (µ(t)) =

Z

⌦

hrW ⇤ µ(t)(x) +rV (x), ṽ(t, x)i dµ(t, x). (5.3.16)
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Indeed, we first notice that since µ( · ) is locally absolutely continuous, E(µ( · )) is also locally

absolutely continuous. To see that we have

|E(µ(t))� E(µ(s))|  1

2

�

�

�

�

Z

⌦⇥⌦

W (x� y)dµ(t, x)dµ(t, y)�
Z

⌦⇥⌦

W (z � w)dµ(s, z)dµ(s, w)

�

�

�

�

+

�

�

�

�

Z

⌦

V (x)dµ(t, x)�
Z

⌦

V (z)dµ(s, z)

�

�

�

�


Z

⌦⇥⌦

�

krV k
L

1
(Conv(⌦))

+ krWk
L

1
(Conv(⌦�⌦))

�

|x� z|d�(x, z)


�

krV k
L

1
(Conv(⌦))

+ krWk
L

1
(Conv(⌦�⌦))

�

d
W

(µ(t), µ(s)) .

Thus by the locally absolute continuity of µ( · ), E(µ( · )) is also locally absolutely continuous.

Now for any fixed µ, ⌫ 2 P
2

(⌦) and � 2 �
o

(µ, ⌫), consider the function

f(t) =
W (t (x

1

� x
2

)� (1� t) (y
1

� y
2

))�W (x
1

� x
2

)

2t
(5.3.17)

+
2V (tx

2

+ (1� t)y
2

)� 2V (x
2

)

2t
� �

V

2
t|x

2

� y
2

|2 � �
W

2
t
�

|x
1

� y
1

|2 + |x
2

� y
2

|2
�

.

Due to (A1) and (A2), the �-geodesic convexity of W,V , we know f is non-decreasing on

[0, 1]. So f(1) � lim inf
t!0

+ f(t). Integrating over d�(x
1

, y
1

)d�(x
2

, y
2

) gives

E(⌫)� E(µ) =
Z

⌦⇥⌦

Z

⌦⇥⌦

W (y
1

� y
2

) + 2V (y
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2

)� 2V (x
2
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1
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2

)

�
Z

⌦⇥⌦

Z

⌦⇥⌦

hrW (x
2

� x
1

) +rV (x
2

), y
2

� x
2

i d�(x
1

, y
1

)d�(x
2

, y
2

) + o (d
W

(µ, ⌫))

=

Z

⌦⇥⌦

⌧

Z

⌦

rW (x
2

� x
1

)dµ(x
1

) +rV (x
2

), y
2

� x
2

�

d�(x
2

, y
2

) + o (d
W

(µ, ⌫))

=

Z

⌦⇥⌦

hrW ⇤ µ(x
2

) +rV (x
2

), y
2

� x
2

i d�(x
2

, y
2

) + o (d
W

(µ, ⌫)) .

Denote v(t, x) = �rW ⇤ µ(t, x)�rV (x), we notice that

h�v(t, x
2

), y
2

� x
2

i = h�P
x2 (v(t, x2)) , y2 � x

2

i+ h�v(t, x
2

) + P
x2 (v(t, x2)) , y2 � x

2

i

� h�P
x2 (v(t, x2)) , y2 � x

2

i �
krWk

L

1
(⌦�⌦)

+ krV k
L

1
(⌦)

2⌘
|y

2

� x
2

|2,

and
Z

⌦⇥⌦

|x
2

� y
2

|2d�(x
2

, y
2

) = d2
W

(µ, ⌫).

Thus

E(⌫)� E(µ) �
Z

⌦⇥⌦

h�P
x2 (�rW ⇤ µ(x

2

)�rV (x
2

)) , y
2

� x
2

i d�(x
2

, y
2

) + o (d
W

(µ, ⌫)) ,

and by Definition 2.2.5

� P (v(t)) = �P (�rW ⇤ µ(t)�rV ) 2 @E(µ(t)). (5.3.18)
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Take µ = µ(t), ⌫ = µ(t+ h) and �h
t

2 �
o

(µ(t), µ(t+ h)) then gives

lim
h!0

+

E (µ(t+ h))� E (µ(t))

h

� lim sup
h!0

+

✓

Z

⌦⇥⌦

⌧

rW ⇤ µ(t, x
2

) +rV (x
2

),
y
2

� x
2

h

�

d�h
t

(x
2

, y
2

) +
1

h
o (d

W

(µ(t), µ(t+ h)))

◆

=

Z

⌦

hrW ⇤ µ(t)(x
2

) +rV (x
2

), ṽ(t, x
2

)i dµ(t, x
2

),

where the last equality comes from (5.3.15). Similarly, by taking µ = µ(t), ⌫ = µ(t� h), we

have

lim
h!0

+

E (µ(t))� E (µ(t� h))

h

Z

⌦

hrW ⇤ µ(t)(x
2

) +rV (x
2

), ṽ(t, x
2

)i dµ(t, x
2

).

Together with the fact that E(µ( · ) is locally absolutely continuous, we have for a.e. t > 0

d

dt
E (µ(t)) =

Z

⌦

hrW ⇤ µ(t)(x) +rV (x), ṽ(t, x)i dµ(t, x). (5.3.19)

The claim is proved. Now for v
N

(t, x) = v(t, x) � P
x

(v(t, x)), we have v
N

(t, x) 2 N(⌦, x)

and kv
N

(t)k
L

1
(⌦)

 kv(t)k
L

1
(⌦)

< 1. Thus

lim
h!0

+

Z

⌦⇥⌦

⌧

v
N

(t, x),
y � x

h

�

d�h
t

(x, y)  lim
h!0

+

Z

⌦⇥⌦

kv
N

(t)k
L

1
(⌦)

2⌘

1

h
|x� y|2d�h

t

(x, y)

 lim
h!0

+

kv(t)k
L

1
(⌦)

2⌘

d2
W

(µ(t), µ(t+ h))

h

= 0,

which together with the weak L2 (µ(t))-convergence of
R

⌦

y�·
h

d⌫·(y) implies
Z

⌦

hv
N

(t, x), ṽ(t, x)i dµ(t, x)  0.

We then know that

d

dt
E (µ(t)) � �

Z

⌦

hP
x

(�rW ⇤ µ(t)(x)�rV (x)) , ṽ(t, x)i dµ(t, x). (5.3.20)

Together with (5.3.8) and (5.3.18) we get for a.e t > 0

ṽ(t, x) = P
x

(v(t, x)) = P
x

(�rW ⇤ µ(t)(x)�rV (x)) 2 �@E (µ(t)) ,

|µ0|2(t) =
Z

⌦

|P
x

(�rW ⇤ µ(t)(x)�rV (x))|2 dµ(t, x)

and for any 0  s  t < 1

E(µ(s)) = E(µ(t)) +
Z

t

s

Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(r, x)dr.

Thus µ( · ) is a gradient flow with respect to E and by (5.3.14), a weak measure solution to

(5.0.1).
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Remark 5.3.5. In [31], Carrillo, Lisini and Mainini showed weak L2(µ(t)) convergence of
R

⌦

y�·
h

d⌫h· (y) to ṽ(t, ·) in a more general setting than ours.

Remark 5.3.6. We can actually show a stronger statement than (5.3.18), that for any

µ 2 P
2

(⌦)

� P (v) = �P (�rW ⇤ µ�rV ) 2 @oE(µ), (5.3.21)

where @oE(µ) denotes the unique minimal L2(µ) element in @E(µ). To show that, we recall

the notion of local slope |@E| at µ 2 P
2

(⌦),

|@E|(µ) = lim sup
⌫!µ

(E(µ)� E(⌫))+

d
W

(µ, ⌫)
,

where ⌫ ! µ means ⌫ 2 P
2

(⌦) approaches µ in d
W

. It is straightforward computation to

see that for any  2 @E(µ), |@E|(µ)  kk
L

2
(µ)

. Then to get (5.3.21), it is enough to show

kP (�rW ⇤ µ�rV ) k
L

2
(µ)

 |@E|(µ), (5.3.22)

which we follow the argument given in [28, 119] to show. For any continuous, L2(µ)

integrable vector field ⇠ on ⌦, let X(t) be as given in Remark 5.2.7 and define µ(t) =

(X(t, · ))
]

µ, then

lim
t!0

+

E(µ(t))� E(µ)
t

=

Z

⌦

hrW ⇤ µ(x) +rV (x), P
x

(⇠(x))i dµ(x), (5.3.23)

and

lim
t!0

+

d
W

(µ(t), µ)

t
 kP (⇠)k

L

2
(µ)

. (5.3.24)

(5.3.24) is a direct consequence of the fact that (Id, X(t, · ))
]

µ 2 �(µ, µ(t)), see Lemma

3.3.6 from Chapter 3. (5.3.23) comes from a similar argument given in step 2 of the proof

of Theorem 3.3.4 from Chapter 3. Thus

�
Z

⌦

hrW ⇤ µ(x) +rV (x), P
x

(⇠(x))i dµ(x) = lim
t!0

+

E(µ)� E(µ(t))
t

= lim
t!0

+

E(µ)� E(µ(t))
d
W

(µ(t), µ)

d
W

(µ(t), µ)

t

 |@E|(µ)kP (⇠)k
L

2
(µ)

.

Take ⇠(x) = �rW ⇤ µ(x) � rV (x), we get (5.3.22) as claimed. Notice that all the above

arguments also works when ⌦ is bounded and ⌘-prox-regular as well as when ⌦ is unbounded

and convex.

A direct consequence of (5.3.21) is that, µ( · ) is a gradient flow with respect to E if

and only if it is a weak measure solution to (5.0.1), given ⌦ is bounded, ⌘-prox-regular

or unbounded, convex. The observation is, if µ( · ) is a gradient flow with tangent velocity
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field ṽ, then ṽ(t) = �@oE(µ(t)) for a.e. t > 0, see Theorem 11.1.3 from [5]. Thus ṽ(t) =

P (�rW ⇤ µ(t) � rV ) and µ( · ) is a weak measure solution to (5.0.1). If µ( · ) is a weak

measure solution to (5.0.1) with tangent velocity ṽ, then div (µ(t) (P (v(t))� ṽ(t))) = 0 for

v(t, x) = �rW ⇤ µ(t)(x)�rV (x). By (5.3.19)

d

dt
E(µ(t)) =

Z

⌦

hrW ⇤ µ(t)(x) +rV (x), ṽ(t, x)i dµ(t, x)

=

Z

⌦

hrW ⇤ µ(t)(x) +rV (x), P
x

(v(t, x))i dµ(t, x)

= �kP (v(t)) k2
L

2
(µ(t))

.

This together with the fact d

dt

E(µ(t)) � �1

2

|@E|2(µ(t)) � 1

2

|µ0|2(t) imply kP (v(t))k
L

2
(µ)

=

|µ0|(t) for a.e. t > 0 and P (v(t)) is the tangent velocity field of µ( · ) with P (v(t)) =

�@oE(µ(t)) for a.e. t > 0. Thus µ( · ) is a gradient flow with respect to E.

We turn to the proof of Theorem 5.1.6.

Proof of Theorem 5.1.6. We show (5.1.8) first. Let µ1( · ), µ2( · ) be two solutions to (5.0.1),

by Theorem 8.4.7 and Lemma 4.3.4 from [5], we have

d

dt
d2
W

�

µ1(t), µ2(t)
�

 2

Z

⌦⇥⌦

hP
x

�

v1(t, x)
�

� P
y

�

v2(t, y)
�

, x� yid�
t

(x, y), (5.3.25)

where �
t

2 �
o

�

µ1(t), µ2(t)
�

and vi(t, x) = �rW ⇤ µi(t)(x)�rV (x) for i = 1, 2. For vi, by

(A1) and (A2), similar argument as in the proof of Proposition 5.3.1 gives
Z

⌦⇥⌦

hv1(t, x)� v2(t, y), x� yid�
t

(x, y) 
�

���
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� �
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�
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.

By the fact that ⌦ is ⌘-prox-regular we have
Z

⌦⇥⌦

hP
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�
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�
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,

where vi satisfies

kvik
L

1
(⌦)

 krWk
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1
(⌦�⌦)

+ krV k
L

1
(⌦)

< 1.

Plugging back into (5.3.25) yields
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2

d
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1
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◆
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Then by Gronwall’s inequality we have for all t � 0

d
W

�

µ1(t), µ2(t)
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 exp
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.

(5.3.26)

(5.1.8) is proved. For (5.1.9), we have if µ( · ) is a weak measure solution to (5.0.1), then

for any ⌫ 2 P
2

(⌦) and �
t
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o

(µ(t), ⌫)

1

2

d
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x
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(x, y)

E(⌫)� E(µ(t)) +
✓

�
��
W

2
� �

V

2
+

krWk
L

1
(⌦�⌦)

+ krV k
L

1
(⌦)

2⌘

◆

d2
W

(µ(t), ⌫) .

On the other hand, if a locally absolutely continuous µ( · ) satisfies (5.1.9), then for any

fixed ⌫ 2 P
2

(⌦),
Z

⌦⇥⌦

hṽ(t, x), x� yid�(x, y)

=
1

2

d

dt
d2
W

(µ(t), ⌫)

 E(⌫)� E(µ(t)) +
✓

�
��
W

2
� �

V

2
+

krWk
L

1
(⌦�⌦)

+ krV k
L

1
(⌦)

2⌘

◆

d2
W

(µ(t), ⌫) ,

where ṽ is the tangent velocity filed of µ( · ) at t and � 2 �
o

(µ(t), ⌫) is an optimal plan. By

Definition 2.2.5,

ṽ(t) 2 �@E(µ(t))

for a.e. t � 0 and µ( · ) is a gradient flow to E . Thus we know ṽ(t) = �@oE(µ(t)) =

P
x

(v(t)) and µ( · ) is a weak measure solution to (5.0.1). Thus the weak measure solution

is characterized by the system of evolution variational inequalities (5.1.9).

5.4 Existence and stability of solutions with ⌦ unbounded:

Global case

In this Section we prove the existence and stability of (5.0.1) with ⌦ unbounded, convex

and W,V satisfying (GA1)-(GA4).
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For any initial data µ
0

2 P
2

(⌦) and fixed x
0

2 ⌦, denote B
n

(x
0

) = {x 2 Rd : |x� x
0

| <
n}, we can take µn

0

=
P

k(n)

i=1

mn

j

�
x

n

i

for xn
i

2 ⌦ \ B
n

(x
0

) and lim
n!1 d

W

(µn

0

, µ
0

) = 0.

To see that, note
R

⌦

|x � x
0

|2dµ
0

(x) < 1, thus lim
n!1

R

⌦\B
n

(x0)
|x � x

0

|2dµ
0

(x) = 0.

For µ
0

b
⌦\B

n

(x0)
, we can find µ̃n

0

composed of delta measures with the same total mass

as µ
0

b
⌦\B

n

(x0)
, such that supp(µn

0

) ⇢ ⌦ \ B
n

(x
0

) and lim
n!1 d

W

⇣

µ
0

b
⌦\B

n

(x0)
, µ̃n

0

⌘

= 0.

Then µn

0

= µ̃n

0

+
⇣

1� µ
0

⇣

⌦ \B
n

(x
0

)
⌘⌘

�
x0 satisfies the required conditions. Without loss

of generality, we assume that x
0

= 0 2 ⌦ and denote B(n) = B
n

(0).

As in Section 5.3, we first show the convergence of µn( · ) as n ! 1.

Proposition 5.4.1. Assume that ⌦ is unbounded and convex, W,V satisfy (GA1)-(GA4).

Then for two solutions µm( · ), µn( · ) to the discrete system with di↵erent initial data µm

0

, µn

0

,

we have for all t � 0

d
W

(µn(t), µm(t))  exp
�

�
�

��
W

+ �
V

�

t
�

d
W

(µn

0

, µm

0

) . (5.4.1)

Proof. The proof is similar to the proof of Proposition 5.3.1 once we notice that since ⌦ is

1-prox-regular, by (5.1.4) for any x, y 2 ⌦

hP
x

(vn(t, x))� vn(t, x), x� yi  0.

So as n ! 1 we again know that µn(t) converges to some µ(t) 2 (P
2

(⌦) , d
W

) for all

t � 0. Before proving that the limit curve µ( · ) is a curve of maximal slope, we need the

following proposition.

Proposition 5.4.2. Let µ
n

, µ 2 P
2

(⌦) be such that lim
n!1 d

W

(µ
n

, µ) = 0 then

lim
n!1

V(µ
n

) = V(µ),

and

lim
n!1

W(µ
n

) = W(µ).

Proof. Since the arguments are similar, it is enough for us to show the property for V. By
(GA4), there exists a constant C > 0 such that |V (x)|  C(1+ |x|2). By Lemma 5.1.7 from

[5], since V (x) + C|x|2 is lower semicontinuous and bounded from below,

lim inf
n!1

Z

⌦

�

V (x) + C|x|2
�

dµ
n

(x) �
Z

⌦

�

V (x) + C|x|2
�

dµ(x).

lim
n!1 d

W

(µ
n

, µ) = 0, we know

lim
n!1

Z

⌦

|x|2dµ
n

(x) =

Z

⌦

|x|2dµ(x).
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Thus

lim inf
n!1

Z

⌦

V (x)dµ
n

(x) �
Z

⌦

V (x)dµ(x).

Similarly, the condition C|x|2 � V (x) is lower semicontinuous and bounded from below

implies

lim sup
n!1

Z

⌦

V (x)dµ
n

(x) 
Z

⌦

V (x)dµ(x).

Thus

lim
n!1

V(µ
n

) = V(µ),

as claimed.

We estimate the growth of support of the solutions µn( · ) to (5.1.16).

Lemma 5.4.3. Let µn

0

be the approximation of µ
0

such that supp (µn

0

) ⇢ ⌦ \ B(n). Then

supp (µn(t)) ⇢ ⌦ \ B(r(t)) for r(t)  (n + 1) exp(Ct) for some C = C(W,V ) independent

of n.

Proof. Define r(t) = sup
i

|xn
i

(t)|. For fixed t > 0, assume that xn
i

(t) realizes R(t) i.e.,

r(t) = |xn
i

(t)|, then
�

�

�

�

d

dt
|xn

i

|2
�

�

�

�

= 2

�

�

�

�

�

�

*

xn
i

(t), P
x

n

i

0

@�
k(n)

X

j=1

m
j

rW (xn
i

� xn
j

)�rV (xn
i

)

1

A

+

�

�

�

�

�

�

 2|xn
i

(t)|

0

@

k(n)

X

j=1

m
j

�

�rW (xn
i

(t)� xn
j

(t))
�

�+ |rV (xn
i

(t))|

1

A

 2|xn
i

(t)|

0

@

k(n)

X

j=1

m
j

C
�

1 + |xn
i

(t) + |xn
j

(t)|
�

+ C (1 + |xn
i

(t)|)

1

A

 C
⇣

1 + |xn
i

(t)|2
⌘

.

Thus

r(t)  r(0) exp(Ct) + exp(Ct)� 1

for r(0)  n and C depending only on W,V , in particular independent of the number of

particles k(n).

We can now show

Theorem 5.4.4. Assume ⌦ is unbounded and convex, W,V satisfy (GA1)-(GA4), then

µ( · ) satisfies for any 0  s < t < 1

E (µ(s)) � E (µ(t)) +
1

2

Z

t

s

|µ0|2(r)dr + 1

2

Z

t

s

Z

⌦

|P
x

(v(r, x)) |2dµ(r, x)dr, (5.4.2)

where v(r, x) = �
R

⌦

rW (x� y)dµ(r, y)�rV (x).
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Proof. We first check that for fixed n 2 N, the function t 7! E(µn(t)) is locally absolutely

continuous. For fixed 0  s < t < 1, by Lemma 5.4.3, krV (x)k
L

1
(⌦\B(r(t)))

< 1 and

krWk
L

1
(⌦\B(r(t))�⌦\B(r(t))

< 1. Then by the same argument as in (5.3.10), t 7! E(µ(t))
is locally absolutely continuous. Together with Proposition 5.4.2, the proof is now identical

to the proof of Theorem 5.3.11. We omit it here.

We proceed to the proof of Theorem 5.1.9

Proof of Theorem 5.1.9. Let ṽ be the tangential velocity field for µ( · ), i.e. µ( · ) satisfies

(5.3.14) and kṽ(t)k
L

2
(µ(t))

= |µ0|(t). Similar arguments as in the proof of Theorem 5.1.5 still

gives that for any µ, ⌫ 2 P
2

(⌦)

E(⌫)� E(µ) �
Z

⌦⇥⌦

hrW ⇤ µ(x
2

) +rV (x
2

), y
2

� x
2

i d�(x
2

, y
2

) + o (d
W

(µ, ⌫) ,

and for a.e. t > 0

d

dt
E (µ(t)) =

Z

⌦

hrW ⇤ µ(t)(x) +rV (x), ṽ(t, x)i dµ(t, x).

Now since ⌦ is convex, we have hv
N

(t, x), y � xi  0, thus

E(⌫)� E(µ) �
Z

⌦⇥⌦

h�P
x

(�rW ⇤ µ(t)(x)�rV (x)) , y � xi d�(x, y),

and

lim
h!0

+

Z

⌦⇥⌦

⌧

v
N

(t, x),
y � x

h

�

d�h
t

(x, y)  0.

So we have �P (v(t)) = �P (�rW ⇤ µ(t)�rV ) 2 @E (µ(t)) and

Z

⌦

hv
N

(t, x), ṽ(t, x)idµ(t, x)  0.

Thus
d

dt
E (µ(t)) � �

Z

⌦

hP
x

(�rW ⇤ µ(t)(x)�rV (x)) , ṽ(t, x)i dµ(t, x),

which together with Theorem 5.5.1 implies for a.e. t > 0

ṽ(t, x) = P
x

(v(t, x)) = P
x

(�rW ⇤ µ(t)(x)�rV (x)) 2 �@E (µ(t)) , (5.4.3)

|µ0|2(t) =
Z

⌦

|P
x

(�rW ⇤ µ(t)(x)�rV (x))|2 dµ(t, x) (5.4.4)

and for any 0  s  t < 1

E(µ(s)) = E(µ(t)) +
Z

t

s

Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(r, x)dr. (5.4.5)

113



Thus µ( · ) is a gradient flow with respect to E and by (5.3.14), a weak measure solution to

(5.0.1).

For the stability result (5.1.13), we only need to notice that for any two solutions µ1( · ), µ2( · )
to (5.0.1), since ⌦ is convex,

⌦

vi(t, x)� P
x

�

vi(t, x)
�

, y � x
↵

 0 for i = 1, 2. Thus

1

2

d

dt
d2
W

�

µ1(t), µ2(t)
�


Z

⌦⇥⌦

hP
x

�

v1(t, x)
�

� P
y

�

v2(t, y)
�

, x� yid�
t

(x, y)

=

Z

⌦⇥⌦

hv1(t, x)� v2(t, y), x� yid�
t

(x, y)

+

Z

⌦⇥⌦

hP
x

�

v1(t, x)
�

� v1(t, x)� P
y

�

v2(t, y)
�

+ v2(t, y), x� yid�
t

(x, y)

 �
�

��
W

+ �
V

�

d2
W

�

µ1(t), µ2(t)
�

.

Then by Gronwall’s inequality we get (5.1.13).

For evolution variational inequalities (5.1.14), if µ( · ) is a solution to (5.0.1) then for any

⌫ 2 P
2

(⌦) and � 2 �
o

(µ(t), ⌫) an optimal plan

1

2

d

dt
d2
W

(µ(t), ⌫) =

Z

⌦⇥⌦

hP
x

(v(t, x)) , x� yi d�
t

(x, y)

=

Z

⌦⇥⌦

(hv(t, x), x� yi+ hP
x

(v(t, x))� v(t, x), x� yi) d�
t

(x, y)

 E(⌫)� E(µ(t))�
Z

⌦⇥⌦

✓

��
W

2
+

�
V

2

◆

|x� y|2d�
t

(x, y)

 E(⌫)� E(µ(t))�
✓

��
W

2
+

�
V

2

◆

d2
W

(µ(t), ⌫) .

Similar argument as in the proof of Theorem 5.1.6 shows that if µ( · ) satisfies (5.1.14), then
it is a gradient flow to E and a weak measure solution to (5.0.1). Thus the weak mea-

sure solution to (5.0.1) is characterized by the system of evolution variational inequalities

(5.1.14).

5.5 Existence and stability of solutions with ⌦ unbounded:

Compactly supported initial data case

In this Section, we show the existence and stability results in the case when ⌦ is unbounded

and W,V satisfy (LA1)-(LA4). The novelty is that �-geodesic convexity of energy is only

assumed locally (which is automatically satisfied if V and W are C2 functions).

We start by giving the control the support of the solutions µn(t) to (5.1.16). Notice

that when approximating µ
0

by µn

0

=
P

k(n)

i=1

mn

i

�
x

n

i

, since supp(µ
0

) ⇢ ⌦ \ B(r
0

), we can

take xn
i

2 ⌦ \B(r
0

+ 1) for all n 2 N and 1  i  k(n) such that we have

lim
n!1

d
W

(µn

0

, µ
0

) = 0.
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So without loss of generality, we assume supp (µn

0

) ⇢ B(r
0

) for all n 2 N. Then by Lemma

5.4.3, supp (µn(t)) ⇢ ⌦ \ B(r(t)) for r(t)  (r
0

+ 1) exp(Ct) for some C = C(W,V ) inde-

pendent of n.

Proposition 5.5.1. There exists a locally absolutely continuous curve µ( · ) in P
2

(⌦) such

that µn(t) converges to µ(t) in P
2

(⌦) for any 0  t < 1.

Proof. For any fixed 0 < T < 1 and any 0  t  T , we know that supp(µn(t)) ⇢ B(r(T ))

for all 0  t  T uniformly in n. Let K
k

and �
W,k

,�
V,k

be the sequences of compact convex

sets and constants such that W,V are �
W,k

and �
V,k

-geodesically convex on K
k

. Take k
0

be such that B(2r(T )) ⇢ K
k

for all k � k
0

. Still denote �
t

2 �
o

(µn(t), µm(t)) an optimal

plan. Now notice that supp(µn(t)), supp(µm(t)) ⇢ B(r(t)) \ ⌦ ⇢ K
k

\ ⌦ = ⌦
k

, thus
Z

⌦⇥⌦

hvn(t, x)� vm(t, y), x� yi d�
t

(x, y) 
Z

⌦⇥⌦

⇣

��
W,k

+ �
V,k

⌘

|x� y|2,

and
Z

⌦⇥⌦

hP
x

(vn(t, x))� vn(t, x)� P
y

(vm(t, y)) + vm(t, y), x� yi d�
t

(x, y)


Z

⌦⇥⌦

✓kvn(t)k
L

1
(⌦

t

)

+ kvm(t)k
L

1
(⌦

t

)

2⌘

◆

|x� y|2d�
t

(x, y),

where ⌦
t

= ⌦ \B(r(t)). Since vn(t, x) = �
R

⌦

rW (x� y)dµn(t, y)�rV (x) we know

kvn(t)k
L

1
(⌦

t

)

 krWk
L

1
(⌦

T

�⌦
T

)

+ krV k
L

1
(⌦

T

)

< 1.

Thus as in the proof of Proposition 5.3.1, we have for 0  t  T

1

2

d

dt
d2
W

(µn(t), µm(t))


Z

⌦

hP
x

(vn(t, x))� P
y

(vm(t, y)) , x� yi d�
t

(x, y)

=

Z

⌦⇥⌦

hvn(t, x)� vm(t, y), x� yi d�
t

(x, y)

+

Z

⌦⇥⌦

hP
x

(vn(t, x))� vn(t, x)� P
y

(vm(t, y)) + vm(t, y), x� yi d�
t

(x, y)
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+
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�⌦
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+ krV k
L

1
(⌦

T

)

⌘

◆

d2
W

(µn(t), µm(t)) .

By Gronwall’s inequality, we have for all 0  t  T

d
W

(µn(t), µm(t))  e

✓
��

�
W,k

��

V,k

+

krWk
L

1(⌦
T

�⌦
T

)+krV k
L

1(⌦
T

)
⌘

◆
t

d
W

(µn

0

, µm

0

).

Thus as n ! 1, µn(t) converges in P
2

(⌦) to some µ(t).

115



Theorem 5.5.2. µ( · ) is a curve of maximal slope, for any 0  s < t < 1

E (µ(s)) � E (µ(t)) +
1

2

Z

t

s

|µ0|2(r)dr + 1

2

Z

t

s

Z

⌦

|P
x

(v(r, x)) |2dµ(r, x)dr, (5.5.1)

where v(r, x) = �
R

⌦

rW (x� y)dµ(r, y)�rV (x).

Proof. We use similar argument as in Theorem 5.3.3 and Theorem 5.4.4. For any fixed

n 2 N, since supp(µn(t)) ⇢ ⌦ \B(r(t)), we can still control the L1-norm of rV and rW .

Then the same argument as in the proof of Theorem 5.4.4 shows that t 7! E (µ(t)) is locally

absolutely continuous. Thus the fact that µn are solutions to the discrete systems implies,

E (µn(s)) � E (µn(t)) +
1

2

Z

t

s

| (µn)0 |2(r)dr + 1

2

Z

t

s

Z

⌦

|P
x

(vn(r, x)) |2dµn(r, x)dr. (5.5.2)

Note that W,V 2 C1(Rd) and lim
n!1 d

W

(µn(r), µ(r)) = 0 with supp(µn(r)) ⇢ ⌦\B(r(T )

for any 0  r < t  T , we get

lim
n!1

E(µn(r)) = E(µ(r)).

By Lemma 5.3.4 and notice that rW ⇤µn(r)+rV still converges weakly to rW ⇤µ(r)+rV

for any 0  r  T , then

lim inf
n!1

Z

⌦

|P
x

(vn(r, x)) |2dµn(r, x) �
Z

⌦

|P
x

(v(r, x)) |2dµ(r, x).

By Fatou’s lemma,

lim inf
n!1

Z

t

s

Z

⌦

|P
x

(vn(r, x)) |2dµn(r, x)dr �
Z

t

s

Z

⌦

|P
x

(v(r, x)) |2dµ(r, x)dr.

Now by the same argument as in the proof of (5.3.13), we again obtain

lim inf
n!1

Z

t

s

| (µn)0 |2(r)dr �
Z

t

s

|µ0|2(r)dr.

Take n ! 1 in (5.5.2) gives

E (µ(s)) � E (µ(t)) +
1

2

Z

t

s

|µ0|2(r)dr + 1

2

Z

t

s

Z

⌦

|P
x

(v(r, x)) |2dµ(r, x)dr.

We now start to prove Theorem 5.1.10

Proof of Theorem 5.1.10. Since µ( · ) is locally absolutely continuous, we know that there

exists a unique Borel vector field ṽ such that

@
t

µ(t) + div (µ(t)ṽ(t)) = 0
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holds in the sense of distributions. For a fixed T > 0 and any µ, ⌫ 2 P
2

(⌦) with supp(µ) ⇢
B(r(T )), supp(⌫) ⇢ B(r(T )), let � 2 �

o

(µ, ⌫). Since W,V are �
W,k

and �
V,k

-geodesically

convex on K
k

� B(r(t)) \ ⌦, we have that the function f we defined in (5.3.17) by taking

� = �
k

is non-decreasing in t for any (x
1

, y
1

), (x
2

, y
2

) 2 supp �. Thus we still have

E(⌫)� E(µ) �
Z

⌦⇥⌦

hrW ⇤ µ(x
2

) +rV (x
2

), y
2

� x
2

id�(x
2

, y
2

).

For any 0 < t < T , and h > 0 such that t� h � 0, t+ h  T , we take µ = µ(t), ⌫ = µ(t+ h)

to get

lim
h!0

+

E(µ(t+ h))� E(µ(t))
h

�
Z

⌦

hrW ⇤ µ(t)(x) +rV (x), ṽ(t, x)idµ(t, x)

Again take µ = µ(t), ⌫ = µ(t� h) gives

lim
h!0

+

E(µ(t))� E(µ(t� h))

h

Z

⌦

hrW ⇤ µ(t)(x) +rV (x), ṽ(t, x)dµ(t, x).

Also E(µ(t)) is locally absolutely continuous, so for a.e. t > 0

d

dt
E(µ(t)) =

Z

⌦

hrW ⇤ µ(t)(x) +rV (x), ṽ(t, x)idµ(t, x),

which again implies

d

dt
E(µ(t)) � �

Z

⌦

hP
x

(�rW ⇤ µ(t)(x)�rV (x)) , ṽ(t, x)idµ(t, x).

Combine with (5.5.1) yields

ṽ(t, x) = P
x

(�rW ⇤ µ(t)(x)�rV (x)) ,

and for any 0  s  t < 1

E(µ(s)) = E(µ(t)) +
Z

t

s

Z

⌦

|P
x

(�rW ⇤ µ(r)(x)�rV (x))|2 dµ(r, x)dr.

For the contraction property (5.1.15), we notice that for any 0  t  T < 1 and k 2 N
such that B(r(T )) ⇢ K

k

1

2

d

dt
d2
W

�

µ1(t), µ2(t)
�


✓

���
W,k

� �
V,k

+
krWk

L

1
(⌦

k

�⌦
k

)

+ krV k
L

1
(⌦

k

)

⌘

◆

d2
W

�

µ1(t), µ2(t)
�

.

where ⌦
k

= ⌦ \K
k

. Thus by Gronwall’s inequality, we have for all 0  t  T

d
W

�

µ1(t), µ2(t)
�

 exp

✓✓

���
W,k

� �
V,k

+
krWk

L

1
(⌦

k

�⌦
k

)

+ krV k
L

1
(⌦

k

)

⌘

◆

t

◆

d
W

(µ1

0

, µ2

0

).
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Remark 5.5.3. When the external and interaction potentials are time-dependent V =

V (t, x),W = W (t, x), then with some modifications of the arguments we have before, we

can still show the existence and stability results of the solutions to (5.0.1) in all the three

di↵erent cases as in the time-independent settings before. For example, we assume that

there are constants � 2 R, ⌘ > 0 and a positive function � 2 L1([0,1)) such that

(M1) ⌦ is bounded and ⌘-prox-regular.

(TA1) W 2 C1([0,1)⇥ Rd) is �-geodesically convex on Conv (⌦�⌦) uniformly in t.

(TA2) V 2 C1([0,1)⇥ Rd) is �-geodesically convex on Conv (⌦) uniformly in t.

(TA3) |rV (t, x)|  �(t)(1 + |x|) and |rW (t, x)|  �(t)(1 + |x|) for all x 2 Rd.

(TA4) |@V
@t

(t, x)|  �(t)(1 + |x|2) and |@W
@t

(t, x)|  �(t)(1 + |x|2) for all x 2 Rd.

Then we can show the existence of a weak measure solution µ( · ) to (5.0.1) satisfying (5.1.6),

(5.1.7) and stability estimate

d
W

(µ1(t), µ2(t))  exp

✓

�2�t+
C(⌦)

⌘

Z

t

0

�(s)ds

◆

d
W

�

µ1

0

, µ2

0

�

, (5.5.3)

where C(⌦) = sup
x2⌦ dist(x, 0). We sketch the proof and concentrate on the di↵erences.

Approximate the initial data µ
0

by a sequence of particle measures µn

0

as before. Note that

we can still show the existence of solutions to the projected ODE system by citing Theorem

5.1 from [44]. Thus for total energy defined as E(t, µ) = 1

2

R

⌦⇥⌦

W (t, x � y)dµ(x)dµ(y) +
R

⌦

V (t, x)dµ(x), we have the following energy dissipation along the solutions µn( · ),

E(s, µn(s))

�E(t, µn(t))� 1

2

Z

t

s

Z

⌦⇥⌦

@W

@r
(r, x� y)dµ(r, x)dµ(r, y)dr

�
Z

t

s

Z

⌦

@V

@r
(r, x)dµ(r, x)dr +

1

2

Z

t

s

✓

�

�(µn)0
�

�

2

(r) +

Z

⌦

|P
x

(vn(r, x))|2 dµn(r, x)

◆

dr.

(5.5.4)

Similar stability argument as before shows that the sequence {µn( · )}
n

satisfies the sta-

bility estimate (5.5.3). Thus we know µn( · ) converges in d
W

to a locally absolutely curve

µ( · ) and µ( · ) satisfies the same energy dissipation (5.5.4) by similar lower semicontinuity

arguments. By the �-geodesic convexity and C1 regularity of W and V , we can then show

the following chain rule for µ( · ),

d

dt
E(t, µ(t)) �1

2

Z

⌦⇥⌦

@W

@t
(t, x� y)dµ(t, x)dµ(t, y) +

Z

⌦

@V

@t
(t, x)dµ(t, x)

�
Z

⌦

hP
x

(v(t, x)) , ṽ(t, x)i dµ(t, x).
(5.5.5)
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Combining (5.5.4) with (5.5.5), we show that µ( · ) is a weak measure solution to (5.0.1)

satisfying (5.1.6) and (5.1.7). Then (5.5.3) comes from the stability argument of the time-

independent setting.

5.6 Aggregation on nonconvex domains

In this Section, we consider the following question: what are the conditions on ⌦ to ensure

the existence of an interaction potential W such that the solution µ( · ) to (5.0.1) aggregates

to a singleton (a single delta mass with mass 1) as time goes to infinity?

Let ⌦ be bounded and ⌘-prox-regular, V ⌘ 0 and W satisfy (A1) for some �
W

> 0, such

that Theorem 5.1.5 holds and we have a weak measure solution µ( · ) to (5.0.1). We denote

⌅ = {�
x

: x 2 Rd} the set of singletons, and start to estimate the evolution of d
W

(µ( · ),⌅),
the distance of µ( · ) to ⌅, i.e. we prove Proposition 5.1.7.

Proof of Proposition 5.1.7. It su�ces to show that for all t � 0

1

2

d+

dt
d2
W

(µ(t),⌅) 
✓

��
W

+
krWk

L

1
(⌦�⌦)

2⌘

◆

d2
W

(µ(t),⌅)

since then by Gronwall’s inequality the result follows.

By shifting time we can assume that t = 0. Denote the center of mass for µ
0

by x̄, that

is x̄ =
R

⌦

xdµ(0, x). It is direct computation to show that d
W

(µ(0),⌅) = d
W

(µ(0), �
x̄

) , and

for any t > 0, d
W

(µ(t),⌅)  d
W

(µ(t), �
x̄

). Thus

1

2

d+

dt

�

�

�

�

t=0

d2
W

(µ(t),⌅)  1

2

d+

dt

�

�

�

�

t=0

d2
W

(µ(t), �
x̄

)

=

Z

⌦

hP
x

(v(0, x)) , x� x̄i dµ(0, x)

=

Z

⌦

(hv(0, x), x� x̄i+ hP
x

(v(0, x))� v(0, x), x� x̄i) dµ(0, x).

Now we follow similar argument as in the proof of Proposition 5.3.1. To be precise, by

(5.3.5) with µn(t) = µ(t), µm(t) ⌘ �
x̄

, we have
Z

⌦

hv(0, x), x� x̄i dµ(0, x)  ��
W

2

Z

⌦⇥⌦

|x� y|2dµ(0, x)dµ(0, y)

= ��
W

Z

⌦

|x� x̄|2dµ(0, x)

= ��
W

d2
W

(µ(0), �
x̄

) ,

where we used the fact that
R

⌦

(x� x̄)dµ(0, x) = 0 for the definition of center of mass.

Also by (5.3.6) with µn(t) = µ(t), µm(t) ⌘ �
x̄

,
Z

⌦⇥⌦

hP
x

(v(0, x))� v(0, x), x� x̄idµ(0, x) 
krWk

L

1
(⌦�⌦)

2⌘
d2
W

(µ(0), �
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) .
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Combine the estimates yields

1

2

d+

dt

�

�

�

�

t=0

d2
W

(µ(t),⌅) 
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��
W
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krWk
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1
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◆

d2
W

(µ(0), �
x̄

)

=

✓

��
W

+
krWk

L

1
(⌦�⌦)

2⌘

◆

d2
W

(µ(0),⌅) .

We can now prove Theorem 5.1.8.

Proof. It turns out that the quadratic interaction potential leads to the sharpe bound for

general domains. Furthermore, since multiplying a potential by a positive constant only

leads to a constant rescaling in time of the dynamics, we consider W (x) = 1

2

|x|2. To

verify the inequality (5.1.11) note that rW (x) = x,HessW (x) = Id and �
W

= 1. Thus

sup
⌦�⌦ |rW |  sup

x,y2⌦ |x� y| = diam(⌦) and

��
W

+
krWk

L

1
(⌦�⌦)

2⌘
 �1 +

1

2⌘
diam(⌦) =: C(⌦) < 0

which via inequality (5.1.11) implies the desired result.

Remark 5.6.1. We notice that (5.1.11) implies that lim
t!1 d

W

�

µ(t), �
x̄(t)

�

= 0 where

x̄(t) =
R

⌦

xdµ(t, x) is the center of mass for µ(t). Hence as t ! 1, µ(t) converges in d
W

to a singleton, i.e., all mass aggregates to one point to form a delta mass of size 1. Thus

Theorem 5.1.8 gives a su�cient condition on the shape of the domain ⌦ on which there

exists a radially symmetric interaction potential W so that solutions aggregate to a point.

We note that the simple condition given in the theorem is also sharp in the following sense:

for any " > 0 there exists ⌦ bounded and ⌘-prox-regular with 0 < ⌘  (1
2

� ✏) diam(⌦), and

an initial condition µ
0

such that the solution starting from µ
0

does not aggregate to a point.

Let ⌦ = {(r cos ✓, r sin ✓) 2 R2 : 1�✏  r  1,�✏  ✓  ⇡+✏} for 0 < ✏ < 1

2

be as shown

in Figure 5.3. Let x1 = (� (1� ✏) cos ✏,� (1� ✏) sin ✏) , x2 = ((1� ✏) cos ✏,� (1� ✏) sin ✏)

and set µ
0

= 1

2

�
x

1 + 1

2

�
x

2. Then ⌦ is ⌘-prox-regular with ⌘ = |x1 � x2|/2 > 1 � 2✏. Since

diam(⌦) = 2, thus (1
2

�2") diam(⌦) < ⌘ < 1

2

diam(⌦). For any radially symmetric W which

satisfies (A1) for some �
W

> 0, a direct calculation yields that v(0, x1) = �1

2

rW (x1�x2) 2
N(⌦, x1). Thus P

x

1

�

v(0, x1)
�

= 0 and similarly P
x

2

�

v(0, x2)
�

= 0. We then see that

µ(t) ⌘ µ
0

is the solution to (5.0.1), and hence there is no aggregation to a singleton,

(5.1.12) does not hold.
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⌦

v(x1) v(x2)

✏

x2x1

Figure 5.3: The velocity v at x1 and x2 are shown as the red arrows, which lie in the normal

cones of the points respectively.
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Verlag, Basel, second ed., 2008.

[6] , Heat flow and calculus on metric measure spaces with Ricci curvature bounded

below—the compact case, Boll. Unione Mat. Ital. (9), 5 (2012), pp. 575–629.

[7] Y. Au Yeung, G. Friesecke, and B. Schmidt, Minimizing atomic configurations

of short range pair potentials in two dimensions: crystallization in the Wul↵ shape,

Calc. Var. Partial Di↵erential Equations, 44 (2012), pp. 81–100.

[8] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Dimensionality of

local minimizers of the interaction energy, Arch. Ration. Mech. Anal., 209 (2013),

pp. 1055–1088.
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mutuellement polaires, C. R. Acad. Sci. Paris, 255 (1962), pp. 238–240.

[88] S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flock-

ing behavior, J. Stat. Phys., 144 (2011), pp. 923–947.

[89] , Heterophilious dynamics enhances consensus. Preprint, 2013.

128



[90] S.-i. Ohta and K.-T. Sturm, Non-contraction of heat flow on Minkowski spaces,

Arch. Ration. Mech. Anal., 204 (2012), pp. 917–944.

[91] F. Otto, The geometry of dissipative evolution equations: the porous medium equa-

tion, Comm. Partial Di↵erential Equations, 26 (2001), pp. 101–174.

[92] F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the

Wasserstein distance, SIAM J. Math. Anal., 37 (2005), pp. 1227–1255 (electronic).

[93] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys.,

15 (1953), pp. 311–338.

[94] P. Petersen, Riemannian geometry, vol. 171 of Graduate Texts in Mathematics,

Springer, New York, second ed., 2006.

[95] R. A. Poliquin, R. T. Rockafellar, and L. Thibault, Local di↵erentiability of

distance functions, Trans. Amer. Math. Soc., 352 (2000), pp. 5231–5249.

[96] , Local di↵erentiability of distance functions, Trans. Amer. Math. Soc., 352

(2000), pp. 5231–5249.

[97] A. Pratelli, On the equality between Monge’s infimum and Kantorovich’s minimum

in optimal mass transportation, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007),
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[118] L. Wu and D. Slepčev, Nonlocal interaction equations in environments with het-

erogeneities and boundaries: compactly supported initial data case. In preparation,

2014.

[119] , Nonlocal interaction equations in environments with heterogeneities and bound-

aries, Comm. Partial Di↵erential Equations, (2015). To appear.

131


