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Abstract

Given the strong association between aberrant nuclear morphology and tumor

progression, changes in nuclear structure have remained the gold standard for can-

cer diagnosis for over 150 years. Recently, the rapid development of imaging hard-

ware and computation power creates the opportunity for automated computer-aided

diagnosis (CAD). Developing a robust and reliable pattern recognition pipeline is a

pressing need to mine and analyze tons of nuclei data being captured.

Among the rich studies on pattern recognition problems in pathology, automated

nuclei detection, segmentation and cancer detection are the recurring tasks due to the

importance and challenges of nuclei analysis. In this thesis, we propose and investi-

gate the state-of-art methods in the CAD modules for maximizing the overall amount

of information from images for decision making. We focus on nuclei segmentation

and patient cancer detection in the nuclei image analysis pipeline.

As the first step in nuclei analysis, we develop an unsupervised nuclei detection

and segmentation approach for pathology images. Different from many supervised

segmentation methods whose performances rely on the quality and quantity of train-

ing samples, the proposed method is able to automatically search for the nucleus

contour by solving the shortest path problem with little user effort. We consider the

cancer detection task as a set classification problem and propose a highly discrimi-

native predictive model in the sense that it not only optimizes the classifier decision

boundary but also transfers discriminative information to set representation learn-

ing. The innovation of the model is the integration of set representation learning

and classifier training into one objective function for boosting the cancer detection

performance. Experimental results showed that the new model provides significant

improvements compared with state-of-art methods in the diagnostic challenges. In

addition, we showed that the predictive model enables visual interpretation of dis-



criminative nuclear characteristics representing the whole nuclei set.

We believe the proposed model is quite general and provide experimental vali-

dations in several extended pattern recognition problems.
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Chapter 1

Introduction

1.1 Background and motivation

Nuclear architecture provides a framework for regulating numerous functions in the nucleus,

which is recognized as the site for storage and organization of the genetic material, DNA syn-

thesis, DNA transcription, transcriptional regulation, and RNA processing in eukaryotes [18].

The change of nuclear architecture can be spurred by aberrations in the genetic code and the

transcription of different messenger RNAs related to biological processes of cancer [72]. Today,

cancer is the second leading cause of death in the US and a major public health problem world-

wide, accounting for 8.8 million deaths in 2015 [31]. Even though the biology of cancer lacks

completely understanding, nuclear architecture in cancer cells has been found to show charac-

teristic differences compared with normal cells. Given the strong association between aberrant

nuclear morphology and tumor progression, changes in nuclear structure have remained the gold

standard for cancer diagnosis for over 150 years [13]. Many tumors have characteristic nuclei al-

terations which can be manually analyzed by pathologists in therapeutic decision making. Such

morphological alterations including changes in nuclear size, shape, appearances of nucleoli and

chromatin arrangement, provide an important diagnostic feature [104] (See Figure 1.1).

In clinical diagnosis, histology and cytology are two kinds of imageries seeking to examine
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Figure 1.1: Exemplary nuclear structure differences in normal and cancer cells. (a) Normal nucleus
bounded by nuclear lamina, a proteinaceous layer made of the lamins and associated proteins; (b) Cancer
nucleus with changes in shape, chromatin aggregation, nucleoli and so on; (c) Normal bronchial cells; (d)
Small-cell lung carcinoma; (e) Large-cell lung carcinoma. This figure is taken from [104].

the structure of tissues (histology) and cells (cytology and histology) at the microscopic level.

After a sequence of technical procedures for preparation, the characterization of nuclear mor-

phology can be visually interpreted under light microscopy with cells stained with reagents (e.g.

Hematoxylin and Eosin, Feulgen, Diff-Quik) [40]. As in the past decades, manual analysis of

nuclear morphology in pathology images still remains the primary approach to determine the

presence or absence of cancer for patients, which heavily depends on the personal expertise of

pathologists. However, the sheer volume and complexity of nuclear apperances displayed in

pathological images make visual interpretation a daunting task for the human and represent la-

borious work for pathologists. It is extremely difficult to memorize and analyze the distribution

of nuclear morphology for thousands of cells located at distinct sites in the slides to gain in-

sights into disease progress. Further more, such manual analysis of sample slides is subjective

and often lead to considerable variability. Diagnostic discrepancies happen even for relatively

common diseases among pathologists due to the inter-observer variability (differences between

pathologists when interpreting the same slides) and intra-observer variability (differences in how
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one individual interprets slides at different times or the same lesion represented multiple times)

[41]. This may bring ramifications to patients on cancer diagnosis, prognosis prediction and

personalized medicine.

Thanks to the adoption of high-resolution imaging systems, glass slides can be converted into

digital pathology images with diagnostic quality, which creates the opportunity for automated

computer-aided diagnosis. Computerized image analysis can provide quantitative assessments

of anatomic entities in pathology images and has received a lot of attention in digital pathol-

ogy with growing applications related to nuclear morphometry. With the increasing imaging

resolution and computation power in hardware, there is a pressing need to develop robust and

reliable pattern recognition pipeline to mine and analyze tons of nuclei data being captured. The

endeavour in the area of pattern recognition will in turn facilitate the utilization of digital imag-

ing systems in pathologists’ workflow with the ultimate goal of minimizing human intervention,

reducing turnaround time, and providing traceable clinical information.

Among the rich studies on pattern recognition problems in pathology, automated nuclei de-

tection, segmentation and cancer detection are the recurring tasks due to the importance and

challenges of nuclei analysis [40]. In this thesis, a computer-aided diagnosis (CAD) pipeline

is developed for detecting and visualizing nuclear morphological differences from pathological

images.

We propose and investigate the state-of-art methods in the CAD modules for potentially

maximizing the overall amount of information extracted from nuclei images for decision mak-

ing. Specifically, given the input pathological images, nuclei are automatically detected and

isolated from the background structures in an unsupervised manner. After that, nuclear morphol-

ogy is characterized by a feature vector (e.g. using transport-based morphometry, a geometric

approach by considering the distribution of pixel intensity over the image coordinates). Finally,

patient-level prediction modeling and exploratory analysis are applied to improve cancer detec-

tion performance. Experimental validations confirmed that the proposed nuclei image analysis

pipeline is potentially practical in building accurate, automated and interpretable CAD systems
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for cancer detection tasks. We believe that the proposed predictive model is quite general and

can thus be applied to many pattern recognition problems in the biomedical domain facilitating

differentiation of characteristic patterns associated with the class.

1.2 Previous work on nuclei image analysis

The earliest work of computer-aided diagnosis can be dated back to the use of digital mammo-

graph in 1990s [34]. Today, the automated recognition of pathological patterns enables fast,

quantitative and reproducible characterization of nuclear morphology and has achieved a certain

degree of success not only in clinical usage (e.g. cancer detection [83], staging [23], prognosis

prediction [96]) but also in cancer research (e.g. drug discovery [100]).

Figure 1.2: Typical nuclei image analysis pipeline.

As shown in Figure 1.2, the typical pattern recognition pipeline for nuclei image analy-

sis consists of three main modules: nuclei segmentation (including image normalization, color

deconvolution, nuclei detection and delineation), nuclear morphometry quantification and data

analysis (e.g. predictive model learning, visualization, etc.). The importance of quantitative and

automated pipeline has led to several commercial or open-source software tools such as Cell-

Profiler (Broad Institute), GENIE (Aperio, Vista, California, USA), ImageJ (National Institutes

of Health), Definiens-Tissue Studio (Definiens, Munich, Germany), HALO (Indica Labs, New

Mexico, USA), mitoSEK (Inspirata, Florida, USA), AQUA Analysis (HistoRx, Connecticut,

USA), and Visiopharm (Hoersholm, Denmark) [50].

In addition to the mentioned software tools, in sections below we provide a brief review of
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methods for nuclei segmentation and predictive modeling for cancer detection in the literature.

Refer to for [40], [34], [50], [46] for a review of pre-processing techniques such as image normal-

ization and denosing. Here we only highlight existing state-of-art solutions in key components

of the nuclei-based pattern recognition pipeline.

1.2.1 Review on nuclei segmentation in pathology images

Detecting and segmenting nuclei correctly with minimum human effort is a critical prerequisite

in CAD system and is important for subsequent nuclei analysis in the pipeline. For example,

Chanho et al. [44] showed that improved segmentation accuracy led to better classification per-

formance for thyroid follicular lesions using the unique classifier.

Nuclei detection plays a critical role in the overall segmentation procedure, which requires a

point per nucleus and close to nucleus center, referred to as seed. Many approaches have been

described in the literature to locate nuclei in 2D microscopy images. Distance transform, mor-

phological operation, H-minimum/maximum transform, LoG filtering, Hough transform, radial

symmetry transform and machine learning-based methods are the major methods in the literature

[90]. For better nuclei detection performance, the variants or combination of these algorithms

are designed for specific tasks. The combination of finding peaks in the Euclidean distance map

and watershed [72], though often resulting in over-seeding, can be applied to locate seeds. The

circular shaped nuclei can be effectively located using Hough transformation methods at the cost

of expensive computation [17]. H-maxima/minima transform is a powerful approach to detect

nuclei by suppressing spurious local intensity maxima/minima and have been applied in nuclei

detection in Pap smear images [68], FISH images [71] and IHC-stained breast cancer images

[61]. However, it often leads to overseeding due to its sensitivity to image textures. In image

analysis, LoG filter is one of the popular methods for blob detection. The multi-scale Laplacian-

of-Gaussian filtering constrained by the distance-map-based adaptive scale selection can be used

to detect cell nuclei [2]. Qi et al.[69] proposed a method based on single-path voting followed

by mean-shift clustering to find seeds for touching and overlapping nuclei. Nowadays, machine
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learning-based methods have been proposed to deal with the rich variety of nuclei appearances

in pathology images. Support vector machine (SVM), random forest, deep neural networks are

frequently used to detect nuclei in prostate [47], bladder [60], breast cancer images [14], etc. It

is worth mentioning that recently deep learning methods (especially convolutional neural net-

work [14], sparse autoencoder [93]) have attracted a great deal of attention in nuclei detection

for its nature of automated feature extraction. Other nuclei detection methods include clustering

(mean-shift clustering [16], Fuzzy C-means clustering [4]), template matching [12], and dictio-

nary learning [78].

Nuclei segmentation is to extract individual nuclei from the surrounding structures by delin-

eating their real boundaries. Nuclei segmentation has been extensively studied in the past decades

and new segmentation techniques will continue to be proposed for applications including cancer

detection and grading. Thresholding, morphological operation, region-based methods, water-

shed, deformable models, clustering, graph-based methods and supervised classification are the

cornerstones of the segmentation methods proposed in the literature.

Thresholding is the most intuitive segmentation method which needs one global threshold or

multiple regional thresholds to convert the gray-scale image into the binary image. The perfor-

mance of thresholding highly depends on the choice of the threshold and the distribution differ-

ences between nuclei intensity and background [90]. Otsu’s method [65] aims to automatically

select the optimal threshold by minimizing the intra-class variance. To deal with nonuniform

illumination, an image can be divided into subregions where local adaptive thresholds are com-

puted for binarization. Though simple and fast, thresholding suffers from including little object

knowledge and lacking robustness to size, shape as well as texture variations [40].

Morphological operation including basic operations such as erosion, dilation, opening and

closing is often combined with other methods for nuclei segmentation. In [33], morphological

operations and thresholding were combined to segment nuclei in neuroblastoma images. A mul-

tiscale decomposition method was proposed based on mathematical morphology operation in

[75] for cell segmentation which is invariant with cell cluster size.
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Region-based methods are simple and fast to segment an image into regions directly. Re-

gion growing [20], region splitting [64] and region merging [19] are three common region-based

segmentation approaches. Region growing usually begins with seed points and finds the region

of interests by examining surrounding pixels based on predefined similarity criterion. The idea

of region merging is to merge small regions to neighboring larger regions with similar character-

istics to avoid over segmentation. Region splitting is the opposite of region merging and starts

with the image as the single region. It recursively divides the image into subsidiary regions until

the condition of homogeneity is satisfied.

Watershed algorithm is a commonly used nuclei segmentation approach which requires pre-

detected nuclei seeds. The basic idea is to view the image as a topographical relief and the pixel

intensity as the elevation. The landscape is gradually flooded with water from regional minima

and dams are built to prevent water in different basins from merging [90]. The dam boundaries

in the landscape are watershed lined and used to separate image regions. The disadvantage of

watershed is that direct use of watershed algorithm is likely to produce over segmentation results

due to intensity variations of nuclei and background. Therefore, marker controlled watershed al-

gorithm is often used for segmentation where a marker is a connected component corresponding

to an object to be segmented [57].

Deformable models have been widely used in biomedical image segmentation [77],[97],

[103] with satisfying performances. Deformable models usually begin with a initial position

(manually initialized in many cases) and then gradually evolve toward to the object boundary un-

der the control of internal force and external force. The internal force is to constrain smoothness

of the contour, while the external force is to drive the contour to the boundary of the interested

object. The deformable models can be classified into two categories: geodesic models and para-

metric models [90]. In geodesic models, the contour is implicitly represented as the zero level

set of a high-dimensional manifold with the benefit of following topology changes naturally. To

segment hundreds of nuclei simultaneously, the well-known Chan-Vese (CV) [10] model is of-

ten used with one initialization per nucleus. In the parametric model, the contour is explicitly
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represented as in parametric form while deforming. Active contour model, or ’snakes’ [95] is a

classic model which has lower computation cost and can thus be solved very fast compared with

geodesic models. However, parametric models can’t deal with topology changes (e.g. splitting,

merging) during the process of deformation.

Clustering methods are a set of algorithms that group a collection of instances into subclus-

ters such that in a certain space instances within the same subcluster are closer than those from

distinct subclusters. One fundamental problem shared in clustering methods is the selection of

similarity metric for instance-wise distance. Metrics like Euclidean distance, city block distance,

Minkowski distance, correlation and 0-1 error are commonly used in cluster analysis [90]. In the

application of nuclei image segmentation [40], many clustering approaches are designed based

on three basic clustering methods: k-means, fuzzy c-means and expectation maximization (EM)

algorithm. The k-means clustering associates each of the instances with only one subcluster

through hard assignment, while fuzzy c-means allows each instance to belong to more than one

subclusters using the membership degree. The EM algorithm for Gaussian mixture model is one

of the most widely used method for image segmentation by assuming that in a feature space

pixels are generated from a mixture of a finite number of Gaussian distributions with unknown

parameters [26].

Graph-based methods perform image segmentation by modeling an image as a weighted

undirected graph where pixels/superpixels are graph nodes and edge weights are the similarity

between pair-wise nodes. The graph can be partitioned into multiple sets for image segmentation

based on a certain criterion. Max-flow/Min-cut, normalized cut, conditional random field (CRF)

and random walk are typical graph-based approaches. Kofahi et al. [2] utilized graph-cut-based

binarization to extract the foreground, and then a second graph-cut-based algorithm to refine the

initial contours obtained by constrained multi-scale LoG filter, which was shown to perform well

in pathology images with dense nuclei. CRF usually formulates nuclei image segmentation as a

classification problem, where latent labels of graph nodes are infered based on the observations

[89].
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Supervised classification methods are increasingly proposed recently and seek to learn ma-

chine learning models from labeled exemplars with domain knowledge to deal with the com-

plexity of nuclei image data. Based on the types of input samples in classification, classification-

based segmentation can be classified into pixel-wise classification and superpixel-wise classifi-

cation. In pixel-wise classification, models learn from pixel properties and assign labels (e.g.

foreground, background) to each pixel for segmentation. However, pixel-classification is unable

to handle touching objects and requires post-processing operations to separate pixel clusters into

individual nuclei [49]. On the contrary, superpixel-wise classification first partitions the image

into a collection of small candidate regions based on some properties and learn high-level repre-

sentations in a certain feature space [6]. It has lower computation cost compared to pixel-wise

classification, but its performance highly depends on the quality of generated superpixels [90].

In supervised classification, one classifier or a set of aggregated classifiers are trained for label

prediction.

1.2.2 Review on patient-level predictive models

In clinical diagnosis, pathologists rely on microscopic examination of a set of nuclei within the

tissue sample for analysis. Thus, in most situations, a diagnostic label is only available for the

tissue sample rather than individual nuclei. A predictive model is required to learn from sets

of nuclei without nuclei-level annotations and predict the diagnostic label for a new set of nu-

clei, referred as set classification problem. Beyond cancer diagnosis, set classification problem

is also ubiquitous in prognosis prediction, where the model needs to predict the patients sur-

vival outcome by taking account of a set of quantified nuclei [96]. Different from conventional

image classification where training and testing samples are labeled single-shot images, in the

set classification scenario, training and testing samples are sets, each of which consists of var-

ious numbers of unlabeled nucleus images. The set classification problem is challenging and

cant directly solved by supervised machine learning approaches. Existing solutions to nuclei set

classification in the literature are described as follows.
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Though often implicitly, many predictive models solve the set classification problem with

single image classification by making specific assumptions regarding the relationship between

the set label and the distribution of its belonging instance labels. Many studies assume that

at least half of the instances in a set represent the set label and thus apply the majority voting

strategy in set prediction. Predictive models using majority voting have been described for di-

agnosing a wide variety of cancers including lung cancer [98], cervical cancer [67] and breast

cancer [27], to name a few. In [5], a threshold-based voting strategy was adopted for hepatocel-

lular carcinoma tumor grading. However, the voting threshold for a set being categorized into a

certain class needs to be pre-defined based on domain knowledge for the best performance. In

the multiple instance learning (MIL) framework [3], one set is considered positive when there

is at least one positive instance within it, otherwise the set is considered negative. The standard

MIL has attracted a wide range of interests and has been applied successfully in the medical

diagnosis domain [94], [70].

Set classification considers the set information as a whole and learns the predictive model

at the set level. We note that the idea of classifying nuclei sets instead of individual nuclei is

not new. In general, such approaches can be divided into two categories according to whether

the set-level information is extracted explicitly. In the first category, the global set information

is extracted implicitly by measuring the distance/similarity between two sets. Together with

set labels, distance-based classifiers (e.g. K- nearest neighbor, support vector machine) can be

trained to predict the unknown set label. Besides straightforward definitions of set-set distance

(e.g. Hausdorff distance [85], earth mover distance [39]), in the pattern recognition field, other

forms of distance between sets have been proposed to set classification problems. In [9], each set

is represented as a convex geometric region spanned by its instances in the feature space and set

distance is defined as geometric distances between convex models. In [30], set-wise distance is

defined as the sum of local kernels for pairwise instances for two sets, where the type of kernel

can be polynomial, radial basis and so on. In [84], the matching kernel was proposed for object

recognition based on the idea of maximizing the similarity between two sets. In [101], each set
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is mapped to an undirected graph with its instances being the graph nodes and the set distance is

then measured by a pre-defined graph similarity function.

In the second category, methods are based on the idea of representing the entire set explicitly

with a feature vector [3]. As a result, each set is mapped to an embedded feature space by

a mapping function, where standard classifiers can be trained for prediction. In nuclei-based

cancer detection, one popular method is to aggregate multiple statistics about feature attributes of

nuclei within a set. Statistics [34],[24] such as mean, maximum, minimum, standard deviation,

median, are frequently used to summarize the characteristics of the nuclei set. Another type

of methods, which we call prototype-based approaches, seek to provide the set embedding by

quantifying the presence or similarity with respect to pre-defined prototypes in a particular set.

The prototypes can be defined either in instance space or in set space. Bag-of-words method

[35], [66] is a typical example, which learns a number of representative instances (prototypes)

in the training set and then provides a histogram about the composition of any set in terms of

each prototype. Unsupervised clustering, such as k-means, is usually adopted in feature space to

generate a collection of cluster centers as dictionary.

1.3 Contributions

Even though a plethora of studies have been published in the field, the automation and accuracy

of cancer prediction still needs to be improved. In this thesis, we focus on proposing novel

algorithms for two key components in the nuclei image analysis pipeline: nuclei segmentation

and cancer prediction for patients. Our specific contributions in this thesis are:

· Contribution 1: Developing an unsupervised nuclei detection and segmentation approach

for pathology images.

Segmentation is an essential stage in systems for quantitative analysis of nuclei extracted

from pathology images. In the literature, the effectiveness of many supervised nuclei segmenta-

tion methods largely depends on the quality and quantity of training samples. One example is the
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recently proposed convolutional neural network (CNN), which usually requires a large number

of labeled instances for training. In addition, many trained CNN models lack generality and are

rarely validated on segmenting nuclei from unseen datasets. In this thesis, we propose an unsu-

pervised nuclei segmentation approach based on the observation that strong edge and intensity

consistencies exist among neighbor pixels along the nucleus contour. We solve the nuclei seg-

mentation problem by finding the shortest path between two nodes in an undirected graph. The

method has been validated on several types of nuclei datasets with different stainings.

· Contribution 2: Developing a discriminative predictive model for cancer detection

In nuclei based cancer detection, the ultimate goal is to predict whether a given patient has

cancer or not based on the morphology information from a set of extracted nuclei. Many pre-

dictive models train a classifier at nuclei level by making certain assumptions regarding the re-

lationship between patient label and the distribution of its belonging nuclei labels. For any test

patient, the diagnostic label is assigned by a voting strategy based on nuclei level predictions.

However, it is reasonable to expect that cancerous tissues may contain a portion of cells display-

ing normal phenotypes in addition to cells exhibiting abnormal phenotypes. In this thesis, we

consider the nuclei belonging to one patient as a whole and formulate cancer detection as a set

classification problem. The method directly builds a predictive model at patient level avoiding

the need to make any assumption. The cancer detection performance of the proposed method has

been validated on liver cancer, thyroid cancer and melanoma with multiple nuclear quantification

approaches.

· Contribution 3: Providing experimental validations for the predictive model in general

pattern recognition problems

Predicting the class label for a set of instances is an important and ubiquitous problem with

many applications where data is captured by various types of sensors. We believe the proposed

predictive model is quite general and thus can be applied in many pattern recognition tasks be-

yond nuclei-based cancer detection in pathology. Similar to cancer detection with nuclei images,

we consider these extended problems under the set classification framework, where a set consists
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of various number of instances with only set level labels available. We demonstrated the effec-

tiveness of the predictive model in tasks of mass classification in mammograms, classification of

flow cytometry data and natural scene classification. In addition, the proposed model alleviates

the effort to access instance level annotations in many situations.

1.4 Outline

The rest of the thesis is organized as follows:

The second chapter of the thesis introduces the proposed unsupervised method for nuclei

detection and segmentation in 2D pathology images. We compared the method with both super-

vised and unsupervised segmentation approaches on datasets with different stainings. Qualitative

and quantitative analysis showed that the method is automatic and accurate for segmenting nuclei

from pathology images with noisy background and has the potential to be used in clinic settings.

In the third chapter of the thesis, we describe a novel approach for set classification in nuclei-

based cancer detection. We demonstrated that the proposed model outperforms several state-

of-art approaches using three types of cancer datastes. The validations with different nuclear

features suggested that SetSVM is likely to provide superior performances independent of nu-

clear quantification approaches. In addition, we explored the ability of the predictive model to

visually interpret discriminative nuclear characteristics representing the patients.

The fourth chapter of the thesis aims to extend the proposed predictive model to several gen-

eral pattern recognition problems including mass classification in mammograms, flow cytometry

data classification and natural scene classification. The experimental validations confirmed that

the model enables better separation between different data classes regardless of the types of data

and instance measurements.

Finally, Chapter five concludes the thesis and list future work and directions in the area.
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Chapter 2

Detecting and Segmenting Nuclei in

Two-Dimensional Pathology Images

2.1 Introduction

As mentioned in section 1.2.1, segmentation is an essential stage in systems for quantitative anal-

ysis of nuclei extracted from microscopy images. Given the wide variety of nuclei appearances in

different organs and staining procedures, a plethora of methods have been described in the litera-

ture to improve the segmentation accuracy and robustness. Nuclei segmentation can be classified

into unsupervised and supervised approaches based on whether labeled data is required for model

training. Supervised methods are proposed to handle the large variability of nuclei appearances

in the image and require manually labeled samples to produce an inferred function for mapping

new samples. For example, deep learning models learn the highly non-linear mapping function in

a supervised manner and have been applied to nuclei detection [93], [91] and segmentation [42].

However, deep learning models often require a large amount of labeled data for model training.

In [91], more than 1.5 million labeled nuclei patches were used to train the convolutional neural

network (CNN) for nuclei detection and shape initialization. Moreover, deep learning models

may need retraining when applied to unseen pathology images with very different nuclei appear-
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ances. In [93], a stacked sparse autoencoder model was designed for detecting nuclei in breast

cancer images but without validation on other types of nuclei images.

In this chapter, we describe an unsupervised nuclei segmentation method without the require-

ment of manual annotations, which we call MESPS (multi-scale edge selection in polar space).

Specifically, a filter bank consisting of rings with various sizes is first constructed. Nuclei seeds

are located by finding the local maximums in the response map generated in normalized cross

correlation. In the segmentation step, nuclei contours are iteratively refined by selecting the cor-

rect edges in polar space at different smoothing levels. The produced final contour would attach

tightly to the actual nucleus border. Figure 2.1 shows the overview of the proposed method.

We believe the accurate nature of the segmentation procedure, the simplicity of use and com-

putational efficiency are key advantages of our method as will be demonstrated. The validation

study was conducted over two nuclei datasets with ground truth, including 25 Hematoxylin and

Eosin (H&E) stained liver histopathology images, and 35 Papanicolaou stained thyroid images.

The nuclei detection accuracy was measured by miss rate and the segmentation accuracy was

evaluated by two types of error metrics. Overall, the nuclei detection efficiency of the proposed

method is similar to the supervised template matching method. In comparison to four state-of-

art segmentation methods, the proposed method performed the best with average segmentation

error of 10.34% and 0.33 measured by AER and NSD (10×) respectively. Quantitative analy-

sis showed that the method is automatic and accurate when segmenting nuclei from microscopy

images with noisy background and has the potential to be used in clinic settings.

2.2 Methods

2.2.1 Nuclei detection

The basic idea of nuclei detection is to find the evidence of presence or absence for a nucleus

contained in local image regions. To that end, we construct a filter bank composed of rings with

different sizes modeled by the function: r2 ≤ x2 + y2 ≤ (r + ζ)2 where r is the radius and ζ
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Figure 2.1: Overview of the nuclei detection and segmentation procedure. The nuclei seeds are firstly
detected using a set of filters with different sizes. An edge pyramid is then constructed, where edge maps
are generated using a set of smooth parameters. Edge selection is performed at each level and the nucleus
contour evolves across the edge pyramid to delineate the spatial content of nuclei.

is the thickness. Given a certain data set, prior information such as ζ , the size of the smallest

and largest nuclei can be reasonably estimated, and the size range of the filters can be defined

according to image resolution. Different functions can change and model the shape of filters

to adapt to various nuclei appearances in the datasets. In our experiment, the sampled locations

x̄ = [xi, yi] can be obtained from a set of centered coordinates [x1, ..., x2r+1],−r−ζ ≤ xi ≤ r+ζ .

The image patch with filter size r denoted as fr(x̄), is convolved with a Gaussian function,

which is meant to be an approximation of point spread function (PSF). Given an image I(x̄) the

likelihood of a pixel being the center of an underlying nucleus is proportional to the following:

L(x̄∗) = I(x̄∗)max
r
{I ◦ fr(x̄∗)} = I(x̄∗)max

r
{
∑

x̄ I(x̄)fr(x̄− x̄∗)
Ī(x̄∗)f̄r(x̄)

} (2.1)

where ◦ denotes the normalized cross correlation (NCC) between the filter fr(x̄) and the image I.

f̄r(x̄) = (
∑

x̄(fr(x̄))2)
1
2 and Ī(x̄∗) = (

∑
x̄∈Ω(I(x̄))2)

1
2 , with Ω being the neighborhood of pixel

x̄∗ with the same size as the filter fr(x̄).

The maximization procedure mentioned above is performed pixel by pixel searching for the

filter fr(x̄) within the filter bank which best matches the appearance of the potential nucleus at

location x̄∗. Pixels with ring shaped surrounding neighborhoods and with similar radius as that of

a filter will have strong responses and are likely to be nuclei centers. On the contrary, irrelevant
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tissue structures or noisy background tend to have weak responses. Thus, the method is not only

able to locate potential nuclei but also yield size estimation for the nucleus by searching for the

best matched filters.

Figure 2.2: Simulation for detecting both circular and elliptical nuclei with ring shaped filters. (a) Con-
structed filter bank with filters at different sizes (magnified for viewing purpose). (b) Simulated mi-
croscopy image with circular nuclei. (c) Response map for (b). (d) Simulated microscopy image with
elliptical nuclei. (e) Response map for (d).

Since most nuclei in the slides take the shape of an ellipse, elliptical filters would theoretically

generate stronger responses compared with ring shaped filters. However, more parameters (e.g.

length of major and minor axis, rotation angle) are required to control the shape of an ellipse,

leading to a larger parameter searching space when performing the NCC operation and generating

the response map for nuclei detection. Here we use the ring shape filters instead. As shown

from the simulation experiment in Figure 2.2, ring shaped filters are able to generate the strong

responses when applied to detect both circular and elliptical nuclei in noisy background.

To locate the nuclei seeds with the response map, the standard k-means clustering method is

applied to classify the image pixels into three classes based on their corresponding intensities: 1)

background; 2) weak responses from non-nuclei structures; 3) strong responses from potential

nuclei. Using connected component analysis, the location of nucleus seed can be obtained by

computing the mass center of each isolated pixel cluster classified as strong responses. Figure

2.3 shows the nuclei detection procedure applied to the real liver histopathology images.

In practice, post-processing operations such as thresholding the area of isolated pixels clusters

are required to filter out the false positive nuclei seeds.
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Figure 2.3: Nuclei detection on real nuclei image using the proposed method. Here we separated the
Hematoxylin channel from the original RGB color space by color deconvolution [74]. (a) Original liver
histopathology image. (b) Response map after normalized cross correlation. (c) k-means clustering results
(in colors). (e) Detected nuclei seeds marked as green dots.

2.2.2 Nuclei segmentation

With detected nuclei seeds, it is desired that the subsequent segmentation algorithm delineate the

nuclei contours efficiently and accurately with minimal manual intervention. Our goal is to seg-

ment nuclei correctly in the complex background (caused by the large variety of nuclei shapes,

chromatin textures, staining procedure as well as tissue heterogeneity). Edge detectors can pre-

serve important structural properties of the image and produce boundaries precisely at locations

with relatively large gradients, e.g. nuclei borders and apparent noisy background structures

(Figure 2.3(a)). In order to obtain the initial segmentation, a blurred version of the nuclei im-

age is required, which describes the nuclei outlines and excludes noisy details challenging the

delineation of nuclei contours. The multi-scale strategy enables the nucleus contour to refine

iteratively from the initial segmentation by changing the blur parameter σ smoothly. The idea

of proposed method is to discriminate the nucleus border pixels from remaining ‘garbage pixels’
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and locate the contour gradually in an iterative manner.

Specifically, the input image is first convolved with the 2D Gaussian function g(x, y;σi) =

1√
2π
e
−x

2+y2

2σ2
i with zero mean for denosing. Parameter σ = [σ0, ..., σn−1] indicates the smooth

level in the multi-scale strategy with σ0 and σn−1 being the minimum and the maximum of σ

respectively. An edge pyramid is constructed consisting of a set of edge maps generated by the

edge detector (e.g. Canny detector), where the top level and the bottom level correspond to σ0

and σn−1 respectively. We aim to select the correct edges in polar space at each smooth level

and then take it as guidance for edge selection in the next higher level. The algorithm refines

the contour iteratively starting from the bottom level and produces the final contour when edge

selection is performed at the top level of the edge pyramid.

Edge selection

The algorithm selects correct edge pixels in the edge map starting from the largest scale σn−1,

where artifacts are the least prevalent. The size of the image patch for each nucleus can be deter-

mined adaptively according to the size estimation from nuclei detection step. In the nucleus edge

map, edge segments can be classified into three categories: correct edges forming the nucleus

contour, edges inside the nucleus, and edges outside the nucleus.

One intuitive and prominent feature to discriminate these three kinds of edge segments is that

correct edge pixels on the nucleus contour often have smoother distance changes away from the

seed in comparison to the drastic distance fluctuations of pixels on noisy edges inside or outside

the nucleus. In addition, considering the intensity, edge pixels along the nucleus border have rel-

atively consistent intensity compared with that of pixels on discontinuous edge segments. Based

on these observations regarding edge pixels’ locations and intensity, the solution of delineating

nucleus contour becomes finding the path with the minimal transportation cost (non-zero) start-

ing and ending at any chosen point on the nucleus border based on both distance and intensity

metrics.

The polar coordinate system provides a natural space to search for the optimal path connect-
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ing the start point and the end point for each nucleus. Given the edge map Eσi detected at the

ith level, edge pixel x̄ = [x, y] in Cartesian coordinate can be transformed into polar space by:

r =
√

(x− x∗)2 + (y − y∗)2, θ = arctan y−y
∗

x−x∗ , θ ∈ [0, 2π], where x̄∗ = [x∗, y∗] is the coordinate

of nucleus seed in the image patch. Figure 2.4(b) shows the transformed pixels in polar space

originally from the edge map in sub window of Figure 2.4(a).

In the polar coordinate system, the transportation cost between any two neighbor edge pixels

pm = [rm, θ], pn = [rn, θ + ∆θ] is defined as follows:

c(θ, pm, pn) = α
|rm − rn|
Rmax

+ b
|vm − vn|
Vmax

s.t. α ≥ 0; b ≥ 0; α + b = 1

(2.2)

where vm and vn denote pixel intensities for pm and pn; ∆θ is infinitesimal; α and b are the

weights for the distance term and intensity term respectively; Rmax and Vmax are the maximal

distance difference and the maximal intensity difference respectively between pm and pn in the

edge map, normalizing both two metrics at the same scale.

The optimal path φ∗ can be found by minimizing the function defined as follows:

φ∗ = argmin
φ

1

lφ

∫
pm,pn∈φ

c(θ, pm, pn)dθ

θ ∈ [0, 2π]

(2.3)

where lφ denotes the length for the path φ.

In the discrete setting, the function above can be rewritten as below:

φ∗ = argmin
φ

1

nφ

2π∑
θ=0

c(θ, pm, pn) (2.4)

where nφ is the number of edge pixels along the path φ.

Dijkstra’s algorithm is an algorithm widely applied to find the shortest path between the

source node and the terminal node in a graph, such as road networks, telephone network and so

on. It was first conceived in 1956 by Edsger W. Dijkstra [22]. In our case, Dijkstra’s algorithm

is naturally applied to solve the above minimization problem. We represent the edge pixels in
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Figure 2.4: (a) Original image with a sub window showing the edge map detected by Canny edge detector
for one particular nucleus (σi = 3) with the seed in the center (red dot). (b) Edge pixels are transformed
into polar space with the nucleus seed being the coordinate origin. Red points are the locations with
locally maximal number of pixels; Green points show the edge pixels along the optimal path searched by
Dijkstra’s algorithm. The blue solid line is the fitted curve. In the cyan area, edge pixels from the i+1th
level are chosen as candidates. (c) Constructed undirected graph with nodes being the red points in (b) and
edge weights being the cost defined by the combination of distance and intensity metrics. Nodes marked
as red constitute the optimal path. (d) Final contour (red) and optimal path (green) are shown in the image
patch.
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polar space in the form of undirected graph G = [V,E], where nodes in set V denote the edge

pixels and set E denotes connections between any two adjacent angle nodes pm, pn with weights

c(θ, pm, pn).

To make the algorithm robust against noisy structures, points in polar space are further rep-

resented/discretized by finding the locations with locally maximal number of edge pixels at each

angle. A sliding window with width w and height h is constructed and move along the distance

direction at each θ to capture and count the edge pixels locally. The number of edge pixels

within the sliding window centered at [rj, θi] is denoted as N(rj, θi) and for angle θi locations

with locally maximal number of pixels are denoted as rlmax(θi). The detected locations are the

discrete representations of original edge pixels in polar space (red dots in Figure 2.4(b)). Such

approximations for edge pixels help reduce the number of possible paths connecting the source

node and the terminal node and thus reduce the computational cost dramatically when searching

for the optimal path using Dijkstra’s algorithm.

The nuclei segmentation performance depends on the selection of source node and terminal

node along the nucleus border. In the experiment, we propose to choose the source-terminal pairs

as points with similar distances away from the seed at angle 0 and 2π in the graph. However,

multiple source-terminal pairs may exist, and thus multiple optimal paths can be found by Dijk-

stra’s algorithm. We note this on the edge map using a small σ where many noisy edge pixels

with similar distances at the angle 0 and 2π can be source-terminal candidates. When irrelevant

border pixels are selected as the source or terminal node, the optimal path would be searched

by Dijkstra’s algorithm at a high cost of passing through connections with large weights in the

graph. The real nucleus contour is the route with the minimal cost connecting source-terminal

pairs.

Some pixels along the optimal path are not necessarily on the real nucleus contour due to

the incomplete border edges shown in the map, especially at locations with blurry boundries.

Here, we apply the RANSAC [28] algorithm and the spline curve fitting method to estimate

the nucleus contour locations. Given the edge pixels on the optimal path, a subset of pixels
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are selected to generate a fitted curve model describing the rough shape of the optimal path. The

points fitting well to the estimated model are called inliers and points with large estimation errors

are called outliers. Afterwards, the model is refined using the inliers only. Such optimization

process repeats for a fixed number of times and the model with the maximal number of inliers

is considered as the reliable contour estimation. The curve fitting operation takes as input the

inliers along the optimal path and outputs the final smooth contour Ck connecting the isolated

and imcomplete edge segments when performed at the kth level of the edge pyramid.

Edge iteration

The smooth contour generated from the kth level is taken as the initial nucleus border and helps

guide the edge selection for the k+1th level. Specifically, at the k+1th level, edge pixels within

the distance range [Ck−d, Ck+d] are chosen as edge candidates and edge pixels outside the range

are discarded in the sense that a more refined contour at the k+1th level should be close toCk with

a distance tolerance d. When the blur parameter σ changes slightly, the edge locations change

smoothly and would not shift much. Therefore, for the k+1th level, the edge pixel locations at

angle θ should be within the range [Ck(θ) − d, Ck(θ) + d]. With the set of pixel candidates,

the edge selection is performed as described above to generate a more accurate nucleus contour

Ck+1.

As the contour is refined iteratively from the bottom level of the edge pyramid up to the top

level, it gradually attaches to the real border of nucleus. Using a small blurring σ0 at the top

level, our algorithm can delineate the nucleus spatial content precisely.

2.3 Experimental results

2.3.1 Datasets

Tissue blocks and cytology slides were obtained from the archives of a local hospital (approved

as an exempt protocol by the Institutional Review Board). Cases for analysis included liver
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resection specimens and cytology slides prepared from fine needle aspiration biopsies of thyroid

nodules.

Tissue procurement and processing

Liver tissues were procured at the time of a designated surgical procedure. All tissues were

fixed in 10% neutral buffered formalin and processed on a conventional tissue processor using

a series of graded alcohols and xylenes prior to paraffin embedding. Tissue sections were cut

at 5 micron thickness from the paraffin-embedded block and placed on conventional 25 mm ×

75 mm × 1.0 mm Superfrost Plus microscope slides using Fisherbrand Superslip cover slips (50

mm×24 mm×0.17 mm; Fisher Scientific, Thermo Fisher Scientific, Inc., Waltham, MA). All

tissue sections for imaging were stained using conventional hematoxylin and eosin protocol used

in the histology laboratory. For the thyroid cytology preparations, aspirate smears were fixed in

95% ethanol and then stained with the Papanicolaou (Pap) staining technique. Briefly, the Pap

stain uses hematoxylin, OG-6, and eosin azure (combination of Eosin Y, Light Green SF, and

Green FCF dyes) to stain cytological preparations. Nuclei stained with this technique have a

blue-green color and excellent chromatin detail that can be visualized by light microscopy.

Digital image acquisition

Whole slide digital images of the liver slides were acquired using an Omnyx VL4 digital whole

slide scanner (Omnyx, LLC) equipped with a 60× dry objective. Images obtained had a resolu-

tion of 0.1375 microns/pixel and were saved in the proprietary format then converted to lossless

JPEG format. All thyroid cytology slide images were acquired using an Olympus BX51 micro-

scope equipped with a 100× UIS2 UPlanFl oil immersion objective (numerical aperture 1.30;

Olympus America, Central Valley, PA) and 2 megapixel SPOT Insight camera (Diagnostic In-

struments, Sterling Heights, MI). Image specifications were 24 bit RGB channels and 0.074

microns/pixel, 118×89 µm field of view.
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2.3.2 Qualitative analysis

Before our algorithm is applied to pathology images, the nuclei channel should be extracted

from RGB color space by color deconvolution [74] (e.g. extracting Hematoxylin channel from

H& E stained images). After that, all image data is normalized to fit the intensity range [0, 1].

We tested the proposed method on two real datasets including thyroid dataset (35 representative

images, Papanicolaou stained, 903 cell nuclei) and liver datasets (25 images, H&E stained, 2145

cell nuclei).

In our experiment, the sliding window width w and height h were set as 15 degrees and

2 pixels respectively and were fixed for both two datasets. The only parameter required to be

changed for the two datasets is the maximal smooth level σmax which was set to be 3 and 5 for

the thyroid dataset and the liver dataset respectively. The minimal smooth level σmin was set to

be 1 in order to capture the precise nucleus border.

For comparison, we chose the following state-of-art algorithms for nuclei segmentation in-

cluding the Ovuscule [80], level set [53] and template matching [12]. Template matching has the

ability of both nuclei detection and segmentation while level set and the Ovuscule need prede-

fined nuclei seeds for segmentation. In our experiment, level set and the Ovuscule adopted the

seeds detected by MESPS to evaluate the segmentation performances.

For qualitative comparison, sample segmentation results by different approaches are shown

in Figure 2.5, where the rows from the top to the bottom correspond to the results from level set,

the Ovuscule, template matching and our method respectively and the columns from left to right

correspond to sample images from liver dataset and thyroid dataset respectively.

2.3.3 Quantitative analysis

In addition, we evaluated the nuclei detection efficiency of template matching and MESPS using

the miss rate (MR) defined as follows:
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miss rate (MR) =
SA ∪ SM − SA ∩ SM

SM
× 100% (2.5)

where SA are the seeds detected by the algorithms, SM are the seeds selected manually. SA ∪

SM and SA ∩ SM are the number of seeds in the union set and the intersection set of SA and SM

respectively.

The segmentation accuracy was measured by the area error rate (AER)[76] focusing on the

number of incorrectly segmented pixels and the spatially-aware evaluation metric normalized

sum of distances (NSD)[15] with the ground truth. Quantitative analysis of nuclei detection and

segmentation efficiency of different approaches is shown in Table 2.1.

From the quantitative evaluations of different approaches, we note that the proposed method

showed similar or superior performance compared with existing segmentation methods validated

on two datasets. For the thyroid dataset, level set segmented nuclei with the highest accuracy

with AER and NSD being 8.31% and 0.29 respectively. Our method generated similar results as

that of level set, showing that MESPS achieves nuclei segmentation performance comparable to

the state-of-art method. Moreover, for the liver dataset in the complex setting (nonuniform illu-

mination, noisy background and nuclei heterogeneity), MESPS was still able to find the nuclei

borders accurately and performed the best compared with the listed approaches. Considering the

comprehensive performance over the two validation datasets, MESPS archived the best segmen-

tation accuracy with 10.34% AER and 0.33 NSD on average.

Table 2.1: Quantitative evaluation of different approaches on nuclei detection and segmentation efficiency

Algorithms Level set The Ovuscule Template matching MESPS

AER/NSD

(×10)

Thyroid dataset 8.31%/0.29 12.63%/0.44
15.29%/0.46

MR: 29.24%

8.45%/0.31

MR: 27.97%

Liver dataset 21.39%/0.64 17.46%/0.42
19.56%/0.44

MR: 21.19%

12.22%/0.35

MR: 26.21%

For the overall nuclei detection efficiency, both template matching and MESPS could detect
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most manually labeled nuclei with the similar miss rates. However, we should be aware of the

supervised fashion of template matching method that needs users to select a set of nuclei for

training and then finds the templates within the constructed statistical model that best match the

testing nuclei .

2.4 Conclusion

This chapter described an unsupervised method to detect and segment nuclei automatically from

the 2D pathology images based on normalized cross correlation (NCC) and multi-scale edge

selection in polar space. The experimental validations showed that the method could segment

the nuclei accurately when applied to real pathology images with different stainings (e.g. H&E,

Pap staining) and image qualities (e.g. blurring, noise, texture heterogeneity).

There are several advantages of the method. First, it has the ability to locate nuclei borders

precisely with certain robustness. The multi-scale strategy ensures that the ill effects caused by

noise, nonuniform intensity etc., are greatly reduced by smoothing. The small smooth level at

the top of the edge pyramid make contour gradually cling to the real nucleus border at the pixel

level. With the small step size of σ, the contour changes smoothly as it iterates from the bottom

level up to the top level of the edge pyramid. Second, it is designed in an unsupervised way that

doesn’t need users to train a segmentation model. Once the parameters are set, the algorithm

could detect and segment nuclei with little user effort. The performance of MESPS depends on

the image gradient, thus it is not sensitive to staining techniques or imaging modalities, making

it useful and applicable to various datasets in clinic settings. Finally, the proposed algorithm

is light weight, consisting of several basic but effective algorithms including normalized cross

correlation, edge detection and Dijkstra’s algorithm. The proposed framework is mathematically

simpler than the state-of-art approaches.

In addition, we proposed some ways to reduce the computational cost by reducing the num-

ber of nodes and edges in the graph. First, edge pixels in polar space are represented by the
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points with locally maximal number of pixels within a sliding window at each angle. This oper-

ation reduces the number of nodes greatly in the graph with the additional benefit of denoising.

Moreover, edges between two adjacent nodes in the graph would be deleted if the weight is over

a certain threshold, in the sense that neighboring border pixels should be near each other and

the distance away from the nucleus center changes little. Each node only connects few nodes at

adjacent angles, which prominently cut down the number of possible paths between the source

and terminal nodes.

We should note that there are some parameters introduced in our proposed method, including

filter size, σmin, σmax, smooth step size, cost weights (a, b) and the threshold for edge deletion.

Parameters to be changed for various datasets are filter size and σmax. As described in the

previous section, the filter size depends on the image resolution as well as the nuclei type in

study. σmax can be determined based on the image gradient in datasets, which is set to keep the

correct nuclei edges in the edge map, and at the same time filter out the noisy edges. In practice,

the optimal σmax can be set experimentally by randomly selecting a few sample images in the

dataset, and observing the edge maps so that the edge detector could describe the outlines of most

nuclei. Our algorithm is not sensitive to other parameters and they were fixed when validated on

two datasets. In our experiment, the values of σmin, smooth step size, a,b and the threshold were

set to be 1, 0.5, 0.4, 0.6 and 20 respectively.

Besides the advantages mentioned above, the method has some limitations that are notewor-

thy of discussion. First, the method is designed for segmenting convex shaped nuclei. In the polar

space, parts of the contour for non-convex shaped nucleus are mapped to multiple locations at

the same angle, which violates our assumption that there is only one optimal border location per

angle. Even though most nuclei have the shape of sphere or ellipsoid, highly concave nuclei can

be observed under microscopy due to the sectioning of nuclei at odd angles or tissue distortion

in slides preparation procedure, or both. Second, the method can’t handle overlapping nuclei

even if the nuclei seeds are detected correctly. Due to the blurring within the nuclei overlapping

area, the edge detector usually does not generate edges delineating the two nuclei. The method
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would treat the two nuclei as one and produce the border of non-overlapping area. However, we

should note that 1) the ultimate goal of nuclei segmentation is for exploring the correlation be-

tween nuclei morphology and cellular/ disease progress. 2) overlapping nuclei provides limited

information for analysis due to the difficulty of recovering inherent information within the over-

lapping area. Therefore, with plenty of isolated nuclei available in the dataset, nuclei overlapping

problem is negligible in subsequent nuclei analysis.

The proposed method locates nuclei by measuring the matching degrees between local image

patches and the predefined filters. Afterwards, the method transforms the object segmentation

problem into the shortest path problem in a graph. The cost function is constructed considering

both shape and intensity characteristics of nuclei borders. The accurate delineation of nuclei is

based on the detected border pixels which can be correctly selected by the well-known Dijkstra’s

algorithm. The multi-scale strategy enables the contour generated at each level evolves smoothly

to the actual nucleus border. In the future, the method could be further automated by enabling

the algorithm to select the optimal maximal smooth parameter based on image gradient statistics.
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Figure 2.5: Segmentation results from two validation datasets. First column: liver dataset; second col-
umn: thyroid dataset. From the top row to the last row are the results by level set, the Ovuscule, template
matching and MESPS respectively. Note that segmentation flaws are pointed out by black arrows.
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Chapter 3

SetSVM: An Approach to Set Classification

in Cancer Detection

3.1 Introduction

Due to the importance of nuclear structure in cancer diagnosis, several predictive models have

been described for diagnosing a wide variety of cancers based on nuclear morphology. In many

computer-aided diagnosis (CAD) systems, cancer detection tasks can be generally formulated as

the set classification problem, which is different from single instances classification.

In clinical diagnosis, pathologists rely on microscopic examination of a set of nuclei within

the tissue sample for analysis. Thus, in most situations, a diagnostic label is only available for

the tissue sample rather than individual nuclei. A predictive model is required to learn from sets

of nuclei without nuclei-level annotations and predict the diagnostic label for a new set of nu-

clei, referred as set classification problem. Beyond cancer diagnosis, set classification problem

is also ubiquitous in prognosis prediction, where the model needs to predict the patients survival

outcome by taking account of a set of quantified nuclei [96]. Different from conventional im-

age classification where training and testing samples are labeled single-shot images, in the set

classification scenario, training and testing samples are sets, each of which consists of various
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numbers of unlabeled nucleus images. The set classification problem is challenging and can’t

directly solved by supervised machine learning approaches. Limitations of existing approaches

to set classification are described as follows.

Single image classification (1.2.2) essentially seeks to build an instance-level classifier uti-

lizing set-level labels, which infers the latent instance labels for set prediction. However, it is

reasonable to expect that not all nuclei in the tissue sample show characteristic morphological

changes associated with the disease. For example, besides cells that exhibit abnormal pheno-

types, cancerous tissues contain cells displaying normal phenotypes. Therefore, the choice of

assumption for single instance classification often requires prior domain knowledge and has sig-

nificant impact on overall performance of the predictive model.

For existing approaches using the concept of set classification, we note two separate pro-

cesses in these methods when dealing with set classification problems. First, a mapping function

for set representation or set-wise distance metric is constructed in an unsupervised way. For

example, in STATS, the types of statistics are manually defined; in BoW, the dictionary for his-

togram representation is built by k-means algorithm with the cost function aiming at minimizing

reconstruction error. Second, a set-level classifier takes as input set representations for supervised

training based on certain criterion, e.g. minimizing classification error or maximizing separation

margin. Although existing set classification approaches have achieved different degrees of suc-

cess in cancer prediction, a shared problem is that the model performance may be limited due to

the inconsistent objectives in two separate processes.

In this chapter, we propose a novel set classification method, SetSVM, which unifies set rep-

resentation learning with classifier training. The method solves set classification problem by

jointly optimizing the mapping function and the SVM decision boundary in a maximum soft

margin problem. We show that a better performance is possible by introducing discriminant

information from the classifier to the mapping function. Beyond cancer detection, we use in-

vertible features to show that SetSVM is able to visualize set-level morphological attributes in

a discriminative subspace, which helps interpret patients nuclear patterns from different classes.
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We test the effectiveness of SetSVM using different types of nuclear quantification approaches,

provide comparisons with five state-of-art methods and provide experimental validations with

260 patients in total in four diagnostic challenges.

3.2 Method

Suppose we have N patients included for study, the nuclei dataset can be denoted as tuples

X = {(Xi, yi), i = 1, ..., N}, where Xi = {xia}nia=1 is a set of nuclei extracted from the ith

patient and yi ∈ {−1,+1} (normal vs. cancer) is the corresponding patient label. One single

nucleus is quantified as xia ∈ Rd×1 describing its morphological characteristics. The goal of set

classification is to find class label ytest to which the unseen set Xtest belongs.

A collection of prototypes are firstly initialized (section 3.2.3), SetSVM then constructs a

mapping function (section 3.2.1) to extract set representation to describe the global nuclear at-

tributes for any nuclei set. The idea is to compute matched nucleus in a set with respect to each

prototype. In model training (section 3.2.2), both prototypes and decision boundary are jointly

optimized to maximize the separation margin, leading to discriminative set representations for

specific cancer detection tasks. In this chapter, we show that the optimization of prototypes is a

mathematical variant of the learning vector quantization (LVQ) technique (section 3.2.4).

3.2.1 Nuclei Set Representation via Prototypes

The mapping function for set representation stems from the well-known matching kernel in pat-

tern recognition [84]. The basic idea of matching kernel is to measure the maximal similarity

between two setsXi andXj by finding the matched instance in one set with respect to a particular

instance in the other set.

The matching kernel can be defined as follows:

35



K(Xi, Xj) =

ni∑
a=1

max
b=1,...,nj

k(xia, xjb)

+

nj∑
b=1

max
a=1,...,ni

k(xia, xjb)

(3.1)

where k is a local Mercer kernel for instances from two sets. K is computed by finding the

matched instance in Xj for any xia ∈ Xi and the matched instance in Xi for any xjb ∈ Xj .

However, due to the max operation, K is not necessarily positive definite even if k is a Mercer

kernel and therefore it is risky to use it as SVM kernel for set classification.

The kernel can be positive definitive by comparing matched pairs of instances in Xi and Xj

via a collection of prototypes, defined as follows:

K(Xi, Xj) =
∑
pk∈P

k(Φ(Xi),Φ(Xj)) (3.2)

where P = {pk}mk=1 is a set of prototypes containing m pre-defined prototypes; Φpk(Xi) is to

find matched instance in Xi by prototype pk; k is generally defined as a positive definite kernel

(e.g. linear kernel, radial basis function, polynomial kernel), which makes K positive definite.

Figure 3.1: Illustration of the mapping function via prototypes. Matched instances (marked in red and
blue squares) in X1 and X2 are computed regarding each prototype and are used for set representation.
Here we have four prototypes: P = {p1, p2, p3, p4}.

Here, we define Φpk(Xi) as the weighted mean of instances in Xi related to pk:
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Φpk(Xi) =

∑
xia∈xi hpk(xia)xia∑
xia∈xi hpk(xia)

(3.3)

where hpk = e−γ‖xia−pk‖
2
2 using the RBF kernel and Φpk(Xi) outputs the mapping in the same

feature space as instances. hpk(xia) ∈ [0, 1] measures the matching degree between instance xia

and prototype pk. γ is a smoothing parameter and Φpk(Xi) in equation 3.3 equals finding the

nearest neighbor in Xi for pk when γ is sufficiently large. Fig. 3.1 presents the construction of

the mapping Φpk(Xi).

We choose k as the linear kernel, thus equation (3.2) becomes:

K(Xi, Xj) =
∑
pk∈P

ΦT
pk

(Xi)Φpk(Xj) = fTi fj

fi = fi1 ◦ · · · ◦ fik · · · fim

(3.4)

where fik = Φpk(Xi), k = 1, ...,m and fi ∈ Rmd×1 is the set representation concatenated by

the mapping Φpk(Xi) with respect to prototype pk, summarizing the instance attributes in Xi.

The kernel defined in equation (3.4) not only measures the similarity between two sets Xi and

Xj , it also explicitly provides set representation for any nuclei set, facilitating visualization of

discriminative information in the nuclei set as will be seen in section 3.3.3.

3.2.2 Unifying Set Representation Learning with Classifier Training

As mentioned earlier, the uniqueness of SetSVM is to combine set representation learning with

classifier training in one unified cost function to increase discriminativeness. Here we maximize

the soft separation margin over both the decision boundary and the prototypes P . In a two-class

classification problem, SVM classifier seeks to find a hyperplane: wx+ b = 0, which maximizes

the separation margin. SVM can be formulated as the following unconstrained minimization

problem with hinge loss:
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L(θ) = C‖w‖2
2 +

1

N

N∑
i=1

l(yi(wφ(xi) + b)) (3.5)

where θ = {w, b} is the SVM decision boundary, l(u) = max(0, 1 − u) is the hinge loss

term, φ(·) is a kernel function mapping xi to a high dimensional space, C is a parameter for the

regularization term. One point x can be classified by sgn(
∑N

i=1 αiyiφ(xi, x) + b) with αi being

the Lagrange multipliers.

For set classification, the kernel function φ(xi, x) is replaced by K(Xi, X) in equation (3.4).

The class label for a test set X is determined by sgn(
∑N

i=1 αiyiK(Xi, X) + b). As mentioned in

the previous section, we choose k in equation (3.4) as linear kernel and thus get the linear SVM

taking as input set representations fi and fj for Xi and Xj respectively. Denote 3.5 as L(θ, P ),

the optimization process is performed in two phases: 1) fix prototypes P , optimize L(θ, P )

over θ. Since the problem is convex, the optimal decision boundary is feasible by quadratic

programming (QP) algorithms. 2) fix the decision boundary θ, optimize prototypes P . Due

to the non-convexity of cost function, the optimal P can be learned by gradient descent based

approach. Such optimization processes proceed alternatively.

Although the update of P is straightforward to derive, we provide the details here for com-

pleteness and for showing the relation between our method and LVQ (learning vector quantiza-

tion) in the next section.

∇pkL =
1

N

N∑
i=1

∇pk li

li = max(0, 1− yi(wTfi + b))

(3.6)

Since the hinge loss in L is not differentiable, sub-gradient is computed. When yi(wfi+b) <

1, the derivatives of Li(Xi; θ, P ) with respect to each pk ∈ P are as follows:
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∇pk li = ∇pkfikli (3.7)

∇fik = −yiwk ∈ Rd×1, w = w1 ◦ · · · ◦ wk ◦ · · ·wm (3.8)

∇pkfik = [∇pkfik1 ◦ · · ·∇pkfikl ◦ · · ·∇pkfikd ] ∈ Rd×d (3.9)

∇pkfikl = 2γ

∑
xia∈Xi(xia − pk)hpk(xia)(xial − fkl)∑

xia∈Xi hpk(xia)

When yi(wfi + b) ≥ 1, the sub-gradient ∇(pk)li = 0 for all prototypes. Thus the derivative

∇(pk)Li can be organized as:

∇pkL =
1

N

N∑
i=1

I{αi > 0}∇pkfik∇fik li

= −2γ

N

N∑
i=1

I(αi > 0)yi

∑
xia∈Xi hpk(xia)(xia − pk)u

k
ia∑

xiainXi
hpk(xia)

(3.10)

where I{·} is the indicator function; ukia = wTk (xia − fik) ∈ R.

We should note that the Lagrange multipliers αi = 0 if yi(wfi + b) ≥ 1 and αi > 0 if

yi(wfi + b) ≤ 1, meaning that only support vectors contribute to the updates of prototypes. With

learning rate λ > 0, the prototype pk is updated by:

pt+1
k = ptk − λ∇pkL; k = 1, ...,m (3.11)

3.2.3 Initialization of Prototypes

Prototypes P are initialized with the clustering method across all nuclei in the training data. To

make the initialization procedure robust, we apply k-means++, where the first cluster center is

chosen randomly and each subsequent cluster center is chosen from instances with probability

proportional to its squared distance from the point’s closest existing cluster center.
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The number of clusters m is predefined. We note that the initialization of prototypes with

k-means clustering is unsupervised and is not necessarily optimal for classification purposes.

Algorithm 1 Proposed Set Classification Approach SetSVM

Input: X = {Xi}Ni=1, y = {yi}Ni=1, γ, m

Output: P = {pk}mk=1, θ = {w, b}, fi

1. Initialize prototypes P with k-means clustering

2. Repeat alternative prototype and classifier learning

3. Fix P, θ = argmin
θ

L(P, θ)

4. Fix θ, for k = 1 to m do

5. p
(t+1)
k = ptk − λ∆pkL(P, θ)

6. end for

7. F (Xi|P )→ fi

3.2.4 Relation to LVQ

Learning vector quantization (LVQ) [48] is a supervised prototype learning method using class

label information for pattern recognition tasks. The set of prototypes are defined in the feature

space of the observed data. The essence of LVQ is that one prototype pk is updated toward the

direction of data point x if they have the same class labels; otherwise the prototype is repelled,

which can be defined as follows:

pk ←


pk + λ(x− pk), c(pk) = c(x)

pk − λ(x− pk), c(pk) 6= c(x)

(3.12)

where c(x) and c(pk) are the class labels for x and pk respectively.

In our model, the update rule for pk in equation (3.11) can be written as:
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pk ← pk +
2λγ

N

N∑
i=1

I(αi > 0)yi

∑
xia∈Xi hpk(xia)(xia − pk)u

k
ia∑

xia∈Xi hpk(xia)
(3.13)

For simplicity, let’s consider Xi with αi 6= 0:

pk ← pk + 2λγ

∑
xia∈Xi hpk(xia)(xia − pk)yiw

T
k ∆∑

xia∈Xi hpk(xia)
(3.14)

where ∆ = xia−fik is the change for fik along the direction toward xia. During model learning,

the contribution of setXi on the update of prototype pk is a weighted contribution of all instances

belonging toXi. The update direction of pk based on instance xia is determined by sgn(yiw
T
k ∆).

If yiwTk ∆ > 0, the change ∆ for fik is predictive about the set class label yi and prototype

pk will be pulled toward instance xia to narrow the gap ‖xia − pk‖2, leading to a higher weight

hk(xia) for xia in generating fik in equation (3.3). In contrast, if yiwTk ∆ < 0, the change ∆ based

on xia is not predictive and thus the prototype pk will be repelled, leading to a smaller weight

h(pk)(xia) for xia in fik. As a result, the gradient-based updates of prototypes P in SetSVM can

be viewed as a relaxed version of LVQ utilizing set-level label information.

3.3 Experiments

3.3.1 Datasets

Diagnostic challenges in thyroid cancer, liver cancer and melanoma were included in this study

for quantitative evaluation of the proposed SetSVM in cancer detection tasks. Under an Insti-

tutional Review Board approval, tissue blocks for the thyroid and liver datasets were obtained

from the archives of the University of Pittsburgh Medical Center (UPMC). Tissue blocks for the

melanoma dataset were retrieved from the archives of the Mount Sinai Hospital. All cases were

reviewed by more than one pathologist, and only cases with a clear diagnosis (gold standard)

were selected for this study.

In the thyroid dataset, cases for analysis included resection specimens with diagnosis of three
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different types of thyroid lesions, namely follicular adenoma of the thyroid (FA), follicular vari-

ant of papillary thyroid carcinoma (FVPC), and nodular goiter (NG). All tissues sections were

stained with Feulgen technique. 78 patients were involved in the thyroid dataset with 28 patients

for FA, 22 patients for FVPC and 28 patients for NG. The diagnostic challenges in the thyroid

dataset included differentiating FA from NG as well as differentiating FVPC from NG.

In the liver dataset, tissue sections for imaging were stained using conventional hematoxylin

and eosin (H&E) protocol used in the histology laboratory. Cases for analysis included 26 spec-

imens with diagnosis of focal nodular hyperplasia (FNH) and 17 specimens with diagnosis of

malignant hepatocellular carcinoma (HCC). The diagnostic challenge included differentiating

FNH from HCC.

In the melanoma dataset, tissue sections were stained using H&E. A total of 139 cases were

included in our study, including 67 cases diagnosed with malignant melanoma (MM) and 72

cases diagnosed with dysplastic nevi (DN). The diagnostic challenge included differentiating

MM from DN.

3.3.2 Nuclei Segmentation and Preprocessing

Due to the differences in nuclei heterogeneity, cell nuclei in the three datasets were segmented

with separate approaches. In the thyroid dataset, nuclei were segmented with a supervised

method [12] while nuclei in the liver dataset and melanoma dataset were segmented using the

unsupervised method described in 2.

Segmented nuclei images were preprocessed as follows. Each nucleus image I with inten-

sities in the range (min,max) is first normalized by (I − min)/(max − min) to minimize the

intensity variations in slide preparation, staining procedure and image acquisition. Next, nuclei

position variations such as rotation, translation and coordinate inversions are eliminated by posi-

tion normalization. Nuclei are relocated to the image centers to remove translation and the major

axes for nuclei in each dataset are aligned in the same direction to eliminate arbitrary rotation. A

few segmented nuclei after preprocessing are shown in Fig. 3.2.
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Figure 3.2: Segmented nuclei randomly selected from patients diagnosed with FA (a), FVPC (b), NG
(c), FNH (d), HCC (e), DN (f) and MM (g). Nuclei intensity and position are normalized as described in
section 3.3.2.

3.3.3 Nuclear Morphometry Quantifications

In the experiments, we used hand-crafted features, autoencoder features and transport-based mor-

phometry to describe nuclear morphology and validate the effectiveness of SetSVM. All features

are extracted in unsupervised way.

Hand-crafted features

Nuclear structural characteristics were quantified with 256-dimensional hand-crafted features,

including 6 morphological features (e.g. area, perimeter, circularity), 220 texture features (e.g.

Haralick features, Gabor features) and 30 wavelet features. Features were normalized to have

the same variances of one.

Autoencoder features

Nuclear morphology was quantified by hidden features in a two-layer sparse stacked autoencoder

(SSAE) [93]. The SSAE is able to transform nuclear quantification back to image space by input

reconstruction, making it possible to visually investigate the feature space.

The SSAE transforms input image Ii to feature representation Hi in the hidden layer by the

encoding phase: T (Ii) → Hi, which is then used to approximate the input in decoding phase:
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T−1(Hi) → Îi. Since SSAE is stacked by basic SAE in a repeated fashion, we only provide a

brief review for the single layer SAE. The basic SAE transforms the input image Ii into a new

feature representation Hi in the hidden layer by the encoding phase: T (Ii)→ Hi, which is then

used to approximate the input in decoding phase: T−1(Hi) → Îi. The SAE model is optimized

by minimizing the following problem:

Jsparse =
1

N

N∑
i=1

J(Ii|W,B) + β1

s∑
k=1

KL(ρ‖ρ̂k) + β2‖W‖2
2 (3.15)

where W,B are SAE parameters; J(Ii|W,B) = 1
2
‖Îi − Ii‖2

2 is the term for minimizing recon-

struction error; KL(ρ‖ρ̂k) is the Kull-Leibler (KL) divergence between the average activation of

the kth hidden unit (s hidden units in total) and the desired activation ρ; ‖W‖2
2‖ is the regulariza-

tion for weights W ; β1 and β2 controls the importance for corresponding terms. Weights W and

bias B can be optimized by gradient descent approach.

In the experiment, we set the number of the first layer hidden units as 400 and the number of

the second layer hidden units as 49. The visualization of learned weights in the two-layer SSAE

is shown in Fig. 3.3.

Transport-based morphometry

Transport-based morphometry is an approach to quantify nuclear structure, refer to [87] for de-

tails. Briefly, nuclear image Ii is approximated by M particles using weighted kmeans method

to summarize pixel intensity distribution over image coordinates. Ii can thus be denoted as

Ii =
∑M

p=1mpδxp , where δxpis the delta function placed at position xp and mp is the correspond-

ing intensity mass. Reference image I0 is usually the average image across the dataset and can

be similarly approximated by I0 =
∑M

q=1 mqδyq . Image approximations for I0 and Ii are shown

in Figure 3.4 (a) and (b) respectively. We seek to find the optimal transport plan T by minimizing

the transport distance d(I0, Ii) between I0 and Ii:
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Figure 3.3: (a) Architecture of the two-layer stacked sparse autoencoder (SSAE). (b) Learned weights
(20× 20) in the first layer. (c) Learned weights (7× 7) in the second layer. The grayscale images (b) and
(c) were color coded for viewing purpose.
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Figure 3.4: The red dots in I0 (a) and Ii (b) are locations of particle masses to approximate each image.
(c) shows visual representations along the geodesic path from I0 to Ii.

d(I0, di) = min
T

M∑
p=1

M∑
q=1

‖xp − yq‖2
2Tpq, T ∈ RM×N (3.16)

The morphological representation Ui for Ii is obtained by:

Ui = [
√
q1e1, ...,

√
qMeM ], eq =

M∑
p=1

xpTpq/mq (3.17)

The geodesic interpolation between I0 and Ii can be approximated by:

Iρ =
M∑
j=1

qjδpej+(1−ρ)yj , ρ ∈ [0, 1] (3.18)

Figure 3.4 (c) shows the visualization of the morphing processfrom I0 to Ii when changing

ρ from 0 to 1. The linear embedding preserves the information to approximate each image Ii,

facilitating visualization and quantitative analysis of nucleus morphology at the same time.

Cross Validation

We utilized the leave-one-out strategy to test the cancer detection performance of SetSVM. The

data from one patient is used for testing and the remaining data is used for model training. The

training data was further split into training and validation sets to search for the best parameter γ

in equation (3.3) and the number of prototypes m in SetSVM.

46



It is worth mentioning that testing patients were not involved in SSAE model training. We

used standalone data to train SSAE just once for each diagnostic challenge in order to avoid

multiple model trainings with leave-one-out strategy. That is, for challenge FA vs. NG, the

standalone data is FVPC; for challenge FVPC vs. NG, the standalone data is FA; for challenge

FNH vs. HCC, the standalone data is the thyroid data and for MM vs. DN, the standalone data

is the liver data. After SSAE training, the model can be viewed as a feature extractor applied to

both training and testing sets in the same manner to describe nuclear structure.

Visualizing Nuclear Structure Differences Between Sets

As mentioned earlier, set representation by SetSVM enables visualization of relevant differences

between sets in terms of nuclear morphometry. Such visualization of discriminative information

is plotted at patient level rather than nuclei level, reflecting characteristic nuclear morphology for

the entire set.

We begin by finding the most important prototype in P for a two-class diagnostic challenge.

Each prototype pk ∈ P maps set Xi into fik and the set representation for Xi is thus fi =

fi1 ◦ · · · fik · · · ◦ fim. The optimal SVM decision boundary w = w1 ◦ · · ·wk · · · ◦ wm ∈ Rmd×1

indicates the importances of feature variables. We find the most important prototype po ∈ P

regarding differentiating nuclei sets by feature ranking:

o = argmax
k=1,...,m

‖wk‖2
2

‖w‖2
2

(3.19)

Combined with the penalized version of Fisher Linear Discriminant Analysis (pLDA) [86],

the set information fio extracted by po can be used for visualizing discriminant variations between

nuclei sets.

We haveN data representations fio ∈ Rd×1 | i = 1, ..., N with each index i belonging to class

c. The pLDA seeks to find a discriminative direction VpLDA by optimizing the following prob-

lem:
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VpLDA = argmax
V

V TSTV

V T (SW + εI)V
(3.20)

where ST =
∑

i(fio− f̄o)(fio− f̄o)T is the total scatter matrix; SW =
∑

c

∑
i∈C(fio− f̄o)(fio−

f̄o)
T is the within class scatter matrix; f̄o is the center of the entire dataset and f̄c is the center for

class c; ε is a constant.

We can project data points onto the discriminant direction VpLDA by V T
pLDAfio. The discrim-

inant variations along VpLDA can be computed about the mean:

fµ = f̄o + µVpLDA (3.21)

where µ is the coefficient computed in units of the standard deviation σ for data projections along

VpLDA.

Note that if data samples are measured with invertible feature transformation T (·), fµ can be

transformed back to the image space by T−1(fµ). In our case, the decoding phase in SSAE can

be used to visualize such variations by image reconstruction.

3.4 Results

3.4.1 Classification Accuracy Comparisons

To evaluate cancer detection performance of SetSVM, we also tested five existing approaches

in the diagnostic challenges. All the methods take as input the same nuclear quantifications and

utilize the SVM classifier. The leave-one-out cross validation was adopted for all comparisons.

1) Majority voting (MV) [98]. The linear SVM classifier was trained based on individual cell

nuclei with labels being as same as set labels. Then each nucleus in the test set was predicted

individually and the final set label was assigned by majority voting.

2) Feature statistics (STATS) [45]. Statistical features were extracted for all nuclear attributes.

In the experiment, minimum, maximum, mean, standard deviation, skewness and kurtosis were
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computed and concatenated into a single vector to represent the nuclei set.

3) Bag of words (BoW) [35]. The dictionary in BoW was built in the nuclei feature space

with k-means using training data. The BoW model generated a histogram to represent each

nuclei set by measuring the occurrences of each word in the nuclei set.

4) Earth mover distance (EMD) [39]. The earth mover distance was used to measure the

distance between two sets based on an optimization process. The computed EMD for Xi and

Xj is denoted as dEMD(Xi, Xj), which was applied in SVM by the RBF kernel K(Xi, Xj) =

e−γd
2
EMD(Xi,Xj).

5) mi-Graph [101]. Compared with standard multiple instance learning (MIL), mi-Graph

was designed under relaxed MIL assumption. It constructs a graph for the nuclei set with nuclei

being nodes and a predefined graph kernel is used in SVM to measure the similarity between two

sets.

The performance of SetSVM was evaluated on the three datasets with four diagnostic chal-

lenges, namely, FA vs. NG, FVPC vs. NG, FNH vs. HCC and DN vs. MM. We calculated

cancer detection accuracy to summarize the overall classification performance. In addition, the

area under the receiver operating characteristic curve (AUC) and Cohens kappa coefficient were

considered to evaluate the model.

Table 3.1, 3.2 and 3.3 contain the summary of classification results in each diagnostic chal-

lenge with hand-crafted features, autoencoder features and TBM respectively. The cancer de-

tection performances were evaluated for SetSVM as well as five existing approaches mentioned

above. As we can see from Table 3.1, 3.2 and 3.3, SetSVM provides statistically better classifi-

cation accuracies in challenges marked with * (assessed by p values, p < 0.05) compared with

five existing methods using different nuclear quantification approaches. The improvements are

gained by optimizing both set representation and classifier decision boundary in one consistent

cost function.

As far as computational complexity, our method only needs to compute the distance between

each instance and each prototype to obtain the linear embeddings. Suppose we have m defined
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prototypes and each set contains n instances, the computational complexity isO(mn) to compute

the instance-prototype distances for a set. However, in mi-Graph, the computational complexity

is O(n2) to compute the instance-wise distances, which increases quadratically with the n.

3.4.2 Visualizing nuclear characteristics in different groups

SetSVM is able to provide visual exploration of the discriminant patterns for the nuclei set when

using invertible nuclear quantifications (e.g. sparse autoencoder features). As mentioned in sec-

tion 3.3.3, each set can be characterized by a feature vector in the nuclear feature space regarding

the most important prototype po. We utilized the extracted set information in combination with

pLDA technique to visualize nuclear morphological differences between nuclei sets. For each

diagnostic challenge, we projected all the data onto the discriminant direction VpLDA with fixed

ε = 0.001 in 3.20 and the discriminant variations fµ along VpLDA is visualized by the inverse

transformation in SSAE, as shown in the bottoms of Fig. 3.5 (a)-(d). The generated nuclei im-

ages beneath histogram bars are plotted in pseudo color. After projection, patient representations

most similar to these nuclei images are counted in the corresponding bins. The height of bars

in histograms indicates the frequency of corresponding morphometry patterns in each diagnostic

challenge.

The histograms in Fig. 3.5 (a) suggests that nuclei in FA patients tend to have slightly bigger

nuclei size and more chromatin concentrated around the nuclei membrane, while nuclei in NG

patients are relatively small with more uniform chromatin distributed within the central region

of the nucleus.

In comparison between FVPC and NG shown in Fig. 3.5 (b), the distribution histograms

are more widely separated compared with FA vs. NG. A large proportion of FVPC patients

have significantly bigger nuclei than NG patients. We computed the nuclei area of segmented

nuclei images for all groups, shown in Table 3.4 and found that the average nuclear size in FVPC

patients is 38% bigger than NG patients. Moreover, greater numbers of FVPC patients tend to

have central clearing nuclei with peripheralization of chromatin compared with NG group.
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Results for the challenge FNH vs. HCC are shown in Fig. 3.5 (c). It is clear that nuclei

in the malignant group (HCC patients) are much bigger (34% bigger calculated from Table 3.4)

than the benign group (FNH patients). In addition, HCC group tend to have more prominent

chromatin mass condensed within the central region of nucleus, indicating more hyperchromatin

inside nucleus than benign patients. In contrast, FNH patients have nuclei with relatively uniform

chromatin distribution and little variations in size.

Fig. 3.5(d) shows the analysis result for comparison between DN and MM. The nuclei of DN

patients are usually small and condensed without a nucleolus. However, MM patients tend to

have enlarged nuclei (21% larger calculated from Table 3.4) with chromatin condensed around

nuclei membrane and central region.

Table 3.4: Nuclear size (in pixels ×103) in different groups

Groups FA FVPC NG FNH HCC DN MM

Nuclear size 5.2± 1.5 6.9± 1.9 4.9± 1.3 1.6± 0.3 2.2± 0.8 0.5± 0.3 0.6± 0.2

3.5 Discussion

Nuclear structure, as observed under microscopy on routine staining, has long been prime inter-

ests of pathologists in cancer diagnosis. Models in CAD systems are required to solve the set

classification problem and predict the presence or absence of cancer based on sets of nuclei. In

this chapter, we described a novel set classification approach SetSVM in the application of nu-

clear morphometry-based cancer detection. SetSVM integrates set representation learning and

classifier training in one unified cost function for better discriminativeness. The method is based

on the idea of measuring set-set similarity by comparing matched nuclei obtained via a collec-

tion of prototypes. For better discriminative power, both decision boundary and prototypes are

optimized to maximize the separation margin. SetSVM provides set representation to summarize

characteristics of nuclear morphometry for any nuclei set. Representative information in the nu-
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clei set can be visualized directly by feature decoding in the sparse stacked autoencoder (SSAE)

in the discriminant subspace.

In nuclear-based cancer detection tasks, we compared our approach with five commonly used

methods using thyroid, liver and melanoma datasets with 260 patients in total. All the methods

took as input the same nuclear quantifications using hand-crafted features, autoencoder features

and TBM. Experiment results show that the proposed SetSVM is able to provide state-of-art per-

formances in almost all diagnostic challenges using different nuclear quantification approaches.

One possible reason is that compared with SetSVM, other methods separate mapping function

and classifier training, which may limit the model performance when the objectives of the two

processes are inconsistent. In addition, the validation with three different types of features sug-

gests that SetSVM is likely to provide superior performances independent of nuclear quantifica-

tion approaches in CAD systems.

Beyond cancer detection, SetSVM enables visualization of discriminant nuclear patterns for

the nuclei set. Combined with SSAE and pLDA, the modes of variations that are responsible for

distinguishing two classes can be plotted in image space to discover the characteristic chromatin

distribution within the nucleus. As far as we know, this is the first attempt to visually interpret

such biological information at the patient level. In pathology, the spatial arrangement of chro-

matin is often associated with tumor progress. The compact, condensed dark stained hetero-

chromatin inside nucleus reflects relatively low levels of transcriptional inactivity. Nuclear mor-

phological features including chromatin clearing with peripheral margination of chromatin and

nuclear enlargement have been documented as important diagnostic information in differentiat-

ing thyroid lesions. Enlargement in nuclear size and prominent nucleoli are often observed in

malignant lesions and are used for cancer grading. Together with SSAE and pLDA, the pro-

posed SetSVM provides a practical tool for direct visualization of representative nuclear patterns

in patients from specific pathological lesions.

Although the proposed method can yield satisfying performance, it also has some limitations.

First, SetSVM is built directly on set levels and only predicts labels for sets rather than instances.
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Beyond label prediction for the patients, it would be interesting to extend the work to infer the

probability of individual nuclei being a certain class. By doing so, we may be able to plot the

heatmap and thus locate the tumor region in pathology images. Second, in this chapter, nu-

clear structure was quantified with unsupervised approaches (hand-crafted features, autoencoder

features and TBM) and SetSVM only optimizes set representation and the classifier. There is

still room to further improve the discriminativeness by introducing label information to nuclear

quantification, leading to an end-end learning architecture.

Figure 3.6: Performance analysis on sensitivity of parameters. (a) classification accuracy vs. number of
prototypes; (b) classification accuracy vs. smoothing parameter. Here we provide the example analysis
based on autoencoder features.

We note that in SetSVM two parameters: number of prototypes m and the smoothing param-

eter γ in mapping function are important to cancer detection performance. To test the sensitivity

of each parameter, we fixed the other parameter as the optimal value and present the classification

accuracy with respect to the change of m and γ in each diagnostic challenge, as shown in Fig.

3.6. The number of prototypes ranges from 1 to 50 and increasing m improves the performance.

However, further increase of m would lead to suboptimal/unchanged classification accuracies.

Lager number of prototypes m can generate higher dimensional set representations, where re-

dundant information may degrade performance of the predictive model. Similar performance

patterns can be observed when keeping m fixed and changing 1
γ

from 0.1 to 3.0. When 1
γ

is very
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small, the mapping function Φpk(Xi) becomes finding the nearest neighbor in Xi with respect to

prototype pk and thus Φpk neglects characteristics of other instances. When 1
γ

is too large, the nu-

clei characteristics summarized by prototypes within a set are ‘obscured’, losing discriminative

features for classification.

Finally, it is worth noting that the proposed SetSVM is a quite general predictive model. It is

a type of weakly supervised method in the sense that it takes as input sets of unlabeled feature

vectors with only set-level labels available, alleviating the efforts to access detailed labels in

many situations. In addition, SetSVM is able to visualize representative set information when

combined with invertible features and can thus be extended to many pattern recognition tasks.
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Chapter 4

Applications to General Pattern

Recognition Problems

Predicting the class label for a set of instances is an important problem which is ubiquitous in

many fields with data captured by various types of sensors. We believe that SetSVM is a quite

general approach that can be applied in many situations beyond nuclei-based cancer detection

in pathology. In this chapter, we present experimental evaluations showing that SetSVM can be

used broadly in a variety of pattern recognition tasks, including mass classification in mammo-

grams, classification of flow cytometry data as well as scene classification using natural images.

Experimental results demonstrate that SetSVM can significantly improve classification accuracy

compared to classic approaches in the corresponding fields.

4.1 Mass classification in mammograms

4.1.1 Introduction

In the US, breast cancer is currently the second most common cancer in women and may occur

in men. Breast cancer starts from cells in the breast that grow out of control and usually form

a tumor which is visible in x-ray images. A mammogram is a low-dose x-ray of the breast that
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is used to look for signs of breast cancer, including small white spots, lumps or tumors called

masses, and other suspicious areas. Mass is one of the major symptoms of the breast cancer and it

is challenging to differentiate malignant masses from benign ones, due to large variations of mass

shapes and image textures. For mass classification in mammograms, a benign mass is generally

round or oval and has a well-defined boundary, whereas the malignant tumor is spiculated and

has a blurry boundary. In the literature, shape-based features [32], texture-based features [63]

and neighborhood intensity [56] are commonly used as metrics for mass classification. How-

ever, the performance of classification models using shape-based features, such as compactness,

fractional concavity and fractal dimension, depends heavily on the accurate mass segmentation,

which is difficult to obtain in many situations [56]. For the generality and simplicity, directly

using intensity neighborhoods of pixels have been validated in mass classification [56], texture

classification [82], object segmentation [11].

In image categorization, texton analysis often combines with various types of filter bank

responses as an approach for texture modeling [55]. Texton analysis assumes that image texture

is a collection of fundamental micro-structures, referred as textons, occurring repeatedly across

the image [102]. Thus it is reasonable to expect that pixel representations form clusters in a

certain feature space and that image textures can be modeled by the compact representation

with a few textons. In this section, we used the intensity neighborhood (m × m pixel square,

in Rm2×1 feature space) to represent each image pixel. The k-means clustering algorithm is

applied to find Ndic cluster centers, known as dictionary. Image pixels are then assigned to the

corresponding nearest dictionaries with pre-defined distance metric. For image representation,

the normalized probability density function is computed as a texture signature, which acts as the

input of classifiers for pattern recognition. Texton analysis has shown satisfying performances in

mass classification for differentiating cases from benign and malignant groups [56], [55], [8].

Here we consider the mass classification task as a set classification problem, where each

image is a set consisting of various number of pixel representations without knowing the pixel-

level annotations and the aim is to predict whether a mass region is from the benign or malignant
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Figure 4.1: Sample mass regions from the DDSM dataset. (a)-(f) benign mass regions; (g)-(l) malignant
mass regions.

Table 4.1: Mammogram dataset description

1 2 3 4 5
Shape 11 31 32 37 3
Margin 40 16 18 14 26
Density 28 48 35 3

Assessment 0 1 39 43 31
Subtlety 4 8 24 18 60

The first to the last columns show the ratings on a scale of 1-5 for mass properties of shape, margin, density,
assessment as well as subtlety. The mass shape can display in round (1), oval (2), lobulated (3), irregular (4)
and architecture distortion (5). The margin can be circumscribed (1), microlobulated (2), obscured (3), ill-defined
(4)and spiculated (5). Assessment indicates the clinical severity of breast cancer and subtlety represents if the mass
is obvious in mammograms where 1 is subtle and 5 is obvious [56].

group.

4.1.2 Dataset

In this experiment, we utilized the dataset from the Digital Database for Screening Mammog-

raphy (DDSM) 1 [38], which is widely used in mammographic image analysis research. Mass

regions were selected from two classes: benign cancer volumes and malignant cancer volumes.

Images in the experiment were scanned on LUMISYS digitizer with 50µm/pixel at 12 bits/pixel.

1http://marathon.csee.usf.edu/Mammography/Database.html
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Figure 4.2: (a) Subsampling strategy in the 25×25 intensity neighborhood. Blue pixels are sampled for
the black center pixel; (b) ROC curves for different classification approaches.

A total of 114 mass regions were included for study consisting of 52 benign masses and 62

malignant masses. Sample mass regions are shown in Figure 4.1. Since a small intensity neigh-

borhood needs to be extracted for all pixels in mass regions, we down-sampled the images at

the resolution of 200 µm/pixel to reduce computation complexity. The data statistics for mass

properties are listed in Table 4.1.

4.1.3 Experiment results

To test the classification performace of different models, the ‘leave-one-out’ strategy was uti-

lized in experiment comparisons. We opted the 25×25 image patch as the pixel neighborhood

and applied sampling strategy (shown in Figure 4.2 (a) [56]) to reduce redundant information,

resulting in a 9×9=81 dimensional feature vector to describe the local pattern of each pixel. In

the experiment, we compared the performance of SetSVM with frequently used texton analysis

as well as STATS 3 using the SVM classifier.

The experiment results are presented in Table 4.2 where classification accuracy, Cohen’s

kappa and AUC are listed for three methods. The accuracy was averaged on 20 individual execu-

tions. As we can see from Table 4.2, SetSVM outperforms the other two methods in classification

accuracy and shows better agreement with the ground truth. In addition, receiver operating char-

60



Table 4.2: Classification accuracy comparison on benign vs. malignant (%)

Methods Accuracy Cohen’s kappa AUC

Texton analysis 71.93% 0.4430 0.7063

STATS 68.42% 0.3535 0.6743

SetSVM 76.32% 0.5128 0.7146

acteristics (ROC) curves are plotted in Figure 4.2 (b), showing the diagnostic ability of binary

classifiers as one discrimination threshold changes. The standard Student’s t-test confirms the

statistically significant improvement by SetSVM with p-value less than 0.01.

4.2 Flow cytometry-based cancer detection

4.2.1 Introduction

Flow cytometry is a powerful tool in analyzing characteristics of particles flowing in the stream of

fluid and has been widely applied in medical research and clinical practice [37]. Some examples

of application fields include pathology, molecular biology, immunology and marine science as

so on. Flow cytometry can yield multiple measurements for thousands of cells in a short time

from light scatter and fluorescence emission signals. Forward scattered (FS) light is refracted by

a cell and continues along in the light path, reflecting the cell size. Side scatter (SS) signal is

collected at roughly 90 degrees from the original light path, reflecting cell internal complexity

(i.e. granularity). Cell can be processed with fluorescent dyes or fluorescence-tagged antibodies,

producing fluorescent light which reveals physiological and chemical properties of cells [7]. In

a flow cytometer, a mixture of light signals are directed by optical filters and beam splitters and

each signal is collected by the relevant detectors, generating electronic signals proportional to

the signal that hit them. An illustrative diagram of the flow cytometer is shown in Figure 4.3.

In clinical practice, gating is a commonly applied method to select a subset of cells according

to a small number of variables, which allows researcher to gather and display more information
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Figure 4.3: Overview of the flow cytometer. This image is taken from [73]

of cell subpopulation. A gate is usually a graphical boundary on a plot to isolate the desired

cell subpopulation. The selected cell subpopulation are further analyzed based on remaining

measurements and multiple gates can be combined in order to reliably identify a certain subtype

of cells. Flow cytometry has been applied in the diagnosis of health conditions, especially blood

diseases such as leukemia. Due to the large amount of available data and challenges in flow

cytometry-based diagnosis, accurate and automated data analysis is a pressing need for clinical

decision support [7].

Leukemia is a cancer of blood cells, which is often described as being acute or chronic. Acute

myelocytic leukemia (AML) is characterized by the rapid growth of abnormal white blood cells,

accounting for roughly 1.2% cancer deaths in the US [43]. Flow cytometry is a critical part of

diagnosis of AML, allowing detection of aberrant protein expression profiles in monocytic cells

[62]. In 2011, the DREAM 6/FlowCAP2 Molecular Classification of Acute Myeloid Leukemia

(AML) Challenge2 attracted a number of teams with the aim of developing machine learning

algorithms to predict the condition for patients whose diagnosis was unknown to participants. In

[59], feature expansion including multiplication and division between measurements was used

and Fishers linear discriminant analysis (LDA) was then applied to reduce feature dimension.

2http://dreamchallenges.org/project/dream-6-flowcap2-molecular-

classification-of-acute-myeloid-leukaemia-challenge/
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The prediction score for any unknown patient was given based on the `1 regularized logistic

regression model. In [7], six statistics regarding each measurement were aggregated as features.

The Generalized Matrix Relevance Learning Vector Quantization (GMLVQ) was used for patient

prediction.

In flow cytometry-based cancer detection, multiple measurements are provided for each cell

and there are thousands of cells originating from a single patient who was diagnosed as normal or

malignant. Instead of classifying each cell as positive or negative, the key is to consider the cell

population as as whole and predict the patient condition. Therefore, the application of SetSVM

to flow cytometry-based cancer detection is quite natural. In this section, we aim to apply the

SetSVM model to predict the diagnosis of any test patient as AML-positive or healthy based on

flow cytometry data.

Figure 4.4: AML flow cytometry data visualized in FS, SS and CD45 space (a); ROC curves for different
approaches on differentiating normal and AML patients (b)

4.2.2 Dataset description

We utilized the AML flow cytometry dataset in CSV format downloaded from the FlowReposi-

tory database 3, obtained from peripheral blood or bone marrow aspirates. The dataset consists

of 359 subjects in total with 316 healthy patients and 43 AML-positive patients. Seven mea-

surements for each cell were included in the experiment: forward scatter in linear scale (FS Lin),
3https://flowrepository.org/id/FR-FCM-ZZYA
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Table 4.3: Classification accuracy comparison for differentiating normal from AML patients (%)

Methods Accuracy Cohen’s kappa AUC

BoW 95.82% 0.7772 0.9498

STATS 96.65% 0.8348 0.9493

SetSVM 97.77% 0.8851 0.9668

sideward scatter in logarithmic scale (SS Log), and five fluorescence intensities (FL1-FL5, IgG1-

FITC, IgG1-PE, CD45-ECD, IgG1-PC5, IgG1-PC7) in logarithmic scales. The number of cells

originating from each patient ranges from 6764 to 49370. In Figure 4.4(a), cells in the AML flow

cytometry data are visualized in 3D space defined by FS Lin, SS Log and CD45-ECD.

4.2.3 Experiment results

In this experiment, ‘leave-one-out’ strategy was utilized to test the cancer detection performances

of three methods: BoW, STATS and SetSVM. Cell measurements were normalized between 0

to 1 at the same scale. In [7], statistics including mean, standard deviation, skewness, kurtosis,

median and interquartile range were used along with a non-linear classifier to produce 100%

classification accuracy. For STATS in the our experiment, we used the exact same six statistics

as in [7] to represent cell characteristics. Table 4.3 shows the classification results for methods

evaluated by average accuracy, Cohen’s kappa and AUC. We should note that the line of chance

is 88.02% in this task and we found that the misclassified cases are mostly from AML group in

three methods due to the unbalanced data. The ROC curves for methods are plotted in Figure

4.4(b).
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4.3 Natural scene classification

4.3.1 Introduction

Much of the recent progress in computer vision has been made by designing robust image fea-

tures or classifiers for the task of scene classification. Scene classification aims to automatically

categorize the environment in a given image as belonging to one of a set of scene classes, like

mountain, beach, desert, etc. Scene classification is useful in place recognition, image retrieval,

multimedia direct marketing and so on. Although great effort has been made, it is still a chal-

lenging task due to many factors to be considered such as illumination, object scale and position

[54].

In the literature, many features are based on low-level image properties (e.g. SIFT [58],

filterbank responses [29]) and have achieved success in image scene classification. The popular

bag of words (BoW) model often combines with the extracted low-level features to represent an

image as a collection of local features [105]. Based on the framework of BoW, many variants are

developed for scene classification. In [99], multi-resolution representation was involved in BoW

model, where local image features were extracted from multi-resolution images. In [52], spatial

pyramid matching (SPM) was proposed to incorporate global geometric correspondence, where

an image is divided into small cells and concatenate the histogram of cells to the histogram of

original images using low-level features. Low-level features have been proven effective in many

scene classification tasks, however, its performance may be limited as the visual tasks become

challenging due to the small local area size [54].

Superpixel segmentation is an approach to aggregate a collection of pixels with shared fea-

tures such as color, illumination, spatial location and can provide higher level information com-

pared with pixel-level responses. In addition, superpixel-level feature analysis is more efficient

than pixel-level features since the number of superpixels is much less than that of pixels and thus

it help reduce computation complexity. Features are extracted from each superpixel region to

describe the image characteristics including color, texture, shape. In [92], covnolutional neural
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network (CNN) was applied to extract features automatically from superpixels for segmenting

and classifying epithelial and stromal regions. In [81], local binary patterns (LBP) features were

used in very high resolution image (VHR) classification. Recently, the CNN model has been

widely applied in image pattern recognition tasks and has been the state-of-art approach in scene

classification [51].

In this section, we view the scene classification as a set classification problem where an

image consists of a set of pixel-level or superpixel-level feature descriptors and determine where

the image was taken.

4.3.2 Dataset

In this section, we aim to classify images into scene categories sky vs. desert. The image data is a

subset of the SUN 4 database, which consists of 168 images taken from scene sky and 202 images

taken from scene desert. Images in both categories are with various sizes and a few samples are

shown in Figure. 4.5 (a) and (b).

Figure 4.5: Sample images and corresponding output maps of visual words. (a) sample desert images;
(b) sample sky images; (c) maps of visual words for (a); (d) maps of visual words for (b).

4http://groups.csail.mit.edu/vision/SUN/
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4.3.3 Method

Pixel-level feature extraction

To extract pixel-level features, we convert the digital image from RGB color space to LAB color

space using the method presented in [25]. The characteristics of LAB color make it suitable for

color image feature extraction. LAB color space is designed to approximate human vision, where

luminance is represented on the L axis, perpendicular on a pile of ’ab’ plane with uniformly

distributed colors from green to red along ’a’ axis and from blue to yellow along the ’b’ axis.

The multi-scale filter bank (33 filters in total, as shown in Figure 4.6), including Gaussian filters,

Laplacian of Gaussian (LoG) filters and first derivative of Gaussian filters at different scales, is

applied to L, A, B channels separately of the image to generate pixel-level filter responses.

Create visual words for BoW model

The dictionary of visual words can be constructed using k-means clustering algorithm. Instead of

using all the pixel-level responses, we randomly select α pixels from each image. If there are T

training images, the obtained filter responses matrix would be αT×N , whereN is the number of

filter responses per pixel. Each pixel in an image is mapped to its closest word in the dictionary

measured by the standard Euclidean distance, producing a map of visual words where each pixel

is assigned the index of its closest visual word. Several maps of visual words are visualized in

Figure 4.5 (c) and (d).

Superpixel-level feature extraction

Images are partitioned into a number of superpixels, which should accurately adhere to the object

boundaries and should be computation efficient. Simple linear iterative clustering (SLIC) algo-

rithm [1] is a commonly used method for superpixel generation by performing a local clustering

of pixels in the 5-D space defined by the L, A, B values in the CIELAB color space as well as

the x, y coordinates.
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Figure 4.6: The applied multi-scale filter bank to generate pixel responses.

For an image with N pixels and K desired superpixels, SLIC algorithm begins with initializing

K evenly distributed cluster centers with grid interval S =
√
N/K and moves cluster centers to

the lowest gradient position in the 3 × 3 neighborhood. The K cluster centers are denoted as

Ck = [lk, ak, bk, xk, yk]
T , with k = [1,K]. For each cluster center, assign the best matching

pixels in the 2S × 2S image neighborhood using the distance measure as follows:

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√

(xk − xi)2 + (yk − yi)2

D = dlab +
m

S
dxy

(4.1)

where D is the distance between any pixel i and cluster center Ck by summing up distances

in LAB color space and coordinate space. m is a parameter to control the compactness of the

superpixel within the value range [1, 20].

After image pixels are assigned to their corresponding closest cluster centers, the average

5-dimensional vector over the pixels within the same superpixel is computed as the new center.

Such process is repeated iteratively until the changes of cluster centers are sufficiently small. The

SLIC algorithm is computation efficient withO(N) complex. A few examples of superpixel seg-

mentation are shown in Figure 4.7, where each image contains various numbers of superpixels.
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Figure 4.7: Example images and their SLIC superpixel segmentation. Input sky image (a) and desert
image (d); boundary overlay (b) and (e); pixels within the same superpixel are assigned random colors (c)
and (f).

Haralick features [36] are then applied to quantify texture characteristics of superpixel re-

gions in three image channels, generating a set of feature vectors for each image. Haralick’s

texture features are computed based on Ng ×Ng gray-level co-occurrence matrix (GLCM) with

Ng being the number of gray levels of the image. Each element [i, j] in GLCM indicates the

probability of a pixel with value i adjacent to another pixel with value j. Haralick features are

often calculated from GLCMs generating from each of the four directions: horizontal, vertical,

left and right diagonals. Haralick features normally are 13 types of statistics extracted from

the GLCM: angular second moment (ASM), contrast, correlation, variance, inverse difference

moment, sum average, sum variance, sum entropy, entropy, difference variance, difference en-

tropy, information measure of correlation 1 and information measure of correlation 2. Refer to

Murphy’s lab 5 for details about Haralick feature calculation.

4.3.4 Experiment results

At pixel-level, 33 filters were convolved with each of the three image channels separately in LAB

color space , generating 99 responses per pixel. We selected α = 150 pixels randomly from each

5http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
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of training images to construct K = 200 visual words in the BoW model. All images were

represented as 200-dimensional feature vectors showing the occurrences of the visual words. At

superpixel-level, each image was firstly partitioned into around 100 superpixels using SLIC, each

of which is considered as an instance of the image. With GLCMs calculated at 6 gray-scale levels,

468 Haralick features were extracted from three image channels for any superpixel region. For

both pixel-level features and superpixel-level features, the standard principle component analysis

(PCA) technique was then applied to the entire feature set and the top 10 feature directions that

captured more than 95% variations were retained to describe each instance.

Table 4.4: Classification results on sky vs. desert

with pixel-level features

Methods Accuracy Cohen’s kappa AUC

BoW 86.22% 0.7179 0.9092

STATS 89.18% 0.7421 0.9376

CNN 92.97% 0.8583 0.9751

SetSVM 91.35% 0.8257 0.9577

Table 4.5: Classification results on sky vs. desert

with superpixel-level features

Methods Accuracy Cohen’s kappa AUC

BoW 84.05% 0.6756 0.9104

STATS 90.27% 0.8041 0.9680

CNN 92.97% 0.8583 0.9751

SetSVM 93.51% 0.8693 0.9790

In the experiment, we compared the scene classification performances of SetSVM with BoW

model as well as STATS with both pixel-level features and superpixel-level features, as shown

in Table 4.4 and Table 4.5. In addition, we also tested the classification performance of the

CNN model. Due to the small scale of the test dataset, we utilized a one-layer CNN, where 15

filters with size 5× 5 were used to produce the feature map. The one-layer CNN model consists

of a convolution layer, a max-pooling layer, a RELU activation layer, and a softmax output

layer. Experiment results showed that SetSVM outperformed BoW and STATS using pixel-

level features. In Table 4.4, the CNN model performed the best with classification accuracy of

92.97%. In addition, we found that compared with pixel-level features extracted within small

local regions, higher-level information embedded in superpixels may help improve classification

performances for STATS and SetSVM. As shown in Table 4.5, SetSVM achieved the highest
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classification accuracy of 93.51%. The receiver operating characteristics (ROC) curves for the

four methods are plotted in Figure 4.8 (a) and (b).

As far as computation complexity, BoW, STATS and SetSVM took 140s, 34s and 173s

respectively using superpixel-level features, while the computation time was 1600s, 529s and

2056s respectively with pixel-level features. The one-layer CNN model took 3606s in the ex-

periment. All comparisons were performed on a machine with Intel(R) Core(TM) i7 4810MQ

2.8GHz CPU and 12 Gb RAM.

Figure 4.8: ROC curves for different methods using pixel-level features (a) and superpixel-level features
(b). Note that the same ROC curves for CNN are included in both (a) and (b) for comparison.
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Chapter 5

Conclusions

Nuclear morphology is an important indicator of cellular processes and plays a significant role

in decision making for disease diagnosis. By imaging large numbers of slides automatically at

high resolution, digital pathology has the potential to become a useful tool in pathology practice,

facilitating pathologists decisions, and overall benefiting the patient. In this thesis, we propose

novel nuclei detection, nuclei segmentation and cancer detection algorithms in the image analysis

pipeline to maximize the overall amount of information extracted from nuclei images.

Segmentation is a critical prerequisite in systems for quantitative analysis of nuclear mor-

phology. In Chapter 2, we introduced an unsupervised method, which is called multi-scale edge

selection in polar space (MESPS), to efficiently locate and extract nuclei without pre-training.

Potential nuclei can be located automatically by measuring the matching degrees between local

image regions and a set of filters. In the proposed method, nuclei segmentation problem becomes

searching for the shortest path between two nodes in an undirected graph. Compared with su-

pervised segmentation that requires a large number of labeled samples for model training, our

method is able to adapt to different types of nuclei datasets and provides similar or even better

performance. Qualitative and quantitative analysis showed that the method is automatic and ac-

curate when segmenting nuclei from variously stained images with noisy background and has

the potential to be used in clinic settings.
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Even though MESPS achieved satisfying segmentation results in experimental validations,

we admit that the amount of datasets we used is far from enough compared with the large va-

riety of nuclei appearances displayed in pathology images. During the last few decades, many

segmentation solutions have been proposed in the literature, unfortunately, nuclei segmentation

still remains an unsolved problem. One major challenge is the lack of high-quality public bench-

mark dataset and the lack of recognized segmentation metrics to evaluate and compare different

approaches. Many methods are evaluated on their own datasets with various metrics, making

it extremely difficult to recognize a new solution as a state-of-art approach in the field. For

algorithm development in the future, transfer learning is one potential direction for nuclei seg-

mentation since it combines the merits of both supervised learning and unsupervised learning.

Transfer learning is able to ‘borrow’ knowledge learned from training samples (source domain)

and perform the same task on the unseen datasets coming from other sources (target domain),

largely reducing the amount of work for manual annotations.

We formulated the nuclei-based cancer detection task as the set classification problem and

proposed a novel predictive model SetSVM in Chapter 3. Different from approaches trying to

build instance level classifier and then adopt a certain voting strategy for set label prediction,

SetSVM considers a set of instances as a whole without any assumption, aiming to train a clas-

sifier directly at set level. Compared with existing set classification approaches which consist of

two optimization steps with inconsistent objective functions, SetSVM unifies set representation

learning with classifier training in one step to maximize model’s overall discrimination ability.

The method solves the set classification problem by jointly optimizing the mapping function and

the SVM decision boundary in a maximum soft margin cost function. We showed that a better

performance is possible by introducing discriminant information from the classifier to the map-

ping function. Using multiple nuclear quantification approaches, experiment results showed that

SetSVM provides significant improvements compared with state-of-art approaches in cancer de-

tection tasks including thyroid cancer, liver cancer and melanoma. In addition, we showed that

SetSVM enables visual interpretation of discriminative nuclear characteristics representing the
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nuclei set. These features make SetSVM a potentially practical tool in building accurate and

interpretable CAD systems for cancer detection.

Set classification is relatively a new topic compared with single instance classification. We

believe set classification is a quite general strategy to many problems and provide experimen-

tal validations for SetSVM in several pattern recognition tasks in Chapter 5, including mass

classification in mammograms, cancer detection based on flow cytometry data as well as natu-

ral scene classification. Experiment results demonstrated that SetSVM can provide significant

improvements compared with state-of-art approaches in corresponding fields. In addition, its

performance seems independent of types of data be captured and instance features. Note that

predicting the class label for a set of unlabeled instances is an important and ubiquitous problem

with many applications. SetSVM can thus be applied to other similar tasks such as quantitative

assessment of drug effects and video sequence classification.

However, we should mention that the average execution time of SetSVM tested on the MAT-

LAB platform is longer than that of BoW and STATS approaches, but less than the mi-Graph

and CNN models. Better optimization methods and faster programming languages (e.g. C, C++)

are needed to reduce the computation complexity, especially for large scale datasets. In this

thesis, we implemented SetSVM based on linear support vector machine classifier to transfer

discriminative information to set representation learning. We should note that the idea of ‘end-

end training’ in SetSVM can be extended to any non-linear and differentiable classifier for better

class separation ability, e.g. neural network classifier for multi-classification applications.

Finally, we mention the analogy between the set classification problem and multiple instance

learning (MIL). Since MIL was defined with strict assumption by Dietterich et al. [21] and

there is no consensus on whether the relaxed version of MIL problem belongs within the MIL

scope, we use the term ‘set classification problem’ instead. The superior performance of set

classification has already been validated in [3] using seven databases from different domains of

knowledge. Our experiment results confirmed the conclusion in [3] that discriminative classifier

should be based on global information from the whole set to predict the set label. Recently, the
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combination of MIL and the deep learning model is attracting more and more attention in vision

related applications [88], [79]. However, these ideas are based on the strict MIL assumption

which may be problematic in nuclei-based cancer detection tasks. In the future, set classification

with relaxed MIL assumption provides a possible direction for designing powerful deep learning

models in numerous pattern recognition problems.
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