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ABSTRACT

Numerical Approximation of Valuation Equations Incorporating Stochastic

Volatility Models

by

Yuhui Ouyang

This dissertation studies the problem of controlling far field boundary errors

arising in partial differential equation approaches for pricing financial contracts writ-

ten on stochastic volatility models.

Feynman-Kac type results are obtained by relating finite domain Dirichlet prob-

lems to options bearing barrier features. We then adopt a probabilistic framework to

show convergence for strictly sublinear contracts even when the underlying process

is a local martingale, and for linear contracts when it is a proper martingale. By

restricting the stochastic volatility models to a smaller class, upper bounds for the

far field boundary errors are derived for linear contracts. Convergence does not hold

for linear contracts dependent on strict local martingales. While rigorous results for

this case are unavailable, we conjecture inverse second order convergence in the far

boundary distance when appropriate Neumann boundary conditions are imposed.

Effective use of a finite difference alternating direction implicit algorithm is dis-



cussed. This scheme is implemented to test convergence theories and conjectures on

well known models, such as the Bessel model and the Heston model.
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CHAPTER 1

Introduction

1.1 Background and Overview of Thesis

Stochastic volatility models are widely used in fixed income pricing because of

their abilities to capture the skews and smiles of the implied volatility in real fi-

nancial markets. This phenomenon has been observed and studied by a number of

practitioners and researchers, for example, [12], [2], [36].

Option valuation for stochastic volatility models often requires the use of numer-

ical techniques. There are two basic numerical techniques: Monte Carlo simulation

which considers the option price as the average of all simulated realizations, and

solving partial differential equations (PDE) with finite difference methods. There is

extensive literature discussing numerical algorithms for these two methods, to name

a few, [11], [54], [52] for Monte Carlo simulation, and [39], [16], [34], [32] for finite

difference schemes. The PDE approach outperforms Monte Carlo simulation for

stochastic volatility models, because the dimension in this setting is only two. Our

thesis is devoted to stochastic volatility models, using the PDE approach.

In the PDE approach for option valuation, the general idea is that one first ob-

tains a Black-Scholes type partial differential equation (BS-PDE). As a second step,

domain truncation incorporating artificial far field boundary conditions converts the

1
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unbounded initial value problem (the BS-PDE) to an initial boundary value prob-

lem. Lastly, some finite difference scheme is applied to numerically solve the initial

boundary value problem.

In the first step, the relationship between the option value function and BS-

PDE valuation equation is known as ”Feynman-Kac regularity”. Janson and Tysk

(2006) in [35] show that the stochastic representation of up-to-polynomial-growth

payoffs yields a classical solution to the corresponding BS-PDE with appropriate

terminal conditions under linear growth rates conditions in the diffusion models of

the underlying asset. Ekström and Tysk showed similar results for certain term

structure models in 2008 ([23]), and for one dimensional local volatility models in

2009 ([24]). Under certain strong restrictions, they further proved regularity results

for stochastic volatility models in 2010 ([25]). In particular, they assume smoothness

and boundedness of the payoff function. In [6], Bayraktar, Kardaras and Xing (2011)

further refined these results by relaxing the assumptions, and providing conditions

for the uniqueness of BS-PDE solutions.

Much existing literature studies finite difference methods to reduce the truncation

errors arising from the last step of the process. The foundational work dates back to

the classic explicit, implicit methods and Crank-Nicolson method ([17]). In order to

address cross derivatives in the two-dimensional case, Douglas and Rachford ([21])

proposed their first order convergence “Do” scheme. Later, Craig and Sneyd ([16])

improved the precision to second order. A modified Craig-Sneyd scheme ([34]) and

the Hundsdorfer-Verwer scheme ([32], [56]) allow more degrees of freedom.

For the second step of the process, to the best of our knowledge, very little rig-

orous work has been done on estimating the far field boundary errors. Kangro and

Nicolaides [37] were among the first to consider the far field boundary errors. In [37],
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they use pure PDE techniques, such as Schauder estimates and a priori estimates, to

derive pointwise bounds for the far field boundary errors in a diffusion model with

strong restrictions on uniform growth rates of both drifts and volatility matrix. The

Black-Scholes model falls into their category, but most stochastic volatility mod-

els do not. Song (2011) in [52] shows the convergence of far field boundary errors

for strictly sublinear payoffs written on one-dimensional local volatility models, and

he proposes approximating linear growth payoffs with bounded payoffs in the case

where the underlying process is a local martingale. Ekström, Lötstedt, Sydow and

Tysk (2011) in [22] also notice the local martingale issue in one-dimensional local

volatility models, for which they proposed to use a Neumann boundary condition

for the PDE approach. They restrict the payoff functions to be non-decreasing so

that the maximum principle can be applied to prove the convergence. Nevertheless,

there is no existing systematic literature discussing the numerical pricing issues for

stochastic volatility models in terms of controlling far field boundary errors.

In our thesis, we provide detailed theoretical results on controlling far field bound-

ary errors generated from numerical pricing of at most linear growth contracts written

on a large class of stochastic volatility models. Our results focus on the following

questions:

1. What kind of boundary condition is suitable for numerical pricing under a par-

ticular stochastic volatility model?

2. Given a boundary condition type, what boundary conditions are appropriate?

3. If the solution of the initial boundary value problem converges to the option

price, what is an upper bound for the far field boundary errors in the underlying

direction and volatility direction?
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4. Empirically, for good efficiency, how far away should one put the far field bound-

ary, given the error estimates?

We adopt a different framework (and a different stochastic model class) from that

of [37], [52] and [22]: specifically we use a probabilistic framework for stochastic

volatility models rather than a pure PDE framework applied to Black-Scholes and

one dimensional local volatility models. In the PDE approach, given the regularity

result that the solution of an initial value problem is the option price, it is proved that

a sequence of initial boundary value problems is convergent to the BS-PDE, which is

the initial value problem. This method requires the comparison of two solutions to

the partial differential equations. By contrast, our probabilistic framework compares

two forms of stochastic representation with one being the original value function and

the other one being the option price with barrier features. Since the real numerical

scheme is applied to the initial boundary value problem, our framework requires the

“Feynman-Kac regularity” which states that the solution to the initial boundary

value problem is just the price of an option with barrier features. After we obtain

the regularity, we use probability inequalities and stochastic differential equation

techniques to estimate the difference in the solutions.

In our framework, we consider the convergence theorem based on an even more

general model than [25] and [6]. In particular, we allow faster than linear growth

rate in the volatility of the stochastic volatility process. The regularity results in

[25] and [6] are developed for functions on an unbounded domain. In this work,

we use probabilistic arguments to establish regularity on a bounded domain. We

also consider the case of volatility of volatility growing super linearly. We show the

required regularity results in Chapter 3. The tricky part is to rigorously show that the

stochastic representation is continuous in three dimensions, due to the involvement
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of stopping times and fast growth rates in the parameter functions of the model.

Although, for a smaller model class, [6] shows that uniqueness for the BS-PDE may

not hold, we show that the corresponding Dirichlet PDE always has a unique solution.

Based on our regularity foundation, we develop general convergence theorems

without emphasizing rates. As an answer to Question 1 and Question 2, we show that

if the payoff function is of strictly less than linear growth, then Dirichlet boundary

conditions are always suitable for numerical pricing. In fact, any boundary condition

of Dirichlet type works well. In addition, we bound the convergence rate, which par-

tially answers Question 3. [52] shows the same convergence rate for one-dimensional

local volatility models. When the underlying process is a strict local martingale, we

give examples to show that such convergence fails on linear contracts. When the

underlying process is a proper martingale, to give a better answer to Question 3,

we restrict attention to the “Heston-type” models, which allows estimation of the

tail distribution for both the underlying process and the stochastic volatility pro-

cess. This may seem restrictive, but the Heston-type models are still rich enough

to both preserve theoretical variety and reflect market behaviors. In particular, the

stochastic volatility process can still have faster than linear growth. Since the payoff

function does not depend on volatility, the far field boundary distance in the volatil-

ity direction can be handled in such a way that the overall far field boundary errors

are dominated in the underlying direction. Under this setup, we shows some specific

convergence rate theorems for some popular models that have practical value. Our

proofs of convergence and error estimates are based on probability inequalities and

stochastic calculus techniques, in contrast to the PDE techniques in [37]. We believe

such an argument is more intuitive and straightforward.

In the case of numerical pricing of linear contracts based on strict local martin-



6

gales, we conjecture that Neumann type initial boundary value problems can ap-

proximate the value function to second order in the inverse distance of the far field

boundary. However, those boundary conditions may not have arbitrary data and

we provide heuristic explanations from a stochastic calculus and hedging point of

view on how to choose an appropriate Neumann boundary condition. We believe

similar rigorous results in this case can be obtained by an extension of the current

techniques.

To verify our theoretical results and conjectures, we implement a finite difference

alternating direction implicit algorithm for the Bessel and Heston models. These

numerical experiments give empirical guidance how far away one should set up the

far field boundary (Question 4).

In summary, our regularity results and convergence theorems are new, and they

are a continuation and extension of similar existing theories in the Black-Scholes

model and local volatility models. The new results provide theoretical support for

practical use of stochastic volatility models.

1.2 Organization of Thesis

In Chapter 2, we provide the mathematical background for option pricing in a

general sense. Specifically, we define two different types of numerical errors: the

far field boundary errors and truncation errors. Two “toy” models are employed

as examples to illustrate the importance of the different types of error. We also

introduce some basic knowledge and examples of advanced stochastic models: the

local volatility models and stochastic volatility models.

Chapter 3 is devoted to building the regularity results. Formal definitions of

valuation functions and their relation to PDEs are given. We break the proof of the
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regularity results into four sections to show continuity, interior regularity, boundary

conditions and existence and uniqueness of Dirichlet problems respectively.

Convergence theories for Dirichlet problems are extensively studied in Chapter

4. We start this chapter with general convergence results without emphasizing the

rate of convergence. The importance of being a proper martingale for the underlying

process is revealed. By imposing more assumptions on the models, e.g., the “Heston-

type” model, we obtain a rate of convergence. Supporting finite difference techniques

and experiments are discussed to close this chapter.

Numerical pricing for strict local martingales is discussed in Chapter 5. This topic

is open, and many of those results are to be developed. We make some conjectures

on the use of Neumann problems for pricing linear contracts written on strict local

martingales. Intuition from the stochastic point of view is supplemented. Numerical

experiments demonstrates the validity of these conjectures in practice.



CHAPTER 2

Mathematical Background

This chapter sets up the mathematical background of the motivations discussed in

the previous chapter. We first define the far field boundary error and truncation error.

Then, we use two option pricing examples with the underlying process being a true

martingale and strictly local martingale, respectively, to illustrate the importance of

considerating the far field boundary error from a numerical perspective. At the end

of the chapter, we introduce the Heston type of stochastic volatility model which

shall serve as the focus of our study.

2.1 Far Field Boundary Error and Truncation Error

Far field boundary approximation errors and truncation errors are distinct types

of error that occur when solving partial differential equations (PDE) by finite differ-

ences. We start with a discussion of these errors.

2.1.1 Far field boundary error

For simplicity, we assume the interest rate r is flat at 0. Let W = {Wt,Ft; 0 ≤ t <

∞} be an n-dimensional standard Brownian motion defined on a probability space

(Ω,F ,P) with P being the risk-neutral measure, and such that the asset process

X is an n-dimensional nonnegative {Ft}-adapted continuous Markov process. Let

8
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g ∈ C((0,∞)n) be a payoff function.

According to risk-neutral pricing theory, there exists a measurable function u(t, x)

such that the option paying g(XT ) at the maturity T has the time t price

u(t,Xt) = E [g (XT ) |Ft] .(2.1)

If the expectation exists, the pricing problem reduces to solving for u(t, x). In most

cases, analytical calculation of the expectation in (2.1) is inefficient or impossible.

When the dimension is not too large, one possibility is to derive a PDE for u(t, x)

and solve the PDE numerically. Heuristically, u(t, x) is a solution of the following

initial value problem

(2.2)


vt + Lv = 0, (t, x) ∈ [0, T )×D∞,

v(T, x) = g(x), x ∈ D∞.

where L is the parabolic operator associated with the stochastic process X, D∞ =

(0,∞)n.

Virtually no numerical methods work on unbounded domains. In practice, we

usually constrain the initial value problem to a finite domain, which results in an

initial boundary value problem (IBVP), such as a Dirichlet problem, a Neumann

problem or a combination of these two.

(2.3)



vt + Lv = 0, (t, x) ∈ [0, T )×DM ,

v(T, x) = g(x), x ∈ DM ,

v(t, x) = h(x), or, vx(t, x) = h(x), t ∈ (0, T ), x ∈ ∂DM .

Here DM = (0,M)n, M is a positive constant and h(x) ∈ C((0,∞)n). We use

vM(t, x), the solution to (2.3), as an approximation of u(t, x), and find a numerical

solution of vM(t, x). We are now ready to define the far field boundary error.
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Definition 2.1. Let u(t, x) be defined as in (2.1). Assume the operator L exists,

and the Dirichlet problem (2.3) has a unique solution v(t, x). Then

EM(t, x) ,
∣∣vM(t, x)− u(t, x)

∣∣(2.4)

is defined to be the pointwise far field boundary error of the Dirichlet problem (2.3)

with respect to pricing function u(t, x) of (2.1).

Definition 2.2. A sequence of solutions {vn(t, x);n = 1, 2, 3...} to a family of initial

boundary value problems is convergent to the pricing function u(t, x) of (2.1) if and

only if

lim
n→∞ E

n(t, x) = 0.(2.5)

The minimum requirement to use a sequence vn(t, x) to approximate u(t, x) is that

the equation (2.5) holds. The PDE method to verify this criterion is to compare so-

lutions to (2.3) with those of (2.2). An immediate difficulty is that the solutions to

(2.2) may not be unique while (2.3) usually has a unique solution. Our discussion of

this and other issues will be probabilistic. In other words, we work with a stochastic

representation of the solution to (2.3). We start with a heuristic guess of the rep-

resentation, and we will provide rigorous arguments for some specific models in the

next chapter.

We introduce the stopping time

τDM , inf {t ≥ 0;Xt ∈ Dc
M}(2.6)

as the first exit time from DM . Our guess for the stochastic representation of the

Dirichlet problem is

vM(t,Xt) = E
[
g (XT ) 1{τDM>T} + h

(
XτDM

)
1{τDM≤T}|Ft

]
, 0 ≤ t < T.(2.7)
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Taking the difference of (2.1) and (2.7), we can express the far field boundary error

of a Dirichlet problem with respect to the pricing equation as

EM(t,Xt) =
∣∣∣E [g (XT ) 1{τDM≤T} − h

(
XτDM

)
1{τDM≤T}|Ft

]∣∣∣ , 0 ≤ t < T.(2.8)

2.1.2 Truncation error

In the numerical solution of PDEs, truncation errors arise from using finite dif-

ferences to approximate derivatives of continuous functions. For example, given

F (x) ∈ C2(R), x0 < x1 < x2 < ... < xm, and ∆xi = xi − xi−1,

F ′′(xi) = δi,−1F (xi−1) + δi,0F (xi) + δi,1F (xi+1) + εi,

δi,−1 =
2

∆xi(∆xi + ∆xi+1)
,

δi,0 =
−2

∆xi∆xi+1

,

δi,1 =
2

∆xi+1(∆xi + ∆xi+1)
.

Then the εi in the above equation is known as the truncation error for the approxi-

mation of the second derivative of F (x) at xi. Similarly, the explicit finite difference

method to approximate the PDE in the initial boundary value problem (2.3) is

vt + Lv
∣∣∣∣
(t,xi)

=
v(t+ ∆t, xi)− v(t, xi)

∆t
+ Lv(t, xi) + εi,(2.9)

where L is the discretization of operator L, and εi is the truncation error.

2.2 Examples for Far Field Boundary Error

As it is illustrated in the section 2.1, the option pricing problem can be first

converted to an initial boundary value problem, and then the initial boundary value

problem can be solved numerically. This work-flow is

Pricing Equation
FarF ieldBoundaryError−−−−−−−−−−−−−−→ IBVP

TruncationError−−−−−−−−−−→ Discretized PDE
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In order to obtain a reliable numerical solution of a pricing problem, it is necessary

to consider these two different types of errors. In this section, let us take a close look

at the Far Field Boundary Error in two examples.

2.2.1 Geometric Brownian motion

Let us consider a classic pricing problem in the Black-Scholes world. We continue

to assume the interest rate is 0. Let W = {Wt,Ft; 0 ≤ t <∞} be a one dimensional

Brownian motion defined on the probability space (Ω,F ,P). There is a single stock

in the financial market governed by a geometric Brownian motion

dSt = σStdWt, σ ∈ R+.(2.10)

On a finite time horizon T , there is a European-style option g(ST ) written on ST ,

where the payoff function g is nonnegative with at most of linear growth, i.e., g(x) ≤

c(1 + x) for some constant c. By risk-neutral pricing, at time 0 ≤ t ≤ T , this option

is worth

u(t, St) , E [g (ST ) |Ft] .(2.11)

The function u(t, x) satisfies the Black-Scholes PDE

(2.12)


ut +

1

2
σ2x2uxx = 0, (t, x) ∈ [0, T )×D∞,

u(T, x) = g(x), x ∈ D∞.

Let us restrict the state space of the Black-Scholes equation to the finite interval

(0,M); we have the following Dirichlet problem

(2.13)



vt +
1

2
σ2x2vxx = 0, (t, x) ∈ [0, T )×DM ,

v(T, x) = g(x), x ∈ DM ,

v(t,M) = 0, t ∈ [0, T ).
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Proposition 2.3. The Dirichlet problem (2.13) has a unique solution vM(t, x). Fur-

thermore,

vM(t, St) = E
[
g (ST ) 1{τ>T}|Ft

]
,(2.14)

where τ = inf{t ≥ 0;St > M}.

Proof. The existence, uniqueness and regularity of the solution to (2.13) can be

proved by doing a log-transform of the second variable and then appealing to known

results about the heat equation. It is then a straightforward application of Itô’s

formula to establish (2.14).

Theorem 2.4. For M ≥ 1 + S0, the far field boundary error of vM(t, x) relative to

u(t, x) satisfies

EM (0, x) ≤ C

√
e−(lnM)2

lnM
.(2.15)

Here, C is a constant independent of M.

Proof. Equation (2.8), and at most linear growth property of the payoff function g

imply

EM(0, x) = E
[
g (ST ) 1{τ≤T}

]
≤ cE

[
(1 + ST ) 1{τ≤T}

]
= cP [τ ≤ T ] + cE

[
ST1{τ≤T}

]
.(2.16)

Notice that

E [ST ] = S0 = S0∧τ = E [ST∧τ ] = E
[
ST1{τ>T}

]
+ E

[
Sτ1{τ≤T}

]
= E

[
ST1{τ>T}

]
+MP [τ ≤ T ] .
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This gives

E
[
ST1{τ≤T}

]
= MP [τ ≤ T ] .(2.17)

From (2.16) and (2.17), and with a slight abuse of notation, it suffices to show

E
[
ST1{τ≤T}

]
≤ C

√
e−(lnM)2

lnM
.(2.18)

Let us introduce the notation for the running maximum S∗T = max
0≤t≤T St, and a new

probability measure P̃ by

dP̃
dP

= ZT ,

dZt =
1

2
σZtdWt,

ZT = e
1
2
σWT− 1

8
σ2T .

An application of Girsanov theorem (Theorem 3.5.1 Karatzas and Shreve [38] ) gives

P̃ - Brownian motion W̃t = Wt − 1
2
σt. Therefore, the solution to the geometric

Brownian motion (2.10) is

ST = S0e
σWT− 1

2
σ2T

= S0e
σW̃T .

Now we have

E
[
ST1{τ≤T}

]
= E

[
S0e

σWT− 1
2
σ2T1{

(S0e
σW̃T )

∗
≥M

}]

= S0E

eσWT− 1
2
σ2T1{

W̃ ∗T≥
ln M
S0
σ

}


= S0E

ZT e 1
2
σWT− 3

8
σ2T1{

W̃ ∗T≥
ln M
S0
σ

}


= S0e
− 1

8
σ2T Ẽ

e 1
2
σW̃T 1{

W̃ ∗T≥
ln M
S0
σ

}

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≤ S0e
− 1

8
σ2T Ẽ

[
eσW̃T

] 1
2 Ẽ

1{
W̃ ∗T≥

ln M
S0
σ

}
 1

2

, (Cauchy − Schwartz)

= S0e
1
8
σ2T P̃

1
2

[
W̃ ∗
T ≥

ln M
S0

σ

]

= S0e
1
8
σ2T

√√√√∫ ∞
ln M
S0
σ

√
2

πT
e−

z2

2T dz(2.19)

= S0e
1
8
σ2T

√√√√√2T

π

σ

ln M
S0

e−
(ln M

S0
)
2

2σ2T(2.20)

≤ C(S0, σ, T )

√
e−(lnM)2

lnM
,

Equation (2.19) follows from Problem 2.8.2 Karatzas and Shreve [38], and equation

(2.20) results from Problem 2.9.22 of the same source.

Remark 2.5. Note that Theorem 2.4 is similar to a result of Kangro and Nicolaides

(2000) [37], where they adopted a PDE approach. The conclusion indicates that the

far field boundary error for the Black-Scholes Model with at most linear growth in

the contract is very small. The convergence rate, as shown by Theorem 2.4, is faster

than any polynomial order, though slower than exponential order. In this case, the

algebraic truncation error from discretization of the PDE becomes the main focus

for controlling the accuracy of numerical solution.

2.2.2 Three dimensional Bessel process

Next we discuss a different PDE where the far field boundary error is more sig-

nificant. This example arises from a three dimensional Bessel Process with a linear

contract option.

Assume B =
{
Bt =

(
B

(1)
t , B

(2)
t , B

(3)
t

)
,Ft; 0 ≤ t <∞

}
is a three dimensional

Brownian motion on a probability space (Ω,F ,P). Denote by Rt the distance of
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B from the origin, i.e.

Rt =

√(
B

(1)
t

)2

+
(
B

(2)
t

)2

+
(
B

(3)
t

)2

.

By Proposition 3.3.21 Karatzas and Shreve [38], Rt satisfies the following SDE

dRt =
1

Rt

dt+ dWt,(2.21)

where W is another one dimensional Brownian motion on the same probability space.

One well-known property of the process Rt is that the origin is non-attainable, and

this suggests that we can define Xt = 1
Rt

. By Itô’s formula

dXt = d
1

Rt

= − 1

R2
t

dRt +
1

R3
t

dt

= − 1

R2
t

dWt

= −X2
t dWt.(2.22)

The process X, also known as a special case of CEV models [15], is well studied

and there is an analytical form for its probability density [14]

P [XT ∈ dz|Xt = x] =
x

z3

dz√
2π(T − t)

{
e−

(1/z−1/x)2

2(T−t) − e−
(1/z+1/x)2

2(T−t)

}
.(2.23)

Now, suppose there is a contract paying XT at maturity T, with the interest rate

flat at 0. The price of this contract at any time 0 ≤ t ≤ T is

u(t,Xt) = E [XT |Ft] .(2.24)

Equations (2.23) and (2.24) imply (see also [47])

u(t, x) = 2xΦ

(
1

x
√
T − t

)
− x,(2.25)

where Φ is the cumulative standard normal density function.
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Proposition 2.6. The function u(t, x) defined in (2.24) is a solution to the initial

value problem

(2.26)


vt +

1

2
x4vxx = 0, (t, x) ∈ [0, T )× [0,∞),

v(T, x) = x, x ∈ [0,∞).

Furthermore, uniqueness within the class of linearly growing solutions does not hold

for (2.26).

Proof. From (2.25), we know that u(t, x) ∈ C1,2((0, T ) × (0,∞)). A direct compu-

tation of ut and uxx establishes the equation ut + 1
2
x4uxx = 0. By letting t → T ,

Φ( 1
x
√
T−t) → 1 and we arrive at (2.26). Clearly, v1(t, x) = x is another solution of

(2.26). In fact, u(t, x) + k(u(t, x)− v1(t, x)) is a solution to the initial value problem

(2.26) for any k ∈ R.

Remark 2.7. Notice that X is a nonnegative strict local martingale (see Exercise

3.3.36 Karatzas and Shreve [38]). An application of Fatou’s lemma gives that X is

a strict super-martingale, and hence u(t,Xt) = E[XT |Ft] < Xt. This implies that

u(t, x) = 2xΦ
(

1
x
√
T−t

)
−x < x is a stochastic solution (see Definition 3.36) of (2.26),

and is smaller than the “martingale solution”.

If we were going to solve the initial value problem (2.26) numerically, it is reason-

able to consider the following Dirichlet problem

(2.27)



vt +
1

2
x4vxx = 0, x ∈ [0,M), t ∈ [0, T ),

v(T, x) = x, x ∈ [0,M),

v(t,M) = M, t ∈ [0, T ),

where M is a positive constant serving as the far field boundary location. This choice

of the far field boundary condition maintains the continuity of v(t, x) at the corner
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t = T, x = M . A direct verification shows that vM(t, x) = x, no matter how large M

is, and by the maximum principle ( Friedman 1964 [29] ) this is the unique solution.

Proposition 2.8. A Dirichlet problem for a model with the underlying process being

a strict local martingale can fail to be convergent for linear contracts.

Proof. Use Bessel process as a counter-example. In light of Definition 2.1, equation

(2.25), and the solution to Dirichlet problem (2.27), the far field boundary error of

(2.27) with respect to the Bessel pricing equation (2.25)

EM(t, x) =
∣∣vM(t, x)− u(t, x)

∣∣
= 2x

(
1− Φ

(
1

x
√
T − t

))
.

Therefore,

lim
M→∞ E

n(t, x) 6= 0,

for any 0 ≤ t < T .

Remark 2.9. Although the example is set up with the far field boundary condition

at x = M to be M , numerical experiments show that an arbitrary Dirichlet far field

boundary condition, if not u(t,M), has the IBVP solutions not converging to u(t, x)

of the Bessel process case. The failure of convergence for the Bessel model suggests

that the far field boundary condition is much more significant than the truncation

error of any specific numerical scheme. Therefore, it is particularly important to

discuss when the Dirichlet problem solutions converge, and how fast they converge

in terms of the distance of the far field boundary from the origin.
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2.3 One Dimensional Local Volatility Models

In section 2.1, we used two examples to illustrate the necessity of understanding

the far field boundary error. The two models have the form

dXt = α(Xt)dWt,(2.28)

where α is a function of one variable. This is often called a “one-dimensional time

homogeneous local volatility model”. In this section, we describe the regularity

and properties of the one-dimensional model (2.28) as a guideline for the stochastic

volatility models in future chapters.

Let us assume α is nonnegative, α(x) 6= 0 for x 6= 0, and α−2 ∈ L1
loc(0,∞).

Under such assumptions, (2.28) has a unique weak solution absorbed at zero. A full

discussion of existence and uniqueness of (2.28) is in Engelbert and Schmidt [26],

and can be found also in Section 5.5 of [38]. Delbaen and Shirakawa [20] found a

condition for X to be a true martingale.

Proposition 2.10 (Delbaen and Shirakawa, 2002). The local martingale X is a true

martingale if and only if

(2.29)

∫ ∞
c

x

α2(x)
dx =∞, for some c > 0.

If the model (2.28) is not time homogeneous, i.e.,

dXt = α(Xt, t)dWt,(2.30)

By imposing some regularity conditions on α(·), Ekstrom and Tysk ([24]) have a

necessary condition for it to be a strict local martingale in the following proposition.

Proposition 2.11. If the α satisfies

α2(x, t) ≥ εxη
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for all (x, t) ∈ [1
ε
,∞) × [0, T ], where ε > 0 and η > 2 are constants, then the

underlying process X is a strict local martingale. Moreover, for any time bounded

away from expiry, the stock option (the option paying the stock itself) price is o(xδ)

for any positive δ, and if η > 3 then the stock option price is bounded.

Remark 2.12. Since the geometric Brownian motion satisfies (2.29), while the Bessel

process does not, the Bessel process is inherently different from the geometric Brow-

nian motion in terms of its martingale properties.

Again, if there is an option written on X that pays g(XT ) at maturity T , where

g is of at most linear growth, the option price is a solution to the following initial

value problem [24]:

(2.31)



vt +
1

2
α2(x)vxx = 0, (t, x) ∈ [0, T )× (0,∞),

v(t, 0) = g(0), t ∈ [0, T ),

v(T, x) = g(x), x ∈ (0,∞).

Definition 2.13. A function u : [0,∞)× [0, T ]→ R is called a classical solution to

the initial value problem (2.31) if

(1) u ∈ C1,2 ([0, T )× (0,∞)),

(2) u ∈ C ([0, T ]× [0,∞)),

(3) u solves (2.31).

Bayraktar and Xing [7] have provided the following regularity results which are

useful for understanding the different behaviors in the examples from Section 2.2,

Theorem 2.14 (Bayraktar and Xing, 2010).

(a) The initial value problem (2.31) has a unique classical solution ( if any ) in the

class of functions with at most linear growth in x if (2.29) is satisfied.

(b) If we further assume that α : [0,∞) → [0,∞) is locally Hölder continuous with
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exponent 1/2 and g is of linear growth, then the initial value problem (2.31) has a

unique classical solution if and only if (2.29) is satisfied.

Proof. See [7].

Remark 2.15. As a consequence of this result it follows that the initial value prob-

lem (2.26) for the Bessel process has more than one solution, a fact we observed

earlier by exhibiting two solutions for the payoff function g(x) = x. It is quite tricky

to find a family of IBVPs to approximate a particular solution of the initial value

problem when there is no uniqueness.

2.4 Introduction to Stochastic Volatility Models

In real financial markets, especially in the areas of interest rates, foreign exchange

and commodities, single factor stochastic process models are rarely used, simply

because they are not able to capture market behavior. Vanilla options based on

single factor stochastic process models are exceptional. These options are so simple

that most models can fully characterize their features. However, single factor models

may sometime fail to recover the volatility, even though they are calibrated to the

vanilla options.

To price and hedge exotic options, many of which are explicit (exotic) volatil-

ity options, volatility models are invariably necessary. It is desirable to model the

volatility in a way that reflects market behaviors. In fact, the prices of many deriva-

tives and exotics are explicitly related to future volatility levels; however the forward

smile and skew of the volatility is often underestimated by local volatility models.

In contrast to local volatility models, stochastic volatility models use an indepen-

dent process to model the volatility. Consequently, they are less computationally

tractable than local volatility models in terms of having closed or semi closed solu-
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tions. Nevertheless, they are able to fit the market volatility better than the local

volatility models. Some stochastic volatility models will be introduced in this section.

Hull-White model

The Hull-White model [31] is one of the earliest stochastic volatility models used

in financial modeling. Rather than assuming the underlying follows a geometric

Brownian motion, they model the volatility by geometric Brownian motion. The

Hull-White model has the following dynamics:

dSt = µStdt+
√
νtStdWt,

dνt = κνtdt+ βνtdBt,

dWtdBt = ρdt,

where W and B are correlated Brownian motions, and σ =
√
ν is the stochastic

volatility. It is not difficult to show that the stochastic volatility is log-normally

distributed with the following properties:

E[σt] = σ0e
1
2
κt− 1

8
β2t,

V[σt] = σ2
0e
κt(1− e−

1
4
β2t),

where V[σt] denotes to the variance of σt.

It can be seen that this model suffers some deficiencies. If κ < 1
4
β2 the volatility

expectation converges as t → ∞ to level 0, and the volatility expectation diverges

for κ > 1
4
β2. Also, the variance of volatility is either unbounded or diminishes over

time. These phenomena rarely happen in real markets.

Stein and Stein’s model

Stein and Stein [53] adopt a mean reverting process to model the square of stochas-

tic volatility. By assuming W and B are Brownian motions on some probability
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space, the model takes the following form:

dSt = µStdt+ σtStdWt,

dσt = κ(θ − σt)dt+ βdBt,

dWtdBt = ρdt.

By Itô’s lemma, we obtain that

d
(
eκtσt

)
= eκtκθdt+ βeκtdWt.

This further indicates the stochastic volatility follows a Gaussian distribution with

mean and variance

E[σt] = θ(1− e−κt) + σ0e
−κt,

V[σt] =
β2

2κ
(1− e−2κt).

One observation is that when t→∞, both the expectation and the variance approach

constant values. Roughly, the model suggests

E[σt] ≈ θ, and V[σt] ≈
β2

2κ
.

Also, since the stochastic volatility is Gaussian and can go negative the correlation

between the underlying asset price and the stochastic volatility can suddenly change

sign.

The simple form of the volatility and the geometric Brownian motion style of

the underlying asset price suggests the existence of analytical solution for Stein and

Stein’s model. In fact, they have given a probability distribution for the stock price

process S [53]. However, practitioners may still seek numerical pricing as the closed

form solution is rather complicated.
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Heston’s model

Heston’s model has gained much attention in the fixed income and currencies

market. Although this model itself is no longer used by practitioners in the original

form, many of the practical currency models are derived from it. Heston [30] assumes

the spot price satisfies

(2.32)



dSt =
√
νtStdWt,

dνt = κ(θ − νt)dt+ β
√
νtdBt,

dWtdBt = ρdt.

The stochastic volatility model in (2.32) is known as a Cox-Ingersoll-Ross model.

A nice property is that if the coefficients κ, θ, β are appropriately chosen, i.e., 2κθ ≥

β2, the process ν will never go to zero.

Empirically, when the Heston model is calibrated to the market, κ is quite small

and the correlation ρ is comparably high in order to generate sufficient skew. There-

fore, 2κθ ≥ β2 will not always hold, and stochastic volatility will stay near zero or

very high for some time.

Although Heston gave a semi-closed form solution for European options in his

paper, in practice, people still prefer numerical solutions. That’s because the semi-

closed form solution is given as an inverse Fourier transform and involves complicated

integrations. Therefore, it is especially meaningful to obtain an efficient numerical

pricing engine for the Heston model. In our thesis, the Heston model will serve as a

test problem for many of the results to be developed in future chapters.

The three models discussed above are only a few among the widely used stochastic

volatility models in industry and academia. Starting in the next Chapter, we will
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devote our efforts to study the far field boundary error for a general class of stochastic

volatility models.



CHAPTER 3

PDEs for Valuation Equations of Stochastic Volatility
Models

This chapter is devoted to building the connection between the stochastic rep-

resentation of an option price with an up-and-out feature, whose underlying asset

price is modeled by a general stochastic volatility model, and the solution of an initial

boundary value problem of parabolic type. For standard models, such as the Black-

Scholes model, this connection is traditionally known as the Feynman-Kac theorem.

We will prove similar connections for a larger class of models with a barrier feature.

As discussed in the previous chapter, when we move the barrier towards infinity the

stochastic representation is expected to converge to the European style option price

(without any exotic feature). Bayraktar, Kardaras and Xing (2011) [6] showed the

connections for initial value problems, and we will show similar results for IBVPs

with a larger class of stochastic volatilities. Once the Feynman-Kac style results are

proved, we will study the convergence in the following chapter.

3.1 Assumptions on the Stochastic Volatility Models

In this chapter, we shall exclusively consider two real-valued one-dimensional con-

tinuous processes, the underlying process X = {Xt; 0 ≤ t < ∞} and the stochas-

tic volatility process Y = {Yt; 0 ≤ t < ∞}, on a probability space (Ω,F ,P),

26
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adapted to a given filtration {Ft}t≥0, which is generated by two Brownian motions

W = {Wt; 0 ≤ t < ∞} and B = {Bt; 0 ≤ t < ∞}. We further assume that {Ft}t≥0

satisfies the usual condition, which refers to it being right continuous and such that

F0 contains all the P-negligible events in F .

Our model has the following dynamics:

Assumption 3.1. The underlying process and the stochastic volatility process satisfy:

dXt = b(Yt)XtdWt,(3.1)

dYt = µ(Yt)dt+ σ(Yt)dBt,(3.2)

dWtdBt = ρdt.

Remark 3.2. In fact, the correlation between two Brownian motions does not have

to be constant. The results in this chapter apply for the correlation being a determin-

istic function of time. For simplicity, we continue to consider financial markets with

zero interest rates, but extension to the deterministic interest rate case is straight-

forward.

Assumption 3.3. The parameter functions defined in (3.1) and (3.2) have the fol-

lowing properties:

(a) The b : [0,∞) → [0,∞) is strictly positive on (0,∞), and b(0) = 0. Also, there

exists m > 0 such that

|(b2)′(·)| ≤ C(1 + (·)m).

(b) µ : [0,∞) → R, and σ : [0,∞) → [0,∞). σ is strictly positive on (0,∞).

σ(0) = 0, and µ(0) ≥ 0. Further these two functions satisfy either (i) or (ii) below

(i) |µ(·)|+ σ(·) ≤ C(1 + ·), for some constant C.

(ii) |µ(·)| ≤ C(1 + ·), for some constant C, and σ(·) = (β)(·)p, where p > 1.
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(c) µ, σ2, b2, and bσ are continuously differentiable on [0,∞) with locally α−Hölder

continuous derivatives for some α ∈ (0, 1].

Remark 3.4. We see that the three classic models introduced in Chapter 2 Section

2.4 satisfy Assumption 3.1 and Assumption 3.3. The Assumption 3.3.(b).(ii) clearly

includes the classic model

dYt = κ(θ − Yt)dt+ βY p
t dBt,(3.3)

where the constant p can be any real number greater or equal than 1
2
.

We restrict consideration to European-style payoff options written on the stock

process X having the following properties:

Assumption 3.5. The payoff function g : [0,∞)→ [0,∞) is nonnegative and con-

tinuous. g is also of at most linear growth, i.e., there exists a positive constant C

such that g(·) ≤ C(1 + ·), or equivalently lim sup
x→∞

g(x)
x
∈ [0,∞) .

Lemma 3.6. For the at most linear growth nonnegative function g in the previous

assumption, there exists a smallest concave nonnegative majorant ḡ that is nonde-

creasing and satisfies:

lim sup
x→∞

g(x)

x
= lim sup

x→∞

ḡ(x)

x
= lim inf

x→∞
ḡ′(x),

Additionally, ḡ(·) ≤ C(1 + ·).

Proof. For existence, refer to [18]. Lemma 5.3 of [6] gives the equalities. A linear

function is surely a majorant of g. Since ḡ is the smallest majorant of g, we have

ḡ(·) ≤ C(1 + ·).

It is seen that the underlying process (3.1) resembles geometric Brownian mo-

tion, in that the constant volatility is replaced with a function b(·) of the stochastic
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volatility process (3.2). Therefore, it is relevant to discuss some properties of the

stochastic volatility process, such as non-explosion, existence and uniqueness so that

the underlying process can be uniquely determined up to some time t.

Proposition 3.7. Under the Assumption 3.1 and Assumption 3.3, the process (3.2)

does not blow up to infinity in finite time.

Proof. If the process (3.2) satisfies the condition (b).(i) of Assumption 3.3, then the

volatility process will not explode at any finite time by Remark 5.5.19 of Karatzas

and Shreve [38].

Let us assume the stochastic volatility process Y satisfies (b).(ii) of Assumption

3.3, i.e., Y takes the form

dYt = µ(Yt)dt+ βY p
t dBt,

for some p > 1. We prove this case by Feller’s test for explosions. Define auxiliary

functions

P (y) ,
∫ y

1

exp{−2

∫ x

1

µ(z)

β2z2p
dz} dx.(3.4)

For a sufficiently large constant c, we have µ(z)/β2 ≤ c(1 + z), and therefore

P (∞) ≥
∫ ∞

1

exp{−2

∫ x

1

c(1 + z)

z2p
dz} dx

=∞.

By Feller’s theorem, the process Y cannot explode to infinity at any finite time.

Corollary 3.8. The volatility process (3.3) does not explode to infinity at any finite

time.

Proof. This is the consequence of the proposition 3.7 and the remark 3.4.
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Remark 3.9. The reason we assume the growth rate for the drift of the volatility

process is at most linear is that a higher growth rate usually results in explosion in

finite time for the volatility process.

Proposition 3.10. Under the Assumption 3.1 and the Assumption 3.3, the stochas-

tic volatility model admits a unique nonnegative strong solution.

Proof. Since X in (3.1) resembles a geometric Brownian motion for the stochastic

volatility process Y governed by (3.2), it suffices to prove the existence and unique-

ness of the process Y .

Assumption 3.3.(c) implies µ is locally Lipschitz continuous and σ is locally 1
2
-

Hölder continuous on [0,∞). For any n > 0, define Y n by

dY n
t = µn(Y n

t )dt+ σn(Y n
t )dBt, Y

n
0 = y, y ≥ 0,

where µn(y) = µ(y), for y ∈ [0, n], µn(y) = µ(n), for y > n and σn is defined

similarly. Let δn = inf{t ≥ 0|Y n
t ≥ n}. Y n stopped at δn is a bounded process. A

theorem of Yamada and Watanabe (1971)(Proposition 5.2.13 in [38]) says pathwise

uniqueness holds for Yn, and a theorem of Stroock and Varadhan (Theorem 5.4.22

in [38]) guarantees the existence of a weak solution for Y n. Thus, Y n admit a

unique strong solution up to δn (Proposition 5.3.20 in [38]) and Y n agrees with Y n+1

and on [0, δn]. By constructing Yt , Y n
t on [0, δn] for each n, we obtain a process

Y that is the unique strong solution for the volatility process up to lim
n→∞ δn, and

P
[

lim
n→∞ δn =∞

]
= 1 (Proposition 3.7), we conclude that Y has a unique strong

solution.

The process X is surely nonnegative. For the process Y , nonnegativity is guar-

anteed by Assumption 3.3.(b).
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3.2 The Valuation Equations and the Partial Differential Equations

Now we have shown that the model has a unique non-exploding nonnegative strong

solution, we are ready to define the valuation equation. Throughout the rest of the

thesis, we denote by X t,x,y
s the time s random variable of the process X starting from

time t with Xt = x and Yt = y. Xx,y
s is similar to X t,x,y

s except that the starting

time is 0. We define Et,x,y as the conditional expectation on Ft, so that the process

X is x, and Y is y at time t. Let DM = (0,M) × (0,M), D̄M = [0,M ] × [0,M ],

D∞ = (0,∞)× (0,∞) and D̄∞ = [0,∞)× [0,∞).

Let

Hy
t , e

∫ t
0 b(Y

y
t ) dWt− 1

2

∫ t
0 b

2(Y yt ) dt.(3.5)

Then the solution to (3.1) can be expressed as

Xx,y
t = xHy

t .(3.6)

Let us further introduce some stopping times for the underlying process (3.6).

Define

τ t,x,yM = inf{s|t ≤ s <∞, (X t,x,y
s , Y y

s ) /∈ D̄M},(3.7)

τ t,y0 = inf{s|t ≤ s <∞, Y t,y
s = 0}, τ y0 , τ 0,y

0 .(3.8)

Let the function u : [0, T ]× D̄∞ → [0,∞) be the price for the European style option

for the payoff function g under Assumption 3.5, and the functions vM : [0, T ]×D̄M →

[0,∞) be the prices for the barrier option for the same payoff function g in a truncated

domain, i.e.,

u(t, x, y) = Et,x,y[g(X t,x,y
T )],(3.9)

vM(t, x, y) = Et,x,y[g(X t,x,y

T∧τ t,x,yM

)].(3.10)
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For ease of notation, we will omit the superscript {t, x, y} whenever there is no

confusion.

Notice that

u(0, x, y) = Ex,y[g(XT )]

≤ Ex,y[ḡ(XT )]

≤ ḡ(Ex,y[XT ])

≤ ḡ(x)

<∞.

It follows that the process u(t,Xt, Yt) is a martingale on [0, T ], thanks to the tower

property and integrability. Similarly, this argument can be ported to the fact that

vM(t,Xt, Yt) stopped at the boundary is a martingale.

To derive an appropriate PDE for the functions u and vM , we start with a heuristic

argument by assuming these two functions are sufficiently smooth. An application

of Itôs lemma to u (same for vM) leads to

du(t,Xt, Yt) = (Lu(t,Xt, Yt) + ut)dt+ ux(t,Xt, Yt)b(Yt)XtdWt + uy(t,Xt, Yt)σ(Yt)dBt,

where

L ,
1

2
b2(y)x2∂2

xx +
1

2
σ2(y)∂2

yy + µ(y)∂y + ρb(y)σ(y)x∂2
xy.(3.11)

Now, by setting the drift term of (3.11) to zero and combining the terminal and

boundary conditions, we see that u, vM satisfy the following initial boundary prob-
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lems respectively:

(3.12)



ut + Lu = 0, (t, x, y) ∈ (0, T )×D∞,

u(T, x, y) = g(x), (x, y) ∈ D̄∞,

u(t, 0, y) = g(0), (t, y) ∈ [0, T )× (0,∞),

u(t, x, 0) = g(x), if µ(0) = 0, (t, x) ∈ [0, T )× [0,M),

and

(3.13)



vMt + LvM = 0, (t, x, y) ∈ (0, T )×DM ,

vM(T, x, y) = g(x), (x, y) ∈ D̄M ,

vM(t, 0, y) = g(0), (t, y) ∈ [0, T )× (0,M),

vM(t, x, 0) = g(x), if µ(0) = 0, (t, x) ∈ [0, T )× [0,M),

vM(t,M, y) = g(M), (t, y) ∈ [0, T )× (0,M ],

vM(t, x,M) = g(x), (t, x) ∈ [0, T )× (0,M ].

Figure 3.1: Boundary conditions for stochastic volatility model

Figure 3.1 shows how the boundary condition is set up on each face.

We will prove that vM defined in (3.10) solves (3.13) later.
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Remark 3.11. We have been vague on the near field boundary condition for the

y-direction in the PDEs. In fact, the boundary conditions of the PDEs at y = 0

is determined by the paths of the process Y . If P[τ y0 = ∞] = 1, then the left

boundary condition is never needed. From a probability point of view, almost surely

no path of the process Y will hit zero. When P[τ y0 = ∞] < 1, the behavior of the

process varies according to the value of µ(0). In case of µ(0) = 0, the volatility

just vanishes at zero after the hitting time, and the underlying process remains flat

thereafter. In other words, zero is an absorbing point for Y . Therefore, the boundary

condition is needed and as it is described in the equations (3.12) and (3.13). When

P[τ y0 = ∞] < 1 and µ(0) > 0, the process Y is instantaneously reflecting at the

point 0. In this case, additional near field boundary requirements must be specified

into the PDEs. When Assumption 3.3.(b).(i) prevails, Bayraktar Kardaras and Xing

(2011) [6] shows that the value function u of the initial value problem is in the closure

of a set of functions vn, each of which satisfies the equation (3.12) and has vanishing

second order derivative terms at y = 0.

Remark 3.12. In Chapter 2, we discussed that one possible way to approximate an

option price is to solve the initial boundary value problem derived from the option

price valuation equation. The reason for constructing the initial boundary value

problem for the stochastic volatility model is that we wish to study its far field

boundary error for our approximation. If the function vM is a solution to an initial

boundary value problem, then by Definition 2.1, the far field boundary error of vM

with respect to u is

EM(t, x, y) , |vM(t, x, y)− u(t, x, y)|.

We expect this error to decrease by some order of 1
M

for fixed t, x, y. A detailed
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discussion of this issue is in Chapter 4.

Remark 3.13. Notice that the far field boundary conditions are uniformly set to

the payoff function g. Actually, they do not have to be the same function as the

payoff function, if they have the same growth rate of g. By changing the far field

boundary conditions to another function, a revision to the stochastic representation

(3.10) is needed. For convenience of notation, we might as well just use the function

g as the far field boundary conditions.

3.3 Regularity of the Value Function - the Dirichlet Problem

In Section 3.2 of this chapter, we used Itô’s lemma for the valuation equations u

and vM without specifying appropriate smoothness properties. In this section, we will

establish those properties, and argue that the value function (3.10) is a solution to

the initial boundary value problem (3.13). Bayraktar, Kardaras and Xing (2011) [6],

and Ekström and Tysk [25] have proved the regularity for the initial value problems

derived from a family of stochastic volatility models. Our results shown in this

section are different from those in [6] or [25] in the sense that we work in a finite

domain for an initial boundary value problem instead of an initial value problem in

an infinite domain. What is more important is that we allow the growth rate for the

volatility of the stochastic volatility process to be faster than linear.

As we pointed out in Remark 3.11, when P[τ y0 = ∞] < 1 and µ(0) > 0, the near

field boundary condition at y = 0 needs extra treatment. Since our focus is on the

far field boundary error, we avoid the discussion of the regularity in this scenario by

the following assumption.

Assumption 3.14. If µ(0) > 0, P[τ y0 =∞] < 1.

It is essential to define what kind of solution to the initial boundary value problem
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is a good solution. For example, in the Black-Scholes setting, the Black-Scholes PDE

has more than one solution, but there is only one solution that has at most linear

growth. Let us define the concept of classical solution for (3.13).

Definition 3.15. Under the Assumption 3.1, 3.3, 3.5 and 3.14, the function vM :

[0, T ]× D̄M → [0,∞) is a classical solution to (3.13) if

(a) vM ∈ C([0, T ]× D̄M) ∩ C1,2,2((0, T )×DM),

(b) vM(t, x, y) ≤ ḡ(x),

(c) vM solves (3.13).

Theorem 3.16. The value function vM defined in equation (3.10) is a classical

solution, and also the unique classical solution, to the Dirichlet problem (3.13).

In order to prove this statement, we break the argument into some subsections.

We first show the continuity, then the interior regularity as well as the boundary

conditions and lastly the uniqueness result.

3.3.1 Continuity

Let us begin by showing that vM ∈ C([0, T ] × D̄M), i.e., for a family of triplets

{(tn, xn, yn)}n∈N → (t, x, y) ∈ [0, T ] × D̄M , vM(tn, xn, yn) → vM(t, x, y). In fact,

instead of assuming the processes start from different times, and end up with the

same time, we rather assume they all start from 0, and end up with different times

{Tn}n∈N.

Define

ξn = inf{t ≥ 0|Y yn
t > M},

ξ = inf{t ≥ 0|Y y
t > M},

ζn = inf{t ≥ 0|Xxn,y
t > M},
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ζnn = inf{t ≥ 0|Xxn,yn
t > M},

ζn = inf{t ≥ 0|Xx,yn
t > M},

ζ = inf{t ≥ 0|Xx,y
t > M}.

To ease the notation without causing confusion, we denote by τn the stopping time

defined in (3.7) for process starting from (0, xn, yn), since we have fixed the far field

boundary to be M . Therefore,

τn = ξn ∧ ζnn ,

τ = ξ ∧ ζ.(3.14)

Lemma 3.17. Let {yn}n∈N and yn → y. Then in case of Assumption 3.3 (b).(i)

lim
n→∞ E

[
|Y yn
t − Y

y
t |

2
]

= 0 and lim
n→∞ E

[
|ξn ∧ t− ξ ∧ t|m̄

]
= 0 for any t ∈ [0,∞) and

m̄ ∈ N.

Proof. We work with a fixed t ∈ [0,∞) in the proof. In fact, Theorem 2.4 in [3] gives

a stronger result that,

lim
n→∞

E
[

sup
0≤u≤t

|Y yn
u − Y y

u |
2

]
= 0,(3.15)

which in turn implies Y yn
t

L2

−→ Y y
t under measure P and further Y yn

t −→ Y y
t in proba-

bility.

In the case of yn ↑ y, we have ξn ≥ ξ and ξn is decreasing. Pathwise uniqueness

implies Y y1
u ≤ Y y2

u ≤ · · · ≤ Y y
u for every u. This implies

sup
0≤u≤t

|Y y
u − Y y1

u |
2 ≥ sup

0≤u≤t
|Y y
u − Y y2

u |
2 ≥ · · · ≥ sup

0≤u≤t
|Y y
u − Y yn

u |
2 ≥ · · · ≥ 0.

The dominated convergence theorem gives

0 = lim
n→∞

E
[

sup
0≤u≤t

|Y yn
u − Y y

u |
2

]
= E

[
lim
n→∞

sup
0≤u≤t

|Y yn
u − Y y

u |
2

]
.
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Hence, almost surely,

lim
n→∞

sup
0≤u≤t

(Y y
u − Y yn

u ) = 0.

With the fixed t > 0, define

Ω1 ,

{
ω ∈ Ω : lim

n→∞
sup

0≤u≤t
(Y y

u − Y yn
u ) = 0

}
,

and thus P [Ω1] = 1. Let

ξM+ 1
n , inf

{
t ≥ 0|Y y

t > M +
1

n

}
.

For any large n ∈ N, and ω ∈ Ω1, there exists a large positive number k(n, ω)

such that for all k > k(n, ω)

sup
0≤u≤t

(Y y
u (ω)− Y yk

u (ω)) <
1

n
.

Thus,

Y y

ξM+ 1
n (ω)∧t

(ω)− Y yk

ξM+ 1
n (ω)∧t

(ω) <
1

n
, ∀k > k(n, ω),

If ξM+ 1
n (ω) ≤ t,

Y yk

ξM+ 1
n (ω)∧t

(ω) > M,

and thus

ξM+ 1
n (ω) ∧ t ≥ ξk(ω) ≥ ξk(ω) ∧ t.

If ξM+ 1
n (ω) > t,

ξM+ 1
n (ω) ∧ t = t ≥ ξk(ω) ∧ t.

Therefore, for all k > k(n, ω),

ξM+ 1
n (ω) ∧ t ≥ ξk(ω) ∧ t ≥ ξ(ω) ∧ t.

Define ξ+(ω) , limn→∞ ξ
M+ 1

n (ω). Let k →∞, and then n→∞

ξ+(ω) ∧ t = lim
n→∞

ξM+ 1
n (ω) ∧ t ≥ lim

k→∞
ξk(ω) ∧ t ≥ ξ(ω) ∧ t.(3.16)
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In the case of yn ↓ y, we have Y yn
· ≥ Y y

· , ξn ≤ ξ and ξn is increasing. Define Ω1

similarly. With the same fixed t, for any n ∈ N and ω ∈ Ω1, by possible different

choice of k(n, ω), similar argument results in

sup
0≤u≤t

(Y yk
u (ω)− Y y

u (ω)) <
1

n
, ∀k > k(n, ω).

Y yk
ξk(ω)∧t(ω)− Y y

ξk(ω)∧t(ω) <
1

n

If ξk(ω) ≤ t,

Y y
ξk(ω)∧t(ω) > M − 1

n
,

and thus

ξ(ω) ∧ t ≥ ξk(ω) ∧ t ≥ ξM−
1
n (ω) ≥ ξM−

1
n (ω) ∧ t.

If ξk(ω) > t,

ξ(ω) ∧ t ≥ ξk(ω) ∧ t = t ≥ ξM−
1
n (ω) ∧ t.

Therefore, for all k > k(n, ω),

ξ(ω) ∧ t ≥ ξk(ω) ∧ t ≥ ξM−
1
n (ω) ∧ t.

Similarly define ξ−(ω) , limn→∞ ξ
M− 1

n (ω). Let k →∞ and then n→∞

ξ(ω) ∧ t ≥ lim
k→∞

ξk(ω) ∧ t ≥ lim
n→∞

ξM−
1
n (ω) ∧ t = ξ−(ω) ∧ t.(3.17)

For a fixed M > 0, we have P[ξ+ = ξ = ξ−] = 1, since the volatility of the process

Y does not disappear in a small neighborhood of M . From equation (3.16) and

equation (3.17), We have

ξk ∧ t→ ξ ∧ t a.s.

Then by the dominated convergence theorem,

lim
n→∞ E

[
|ξn ∧ t− ξ ∧ t|m̄

]
= 0

for any t ∈ [0,∞) and m̄ ∈ N.
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Lemma 3.18. For T > 0 and yn ↑ y, we have

lim
n→∞

E
[
|Y yn
t∧ξ − Y

y
t∧ξ|

2
]

= 0.

Proof. This is obviously true if Assumption 3.3 (b).(i) holds. In case of Assumption

3.3 (b).(ii), we have

dYt = µ(Yt)dt+ βY p
t dBt, p > 1.

With yn ↑ y, both Y yn
t∧ξ and Y y

t∧ξ are bounded by M . A subtraction of these two

processes gives

Y y
t∧ξ − Y

yn
t∧ξ = y − yn +

∫ t∧ξ

0

(µ (Y y
s )− µ (Y yn

s )) ds+ β

∫ t∧ξ

0

((Y y
s )p − (Y yn

s )p) dBs.

By the Lipschitz property of µ(·), we further have

Y y
t∧ξ − Y

yn
t∧ξ = y − yn + c

∫ t

0

(
Y y
s∧ξ − Y

yn
s∧ξ
)
ds+ β

∫ t

0

(
(Y y

s∧ξ)
p − (Y yn

s∧ξ)
p
)
dBs,

where c is the Lipschitz constant for µ(·). The stochastic integral above is square

integrable, since the integrand is bounded by 2Mp. Thus,

E
[(
Y y
t∧ξ − Y

yn
t∧ξ
)2
]
≤ 2(y − yn)2 + 2c2

∫ t

0

E
[(
Y y
s∧ξ − Y

yn
s∧ξ
)2
]
ds

+ Cβ2

∫ t

0

E
[(
Y y
s∧ξ − Y

yn
s∧ξ
)2
]
ds,

where C depends only on M, p, and c. Gronwall’s inequality yields

lim
n→∞

E
[
|Y yn
t∧ξ − Y

y
t∧ξ|

2
]

= 0.

Remark 3.19. In case of yn ↓ y, similar argument to the previous lemma implies

lim
n→∞

E
[
|Y yn
t∧ξn − Y

y
t∧ξn|

2
]

= 0.
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Lemma 3.20. 1 For a fixed t, let {yn}n∈N and yn → y, then

ξn ∧ t→ ξ ∧ t -a.s.

In particular, lim
n→∞ E

[
|ξn ∧ t− ξ ∧ t|m̄

]
= 0, for any t ∈ [0,∞) and m̄ ∈ N.

Proof. This claim holds when Assumption 3.3 (b).(i) prevails, because of Lemma

3.17. Now let us prove the case of Assumption 3.3 (b).(ii).

Define ψM ∈ C∞([0,∞)) with 0 ≤ ψM ≤ 1 and

ψM(y) =


1, y ≤ 2M,

0, y > 3M.

Let σM(y) , βypψM(y). Define a stochastic process Y M

dY M
s = µ(Y M

s )dt+ σM(Y M
s )dBs, Y

M
0 = y.

Y M satisfies Assumption 3.3 (b).(i). The observation is that Y agrees with Y M

before the hitting time of level 2M , then by Lemma 3.17

ξn ∧ t→ ξ ∧ t -a.s.

and the rest of the statement follows naturally.

Lemma 3.21. For T > 0, we have

lim
n→∞

E
[
|Y yn
t∧ξn − Y

y
t∧ξ|

2
]

= 0.

Proof. Without loss of generality, assume yn ↑ y. By Lemma 3.18, we have

lim
n→∞ E

[∣∣Y yn
t∧ξn − Y

y
t∧ξ
∣∣2]

≤ lim
n→∞ 2E

[∣∣Y yn
t∧ξn − Y

yn
t∧ξ
∣∣2]+ lim

n→∞ 2E
[∣∣Y yn

t∧ξ − Y
y
t∧ξ
∣∣2]

=0.

1This lemma is from private conversation with Professor Steven Shreve.
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The limit of the first expectation vanishes because of Lemma 3.20 and boundedness

of the process Y yn
ξ , Y yn

ξn
.

In case of yn ↓ y, we use the triangle inequality in the above argument by replacing

Y yn
t∧ξ with Y y

t∧ξn , and invoke Remark 3.19 instead.

Lemma 3.22. lim
n→∞ E

[∣∣b(Y yn
t∧ξn)− b(Y y

t∧ξ)
∣∣2] = 0.

Proof. The processes Y yn
t∧ξn and Y y

t∧ξ are all bounded by M . By the locally Hölder α

continuity of the function b, Jensen’s inequality, and Lemma 3.17

lim
n→∞ E

[∣∣b(Y yn
t∧ξn)− b(Y y

t∧ξ)
∣∣2]

≤c lim
n→∞ E

[∣∣Y yn
t∧ξn − Y

y
t∧ξ
∣∣2α]

≤c lim
n→∞

(
E
[∣∣Y yn

t∧ξn − Y
y
t∧ξ
∣∣2])α

=0.

We used Lemma 3.21 in the last step.

Proposition 3.23. Fix a triplet (T, x, y) ∈ [0,∞)× D̄M . Then for any sequence of

triplets {(Tn, xn, yn)}n∈N that converges to (T, x, y), we have

lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

y
T∧ξ
∣∣2] = 0,(3.18)

P- lim
n→∞ Y yn

Tn∧ξn = Y y
T∧ξ.(3.19)

Proof. We start by estimating the approximation in L2. Without loss of generality

(see Remark 3.24), let yn ↑ y.

lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

y
T∧ξ
∣∣2]

(3.20)

= lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

y
Tn∧ξ + Y y

Tn∧ξ − Y
y
T∧ξ
∣∣2]

≤2 lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

y
Tn∧ξ

∣∣2]+ 2 lim
n→∞ E

[∣∣Y y
Tn∧ξ − Y

y
T∧ξ
∣∣2]

≤4 lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

yn
Tn∧ξ

∣∣2]+ 4 lim
n→∞ E

[∣∣Y yn
Tn∧ξ − Y

y
Tn∧ξ

∣∣2]+ 2 lim
n→∞ E

[∣∣Y y
Tn∧ξ − Y

y
T∧ξ
∣∣2] .
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Let us now show that each of the three limits in the above equation is zero. Firstly,

lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

yn
Tn∧ξ

∣∣2](3.21)

≤2 lim
n→∞ E

[∣∣∣∣∫ Tn∧ξn

Tn∧ξ
µ(Y yn

s ) ds

∣∣∣∣2
]

+ 2 lim
n→∞ E

[∣∣∣∣∫ Tn∧ξn

Tn∧ξ
σ(Y yn

s ) dWs

∣∣∣∣2
]

≤C1
lim
n→∞ E

[
|ξn ∧ Tn − ξ ∧ Tn|2

]
+ C2

lim
n→∞ E [|ξn ∧ Tn − ξ ∧ Tn|]

=0,

where we used the facts that functions µ, σ are continuous and bounded between the

stopping time ξn ∧ t and ξ ∧ t, C1, C2 are constants dependent on M , and Lemma

3.17. Secondly, by Lemma 3.18

lim
n→∞ E

[∣∣Y yn
Tn∧ξ − Y

y
Tn∧ξ

∣∣2]
(3.22)

≤2 lim
n→∞ E

[∣∣Y yn
Tn∧ξ − Y

yn
T∧ξ
∣∣2]+ 2 lim

n→∞ E
[∣∣Y yn

T∧ξ − Y
y
T∧ξ
∣∣2]+ 2 lim

n→∞ E
[∣∣Y y

T∧ξ − Y
y
Tn∧ξ

∣∣2]
≤2 lim

n→∞ E
[∣∣Y yn

Tn∧ξ − Y
yn
T∧ξ
∣∣2]+ 2 lim

n→∞ E
[∣∣Y y

T∧ξ − Y
y
Tn∧ξ

∣∣2] ,
Lastly, Problem 5.3.15 in Karatzas and Shreve [38] gives

lim
n→∞ E

[∣∣Y y
Tn∧ξ − Y

y
T∧ξ
∣∣2]+ lim

n→∞ E
[∣∣Y yn

Tn∧ξ − Y
yn
T∧ξ
∣∣2]

≤ lim
n→∞ C3(1 + y2)E [|Tn ∧ ξ − T ∧ ξ|]

=0.

In conclusion, we have

lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

y
T∧ξ
∣∣2] = 0,

and this gives (3.19).

Remark 3.24. We often assume yn ↑ y, and xn ↑ x in some proofs to make them

concise. This is because doing the other way only requires some changes in the
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arguments slightly such as the use of triangle inequality, the order of integration

interval and the order of their stopping times in the proofs. For example, in case of

yn ↓ y in Proposition 3.23, we modify its proof as the following:

We change the use of triangle inequality in equation (3.20) to

lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

y
T∧ξ
∣∣2]

≤4 lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

y
Tn∧ξn

∣∣2]+ 4 lim
n→∞ E

[∣∣Y y
Tn∧ξn − Y

y
Tn∧ξ

∣∣2]+ 2 lim
n→∞ E

[∣∣Y y
Tn∧ξ − Y

y
T∧ξ
∣∣2] .

Accordingly, the first inequality relationship in equation (3.21) becomes

lim
n→∞ E

[∣∣Y y
Tn∧ξn − Y

y
Tn∧ξ

∣∣2]
≤2 lim

n→∞ E

[∣∣∣∣∫ Tn∧ξ

Tn∧ξn
µ(Y y

s ) ds

∣∣∣∣2
]

+ 2 lim
n→∞ E

[∣∣∣∣∫ Tn∧ξ

Tn∧ξn
σ(Y y

s ) dWs

∣∣∣∣2
]
.

Equation (3.22) is now using Remark 3.19

lim
n→∞ E

[∣∣Y yn
Tn∧ξn − Y

y
Tn∧ξn

∣∣2]
≤2 lim

n→∞ E
[∣∣Y yn

Tn∧ξn − Y
yn
T∧ξn

∣∣2]+ 2 lim
n→∞ E

[∣∣Y yn
T∧ξn − Y

y
T∧ξn

∣∣2]+ 2 lim
n→∞ E

[∣∣Y y
T∧ξn − Y

y
Tn∧ξn

∣∣2]
≤2 lim

n→∞ E
[∣∣Y yn

Tn∧ξn − Y
yn
T∧ξn

∣∣2]+ 2 lim
n→∞ E

[∣∣Y y
T∧ξn − Y

y
Tn∧ξn

∣∣2] ,
and, for the same reason, [38] implies these two limits disappear.

We shall not elaborate the reasons for making such assumptions from now on

when only similar changes are needed.

Now, we turn our attention to the underlying process X.

Lemma 3.25. Let {xn}n∈N and {yn}n∈N satisfy xn → x and yn → y. Then

lim
n→∞ E

[∣∣Xxn,yn
t∧ξn −X

x,yn
t∧ξn

∣∣2] = 0, and lim
n→∞ E

[
|t ∧ ζnn ∧ ξn − t ∧ ζn ∧ ξn|

m̄] = 0, for

any t ∈ [0,∞) and m̄ ∈ N.
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Proof. From the dynamics (3.1) for X,

Xx,yn
t∧ξn = x+

∫ t∧ξn

0

b(Y yn
s )Xx,yn

s dWs,

Xxn,yn
t∧ξn = xn +

∫ t∧ξn

0

b(Y yn
s )Xxn,yn

s dWs.

Hence,

lim
n→∞ E

[∣∣Xxn,yn
t∧ξn −X

x,yn
t∧ξn

∣∣2]
= lim
n→∞ E

[∣∣∣∣x− xn +

∫ t∧ξn

0

b(Y yn
s )(Xx,yn

s −Xxn,yn
s ) dWs

∣∣∣∣2
]

≤2 lim
n→∞ E

[∫ t∧ξn

0

b(Y yn
s )2(Xx,yn

s −Xxn,yn
s )2 ds

]
+ 2 lim

n→∞ (x− xn)2

≤C(1 +Mm)2

∫ t

0

lim
n→∞ E

[(
Xx,yn
s∧ξn −X

xn,yn
s∧ξn

)2
]
ds,

where C,m are positive constants.

By Gronwall’s inequality, we have

lim
n→∞ E

[∣∣Xxn,yn
t∧ξn −X

x,yn
t∧ξn

∣∣2] = 0.

Doob’s maximal martingale inequality further implies

lim
n→∞

E
[

sup
0≤s≤t

|Xxn,yn
s∧ξn −X

x,yn
s∧ξn|

2

]
≤ 4 lim

n→∞
E
[
|Xxn,yn

t∧ξn −X
x,yn
t∧ξn|

2
]

= 0, t > 0.

Following the same techniques as Lemma 3.17, we have

lim
n→∞ E

[
|t ∧ ζnn ∧ ξn − t ∧ ζn ∧ ξn|

m̄] = 0.

Corollary 3.26. lim
n→∞ E

[
|t ∧ ζn ∧ ξ − t ∧ ζ ∧ ξ|m̄

]
= 0, m̄ ∈ N.

Proof. It follows immediately from the previous lemma by setting yn = y for any

n ∈ N.
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Lemma 3.27. lim
n→∞ E

[∣∣∣Xxn,yn
t∧ξn∧ζnn −X

x,yn
t∧ξn∧ζn

∣∣∣2] = 0.

Proof. Without loss of generality, we continue to assume that xn ↑ x. Since both

Xxn,yn and Xx,yn start from the same initial stochastic volatility level yn, the path-

wise uniqueness implies ζnn is decreasing and ζnn ≥ ζn for every n. Once again, an

integration of (3.1) for X gives

Xxn,yn
t∧ξn∧ζnn = xn +

∫ t∧ξn∧ζnn

0

b(Y yn
s )Xxn,yn

s dWs,

Xx,yn
t∧ξn∧ζn = x+

∫ t∧ξn∧ζn

0

b(Y yn
s )Xx,yn

s dWs.

And then,

lim
n→∞ E

[∣∣∣Xxn,yn
t∧ξn∧ζnn −X

x,yn
t∧ξn∧ζn

∣∣∣2]
= lim
n→∞ E

[∣∣∣∣xn − x+

∫ t∧ξn∧ζn

0

b(Y yn
s )(Xxn,yn

s −Xx,yn
s )dWs +

∫ t∧ξn∧ζnn

t∧ξn∧ζn
b(Y yn

s )Xxn,yn
s dWs

∣∣∣∣2
]

≤2 lim
n→∞ (xn − x)2 + 2 lim

n→∞ E
[∫ t∧ξn∧ζn

0

b(Y yn
s )2(Xxn,yn

s −Xx,yn
s )2ds

]
+ 2 lim

n→∞ E
[∫ t∧ξn∧ζnn

t∧ξn∧ζn
(b(Y yn

s )Xxn,yn
s )2ds

]
.

Notice that

b(Y yn
s ) ≤ C(1 +M)m, s ∈ [0, t ∧ ξn],

where C,m are positive constants, and

Xxn,yn
s ≤M, s ∈ [ζn, ζnn ].

We have

lim
n→∞ E

[∫ t∧ξn∧ζn

0

b(Y yn
s )2(Xxn,yn

s −Xx,yn
s )2ds

]
≤C2(1 +Mm)2

∫ t

0

lim
n→∞ E

[(
Xxn,yn
s∧ξn −X

x,yn
s∧ξn

)2
]
ds = 0,
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where we used the first part of the Lemma 3.25.

Also,

lim
n→∞ E

[∫ t∧ξn∧ζnn

t∧ξn∧ζn
(b (Y yn

s )Xxn,yn
s )2 ds

]
≤C2(1 +Mm)2M2 lim

n→∞ E [|t ∧ ξn ∧ ζn − t ∧ ξn ∧ ζnn |]

=0,

according to the second part of the Lemma 3.25. Thus,

lim
n→∞ E

[∣∣∣Xxn,yn
t∧ξn∧ζnn −X

x,yn
t∧ξn∧ζn

∣∣∣2] = 0.

Remark 3.28. Notice that the previous lemma still holds when the process Y starts

from y with the corresponding stopping times ξ, ζ, ζn.

Lemma 3.29. lim
n→∞ E

[∣∣Xx,yn
t∧ξn∧ζn −X

x,y
t∧ξ∧ζ

∣∣2] = 0.

Proof. Without loss of generality, assume yn ↑ y. It is seen that

E
[∣∣Xx,yn

t∧ξn∧ζn −X
x,y
t∧ξ∧ζ

∣∣2]
≤2E

[∣∣Xx,yn
t∧ξn∧ζn −X

x,yn
t∧ξ∧ζn

∣∣2]+ 2E
[∣∣Xx,yn

t∧ξ∧ζn −X
x,y
t∧ξ∧ζ

∣∣2]
≤2E

[∣∣Xx,yn
t∧ξn∧ζn −X

x,yn
t∧ξ∧ζn

∣∣2]+ 4E
[∣∣Xx,yn

t∧ξ∧ζn −X
x,yn
t∧ξ∧ζ

∣∣2]+ 4E
[∣∣Xx,yn

t∧ξ∧ζ −X
x,y
t∧ξ∧ζ

∣∣2] .
Because of Lemma 3.17 and Corollary 3.26, it remains to prove

lim
n→∞ E

[∣∣Xx,yn
t∧ξ∧ζ −X

x,y
t∧ξ∧ζ

∣∣2] = 0.
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lim
n→∞ E

[∣∣Xx,yn
t∧ξ∧ζ −X

x,y
t∧ξ∧ζ

∣∣2]
= lim
n→∞ E

[∣∣∣∣∫ t∧ξ∧ζ

0

b(Y yn
s )Xx,yn

s − b(Y y
s )Xx,y

s dWs

∣∣∣∣2
]

≤2 lim
n→∞ E

[∣∣∣∣∫ t∧ξ∧ζ

0

b(Y yn
s )(Xx,yn

s −Xx,y
s )dWs

∣∣∣∣2
]

+ 2 lim
n→∞ E

[∣∣∣∣∫ t∧ξ∧ζ

0

(b(Y yn
s )− b(Y y

s ))Xx,y
s dWs

∣∣∣∣2
]

≤c(1 +Mm)2

∫ t

0

lim
n→∞ E

[∣∣(Xx,yn
s∧ξ∧ζ −X

x,y
s∧ξ∧ζ

)∣∣2] ds
+ 2M2

∫ t

0

lim
n→∞ E

[∣∣(b (Y yn
s∧ξ∧ζ

)
− b
(
Y y
s∧ξ∧ζ

))∣∣2] ds
=c(1 +Mm)2

∫ t

0

lim
n→∞ E

[∣∣(Xx,yn
s∧ξ∧ζ −X

x,y
s∧ξ∧ζ

)∣∣2] ds,
where we used the Lemma 3.22. An application of Gronwall’s inequality completes

the proof.

Lemma 3.30. lim
n→∞ E

[∣∣Xxn,yn
t∧τn −X

x,y
t∧τ
∣∣2] = 0.

Proof. The Lemma 3.27 and the Lemma 3.29 indicate

lim
n→∞ E

[∣∣Xxn,yn
t∧τn −X

x,y
t∧τ
∣∣2]

= lim
n→∞ E

[∣∣∣Xxn,yn
t∧ξn∧ζnn −X

x,y
t∧ξ∧ζ

∣∣∣2]
≤2 lim

n→∞ E
[∣∣∣Xxn,yn

t∧ξn∧ζnn −X
x,yn
t∧ξn∧ζn

∣∣∣2]+ 2 lim
n→∞ E

[∣∣Xx,yn
t∧ξn∧ζn −X

x,y
t∧ξ∧ζ

∣∣2]
=0.

Proposition 3.31. Fix a triplet (T, x, y) ∈ [0,∞)× D̄M . Then for any sequence of

triplets {(Tn, xn, yn)}n∈N convergent to (T, x, y), we have

lim
n→∞ E

[∣∣Xxn,yn
Tn∧τn −X

x,y
T∧τ
∣∣2] = 0,(3.23)

P- lim
n→∞ Xxn,yn

Tn∧τn = Xx,y
T∧τ .(3.24)
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Proof. Without loss of generality, we assume the triplet {(Tn, xn, yn)}n∈N is increasing

to (T, x, y). Using the triangle inequality, we have

lim
n→∞ E

[∣∣Xxn,yn
Tn∧τn −X

x,y
T∧τ
∣∣2]

≤2 lim
n→∞ E

[∣∣Xxn,yn
Tn∧τn −X

x,y
Tn∧τ

∣∣2]+ 2 lim
n→∞ E

[∣∣Xx,y
Tn∧τ −X

x,y
T∧τ
∣∣2]

The first limit in the equation above is zero according to the Lemma 3.30. For the

second limit,

lim
n→∞ E

[∣∣Xx,y
Tn∧τn −X

x,y
T∧τ
∣∣2]

= lim
n→∞ E

[∣∣∣∣∫ T∧τ

Tn∧τ
b(Y x,y

s )Xx,y
s dWs

∣∣∣∣2
]

≤ lim
n→∞ E

[∣∣∣∣∫ T∧τ

Tn∧τ
c(1 +Mm)2M2 ds

∣∣∣∣2
]

=c(1 +Mm)2M2 lim
n→∞ E [T ∧ τ − Tn ∧ τ ]

=0.

Therefore,

lim
n→∞ E

[∣∣Xxn,yn
Tn∧τn −X

x,y
T∧τ
∣∣2] = 0,

and as a corollary,

P- lim
n→∞ Xxn,yn

Tn∧τn = Xx,y
T∧τ .

Theorem 3.32. The value function (3.10) for the Dirichlet problem (3.13) is con-

tinuous in (t, x, y). In other words, vM ∈ C([0, T ]× D̄M). Also, this value function

satisfies vM(t, x, y) ≤ ḡ(x).
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Proof. First, let us show that the growth rate of vM is bounded by that of ḡ.

vM(t, x, y) =Et,x,y [g (XT∧τ )]

≤Et,x,y [ḡ (XT∧τ )]

≤ḡ
(
Et,x,y [XT∧τ ]

)
≤ḡ(x).

For {(Tn, xn, yn)} → (T ∗, x, y) ∈ (0, T )×DM , Proposition 3.31 indicates that Xxn,yn
Tn∧τn

converges to Xx,y
T ∗∧τ in probability. Recall that the payoff function g is continuous,

nonnegative and at most of linear growth. Thus, g(Xxn,yn
Tn∧τn) converges to g(Xx,y

T ∗∧τ ) in

probability. Notice that {g(Xxn,yn
Tn∧τn)}n∈N are bounded by C(1+M), for some constant

C. Therefore, g(Xxn,yn
Tn∧τn) converges in L1, which shows the continuity of vM .

Next, we show that the continuity extends to boundaries. Now, let (T ∗, x, y) ∈

∂([0, T ]×D̄M) In fact, since the family {Xxn,yn
Tn∧τn}n∈N is uniformly bounded, and g(x) is

a continuous function, the family {g(Xxn,yn
Tn∧τn)}n∈N is uniformly integrable. Continuous

extensions to the boundaries other than the far field boundary are obvious. For the

far field boundary face, since τn → 0, if xn →M ,

g(M) = E
[

lim
n→∞

g
(
Xxn,yn
Tn∧τn

)]
,

thanks to the bounded convergence theorem.

Therefore, the continuity holds on the far field boundary x = M . A similar

argument shows the continuity on the boundary y = M . In conclusion, vM ∈

C([0, T ]× D̄M).

3.3.2 Interior regularity

In the previous subsection, we have shown that the value function vM defined in

(3.10) is continuous inside the domain [0, T ]× D̄M . Also, recall that when we derive
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the parabolic PDE for vM , we heuristically assumed vM is sufficiently smooth. In

this subsection, we prove that vM is indeed regular inside the interior of the domain

[0, T ]× D̄M .

Theorem 3.33. The value function vM(t, x, y) defined in equation (3.10) is in

C1,2,2 ((0, T )×DM), and moreover it satisfies the parabolic PDE vMt + LvM = 0

for all points in (0, T )×DM , where L is defined in (3.11).

Proof. We will perform a standard verification-type of argument to prove this result.

Let us pick a triplet (t, x, y) in the interior of (0, T ) ×DM , and an open cylindrical

volume D , (t1, t2)× (x1, x2)× (y1, y2) that contains this triplet.

It is clear from the discussion of Theorem 3.32 that vM is uniformly bounded in

the domain (0, T ) × DM , and hence in the domain D. Also, we observe that all

the coefficients in the operator L are uniformly bounded away from 0 in the domain

D. Thanks to the continuity of vM , it follows from parabolic theory [29] that the

boundary value problem

(3.25)


wt(t, x, y) + Lw(t, x, y) = 0, (t, x, y) ∈ D,

w(t, x, y) = vM(t, x, y), (t, x, y) ∈ ∂D,

admits a unique solution w.

Define Zt , w(t,Xt, Yt) and a stopping time τD as

τD = inf{s ≥ t|(s,Xs, Ys) /∈ D}.

Obviously, the region D ⊆ [0, T ]× D̄M , and hence τD ≤ τM . Thus,

vM(t, x, y) =Et,x,y
[
g
(
Xx,y
T∧τM

)]
=Et,x,y

[
vM
(
Xx,y
T∧τM

)]
=Et,x,y

[
vM
(
Xx,y
T∧τD

)]
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=Et,x,y
[
Zt,x,y
T∧τM

]
=Zt

=w(t, x, y)

Therefore, vM enjoys the same regularity as w in the domain D. Because of the

arbitrary choices of the triplet (t, x, y) and D, vM ∈ C1,2,2 ([0, T )×DM) and vMt +

LvM = 0 for all points in (0, T )×DM .

Remark 3.34. Actually, we do not have to avoid the boundary of t = 0 for the

proof of the interior regularity. This is because if we reverse the time by changing

the backward parabolic equation to a forward parabolic equation, the time domain

for the forward parabolic equation doesn’t have to be bounded.

3.3.3 Boundary conditions

Subsection 3.3.2 and subsection 3.3.1 have shown that the value function vM

satisfies the conditions (a) and (b), and the PDE in condition (c) of Definition 3.15.

In order to complete the proof of the Theorem 3.16, we need to further verify the

boundary conditions in condition (c), and condition (d) of Definition 3.15.

Theorem 3.35. The value function vM(t, x, y) defined in (3.10) satisfies the bound-

ary conditions required by Definition 3.15.

Proof. Recall that we have shown in Theorem 3.32 that vM(t, x, y) is continuous in

the region [0, T ] × D̄M . In other words, the value function extends its continuity

to the boundary of the region. Let us enumerate the verifications of the boundary

conditions for all faces except the one with y = 0. When the underlying process X

starts from 0, it is absorbed at 0 as it is implied from (3.6), and the option clearly

pays g(0). Same as either X or Y starts from the level M , the clock is stopped by the
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stopping time at the starting time t and the underlying process freezes at its starting

point. Thus the option holder gets paid g(x) with x being the starting point of X.

The terminal condition is trivially satisfied. We discussed earlier in Remark 3.11

that the boundary behaviors on the face of y = 0 are strongly tied to the properties

of the stochastic volatility process Y . From Assumption 3.3, we know that the lower

bound for the process Y is 0. The stopping time τ t,y0 fully describes the explosion of

Y to the bound 0.

If P[τ y0 = ∞] = 1, the process never explodes to 0, and the Dirichlet problem

(3.13) is well defined without a near field boundary condition. If P[τ y0 = ∞] < 1

and µ(0) = 0, the volatility vanishes once it hits 0. This is the situation of 0

being an absorbing point of Y , and the boundary condition given in (3.13) follows

naturally.

3.3.4 Existence and uniqueness of the Dirichlet problem

In this subsection, we prove Theorem 3.16, which is one of the main theorems of

the thesis. Recall that the theorem states that the value function vM in (3.10) (the

one with a barrier feature) is the unique classical solution to the Dirichlet problem

(3.13). The fact that vM is a classical solution is detailed in subsections 3.3.1, 3.3.2

as well as 3.3.3, and we are going to summarize them to establish the existence result.

For the uniqueness we need the notion of stochastic solutions and an auxiliary lemma.

Definition 3.36. A continuous function ωM : [0, T ] × D̄M → [0,∞) is a stochastic

solution of the initial boundary value problem (3.13) if for each (x, y) ∈ DM :

1. ωM(·, Xx,y
·∧τ , Y

y
·∧τ ) is a local martingale, where τ is defined in (3.14),

2. ωM(t, x,M) = g(x),

3. ωM(t,M, y) = g(M),
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4. ωM(T, x, y) = g(x).

Proposition 3.37. The value function vM defined in (3.10) is the unique stochastic

solution of the initial boundary value problem (3.13).

Proof. From the definition of vM , we know that vM(·, Xx,y
·∧τ , Y

y
·∧τ ), (x, y) ∈ D̄M is a

martingale by the tower property. Other conditions in Definition 3.36 are conse-

quences of Theorem 3.35.

Let ωM be another stochastic solution. Then for (x, y) ∈ D̄M , ωM(t,Xx,y
t∧τ , Y

y
t∧τ ),

0 ≤ t ≤ T, is a local martingale. Since ωM is a continuous function on com-

pact set [0, T ] × D̄M by Definition 3.36, ωM is a uniformly bounded function and

ωM(t,Xx,y
t∧τ , Y

y
t∧τ ), 0 ≤ t ≤ T, is a uniformly integrable martingale. For any (t, x̄, ȳ) ∈

[0, T ]×DM , by conditions 2, 3, 4 of Definition 3.36,

ωM(t, x̄, ȳ) = Et,x̄,ȳ
[
ωM(T,Xx,y

T∧τ , Y
y
T∧τ )

]
= Et,x̄,ȳ [g (Xx,y

T∧τ )] = vM(t, x̄, ȳ).

Thanks to the continuity of ωM and vM , ωM agrees with vM on [0, T ] × D̄M , and

uniqueness holds.

Proposition 3.38. Any classical solution of the initial boundary value problem

(3.13) is a stochastic solution.

Proof. For (x, y) ∈ DM and a fixed M , and n large enough so that x∧ y > 1
n
, define

the stopping time

ηn = inf
0≤t≤τ

{
Xx,y
t ∧ Y

y
t ≤

1

n

}
.

Let v be a classical solution to the initial boundary value problem (3.13) defined

on [0, T ] × D̄M . An application of Itô’s lemma yields the martingale property

of v(· ∧ ηn, Xx,y
·∧τ∧ηn , Y

y
·∧τ∧ηn) on [0, T ]. By the definition of τ y0 in (3.8), we have

P
[

lim
n→∞ ηn = τ y0

]
= 1. In case that P [τ y0 =∞] = 1, v(·, Xx,y

·∧τ , Y
y
·∧τ ) is a local martin-

gale on [0, T ]. If P [τ y0 =∞] < 1, by Assumption 3.14, µ(0) = 0 and Y process is
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absorbing once it hits zero and X freezes at the level on the hitting time thereafter.

The boundary condition v(t, x, 0) = g(x) in the initial boundary value problem (3.13)

implies lim
n→∞ v(· ∧ ηn, Xx,y

·∧τ∧ηn , Y
y
·∧τ∧ηn) = v(· ∧ τ y0 , X

x,y
·∧τ∧τy0

, Y y
·∧τ∧τy0

) = v(·, Xx,y
·∧τ , Y

y
·∧τ )

on [0, T ]. Other boundary and terminal conditions in the Definition 3.36 are inferred

directed from (3.13).

Now let us prove theorem 3.16.

Proof of Theorem 3.16. To see that vM is a classic solution to the Dirichlet prob-

lem (3.13), Theorem 3.32 and Theorem 3.35 imply that vM satisfies the continu-

ity and boundary conditions, which is the first part of (a) in Definition 3.15, and

vM(t, x, y) ≤ ḡ(x), which is (b) in this definition; Conditions (a) and (c) are the

results shown in Theorem 3.33.

The initial boundary value problem admits a unique classical solution. This is be-

cause any classical solution is a stochastic solution and uniqueness holds for stochastic

solution, according to Proposition 3.38 and Proposition 3.37, respectively.

3.4 The Initial Value Problem

We close this chapter by stating some results from Bayraktar, Kardaras and Xing

for the initial value problem (3.12). For an unbounded domain, we shall exclusively

confine the discussion to at most linear growth parametric functions for the stochastic

volatility process, i.e., for (b) in Assumption 3.3, we only consider case (i).

Proposition 3.39 (Proposition 3.3. from [6]).

The following statements are equivalent:

(1) Hy
·∧T is a strict local martingale for some, and then all (y, T) in (0,∞)× (0,∞).
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(2) v(∞) <∞, where

v(y) , 2

∫ y

c

p(y)− p(z)

p′(z)σ2(z)
dz, y > 0,

p(y) ,
∫ y

c

exp{−2

∫ x

c

µ̄(z)

σ2(z)
dz} dx, y > 0,

µ̄(y) , µ(y) + ρb(y)σ(y).

Remark 3.40. The first statement in the above proposition tells us that the underly-

ing cannot be a strictly local martingale for some (y, T ), but remain a true martingale

anywhere else. In fact, the loss of martingale property results from the assumptions

on the stochastic volatility process. The second statement is a consequence of Feller’s

test for explosions.

Theorem 3.41 (Existence: Theorem 2.8 from [6]). The value function u defined in

(3.9) is a classical solution to the initial value problem (3.12). Moreover, it is the

smallest classical solution.

Theorem 3.42 (Uniqueness :Theorem 2.9 from [6]). The following two statements

hold:

(a) When g is of strictly sublinear growth, u is the unique classical solution with

growth domination h.

(b) When g is of linear growth, u is the unique classical solution with growth domi-

nation h if and only if the underlying process X is a true martingale.

Uniqueness holds if and only if the following comparison result holds. Let v and

w be classical super/sub-solutions with growth domination h. If v(0, x, y) ≥ g(x) ≥

w(0, x, y) for (x, y) ∈ [0,∞)× [0,∞), then v ≥ w on [0, T ]× [0,∞)× [0,∞).

Remark 3.43. It is important to see that the initial value problem may not have

a unique solution while Dirichlet problem always has a unique solution. A heuristic
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way to understand that Dirichlet problems always have unique classical solutions is

that the stopped underlying process X·∧τ is a bounded martingale, and this situa-

tion can somehow fall into the category of martingale underlying in case of (b) in

Theorem 3.42. We say this is a heuristic point of view, because when we stop the X,

we essentially make all parametric functions in Assumption 3.1 discontinuous, and

Assumption 3.3 can no longer be valid.

We will see in the next chapter that the martingale property is also critical to

numerical pricing in terms of controlling the far field boundary errors.



CHAPTER 4

Convergence of the Dirichlet Problem

Under all the assumptions we made Chapter 3, we have built the relationship

between the valuation equation (3.9) and the initial value problem (3.12), and that

between the valuation equation (3.10) with the barrier feature and the Dirichlet

problem (3.13). Defined in Chapter 2, the far field boundary error is the difference of

Dirichlet problem (3.13) and the value function (3.9). This type of error is implicit in

a numerical PDE perspective, since numerical schemes are usually applied in a finite

domain problem, e.g. Dirichlet problems. The situation in stochastic volatility model

differs from the scenario discussed in Kangro and Nicolaides (2000) [37], because,

unlike Black-Scholes case, the uniqueness for (3.12) does not generally hold. Thus,

it is not convenient to consider the convergence of the Dirichlet problem (3.13) to

the initial value problem (3.12).

In this chapter, we alternatively study the convergence of the barrier option val-

uation equation (3.10) to the valuation equation (3.9) by following the context in

Chapter 2, thanks to the uniqueness property of Dirichlet problem (3.13). We begin

this chapter with some convergence results for a general stochastic volatility model

under the assumptions we made in Chapter 3. Then, in order to calculate an upper

bound for the convergence rates, we make the stochastic volatility model more spe-

58
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cific than that in Chapter 2. Lastly in this chapter, we discuss a feasible numeric

scheme on solving the Dirichlet problem by using finite difference method. Note that

all results are obtained under the Assumption 3.1, Assumption 3.3, Assumption 3.5

and Assumption 3.14, and we will not state these explicitly unless necessary.

In order to ease the notation, we often omit the superscripts which indicate the

starting points of some processes. To keep the notation consistent, define

ξM , inf{t ≥ 0|Y y
t > M},(4.1)

ζM , inf{t ≥ 0|Xx,y
t > M},(4.2)

X∗t , max{Xs|0 ≤ s ≤ t},(4.3)

Y ∗t , max{Ys|0 ≤ s ≤ t}.(4.4)

The stopping time τx,yM defined (3.7) has the relationship

τM = ξM ∧ ζM .

By the continuity of the processes,

{X∗T ≥M} = {ζM ≤ T},

and

{Y ∗T ≥M} = {ξM ≤ T}.

4.1 The General Convergence Results

Let the underlying process and the stochastic volatility process satisfy all the

assumptions in Section 3.1, Chapter 3. Recall our Remark 3.13 about the far field

boundary conditions, that they do not have to have the same function g. But for

simplicity, we assume the payoff function is still g(·), when the far field boundary is
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hit. All results in this section are carried out for any far field boundary condition

functions that have the same growth rates as g.

Combining the definition of far field boundary error and the convention for the

stopping time from (3.7), for 0 ≤ t < T , equation (2.8) can be rewritten as

EM(t,Xt) =
∣∣E [g (XT ) 1{τM≤T} − g (XτM ) 1{τM≤T}|Ft

]∣∣
=
∣∣E [(g (XT )− g (XτM )) 1{τM≤T}|Ft

]∣∣ .
Without loss of generality, we uniformly consider the error at time 0. A direct

calculation gives

EM(x) ,EM(0, X0)

=
∣∣E [(g (XT )− g (XτM )) 1{τM≤T}

]∣∣
≤E

[
|g (XT )− g (XτM )| 1{τM≤T}

]
(4.5)

We break our discussion of the convergence results for EM(x) into two different

types of contracts, strictly sublinear contract and linear contract.

4.1.1 Sublinear growth contract

Suppose the payoff function g is strictly sublinear, then there exists a constant C

such that

g(x) ≤ C(1 + x),

and

lim sup
x→∞

g(x)

x
= 0.

Before we state the convergence result, we start with some auxiliary technical

results.
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Lemma 4.1. Given a function g that satisfies the Assumption 3.5 and g is of strictly

sublinear growth, then

lim
M→∞ E

[
g (XT ) 1{XT>M}

]
= 0.

Proof. For any ε > 0, because of the sublinear property of g, i.e.

lim sup
x→∞

g(x)

x
= 0,

there exist a constant M , such that for any x ≥M , g(x)
x
< ε.

For such a M ,

E
[
g (XT ) 1{XT>M}

]
=E

[
g (XT )

XT

XT1{XT>M}

]
<εE

[
XT1{XT>M}

]
<εE [XT ]

≤εX0.

Lemma 4.2. Let Y start from some point y < M , then

P [Y ∗T ≥M ] ≤ 1

M
E [YξM∧T ] .

Proof. Because the process is continuous and nonnegative, YξM ≥M . We have

P [Y ∗T ≥M ] =E
[
1{ξM≤T}

]
=E

[
1{ξM≤T}

YξM
M

]
≤ 1

M
E
[
1{ξM≤T}YξM + 1{ξM>T}YT

]
=

1

M
E [YξM∧T ]
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Remark 4.3. In fact, Lemma 4.2 works for process X as well.

Lemma 4.4. E [YξM∧T ] is bounded by a constant only depends on T , x, and C (in

Assumption 3.3), not on M .

Proof. Under Assumption 3.3.(b)(i), an application of Problem 5.3.15 (Karatzas and

Shreve 1991 [38]) leads

E [YξM∧T ] ≤C1E
[

max
0≤t≤T

|Yt|2
]

≤C2(1 + Y 2
0 )eC2T .

If Assumption 3.3.(b)(ii) prevails, Y admits the following dynamics

dYt = µ(Yt)dt+ βY p
t dBt, Y0 = y.

Since µ(y) ≤ C(1 + y), consider an auxiliary process

dỸt = C(1 + Ỹt)dt+ βỸ p
t dBt, Ỹ0 = y.

The comparison principle (Proposition 5.2.18 [38]) implies

P
[
Yt ≤ Ỹt,∀0 ≤ t <∞

]
= 1.

It suffices to derive a bound for E
[
ỸξM∧T

]
. Notice that

de−CtỸt = Ce−Ctdt+ βe−CtỸ p
t dBt.

Thus,

e−CT∧ξM ỸT∧ξM = y +

∫ T∧ξM

0

Ce−Cs ds+

∫ T∧ξM

0

βe−CsỸ p
s dBs.

The stochastic integral above is a martingale because the integrand is bounded before

the stopping time ξM . Therefore,

e−CTE
[
ỸT∧ξM

]
≤E

[
e−CT∧ξM ỸT∧ξM

]
≤y + CT.



63

This is equivalent to saying that

E
[
ỸT∧ξM

]
≤ eCT (y + CT ).

In either case, the statement of the lemma holds.

Theorem 4.5. For a fixed x, and a strictly sublinear growth payoff function g, the

solution to the Dirichlet problem (3.13) converges to the value function u in (3.9),

as the far field boundary M approaches to infinity.

Proof. Since g can be bounded by ḡ as in Lemma 3.6, we can assume g is nonnegative

and nondecreasing. Also, without loss of generality, we maintain the choice of far

field boundary conditions, although the convergence results applies to any function

in Assumption 3.5 with strictly sublinear growth used in the following argument.

By following the discussion from equation (4.5), we have

EM(x) ≤E
[
|g (XT )− g (XτM )| 1{τM≤T}

]
≤E

[
(g (XT ) + g (XτM )) 1{τM≤T}

]
≤E

[
(g (XT ) + g (XτM )) 1{X∗T≥M}

]
+ E

[
(g (XT ) + g (XτM )) 1{X∗T<M}1{Y ∗T≥M}

]
Notice that XτM ≤M , and on the set {X∗T < M}, XT is bounded by M , the second

expectation can be bounded by

2g(M)P[Y ∗T ≥M ].

Thus,

EM(x) ≤E
[
(g (XT ) + g (XτM )) 1{X∗T≥M}

]
+ 2g(M)P[Y ∗T ≥M ]

≤E
[
g (XT ) 1{X∗T≥M}

]
+ g (M)P[X∗T ≥M ] + 2g(M)P[Y ∗T ≥M ]
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=E
[
g (XT ) 1{X∗T≥M}1{XT>M}

]
+ E

[
g (XT ) 1{X∗T≥M}1{XT≤M}

]
+ g (M)P[X∗T ≥M ] + 2g(M)P[Y ∗T ≥M ]

≤E
[
g (XT ) 1{X∗T≥M}1{XT>M}

]
+ 2g (M)P[X∗T ≥M ] + 2g(M)P[Y ∗T ≥M ]

=E
[
g (XT ) 1{XT>M}

]
+ 2g (M)P[X∗T ≥M ] + 2g(M)P[Y ∗T ≥M ].(4.6)

Because of Lemma 4.1, the first term has a zero limit, as M approaches infinity.

According to Lemma 4.2, Lemma 4.4 and supermartingale nature of X, we have

g (M)P[X∗T ≥M ] ≤ g (M)

M
E [XT∧ζM ] =

g (M)

M
x,

and

2g(M)P[Y ∗T ≥M ] ≤ 2g (M)

M
E [YT∧ξM ] ≤ 2g (M)

M
C̃,

where C̃ is a constant that derived from Lemma 4.4. Since g is of strictly sublinear

growth, the last too terms go to zero as well. Hence,

lim
M→∞ E

M(x) = 0,

and this means that the Dirichlet problem is convergent to the value function u.

Remark 4.6. Theorem 4.5 tells us that we can apply appropriate numeric scheme

to the Dirichlet problem (3.13) when the payoff function is of sublinear growth, even

though the underlying or the stochastic volatility process could carry a strictly local

martingale feature. This is because that when M is large enough the solution to the

Dirichlet problem is close to the value function u in (3.9). Admittedly, this does not

give any evidence about the speed of the convergence. In fact, the convergence rate

can be very slow for local martingale underlying processes. If, however, we know the

growth rate for the function g, some convergence rates are implied from the proof of

the previous theorem, as indicated in Corollary 5.4.
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4.1.2 Linear growth contract

In Subsection 4.1.1, we have shown the convergence result (Theorem 4.5) under

the assumption that

lim sup
x→∞

g(x)

x
= 0.

However, if

lim sup
x→∞

g(x)

x
= α ∈ (0,∞),

the proof in Theorem 4.5 does not work any more. In fact, we have discussed a situa-

tion that a solution to Dirichlet problem (2.27) fails to converge to the value function

(2.24) in Subsection 2.2.2 of Chapter 2. Thus, we should not expect Theorem 4.5

to work for linear contract. It is worth pointing out that this does not mean that

Dirichlet boundary can never be used for pricing of options written on local martin-

gale process. Rather, the strictly local martingale property would require a really

nice Dirichlet boundary condition instead of an arbitrary function in Assumption

3.5. More often than not, such a precise boundary function is difficult to find. Even

it can be found, the truncation errors generated from numerical scheme will not be

stable.

In fact, the theorem below shows that the conclusion of Theorem 4.5 will hold if

the underlying process is a true martingale.

Theorem 4.7. For a fixed x, and an at most linear growth payoff function g, the

solution to the Dirichlet problem (3.13) (possible extending the far field boundary

for Y to M1+ε, ε ≥ 0) converges to the value function u in (3.9), as the far field

boundary M approaches to infinity, if the underlying process X is a true martingale.

Proof. We slightly modify the hitting level for the process Y inside in the proof, by
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defining

ξεM , inf{t ≥ 0|Y y
t > M1+ε}, ε ≥ 0.

By the exact same argument as Theorem 4.5, we arrive the equation (4.6)

EM(x)

≤E
[
g (XT ) 1{XT>M}

]
+ 2g (M)P[X∗T ≥M ] + 2g(M)P[Y ∗T ≥M1+ε].

≤E
[
C (1 +XT ) 1{XT>M}

]
+ 2C (1 +M)P[X∗T ≥M ] + 2C(1 +M)P[Y ∗T ≥M1+ε].

In case of Assumption 3.3.(b).(i), ε can be chosen as 0. MP[Y ∗T ≥ M ] has limit

zero as M approaches infinity.

In case of Assumption 3.3.(b).(ii), choose ε > 0. An application of Lemma 4.2

and Lemma 4.4, we have

2C(1 +M)P[Y ∗T ≥M1+ε] ≤ 2C (1 +M)

M1+ε
E
[
YT∧ξ′M

]
≤ 2C (1 +M)

M1+ε
C̃,

which has a zero limit when M goes to infinity.

Because X is a true margingale by assumption, the optional sampling theorem

leads to

E [XT ] = X0 = X0∧ζM = E [XT∧ζM ] = E
[
XT1{T≤ζM}

]
+ E

[
M1{T>ζM}

]
,

and hence

E
[
XT1{X∗T≥M}

]
= MP[X∗T ≥M ].(4.7)

With this equation and E
[
XT1{XT≥M}

]
≤ E

[
XT1{X∗T≥M}

]
, it suffices to show that

E
[
XT1{X∗T≥M}

]
M→∞−−−−→ 0.

By either the monotone convergence theorem or the uniformly integrability of{
XT1{X∗T≥M}

}
M>0

,

lim
M→∞ E

[
XT1{X∗T≥M}

]
= E

[
XT

lim
M→∞ 1{X∗T≥M}

]
.
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Since the process Y does not explode to infinity (Proposition 3.7) and X is in expo-

nential form of Y , neither X nor X∗ explodes to infinity at finite time. Therefore,

lim
M→∞ 1{X∗T≥M} = 0

almost surely, and this completes the proof.

Remark 4.8. This proof won’t work for strictly local martingale underlying simply

because the equation (4.7) does not hold any more. Instead, the relationship becomes

E
[
XT1{X∗T≥M}

]
< MP[X∗T ≥M ].

Thus, even though the left hand side of this equation goes to zero when M goes to

infinity, the right hand side can remain non-zero.

4.1.3 Faster than linear growth contract

Stochastic volatility models have gained vast application in the fixed income,

currencies and commodities business. Many ongoing models on the trading floors

are just some variations of stochastic variation models. Although a majority of traded

options have at most linear growth payoffs, it is not uncommon to see faster than

linear growth contracts. One category of such examples are the quantos in foreign

exchange markets. A quanto is a derivative that involves two or more currencies with

the underlying asset in one currency and the instrument is settled in another currency

at time of maturity. These financial instruments are popular among speculators who

want to expose themselves to more volatilities in the foreign exchange rates, and

overseas investors and companies who do business in another currency and try to

hedge their exposure to the fluctuation of the foreign exchange rates. We shall use

the self-quanto to serve as an example of faster than linear growth contract. For full

discussion of the empirical knowledge of quantos, see Clark(2011) [12].
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Consider a EUR/USD self-quanto call option with the foreign currency euros

being the overlying and domestic currency dollars being the underlying. Denote by

X from (3.1) the exchange rate for EUR/USD, and constant K the strike. If it were

a normal standard European call option, the value of the option should be

u(x) = Ex
[
(Xx

T −K)+] .
However, for a quanto option, the notional amount (Xx

T − K)+ is paid in foreign

currency euros instead of dollars. By converting the euro notional to a dollar equiv-

alence, the quanto pays

u(x) = Ex
[
Xx
T (Xx

T −K)+] .
From a mathematical point of the view, the payoff is a quadratic function, and has

faster than linear growth with respect to X.

In terms of mathematical valuation of this option, an immediate problem with

the quanto is square integrability of X, which is not guaranteed. Regularity for

faster than linear growth contracts under general stochastic volatility models are not

available. And even though by ignoring potential regularity problem, we would have

to consider the following tail estimation for sake of far field boundary error

Ex
[
(Xx

T )2 1{(Xx
T )
∗
≥M}

]
.

One does not expect this equation to have a zero limit as M goes to infinity, because

X often has a fat tail. Empirically, the tail for foreign exchange rate involving

emerging market currencies is usually heavy, because of the high volatility for that

rate. In fact, if the tail is small, and quadratic payoff can be integrable, then the

linear contract may have faster convergence rate in terms of far field boundary error,

and thus the above expectation may be negligible.
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4.2 Convergence Rates for Heston-type Stochastic Volatility Model

We obtained some convergence conclusions in the previous section without any

results on the convergence rates of Dirichlet problem (3.13) to the value function

(3.9). In fact, the study of convergence rates is more difficult than just the conver-

gence results. Meanwhile, we have seen that the convergence results are sensitive

to the growth rates of the payoff function, to the martingale property of the under-

lying process and the existence of higher moments for the underlying process and

the volatility process. Therefore, we expect that the convergence rates can heavily

depend on these quantities as well. What’s more, those properties are indirectly

related to the choices of the parametric functions of the model (3.1). For example,

Proposition 3.39 shows such a relation.

We continue to assume that the payoff function g is of at most linear growth.

According to the proof of Theorem 4.7, we need to estimate the following three error

terms in order of 1
M

:

MP[X∗T ≥M ],(4.8)

E[XT1{XT≥M}],

MP[Y ∗T ≥M ].(4.9)

We have discussed in Theorem 4.7 that the second term is bounded by the first term.

Therefore, it suffices to derive an estimation for (4.8) and (4.9).

For the model under Assumption 3.3, the parametric functions are too general to

perform calculation and estimation. As an example, v(·), and p(·) in Proposition 3.39

are usually hard to simplify. Throughout this section, we confine our consideration

of convergence rates estimation in a more specific and representative model.
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4.2.1 Further assumptions

We assume the model (3.1) take a specific form as stated below, and we call it

the Heston-type model.

Assumption 4.9. The underlying process and the stochastic volatility process satis-

fies the following dynamics:

dXt = λ
√
YtXtdWt,(4.10)

dYt = κ(θ − Yt)dt+ βY p
t dBt,(4.11)

dWtdBt = ρdt,

where λ, κ, β are positive constants, ρ ∈ (−1, 1), and p ≥ 1
2
.

Example 4.10 (Heston model). See Subsection 2.4

The reason that we use the CIR type of volatility process (4.11) is that we believe

the stochastic volatility is mean reverting in real financial markets. We make λ, κ, β

and ρ positive constants solely for the purpose of ease the notation. All results in this

section are able to be reproduced when those constants are nonnegative deterministic

functions.

Remark 4.11. One can verify that the model described in Assumption 4.9 also

satisfies Assumption 3.3. It is straightforward to check that b(y) =
√
y and µ(y) =

κ(θ − y) satisfies (a), (b) and (c) of Assumption 3.3. For σ(y) = βyp, p ≤ 1, σ(·)

satisfies (c) of Assumption 3.3 if and only if p ≥ 1
2
. Actually, the stochastic volatility

process Y in (4.11) does not admit a unique solution when p < 1
2

(see [38]). One

way to make the process have unique solution is to impose a boundary condition

when the process hits level zero, e.g., the process is reflected at the origin. In [8],

Bhattacharya and Waymire indicate that this property is equivalent to imposing a
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boundary condition on the forward Kolmogorov equation for its transition probability

density, which is

lim
y↓0

(
1

2
β2 ∂

∂y

(
y2pP (t, y0, y)

)
− κ (θ − P (t, y0, y))

)
= 0.

However, it is unclear how this boundary condition will generate a boundary con-

dition for the pricing PDE. We only consider the case when the process admits a

unique strong solution.

As a special case of the model discussed in Chapter 3, the model is non-exploding

and has unique strong solution. In addition, the following proposition also charac-

terizes the non-explosion to zero property of the process Y .

Proposition 4.12. Infinity is unattainable for the stochastic process Y in (4.11),

and zero is attainable if and only if p = 1
2
, and 2κθ < β2.

Proof. Similar to Proposition 3.7, the result is fully covered by the Feller’s test for

explosion.

Remark 4.13. Assumption 4.9 is not so restrictive as it appears to be. Although it is

sometimes more attempting to consider the following model in terms of convergence

rates,

dXt = λY γ
t XtdWt, γ > 0,

dYt = µ(Yt)dt+ βY p
t dBt, p ≥

1

2
,

dWtdBt = ρdt,

but some algebraic calculation can transfer this model to a similar one to Assumption

4.9. For narrative simplicity, we adopt the Assumption 4.9 follow this subsection.



72

4.2.2 The importance of being a true martingale

In Section 4.1, we have seen the differences in terms of convergence between

martingale asset and strictly local martingale asset. It is significant to filter out

cases in which the asset is a martingale, because it might not converge at all for

local martingales. In [7], it is proved that X is a strictly local martingale for some,

and then all all {y, T} ∈ (0,∞) × (0,∞). Thus, it suffices to study the martingale

property on a fixed horizon.

When p = 1
2
, i.e., the model (3.1) is the Heston model, the underlying process X

is a true martingale as it is shown in the following proposition.

Proposition 4.14. The underlying process in Heston model (2.32) is a true mar-

tingale.

Proof. Recall that Xx,y
t = xHy

t , and the goal is to show that Hy
t is a martingale,

where

Hy
t , exp

(∫ t

0

b(Y y
t ) dWt −

1

2

∫ t

0

b2(Y y
t ) dt

)
.

If we can show the weak form of Novikov condition holds for H, then the martin-

gale property of H follows immediately. Thus, we need to show there is an increasing

sequence {tn}∞n=0 of real numbers with tn ↑ ∞, such that

E
[
exp

(
1

2

∫ tn

tn−1

Yt dt

)]
<∞.

Let us first derive a bound on

E [exp (νYu)] ,

for a fixed small ν, and fixed time u.

It is well-known that the CIR process Y is a affine process (refer to [28]). Thus
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there are deterministic functions A(·) and C(·) such that

Ms , E [exp (νYu) |Fs] = exp (YsA (u− s) + C (u− s)) .

An application of Itô’s formula gives

dMs =Ms

(
Ys

(
−A′ − κA+

1

2
β2A2

)
+ (κθA− C ′)

)
ds+MsβA

√
YsdBs.

Because M is a martingale, the following ODEs holds:

A′ = −κA+
1

2
β2A2,

C ′ = κθA,

A(0) = ν,

C(0) = 0.

By choosing ν = β2

2κ
, and solving the ODEs, we arrive at

A(s) =
2κ

β2
,

C(s) =
2κ

β2
s.

Thus,

E [exp (νYu)] = exp (yA (u) + C (u)) = exp

(
y

2κ

β2
+

2κ

β2
u

)
<∞.

Now, let {tn}∞n=0 be an arithmetic progression with the common difference of succes-

sive members is 2ν. By Jensen’s inequality

E
[
exp

(
1

2

∫ tn

tn−1

Yt dt

)]
≤E

[∫ tn

tn−1

1

2ν
exp (νYu) du

]
=

1

2ν

∫ tn

tn−1

E [exp (νYu)] du

=
1

2ν

∫ tn

tn−1

exp

(
y

2κ

β2
+

2κ

β2
u

)
du

<∞.
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This completes the verification of Novikov’s condition, and the martingale property

of X follows consequently.

In order to derive similar results when p > 1
2
, we need the following lemma.

Lemma 4.15. For p > 0 and η ≥ 1,

E [Xη
T ] = xηE(η)

[
1{ξ∞>T} exp

(
α

∫ T

0

Ys ds

)]
,

where α = λ2

2
η(η − 1), and ξ∞ = lim

n→∞ ξn with ξn defined in (4.1).

What’s more, under a new probability measure P(η), the stochastic volatility process

Y has the dynamic

dYt =
(
κ (θ − Yt) + ρβληY

p+ 1
2

t

)
dt+ βY p

t dB
(η)
t ,(4.12)

Proof. We borrow the ideas from Andersen, Piterbarg (see [1]), and Sin (see [51]).

Let B̄ be a Brownian motion such that

dWt = ρdBt + ρ̄dB̄t, ρ̄ =
√

1− ρ2.

Then,

Xη
T = xη exp

(
ρηλ

∫ T

0

√
Yt dBt + ρ̄ηλ

∫ T

0

√
Yt dB̄t −

1

2
λ2η

∫ T

0

Yt dt

)
.

By the definition of ξn, the process Y is bounded by constant n on the set {T < ξn}.

Denote by {FBt } the filtration generated by B, then tower property gives

E
[
Xη
T1{T<ξn}

]
=E

[
E
[
Xη
T1{T<ξn}|FBT

]]
=E

[
E
[
xη exp

(
ρηλ

∫ T

0

√
Yt dBt + ρ̄ηλ

∫ T

0

√
Yt dB̄t −

1

2
λ2η

∫ T

0

Yt dt

)
1{T<ξn}

∣∣∣∣FBT ]]
=E

{
xη exp

(
ρηλ

∫ T

0

√
Yt dBt −

1

2
λ2η

∫ T

0

Yt dt

)
1{T<ξn}E

[
exp

(
ρ̄ηλ

∫ T

0

√
Yt dB̄t

) ∣∣∣∣FBT ]}
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=E
[
xη exp

(
ρηλ

∫ T

0

√
Yt dBt −

1

2
λ2η

∫ T

0

Yt dt

)
1{T<ξn} exp

(
1

2
ρ̄2η2λ2

∫ T

0

Yt dt

)]
=xηE

[
exp

(
ρηλ

∫ T

0

√
Yt dBt −

1

2
ρ2λ2η2

∫ T

0

Yt dt

)
1{T<ξn} exp

(
α

∫ T

0

Yt dt

)]
,

where α = λ2

2
η(η − 1).

Let

MT , exp

(
ρηλ

∫ T

0

√
Yt dBt −

1

2
ρ2λ2η2

∫ T

0

Yt dt

)
.

Notice that on the set {T < ξn}, MT = MT∧ξn , and E [MT∧ξn ] = 1. Define a new

probability measure P(η)
n by

MT∧ξn =
dP(η)

n

dP
.

By Girsonav Theorem, under the measure P(η)
n , Y has the dynamic

dYt =
(
κ (θ − Yt) + ρβληY

p+ 1
2

t

)
dt+ βY p

t dB
(η)
t .

Thus,

E
[
Xη
T1{T<ξn}

]
= xηE(η)

n

[
1{T<ξn} exp

(
α

∫ T

0

Yt dt

)]
.

It follows from Lemma 4.2 in [51] that P(η)
n is consistent with P(η), and therefore,

E
[
Xη
T1{T<ξn}

]
= xηE(η)

[
1{T<ξn} exp

(
α

∫ T

0

Yt dt

)]
.

Now by the monotone convergence theorem and the fact that Y does not explode to

infinity under P,

E [Xη
T ] = lim

n→∞ E
[
Xη
T1{T<ξn}

]
= lim
n→∞ xηE(η)

[
1{T<ξn} exp

(
α

∫ T

0

Yt dt

)]
=xηE(η)

[
1{T<ξ∞} exp

(
α

∫ T

0

Yt dt

)]
.
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Proposition 4.16. X is a martingale if one of the following condition holds:

(a) p ∈ (0, 1
2
];

(b) p ∈ (1
2
, 3

2
), and ρ ≤ 0;

(c) p = 3
2
, and ρ ≤ β

2λ
;

(d) p ∈ (3
2
,∞).

Proof. Setting η = 1 in Lemma 4.15, we see that

E [XT ] = xE(1)
[
1{T<ξ∞}

]
,

and under measure P(1),

dYt =
(
κ (θ − Yt) + ρβλY

p+ 1
2

t

)
dt+ βY p

t dB
(1)
t .

Hence, X is a martingale if and only if Y does not explode to infinity under the new

measure P(1).

Therefore, the explosion behavior of process Y is once again covered by Feller’s

test for explosions, and we refer our readers to [1], [51], and [41] for details of the

calculation.

Remark 4.17. We discuss some intuition why in those cases X is a martingale in

the cases listed in previous proposition.

When p < 1
2
, the drift in Y is dominated by −κYt, as ρβλY

p+ 1
2

t has a slower

growth rate. And, the process will not explode to infinity under P(1).

When case (b) holds, the correlation is non-positive. We know if Y did not have

drift, it would not explode. And a strong negative drift in (4.12) gives the process

less chance of exploding to infinity.

For case (c) and (d), the situation is less intuitive. We see that the squared

volatility has index 2p, which is larger than p + 1
2
. And, the positive drift Y

p+ 1
2

t is

less important than the comparatively large variance Y 2p
t .
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Starting from the next subsection, we will derive a upper bound for the far field

boundary error when the model falls into some of the cases in Proposition 4.16.

Recall our discussion in Subsection 4.1.2 that linear growth options written on local

martingales can fail to be approximated by Dirichlet problems, and consequently, it

is not needed to consider their convergence rates.

We study the convergence rates for p = 1
2

in Subsection 4.2.3, and then the case of

(b) in Subsection 4.2.4. Case (c) is quite similar to the case of (b), and similar results

are implied from the case (b). We do not discuss case (d), because the convergence

rates in the Y direction may be quite slow already.

Remark 4.18. We indicated before that far field boundary error estimation is

strongly tied to the tail distribution of the underlying process X, and the stochas-

tic volatility process Y . And since the distribution itself of the stochastic volatility

model is difficult to track, to compute a tight order of far field boundary error is

usually difficult. It worth pointing out that a lower bound for the far field boundary

error of Dirichlet problem is zero, as one can use the value function u in (3.9) for

the far field boundary and there is no such error incurred with a correct boundary

condition.

4.2.3 Convergence rates for p = 1
2 - Heston model

In case (a) of Proposition 4.16, we only discuss the case of the Heston model,

because of Assumption 4.9 that requires p ≥ 1
2
. Let us start by estimating the

moment stability of X, and Y .

Proposition 4.19. For any fixed T , η ≥ 0, and p ∈ [1
2
, 1]

E [Y η
T ] <∞.
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Consequently the far field boundary error (4.9) in Y direction converges to zero faster

than any polynomial.

Proof. Define a new process Ỹ by

dỸt = κ(θ + Ỹt)dt+ Ỹ p
t dBt.

The moment stability of Y and Ỹ follows directly from Problem 5.3.15 in [38]. By

the comparison principle (Proposition 5.2.18 [38]) Y ≤ Ỹ almost surely. Now Ỹ has

positive drift always, and by Doob’s maximum inequality

MP[Y ∗T ≥M ] ≤MP[Ỹ ∗T ≥M ]

≤ 1

Mη−1
E
[
Ỹ η
T

]
≤ 1

Mη−1
C,

where C is a constant independent of M . Because η and T are arbitrary, this

completes the proof.

Proposition 4.19 implies that the bottleneck for the convergence rates is in the X

direction. The estimation of far field boundary error in the X direction results in

the following theorem.

Theorem 4.20. Assume 2κθ ≥ β2. The far field boundary error for Heston model

decreases uniformly in T at least in order of

1

Mη∗
,

and, for a fixed T , in order of

1

Mη∗T
, with η∗T = η∗1 ∨ η∗2,
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where

η∗ = max

{
η > 1

∣∣∣∣f+
η ≤

κ

βλ

}
,

η∗1 = max

η > 1

∣∣∣∣f−η ≥ κ

βλ
, T <

log
ρβηλ−κ+

√
dη

ρβηλ−κ−
√
dη√

dη

 ,

η∗2 = max

η > 1

∣∣∣∣f+
η >

κ

βλ
> f−η , T <

π1{ρη< κ
βλ} + arctan

√
−dη

ρβηλ−κ

2
√
−dη

 ,

and

f±η , ρη ±
√
η (η − 1), dη , (ρβηλ− κ)2 − λ2β2η (η − 1) .

Proof. 2κθ ≥ β2 implies the regularity results in Chapter 3 applies. Similar to

Lemma 4.15,

E [Xη
T ] =xηE

[
exp

(
ηλ

∫ T

0

√
YtdWt −

1

2
ηλ2

∫ T

0

√
Ytdt

)]
=xηE(η)

[
1{T<ξ∞} exp

(
α

∫ T

0

Yt dt

)]
,

where α = 1
2
λ2η(η − 1). Under the measure P(η), Y has the following dynamic

dYt = (κ (θ − Yt) + ρβληYt) dt+ β
√
YtdB

(η)
t .

Because Y does not explode to infinity almost surely under P(η), the moment of X

can be simplified to

E [Xη
T ] = xηE(η)

[
exp

(
α

∫ T

0

Yt dt

)]
.

Following the same routine as Proposition 4.14, and using the affine property of

Y ,

Ms , E(η)

[
exp

(
α

∫ T

0

Yt dt

)
|Fs
]

= exp

(
α

∫ s

0

Yt dt+ YsA (u− s) + C (u− s)
)
.
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Suppose that E [Xη
T ] is bounded. Then Ms is a martingale, and Itô’s lemma gives

dMs =Ms

(
Ys

(
α− A′ − κA+ ρβηλA+

1

2
β2A2

)
+ (κθA− C ′)

)
ds+MsβA

√
YsdB

(η)
s .

The martingale property of M indicates that

(4.13)



A′ = α + ρβηλA− κA+
1

2
β2A2,

C ′ = κθA,

A(0) = 0,

C(0) = 0.

The moment of the process X does not explode if and only if the deterministic

functions A and C do not explode before the maturity time T . It is straightforward

to see from the ODE that function C has the same explosion time as A. It suffices

to study the explosion behavior of A. The Riccati equation for A here appears more

complicated than the one in Proposition 4.14. Nevertheless, its explosion behavior

is fully known (see [4] and [1]).

Define

b ,
2α

β2
,

a ,
2(ρβηλ− κ)

β2
,

d , a2 − 4b =
4 (ρβηλ− κ)2 − 8αβ2

β4
.

The explosion time T ∗ of (4.13) falls into the following three categories:

(1) d ≥ 0, a < 0:

T ∗ =∞;

(2) d ≥ 0, a > 0:

T ∗ = 2
1√
dβ2

log

(
a+
√
d

a−
√
d

)
;
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(3) d < 0:

T ∗ =
1√
−dβ2

(
π1{a<0} + arctan

(√
−d
a

))
.

Define

f+
η , ρη +

√
η (η − 1),

f−η , ρη −
√
η (η − 1),

dη , (ρβηλ− κ)2 − λ2β2η (η − 1) .

Hence the moment E
[
Xη∗

T

]
exists uniformly for all T > 0, where

η∗ = max

{
η > 1

∣∣∣∣f+
η ≤

κ

βλ

}
.

Denote η∗1, η
∗
2 by

η∗1 = max

η > 1

∣∣∣∣f−η ≥ κ

βλ
, T <

log
ρβηλ−κ+

√
dη

ρβηλ−κ−
√
dη√

dη

 ,

η∗2 = max

η > 1

∣∣∣∣f+
η >

κ

βλ
> f−η , T <

π1{ρη< κ
βλ} + arctan

√
−dη

ρβηλ−κ

2
√
−dη

 ,

η∗T = η∗1 ∨ η∗1.

Therefore, for fixed T , the moment E
[
X
η∗T
T

]
exists. Because of the martingale prop-

erty of X and Doob’s maximum inequality, the far field boundary error (4.8) in the

underlying direction can be approximated as

MP[X∗T ≥M ] ≤ 1

Mη
E[Xη

T ].

By Proposition 4.19, we conclude that the far field boundary error for Heston model

decreases uniformly in T in order of at least

1

Mη∗
,
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and for fixed T , it decreases in order of at least

1

Mη∗T
.

4.2.4 Convergence rates for p ∈
(
1
2 ,

3
2

)
The model in Assumption 4.9 is a martingale if ρ ≤ 0 under the condition p ∈(

1
2
, 3

2

)
, and we shall assume ρ ≤ 0 in this subsection.

By using the same approach to estimate a convergence rate in this case, we need

the following proposition.

Proposition 4.21. For p ∈
(

1
2
, 3

2

)
, η ≥ 0, and ∀ T > 0

E
[

sup
0≤s≤T

Xη
T

]
≤ ∞,

if

ρ < −
√
η − 1

η
(4.14)

Proof. This is a direct application of the Theorem 3.2.(iv) of Lions and Musiela [43].

In fact for those parameters defined in [43], let δ = 1
2
, γ = p, m = η, and

b(·) = µ(·), etc, we arrive at the conclusion that if

ρ < −
√
η − 1

η
− µ∞
βη

,(4.15)

then

E
[

sup
0≤s≤T

Xη
T

]
≤ ∞,

for all T > 0, with µ∞ given by

µ∞ = lim sup
y→∞

µ(y)

yp+
1
2

.
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Because µ(y) = κ (θ − y), and p ∈
(

1
2
, 3

2

)
, we have

µ∞ = 0.

Now, condition (4.15) reduces to (4.14), and this completes the proof of the state-

ment.

Notice that Proposition 4.19 no longer holds for p ∈
(
1, 3

2

)
, as the growth condition

for the volatility of the stochastic volatility process is faster than linear.

Having the previous proposition, a theorem analogous to Theorem 4.20 can be

stated below.

Theorem 4.22. The far field boundary error for model described in Assumption 4.9

with p ∈
(

1
2
, 1
]
, ρ < 0 decreases uniformly for all T at least in order of

1

Mη∗
,

where

η∗ =
ρ2

1− ρ2
.

Further more, by an extension of the far field boundary domain for the Y direction,

this convergence rate applies to all p ∈
(

1
2
, 3

2

)
.

Proof. If p ∈
(

1
2
, 1
]
, then Proposition 4.19 implies that the far field error in the Y

direction is very small, and it converges faster than any polynomial orders of 1
M

.

To estimate (4.8), we again use Doob’s maximal inequalities on the martingale

process X. If ρ < 0, according to Proposition 4.21,

MP[X∗T ≥M ] ≤ 1

Mη∗
E
[
Xη∗+1
T

]
≤ 1

Mη∗
E
[

max
0≤s≤T

Xη∗+1
s

]
≤ C

Mη∗
,
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where η∗ = ρ2

1−ρ2 .

In the situation that p ∈
(
1, 3

2

]
, Proposition 4.19 does not apply any more. Since

the payoff does not depend on Y , we can extend the far field boundary from M to

M1+η∗ . Arguing analogously to Theorem 4.7,

MP[Y ∗T ≥M1+η∗ ] ≤ 1

Mη∗
E
[
YT∧ξ

M1+η∗

]
≤ C

Mη∗
,

and thus we obtain the convergence rates.

Notice that in case of ρ = 0, and p ∈ (1
2
, 3

2
), the underlying process X is also a

martingale. By Theorem 4.7, we would have the Dirichlet problem to approximiate

the pricing equation well. Meanwhile, we have seen that the tail distribution of X is

intimately related to the integrability of its moments. Yet, the following proposition

implies that the convergence rate may be very slow.

Proposition 4.23. For all p ∈ (1
2
, 1], T > 0, and η > 1,

E [Xη
T ] =∞,

if ρ = 0.

Proof. We provide a proof reconstructed from [1].

According to Lemma 4.15 and the fact that Yt under the new measure P(η) (see

equation (4.12) ) does not explode to infinity at any finite time , it suffices to prove

that under the same condition,

E(η)

[
exp

(
α

∫ T

0

Yt dt

)]
=∞,

for any α > 0.

In case of p = 1, the stochastic volatility process resembles a geometric Brownian

motion. Denote by Ỹ the solution of the following SDE

dỸt = −κỸtdt+ βỸtdB
(η)
t .
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The comparison principle (Theorem 5.2.18 in [38]) implies Y y ≥ Ỹ y almost surely,

so that

E(η)

[
exp

(
α

∫ T

0

Yt dt

)]
≥ E(η)

[
exp

(
α

∫ T

0

Ỹt dt

)]
=∞

where the second equality follows from the integration instability of exponential

functions under the geometric Brownian motion model ( see [49]).

Now, let’s assume p ∈ (1
2
, 1). Denote

q , 2(1− p) ∈ (0, 1), Ȳt ,
Y q
t

q
.

We have

dȲt =

(
κθq

q−1
q Ȳ

q−1
q

t + ρβληq
q+p− 1

2
q Ȳ

p+q− 1
2

q

t − κqȲt + β2 q − 1

2

)
dt+ β

√
q
√
ȲtdB

(η)
t .

Notice that for all y ≥ 0, the drift of dȲt can be lower bounded by(
−κqȲt + β2 q − 1

2

)
dt.

Denoting κ′ , κq, and β′ , β
√
q, there exists θ′ such that the drift is further lower

bounded by

κ′
(
θ′ − Ȳt

)
dt.

Once again by the comparison principle Y y is lower bounded by Ŷ y, where

dŶt = κ′(θ′ − Ŷt)dt+ β′
√
ŶtdB

(η)
t .

This is again the CIR process, and we replicate the part of proof in Theorem 4.20 to

obtain the fact that there exists T ∗α, such that when T̄ > T ∗α,

E(η)

[
exp

(
α

∫ T̄

0

Ȳt dt

)]
≥ E(η)

[
exp

(
α

∫ T̄

0

Ŷt dt

)]
=∞.

Thus

E(η)

[
exp

(
α

q

∫ T̄

0

Y q
t dt

)]
=∞.
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To prove the proposition, we choose an arbitrary T > 0, c > q, and a large enough

α0 such that

E(η)

[
exp

(
α0

T
q
c
−1

∫ T

0

Y q
t dt

)]
=∞.

An application of Hölder’s inequality gives,∫ T

0

Y q
t dt ≤ T 1− q

c

(∫ T

0

Y c
t dt

) q
c

,

and thus,

E(η)

[
exp

(
α0

(∫ T

0

Y c
t dt

) q
c

)]
=∞.

Pick an arbitrary α > 0, and denote Z ,
∫ T

0
Y c
t dt, and z ,

(
α
α0

) c
q−c

, to get

E(η) [exp (αZ)] =E(η)
[
1{z<Z} exp (αZ) + 1{z≥Z} exp (αZ)

]
≥eαz + E(η)

[
1{z<Z} exp (αZ)

]
.

Observing that

{z < Z} = {αZ > α0Z
q
c },

and

E(η)
[
1{z<Z} exp

(
α0Z

q
c

)]
=∞,

we conclude

E(η) [exp (αZ)] ≥ eαz + E(η)
[
1{z<Z} exp

(
α0Z

q
c

)]
=∞.

Therefore, when p ∈ (1
2
, 1], we have

E(η)

[
exp

(
α

∫ T

0

Yt dt

)]
=∞,

which in turn implies the statement of this proposition.
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Remark 4.24. Our discussion on the convergence rates of Dirichlet problem as an

approximation of value function reveals that we can expect fast convergence in the

Heston model with short maturity, and under Assumption 4.9 with p ∈ (1
2
, 1) and

ρ < 0. The power index p in the stochastic volatility process is preferably small for

better controlling the far field boundary error.

4.3 A Finite Difference Scheme for Stochastic Volatility Model

Once the far field boundary is set up such that the far field boundary error is

convergent to zero as boundary moves towards infinity, we are able to solve the

Dirichlet problem (3.13) numerically by using a finite difference scheme.

In the well-known Black-Scholes PDE case, a finite difference scheme is easy to

set up and the calculation cost is small. Some basic finite difference schemes, such

as the explicit method, implicit method, and Crank-Nicolson method ([17]), are all

applicable to solving Black-Scholes PDE numerically. Stochastic volatility models,

as a two dimensional extension to Black-Scholes PDE, are more difficult to solve

efficiently with a numerical method. One complication is that adding a dimension

increase the complexities of those basic schemes dramatically, and usually requires

coarser mesh sizes. On the other hand, stochastic volatility models often do not

preserve the fast convergence of far field boundary error, and hence require larger

state space domains, which results in more mesh points. Another complication is

that there are cross derivatives in two dimensional models, which are harder to tackle

by traditional schemes.

In this section, we apply an ADI (Alternating Directions Implicit) scheme and

a non-uniform mesh grid to numerically solve (3.13). Notice that classical ADI

scheme does not consider cross derivatives in the PDE. The Do scheme introduced
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by Douglas and Rachford ([21]) was an extension to address the cross derivatives.

However the Do scheme is only a first order scheme. Instead, the Craig-Sneyd scheme

([16]) guarantees second order accuracy addresses cross derivative issues. There are

also more advanced schemes that allow more degrees of freedoms in the parameters,

such as the modified Craig-Sneyd scheme([34]), and the Hundsdorfer-Verwer scheme

([32], [56]), but the Craig-Sneyd scheme is good enough for our purposes.

To illustrate the work-flow of the numerical mechanism, we start by talking about

the non-uniform mesh followed by approximation of derivative, and then cover the

Craig-Sneyd iteration. Throughout this section, we use a European call option writ-

ten on Heston model (2.32) as an example, and follow the idea of In’t Hout and

Foulon ([33]).

4.3.1 Non-uniform grid

A non-uniform grid is usually preferred when there are significantly many points

in each direction of the state space. Non-uniform grids locate more mesh points in

intervals that are numerically sensitive, and fewer mesh points elsewhere. Often, a

generating function is used to map the non-uniform grid to a uniform grid.

Recall that D̄M = [0,M ]× [0,M ]. Let Π : [0,M ]→ [0,M ], a generating function,

be a smooth function such that Π(0) = 0, Π(M) = M . Suppose x = {x0 = 0 <

x1 < x2 < · · · < xn−1 < xn = M} is the uniform mesh satisfies xi − xi−1 = M
n

, then

x∗ = Π(x) is the non-uniform mesh associated with the generating function Π.

For a European call option price is very sensitive at x = K, since there is a

discontinuity point at x = K for the first derivative of the payoff function. And

in the stochastic volatility direction, this price is sensitive when the volatility is

approaching to zero, i.e. Y0 = 0.

We employ the non-uniform mesh introduced by Tavella and Randall ([55]), and



89

Kluge ([39]).

For the underlying direction, define

∆x =
1

n

(
sinh−1

(
M −K

c

)
− sinh−1

(
−K
c

))
, c > 0,

and

xi = sinh−1

(
−K
c

)
+ i ·∆x.

Then the non-uniform mesh x∗ is given by

x∗i = K + c sinh (xi) .

The constant c is the parameter to adjust the approximate ratio ∆x∗

∆x
. Namely,

∆x∗

∆x
≈ c, around the point x = K.

Similarly for the stochastic volatility direction, define

∆y =
1

n
sinh−1

(
M

d

)
, d > 0,

and

yj = j ·∆y.

Then the non-uniform mesh y∗ is given by

y∗i = d sinh (yi) .

The constant d controls the density of number of points around y = 0.

Figure 4.1 is an example of non-uniform grid we discussed.

For a different payoff function and model, it is usually optimal to choose a partic-

ular non-uniform grid adapted to the features of this payoff function and this model.

The Tavella and Randall mesh grid is just a suitable non-uniform mesh for European

call written on the Heston model. In the following context, we use notation xi and

yi to denote the mesh once the mesh grid is chosen.
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Figure 4.1: Non-uniform mesh grid

4.3.2 Approximating the derivatives

The pricing PDE for the European call option written on Heston model takes the

following form:

∂u

∂t
+

1

2
x2y

∂2u

∂x2
+ ρβxy

∂2u

∂x∂y
+

1

2
β2y

∂2u

∂y2
+ κ (θ − y)

∂u

∂y
= 0.

Theorem 4.20 implies that a Dirichlet type of far field boundary can be used for

the Heston model in both X and Y directions, i.e.,

u(t, x = M, y) = g(M), t ∈ [0, T ), y ∈ [0,M)

and

u(t, x, y = M) = g(x), t ∈ [0, T ), x ∈ [0,M),

where g is the payoff function

g(x) = (x−K)+.

Even though the near field boundary condition on y = 0 might not be needed as

it is discussed in Chapter 3, something have to be specified numerically. We use the
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condition from [25]

ut(t, x, y = 0) + κθuy(t, x, y = 0) = 0, t ∈ [0, T ), x ∈ [0,M).

Also on the near field boundary x = 0, we use,

u(t, x = 0, y) = g(0).

To approximate the PDE and boundary conditions using finite difference methods,

we approximate first and second order derivatives inside the domain DM , and the

first derivative on the boundary y = 0.

For any derivative inside DM , we use the following central scheme,

u′(xi) ≈ a−i u(xi−1) + aiu(xi) + a+
i u(xi+1),

and

u′′(xi) ≈ b−i u(xi−1) + biu(xi) + b+
i u(xi+1),

where,

a−i =
−∆xi+1

∆xi (∆xi + ∆xi+1)
, ai =

∆xi+1 −∆xi
∆xi∆xi+1

, a+
i =

∆xi
∆xi+1 (∆xi + ∆xi+1)

,

b−i =
2

∆xi (∆xi + ∆xi+1)
, ai =

−2

∆xi∆xi+1

, a+
i =

2

∆xi+1 (∆xi + ∆xi+1)
.

An upwind scheme shown below is used to approximate the derivative in the left

hand side boundary y = 0 to maintain the second order accuracy.

u′(xi) ≈ ciu(xi) + c+
i u(xi+1) + b++

i u(xi+2),

with

ci =
−2∆xi+1 −∆xi+2

∆xi+1 (∆xi+1 + ∆xi+1)
, c+
i =

∆xi+1 + ∆xi+2

∆xi+1∆xi+2

, c++
i =

−∆xi+1

∆xi+2 (∆xi+1 + ∆xi+2)
.



92

Applying this discretization scheme to the Heston PDE and its boundary condi-

tions, the problem reduces to a system of first order ordinary differential equations

U ′(t) + AU(t) + b(t) = 0, U(T ) = UT .(4.16)

Here, U is an n2 dimensional vector representing the values of the mesh grid points

at some fixed time t. A is a time homogeneous matrix of size n2×n2, resulting from

the discretization. UT is the terminal condition for the mesh grid points.

In such a discretization, another type of error - trucation error is incurred aside

from the far field boundary error. A strightforward taylor expansion calculation on

the approximation of u′, u′′ gives the truncation error in order of

O
(
∆x2

)
+O

(
∆y2

)
.

4.3.3 The iteration scheme

As we discussed earlier that there are a number of different time discretization

schemes for the equation (4.16).

One simple and straightforward scheme is the explicit method; it calculates the

approximation of U (n−1) from the upper layer U (n) by

U (n) − U (n−1)

∆t
+ AU (n) + b

(
t(n)
)

= 0.

This scheme is not unconditionally stable, and one needs to pick up the time step

∆t very carefully. For the explicit method, the time step is normally very small, and

significantly increases the computational effort.

The implicit method is plausible for its unconditional stability. It requires solving

U (n−1) implicitly from

U (n) − U (n−1)

∆t
+ AU (n−1) + b

(
t(n−1)

)
= 0.
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Aside from its drawback of first order accuracy in time steps, this method requires

inverting a huge matrix (n2 × n2). The complexity on each time step is at least

O (n4.6), with the known best matrix inversion algorithm ([13]).

The famous Crank-Nicolson method is able to remedy the truncation error order

and make it O (∆t2), by using central difference scheme on time discretization, i.e.,

U (n) − U (n−1)

∆t
+ A

U (n−1) + U (n)

2
+
b
(
t(n−1)

)
+ b
(
t(n)
)

2
= 0.

However, it can not escape the necessity of inverting a large matrix. And, it is not

practical when n is large.

Instead of using those standard scheme, we split the matrix A, and apply ADI

scheme on equation (4.16).

The matrix A can be decomposed into the sum of three matrices,

A = A0 + A1 + A2,

such that A0 contains all entries in A resulting from discretization of cross derivatives

in the Heston PDE, A1 includes those from discretization of spatial derivatives in

the X direction and A2 takes the rest entries, which correspond to the Y directions.

Analogously, we can decompose b(t) as b(t) = b0(t) + b1(t) + b2(t), and define

operators

Fi(t, ω) , Aiω + bi(t), i = 0, 1, 2, t ∈ [0, T ], ω ∈ Rn2

.

And hence

F (t, ω) , F0(t, ω) + F1(t, ω) + F2(t, ω) = Aω + b(t).

By denote U (n) the known layer, and U (n−1) the layer to be calculated, the Craig-

Sneyd scheme to solve (4.16) consists the following five steps.

Step one:



94

Explicitly derive V0 from

U (n) − V0

∆t
+ F

(
t(n), U (n)

)
= 0.

The auxiliary layer V0 might not be a stable approximation of the real value of

u(t(n−1), ·), but there are more correction steps to stabilize it.

Step two:

Implicitly solve V1, V2 from
V1 − V0

∆t
=

1

2

(
F1

(
t(n−1), V1

)
− F1

(
t(n), U (n)

))
,

V2 − V1

∆t
=

1

2

(
F2

(
t(n−1), V2

)
− F2

(
t(n), U (n)

))
.

This step is a correction step on X, Y directions separately. In fact, if there were no

cross derivative in the Heston PDE, V2 is already a finished ADI approximation of

u(tn−1, ·). It worth pointing out that the V2 is already stable.

Step three:

This is a explicit step for correction on the cross derivatives, and it obtains Ṽ0

from

Ṽ0 − V0

∆t
=

1

2

(
F0

(
t(n−1), V2

)
− F0

(
t(n), U (n)

))
.

Notice that this step could breach the stability again, and further refinements are

required.

Step four:

Similar to step two, we need to solve Ṽ1, Ṽ2 from
Ṽ1 − Ṽ0

∆t
=

1

2

(
F1

(
t(n−1), Ṽ1

)
− F1

(
t(n), U (n)

))
,

Ṽ2 − Ṽ1

∆t
=

1

2

(
F2

(
t(n−1), Ṽ2

)
− F2

(
t(n), U (n)

))
.

Step five:

The Ṽ2 from step four is the value for the new mesh layer, i.e.

U (n−1) = Ṽ2.
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4.3.4 Complexity and stability

Although the matrix A is size of n2 × n2, it is sparse matrix. In the Craig-Sneyd

scheme, it seems like the explicit steps (step one and three) requires a multiplication

of A and U . Since there are no more than 9 non-zero entries, it only takes O(n2)

operations for the explicit steps. During the implicit steps (step two and step four),

the scheme needs to invert matrices A1 and A2. However, one of the matrices is

tridiagonal, and the other one is pentadiagonal. In the case of the pentadiagonal

matrix, a permutation of the order of the elements in the vector U can rearrange

the matrix to a tridiagonal once again. Hence, in fact, for those steps, only solving

tridiagonal systems is necessary, which takes O(n2) operations. Therefore, the whole

algorithm is of complexity of O(n2), and it takes linear time in the size of mesh grid

points to accomplish each 5-steps iteration between two time steps.

Theoretical stability proofs can be found in [34], [16], [44], [45]. Those references

indicate the Craig-Sneyd scheme is unconditionally stable for any ∆t, and the accu-

racy is in order of ∆t2. Combining the analysis of spatial discretization, the total

trucation error of the scheme is of order O(∆t2 + ∆x2 + ∆y2).

4.4 Numerical Experiments for Dirichlet Boundary Type

In this section, we continue to take Heston model as an example to conduct

numerical experiments. We compute call option prices written on the model to assess

convergence and its rates of the Dirichlet problem (3.13) to the value function (3.9).

In other words, we emphasize the far field boundary error versus to the truncation

error.

Specifically, by assuming the all interest rates and market price risk of volatility

are zero and M > K, the Dirichlet problem for call option strike at K written on
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Heston model is

vMt +
1

2
x2yvMxx + ρβxyvMxy +

1

2
β2yvMyy + κ(θ − y)vMy = 0, (t, x, y) ∈ (0, T )×DM ,

vM(T, x, y) = (x−K)+, (x, y) ∈ D̄M ,

vM(t, 0, y) = 0, (t, y) ∈ [0, T )× (0,M),

vMt (t, x, 0) = −κθvMy (t, x, 0), (t, x) ∈ [0, T )× (0,M ],

vM(t,M, y) = M −K, (t, y) ∈ [0, T )× (0,M ],

vM(t, x,M) = (x−K)+, (t, x) ∈ [0, T )× (0,M ].

It is proved that

vM(0, x, y) = Ex,y
[
(XT −K)+ 1{τ>T} + (M −K)1{τ≤T}

]
.

We perform the numerical experiments with fixed the horizon T = 0.5, the strike

for the European call K = 5. The uniform mesh grid is adopted for both X and

Y directions with mesh size ∆x = ∆y = 0.01. The time step size is also chosen as

∆t = 0.01.

We employ the Craig-Snyde ADI from previous section to carry out the numerical

computation. The truncation error is in order of O(∆t2 + ∆x2 + ∆y2), which, in our

case, has precision up to 10−4.

Figure 4.2 shows the numerical solution surface vM(0, x, y) with the parameters

values

M = 10, κ = 2, θ = 0.2, β = 0.8, λ = 1, and ρ = 0.1.(4.17)

The graph shows that the parabolic operator smoothes the payoff function inside the

domain DM . It is seen that the stochastic volatility nature gives obvious dependency

of the option price on the initial stochastic volatility level y.
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Figure 4.2: Call option price surface written on Heston model

Observe that the growth rate order of the volatility in the stochastic volatility

process is less than linear. The far field boundary error in the Y -direction is more

tamed than the X-direction, as it is implied from Proposition 4.19. We conduct a

far field boundary error test separately for X-direction and Y -direction. We denote

the far field boundaries by Mx,My respectively for X and Y directions.

4.4.1 Far field boundary error in Y -direction

Let us fix the far field boundary Mx = 7.5, and we continue to use the same

parameters as in (4.17). The Feller’s condition holds for this set of parameters, and

thus the boundary y = 0 never hits by the process Y . In the experiments, the PDE

holds on the boundary, and this generate no near field boundary error. We compute

the call option prices on the points (t, x, y) = (0, 5, 0.5), (0, 5, 1), (0, 5, 1.5), (0, 5, 2)

for far field boundary My = 2.5, 3, 4.5, 6, and arrive at the results shown in Table

4.4.1.

Table 4.4.1 implies that the numerical prices stop changing after the far field

boundary My in the Y -direction is some distance away from the point that the value

is computed. Although that the far field boundary in the X-direction is not good
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My vM
y

(0, 5, 0.5) vM
y

(0, 5, 1) vM
y

(0, 5, 1.5) vM
y

(0, 5, 2)

2.5 0.81974 1.03213 1.15733 1.21567
3 0.81974 1.03215 1.15805 1.24134

4.5 0.81974 1.03215 1.15807 1.24214
6 0.81974 1.03215 1.15807 1.24214

enough, the data in the table show that it does not improve the precision by setting

the far field boundary further far away.

Empirically, the far field boundary in the Y -direction should be set two to three

times the initial value for the stochastic volatility y. Proposition 4.19 suggests the

far field boundary error decreases faster than any polynomial, which is a similar

convergence speed as the situation in Black-Scholes model.

4.4.2 Far field boundary error in X-direction

We evaluate the convergence in the X-direction around the mesh point (t, x, y) =

(0, 5, 1), by fixing the initial volatility y = 1. In view of last subsection, it is safe

enough to put the far field boundary My = 3 through out the tests for assessments

of the far field boundary error in the X-direction.

Upon working out the computation of European call option prices on the points

(t, x, y) = (0, 5, 1), (0, 4, 1), (0, 6, 1) with Mx = 7.5, 10, 12.5, 15, 17.5, 20, we generate

the data in Table 4.1.

Table 4.1: Call Option Prices with fixed My and variate Mx

Mx vM
x

(0, 4, 1) vM
x

(0, 5, 1) vM
x

(0, 6, 1)

7.5 0.570238 1.03215 1.59159
10 0.615636 1.1397 1.79847

12.5 0.620006 1.15165 1.82465
15 0.620563 1.15331 1.82858

17.5 0.620653 1.1536 1.8293
20 0.620671 1.15366 1.82945

The numbers in Talbe 4.1 suggests that the far field boundary error is decreasing

much faster than linear with Mx increasing linearly. According to Theorem 4.20, the
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far field boundary error is in order of at least O
(

1
Mη∗

)
, where

η∗ = max

{
η > 1

∣∣∣∣ρη +
√
η (η − 1) ≤ κ

βλ

}
.

In our example, η∗ ≈ 3.

Figure 4.3 plots the logarithm of far field boundary error against the inverted far

field boundary distance. It implies that the error is decreasing in order of 1
M60 , which

is faster than implies by the theorem.
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Figure 4.3: Far field boundary error plot in Heston model

Remark 4.25. Notice that the numerical results agree with the theorems we devel-

oped. Our theorem gives an upper bound for the error. It is not surprising to see

the error rates difference between theoretic upper bound and the experiments, since

the theorem holds for any T > 0 and the choice of T in the experiment is small.



CHAPTER 5

Convergence of the Neumann Problem - Local Martingale

This chapter conducts a discussion on solving for the value function (3.9) by using

numerical methods, when the underlying process X in (2.28) or in (3.1) is a strict

local martingale.

There is extensive literature on when a local martingale process serves as under-

lying process for some contingent claims. Assets governed by local martingales often

make the arbitrage opportunities possible in the markets. Such assets are known

as bubble-assets. Delbaen and Schachermayer (in [19]) explored the arbitrage op-

portunities in the Bessel process. Some optimal strategies relative to market order

were discussed by Fernholz and Karatzas ([27]). Ruf ([47]) discusses about hedge

strategies under arbitrage. American options with local martingale underlyings are

considered in ([5], [46]). Yet, very limited literatures addresses the numerical pricing

techniques for local martingale assets, and it is still an open question to find a general

reliable method.

According to Theorem 4.5 and Theorem 4.7 in the previous chapter, the solution

to Dirichlet problem, e.g. (3.13), is not an appropriate approximation for (3.9) in

local martingale case. At the same time, the Bessel process discussed in Section 2.2.2

provides an example of divergence. Besides the convergence issue of classical finite

100
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difference methods, classical Monte Carlo simulation does not work well either for

local martingale asset (see [52]). This is not surprising, because classic Monte Carlo

simulation is approximating stochastic integrals with random walks, and symmetric

random walks with equal probability are proper martingales while stochastic integrals

can be strictly local martingales.

For the one-dimensional case, Song suggests (in [52]) a method to approximate

the linear payoff function with sublinear growth function, or even bounded function.

However, the convergence rates are demonstrated to be slow in [52] for both Monte

Carlo method and finite difference method. Ekström, Tysk, etc. use a Neumann type

far field boundary in their finite difference method. Empirically, the convergence rate

for Neumann type boundary is quadratic in terms of the inverse distance of the far

field boundary.

We recall some existing theories for pricing contingent claims written on local

martingales, and present our conjectures and intuitions for this problem.

5.1 One Dimensional Local Volatility Model

In this section, we consider that the underlying process follows the one-dimensional

local volatility model (2.30)

dXt = α(t,Xt)dWt,

where α is continuous and locally Hölder-1
2

in the x-variable and non-zero for all

x > 0, t > 0. We further assume that α(t, 0) = 0.

Recall that Proposition 2.11 gives a necessary condition for the underlying process

to be a strict local martingale. Also, Proposition 2.29 gives an equivalent condition

for the time homogeneous process to be a strict local martingale.

Let g be a payoff function satisfying Assumption 3.5, which indicates that g can
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be a linear growth function. By assuming the interest rate is flat at zero, the time

t option price of the contract that pays g(XT ) at maturity T is the value function

(2.1),

u(t, x) = E
[
g
(
X t,x
T

)]
.

The earlier Bessel process example we discussed indicates that a Dirichlet type far

field boundary is not appropriate for approximating u, because of the possible linear

growth condition on g.

There are generally two different ways around this difficulty. One method is to

use a sequence of bounded or less than linear growth functions as payoff functions,

whose option values converge to u, to replace g. The other method is to choose a

different kind of far field boundary condition.

5.1.1 The method of payoff function modification

This method is introduced by Song ([52]). Denote by x = M the far field boundary

and τ = inf{t ≥ 0;Xt > M}, and define a revised payoff function gM by

gM (x) = g (x) 1{x≤M2 } +
2 (M − x) g (x)

M
1{M2 <x≤M}.(5.1)

Assume g ∈ Cγ (R+) for some γ ∈ [0, 1], and notice that gM is a bounded continuous

function, where γ denotes the growth rates.

Let

vM(t, x) = E
[
gM
(
X t,x
T

)
1{τ>T}

]
.
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Our regularity results in Chapter 3 still apply, and vM solves the following PDE

vMt +
1

2
α2 (t, x) vMxx = 0, (t, x) ∈ [0, T )× (0,M),

vM(t, 0) = gM(0), t ∈ [0, T ),

vM(t,M) = 0, t ∈ [0, T ),

vM(T, x) = gM(x), x ∈ (0,M).

The choice of far field boundary condition makes sure that it agrees with the

terminal condition on the corner, which avoids the error resulting from the discon-

tinuity of boundary and terminal functions. This Dirichlet type parabolic PDE can

be solved by using classical finite difference methods, and the only thing we need to

worry about is the error incurred by modifying the terminal payoff.

Song ([52]) has shown the following theorem regarding the convergence of vM to

u and its rates.

Theorem 5.1 (Song 2011). If α is time homogeneous, vM(t, x) ∈ C1,2 ((0, T )× (0,M))∩

C ([0, T ]× [0,M ]) and

lim
M→∞ vM(t, x) = v(t, x), (t, x) ∈ (0, T )× (0,∞),

moreover,

|v(t, x)− vM(t, x)| ≤ K

(
1

M

)1−γ

,

where K is a positive constant independent of M .

In the case of the one-dimensional model, this theorem shows both convergence

and its rate for underlying process governed by local martingale assets. Song’s results

matches our previous remark on stochastic volatility model. However, this theorem

still does not provide any meaningful information regarding linear contract in terms

of convergence rates. Hence, we believe modification of terminal payoff function is
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not effective or robust enough to evaluate linear growth contracts written on local

martingale processes.

5.1.2 The method of imposing Neumann boundary conditions

Let us assume the one-dimensional local volatility model (2.30), and α satisfies

the regularity conditions we discussed in the beginning of this chapter.

We know that u(t, x) is the smallest non-negative solution of the initial value

problem (see [24]).

(5.2)



ut +
1

2
α2(t, x)uxx = 0, x ∈ (0,∞), t ∈ [0, T ),

u(t, 0) = g(0), t ≤ T,

u(T, x) = g(x), x ∈ (0,∞).

Define vM(t, x) the solution to the Neumann problem

(5.3)



vMt +
1

2
α2(t, x)vMxx = 0, x ∈ (0,M ], t ∈ [0, T ),

vM(t, 0) = g(0), t ≤ T,

vM(T, x) = g(x), x ∈ (0,M ],

vMx (t,M) = 0, t ∈ [0, T ).

By setting vM(t, x) = vM(t,M) for x ≥M , the definition of vM extends to [0,∞)×

[0, T ]. For a fixed M , the Neumann problem (5.3) has a unique solution by the

maximum principle.

From the assumptions imposed on α, it can be seen that the underlying process

X can be either a strict local martingale or a proper martingale. Regardless of the

martingale property, the value function u(t, x) can be approximated by a sequence

of solutions to the Neumann problems, as it is proved by the following theorem.
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Theorem 5.2 (Ekoström, Lötstedt, Sydow and Tysk [22]). Let the payoff function

g(·) satisfy the Assumption 3.5, and assume that g(·) can be written as a linear combi-

nation of non-decreasing functions. Then the sequence of solutions
{
vM(t, x)

}
{M∈N}

to the Neumann problems (5.3) is convergent to the value function u(t, x),

lim
M→∞ vM(t, x) = u(t, x)

Proof. It suffices to prove this result for a payoff function g satisfying Assumption

3.5 and being non-decreasing.

Let {Mi}{i∈N} be a increasing real sequence, and assume vMi(t, x) solves

vMi
t +

1

2
α2(t, x)vMi

xx = 0, x ∈ (0,Mi], t ∈ [0, T ),

vMi(t, 0) = g(0), t ≤ T,

vMi(T, x) = g(x), x ∈ (0,Mi],

vMi
x (t,Mi) = 0, t ∈ [0, T ).

Because g(·) is non-decreasing, vMi(t, x) is non-decreasing in x for fixed t, and i.

Thus, for any i, j ∈ N, s.t. i < j, v
Mj
x (t,Mi) ≥ 0. We claim that vMi(t, x) <

vMj(t, x), (t, x) ∈ [0, T ]× [0,∞). In fact, vMj(t, x) satisfies

v
Mj

t +
1

2
α2(t, x)vMj

xx = 0, x ∈ (0,Mi], t ∈ [0, T ),

vMj(t, 0) = g(0), t ≤ T,

vMj(T, x) = g(x), x ∈ (0,Mi],

vMj
x (t,Mi) ≥ 0, t ∈ [0, T ).

By the maximum principle, vMi(t, x) ≤ vMj(t, x). Monotonicity implies that the

limit

v(t, x) , lim
i→∞ vMi(t, x)

exists.
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Notice that it has been shown ([27], [48]) that it is never optimal to short the

underlying in the replication portfolio of the option paying g(XT ). Therefore, the

delta of the option ux(t, x) ≥ 0, for all (t, x) ∈ [0, T ]× [0,∞). And hence, v(t, x) ≤

u(t, x).

On the other hand, v(t, x) solves the PDE in (5.2) by an application of interior

Schauder estimates ([40], [10]). Because of vMi(t, x) ≤ v(t, x) ≤ u(t, x) for all i, and

the continuity of vMi , u at the boundary, v has to be continuous at the boundary.

Consequently, v(T, x) = g(x) and v(t, 0) = g(0). Therefore, v(t, x) is also a solution

to the initial value problem (5.2), and u(t, x) ≤ v(t, x), since u(t, x) is the smallest

nonnegative solution to (5.2).

In conclusion, v(t, x) = u(t, x), which proves the theorem.

Theorem 5.2 only gives convergence without showing the speed of the conver-

gence, and this theorem essentially requires the payoff function to be nondecreasing.

Empirically, the Neumann problem (5.3) approaches the value function (2.1) in order

of 1
M2 without the nonnegativity restriction on g, when the underlying process is a

strictly local martingale. In other words, the far field boundary error for Neumann

problem is roughly O
(

1
M2

)
. We make the following conjecture, although there are

technical difficulties for the proof.

Conjecture 5.3. Let the payoff function g(·) satisfy the Assumption 3.5, and X is

a strictly local martingale. For fixed (t, x), the sequence of solutions
{
vM(t, x)

}
{M∈N}

to the Neumann problems (5.3) is convergent to the value function u(t, x) in the sense

that

|vM(t, x)− u(t, x)| ≤ K

M2
,

where K is a positive constant independent of M .
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We will show a numerical example in Section 5.3.

5.2 Stochastic Volatility Models

Stochastic volatility models are generally more complicated than one dimensional

models, and hence it is more challenging to develop theoretical evidence for far field

error when the underlying process is a strict local martingale. It is an open problem to

develop a robust approximation method. We focus on some intuition and conjectures

for the method of imposing Neumann type boundary condition.

In this section, we continue to assume the underlying process and the stochastic

volatility process satisfy Assumption 3.1

dXt = b(Yt)XtdWt,

dYt = µ(Yt)dt+ σ(Yt)dBt,

dWtdBt = ρdt,

where the parameter functions satisfy Assumption 3.3.

The goal is to solve the pricing equation (3.9)

u(t, x, y) = E[g(X t,x,y
T )],

with g being of at most linear growth. Once again, we wish to obtain a numerical

approximation for u in the case that the underlying process X is a strictly local

martingale.

In fact, we can arrive at a similar convergence rate result to Theorem 5.1 as a

corollary of Theorem 4.5, without the aid of modifying the payoff function.

Corollary 5.4. Let vM be as defined in (3.10) and let g satisfy Assumption 3.5.

Then the far field boundary error of vM with respect to u is in order of O (Mγ−1),
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i.e.

|vM(t, x, y)− u(t, x, y)| ≤ K
1

M1−γ ,

where K is a constant independent of M , and γ ∈ [0, 1] is the growth rate for function

g.

Remark 5.5. This corollary implies that we can not expect a fast convergence rate

by modifying the payoff function as in the one-dimensional model case. Also, it fails

to show convergence when the payoff function is of strictly linear growth. However,

this does not mean that the modification of payoff function method is not practical

at all. Actually, this method can make the Monte Carlo simulation pricing work for

strict local martingale models, as it is pointed out by Song ([52]). Admittedly, the

convergence rate of this method for Monte Carlo pricing is also far from satisfactory.

When the payoff function is of linear growth and the underlying process X is

a strict local martingale, here is a heuristic argument suggest the conjecture that

Neumann problems can give good approximations to the value function u.

Notice that u(t,Xt, Yt) is a martingale with

E [u(t,Xt, Yt)|Fs] = E [E [g(XT )|Ft] |Fs] = u(s,Xs, Ys), 0 ≤ s ≤ t

by the tower property.

It has been shown that u is smooth enough to apply Itô’s lemma, which gives

du(t,Xt, Yt) = (ut (t, x, y) + Lu (t, x, y))

∣∣∣∣
{x=Xt,y=Yt}

dt

+ ux(t,Xt, Yt)b(Yt)XtdWt + uy(t,Xt, Yt)σ(Yt)dBt,

where L is given by (3.11), i.e.,

L =
1

2
b2(y)x2∂2

xx +
1

2
σ2(y)∂2

yy + µ(y)∂y + ρb(y)σ(y)x∂2
xy.
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Define

It ,
∫ t

0

ux(s,Xs, Ys)b(Ys)Xs dWs,

Jt ,
∫ t

0

uy(s,Xs, Ys)σ(Ys)dBs.

The martingale property requires that

ut(t, x, y) + Lu(t, x, y) = 0,

and It, Jt are true martingales so that

E[It] = E[Jt] = 0.(5.4)

Recall that Theorem 3.42 implies that uniqueness does not hold for the initial

value problem (3.12), and the value function u(t, x, y) is one of the many solutions,

when the underlying process X is strictly local martingale and g is of linear growth.

This is true because not every solution ū(t, x, y) satisfies equation (5.4). In fact, the

option price function should be one of the solutions such that (5.4) holds.

As an example, let g(x) = x, i.e., the option pays the underlying process it-

self. Assume that X is a strict local martingale (See Proposition 3.39). By di-

rect verification, ū(t, x, y) = x is a solution to the initial value problem (3.12), and

u(t, x, y) < ū(t, x, y) = x, ∀ 0 ≤ t < T .

For a proof by contradiction, assume ū(t, x, y) is the value of the expectation

equation (3.9). Because ūt + Lū = 0,

dū(t,Xt, Yt) = ūx(t,Xt, Yt)b(Yt)XtdWt + ūy(t,Xt, Yt)σ(Yt)dBt.

Plugging in ū(t, x, y) = x, it follows that

dXt = b(Yt)XtdWt,
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which is a strict local martingale, and hence

E[It] 6= 0.

This contradicts the assumption that ū(t, x, y) = E0,x,y [XT ].

In finance, ux is called the Delta of an option, which represents the number of

shares of the underlying asset to hold in order to replicate the option. The empirical

idea behind the example is that the volatility of the local martingale asset is in high

order of the asset price. Thus, this asset has large tendency for its price goes down

from high level, and it remains in low level for some time. Based on its bubble

essence, the replicating portfolio suggests a low Delta value if the maturity time is

not soon to protect from a huge price slump. In the previous example, having a

constant Delta ūx = 1 is clearly not a good choice, and that’s why ū is not even a

close approximation of the option price.

From a PDE point of view, imposing a restriction on ux is similar to adding a

Neumann type condition on the initial value problem. Thus, a natural approach

is to use the Neumann problem, instead of the Dirichlet problem, to approximate

the initial value problem. The key point here is that to choose ux such that It is a

martingale. While there might be many choices, the easiest one is to set ux = 0.

Let ωM(t, x, y) be the solution to the following Neumann problem

(5.5)



ωMt + LωM = 0, (t, x, y) ∈ (0, T )×DM ,

ωM(T, x, y) = g(x), (x, y) ∈ D̄M ,

ωM(t, 0, y) = g(0), (t, y) ∈ [0, T )× (0,M),

ωMt (t, x, 0) = −ωMy (t, x, 0), (t, x) ∈ [0, T )× (0,M ],

ωMx (t,M, y) = 0, (t, y) ∈ [0, T )× (0,M ],

ωM(t, x,M) = g(x), (t, x) ∈ [0, T )× (0,M ].
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We make a similar conjecture to Conjecture 5.3 as follows.

Conjecture 5.6. Let the payoff function g(·) satisfy the Assumption 3.5, and X

is a strictly local martingale. The sequence of solutions
{
ωM(t, x, y)

}
{M∈N} to the

Neumann problems (5.5) is convergent to the value function u(t, x, y) in the sense

that

|ωM(t, x, y)− u(t, x, y)| ≤ K
1

M2
,

where K is a positive constant independent of M .

Remark 5.7. In Neumann problem (5.5), we still use the Dirichlet boundary prob-

lem in the Y direction. However, same treatment for the far field boundary condition

can be done to the Y direction, if the volatility of the process Y grows faster than

linear.

Remark 5.8. There are technical difficulties proving the statement in Conjecture

5.6. In fact, even though we can mimic the argument in Theorem 5.2, there are at

least two new issues here: one is that it is unknown ([27]) under what conditions the

replication portfolio never requires a negative delta ux; the other one is that we do

not know the properties of uy, and hence the Y -direction is hard to tackle as well.

However, if we try the method used in Chapter 4, there is no straightforward intuition

how to formulate the Neumann boundary condition into the payoff expectation in

probability language.

The theories of robust numerical techniques solving a linear option price written on

a local martingale assets remains an open topic for future research. In the following

section, we discuss Neumann problem experiment as an approximation of initial value

problem driven by local martingale process.
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5.3 Numerical Experiments for Neumann Boundary Type

In this section, we illustrate Theorem 5.2 and Conjecture 5.3 by computing the

option price paying the stock itself, which follows the Bessel process

dXt = X2
t dWt.

According to equations (2.24) and (2.25), the option has the pricing formula

u(t,Xt) = E [XT |Ft] ,

and it has a closed form solution as in equation (2.25):

u(t, x) = 2xΦ

(
1

x
√
T − t

)
− x,

where Φ is the standard normal cumulative density function. u is a martingale and

hence admits the following dynamics

du(t,Xt) = uxX
2
t dWt.

Further more, u solves the initial value problem
ut +

1

2
x4uxx = 0, (t, x) ∈ [0, T )× [0,∞),

u(T, x) = x, x ∈ [0,∞).

Experimentally, we use Crank-Nicolson method solving the following Neumann

problem

(5.6)



vMt +
1

2
x4vMxx = 0, (t, x) ∈ [0, T )× [0,∞),

vM(T, x) = x, x ∈ [0,∞),

vM(t, 0) = 0, t ∈ [0, T ),

vMx (t,M) = 0, t ∈ [0, T ).
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Remark 5.9. It is not necessary to use the Neumann condition vMx (t,M) = 0. For

example, we can alternatively use vMx (t,M) = 1
M2 . A heuristic reason is that the

choice of ux = 1
x2

also makes
∫ t

0
uxX

2
sdWs a martingale.

In this example, numerical solutions of Neumann problems (5.6) are computed in

a uniform grid with

∆t = ∆x = 0.001.

The Neumann far field boundary condition is used, and we apply an upwind style

derivative approximation on vx(t,M), i.e.,

ux(t,M) ≈ 1

2∆x
u(t,M − 2∆x)− 2

∆x
u(t,M −∆x) +

3

2∆x
u(t,M).

Approximation of derivatives in other cases than the far field boundary is the same

as we discussed in Subsection 4.3.2.

For simplicity, the maturity T is set as 1. Since the Crank-Nicolson method is

unconditionally stable and has truncation error in order of O(∆t2 + ∆x2), which is

small enough on the grid we choose, we focus our attention on the far field boundary

error for the Neumann problem.

Given the analytical solution for u in (2.25), direct calculation implies that the

delta ux satisfies the equation

ux(t, x) = 2Φ

(
1

x
√
T − t

)
− 1− 2

x
√
T − t

φ

(
1

x
√
T − t

)
,(5.7)

with Φ being the cumulative density function and φ the probability density function

of the standard normal distribution.

We conduct a numerical computation for the far field boundary M = 1, 2, 4, 8.

Figure 5.1 shows the analytical delta as a function of t for some fixed state space

level M . It is seen that, as the far field boundary moves towards infinity, the delta
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Figure 5.1: Closed form deltas as function of t for x = 1, 2, 4, 8 in Bessel model

ux(t, x → ∞) is almost flattened off at 0, if t is away from T . However, when the

time approaches maturity T , the delta sharply increases from almost 0 to nearly 1.

Therefore, imposing a Neumann condition either vMx (t,M) = 0 or vMx (t,M) = 1
M2

looks a good approximation of the true delta on the boundary.

Remark 5.10. From the hedging point of view, the optimal strategy is that of

always investing a small amount of capital in the underlying, and the rest in the

money market when the current time is away from maturity and the underlying is

in a high level. The situation changes rapidly to using a delta of value one in the

replicating portfolio when the time nears maturity.

Figure 5.2 displays the numerical results solving the Neumann problem (5.6) for

vM(0, x). Calculations are carried out for far field boundaries set as M = 1, 2, 4, 8.

It is no surprising that the numerical solutions are increasing in M , as it appears in

the figure and also proved in Theorem 5.2. The top line in Figure 5.2 represents the

analytical solution u(0, x), and the numerical solution v8(0, x) by setting the far field

boundary M = 8 is already a good approximation.

If alternatively we choose vM(t,M) = 1
M2 as the Neumann boundary condition,
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Figure 5.2: Numerical solutions with Neumann boundary vMx (t,M) = 0,M = 1, 2, 4, 8

similar findings can be seen from Figure 5.3. In fact, this boundary condition gives

better convergence than the previous one, especially when the boundary distance is

small, simply because it is a better guess for the closed form for the delta on the

boundary.

To better show the rate of convergence, let us fix the initial point for the underlying

process, e.g. x = 0.25, 0.5, 1, and look at the far field boundary error. Table 5.1 shows

the speed far field boundary error decreases while M increases. Roughly speaking,

the far field boundary error decreases to 1
4
, when the far field boundary M doubles.

This confirms the Conjecture 5.3, which states that the far field boundary error of

the Neumann problem (5.3) with respect to the value function u(t, x) is bounded by

O
(

1
M2

)
.

Table 5.1: Far Field Boundary Errors with Boundary vMx (t,M) = 0

M u(0, 0.25)− vM (0, 0.25) u(0, 0.5)− vM (0, 0.5) u(0, 1)− vM (0, 1)

1 1.0e-03 * 0.1343 0.0339 0.1595
2 1.0e-03 * 0.0234 0.0095 0.0502
4 1.0e-03 * 0.0059 0.0027 0.0140
8 1.0e-03 * 0.0016 0.0007 0.0036
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Figure 5.3: Numerical solutions with Neumann boundary vMx (t,M) = 1
M2 ,M = 1, 2, 4, 8

Similarly, Table 5.2 displays the far field boundary errors if the Neumann bound-

ary is set as vMx (t,M) = 1
M2 . In general, this boundary condition gives smaller far

field boundary error than the boundary condition used in Table 5.1. It starts with

much less error comparatively, but, when M is big, the error still decreases quadrat-

ically. The reason that in the case x = 0.5 and x = 1 do not look like quadratic is

because the boundary is too close the point that the value is calculated.

Table 5.2: Far Field Boundary Errors with Boundary vMx (t,M) = 1
M2

M u(0, 0.25)− vM (0, 0.25) u(0, 0.5)− vM (0, 0.5) u(0, 1)− vM (0, 1)

1 1.0e-04 * 0.1769 0.0052 0.0328
2 1.0e-04 * 0.0370 0.0023 0.0205
4 1.0e-04 * 0.0147 0.0010 0.0067
8 1.0e-04 * 0.0059 0.0003 0.0018

In fact, In’t Hout and Foulon has a similar numerical example for Heston model

in [33]. Experimentally, they also confirm the Neumann problem converges quadrat-

ically to the value function.

In conclusion, Neumann problem serves as a good approximation to the option
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value function (3.9) while Dirichlet problem loses convergence, if the underlying

process is a strict local martingale. And, we conjecture that such an approximation

is in quadratic order of the inverse distance of the far field boundary.
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