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Abstract

Robots would be much more useful if they could be more robust. Systems that can tol-

erate variability and uncertainty are called robust and the design of robust feedback con-

trollers is a difficult problem that has been extensively studied for the past several decades.

In this thesis, we aim to provide a quantitative measure of performance and robustness

in control design under an optimization framework, producing controllers robust against

parametric system uncertainties, external disturbances, and unmodeled dynamics. Under

the H∞ framework, we formulate the nonlinear robust control problem as a noncooper-

ative, two-player, zero-sum, differential game, with the Hamilton-Jacobi-Isaacs equation

as a necessary and sufficient condition for optimality. Through a spectral approximation

scheme, we develop approximate algorithms to solve this differential game on the founda-

tion of three ideas: global solutions through value function approximation, local solutions

with trajectory optimization, and the use of multiple models to address unstructured un-

certainties. Our goal is to introduce practical algorithms that are able to address complex

system dynamics with high dimensionality, and aim to make a novel contribution to robust

control by solving problems on a complexity scale untenable with existing approaches in

this domain. We apply this robust control framework to the control of humanoid robots

and manipulation in tasks such as operational space control and full-body push recovery.
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1
Introduction

1.1 Motivation

Robots would be much more useful if they could be more robust. Systems that can tolerate

variability and uncertainty are called robust and modern robots can rarely be classified as

such. In this thesis, we aim to provide a quantitative measure of performance and robust-

ness that leads to an optimization framework, from which a controller can be designed to

robustly control the behaviors of humanoid robots. We develop these algorithms on the

foundation of three ideas: global solutions through value function approximation, local

solutions with trajectory optimization, and the use of multiple models to address unstruc-

tured uncertainties. Our goal is to introduce practical algorithms that are able to able to

address complex system dynamics with high dimensionality.

The key design philosophy of this thesis is the idea of design driven robustness, as

opposed to data driven approaches commonly found in adaptive and learning systems. In

this work, we explicitly formulate sources of uncertainty, both internal and external to the

system dynamics, and achieve robustness in a top-down manner. This is distinct from

the machine learning literature, where uncertainties are identified and learned from data,

processed bottom-up. These two schools of design are not incompatible with one another

and this work aims to complement existing data driven approaches to robust control.

The main application area for this thesis is the control of complex mechanical systems,

Jiuguang Wang 1
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such as humanoid robots. Humanoid robots are designed to imitate the manipulative,

locomotive, perceptive, communicative, and cognitive abilities of humans [3]. On one

hand, humanoid robots are the ideal platform to introduce to human domains since they

are compatible with made-for-human tools and environments. On the other hand, any

humanoid robot with sufficient physical capabilities poses a significant safety risk to nearby

humans. Dynamically balancing bipedal humanoid robots are particularly dangerous due

to their high center-of-mass and comparably small polygon of support. While they are

more versatile on different types of terrains compared to wheeled or multi-legged robots,

robust bipedal locomotion has not been demonstrated outside of the laboratory setting as

stability can easily be influenced by a number of factors. Before we can expect to move

these robots beyond the settings of research and into human populated environments,

the issue of robustness must be addressed and it is an important component in physical

human-robot interaction.

For a humanoid robot with many degrees-of-freedom, designing behaviors by hand is

a difficult, if not intractable, task. While there have been attempts to use motion capture

[4] to extract or transfer human motion to robot control, the significant differences in the

kinematic structures of humans and humanoid robots make this approach difficult to apply

in practice. Instead, a philosophy for the control of humanoid robots is optimization. By

defining appropriate optimization objectives in conjunction with a model of the system

dynamics and associated constraints, emergent behaviors can be generated automatically.

While optimization and optimal control theory have been widely applied in humanoid

robot control, it is not without drawbacks. A blind application of optimization tends to

yield extremal solutions that exploit the given model to improve performance. However,

roboticists rarely have models that characterize the response of the robot with absolute ac-

curacy, especially given a complex, unstable, high degree-of-freedom humanoid. Typically,

the theoretical dynamics of the robot are obtained through the principles of mechanics,

with experimental procedures that validate the basic equations of motion and refine the

2 Jiuguang Wang
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parameters. These experiments are corrupted by noise and the identified system parame-

ters are only known with limited degrees of accuracy. Hydraulic robots, in particular, have

oil seal friction and leakage, which causes parameters to vary with each movement. Over

time, degradation and wear also alter the parameters of the system, and unless the robot

is calibrated periodically to re-identify the parameters, the model can deviate significantly

from reality.

Furthermore, as humanoid robots are introduced to cluttered and uncontrolled human

environments, there are various external factors that can adversely affect the system. The

robot is limited by its perceptual capabilities and is vulnerable to changes in the terrain as

well as actions of human workers nearby. Since external disturbances such as being pushed

cannot be predicted accurately, it is crucial that the safety performance of the robot be

guaranteed for worst-case scenarios. Contact properties, similar to seal friction, change

with every move. Together, addressing the accuracy of the models and associated imper-

fections, as well as external disturbances, will ensure that the performance of theoretically

optimal designs will be maintained in practice.

In control theory, robust control is an active field which addresses many issues in de-

signing feedback controls to account for model uncertainties and external disturbances.

Historically, robust control theory is rooted in analysis in the frequency domain that is

specific to the control of linear dynamic systems. While recent works in this area have

began to address the control of nonlinear systems in the time domain, most rely on analyt-

ically manipulating simple system dynamics to design feedback controls, which render them

inapplicable to more complex systems. For a general class of nonlinear systems, necessary

and sufficient conditions can be obtained in terms of the Hamilton-Jacobi-Isaacs equation

(HJI), a partial differential equation that is difficult to solve and does not admit a smooth

analytical solution in general. Numerical techniques based on dynamic programming solve

the HJI by discretizing the state space of the system on a grid, but suffer from the curse

of dimensionality and require extensive computational resources to pre-compute policies

Jiuguang Wang 3
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offline.

In the next section, we review existing methods for nonlinear robust control and discuss

how they relate to the proposed approach.

1.2 Background and related work

1.2.1 Classical robust control

In control theory, work on robust control originated in the 1970s, motivated by the in-

vention of the Linear-Quadratic Gaussian (LQG) controller. An extension of the Linear-

Quadratic Regulators (LQR), LQG models linear systems disturbed by additive Gaussian

noise, subject to quadratic costs. LQG explicitly model the disturbance and should have

superior performance compared to LQR, but in fact, it was shown by Doyle [5] that LQG

techniques provide no global system-independent guaranteed robustness properties. The

LQG case showed the need for a systematic way of demonstrating robustness margins for

control designs and incorporating them into controller synthesis.

The H∞ optimal control framework was developed in response to the need of address-

ing modeling errors and the worst-case responses of a system. Instead of optimizing the

usual performance metrics such as rise time, settling time, energy, etc, H∞ control focuses

on sensitivity minimization, which keep the response of a system under bounded distur-

bances. Work by Zames [6] was representative in the formulation of sensitivity reduction

by feedback in the H∞ framework, and was extended by Francis [7]. The core idea in

these studies is the H∞-norm, a measure of the worst-case response of a system seen as

the highest gain value on a Bode magnitude plot. Minimizing the H∞ norm is therefore an

optimization problem, and when combined with traditional feedback designs, constitute a

coherent framework in which controller behaviors can be guaranteed. For the history of
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H∞ control and a comprehensive review, we refer the readers to several well-known text-

books in this area by Bhattacharyya [8], Zhou [9], Skogestad [10], and Dullerud [11], as

well as the references therein.

While classical robust control theory in the form ofH∞ control has been well-established,

it is not directly applicable to humanoid robots since traditional H∞ designs rely on fre-

quency domain analysis techniques for linear systems, while the dynamics for humanoids

are highly nonlinear. Nonlinear systems do not have properties such as superposition, scal-

ing, and homogeneity [12], found in their linear counterparts, which means that tools from

linear algebra such as the Laplace transform cannot be used. Analysis of nonlinear sys-

tems are made more difficult by phenomenon such as finite escape time, multiple isolated

equilibria, limit cycles, and chaos. Control design for nonlinear systems are synthesized

entirely in the time domain, which require different techniques to derive the feedback con-

trol law, particularly when the issue of robustness is considered. While the H∞ norm can

be formulated in the time domain and its minimization remains an optimization problem,

the solution is much more difficult to obtain due to the nonlinear nature of the systems

involved.

1.2.2 Dynamic programming

We began this review of modern nonlinear robust control with the dynamic programming

principle developed by Bellman [13]. The Bellman equation, a central result in dynamic

programming, is a necessary and sufficient condition for optimality which discretizes and

solves a given optimization problem recursively. The use of the Bellman equation in a

continuous-time nonlinear optimal control problem [14] results in the Hamilton-Jacobi-

Bellman (HJB) equation [15], which applies to the most general form of nonlinear dynamics

and constraints. The HJB is a nonlinear first-order partial differential equation, and when

solved over the entire state space of a system, is a necessary and sufficient condition for

Jiuguang Wang 5
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optimality. The solution to the HJB, the value function, gives the optimal cost-to-go for a

given system and there is a relationship between the value function of an optimal control

problem and the feedback control law.

In the context of nonlinear robust control with an external disturbance, the optimiza-

tion problem constitutes a minimax problem in the sense that we try to minimize the

objective function under the worst possible disturbances or parameter variations, which

maximizes the same objective function. The minimax problem also has a game theoretic

interpretation as a two-player, noncooperative, zero-sum differential game [16]. This prob-

lem is a game in that a minimizing player seeks to determine control inputs that minimize

the objective function, while an adversarial maximizing player seeks to maximize the same

objective function. It is a differential game, since both players are constrained by the

system dynamics, a set of ordinary differential equations, as well as associated constraints.

Furthermore, the game is non-cooperative as each player makes decisions independent of

the other player. The outcome is zero-sum, since one player’s gain is exactly balanced by

the other player’s loss.

In the context of game theory, the equilibrium strategy for this differential game consti-

tutes a Nash equilibrium [17], also called a saddle-point, which can be intuitively explained

as a pair of strategies secured against any attempt by one player to unilaterally change his

strategy. In a continuous-time setting, the application of the dynamic programming princi-

ple to a differential game results in the Hamilton-Jacobi-Isaacs (HJI) equation [15], which

can be seen as the dual to the HJB. It is also a first-order nonlinear partial differential

equation and serves as the necessary and sufficient condition for optimality. We refer the

reader to Başar [18], Engwerda [19], and Friesz [20] for a detailed treatment of differential

games in the context of optimization and optimal control. For subsequent discussions, we

will use the terms H∞ robust control, minimax control, and differential games interchange-

ably. We will mostly ignore more detailed classifications of differential games as solution

approaches tend to be valid for all forms of differential games with minor modifications.
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While the formulation of the nonlinear robust control problem is straightforward, the

difficulty in solving the HJI equation remains the biggest bottleneck to the practical ap-

plication of nonlinear H∞ control. For general nonlinear systems, no smooth analytical

solution can be expected. One approach to solving the HJI is the notion of viscosity so-

lution [15]. When written in the form of linear differential operators, the HJI satisfy an

ellipticity condition on the monotonicity in the diffusion operator. As a result, existence

and uniqueness of viscosity solutions can be demonstrated in the form of a value function.

However, the viscosity approach can only be applied to a small subset of problems and

general nonlinear solutions remain intractable. Methods from numerical analysis, such as

Galerkin’s method, can be used to convert the HJI from a continuous operator form to a

discrete problem. Representative references in this area include Georges [21], Beard [22]

[23] [24], Alamir [25], and Ferreira [26]. The drawback of Galerkin-based approaches is

the need to successively produce discrete forms, which is difficult to implement in practice.

Related approximate methods such as Tsiotras [27] considered the use of Taylor series ap-

proximation of the value function to iteratively solve the HJI term by term, provided that

a solution to the linearized model of the nonlinear system exists. Similarly, Grimble [28]

proposed a version of the H∞ design in which the system is modeled as a combination of

a linear and a nonlinear subsystem, where the plant can have severe non-smooth nonlin-

earities but the disturbance and reference models are assumed linear. These approaches

do not have a closed form solution and are not guaranteed to converge.

More recently, Feng [29] [30] proposed an iterative algorithm to solve the HJI for a

broad class of nonlinear system by solving a sequence of HJBs whose solutions can be

approximated recursively by existing methods, with a local quadratic rate of convergence.

However, as the solution of HJBs remain difficult to obtain, this approach is only the

beginning of a potential direction to solve nonlinear robust control problems. Finally, more

heuristic approaches have been proposed by Kim [31], which augments a nominal control

design using a PID-type auxiliary input, which adds H∞-type performance measures to
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achieve additional robustness.

There exists a rich literature on the solution to the nonlinear H∞ problem, in control

theory, differential game, Hamilton-Jacobi theory, and various other fields. We refer the

readers to Helton [32]and Aliyu [33], as well as the references therein, for an overview of

various techniques in this area. To date, no effective analytical solutions to the HJI exists.

Instead, we focus on reviewing numerical solutions to the HJI, and also other approximate

solutions to H∞ control which do not rely on solving the HJI.

The chief numerical algorithms for dynamic programming problems are policy iteration

(also known as Howard’s algorithm) and value iteration (also known as backward induction)

[34]. These algorithms play an important role in the study of Markov decision processes

(MDPs) [35] and reinforcement learning (RL) [36]. When solved on a grid over some

bounded region of the state-space, the number of grid points grows exponentially to the

dimension of the state-space. Few successful implementations of these numerical schemes

have been demonstrated for systems beyond a few states.

1.2.3 Approximate dynamic programming

An extension to the numerical approaches to dynamic programming is approximate (or

adaptive) dynamic programming (ADP). ADP encompasses an umbrella of methods re-

lated to dynamic programming, called forward / incremental / iterative / heuristic /

neurodynamic programming, and other variations. We refer readers to Powell [37] for

a comprehensive review of these methods. In short, the idea of value function approxima-

tion is central to ADP, where the true Bellman value function is replaced by a statistical

approximation followed by modifications to the iterative procedure that updates this ap-

proximate function. A related method to value function approximation is policy search,

where the parameters in the parametric representation of the policy is searched directly for

a solution that satisfies the control objectives. A mixture of value function approximation
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and policy search is often referred to as an actor-critic design [38] in the sense that an

actor directly optimizes the controller while a critic observes the performance of a given

controller based on a particular value function and then derives an improved controller

by updating the value function. When an explicit representation of both the policy and

the value function is maintained, then both the actor and critic act simultaneously in an

actor-critic design. The actor-critic architecture is widely used in reinforcement learning

and we refer the readers to Busoniu [39] for a recent survey on the use value function

approximation in this area.

There exists an extensive literature of using ADP to control dynamic systems, partic-

ularly using neural networks as function approximators. This stems from the fact that

any feedforward network with a single hidden layer containing a finite number of neurons

(in the simplest case, a multilayer perceptron) can approximate any continuous functions

with mild assumptions on the activation function [40]. While there are other alternative

universal approximators (for example, support vector machines [41]), neural networks re-

main popular for optimal control problems due to the availability of formal convergence

properties for certain configurations. We refer the readers to Miller [42] for a comprehen-

sive review of neural network methods for optimal control problems and Zhang [43] for

ADP-specific methods. We focus the subsequent discussion on ADP for H∞ design and

two-player differential games, with ADP predominantly take the form of actor-critic archi-

tecture. Approaches have been proposed for systems of various configurations, including

linear and nonlinear dynamics that are known, partially known, or unknown. Some ap-

proaches account for constraints on the dynamics, while others have the ability to learn in

an online fashion.

The simplest application of ADP is for linear H∞ control with known dynamics. Al-

Tamimi [44] proposed a heuristic dynamic programming approach where action and critic

networks were used to solve for the value function and the costate of a linear discrete-

time zero-sum game. The approach can be seen as a way of solving the Riccati equation
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that arises from the linear game. Li [45] extended this approach to achieve model-free

learning assuming the underlying dynamics to be a completely unknown linear continuous-

time system. In this approach, one critic network and two action networks were used

to approximate the value function, control and disturbance policies, with a least squares

method for estimating the unknown parameters.

Similar actor-critic methods can be applied to nonlinear systems as well. Representa-

tive approaches include Liu [46], where three neural networks were used to approximate the

value function, control input, and disturbance, respectively, and updated using a greedy

heuristic dynamic programming algorithm in conjunction with discrete-time affine non-

linear dynamics. Convergence can be proven for the scheme and tracking control can be

accomplished through a system transformation. Similarly, Zhang [47] proposed an iterative

ADP method with four action networks and two critic networks. Other methods have fo-

cused on simplifying the architecture by reducing the number of function approximations.

In approaches such as Dierks [48], a single approximator based scheme was used to achieve

optimal regulation and tracking control for an affine system. Zhang [49] used single critic

network for each player instead of the actor-critic dual network for a non-zero-sum game.

While the most common forms of the HJI do not account for constraints on the states

and control inputs, some ADP approaches can be modified to include these constraints.

Representative methods include Abu-Khalaf [50], where a neurodynamic programming

algorithm in conjunction with a two-player policy iteration was applied to a nonlinear

affine systems with input saturations. The result is a closed-form representation of the

feedback strategies and the value function. Related work by Abu-Khalaf [51] solved the

HJI by decomposing it into a sequence of differential equations linear in the cost for which

closed-form solutions are easier to obtain. The approach is combined with neural network

approximations and policy iteration to derive numerical solutions.

While most ADP approaches are executed offline to converge to a value function and
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a corresponding policy, several approaches promised the ability to identify solutions in

an online setting. Assuming completely known dynamics, Vamvoudakis [52] proposed a

method to learn online, in real time, an approximate local solution to the HJI. Termed

synchronous ZS game policy iteration, this approach was built on the actor-critic design

and used simultaneous continuous-time adaptation of critic, actor, and disturbance neural

networks. With the ability to learn online, it is then natural to extend H∞ designs with

dynamics that are only partially known or completely unknown. Notable approaches in-

clude Mehraeen [53] with an iterative approach using neural networks that approximated

a linear value function for discrete-time nonlinear systems with partially unknown internal

system dynamics, approximated by an additional neural network. Zhang [54] presented

the learning of a completely unknown nonlinear system in a data-driven approach, where

the dynamics is essentially replaced by available input-output data. In Wu [55], an online

simultaneous policy update algorithm was used for a system with unknown dynamics. Fi-

nally, Luo [56] proposed an off-policy reinforcement leaning design to learn the solution of

the Issacs equation from data, under a neural network based actor-critic structure.

Since no approximation strategy works for all optimization problems without modifi-

cation, ADP-based designs are highly domain specific. While most existing applications

of ADP in robust control utilized neural networks due to their universal function approx-

imation ability, these approaches are not without drawbacks. In practice, while a single

hidden layer neural network can approximate any function, it is often inefficient. This is

due to the fact that neurons may need to be allocated to every small volume of the input

space. As the number of such small volumes grows exponentially in the dimensionality of

the input space, convergence is rendered exponentially slow.

A remedy for this problem exists in machine learning in the form of so-called deep neural

networks or deep learning [57], where a many-layered feedforward neural network is trained

one layer at a time, treating each layer as an unsupervised restricted Boltzmann machine,

then using supervised backpropagation for fine-tuning. Though a deep architecture is not a
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universal approximator unless it is also exponentially large, it remains a viable alternative

to traditional neural networks for many applications. So far, these deep and recurrent

architectures have been used for optimal control [58], but not applied to robust control.

Reinforcement learning and learning-based solve the same robust control problem, but

using a different underlying philosphy. Robust control, as formulated under the Hinfty

approach, explicitly models potential sources of uncertainties, both internal and external

to the system. This is a design-drive, or top-down approach. Learning-based approaches,

on the other hand, elect to assume no existing knowledge of the underlying dynamics, and

instead explores the state space by perturbing the system. This is a data-driven, or bottom-

up approach. When the level of uncertainties in the system is small and isolated, then a

design-driven approach can often simply the design. If there are extensive uncertainties

that are hard to model, then a data-driven approach would have an advantage.

1.2.4 Local value function approximations

The philosophy of most ADP-based techniques reviewed in Section 1.2.3 is to use universal

function approximators, which are able to converge to the true value function given enough

computational resources. An alternative approach is to limit the order of the approximated

value function in order to gain computational efficiency.

In this approach, a simple way to approximate the value function is by defining poly-

nomial basis functions and form an optimization problem to search for the associated

coefficients. This is still done in the context of the Bellman equation, which can be relaxed

to an inequality, which the polynomial approximation must satisfy. This, by definition,

provides an underestimate of the value function. An example of this strategy can be found

in Wang [59], which utilized a quadratic approximation in its ADP implementation. When

viewed in the context of general low-order approximations to the value function, the spec-

trum of techniques known as sum-of-squares (SOS) optimization and differential dynamic
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programming (DDP) can be classified under the broad family of ADP algorithms, though

with the distinction of producing only locally optimal solutions.

In SOS, convex optimization [60] is used to automatically search for Lyapunov functions

to prove the stability of nonlinear dynamic systems in a polynomial form. SOS is based on

the idea of positivity of polynomials, which was shown by [61] to form a convex semidefinite

programming (SDP) problem [62]. Since a Lyapunov function is a matrix polynomial with

constraints on positivity (or non-negativity), SOS is a natural tool in the verification of

Lyapunov function candidates. An associated problem is the estimation of the domain

of attraction (DoA), which defines a neighborhood around an equilibrium for which all

trajectories converge to the equilibrium. The sub-level set of a Lyapunov function is

related to an inner estimate of the size of the domain of attraction.

Since a value function satisfies all the properties of a Lyapunov function, the Lyapunov

function found through SOS optimization can be seen as a quadratic approximation to

the value function. While originally developed only for the verification of stability, SOS

methods were extended to controller syntheses as well. The simultaneous search for a

controller and the associated domain of attraction can be formulated as a single SDP

problem, which can be achieved by rewriting conditions from basic Lyapunov stability

theory [12] as linear matrix inequalities (LMIs) [63]. By assuming a quadratic form of the

Lyapunov function, the resulting problem is convex and can be readily solved using interior

point methods [64]. The reader is referred to Chesi [65] for a comprehensive review of SOS

techniques for traditional control applications and we focus the subsequent discussions on

results relevant to robust control.

There exists a rich literature on the use of SOS and LMIs for the control of uncertain

systems and we refer the reader to a recent survey by Petersen [66] on the subject. There

is, however, a distinction between the worst-case uncertainty assumed by H∞ designs and

the bounded uncertainty models used by SOS approaches such as Ichihara [67] and Ma
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[68]. Where these approaches assumed a bounded uncertainty (in terms of disturbances or

parametric uncertainty), they do not model the worst-case and hence are not subject to

a minimax or differential game interpretation. Most applications of LMIs to H∞ control

focus on linear systems, such as in Gahinet [69], who introduced solvability conditions

involve Riccati inequalities. Poznyak [70] proposed a class of attractive ellipsoids methods

to construct linear-type feedback control synthesis that can also be applied to nonlinear

affine systems in the presence of uncertainties.

For general nonlinear systems, a convex parameterization of nonlinear H∞ control was

given by Lu [71] in terms of nonlinear matrix inequalities, which connected the solution

to Lyapunov stability but did not provide a computationally tractable solution. Further

developments by Prempain [72] formulated the L2-analysis problem which bypassed the

need to solve the HJI with a new problem linear in the Lyapunov function parameters.

This was done under the SOS framework with convex state-dependent LMIs for for an

affine nonlinear system. For single-input polytopic systems, Wu [73] proposed necessary

and sufficient conditions for verifying robust storage functions and provided conditions

for the existence of continuous robust state feedback controllers. More recently, Wei [74]

utilized SOS for L2-gain analysis and synthesized state feedback H∞ control iteratively

based on an initial controller that can stabilize the system to a finite L2-gain. Löfberg

[75] developed robust convex programming where uncertain semidefinite and second order

cone constraints were employed to optimize against the worst-case cost. Finally, Zheng

[76] reformulated the HJI inequalities as SDP conditions and used high order Lyapunov

functions in conjunction with SOS programming to obtain output feedback laws for a class

of nonlinear systems without orthonormal and decoupling assumptions.

SOS techniques are only applicable to polynomial systems. For systems dynamics that

are not originally polynomial, for example, mechanical systems with trigonometric terms,

a high-order Taylor expansion can be used to obtain a polynomial representation. This

creates additional computational burden and creates inaccuracies in the results. In general,

14 Jiuguang Wang



Numerical Nonlinear Robust Control with Applications to Humanoid Robots

computational efficiency with respect to dimensionality is a main drawback of SOS-based

approaches. While SOS is not subject to the curse of dimensionality in the traditional sense,

the search for a Lyapunov function remains difficult when the dimensionality of the system

is high. This stems from the fact that the number of monomial basis functions used to

construct the Lyapunov function explodes exponentially with the number of states. While

there are techniques to actively prune unnecessary monomials and reduce the number of

optimization parameters (for example, the method of Newton polytopes [77]), it leads to

a trade-off with the quality of the resulting approximation. This is a criticism that can be

extended to all forms of function approximators, such as those reviewed in Section 1.2.3.

More recently, several approaches have combined forms of value function approxima-

tion with trajectory optimization methods, which produce locally optimal solutions to the

underlying optimization problem. Methods based on differential dynamic programming

(DDP) [78], for example, have been applied to solve optimal control problems [79], with

some variants [80] specific for H∞ designs. DDP approximates the value function using

locally quadratic models and uses local trajectory optimizers to globally optimize a policy

and associated value functions. Another related class of method is the so-called path in-

tegral controls [81] [82], which utilizes an exponential transformation of the Bellman value

function to reduce the stochastic Hamilton-Jacobi-Bellman equation into a linear form,

which can then be solved with Monte Carlo sampling. Path integrals and related formu-

lations using direct numerical optimization [83] can be seen as a trajectory-based value

function approximation. Finally, LQR-trees [84] [85] combines SOS-based stability veri-

fication with sampling-based planners under the rapidly-exploring random tree paradigm

[86], which creates a sparse tree of trajectories that probabilistically covers the entire con-

trollable subset of state space. DDP, path integrals, and LQR-trees all have variants which

deal with optimal and stochastic control problems, but so far, there is only limited work

on investigating the applicability of these approaches in robust control problems.
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1.2.5 Trajectory optimization

Dynamic programming (and by extension, ADP)-based approaches to optimal and robust

control yield globally optimal solutions, by the virtue of solving the full necessary and

sufficient conditions for optimality. As these approaches become intractable for large scale

problems, researchers have turned to more relaxed forms of optimization which produce

only local solutions. A representative approach is Pontryagin’s minimum (also maximum)

principle (PMP) [14], which is only a necessary condition for optimality when satisfied

along a trajectory. Pontryagin extended the classical calculus of variations [87] to consider

inequality constraints in the control inputs, and in particular, to cases where the control

inputs are bounded.

In short, the PMP stated that the Hamiltonian must be minimized over the set of all

permissible controls within their bounded region at each point along the path. This is an

observation consistent with dynamic programming, which minimizes the Hamiltonian at

each point in the state space. The PMP also defined the relationship of the state variable

with the costate, also known as the adjoint, which are the Lagrange multipliers used in

the constrained optimization. For simple problems, the optimal controls can be solved as

functions of the costate. For more complex problems, the solution of the costate equa-

tions and the associated optimal controls form a two-point boundary-value problem (BVP)

[88], which can be solved numerically to yield an open-loop trajectory to the underlying

optimization problem. We refer the reader to Bryson [14] and Kirk [89] for a classical

treatment of the PMP in optimal control.

The PMP has been extended to differential games since Pontryagin’s time [90]. Whereas

dynamic programming, ADP, and other local value function approximations reviewed in

previous sections are closed-loop solutions to the differential game, the PMP gave open-

loop admissible controls. Closed-loop strategies imply that the strategy is a function of

both time and state, which changes as the system evolves, based on the current state of
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the system. In an open-loop solution setting, both players formulate their strategy at the

moment the system starts to evolve, based on information available at the time: the system

dynamics, the objective function, and initial conditions. This strategy is only a function

of time, and cannot be changed once the system evolves. The saddle-point solution is the

combination of strategies of both players which are secured against any attempt by one

player to unilaterally change his strategy (the definition of a Nash equilibrium).

In the context of robust control under the H∞ and minimax formulations, a represen-

tative work is Boltyansky [91] where a version of the PMP was developed for the minimax

control of systems with unknown parameters from a given finite set. This work was gener-

alized by Boltyanski [92] to include problems with Bolza and Lagrange forms of objective

functions. A recent book by Boltyanski [93] summarized the developments in this area.

Algorithms based on the PMP are often referred to as indirect trajectory optimiza-

tion, owning to the fact that an extra step of forming the necessary conditions is done

first before a discrete optimization problem is obtained. In contrast, direct trajectory opti-

mization transcribes a continuous-time optimal control problem directly into an equivalent

nonlinear programming problem (NLP) [94]. This is done by parameterizing the state and

control spaces using a parametric representation and solving the resulting optimization by

satisfying the constraints at particular collocation points. This is an idea borrowed from

the numerical solution of differential equations [95], for which the collocation method is

a well-established approximate method. The use of collocation in optimal control is a

a NLP problem, which can in turn, be converted to a sequential quadratic programming

(SQP) problem [96] and solved with a numerical optimization solver such as SNOPT [97]

to produce the locally optimal solutions.

One of the most popular direct trajectory optimization tools is pseudospectral meth-

ods [98]. It is a class of direct collocation methods where the state and control vectors

are parametrized by Lagrange polynomials [99] and collocating the differential-algebraic
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equations using nodes obtained from a Gaussian quadrature. Various strategies have been

proposed for the form of the collocation points, the three most commonly used are the

Legendre-Gauss(LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL)

points, which are obtained from the roots of a Legendre polynomial, belonging to a more

general class of Jacobi polynomials [100]. Orthogonal polynomial enjoy the property of

spectral accuracy [101], which states that the approximation enjoys an exponential conver-

gence as the degree of the polynomial is increased, and hence avoid the so-called Runge’s

phenomenon [101]. Other forms of polynomial approximations, such as splines, RBFs, and

wavelets, do not have spectral accuracy. In addition, as the derivatives of orthogonal poly-

nomials can be written in terms of the same orthogonal polynomials, mechanical systems

in terms of position, velocity, acceleration can be more compactly represented.

Comparing direct and indirect methods for trajectory optimization, it can be noted that

both require initial guesses for the solutions to be in the neighborhood of the optimum in

order to produce good results. Indirect methods tends to enjoy more accurate overall

solution with assurances on its local optimality. But forming the analytical expressions for

the necessary conditions of optimality can be infeasible for large scale nonlinear dynamics,

where direct methods have an advantage. Direct methods can incorporate state and input

constraints into the optimization framework, in addition to enjoying more readily available

solvers as well as being more robust in convergence with respect to inaccurate initial guesses.

A broad overview of numerical methods in optimal control can be found in Betts [94] and

Subchan [102]

Another advantage of trajectory optimization based solutions to optimal control is

the ability to deal with under-actuated systems, which has less number of control inputs

compared to the total number of degrees of freedom for the system. Unlike analytical tools

in nonlinear control design, an optimization-based approach can determine the proper

allocation of control inputs to the system, inherently handling the under-actuation. An

example of this can be found in [103].
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While direct trajectory optimization has been successful in addressing optimal control

problems, applying it to robust control is not straightforward and a naive implementation

tends to result in an expensive optimization problem. To the best of our knowledge,

no successful implementation of direct trajectory optimization has been demonstrated for

robust control problems.

1.2.6 Receding horizon control

One outstanding issue in both optimal and robust control is how an open-loop solution

to the optimization problem can be applied in a closed-loop setting. While open-loop

solutions are admissible control inputs and obey the dynamics, they cannot compensate

for responses of the system that differ from the predicted model. Doing so would require

feedback, which is the basis for all closed-loop systems.

One popular approach in applying open-loop optimization is receding horizon control

(RHC), also known as model predictive control (MPC). In a RHC setting, an optimization

problem is solved and applied over a small planning horizon. As the response of the system

diverges from the predicted model, a new optimization problem is solved and the process

is repeated until convergence. The advantage of RHC compared to traditional control

designs lies in its ability to iteratively apply simple controllers to solve more complex prob-

lems. Similar to how constrained optimal control problems can be tackled by iteratively

solve a series of unconstrained ones [104], the receding-horizon formulation can be used

to design closed-loop controls with open-loop trajectories. Franz [105] computed B-spline

parameterized trajectories with a SQP-based method, and applied the trajectories in a

RHC formulation. A survey by Diehl [106] reviewed related methods with Newton type

optimization methods and SQP in the context of RHC for optimal control.

We refer readers to Kwon [107] for a review of general RHC methods in optimal control

and instead focus the subsequent discussion on the use of RHC in robust control prob-
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lems. The issue of robustness in RHC can be considered both passively and actively. A

passive approach designs a RHC with nominal stability and consider stability margins for

uncertainty and disturbances in retrospect. As shown in Magni [108], certain RHC designs

are optimal in the sense that it is also optimal for a modified optimal control problem

spanning over an infinite horizon. Therefore, the RHC is robust with respect to sector

bounded input uncertainties, a property inherited as the sampling time goes to zero.

An active approach to robust RHC directly models uncertainty and disturbance in an

H∞ sense, and hence is more relevant to our discussion. It is, however, not a trivial endeavor

since this formulation requires solving the HJI in some form. Chen [109], Blauwkamp

[110], and Magni [111] [112] applied a game theoretic approach to nonlinear RHC, for

which open-loop solutions to linearized H∞ subproblems were obtained and applied in a

receding-horizon fashion. While this simplified the designs considerably, in certain cases, no

feasible solution can be found at all as one input signal must reject all possible disturbances.

This is a limitation of the linear nature of the design. More recently, Yu [113] proposed

a LMI-based solution to the HJI, on a linearized model of the original nonlinear system,

which guaranteed L2-performance. While still linear in nature, it is an improvement on

previous open-loop solutions. Related is Gautam [114], which presented a receding horizon

style coordinated control framework involving dynamically decoupled subsystems which

are required to reach a consensus condition, with the underlying H∞ problem solved with

LMIs.

Overall, robust RHC remains a largely unsolved problem. This is due to the fact that

solving the HJI, even in a limited sense, is computationally burdensome and cannot be

easily applied in an iterative setting.
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1.2.7 Multi-model robust control

Given that nonlinear H∞ designs in terms of the HJI are difficult to pursue, a heuristic

approach to designing robust optimal feedback control called multi-model control evaluates

the performance of a given control law over a distribution of possible models. A distribution

of models allow the optimization to consider the expected cost over a range of possible

outcomes and account for the maximum cost (or the worst case). In essence, the philosophy

of multi-model control does not fundamentally differ from that of H∞ control, though in

practice, the problem structure differs significantly from traditional H∞ designs.

The use of a distribution of models has been used in a number of different setting in

robotics, machine learning, and state estimation and control. In reinforcement learning,

for example, Cutler [115] proposed the use of multifidelity simulators, which effectively

is a distribution of possible world models in which the learning is based on. In robotics,

Cunningham [116] designed the controller such that it execute a policy from a set of

plausible closed-loop policies, derived from models based on partially observable Markov

decision processes. Ensemble control [117] is a class of methods which model a family of

independent, structurally identical, finite-dimensional systems with variations in system

parameters. A single common controller, which can be designed under an optimal control

framework [118], steers the family of models between points of interests. Ensemble control

has been applied in robotics settings [119], but is restrictive in the forms of structural

parametric uncertainties that can be modeled.

In multi-model control designs, an early work by Varga [120] designed optimal output

feedback control for multi-model linear-quadratic systems. More rigorously, Poznyak [121]

formulated necessary conditions for multiple model LQ systems using the maximum prin-

ciple, which was recently extended in [122] and Miranda [123]. For multi-model nonlinear

systems, Azhmyakov [124] was the first to formulate necessary and sufficient conditions us-

ing dynamic programming. A recent book by Boltanski [93] summarized these approaches
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from the prospective of both the dynamic programming principle as well as Pontryagin’s

minimum principle. Closely related is Whitman [125], where the implementation of a

dynamic programming-based control design for the multi-model pendulum swing-up prob-

lem demonstrated the effectiveness of multi-model designs in addressing uncertainty. While

these attempts are more expressive in modeling uncertainty and thus more robust compared

to the traditional H∞ approach, they are unattractive from a computational viewpoint:

the two-point boundary value problem arising from the maximum principle is difficult

to solve while the dynamic programming-based approaches are ultimately limited in the

dimensionality of the system that they can handle.

Multi-model design are also used in trajectory optimization where only locally optimal

solutions are desired. McNaughton [126] designed the system CASTRO using a direct

collocation based trajectory optimizer DIRCOL and simultaneously optimized trajectories

for multiple models, each using different estimates for the system parameters. The result-

ing system was demonstrated on a two-link pendulum swing up problem. More recently,

Atkeson [127] gave a policy optimization approach where first and second order analytic

gradients were used to obtain local solutions to multi-model dynamics. While these ap-

proaches are computationally attractive, they lack the rigorous theoretical guarantees for

convergence and optimality. Depending on the specific baseline trajectory optimization

method used, it can also be difficult to implement and parallelize the algorithms.

1.3 Formulation

1.3.1 System dynamics

In this section, we describe the general formulation of nonlinear robust control as an op-

timization problem that will be used throughout the remainder of the thesis. Consider a
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nonlinear system

ẋ = f(x) + g(x)u(t)

z = [h(x), u]T

x(t0) = x0, (1.1)

with x(t) ∈ X is the state vector, z(t) ∈ Z is the output vector, u(t) ∈ U is the vector of

controlled inputs to the system, x0 is a vector of initial states, and the matrices f(x), g(x),

and h(x) are the system matrices that are smooth vector fields not explicitly parameterized

by time. This form is commonly referred to as the control affine form since it linear in the

actions but nonlinear with respect to the states. We assume, without a loss of generality,

that the origin x(t) = 0 is an equilibrium of the system, i.e., x(t) = 0,∀t ∈ [t0,∞). Given

any initial states x0, we call u(x, t) a feedback control law or policy that is an explicit

function of the states. When u is not parameterized by the states, then we call x(t, t0, x0, u)

the trajectory of the system from initial time t0 to final time tf .

In robust control, we wish to consider potential sources of uncertainty that significantly

affect the performance of the system. Typically, these uncertainties may include

• External disturbances: external perturbations to the system which are potentially

time-varying and can alter the equilibrium state of the system

• Parametric uncertainty: parameters within the system dynamics, such as mass and

stiffness, that are difficult to determine with complete accuracy or known to vary due

to degradation and wear over time

• Unmodeled dynamics: higher-order dynamics (such as actuator dynamics) that has

not been modeled but has has a significant effect on the response of the system in

real life
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Where in traditional model-based control designs, these uncertainties are assumed to be

addressed by the feedback controls implicitly, we wish to explicitly design the controller to

account for these uncertainties. We make the assumption that the disturbances are bounded

and the parametric uncertainties are structured. These assumptions and the corresponding

modifications to the system dynamics are stated below.

1.3.2 Uncertainty modeling

To model an external disturbance, we assume that the effect of the disturbance on the sys-

tem dynamics is structurally additive. We alter the dynamics in (1.1) and add a disturbance

term w ∈ W with an associated coefficient to form the system

ẋ(t) = f(x) + g1(x)w(t) + g2(x)u(t)

z(t) = [h(x), u(t)]T

x(t0) = x0, (1.2)

where f(x), g1(x) and g2(x) are the new system matrices. Consider the space L2[0,∞) for

all piecewise-continuous inputs defined on [0,∞) satisfying∫ ∞
0

‖v(t)‖2dt <∞. (1.3)

The nonnegative number

‖v‖2 ≡
(∫ ∞

0

‖v(t)‖2dt

) 1
2

(1.4)

is the L2-norm of v. Suppose the disturbance term w is a function in L2[0,∞). We use the

concept of L2-gain and H∞-norm to bound the response of the system under disturbance.
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Definition 1.1. (L2-gain). Given an external disturbance w ∈ W and the corresponding

output z(t) ∈ Z, the input-output relationship

∫ tf

t0

‖z(t)‖2 dt ≤ γ2

∫ tf

t0

‖w(t)‖2 dt+ κ(x0), ∀tf > t0, (1.5)

is bounded for any tf > 0, initial states x0, a scalar γ, and some bounded function κ such

that κ(0) = 0. We define the L2-gain from w to z to be the ratio between the L2-norm of

the output and the L2-norm of the input, which is bounded by γ according to (1.5).

In other words, for any disturbance w ∈ L2[0,∞), the response of the system from the

initial states x0 is defined for all tf ≥ 0, which produces the output z which is also a

function in L2[0,∞).

Definition 1.2. (H∞-norm). The H∞-norm of the system is the maximum gain of the

system for all L2-bounded disturbances, that is, the L2-gain of the system from w to z is

the induced-norm from L2 to L2:

H∞ = sup
0 6=w∈L2(0,∞)

‖z(t)‖2

‖w(t)‖2

, x(t0) = 0, (1.6)

where for any v : [t0, tf ],

‖v‖2
2,[t0,tf ]≡

∫ tf

t0

m∑
i=1

|vi(t)|2 dt. (1.7)

The goal of disturbance rejection control is to render locally the L2-gain of the system

to be less than or equal to γ such that all state trajectories are bounded and converge to

the equilibrium point. Clearly, this can be alternatively stated as the minimization of the

H∞-norm, which is commonly referred to as H∞-control. Later in this chapter, we will

formally state an optimization framework for the H∞-norm minimization problem.

To model parametric uncertainties in the system, we assume that the uncertainties

are structurally additive as opposed to a more general multiplicative form. This is a
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restrictive assumption done to preserve the control-affine form of the system and simplify

derivations for the solutions. We will revisit this assumption in Chapter 5 and present

an alternative formulation which relaxes it. For now, we form the system dynamics with

additive uncertainties as

Definition 1.3. (Uncertain affine system dynamics). The dynamics of the system is given

by a set of first-order differential equations

ẋ(t) =
[
f(x) + ∆f(x, θ, t)

]
+ g1(x)w(t) +

[
g2(x) + ∆g2(x, θ, t)

]
u(t)

z(t) = [h(x), u(t)]T

x(t0) = x0, (1.8)

where x(t) ∈ X is the state vector, z(t) ∈ Z is the output vector, u(t) ∈ U is the vector of

controlled inputs to the system, x0 is a vector of initial states, and the matrices f(x), g(x),

and h(x) are the system matrices that are smooth vector fields not explicitly parameterized

by time, along with a set of admissible uncertainties ∆f(x, θ, t) and ∆g2(x, θ, t).

Definition 1.4. (Admissible uncertainties). The parameter θ ∈ Θ is the uncertain system

parameter which belongs to the set

Θ = {θ|0 ≤ θ ≤ θu} (1.9)

that is bounded above by θu. Parametrized by θ, the functions ∆f(x, θ, t) and ∆g2(x, θ, t)

are uncertain functions belonging to the set of admissible uncertainties, defined by

∆f(x, θ, t) = H2(x)F (x, θ, t)E1(x)

∆g2(x, θ, t) = g2(x)F (x, θ, t)E2(x), (1.10)

for ‖F (x, θ, t)‖2≤ β, bounded by the constant β. Here, H2, E1, and E2 are appropriate
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state-dependent weight matrices for F (x, θ, t).

Intuitively, we assume that the uncertainties are bounded by a sphere. This is a gener-

alization of the admissible uncertainties used in guaranteed-cost control [128][33], referred

to as structured and matched. It is useful for modeling uncertainties in nonlinear systems

since it accounts for both external disturbances and parametric uncertainties. In conjunc-

tion with the definition of the H∞ norm, we can formulate an optimization problem to

address both disturbances and uncertainties under this form.

1.3.3 Optimization

Given the system dynamics in (1.8), we seek a control input u which stabilizes the system

under the assumed admissible uncertainties. To accomplish this, we formulate the following

optimization framework.

Definition 1.5. (Minimax objective function). The optimization objective take the form

J(x, u, w, θ) = min
u∈U

max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt, (1.11)

given a scalar γ and a time horizon tf > t0. We assume that x(t) = 0 is an unique

equilibrium point of the system with u(t) = 0 and w(t) = 0.

This optimization framework is called minimax in the sense that we try to minimize the

objective function under the worst possible disturbances or parameter variations, which

maximizes the same objective function. It is also clear that (1.11) can be interpreted as a

noncooperative, two-player, zero-sum differential game where one player seeks to minimize

J1(x, u, w, θ) = min
u∈U

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt, (1.12)
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while the other player seeks to maximize

J2(x, u, w, θ) = max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt. (1.13)

These opposing objectives are related by

J1(x, u, w, θ) = −J2(x, u, w, θ). (1.14)

This adversarial optimization problem is a differential game, since both players are con-

strained by the system dynamics, a set of ordinary differential equations, as well as the

associated uncertainties. Furthermore, the game is non-cooperative as each player chooses a

feasible strategy independent of the other player’s strategy and the payoff depends on both

players’ strategies. The outcome is zero-sum, since one player’s gain is exactly balanced

by the other player’s loss.

In the context of game theory, the equilibrium strategy for this differential game consti-

tutes a Nash equilibrium [17], also called a saddle-point, which can be intuitively explained

as a pair of strategies secured against any attempt by one player to unilaterally change his

strategy. In a continuous-time setting, a pair of strategies (u∗, w∗) forms a Nash equilibrium

if

J1(x, u∗, w∗, θ) ≤ J1(x, u, w∗, θ), ∀u ∈ U , θ ∈ Θ (1.15)

J2(x, u∗, w∗, θ) ≥ J2(x, u∗, w, θ), ∀w ∈ W , θ ∈ Θ. (1.16)

Equivalently, the saddle-point condition indicates that

J(x, u∗, w, θ) ≤ J(x, u∗, w∗, θ) ≤ J(u,w∗, θ), ∀u ∈ U , w ∈ W , θ ∈ Θ. (1.17)

Unlike static games, differential game theory utilizes the concept of both open and closed-
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loop solutions. In an open-loop setting, both players formulate their strategy at the mo-

ment the system starts to evolve, based on information available at the time: the system

dynamics, the objective function, and initial conditions. This strategy cannot be changed

once the system evolves and the saddle-point solution is the combination of strategies of

both players which are secured against any attempt by one player to unilaterally change

his strategy. Closed-loop strategies imply that the strategy can be changed as the system

evolves, based on the current state of the system. Mathematically, an open-loop strategy

is the pair (u(t), w(t), t0) as functions of time only, and a closed-loop strategy is the pair

(u(x, t), w(x, t)) as functions of both time and state. We will discuss open-loop solutions

in detail in Chapter 4.3.

One key assumption to a differential-game formulation to robust control is the notation

of rationality. Both players in this adversarial optimization problem are assumed to act

rationally and independently. If this assumption is violated, then the robust controller will

exhibit sub-optimality or conservatism. An extensive discussion of this issue can be found

in Section 6.5, in the context of experimental results.

1.4 Thesis contributions

In this thesis, we aim to improve feedback control design by explicitly modeling sources

of uncertainties and provide a tractable computational approach to robust control. We

make three novel contributions to nonlinear robust control for the problem described in

Section 1.3. Specifically,

In Chapter 3, we design global methods that provide exact and approximated solutions

to the nonlinear robust control problem. We derive necessary and sufficient conditions

for optimality in terms of a Hamilton-Jacobi-Isaacs equation, which forms the basis of a

two-play differential game. A value function is given as the solution of the HJI, from which
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optimal feedback control laws can be derived for both players. We interpret these feedback

control laws, in the context of strategies for opposing players and the value function. For

practical solutions of the HJI, we present a value function approximation approach, which

relies on Fourier basis functions in connection with Galerkin’s method.

In Chapter 4, we extend direct trajectory optimization to nonlinear robust control,

where open-loop trajectories are obtained in accordance with necessary conditions for op-

timality. The proposed framework transforms a minimax optimization problem into a min-

imization problem with complementarity conditions. The resulting problem is solved by

trajectory optimization, which transcribes a continuous-time robust control problem into

an equivalent discrete form by parameterizing the state and control spaces using global

polynomials and collocating the differential-algebraic equations using nodes obtained from

a Gaussian quadrature. We apply the open-loop trajectories in a receding-horizon control

setting.

In Chapter 5, we develop a heuristic approach to robust control design based on the

concept of multiple models, which evaluates the performance of a given control law over

a distribution of possible system dynamics. A distribution of models allow the optimiza-

tion to consider the expected cost over a range of possible outcomes and account for the

maximum cost for the worst-case scenario. We improve on the approaches presented in

Chapter 3 and Chapter 4 by removing restrictive assumptions made on the forms of uncer-

tainties, which enable the approach to compensate for effects such as unmodeled dynamics.

We develop these results in the context of necessary and sufficient conditions for individ-

ual value functions similar to Chapter 3 and utilize the robust trajectory optimization

approach in Chapter 4 to compute open-loop trajectories that simultaneously satisfied the

optimality conditions for multiple models. We demonstrate the use of these trajectories in

a receding-horizon setting.

These contributions are united with the framework of spectral approximation, which we
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introduce in Chapter 2. Through the use of a least-squares approximation framework, we

introduce polynomial approximation which generates polynomials that exhibit properties of

stability and convergence, in the form of a special class of polynomials known as orthogonal

polynomials. In each chapter, we use a two-dimensional uncertain system as a benchmark

problem to evaluate the proposed approach. In Chapter 6, we give simulation results for

the three approaches on large scale systems and address the scalability of the proposed

approaches in terms of dimensionality.

Compared to existing literature in robust control, this work is distinct in several as-

pects. First, we remove the restrictive assumptions on the forms of uncertainties that can

be modeled and provide a general framework from which parametric system uncertainties,

external disturbances, and unmodeled dynamics can be simultaneously addressed in a con-

sistent optimization framework. Second, we provide a spectral approximation framework

from which both global and local solutions can be obtained. Finally, we give computa-

tional techniques that significantly improve the scalability nonlinear robust control designs

in comparison to previous work and provide solutions to high-dimensional problems that

were previously intractable.
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2
Background: Spectral Approximations

2.1 Motivation

A central idea in dynamic programming, reinforcement learning, and trajectory optimiza-

tion is function approximation, the use of a combination of basis functions from a well-

defined class that closely matches a given continuous function. In this chapter, we review

a class of techniques in approximation theory and numerical analysis known as spectral

function approximation. We do so with a focus on approximations in a least-squares sense,

which generates polynomials that exhibit properties of stability and convergence, in the

form of a special class of polynomials known as orthogonal polynomials. These function ap-

proximation techniques will be used in the subsequent chapters, in both single-dimensional

(trajectory) and multi-dimensional (value function) settings. For a comprehensive overview

of function approximation using spectral methods, we refer the readers to Askey [100],

Quarteroni [101], Boyd [129], and Shen [130].

It is well known that any continuous function f(x) can be represented in terms of n

basis functions

{φ0(x), φ1(x), . . . , φn(x)} (2.1)

and a finite-dimensional approximation of f(x) can be done using a linear combination of
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these basis functions in the form

f̃(x) =
n∑
i=1

ciφi(x), (2.2)

where the variables ci are coefficients associated with the basis functions φi(x). In this

form, the monomial basis

φk(x) = xk (2.3)

gives a polynomial approximation of f(x). The Weierstrass approximation theorem states

that for every continuous function defined on an internal [a, b], there exists a polynomial

Pn(x) of degree n such that

lim
n→∞

(
max
a≤x≤b

|f(x)− Pn(x)|
)

= 0. (2.4)

In other words, f(x) can be uniformly approximated by Pn(x) to arbitrary accuracy when

n is sufficiently large. While the Weierstrass theorem opens up the possibility of using

polynomials for the purposes of approximation, it does not specify the form of the poly-

nomial. In particular, it does not specify constraints on the basis function or locations at

which the original function f(x) is to be sampled. As it turns out, certain choices of basis

functions and sampling schemes can lead to instability. As demonstrated by the so-called

Runge’s phenomenon, when a function is sampled and interpolated at equidistant nodes

xi =
2i

n
− 1, i ∈ {0, 1, . . . , n} , (2.5)

the error of the approximation

lim
n→∞

(
max
−1≤x≤1

|f(x)− Pn(x)|
)

=∞ (2.6)
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Figure 2.1: Runge’s phenomenon for the function f(x) = 1
1+25x2

.

grows without bound as the degree n of the polynomial increases. Fig. 2.1(a) demonstrates

Runge’s phenomenon for the function

f(x) =
1

1 + 25x2
, (2.7)

where 5th and 9th-order polynomial approximations are constructed using equidistant

nodes. While a higher-order approximation is more accurate in the center, the errors are

higher in the boundaries compared to a lower-order approximation. Fig. 2.1(b) shows the

approximation error for orders n = 5, 7, 11, 15 where the errors continue to accumulate

despite increasing the approximation order.

Runge’s phenomenon shows that when attempting to approximate a given function,

the selection of nodes and the choice of basis functions play important roles in the quality

of the approximation. A stable approximation indicates that the approximation does not
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exhibit Runge’s phenomenon, while the rate of convergence indicates the rate in which the

approximation error is decreased when the degree of the polynomial is increased.

2.2 Least-squares approximation

We pursue a well-formed polynomial approximation in the least-squares sense, as typi-

cally, there are more data (interpolation nodes) than the unknowns (coefficients of basis

functions), creating an overdetermined system. In this formulation, the coefficients are

obtained by evaluating a candidate polynomial and minimizing the sum of the squares of

the errors made at the interpolation nodes.

Consider the weighted L2-norm of a function f(x)

‖f‖2,w=

(∫ b

a

(f(x))2w(x) dx

) 1
2

. (2.8)

The least-squares approximation problem is formulated to determine the polynomial that

is closest to f(x) such that

‖f(x)− f̃ ∗(x)‖2,w= min
f̃(x)
‖f(x)− f̃(x)‖2,w. (2.9)

In other words, the weighted L2-norm of the approximation errors are minimized. In terms

of the basis functions in (2.2), this is the problem of determining coefficients c such that

c∗ = arg min
c
‖f(x)− f̃(x)‖2,w, (2.10)

which gives the orthogonal projection of f(x) onto the finite-dimensional basis. Instead of

minimizing the the L2-norm of the difference, we can minimize its square. Let E denote
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the square of the weighted L2-distance between f(x) and f̃(x)

E(c0, . . . , cn) =

∫ b

a

w(x)
(
f(x)− f̃(x)

)2

dx, (2.11)

which is a quadratic function of the coefficients. A necessary condition for optimality for

this unconstrained minimization problem is

∂E

∂cj

∣∣∣∣
c=c∗

= 0. (2.12)

By taking the partial derivative and simplifying, we obtain

− 2

∫ b

a

w(x)φj(x)f(x) dx+ 2
n∑
i=0

c∗i

∫ b

a

w(x)φi(x)φj(x) dx = 0, (2.13)

which implies that

n∑
i=0

c∗i

∫ b

a

w(x)φi(x)φj(x) dx =

∫ b

a

w(x)φj(x)f(x) dx, j = 0, . . . , n. (2.14)

It is clear that if the integral term on the left-hand side of (2.14) evaluates to a scalar,

then the problem is simplified considerably and we can obtain a closed-form expression for

c∗ in terms of other variables. In the simplest case, this can be done using basis functions

φi(x) and φj(x) associated with orthonormal polynomials, defined on the inner product

with respect to a weight w(x)

∫ b

a

φi(x)φj(x)w(x) dx = δij =

 1 i = j

0 i 6= j
, (2.15)

where δij is the Kronecker delta function. When the basis function satisfy this orthogonality

property, the integral on the left-hand side of (2.14) evaluates to 1 and can be removed
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entirely, resulting in the coefficients

c∗i =

∫ b

a

φi(x)f(x)w(x) dx, i = 0, . . . , n. (2.16)

For more general problems, with polynomials that satisfy

∫ b

a

φi(x)φj(x)w(x) dx = δij =


∫ b
a
(φi(x))2w(x) dx i = j

0 i 6= j
, (2.17)

with
∫ b
a
(φi(x))2w(x) dx that does not necessarily evaluates to 1, the basis functions form

orthogonal polynomials. Consequently, the solution to the least squares problem is given

by the coefficients

c∗i =

∫ b
a
φi(x)f(x)w(x) dx∫ b
a
(φi(x))2w(x) dx

, i = 0, . . . , n. (2.18)

In this formulation, to approximate a given function f(x) involves selecting a basis

function φ(x) and computing the coefficients c. In the subsequent sections, we will de-

scribe different choices for orthogonal polynomials and a way of computing the (2.18)

using Gaussian quadrature.

2.3 Orthogonal polynomials

Consider the weighted Sobolev space

L2
w(a, b) =

{
f :

∫ b

a

f 2(x)w(x) dx < +∞
}

(2.19)

38 Jiuguang Wang



Numerical Nonlinear Robust Control with Applications to Humanoid Robots

defined on an interval (a, b) with the weight function w(x). An inner product for functions

f and g defined on this space takes the form

(f, g)w =

∫ b

a

f(x)g(x)w(x) dx. (2.20)

We note that the the L2-norm can be expressed using the inner product

‖f‖L2w= (f, f)
1
2
2 (2.21)

and

(f, g)2 = 0 (2.22)

if f and g are orthogonal to each other. A polynomial

pn(x) = xn + ann−1x
n−1 + · · ·+ a

(n)
0 (2.23)

with degree n is orthogonal in L2
w(a, b) if

(pi, pj)w = 0, for i 6= j. (2.24)

For any given positive weight function w(x), there exists a unique set of orthogonal poly-

nomials that can be constructed as a three-term recurrence relation

p0 = 1

p1 = x− α1

pn = (x− αn+1)pn − βn+1pn−1, n ≥ 1, (2.25)
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where the coefficients α and β are given by

α1 =

∫ b

a

w(x)x dx
/∫ b

a

w(x) dx

αn+1 =

∫ b

a

xwp2
n dx

/∫ b

a

wp2
n dx

βn+1 =

∫ b

a

xwpnpn−1 dx
/∫ b

a

wp2
n−1 dx. (2.26)

All orthogonal polynomials can be constructed using these three-term recurrence relations,

and among the most popular classical orthogonal polynomials is the Jacobi family of poly-

nomials, defined with the weight

w(x) = (1− x)α(1 + x)β for α, β > −1, (a, b) = (−1, 1). (2.27)

By definition, Jacobi polynomials are orthogonal since the choice of weight function pro-

duces ∫ 1

−1

pn(x)pm(x)(1− x)α(1 + x)β dx = 0, for n 6= m. (2.28)

Legendre and Chebyshev polynomials belong to the Jacobi family and can be generated by

varying the parameters α and beta. For α = β = 0, we form the Legendre polynomials.

For α = β = −1
2
, we get the Chebyshev polynomials. For now, we focus mainly on the

Legendre polynomials.

On an interval (a, b) = (−1, 1) with w(x) = 1, the Legendre polynomial is defined as

L0(x) = 1

L1(x) = x

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x), n ≥ 1. (2.29)
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It is easy to check that Legendre polynomials are orthogonal in [−1, 1] since

∫ 1

−1

Li(x)Lj(x) dx =
2

2i+ 1
δij. (2.30)

The Legendre polynomial can also be defined in terms of its derivatives L′ such that

Ln(x) =
1

2n+ 1
(L′n+1(x)− L′n−1(x)), n ≥ 1, (2.31)

where the first and second derivatives are given by

L′n(x) =
n−1∑
k=0

(2k + 1)Lk(x), k + n is odd

L′′n(x) = (k +
1

2
)(n(n+ 1)− k(k + 1))Lk(x). (2.32)

A sequence {L′i(x)} is mutually orthogonal with respect to w(x) = 1− x2 since

∫ 1

−1

L′i(x)L′j(x)(1− x2) dx =
2i(i+ 1)

2i+ 1
δij. (2.33)

By using Legendre polynomials, we have fixed the form of the basis functions in (2.2).

What remains is the computation of corresponding coefficients in the form of (2.18), which

we will describe in the next section.
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2.4 Gaussian quadrature

Previously in (2.18), we have shown that the coefficients in a least-squares polynomial

approximation are given by

c∗i =

∫ b
a
φi(x)f(x)w(x) dx∫ b
a
(φi(x))2w(x) dx

, i = 0, . . . , n. (2.34)

With the choice of orthogonal polynomials, the weight function w(x) and basis functions

φi are fixed. The evaluation of expression now depends on the computation of definite

integrals, subject to the selection of samples for the function f(x). We approach the

integration problem numerically and show that the choice of interpolation nodes can in

fact be given in association with numerical quadratures.

Weighted quadratures are numerical integration schemes of the form

∫ 1

−1

f(x)w(x) dx ≈
n∑
i=0

Aif(xi) (2.35)

over an the interval [−1, 1] where w(x) > 0 is a weight function. Quadratures of this form

applies generally to intervals [a, b] by a simple linear transformation. Let

λ(t) =
b− a

2
t+

a+ b

2
. (2.36)

Then ∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f(λ(t)) dt ≈ b− a
2

n∑
i=0

Aif(λ(ti)), (2.37)

which implies that

∫ b

a

f(x) dx =
b− a

2

n∑
i=0

Aif

(
b− a

2
ti +

a+ b

d− c

)
. (2.38)
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For brevity, we will use the form

∫ b

a

f(x)w(x) dx ≈
n∑
i=0

Aif(xi) (2.39)

in the subsequent derivations and assume that the transformation has been done implicitly.

Numerical quadratures operate by sampling the given function f(x) at selected nodes

(sometimes referred to as abscissas) and quantifying the order of the quadrature by ex-

amining the highest degree polynomial in the integrand for which the quadrature is exact.

For example, three-point and five-point centered difference formulas are exact when ap-

plied to second-degree and fourth-degree polynomials, respectively. If the choice of nodes

x0, x1, . . . , xN are made a priori, for example, with equidistant nodes, then resulting scheme

(known as Newton-Cotes) has the coefficient

Ai =

∫ b

a

w(x)

∏
i 6=j(x− xj)∏
i 6=j(xi − xj)

dx, (2.40)

which can be shown to be exact if the integrand is a polynomial of degree at most n.

In this approach, the choice of nodes is fixed with n+1 number of unknown coefficients

Ai, which are explicitly dependent on the nodes. As observed by Gauss, if we can deter-

mine the location of the nodes (for example, in a non-equidistant fashion) in conjunction

with coefficients, then we have twice as many parameters to choose from to maximize the

accuracy of the quadrature. With 2n+ 2 degrees of freedom, the result is a higher degree

of accuracy for the quadrature without needing to increase the number nodes, in a scheme

known as Gaussian integration.

Consider the polynomial f(x) of degree 2n+ 1 in the form

f(x) = q(x)p(x) + r(x), (2.41)
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where polynomials p(x), q(x), and r(x) are all of degree n. p(x) and q(x) are orthogonal

with respect to a weight function w(x), i.e.,

∫ b

a

p(x)q(x)w(x) dx = 0. (2.42)

If x0, x1, . . . , xn are the roots of q(x), then

f(xi) = r(xi), (2.43)

and the quadrature takes the form

∫ b

a

f(x)w(x) dx =

∫ b

a

[q(x)p(x) + r(x)]w(x) dx. (2.44)

Since q(x) and p(x) are assumed to be orthogonal, we can simplify the integral to be

∫ b

a

f(x)w(x) dx =

∫ b

a

r(x)w(x) dx =
n∑
i=0

Air(xi) =
n∑
i=0

Aif(xi). (2.45)

In other words, we have demonstrated that by selecting the roots of an orthogonal poly-

nomial, we can obtain a quadrature to accurately integrate functions of degrees at most

2n + 1. This Gaussian quadrature is optimal in the sense that it is impossible to pick

{xj, wj}ni=0 for a quadrature that is accurate for f(x) of degree 2n+ 2.

All orthogonal polynomials can be shown to yield roots xj that are real, simple (of

multiplicity one), and are in the interval (a, b) for which the polynomial is defined on. In

particular, since Legendre polynomials are solutions to Legendre’s differential equation

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0, (2.46)

Picard’s existence theorem guarantees that the all roots are distinct and real. This is a
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useful property, as the use of Legendre polynomials with Gaussian nodes results in the

Gauss-Legendre quadrature, with the weight function

wi =
2

(1− x2
i ) [L′n(xi)]2

. (2.47)

The location of interpolation nodes are given by the roots of a n-degree Legendre poly-

nomial. Table 2.1 gives node locations and weights for Legendre polynomials of degree at

most n = 5.

Table 2.1: Node location and weights for Gauss-Legendre quadratures

Number of nodes n Node location x_i Weights w_i

1 0 2

2 ±
√

1/3 1

3
0 8

9

±
√

3/5 5
9

4
±
√

(3− 2
√

6/5)/7 (18+
√

30)
36

±
√

(3 + 2
√

6/5)/7 (18−
√

30)
36

5

0 128
225

±1
3

√
(5− 2

√
10/7) 332+12

√
80

900

±1
3

√
(5 + 2

√
10/7) 332−12

√
80

900

For the problem of approximating the Runge function (2.7), Fig. 2.2 compares Gauss

nodes with traditional equidistant nodes. Fig. 2.2(a) shows the result of the two approx-

imation schemes compared to the true Runge function, where square and circle markers

indicates the location of the respective nodes. Fig. 2.2(b) plots the error of the Gauss

nodes for polynomials of increasing complexity. Compared to the error plot in Fig. 2.1(b),

we see that the choice of Gauss nodes results in a convergent approximation which avoids
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(a) Blue: Runge function. Green: approximation

with equidistant nodes. Red: approximation with

Gauss nodes. Circle: location of equidistant nodes.

Square: location of Gauss nodes.
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(b) Approximation error for 5th, 7th, 11th, 15th,

30th, 60th, and 120th-order polynomial approxi-

mation using Gauss nodes.

Figure 2.2: Approximations for the function f(x) = 1
1+25x2

.

Runge’s phenomenon.

The quadratures we have discussed thus far do not include nodes at the end points

±1 of the integration interval. For certain applications, such as boundary value problems

discussed in Chapter 4, end points must be explicitly included to enforce Dirichlet boundary

conditions. Simple variations on the Gauss-Legendre quadrature include the Gauss-Radau

and Gauss-Lobatto quadratures. In Gauss-Radau, either (but only one) endpoint can be

included as a node in the approximiation, which leaves 2n− 1 remaining parameters with

an accuracy of 2n − 2. In Gauss-Lobatto, both endpoints are included as nodes, which

results in an accuracy of 2n− 3. Gauss-Lobatto quadratures take the form

∫ 1

−1

f(x)w(x) dx ≈ 2

n(n− 1)
(f(1) + f(−1)) +

n−1∑
i=2

wif(xi) +Rn, (2.48)
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where the weight wi is given by

wi =
2

n(n− 1)(Pn−1(xi))2
, xi 6= ±1, (2.49)

and the remainder Rn is

Rn =
−n(n− 1)322n−1[(n− 2)! ]4

(2n− 1)[(2n− 2)! ]3
f 2n−2(ξ), −1 < ξ < 1. (2.50)

The interpolation nodes are given by the roots of P ′n−1(x). Table 2.2 gives node locations

and weights for Gauss-Lobatto quadratures of degree at most n = 5. In terms of con-

Table 2.2: Node location and weights for Gauss-Lobatto quadratures

Number of nodes n Node location x_i Weights w_i

3
0 4

3

±1 1
3

4
±
√

1
5

5
6

±1 1
6

3

0 32
45

±
√

3
7

49
90

±1 1
10

vergence, there are no differences between the choice of Gauss, Gauss-Radau, and Gauss-

Lobatto nodes. For general orthogonal polynomials, is rate of convergence is exponential

in terms of the degrees of the approximation

‖f(x)− f̃ ∗(x)‖2,w∼ e−n. (2.51)

In other words, for a sufficiently smooth function, as the degree n of the polynomial ap-

proximation f̃ ∗ is increased, there is an exponential decrease in the corresponding error.
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This a property known as spectral accuracy, an unique property not enjoyed by other forms

of function approximations, such as splines, RBfs, and wavelets [129].

2.5 Fourier approximation

For the approximation of periodic functions, the orthogonal polynomials described in the

previous section is not appropriate since the polynomials are not periodic by definition.

Instead, we describe the use of Fourier basis functions to achieve similar spectral approx-

imation of periodic functions and we demonstrate that these trigonometric polynomials

satisfies the orthogonality conditions similar to orthogonal polynomials.

Consider a periodic function f(x) on the interval [0, 2π]. Periodicity indicates that f(x)

satisfies

f(x+ 2π) = f(x). (2.52)

We use L2(0, 2π) to denote the space of complex-value functions that are square integrable

over [0, 2π], that is,

L2(0, 2π) =

{
f : (0, 2π)→ C such that

∫ 2π

0

|f(x)|2 dx <∞
}
. (2.53)

The inner product of functions f and g is defined as

(f, g) =

∫ 2π

0

f(x)g(x) dx (2.54)

and the norm is

‖f‖L20,2π=
√

(f, f). (2.55)
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Fourier trigonometric polynomials are defined using the basis

φk(x) = eikx = cos(kx) + i sin(kx), k = 0,±1,±2, . . . (2.56)

It is clear that the Fourier basis (2.56) is orthogonal since

(φj, φk) =

∫ 2π

0

φj(x)φk(x) dx =

∫ 2π

0

ei(j−k)x dx = 2πδij =

 1 i = j

0 i 6= j
, (2.57)

where δij is the Kronecker delta function. The polynomial is then the linear combination

of the basis in the form

F =
∞∑

k=−∞

fkφk, (2.58)

where the coefficient is

fk =
1

2π

∫ 2π

0

f(x)e−ikx dx =
1

2π
(f, φk). (2.59)

For the choices

ak =
1

2π

∫ 2π

0

(α(x) cos(kx) + β(x) sin(kx)) dx

bk =
1

2π

∫ 2π

0

(−α(x) cos(kx) + β(x) sin(kx)) dx, (2.60)

the Fourier coefficients can be written as

fk = ak + ibk, k = 0,±1,±2, . . . (2.61)

It is also clear that for real valued functions,

f−k = fk ∀k. (2.62)
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Following the least squares function approximation described in (2.9), we have

‖f(x)− f̃ ∗N(x)‖L2(0,2π)= min
f̃(x)
‖f(x)− f̃(x)‖L2(0,2π), (2.63)

where f ∗N(x) is a finite truncation of order N , which gives the approximation

f(x) ≈
N−1

2∑
k=−N−1

2

f
(N)
k eikx. (2.64)

The coefficients are given by

f
(N)
k =

1

N

N−1∑
j=0

fj exp

(
−2πijk

N

)
. (2.65)

Similar to orthogonal polynomials, the spectral accuracy with respect to the number of

nodes N is

‖f(x)− f̃(x)‖L2(0,2π)∼ e−N (2.66)

which is an exponential convergence.

2.6 Summary

In this chapter, we presented a consistent framework in which continuous-time functions

can be approximated as linear combinations of basis functions. This approximation is done

in the least-squares sense, which evaluates a candidate polynomial and minimizes the sum

of the squares of the errors made at the interpolation nodes. We’ve determined that by

using orthogonal polynomials as basis functions and sampling at Gauss nodes, the resulting

approximation avoids Runge’s phenomenon and exhibits spectral accuracy.
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The function approximation framework we have presented is done in the context of

interpolation, where a known function f(x) is given (as least in terms of samples). In the

context of control problems, the function that we wish to approximate is the result of a

constrained optimization problem and is unknown. While we can still select the form of

basis functions based on the orthogonality conditions, the coefficients for the basis function

are computed through optimization instead of quadratures. This is done by enforcing

system dynamics and associated constraints at collocation points, which are interpolation

nodes described in Section 2.4. We will address these issues in detail in the subsequent

chapters.
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3
Global Solutions

3.1 Motivation

In Section 1.3, we described a H∞ robust control problem as a two-player differential

game with parametric uncertainties in the system dynamics. The two players formulate

respective strategies in a non-cooperative and zero-sum fashion, which results in a Nash

equilibrium as a saddle-point strategy. In this chapter, we establish necessary and sufficient

conditions for optimality and formulate global solutions to this differential game.

Global solutions are difficult to obtain in nonlinear optimization problems in general. In

optimal control, the application of the dynamic programming principle in a continuous-time

problem with nonlinear dynamics results in the Hamilton-Jacobi-Bellman (HJB) equation,

a nonlinear first-order partial differential equation that is the necessary and sufficient con-

dition for global optimality. For nonlinear robust control problems in the H∞-style, the
dual to the HJB is the Hamilton-Jacobi-Isaacs (HJI) equation, for which the solution is the

Bellman value function. As reviewed in Section 1.2.2, these partial differential equations

are extremely difficult to solve.

In this chapter, we characterize global solutions to the differential game formulation laid

out in Section 1.3 from a value function approximation perspective. We reviewed related

work in Section 1.2.3 and Section 1.2.4. We derive necessary and sufficient conditions

for optimality for the H∞ problem in Section 1.3 in terms of the Isaacs equation, then
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approximate the value function as a linear combination of basis functions. We build upon

the spectral approximation framework in Chapter 2, which suggests basis functions in terms

of orthogonal polynomials, resulting in an approximation that exhibits spectral accuracy.

The result of this chapter is an characterization of the value function from the perspec-

tive of differential games, which is critical in obtaining explicit feedback control laws that

guarantee the asymptotic stability of the closed-loop system, without requiring the explicit

form of the parametric uncertainties. For the practical implementation of the proposed

approach, we demonstrate the value function approximation framework for a simple two-

dimensional differential game, which will be used as a baseline comparison for the methods

in the subsequent chapters.

3.2 Necessary and sufficient conditions

In Section 1.3, we formulated a robust H∞-control problem with the nonlinear dynamics

ẋ(t) =
[
f(x) + ∆f(x, θ, t)

]
+ g1(x)w(t) +

[
g2(x) + ∆g2(x, θ, t)

]
u(t)

z(t) = [h(x), u(t)]T

x(t0) = x0, (3.1)

with x(t) ∈ X as the state vector, z(t) ∈ Z is the output vector, u(t) ∈ U and w(t) ∈ W
are the minimizing and maximizing players, respectively, x0 is a vector of initial states, and

the matrices f(x), g(x), and h(x) are the system matrices that are smooth vector fields not

explicitly parameterized by time. The parameter θ ∈ Θ is the uncertain system parameter

which belongs to the set

Θ = {θ|0 ≤ θ ≤ θu} (3.2)
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that is bounded above by θu. Parametrized by θ, the functions ∆f(x, θ, t) and ∆g2(x, θ, t)

are uncertain functions belonging to the set of admissible uncertainties, defined by

∆f(x, θ, t) = H2(x)F (x, θ, t)E1(x)

∆g2(x, θ, t) = g2(x)F (x, θ, t)E2(x), (3.3)

for ‖F (x, θ, t)‖2≤ β, which intuitively, assumes that the uncertainties are bounded by a

sphere. Here,H2, E1, and E2 are appropriate state-dependent weight matrices for F (x, θ, t).

The minimax objective

J(x, u, w, θ) = min
u∈U

max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt (3.4)

entails a two-player, noncooperative, zero-sum differential game over a horizon tf > t0.

We begin the derivation of the necessary and sufficient condition for optimality for this

differential game by characterizing its saddle-point solution. This is the Bellman value

function

Definition 3.1. (Bellman value function). The value function V (x, t) defines the cost-to-

go from any initial state x and any time t such that

V (x, t) = inf
u∈U

sup
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(τ)‖2−γ2‖w(τ)‖2

]
dτ. (3.5)

In other words, the value function bounds the cost and provides the optimal cost-to-go for

any state x(t), i.e.,

V (x(tf ), tf ) ≤ J∗(x, u∗, w∗, θ) ≤ V (x(t0), t0), (3.6)

where u∗(t) and w∗(t) are the optimal controls of the system (w∗(t) is optimal in the sense
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that it provides the worst-case disturbance to the system). We use the notation

Vx(x, t) =
∂V (x, t)

∂x(t)
, Vt(x, t) =

∂V (x, t)

∂t
, (3.7)

to denote the row vectors of first partial derivatives of the value function with respect to t

and x(t), respectively. For brevity, we drop the time index t when it is immaterial.

We use basic optimization theory to derive the optimal control and the associated neces-

sary and sufficient condition for optimality. First, we convert the constrained optimization

problem in (3.4) to an unconstrained form by using the Hamiltonian.

Definition 3.2. (Hamiltonian). The Hamiltonian H(x, λ, u, w, θ) for the system dynamics

in (3.1) and objective function (3.4) is

H(x, Vx, u, w, θ) = Vx(x)
(
f(x) + ∆f(x, θ, t) + g1(x)w(t)

+ [g2(x) + ∆g2(x, θ, t)]u(t)
)

+
1

2
‖z(t)‖2−1

2
γ2‖w(t)‖2, (3.8)

where the λ is the costate or adjoint vector, which in this case, is the spacial derivative of

the value function Vx.

The Hamiltonian combines the right-hand side of the system dynamics in (3.1) and the

one-step cost within the integral in the objective function (3.4), therefore transforming a

constrained optimization problem into an unconstrained one. In this unconstrained form,

a necessary condition for optimality is Isaacs’ condition, which states that

inf
u∈U

sup
w∈W
θ∈Θ

H(x, Vx, u, w, θ) = sup
w∈W
θ∈Θ

inf
u∈U

H(x, Vx, u, w, θ). (3.9)

Equivalently, this is

H(x, Vx, u
∗, w, θ) ≤ H(x, Vx, u

∗, w∗, θ) ≤ H(x, Vx, u, w
∗, θ). (3.10)
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For the Hamiltonian to be minimized over U , the set of all possible controls, while maxi-

mized over W , the set of all possible disturbances, we write

min
u∈U

sup
w∈W
θ∈Θ

H(x, Vx, u, w, θ) ≤ 0. (3.11)

Effectively, since we used Vx(x) as the costate, the value function is the solution to this

minimization problem. Now, we derive several simple identities which will be helpful in

subsequent discussion. First,

∥∥∥HT
2 (x)V T

x (x)− F (x, θ, t)E1(x)
∥∥∥2

≥ 0, (3.12)

since by definition, a squared-norm is positive semi-definite. Also by definition, ‖F (x, θ, t)‖2≤
β, and hence we can expand the left-hand side as

∥∥∥HT
2 (x)V T

x (x)− F (x, θ, t)E1(x)
∥∥∥2

= Vx(x)H2(x)HT
2 (x)V T

x (x)

− 2Vx(x)H2(x)F (x, θ, t)E1(x) + β2ET
1 (x)E1(x) ≥ 0. (3.13)

Rearranging the terms, we arrive at

Vx(x)H2(x)F (x, θ, t)E1(x) ≤ 1

2

[
Vx(x)H2(x)HT

2 (x)V T
x (x) + β2ET

1 (x)E1(x)
]
. (3.14)

Likewise, we can establish that

∥∥∥I − 1

2
F (x, θ, t)E2(x)

∥∥∥2

= I − F (x, θ, t)E2(x) +
1

4
β2ET

2 (x)E2(x) ≥ 0, (3.15)

where I is the identity matrix. This implies

F (x, θ, t)E2(x) ≤ I +
1

4
β2ET

2 (x)E2(x). (3.16)
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Going back to (3.11), we resolve the inner maximization problem first by taking the supre-

mum of the Hamiltonian. This is accomplished by taking the Hamiltonian in (3.8) and

substituting the definitions of the parametric uncertainties in (3.3), which forms an in-

equality

sup
w∈W,θ∈Θ

H(x, V T
x ,u, w, θ) ≤ Vx(x)

[(
f(x) +H2(x)F (x, θ, t)E1

)
+ g1(x)w(t)

+
(
g2(x) + g2(x)F (x, θ, t)E2

)
u(t)

]
+

1

2
‖z(t)‖2−1

2
γ2‖w(t)‖2. (3.17)

Expanding the expression and applying the identities (3.14) and (3.16), we have

sup
w∈W

H(x, V T
x , u, w, θ) ≤ Vx(x)f(x) +

[1

2
Vx(x)H2(x)HT

2 (x)V T
x (x) +

1

2
β2ET

1 (x)E1(x)
]

+ Vx(x)g1(x)w(t) +
[
Vx(x)g2(x)

(
2I +

1

4
β2ET

2 (x)E2(x)

)
u(t)

]
+
(1

2
hT (x)h(x) + uT (t)u(t)− 1

2
γ2‖w(t)‖2

)
, (3.18)

where the expressions for F (x, θ, t) have been eliminated in the Hamiltonian, and hence

the supremum is no longer subject to θ ∈ Θ. According to the first-order necessary

condition for optimality, we can obtain expressions for u(t) and w(t) by differentiating the

Hamiltonian with respect to u(t) and w(t), respectively, then solving for the unknowns as

functions of Vx(x). Since most of the terms in (3.18) are not dependent on either u(t) or

w(t), we can easily simplify the expressions to

u∗(t) = −
(

2I +
1

4
β2ET

2 (x)E2(x)

)T
gT2 V

T
x (x)

w∗(t) =
1

γ2
gT1 (x)V T

x (x), (3.19)

which are the optimal feedback laws. Substituting these expressions back into (3.8), we
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obtain the equation

Vx(x)f(x) +
1

2
Vx(x)

[
1

γ2
g1(x)gT1 (x) +H2(x)HT

2 (x)

−g2(x)

(
2I +

1

4
β2ET

2 (x)E2(x)

)
gT2 (x)

]
V T
x (x) +

1

2
hT (x)h(x) +

1

2
β2E1(x)ET

1 (x) ≤ 0.

(3.20)

This is the Hamilton-Jacobi-Isaacs equation for the optimization problem laid out in (3.1).

Given the admissible uncertainties in (3.3), this is a more general version of the Isaacs

equation as compared to [33]. It can be made even more general by assuming non-affine

dynamics, as described in [15], but as we shall see in Section 3.3, we can leverage the

structures of this equation to improve computational efficiency.

By examining the form of the feedback control laws in (3.19), it is clear that while both

players’ strategies are non-cooperative and independent of each other, they both depend

on the value function (or rather, the gradient of the value function). The sign difference

in the feedback control laws arises from the zero-sum nature of the game, where both

players are optimizing the same objective function, though in different directions. Where

the minimizing player u follows a gradient descent of the value function, the maximizing

player w follows a gradient ascent.

It is also worth noting that the feedback control laws obtained in (3.19) and the asso-

ciated Isaacs equation (3.21) do not explicitly depend on the parametric uncertainty term

F (x, θ, t). As we assumed that the squared-norm of F (x, θ, t) is bounded by a sphere, the

uncertainty was taken into account in the formulation of the Isaacs equation that pro-

duced the value function as a solution, which accounts for all possible forms of F (x, θ, t)

that satisfy the bounded norm assumption.

Theorem 3.3. (Necessary and sufficient condition for optimality). The Hamilton-Jacobi-
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Isaacs equation

Vx(x)f(x) +
1

2
Vx(x)

[
1

γ2
g1(x)gT1 (x) +H2(x)HT

2 (x)

−g2(x)

(
2I +

1

4
β2ET

2 (x)E2(x)

)
gT2 (x)

]
V T
x (x) +

1

2
hT (x)h(x) +

1

2
β2E1(x)ET

1 (x) ≤ 0.

(3.21)

is a necessary and sufficient condition for optimality for the optimization problem (3.4),

subject to the system dynamics (3.1).

Proof. Since we derived the Isaacs equation using first-order necessary conditions on the

Hamiltonian, it is clear that (3.21) is a necessary condition for (u∗, w∗) to be an unique

optimum. To show that the Isaacs equation is also a sufficient condition for optimality, we

use (3.18)

sup
w∈W

H(x, V T
x , u, w, θ) ≤ Vx(x)f(x) +

[1

2
Vx(x)H2(x)HT

2 (x)V T
x (x) +

1

2
β2ET

1 (x)E1(x)
]

+ Vx(x)g1(x)w(t) +
[
Vx(x)g2(x)

(
2I +

1

4
β2ET

2 (x)E2(x)

)
u(t)

]
+
(1

2
hT (x)h(x) + uT (t)u(t)− 1

2
γ2‖w(t)‖2

)
, (3.22)

and note that the right hand side is the same as

H(x, Vx, u, w, θ) =Vx(x)f(x) +
1

2
Vx(x)

[
g1(x)gT1 (x) +H2(x)HT

2 (x)− g2(x)gT2 (x)
]
V T
x (x)

+
1

2
hT (x)h(x) +

1

2
β2ET

1 (x)E1(x)− 1

2

∥∥∥w(t)− 1

γ2
gT1 (x)V T

x (x)
∥∥∥2

− 1

2
Vx(x)g2(x)

[
3I +

1

2
β2ET

x (x)E2(x)

]
gT2 (x)V T

x (x). (3.23)
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It follows that since

Vx(x)f(x) +
1

2
Vx(x)

[
g1(x)gT1 (x) +H2(x)HT

2 (x)− g2(x)gT2 (x)
]
V T
x (x)

+
1

2
hT (x)h(x) +

1

2
β2ET

1 (x)E1(x) ≤ 0, (3.24)

The first half of the expressions in the Hamiltonian reduces to zero and the rest simplifies

to

− 1

2

∥∥∥w(t)− 1

γ2
gT1 (x)V T

x (x)
∥∥∥2

− 1

2
Vx(x)g2(x)

[
3I +

1

2
β2ET

2 (x)E2(x)

]
gT2 (x)V T

x (x) ≤ 0.

(3.25)

This indicates that (3.21) is also a sufficient condition for optimality.

As is typical in optimal control formulations, the value function here is a natural Lya-

punov function candidate. While it is trivial to verify the asymptotic stability of the closed

loop system with no disturbance, let us consider the interpretation of the value function

assuming a disturbance exists. By rearranging (3.6), we can obtain

V (x(tf ), tf )− V (x(t0), t0) ≤
∫ tf

t0

1

2

[
γ2‖w(t)‖2−‖z(t)‖2

]
dt. (3.26)

Taking the limit as as tf → ∞, the value function is zero at terminal time by definition.

Splitting the integral and rearranging again, we obtain

1

2

∫ tf

t0

‖z(t)‖2 dt ≤ 1

2

∫ tf

t0

γ2‖w(t)‖2 dt+ V (x(t0), t0). (3.27)

This is exactly the definition of the L2-gain defined in (1.5), indicating that the existence

of the value function for this system implies that the L2-gain is bounded by γ.
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3.3 Value function approximation

As discussed in Section 1.2.2, analytical solutions to the Isaacs equations cannot be ex-

pected for general nonlinear systems. Instead, we pursue the idea of value function approxi-

mation, reviewed in Section 1.2.3. Given the Isaacs equation in (3.21), the Galerkin method

provides a convenient way of producing a discrete representation, where approximations

to the value function can be carried out.

The Galerkin method is suitable for operator equations of the form

T (V (x)) = l(x), a ≤ x ≤ b, (3.28)

where T is a linear operator, V is the unknown variable to be determined, and l(x) is a

function in terms of the independent variable x, bounded above and below by a and b,

respectively. The boundary condition is defined as

S(x) = 0. (3.29)

In the case of the Isaacs equation, which is a first-order nonlinear partial differential equa-

tion, T (V ) is an operator involving the partial derivatives of value function V (x) and l(x)

contain miscellaneous terms independent of the value function.

Following the approach presented in Chapter 2, we approximate the value function V

as a weighted sum of a set of basis functions φi.

Definition 3.4. (Approximate value function). The approximate value function Ṽ (x) is

Ṽ (x) =
n∑
i=1

wiφi(x), (3.30)

where φi(x) is a vector of basis function with corresponding weights wi.
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We seek an approximation in the least-squares sense

‖V (x)− Ṽ ∗(x)‖2,w= min
Ṽ (x)
‖V (x)− Ṽ (x)‖2,w. (3.31)

That is, the optimal approximation Ṽ ∗(x) minimizes the weighted L2-norm of the approx-

imation errors.

Let the approximation error, also known as the residual, take the form

R(x) = T

(
n∑
i=1

wiφi(x)

)
− l(x). (3.32)

The Galerkin method requires that the error be orthogonal to a weight function in the

form

Wi =
∂Ṽ (x)

∂wi
= φi(x), (3.33)

which is simply the basis function, i.e.,

∫ b

a

Rn(x)φi(x) dx = 0, for i = 1, . . . , n. (3.34)

This produces

∫ b

a

φi(x)T

(
n∑
i=1

wiφi(x)

)
dx−

∫ b

a

φi(x)l(x) dx = 0, for i = 1, . . . , n. (3.35)

In the case where the operator T (V ) does not include time derivatives, the Galerkin method

produces a set of n algebraic equations. This is the case in the Isaacs equation. Otherwise,

it produces a set of n ordinary differential equations, with n unknown coefficients for the

basis functions. In general, the integrals can be evaluated numerically with quadratures,

and the resulting problem is then a nonlinear least-squares problem for the coefficients wi.
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We are now in a position to consider the computational issues in choosing an approxi-

mate representation for the value function. There are many ways to select a basis function.

For simple problems with linear dynamics, directly using the dimensions of the states as

basis functions would suffice, i.e.,

φ0(x) = 1

φi(x) = xi. (3.36)

Clearly, this simple scheme cannot represent complex value functions for nonlinear systems.

An immediate extension is using a k-th order polynomial as a basis in the form

φi(x) =
n∏
j=1

x
mj
j , mj = [1 . . . k], (3.37)

but this choice is subject to Runge’s phenomenon, as discussed in Section 2.1. For a broad

overview of various function approximation schemes in the context of dynamic program-

ming and reinforcement learning, we refer the reader to Kober [36].

In this work, we utilize Fourier approximations in connection with the spectral ap-

proximation framework presented in Chapter 2. As discussed in Section 2.5, Fourier basis

functions enjoy the property of spectral accuracy, which results in the exponential conver-

gence of the approximation when the order of the Fourier series is increased. As discussed

in Konidaris [131], there are very few existing applications of Fourier approximation in

dynamic programming and reinforcement learning.

We first consider Fourier approximation for single dimensional functions. Given a single-

dimensional function V (x), its n-th degree Fourier expansion with period T is a linear

combination of sinusoidal functions.

Definition 3.5. (Single-dimensional Fourier expansion). For any single-dimensional
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function V (x), the Fourier expansion Ṽ (x) takes the form

Ṽ (x) =
a0

2
+

n∑
k=1

[
ak cos

(
k

2π

T
x
)

+ bk sin
(
k

2π

T
x
)]

, (3.38)

where the coefficients ak and bk are given by

ak =
2

T

∫ T

0

V (x) cos
(
k

2π

T
x
)
dx

bk =
2

T

∫ T

0

V (x) sin
(
k

2π

T
x
)
dx. (3.39)

For an unknown V (x), we can treat the coefficients ak and bk as values to be learned in a

linear function approximation using the basis φi in the form

φi(x) =


1 i = 0

cos( i+1
2
πx) i > 0, if i is odd

sin( i
2
πx) i > 0, if i is even

. (3.40)

For a multivariate function V (x) with period T in m-dimensions, we have

Definition 3.6. (Multi-dimensional Fourier expansion). For any multi-dimensional func-

tion V (x), the Fourier expansion Ṽ (x) takes the form

Ṽ (x) =
∑
c

[
ac cos

(
k

2π

T
cx
)

+ bc sin
(
k

2π

T
cx
)]

(3.41)

with a vector of coefficients c = [c1, . . . , cm].

For an n-th order Fourier approximation inm-dimensions, this results in 2(n+1)m basis

functions, which is an exponential explosion of parameters in the number of dimensions.

There are several ways that we can reduce the number of basis functions. First, we note
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that V (x) can be even if

V (x) = V (−x) (3.42)

and odd if

V (x) = −V (−x). (3.43)

In these cases, the symmetry in the function reduces the coefficients to ai = 0 and bi = 0,

respectively. This means that the corresponding sin and cos terms can be dropped, which

reduces the number of basis functions to (n+ 1) for a single dimension in the form

φi(x) = cos(πc · x). (3.44)

To handle the exponential nature of the growth, we use a common technique in function

approximation called variable coupling, which removes the simultaneous contribution of

multiple state variables. For example, in a two-dimensional problem with a polynomial

basis function that contains the terms 1, x1, x2, and x1x2, we assume that x1 and x2 con-

tributes to the approximation independently and uncouple the variables by dropping the

x1x2 term. In the context of Fourier basis functions, we obtain an uncoupled basis by

requiring that only one element is c is non-zero. For a k-th order approximation with n

states, this results in n(k + 1) number of basis functions. Table 3.1 lists the coupled and

uncoupled Fourier basis functions for a two-dimensional system with orders 1, 2, and 3.

3.4 Example - two-dimensional uncertain system

3.4.1 Dynamics

In this section, we solve an example H∞ robust control problem under the differential game

formulation, using the derivations of the necessary and sufficient conditions for optimality,
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as well as parametric approximations to the value function.

Consider the robust control problem

J(x, u, w, θ) = min
u∈U

max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt, (3.45)

subject to the dynamics

ẋ1(t) = x2(t)

ẋ2(t) = −
(

1

2
+ θ(t)

)
x5

2(t)− 1

2
x3

2(t)− x1(t) + x2(t)w(t) + (1 + θ(t))u

z(t) = [x2(t), u(t)]T

x(t0) = x0

γ = 1, β = 1. (3.46)

We can convert this system to the matrix control-affine form

ẋ(t) = [f(x) + ∆f(x, θ, t)] + g1(x)w(t) + [g2(x) + ∆g2(x, θ, t)]u(t)

z(t) = [h(x), u(t)]T

x(t0) = x0, (3.47)

with ∆f(x, θ, t) and ∆g2(x, θ, t) in parameterized form

∆f(x, θ, t) = H2(x)F (x, θ, t)E1(x)

∆g2(x, θ, t) = g2(x)F (x, θ, t)E2(x), (3.48)
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and ||F (x, θ, t)||2≤ 1. The system matrices are given by

f(x) =

 x2(t)

−1
2
x5

2(t)− 1
2
x3

2(t)− x1(t)

 , g1(x) =

 0

x2(t)

 , g2(x) =

0

1

 ,
H2(x) =

[
0− x2

2(t)
]

E1(x) = x2(t), E2(x) = 1, h(x) = x2(t), F (x, θ, t) = θ(t) (3.49)

The uncertain term θ(t) can take on the form of any function (time-varying or not), as-

suming that the squared-norm of the function is bounded according to the assumptions

given. An example is θ(t) = 0.01 sin(t), which can be interpreted as a small perturbation

added to the nominal system parameter.

3.4.2 Necessary and sufficient conditions

Following the definitions in Section 3.2, the saddle-point equilibrium of the problem is

given by the value function

V (x, t) = inf
u∈U

sup
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(τ)‖2−γ2‖w(τ)‖2

]
dτ, (3.50)

where

Vx1(x, t) =
∂V (x, t)

∂x1

, Vx2(x, t) =
∂V (x, t)

∂x2

, Vt(x, t) =
∂V (x, t)

∂t
, (3.51)

are the partial derivatives of the value function with respect to the state variables. The

necessary and sufficient condition for optimality is the Hamilton-Jacobi-Isaacs equation,
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given by

Vx(x)f(x) +
1

2
Vx(x)

[
1

γ2
g1(x)gT1 (x) +H2(x)HT

2 (x)

−g2(x)

(
2I +

1

4
ET

2 (x)E2(x)

)
gT2 (x)

]
V T
x (x) +

1

2
hT (x)h(x) +

1

2
E1(x)ET

1 (x) ≤ 0.

(3.52)

Substituting the system matrices, we have

V 2
x2

(x) (x4
2 + x2

2 − 2)

2
+ Vx1(x)x2 + x2

2 − Vx2(x)

(
x5

2

2
+
x3

2

2
+ x1

)
≤ 0. (3.53)

By assuming a positive-definite value function candidate in the form

V (x) =
1

2
(x2

1 + x2
2) (3.54)

with the costate

Vx(x) = [x1 x2], (3.55)

we can show that

x2
2 (x4

2 + x2
2 − 2)

2
− x2

(
x5

2

2
+
x3

2

2
+ x1

)
+ x1 x2 + x2

2 = 0, (3.56)

which satisfies the HJI. Hence, the optimal controls are given by

u∗(t) = −
(

2I +
1

4
ET

2 (x)E2(x)

)T
gT2 V

T
x (x)

w∗(t) =
1

γ2
gT1 (x)V T

x (x), (3.57)
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which in this case is

u∗(t) = −2x2

w∗(t) = x2
2. (3.58)

3.4.3 Value function approximation

We follow the approach presented in Section 3.3 to solve the problem (3.45), subject to

the dynamics (3.46). For simple problems such as this, we can in fact solve the value

function approximation problem almost analytically. In this example problem, we use

both a traditional polynomial as well as the Fourier basis function.

Given the approximate value function Ṽ (x) as a weighted sum of a set of basis functions

φi

Ṽ (x) =
n∑
i=1

wiφi(x), (3.59)

we first use the approximation

Ṽ (x) = w0 + w1x1 + w2x2 + w3x
2
1x

2
2 + w4x

2
1 + w5x

2
2 (3.60)

with the derivative

Ṽx(x) =
[
2w3x1x

2
2 + w1 + 2w4x1, 2w3x2x

2
1 + w2 + 2w5x2

]
. (3.61)

Let the residual function take the form

R(x) = T

(
n∑
i=1

wiφi(x)

)
− l(x). (3.62)

In this case, this is simply the Isaacs equation evaluated with the approximated value
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function (3.60), which results in

R(x) = x2

(
2w3 x1 x

2
2 + w1 + 2w4 x1

)
+ x2

2

−
(
x5

2

2
+
x3

2

2
+ x1

) (
2w3 x2 x

2
1 + w2 + 2w5 x2

)
+
(
x4

2 + x2
2 − 2

) (
2w3 x2 x

2
1 + w2 + 2w5 x2

) (
w3 x2 x

2
1 +

w2

2
+ w5 x2

)
. (3.63)

Immediately, we notice that w0 disappears. By setting

Ṽ (0) = 0, (3.64)

we also find that −w2
2 = 0, hence w2 = 0. To find the remaining weights w1, w3, w4, w5,

we generate the system of equations

∫ b

a

Rn(x)φi(x) dx = 0, for i = 1, . . . , n. (3.65)

This produces four equations ∫ 1

0

∫ 1

0

R(x)
(
w1x1

)
dx1 dx2 = 0∫ 1

0

∫ 1

0

R(x)
(
w3x

2
1x

2
2

)
dx1 dx2 = 0∫ 1

0

∫ 1

0

R(x)
(
w4x

2
1

)
dx1 dx2 = 0∫ 1

0

∫ 1

0

R(x)
(
w5x

2
2

)
dx1 dx2 = 0. (3.66)

Normally, these integrals would be evaluated numerically with quadratures, but in this
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case, the equations are simple enough to solve analytically, which results in
−34w3

2

315
− 34w3 w5

105
− 5w3

42
− 34w5

2

105
− 53w5

105
+ w1

4
+ w4

3
+ 1

6

−92w3
2

2205
− 184w3 w5

1575
− 16w3

315
− 92w5

2

945
− 317w5

1512
+ w1

12
+ w4

8
+ 1

15

−68w3
2

735
− 136w3 w5

525
− 463w3

4200
− 68w5

2

315
− 51w5

140
+ w1

6
+ w4

4
+ 1

9

−92w3
2

1575
− 184w3 w5

945
− 65w3

1512
− 92w5

2

315
− 127w5

252
+ w1

4
+ w4

4
+ 1

5

 = 0, (3.67)

which yields the solution w1 = 0, w3 = 0, w4 = 0.5, and w5 = 0.5, i.e.,

V (x) =
1

2
(x2

1 + x2
2). (3.68)

Now let us consider a more general case of value function approximation in the form

Ṽ (x) =
n∑
i=1

wiφi(x), (3.69)

with φi(x) given by Fourier basis functions. In this case, the system of integral equations

must be solved numerically, with a Gaussian quadrature embedded within a trust region

dogleg iteration to solve the system of equations.

To approximate the value function, we used the Fourier-basis functions described in

Section 3.3 in both coupled and uncoupled settings. For a 15-degree Fourier basis ap-

proximation of a two-dimensional system, there are 256 coupled basis functions and 31

uncoupled basis functions. Because the exact form of the value function is in fact uncou-

pled, we expect that the uncoupled Fourier basis will converge faster.

We searched the coefficients for the basis functions for 500 iterations and generated

Fig. 3.1. Indeed, the coupled Fourier basis Fig. 3.1(b) was slower to produce the same

approximation compared to the uncoupled basis Fig. 3.1(c). Using the same number of

iterations, the approximation quality for the coupled basis is four orders of magnitude

worse than the uncoupled. When compared with the exact value function Fig. 3.1(a),
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Figure 3.1: Exact value function, Fourier-basis approximation, and their residuals.

the residuals of the coupled and uncoupled approximations are given in Fig. 3.1(d) and

Fig. 3.1(e).

Using the initial condition x0 = [1 1]T , we can simulate the open-loop (without con-

trols) response of the system under external disturbance and verify that the system is

unstable, as shown in Fig. 3.2(a). Using the control laws (3.19) in conjunction with the

Fourier approximated value function in Fig. 3.1(c), the closed-loop response of the system

is shown in Fig. 3.2(b), assuming no external disturbance and no parametric uncertainties.

This is consistent with the theoretical analysis under Lyapunov stability, where we showed

in (??) that using a value function as a Lyapunov candidate, the resulting system is stable
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(a) Open-Loop response.
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(b) Closed-Loop response with no disturbance.

Figure 3.2: Open and closed-loop response of a two-dimensional system under disturbance.

Without controls, the system does not converge. With controls but without disturbances

and uncertainties, the system is stable.

with and without disturbances.

We can further verify the performance of the control design under bounded external

disturbances and parametric uncertainties. With θ(t) = 0.01 sin(t), Fig. 3.3 demonstrates

the closed-loop response of the system. Fig. 3.3(a) shows the response of the system

under optimal disturbance, with w(t) computed from (3.19), and Fig. 3.3(b) shows the

response under a non-optimal disturbance in the form of a sinusoidal signal. In both

cases, the feedback control law was able to stabilize the systems given the disturbances

and uncertainties.
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(a) Closed-loop response with optimal disturbance.
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(b) Closed-loop response with sinusoidal distur-

bance.

Figure 3.3: Closed-loop response of a two-dimensional system. The feedback control is

able to stabilize the system under both optimal and sinusoidal disturbances.

3.5 Summary

In this chapter, we’ve derived necessary and sufficient conditions for optimality for a H∞
robust control problem in terms of a Hamilton-Jacobi-Isaacs equation. A value function was

given as the solution of the Isaacs equation, from which optimal feedback control laws were

derived for both players. For practical solutions of the Isaacs equation, we presented a value

function approximation approach, which relied on Fourier basis functions in connection

with Galerkin’s method, under the general spectral approximation framework presented in

Chapter 2.5.
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Ultimately, for systems of complex nonlinear behaviors and increased dimensionality,

the scalability of value function approximation is limited. One effective way of avoiding the

exponential explosion of computational demand associated with searching for global value

functions is to only search for locally optimal solutions. In the next chapter, we explore

the class of trajectory optimization techniques to solve larger-scale problems which out of

the reach of function approximation-based methods.
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Table 3.1: Coupled and uncoupled Fourier basis functions for a two-dimensional system.

Approximation order n Coupled Uncoupled

1 φ(x) =


1

cos(π x2)

cos(π x1)

cos(π x1 + π x2)

 φ(x) =


1

cos(π x2)

cos(π x1)



2 φ(x) =



1

cos(π x2)

cos(2π x2)

cos(π x1)

cos(π x1 + π x2)

cos(π x1 + 2π x2)

cos(2π x1)

cos(2π x1 + π x2)

cos(2π x1 + 2π x2)



φ(x) =



1

cos(π x2)

cos(2π x2)

cos(π x1)

cos(2π x1)



3 φ(x) =



1

cos(π x2)

cos(2π x2)

cos(3π x2)

cos(π x1)

cos(π x1 + π x2)

cos(π x1 + 2π x2)

cos(π x1 + 3π x2)

cos(2π x1)

cos(2π x1 + π x2)

cos(2π x1 + 2π x2)

cos(2π x1 + 3π x2)

cos(3π x1)

cos(3π x1 + π x2)

cos(3π x1 + 2π x2)

cos(3π x1 + 3π x2)



φ(x) =



1

cos(π x2)

cos(2π x2)

cos(3π x2)

cos(π x1)

cos(2π x1)

cos(3π x1)


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4
Robust Trajectory Optimization

4.1 Motivation

In the previous chapter, we have examined H∞ robust control from the perspective of

dynamic programming and derived solutions based on necessary and sufficient conditions

for optimality given parametric uncertainty and external disturbances. We derived global

solutions to this problem using the exact Bellman value function as well as its parametric

approximations. Though the approach characterized global solutions, its practical imple-

mentation is limited by the complexity of the underlying dynamic system.

It is well-known in optimal control that bypassing the curse of dimensionality is a

difficult endeavor. In the value function approximation framework in Section 3.3, we for-

mulated the notion of decoupled basis functions, which mitigates the effects of the curse of

dimensionality. Ultimately, for systems of complex nonlinear behaviors and increased di-

mensionality, the scalability of value function approximation is limited. One effective way

of avoiding the exponential explosion of computational demand associated with searching

for global value functions is to only search for locally optimal solutions.

Trajectory optimization refers to methods where we seek to obtain only open-loop tra-

jectories that satisfy certain optimality conditions. Approaches to trajectory optimization

can be divided into direct and indirect methods, based on the order in which necessary

conditions for optimality are applied. These methods are reviewed in Section 1.2.5. By
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bypassing the need to solve the full necessary and sufficient conditions for optimality, tra-

jectory optimization is a viable approach for avoiding the curse of dimensionality. However,

while direct trajectory optimization has been successful in addressing optimal control prob-

lems, applying it to robust control is not straightforward and a naive implementation tends

to result in an expensive optimization problem (discussed in Section 1.2.5).

In this chapter, we extend direct trajectory optimization to H∞ control and differential

games by transforming it into a mixed complementarity problem (MCP). This approach

is consistent with the spectral approximation methods presented in Chapter 2, and the

resulting discrete optimization problem can be solved efficiently using commercially avail-

able solvers. Consequently, the resulting approach is suitable to be applied in a receding-

horizon control setting, which utilizes open-loop trajectories in a closed-loop setting. We

show that the approach is robust against bounded external disturbances and parametric

uncertainties, and demonstrate the practical implementation of the approach using a sim-

ple two-dimensional system, then compare the results against the global solutions obtained

in the previous chapter.

4.2 First-order necessary conditions

We begin the formulation of our trajectory optimization method by first discussing the

indirect approach. In Section 1.3, we formulated a robust H∞-control problem with the

minimax objective

J(x, u, w, θ) = min
u∈U

max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt, (4.1)
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which entails a two-player, noncooperative, zero-sum differential game over a horizon tf >

t0, subject to the nonlinear dynamics

ẋ(t) =
[
f(x) + ∆f(x, θ, t)

]
+ g1(x)w(t) +

[
g2(x) + ∆g2(x, θ, t)

]
u(t)

z(t) = [h(x), u(t)]T

x(t0) = x0, (4.2)

with x(t) ∈ X as the state vector, z(t) ∈ Z is the output vector, u(t) ∈ U and w(t) ∈ W
are the minimizing and maximizing players, respectively, x0 is a vector of initial states, and

the matrices f(x), g(x), and h(x) are the system matrices that are smooth vector fields not

explicitly parameterized by time. The parameter θ ∈ Θ is the uncertain system parameter

which belongs to the set

Θ = {θ|0 ≤ θ ≤ θu} (4.3)

that is bounded above by θu. Parametrized by θ, the functions ∆f(x, θ, t) and ∆g2(x, θ, t)

are uncertain functions belonging to the set of admissible uncertainties.

In the settings of the two-player differential game, open-loop solutions entail that both

players formulate their strategy at the moment the system starts to evolve, based on

information available at the time: the system dynamics, the objective function, and initial

conditions. This strategy cannot be changed once the system evolves and the saddle-point

solution is the combination of strategies of both players which are secured against any

attempt by one player to unilaterally change his strategy.

Let us first consider a slightly more general version of this problem, with a more general

form of the objective function and system dynamics as compared to (4.1) and (4.2).

Definition 4.1. (Objective function - primal). The optimization objective takes the form

J(x, u, w, θ, t0, tf ) = Φ(x(t0), x(tf ), t0, tf ) +

∫ tf

t0

C(x, u, w) dt, (4.4)
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where Φ(x(t0), x(tf ), t0, tf ) is commonly referred to as the terminal cost and C(x, u, w) is

the one-step cost integrated over the horizon tf > t0. We assume that x(t) = 0 is an unique

equilibrium point of the system with u(t) = 0 and w(t) = 0.

Definition 4.2. (Uncertain system dynamics). The dynamics of the system is given by a

set of first-order differential equations

ẋ(t) = f(x, u, w, θ), (4.5)

where x is the state vector, u is the vector of controlled inputs to the system, w is the

vector of external disturbances, and theta is the time-varying unknown parameters within

the system. For this set of dynamics, the initial condition and final condition are expressed

as

e(x(t0), x(tf ), t0, tf ) = 0, (4.6)

which is a boundary constraint at both the initial time t0 and final time tf . Additional

path constraints take the form of an inequality

s(x, u, w) ≤ 0, (4.7)

which represent constraints on the states and control inputs. We assume that the con-

straints on the states and control inputs are fixed and contains no uncertainties. We

assume that f , Φ, C, e, and s are nonlinear and smooth functions with respect to x, u,

and w.

The optimization (4.4), subject to the dynamics (4.5), boundary conditions (4.6), and

path constraints (4.7) is called the primal problem. We now convert this constrained

optimization problem into an unconstrained problem in the dual form. Let us define a

Lagrange multiplier v to combine the terminal cost (4.4) and terminal constraint (4.6) in
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the form

E(x(t0), x(tf ), t0, tf , v) = Φ(x(t0), x(tf ), t0, tf ) + vT e(x(t0), x(tf ), t0, tf ) (4.8)

and define the Lagrange multipliers λ and µ to incorporate the dynamics (4.5) and path

constraints (4.7) to form the objective function

J(x, u, w, θ, t0, tf ) = E(x(t0), x(tf ), t0, tf , v)

+

∫ tf

t0

[
C(x, u, w) + λT

(
f(x, u, w, θ)− ẋ(t)

)
+ µT s(x, u, w)

]
dt. (4.9)

Similar to (3.8), we use the Hamiltonian to express the concatenation of the various opti-

mization constraints.

Definition 4.3. (Hamiltonian). The Hamiltonian H(x, u, w, θ, λ, µ) for the system dy-

namics in (4.5) and objective function (4.9) is a function of the states x, control inputs u

and w, as well as the Lagrange multipliers λ and µ in the form

H(x, u, w, θ, λ, µ) = C(x, u, w) + λT
(
f(x, u, w, θ)

)
+ µT

(
s(x, u, w)

)
, (4.10)

where C(x, u, w) is the one step cost, f(x, u, w) is the system dynamics , and s(x, u, w) is

the path constraint set.

In this context, Lagrange multipliers v, λ, and µ are commonly referred to as the costate

or adjoint variables. Substituting the Hamiltonian into the objective function, we have

J(x, u, w, θ, t0, tf ) = E(x(t0),x(tf ), t0, tf , v) +

∫ tf

t0

[
H(x, u, w, θ, λ, µ)− λT ẋ(t)

]
dt.

(4.11)
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Examining the last term in the integral, we can express λ in terms of its derivative λ̇ as∫ tf

t0

λT (t)ẋ(t) dt = λT (t)x(t)|tft0−
∫ tf

t0

λ̇T (t)x(t) dt

= λT (tf )x(tf )− λT (t0)x(t0)−
∫ tf

t0

λ̇T (t)x(t) dt. (4.12)

Effectively, this gives us the dynamics of λ with respect to the state x, at the initial and

final times t0 and tf , respectively. Rewriting the objective function, we obtain

Definition 4.4. (Objective function - dual) The optimization objective for the dual prob-

lem takes the form

J(x, u, w, θ, t0, tf ) =E(x(t0), x(tf ), t0, tf , v)− λT (tf )x(tf )

+ λT (t0)x(t0) +

∫ tf

t0

[
H(x, u, w, θ, λ, µ) + λ̇T (t)x(t)

]
dt, (4.13)

where E(x(t0), x(tf ), t0, tf , v) is the terminal cost, λ is the costate, and H(x, u, w, θ, λ, µ)

is the Hamiltonian.

Given this augmented objective function with constraints adjoined in the manner of La-

grange, we are now in a position to derive the first-order necessary conditions for optimality

using the calculus of variations. The first variation of J is

δJ(x, u, w, θ, t0, tf ) =
∂E

∂x(tf )
dx(tf ) +

∂E

∂tf
δtf − λT (tf )δx(tf ) +

∫ tf+δtf

tf

C(x, u, w) dt

+

∫ tf

t0

Hx(x, u, w, λ, µ)δx dt+

∫ tf

t0

Hu(x, u, w, λ, µ)δu dt

+

∫ tf

t0

Hw(x, u, w, λ, µ)δw dt+

∫ tf

t0

Hθ(x, u, w, λ, µ)δθ dt+

∫ tf

t0

λ̇T δx dt = 0, (4.14)
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where the various derivatives are defined as

∂E

∂x(tf )
=

[
∂E

∂x1(tf )
, . . . ,

∂E

∂xNx(tf )

]
dx(tf ) = δx(tf ) + ẋ(tf )δtf = δx(tf ) + f(x, u, w, θ)

∣∣∣
t=tf

δtf

Hx(x, u, w, θ, λ, µ) =

[
∂H(x, u, w, θ, λ, µ)

∂x1

, . . . ,
∂H(x, u, w, θ, λ, µ)

∂xNx

]T
Hu(x, u, w, θ, λ, µ) =

[
∂H(x, u, w, θ, λ, µ)

∂u1

, . . . ,
∂H(x, u, w, θ, λ, µ)

∂uNu

]T
Hw(x, u, w, θ, λ, µ) =

[
∂H(x, u, w, θ, λ, µ)

∂w1

, . . . ,
∂H(x, u, w, θ, λ, µ)

∂wNu

]T
Hθ(x, u, w, θ, λ, µ) =

[
∂H(x, u, w, θ, λ, µ)

∂θ1

, . . . ,
∂H(x, u, w, θ, λ, µ)

∂θNθ

]T
. (4.15)

Since ∫ tf+δtf

tf

C(x, u, w) dt = C|t=tf δtf , (4.16)

we can simplifying and collect the terms,

δJ =

[
∂E

∂x(tf )
− λT (tf )

]
δx(tf ) +

[
∂E

∂tf
+

∂E

∂x(tf )
f(x, u, w, θ)

∣∣∣
t=tf

+ C(x, u, w)
∣∣∣
t=tf

]
δtf

+

∫ tf

t0

(Hx(x, u, w, θ, λ, µ) + λ̇T )δx dt+

∫ tf

t0

Hu(x, u, w, θ, λ, µ)δu dt

+

∫ tf

t0

Hw(x, u, w, θ, λ, µ)δw dt+

∫ tf

t0

Hθ(x, u, w, θ, λ, µ)δθ dt = 0. (4.17)

The extremum of the function J is obtained when the first variation of δJ vanishes, i.e.,

δJ(x, u, w, θ, t0, tf ) = 0 (4.18)

and hence the necessary conditions for optimality can be established by setting the coeffi-

cients of the independent variables δtf , δx, δu, and δw to zero. This leads to
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Theorem 4.5. (First-order necessary conditions for optimality). For the optimization

problem (4.4), subject to the system dynamics (4.5), boundary conditions (4.6), and path

constraints (4.7), the first-order necessary conditions for optimality is given by the station-

ary conditions for the Hamiltonian

∂H(x, u, w, θ, λ, µ)

∂u
= 0

∂H(x, u, w, θ, λ, µ)

∂w
= 0

∂H(x, u, w, θ, λ, µ)

∂θ
= 0, (4.19)

the costate equations

λ̇T = −∂H(x, u, w, θ, λ, µ)

∂x

λT (tf ) =
∂E

∂x(tf )
, (4.20)

and
∂E

∂tf
+

∂E

∂x(tf )
f(x, u, w, θ)

∣∣∣
t=tf

+ C(x, u, w)
∣∣∣
t=tf

= 0. (4.21)

We omit the proof here as it is trivial to verify that the choice of the costate enforces

δJ(x, u, w, θ, t0, tf ) = 0.

Intuitively, these results are consistent with the costate equations in Pontryagin’s min-

imum principle for traditional optimal control problems. The optimal controls u∗, w∗, and

θ∗ are found by minimizing and maximizing the Hamiltonian, that is,

u∗(t) = arg min
u
H(x, u, w, θ, λ, µ)

w∗(t) = arg max
w

H(x, u, w, θ, λ, µ)

θ∗(t) = arg max
θ
H(x, u, w, θ, λ, µ). (4.22)
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These control laws are similar to (3.11) with an important distinction that we had previ-

ously used λ = Vx(x), where Vx(x) is the gradient of the value function. Here, as value

of the costate is obtained by solving the costate equation (4.20), the resulting two-point

boundary value problem yields open-loop solutions to the optimization problem (4.4).

Beyond systems with very simple dynamics, the two-point boundary value problem in

(4.20) must be solved numerically, via the so-called shooting methods with an initial guess

for the ODE. This is a major drawback in applying the indirect method - the quality of

the solution is strongly dependent on the quality of the initial guess.

4.3 Direct trajectory optimization

To improve computational efficiency in large-scale problems, we wish to avoid solving the

necessary and sufficient condition for optimality in terms of the Isaacs equation and instead

solve this problem using a direct numerical optimization approach. However, the Isaacs

equation addressed an important challenge in the formulation of the solution: it combined

the inner maximization problem in (4.1) in the Hamiltonian condition (3.11), and the

resulting inequality removed the need to address the maximization problem directly. If we

bypass the Isaacs equation, then we must find alternative ways to address the maximization

operator.

To accomplish this, we rely on an algebraic manipulation which transforms the minimax

optimization problem into a minimization problem with an inequality constraint bounded

by the maximum value of the original maximization problem. Given the objective function

J(x, u, w, θ) = min
u∈U

max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt, (4.23)
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let m∗ bound the maximum value attained by the inner maximization problem, i.e.,

m∗ = max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt. (4.24)

Effectively, this can be viewed as an inequality constraint

m∗ ≥ 1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt. (4.25)

As a direct consequence, we can rewrite the original minimax optimization (4.1) as a

minimization problem

J(x, u, w, θ) = min
u∈U

m∗, (4.26)

subject to the constraint (4.25), which ensures that the maximum value attained by the

disturbance player w is captured in m∗, which is then minimized to yield the solution to

the minimizing player u. In this form, (4.25) is referred to as an isoperimetric constraint,

since it’s an inequality constraint with an integral term. Isoperimetric constraints are

common in the optimal control literature, most famously in the Problem of Queen Dido

[14]. An isoperimetric can be treated as any other inequality constraint and we will derive

the necessary conditions for optimality in the subsequent sections.

Similar to direct trajectory optimization for optimal control problems, we aim to di-

rectly discretize the trajectories in our robust control problem. This is done in connection

with the least-squares function approximation framework discussed in Chapter 2. We ap-

proximate the state, input, and disturbance trajectories with polynomials in a least-squares
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sense, i.e., for every trajectory xi, ui, and wi, there exists a polynomial that satisfies

‖xi(t)− x̃∗i (t)‖2,q = min
x̃i(t)
‖xi(t)− x̃i(t)‖2,q

‖ui(t)− ũ∗i (t)‖2,q = min
ũi(t)
‖ui(t)− ũi(t)‖2,q

‖wi(t)− w̃∗i (t)‖2,q = min
w̃i(t)
‖wi(t)− w̃i(t)‖2,q, (4.27)

defined on the weighted L2-norm of a function xi(t)

‖xi(t)‖2,q=

(∫ b

a

(xi(t))
2q(t) dt

) 1
2

, (4.28)

over some weight q(x). The trajectories ũ∗i (τ) and w̃∗i (τ) are defined similarly and we only

describe the state trajectory approximation below for brevity.

To use this framework in approximate trajectories, we first discretize the time index

from [t0, tf ] to [−1, 1]. As shown in (2.36), this can be accomplished through a simple

linear transformation

t =
tf − t0

2
τ +

tf − t0
2

. (4.29)

Let (τ1, . . . , τn) be the n collocation points in the domain [−1, 1]. The state trajectory

x̃∗i (τ) is a linear combination of basis functions in the form

x̃∗i (τ) =
N∑
i=1

ciφi(τ), (4.30)

with basis functions φi(τ) and coefficients ci. We use Legendre polynomials [100] as the

basis functions, orthogonal with respect to q(τ) defined on the inner product

∫ b

a

φi(τ)φj(τ)q(τ) dx = δij =

 1 i = j

0 i 6= j
, (4.31)
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where δij is the Kronecker delta function. The corresponding coefficients are given by

c∗i =

∫ b

a

φi(τ)x(τ)q(τ) dτ, i = 0, . . . , n, (4.32)

which can be solved using Gaussian quadrature, resulting in the Legendre-Gauss-Lobatto

(LGL) collocation points defined on the interval τ ∈ [−1, 1] [98]. Given a set of trajectories

xi(τ), we use the notation CN to denote a matrix of coefficients, where each row contains

coefficients ci for a single trajectory under N collocation points. The objective of the

discrete optimization is to search this collection of coefficients to generate trajectories that

satisfy the state dynamics and associated constraints, i.e.,

min ψ(CN), (4.33)

subject to

Θ(CN) ≤ 0, Γ(CN) = 0, CN ∈ B, (4.34)

where Θ(CN) and Γ(CN) represents concatenated inequality and equality constraints, re-

spectively, and B = {CN ∈ Rn|r ≤ CN ≤ s} with ri ∈ [−∞,∞] and si ∈ [ri,∞]. Let

S = {CN ∈ B|Θ(CN) ≤ 0,Γ(CN) = 0} denote the feasible region. The Lagrangian is

defined as

L(CN , λ, v) = ψ(CN)− λTΘ(CN)− vTΓ(CN), (4.35)

where λ and v denote the Lagrange multipliers for the constraints. According to the

Karush-Kuhn-Tucker (KKT) conditions [132], the first order necessary conditions are

0 ∈ λCNL(CN , λ, v) +Nb(CN)

0 ≥ λ ⊥ Θ(CN) ≤ 0

Γ(CN) = 0, (4.36)
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where Nb(CN) = {z ∈ Rn|(y − CN)T z ≤ 0,∀y ∈ B is the normal cone to B at CN . In the

case that ri or si is finite, we can rewrite as
(∇CNL(CN , λ, v))i ≥ 0 xi = ri

(∇CNL(CN , λ, v))i ≤ 0 xi = si

(∇CNL(CN , λ, v))i = 0 ri < xi < si.

(4.37)

A mixed complementarity problem [133] is defined as the problem of finding a point

z ∈ Rn inside the box B = {z|−∞ ≤ l < z < u ≤ ∞} that is complementary to a nonlinear

function F (z) when 
Fi(z) ≥ 0 zi = li

Fi(z) ≤ 0 zi = ui

Fi(z) = 0 li < zi < ui.

(4.38)

When l = −∞ and u = ∞, the solution is given by simply solving a system of nonlinear

equations so that F (z) = 0. If l = 0 and u = ∞, the resulting problem is a Nonlinear

Complementarity Problem (NCP) such that

zi ≥ 0

Fi(z) ≥ 0

ziFi(z) = 0. (4.39)

The nonlinear MCP function can be written as a vector

F (z) =


∇CNL(z)

Θ(CN)

Γ(CN)

 , l =


r

−∞
−∞

 , u =


s

0

∞

 (4.40)
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where

∇CNL(z) = ∇CNψ(CN)− λT∇CNΘ(CN)− vT∇CNΓ(CN). (4.41)

This is an equivalent condition to the first order KKT conditions of the NLP, which can

be solved by a MCP solver such as KNITRO [134].

4.4 Example - two-dimensional uncertain system

In this section, we solve an example H∞ robust control problem under the differential

game formulation using trajectory optimization. Previously in Section 3.4, we considered

the robust control problem

J(x, u, w, θ) = min
u∈U

max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt, (4.42)

subject to the dynamics

ẋ(t) = [f(x) + ∆f(x, θ, t)] + g1(x)w(t) + [g2(x) + ∆g2(x, θ, t)]u(t)

z(t) = [h(x), u(t)]T

x(t0) = x0, (4.43)

with ∆f(x, θ, t) and ∆g2(x, θ, t) in parameterized form

∆f(x, θ, t) = H2(x)F (x, θ, t)E1(x)

∆g2(x, θ, t) = g2(x)F (x, θ, t)E2(x), (4.44)
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and ||F (x, θ, t)||2≤ β. The system matrices are given by

f(x) =

 x2(t)

−1
2
x5

2(t)− 1
2
x3

2(t)− x1(t)

 , g1(x) =

 0

x2(t)

 , g2(x) =

0

1

 ,
H2(x) =

[
0− x2

2(t)
]

E1(x) = x2(t), E2(x) = 1, h(x) = x2(t), F (x, θ, t) = θ(t) (4.45)

The uncertain term θ(t) can take on the form of any function (time-varying or not), as-

suming that the squared-norm of the function is bounded according to the assumptions

given. An example is θ(t) = 0.01 sin(t), which can be interpreted as a small perturbation

added to the nominal system parameter. We pursue an open-loop solution according to the

direct collocation approach described in Section 4.3 and rewrite the optimization objective

according to the complementarity conditions described. The resulting problem is passed

to the solver KNITRO with trajectories approximated using Legendre polynomials.

To test the effectiveness of the trajectories against bounded disturbances, we implement

a receding-horizon control (RHC) similar to the setup described in [105]. We compute

trajectories for the system, apply the obtained control inputs for a fixed duration, then

compute new trajectories using the current states as initial conditions. The total simulation

time is 10s with a horizon of 0.1s, with 50 collocation points for each computed trajectory.

The computation time for each trajectory is about 15s.

Fig. 4.1(a) gives a snapshot of the RHC at the beginning of a horizon, which takes in

the specified initial conditions and compute trajectories according to the objective function

in (4.42). Compared to the known global solution from Fig. 3.3(a), the state trajectories

from Fig. 4.1(a) exhibit a slightly longer settling time. This is a direct result of the local

nature of the solution.

One advantage of the trajectory optimization approach is the ability to consider con-
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(a) Unconstrained input
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(b) Constrained input to ±0.5

Figure 4.1: Optimized trajectories for a two-dimensional system under disturbance. Given

constraints on the control input, stabilizing trajectories can still be obtained.

straints on the states and control inputs. In Fig. 4.1(b), we simulate a scenario where the

control input was constrained to be ±0.5. The resulting control trajectory briefly saturated

at ±0.5, but was still able to stabilize the system.

Fig. 4.2 shows a simulation of the RHC where the system is disturbed using the optimal

disturbance computed in (3.58). Under the optimal disturbance, the settling time for

the states are longer. Although the computed trajectories only estimated suboptimal

disturbances, in a closed-loop setting, the RHC was able to stabilize the system with a

94 Jiuguang Wang



Numerical Nonlinear Robust Control with Applications to Humanoid Robots

0 2 4 6 8 10
−2

0

2

t

x

 

 
x1 x2

0 2 4 6 8 10
−1

0

1

t

u

 

 
u

0 2 4 6 8 10
0

1

2

t

w

 

 
w

(a) Closed-loop response with optimal disturbance.
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(b) Closed-loop response with sinusoidal distur-

bance.

Figure 4.2: Receding-horizon control of a two-dimensional uncertain system. The closed-

loop response is stable for both optimal and sinusoidal disturbances.

performance close to the globally optimal solution in Fig. 3.3(a).

In direct trajectory optimization, the initial guess often plays an important role in

determining the quality of the resulting solutions. In this two-dimensional example, random

initial guesses were provided to the solver and the resulting trajectories were feasible though

only locally optimal. In Chapter 6, we will analyze the computational performance of this

robust trajectory optimizer in the context of a more complex dynamic system and provide

a detailed discussion on the quality of solutions and computation time. In addition, we will

also provide comparisons to alternative methods, such as LQR and non-robust trajectory

optimization in a receding-horizon control framework.
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4.5 Summary

In this chapter, we extended direct trajectory optimization to nonlinear robust H∞ control

under bounded external disturbances and parametric uncertainties. We solved the result-

ing differential game with open-loop trajectories obtained in accordance with necessary

conditions for optimality. The proposed framework transformed a minimax optimization

problem into a minimization problem with complementarity conditions. The resulting

problem was solved by direct collocation pseudospectral methods, which transcribed a

continuous-time problem into an equivalent discrete form by parameterizing the state and

control spaces using global polynomials and collocating the differential-algebraic equations

using nodes obtained from a Gaussian quadrature. We applied the open-loop trajecto-

ries in a receding-horizon control setting, which was shown to be effective on a simple

two-dimensional benchmark problem.

To our knowledge, this is is the first application of direct trajectory optimization to

the robust H∞ control problem. Compared to a naive nonlinear programming approach,

the proposed method was able to generate trajectories orders of magnitude faster, which

makes it suitable for large-scale systems. The trade-off is the quality of the solutions

obtained: for computing the trajectories, we can only guarantee that it satisfies a set

of first order optimality conditions, and not the overall stability of the control design.

In the next chapter, we extend this trajectory optimization approach to consider multiple

models, which removes some of the restrictive assumptions made on the forms of the system

uncertainties.
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5
Multi-Model Robust Control

5.1 Motivation

This chapter proposes a new method for solving the robust H∞ control problem presented

in Section 1.3. In Chapter 3 and Chapter 4, we developed global and local methods

for solving the robust H∞ control problem under a differential game formulation with

strong assumptions on the form of the system uncertainties. We modeled the external

disturbance as a perturbation player, aiming to maximize the disturbance under parametric

uncertainties, which are structured with bounded norms. In reality, the structured and

additive nature of these modeled uncertainties may not be able to account for all forms of

uncertainties with potential impacts on the performance of the system.

As discussed in Section 1.3.2, unmodeled dynamics is a phenomenon where the effects

of higher-order dynamics (such as actuator dynamics) have a significant impact on the

response of the system. To compensate for unmodeled dynamics is a difficult problem

that requires a more flexible representation of uncertainties in the system dynamics than

what we have previously proposed. In this chapter, we develop a heuristic approach to

robust control design based on the concept of multiple models, reviewed in Section 1.2.7.

A multi-model design evaluates the performance of a given control law over a distribution

of possible system dynamics, which allow the optimization to consider the expected cost

over a range of possible outcomes and account for the maximum cost for the worst-case
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scenario. We consider this multi-model design in the context of differential games that

we have developed in the previous chapters, with the added assumption that both players

now consider a distribution of models in formulating their respective strategies. This is a

philosophy consistent with the H∞ designs proposed in the previous chapters.

The consequence of the proposed approach is a method that is able to address all three

forms of uncertainties discussed in Section 1.3.2: external disturbances, parametric uncer-

tainties, and unmodeled dynamics. The proposed method is scalable to high-dimensional

systems by building on the robust trajectory optimization techniques developed in Chap-

ter 4, which we extend to compute trajectories that simultaneously satisfy optimality

conditions for multiple models. The resulting open-loop trajectories can be utilized in a

receding-horizon setting to enable closed-loop feedback control. We illustrate the proposed

approach using a simple two-dimensional system and discuss scalability to more complex

applications.

5.2 Formulation

In the previous chapters, we formulated a robust H∞-control problem with the nonlinear

dynamics

ẋ(t) =
[
f(x) + ∆f(x, θ, t)

]
+ g1(x)w +

[
g2(x) + ∆g2(x, θ, t)

]
u

z(t) = [h(x), u]T

x(t0) = x0, (5.1)

with x ∈ X as the state vector, z ∈ Z is the output vector, u ∈ U and w ∈ W are the

minimizing and maximizing players, respectively, x0 is a vector of initial states, and the

matrices f(x), g(x), and h(x) are the system matrices that are smooth vector fields not
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explicitly parameterized by time. The parameter θ ∈ Θ is the uncertain system parameter

which belongs to the set

Θ = {θ|0 ≤ θ ≤ θu} (5.2)

that is bounded above by θu. Parametrized by θ, the functions ∆f and ∆g2 are uncertain

functions belonging to the set of admissible uncertainties, defined by

∆f(x, θ, t) = H2(x)F (x, θ, t)E1(x)

∆g2(x, θ, t) = g2(x)F (x, θ, t)E2(x), (5.3)

for ‖F (x, θ, t)‖2≤ β, which intuitively, assumes that the uncertainties are bounded by a

sphere. Using these assumptions, we are able to derive necessary and sufficient conditions

for optimality in terms of Isaacs’ equation (3.21) and explicit feedback control laws (3.19)

using the value function. In an open-loop setting, this model can be solved using both

indirect and direct trajectory optimization, described in Section 4.2 and Section 4.3.

In this chapter, we formulate robust control problems which cannot be modeled by

(5.1). In particular, we aim to remove the restrictive assumptions on the structure of

the uncertainties in (5.3). It is clear not all parametric uncertainties can be posed in an

additive way to the dynamics, as represented in (5.1). As an example, consider the linear

optimal control problem posed by Atkeson [127], with double-integrator dynamics

ẋ = Ax+Bu, (5.4)

where the system matrices are given by

A =

1 T

0 1

 , B =

T 2/2

T

 , (5.5)

Jiuguang Wang 99



Numerical Nonlinear Robust Control with Applications to Humanoid Robots

with T = 0.001s. The objective function is

J = min
u∈U

1

2

∫ tf

t0

(xTQx+ uTRu) dt, (5.6)

with

Q =

1000 0

0 1

 , R = 0.001. (5.7)

In addition to this nominal model, unmodeled dynamics include a second-order low pass

filter with a cutoff frequency of 10Hz, under the dynamics

G(s) =
ω2

s2 + 2γωs+ ω2
(5.8)

with a damping ratio γ = 1 and a natural frequency ω = 20π. There is no resonant

peak and the unmodeled dynamics acts as a well-behaved low pass filter. As shown by

Atkeson, when an LQR design is carried out using the nominal model without considering

the unmodeled dynamics, the resulting controller failed to stabilize the overall system. A

multi-model design for this system utilizes two models: a nominal model and an augmented

model with an input filer with γ = 1 and ω = 10π. The resulting controller is then able to

stabilize both the nominal model and the true system model. Fig. 5.1 shows the closed-loop

response for the LQR design and multi-model design for both the nominal model and true

system model.

This example motivates our use of multiple models in control design. By evaluating

the performance of a given control law over a distribution of possible system dynamics, we

allow the optimization to consider the expected cost over a range of possible outcomes and

account for the maximum cost for the worst-case scenario. This framework removes the

need to to formulate uncertainties in the form (5.1) and allows flexibility in dealing with

uncertainties both in the parameters of the dynamics and in the model structure.
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Figure 5.1: Comparison of LQR and multi-model control. LQR control is stable only for

the nominal model, while a multi-model design is stable for both the nominal and the true

model.

We propose to extend the multi-model framework in Atkeson [127] to nonlinear robust

H∞ control under a differential game formulation. In this setting, both players now con-

sider a distribution of possible system dynamics in formulating their respective strategies,

with the ability to compensate or exploit model uncertainties to optimize their respective

objective functions. The resulting equilibrium is a robust Nash equilibrium, a pair of strate-

gies (u∗, w∗) secured against any attempt by one player to unilaterally change his strategy,

considering the underlying uncertainty.
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The system dynamics we use in this multi-model design is given by

ẋ(t) = f(x) + g1(x)w + g2(x)u

z(t) = [h(x), u]T

x(t0) = x0. (5.9)

This is a simplified version of (5.1) that is a still an H∞ formulation with an external

disturbance term w, but without modeling the parametric uncertainties. We make the

same assumptions about the boundedness of the disturbance, that is, the L2-gain∫ tf

t0

‖z(t)‖2 dt ≤ γ2

∫ tf

t0

‖w(t)‖2 dt+ κ(x0), ∀tf > t0, (5.10)

is bounded by γ. To increase robustness against uncertainties, we instead define a family

of such models.

Definition 5.1. (Multi-model system dynamics). The dynamics of the multi-model system

is given by a set of first-order differential equations

ẋα = fα(xα) + gα1 (xα)w + gα2 (xα)u

zα = [hα(xα), u]T

xα(t0) = xα0 , (5.11)

where α ∈ A belong to a finite parametric set A. Here, xα is the indexed state vector, u is

the vector of shared controlled inputs to the set of systems, and w is the vector of shared

external disturbances.

Each α represents a particular model from the parametric set with its own system matrices,

which effectively increases the range of modeling options without requiring the uncertainty
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terms to conform to (5.1). For the purposes of being consistent with previous chapters, we

restrict the dynamics to be affine with respect to the control inputs.

We also augment the objective function based on this distribution of models.

Definition 5.2. (Multi-model objective function). The multi-model optimization objec-

tive takes the form

J(u,w) = min
u∈U

max
w∈W
α∈A

1

2

∫ tf

t0

[
‖zα(t)‖2−γ2‖w(t)‖2

]
dt, (5.12)

given a scalar γ and a time horizon tf > t0, over a distribution of models α ∈ A. We

assume that x(t) = 0 is an unique equilibrium point of the system with u(t) = 0 and

w(t) = 0.

Here, we minimize the worst-case cost of the family of dynamic models under disturbance.

Clearly, this remains a minimax optimization problem, but now the control input u must

stabilize a family of models, from which the worst-case cost is derived from.

5.3 Multi-model dynamic programming

Let us first consider the interpretation of the optimization objective in (5.12) from the view

of the dynamic programming principle. Similar to the definition of the value function in

(3.5), we can define a value function for cost (5.12) associated with each model in (5.11).

Definition 5.3. (Multi-model Bellman value function). The multi-model value function

V (xα, t) defines the cost-to-go from any initial state xα and any time t such that

V α(xα, t) = inf
u∈U

sup
w∈W,α∈A

1

2

∫ tf

t0

[
‖zα(τ)‖2−γ2‖w(τ)‖2

]
dτ. (5.13)
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In other words, the value function bounds the cost and provides the optimal cost-to-go for

any state xα(t). Given a family of such value functions V α(xα, t), we can generate control

laws for the two players by accounting for the corresponding state at each individual value

function. The control laws take the form

u(t) = arg min
u∈U

|A|(‖zα(t)‖2−γ2‖w(t)‖2
)

+

|A|∑
α=1

V α(xα, t)


w(t) = arg max

w∈W

|A|(‖zα(t)‖2−γ2‖w(t)‖2
)

+

|A|∑
α=1

V α(xα, t)

 , (5.14)

where |A| is the cardinality of A. This is the approach taken in Whitman [125] for multi-

model optimal control problems and we have extended the definition of the value function

to a two-player setting. Given that we have changed the system dynamics (5.1) into

form (5.11), the necessary and sufficient conditions we have derived in terms of the Isaacs

equations (3.21) no longer applies to this system. Thus, we must first derive a new Isaacs

equation specific to the system dynamics in (5.11).

We first define the equilibrium strategies in the context of (5.11). For each model

α ∈ A, the interpretation of the game from the perspective of both players are given by

the objective functions

J1(t, xα, u, w) = min
u∈U

1

2

∫ tf

t0

[
‖zα(t)‖2−γ2‖w(t)‖2

]
dt (5.15)

J2(t, xα, u, w) = max
w∈W

1

2

∫ tf

t0

[
‖zα(t)‖2−γ2‖w(t)‖2

]
dt. (5.16)

These opposing objectives are related by

J1(t, xα, u, w) = −J2(t, xα, u, w), (5.17)
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which remains a noncooperative zero-sum game. A pair of strategies (u∗, w∗) forms a robust

Nash equilibrium if

J1(t, xα, u∗, w∗) ≤ J1(t, xα, u, w∗), ∀u ∈ U , α ∈ A (5.18)

J2(t, xα, u∗, w∗) ≥ J2(t, xα, u∗, w), ∀w ∈ W , α ∈ A. (5.19)

Equivalently, the saddle-point condition indicates that

J(t, xα, u∗, w) ≤ J(t, xα, u∗, w∗) ≤ J(t, xα, u, w∗), ∀w ∈ W , u ∈ U , α ∈ A. (5.20)

We define the Bellman value function as a saddle-point equilibrium solution that satisfies

V α(xα, t) = inf
u∈U

sup
w∈W,α∈A

1

2

∫ tf

t

[
‖zα(τ)‖2−γ2‖w(τ)‖2

]
dτ (5.21)

and we use the notation

V α
x (xα, t) =

∂V (xα, t)

∂xα
, V α

t (xα, t) =
∂V (xα, t)

∂t
, (5.22)

to denote the row vectors of first partial derivatives of the value function with respect to t

and x, respectively. For brevity, we drop the time index t when it is immaterial. We note

that the value function bounds the cost function

V α(xα(tf ), tf ) ≤ J∗(t, xα, u∗, w∗) ≤ V α(t0, x
α
0 ), (5.23)

where u∗ and w∗ are the optimal controls of the system (w∗ is optimal in the sense that it

provides the worst-case disturbance to the system).

Similar to Section 3.2, we use basic optimization theory to derive the optimal control

and the associated necessary and sufficient condition for optimality. First, we convert
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the constrained optimization problem in (5.12) to an unconstrained form by defining the

appropriate Hamiltonian.

Definition 5.4. (Multi-model Hamiltonian). The multi-model HamiltonianH(xα, (V α
x )T , u, w)

for the system dynamics in (5.11) and objective function (5.12) is

H(xα, (V α
x )T , u, w) = (V α

x )T
(
f(x) + g1(x)w + g2(x)u

)
+

1

2
‖zα‖2−1

2
γ2‖w(t)‖2, (5.24)

where (V α
x )T is the costate for each model α ∈ A.

A necessary condition for optimality is Isaacs’ condition, which states that

inf
u∈U

sup
w∈W

H(xα, (V α
x )T , u, w) = sup

w∈W
inf
u∈U

H(xα, (V α
x )T , u, w), (5.25)

Equivalently, this can be expressed as

H(xα, (V α
x )T , u∗, w) ≤ H(xα, (V α

x )T , u∗, w∗) ≤ H(xα, (V α
x )T , u, w∗). (5.26)

For the Hamiltonian to be minimized over U , the set of all possible controls, we write

min
U

sup
W

H(xα, (V α
x )T , u, w) = 0. (5.27)

The necessary condition for optimality is written as the partial derivatives of the Hamil-

tonian with respect to the control inputs

∂H

∂u
(u∗, w) = 0

∂H

∂w
(u,w∗) = 0. (5.28)
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These conditions give the control inputs with respect to the costate variable as

u∗(x, V α
x ) = −gT2 (x)(V α

x )

w∗(x, V α
x ) =

1

γ2
gT1 (x)(V α

x ). (5.29)

Substituting back, we obtain

Theorem 5.5. (Necessary and sufficient condition for optimality). The multi-model

Hamilton-Jacobi-Isaacs equation

V α
t (xα, t) + V α

x (xα, t)fα(xα)

+
1

2
V α
x (xα, t)

[
1

γ2
gα1 (x)(gα1 )T (xα)− gα2 (xα)(gα2 )T (xα)

]
(V α

x )T (xα, t) +
1

2
(hα1 )Thα1 (xα) = 0,

(5.30)

is a necessary and sufficient condition for optimality for the multi-model optimization

problem (5.12), subject to the system dynamics (5.11).

We omit the proof here since by construction, it satisfies the first-order necessary conditions

(in (5.27)) and the sufficiency condition can be proven the same way as the single-model

version of the Isaacs equation given in (3.21).

In the context of the multi-model optimization problem in (5.12), we have effectively

reduced the problem to solving a series of Isaacs equations in (5.30), then computing the

optimal feedback control laws in (5.14). In each case, the value function approximation

approach described in Section 3.3 is fully applicable. Each value function can be represented

in the form

Ṽ α(xα) =
n∑
i=1

wiφi(x
α), (5.31)
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and the feedback control laws are given by

u = arg min
u∈U

|A|(‖zα(t)‖2−γ2‖w(t)‖2
)

+

|A|∑
α=1

Ṽ α(xα, t)


w = arg max

w∈W

|A|(‖zα(t)‖2−γ2‖w(t)‖2
)

+

|A|∑
α=1

Ṽ α(xα, t)

 . (5.32)

This is philospically similar to the approach presented by Whitman [125]. While this

is feasible for simple systems with reduced dimensionality, it is far too impractical for

large-scale systems. Instead of solving a series of these expensive optimization problems,

we instead consider a new approach using trajectory optimization, which solves a single

optimization problem in computing open-loop trajectories to (5.12).

5.4 Multi-model trajectory optimization

In Chapter 4, we presented a trajectory optimization approach for the nonlinearH∞ control

problem under the differential game formulation, where we computed open-loop trajectories

that satisfied certain optimality conditions. In the context of a two-player differential game,

the notation of open-loop solution entails that both players formulate their strategy at the

moment the system starts to evolve, based on information available at the time: the system

dynamics, the objective function, and initial conditions. This strategy cannot be changed

once the system evolves and the saddle-point solution is the combination of strategies of

both players which are secured against any attempt by one player to unilaterally change

his strategy. We can extend this notion to the multi-model design, where both players now

formulate open-loop solutions considering a distribution of possible system dynamics.
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Consider again the distribution of dynamic models in (5.11) where

ẋα = fα(xα) + gα1 (xα)w + gα2 (xα)u

zα = [hα(xα), u]T

xα(t0) = xα0 . (5.33)

To formulate a trajectory optimization approach, we first concatenate the state vectors xα

and zα for the individual models into a single vector in the form

Xα =
(
xα1 , . . . , xα|A|

)
, t ∈ [t0, tf ]

Zα =
(
zα1 , . . . , zα|A|

)
, t ∈ [t0, tf ] (5.34)

and a concatenated vector field as a function

Fα(X, u, w) =
(
fα1,u(xα, u, w), . . . , fα|A|,u(xα, u, w)

)
. (5.35)

We note that while the states and the associated dynamics have been combined to form

a large system, the control inputs remain the same. In other words, there is a single

control for the minimizing player u and a single control for the maximizing player w with

simultaneously affects all models in A. The objective function given this concatenated

dynamics is

J(u,w) = min
u∈U

max
w∈W

1

2

∫ tf

t0

[
‖Zα(t)‖2−γ2‖w(t)‖2

]
dt, (5.36)

subject to the dynamics

Ẋα = Fα(X, u, w) (5.37)

X(t0) = X0, (5.38)
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where X0 is the vector of initial states for the concatenated states. We formulate an

optimization problem to solve for u and w that are open-loop solutions that are functions

of only time. In practical implementation, the obtained trajectories can be used without

considering the concatenated state vector.

We formulate the trajectory optimization similarly to the approach described in Chap-

ter 4 where we seek to transcribe a continuous time robust control problem into an equiv-

alent mixed complementarity problem. Following the notation defined in Chapter 4, we

redefine the independent variable to be τ : [τ0, τf ], which will be discretized to obtain the

MCP. Rewriting the original objective function, we obtain

J = Φ(X(τ0), Xα(τf ), τ0, τf ) +

∫ τf

τ0

C(Xα(τ), u(τ), w(τ)) dτ, (5.39)

where Φ(Xα(τ0), Xα(τf ), τ0, τf ) is the terminal cost and C(Xα(τ), u(τ), w(τ)) is the one

step cost in terms of the concatenated state vector Xα, while all other variables follow

their original definitions. The dynamics in this discrete form is

Ẋα(τ) = Fα(Xα(τ), u(τ), w(τ)), (5.40)

with the initial condition and final condition are expressed as boundary constraints

e(Xα(τ0), Xα(τf ), τ0, τf ) = 0. (5.41)

We can also handle a mixture of constraints on the state and control variables, in the form

of an inequality

s(Xα(τ), u(τ), w(τ)) ≤ 0, (5.42)

which is stacked to form the overall constraint set for the concatenated system. In this

form, we can proceed with the trajectory optimizer described in Section 4.3.
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5.5 Example - two-dimensional multi-model design

In the previous section, we assumed the system uncertainty to be a parametric time-varying

function, which limits the form of uncertainty that can be modeled. Following the method

described in Section 5.4, we augment the nominal model of the system

ẋ1 = x2

ẋ2 = −1

2
x5

2 −
1

2
x3

2 − x1 + x2w + u, (5.43)

by an additional two models

ẋ3 = x4

ẋ4 = −
(

1

2
+ θ1(t)

)
x5

4 −
1

2
x3

4 − x3 + x4w + (1 + θ1(t))u (5.44)

and

ẋ5 = x6

ẋ6 = −
(

1

2
+ θ2(t)

)
x5

6 −
1

2
x3

6 − x5 + x6w + (1 + θ2(t))u (5.45)

we assume that

θ1(t) = 0.5 sin(t+ 5)

θ2(t) = 0.5 sin(t− 5). (5.46)

These are two different forms of parametric uncertainties, in addition to the nominal

model, which forms a six-state system, from which we solve for a single control input u

and a disturbance input w that are applied to all three models. To test the effectiveness
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of the trajectories against bounded disturbances, we implement a receding-horizon control

(RHC) similar to the setup described in Chapter 4. The total simulation time is 10s with a

horizon of 0.1s, with 50 collocation points for each computed trajectory. The computation

time for each trajectory is about 25s.

A snapshot of the trajectories at the beginning of the horizon is shown in Fig. 5.2. The

x1 and x2 trajectories for all three models are compared in Fig. 5.2(a), and we see that

there are visible differences in the three models. The input and disturbance trajectories

are shown in Fig. 5.2(b), which the three models share. Similar to the results in Chapter 4,

we can also apply constraints on the control inputs. Fig. 5.3(b) shows control trajectories

generated, with saturations at ± = 0.5. We see that despite the saturation, the resulting

trajectories are stable.

So far, this three-model system represents system parametric uncertainty similar to the

results obtained in Chapter 4. With a multi-model design, we can also address potential

unmodeled dynamics. Consider the example raised in (5.8), where a second-order low pass

filter with a cutoff frequency of 10Hz is applied to the control input u. In state space form,

this low pass filter is equivalent to a linear system

ẋf = Afxf +Bfu

uf = Cfxf +Dfu, (5.47)

where the input u is low-pass filtered to produce the new input uf . The system matrices

are given by

Af =

1.9112 −0.9150

1 0

 , Bf =

1

0


Cf =

[
0.0037, 0.0001

]
, Df = 9.4469e-04. (5.48)
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(b) Input and disturbance trajectories

Figure 5.2: Optimized trajectories for a multi-model two-dimensional system under dis-

turbance. Two models with varying parameters are provided in addition to the nominal

model under identical disturbance, and a single control input stabilizes all three systems.

The overall system is given by two model. First, the nominal model

ẋ1 = x2

ẋ2 = −1

2
x5

2 −
1

2
x3

2 − x1 + x2w + u (5.49)
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(b) Input and disturbance trajectories

Figure 5.3: Optimized trajectories for a multi-model two-dimensional system under distur-

bance with control input constraints. Two models with varying parameters are provided

in addition to the nominal model under identical disturbance, and a single constrained

control input (±0.5) stabilizes all three systems.

and the additional model

ẋ3 = x4

ẋ4 = −1

2
x5

2 −
1

2
x3

2 − x1 + x2w + (Cfxf +Dfu)

ẋf = Afxf +Bfu. (5.50)

In total, the concatenated state space of the system consists of six states - two for the

nominal model and four for the additional model, which includes two states for the filter.

We can now apply this new multi-model design in a receding-horizon setting with the
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(b) Input and disturbance trajectories

Figure 5.4: Optimized trajectories for a multi-model two-dimensional system under dis-

turbance. In addition to the nominal model for the system dynamics, an additional model

accounts for unmodeled dynamics in the form of a low-pass filter. A single control trajec-

tory stabilizes both systems under identical disturbance.

same parameter as previously described. Fig. 5.4 shows a snapshot of the trajectories

obtained for this system in the beginning of a horizon.

We can now examine the performance of the two RHC setups described. The first RHC

setup consists of three models which only model parametric uncertainty, described in (5.46).

The second RHC setup consists of two models, which accounts for unmodeled dynamics in

the form of a low-pass filter, described in (5.47). We test the RHC using both the nominal

model and the true model which includes the unmodeled dynamics. In both cases, we

assume the actual parametric uncertainty to be a sinusoidal signal θ(t) = 0.01 sin(t).

Fig. 5.5 shows a simulation of the RHC where the system is disturbed using the optimal
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(b) True model with unmodeled dynamics

Figure 5.5: Comparison of two robust RHC setups. RHC using three models, accounting

only for parametric uncertainty, is stable only for the nominal model. A two-model design

accounting for unmodeled dynamics is stable for both the nominal and the true model.

disturbance computed in (3.58). As shown in Fig. 5.5(a), the first RHC with three models

exhibits better performance with respect to the nominal model, while the second RHC

is overly conservative, leading to a longer settling time for both states. However, with

respect to the true model, Fig. 5.5(b) shows that the three-model RHC failed to stabilize

the system.

In Chapter 6, we will analyze the computational performance of this multi-model tra-

jectory optimizer in the context of a more complex dynamic system and provide a detailed

discussion on the quality of solutions and computation time. In addition, we will also

provide comparisons to alternative methods, such as LQR and non-robust trajectory opti-
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mization in a receding-horizon control framework.

5.6 Summary

In this chapter, we developed a heuristic approach to robust control design based on the

concept of multiple models, which evaluated the performance of a given control law over a

distribution of possible system dynamics. A distribution of models allowed the optimiza-

tion to consider the expected cost over a range of possible outcomes and account for the

maximum cost for the worst-case scenario. We improved on the approaches presented in

the previous chapters by removing restrictive assumptions made on the forms of uncertain-

ties, which enabled the approach to compensate for effects such as unmodeled dynamics.

We developed these results in the context of necessary sufficient conditions for individual

value functions similar to Chapter 3 and utilized the robust trajectory optimization ap-

proach in Chapter 4 to compute open-loop trajectories that simultaneously satisfied the

optimality conditions for multiple models. We demonstrated the use of these trajectories

in a receding-horizon setting for a simple two-state system.

The proposed multi-model design is a powerful approach to differential games. Where

we have proposed a distribution of system dynamics, the approach can be easily extended to

scenarios where a distribution of different objective functions and information structures

are given to the players, resulting in an even-wider discrepancies on the knowledge and

belief about the underlying game. This could potentially be used to model respective

decision makers in a large scale systems, for example, in a mean-field games setting.
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6
Results

6.1 Overview

This chapter presents experimental validation of the nonlinear robust control designs pre-

sented in Chapter 3, Chapter 4, and Chapter 5. We base our results on three platforms: a

three-link planar model of a bipedal humanoid robot, a seven degrees-of-freedom robot ma-

nipulator, and a 15 degrees-of-freedom model based on the Atlas bipedal humanoid robot

from Boston Dynamics. These models are chosen for their varying degrees of complexity

and we test the proposed nonlinear robust control designs on these models using different

combinations of initial conditions, parameters, and forms of uncertainties. In these results,

we hope to experimentally demonstrate the significant effects of various forms of uncertain-

ties on the behaviors of the closed-loop system and hence the need to robustify standard

controllers. We also discuss the potential advantages and disadvantages of the techniques

proposed in the previous chapters.
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Figure 6.1: Planar model of a bipedal humanoid robot with three links. The three links are

referred to as the stance leg (l1), torso (l2), and swing leg (l3), respectively. Of the three

joints, q1 is stance ankle angle, q2 is the angle of the torso with respect to the vertical,

and q3 is the angle of the swing leg with respect to the stance leg. The parameters for the

model are given in Table 6.1.

6.2 Three-link planar bipedal humanoid model

6.2.1 Model

We model a three-link bipedal humanoid robot in the sagittal plane. A diagram for the

system is shown in Fig. 6.1, with the physical parameters listed in Table 6.1. Of the three

joints, q1 is stance ankle angle, q2 is the angle of the torso with respect to the vertical,

and q3 is the angle of the swing leg with respect to the stance leg. The three links are

referred to as the stance leg (l1), torso (l2), and swing leg (l3), respectively, and we follow a

standard Lagrangian approach to derive the rigid-body dynamics for the model. We define

the generalized coordinates of the system q(t) = (q1(t), q2(t), q3(t))T according to Fig. 6.1
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Table 6.1: Physical parameters for a planar three-link bipedal model

m (kg) r (m) Iy (kg ·m2) l (m)

Stance leg (l1) 10.9 0.37 0.57 0.77

Torso (l2) 65 0.4 4.3 -

Swing leg (l3) 12.6 0.43 0.85 0.81

and the Lagrangian

L =
∑
i

ki −
∑
i

pi (6.1)

is formed by taking the difference between the sum of kinetic energies and the sum of

potential energies. The Euler-Lagrange equation is

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= τi, (6.2)

where τi is the external force acting on the ith generalized coordinate, which in this case, is

individual actuated degree of freedom in the robot. Solving the Euler-Lagrange equation

gives the nonlinear equations of motion, which can be organized in a form that is linear in

acceleration and torque

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (6.3)

where M is the mass matrix that is square, symmetric, and positive definite; C consists

of centripetal and Coriolis forces; G represents the gravitational and other forces acting

on the robot; and τ is a vector of torques that are the controlled inputs to the system.

In addition, we note that (Ṁ − 2C) is a skew-symmetric matrix. This form is commonly

referred to as the manipulator equation [135].

Rearranging the terms and inverting the mass matrix, we can rewrite (6.3) as a series
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of first-order nonlinear equations

ẋ = f(x) + g(x)u

z = [h(x), u]T

x(0) = x0, (6.4)

with x ∈ X is the state vector, z ∈ Z is the output vector, u ∈ U is the vector of controlled

inputs to the system, x0 is a vector of initial states, and the matrices f(x) and g(x)

f(x) = −M−1(q) (C(q, q̇)q̇ +G(q))

g(x) = M−1(q), (6.5)

are the system matrices that are smooth vector fields. Following the uncertainty and

disturbance modeling described in Section 1.3.2, we augment the system with uncertain

terms ∆f(x, θ, t) and ∆g2(x, θ, t), as well as the external disturbances w1, w2, and w3 to

the three joints. We use w to denote a vector of external disturbances with the associated

system matrix g1(x). For the parametric system uncertainty, we use the term θ to represent

an offset to the mass of the torso link, with the nominal value being 65kg, as listed in

Table 6.1.

The final description of the problem is

ẋ(t) = [f(x) + ∆f(x, θ, t)] + g1(x)w(t) + [g2(x) + ∆g2(x, θ, t)]u(t)

z(t) = [h1(x), u(t)]T

x(t0) = x0, (6.6)

where f(x), g1(x), g2(x), h(x) are system matrices and ∆f(x, θ, t) and ∆g2(x, θ, t) are
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parameterized uncertain terms. We use the same optimization objective

J(x, u, w, θ) = min
u∈U

max
w∈W
θ∈Θ

1

2

∫ tf

t0

[
‖z(t)‖2−γ2‖w(t)‖2

]
dt (6.7)

as stated in the previous chapters.

6.2.2 Standing balance control

Due to the nonlinear nature of the dynamics, no analytical solutions exist for this model.

Although the dimensionality of this planar three-link model is relatively low compared

to other problems investigated in this chapter, the computational burdens of pursuing a

numerical dynamic programming-based solution, as described in Section 3.2, remains high

and would require extensive computational machinery for a parallelized implementation.

Instead, we implemented a value function approximation based control design, as described

in Section 3.3. This is done to obtain insight into the performance of the proposed ap-

proximation scheme in Section 3.4.3, as well as to establish a benchmark for the single and

multiple model trajectory optimization.

Given the approximate value function Ṽ (x) as a weighted sum of a set of basis functions

φi

Ṽ (x) =
n∑
i=1

wiφi(x), (6.8)

with φi(x) given by Fourier basis functions. In this case, the system of integral equations

must be solved numerically, with a numerical quadrature embedded within a trust region

dogleg iteration to solve the system of equations. To approximate the value function,

we used the Fourier-basis functions described in Section 3.3 in an uncoupled setting. As

described in Section 3.3, for an k-th order Fourier approximation in n-dimensions, there are

2(k + 1)n basis functions, which is an exponential explosion of parameters in the number
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Figure 6.2: Control design based on value function approximation. A planar three-link

model is stabilized under bounded external disturbance and internal parametric uncertain-

ties.

of dimensions. Following the procedure to uncouple the basis functions, there are n(k+ 1)

number of uncoupled basis functions. With k = 35 and n = 6, this is the difference between

4, 353, 564, 672 coupled and 216 uncoupled basis functions.

We model the scenario of a three-link robot in the standing, upright position with initial

velocities. Fig. 6.2 gives the closed-loop response of the value function approximation-based

control design given a set of initial conditions under the nominal model. Fig. 6.2(a) shows

the stable state trajectories along with the center-of-mass (COM) position and velocity in

the horizontal direction. We see that due to the external disturbance, the COM position

initially moves in the positive direction before stabilizing back to the upright position.

Fig. 6.2(b) shows the corresponding control inputs and disturbance inputs.

The global necessarily and sufficient conditions for optimality derived in Section 3.4.2

would have only limited utility in this model since it is difficult to incorporate state and

input constraints to model joint and actuator limits. Doing so would require formulating
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additional terms in the Hamiltonian to incorporate the constraints, which significantly

complicates the implementation of the resulting control design. While other numerical

implementations for dynamic programming can be used for this purpose (see for example,

Section 1.2.4), we only include an unconstrained version of the optimization problem to

establish a baseline performance for subsequent analysis. Due to the dimensionality of the

problem, we also must make a simplifying assumption on the coupled nature of the value

function. The trade-off of an uncoupled value function approximation is the quality of

the solution with computational efficiency, and we discuss these issues more in-depth in

Section 6.5.

The main focus of this section is to apply the single-model trajectory optimization from

Chapter 4 and multi-model trajectory optimization in Chapter 5 under a receding-horizon

control formulation. Since these techniques can easily incorporate additional constraints on

the states and control inputs, we also simulate the effects of these constraints on the closed-

loop performance. To demonstrate the performance of these robust trajectory optimizers,

they are tested against a LQR controller designed with a linearized model of the dynamics,

as well as a traditional non-robust trajectory optimizer that does not explicitly model

system uncertainties.

For the RHC setups, we model a robot in the standing, upright position with initial

velocities. For the three trajectory-based approaches (standard, single model robust, and

multi-model robust), we implement a receding-horizon control (RHC) similar to the ap-

proach described in Chapter 4 and Chapter 5. We compute trajectories for the system,

apply the obtained control inputs for a fixed duration, then compute new trajectories using

the current states as initial conditions. For all three approaches, the total simulation time

is 3s with a horizon of 0.1s, with 30 collocation points for each computed trajectory.

Fig. 6.3 gives a snapshot of the RHC at the beginning of a horizon, which takes in the

specified initial conditions and computes trajectories based on the nominal model accord-
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(b) Input and disturbance trajectories

Figure 6.3: Snapshot of the receding-horizon control for a planar, bipedal robot with three

links under disturbance. The optimized trajectories are generated using the nominal model

at the beginning of the horizon with the specified initial conditions modeling the robot in a

standing, upright position with some initial velocities. The stable trajectories maintaining

the standing balance of the robot are applied for a fixed duration of the RHC horizon.

ing to the objective function in (6.7). These results are extremely similar to Fig. 6.2(a)

using the value function approach with a near identical form of external disturbance. The

COM position initially moves in the positive direction before stabilizing back to the up-

right position. We see that the worst-case internal parametric uncertainty is achieved by

increasing the parameter θ, which is the mass of the torso link, as shown in Fig. 6.3(b).

Since the trajectory optimizer is able to handle constraints on the control inputs, we

repeat the standing balance experiment but constrain the three control inputs u1, u2, and
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(b) Input and disturbance trajectories

Figure 6.4: Snapshot of the receding-horizon control for a planar, bipedal robot with

three links under disturbance. The trajectories are generated with a single model with

constrained control inputs. The stable trajectories maintaining the standing balance of

the robot despite limited control authority.

u3 to ±500. The resulting trajectories are given in Fig. 6.4, where there is a region of

control saturation in τ2 but the resulting state trajectories remain stable. Fig. 6.4(a) gives

the state trajectories and COM position and velocity in the horizontal direction. Fig. 6.4(b)

gives the corresponding control input and disturbance trajectories.

With a multi-model design, we can also address potential unmodeled dynamics. Con-

sider the example raised in (5.8), where a second-order low pass filter with a cutoff fre-

quency of 10Hz is applied to the control input u. In state space form, this low pass filter
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Figure 6.5: Snapshot of the receding-horizon control for a planar, bipedal robot with three

links under disturbance. The trajectories are generated with two-model design, with 18

concatenated states. The stable trajectories maintaining the standing balance of the robot

for both models.

is equivalent to a linear system

ẋf = Afxf +Bfu

u̇f = Cfxf +Dfu, (6.9)

where the input u is low-pass filtered to produce the new input uf . Given three control

inputs u1, u2, and u3, we designed three low-pass filters according to (6.29) to produce the

filtered control inputs. These filtered inputs are used in the dynamics for a second model

to augment the nominal model. In total, this multi-model design contains 18 concatenated

states: six for the nominal model, six for the additional model, and two states for each

filter. As shown in Fig. 6.5(a), the addition of the unmodeled dynamics has a significant

effect on the response of the system, as the states x2 and x3 have widely different joint
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Table 6.2: Model uncertainties for a planar three-link bipedal humanoid

S1 S2 S3 S4

External Disturbance None Sinusoidal Open-loop Open-loop

Parametric Uncertainty None None Sinusoidal Sinusoidal

Unmodeled Dynamics None None None Low-pass filter

trajectories between the nominal and the second model (with x8 and x9). Despite these

differences, the control input stabilized all trajectories in the two models.

We now compare the single and multi-model robust trajectory optimization against

an LQR controller designed with a linearized model of the dynamics, as well as a tradi-

tional non-robust trajectory optimizer that does not explicitly model system uncertainties.

Four scenarios S1-S4 were set up using various combinations of initial conditions, exter-

nal disturbances, parametric uncertainties, and unmodeled dynamics. Table 6.2 lists the

conditions for the four scenarios.

In S1, the four approaches were tested with no external disturbances, no parametric un-

certainties, and no unmodeled dynamics. The non-zero initial condition for the simulation

was set up outside the linear domain of attraction of the LQR control. As expected, the

LQR control failed to stabilize the system, while the three RHC-based approaches success-

fully stabilized the system, with similar closed-loop responses. The closed-loop response of

the four approaches are shown in Fig. 6.6(a).

In S2, the four approaches were tested with sinusoidal external disturbances, no para-

metric uncertainties, and no unmodeled dynamics. The three links start from an upright

position with zero initial conditions, but the external disturbances perturbed the system,

causing LQR control to fail. The three RHC-based approaches continued to be able to

stabilize the system given the external disturbances. The closed-loop response of the four

approaches are shown in Fig. 6.6(b).
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(d) S4

Figure 6.6: Comparison of LQR, standard RHC, robust single-model RHC, and robust

multi-model RHC. Four scenarios S1-S4 were setup using various combinations of initial

conditions, external disturbances, parametric uncertainties, and unmodeled dynamics listed

in Table 6.2
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In S3, the four approaches were tested with an open-loop external disturbance com-

puted using the single-model robust trajectory optimization. In addition, we augment the

system with a sinusoidal parametric uncertainty on the torso mass m2, but no unmodeled

dynamics. Given that this setup matches closely with the assumptions made by the single-

model RHC, we expect that it will have the best performance. Indeed, the standard RHC

failed to stabilize the system and the states of the system violated the constraints of the

solver around t = 1s. The single and multi-model RHC both were able to stabilize the

system, with similar performances. The closed-loop response of the four approaches are

shown in Fig. 6.6(c).

In S4, the four approaches were tested with an open-loop external disturbance computed

using the single-model robust trajectory optimization, sinusoidal parametric uncertainty,

and unmodeled dynamics in the form of a low-pass filter on the control inputs. In this case,

only the multi-model RHC was able to stabilize the system. The closed-loop response of

the four approaches are shown in Fig. 6.6(d).

One important design parameter in addressing model uncertainty is the parameter γ

in the optimization objective (6.7). As discussed in Section 3.2, γ bounds the disturbance

inputs w and can be adjusted to vary the amount of disturbance given to the robot. To

visualize the effect of γ, we generated center-of-mass (COM) position and velocity in the

horizontal direction with respect to time, and plotted the phase diagram in Fig. 6.7 using

several choices of γ. The trajectories show that an initial non-zero COM location can be

stabilized back to the upright position, given disturbances of various magnitudes.
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Figure 6.7: Phase diagram generated using center-of-mass (COM) position and velocity in

the horizontal direction with respect to time. The trajectories show that an initial non-zero

COM location can be stabilized back to the upright position, given disturbances of various

magnitudes specified using γ. No parametric uncertainties are specified.

6.3 KUKA KR 5 sixx R650 manipulator control

6.3.1 Operational space control

In this section, we extend the proposed robust control designs to implement the operational

space control of a robotic manipulator. As with Section 6.2, we assume the dynamics to

take the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (6.10)

where M is the mass matrix that is square, symmetric, and positive definite; C consists of

centripetal and Coriolis forces; G represents the gravitational and other forces acting on

the robot; and τ is a vector of torques that are the controlled inputs to the system. To be
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consistent with the notations used in previous work, we also define

F (q, q̇) = −C(q, q̇)−G(q) (6.11)

and hence the manipulator equation can be written in the form

M(q)q̈ = u+ F (q, q̇). (6.12)

We assume that the task description can be written in the form of a constraint given by

the function

h(q, q̇, t) = 0. (6.13)

Particularly, for a class of tasks that can be formulated as

A(q, q̇, t)q̈ = b(q, q̇, t), (6.14)

which can be achieved for most tasks by differentiating h(q, q̇, t) with respect to time. This

class of problems has an elegant optimization-based solution, given by Peters [1]. Given

an objective function

J = uTN(t)u, (6.15)

subject to the nonlinear dynamics

M(q)q̈ = u+ F (q, q̇) (6.16)

and the task constraint

A(q, q̇, t)q̈ = b(q, q̇, t). (6.17)
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The solution is given by the control law

u = N−
1
2

(
AM−1N−

1
2

)+

(b− AM−1F ), (6.18)

where D+ denotes the pseudo inverse for a general matrix D and D
1
2 denotes the the

symmetric, positive definite matrix for which D
1
2D

1
2 = D.

For the operational space control of this system, the task description is given by the

end-effector trajectory, where

h(q, t) = f(q(t))− xd(t) = x(t)− xd(t) = 0, (6.19)

with f(q(t)) being the forward kinematics of the system that maps the joint positions q(t)

to the task space. Given the desired trajectory xd(t), we can use an attractor in the task

space in the form

(ẍ− ẍd) +KD(ẋ− ẋd) +Kp(x− xd) = 0, (6.20)

where KD and KP are positive-definite damping and proportional gains. Using the Jaco-

bian relations,

ẋ = J(q)q̇ (6.21)

and

ẍ = J(q)q̈ + J̇(q)q̇, (6.22)

the task space constraint becomes

ẍd +KD(ẋ− ẋd) +Kp(x− xd) = J(q)q̈ + J̇(q)q̇, (6.23)

which can be put in the form

A(q, q̇, t)q̈ = b(q, q̇, t), (6.24)
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with

A(q, q̇, t) = J (6.25)

and

b(q, q̇, t) = ẍd +KD(ẋ− ẋd) +Kp(x− xd)− J̇(q)q̇. (6.26)

As discussed in Peters [1], the choice of the parameter N(t) in the objective function is

important in influencing the behaviors of the resulting optimization. For choices N = M−1,

N = M−2, and N = I, different versions of the control law (6.18) can be produced

with drastically different behaviors. While the feedback control law is optimal with the

assumption that the given dynamic model is perfect, actual performance of the control

law differs depending on the accuracy of the given model. As discussed in another paper

by Peters [136], small unmodeled nonlinearities can have a drastic effect. If the estimated

mass matrix differs by a small amount, the control law will result in unstable null-space

behaviors. We refers the readers to Peters [136] for a detailed discussion on robustness

issues for this particular model.

In this work, we are interested in extending the robust trajectory optimization-based

approaches proposed in Chapter 4 and Chapter 5 to compensate for potential modeling

errors in the system matrices.

6.3.2 Results

Our experimental platform is the KUKA KR 5 sixx R650 (Fig. 6.8), a popular industrial

robot. It is a small-size 6R manipulator with a spherical wrist with a total weight of 127kg,

5kg of payload, and maximum stretch of 0.65m from the base. For all experiments, we

implement the operational space control for this robot’s end effector to track a circular
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(b) Kinematic model of the KUKA R650 robot

Figure 6.8: KUKA KR 5 sixx R650 industrial robot.

motion. The X, Y, Z components of the end effector are given by sinusoidal signals

X = 0.6 sin(t)

Y = 0.15 sin(t)

Z = 0.6 cos(t). (6.27)

As discussed previously, the dynamics for this robot takes the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ. (6.28)

In this operational space control scenario, we model uncertainty in the mass matrix of the

system in the form of a time-varying parameter variation, as discussed in [136].
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Table 6.3: KUKA KR 5 sixx R650 joint limits

Axis Range Speed

Axis 1 (A1) ±170◦ 375◦/s

Axis 2 (A2) +45◦/−190◦ 300◦/s

Axis 3 (A3) +165◦/−119◦ 375◦/s

Axis 4 (A4) ±190◦ 410◦/s

Axis 5 (A5) ±120◦ 410◦/s

Axis 6 (A6) ±358◦ 660◦/s

We implemented two trajectory-based approaches using the single model and multi-

model robust trajectory optimizers proposed in Chapter 4 and Chapter 5. We generate the

optimal trajectories for this operational space control task, incorporating the full dynamics

of the robot as well as the limits on the joint positions and velocities. These figures are given

in Table 6.3. For the multiple-model trajectory optimizer, we implement one additional

model, incorporating a second-order low pass filter on the control inputs, in addition to

the nominal model. The filter dynamics take the form

ẋf = Afxf +Bfu

u̇f = Cfxf +Dfu, (6.29)

as discussed in Section 6.2. Since the robot has six degrees of freedom, each model contains

12 states, with two additional states for the filter on each control input. In total, there are

36 states for the multi-model trajectory optimizer.

Both trajectory optimization methods are implemented a receding-horizon control frame-

work similar to the setup described in Chapter 4 and Chapter 5. We compute trajectories

for the system, apply the obtained control inputs for a fixed duration, then compute new

trajectories using the current states as initial conditions. For all both approaches, the total
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Figure 6.9: A snapshot of the optimized joint trajectories for the KUKA KR 5 sixx R650

circular task. Joint positions (blue) and velocities (red).

simulation time is 15s with a horizon of 0.1s, with 30 collocation points for each computed

trajectory. Fig. 6.9 shows a snapshot of the optimized joint trajectories generated at the

beginning of a horizon for one full revolution in the circular trajectory.

To compare the performance of these methods, we also implemented the optimal

control-based operational space framework proposed in Peters [1]. For the objective func-

tion, we used

N = M−2, (6.30)

in the formulation in (6.15), which is a version of the well-known control law proposed in

Khatib [137] with an additional null-space term, with the interpretation consistent with

principle of virtual work of d’Alembert. We refer the readers to [1] for a detailed derivation

of the control law and its interpretation.

To illustrate the effects of different types of uncertainties, three scenarios S1-S3 were
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Table 6.4: Model uncertainties for the KUKA KR 5 sixx R650
S1 S2 S3

Parametric Uncertainty None Sinusoidal Sinusoidal

Unmodeled Dynamics None None Time delay

set up using various combinations of initial conditions, parametric uncertainties, and un-

modeled dynamics. Table 6.4 lists the conditions for the three scenarios. In S1, the three

approaches were tested with no parametric uncertainties and no unmodeled dynamics. As

expected, all three approaches successfully tracked the circular reference trajectories for the

end effector, with comparable tracking performances. The multi-model approach deviated

from the others as it has the most conservative assumptions in terms of uncertainty and

performed the worst when no uncertainties were present in the system. The closed-loop

response of the three approaches are shown in Fig. 6.10(a).

In S2, the three approaches were tested with a sinusoidal parametric uncertainty in

the mass matrix of the manipulator (as described in Peters [136]), with no additional

unmodeled dynamics. Given that this setup matches closely with the assumptions made

by the single-model RHC, we expect that it will have the best performance. Indeed, optimal

control law in exhibited a large tracking error while the single and multi-model achieved

better tracking accuracy, with similar performances. The closed-loop response of the three

approaches are shown in Fig. 6.10(b).

In S3, the three approaches were tested with the sinusoidal parametric uncertainty and

a time-delay for the control inputs. Due to the significant parametric variation and the un-

modeled dynamics, the optimal control law without model uncertainties exhibits significant

errors in tracking the reference motion. The results show that the multi-model trajectory

optimizer performed better compared to the single-model approach since it contained more

expressive models of the uncertainties. The closed-loop response of the three approaches
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Figure 6.10: Comparison of the operational space control law of Peters [1], robust single-

model RHC, and robust multi-model RHC. Four scenarios S1-S3 were setup using various

combinations of initial conditions, external disturbances, parametric uncertainties, and

unmodeled dynamics listed in Table 6.4

are shown in Fig. 6.10(c).

For both parametric uncertainties and unmodeled dynamics, we also conducted exten-

sive evaluations on the performance of the proposed approaches in response to parametric
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Figure 6.11: Sum of squared errors for the operational space control.

values within a specific structural class. Fig. 6.11 shows the sum of squared tracking er-

rors for the three approaches with respect to the desired end-effector trajectory (circle).

The average errors are obtained over batches of 20 simulations, and are plotted against

parameter variations in a specific type of structural uncertainty, described below.
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Fig. 6.11(a) shows the tracking errors with respect to the amount of delay in the system,

varying from 0 to 20 ms. In the nominal model with no delay, the optimal control law

outperformed both the single and two model robust RHCs. As the amount of delay is

increased, the optimal control design based on the nominal model exhibited increasing

tracking errors. The single and two model RHCs both performance well in the presence of

delays, with a slight performance edge for the two model RHC for larger delays.

Fig. 6.11(b) shows the tracking errors with respect to a sinusoidal parametric uncer-

tainty in the mass matrix of the manipulator. As the magnitude of the uncertainty in-

creases, we expect robust RHCs to outperform the optimal design based on the nominal

model. Indeed, the single model RHC performed the best as the designed parametric vari-

ation matched the true uncertainty in the system, while the two model RHC resulted in

average performance in the spectrum, but best when the amount of uncertainty was large.

Fig. 6.11(c) and Fig. 6.11(d) show the results of another set of simulations where there is

a gravity mismatch between the control design and reality. In Fig. 6.11(c) , the true gravity

was held at 9.8m/s2 while the assumed gravity in the control design was varied from 1-3 Gs.

This implies that in the gravity compensation component of the controller, more torques

were supplied than the necessary amount to achieve gravity compensation. Fig. 6.11(d)

simulated the opposite scenario, where the assumed gravity in the control design was held

constant at 9.8 m/s2 while the true gravity varied from 1-3 Gs. This implies that the

amount of control authority in the control design was insufficient in achieving effective

gravity compensating. Overall, the results are as expected - the optimal design based

on the nominal model of gravity was sensitive to variations in gravity and the tracking

errors correlated positively as the mismatch in gravity was increased. The single and two

model RHCs performed about the same in both scenarios, effectively compensating for the

variations in gravity.
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Figure 6.12: Taken from Boston Dynamics Atlas Robot Operation and Maintenance Man-

ual, ATLAS-01-0018-v2.0, courtesy of Boston Dynamics.

6.4 Atlas humanoid push recovery

To test the limits of the proposed robust trajectory optimizers in terms of dimensionality,

we chose a reduced-order full-body model for the Atlas bipedal humanoid robot from

Boston Dynamics, currently used in the DARPA Robotics Challenge. The Atlas robot is

a hydraulic humanoid with near-human anthropometry. The body weighs approximately

160 kg and contains 28 hydraulically-actuated degrees of freedom, including two arms, legs,

feet and a torso. The Atlas robot and its kinematic configuration is shown in Fig. 6.12.

Table 6.5 contains the ranges for joint motions for each limb, in the X, Y , Z directions.

In the existing literature, studies such as Stephens [2] have shown push recovery strate-

gies such as ankle, hip, and stepping, subject to the magnitude of the external disturbance.

For small pushes, the robot can apply corrective torques at the ankle joint to compensate

for the translation of the CoM. For larger disturbances, a torso rotation in conjunction with
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Table 6.5: Atlas humanoid robot joint limits

DoF
X (◦) Y (◦) Z (◦)

Min Max Range Min Max Range Min Max Range

Neck 1 - - - -34.5 +65.5 100 - - -

Back 3 -30 +30 60 -12.6 +30.9 43.5 -38 +38 76

Shoulder 3 -90 +90 180 - - - -45 +90 135

Elbow 1 -135 0 135 0 +180 180 - - -

Wrist 2 -67.5 67.5 135 0 +180 180 - - -

Hip 3 -30 +30 60 -92.4 +37.7 130.1 -45 +10 55

Knee 1 - - - 0 +135 135 - - -

Ankle 2 -25 +25 50 -52 +28 80 - - -

ankle torques can significantly improve the performance of the push recovery controller.

For significant disturbances that are not recoverable using the ankle and/or hip strategies,

a stepping motion leads to an instantaneous shift in the CoM position and can stabilize

the robot. These strategies are illustrated in Fig. 6.13.

For this reduced-order Atlas model, we are interested in obtaining human-like emergent

behavior from an optimization process. Instead of manually defining recovery strategies

under the ankle/hip/stepping formulation, we formulate an optimization problem that ex-

plicitly models a bounded external disturbance and other internal parametric uncertainties.

We show that under this optimization-based approach, we can generate recovery behaviors

automatically, depending on the assumed upper bound of the disturbance.

The mathematical modeling of the dynamics is similar to the three-link and six-link

models described in the previous sections. We also model contacts on the robot, which

requires additional constraints on the system. We follow the approach used in Posa [138].

The joint space of the robot is defined in generalized coordinates, which in this case, is
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Abstract— We extend simple models previously developed for
humanoids to large push recovery. Using these simple models,
we develop analytic decision surfaces that are functions of
reference points, such as the center of mass and center of
pressure, that predict whether or not a fall is inevitable. We
explore three strategies for recovery: 1) using ankle torques, 2)
moving internal joints, and 3) taking a step. These models can
be used in robot controllers or in analysis of human balance
and locomotion.

I. INTRODUCTION

We study humanoids as a way to understand humans.
Any technology that is applied to aid humanoid motion
can potentially be applied to help elderly or persons with
disabilities walk with more stability and confidence. We
want to understand what causes humanoids to fall, and what
can be done to avoid it. Disturbances and modeling error
are possible contributors to falling. For small disturbances,
simply behaving like an inverted pendulum and applying a
compensating torque at the ankle can be enough. As the
disturbance increases, however, more of the body has to
be used. Bending the hips or swinging the arms creates an
additional restoring torque. Finally, if the disturbance is too
large, the only way to stop from falling is to take a step.

In this paper, we unify simple models used previously by
biomechanists and roboticists to explain humanoid balance
and control. In Section I-A, we discuss previous work in
detail and in Section I-B we summarize our models and
balance strategies. Section II describes the simplest balance
strategy for small disturbances, using only ankle torques to
stabilize. Section III employs an expanded model to allow
use of the rest of the body. Finally, in Section IV, we discuss
the choice of step location when balance strategies fail.

The main contributions of this paper are the unification
of models and strategies used for humanoid balance and
the development of decision surfaces that define when each
strategy is necessary and successful at preventing a fall.
These decision surfaces are defined as functions of reference
points, such as the center of mass and center of pressure,
that can be measured or calculated easily for both robots
and humans. We assume that both ankle and internal joint
actuation are available and used in balance recovery.

A. Related Work
The problem of postural stability in humanoids has been

a subject for many years. Vukobratovic, et.al. was the first

Fig. 1. The three basic balancing strategies. The green dot represents the
center of mass, the magenta dot represents the center of pressure, and the
blue arrow represents the ground reaction force. 1. CoP Balancing (“Ankle
Strategy”) 2. CMP Balancing (“Hip Strategy”) 3. Step-out

to apply the concept of the ZMP, or zero moment point,
to biped balance [1]. Feedback linearizing control of a
simple double-inverted pendulum model using ankle and
hip torques was used by Hemami, et.al. [2]. Stepping to
avoid fall was also studied by Goddard, et.al. [3], using
feedback control of computed constraint forces derived from
lagrangian dynamics.

Modern bipedal locomotion research has been heavily
influenced by Kajita, et.al. and their Linear Inverted Pen-
dulum Model (LIPM) [4]. It is linearized about vertical and
constrained to a horizontal plane, so it is a one-dimensional
linear dynamic system representing humanoid motion. When
considering ankle torques and the constraints on the location
of the ZMP, or zero moment point, it has also been referred
to as the “cart-on-a-table” model. An extension to the LIPM
is the AMPM, or Angular Momentum inducing inverted Pen-
dulum Model [5], which generates momentum by applying
a non-centroidal torque to the center of mass (CoM).

Hofmann [6] studied humanoid control during walking
and balancing tasks in his thesis. He argues that the key to
balancing is controlling the horizontal motion of the CoM,
and there are three strategies for accomplishing this. For
small disturbances, simply shifting the center of pressure
(CoP) changes the tangential ground reaction force (GRF),
which directly affects the motion of the CoM. Because the
location of the CoP is limited to be under the feet, a second
strategy is to create a moment about the CoM, creating a
momentarily larger tangential GRF. This leads to a new point,

Figure 6.13: Ankle, hip, and stepping strategies for push recovery. Illustration courtesy of

Ben Stephens [2].

individual actuated degree of freedom in the robot. The nonlinear equations of motion is

similar to (6.3), in the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ + JTλ, (6.31)

where M is the mass matrix that is square, symmetric, and positive definite; C consists of

centripetal and Coriolis forces; G represents the gravitational and other forces acting on

the robot; B is the input mapping for τ , a vector of torques that are the controlled inputs

to the system; λ is a vector of constraint forces acting along the surface normal, which is

projected by the Jacobian matrix J into the joint space as

J(q) =
∂φ(q)

∂q
, (6.32)
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As with (6.3), this equation can be placed in a form consistent with

ẋ(t) = [f(x) + ∆f(x, θ, t)] + g1(x)w(t) + [g2(x) + ∆g2(x, θ, t)]u(t)

z(t) = [h1(x), u(t)]T

x(t0) = x0, (6.33)

subject to the non-penetration constraint

φ(q) ≥ 0, (6.34)

where the equality

φi(q) = 0 (6.35)

hold iff the i-th constraint is active. The complementarity constraint

λ ≥ 0

φT (q)λ = 0 (6.36)

ensures that the contact forces can be non-zero iff the bodies are in contact.

For the purposes of dimensionality reduction in generating locomotive behaviors, we

lock down the upper body of the robot and treat the neck, shoulder, elbow and wrist

joints of the robot as fixed. The remaining 15 degrees of freedom consists of the back (3),

hip (6), knee (2), and ankle (4). The state vector of the system, which consists of q and

q̇, contains 30 states. The actual equations of motion are generated using the Dynamic

Animation and Robotics Toolkit (DART), which computes Lagrange’s equations derived

from D’Alembert’s principle, with full access to internal kinematic and dynamic quantities,

such as the mass matrix, Coriolis and centrifugal forces.

To solve this 30-dimensional optimization problem, we first follow the procedure de-
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tailed in Posa [138] and Anitescu [139], which relaxes constraints of the form

G(x) ≥ 0

H(x) ≥ 0

GT (x)H(x)λ = 0 (6.37)

into the form

G(x) ≥ 0

H(x) ≥ 0

Gi(x)Hi(x)λ ≤ 0, (6.38)

where a point-wise evaluation is used. In addition, to improve numerical stability, we

introduce additional slack variables α and β in the form

α, β ≥ 0

α = G(x)

β = H(x)

αiβi ≤ 0. (6.39)

Overall, this optimization framework, as applied to the reduced-order model of Atlas,

results in the generation of different push recovery strategies according to the assumed

bounds of the external disturbances and other internal parametric variations. Fig. 6.14

shows several examples of generated strategies. Unlike manually defined push recovery

control, these motions are generated using the whole-body model of the robot without

explicit reference to any particular joint. As a result, multiple joints are often used simul-

taneously to achieve an overall behavior, and we use the dominant joint motions to broadly
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(a) Ankle strategy (b) Hip strategy (c) Stepping strategy

Figure 6.14: Snapshot of optimized behaviors for push recovery. The ankle strategy com-

pensates for small external disturbances by using ankle torques. The hip strategy rotates

the torso in the direction of the push to recover from medium disturbances. For large

disturbances, stepping forwards shifts the CoM location forward into the support polygon.

interpreted behaviors as ankle, hip, and stepping strategies in the description below.

Fig. 6.15(a) shows the the center of mass trajectories in the forward direction in each

of the three generated strategies, corresponding to the screenshots in Fig. 6.14. For small

external disturbances, the "ankle" strategy accommodates forward CoM translations of

around 0.05m, using mainly torques applied at the ankle. For moderate external distur-

bances which results from a forward CoM motion of 0.08m, the "hip" strategy is more

effective in stabilizing the body back into equilibrium. For large disturbances, the robot

achieves stabilization by stepping, and instead of regulating the CoM back to the original,

the CoM moves forward to the 0.14m position. Fig. 6.15(b) shows the corresponding torso

motions for each of the strategies. In both the ankle and stepping strategies, there is little

to no motion for the torso in the forward direction. In the hip strategy, the robot actively

rotates the torso forward by about 0.4 rad, then regulates the torso position back to the

equilibrium states.
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Figure 6.15: Center of mass and torso trajectories for the ankle, hip, and stepping strate-

gies. In both the ankle and stepping strategies, there is little to no motion for the torso in

the forward direction. In the hip strategy, the robot actively rotates the torso forward by

about 0.4 rad, then regulates the torso position back to the equilibrium states.

6.5 Discussion

In all of the example problems demonstrated in this chapter, trajectory optimization within

a receding horizon control framework was shown to be an effective approach in robustifying

controller design against external disturbances, parametric uncertainties, and unmodeled

dynamics. In particular, the use of multiple models is an effective and flexible way of rep-

resenting uncertainties, where each model can have entirely different structural properties.

For example, In the multi-model RHC case in Fig. 6.6(d), the nominal model was aug-

mented by a second, higher dimensional model, which accounted for high-order dynamics.

The concatenation of a different state space would not have been possible with a single

model.

Since the proposed approaches are based on approximate methods using the spectral
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approximation framework presented in Chapter 2, the solutions obtained only approximates

the true globally optimal solutions that can be obtained by solving the robust control

problem analytically. Hence, it is important to characterize the quality of the solutions

obtained. The quality of the solution is controlled by two factors: the initial guesses

supplied to the solver, and the number of collocation points used in approximating the

trajectories.

The single and multi-model RHC are both based on direct trajectory optimization

presented in Section 4.3, which place a softer requirement on the quality of the initial

guesses as compared to the indirect methods presented in Section 4.2. For low-dimensional

problem such as Section 6.2 and Section 6.3, we supplied random initial guesses to the solver

to produce the trajectories. Due to the hybrid nature of the push recovery experiments

in Section 6.4, the requirements for initial guesses, especially in the stepping strategy, was

more important. In general, for larger problems, the quality of the initial guess will be

important, and as discussed in [140], the obtained trajectories tend to be homotopic to

the initial trajectories and it is difficult to recover from an initial guess in a bad homotopy

class.

The second factor in the solution quality is the number of collocation points used in

approximating the trajectories. In Fig. 6.16, we examined the metric for solution quality,

the objective function value, with respect to the number of collocation points used. For

the problem setups in Section 6.2, with a state-space dimension of up to 18, the optimal

number of collocation points is 20, beyond which no improvements to the objective function

value can be obtained. For larger scale problems, especially those that are highly nonlinear,

we expect that a higher number of collocation points will be required, though it is difficult

to provide a quantitative analysis as the results are highly problem-specific.

The number of collocation points is an important factor in the computational efficiency

of the trajectory optimizers. Computational efficiency represents a trade-off with solution
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Figure 6.16: Computation time (seconds) and objective function value vs. the number of

collocation points.

quality, since as the number of collocation points is increased, computational cost also

increases. In Fig. 6.16, we examined the computation time with respect to the number of

collocation points used and obtained a super-linear relationship. The increase from 3 to

30 collocation points led to a corresponding linear increase in the computation time, from

5 to 33 seconds. We expect this relationship to hold for larger-scale problems.

For low-dimensional problem presented in Section 6.2 and Section 6.3, no initial guesses

were required to generate the solutions in any of the batch simulations conducted. This is a

clear advantage of a direct trajectory optimization setup, as opposed to the indirect variety

using first-order necessary conditions (Section 4.2). In Section 6.4, the 30-dimensional

optimization problem required initial guesses in order the generate the three strategies in

Fig. 6.13. This is likely due to the complexities of the underlying dynamics, in terms of

both nonlinearity and dimensionality. For large systems such as this, we expect that good

initial guesses will be an important component, even for direct trajectory optimization.
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There is a clear need for both effective initial guesses and reducing the computational

burdens associated with a large number of collocation points. An effective strategy is to

start out the optimization with random initial guesses, with a low number of collocation

points, then using the optimization result to jump start a second optimization iteration

with a high number of collocation points. In high dimensional examples such as those

in Section 6.4, we found this to be a particularly effective way of producing high quality

solutions while reducing computation time.

An important drawback to the proposed trajectory optimization-based RHC is the

computational cost. All experiments in Section 6 were conducted in MATLAB with a

Quad Core desktop computer with 8GB of RAM. A single trajectory for a six-dimensional

problem in Section 6.2 requires 45s to compute, the 12-dimensional problem in Section 6.3

requires 25m, and the 30-dimensional problem in Section 6.4 require 7h. These figures are

dependent on the number of collocation points used, and the computational efficiency of the

multiple-model versions of these problems scale near linearly with respect to dimensionality.

These numbers are consistent with the computation times reported in other trajectory-

optimization based approaches [141], but clearly, they cannot currently be implemented in

a real-time RHC setting. The target implementation for these trajectory-based approaches

is atrajectory library approach such as [142], where the expensive trajectory optimization

step is computed offline and interpolated online.

There are several reasons why the proposed robust trajectory optimization implemen-

tations are slow. First, the underlying optimization problem is difficult in that it is an

adversarial optimization problem, which is more harder to compute compared to a tra-

ditional NLP-based trajectory optimizer. In Chapter 4, we have presented techniques to

reduce a nested optimization setup, which already improved the computational efficiency,

but there remains additional computational burden due to the nature of the problem

formulation. Second, the examples presented in this chapter have varying levels of dynam-

ics - from simple dynamics in Section 6.2 that can be derived by hand, to complicated
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multi-body systems in Section 6.4 that must be computed algorithmically. The under-

lying computational times factored in the computation for the dynamics and the actual

computational complexity of the trajectory optimizer will likely be reduced given simple

dynamics. Finally, the software implementation based on MATLAB very likely impacted

the computational efficiency significantly. Given a native implementation and multi-core

setup, the underlying RHC can be parallelized effectively to obtain a linear speed-up.

Despite the seemingly inefficient computation, the proposed trajectory optimization re-

mains orders of magnitude faster than previous implementations. A alternative implemen-

tation of trajectory optimization without using the complementarity conditions in (4.25)

is solved in two parts according to (6.7): an inner maximization problem and an outer

minimization problem. The running time for this naive approach is approximately 12 hours

for a six-dimensional problem, compared to under one minute for our MCP formulation,

for the same number of collocation points.

A key assumption in the differential game formulation to robust control is the notation

of rationality - that this adversarial optimization problem is played to the equilibrium state

by rational decision-makers u∗ and w∗. In reality, not all robust control situations satisfy

this assumption, which ultimately lead to sub-optimal controller performance, or controller

conservatism.

First, the stabilizing player assumes the existence of an opposing player. When this

assumption is violated, for example, in the case of no uncertainties or modeling errors in

the system, then the controller performance is sub-optimal. This can be seen in Fig. 6.11,

where conservative robust control designs based on single or model models significantly

under performs an optimal control design. Theoretically, this is well understood in that

the goal of any robust control design is not to perform best given any one model, but to

perform well in the average case, across a spectrum of modeling errors. In the proposed

framework, we can guarantee that without an opposing player, the minimization control
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design will be stable, which directly arises from the definition of the L2-gain in (3.27). We

cannot guarantee the level of conservatism in the control design, which is a function of the

assumed magnitude of the system uncertainties.

Similarly, in the case of an irrational opponent, we can only guarantee stability, but

not the level of conservatism in the control design. In the existing literature for decision

theory, the issue of irrationality has been addressed extensively. Unlike the classical models

of expected utility [143][144], observed decision-making behaviors often exhibit systematic

deviations, such as risk/loss aversio, inaccurately weighting low/high probability events,

and displaying greater disutility for losses compared to equal-amount gains. Prospect

theory [145] is a descriptive model that incorporates many irrational biases and can serve as

a starting point for stochastic models. In this work, with the dynamics being deterministic

as opposed to stochastic, it is unclear what alternative formulations for irrationality can be.

One potential idea is the formulation of stochastic dynamics for robust control, where two

opposing players can elect to have irrational strategies through the stochastic component

portion of the system.

6.6 Summary

In this chapter, we provided experimental validations of the robust control designs pro-

posed in Chapter 3, Chapter 4, and Chapter 5. Through three example related to the

control of humanoid robots, we tested the proposed control designs under varying degrees

of complexity for the underlying dynamic systems. The results show that the proposed

robust trajectory optimizers are effective in compensating for uncertainties such as ex-

ternal disturbances, parametric variations, and unmodeled dynamics, even for complex

nonlinear systems with high dimensionality. We provided an extensive discussion of the

computational aspects of robust trajectory optimization and highlighted the significant
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achievements in tractable designs for robust control.

Jiuguang Wang 155





7
Conclusions

7.1 Overview

In this thesis, we explored the topic of augmenting feedback control designs to compensate

for uncertainties, both internal and external to a dynamic system. This problem was

approached in a new direction: instead of handling uncertainties implicitly or learning

from data, we can formulate explicit mathematical models of uncertainties and achieve

robustness in control design. Specifically, this thesis addressed three keys questions:

• Modeling: how do we model uncertainties such as external disturbances, parametric

variations, and unmodeled dynamics in a nonlinear dynamic system?

• Optimization: how do we extend a traditional nonlinear optimal control framework

to consider these uncertainties?

• Computation: How do we solve this new robust optimization problem in a computa-

tionally tractable way for nonlinear systems with high dimensionality?

7.2 Design guidelines

This thesis, along with many other recent advances in robust control, have opened the pos-

sibility of designing robust controllers for practical applications. For potential practitioners

Jiuguang Wang 157



Numerical Nonlinear Robust Control with Applications to Humanoid Robots

of robust control, we have the following design guidelines on the appropriate methods to

consider given specific parameters for the underlying system. We focus our discussion on

four aspects of system dynamics: the nonlinearity of the dynamics, the complexity of the

equations of motion, the dimensionality of the state space, and the inclusion of constraints

for the states and inputs.

Table 7.1: Robust control design guidelines

Dynamics Complexity Dimensionality Constraints Design

Linear - Low None SOS or RHC

Linear - High None RHC

Linear - - Yes Treat as nonlinear system

Nonlinear Any Low Any Dynamic programming

Nonlinear Simple High None Indirect trajectory optimization

Nonlinear Simple High Yes Direct trajectory optimization

Nonlinear Complex High No Direct trajectory optimization

Nonlinear Complex High Yes Direct trajectory optimization

For linear systems or nonlinear systems that can be linearized, existing tools such

as linear-matrix inequalities and sum-of-squares optimization can be used to formulate

an approximate feedback control design based on analytical closed-formed expressions.

These techniques are reviewed in Section 3.3. For high dimensional systems, receding-

horizon control is an effective way of combining simple controller to achieve robustness

(see Section 1.2.6). For linear systems with constraints, in most cases, it should be treated

as a nonlinear system.

For nonlinear systems where the dimensionality of the state space is low, a dynamic

programming-based approach can be considered, regardless of other factors. While the

global necessary and sufficient conditions derived in Section 3.2 would be difficult to solve,
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even for simple problems, numerical approaches based on either direct policy/value it-

eration or a value function approximation scheme (see Section 3.3) can be used if the

dimensionality of the problem is sufficiently small.

For high-dimensional nonlinear systems, a trajectory optimization approach is recom-

mended. When the dynamics is simple and without associated state/input constraints,

an indirect approach (see Section 4.2) can be used. For all other cases, direct trajectory

optimization (see Section 4.3) is the only available tool for control design.

In terms of uncertainties, the dynamic programming and trajectory optimization-based

approaches can address structural uncertainties, both internal and external to the system.

For unmodeled dynamics, a multi-model design is appropriate (see Chapter 5).

7.3 Future work

We believe that continued work along these lines will result in more effective robust con-

trol designs for nonlinear systems to enable greater autonomy for complex robots such as

humanoids. This work is a general framework which can be extended in many ways, incor-

porating other ways of modeling norm-bounded uncertainties and alternative formulations

of differential games with different underlying assumptions of available information. The

proposed trajectory optimization method can be used in conjunction with a global plan-

ner, which can be extended to incorporate environmental constraints and uncertainties.

Outside robustness issues, the proposed approaches can be extended to other forms of dif-

ferential games, such as pursuit evasion games, and demonstrate applicability in domains

such as economics and finance.
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