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On nondiffusive thermal transport and phonon mean-free-path-dependent 

contributions to thermal conductivity 

Keith T. Regner 

ABSTRACT 

Nondiffusive thermal transport occurs when length or time scales of a system are on the order of 

the mean free paths (MFPs) or lifetimes of the energy carriers. As a result, a local equilibrium 

temperature cannot be defined and the thermal transport properties of the system can no longer be taken 

as the bulk values. When system boundaries are decreased below energy carrier MFPs, nondiffusive 

transport can be described with a reduced, effective thermal conductivity. Heat dissipation in light 

emitting diodes and transistors is adversely impacted by reductions in thermal conductivity, while 

thermoelectric energy conversion devices benefit. In my PhD, I studied the physics governing 

nondiffusive thermal transport.  

In this dissertation I describe my contributions in nondiffusive thermal transport to the scientific 

community. First, I describe the development of broadband frequency domain thermoreflectance (BB-

FDTR), an experimental technique used to observe nondiffusive thermal transport in materials by creating 

length scales comparable to energy carrier MFPs. I use BB-FDTR to induce nondiffusive thermal 

transport in Si-based materials at device operating temperatures. I relate my measurements to the thermal 

conductivity accumulation function, a fundamental physical quantity that describes cumulative 

contributions to thermal conductivity from energy carriers with different MFPs. Using a first order 

interpretation of my data I show that 40±5% of the thermal conductivity of crystalline silicon at a 

temperature of 311 K comes from phonons with MFP > 1 µm. Additional BB-FDTR measurements on a 

500 nm thick amorphous silicon film indicate propagating phonon-like modes that contribute more than 

35±7% to thermal conductivity at a temperature of 306 K, despite atomic disorder. 

I also describe the development of multiple models that are used to refine the interpretation of 

BB-FDTR measurements and better understand nondiffusive thermal transport measurements. First, I 
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solve the Boltzmann transport equation (BTE) analytically to explain how and why measurements of 

thermal conductivity change as a function of experimental length scales in BB-FDTR. My solution 

incorporates two experimentally defined length scales: thermal penetration depth and heating laser spot 

radius. Comparison of the BTE result with that from conventional heat diffusion theory enables a 

mapping of MFP-specific contributions to the measured thermal conductivity based on the experimental 

length scales. The result is used to re-interpret nondiffusive thermal conductivity measurements of silicon 

with first principles-based calculations of its thermal conductivity accumulation function. 

Next, I develop a solution to the two-temperature diffusion equation in axisymmetric cylindrical 

coordinates to model heat transport in thermoreflectance experiments. The solution builds upon prior 

solutions that account for two-channel diffusion in each layer of an N-layered geometry, but adds the 

ability to deposit heat at any location within each layer. I use this solution to account for non-surface 

heating in the transducer layer of thermoreflectance experiments that challenge the timescales of electron-

phonon coupling. I use the model to refit BB-FDTR measurements of silicon and conclude that spectrally 

dependent phonon transmission at the transducer/silicon interface affects the shape of the measured 

accumulation function. 

Finally, I extend my solution to the BTE to a practical application: resistive-switching memory 

(RRAM). I model thermal transport in RRAM in the set state where the conductive filament (CF) is 

approximated by an infinitely long cylinder embedded in crystalline rutile TiO2, a prototypical RRAM 

material. I determine the phonon MFP spectrum in TiO2 and find that MFPs are similar to the CF radius, 

indicating thermal transport is nondiffusive. I develop an analytical solution to the BTE to model the 

nondiffusive thermal transport in the TiO2 and find that the surface temperature rise of the CF predicted 

by the BTE is larger than that predicted by the heat diffusion equation (e.g., 5× larger for a 1 nm CF 

radius in a device at a temperature of 300 K). To model thermal transport in RRAM with the heat 

diffusion equation, I propose a suppressed, effective TiO2 thermal conductivity to more accurately predict 

the CF temperature. 
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1. INTRODUCTION 

Over the past two decades dramatic progress has been made in the efficiency and market viability 

of devices with nanoscale features, such as thermoelectrics [1-6], photovoltaics [7-10], and LEDs for 

solid-state lighting [11-16]. One of the primary reasons for this rise is increased understanding of 

nanoscale thermal transport processes and the effects of nanostructuring on the thermal properties of the 

materials and devices. As material or device dimensions decrease and become commensurate to energy 

carrier mean free paths (MFPs) the bulk thermal transport properties of the system, such as thermal 

conductivity k, reduce. The implications of this reduction are two-fold; it can be exploited in systems 

where low thermal conductivity is desired (e.g., thermoelectric materials), but is detrimental when high 

thermal conductivity is preferred (e.g., solid state lighting). 

In the nonmetallic crystals used for solid-state devices, phonons are the primary energy carriers 

responsible for thermal transport. A comparison between phonon MFPs and the characteristic length scale 

of the system Lc (e.g., device size, characteristic material length scale, heat source size) determines the 

regime of heat transfer. If Lc is much larger than the MFPs of energy carrying phonons then heat transport 

is purely diffusive and spatial temperature and heat flux profiles can be determined using the heat 

diffusion equation and the bulk thermal conductivity kbulk of the material. In the case where Lc is a 

boundary length scale that is less than the MFPs of phonons, such as in a nanostructured device, then heat 

transport is nondiffusive. In this case, reduced spatial dimensions force phonons to scatter at boundaries 

in a shorter distance compared to the bulk material, resulting in a reduced thermal conductivity of the 

device. When instead Lc is a heat source length scale less than the MFP of phonons (e.g., nanoscale-sized 

heater on a macroscopic substrate), heat transport in the substrate is nondiffusive since thermal gradients 

occur over length scales comparable to phonon MFPs. In this situation, spatial temperature and heat flux 

profiles within the substrate cannot be determined from the heat diffusion equation, although the bulk 

thermal conductivity of the substrate does not change. Instead, a reduced, apparent thermal conductivity is 

often used to describe observations of nondiffusive thermal transport [17-19].  
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Numerous theoretical, computational, and experimental studies have focused on the reduction of 

k due to decreasing system boundaries [20-34] or heat source length scales [17,18,35,36], many of which 

have attempted to estimate an effective or average phonon MFP in a material. The classic example is 

silicon, in which the spectrum-averaged phonon MFP (i.e., the gray MFP) can be determined as 41 nm 

from kinetic theory [37]. Other studies yielded average phonon MFPs in materials such as carbon 

nanotubes and graphene [25,33], diamond thin films [20,21], silicon thin films using harmonic Joule 

heating [18,24], and sapphire using ultrafast coherent soft x-ray beams [35]. Trends between k and Lc, 

however, indicate that phonons with different MFPs make different contributions to kbulk, rendering an 

average MFP inadequate. These pioneering experiments led researchers to a more accurate physical 

description that defines cumulative contributions to k per unit MFP, known as the thermal conductivity 

accumulation function kaccum [38].  

I. Thermal conductivity accumulation function 

The thermal conductivity accumulation function quantifies the cumulative MFP-dependent 

contributions of energy carriers to kbulk of a material. Its use as a theoretical and mathematical tool is 

important as it provides insight into nanoscale thermal transport that moves beyond simple interpretations 

based on a spectrum-averaged phonon MFP. The following is an introduction and mathematical 

framework of kaccum for phonons. 

A. Mathematical description 

To explain phonon MFP-dependent contributions to thermal conductivity, kaccum for an isotropic 

material is derived. We begin with the kinetic theory integral for the thermal conductivity of an isotropic 

bulk material [39,40] 

𝑘!"#$ =
!
!
𝐶!𝑣(ω)Λ(ω)𝑑ω

!
!! , (1.1) 
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where ω is the phonon frequency, Cω is the volumetric heat capacity per unit phonon frequency, v is the 

group velocity, Λ is the phonon MFP, and p indexes the phonon polarization. The volumetric heat 

capacity per unit phonon frequency of a nonmetallic, crystalline solid is defined as 

𝐶! =
!
!"
𝐷(ω)𝑔!"ℏω = !(!)!

!!!
!"(!)
!!

ℏω !!!"
!"

. (1.2) 

Here, D(ω) is the density of states, 𝑔!" is the Bose-Einstein distribution, T is temperature, ℏ is the 

reduced Planck constant, and q(ω) is the polarization-dependent phonon wave vector. The 3-D density of 

states is 𝐷(ω) = 𝑞(ω)! 2π! 𝑑𝑞(ω) 𝑑ω , where 𝑑𝑞(ω) 𝑑ω = 𝑣(ω)!!. Substituting into Eq. (1.1) 

and simplifying yields 

𝑘!"#$ =
!
!
!(!)!

!!!
ℏω !!!"

!"
Λ(ω)𝑑ω!

!! . (1.3) 

Transforming the integral from ω to Λ and rearranging yields [41] 

𝑘!"#$ = 𝑘!𝑑Λ
!
! = − !

!
! ! !

!!!
ℏω(Λ) !!!"

!"
Λ !!(!)

!!! 𝑑Λ!
! , (1.4) 

where kΛ is the contribution to k per unit MFP. The accumulation function follows from Eq. (1.4) by 

restricting the upper limit of integration such that  

𝑘!""#$ Λ∗ = 𝑘!𝑑Λ
!∗

! = !
!
𝐶! Λ 𝑣 Λ Λ𝑑Λ!∗

! . (1.5) 

Eq. (1.5) states that phonons with MFP between 0 and Λ∗ contribute 𝑘!""#$(Λ
∗) to the bulk thermal 

conductivity of the material [38].  

To determine kaccum, we must know the dispersion relationship, ω(q), and the frequency 

dependence of the scattering term, Λ(ω). The choice of these quantities can yield solutions for kaccum of 

various materials; as an example the solution for Debye solids dominated by power law scattering is 

presented in the following subsection.  
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B. kaccum for Debye dispersion and power law scattering 

To obtain an analytical solution for kaccum, a triply degenerate Debye dispersion may be assumed 

ω(q) = vsq, where vs is the speed of sound in the material, and the scattering term can be described with a 

power law expression Λ(ω) = 𝐵ω!!, where B is a constant that depends on temperature [41]. These 

assumptions to determine thermal conductivity have been collectively referred to as a modified Callaway 

Model [41]. In the high temperature limit 𝑔!" = 𝑘!𝑇 ℏω where kB is the Boltzmann constant and the 

expression for kaccum becomes 

𝑘!""#$ Λ∗ = !!
!!!!!!!

!
!

!
! 𝑑Λ!∗

!!"#
, (1.6) 

where the lower limit of the integral is the minimum MFP Λ!"# = 𝐵ω!"#!!  as defined by the frequency at 

the Brillouin zone edge (BZE) ωBZE. Evaluating this integral yields 

𝑘!""#$ Λ∗ = !!!!"#
! !!"#

!!!!!!(!!!)
1 − !!"#

!∗

!
!!! . (1.7) 

In the high temperature limit, Umklapp processes are the dominant resistive scattering mechanism and 

have been modeled with n = 2 [39,42,43]. Equation (1.7) for silicon at a temperature of 300 K (in the high 

temperature limit where n = 2, and phonon properties are taken from Refs. [41] and [27]) is shown in Fig. 

1.1 as a function of Λ∗ and normalized by the bulk thermal conductivity kbulk = 145 W/m-K. Incorporating 

additional scattering terms (e.g., boundary, impurity, etc.) or more realistic dispersion (e.g., Born-von 

Karman) complicates the analytical solution but solutions are straightforward using numerical methods.  

Using different scattering and dispersion models yields different accumulation functions for the 

same material. To highlight this difference, kaccum is determined for silicon at T = 300 K using the Holland 

[44], Born-von Karman-Slack (BvKS) [38], and gray [41] models and compared with results from 

molecular dynamics [37] and first principles calculations [45] in Fig. 1.1. Clearly, the shape of kaccum 

strongly depends on the type of model used and experimental measurement of kaccum is crucial. 
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Nonetheless, the more sophisticated models show a broad distribution of MFPs spanning approximately 

four orders of magnitude.  

Fig. 1.1. Thermal conductivity accumulation functions for silicon at T = 300 K (kbulk = 145 W/m-K) from 
the gray model [41], BvKS model [38], Holland model [44], Eq. (1.7), first principles [45], and molecular 
dynamics [37]. These data were previously compiled by Yang and Dames [41]. 

C. Theoretical prediction of phonon mode properties and kaccum  

The phonon mode-dependent contributions to the thermal conductivity of a crystalline 

semiconductor, needed to build kaccum, can be predicted using lattice dynamics calculations [46,47]. The 

required inputs are the second- and third-order force constants. A major advance in this field was made in 

2007, when Broido et al. demonstrated that when force constants are obtained from first principles 

calculations, excellent agreement is found with experimental measurements of k for silicon and 

germanium [48]. Subsequent work has found similarly good agreement for a range of materials 

[45,49,50]. 
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Harmonic lattice dynamics calculations are first used to obtain the mode frequencies (i.e., the 

phonon dispersion), from which the heat capacity and group velocities are calculated [51]. Under the 

relaxation time approximation, anharmonic lattice dynamics calculations are then used to predict the 

phonon lifetimes, and from these, the MFPs. In some materials, the relaxation time approximation is not 

valid and an iterative solution to the linearized phonon Boltzmann transport equation (BTE) can be used 

to obtain better estimates of the lifetimes/MFPs [49,52,53]. Given the MFPs of all phonon modes in the 

Brillouin zone, it is straightforward to build kaccum, as shown in Fig. 1.1 for silicon. 

II. Experimental methods to measure kaccum 

Quantifying contributions to thermal conductivity by specific phonons has long been of 

experimental interest [17,20,21]. One convenient method involves estimating an average phonon MFP 

that dominates heat transport. This value is determined from experimental observations of nondiffusive 

heat transport, which can be induced by varying the sample thickness or heater dimensions 

[18,20,21,24,35,54]. This average phonon MFP, however, has limited utility and application since 

phonons with a wide range of MFPs significantly contribute to thermal transport. 

Only recently have experimental techniques been developed and used for specifically studying 

kaccum based on measurements of bulk materials. Notably, techniques using neutron scattering [55] and x-

ray free-electron laser pulses [56] have shown promise for measuring mode-dependent properties. At the 

benchscale, however, the focus has been on transient thermal grating (TTG), time domain 

thermoreflectance (TDTR), and broadband frequency domain thermoreflectance (BB-FDTR). These 

techniques involve systematically varying the length scale over which thermal gradients occur Lc within a 

range comparable to phonon MFPs, while simultaneously measuring the apparent thermal conductivity 

kexp (i.e., thermal conductivity is measured as a function of Lc). Schematics highlighting Lc in each 

technique are shown in Fig. 1.2. One major accomplishment resulting from my time at CMU was the 

invention and development of BB-FDTR, as described in Chapter 2  (and K. T. Regner, S. Majumdar, 

and J. A. Malen, Instrumentation of Broadband Frequency Domain Thermoreflectance for Measuring 
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Thermal Conductivity Accumulation Functions, Review of Scientific Instruments, vol. 84, pp. 064901, 

2013). In the following subsections, a summary of each technique is given and a more thorough 

description of BB-FDTR can be found in Chapter 2 of this dissertation.  

 
Fig. 1.2. Schematics highlighting Lc (as Lg, Lp, or ro) in (a) transient thermal grating (b) time domain 
thermoreflectance and (c) broadband frequency domain thermoreflectance. These three techniques are 
used to measure thermal conductivity kexp as a function of the relevant experimental length scales Lc 
indicated in the figure.  

A. Transient thermal grating 

In TTG, two laser pulses are crossed at the sample surface causing optical interference. The 

interference pattern creates a spatially periodic intensity profile that is focused on the sample, creating a 

spatially periodic temperature profile with period Lc = Lg, as illustrated in Fig. 1.2(a). The spatially 

periodic temperature profile causes the temperature-dependent indices of refraction to vary with a 

spatially periodic profile such that an optical grating is created. A probe beam is simultaneously diffracted 

by this optical grating. Transient heat diffusion and counter-propagating surface acoustic waves create 

time-dependent diffraction decay. A detector measures the time-dependent intensity of the diffracted 

light, which is used to determine the in-plane thermal diffusivity of the sample [57-62]. 

By changing the grating period induced by the pump laser, kexp was determined as a function of Lg 

for free-standing thin films [63-65]. The authors found that thermal conductivity decreases with 
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decreasing grating period when phonon MFPs exceed Lg. The relationship between kexp vs. Lg for thin 

films and kaccum for bulk materials requires a thorough analysis that will be discussed later in this 

dissertation. 

B. Time domain thermoreflectance 

TDTR is a non-contact, laser-based thermal conductivity measurement technique that uses time 

delayed laser pulses to both heat and measure the surface temperature of a sample. The sample is prepared 

by coating the surface with a thin metal film, which acts as a thermoreflectance transducer. In a TDTR 

experiment, a pump pulse is absorbed by the transducer, causing the surface temperature to rapidly 

increase. As heat diffuses into the sample, the surface temperature decays. The change in surface 

temperature is monitored by observing the intensity of the reflected probe pulse, which changes based on 

the thermoreflectance of the transducer. By varying the time delay between the pump and probe pulses, 

the temporal surface temperature can be resolved and fitted to a solution of the heat diffusion equation in 

a layered structure for the unknown thermal conductivity of the sample [66-70]. It should be noted that 

the existence of the transducer layer introduces an interface thermal conductance G into the analysis, 

which is another unknown fitting parameter.  

To increase the signal to noise ratio, the pump pulse train intensity is modulated sinusoidally at a 

secondary frequency f1 using an electro-optic modulator that enables lock-in detection. The sinusoidal 

surface heat flux results in an oscillating thermal wave into the solid. The thermal penetration depth 

𝐿! = 𝑘/𝐶π𝑓! is the characteristic spatial decay length of the temperature profile and is defined as the 

depth into the material where the temperature amplitude drops e-1 of the surface temperature. Here, C is 

volumetric heat capacity. Consequently, TDTR has several inherent timescales due to the use of a pulsed 

laser, including (i) the laser pulse width (<0.5 ps), (ii) the delay time between pump and probe pulses 

(>100 ps), (iii) the time between laser pulses (~10 ns), and (iv) the secondary modulation frequency 

(1/f1~100 ns).  
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Two relevant length scales act as Lc in TDTR and are shown in Fig. 1.2(b): (i) the thermal 

penetration depth Lp, which arises from the intensity modulation of the heating laser and (ii) the radius of 

the heating laser ro, which is defined as the e-2 radius of the Gaussian shaped laser beam. TDTR 

measurements of kexp as a function of both Lp and ro have been reported for different materials [19,71,72]. 

The interpretation of the results to relate kexp vs. Lc to kaccum will be discussed in the following section. 

C. Broadband frequency domain thermoreflectance 

BB-FDTR is a technique closely related to TDTR, but in practice requires different equipment 

and interpretation [73-75]. I give a brief description of the technique here for completeness, but a more 

detailed description follows in Chapter 2. In BB-FDTR, the intensity of a continuous wave (CW) pump 

laser is modulated sinusoidally at frequency f1 and focused on the sample, which is coated with a metal 

transducer layer. The periodic heat flux causes the surface temperature to oscillate at f1. A CW probe laser 

monitors the periodic surface temperature response based on the thermoreflectance of the transducer. The 

periodic change in the thermoreflectance of the sample surface induces intensity modulation at f1 in the 

reflected probe beam, which contains information about k of the sample. The phase of the reflected probe 

beam with respect to the pump beam is used to determine kexp vs. Lp by fitting it to the solution to the heat 

diffusion equation over a range of f1 [73-76]. The relevant length scales at the sample in a BB-FDTR 

experiment are illustrated in Fig. 1.2(c)  

Since Lp is inversely proportional to the heating frequency, it is desirable to modulate the heat 

flux (pump) at high frequencies to measure a greater range of kexp vs. Lp. Theoretically, the upper bound 

of f1 is unlimited due to the use of CW lasers. Realistically, however, ambient and coherent noise 

drastically reduce the signal to noise ratio when f1 > 20 MHz [74]. To overcome this limitation a 

heterodyne procedure is used to increase the signal to noise ratio at larger heating frequencies (f1 can be 

modulated up to 200 MHz using CW lasers with a heterodyne procedure) [74]. Another major 

accomplishment resulting from my time at CMU is the measurement of kexp vs. Lp for Si-based 

materials at device operating temperatures using BB-FDTR, and is described in Chapter 3 (and K. T. 
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Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H. McGaughey, and J. A. Malen, Broadband Phonon 

Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain 

Thermoreflectance, Nature Communications, vol. 4, pp. 1640, 2013).  

D. Comparison of techniques 

The advantages and disadvantages of each technique are summarized in Table 1.1. Specifically, 

TDTR is a widely used technique that can easily be adapted to measure kexp vs. Lp or ro with minor 

modifications. Relative to TDTR, the use of CW lasers in FDTR results in a single timescale (1/f1) 

associated with laser heating. The heterodyne procedure employed by BB-FDTR broadens the range of 

this timescale [73,74]. Recently, Collins et al. showed that the complex TDTR signal could be 

decomposed in the frequency domain to extract data up to 1 GHz, therein exceeding the highest frequency 

measured by BB-FDTR [77]. The existence of a transducer layer in TDTR and BB-FDTR complicates the 

interpretation of kexp vs. Lc and introduces an additional fitting parameter into the analysis, i.e., the 

interface conductance between the transducer and sample G. TDTR may be better suited to accommodate 

this additional fitting parameter since the data as a function of delay time between pump and probe pulses 

in TDTR can be used to isolate G, while k is extracted from timescales commensurate to the secondary 

modulation frequency f1. A further complication is the complex electron-phonon dynamics in the 

transducer that influences the signal at high frequency and is more pronounced in metals that have weak 

electron-phonon coupling (e.g., the gold transducers, used in BB-FDTR [77,78]). Finally, while TDTR 

and BB-FDTR are sensitive to cross-plane thermal conductivity, TTG is unique in that it is capable of 

taking in-plane measurements and is not complicated by a transducer. 
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Table 1.1. Advantages and disadvantages of the techniques outlined to measure kexp vs. Lc. 

        
Technique Pros Cons Ref. 

TTG • Capable of measuring in-plane 
anisotropy 

• No transducer required, which 
simplifies interpretation of results 

• Grating period (Lg) limited by 
the diffraction limit of light 

[63-65] 

TDTR • Robust, common technique can be 
easily modified to measure kexp vs. 
Lc  

• Incorporation of multiple length 
scales (ro and Lp) 

• Multiple timescales (pump/probe 
delay time and f1) may facilitate the 
extraction of kexp and G 

• Spot size (ro) limited by 
diffraction limit of light 

• Interpretation of kexp vs. Lc is 
complicated due to the existence 
of the transducer layer 

• Additional fitting parameter G 

[19,71,72] 
 
 
 
 
 

BB-FDTR • Heating frequency (f1) theoretically 
unlimited 

• Incorporation of multiple length 
scales (ro and Lp) 

• One timescale is clearly defined due 
to the use of CW lasers 

• Spot size (ro) limited by 
diffraction limit of light  

• Interpretation of kexp vs. Lc is 
complicated due to the existence 
of the transducer layer 

• Additional fitting parameter G 

[73-75] 

        

III. Relating kexp and kaccum 

Experimental techniques to specify kaccum focus on inducing nondiffusive thermal transport by 

varying an experimentally controllable length scale Lc in a range comparable to energy carrier MFPs. 

Ideally, experiments would be directly interpreted with a solution to the BTE that accurately describes the 

experiment and inherently considers nondiffusive effects over the full phonon spectrum, but this 

procedure is not straightforward. Instead, nondiffusive experimental measurements are fit to a solution to 

the heat diffusion equation, which yields an experimental thermal conductivity kexp as a function of Lc. To 

obtain kaccum, Lc is related to the MFP-dependent contributions to kexp using a suppression function S(Λ, 

Lc). Physically, the suppression function describes how phonon contributions to thermal conductivity are 
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suppressed as a function of experimental length scales. Based on this definition the suppression function 

can be used to modify the mean-free-path-dependent contributions to kΛ in Eq. (1.5) so that instead of kbulk 

(when Λ* = ∞), one finds the expected thermal conductivity in a specific nondiffusive experiment 

𝑘!"# 𝐿! = 𝑆 Λ, 𝐿! 𝑘!
!
! 𝑑Λ. (1.8) 

The idea of a suppression function was initiated by Maznev et al. [79] (therein referred to as a correction 

factor), first applied using Eq. (1.8) by Minnich [80], and derived with added formality by Yang and 

Dames [41].   

The suppression function is hence used to map measurements of kexp vs. Lc to the actual kaccum of 

the material by quantifying how much a certain phonon will contribute to thermal conductivity in a 

nondiffusive experiment compared to its contribution in a completely diffusive system (i.e., bulk) 

[41,72,79-83]. Thus, the suppression function is different for different experimental techniques. The 

accuracy of Eq. (1.8) depends on the accuracy of S(Λ, Lc) and kΛ. The accuracy of kΛ has been improved 

by first principles-informed lattice dynamics, while the accuracy of S(Λ, Lc) depends on how it is 

determined (e.g., how the BTE is solved). Suppression functions found using varying degree-of-accuracy 

solution methods are discussed in the following subsections for the different experimental techniques.  

A. Step function suppression function 

The initial interpretation of kexp vs. Lc measurements was that only phonons with Λ < Lc 

contribute to the measured value of thermal conductivity kexp. Mathematically, this takes the form 

𝑘!"# 𝐿! = 𝑘!
!!
! 𝑑Λ, (1.9) 

and is equivalent to S(Λ, Lc) being a step function from 1 to 0 at Λ/Lp = 1. Eq. (1.9) equivalently states 

that measurements of kexp vs. Lc are equal to kaccum vs. Λ.  

In 2007, Koh and Cahill were the first to use this interpretation to experimentally probe kaccum in 

bulk semiconductor alloys using TDTR measurements of kexp vs. Lp [71]. Similarly, Eq. (1.9) is used to 

interpret BB-FDTR measurements of kexp vs. Lp of Si-based materials shown in Chapter 3 of this 
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dissertation [73,75]. Minnich et al. took a different approach and varied ro in TDTR measurements of 

silicon at cryogenic temperatures. They used Eq. (1.9) to explain contributions to kexp from phonons 

having a MFP less than 2ro [19]. None of these initial results considered electron-phonon coupling 

processes within the transducer. Using TDTR, Wilson and Cahill observed suppression in the thermal 

conductivity of semiconductor alloys but not silicon as a function of Lp, while they conversely observed 

suppression in the thermal conductivity of silicon but not semiconductor alloys, as a function of ro [78].  

B. Experiment-specific suppression function from the BTE 

The suppression function was first considered as a means to interpret TTG measurements where 

phonon MFPs were on the order of or longer than the grating period [65,79]. The procedure for 

determining the suppression function involves solving the BTE in an experiment-specific geometry. For 

TTG, a simplified geometry is an infinite, 1-D slab with an initial, spatially sinusoidal temperature 

profile. Matching the diffusive prediction of temperature decay rate to that predicted by the BTE requires 

a reduced value of k. This value of k describes nondiffusive transport and results from suppressed 

contributions from phonons with MFPs commensurate or greater than Lc. 

The suppression function for TTG was determined analytically in Refs. [79,81,82]. To determine 

analytical solutions, the problem was treated as isotropic and the relaxation time approximation was 

made. The resulting form of the BTE is 

!"
!"
+ 𝐯 ∙ ∇𝐫𝑛 =

!!!!
!

, (1.10) 

where the non-equilibrium distribution function n is the phonon energy density per unit phonon frequency 

function, ne is the equilibrium distribution function, and τ is the lifetime. To generate analytical solutions, 

typically only one dimension is considered.  

To simplify the analysis further, the gray approximation can be assumed (i.e., all phonons have 

the same MFP). Solving Eq. (1.10) under the gray approximation yields a suppression function that 

quantifies the contribution to thermal conductance by one phonon mode in a nondiffusive experiment 

with length scale Lc, relative to the same phonon mode in a diffusive experiment. Solutions to the gray 
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BTE, however, are often analytical and thereby are useful tools for understanding trends and providing 

physical insight to the problem.  

Using the gray approximation, Collins et al. showed that Eq. (1.10) can be solved analytically 

using separation of variables to get the BTE-predicted temperature decay rates in TTG, which were 

compared to the diffusive decay rates to get the suppression function shown in Fig. 1.3 [81]. Hua and 

Minnich eliminated the gray approximation and determined an analytical solution to the phonon 

frequency-dependent BTE [82]. Alternatively, Eq. (1.10) can be coupled to the heat diffusion equation 

and solved as a two-fluid problem. Here, low frequency phonons are described by the BTE, which can 

describe ballistic, diffusive, and intermediate transport regimes, while high frequency, diffusive phonons 

are described with the heat diffusion equation [79]. The two-fluid model captures the interaction of low 

frequency phonons with a thermal reservoir and eliminates the necessity of using the gray approximation. 

The suppression functions determined using the two-fluid and gray models are compared in Fig. 1.3. It 

should be noted that eliminating the gray approximation requires material-dependent scattering rates to 

determine the suppression function. A comparison of gray, two-fluid, and phonon frequency-dependent 

predictions of kaccum based on Eq. (1.8), however, suggests that material-dependence of the suppression 

function is weak (less than 7% variation in kaccum) for silicon and PbTe at T = 300 K over TTG grating 

periods from 10-1 to 106 nm [81].  

Another major accomplishment as a result of my time at CMU is the development of the 

suppression function for thermoreflectance-based techniques (TDTR and BB-FDTR) and is described 

in Chapter 4  (and K. T. Regner, A. J. H. McGaughey, and J. A. Malen, Analytical Interpretation of 

Non-Diffusive Phonon Transport in Thermoreflectance Thermal Conductivity Measurements, Physical 

Review B, vol. 90, pp. 064302, 2014). This work was motivated by the rigorous analysis of TTG along 

with discrepancies between TDTR and BB-FDTR measurements of kexp vs. Lp on silicon at room 

temperature. In thermoreflectance experiments there are two apparent length scales: the thermal 

penetration depth Lp and the heating laser spot radius ro, which should both be considered in the 

determination of the suppression function.  
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An analytical solution for the suppression function was found by solving Eq. (1.10) (in spherical 

coordinates) under the gray approximation for a sphere embedded in an infinite medium with a 

periodically changing temperature at the sphere/medium interface [83]. The solution incorporates 

suppression from Lp due to the oscillating nature of the surface temperature and a spot size effect by 

changing the radius of the embedded sphere. The Lp-dependence (𝑟! → ∞) and the ro-dependence 

(𝐿! → ∞) of the suppression function derived in Ref. [83] are shown in Fig. 1.3. Notably the result is a 

function of the phonon transmission properties at the transducer/substrate interface, which suggests that 

the transducer affects the observed kexp.  

To improve accuracy of the suppression function for thermoreflectance techniques, numerical 

solutions are required to solve the phonon frequency-dependent BTE with Gaussian periodic surface 

heating. Ding et al. did so using a Monte Carlo approach and quantified suppression due to spot size as 

shown in Fig. 1.3 [72]. The suppression function was used to favorably compare predictions of kexp with 

experimental data using Eq. (1.8). In this work the authors predicted suppression in the cross plane 

direction, but did not observe it in their experiments. The comparison of suppression functions for TDTR 

and BB-FDTR using varying degree-of-accuracy solutions is highlighted in Fig. 1.3.  Considering the 

presence of a transducer increases the complexity further [72,84]. Minnich et al. solved the frequency-

dependent BTE in a double-layer geometry to simulate the presence of a transducer in thermoreflectance 

measurements and found no heating frequency-dependence to the calculated value of thermal 

conductivity [84]. Furthermore, it has been suggested that weak electron-phonon coupling in the gold 

transducer will diminish the reported thermal conductivity suppression as a function of Lp in silicon. 

Resolving the physics in the transducer is necessary to refine the interpretation of thermoreflectance 

measurements. Another major accomplishment resulting from my time at CMU is the development of a 

two-temperature model to account for electron-phonon non-equilibrium in the transducer layer and is 

described in Chapter 5 (and K. T. Regner, L. C. Wei, and J. A. Malen, Interpretation of 

Thermoreflectance Measurements with a Two-temperature Model Including Non-surface Heat 

Deposition, Journal of Applied Physics, vol. 118, pp. 235101, 2015).  
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The utility of the suppression function is that experimental measurements of kexp vs. Lc can be 

directly compared to predictions of kaccum using Eq. (1.8). One way to make this comparison is to predict 

the experimental measurement using the experiment-specific suppression function and material-

dependent kΛ as inputs to Eq. (1.8), where kΛ can be obtained from models (e.g., Callaway, BvKS, first 

principles, etc.). Alternatively, kΛ can be obtained directly from measurements of kexp vs. Lc using the 

experiment-specific suppression function. This method involves solving an inverse problem, which was 

done by Minnich for TTG using convex optimization [80]. Similar approaches could be applied to TDTR 

and BB-FDTR. 

 
Fig. 1.3. Suppression functions derived for TTG, TDTR, and BB-FDTR. These are used in Eq. (1.8) to 
interpret measurements of kexp vs. Lc. Also shown is the step function interpretation from Eq. (1.9). 

IV. Importance of kaccum 

Accurate experimental measurements of kaccum are being pursued, but the utility of kaccum for the 

engineering of devices should not be overlooked. To maximize the broader impacts of kaccum it is 
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important to understand why knowing it is helpful and how to use it as a tool for design. Recent work has 

explored the importance of kaccum by identifying the existence of a universal kaccum for similar materials 

[75] and by showing how kaccum can be used to characterize nanostructured devices [41,85,86]. 

A. Universality of kaccum  

Freedman et al. measured the thermal conductivity of GaAs, GaN, AlN, and 4H-SiC via BB-

FDTR as a function of Lp for a range of temperatures [75]. They found that when kexp for GaAs, GaN, 

AlN, 4H-SiC and Si was plotted as a function of a normalized experimental characteristic length scale 

(i.e., the ratio of Lp to the minimum phonon MFP Λmin, defined below), kexp collapsed to a single universal 

curve in the high temperature regime where Umklapp scattering is the dominant source of thermal 

resistance. Assuming a triply degenerate Debye dispersion, the accumulated thermal conductivity of a 

semiconductor is Eq. (1.7) with n = 2. After normalizing by kbulk [i.e., the upper limit of integration in Eq. 

(1.6) equals infinity], Eq. (1.7) becomes 

!!""#$ !∗

!!"#$
= 1 − !

!∗
𝐵ω!"#!! = 1 − !!"#

!∗
. (1.11) 

This result implies that thermal conductivity in small unit cell semiconductors results 

predominantly from phonons with MFPs 1-200 times the phonon MFP of acoustic phonons at the 

Brillouin zone edge. The collapse of experimental thermal conductivity measurements suggests that the 

phonon MFP spectrum is a universal feature of crystalline semiconductors.  

B. Applying bulk kaccum measurements to nanostructures 

Knowledge of kaccum is useful when predicting the thermal conductivity of nanostructures 

[41,85,86]. Yang and Dames found that if the accumulation function is known for a certain bulk material, 

then the thermal conductivity accumulation function of a nanostructure, knano,t, made of the same material 

can be predicted as [41]  

𝑘!"!#,! = − 𝑘!""#$(Λ)
!!!
!!

!
! 𝑑Λ, (1.12) 
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where At is a boundary scattering function that depends only on the ratio between the bulk MFPs in the 

material and the critical length scale of the nanostructure, Lc, and the subscript t represents the type of 

nanostructure (e.g., wire, film, etc.). The form of the boundary scattering function can be obtained by 

solving the BTE and was used to evaluate knano,t as a function of characteristic nanostructure dimension 

using predictions for kaccum from the Callaway, Holland, BvKS, and Gray models along with molecular 

dynamics and first principles calculations in Ref. [41].  

 Furthermore, solutions to the BTE in different geometries yield the suppression function for that 

geometry. Combining the result with the accumulation function yields the effective thermal conductivity 

of that specific geometry/material combination as a function of the characteristic dimension of the 

geometry Lc. As a first order approximation of the heat transport in nanostructures, the predicted, reduced 

value of effective thermal conductivity can be used in the heat diffusion solution in lieu of the bulk 

thermal conductivity to more accurately predict temperature profiles inside the nanostructure. Another 

major accomplishment as a result of my time at CMU is the use of this procedure to predict the 

temperature rise of conductive filaments in resistive-switching memory devices, described in Chapter 6 

(and K. T. Regner and J. A. Malen, under review at IEEE Electron Device Letters). 

V. Organization of the dissertation 

The preceding sections give a thorough review of the phonon thermal conductivity accumulation 

function, including (i) how it is formulated, (ii) how it has been measured, (ii) the interpretation of those 

measurements, (iv) and its importance to designing and engineering devices and materials. In the 

following chapters I will discuss my specific contributions in detail. In Chapter 2 I describe BB-FDTR, a 

technique I developed to observe nondiffusive thermal transport in different materials. In Chapter 3 I 

describe how I use BB-FDTR to observe nondiffusive thermal transport in Si-based materials at device 

operating temperatures. I use the simple interpretation of Eq. (1.8) to relate these measurements of k vs. 

Lp to kaccum vs. MFP. In Chapter 4 I formulate an analytical suppression function for thermoreflectance 

experiments that relates the length scales in these experiments (ro and Lp) to the MFPs of energy carriers 
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by solving the BTE. I use this suppression function to re-interpret my results from Chapter 3 using Eq. 

(1.9). In Chapter 5 I develop a two-temperature model that is used to account for electron-phonon non-

equilibrium that occurs in the transducer layer of thermoreflectance experiments. In Chapter 6 I extend 

my BTE analysis to a practical application by developing an analytical solution to the BTE to predict 

spatial temperature and heat flux profiles in resistive-switching memory devices. I use my solution to 

predict the temperature rise of conductive filaments that are formed in these devices and find the 

filaments get hotter than expected due to nondiffusive thermal transport. Finally, in Chapter 7 I provide 

future directions for studying nanoscale thermal transport. 
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2. BROADBAND FREQUENCY DOMAIN THERMOREFLECTANCE 

I. Overview 

Despite its importance to the fundamental thermal properties of matter, measurement of kaccum was 

only first realized in 2007 using TDTR [71]. In this study, Koh and Cahill found that the thermal 

conductivity of semiconducting alloys depends on the secondary pump pulse modulation frequency f1 

[71]. In this case, Lc is set by the thermal penetration depth Lp. In TDTR, however, Lp is restricted by an 

upper limit to the modulation frequency of ~20 MHz because at least four pulses are required in a 

modulation cycle and the pulse repetition rate of the common Ti-Sapphire oscillators is 80 MHz. 

Alternatively, Lc can be set by the dimensions of nano-patterned heaters to extract the average phonon 

MFP of the substrate [35], but requires an optically transparent sample. One recent TDTR study observed 

reduced k in Silicon for smaller laser spot sizes ro and hypothesized that they were making direct 

measurements of kaccum with Lc = 2ro [19]. In this approach, however, the diffraction limit of light limits 

possible spot sizes and hence the range of the measurement. 

In this chapter, I describe broadband frequency domain thermoreflectance (BB-FDTR), a MFP 

spectroscopy technique that uses high frequency modulation of CW lasers to vary Lp and measure an 

unprecedented range of kaccum (Lp = Lc). This technique is based on frequency domain thermoreflectance 

[76,87] (FDTR), which is illustrated in Fig. 2.1(a), where a CW pump laser is intensity modulated at 

frequency f1 and focused on to the sample surface. This periodic heat flux causes the surface temperature 

to change periodically at frequency f1. The amplitude and phase of the surface temperature with respect to 

the incident heat flux contains information about the thermal properties of the sample, and is measured 

with a CW probe laser based on the thermoreflectance of the sample. The temperature response measured 

by the probe beam is fit to an analytical solution to the heat diffusion equation to obtain a value of 

thermal conductivity of the sample.  

To measure a large range of kaccum, it is necessary to create a thermal penetration depth in the 

material that is commensurate to the MFP of the phonons. This range is achieved by using modulation 
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frequencies that limit the length scale of heat diffusion. Theoretically, since FDTR uses CW lasers, the 

pump can be modulated at infinite frequency to measure the entire kaccum. Signal to noise ratios in FDTR, 

however, decrease at larger heating frequencies due to the decreasing signal size and presence of coherent 

noise and ambient noise at high frequency. Most early FDTR-based techniques do not modulate the pump 

laser higher than 2 MHz [88-90], however, Pottier [91] and, more recently, Schmidt et al. [76] and Ong et 

al. [6] report heating frequencies up to 10 MHz and 20 MHz, respectively. 

The BB-FDTR technique produces a high fidelity thermal signal by inducing an additional 

modulation on the reflected, thermally modulated probe laser at frequency f2. Heterodyning the probe 

laser allows for heating frequencies up to 200 MHz but measurement of the thermal response at a much 

lower frequency, f1 - f2, where the signal to noise ratio is much larger. Achieving this high frequency 

measurement is useful for accurately resolving interface thermal conductance, but more uniquely for 

measuring kaccum over a broad range with minimal experimental modification (i.e., no changing focusing 

objectives or optical gratings, no special sample preparation, etc.). Since Lp and hence the MFPs 

accessible to BB-FDTR depend on thermal conductivity (through 𝐿! = 𝑘/π𝐶𝑓!), its range “adjusts” to 

the material, unlike spatially fixed cutoff length scales like ro and the transient grating period. The 

following subsections describe the instrumentation and fitting details, a similar alternative approach that I 

found to be unsuccessful in the lab, and a detailed sensitivity analysis. This work appears in Review of 

Scientific Instruments, vol. 84, pp. 064901, 2013 with contributions from co-authors S. Majumdar and J. 

A. Malen and is reprinted with permission by the American Physical Society © 2013 [74]. 

II. Experimental setup 

The experimental setup for BB-FDTR is shown in Fig. 2.1(b) with accompanying Table 2.1 that 

specifies the make and model of key components. A 488 nm, CW pump laser first travels through an 

optical isolator (I-488). The optical isolator prevents the back-reflected beam from entering the laser 

cavity, which causes instabilities in the laser output power. A half wave plate (HWP) is used to vertically 

polarize the light, which is then focused into an electro-optic modulator (EOM1) that induces a sinusoidal 



22 

intensity modulation at frequency f1 on the transmitted vertically polarized light. High frequency EOMs 

typically have a small aperture to reduce the capacitance of the crystal, and as a result, a long focal length 

lens (LN) is used to focus into the EOMs. After exiting EOM1, the pump beam passes through a 488 nm 

band pass filter (BP-488) and another lens to re-collimate the light. The 488 nm band pass filter ensures 

that back reflected probe light does not get directly modulated and detected in the signal after multiple 

reflections. A beam sampler (BS) transmits 90% of the pump beam and is used to co-align the pump 

beam and probe beam along the same path.  

 
Fig. 2.1. (a) Schematic of traditional FDTR. (b) Schematic of BB-FDTR. The pump beam undergoes 
intensity modulation at frequency f1 and gets focused on the sample. EOM2 induces an additional 
modulation in the reflected probe beam, heterodyning the thermal signal, allowing for higher heating 
frequencies at a lower measuring frequency, increasing the measurement range of kaccum. (c) Schematic of 
BB-FDTR with alternate location for EOM2. In this configuration, the heterodyning occurs at the sample 
surface but the thermal phase response cannot be isolated. Labels identifying the make and models of the 
components can be found in Table 2.1. 

The probe laser (532 nm, CW) passes through its own optical isolator (I-532) before encountering 

the beam sampler. The beam sampler is oriented such that only 10% of the incoming probe beam 

continues towards the sample. The co-aligned beams then pass through a polarizing beam splitter (PBS). 

The polarizing beam splitter allows the vertically polarized pump and probe beams to continue travelling 
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towards the sample. A 532 nm quarter wave plate (QWP) then circularly polarizes the light and a 20× 

objective (OBJ) is used to focus the lasers on to the sample surface. Based on the temperature change 

induced by the pump and the thermoreflectance of the transducer, a modulation is induced in the 

reflectivity of the surface and hence in the reflected probe at f1. 

Table 2.1. Component list for schematics in Fig. 2.1. 

      Label Component Model/Description 

I-532 532 nm isolator Con-Optics M711A 
I-488 488 nm isolator Con-Optics M711C 
BS Beam sampler Thor Labs BSF20-B 
PBS Polarizing beam splitter Thor Labs PBS201 
QWP Quarter wave plate Thor Labs WPQ05M-532 
HWP Half wave plate Thor Labs WPH05M-488 
LN Focusing lens Thor Labs, varying focal lengths 
BP-488 488 nm bandpass filter Thor Labs FL-488-3 
BP-532 532 nm bandpass filter Edmund Optics Techspec 65-155 
PDA Amplified photo diode Thor Labs PDA36A 
PD Photo diode Thor Labs DET10A 
EOM1/EOM2 Electro-optic modulator Con-Optics 350-80 
 488 nm CW laser Coherent Genesis MX 
 532 nm CW laser Coherent Verdi G2 
OBJ 20x objective Nikon CF Plan 20x ELWD 
LA Lock-in amplifier SRS SR830 
SG1/SG2 Signal generator SRS SG384 
MX Electronic mixer MiniCircuits ZAD-3+ 
LPF Low pass filter TTE LB3-120k-50-65B 
    

When the pump and probe beams reflect from the sample surface, the circular polarization is 

reversed such that when the beams travel back through the quarter wave plate they become horizontally 

polarized. The horizontally polarized light is redirected towards the photo diode after passing back 

through the polarizing beam splitter. At this point, a lens is used to focus the light into EOM2. EOM2 

induces an additional sinusoidal intensity modulation on the pump and probe beams at a frequency f2. 

This modulation heterodynes the pump and probe beams [sin  (2π𝑓!𝑡)sin  (2𝜋𝑓!𝑡)], creating frequency 

modulation components at f1 - f2 and f1 + f2. An optical band pass filter (BP-532) is used to attenuate the 
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pump beam and an amplified photo diode (PDA) converts the light into an electrical signal. The high 

frequency component of the signal (f1 + f2) is filtered out using a low pass filter (LPF) and a lock-in 

amplifier (LA) measures the amplitude R and phase φ of the signal at f1 - f2. Heterodyning the signal 

allows for the use of an amplified photo diode; in FDTR, an amplified photodiode cannot be used due to 

low bandwidth.  

The frequency f1 - f2 is chosen such that it is less than 102 kHz, allowing for the use of an SR-830 

lock-in amplifier (range of 1 mHz to 102 kHz). The SR-830 lock-in amplifier has the advantage over an 

SR-844 lock-in in that it does not internally mix the signal with a square wave, which causes unwanted 

detection of the odd harmonics of the signal. The frequencies f1 and f2 are set such that f1 - f2 is maintained 

constant at 86 kHz throughout the experiment. This frequency, along with the low pass filter, ensures that 

higher harmonics do not contribute to the signal since they are out of the SR-830 range. Furthermore, this 

frequency, at the upper end of the SR-830 range, also minimizes 1/f noise without exceeding the low-pass 

cutoff of the filter (fcutoff = 120 kHz).  

To make a meaningful measurement at f1 - f2, the lock-in amplifier needs a reference signal at f1 - 

f2. Since f1 - f2 is not directly produced by either of the signal generators (SG) that drive the EOMs, it is 

generated using an electronic mixer (MX). The electronic mixer multiplies the input signals at f1 and f2 

(from alternate outputs on signal generators 1 and 2) to create an output signal at f1 + f2 and f1 - f2. An 

identical low pass filter attenuates the high frequency component and the component at f1 - f2 is used as 

the reference for the lock-in amplifier. 

EOM1 and EOM2 need high voltage electrical signals to induce modulation in the incoming 

light. These signals are provided by signal generators 1 and 2 and amplified by the EOM’s amplifier. The 

shape of the voltage signal provided by the signal generator determines the shape of the light modulation. 

Signal generators 1 and 2 provide sinusoidal waveforms with frequency f1 and f2 and a peak-to-peak 

voltage of 0.2 V. This voltage produces a large thermal signal without significantly increasing the internal 

temperature of the EOMs, which causes drift in the DC offset. The DC offsets of the EOM amplifiers are 

carefully tuned to provide the maximum AC signal without waveform distortion. 
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During the experiment, f1 and f2 are concurrently swept by locking the time base of signal 

generators 1 and 2 and fixing the frequency difference.  The measurement frequencies are defined by a 

heating frequency vector 𝑓! that provides the frequency for signal generator 1 to drive EOM1. The driving 

frequency of EOM2 is determined such that 𝑓! = 𝑓! + 86  kHz. At each measurement point (𝑓! is a 60 

point vector uniformly spaced on a logarithmic axis between 200 kHz and 200 MHz), the amplitude and 

phase with respect to the reference are recorded from the lock-in amplifier. 

To determine the heating frequency dependent thermal conductivity of the sample the phase 

difference between the surface temperature and heat flux φthermal must be isolated. At any particular 

heating frequency, directly after the light reflects from the sample surface, the phase difference between 

the pump and the probe will be φthermal (i.e., if φpump = 0, then φprobe = φthermal). Both beams then travel 

through all the same optical components from the sample to the photo diode and both electrical signals 

encounter the same electrical components from the photo diode to the lock-in amplifier. Assuming the 

phase lag added to the signal from the optical components and photo diode is independent of the 

wavelength of the light, then φpump = φopt/elec and φprobe = φthermal + φopt/elec at the input of the lock-in 

amplifier, where φopt/elec is the phase lag added from the optical and electrical components. The lock-in 

amplifier measures the phase with respect to the reference such that the measured phase differences 

φpump,m = φopt/elec – φref and φprobe,m = φthermal + φopt/elec – φref. Therefore, φthermal can be isolated by 

subtracting the phase response from two experiments: one where the phase response of the probe is 

measured with a 532 nm band pass filter installed before the photo diode and another where the phase 

response of the pump is measured with a 488 nm band pass filter installed before the photo diode (i.e., 

φthermal = φpump,m – φprobe,m). 

There are two options for the location of EOM2, (i) before the sample such that the probe beam is 

modulated before co-aligning with the pump beam [Fig. 2.1(c)], or (ii) after the sample, as in Fig. 2.1(b). 

When EOM2 is placed before the sample, the probe beam is modulated at f2 before incidence on the 

sample. Consequently, the heterodyning occurs at the sample surface, and only the probe beam is 



26 

heterodyned (since only the pump is inducing a significant temperature change and only the probe has a 

high thermoreflectance). The phase difference measured in the probe is φprobe,m = φthermal + φopt/elec – φref 

and must be measured at f1 - f2. To isolate φthermal as described above, the experiment is run twice to obtain 

the phase difference in the pump and subtract the two measurements. When EOM2 is before the sample, 

however, the pump beam never gets heterodyned, i.e., there is no frequency component at f1 - f2, and the 

subtraction of φprobe,m and φpump,m cannot be made to isolate φthermal. This configuration was the initial 

configuration and resulted in similar amplitude response but the phase was not resolvable.  

To highlight the effectiveness of the heterodyning technique in the high frequency regime, the 

normalized temperature response and phase response for c-Si at T = 311 K is measured with traditional 

FDTR and the BB-FDTR setup from f1 = 200 kHz to 200 MHz and shown in Fig. 2.2. FDTR 

measurements were made with amplified and unamplified photodiodes. At low frequencies, the phase 

data measured using each setup are the same with low noise (see inset in Fig. 2.2). At higher frequencies 

(>20 MHz), however, the signal to noise ratio in the traditional FDTR setup decreases drastically because 

as the frequency increases, the signal size decreases but ambient and coherent noise increase. Coherent 

noise comes primarily from the high voltage signal carried by the cables connecting the EOM amplifier 

and EOM, which broadcasts at the same frequency as the thermal signal and is picked up by the cable 

carrying the temperature response between the photo diode and lock-in amplifier, which acts as an 

antenna. BB-FDTR increases the signal to noise ratio by completely eliminating coherent noise (signal is 

measured at f1 - f2 while the EOMs are driven at f1 and f2) and reducing effects from ambient noise by 

measuring the signal at a much lower frequency, f1 - f2, and by using an amplified photodiode since f1 - f2 

is within the bandwidth of the amplified photo diode. Traditional FDTR with the same amplified photo 

diode up to the bandwidth (<10 MHz) shows the same phase response as BB-FDTR, indicating consistent 

measurements irrespective of the photo diode. Thus, BB-FDTR yields a measurable signal for heating 

frequencies up to 200 MHz, an order of magnitude larger than traditional FDTR, and is only limited by 

the frequency restrictions of the EOMs. It is worth noting, however, that some noise is generated at 86 
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kHz due to crosstalk between the EOM cables, and spatial separation of the EOM amplifiers seems to be 

the most effective means of reduction.  

 
Fig. 2.2. Normalized temperature and phase response from traditional FDTR with an unamplified photo 
diode from 200 kHz to 200 MHz and an amplified photo diode up to the bandwidth of the photo diode 
and BB-FDTR experiments with an amplified photo diode for c-Si at T = 311 K. In the low frequency 
regime, the data from traditional FDTR and BB-FDTR are the same and indicate no effect from using 
different photo diodes. As the frequency increases (f1 > 20 MHz), signal to noise ratios decrease in 
traditional FDTR. Heterodyning the signal allows for large signal to noise ratios up to a heating frequency 
of 200 MHz. 
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A. Sample preparation 

To increase signal to noise ratio, samples are sputtered with a thin surface coating, known as a 

transducer layer. The transducer layer, usually a metal film, reduces optical penetration depth, eliminating 

volumetric heating in the sample, and can be chosen to maximize the signal size by selecting a transducer 

material with a highly temperature-dependent reflectivity at the wavelength of the probe laser. The 

temperature-dependent reflectivity arises from the coefficient of thermoreflectance of the transducer 

layer, β!"#  !", and is given by β!"#  !" = 1 ρ!,!"#  !" dρ!"!  !"(𝑇) d𝑇 , where ρ!"#  !"(𝑇) is the 

temperature-dependent reflectivity and ρ!,!"#  !"	
  is the nominal reflectivity of the transducer at the probe 

wavelength at ambient temperature. Thus, the periodic change in reflectivity is 

ρ!"#  !"(𝑇!) = β!"#  !"ρ!,!"#  !"𝑇!, where Tω is the periodic temperature variation of the sample surface 

[87]. The measured Tω can be increased by increasing the intensity of the absorbed pump laser, which is 

accomplished by choosing a transducer material with high absorptivity at the pump laser wavelength (488 

nm). For BB-FDTR, gold is the ideal transducer material because it has high absorption at 488 nm and a 

high coefficient of thermoreflectance at 532 nm [92]. 

The interface thermal conductance G between the transducer layer and the sample is an unknown, 

important parameter in the experiment. To increase the sensitivity to kaccum of the sample, G must be as 

large as possible. The gold transducer has a large mismatch in Debye temperature with silicon and their 

interface has a relatively low G. Therefore, a chromium adhesion layer is used between the sample and 

the gold transducer to increase G based on the similarity of Debye temperatures between chromium and 

silicon compared to gold and silicon (θDebye,Cr = 630 K, θDebye,Si = 645 K, θDebye,Au = 170 K). For 

experimental results shown in this chapter, an 8 nm chromium adhesion layer and 56 nm gold transducer 

layer were deposited onto a single crystal, intrinsic silicon substrate (c-Si, <1x1012 cm-3 impurity atoms) 

using a Perkin Elmer 6J sputtering system in the Carnegie Mellon Nanofabrication Facility. Prior to the 

sputtering process, the native oxide layer on the c-Si substrate was removed with a buffered HF solution. 

Thicknesses of the chromium and gold layers were measured with x-ray reflectivity (XRR).  
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B. Determining pump and probe laser spot size 

The spot sizes of the pump and probe beams must be known to analyze the data and are measured 

using a knife-edge profiling technique. First, a silicon wafer coated with gold is cleaved to create a sharp 

edge and the sample is mounted on a micromanipulator stage with a resolution of 62.5 nm. To focus the 

beams at the knife-edge, the BB-FDTR signal is maximized using the lock-in amplifier. After focusing, 

the modulation is turned off and the pump and probe DC laser intensities reflected from the sample are 

measured simultaneously as the micromanipulator translates (see Fig. 2.3). Initially, the silicon sample 

does not interfere with the beam path and no light is reflected into the photodiodes (zero voltage is 

measured). As the stage translates, the silicon sample enters the beam path and a portion of each beam is 

reflected into separate photodiodes. Ultimately, when the stage translates far enough, both beams are 

completely reflected and the maximum voltage is measured. 

Since the measured voltage represents a spatial integration of a Gaussian laser beam incident on 

the photodiode, fitting a cumulative normal distribution function yields a spatial profile of the pump and 

probe beams at the surface of the silicon sample, as seen in Fig. 2.3.  An effective 1/e2 spot size (rspot) is 

calculate with 

𝑟!"#$ = 𝑟!"#$,!"#!! + 𝑟!"#$,!"#$%! 2     , (2.1) 

where rspot,pump and rspot,probe are the 1/e2 radii of the pump and probe beams.  The data from Fig. 2.3 yield 

an effective spot radius of 3.5 µm. 
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Fig. 2.3. A knife-edge is used to determine the beam profile. The data are fit with a cumulative normal 
distribution function to find the 1/e2 radius of the pump and probe beams. These values are used to find 
the effective spot size rspot. 

III. Analytical modeling 

The phase data measured in a BB-FDR experiment are fit to an analytical solution for the 

frequency domain temperature response for a multi-layered structure in cylindrical coordinates that was 

developed by Cahill [70]. It accounts for the Gaussian shape of the heat flux (pump) and calculates an 

average temperature response based on the Gaussian weighted sampling of the probe beam. In the 

following subsections the heat transfer problems relevant to BB-FDTR are formulated and solved. First, 

the simplest problem (i.e., planar heating on a semi-infinite medium) is described. That solution is built 

upon to ultimately determine the solution that most accurately describes BB-FDTR (i.e., periodic, 

spatially Gaussian surface heating on a layered structure). 

A. Planar heating on a semi-infinite medium 

First, consider the transient heat conduction problem of periodic, planar heating incident on a 

semi-infinite medium, as shown in Fig. 2.4. The spatial and temporal temperature profile θ(𝑡, 𝑧) and heat 

flux profile 𝐹 𝑡, 𝑧  are solved from the transient heat diffusion equation in one dimension given by 
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𝐶
∂θ
∂𝑡

= 𝑘
𝜕!θ
𝜕𝑧!

  , (2.2) 

where C and k are the volumetric heat capacity and thermal conductivity of the material. Since the 

medium is semi-infinite, the temperature as 𝑧 → ∞ approaches the initial temperature of the medium. For 

simplicity, define θ 𝑡 = 0, 𝑧 = 0 and thus θ 𝑡, 𝑧 → ∞ = 0. The boundary condition at 𝑧 = 0 is a 

periodic surface heat flux 𝐹! with an angular frequency Ω and is given by  

𝐹! = −𝑘
∂θ
∂𝑧 !!!

= 𝐻𝑒!!!    , (2.3) 

where H is the magnitude of the heat flux absorbed by the sample. 

 
Fig. 2.4. Semi-infinite slab with thermal conductivity k and volumetric heat capacity C subject to a planar, 
periodic surface heat flux. 

Since the time dependence of the temperature follows the heating and varies as 𝑒!!!, separation 

of variables is performed to reduce the governing equation and boundary conditions to 

𝑑!𝑇
𝑑𝑧!

=
𝑖Ω𝐶
𝑘
𝑇  , (2.4a) 

𝐹! = −𝑘
∂𝑇
∂𝑧 !!!

= 𝐻  , (2.4b) 

𝑇 !→! = 0  , (2.4c) 



32 

where 𝑇(𝑧) and 𝐹! are the time-independent temperature profile and surface heating term. The solution 

for the spatial temperature and heat flux 𝑞!!(𝑧) profiles in matrix form is given by 

𝛙! = 𝛘𝐀!𝐁  , (2.5a) 

𝛙! =
𝑇(𝑧)
𝑞!!(𝑧)   , (2.5b) 

𝛘 = 1 1
γ −γ   , (2.5c) 

𝐀! = 𝑒!!! 0
0 𝑒!!

  , (2.5d) 

𝐁 = 𝐵!
𝐵!   , (2.5e) 

where z position is indicated by the superscript. Here λ = !!!
!

, γ = 𝑘λ, and 𝐵! and 𝐵! are constants of 

integration. To find B, the boundary conditions at 𝑧 → ∞ and 𝑧 = 0 are used. In matrix form, these are 

𝛘𝐀!→!𝐁 = 0
𝑞!!(𝑧 → ∞) = 𝛙!→!  , (2.6a) 

𝑇(𝑧 = 0)
𝐹!

= 𝛙!!! = 𝛘𝐁  . (2.6b) 

To satisfy these boundary conditions 𝐁 =
!
!
0

. Substituting into Eq. (2.5a) yields the spatial 

temperature and heat flux profiles as 

𝑇(𝑧)
𝑞!!(𝑧) = 1 1

γ −γ
𝑒!!! 0
0 𝑒!!

𝐻
γ
0
  . (2.7) 

The time-dependent temperature and heat flux profiles θ(𝑡, 𝑧) and 𝐹 𝑡, 𝑧  are determined by multiplying 

Eq. (2.7) with 𝑒!!!. 
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B. Planar heating in a layered sample 

As described above, in thermoreflectance experiments the sample is usually a layered sample due 

to the necessity of a transducer layer. In this section, I solve for the spatial temperature and heat flux 

profiles in a N-layered structure with periodic, planar surface heating where the Nth layer is semi-infinite, 

as depicted in Fig. 2.5. After separation of variables, the governing equation for temperature in the nth 

layer is 

𝑑!𝑇!
𝑑𝑧!

=
𝑖Ω𝐶!
𝑘!

𝑇!  , (2.8) 

where the subscript n on 𝑘!, 𝐶!, and 𝑇! indicates the thermal conductivity, heat capacity, and time-

independent temperature of the nth layer.  

 
Fig. 2.5. N-layered material with each layer having thermal conductivity, heat capacity, and thickness kn, 
Cn, and tn subject to periodic, planar surface heating. An interface conductance Gn exists between layers n 
and n+1. 

Equation (2.8) is solved for the temperature and heat flux profiles in the nth layer. The solution is 

similar to that of Eq. (2.4) and in matrix form is 

𝛙!
! = 𝛘!𝐀!!𝐁!  , (2.9a) 

𝛙!
! =

𝑇!(𝑧)
𝑞!!!(𝑧)

  , (2.9b) 
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𝛘! =
1 1
γ! −γ!

  , (2.9c) 

𝐀!! = 𝑒!!!! 0
0 𝑒!!!

  , (2.9d) 

𝐁! =
𝐵!
𝐵! !

  , (2.9e) 

were λ! =
!!!!
!!

 and γ! = 𝑘!λ!. The boundary conditions are used to determine the constants of 

integration for each layer 𝐁!. The boundary conditions for the last and first layers are similar to the single 

layer case and are  

𝛘!𝐀!!→!𝐁! =
0

𝑞!!!(𝑧 → ∞) = 𝛙!
!→!      , (2.10a) 

𝑇!(𝑧 = 0)
𝐹!

= 𝛙!
!!! = 𝛘!𝐁!  . (2.10b) 

Additionally, there are boundary conditions at each interface. Particularly, there is an interface 

thermal conductance between layer n and layer n+1 (𝐺!), such that the temperature and heat flux profiles 

on either side of the interface are related by 

𝛙!
!!!! = 𝐆𝐧→𝐧!𝟏𝛙!!!

!!!!                 →                 𝛘!𝐀!
!!!!𝐁! =   𝐆𝐧→𝐧!𝟏𝛘!!!𝐀!!!

!!!!𝐁!!!  , (2.11) 

where 𝐆𝐧→𝐧!𝟏 =
1 1/𝐺!
0 1  and is determined by balancing heat fluxes across the interface.  

Equations (2.10) and (2.11) are used to determine 𝛙!
!→! in terms of 𝛙!

!!!. Note that 

𝐀!
!![𝐀!

!!]!! = 𝐀!
!!!!! and 𝛍! = 𝛘!𝐀!

!!!![𝛘!]!! is defined for simplification. The result is 

𝛙!
!→! = 𝛍!!!!!

!

!!!

[𝐆𝟏!𝐣!𝐍→𝟐!𝐣!𝐍]!! 𝛍!𝛙!
!!!  . (2.12) 

The resulting form of Eq. (2.12) is 
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𝛙!
!→! =

𝑝!! 𝑝!"
𝑝!" 𝑝!!

𝐏

  𝛙!
!!!  . (2.13) 

The time-independent, surface temperature at 𝑧 = 0 is determined as  

𝑇!(𝑧 = 0) = −
𝑝!"𝐹!
𝑝!!

    . (2.14) 

Once the surface temperature is known, the 𝐁 vector for any layer can be determined from Eqs. (2.10) and 

(2.11). From there it is straightforward to determine the time-independent temperature and heat flux 

profiles in the nth layer using 𝛙!
! = 𝛘!𝐀!!𝐁!. The time-dependent temperature and heat flux profiles 

θ!(𝑡, 𝑧) and 𝐹! 𝑡, 𝑧  are determined by multiplying 𝑇!(z) and 𝑞!!! z  with 𝑒!!!. 

C. Including spatially Gaussian surface heating 

In most thermoreflectance experiments, planar surface heating is not a valid approximation 

because (i) signal to noise ratio increases with decreasing spot size, making smaller spot sizes more 

desirable and (ii) often spot size is used as an experimental variable (e.g., determine thermal conductivity 

as a function of spot size). For these reasons it is important to account for the effect of spot size (i.e., two-

dimensional heat transport) when fitting data. In this section, I outline how to determine the temperature 

profile in an N-layer sample that includes the Gaussian-shaped surface heating profile apparent in laser-

based thermoreflectance experiments.  

Due to the cylindrical symmetry of the problem, I solve the 2-D heat diffusion equation in 

cylindrical coordinates [Eq. (2.15a)] with a Gaussian-shaped surface heating profile [Eq. (2.15b)] 

𝐶!
∂θ!
∂𝑡

= 𝑘!
𝜕!θ!
𝜕𝑧!

+
η!
𝑟
𝜕
𝜕𝑟

𝑟
∂θ!
∂𝑟

  , (2.15a) 

𝐹! = −𝑘!
∂θ!
∂𝑧 !!!

=
4𝐻

𝑟!"#$,!"#!! 𝑒!!!𝑒!!!
!/!!"#$,!"#!

!
  . (2.15b) 
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Here, θ!(𝑡, 𝑧, 𝑟) is a function of time, depth into the layer, and the radial coordinate 𝑟, η! is the ratio of 

the thermal conductivities in the r- and z-directions (a value of η! = 1 indicates an isotropic material), 

and 𝑟!"#$,!"#! is the 1/e2 pump beam radius.  

Similar to the preceding analysis, separation of variables is performed. Furthermore, since the 

problem is cylindrically symmetric a Hankel transform is performed to eliminate the r-dependence [93]. 

Doing so simplifies Eq. (2.15) to  

𝑑!𝑇!
𝑑𝑧!

=
𝐶!𝑖Ω + 𝑘!η!𝜅!

𝑘!
𝑇!    , (2.16a) 

𝐹! = −𝑘!
∂𝑇!
∂𝑧 !!!

= 𝐻𝑒!!
!!!"#$,!"#!

! /!    , (2.16b) 

where 𝑇!(𝑧, 𝜅) is the time-independent, transformed temperature in the nth layer, 𝐹! is the time-

independent, transformed surface heating profile, and 𝜅 is the Hankel variable. The solution procedure is 

the same as was done in the preceding section, however, now λ! =
!!!!!!!!!!!

!!
 and 𝐹! is redefined in 

Eq. (2.16b). The time-independent, transformed surface temperature 𝑇!(𝑧, 𝜅) has the same form as Eq. 

(2.14) and can be used to determine 𝐁 for any layer to find the time-independent temperature and heat 

flux profiles in the nth layer with 𝛙!
! = 𝛘!𝐀!!𝐁!. 

To determined the surface temperature θ!(𝑡, 𝑧 = 0, 𝑟) I multiply by 𝑒!!! and perform an inverse 

Hankel transform such that  

θ! 𝑡, 𝑧 = 0, 𝑟 = 𝑒!!! 𝑇! 𝑧 = 0, 𝜅
!

!
𝐽! 𝜅𝑟 𝜅𝑑𝜅  , (2.17) 

where 𝐽! 𝜅𝑟  is the zeroth order Bessel function of the first kind. In a thermoreflectance experiment, an 

unmodulated probe beam measures the weighted average of the temperature distribution over its 

Gaussian-shaped beam (with a 1/e2 radius 𝑟!"#$,!"#$%). Mathematically, the weighted temperature θ! is 

determined from [70] 
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θ! 𝑡, 𝑧 = 0 = θ! 𝑡, 𝑧 = 0, 𝑟
!

!

4
𝑟!"#$,!"#$%
! 𝑒!!!

!/!!"#$,!"#$%
!

  2π𝑟𝑑𝑟  . (2.18) 

Substituting Eq. (2.17) into Eq. (2.18) and rearranging yields a single integral over 𝜅, which must be 

evaluated numerically  

θ! 𝑡, 𝑧 = 0 = 2π𝑒!!! 𝑇! 𝑧 = 0, 𝜅
!

!
𝑒!!

!!!"#$,!"#$%
! /!𝜅𝑑𝜅  . (2.19) 

Equation (2.19) is the temporal temperature change about the initial temperature of the solid at the surface 

of the solid weighted over the 𝑟-direction with a Gaussian-shaped weight function. 

D. Sensitivity 

A sensitivity analysis was performed to examine how sensitive Eq. (2.19) is to different input 

parameters, β, over the frequency range of BB-FDTR (200 kHz to 200 MHz). The model requires 

nominal values for the transducer layer thickness ttr, the transducer layer thermal conductivity ktr, the 

volumetric heat capacity of the transducer layer Ctr, the thermal conductivity of the substrate ksub, the 

volumetric heat capacity of the substrate Csub, the interface conductance between the transducer layer and 

the substrate G, and the laser spot radius rspot. From Ref. [94], the sensitivity, Sβ, is the logarithmic 

derivative of the phase response, φ, with respect to a change in one of the parameters, β, and is defined by 

𝑆! =
dln Φ
dln β

         

β = 𝑡!",   𝑘!",𝐶!", 𝑘!"#,𝐶!"#, 𝑟!"#$,𝐺 

(2.20) 
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Table 2.2. Nominal values for fitting and the sensitivity analysis and the uncertainty ranges used to 
generate the shaded error regions in Fig. 2.7. 

      β Nominal Value Uncertainty Range 

ttr 64 nm ±5% 
Ctr 2470 kJ/m3-K n/a 
ktr 110 W/m-K ±5% 
ksub 143 W/m-K n/a 
Csub 1689 kJ/m3-K n/a 
rspot 3.2 µm ±0.1 µm 
G 210 MW/m2-K ±10 MW/m2-K 
Δφthermal n/a ±0.2° 

      

The results of the sensitivity analysis about the nominal values (shown in Table 2.2) are shown in 

Fig. 2.6(a) for a 1% change in β. The sensitivity when G = 60 MW/m2-K is shown in Fig. 2.6(b) and the 

sensitivity when ksub = 10 W/m-K is shown in Fig. 2.6(c). A comparison of Fig. 2.6(a) and 2.6(b) shows 

that at higher heating frequencies the experiment is more sensitive to ksub when G is larger. For this reason 

the chromium adhesion layer is used to increase G. A comparison of Fig. 2.6(a) and 2.6(c) shows lower 

overall sensitivity to G but reduced sensitivity to ksub in substrates with lower bulk thermal conductivity. 

While the heat capacity of the transducer and substrate, the thickness of the transducer, and the thermal 

conductivity of the transducer are moderately sensitive, they are well known values in the fitting. 

Additionally, the spot size value used in fitting is the most sensitive at lower heating frequencies, where 

Lp ~ rspot,pump. Notably, the heat capacity of the transducer makes the signal insensitive to ksub above ~200 

MHz, and future increases in the modulation frequency range need to be paired with thinner transducers 

to expand the measurement range of kaccum.  
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Fig. 2.6. (a) Sensitivity to a 1% change in nominal parameters found in Table 2.2, as defined by Eq. 
(2.20). The effect on the sensitivity from (b) decreased interface thermal conductance and (c) decreased 
substrate thermal conductivity. 

IV. Fitting BB-FDTR data with the heat diffusion equation 

The phase response measured in BB-FDTR is fit to the phase response predicted by Eq. (2.19) for 

kn of the substrate (usually n = 2 for the substrate) using a nonlinear regression until the mean square error 

(variance of the error) is minimized. In the high frequency limit, where Lp<<rspot, the isotherms of the 

temperature profile will be relatively planar. The temperature response at the surface can be approximated 

with the 1-D, planar heating solution given by Eq. (2.7) as 

𝑇!"#$#% 𝑧 = 0 =
𝐻
𝑘𝐶Ω

exp 𝑖 𝛺𝑡 − 𝜋 4     . (2.21) 
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In this case, the amplitude of the temperature response is inversely proportional to 𝑘Ω and the 

temperature response lags the heat flux by π/4 radians in phase. For the two layered transducer/substrate 

case, the temperature response is still inversely proportional to Ω but the phase is no longer π/4.  

In the experiments, the signal to noise ratio can be approximated by the amplitude of the 

temperature response (i.e., the larger the amplitude the larger the signal to noise ratio). At lower heating 

frequencies, the signal to noise ratio is larger and increases with decreasing sample thermal conductivity 

(lower signal to noise ratios at lower temperature due to the temperature dependence of thermal 

conductivity). At high heating frequencies, the signal size decreases, and the heterodyne approach is 

critical.  

The signal to noise ratio increases with increasing pump power, however, large pump powers can 

cause unwanted DC heating of the sample. Per Ref. [70], the DC temperature rise of the sample can be 

estimated by taking the low frequency limit of Eq. (2.19), 

∆𝑇!" =
𝐴!

2 π𝑟!"#$𝑘!"#$
      , (2.22) 

where Ao is the laser power absorbed by the sample and kbulk is the bulk thermal conductivity of the 

sample. In BB-FDTR, Ao was measured to be 3% of the total pump power and 5% of the total probe 

power. The DC temperature rise is accounted for by adding ΔTDC to the experimental temperature set 

point, which is controlled by a cryostat. For the data shown in Fig. 2.2, the measurement was performed 

at T = 300 K and ΔTDC = 11 K making the effective measurement temperature 311 K. 

A. Fitting procedure 

In this section the procedure for determining k vs. Lp is described for an intrinsic c-Si sample at T 

= 311 K with nominal fitting values shown in Table 2.2. For this sample, XRR is used to measure ttr and 

ktr is measured using a four-point resistivity measurement and the Wiedemann-Franz law. Ctr and Csub are 

assumed to be heating frequency independent and taken as the bulk value for gold and the bulk value for 

c-Si. This is because the long phonon MFPs probed by BB-FDTR contribute significantly to thermal 
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conductivity but not to heat capacity (<1%) [45]. kbulk is determined from Ref. [95] and rspot was measured 

using the knife-edge profiling technique outlined in the preceding section. To determine the value of G, 

the last 15 points of the phase data are fit until mean square fitting error is minimized since G is more 

sensitive in the high frequency regime (see Fig. 2.6). 

Measured phase vs. heating frequency for silicon at T = 311 K is shown in Fig. 2.7(a). The result 

of fitting these data with Eq. (2.19) for a constant (frequency-independent) value of ksub is shown in Fig. 

2.7(a). Clearly the fit is poor, with the fitted value of ksub = 99 W/m-K underestimates the bulk value of 

silicon by 32%. Because fitting the entire frequency range to a constant value thermal conductivity does 

not yield the bulk value, the heating frequency dependence of measured thermal conductivity is 

investigated. To do so, the phase response is divided into sections, as seen in Fig. 2.7(a), and a window 

fitting scheme is used. If, for example, a fitting frequency range of 13 points is defined, then Window 1 

includes points 1 through 13 of the phase data, Window 2 includes points 2 through 14, and Window i 

includes points i through i + 12. A value for thermal conductivity is fit for each window (ki) using Eq. 

(2.19) and plotted at the median frequency of each fitting frequency range (fi) as seen in Fig. 2.7(a). 

Transformation of the x-axis from frequency to 𝐿! = 𝐿!,! = 𝑘! 𝐶π𝑓!,! yields k vs. Lp, shown in Fig. 

2.7(b). Relating the data shown in Fig. 2.7(b) to kaccum is discussed later in this dissertation. 

In BB-FDTR experiments, both the normalized amplitude of the surface temperature oscillation 

and the phase response data are recorded. The phase response data are used when fitting thermal 

conductivity because it has a higher signal to noise ratio due to the insensitivity to fluctuations in laser 

power. For every data set, however, one to three points at multiples of 13.5 MHz deviate up to 20° from 

the expected trend. These spurious points result from interactions between the high-voltage cables that 

drive EOM1 at f1 and EOM2 at f2. The large noise signal at f1 - f2 persists in the probe beam even when the 

pump laser is turned off, which is evidence that it is directly imposed by EOM2.  These points have been 

removed from the data sets.  
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Fig. 2.7. (a) The phase response data are divided into different windows. Each window is fit to a value of 
thermal conductivity and plotted at the median frequency of that fitting range. (b) The fitted thermal 
conductivity and median frequency for each window is used to generate the k vs. Lp. 

B. Effect of fitting window size 

Typically, a fitting frequency range of 13 points is used. This choice is justified to provide 

enough points for an accurate fit while still allowing for a large range of k vs. Lp to be measured. The 

effect of different fitting frequency ranges is shown in Fig. 2.8, where k vs. Lp is plotted with 7-point, 13-

point, and 19-point fitting windows. As the fitting window is increased, the curves become smoother but a 

smaller range of Lp is probed. Most importantly, however, 7-point, 13-point, and 19-point fitting windows 

show no discernible change in the shape (slope) of k vs. Lp. 
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Fig. 2.8. k vs. Lp for intrinsic c-Si (T = 311 K) is shown for 7-point, 13-point, and 19-point fitting 
windows. Increasing the window size decreases the range of Lp. Relative to the 13-point fits, fitting 
windows of 7 and 19 points do not change the shape of k vs. Lp.  

C. Uncertainty in k vs. Lp measurements 

Uncertainty in the measurement Δk is indicated as the shaded region in Fig. 2.7(b) and was 

calculated as follows, 

∆𝑘 = (∆𝑘!)!
!

,              ∆𝑘! =
𝜕𝑘!
𝜕β

∆β 

β = 𝑡!",   𝑘!",   𝑟!"#$,𝐺,Δφ!"#$%&'      , 

(2.23) 

where Δkβ indicates the uncertainty from the selected modeling parameters β. The uncertainty due to Δkβ 

depends on the sensitivity to that parameter 𝜕𝑘! 𝜕β and the uncertainty in that parameter Δβ.  

Uncertainty ranges for the selected values of β are shown in Table 2.2. The uncertainty associated with G 

was determined first by changing the other modeling parameters and fitting the high frequency phase data 

to minimize mean square error. The effective range of G used for calculating Δk is ±10 MW/m2-K. 
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A DC phase shift to the measured thermal phase response over all frequencies Δφthermal is 

considered as a source of uncertainty. The effect of this shift on k vs. Lp is shown in Fig. 2.9. Since all 

data are measured at the same frequency (f1 – f2), there is no reason to believe that there would be a 

heating frequency dependent shift/error in the measured phase data. Thus, to examine the propagation of 

an error in the measured phase to k vs. Lp, the c-Si (T = 311 K) phase data are refit with a ±0.2° DC shift 

in phase. The result indicates that k vs. Lp is most sensitive to a DC phase shift at low frequencies and 

decreases with increasing heating frequency. The largest change in k vs. Lp is small (±3% at the lowest 

frequency). 

 
Fig. 2.9. k vs. Lp for c-Si at T = 311 K is shown with a ±0.2° constant phase shift in the measured phase 
response. The largest effect comes at longer Lp, with a maximum ±3% deviation from the original k vs. 
Lp. 

V. Summary 

Here, I present the instrumentation for BB-FDTR, an experimental technique to induce and 

observe nondiffusive thermal transport. BB-FDTR uses a heterodyne technique which allows for high 

heating frequencies in the pump beam but measurement of the thermal signal in the probe beam at a much 
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lower frequency where high signal to noise ratio is achieved. A window fitting scheme is used, where the 

unknown fitting variables are the thermal conductivity within that window and the interface thermal 

conductance between the transducer and sample. The value of G should be maximized to increase 

sensitivity to the substrate thermal conductivity. I present measurements of k vs. Lp for c-Si at T = 311 K 

using BB-FDTR. The relationship between k vs, Lp and kaccum is discussed in the following chapters.  
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3. NONDIFFUSIVE THERMAL TRANSPORT IN Si-BASED MATERIALS 

I. Overview 

The thermal conductivity relates the heat flux and temperature gradient in a material through the 

Fourier Law and results from the cumulative contributions of phonons with a broad range of MFPs. The 

spectral MFP distribution is critical in nanostructured materials and devices, where size-effects selectively 

scatter phonons or create non-Fourier conduction based on individual phonon MFPs. Such effects impact 

heat dissipation in nanoelectronics and photonics, as well as the design of nanostructured thermoelectric 

materials with reduced thermal conductivity [1-3,19,26,31,41,45,96]. Due to its ubiquity in electronics, 

crystalline silicon (c-Si) has emerged as the prototypical material of study, yet controversy persists on 

what phonon MFPs dominate thermal transport, even in the bulk material. Kinetic theory defines the 

thermal conductivity as 𝑘 = 𝐶𝑣!Λ! 3, where Λg is the average (or gray) MFP. For c-Si, kinetic theory 

yields Λg = 41 nm at T = 300 K [37]. This gray approximation severely underestimates the MFPs of the 

phonons that contribute significantly to thermal conductivity because (i) dispersion makes vs an 

overestimate of the average group velocity of acoustic phonons, and (ii) optical phonons contribute to C 

but negligibly to bulk k [97]. Thermal conductivity measurements of thin silicon films indicate that an 

effective MFP of 300 nm at T = 300 K is more appropriate [24]. 

To clarify the spectral contributions of phonons to thermal conductivity as a function of MFP, 

Dames and Chen established the thermal conductivity accumulation function [Eq. (1.5)], which identifies 

the thermal conductivity due to phonons having MFPs less than Λ* [38]. To evaluate Eq. (1.5) 

analytically, models for phonon scattering must be chosen to form expressions for CΛ(Λ) and v(Λ), 

examples for which were described in Chapter 1 of this dissertation [44,98]. There is no current consensus 

on how to select these models, which may be different for different materials. Furthermore, direct 

calculations of kaccum at the phonon mode-level by molecular dynamic simulations or lattice dynamics 

calculations [19,37,45] yield different behaviors for kaccum than the analytical approaches. 
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Discrepancies among predictions and a lack of information from conventional thermal 

conductivity measurements have motivated innovative experimental probing of phonon MFP spectra 

[19,35,63-65,71]. Koh and Cahill found that the thermal conductivities of InGaP, InGaAs, and SiGe 

alloys measured by TDTR depend on the surface heat flux modulation frequency f1 [71]. Koh and Cahill 

reasoned that phonons with MFPs larger than Lp travel ballistically and do not contribute to the measured 

thermal conductivity of the material (i.e., TDTR measures kaccum where Λ* = Lp). Additionally, inquiries 

to the MFP spectrum have set Λ* as the heat source dimension through the use of nano-patterned heaters 

on sapphire [35], the TDTR spot size on c-Si at cryogenic temperatures [19], and the grating period in 

transient grating experiments [63-65]. Spot size limitations due to the diffraction limit of light and an 

upper limit to the modulation frequency achievable with pulsed lasers, however, restrict TDTR’s ability to 

probe a broad range of the MFP spectrum. Furthermore, the nano-patterning approach requires an 

optically transparent sample, while the transient grating observations of nondiffusive transport are as yet 

limited to thin membranes [63,65]. These experimental limitations motivated the development of BB-

FDTR (described in Chapter 2), which allows for fine resolution of an expanded range of Lp.  

In this chapter I describe the preparation and measurement of k vs. Lp of different Si-based 

materials using BB-FDTR. I interpret my results using the reasoning of Koh and Cahill (i.e., that phonons 

with MFPs larger than Lp travel ballistically and do not contribute to the measured thermal conductivity of 

the material) [71]. Under this interpretation, k vs. Lp is equivalent to kaccum vs. MFP. I also show the result 

of solving the BTE in a system similar to FDTR. As in the experiments, the BTE predicts a heating 

frequency-dependent thermal conductivity in c-Si at room temperature. This work appears in Nature 

Communications, vol. 4, pp. 1640, 2013 with contributions from co-authors D. P. Sellan, Z. Su, C. H. 

Amon, A. J. H. McGaughey, and J. A. Malen [73]. 

II. Sample preparation 

Intrinsic c-Si (<1×1012 cm-3 impurity atoms), doped c-Si (3×1019 cm-3 boron atoms), amorphous 

SiO2 (1 µm film thermally grown on c-Si), single crystal platinum, and a-Si (500 nm, 1 µm, and 2 µm 
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films sputtered on c-Si) samples were sputtered with a chromium adhesion layer and a gold transducer. 

Gold is an ideal transducer because it has high absorption at 488 nm (pump) and a high coefficient of 

thermoreflectance at 532 nm (probe) [92].  

A. Transducer layer 

The transducer layer for all samples was prepared by depositing a ~5 nm chromium adhesion 

layer and ~55 nm of gold using a Perkin Elmer 6J sputtering system. Prior to the sputtering process, the 

native oxide layers on intrinsic c-Si and doped c-Si samples were removed with a buffered HF solution. 

The thickness of the transducer layer was measured using XRR. The result of the measurement for 

intrinsic c-Si is shown in Fig. 3.1. The fit yields values of 8 nm for the chromium adhesion layer and 54 

nm for the gold layer, with total thickness ttr = 62 nm. Electron-phonon equilibration length scales are of 

order 100 nm since the electron-phonon coupling parameter in gold is low. This, combined with an 

optical extinction length of 20 nm for 488 nm pump light, suggests that the 54 nm gold transducer is 

isothermal. To include this effect in the analysis its thickness is reduced to 1 nm, its heat capacity is 

multiplied by 54 so the total heat capacity is invariant, and its thermal conductivity is multiplied by 54 so 

in-plane heat conduction is not impacted by the reduced thickness. The chromium layer is modeled 

normally, with no interface resistance between the gold and chromium layers. Modeling thermal transport 

in the transducer layer will be revisited later in this dissertation. The thermal interface conductance G for 

each sample is determined by fitting the 10 highest modulation frequency points of the phase response to 

minimize the mean square error (MSE). Transducer properties for all samples are shown in Table 3.1. 
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Fig. 3.1.  Fitting the measured XRR data yield values of 8 nm and 54 nm for the chromium adhesion layer 
and the gold layer on c-Si. 

B. Amorphous silicon 

The a-Si samples were sputtered on c-Si wafers in a low-pressure, argon-filled chamber. The c-Si 

wafers were first successively cleaned ultrasonically in acetone, isopropyl alcohol, and deionized water 

and then submerged in a buffered HF solution to remove the native oxide layer. During the sputtering 

process, both the target and the wafer were cooled with recycling water. Profilometry was used to 

measure thicknesses of the a-Si films. 

In order to confirm that the a-Si samples are amorphous, low angle x-ray diffraction (XRD) scans 

were performed on both the a-Si film on the c-Si substrate and the blank c-Si substrate with no film. 

Conventional theta/2theta scans were completed with a two degree offset to suppress the c-Si substrate 

peaks and are shown in Fig. 3.2. The scan of the blank c-Si substrate shows a large peak at Si[400] as 

expected. The scan of the a-Si film shows a broad hump, which is absent in the blank c-Si scan, and a 

sharp peak at Si[400]. The sharp peak at Si[400] is present from the underlying c-Si substrate because the 

penetration depth of the x-rays is greater than the a-Si film thickness. The presence of the hump with no 

additional sharp crystalline peaks, however, is convincing evidence that the a-Si film is amorphous. 
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Fig. 3.2.  Theta/2theta XRD scans on an a-Si film on a c-Si substrate and a blank c-Si substrate. The 
broad hump in the a-Si scan verifies the amorphicity of the a-Si film. 

III. Heating frequency dependent thermal conductivity 

Phase-lag data from BB-FDTR are fit to the analytical solution of the heat diffusion equation that 

was described in Chapter 2 [70]. Phase-lag vs. modulation frequency data are shown in Fig. 3.3(a) for 

intrinsic c-Si (T = 311 K) and SiO2 at (T = 307 K). Also plotted are the best-fit lines when the entire 

frequency range is fit to a constant value of thermal conductivity kconstant (see Table 3.1 for best fits and 

fitting parameters for all samples considered). For SiO2, the constant thermal conductivity fit yields a 

thermal conductivity of 1.4±0.2 W/m-K, which agrees with bulk values [99] and has a low mean square 

error (MSE = 0.04). In intrinsic c-Si, however, the constant thermal conductivity fit under-predicts the 

bulk value (143 W/m-K [95]) as 99±6 W/m-K with a large MSE = 2.4. Consequently, the frequency 

range is divided into overlapping windows of 13 points, and the thermal conductivity is fit in each section 

(as described in Chapter 2). When this procedure is done, a frequency-dependent c-Si thermal 

conductivity is obtained, as shown in Fig. 3.3(b). Window-fitting the phase data for SiO2, however, yield 

a frequency-independent thermal conductivity.  
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In both cases, G is assumed to be frequency-independent. This assumption is justified because the 

relaxation time of electrons in gold is 3×10-14 s at T = 273 K [100]. Since the timescale of modulation 

frequency is minimally five orders of magnitude larger, the electrons and phonons will be in local 

equilibrium within the transducer over the entire modulation frequency range. Hence, the equilibrium of 

phonons and electrons at the interface is modulation frequency independent. This assumption is consistent 

with prior studies [19,71].  

 
Fig. 3.3. a) Phase-lag vs. modulation frequency data for intrinsic c-Si and SiO2 shown with a constant 
thermal conductivity fit over the entire experimental frequency range. Fitting SiO2 yields a thermal 
conductivity value of 1.4±0.2 W/m-K, and window fitting produces a heating frequency-independent 
thermal conductivity. Fitting c-Si over the entire frequency range yields a fitted thermal conductivity 
below bulk (99±6 W/m-K) and window fitting shows a modulation frequency-dependent thermal 
conductivity. b) Illustration of diffusive and ballistic transport. At low heating frequencies, when the 
thermal penetration depth is greater than the phonon MFPs, there is diffusive thermal transport and a bulk 
value of thermal conductivity is measured. At high heating frequencies, the thermal penetration depth 
decreases below the MFPs of some phonons, which travel ballistically through the thermally affected 
zone (white arrows). These ballistic phonons do not contribute to the measured value of thermal 
conductivity.  
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A. Modeling the diffusive to ballistic transition 

To interpret the frequency dependence of the thermal conductivity measurements, the BTE, 

which simultaneously considers diffusive and ballistic phonon transport, was solved using the lattice 

Boltzmann method (LBM) [97,101]. The LBM is used to discretize and solve the one-dimensional 

phonon BTE under the relaxation time approximation and provides the time- and spatial-dependence of 

phonon occupation numbers. From these phonon occupation numbers, temperature can be calculated 

using Bose-Einstein statistics. Details of the LBM methodology and numerical recipe are available in Ref. 

[101]. 

To use the LBM to solve the BTE for an FDTR-like system, a c-Si film under the gray 

approximation that is initially set to a uniform temperature of 300 K is considered. The volumetric heat 

capacity is C = 1.66 MJ/m3-K, the speed of sound is vs = 6733 m/s, and the bulk phonon MFP is Λg = 40 

nm. Similar to the BB-FDTR experiment, a modulated heat flux of amplitude q” and frequency f is 

applied at the free surface (z = 0). The heat flux modulation amplitude q” is chosen such that the 

maximum surface temperature oscillation amplitude remains below 3 K for all frequencies. The boundary 

opposite to the heated surface is maintained at T = 300 K. The sample thickness is chosen such that the 

propagating thermal wave decays to T = 300 K well before it reaches the boundary opposite of the heated 

surface. It is found that an 8 µm sample is sufficiently large for the penetration depths considered. The 

system is allowed to evolve in time until the steady state temperature oscillation amplitudes and surface 

temperature oscillation amplitudes are found. 

The steady-state temperature oscillation amplitude ΔT as a function of sample depth for diffusive 

and ballistic transport regimes are shown in Fig. 3.4(a), ΔT at the surface ΔTS as a function of Lp is shown 

in Fig. 3.4(b), and the perceived thermal conductivity based on ΔTS is shown in Fig. 3.4(c). The 

temperature amplitudes predicted by the Fourier law are plotted for comparison. At low heating 

frequencies where Lp > MFP, the BTE solution matches the Fourier prediction. As frequency increases 

and Lp decreases, however, the BTE-predicted ΔT becomes larger than that predicted by the Fourier law, 
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indicating an onset of ballistic phonon transport. In this case, phonons can travel ballistically through the 

thermally affected zone without scattering, as depicted in Fig. 3.3(b). In the context of the BB-FDTR 

experiments, the BTE results should be interpreted as an observation of the transition of one phonon 

mode from diffusive to ballistic transport as the heating frequency is increased. Consistent with the BB-

FDTR experiments, the BTE predicts a reduced thermal conductivity compared to bulk as the heating 

frequency is increased, as shown in Fig. 3.3(c). 

 
Fig. 3.4. a) Spatial variation of the temperature oscillation amplitude for diffusive transport 
[corresponding to the lowest heating frequency in (b) and (c)] and ballistic transport [corresponding to the 
highest heating frequency in (b) and (c)] from the Fourier law (dashed line) and from the lattice 
Boltzmann method solution to the BTE for a gray material (solid line), all for a periodic surface heat flux. 
b) Amplitude of the surface temperature oscillation and c) perceived thermal conductivity plotted vs. 
normalized penetration depth. When Lp > MFP, the Fourier and BTE predictions match and BB-FDTR 
experiments measure a bulk thermal conductivity. When Lp < MFP, the Fourier law under-predicts the 
surface temperature oscillation amplitude, which is perceived as a reduced thermal conductivity, here and 
in BB-FDTR experiments. 
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B. Experimental phonon mean free path spectra 

Fitting experimental data (which includes ballistic effects) with a purely diffusive model, results 

in an effective thermal conductivity. In this study, the interpretation is that this effective thermal 

conductivity is kaccum from Eq. (1.5), where only diffusive phonons that have MFP < Lp contribute (i.e., Λ* 

= Lp is physically imposed). This interpretation is the same as that of Koh and Cahill [71], and consistent 

with Minnich et al. [19] and Johnson et al. [63,65] who instead used the laser spot diameter and transient 

grating period as the cutoff dimensions. To generate a phonon MFP spectrum, the measured thermal 

conductivity at the median frequency of the ith fitting window (f1,i) is plotted as a function of the 

corresponding penetration depth, 𝐿!,! = 𝑘! 𝐶π𝑓!,! (see Chapter 2). 

Phonon MFP spectra for SiO2, intrinsic c-Si, doped c-Si, a-Si (500 nm film), and single crystal 

platinum near room temperature are compared in Fig. 3.5 (see Table 3.1 for constant thermal conductivity 

fits and fitting parameters). The thermal conductivities are normalized by their bulk values [95,99,102-

104]. Shaded regions indicate uncertainty due to uncertainty in the thickness and thermal conductivity of 

the gold/chromium transducer, the laser spot size, G, and the measured phase response (see Chapter 2). 

For SiO2 and a-Si, a ±5% change in film thickness was also considered. In SiO2, Lp,i from 60-900 nm 

yield a constant value of thermal conductivity, which suggests that any phonon-like modes have a MFP 

spectrum that lies below 60 nm. The thermal conductivity of amorphous materials also has a contribution 

from non-propagating modes that have been called diffusons [105]. Because these modes do not 

propagate, there will be no observable transition between diffusive and ballistic transport as the BB-

FDTR heating frequency is increased. These frequency-independent data are consistent with 

measurements of SiO2 thin films where there was no observed thermal conductivity reduction from bulk 

due to boundary scattering [99,106]. In platinum, electrons with MFPs ~10 nm (Ref. [107]) are the 

dominant heat carriers and strong electron-phonon coupling ensures that they are in thermal equilibrium 

with the lattice [108]. Thus, the thermal conductivity of platinum shows no Lp dependence. 
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Fig. 3.5. MFP spectra for intrinsic c-Si, doped c-Si, a-Si (500 nm film), amorphous SiO2, and platinum 
near room temperature. The thermal conductivity of SiO2 is independent of Lp, suggesting that the MFPs 
of energy carriers are shorter than 60 nm. The MFP spectrum of platinum is independent of Lp due to 
short electron mean free paths (~10 nm) and strong electron-phonon coupling in the metal. The MFP 
spectrum of intrinsic c-Si and doped c-Si increase with Lp and show that micron-long MFPs contribute 
significantly to bulk thermal conductivity at T = 300K. Doped c-Si has a lower slope compared to 
intrinsic c-Si because phonons contribute to thermal conductivity with shorter MFPs. The MFP spectrum 
of the 500 nm a-Si film shows that propagating phonons with MFPs larger than 100 nm contribute 35±7% 
to its thermal conductivity (for a-Si the maximum value is used for normalization). 

In intrinsic c-Si Lp is probed from 0.3-8.0 µm and it is found that phonons with MFPs longer than 

1 µm contribute 40±5% to the bulk thermal conductivity. It should be noted that 95±6% of the bulk 

thermal conductivity is obtained at the lowest heating frequency (200 kHz, Lp ≈ 8 µm). This result 

underscores the importance of using low heating frequencies or steady-state measurements when 

attempting to measure bulk thermal conductivities. Relative to direct thermal conductivity measurements 

of c-Si thin films [24] and nanowires [26], kaccum at the film thickness or wire diameter is lower. In these 

nanostructures, phonons with MFPs greater than the limiting dimension are not excluded (as they are in 

BB-FDTR) and contribute to thermal conductivity with a MFP similar to the limiting dimension. 

Compared to intrinsic c-Si, the MFP spectrum of doped c-Si has a reduced slope, indicating that dopants 
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broaden the MFP spectrum by adding an additional phonon scattering mechanism. Phonons scattered by 

dopants are forced to contribute to the thermal conductivity at a shorter MFP then they would in the 

intrinsic crystal. 

The nature of thermal transport in amorphous solids is a long-standing question in solid-state 

physics [109]. Often, as in the results for SiO2, the thermal conductivity can be described in terms of 

diffusons (i.e., non-propagating modes). In contrast, the MFP spectrum for the 500 nm a-Si film shows 

that 35±7% of its bulk thermal conductivity comes from propagating (i.e., phonon-like) modes with MFPs 

longer than 100 nm. Propagating phonon-like modes in a-Si were first inferred by a disagreement between 

thermal conductivity measurements and modeling predictions that was resolved by the consideration of 

low-frequency Debye modes [110]. More recent simulations and experiments have also pointed to the 

existence of long MFP phonon-like modes in a-Si [109,111-113]. Using atomistic calculations, He et al. 

define modes with MFPs less than 10 nm as diffusons, which contribute approximately half to the bulk 

thermal conductivity [111]. Phonon-like modes with MFPs greater than 10 nm account for the remaining 

half. The range of Lp,i (40-1000 nm) in a-Si accesses these phonon-like modes. The spectrum is flat below 

100 nm as all of the propagating modes ballistically transmit through the domain while the non-

propagating modes remain diffusive. A steep transition occurs from 100-500 nm before the MFP 

spectrum asymptotes to a constant value as Lp,i exceeds the film thickness (500 nm).  

The MFP spectra of 500 nm, 1 µm, and 2 µm thick a-Si films are shown in Fig. 3.6 (see Table 3.1 

for constant thermal conductivity fits and fitting parameters). There are two main features, (i) the value 

measured at low modulation frequencies increases with increasing film thickness, and (ii) as the thickness 

increases, the location of the abrupt change increases. Regarding (i), some film thickness dependence of 

thermal conductivity is expected if phonons with MFP longer than the film thickness make significant 

contributions. Consequently, the value at which the accumulation function plateaus should increase with 

film thickness since all of the curves are normalized to the same value (1.7 W/m-K). Regarding (ii), in a 

thin film, the integrand of the accumulation function [from Eq. (1.5)] should display a spike near the film 

thickness because phonons with MFP greater than the film thickness now contribute with a MFP similar 
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to the film thickness. This spike in the integrand should translate to a sharp increase in the accumulation 

function. The location of this sharp increase should increase with increasing film thickness and should 

happen somewhere near the film thickness. The experimental measurements are consistent with (i) and 

(ii), and provide evidence that long MFP phonons contribute significantly to thermal transport. 

Furthermore, the low-frequency values of thermal conductivity observed are consistent with the thickness 

dependent ranges tabulated by Ref. [111]. 

 
Fig. 3.6.  The MFP spectra for 500 nm, 1 µm, and 2 µm thick films of a-Si. All curves are normalized to 
the maximum value of the 500 nm thick film (1.7 W/m-K). The plateau of the MFP spectra increase with 
increasing film thickness, suggesting phonons with MFPs larger than the film thickness are contributing 
significantly to thermal conductivity. 

C. Temperature-dependent MFP spectra in c-Si 

For temperature-dependent measurements of c-Si a MicrostatHe cryostat and an ITC503S 

temperature controller from Oxford Instruments were used. For low temperature measurements liquid N2 

is used to cool and a resistance heater local to the cold finger is used to stabilize the temperature. 

Measurements were taken at T = 400 K, 150 K, and 80 K as reported by the temperature controller. The 
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temperatures reported in this section include the effect from the DC temperature rise (see Chapter 2). 

Throughout the experiments, the temperature drifted by <1 K. 

Phonon MFP spectra of intrinsic c-Si at temperatures of 81, 155, 311, and 417 K are shown in 

Fig. 3.7 normalized by bulk values [95,104] (see Table 3.1 for constant thermal conductivity fits and 

fitting parameters). The associated values of G, shown in the inset, are consistent with prior 

measurements of a chromium/silicon interface [114]. At lower temperatures, longer MFP phonons 

contribute more significantly to the measured thermal conductivity. At temperatures of 81 K and 155 K, 

the heat capacity is at 20% and 45% of saturation [115]. High frequency phonon modes are not populated 

and phonon-phonon scattering is reduced relative to T = 311 K. At temperatures of 311 and 417 K, the 

population effects are less critical because the heat capacity is at 75% and 83% of saturation [115]. 

Instead, the shift in the MFP spectrum from T = 311 K to T = 417 K comes primarily from increased 

phonon-phonon scattering (i.e., increased anharmonicity). 

While these data compare favorably with the first principles predictions by Esfarjani and 

coworkers [19,45,116] at all temperatures, one unresolved discrepancy is that a frequency-dependent 

thermal conductivity was not observed in TDTR measurements of c-Si at T = 300 K [71]. Plausible 

explanations include (i) that a narrower frequency range (0.5-10 MHz compared to our range of 0.2-200 

MHz) was considered, (ii) that the transducer material may affect the perceived frequency dependence 

(TDTR uses Al, while BB-FDTR uses Au), and (iii) that the radii of the laser beams, known to influence 

TDTR measurements of thermal conductivity at cryogenic temperatures [19], was different (6.5-15 µm 

for TDTR relative to 3.4 µm for BB-FDTR). The reasons for this discrepancy will be discussed further in 

the following chapters.  
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Fig. 3.7. MFP spectra for intrinsic c-Si at T = 81, 155, 311, and 417 K compared to MFP predictions from 
first principles calculations. Inset shows the temperature dependence of thermal interface conductance 
between the gold/chromium transducer and the intrinsic c-Si sample. The spectrum of phonon MFPs 
relevant to thermal conductivity shifts to lower values with increasing temperature due to increased 
phonon-phonon scattering. At T = 300 K, phonons with MFP > 1 µm contribute 40±5% to bulk thermal 
conductivity. Comparison with predictions from Minnich et al. (Ref. [19]) and Esfarjani et al. (Ref. [45]) 
are favorable at all temperatures. 

IV. Summary 

This discovery that micron-long MFPs contribute substantially to k at room temperature and 

above suggests that silicon-based devices may have thermal management challenges in structures much 

larger than traditionally expected [24,37]. BB-FDTR’s continuous resolution of the MFP spectrum 

indicates how the dissipative ability of c-Si will continuously decrease as transistor size decreases to 

uphold Moore’s Law. Likewise, BB-FDTR can aid in the understanding of thermal transport in 

amorphous solids by identifying propagating phonon modes and generating thermal conductivity 

accumulation functions. The general experimental approach can be extended to measure the phonon MFP 

spectrum of other semiconducting and insulating solids [75]. 
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Table 3.1.  Phase lag data from BB-FDTR experiments shown with constant k fits, and the parameters 
used in the fits for each sample. 

 

Sample: c-Si, T = 416.6 K 

Cv [115] (kJ/m3-K) 1840 

ktr, (W/m-K) 110 

ttr, (nm) 62 

tsub, (nm) 5.25x105 

G, (MW/m2-K) 225 

kconstant, (W/m-K) 73.1 

Ao (mW) 20 

DC ΔT, (K) 16.6 

kbulk
 [95,104] (W/m-K) 100 

  

 

Sample: c-Si, T = 311.4 K 

Cv [115] (kJ/m3-K) 1692 

ktr, (W/m-K) 110 

ttr, (nm) 62 

tsub, (nm) 5.25x105 

G, (MW/m2-K) 210 

kconstant, (W/m-K) 99.1 

Ao (mW) 20 

DC ΔT, (K) 11.4 

kbulk
 [95,104] (W/m-K) 143 
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Sample: c-Si, T = 154.7 K 

Cv [115] (kJ/m3-K) 1061 

ktr, (W/m-K) 110 

ttr, (nm) 62 

tsub, (nm) 5.25x105 

G, (MW/m2-K) 160 

kconstant, (W/m-K) 107.7 

Ao (mW) 20 

DC ΔT, (K) 4.7 

kbulk [95] (W/m-K) 350 

  

 

Sample: c-Si, T = 81.3 K 

Cv [115] (kJ/m3-K) 466 

ktr, (W/m-K) 110 

ttr, (nm) 62 

tsub, (nm) 5.25x105 

G, (MW/m2-K) 120 

kconstant, (W/m-K) 187.1 

Ao (mW) 19 

DC ΔT, (K) 1.3 

kbulk [95] (W/m-K) 1200 
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Sample: doped c-Si, T = 313.8 K 

Cv [115] (kJ/m3-K) 1692 

ktr, (W/m-K) 112 

ttr, (nm) 61 

tsub, (nm) 3.8x105 

G, (MW/m2-K) 220 

kconstant, (W/m-K) 82.6 

Ao (mW) 20 

DC ΔT, (K) 13.8 

kbulk
 [102] (W/m-K) 120 

  

 

Sample: 500 nm a-Si, T = 305.5 K 

Cv [115] (kJ/m3-K) 1677 

ktr, (W/m-K) 117 

ttr, (nm) 60 

tsub, (nm) 500 

G, (MW/m2-K) 40 

kconstant, (W/m-K) 1.49 

Ao (mW) 9.5 

DC ΔT, (K) 5.5 

kbulk, (W/m-K) n/a 
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Sample: 1 µm a-Si, T = 306.3 K 

Cv [115] (kJ/m3-K) 1677 

ktr, (W/m-K) 115 

ttr, (nm) 58 

tsub, (nm) 1000 

G, (MW/m2-K) 35 

kconstant, (W/m-K) 1.35 

Ao (mW) 11 

DC ΔT, (K) 6.3 

kbulk, (W/m-K) n/a 

  

 

Sample: 2 µm a-Si, T = 304.6 K 

Cv [115] (kJ/m3-K) 1677 

ktr, (W/m-K) 130 

ttr, (nm) 61 

tsub, (nm) 2200 

G, (MW/m2-K) 30 

kconstant, (W/m-K) 1.0 

Ao (mW) 6.1 

DC ΔT, (K) 4.6 

kbulk, (W/m-K) n/a 
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Sample: SiO2, T = 306.6 K 

Cv [103] (kJ/m3-K) 1677 

ktr, (W/m-K) 130 

ttr, (nm) 61 

tsub, (nm) 1000 

G, (MW/m2-K) 60 

kconstant, (W/m-K) 1.48 

Ao (mW) 11.5 

DC ΔT, (K) 6.6 

kbulk
 [103] (W/m-K) 1.4 

  

 

Sample: Pt, T = 318.8 K 

Cv [103] (kJ/m3-K) 2848 

ktr, (W/m-K) 118 

ttr, (nm) 62 

tsub, (nm) 1x106 

G, (MW/m2-K) 850 

kconstant, (W/m-K) 71.9 

Ao (mW) 12.5 

DC ΔT, (K) 18.8 

kbulk [103] (W/m-K) 72 
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4. INTERPRETING NONDIFFUSIVE BB-FDTR MEASUREMENTS WITH THE BTE 

I. Overview 

The thermal conductivity accumulation function is important for determining the relationship 

between system dimensions and effective thermal conductivity. Attempts to experimentally measure kaccum 

induce nondiffusive thermal transport through varying an experimentally controllable length scale Lc in a 

range comparable to phonon MFPs. Nondiffusive thermal transport has been observed in TTG [65] and 

TDTR and BB-FDTR [19,71,73-75] experiments. An effective thermal conductivity of the material as a 

function of Lc is found by interpreting these nondiffusive measurements with a solution to the heat 

diffusion equation.  

The initial interpretation to obtain kaccum from k vs. Lc measurements was that energy carriers with 

Λ > Lc do not contribute to the experimentally measured thermal conductivity kexp and energy carriers 

with Λ ≤ Lc fully contribute, as they would in a purely diffusive regime [19,71,73,75]. Determining kaccum 

for Si-based materials using BB-FDTR under this interpretation was described in Chapter 3. 

Mathematically, this assumption takes the form 

𝑘!"# 𝐿! = 𝑘!
!!
! 𝑑Λ   . (4.1) 

This mapping between Lc and MFP contributions to the effective thermal conductivity leads to 

accumulation functions that are consistent with first principles predictions in silicon and gallium arsenide 

[19,73,75], but lacks rigorous justification. More generally,  

𝑘!"# 𝐿! = 𝑆 Λ, 𝐿! 𝑘!
!
! 𝑑Λ   , (4.2) 

where S(Λ, Lc) is known as the suppression function. In the simple interpretation in Eq. (4.1), S(Λ, Lc) is a 

step function from 1 to 0 at Λ = Lc. But discrepancies between BB-FDTR [73] and TDTR [71] results 

using Eq. (4.1) demand a deeper understanding of the suppression function.  
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Comparison of analytical [81] and numerical solutions [79,80,82] of the BTE to the heat diffusion 

equation for TTG leads to the functional dependence of the suppression function on Lc and MFP and 

reconciles nondiffusive TTG measurements and kaccum. In this chapter, I derive an analytical suppression 

function for thermoreflectance techniques by solving the BTE. In thermoreflectance techniques, there are 

two experimental length scales: (1) the thermal penetration depth Lp and (2) the e-2 radius of the Gaussian 

laser spot, ro. The presence of ro in thermoreflectance experiments necessitates a comparison of length 

scales rather than the time scales 1/Ω and phonon lifetime. I account for both experimental length scales 

in my expression for the suppression function. I use the results to interpret nondiffusive measurements of 

phonon transport in silicon by BB-FDTR and TDTR, although the solution does not account for the 

multiple time scales in TDTR that arise from using a pulsed laser. Before this work was published, Ding 

et al. predicted suppression due to spot size in TDTR using a Monte Carlo-based numerical solution to 

the BTE [72], but neither suppression due to thermal penetration depth nor analytical analyses for these 

experiments had been demonstrated in the literature. Three important questions are clarified: (1) What is 

the form of thermal penetration depth-based suppression? (2) What is its interplay with spot size-based 

suppression? (3) Under what circumstances can BB-FDTR and TDTR measurements be interpreted with 

the conventional heat diffusion equation? This work appears in Physical Review B, vol. 90, pp. 064302, 

2014 with contributions from co-authors A. J. H. McGaughey and J. A. Malen [83]. 

II. Suppression function in a planar geometry 

As shown in Fig. 4.1(a), a planar medium with a temporally oscillating surface temperature with 

angular frequency Ω and amplitude Ts = 1 K, such that 𝑇 𝑥 = 0, 𝑡 = 𝑇!𝑒!!! is considered first. Because I 

solve for deviations from the mean temperature, for convenience I define the temperature 𝑇 𝑥 → ∞, 𝑡 =

𝑇! = 0  K. The one-dimensional nature of this problem will yield an analytical solution that provides 

insight into the functional dependence of the suppression function on thermal penetration depth. 

I begin with the gray, 1-D BTE for phonons in Cartesian coordinates under the relaxation time 

approximation in an isotropic medium [39,117] 
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!
!
!"
!"
+ µμ !"

!"
= !!!!

!!
   , (4.3) 

where the non-equilibrium distribution function n(x, t, µ) is the phonon energy density per unit phonon 

frequency per unit solid angle and equals ℏωD(ω)g(x, t, µ)/4π. Here, ℏ is the reduced Planck constant, ω 

is phonon frequency, D(ω) is the phonon density of states, g(x, t, µ) is the occupation function, ne(x, t) is 

the equilibrium distribution function and is specified for phonons when g is the Bose-Einstein distribution 

gBE, τ is the gray lifetime Λ/v, v is the frequency-independent phonon group velocity (i.e., sound velocity), 

and µ is the directional cosine (µ = cosθ) that accounts for the velocity of phonons traveling at an angle θ 

from the x-direction [see Fig. 4.1(a)]. For small temperature variation, ne(x, t) ≈ ℏωD(ω)!!!"
!" !,!

T(x, t)/4π 

= CωT(x, t)/4π, where Cω is the volumetric heat capacity per unit frequency and T(x, t) is the departure 

from T∞ = 0 [50,79,81,84]. Thus, I solve for the deviations from the equilibrium distribution function, 

which are related to deviations of temperature from T∞. 

Since the oscillating surface temperature determines the temporal behavior of the solution, 

separation of variables is performed such that 𝑛 𝑥, 𝑡, µμ = 𝑛(𝑥, µμ)𝑒!!!, where 𝑛 is the component of n 

that is only a function of x and µ. Substituting into Eq. (4.3) yields  

µμ !!
!"
+    !!

!
+ !

!!
𝑛 =    !!

!!
   . (4.4) 

The difficulty in solving Eq. (4.4) arises from the fact that phonons traveling over all directions µ 

must be accounted for. For TTG, Collins et al. demonstrated a Volterra integral solution to a BTE of 

similar form [81], but the dependence on µ in this formulation leads to a divergent integral. Henceforth, a 

two-flux procedure, similar to that of the Milne-Eddington approximation for radiative heat transfer 

[118], is followed. This method involves taking the zeroth and first moments of Eq. (4.4) [i.e., Eq. (4.4) is 

integrated over all directions after multiplication with µ0 = 1 (zeroth moment) and µ1 = µ (first moment)]. 

The distribution moments are defined as  

𝑛! 𝑥 =   2π 𝑛 𝑥, µμ   µμ!𝑑µμ,                      𝑙 = 0, 1,…!
!!    . (4.5) 
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Furthermore, the distribution function is assumed to be isotropic over the upper and lower 

hemispheres such that 𝑛! 𝑥 ≡ 𝑛 𝑥, 0 < 𝜇 ≤ 1  and 𝑛! 𝑥 ≡ 𝑛 𝑥,−1 ≤ 𝜇 ≤ 0  [see Fig. 4.1(a)] [118]. 

From Eq. (4.5), the zeroth and first moments are 𝑛! = 2π(𝑛! + 𝑛!) = 3𝑛! and 𝑛! = π(𝑛! − 𝑛!), which 

can be physically related to temperature and heat flux [118]. Applying the two flux method to Eq. (4.4) 

yields a coupled set of equations 

𝑑𝑛!
𝑑𝑥

+ 3
𝑖Ω
𝑣
+
1
τ𝑣

𝑛! =   0      , (4.6a) 

!!!
!"

+ !!
!
𝑛! =   0   . (4.6b) 

In formulating Eqs. (4.6a) and (4.6b), conservation of energy for a gray medium is used to 

determine the equilibrium distribution 𝑛! in terms of 𝑛! (Ref. [21]) as 

𝑛! =   
!
!

𝑛𝑑µμ = !!
!"

!
!!    . (4.7) 

This coupled set of ordinary, linear, homogeneous differential equations is an eigenvalue problem 

and has a solution of the form 
𝑛!
𝑛!

= 𝑐!𝐯𝟏𝑒!!! + 𝑐!𝐯𝟐𝑒!!, where c1 and c2 are constants to be 

determined by the boundary conditions, ±λ are the eigenvalues, and v1 and v2 are the eigenvectors. Since 

the spatial domain is semi-infinite, c2 = 0 because 𝑛! and 𝑛! cannot increase unbounded. The boundary 

condition at x = 0 is depicted schematically in Fig. 4.1(a) and is [17,119] 

𝑛! 𝑥 = 0 =   ε !!!!
!"

+ ρ𝑛! 𝑥 = 0    , (4.8) 

where ε and ρ are the phonon emissivity and reflectivity, both of which will be discussed in further detail 

later in this chapter. Physically, Eq. (4.8) states that the total energy carried by phonons traveling in the 

positive x-direction at the surface is equal to the sum of the energy carried by phonons emitted due to the 

induced surface temperature Ts and the energy carried by phonons travelling in the negative x-direction 

that are reflected from the surface.  
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Fig. 4.1. Schematic diagrams for (a) the 1-D planar system and (b) the spherically symmetrical system, 
both with oscillating surface temperatures. Here, µ is the directional cosine, µ = cosθ. The parameters ε 
and ρ are the phonon emissivity and reflectivity. 

By solving the system of equations and integrating over all phonon frequencies, the spatial 

temperature and heat flux profiles are found to be 

𝑇!"# 𝑥 =   
𝑛!(𝑥)𝑑ω

!
!

𝐶!𝑑ω
!
!

=
ε𝑇!

1 + ρ 4𝑖β
3η + (1 − ρ)

exp −
η
𝐿!
𝑥       , (4.9a) 

𝑞!"#!! 𝑥 = 𝑣𝑛! 𝑥
!
! 𝑑ω = !!!!"

! !!! !(!!!) !"!!!
exp − !

!!
𝑥    , (4.9b) 

where η = 2𝑖 − 2τΩ, β = Λ/Lp, and 𝑘!"#$ =
!
!
𝐶𝑣!τ. Since the gray approximation is used, 𝑛! and 𝑛! 

are independent of ω and the integral over ω only changes Cω to the total volumetric heat capacity, i.e., 
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𝐶!𝑑ω = 𝐶!
! . To generate figures in this section and the following section, bulk silicon properties (C = 

1.65 × 106 J m-3 K-1, kbulk = 145 W m-1 K-1, and v = 8430 m s-1) [42,120] are used and Lp is determined 

using kbulk. 

The magnitudes of the spatial temperature profiles from the diffusion solution [𝑇!"##(𝑥) =

𝑇!exp  (−
!!!
!!
)] and BTE solution for ε = 1 – ρ = 1 and Λ/Lp = 1 are shown in Fig. 4.2(a). The spatial 

temperature profile from the diffusion solution is a continuous exponential decay where the diffusive 

thermal resistance can be defined as 𝑅!"##,! = (𝑇! − 𝑇!)/𝑞!"##
!! 𝑥 = 0 . The real part of the exponential in 

Eqs. (4.9a) and (4.9b) represents the BTE prediction of penetration depth Lp-BTE, which can be written as 

𝐿!!!"# =
!!

(!!!!!!)!/!!!"
   . (4.10) 

When τΩ << 1, Lp-BTE = Lp and 𝑇!"#(𝑥) collapses to 𝑇!"##(𝑥), but when τΩ >> 1, Lp-BTE → ∞, which 

indicates purely ballistic transport. Thus, as Λ/Lp increases, the temperature decay rate predicted by the 

BTE decreases. 

The spatial temperature profile from the BTE solution indicates two distinct regions: a surface 

temperature jump of ΔTε and a spatial temperature decay spanning ΔTi. When ε = 1 – ρ, the total thermal 

resistance from the BTE solution RBTE,x is comprised of two parts, 

𝑅! =
∆𝑇!

𝑞!"#!! 𝑥 = 0
=
4 − 2ε
ε𝐶𝑣

      , (4.11a) 

𝑅!,! =
∆!!

!!"#
!! !!!

=

!!!

!!!
!!
!

!!"#$
   , 

(4.11b) 

such that 

𝑅!"#,! = 𝑅! + 𝑅!,!   . (4.11c) 
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The thermal resistances in Eqs. (4.11a), (4.11b), and (4.11c) are complex. Complex thermal 

resistances are analogous to impedance in alternating current circuit analysis. In the plots throughout this 

chapter, the magnitude of such complex thermal resistances is plotted. 

The magnitude of the terms Rε, Ri,x, and RBTE,x are plotted in Fig. 4.2(b) as a function of Λ/Lp and 

τΩ with ε = 1 – ρ = 1 and are compared to the magnitude of Rdiff,x. The term Rε is a resistance that arises 

from the interaction between the surface and ballistic phonons originating within one MFP of the surface 

and is associated with the surface temperature jump in BTE [17,20,97,121] and radiative transfer [122] 

problems. The term Rε is independent of any experimentally controllable length scale but is always 

present. The term Ri,x is intrinsic to the material and accounts for transport of phonons associated with two 

length scales: Lp and Λ. It should be noted that Ri,x says nothing about the surface properties (i.e., Ri,x is 

not a function of ε). Thus, when Λ/Lp << 1, 𝑅!"#,! = 𝑅! + 𝑅!,! = 𝑅! + 𝐿! ( 2𝑖𝑘!"#$) ≈ 𝐿! ( 2𝑖𝑘!"#$) 

and the BTE thermal resistance converges to the diffusive thermal resistance because Ri,x dominates Rε. 

However, as the phonon MFP approaches Lp, the second term in Ri,x and the Rε term become non-

negligible and the BTE thermal resistance becomes larger than the diffusive thermal resistance. In the 

ballistic limit (Λ/Lp >> 1), 𝑅!"#,! = 𝑅! + 𝑅!,! = 𝑅! + Λ ( 3𝑘!"#$) and becomes independent of Ω. It 

should be noted that the total thermal resistance is independent of whether a temporally oscillating surface 

temperature or heat flux is imposed, the latter of which is more consistent with the experiments. 

As in the analysis of the experimental measurements, the effective thermal conductivity keff is 

determined by equating the complex diffusive thermal resistance (𝑅!"##,! = 1/ 𝑖Ω𝐶𝑘!"") to the complex 

thermal resistance determined by the BTE,  𝑅!"#,! [17,80]. Since, by definition, Ts is identical in both 

systems, this procedure is equivalent to equating surface heat fluxes from the diffusion and BTE 

solutions. Furthermore, identical functional forms of the BTE and diffusion solutions suggest that 

interpreting nondiffusive transport with an effective, suppressed k is reasonable. The suppression function 

for this planar geometry Sx(Λ, Lp, ε, ρ) is the fractional contribution to thermal conductivity made by a 

phonon with a MFP of Λ in a thermoreflectance experiment with Ω, ε, and ρ and is  
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𝑆! Λ, 𝐿!, ε, ρ = !!""
!!"#$

= !!!

!!!! ! !!! !(!!!) !"!!!
!   . (4.12) 

It should noted that Sx(Λ, Lp, ε, ρ) is complex. Thus the phase angle of the suppression function 

influences the observed phase angle in thermoreflectance experiments, ultimately influencing the value of 

thermal conductivity obtained. In plots of the suppression function throughout the paper, its magnitude is 

plotted. 

The magnitude of the thermal resistance of the system from the BTE and diffusion solutions and 

the magnitude of Sx(Λ, Lp, ε, ρ) as a function of Λ/Lp and τΩ for ε = 1 – ρ = 1, 0.5, and 0.1 are shown in 

Figs. 4.3(a) and 4.3(b). The suppression function [Fig. 4.3(b)] accounts for the increase in thermal 

resistance compared to the diffusion solution [Fig. 4.3(a)], and reduces the effective thermal conductivity 

of the material. The suppression function is different than that previously assumed [i.e., a step function, 

see Eq. (4.1)] [71,73,75] in that phonons with Λ/Lp < 1 contribute less and phonons with Λ/Lp > 1 

contribute more near Λ/Lp = 1.  

The effect of changing ε is highlighted in Figs. 4.3(a) and 4.3(b). In this BTE solution, the 

resistance associated with the surface temperature jump 𝑅! = (4 − 2ε)/ε𝐶𝑣 (for ρ = 1 – ε) is independent 

of any experimentally controllable length scale, i.e., Lp. Consequently, this resistance is always present 

and of the same magnitude but only becomes non-negligible when Ri,x is sufficiently small, which 

happens when the penetration depth is on the order of or smaller than the MFP. Decreasing ε increases Rε, 

increasing the surface temperature jump, and hastening the onset of suppression. This fact can be 

qualitatively understood with an analogy to radiative transfer, i.e., the energy transfer rate from an 

isothermal gray surface will be less than that from an isothermal black surface at a given surface 

temperature. Reducing the phonon emissivity reduces the number of phonons emitted from the surface 

and hence reduces the energy transfer away from the surface, increasing the thermal resistance and 

reducing the effective thermal conductivity of the material in the nondiffusive regime. Furthermore, it is 

reasonable that emissivity is related to the interface resistance between the transducer and substrate in a 
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thermoreflectance experiment considering that emissivity affects the size of the surface temperature jump 

[123]. The effect of changing ε and ρ will be revisited later in this chapter. 

 
Fig. 4.2. 1-D planar geometry with temporally oscillating surface temperature and ε = 1 – ρ = 1. (a) 
Magnitude of the spatial temperature profiles from the diffusion and BTE solutions for Λ/Lp = 1. The 
BTE solution has two distinct regions that correspond to two distinct thermal resistances. (b) Magnitude 
of the thermal resistances Rdiff,x and RBTE,x = Rε + Ri,x plotted as a function of Λ/Lp and τΩ. 
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Fig. 4.3. 1-D planar geometry with temporally oscillating surface temperature and ε = 1 – ρ = 1, 0.5, and 
0.1. (a) Magnitude of the thermal resistance from the diffusion and BTE solutions vs. Λ/Lp and τΩ. The 
BTE predicts a higher thermal resistance than the diffusion solution, which can be accounted for by 
reducing the effective thermal conductivity in the diffusion solution. (b) Magnitude of the suppression 
function plotted as a function of Λ/Lp and τΩ. These curves are compared to the P1 solution to the BTE 
for parallel, black, isothermal plates and to the step function suppression function [71,73,75]. 

To verify the behavior of this suppression function, it is compared to a solution to the gray BTE 

for two infinite, parallel, black (ε = 1), isothermal plates. This scenario is similar to the periodic problem 

except that in the periodic problem the oscillating surface temperature defines the length scale Lp. The 

solution to the isothermal problem is obtained using the P1 approximation and is plotted against the ratio 

of Λ and plate separation distance in Fig. 4.3(b). A similar trend instills confidence in the solution to the 

periodic problem and suggests that although Lp is not a physical boundary, it similarly suppresses 

contributions of phonons to thermal transport.  



75 

III. Suppression function in a spherical geometry 

In BB-FDTR and TDTR experiments, there are two relevant length scales: the thermal 

penetration depth and the spot size of the heating laser. Thus, in order to obtain an accurate suppression 

function for relating thermoreflectance measurements to kaccum, both length scales should be incorporated. 

The most accurate solution would involve solving the spectral BTE in cylindrical coordinates, under 

conditions of radially symmetric Gaussian surface heating. While other studies have reached numerical 

solutions to similar problems [36,72], one goal of this work is to reach an analytical solution for a simpler 

problem. 

As depicted in Fig. 3.1(b), consider a sphere with radius ro embedded in an infinite medium with 

temperature 𝑇 𝑟 → ∞, 𝑡 = 𝑇! = 0  K and a temporally oscillating surface temperature at the sphere-

medium interface. Solving the BTE within the medium will provide a solution that is dependent on Lp due 

to the periodic nature of the surface temperature as well as the effect of spot size, which can be captured 

by varying the radius of the embedded sphere. It should be noted that Chen solved a similar problem for a 

sphere with steady-state heating [17]. While this geometry is not an exact representation of a 

thermoreflectance experiment, the spherical symmetry (1-D in the radial direction) of the problem allows 

for the derivation of an analytical solution for the suppression function that is dependent on Lp and ro. 

I begin with the 1-D, gray BTE under the relaxation time approximation in spherical coordinates 

in the radial direction r (Ref. [39]), 

!
!
!!
!!
+ µμ !"

!"
+ !!!!

!
!"
!!
= !!!!

!!
   . (4.13) 

The µ-dependence in Eq. (4.13) can be eliminated using the method of spherical harmonics (PN 

approximation), which is a generalization of the Milne-Eddington approximation and has been thoroughly 

studied in spherically-symmetrical geometries in radiative transfer [118,124-126]. The method involves 

reducing the governing equation into a set of N simpler partial differential equations by taking advantage 

of the orthogonality of spherical harmonics. Applying the PN approximation to Eq. (4.13) yields 
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!
!
!!!
!!
+ !!!

!!!!
!!!!!
!"

+ !
!!!!

!!!!!
!"

+ !!! (!!!)
!(!!!!)

𝑛!!! −
!(!!!)
!(!!!!)

𝑛!!! +
!!
!!
= !!

!!
δ!!   , (4.14) 

where l = 0, 1, 2, … N and δ0l is the Kronecker delta. In the limit where N → ∞, the exact solution is 

obtained. Here the P1 approximation is used, which is typically accurate for scattering media at large 

optical thicknesses with decreasing accuracy as the optical thickness is decreased [118]. For this problem, 

large optical thicknesses correspond to Lp >> Λ. Using the P1 approximation and separating variables in a 

similar fashion as Eq. (4.4), Eq. (4.13) reduces to 

𝑑𝑛!
𝑑𝑟

+ 3
𝑖Ω
𝑣
+
1
τ𝑣

𝑛! =   0      , (4.15a) 

!!!
!"

+ !!
!
𝑛! +

!
!
𝑛! =   0   . (4.15b) 

By employing an analogous boundary condition as used for the planar solution, i.e.,  

𝑛! 𝑟 = 𝑟! =   ε !!!!
!!

+ ρ𝑛! 𝑟 = 𝑟! , closed-form solutions for the spatial temperature and heat flux 

profiles for r ≥ ro are obtained as 

𝑇!"# 𝑟 =
𝑟!ε𝑇!

𝑟 1 + ρ 4𝑖 βη + Ψ
3η! + (1 − ρ)

exp −
η
𝐿!
(𝑟 − 𝑟!)       , (4.16a) 

𝑞!"#!! 𝑟 =
!! !

!!
!!

!!!!
!!!!T!!"

!! ! !!! !(!!!) !!!
!! !!!!

exp − !
!!
(𝑟 − 𝑟!)    , (4.16b) 

where Ψ = Λ 𝑟!. The suppression function is found by determining keff of the infinite medium that 

equates the complex thermal resistance from the diffusion solution [𝑅!"##,! = 1/ 𝑖Ω𝐶𝑘!"" + 𝑘!""/𝑟! ] 

[93] to the complex thermal resistance defined by the BTE, which is equivalent to equating surface heat 

fluxes [17,80], and is 

𝑆! Λ, 𝐿!, 𝑟!, ε, ρ = !!""
!!"#$

= γ + 𝑖 !
!

!
− !

!
2𝑖γ − !

!

!
   , (4.17) 

where 
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γ =
!"

!
! !!! !(!!!) !!!

!! !"!!

   . (4.18) 

In Fig. 4.4(a), the magnitude of the complex thermal resistance is plotted as a function of Λ/Lp 

and τΩ at different values of Λ/ro with ε = 1 – ρ = 1 for both the diffusion and BTE solutions. The thermal 

resistance from the diffusion equation (solid lines) highlights the interplay between ro and Lp. When Lp << 

ro, the solution converges to the planar solution [Fig. 4.3(a)], and when Lp >> ro, the diffusive thermal 

resistance becomes independent of Λ/Lp. 

Similar to the planar solution, the total thermal resistance from the BTE is the sum of a surface 

component 𝑅! = (4 − 2ε)/ε𝐶𝑣 (for ε = 1 – ρ), which is the same as for the planar solution, and an 

intrinsic component Ri,r 

𝑅!,! =
!!

!!!!"#$
!
!!
! !
!!

   . (4.19) 

As in the planar solution, Ri,r includes no effect from the surface properties (Ri,r is not a function 

of ε when ε = 1 – ρ). For a given value of ε, Ri,r converges to the diffusion solution when Λ/Lp << 1 and 

asymptotes to Λ ( 3𝑘!"#$) when Λ/Lp >> 1. But since the diffusive resistance decreases with increasing 

Λ/ro when Λ/Lp << 1, Rε becomes non-negligible, and even dominates, when ro is commensurate or 

smaller than the MFP. Because the total thermal resistance is the sum of Rε and Ri,r, the BTE and diffusion 

solutions do not converge when Λ/Lp << 1 at larger values of Λ/ro. When Λ/ro = 0, the BTE solution 

converges to the planar solution from Eq. (4.9), as shown in Fig. 4.3(a). 

The magnitude of the suppression function Sr(Λ, Lp, ro, ε, ρ) is plotted in Fig. 4.4(b) for ε = 1 – ρ  

= 1. In the limit when ro → ∞, the solution converges to the planar solution given in Eq. (4.12) and shown 

in Fig. 4.3(b). Changes in the suppression function with Λ/ro over all Λ/Lp illustrate the interactions 

between the two length scales. In general, the smaller of Lp or ro dominates suppression. For example, 

when Λ/Lp << 1, suppression is solely due to decreasing particle radius and is consistent with the TDTR 

experimental measurements by Minnich et al. of k vs. ro that were independent of heating frequency [19] 
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and Chen in the case of steady-state heating [17]. According to the BTE solution, if either Lp or ro are 

much smaller than the phonon MFP, that phonon will not contribute to kexp. Under these circumstances, 

BB-FDTR and TDTR are inadequate for measuring the bulk thermal conductivity of a material. 

The magnitude of the thermal resistance from the BTE and diffusion solutions and the magnitude 

of Sr(Λ, Lp, ro, ε, ρ) are plotted in Figs. 4.5(a) and 4.5(b) as a function of Λ/ro for different values of Λ/Lp 

with ε = 1 – ρ = 1. As heating frequency increases (Λ/Lp increases), additional suppression occurs from 

Lp, even at very low Λ/ro.  In Fig. 4.5(c), the analytical solution for Sr in the low Ω limit (Λ/Lp = 0) is 

compared to Chen’s exact solution from Ref. [17] for a sphere with steady-state heating and the 

suppression function from Ref. [72] found numerically by solving the spectral BTE for a Gaussian-shaped 

laser spot. Due to the use of the P1 approximation, I find that Eq. (4.17) and the exact solution for a 

sphere with steady-state heating from Ref. [17] differ by a factor of two on the horizontal axis. I assert 

that this factor is not significant considering that the range of MFP spans four orders of magnitude in 

typical crystalline semiconductors [37,45,127]. Using a value of 3ro in Eq. (4.17), however, yields a 

suppression function that compares well with the suppression function from Ref. [72]. It is expected that 

there should be a correction factor to the spot size in Eq. (4.17) resulting from the geometry chosen to 

generate an analytical solution, i.e., the geometry of the spot is approximated as a finite sphere in an 

infinite medium while the actual experimental geometry is a Gaussian spot incident on a semi-infinite 

medium. 
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Fig. 4.4. Spherical particle embedded in an infinite medium with oscillating temperature at the surface of 
the sphere (r = ro) with ε = 1 – ρ = 1. (a) Magnitude of the thermal resistance from the diffusion and BTE 
solutions vs. Λ/Lp and τΩ. (b) Magnitude of the suppression function plotted as a function of Λ/Lp and τΩ 
for different values of Λ/ro. For Λ/ro = 0, the results collapse to the 1-D planar case shown in Figs. 4.3(a) 
and 4.3(b). 
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Fig. 4.5. Spherical particle embedded in an infinite medium with oscillating temperature at the surface of 
the sphere (r = ro) with ε = 1 – ρ = 1. (a) Magnitude of the thermal resistance from the diffusive and BTE 
solutions vs. Λ/ro for different values of Λ/Lp. (b) Magnitude of the suppression function plotted as a 
function of Λ/ro for different values of Λ/Lp. (c) Comparison of Eq. (4.17) when Λ/Lp = 0 for a particle 
with radius ro and a particle with radius 3ro, the exact solution for a sphere with steady-state heating from 
Ref. [17], and the suppression function found numerically by solving the spectral BTE for a Gaussian-
shaped laser spot from Ref. [72]. Using a particle radius of 3ro in Eq. (4.17) compares well with 
numerical results from Ref. [72]. 



81 

IV. Relating experiments and kaccum using the suppression function 

The suppression function can be used to relate experimental measurements to kaccum by mapping 

length scales to phonon MFPs. For example, kaccum can be obtained using Eq. (4.2) with thermoreflectance 

thermal conductivity measurements and the suppression function from Eq. (4.17) as inputs to the solution 

of an inverse problem, which was done by Minnich for TTG using convex optimization [80]. 

Alternatively, as is done here, the experimental measurement can be predicted given kΛ as an input, which 

can be obtained from models (e.g., Callaway, Born-von Karman-Slack, first principles, etc.) [41,45,75]. 

This approach is less mathematically complex and allows for a direct comparison to the measurements.  

Experimental measurements on silicon made by TDTR and BB-FDTR with predicted kexp are 

compared in Figs. 4.6(a) and 4.6(b). The solid lines are the predicted accumulation functions from first 

principles calculations for silicon plotted as a function of MFP at temperatures of 80 and 300 K [48,128]. 

Using Eq. (4.2) with the suppression function from Eq. (4.17), these data are transformed into a predicted 

kexp as would be measured by BB-FDTR or TDTR, shown as the dashed lines in Figs. 4.6(a) and 4.6(b). 

To make this transformation, a spot size of 3ro is used, which is found by comparing Eq. (4.17) to the 

suppression function for a Gaussian-shaped spot from Ref. [72] [see Fig. 4.5(c)] and a temperature 

independent value of ε = 1 – ρ in Eq. (4.17) that yields the best fit between experimental data and Eq. 

(4.2), i.e., ε is used as a fitting parameter. 

In Fig. 4.6(a), kaccum vs. Λ data from the first principles calculations are transformed into predicted 

kexp vs. 3ro using Eq. (4.2) and Eq. (4.17). It is found that a value of ε = 1 – ρ = 0.88 fits the TDTR 

measurements from Ref. [72] at temperatures of 80 and 300 K well. Here, a heating frequency of 106 Hz 

is used to determine Λ/Lp. It should be noted that the interface between the transducer and substrate for 

the TDTR data presented is aluminum/silicon. It is reasonable that the value of ε obtained by fitting is 

related to the properties of this interface. To show how increased TDTR heating frequency is expected to 

further suppress kexp predicted kexp vs. 3ro for a heating frequency of 107 Hz with ε = 1 – ρ = 0.88 is also 

plotted. 
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In Fig. 4.6(b) kaccum vs. Λ data from the first principles calculations are transformed into predicted 

kexp vs. Lp using Eq. (4.2) and Eq. (4.17). Here, Lp is determined using predicted kexp instead of kbulk to be 

consistent with the previous presentation of the experimental measurements [73] (see Chapter 3). It is 

found that a value of ε = 1 – ρ = 0.6 best describes the BB-FDTR measurements from Ref. [73] at 

temperatures of 80 and 300 K. In the BB-FDTR results presented, the interface between the transducer 

and substrate is chromium/silicon rather than aluminum/silicon, and it is reasonable that there is a 

difference in the fitted value of ε for BB-FDTR compared to TDTR.  

For silicon at a temperature of 300 K, the predicted kexp vs. Lp for TDTR in Fig. 4.6(b) shows Lp-

dependence over the measurement range although the experimental measurements show no Lp-

dependence. The TDTR spot size used is the average of the range given in Ref. [71] (3ro = 32.25 µm). For 

BB-FDTR (3ro = 10.2 µm), the prediction compares well to experimental results at smaller Lp. The 

experimental measurements should plateau at larger Lp due to the effect of spot size, but this effect is not 

observed. More suppression is observed in BB-FDTR relative to TDTR for the available range of TDTR 

data because a smaller spot size was used and the emissivity is lower. At T = 80 K, Eqs. (4.2) and (4.17) 

compare well with BB-FDTR experimental results over all Lp. At this temperature, phonons have longer 

MFPs and are significantly suppressed by the finite spot size, i.e., even for very large Lp, kexp will only 

attain approximately 30% of kbulk due to the spot size restriction. In Figs. 4.6(a) and 4.6(b) the multiple 

time scales in TDTR that arise from using a pulsed laser are neglected and only the overarching 

modulation frequency is considered. 
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Fig. 4.6. Comparison of thermal conductivity measurements and predicted kexp for silicon. (a) kaccum from 
first principles calculations (solid lines) is transformed into predicted kexp vs. 3ro (dashed lines) by Eq. 
(4.2) using the suppression function from Eq. (4.17). A value of ε = 0.88 results in the best fit to TDTR 
measurements at T = 300 K and T = 80 K from Ref. [72] with a heating frequency of 106 Hz. Predicted 
kexp vs. 3ro for a heating frequency of 107 Hz with ε = 0.88 is shown for comparison. In TDTR, the 
transducer/substrate interface is aluminum/silicon. (b) kaccum from first principles calculations is 
transformed into kexp vs. Lp by Eq. (4.2) using the suppression function from Eq. (4.17). A value of ε = 0.6 
results in the best fit to BB-FDTR measurements (circles) at T = 300 K and T = 80 K from Ref. [73]. In 
BB-FDTR, the transducer/substrate interface is chromium/silicon. Predicted kexp vs. Lp with ε = 0.88 is 
compared to TDTR measurements from Ref. [71] (diamonds).  

To generate predicted kexp vs. Lp in Figs. 4.6(a) and 4.6(b), a suppression function derived from 

the gray BTE [Eq. (4.17)] is applied to the full phonon spectrum, where the MFP is frequency dependent. 

A similar approach was used by Collins et al. for TTG, in which a gray suppression function was applied 

to the full phonon spectrum to obtain predictions of thermal diffusivity as a function of grating period 

[81]. The results were compared to predictions of thermal diffusivity as a function of grating period 

calculated from the spectral BTE using phonon properties from first principles calculations. The authors 
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found favorable comparison in that the predicted effective thermal diffusivity varied by less than 7% over 

grating periods from 10-1-106 nm compared to the full spectral model of Si and PbTe at a temperature of 

300 K. 

The parameters ε and ρ in Eq. (4.17) arise from the analogy with radiative transfer and describe 

the ability of the surface to emit and reflect phonons. In the comparisons with experimental results ε is 

used as a fitting parameter but I propose that ε is related to the properties of the transducer/substrate 

interface in BB-FDTR and TDTR experiments. One interpretation is that the phonon emissivity is equal 

to the transmission coefficient of phonons from the transducer into the substrate [119]. 

Phonon transmission coefficients are used in the Landauer formulation to make predictions of 

interface thermal resistance. Following Ref. [42], the total interface resistance Rtotal = 2RT + RL, where RT 

and RL are the contributions from transverse and longitudinal acoustic phonons, can be derived in a 

similar manner as thermal conductivity. Beginning with Eqs. (2.10) and (2.11) in Ref. [129] and using a 

truncated Debye dispersion and Debye density of states, 

𝑅!!! =
!!!

!!!

!!!ℏ3𝑣T
2

!!!!

(!!!!)!
!! !
! 𝑑𝑦    , (4.20a) 

𝑅!!! =
!!!

!!!

!!!ℏ3𝑣L
2

!!!!

(!!!!)!
!! !
! 𝑑𝑦   , (4.20b) 

where kB is the Boltzmann constant, vT and vL are the transverse and longitudinal speeds of sound, θT and 

θL are the temperatures associated with the transverse and longitudinal Brillouin zone edge frequencies, y 

= ℏω/kBT, and α = ε is the transmission coefficient. Using Eq. (4.20) with values of vT, vL, θT, and θL from 

Ref. [42] and the best fit values for α = ε, it is found that 𝑅!"!#$ = 3.85  m!  K  GW!! for a 

chromium/silicon interface and 𝑅!"!#$ = 2.63  m!  K  GW!! for an aluminum/silicon interface at T = 300 K. 

These values compare well with measured values reported in Ref. [73] and Ref. [19] at T = 300 K 

(𝑅!"!#$ = 4.76  m!  K  GW!! for chromium/silicon interface and 𝑅!"!#$ = 2.78  m!  K  GW!! for 

aluminum/silicon interface). Furthermore, because ε influences the onset of suppression, I hypothesize 

that the interface properties contribute to the discrepancy between room temperature BB-FDTR and 
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TDTR heating frequency dependence for silicon [see Fig. 4.6(b)], though a spectral phonon model that 

includes the transducer may be required to reconcile this unresolved question.  

It is important to note that previous nondiffusive measurements have been solely attributed to 

reduced thermal conductivity, i.e., the interface resistance between the substrate and the transducer is 

assumed constant in diffuse interpretations of the experiments [19,71,73,75]. In this formulation, a 

comparison is made between a thermal resistance from the BTE that includes a surface temperature drop 

to a diffusion solution that does not account for an interface thermal resistance (no surface temperature 

drop). As a result, the effect of Rε [Eq. (4.13a)] is included in the definition of keff. To generate a 

suppression function that does not include the surface temperature drop, one can equate the appropriate 

complex diffusive thermal resistance to Ri,x or Ri,r, resulting in 𝑆! = 1 (1 + 𝑖τΩ). This result is equivalent 

for both the planar and spherical geometries and is independent of the particle radius. In Ref. [73], a 

suppression function was determined from a numerical solution to the 1-D, gray BTE for phonons 

travelling in the positive and negative x-direction (µ = 1 or -1). The result is related to Si; the difference 

being a factor of π/2 on the x-axis, which stems from considering -1 ≤ µ ≤ 1 when determining Si [130]. 

To include heating frequency-dependent interface resistance between the transducer and the 

substrate, a BTE formulation that explicitly includes an interface could be considered and compared to a 

diffusion solution including an interface. How the transducer affects nondiffusive transport, which is 

important in interpreting the experiments, has not been explicitly addressed, though it may contribute to 

the discrepancy between heating frequency-dependent measurements of silicon by BB-FDTR and TDTR. 

V. Summary 

An analytical suppression function for a system geometrically similar to a thermoreflectance 

experiment was obtained by solving the BTE for a gray medium. The result accounts for the two 

dominant length scales in thermoreflectance experiments: thermal penetration depth and heating laser spot 

radius. The suppression function is used to predict kexp vs. Lp and kexp vs. 3ro to make a direct comparison 

to experimental measurements by both BB-FDTR and TDTR. The results corroborate the use of BB-
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FDTR and TDTR as tools for identifying kaccum by generating nondiffusive transport and provide insight 

and understanding of the measurements. Furthermore, the results suggest that if either Lp or ro are much 

smaller than the phonon MFPs that dominate k, BB-FDTR and TDTR are inadequate for measuring the 

bulk thermal conductivity of a material. The phonon surface properties ε and ρ affect suppression and 

may explain discrepancies between TDTR and BB-FDTR measurements of similar samples with different 

transducers. It is clear that powerful new insight is offered by nondiffusive thermal transport 

measurements paired with the experiment-specific suppression function to map data into real energy 

carrier properties. 
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5. ELECTRON-PHONON NON-EQUILIBRIUM IN THE TRANSDUCER 

I. Overview 

One important detail about TDTR and FDTR is the existence of a thin metal layer, which is 

coated on the sample surface. This metal layer acts as a transducer that imparts information about the 

sample surface temperature to the probe laser due to the thermoreflectance properties of the metal. The 

transducer layer introduces two major complications into the analysis and interpretation of the 

experiments: (1) an interface exists between the transducer and substrate, which is typically characterized 

by a thermal interface conductance 𝐺 that becomes an additional fitting parameter and (2) the interaction 

between electrons and phonons in the metal transducer cannot necessarily be neglected at short time 

scales. These two complications have been suggested as reasons for the discrepancy between TDTR and 

FDTR measurements of thermal conductivity as a function of heating frequency [78,131]. In this chapter, 

I address and discuss the latter. 

Typically for TDTR the transducer material is aluminum, while for recent implementation of 

FDTR the transducer is gold with a thin chromium adhesion layer [74,76]. In the metal transducer layer, 

electrons are primarily responsible for the thermal conductivity and phonons are responsible for the heat 

capacity. Both electrons and phonons carry energy in metals and the rate at which electrons and phonons 

share energy with one another is characterized by the electron-phonon coupling parameter 𝑔. At a 

temperature of 300 K measurements find 𝑔!" = 24.5 × 1016 W m-3 K-1 and 𝑔!" = 2.2 × 1016 W m-3 K-1 

[132,133]. The electron-phonon coupling parameter in aluminum is an order of magnitude larger than 

gold, physically indicating that electrons and phonons thermally equilibrate faster in aluminum than in 

gold. 

The timescale for electron-phonon equilibration has been observed to be on the order of the 

lattice heat capacity divided by 𝑔 [108]. The timescales in TDTR (laser pulse width, pump-probe delay 

time, time between laser pulses, and 1/2π𝑓) and FDTR (1/2π𝑓) are comparable to the electron-phonon 

equilibrium time. Consequently, non-equilibrium between electrons and phonons occurs in these 
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experiments and must be considered when interpreting the experimental data. A tool well suited to 

capture these physics is the two-temperature diffusion model, which has been applied to 

thermoreflectance experiments in the literature [132,134-139]. Furthermore, it has been shown that there 

is indirect heating of a thin metal layer with strong electron-phonon coupling when in contact with an 

optically excited layer with weak electron phonon coupling [132]. This results in non-surface heating in 

thermoreflectance experiments with similar geometry, such as in FDTR with a gold/chromium transducer 

[73-75]. The literature, however, lacks a two-temperature formulation applicable to thermoreflectance 

experiments that accounts for arbitrary, non-surface heating.  

Here, I formulate a two-temperature model based on the work in Ref. [139] with the added 

functionality to deposit heat at any location in the multi-layer sample geometry. I also perform a 

sensitivity analysis of this model to determine important parameters in the solution and establish a 

guideline for when the use of a two-temperature model is necessary to interpret thermoreflectance data. A 

case study is performed using existing data from Ref. [73]. The transducer layer is characterized using 

SiO2 and platinum substrates. After characterizing the transducer, silicon FDTR data are refit with the 

two-temperature model. Accounting for electron-phonon non-equilibrium processes in the transducer 

reduces the thermal conductivity heating frequency dependence observed in FDTR. Additional FDTR 

measurements on silicon with a gold/chromium/aluminum transducer are performed and show limited 

heating frequency dependence, indicating that the transducer/substrate interface plays a role in the 

observed heating frequency dependent-thermal conductivity. This work appears in Journal of Applied 

Physics, vol. 118, pp. 235101, 2015 with contributions from co-authors L. C. Wei and J. A. Malen and is 

reprinted with permission from AIP Publishing LLC © 2015 [140]. 

II. Two-temperature formulation 

The two-temperature model in an N-layered geometry, as depicted in Fig. 5.1, is solved in a 

similar fashion as Ref. [139]. The two-temperature model describes heat transfer in the nth layer through 

two distinct channels, each having its own thermal conductivity (𝑘!,! and 𝑘!,!), volumetric heat capacity 
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(𝐶!,! and 𝐶!,!) and temperature (θ!,! and θ!,!). Heat is exchanged between each channel at a rate 

proportional to the coupling parameter in that layer 𝑔!. The thickness of each layer is 𝑡! with the Nth layer 

being semi-infinite. I account for temporally periodic, spatially (in the r-direction) Gaussian heat input at 

the surface and into each channel of each layer at a distance δ! from the beginning of the nth layer [e.g., to 

model the spatial (in the z-direction) absorption of the pump laser due to the optical penetration depth of 

the light in the metal transducer]. Accounting for arbitrary periodic heat input into any layer at any 

location within that layer is a new contribution to the literature relative to the two-temperature model 

presented in Ref. [139]. 

 
Fig. 5.1. Schematic of the two-temperature model for an N-layered sample with arbitrarily valued and 
located input heat fluxes in each layer. 

In an FDTR experiment, a periodic, radially Gaussian heat flux with angular frequency Ω = 2π𝑓 

is incident on the sample. Thus, to be consistent with the geometry of the experiment and to take 

advantage of the cylindrical symmetry of the problem, the coupled heat diffusion equation in cylindrical 

coordinates is solved for the temperatures θ!,!(𝑡, 𝑧, 𝑟) and θ!,!(𝑡, 𝑧, 𝑟) of the nth layer [Eqs. (5.1a) and 

(5.1b)] that includes heat deposition profiles into each channel of the nth layer 𝐹!,! and 𝐹!,! [Eqs. (5.1c) 

and (5.1d)], 

𝐶!,!
∂θ!,!
∂𝑡

= 𝑘!,!
𝜕!θ!,!
𝜕𝑧!

+
η!,!
𝑟

𝜕
𝜕𝑟

𝑟
∂θ!,!
∂𝑟

+ 𝑔! θ!,! − θ!,!   , (5.1a) 
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𝐶!,!
∂θ!,!
∂𝑡

= 𝑘!,!
𝜕!θ!,!
𝜕𝑧!

+
η!,!
𝑟

𝜕
𝜕𝑟

𝑟
∂θ!,!
∂𝑟

+ 𝑔! θ!,! − θ!,!   , (5.1b) 

𝐹!,! = −𝑘!,!
∂θ!,!
∂𝑧 !!!!

=
4𝐻!,!

𝑟!"#$,!"#!! 𝑒!!!𝑒!!!
!/!!"#$,!"#!

!
  , (5.1c) 

𝐹!,! = −𝑘!,!
∂θ!,!
∂𝑧 !!!!

=
4𝐻!,!

𝑟!"#$,!"#!! 𝑒!!!𝑒!!!
!/!!"#$,!"#!

!
  , (5.1d) 

where η!,! and η!,! are the ratios of thermal conductivity in the 𝑟 and  𝑧 directions for each channel in the 

nth layer (a value of 1 indicates an isotropic material), 𝑟!"#$,!"#! is the 1/e2 pump beam radius, and 𝐻!,! 

and 𝐻!,! are the amplitudes of the heat absorbed into channels 1 and 2. Here it is assumed that thermal 

conductivity is independent of temperature and location within each layer.  

Since the time dependence of the temperature follows the heating and varies as 𝑒!Ω!, separation of 

variables is performed. Furthermore, I take advantage of the cylindrical symmetry of the problem and 

perform a Hankel transform [93]. The result reduces the governing equations and heat deposition in the 

nth layer to 

𝑑!𝑇!,!
𝑑𝑧!

=
𝐶!,!𝑖Ω + 𝑔! + 𝑘!,!η!,!𝜅!

𝑘!,!
𝑇!,! −

𝑔!
𝑘!,!

𝑇!,!    , (5.2a) 

𝑑!𝑇!,!
𝑑𝑧!

=
𝐶!,!𝑖Ω + 𝑔! + 𝑘!,!η!,!𝜅!

𝑘!,!
𝑇!,! −

𝑔!
𝑘!,!

𝑇!,!    , (5.2b) 

𝐹!,! = −𝑘!,!
∂𝑇!,!
∂𝑧 !!!!

= 𝐻!,!𝑒!!
!!!"#$,!"#!

! /! (5.2c) 

𝐹!,! = −𝑘!,!
∂𝑇!,!
∂𝑧 !!!!

= 𝐻!,!𝑒!!
!!!"#$,!"#!

! /! (5.2d) 

where 𝑇!,!(𝑧, 𝜅) and 𝑇!,!(𝑧, 𝜅) are the time-independent, transformed temperatures in the nth layer (in 

units K m2), 𝐹!,! and 𝐹!,! are the time-independent, transformed heat deposition profiles in the nth layer, 
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and 𝜅 is the Hankel variable. It should be noted that the surface heating profiles 𝐹!,! and 𝐹!,! are identical 

in form to Eqs. (5.2c) and (5.2d) only evaluated at 𝑧 = 0. For convenience, I define α!,! = (𝐶!,!𝑖Ω   +

  𝑔!   +   𝑘!,!η!,!𝜅!)/𝑘!,! and α!,! = (𝐶!,!𝑖Ω   +   𝑔!   +   𝑘!,!η!,!𝜅!)/𝑘!,!. Converting Eqs. (5.2a) and 

(5.2b) into matrix form yields 

𝑑!

𝑑𝑧!

𝑇!,!

𝑇!,!
=

α!,!
−𝑔!

𝑘!,!
−𝑔!

𝑘!,! α!,!

𝑇!,!

𝑇!,!
    , (5.3) 

The general solution to Eq. (5.3) in matrix form is  

𝑇!,!

𝑇!,!
=   𝐗!

𝐵!,!! 𝑒!!!,!! + 𝐵!,!! 𝑒!!,!!

𝐵!,!! 𝑒!!!,!! + 𝐵!,!! 𝑒!!,!!
    , (5.4) 

where 𝐵!,!! , 𝐵!,!! , 𝐵!,!! , and 𝐵!,!!  are constants of integration of the nth layer to be determined by the 

boundary conditions, λ!,!!  and λ!,!!  are the eigenvalues of the nth layer found from the characteristic matrix 

in Eq. (5.3), and 𝐗! is the associated eigenvector matrix of the nth layer  

𝐗! =
𝑣!,! 𝑣!,!
𝑢!,! 𝑢!,!

    . (5.5) 

Here, 𝑣!,! and 𝑢!,! are the components of the eigenvector associated with the eigenvalue λ!,!!  and 𝑣!,! 

and 𝑢!,! are the components of the eigenvector associated with the eigenvalue λ!,!! . I define  

𝐘! =
𝑘!,! 0

0 𝑘!,!

𝑣!,! 𝑣!,!
𝑢!,! 𝑢!,!

λ!,! 0

0 λ!,!
=

γ!,!!𝑣!,! γ!,!"𝑣!,!
γ!,!"𝑢!,! γ!,!!𝑢!,!

    , (5.6) 

where γ!,!" = 𝑘!,!λ!,!. Finally, the time-independent, transformed temperature [𝑇!,!(𝑧, 𝜅) and 𝑇!,!(𝑧, 𝜅)] 

and heat flux  [𝑞!,!!! (𝑧, 𝜅) and 𝑞!,!!! (𝑧, 𝜅)] profiles for each channel at position 𝑧 in the nth layer in matrix 

form are 

𝛙!
! = 𝛘!𝐀!!𝐁!    , (5.7a) 
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𝛙!
! =

𝑇!,!(𝑧, 𝜅)
𝑇!,!(𝑧, 𝜅)
𝑞!,!
,, (𝑧, 𝜅)
𝑞!,!
,, (𝑧, 𝜅)

    , (5.7b) 

𝛘! =
𝐗! 𝐗!
𝐘! −𝐘!

    , (5.7c) 

𝐀!! =

𝑒!!!,!! 0 0 0

0 𝑒!!!,!! 0 0

0 0 𝑒!!,!! 0

0 0 0 𝑒!!,!!

    , (5.7d) 

𝐁! =

𝐵!,!!

𝐵!,!!

𝐵!,!!

𝐵!,!!

    , (5.7e) 

where position  𝑧 and layer n are indicated by the superscript and subscript. 

The unknowns in Eq. (5.7) are the values in the vector 𝐁!, which are the constants of integration 

resulting from the solution to Eq. (5.2). To obtain these values for each layer, the boundary conditions are 

used. First consider the heat input into each layer. In layer n, the spatial temperature and heat flux profiles 

to the left and right of δ! are defined as 𝛙!
!,! and 𝛙!

!,!, as shown in Fig. 5.2(a). The quantities 𝛙!
!,! and 

𝛙!
!,! are related by equating temperatures at 𝑧 = 𝑑!!! + δ! and balancing heat fluxes such that  

𝛙!
!!!!!!!!!,! + 𝐐! = 𝛙!

!!!!!!!!!,!           →           𝛘!𝐀!
!!!!!!!!!𝐁!! + 𝐐! =   𝛘!𝐀!

!!!!!!!!!𝐁!!  , (5.8a) 

𝐐! =

0

0

𝐹!,!
𝐹!,!

    . (5.8b) 
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In the case where 𝐹!,! and 𝐹!,! both equal zero (i.e., when heating is purely at the surface), 𝐁!! equals 𝐁!! 

and thus 𝛙!
!,! = 𝛙!

!,! = 𝛙!
! . Note that the matrix 𝛘! is the same on either side of δ!. 

Now consider the interface between layer n and layer n+1 at 𝑧 = 𝑑!, as shown in Fig. 5.2(b). At 

this interface, there is an interface thermal conductance between each channel in layer n and each channel 

in layer n+1 (𝐺!,!!, 𝐺!,!", 𝐺!,!", 𝐺!,!!), such that the temperature and heat flux profiles on either side of 

the interface are related by 

𝛙!
!!!!,! = 𝐆𝐧→𝐧!𝟏𝛙!!!

!!!!,!                 →                 𝛘!𝐀!
!!!!𝐁!! =   𝐆𝐧→𝐧!𝟏𝛘!!!𝐀!!!

!!!!𝐁!!!!   . (5.9) 

Here, 𝐆𝐧→𝐧!𝟏 is determined by balancing heat fluxes across the interface and is given by [139]  

𝐆!→!!! =

𝐺!,!!𝑎! −𝐺!,!"𝑎! 𝐺!,!! −𝐺!,!"
−𝐺!,!"𝑎! 𝐺!,!!𝑎! −𝐺!,!" 𝐺!,!!

𝑎! −𝑎! 𝐺!,!!𝑎! −𝐺!,!"𝑎!
−𝑎! 𝑎! −𝐺!,!"𝑎! 𝐺!,!!𝑎!

    , (5.10a) 

𝑎! =
𝐺!,!! + 𝐺!,!"

𝐺!,!!𝐺!,!! − 𝐺!,!"𝐺!,!"
  , 

𝑎! =
𝐺!,!" + 𝐺!,!!

𝐺!,!!𝐺!,!! − 𝐺!,!"𝐺!,!"
  , 

𝑎! =
𝐺!,!! + 𝐺!,!"

𝐺!,!!𝐺!,!! − 𝐺!,!"𝐺!,!"
  , 

𝑎! =
𝐺!,!! + 𝐺!,!"

𝐺!,!!𝐺!,!! − 𝐺!,!"𝐺!,!"
  , 

𝑎! = 𝐺!,!!𝐺!,!"𝑎! + 𝐺!,!!𝐺!,!"𝑎!  . 

(5.10b) 

Since the Nth layer is semi-infinite, the temperature must decay to the initial temperature as 

𝑧 → ∞. For simplicity, I define 𝑇!,! 𝑧 → ∞, 𝜅 = 0 and 𝑇!,! 𝑧 → ∞, 𝜅 = 0, which implies this solution 

is for the change in temperature around the initial temperature. Thus,  
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𝛘!𝐀!!→!𝐁!! =

0

0

𝑞!,!
,, (𝑧 → ∞, 𝜅)

𝑞!,!
,, (𝑧 → ∞, 𝜅)

=     𝛙!
!→!,!. (5.11) 

Lastly, at 𝑧 = 0 I specify the surface heat flux quantities 𝐹!,! and 𝐹!,! (i.e., the magnitude of the temporal 

surface heating profile) such that  

𝑇!,!(𝑧 = 0, 𝜅)

𝑇!,!(𝑧 = 0, 𝜅)

𝐹!,!
𝐹!,!

= 𝛙!
!!!,! = 𝛘!𝐁!!  . (5.12) 

 
Fig. 5.2. Formulating the boundary conditions in (a) layer n on either side of the input heat flux at z = dn-1 
+ δn and (b) layers n and n+1, on either side of the nth interface corresponding to z = dn.  

The vectors 𝐁!! and 𝐁!! are determined using Eqs. (5.8), (5.9), (5.11), and (5.12). Once these 

values are determined, the time-independent, transformed temperature and heat flux profiles in the nth 
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layer are found by substitution into 𝛙!
!,! = 𝛘!𝐀!!𝐁!! and 𝛙!

!,! = 𝛘!𝐀!!𝐁!!. Rearranging Eqs. (5.11) and 

(5.12) yields the unknown 𝐁 vectors for the left portion of the first layer and the right portion of the last 

layer 

𝐁!! = [𝛘!]!!𝛙!
!!!,!  , (5.13a) 

𝐁!! = [𝐀!!→!]!![𝛘!]!!𝛙!
!→!,!. (5.13b) 

The remaining 𝐁 vectors are determined by rearranging Eqs. (5.8) and (5.9) 

𝐁!! = [𝐀!
!!!!!!]!![𝛘!]!![𝐆𝐧!𝟏→𝐧]!!𝛘!!!𝐀!!!

!!!!!!𝐁!!!!     , (5.14a) 

𝐁!! = [𝐀!
!!!!!!!!!]!![𝛘!]!!(𝛘!𝐀!

!!!!!!!!!𝐁!! + 𝐐!)  . (5.14b) 

It should be noted that 𝐀!
!![𝐀!

!!]!! = 𝐀!
!!!!!. For simplification, 𝛍! = 𝛘!𝐀!

!!!![𝛘!]!! and 

𝛃! = 𝛘!𝐀!
!!!!!!![𝛘!]!!. Writing 𝛙!

!→!,! in terms of 𝛙!
!!!,! yields 

𝛙!
!→!,! = 𝛍!!!!!

!

!!!

[𝐆𝟏!𝐣!𝐍→𝟐!𝐣!𝐍]!! 𝛍!𝛙!
!!!,!

+ 𝛍!!!!! 𝐆𝟏!𝐣!𝐍→𝟐!𝐣!𝐍
!!

!!!!!

!!!

𝛃!𝐐!

!

!!!

 
(5.15) 

The resulting form of Eq. (5.15) is 

𝛙!
!→!,! =

𝑝!! 𝑝!" 𝑝!" 𝑝!"
𝑝!" 𝑝!! 𝑝!" 𝑝!"
𝑝!" 𝑝!" 𝑝!! 𝑝!"
𝑝!" 𝑝!" 𝑝!" 𝑝!!

𝐏

  𝛙!
!!!,! +

𝑠!
𝑠!
𝑠!
𝑠!

𝐒

    , (5.16) 

where the matrix 𝐏 is the matrix proportional to 𝛙!
!!!,! from the first term in Eq. (5.15) and the vector 𝐒 

is a result of the bracketed second term in Eq. (5.15) and arises from the heat flux source terms 𝐹!,! and 

𝐹!,! in each layer. The time-independent, transformed surface temperatures at 𝑧 = 0 can be determined as  
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𝑇!,!(𝑧 = 0, 𝜅)
𝑇!,!(𝑧 = 0, 𝜅) = −

𝑝!! 𝑝!"
𝑝!" 𝑝!!

!! 𝑝!" 𝑝!"
𝑝!" 𝑝!"

𝐹!,!
𝐹!,!

−
𝑝!! 𝑝!"
𝑝!" 𝑝!!

!! 𝑠!
𝑠!     . (5.17) 

Once the transformed surface temperatures are known, the 𝐁 vector for any layer can be determined from 

Eqs. (5.13) and (5.14). From there it is straightforward to determine the time-independent, transformed 

temperature and heat flux profiles in the nth layer using 𝛙!
!,! = 𝛘!𝐀!!𝐁!! and 𝛙!

!,! = 𝛘!𝐀!!𝐁!!. For 

example, to determine the temperature and heat flux at a value of 𝑧 = 𝑧!, where 0 ≤ 𝑧! ≤ δ!, as shown in 

Fig. 5.1, calculate   

𝑇!,!(𝑧 = 𝑧!, 𝜅)

𝑇!,!(𝑧 = 𝑧!, 𝜅)

𝑞!,!
,, (𝑧 = 𝑧!, 𝜅)

𝑞!,!
,, (𝑧 = 𝑧!, 𝜅)

= 𝛘!𝐀!
!!!![𝛘!]!!

𝑇!,!(𝑧 = 0, 𝜅)

𝑇!,!(𝑧 = 0, 𝜅)

𝐹!,!
𝐹!,!

    , (5.18) 

where the transformed surface temperatures were found from Eq. (5.17) and the surface heat fluxes 

quantities 𝐹!,! and 𝐹!,! are user-defined quantities [see Eqs. (5.2c) and (5.2d)].  

After determining 𝑇!,!(𝑧 = 𝑧!, 𝜅) and 𝑇!,!(𝑧 = 𝑧!, 𝜅) from Eq. (5.18), I perform an inverse 

Hankel transform and multiply by the time-dependent solution 𝑒!Ω! to obtain θ!,!(𝑡, 𝑧 = 𝑧!, 𝑟) and 

θ!,!(𝑡, 𝑧 = 𝑧!, 𝑟)  as 

θ!,! 𝑡, 𝑧 = 𝑧!, 𝑟 = 𝑒!!! 𝑇!,! 𝑧 = 𝑧!, 𝜅
!

!
𝐽! 𝜅𝑟 𝜅𝑑𝜅  , (5.19a) 

θ!,! 𝑡, 𝑧 = 𝑧!, 𝑟 = 𝑒!!! 𝑇!,! 𝑧 = 𝑧!, 𝜅
!

!
𝐽! 𝜅𝑟 𝜅𝑑𝜅  , (5.19b) 

where 𝐽! 𝜅𝑟  is the zeroth order Bessel function of the first kind. In an FDTR experiment, an 

unmodulated probe beam measures the weighted average of the temperature distribution over its 

Gaussian-shaped beam (with a 1/e2 radius 𝑟!"#$,!"#$%). Mathematically, the weighted temperatures θ!,! 

and θ!,! are determined from [70] 
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θ!,! 𝑡, 𝑧 = 𝑧! = θ!,! 𝑡, 𝑧 = 𝑧!, 𝑟
!

!

4
𝑟!"#$,!"#$%
! 𝑒!!!

!/!!!"#,!"#$%
!

  2π𝑟𝑑𝑟  , (5.20a) 

θ!,! 𝑡, 𝑧 = 𝑧! = θ!,! 𝑡, 𝑧 = 𝑧!, 𝑟
!

!

4
𝑟!"#$,!"#$%
! 𝑒!!!

!/!!"#$,!"#$%
!

  2π𝑟𝑑𝑟  . (5.20b) 

Substituting Eqs. (5.19a) and (5.19b) into Eqs. (5.20a) and (5.20b) and rearranging yields a single integral 

over 𝜅, which must be evaluated numerically  

θ!,! 𝑡, 𝑧 = 𝑧! = 2π𝑒!!! 𝑇!,! 𝑧 = 𝑧!, 𝜅
!

!
𝑒!!

!!!"#$,!"#$%
! /!𝜅𝑑𝜅  , (5.21a) 

θ!,! 𝑡, 𝑧 = 𝑧! = 2π𝑒!!! 𝑇!,! 𝑧 = 𝑧!, 𝜅
!

!
𝑒!!

!!!"#$,!"#$%
! /!𝜅𝑑𝜅  . (5.21b) 

Equations (5.21a) and (5.21b) yield the temporal temperature change about the initial temperature 

of the solid at 𝑧 = 𝑧! weighted over the 𝑟-direction with a Gaussian-shaped weight function for each 

channel. Since the experiment returns only one temperature θ!"#, it is important to know which 

temperature or combination of temperatures the probe contains. Thus, the experimental temperature 

response θ!"# (namely the phase in FDTR experiments) is compared to a combination of the calculated 

temperature response for each channel 𝑎θ!,! + 𝑏θ!,! where 𝑎 and 𝑏 represent the portion of channel 1 and 

channel 2 temperatures in the measured temperature. 

This solution can be extended to TDTR by using pulsed heating profiles for 𝐹!,!, 𝐹!,!, 𝐹!,!, and 

𝐹!,! (i.e., multiply Eqs. (5.1c) and (5.1d) with a Dirac comb). A Fourier transform of the governing 

equations and boundary conditions is performed in lieu of separation of variables and the solution 

becomes a series solution. Handling the periodic sampling of the pulsed probe laser is discussed in Refs. 

[70] and [141]. Furthermore, volumetric heating can be simulated with this solution by creating multiple 

thin layers and choosing 𝐹!,!, 𝐹!,!, 𝐹!,!, and 𝐹!,! appropriately (discretization of the volumetric heating 

profile).  
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III. Sensitivity analysis 

A sensitivity analysis is performed to identify how sensitive the solution to the two-temperature 

model is to different input parameters ε. Based on prior convention the sensitivity 𝑆! is defined as the 

logarithmic derivative of the temperature phase response ϕ with respect to a 1% change in one of the 

parameters ε, 𝑆! = 𝑑ln  (ϕ)/𝑑ln  (ε) [94]. In my prior work, I used a gold/chromium transducer layer, 

where the chromium serves as an adhesion layer to increase the interface thermal conductance, therein 

increasing the sensitivity to the substrate thermal conductivity [73-75]. To simplify the sensitivity 

analysis yet still gain physical insight, I consider only a one layer metal transducer [layer 1 = transducer 

(tr)] deposited on a semi-infinite dielectric substrate [layer 2 = substrate (sub)].  

Electron [channel 1 = electron (el)] and phonon [channel 2 = phonon (ph)] transport is modeled in 

the metal transducer layer and only phonon transport in the dielectric substrate (i.e., 𝑘!"#,!" = 𝐶!"#,!" =

0). Surface heating into only the electron channel of the transducer is assumed and that the phonon 

temperature of the transducer at the surface of the transducer is measured (𝐻!,!" = 1  W, 𝐻!,!" = 𝐻!",!" =

𝐻!",!" = 𝐻!"#,!" = 𝐻!"#,!" = 0, 𝑎 = 0, 𝑏 = 1, and 𝑧! = 0), which are assumptions typically made in 

thermoreflectance techniques [142]. It should be noted that the magnitudes of 𝐻!,!, 𝐻!,!, 𝐻!,!, and 𝐻!,! 

do not affect the phase of the temperature response but will affect the temperature amplitude. The fraction 

of the total heat deposited at each location is sufficient to predict the phase of the temperature response. 

Since the exact magnitudes of 𝐻!,!, 𝐻!,!, 𝐻!,!, and 𝐻!,! change from experiment to experiment and can 

be difficult to determine, only the phase of the temperature is reported. 

All parameters ε and the nominal values of each parameter used to determine the temperature 

phase response are shown in Table 5.1. The interface thermal conductance 𝐺 specified in the table is the 

conductance between the phonon channel in the transducer and the phonon channel in the substrate (i.e., 

the conductance between the electron channel in the transducer and the phonon channel in the substrate is 

neglected, although recent work has shown that electron-phonon interactions across a metal/nonmetal 
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interface are possible) [143]. The values indicated in Table 5.1 represent typical values from a real sample 

in an actual FDTR experiment with 𝑟!"#$,!"#$% = 𝑟!"#$,!"#! = 𝑟!"#$ [73]. 

Table 5.1. Nominal values for the parameters used in the sensitivity analysis. 

    ε Nominal Value 

𝐶!",!" (J m-3 K-1)  2.4 × 106 
𝐶!",!" (J m-3 K-1)  2.1 × 104 
𝑘!",!" (W m-1 K-1) 3 
𝑘!",!" (W m-1 K-1) 107 
𝑔!" (W m-3 K-1)  2.2 × 1016 
𝑡!" (nm) 50 
𝐶!"#,!" (J m-3 K-1) 1.65 × 106 
𝑘!"#,!" (W m-1 K-1) 130 
𝐺 (MW m-2 K-1) 200 
𝑟!"#$ (µm) 3.4 
    

The nominal phase vs. heating frequency and result of the sensitivity analysis using the nominal 

values of ε from Table 5.1 are shown in Figs. 5.3(a) and 5.3(d). The phase vs. heating frequency and the 

sensitivity analysis using nominal values of ε with decreased 𝐺 and decreased 𝑘!"#,!" are shown in Figs. 

5.3(b) and 5.3(e) and Figs. 5. 3(c) and 5.3(f). The solution to the two-temperature model is most sensitive 

to the spot size at low frequency, similar to the one-temperature model [74]. Large sensitivity to the 

substrate thermal conductivity is apparent in all cases and is important since it is necessary to be sensitive 

to fitting parameters over the entire measurement range of an FDTR measurement. The solution becomes 

particularly sensitive to the transducer thickness and phonon heat capacity at high frequency and is fairly 

insensitive to transducer electron and phonon thermal conductivities and electron heat capacity over all 

frequencies for all cases shown. In general, the solution is sensitive to the electron-phonon coupling 

parameter and interface thermal conductance at larger heating frequency.  

I compare the sensitivity of ε from a two-temperature solution to a one-temperature solution. I 

define d𝑆! = 𝑆!(𝑔!" = 2.2×10!") − 𝑆!(𝑔!" = ∞) , where 𝑆!(𝑔!" = 2.2×10!") is the sensitivity of ε 
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when 𝑔!" = 2.2×10!" W m-3 K-1 [i.e., the sensitivity to the two-temperature model shown in Figs. 5.3(d)-

(f)] and 𝑆!(𝑔!" = ∞) is the sensitivity of ε when 𝑔!" = ∞ (i.e., the sensitivity to the one-temperature 

model). When d𝑆! = 0, there is no difference in the sensitivity of ε between a two-temperature and one-

temperature solution. When d𝑆! > 0, the two-temperature solution is more sensitive to ε and when 

d𝑆! < 0, the one-temperature solution is more sensitive to ε. The parameter d𝑆! for ε = 𝑡!", 𝐶!"#,!", 

𝑘!"#,!", 𝐺, and 𝑟!"#$  is shown in Figs. 5.3(g)-(i). These ε are chosen since they are the most sensitive 

parameters from Figs. 5.3(d)-(f) and to make a fair comparison between the one- and two-temperature 

models (i.e., comparing bulk and individual channel transducer properties is irrelevant). The sharp 

changes in d𝑆! result from 𝑆! crossing zero.  

At low heating frequencies, d𝑆! ≈ 0 for all ε for all cases. This result is expected and indicates 

that the two-temperature and one-temperature models predict the same temperature response since 

electron-phonon coupling timescales are much shorter than the timescale of heating. In general, 

sensitivities to the substrate thermal conductivity, interface thermal conductance, and transducer thickness 

are reduced in the two-temperature model due to the additional thermal resistance (i.e., resistance due to 

electron-phonon coupling). The solution of the two-temperature model is also less sensitive to the 

transducer thickness, but has similar sensitivity to spot size.  
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Fig. 5.3. Sensitivity analysis. The phase response from the one- and two-temperature solutions (a-c), the 
sensitivity analysis for the two-temperature solution (d-f), and the difference in the sensitivity of ε 
between the two-temperature (when gtr = 2.2×1016 W m-3 K-1) and one-temperature (when gtr = ∞) 
solutions (g-i) using values of ε from Table 5.1 (a,d,g), values of ε from Table 5.1 with G = 60 MW m-2 
K-1 (b,e,h), and values of ε from Table 5.1 with ksub,ph = 13 W m-1 K-1 (c,f,i). 

Next, the effect of modeling a two-temperature system (i.e., a system where the electrons and 

phonons are out of equilibrium) with a one-temperature model is examined. First, the phase response as a 

function of heating frequency is generated with the two-temperature model. The phase data are divided 

into different windows and the phase data within each window are fit with a one-temperature model (i.e., 

𝑔!" = ∞) for the substrate thermal conductivity. This mimics the approach used in Refs. [73] and [75]. 

An important aspect of the result is how to determine the value of 𝐺 used in the one-temperature 

model to fit the two-temperature data. Results for two cases are presented: (1) the value of 𝐺 used in the 

one-temperature model is the same 𝐺 used in the generation of the two-temperature phase data [Figs. 

5.4(a) and 5.4(b)] and (2) the value of 𝐺 used in the one-temperature model is found by fitting the high 

frequency two-temperature phase data [Figs. 5.4(c) and 5.4(d)]. The latter case is exactly the procedure 
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used in prior studies where a frequency independent 𝐺 between the semiconductor substrate and adjacent 

metal layer was determined by fitting the high frequency phase data (15 data points in the ~100 MHz 

range) due to increased sensitivity to 𝐺 in this frequency range [73-75]. This procedure is analogous to 

the approach in TDTR, where the in-phase data related to high frequency components of the thermal 

decay (~1 GHz) are used to determine 𝐺, while the out-of-phase data related to the thermal response at 𝑓 

(~10 MHz) are used to determine 𝑘. The comparison of FDTR and TDTR is clarified by Collins et al., 

who examine TDTR in the frequency domain [77]. 

The fitted value of 𝑘!"#,!" normalized by the bulk thermal conductivity vs. heating frequency is 

shown in Fig. 5.4(a) for values of ε from Table 5.1 (base case), values of ε from Table 5.1 with 𝐺 = 60 

MW m-2 K-1, and values of ε from Table 5.1 with 𝑘!"#,!" = 13 W m-1 K-1. A similar procedure is 

performed with an increased transducer electron-phonon coupling parameter (𝑔!" = 22×10!" W m-3 K-1) 

as shown in Fig. 5.4(b). Here, the 𝐺 used in the one-temperature model is the same value used to generate 

the two-temperature phase data for each parameter set (i.e., 200 MW m-2 K-1, 60 MW m-2 K-1, and 200 

MW m-2 K-1).  

Interpreting two-temperature data with a one-temperature model results in a substrate thermal 

conductivity that shows added heating frequency dependence at higher heating frequencies. Furthermore, 

this heating frequency dependence becomes stronger with decreasing interface thermal conductance and 

increasing substrate thermal conductivity. Increasing the coupling between electrons and phonons delays 

the onset of heating frequency-dependent substrate thermal conductivity. I find from the two-temperature 

solution that the onset of electron-phonon non-equilibrium effects can be characterized with the non-

dimensional time 𝜏!"!!" = 2π𝑓𝐶!",!"/𝑔!"    . Upon closer inspection, 𝜏!"!!" is a comparison of two 

timescales: (1) the timescale of electron-phonon coupling in a diffusive system 𝑡!"!!" = 𝐶!",!"/𝑔!"   and 

(2) the experimental timescale 1/2π𝑓.  
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Fig. 5.4. Temperature phase response is generated using the two-temperature model with (a,c) gtr = 
2.2×1016 W m-3 K-1 and (b,d) gtr = 22×1016 W m-3 K-1. These phase data are then window fit with a 
solution to the one-temperature model (gtr = ∞) using the nominal value of G (a,b) and a value of G 
determined by fitting the high frequency phase data (c,d). 

A shorter electron-phonon coupling timescale on the order of 𝐶!",!"/𝑔!"   has been previously 

defined, but I find the important electron-phonon coupling timescale to be on the order of 𝐶!",!"/𝑔!"  , 
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which is consistent with Refs. [108] and [144]. This longer timescale of electron-phonon coupling can 

also be derived using an analogy to the timescale for heat conduction. Assume 𝑡!"!!" = 𝐿!"!!"! /𝐷 where 

𝐷 is the thermal diffusivity and 𝐿!"!!" = 𝑘!" 𝑔 from Ref. [108]. The thermal diffusivity is a measure of 

a material’s ability to conduct heat relative to its ability to store heat. In a metal, heat is mostly conducted 

by electrons and mostly stored by phonons, consequently 𝐷 = 𝑘!",!"/𝐶!",!". Substituting and simplifying 

yields the timescale for electron-phonon coupling processes as 𝑡!"!!" = 𝐶!",!"/𝑔!".  

When 𝜏!"!!" ≪ 1, non-equilibrium effects between electrons and phonons in the transducer can 

be neglected. Consequently, I define the cutoff heating frequency as 𝑓!"# = 0.01𝑔!"/2π𝐶!",!" (when 

𝜏!"!!" = 0.1). In an FDTR experiment with heating frequencies larger than 𝑓!"#, one should consider 

interpreting data with a two-temperature model. The cutoff heating frequency is indicated in Figs. 5.4(a) 

and 5.4(b) and consistently corresponds to an approximate 10% reduction in 𝑘!"#,!" when window fitting 

two-temperature phase data with a one-temperature model. 

Next, two-temperature phase data are fit with the one-temperature model using a value of 𝐺 

determined from fitting the high frequency phase data. This procedure is exactly that used in prior studies 

[73-75]. The resulting 𝑘 vs. 𝑓 curves with 𝑔!" = 2.2×10!" W m-3 K-1 and 𝑔!" = 22×10!" W m-3 K-1, 

shown in Figs. 5.4(c) and 5.4(d), exhibit reduced heating frequency dependence for all cases compared to 

the data shown in Figs. 5.4(a) and 5.4(b). When the electron-phonon coupling is weak (𝑔!" = 2.2×10!" W 

m-3 K-1) the fitted values of 𝐺 are 160 W m-2 K-1, 55 W m-2 K-1, and 135 W m-2 K-1 for the phase data 

generated using values of ε from Table 5.1 (base case), values of ε from Table 5.1 with 𝐺 = 60 MW m-2 

K-1, and values of ε from Table 5.1 with 𝑘!"#,!" = 13 W m-1 K-1. These values of 𝐺 are lower than the 

nominal values (200 W m-2 K-1, 60 W m-2 K-1, and 200 W m-2 K-1). Alternatively, when the electron-

phonon coupling is strong (𝑔!" = 22×10!" W m-3 K-1) the fitted values of 𝐺 are 195 W m-2 K-1, 60 W m-2 

K-1, and 185 W m-2 K-1, much closer to the nominal values.  

One description of metal/dielectric interface transport is that the total interface thermal resistance 

(inverse of interface thermal conductance) is described as two resistances in series: (1) a resistance 
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associated with energy transfer between electrons and phonons in the metal at the interface and (2) a 

resistance associated with energy transfer between phonons in the metal and phonons in the dielectric 

across the interface [108,145]. Using a one-temperature model to determine the interface thermal 

resistance between a metal and dielectric lumps these two resistances together. The two-temperature 

model, however, inherently accounts for the electron-phonon coupling resistance. Thus, when the 

electron-phonon coupling resistance increases (reduced value of 𝑔!"  ), the total interface thermal 

resistance determined from the one-temperature model (by fitting high frequency phase data) will be 

larger (smaller interface thermal conductance) than that determined from the two-temperature model.  

When 𝐺 is not found from the high frequency phase data, the one-temperature model effectively 

accounts for the electron-phonon coupling resistance by reducing the thermal conductivity of the substrate 

[Figs. 5.4(a) and 5.4(b)]. As the coupling parameter increases, the electron-phonon resistance decreases, 

resulting in less heating frequency dependence of thermal conductivity over the frequency range shown. 

Fitting the high frequency data with the one-temperature model yields a larger interface thermal resistance 

and consequently less heating frequency dependence of thermal conductivity. Nonetheless, window 

fitting two-temperature data with a one-temperature model using 𝐺 from the high frequency data (as was 

done in Refs. [73] and [75]) does yield some added heating frequency dependent thermal conductivity in 

systems with weak electron-phonon coupling [up to 30% for the cases shown in Fig. 5.4(c)].  

IV. Fitting BB-FDTR data 

In Refs. [73] and [75], phase data from BB-FDTR experiments were window fit with a solution to 

the one-temperature diffusion equation. A heating frequency-dependent thermal conductivity in silicon 

and other small unit cell semiconductors was found. The result was transformed into the thermal 

conductivity accumulation function kaccum that describes cumulative contributions to thermal conductivity 

from energy carriers with different MFPs. In those experiments, a gold/chromium transducer was 

deposited on the substrate, where the chromium served as an adhesion layer to increase the interface 

thermal conductance.  
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In the previous section, it was shown that electron-phonon non-equilibrium effects in a gold 

transducer are important at frequencies realized in BB-FDTR experiments and that fitting two-

temperature data with a one-temperature model can lead to added heating frequency dependence to the 

thermal conductivity. Thus in this section, my goal is to develop a physically appropriate method to 

model the gold/chromium transducer used in BB-FDTR and refit silicon data from Ref. [73]. BB-FDTR 

measurements of SiO2 and platinum (i.e., materials where a heating frequency-dependent thermal 

conductivity is not expected since energy carrier MFPs are much shorter than experimental length scales) 

from Ref. [73] are used to aid in consistent characterization of the gold/chromium transducer [146]. Heat 

transport in the SiO2 and platinum samples is modeled with different sets of parameters: (i) a consistent 

set of parameters that best describes both the SiO2 and platinum BB-FDTR phase data simultaneously 

(“consistent parameters”) and (ii) a set of parameters for SiO2 and platinum samples that best describes 

BB-FDTR phase data for each sample individually (“best-fit parameters”). The “consistent parameters” 

are shown in Table 5.2. 

The two-temperature model has many input parameters, many of which are well-known 

quantities and were determined either from the literature or measured in-house prior to fitting. Since 

phase data from Ref. [73] are used, identical parameters are used where appropriate (e.g., 𝑟!"#$ and 𝑡!). 

For the data shown in this work, 𝑟!"#$,!"#! = 𝑟!"#$,!"#$% = 𝑟!"#$ was measured using a knife-edge 

profiling technique, the transducer layer thicknesses were measured using x-ray reflectivity, and the 

thermal conductivity of the transducer was measured using a four-point resistivity measurement and the 

Wiedemann-Franz law 𝑘!". The electron thermal conductivity 𝑘!,!" = 𝑘!" − 𝑘!,!" where 𝑘!,!" is from 

the literature. The same value of 𝑘!" is used for each individual metal layer in the transducer since it was 

determined for the entire transducer layer. The heat capacities and electron phonon coupling constants are 

taken from the literature. The most difficult parameters to determine, and the only parameters that differ 

between the “consistent parameters” and the “best-fit parameters”, are the interface thermal conductances 

(𝐺!,!"!!", 𝐺!,!"!!", 𝐺!,!"!!", 𝐺!,!"!!") for each interface, the ratio of electron and phonon temperatures 
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the probe laser is sensing (𝑎 and 𝑏), where the heat is deposited (𝐻!,!, 𝐻!,!, and δ!), and where the 

temperature is being sensed (𝑧!). 

For interface thermal conductances, only 𝐺!,!"!!" and 𝐺!,!"!!" are considered since coupling 

between different energy carriers across interfaces is weak [139]. For the gold/chromium interface values 

of 4 GW m-2 K-1 and 200 MW m-2 K-1 are used for the electron-electron and phonon-phonon interface 

thermal conductance as determined in Ref. [78]. For the metal-dielectric interface, only the phonon-

phonon interaction across the interface is considered although it is possible that electrons in the metal will 

couple with phonons in the dielectric [143]. The high frequency phase data are fit to determine 𝐺!,!"!!" 

between the metal and dielectric layer (chromium/SiO2, chromium/silicon, aluminum/silicon) and 

𝐺!,!"!!"  between the chromium and platinum substrate, as was done in Refs. [74], [73], and [75]. 

The values of 𝑎 and 𝑏 are dependent on the material, the wavelength of the probe laser, and 

magnitude of the electron temperature excursion. For a 785 nm probe laser, as in TDTR, 𝑎/𝑏 ≈ 0.02 for 

gold (i.e., the change in reflectivity is mostly due to changes in the phonon temperature) [132]. It is 

expected that changes in reflectivity at 532 nm (probe wavelength in FDTR) are still mostly a result of 

changes in the phonon temperature. Gold, however, has an interband transition threshold of 2.4 eV, which 

may complicate the analysis of FDTR since the probe energy is less than this value and the pump energy 

is greater than this value [92]. Nonetheless, to be conservative values of 𝑎 = 0 and 𝑏 = 1 are used for all 

results presented in this chapter. It should be noted that 𝑎 > 0 results in more frequency dependence of k 

because electrons are hotter, which translates into greater k suppression. The determination of 

wavelength-dependent values of 𝑎 and 𝑏 for continuous wave heating would be a useful complement to 

two-temperature analysis, though beyond the scope of my work.  

 

 

 

 



108 

Table 5.2. Room temperature values of “consistent parameters” used in the modeling/fitting of data for 
each sample measured. Italicized parameters are the transducer parameters that differ between “consistent 

parameters” and “best-fit parameters” for SiO2 and platinum. 

          
 n = [Au, Cr, SiO2, Si]§ n = [Au, Cr, Pt]§ n = [Au, Cr, Si]§ n = [Au, Cr, Al, Si] 

𝐶!,!" (MJ m-3 K-1) [2.4,a 3.2,a 1.65,a 1.65a] [2.4,a 3.2,a 2.8a] [2.4,a 3.2,a 1.65a] [2.4,a 3.2,a 2.4,a 1.65a] 

𝐶!,!" (kJ m-3 K-1) [21,b 58,b n/a, n/a] [21,b 58,b 224b] [21,b 58,b n/a] [21,b 58,b 40,b n/a] 

𝑘!,!" (W m-1 K-1) [3,c 20,d 1.45,a 145a] [3,c 20,d 7e] [3,c 20,d fit] [3,c 20,d 5,e fit] 

𝑘!,!" (W m-1 K-1) [127,f 110,f n/a, n/a] [115,f 110,f 65g] [107,f 110,f n/a] [87,h 70,h 85,h n/a] 

𝑔! (×1016 W m-3 K-1) [2.2,i 42,j n/a, n/a] [2.2,i 42,j 109k] [2.2,i 42,j n/a] [2.2,i 42,j 25,l n/a] 

𝑡! (nm) [53,m 8,m 1000,m 5×105] [55,m 7,m 5×105] [54,m 8,m 5×105] [55, 8, 40, 5×105] 

η!,!"  [1, 1, 1, 1] [1, 1, 1] [1, 1, 1] [1, 1, 1, 1] 

η!,!"  [1, 1, 1, 1] [1, 1, 1] [1, 1, 1] [1, 1, 1, 1] 

𝐺!,!"!!" (MW m-2 K-1) [4000,n n/a, n/a] [4000,n 610o] [4000,n n/a] [4000,n 4000n, n/a] 

𝐺!,!"!!" (MW m-2 K-1) [0,p 0,p n/a] [0,p 0p] [0,p 0p] [0,p 0,p 0p] 

𝐺!,!"!!" (MW m-2 K-1) [0,p n/a, n/a] [0,p 0p] [0,p n/a] [0,p 0,p n/a] 

𝐺!,!"!!" (MW m-2 K-1) [200,n 135,o ∞] [200,n 200n] [200,n 275o] [200,n 200n, 280o] 

𝐻!,!" (W) [0, 0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0, 0] 

𝐻!,!" (W) [0.3, 0.7, 0, 0] [0.3, 0.7, 0] [0.3, 0.7, 0] [0.3, 0.7, 0, 0] 

δ! (nm) [53, 4, n/a, n/a] [55, 3.5, n/a] [54, 4, n/a] [55, 4, n/a, n/a] 

𝐻!,!" (W) 0 0 0 0 

𝐻!,!" (W) 0 0 0 0 

𝑧! (nm) 40 40 40 40 

𝑎  0 0 0 0 

𝑏  1 1 1 1 

𝑟!"#$ (µm) 3.4m 2.6m 3.4m 2.3 

     §phase data taken directly from Ref. [73] 
aRef. [120] 
bRef. [147] 
cRef. [148] 
dRef. [149] 
eRef. [150] 
fDetermined by subtracting 𝑘!,!" from 𝑘!" from Ref. [73] 
gDetermined by subtracting  𝑘!,!" from 𝑘!"#$ from Ref. [120] 
hDetermined by subtracting 𝑘!,!" from 𝑘!" = 90 W m-1 K-1 
iRef. [132] 
jRef. [151] 
kRef. [152] 
lRef. [133] 
mRef. [73] 
nRef. [78] 
oDetermined by fitting high frequency phase data 
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pRef. [139] 

Typically in TDTR and FDTR it is assumed that heat is deposited at the sample surface. The 

incident pump light couples with the electrons in the metal transducer [142]. In a metal with an infinite 

electron-phonon coupling parameter, the electrons couple and equilibrate with the phonons 

instantaneously (i.e., a one-temperature system). In a metal with a finite/low electron-phonon coupling 

parameter, ballistic motion of electrons excited by the incident pump photons within an optical 

penetration depth (22 nm for 488 nm pump light in gold) effectively deposit their heat further into the 

metal (approximately 100 nm in gold at room temperature) [153]. I can account for the initial 

nondiffusive electron transport with this model by depositing heat at different locations in the transducer. 

Ballistic motion of excited gold electrons across the thin gold transducer layer results in most of 

the heat being effectively deposited into the gold electrons at the gold/chromium interface or in the 

chromium electrons [78,132]. I find that depositing 30% of the heat into the gold electrons at the 

gold/chromium interface and 70% of the heat into the chromium electrons yields the best fit for the SiO2 

and platinum samples with a gold/chromium bilayer transducer. The values 𝐻!",!" = 0.3 and 𝐻!",!" = 0.7 

best describe both the SiO2 and platinum samples (i.e., these values are identical in both the “best-fit 

parameters” and “consistent parameters”). 

Typically in TDTR and FDTR it is assumed that the probe laser senses the change in reflectivity 

due to the change in phonon temperature at the sample surface (𝑧! = 0) [142]. I find, however, that the 

two-temperature model best describes the SiO2 phase data when 𝑧! = 53 nm (i.e., at the gold/chromium 

interface) and the platinum data when 𝑧! = 20 nm (i.e., one optical penetration depth of 532 nm probe 

light in gold). The value of 𝑧! is the only user-defined parameter that varies between the “best-fit 

parameters” and “consistent parameters”. Using the best-fit values of 𝑧! yields 𝐺!"!!"#$,!"!!" = 100 

MW m-2 K-1 and 𝐺!"!!",!"!!" = 500 MW m-2 K-1 when fitting the high frequency phase data. The value of 

𝑧! that best describes the SiO2 and platinum phase data simultaneously is 𝑧! = 40 nm (corresponding to 

two optical penetration depths of the probe light in gold). The values of 𝐺!"!!"#$,!"!!" and 𝐺!"!!",!"!!" 
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determined by fitting the high frequency phase data with the consistent value of 𝑧! are shown in Table 

5.2. It should be noted that the fitted electron-electron interface thermal conductance between the 

chromium and platinum is lower than expected. Using an interface thermal conductance on the order of 1 

GW m-2 K-1 is too large to accurately describe the measured data. The low electron-electron interface 

thermal conductance may result from oxidation of the chromium or an intermixed interfacial layer [154] 

and is unique to the platinum sample. Notably, other parameters cannot compensate for this low 𝐺 value 

in the fit, and hence it is only a feature of the platinum sample and does not influence other conclusions. 

The phase data measured with BB-FDTR for SiO2 and platinum at room temperature are shown 

in Fig. 5.5(a) along with the phase predictions from the two-temperature model using the “consistent 

parameters” (shown in Table 5.2) and the “best-fit parameters”. The goodness of the fits is quantified 

using the mean squared error (MSE). For the “best-fit parameters” MSE = 1.37 for SiO2 and MSE = 0.16 

for platinum. At intermediate and high frequencies in SiO2, the two-temperature predictions and BB-

FDTR data differ by about 1 degree of phase. Changing the transducer thickness by less than 10% 

remedies this difference quite well, however, the transducer thickness is set to be consistent with what 

was measured in Ref. [73]. Overall, the two-temperature model with “consistent parameters” describes 

the BB-FDTR measurements with a low mean squared error (MSE = 2.80 for SiO2 and MSE = 0.29 for 

platinum). Also shown is the two-temperature phase predictions for SiO2 and platinum using the 

transducer parameters from Ref. [78] where all the heat is deposited in the chromium electrons 

(𝐻!",!! = 1), the phonon temperature is measured at 𝑧! = 26 nm, a reduced thermal conductivity of the 

chromium electron channel is used (𝑘!",!" = 20 W m-1 K-1), and the electron-phonon coupling parameter 

of the chromium 𝑔!" = ∞. Fitting the high frequency data with the parameters from Ref. [78] yields 

𝐺!"!!"#$,!"!!" = 130 MW m-2 K-1 and 𝐺!"!!",!"!!" = 400 MW m-2 K-1. These parameters are not as 

effective at describing the measurements as the set of “consistent parameters” (MSE = 5.64 for SiO2 and 

MSE = 0.45 for platinum).   
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Fig. 5.5. (a) BB-FDTR phase data for SiO2 and platinum from Ref. [73] modeled with the two-
temperature model using parameters from Ref. [78], parameters that are consistent between each sample 
(“consistent parameters” shown in Table 5.2), and parameters for each sample that result in the best fit 
(“best-fit parameters”). (b) BB-FDTR phase data for silicon at T = 300 K from Ref. [73] are window fit 
using the transducer parameters from (a). BB-FDTR phase data for a gold/chromium/aluminum/silicon 
sample are measured and fit with the two-temperature model. The thermal conductivity is independent of 
heating frequency compared to the gold/chromium/silicon sample.  

Next, BB-FDTR silicon data at room temperature from Ref. [73] are window fit with the two-

temperature model for the silicon thermal conductivity. The results of fitting are compared with the 

“consistent parameters” (shown in Table 5.2), the “best-fit parameters” for SiO2, the “best-fit parameters” 

for platinum, the parameters used in Ref. [78], and the one-temperature parameters used in Ref. [73] in 

Fig. 5.5(b). The interface thermal conductance for each data set (excluding the parameters used in Ref. 

[78]) was determined by fitting the high frequency phase data. It is clear that using the two-temperature 

model to fit BB-FDTR phase data diminishes the observed heating frequency dependence compared to 

window fitting with a one-temperature model. The thermal conductivity, however, is still a strong 

function of heating frequency. In particular, fitting with the two-temperature model using “consistent 

parameters” yields a thermal conductivity that reduces by over 30% from 𝑓 = 200 kHz to 200 MHz, 
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suggestive of nondiffusive phonon transport in the silicon substrate. Even fitting with the parameters from 

Ref. [78] results in heating frequency-dependent behavior of the thermal conductivity. 

The 𝑘 vs. 𝑓 data for a gold/chromium/silicon sample, which results from fitting phase data with 

the two-temperature model, suggest that electron-phonon coupling in the gold layer is not solely 

responsible for the observed heating frequency-dependent thermal conductivity seen in FDTR 

experiments, as was proposed in Ref. [78]. Another factor that could result in the discrepancy between 

FDTR and TDTR 𝑘 vs. 𝑓 data for silicon is the interface between the metal transducer and the silicon 

substrate (i.e., in FDTR the interface is chromium/silicon and in TDTR the interface is aluminum/silicon). 

The different metal/dielectric interfaces may selectively excite different phonon modes in the dielectric 

substrate resulting in different nondiffusive effects and thus observation of different 𝑘 vs. 𝑓 behavior 

[83,131]. 

To explore this effect, I created and measured a gold/chromium/aluminum/silicon sample and 

performed BB-FDTR experiments. A similar thickness of gold and chromium was deposited to maintain 

the same heating as determined from the SiO2 and platinum samples. These data are window fit with the 

two-temperature model using the parameters shown in Table 5.2 and the “consistent parameters” for the 

gold/chromium layers, as shown in Fig. 5.5(b). These data are within ±15% over the entire frequency 

range assuming 5% changes in the total transducer layer thickness, spot size, and 𝐺!"!!",!"!!". Values of 

𝐺!"!!",!"!!" = 4 GW m-2 K-1 and 𝐺!"!!",!"!!" = 200 MW m-2 K-1 are assumed (i.e., the same values 

determined for the gold/chromium interface in Ref. [78]). The result indicates the thermal conductivity 

has a limited dependence on heating frequency, suggesting that the metal dielectric interface plays a large 

role in the observed heating frequency-dependence of the dielectric substrate [83,131]. The role of the 

interface in heating frequency-dependent measurements of thermal conductivity is an exciting topic to 

study further.  
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V. Summary 

I formulated a multi-layer, two-temperature model geometrically similar to thermoreflectance 

experiments. The model incorporates additional functionality over existing models by allowing heat input 

at any location in any layer, which can be used to effectively model nondiffusive electron transport in 

metals with a low electron-phonon coupling parameter. A thorough sensitivity analysis of the solution 

was performed to identify sensitive parameters and showed that interpreting two-temperature phase data 

with a one-temperature model results in added heating frequency dependence to the thermal conductivity. 

Additionally, a cutoff frequency for FDTR experiments was identified, above which electron-phonon 

coupling effects become important.   

The work in Ref. [78] recognized that electron-phonon coupling in the gold transducer layer of 

BB-FDTR experiments must be considered in the analysis of the data. The two-temperature model 

developed in this chapter addresses these important modifications to the analysis of BB-FDTR 

experiments, but also adds some ambiguity due to the number of parameters that must be defined. Many 

of these parameters can be difficult to determine, specifically all four interface thermal conductances at 

each interface, where the heat is deposited, where the temperature is measured, and what portion of the 

electron and phonon temperatures are being measured. I attempted to establish a set of physically 

consistent parameters for the gold/chromium transducer layer used in BB-FDTR experiments by fitting 

SiO2 and platinum phase data, where the thermal conductivity should be heating frequency-independent. 

Using these parameters to window fit silicon data diminishes the heating frequency dependence of the 

silicon thermal conductivity, but does not eliminate it. Additional experiments on a 

gold/chromium/aluminum/silicon sample showed a thermal conductivity with limited heating frequency 

dependence, suggesting that the interface between the transducer and substrate affects the observed 

heating frequency dependence.  

 

 

 



114 

6. APPLYING THE BOLTZMANN TRANSPORT EQUATION TO RRAM 

I. Overview 

Resistive-switching memory (RRAM) offers benefits to nonvolatile memory systems due to 

scalability, fast switching, and easy fabrication [155]. In RRAM, electrical stimulation switches the 

resistance of a metal-insulator-metal memory cell. A low-resistance state is achieved during the set 

process, when a conductive filament (CF) is formed by dielectric breakdown. During the reset process, 

disruption of the CF restores the device to a high-resistance state.  

The effect of temperature on switching processes in RRAM is hitherto studied assuming diffusive 

thermal transport [156-169], but I herein show that nondiffusive mechanisms have critical implications to 

device operation and active physical interpretations. Nondiffusive thermal transport is particularly 

important since switching is thought to be temperature driven. Studies suggest that dissolution of the CF 

during the reset process occurs when the CF reaches a critical temperature due to Joule heating 

[156,159,170]. Hence, the rate of heat removal from the CF dictates the reset voltage [159]. 

Modeling thermal transport within the CF and surrounding oxide with the cylindrical heat 

diffusion equation with bulk thermal properties is appropriate when the geometrical length scales in the 

system are much larger than thermal energy carrier MFPs [17,21,39]. The validity of this requirement is 

checked by comparing the radius ro of the CF to the gray phonon MFP Λg (i.e., phonon frequency-

independent) in the insulator. Measurements suggest that the radius of the CF ranges from 1 nm to 20 nm 

[171]. The gray phonon MFP is defined by kinetic theory as Λg = 3kbulk/vsC, where kbulk is the bulk 

thermal conductivity, vs is the average sound speed, and C is the total volumetric heat capacity. For rutile 

TiO2, a prototypical RRAM material, Λg = 1.3 nm at a temperature T = 300 K [120,172]. With this gray 

approximation, the heat diffusion equation is invalid only for the smallest CF radii in RRAM. It is well 

known, however, that phonons in crystals do not have a single, gray MFP but instead a broad range of 

MFPs, where those larger than Λg dominate thermal conductivity [19,45,48,73,75].  
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In this chapter, I use existing thermal conductivity data to approximate the phonon MFP spectrum 

in TiO2 and show that phonons with MFPs comparable to the CF radii contribute significantly to thermal 

conductivity, rendering the diffusion equation inadequate. Accordingly, I develop an analytical solution to 

the BTE to predict thermal transport when CF radii are comparable to energy carrier MFPs 

[17,21,83,173]. The BTE predicts CF temperatures that are higher than predictions by the heat diffusion 

equation (e.g., 5× higher for a 1 nm CF radius in a device at a temperature of 300 K). Modeling thermal 

transport with the diffusion equation and a suppressed value of insulator thermal conductivity is, 

however, a reasonable substitute in device models that cannot invoke the BTE. This work is under review 

at IEEE Electron Device Letters with contributions from co-author J. A. Malen [174]. 

II. Phonon mean free path spectrum in TiO2 

To determine the phonon MFP spectrum of crystalline TiO2 in the rutile structure I follow the 

procedure outlined in Ref. [75]. Bulk thermal conductivity data as a function of temperature from Ref. 

[175] are shown in Fig. 6.1(a) and are fit with the Born-von Karman-Slack model [38], which assumes 

Born-von Karman dispersion (neglecting optical modes) with an average sound velocity vs = 6650 m/s 

[172] and MFP of the form Λ = 𝑣!(𝐴ω! + 𝑃ω!𝑇𝑒!!!/! + 𝑣! 𝑏)!!, for the scattering coefficients A 

(impurity), P (Umklapp), CU (Umklapp), and b (boundary). Here, ω is phonon frequency and vg(ω) is the 

phonon group velocity. The number density of primitive unit cells is used in specifying the wavevector 

cutoff in the Born-von Karman dispersion. The best fit to the data yields A = 5 × 10−43 s3, P = 1.16 × 10−18 

sK-1, CU = 77 K, and b = 1 cm and is shown in Fig. 6.1(a). The values b is insensitive in the fit since there 

are no experimental points in a strong boundary scattering regime and is thus chosen to represent a bulk 

sample. 

Next, Λ(ω) is used to determine the thermal conductivity accumulation function [38] 

𝑘!""#$ Λ∗ = 𝑘!𝑑Λ
!∗

! = !
!
𝐶! Λ 𝑣! Λ Λ𝑑Λ!∗

!    , (6.1) 
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which quantifies the cumulative contributions to thermal conductivity from phonons with MFPs between 

0 and Λ* and is shown in Fig. 6.1(b) for temperatures of 300 and 500 K. Here, kΛ and CΛ are the thermal 

conductivity and volumetric heat capacity per unit Λ. For rutile, kaccum indicates that thermal conductivity 

at these temperatures is dominated by phonons with MFPs between 1 and 1000 nm. Since these MFPs are 

comparable to CF radii in RRAM, using the heat diffusion equation is not justified. 

 
Fig. 6.1. (a) kbulk vs. T data are fit with the Born-von Karman-Slack model to find Λ(ω). (b) kaccum/kbulk at T 
= 300 and 500 K from Eq. (6.1) using the result from (a). (c) RRAM geometry is approximated as an 
infinite cylinder in a semi-infinite insulator. The BTE is solved for the non-equilibrium phonon 
distribution function in the insulator with temporally periodic surface heating. (d) S determined from Eq. 
(6.5). (e) keff vs. CF radius for TiO2 at T∞ = 300 and 500 K due to nondiffusive effects found using kaccum 
[from (b)] and S [from (d)]. (f) Change in surface temperature and reset voltage of a CF in TiO2 when 
accounting for nondiffusive effects. 

III. Analytical solution to the Boltzmann transport equation 

Nondiffusive thermal transport has been modeled analytically in spherical systems with the BTE 

(see Chapter 4) [17,83]. Here, I develop an approximate analytical solution to the cylindrical BTE for 

RRAM by approximating the geometry of one CF as an infinitely long cylinder with radius ro embedded 

in an insulator (e.g., TiO2), as illustrated in Fig. 6.1(c). Periodic surface heating of the CF is imposed T(r 

= ro) = TseiΩt where Ω and Ts are the angular frequency and amplitude of the temporal oscillations. This 

boundary condition relates to periodic operation such as switching of an RRAM device from the set to 



117 

reset states. This case is interesting because periodic heating induces additional length scales (i.e., thermal 

penetration depth) into the system. In this study, I set Ω = 6.3 × 108 rad/s, corresponding to a switching 

time of 10 ns.  

I solve for the non-equilibrium phonon distribution function n in the insulator using the 1-D, gray 

BTE in cylindrical coordinates under the relaxation time approximation in an isotropic medium [39,118] 

!
!!

!"
!"
+ sinθcosψ !"

!"
− !"#!!"#!

!
!"
!!

= !!!!
!

   , (6.2) 

where θ is the polar angle and accounts for the velocity of phonons traveling at an angle θ from the z-

direction, ψ is the azimuthal angle, n(r, t, θ, ψ) is the phonon energy density per unit phonon frequency 

per unit solid angle and equals ℏωD(ω)g(r, t, θ, ψ)/4π where ℏ is the reduced Planck constant, D(ω) is the 

phonon density of states, and g(r, t, θ, ψ) is the occupation function. The equilibrium distribution function 

ne(r, t) is specified for phonons when g is the Bose-Einstein distribution gBE. For small temperature 

variations, ne(r, t) ≈ CωT(r, t)/4π where Cω is the differential, ω-dependent specific heat and T(r, t) is the 

deviation from T(r → ∞, t) taken here to be zero for convenience (T∞ = 0) [79].
 

 The difficulty in solving Eq. (6.2) for n comes from its polar and azimuthal angular dependence. 

The governing equation is simplified to determine analytical solutions by using the method of spherical 

harmonics (the PN approximation), which reduces Eq. (6.2) into a set of N simpler partial differential 

equations by taking advantage of the orthogonality of spherical harmonics [118]. Due to the temporally 

periodic nature of the problem, separation of variables is performed such that 

𝑛 𝑟, 𝑡, θ,ψ = 𝑛 𝑟, θ,ψ 𝑒!!!. The P1 approximation yields 

!!!
!"

+ !!
!
+ !!

!!
𝑛! =   0     , (6.3a) 

!
!
!!!
!"

+ 𝑛!
!!
!!
+ !

!
=   0     . (6.3b) 

Here, 𝑛! and 𝑛! are the zeroth and second moments of 𝑛 and are proportional to the temperature 

and heat flux profiles, 𝑇!"#(𝑟) and 𝑞!"#!! (𝑟). They are determined with boundary conditions (i) as r → ∞ 



118 

the temperature decays to T∞ and (ii) at r = ro the total energy carried by phonons traveling in the positive 

r-direction is equal to the sum of the energy carried by phonons emitted (with probability of emission ε) 

and the energy carried by phonons traveling in the negative r-direction that are reflected from the surface 

(with probability of reflection ρ) [17,83]. The resulting spatial temperature and heat flux profiles 

predicted by the BTE are 

𝑇!"# 𝑟 =
!!!!

!
!
!!!!

!
!

= 𝑣!βε𝑇!𝐾!(β𝑟)/Γ     , (6.4a) 

𝑞!"#!! 𝑟 = 𝑣!𝑛!𝑑ω
!
! = 𝑖Ω𝐶𝑣!ε𝑇!𝐾!(β𝑟)/Γ     , (6.4b) 

where Γ = 𝑣!β𝐾! β𝑟! 1 − ρ + 2𝑖Ω𝐾!(β𝑟!)(1 + ρ), K0 and K1 are the modified Bessel functions of the 

second kind of order 0 and 1, and β = 3Ω(𝑖𝑣! − ΩΛ)/(𝑣!!Λ). Since 𝑛! and 𝑛! are independent of ω, the 

integral over ω only changes Cω to the total volumetric heat capacity C. For a more thorough derivation, 

see Ref. [83] (or Chapter 4), which is an analogous derivation in spherical coordinates. 

IV. Effective thermal conductivity in RRAM 

I define the thermal resistance of the system as 𝑅 = (𝑇! − 𝑇!)/𝑞!!(𝑟 = 𝑟!), where Rdiff and RBTE 

are the thermal resistances from the diffusion equation and BTE. The thermal conductivity suppression 

function S(Λ , ro , Ω) = k1-app/kbulk is determined by finding the apparent thermal conductivity of a single 

phonon mode k1-app that equates Rdiff to RBTE. The suppression function is material-independent and found 

from 

!!!!""
!!!

𝐾!(
!!!

!!!!""
𝑟!)/𝐾!(

!!!
!!!!""

𝑟!) = 𝑣!ε𝐾!(β𝑟!)/Γ   , (6.5) 

where k1-app is solved for numerically since it appears in the argument of K0 and K1. The resulting S is 

shown in Fig. 6.1(d) for Ω = 6.3 × 108 rad/s and ε = 1 - ρ = 1. 

The material-independent suppression function is used to modify kaccum of TiO2 to determine the 

effective thermal conductivity 𝑘!"" 𝑟!,Ω = 𝑆(Λ, 𝑟!,Ω)𝑘!𝑑Λ
!
!  in terms of the experiment-specific 
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lengths and timescales. Here, S weights a phonon’s contribution to thermal conductivity local to the 

nanoscale CF as compared to in a bulk system. Although the gray BTE is solved, S is used to suppress 

contributions from all phonons in the spectrum based on their MFP [131]. The effective thermal 

conductivity of TiO2 vs. CF radius is shown in Fig. 6.1(e) for Ω = 6.3 × 108 rad/s and ε = 1 - ρ = 1 at T∞ = 

300 and 500 K. Switching times faster than ~0.1 ns (Ω ~ 6.3 × 1010 rad/s) cause added suppression due to 

the reduction of the thermal penetration depth in the TiO2. 

V. Predicting conductive filament temperature 

To predict the surface temperature of the CF using a simple thermal diffusion analysis keff is used 

instead of kbulk. Solving the heat diffusion equation in cylindrical coordinates with periodic surface 

heating yields the surface temperature of the CF with kbulk (Ts,bulk) and keff  (Ts,eff) as the thermal 

conductivity of TiO2. The temperature Ts,eff accounts for weighted suppression of the full phonon 

spectrum by the definition of keff and is not the same as the surface temperature from Eq. (6.4a), which is 

defined for one phonon mode. The ratio Ts,eff/Ts,bulk is shown in Fig. 6.1(f) for T∞ = 300 and 500 K and 

indicates that the surface temperature augmentation of the CF will be larger as ro becomes smaller. For 

example, for a CF with ro = 1 nm in TiO2 at T∞ = 300 K, the actual temperature rise will be 5× larger than 

that predicted by the diffusion equation with kbulk. 

The ratio Veff/Vbulk is determined following Ref. [159] and is the change in reset voltage when 

accounting for the CF surface temperature augmentation and is shown in Fig. 6.1(f) for T∞ = 300 and 500 

K. Since the CF temperature rise increases due to nondiffusive phonon transport, less voltage is required 

to achieve the critical CF temperature and reset the device. These effects would be less pronounced in 

polycrystalline and amorphous TiO2 and at higher operating temperatures since long phonon MFPs do not 

contribute as significantly in these conditions. Nonetheless if kaccum is known, the same S is used to 

identify keff, Ts,eff, and Vs,eff. 
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VI. Summary 

In this chapter, I determined kaccum for rutile TiO2 at temperatures of 300 and 500 K from 

experimental k vs. T data. The accumulation function indicates that phonons with MFPs comparable to 

CF radii in RRAM devices contribute significantly to thermal transport, rendering the use of the heat 

diffusion equation to model thermal transport inadequate. Consequently, I develop an analytical solution 

to the BTE to model thermal transport in RRAM devices. A suppression function is developed to 

determine the effective thermal conductivity of the surrounding TiO2.. Using keff instead of kbulk in a 

diffusion analysis shows that the actual temperature rise of a CF filament is larger than expected due to 

nondiffusive thermal transport. 
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7. OUTLOOK AND CONCLUSION 

The study of kaccum has come a long way in the past decade. The experimental tools and 

interpretations to measure kaccum are being actively pursued. At the same time, first principles based 

computational methods have progressed to make accurate predictions of bulk thermal conductivity, and 

their predictions of kaccum for different materials represent the state of the art comparison for experimental 

results. Continued development and understanding of the experimental techniques will lead to exciting 

new topics of study and extensions of the work that is summarized and referenced throughout this 

dissertation. The following subsections outline some promising future research opportunities. 

I. Direct interpretation of experiments using the BTE 

TTG, TDTR, and BB-FDTR induce nondiffusive thermal transport in a substrate and 

simultaneously sense information about the temperature profile in the system. Nondiffusive transport in 

the system affects the expected temporal and spatial temperature profile (i.e., from solving the diffusion 

equation). Up until now, the differences between the measured and expected temperature profiles are 

reconciled by using a reduced k in the diffusion equation and an experiment-specific suppression function 

to obtain kaccum. Hua and Minnich find that this is a reasonable approach in the “weakly quasiballistic 

regime” because the BTE prediction of temperature is of identical mathematical form to the diffusion 

equation, i.e., exponential decay with time in TTG [82]. An alternative approach is to directly fit the data 

with a model that inherently accounts for nondiffusive thermal transport such as a solution to the BTE in 

a system geometrically similar to the experimental setup. Even with very simple geometries the BTE is 

challenging to solve and recent attempts to improve upon the diffusive interpretation account for ballistic 

effects phenomenologically [78,176,177]. Complexities such as the transducer layer used in 

thermoreflectance techniques and the multiple timescales inherent to TDTR make rigorous solutions to 

the BTE a long-term challenge.  
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II. Clarifying the role of the transducer/interface 

In thermoreflectance experiments, a metal transducer is used to eliminate volumetric heating in 

the substrate and increase the signal to noise ratio. A metal that has a high coefficient of 

thermoreflectance at the probe laser wavelength is chosen as the transducer. For TDTR, this metal is 

aluminum and for BB-FDTR, this metal is gold (where a chromium adhesion layer is used between the 

gold and substrate). The aforementioned discrepancy of kexp vs. Lp by TDTR and BB-FDTR (i.e., TDTR 

shows no Lp-dependence on kexp, while BB-FDTR does) could potentially be the result of using different 

transducer materials. Two possible reasons are (1) weak electron-phonon coupling in the gold could 

influence the reported value of kexp in BB-FDTR and (2) spectrally-dependent phonon transmission at the 

transducer-silicon interface determine which phonons will be excited in the silicon. 

Reason (1) was addressed in Chapter 5 of this dissertation. By fitting BB-FDTR data with a two-

temperature model that accounted for arbitrary heat deposition, it was found that accounting for electron-

phonon non-equilibrium in the gold transducer does diminish the heating frequency dependence of 

thermal conductivity in silicon but does not eliminate it. Regarding reason (2), the interface between the 

transducer and substrate may affect the measured thermal conductivity in TDTR and BB-FDTR 

experiments, e.g., the interface could selectively excite specific phonon modes in the substrate. It was 

found in Ref. [83] (see Chapter 4) that the suppression function is dependent on the properties of the 

interface and consequently predicts different kexp vs. Lp for TDTR (where the transducer/substrate 

interface is aluminum/silicon) and BB-FDTR (where the transducer/substrate interface is 

chromium/silicon).  

The MFPs of phonons excited at the interface in thermoreflectance experiments can be identified 

with an interface thermal conductance accumulation function Gaccum that describes MFP-dependent 

contributions of phonons to interface thermal conductance. An analytical expression for the interface 

thermal conductance accumulation function can be derived in a similar manner as kaccum was in Eq. (1.7). 

Beginning from Eqs. (2.10) and (2.11) from Ref. [129] and assuming that scattering at the interface is 

diffuse and elastic, one polarization, and both materials are isotropic,  
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𝐺 = !
!

𝑣!α!→!ℏω𝐷!(ω)
!!!"
!!

𝑑ω!
! , (7.1) 

where the subscripts L and R correspond to the materials to the left and right of the interface and α!→! is 

the phonon transmission coefficient for phonons traveling from the material on the left to the material on 

the right. Eq. (7.1) can be simplified by assuming Debye dispersion and density of states, and the high 

temperature limit (𝑔!" = 𝑘!𝑇 ℏω), 

𝐺 = !
!!!

α!→!
!!

!!
! 𝑘!𝑑ω

!!"#
! . (7.2) 

Following a similar procedure for kaccum, I assume power law scattering of the form Λ(ω) = 𝐵!ω!!. 

Substituting and transforming variables from ω to Λ yields 

𝐺!""#$ Λ∗ = !
!!!

!!→!!!
!"!

! 𝐵!
!
!Λ!

!
!!!𝑑Λ!∗

!!"#
. (7.3) 

Integrating and normalizing by G (evaluated when Λ∗ → ∞) yields the following expression, 

!!""#$ !∗

!
= 1 − !!"#

!∗

!
!. (7.4) 

where, the lesser of Λmin of the transducer or substrate, as determined by Λ(ωBZE) in each material, is used. 

The normalized thermal conductivity and interface thermal conductance accumulation functions 

for silicon at T = 300 K with n = 2 are shown in Fig. 7.1. Here, the interface thermal conductance 

accumulation function is plotted as a function of the MFPs in silicon for transducers with different Debye 

temperatures θD. The result shows that the range of MFPs that contribute to interface thermal conductance 

is far narrower than those that contribute to thermal conductivity. Furthermore, as the transducer Debye 

temperature decreases below the substrate Debye temperature, high frequency, short MFP phonons are 

not excited in the substrate at the interface. Anharmonic processes near the interface may excite these 

phonons, but it is possible that the transducer/substrate Debye temperature mismatch has implications on 

the obtained kaccum.  
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Fig. 7.1. The normalized thermal conductivity accumulation function for silicon at T = 300 K [Eq. (1.11)] 
plotted with the interface thermal conductance accumulation function [Eq. (7.4)] vs. the ratio of Λ* and 
Λmin of the substrate (Λmin in silicon is 27 nm at T = 300 K) for different transducer Debye temperatures.  

III. Alloys and nanograined materials 

Alloys and nanograined materials exhibit unique thermal and optical properties. Examples 

include the high thermoelectric figure-of-merit in nanograined silicon [30], bismuth antimony telluride [2] 

and SiGe alloys [178], and AlGaN crystals [13], which are commonly used in LEDs. To date, researchers 

have measured the bulk and nanostructured thermal conductivity of these materials and analyzed the 

scattering mechanisms over a wide range of temperatures. Measuring kaccum in alloys and nanograined 

materials will shed new light on the phonon scattering mechanisms. Understanding the contributions of 

grain boundary and alloy scattering also has applications in superlattices, membranes, and many other 

nanostructured materials. 
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IV. Electron-dominated materials 

Non-equilibrium between electrons and phonons results in the exchange of thermal energy 

between the two energy carriers. How nondiffusive thermal transport affects the measured thermal 

conductivity of a non-equilibrium system remains an open research question. Thermal transport in metals 

is commonly modeled with a diffusive two-temperature model [134], where the electron and phonon 

temperatures are separately defined and represent thermal excitations of the two energy carriers within the 

system. Early studies of thermal transport in metals used TDTR to measure electron-phonon scattering 

and coupling rates [136] and the size effects of non-equilibrium thermal transport in metal films 

[135,179]. More recently, researchers have examined the thermal conductivity of gold films [180,181] 

and the non-equilibrium thermal conductance between thin metal bilayers [108,132] and metal-dielectric 

interfaces [139]. Recent advances in the metrology of thermal conductivity open new channels for 

studying systems where non-equilibrium transport processes coexist with nondiffusive transport 

processes. New transport models and measurements that separate the onset of these two effects may 

provide deeper understanding of the physics within metals as well as numerous other coupled energy 

systems [138,182-184]. 

V. Beyond 3-D materials 

Extending nondiffusive thermal conductivity measurements to non-bulk, single crystal materials 

(e.g., 2-D materials, superlattices, membranes, roughened membranes, etc.) can lead to information about 

optimal structure for increased thermoelectric figure-of-merit, dominant scattering mechanisms, and 

phonon physics. Experimental modifications must be considered in order to measure kaccum for these 

materials. Graphene is a notable example where a traditional thermoreflectance experiment will not work 

to measure kaccum since it must be coated with a metal transducer. Coating graphene with a transducer is 

undesirable since it will modify the phonon modes in the material [185]. TTG is a natural candidate for 

measuring graphene, but sufficiently large single crystals are required. Alternatively, graphene has an 
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adequate coefficient of thermoreflectance in the UV-regime, which generates a sufficient signal without 

the necessity of a transducer layer [186,187]. 

Additionally, to probe kaccum in 2-D materials with thermoreflectance techniques it is necessary to 

modify the suppression function. This can be done analytically by solving the 1-D BTE in polar 

coordinates in the radial direction. I begin with the 1-D, gray BTE in cylindrical coordinates under the 

relaxation time approximation in an isotropic medium as given in Eq. (6.2). For a 2-D material, the polar 

angle θ is constrained to be π/2 [i.e., there is no transport in the z-direction (see Fig. 6.1(c))] and Eq. (6.2) 

reduces to  

!
!!

!"
!"
+ cosψ !"

!"
− !"#!

!
!"
!!

= !!!!
!

   , (7.5) 

where n(r, t, ψ) is the phonon energy density per unit phonon frequency per unit solid angle and is a 

function of r-coordinate, time, and azimuthal angle ψ. The P1 approximation yields 

!
!!

!!!
!"
+ !!!

!"
+ !!

!
=   0     , (7.6a) 

!
!!

!!!
!"
+ !

!
!!!
!"

+ !!
!
=   0     . (7.6b) 

Separating variables and using the same boundary conditions as were used in Chapter 6 for the 

cylindrical heat source yields the time-independent spatial temperature and heat flux profiles, 𝑇!"#(𝑟) 

and 𝑞!"#!! (𝑟) as  

𝑇!"# 𝑟 =
!!!!

!
!
!!!!

!
!

= 𝑣!βε𝑇!𝐾!(β𝑟)/Γ     , (7.7a) 

𝑞!"#!! 𝑟 = 𝑣!𝑛!𝑑ω
!
! = 𝑖Ω𝐶𝑣!ε𝑇!𝐾!(β𝑟)/Γ     , (7.7b) 

where Γ = 𝑣!β𝐾! β𝑟! 1 − ρ + 2𝑖Ω𝐾!(β𝑟!)(1 + ρ), K0 and K1 are the modified Bessel functions of the 

second kind of order 0 and 1, and β = 2Ω(𝑖𝑣! − ΩΛ)/(𝑣!!Λ). These are the same expression as the 

cylindrical case [Eq. (6.4)] except that the parameter β differs by a constant value due to the reduced 
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dimensionality compared to the cylindrical case. Using Eq. (7.7), the suppression function can be 

determined and used to map experimental length scales Lp and ro to phonon MFPs in 2-D materials in a 

similar manner as for bulk materials.  

VI. Conclusion 

The work I have completed and described in this dissertation has contributed to the advancement 

of the field of nanoscale thermal transport. Experimental observation of nondiffusive thermal transport is 

possible with BB-FDTR. I have presented theoretical frameworks that were used to interpret those 

observations, but these interpretations are an ongoing research topic. There are still many avenues that 

remain open for exploration related to the MFP-dependent contributions to k and the relationship between 

experimental length and timescales and phonon properties. Ultimately, further development of metrology 

and interpretation, combined with first principles theory and calculations, will lead to valuable 

information for scientists and engineers in relation to increasing the thermoelectric figure-of-merit, 

engineering thermal management in devices, and understanding the physics of thermal energy carriers. 
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