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Abstract

Wireless Sensor Networks are an important example of networked embedded systems, and they

have a key role to play in the development and materialization of the concept of an Internet of Things.

Most current deployments of sensor networks are very application-specific and only target a particu-

lar goal. This negatively impacts the cost-effectiveness of the network, thereby reducing the incentive

to deploy a sensing infrastructure in the first place. Multi-purpose sensor networks can overcome

these limitations, where they can be used for more than one application simultaneously. To promote

the role of wireless sensor networks as an infrastructure technology, support for multiple indepen-

dent applications is essential, such that different users can concurrently submit their applications to

accomplish diverse goals.

In this dissertation, we address various challenges that arise when the support of multiple appli-

cations is enabled on a sensor network, mainly with respect to application development, installation

and execution. First, we propose a holistic programming framework called Nano-CF that is built on

top of the Nano-RK operating system that allows independent users to deploy applications at a net-

work level, and coordinates network activity. Then, we propose various approaches to reduce the

resource consumption at different levels in a sensor network. Most sensor networking applications

are designed for sampling one or more sensors, conduct signal processing on the sensed data, and

communicate this data with other devices in the network. With more than one such application exe-

cuting on the network, it is highly probable that some redundancies occur across applications. In this

work, we identify and eliminate these redundancies through a compile-time approach that identifies

the temporal overlap across the execution of the applications. Moreover, we augment the Nano-CF

framework with a hierarchical task-assignment scheme that selectively eliminates the redundancies

while simultaneously conforming to the resource constraints of the sensor node and the application

requirements. Finally, we propose a network-level scheme called Network-Harmonized Scheduling that

coordinates the packet transmissions in a simple and distributed way such that the radio can be used

efficiently in a multi-hop network with multiple applications releasing packets periodically.
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Chapter 1

Introduction

Among the various milestones achieved by humankind in its history since the invention of the wheel,

there is no denying that the invention of semiconductor electronics and, subsequently, computers are

among the ones that have had the most significant impact on the world as we see today. Beginning

with the vision of an “Intergalactic Computer Network” by J.C.R. Licklider in 1963 [7], the capability

of computers to interact with each other has further revolutionized our lives with the development

and large-scale acceptance of the Internet. Moreover, embedded computing systems, which were tradi-

tionally designed to be application-specific and standalone computers now also have the capability

to communicate among each other and to the Internet.

In principle, an embedded computer system1 is a computer that is designed for a very specific

application, interacts with its physical environment and is typically not suitable for general-purpose

computing. Examples of such embedded systems include controllers in home appliances such as

thermostats, washing machines or even dedicated computers in automobiles, airplanes and satellites.

In recent times, however, the boundary between embedded systems and generic computers is getting

blurred because of the increase in computational power and decrease in size and cost because of

Moore’s Law [8]. Modern mobile phones, also called smartphones, are a prime instance of “the merge”

of embedded systems with communication capabilities and high computing power.

On the other hand, Moore’s law has also led electronic devices to become smaller in size at such

1Embedded-computer systems are also more commonly referred to as embedded systems
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a low cost and low power consumption that it is expected that almost every object around us can

become a smart embedded system. Already, devices around us are becoming increasingly smarter and

many of those devices have sensors to measure physical quantities that can allow them to be aware

of the surrounding environment and take better decisions while interacting with that environment.

Next-generation applications of such embedded systems is expected to involve high-degree of inter-

networking of devices, possibly with an aim to accomplish the vision of Internet of Things.

In this view, Wireless Sensor Networks (WSNs) have been playing an important role both as a

technology-incubator as well as a test-bed for the networked embedded systems of the future. 6LoW-

PAN [9] is a standard in this direction that can bring Internet Protocol (IP) connectivity to small

embedded devices in a similar way as general-purpose computers of today are interconnected via

the Internet. Despite wireless sensor networks being a very active research field and a number of

very highly-rated conferences and journals catering to this area, most of the works are limited to

laboratory test-beds with very little adaptation to real-world deployments. One of the main reasons

behind this is that the deployments are typically very application- or goal-specific to the problem be-

ing addressed. In order to promote fast adoption of sensor networks for practical usage, they should

be developed as a long-term infrastructure technology with support for multiple applications from

independent users, rather than as application-specific deployments for short-term use.

Therefore, in this dissertation, we propose a multi-dimensional approach to deploy more than

one application on a sensor network and simultaneously reduce the resource consumption at various

levels. Such multi-application or multipurpose embedded systems are quite in contrast to the early

vision of computers as evident from the following quote by J.C.R. Licklider [10]:

Men are noisy, narrow-band devices, but their nervous systems have very many parallel and simul-

taneously active channels. Relative to men, computing machines are very fast and very accurate,

but they are constrained to perform only one or a few elementary operations at a time. Men are flex-

ible, capable of “programming themselves contingently” on the basis of newly received information.

Computing machines are single-minded, constrained by their “pre-programming”.

Through the technologies we built and the optimizations we propose in this dissertation, we attempt

to revise this widely-held notion of application-specific and inflexible networked embedded systems

into an infrastructure technology that can cater to different needs of many users simultaneously. In

2



1.1. Background on Wireless Sensor Networks

Gateway'

Wireless'
Links'

Figure 1.1: A typical sensor network with several Firefly [1] sensing platforms communicating over
wireless links (shown with symbolic line-connectors). The network topology is a tree topology
with a gateway node as the root. The gateway is connected to a PC, which acts as a router to the
Internet.

this dissertation, we focus mainly on Wireless Sensor Networks (WSNs) as a representative technol-

ogy.

1.1 Background on Wireless Sensor Networks

With the capability to communicate over wired or wireless links, embedded systems can create a

complex ecosystem with an unfathomable potential, and Wireless Sensor Networks (WSNs) bring

connectivity closer to the physical world by measuring and monitoring the physical quantities such

as temperature, pressure, humidity and light intensity. This is made possible through inexpensive

and small hardware modules with radio transceivers. Not only do wireless sensor networks have the

potential to improve several day-to-day and fundamental systems such as transport, power distri-

bution, agriculture etc., by enabling large-scale monitoring, they can also have an important role as

test-beds or technology incubators for materialization of the concept of the Internet of Things.

3
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Wireless Sensor Networks consist of a large number of tiny hardware devices called sensor nodes2

that can form an ad-hoc mesh network so that the values sensed by individual devices can be collected

at a sink (or gateway or root) as shown in Figure 1.1. Wireless Sensor Networks have been, and

are currently being, used for a variety of applications and purposes that were inconceivable with

traditional sensing methods of using large sensing stations requiring manual deployment and manual

data-collection. Wireless Sensor Networks are designed to be operated autonomously once deployed,

(potentially) without the need for any human intervention. There is a large variety of applications of

sensor networks, and we briefly list some them below:

Environmental Sensing. Remote sensor networks have been deployed to monitor natural phenom-

ena such as volcanoes [11], health of redwood trees [12] in California, US or underwater phe-

nomena such as coral-reefs and fisheries [13, 14].

Structural Health Monitoring. Monitoring the health of civil infrastructures such as buildings [15],

bridges [16], underground mines [17] or factory equipment [18] are some of the most popular

applications of sensor networks.

Industrial Sensing. Industrial processes need to monitored regarding various parameters for smooth

functioning of assembly lines and safety concerns [19, 20].

Understanding Social Behavioral Patterns. Sensor networks may enable the understanding of the

social behavior with a human-centric approach where humans carry a portable sensor [21, 22].

Human health monitoring is also another example of human-centric sensing [23].

Disaster Management. Sensor networks are helpful in disaster situations such as forest-fire monitor-

ing [24] or search and rescue operations [25].

Building Monitoring. There are several other applications that help in accomplishing smart-buildings

and reducing the energy consumption. For example, building automation [26], energy-audit [27]

and data-center monitoring [28].

In this dissertation, we focus on sensor networking applications mainly related to building mon-

itoring. In such applications, various sensors are permanently deployed inside buildings to observe

2A more detailed description about various platforms used as sensor nodes is provided in Chapter 2
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energy consumption, temperature, occupancy, humidity and noise etc., and different users would

benefit in using that infrastructure to run their independent applications simultaneously.

1.2 Motivation and Challenges

Modern sensor networking platforms are complex devices with multiple types of sensors, allowing

independent users to employ one or more sensors on each device for creating network-level applica-

tions. Let us consider the example of a university campus sensor network deployment, such as the

Sensor Andrew [29] project at the Carnegie Mellon University. Sensor Andrew is deployed across

several buildings to monitor physical properties of the environment such as temperature, humidity,

smoke or light. A diagram of a sample building with a variety of networked sensors is shown in

Figure 1.2. To facilitate the appropriate use of such a network, it is beneficial to provide support for

multiple applications from users with different goals and backgrounds such that the network infras-

tructure can be treated as a multi-purpose sensor network [30]. For example, a building manager may be

interested in collecting the temperature values from the sensors for a fine-grained temperature con-

trol, while a civil engineer may want to find the correlation between temperature and humidity for

optimizing a building’s HVAC system. Furthermore, a security officer may want to monitor the fire

alarms periodically. With multi-purpose sensor networks, several varied applications may be concur-

rently supported on the same infrastructure. In this dissertation, we address various challenges that

emerge from allowing multiple applications to execute on a shared sensor network infrastructure.

There are several advantages in enabling such multi-purpose sensor networks, including improv-

ing cost effectiveness, enlarging the user-base of the sensor networks, and enabling the integration of

sensor networks with other large-scale technologies. With multiple applications, the sensor network

infrastructure can be utilized better, in a cost-effective and in a collaborative manner by independent

users. Moreover, multi-purpose sensor networks can provide seamless integration with larger-scale

technologies such as the Smart-Grid or the vision of Internet of Things. As an example, power com-

panies may also want to deploy suitable applications on sensing devices installed in buildings so that

they can access (limited) data about usage patterns of various appliances. This data can help the power

companies to schedule load-balancing strategies with better efficacy. In addition to the advantages

from the application perspective, multi-purpose sensor networks also encourage users from diverse
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Figure 1.2: An example of an indoor sensor network with various types of sensors deployed at
different locations inside a building. Sensor Andrew is an example of such a network, but spread
across multiple buildings.

backgrounds to develop applications in a convenient manner, thereby promoting multi-disciplinary

research.

In spite of the advantages discussed earlier, several challenges arise with multiple applications

executing on sensor networks, mainly due to the resource-constrained nature of sensor nodes. As the

primary design principle behind sensor nodes is to keep the hardware cost low and to attain long-

life with relatively cheap batteries, reducing the average energy consumption has been one of the

foremost challenges in this area of research. With multiple applications, several new challenges arise

that need to be addressed for the proper management of the network resources, and are discussed

below.

1.2.1 Programming Support

Programming sensor nodes individually is a time-consuming and complex procedure, so several

macro-programming approaches and middleware have been proposed in the past to install appli-

cations at the network-level, such as Regiment [31], Mate [32] and TinyDB [33]. Except for a few
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solutions proposed recently [3], not many approaches support deployment of multiple concurrent

applications at a network-level. Considering the example of Sensor Andrew, users from diverse tech-

nical backgrounds may benefit from a middleware layer that helps them program the network at an

abstract higher level. A conventional macro-programming framework may not allow more than one

user to independently program the sensor network for handling these kinds of applications simulta-

neously. To support multiple applications, several additional aspects have to be managed regarding

programming abstractions, application installation, execution and data delivery.

1.2.2 Inter-application Redundancy

Most sensor networking applications are designed with the goal to sample one or more sensors, con-

duct some signal processing on the sampled data, and then share it with other nodes or a base-station

to accomplish a distributed logic. In the case of more than one such application, there is a likelihood

of redundant sample collections by different applications causing unnecessary energy consumption.

It is observed that reading a sensor value typically involves accessing an Analog-to-Digital Converter

(ADC) module on a microprocessor, for converting the analog sensor value into a digital format, and

storing into a register or local memory. This process of sampling a sensor can consume about 2–3

orders of magnitude more processor cycles than a simple memory-based instruction, thus increasing

the processor usage on a sensor node.

1.2.3 Conforming to Resource Limitations

With more than one application deployed on sensor nodes, various resources tend to be used more

frequently. Finding a balance between the application requirements and the available resources is a

challenge. There is a need to optimally assign resources among applications, such that application

requirements are met and the overall resource consumption is reduced as much as possible.

1.2.4 Network Coordination

In addition to resource optimization on individual nodes, several issues still exist in the networking

layer when multiple applications execute on sensor nodes. It is often the case that applications release
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packets independently in the network, which can lead to excessive energy consumption because of

several factors such as an increase in the number of packets, more frequent radio-switching and in-

creased contention at the Medium Access Control (MAC) layer. Energy consumed in transmitting a

packet from a source node to a destination node depends on many aspects, and with common MAC

approaches, a packet may undergo contention at several points in a multi-hop network, significantly

adding to the overall radio-usage.

1.3 Thesis Statement

Although sensor networks are a popular technology as a research platform, their widespread adop-

tion in real life is still limited because of their application-specific nature. Supporting multiple appli-

cations can help in making sensor networks a multi-purpose infrastructure technology. Deployment

and execution of multiple applications come with challenges of complex programming, non-optimal

resource consumption and uncoordinated network behavior. These challenges can be addressed by

designing a holistic framework that helps in programming, deployment and management of appli-

cations, and includes optimizations for redundancy elimination across applications and a network-

harmonization protocol.

In sum, the thesis of this dissertation is:

A holistic framework with suitable optimizations can be designed for the deployment and execution

of multiple applications on a sensor network infrastructure without compromising the resource

usage and the overall energy consumption of the network. The resource consumption at each device

can be optimized by eliminating any redundant sensor-sampling requests across applications, and

energy-efficient communication can be achieved by harmonizing packet transmissions.

In this work, we propose a multi-dimensional approach that, in addition to facilitating the de-

velopment and deployment of applications on a sensor network, also provides several solutions to

reduce the resource consumption at both the node- and the network-level in multi-purpose sensor net-

works.

8
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1.4 Proposed approach

In this section, we provide an overview of our proposed approach that addresses the challenges

discussed previously.

1.4.1 Programming Framework

We propose the design of an over-the-air programming framework for sensor networks called Nano

Coordination Framework (Nano-CF) [34]. Nano-CF allows multiple users to deploy their network-

level applications on a sensing infrastructure independently without any interference from other ap-

plications. Our framework is based on Nano-RK [35], a Real-Time Operating System (RTOS) devel-

oped at Carnegie Mellon University. Nano-CF includes a programming abstraction, network-level

application management and runtime layer for each node. The resource-kernel properties of Nano-

RK are exploited by Nano-CF such that the resource requirements of each task (for example, proces-

sor utilization) can be declared at design-time and the kernel guarantees that an application does not

consume more resources than its allotted share.

An overview of the Nano-CF programming framework proposed in this work is presented in

Figure 1.3. In addition to the simple programming abstraction included as a part of Nano-CF, we

also propose a design pattern, sMapReduce [36] inspired from Google’s MapReduce concept. With

sMapReduce, the programmer writes the software in two parts: sMap defines the functionality to be

carried out by each device, and Reduce defines the data aggregation logic over the network.

1.4.2 Redundancy Elimination

Applications deployed on a sensor network infrastructure by independent users have the possibil-

ity of redundant accesses to the same sensors to collect samples. It is observed from experiments

that sampling a sensor takes several orders of magnitude more processor cycles than using a value

stored in local memory. By sharing sensing requests among applications, a significant percentage of

resource usage and energy can be saved on a sensor node. We propose a novel solution [37] to the

problem of finding redundant sensing requests issued by network-wide applications created by inde-

pendent users. We model each application as a linear sequence of executable instructions, and find a

9
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Figure 1.3: An overview of the Nano-CF programming framework with inter-application redun-
dancy elimination (REIS) support.

merged sequence from them through the use of well-known string-matching algorithms. In particu-

lar, we use the Longest Common Subsequence (LCS) [38] and the Shortest Common Super-sequence

(SCS) [39] techniques. Our proposed solution, called Redundancy Elimination with Implicit Scheduling

(REIS), creates a monolithic task-block resulting from an optimized merging of user applications with

embedded scheduling information. REIS is a compile-time tool and is a part of the compiler in the

overall framework shown previously in Figure 1.3. This scheme is particularly advantageous in cases

where the relative order of sensing requests is important, and simply caching the values may not

help. We show that our approach can help in achieving significant average energy savings in proces-

sor usage as compared to the execution of several applications without eliminating the redundancies.

Moreover, the radios on modern System-on-Chip solutions for sensor networks such as the Atmel

ATmega128RFA1 [40] can transmit at 8 times the data rate for the same amount of power as earlier

designs. This means that the power-per-packet metric can be reduced by a corresponding factor.

Hence, optimizations at the processor level are bound to play a significant role in reducing the total

energy consumption, in contrast to the majority of the research efforts focusing mainly on energy

savings at the radio-level.
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1.4.3 Hierarchical Assignment

To maximize the energy savings achieved through redundancy elimination while meeting the re-

source constraints on sensor nodes, we propose a hierarchical approach where sensing redundancies

across a subset of applications are eliminated. The goal is to strategically assign user-designed tasks

into multiple task-blocks such that several application requirements can be met. For example, merg-

ing applications with differing periods can cause the task-block to have a large memory footprint,

and it may be beneficial to create more than one task-block such that the tasks with similar periods

are together. Similarly, creating task-blocks from input tasks which share the same sensors may be a

better approach than from tasks that sample different sensors.

Our proposed hierarchical scheme addresses varied challenges, ranging from the modeling of ap-

plications to the formulation of the optimization problem. Firstly, a maximization function for energy

savings is devised, which depends on the degree of redundancy across a set of applications. The de-

gree of redundancy, however, is found using string-matching algorithms that makes it impossible to

model the problem in a standard formulation solvable by commercial solvers. We then present a solu-

tion that decouples the assignment optimization problem from string matching. Finally, the problem

is reduced to that of Quadratic Integer Programming, which can be solved using well-known ap-

proaches.

1.4.4 Network-Harmonized Scheduling

More than one application on sensor nodes can result in irregular packet-transmission behavior even

if each application is periodic. This can result in additional latency and power-consumption be-

cause the packets may experience contention more frequently at different stages in a multi-hop net-

work. We propose a scheduling approach, partly inspired by Rate-Harmonized Scheduling [41], that

aligns the packet transmissions from a sensor node along a periodic boundary. We call our approach

Network-Harmonized Scheduling (NHS) [42]. NHS includes a light-weight protocol that groups peri-

odic batched transmissions from different devices, such that the nodes can turn on their radios when

other devices transmit. The operation of the NHS protocol in an example multi-hop scenario is shown

in Figure 1.4, with 12 nodes and the corresponding timeline of packet transmissions. The nodes at

successive hop-levels transmit periodically, but with an offset so as to avoid any packet-loss due to
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Figure 1.4: An example of a multi-hop topology, and the corresponding timeline for illustrating
the NHS protocol within a network.

the hidden terminal problem. The main goal of this protocol is to enable scheduled transmissions in

a distributed manner, without requiring global knowledge of the network topology and without ex-

plicit time-synchronization. The working principle behind the protocol is to ensure more than a 2-hop

distance in simultaneous transmissions in the network. In principle, NHS can achieve a TDMA-like

duty-cycling with very little state maintenance and without the help of a dedicated central controller.

NHS shows that it is possible, and beneficial at the same time, to coordinate network access across

multiple hops in a simple and efficient manner. This approach provides determinism in the network

operation, and certain guarantees can be made about the performance of the protocol.

After outlining our overall approach in this dissertation, we now provide the scope of our research.

1.5 Scope of the Dissertation

Wireless Sensor Networks is a large research domain where researchers have addressed various chal-

lenges from varied perspectives including, but not limited to, hardware design, operating systems,

networking, signal processing, security and data-mining. In this dissertation, we specifically address

issues that arise with multiple applications executing on a sensor network.

Depending on the requirements of the applications, wireless sensor networks can have different

physical and logical deployments. Infrastructure deployments are long-term deployments composed
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Figure 1.5: The figure depicts the scope of this dissertation. The solid boxes represent the target
research domain.

of stationary nodes deployed typically inside buildings for observing their indoor environment or

monitoring their structural health. Ad-hoc networks, on the hand, can consist of mobile or static

nodes with intermittent connectivity deployed in remote areas or urban short-term deployments for

experimentation purposes. In the scope of this dissertation, illustrated in Figure 1.5, we address the

challenges of application deployment, inter-application redundancy elimination and network coor-

dination that arise with multiple applications running on stationary infrastructure sensor networks.

1.6 Organization of the thesis

The rest of this dissertation is organized as follows:

• In the next chapter, we provide a background into various technologies employed in this dis-

sertation, including hardware platforms, operating systems and communication protocols. This

chapter serves two purposes: providing an understanding on various issues in a sensor network

from different perspectives and describing briefly the platforms and protocols based on which

our approaches are built.

• We provide a detailed description of the related work and literature survey in Chapter 3. We

describe the state of the art and other research that address similar challenges, and also contrast

them against our approach.

13
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• In Chapter 4, we describe our proposed Nano-CF programming framework to support multi-

ple applications on sensor networks. Nano-CF allows a programmer to write a network-level

application and the framework transparently handles the application delivery and the runtime

executes it on each node on top of the Nano-RK operating system.

• In Chapter 5, we present a compiler optimization approach based on the observation that inde-

pendent applications developed in Nano-CF may issue redundant sampling requests leading to

the over-consumption of resources. We propose the design of a compile-time approach called

REIS that finds maximum overlap across applications such that redundancy is eliminated.

• We then extend the REIS approach further with a hierarchical assignment described in Chapter 6

scheme that instead of finding redundancies across all the applications, finds it across a subset

of applications such that the redundancy elimination is maximized while satisfying the resource

constraints of sensor nodes.

• While expanding the focus from node-level optimizations to network coordination in case of

multiple applications, we propose Network-Harmonized Scheduling in Chapter 7 that aligns

the packet releases from multiple applications along periodic boundaries, and then harmonizes

them across the network.

• Finally, in the last chapter, we conclude this dissertation with a summary of contributions and

a discussion of future work. As a part of future research directions, we also provide a vision

of a new operating system paradigm for sensor networks called Co-Operating System that is

distributed by design and allows application development at a larger scale than node-level.

14



Chapter 2

Background

As we briefly described in the previous chapter, wireless sensor networks consist of a large number

of sensing devices connected to each other via wireless links. Wireless connectivity eases the de-

ployment of a sensor network, as laying wires for a large number of devices can be unpractical and

expensive both in terms of cost and man-hours. With wireless communication support, the devices

can be deployed in remote terrains with relative ease and old buildings can also be retro-fitted with-

out the need for re-wiring. Furthermore, the use of batteries to power wireless devices is a logical

choice to completely remove the need for wiring. On one hand, batteries and wireless communica-

tion enable sensor networks to be used effectively with an ease of deployment, but on the other hand,

battery-powered and wireless operation are two of the most important factors that bring forth a broad

range of challenges in all the aspects of sensor networking.

In this chapter, we briefly outline some of the many fundamental technologies that are employed

in sensor networks to address the challenges that mainly are manifestations of battery-powered and

wireless operation. Throughout the research efforts presented in this dissertation, we have made use

of a majority of these technologies that include hardware platforms, operating systems, programming

frameworks and networking protocols.
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Figure 2.1: A schematic diagram of a sensor node

2.1 Platforms

Several hardware platforms have been developed in the past as prototype devices for wireless sen-

sor networks, and many such devices are commercially available. Some of the popular choices

for general-purpose sensor networking platforms include Mica2 [43], MicaZ [44], Sun SPOT [45],

TelosB [46] and Firefly [1]. There are several other experimental platforms that serve application-

specific goals, such as energy-harvesting [47, 48], structural monitoring [16], industrial sensing [19],

data-center monitoring [28, 49] or smart homes [50]. In this dissertation, we limit our description to

general-purpose sensor platforms, as our solutions are built for such devices. Various terms are used

interchangeably to refer to a sensing platform as explained next:

Individual hardware devices in sensor networks are typically referred to as motes, and in

the larger context of a network of interacting motes, each device is also referred to as a

sensor node, or more commonly as a node. Even though a sensor node consists of one or

more sensors, a microprocessor and a radio transceiver among several other peripherals,

the term sensor is also used interchangeably for a sensor node, as one of the key jobs of a

node is to sense the environment and share it with other devices.

Sensor nodes are highly energy constrained devices, powered either with the help of batteries or

energy harvesting systems such as solar panels. As a result, sensor nodes are designed with highly

resource-constrained hardware components due the limitations of the power-source. A typical sen-

16



2.1. Platforms

Table 2.1: Comparative specifications of micro-controllers commonly used in sensor nodes

Parameter TI MSP430a Atmel ATmega1281 Atmel ATmega128RFA1

Architecture 16 bit 8 bit 8 bit
Max. Frequency 16 MHz 8MHz 16MHz
RAM 10KB 8KB 16 KB
Flash 48KB 128KB 128KB
Sleep Current 5.1µA 5µA 5µA
Active Currentb 1.8mA 10mA 4.1mA

aSpecifications for MSP430F2611 used in TelosB motes
bat 8MHz and 3V

sor node consists of a low-powered micro-controller that is connected to a relatively simple and low-

powered radio-transceiver. Several different sensors for monitoring temperature, pressure, humidity,

acceleration, motion, etc., are also provided on board, and almost all platforms have expansion ports

to connect to other specialized sensors. A schematic diagram of a typical mote with its components is

shown in Figure 2.1. Firefly and MicaZ motes use the Atmel ATmega1281 micro-controller [51], and

TelosB motes, on the other hand, use the Texas Instruments (TI) MSP430 [52] micro-controller. Both

these micro-controllers are low-powered and have an 8 bit architecture with on-chip memory and

flash. The Atmel ATmega1281 micro-controller has only 8 Kilo Bytes (KB) of RAM and can operate

at a maximum frequency of only 8 MHz. The capacity of the on-board flash to store the firmware

is about 128 KB, which means that the entire software stack should fit within this limited storage.

These specifications are several orders of magnitude lower than that for a modern personal com-

puter or even a modern handheld smartphone. The Moore’s law is expected to help in reducing

the size, power requirements and cost rather than improving the computational capabilities. Newer

designs of motes, like the Firefly version 3, use System-on-Chip (SoC) solutions such as the Atmel

ATmega128RFA1 [40] that has the processor and the radio transceiver on the same chip, thereby re-

ducing the size of the motes and allowing more power-efficient designs. Figure 2.2 shows a snapshot

of the latest Firefly mote with an expansion board consisting of a variety of sensors. Table 2.1 lists

some relevant specifications of TI MSP430, ATmega1281 and Atmel ATmega128RFA1, to emphasize

the limited memory and computational power available with sensor nodes.

Wireless communication among the nodes in a network is achieved using a low-power Radio-

Frequency (RF) transceiver such as the Chipcon CC2420 [53]. Even if designed for low-power opera-
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Figure 2.2: A Firefly version 3 node with a sensor expansion board.

tion, the radio is still the single largest energy consuming peripheral on a sensor node. In most cases,

the power consumption by the radio can be up to 3-4 times compared to that of the processor. For

CC2420, active current drawn during the transmission of a packet is 17.4 milliamperes (mA) and is

counter-intuitively lower than that for reception, which is 19.7 mA. The higher energy requirements

of the radio make it important to design efficient communication-layer and networking mechanisms

for sensor networks.

If a sensor node is powered with a pair of off-the-shelf AA batteries of about 2000-3000 mAh

capacity each, a continuous (always on) operation will yield only a battery life of about 2-3 days. This

would mean that the batteries would need to be changed or recharged very frequently, making remote

and/or large sensor network deployments impractical. In order to increase their lifetime, sensor

nodes are typically operated with a very low-duty cycle of the order of 1% or 0.1%, such that sensor

nodes remain in the sleep mode for a majority of the time. In this way, the sensor nodes can operate

for a longer duration up to several months with the same batteries. Table 2.2 lists the current drawn

and the corresponding battery lifetime for a Firefly sensor node under various operation states, when

powered by two 2750 mAh AA batteries. Reducing the communication overhead and maintaining

a very low duty-cycle are primary concerns while designing the software layers of sensor networks

aiming for a long operational-lifetime with small and inexpensive batteries. Hence, miniziming the

energy consumption and improving the energy-efficiency is a fundamental principle based on which

viable sensing systems are built.
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Table 2.2: Typical current drawn and corresponding battery lifetime for a Firefly [1] sensor plat-
form under various operation states.

Firefly Operation State Current Consumption Battery Life

Processor Active 7 mA 17 days
Active with Transmission 24.4 mA 4.9 days
Active with Reception 28.8 mA 4.6 days
Idle 2 mA 60 days
Sleep 70 µA 4.68 yrs

2.2 Sensor Network Software Architecture

Sensor networking platforms such as the MicaZ and the TelosB, mentioned in the previous section,

are highly resource-constrained. However, they are complex devices with several peripherals that

can easily support a small operating system, custom communication stacks and one or more soft-

ware applications. Programming the sensor nodes by directly writing the application logic on the

system flash (colloquially referred to as bare-metal programming) without an operating system can be

a daunting task even for skilled developers. To circumvent this challenge of developing software for

sensor networks, suitable programming support has been developed in the form of various operating

systems and network-level programming abstractions, as discussed next.

2.2.1 Operating Systems

One of the most important software component in sensor networking is an Operating System (OS),

which provides several convenient abstractions to ease the application development. An OS also

handles key responsibilities such as scheduling the tasks, process management, interfacing with

hardware through device drivers and power management. In comparison to general-purpose com-

puters, where operating systems handle several additional responsibilities such as memory man-

agement, virtual memory, graphic user-interface management etc., sensor networking operating sys-

tems [54, 55] are limited in features due to the highly resource constrained hardware of sensor nodes.

The application-specific nature of sensor networks results in a wide variety of the underlying hard-

ware, and therefore, operating systems play an important role in hiding this heterogeneity from the

applications. Consequently, operating systems are imperative for providing hardware abstraction,
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management of the limited resources and enabling communication with the other devices in the net-

work.

Operating systems for sensor networks are designed to satisfy several different requirements, and

some of them are listed below:

• Providing Hardware Abstraction: One of the foremost goals of an operating system is to pro-

vide abstractions to the underlying hardware, and it becomes even more important for sensor

networks due to their heterogenous nature. Suitable software modules and device-drivers are

included in the OS for sensor nodes to facilitate the interaction with peripherals such as sensors,

actuators and the radio transceiver.

• Power Management: As sensor nodes are powered using batteries, they have a limited energy

source and managing the energy requirements becomes another important responsibility of the

operating system. In addition to providing explicit power-management control to applications

to turn peripherals off when not in use, the operating system can also implicitly turn-off the

unused devices even when applications are not designed to do so.

• Resource Management: Sensor nodes are resource constrained in terms of processing power,

memory size and networking bandwidth, so the operating system ensures that resources are

fairly used among various tasks. If some cases, the operating system can also enforce fair

resource-usage by preempting a misbehaving task.

• Handling Communication: The operating system provides a configurable and modular com-

munication stack to enable the applications to interact with the other devices. To achieve this

goal, operating systems include Application Programming Interfaces (APIs) to allow program-

mers to use various communication protocols with ease.

• Task Scheduling: The operating system is also responsible for scheduling the tasks on a sen-

sor node while considering the application requirements such as minimizing latency, ensuring

fairness and maximizing the throughput. Applications with real-time constraints may require a

real-time scheduler and the operating system can provide support for such a scheduling mech-

anism.

Various specialized operating systems have been developed in the past such as TinyOS [56], Con-
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tiki [57], Mantis [58], LiteOS [59] or Nano-RK [35]. There OSes address the requirements listed above

in different ways.

TinyOS [56] is one of the first and one of the most popular operating systems that is designed

for sensor nodes. TinyOS is small in size (about 400 bytes kernel) and provides a component-based

interface for specifying the interaction of various devices. A TinyOS configuration consists of the

application, the corresponding operating system services and the scheduler in form of components.

All the components are glued together to form a static/monolithic image that runs on a sensor node.

A TinyOS component is formed with a composition of three abstractions: commands, events and

tasks. Commands are used to trigger other services and events, in turn, signal their completion.

In this way, TinyOS has an event-driven design with asynchronous events to handle computational

entities that are called tasks. Early versions of TinyOS had a simple run-to-completion based First-

In First-Out non-preemptive scheduler. A newer version of TinyOS with TOSthreads [60] supports

a threading model with more flexibility. TinyOS uses the NesC [61] programming language for the

specification of components and their concurrency model.

On the other hand, the Nano-RK [35] operating system has a time-triggered and event-triggered

execution model. The main highlight of Nano-RK is its prioritized resource-kernel [62] approach

where the kernel can enforce resource-usage limitations upon different tasks in the system. For ex-

ample, if a task uses more processor cycles than its pre-allotted share, then the kernel can preempt

the task and allow its execution only in its next cycle.

The resource-kernel model of Nano-RK is capable of ensuring fair-sharing of resources

among competing tasks; that is why we use Nano-RK as the base operating system for

building the Nano-CF framework for multiple network-level applications on a sensor net-

working infrastructure as described in Chapter 4.

Contiki [57] is another popular operating system with a large user-base and support for the 6Low-

PAN [9] networking standard. Contiki has an event-driven execution model like TinyOS, but has a

modular design with support for dynamic loading/unloading of modules. Contiki supports both

synchronous and asynchronous events, that helps in achieving a better timeliness behavior where

synchronous events get scheduled immediately and asynchronous events follow a queue. Contiki

also supports a rich set of communication protocols including various medium access and higher-
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layer network protocols. We have used Contiki in this dissertation for the implementation of the

Network-Harmonized Scheduling protocol described in Chapter 7, mainly because it supports varied

hardware, supports full Internet Protocol (IP) connectivity and makes network simulation convenient

with the COOJA [63] simulator.

2.2.2 Programming Support

Programming a new hardware device is typically a significant deterrent particularly for researchers

not familiar with embedded systems programming, and the difficulty increases several-fold if the

devices need to communicate, for instance, to implement a distributed application. In the context of

embedded systems and wireless sensor networks, usability and programmability are closely related

as the user interaction with the devices happens mainly via programming interfaces rather than a

graphic user interface as in the case of general-purpose computers.

The most basic way of programming sensor nodes is to connect them individually to a computer

via a serial connection and uploading an application-specific firmware. Programming a large net-

work in this manner can be very time-consuming, as it may involve collecting all the sensor motes

from the field of deployment, programming them and then deploying them back. This method of

programming is referred to as Manual Programming in the classification we provide later. On the

other hand, to facilitate a faster and large-scale application deployment, it is useful to program the

network as a whole at a higher level. This mechanism of programming the network at a larger- or

macro-scale is referred to as macro-programming. The spectrum of macro-programming approaches

range from delivering application-specific virtual machines to individual nodes like in Matè [32] to

an abstract high-level programming like Logical neighborhoods [64] or Regiment [31]. Typically, the

ease of programming increases with an increase in abstraction but it comes at the price of flexibility.

We, therefore, divide the different programming approaches into following classes:

• Manual Programming: Programming sensor nodes over bare metal or an operating system by

manually connecting a sensor node to a computer and flashing a firmware.

• Over-the-Air Virtual Machine: Creating a node-level virtual machine and delivering the binary

or byte-code to the nodes over-the-air.
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Figure 2.3: Ease of programming vs. flexibility in various classes of programming approaches.

• Middleware: Allowing the development of network-level applications as one application while

hiding the network complexities.

• Query-based approaches: Writing SQL-like queries to request simple/aggregated data from

the network.

• Data Reporting: Storing all the sensor readings periodically in an external database and ac-

cessing them when required. It is typically used in high-level Service-oriented Architectures

(SoA).

Figure 2.3 shows different classes of programming methods for sensor networks. The ease of pro-

gramming increases from left to right, but the flexibility follows the opposite direction. Most macro-

programming schemes are limited to application-specific network operation, and our proposed frame-

work called Nano-CF (described in Chapter 4) supports multiple independent applications with sev-

eral resource optimizations at the node- and network-level. A more detailed discussion of the various

state-of-the-art macro-programming approaches is provided in Chapter 3.

Reprogramming the devices or adding new applications after the devices have been deployed is

still an active research challenge, and require a paradigm shift in the way devices are programmed

and applications are installed. This is particularly challenging because the number of sensor devices

and their ability to interact has been steadily increasing. Hence, providing the support for dynamic

application deployment and its standardization is of paramount importance for increasing the out-

reach of smart sensing devices to diverse users, much like the concept of app-store has revolutionized

the way we use mobile phone today.
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Figure 2.4: A generic protocol stack for sensor networks.

2.3 Communication and Networking

As mentioned earlier, radio usage is the most energy-consuming process on sensor networks and

designing efficient communication mechanisms is of paramount importance to reduce the overall

power consumption. Existing communication protocols such as Bluetooth [65] and Wifi [66] are

not directly applicable and require a radical design-rethinking at all the layers of the communica-

tion stack. A widely-accepted and generic layered structure for communication in sensor-network

proposed by Akyildiz et al. [67] is shown in Figure 2.4, that covers various layers starting with an

application layer at the top and a physical layer at the bottom. This protocol stack is similar to the

Open-System Interconnect (OSI) model [68], but it also includes some specific management planes

for power management, mobility management and task-management for sensor networks.

In sensor networks, the application layer can consist of one or more network-level sensing and

maintenance tasks such as data-dissemination [69, 70], network security [71], localization [72] and

also time-synchronization [73, 74]. The transport layer is responsible for maintaining the flow of

data from a source to a sink node, and the network layer is tasked with routing of data-packets

over a multihop network. The data-link layer is responsible for negotiating the medium access for

each node with as little energy-consumption as possible. The bottom-most physical layer in sensor

networks is typically accomplished using a low-power radio transceiver that can operate with a few

milliamperes of current consumption. The use of a simple modulation scheme with spread-spectrum

techniques and lower data rates are some of the design options that allow a low-powered physical-
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layer operation in sensor networks.

Sensor network deployments can be spread over large areas so it may not be practical to have

a star-topology where a resource-rich access point interacts with mobile stations. A mesh-network

(as shown previously in Figure 1.1 and later in this chapter in Figure 2.7) is more feasible where

all the devices participate both as data-sources and routers. The nodes in such a network can es-

tablish intermittent connections with other devices in case of frequent/nomadic mobility. On the

other hand, stable and long-term links can also be established for relatively stationary devices as in

the case of building/infrastructure monitoring applications. Such a mesh-network is also called an

ad-hoc network as various devices can communicate among each other for short or long durations,

depending on the mobility patterns. In order to ensure the interoperability among the diverse sensor

networking devices, several communication standards have been proposed, and have already gained

significant popularity. The Institute of Electrical and Electronics Engineers (IEEE) has defined the

IEEE 802.15.4 [75] standard for low-power Personal-Area Networks (PAN), that covers the physical

and medium-access layers. ZigBee [76] is a corresponding industry consortium that implements and

promotes the IEEE 802.15.4 standard. With wide availability of ZigBee compliant low-power devices,

IEEE 802.15.4 has become a de-facto standard specifically for the physical layer in sensor network

deployments and test-beds.

We now describe some data-link and network layer protocols that relate to the approaches pro-

posed in this dissertation.

2.3.1 Medium-Access Layer Technologies

Radio transceivers on sensor nodes are designed to be low-powered, but even listening for packets

costs energy, and this makes it impractical to have an always-on operation to wait for incoming pack-

ets. So the medium access layer has to be designed in such a way that efficient communication can

be accomplished even if a listener node is off for the majority of the time and is not receiving packets.

Secondly, in a shared medium implemented with wireless channels, a listener cannot receive packets

from more than one transmitter at the same time because the packets can collide in the medium, and

the receiver may not be able to correctly decipher the data from either packet. Although, some pack-

ets can be received correctly due to the capture effect [77], but in general, collisions lead to packet loss

in wireless networks. Thirdly, radio transceivers are simplex devices i.e., it is typically not possible
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Figure 2.5: Low power listening mechanism used in the B-MAC protocol.

for a radio to transmit packets and listen for packets simultaneously in the same frequency band.

Different approaches have been designed and proposed for Medium-Access Control (MAC) so

that several devices can share a common communication channel among themselves and achieve dif-

ferent performance trade-offs with respect to energy consumption, network throughput, and latency.

A large number of sensor networking MAC protocols are inspired from Carrier-Sense Multiple Ac-

cess (CSMA) protocols, where a transmitter listens to the channel (carrier-sense) before transmitting a

packet. If it listens some activity on the channel implying another transmitter is already transmitting,

it waits for sometime before attempting to transmit again. This helps in making sure that no two

devices transmit at the same time. In sensor networks, medium access is typically used with radio

duty-cycling so that the radio is not required to be kept on at all times.

One of the popular MAC solutions for sensor networks is called B-MAC [78], which is imple-

mented based on the Low-Power Listening (LPL) concept as shown in Figure 2.5. A listener turns

on its radio for a short duration after every check interval (usually 100 ms); if it hears any transmis-

sion on the channel then it continues to listen, otherwise turns off itself and listens again after the

check interval. A transmitter should transmit a preamble for a time-length equal to or greater than

the duration of the check-interval to ensure any listener in its radio-vicinity recieves its packet, which

is transmitted immediately after the preamble.

Sensor-MAC (S-MAC) [79] is another popular CSMA-based protocol that saves energy by main-

taining localized schedules and neighbors coordinate their listen and sleep cycles via exchange of

SYNC messages. Collision avoidance is achieved by using CSMA-like approach. In WiseMAC [80],

nodes listen to the radio channel periodically for short durations (a process called channel-sampling)

in a fashion similar to the LPL mechanism. In contrast to B-MAC, WiseMAC lets an access point
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Figure 2.6: Time-division multiple access protocol

know the sampling schedule of all the nodes such that the access point starts the transmission at the

right time and sends a significantly short preamble, thus saving energy. The sampling schedule of all

devices is learned via acknowledgements received by the access points.

In contrast to CSMA, another approach to medium access can be based on Time-Division Multiple

Access (TDMA) (briefly illustrated in Figure 2.6), where each device has a pre-decided slot to transmit,

and the listener nodes know when to turn on their radios to listen to incoming packets. TDMA

requires a complex setup phase in case of multi-hop topologies and may not be suitable for dynamic

topologies. Moreover, there is a requirement of clock-synchronization among all the devices that

causes additional overhead.

Traffic-Adaptive MAC Protocol (TRAMA) [81] is a TDMA-based algorithm that provides both

random-access and scheduled-access periods. The devices are assigned slots in the scheduled access

periods based on the neighborhood information within two-hop distance and the traffic in one-hop

distance. The random access period is used for signaling such that the nodes can be synchronized and

the slots can be assigned based on the neighborhood. Similarly, RT-Link [82] is another TDMA-based

multihop protocol that instead of a contention/random access mechanism, uses an externally gener-

ated signal that acts as a global-beacon for time-synchronization. Each device has a special hardware

that receives this signal and each device is assigned slots such that no overlapping transmissions oc-

cur. The motivation behind multihop networks and correspoding challenges are briefly described in

the next section.

The Network-Harmonized Scheduling (NHS) protocol proposed in this dissertation is a

TDMA-based protocol that not only handles medium access control, but also coordinates

the packet transmission across a multihop network.
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Figure 2.7: A symbolic representation of a sensor network where circular discs represent sensor
nodes and dashed lines represent wireless links. The wireless links are the edges and nodes are
the vertices of the network graph.

2.3.2 Routing and Data Collection

Medium Access protocols are responsible for the coordination between several devices when they at-

tempt to use the wireless channel for transmission to ensure no two devices transmit simultaneously.

Once the network is larger than what can be covered within the radio range of communication, mul-

tihop networking is required where data from a leaf node has to be delivered to a root node. Ensuring

end-to-end connectivity while minimizing the energy consumption is one of the most important chal-

lenges in the domain of sensor networks.

In general, a source node can transmit the sensed data to the sink either directly via single-hop

long-range wireless communication or indirectly via multihop short-range wireless communication.

However, long-range wireless communication is costly in terms of both energy consumption and

implementation complexity for sensor nodes. In contrast, multihop short-range communication can

not only significantly reduce the energy consumption of sensor nodes, but also effectively reduces the

signal propagation and channel fading effects inherent to long-range wireless communication, and is

therefore preferred.

28



2.3. Communication and Networking

Gateway'or'
Sink'Node'

Children'
Nodes'

Parent'Node'

Hop'1'

Hop'2'

Figure 2.8: The network topology from Figure 2.7 converted to a spanning tree with the help of a
routing protocol. The thick arrows show a data path from a leaf-node to the sink.

A sensor network is then organized in the form of a graph where each vertex corresponds to a

sensor node, and each edge corresponds to a wireless link between two nodes. In a less generic form, a

network graph can be organized in a directed or an undirected tree, where data can be collected at the

sink node through various optimized paths or routes from all the nodes’ paths to a sink. To illustrate

the basic idea and terminology used in routing, we show an example sensor network in Figure 2.7,

where sensor nodes are represented by circular discs and a wireless links by dashed straight lines

indicating a bi-directional communication link. The network is in the form of a graph, and the overall

structure of the network with its links is also referred to as network-topology or topology. A routing

protocol can help reduce the network graph to a tree-like topology called a spanning tree in graph

theory, rooted at the gateway or the sink node as shown in Figure 2.8, such that each node has one

unique route to the gateway. Such a spanning tree allows any intermediate node to know the next

node in the tree-hierarchy to forward the data to. The distance of a node from the sink in terms of

number of edges is referred to as hop-distance or hops. A node at an ith hop collects data from one or

more nodes connected to it at the next ((i + 1)th) hop. The former is referred to as a parent-node and

the latter are their children. The nodes in a spanning tree without children are called leaf-nodes.

There are, however, several design issues that are unique to routing in sensor networks [83], and

are outlined below:
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Node Deployment Sensor nodes can typically be deployed in harsh climates and remote terrain.

Even urban sensor deployments involving structural-health monitoring or industrial sensing

can suffer from harsh operating conditions, where deployment is challenging. Nodes can be

deployed randomly over a uniform field such as in agriculture monitoring or carefully placed

at specific target points such as while monitoring the health of a bridge. In both such types of

deployments, creating a optimal topology is a challenge. The routes have to be established such

that all the nodes have connectivity.

Network Load Balancing While ensuring connectivity is important, it is possible that some nodes

may have to handle more packets to forward than the others, thus leading to more energy

consumption. If possible, the routing scheme is entrusted to find such bottleneck nodes and

create new routes to ensure load balancing.

Fault Tolerance Wireless links can be intermittent, unreliable and asymmetric requiring networking

protocols to provide redundant links or the transport layer to trigger retransmissions. Routing

takes care of such issues depending on the application requirements such that varied degrees

of fault-tolerance can be provided.

Scalability Routing protocols either establish static links at the start of the network or periodically

refresh the routes or use flooding mechanisms where data is forwarded and re-forwarded to

all the nodes in the network. In the case of new devices joining the network or an old device

leaving, the network performance is different based on the type of routing used.

Data Aggregation If data needs to be collected at one or more sink nodes in the network, the number

of packets to be forwarded by a node grows exponentially with the depth of the node in the

network tree. The routing layer can make it possible to aggregate data through the network

so that the number of packets do not accumulate at each hop. For example, if the application

requires basic aggregates such as Max, Min, Sum or Average, then instead of sending all the

raw data, each node can only forward a local aggregate based on the data received by it.

AdHoc On-Demand Vector (AODV) [84] and its variants are one of the most popular approaches

to establish routes by finding shortest paths in the network graph. Such a routing protocol is then

used for collection of data from all the nodes in the network at a root node. Resource-constrained

sensor networks have severe energy constraints so protocols such as Trickle [85] adapt the rate of
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transmission of updates to prevent incessant flooding in the network. For example, Collection-Tree

Protocol (CTP) [86] finds routes using and AODV-like approach and then adapts them dynamically

using a rate-control mechanism inspired from Trickle.

For implementing the Nano-CF programming framework, we used the BMAC-protocol with the

AODV routing protocol to deliver applications to remote nodes and to collect data from them as well.

Further details of the related protocols are provided in Chapter 3.

Summary

In this chapter, we provided a brief background on various technologies that are used in sensor net-

works in general. In particular, we stressed the ones we employed in the solutions proposed through-

out this dissertation. We covered a wide range of technologies from hardware platforms to operating

systems and networking protocols.
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Related Work

In order to acheive the goal of supporting and optimizing the execution of multiple applications on

sensor networks, we have proposed a three-fold approach that includes a programming framework,

an optimization scheme to eliminate redundancies and a network protocol to coordinate packet trans-

missions. A large number of projects has been undertaken in the past in these three broad domains.

Hence, in this chapter, we summarize the existing research addressing the following areas while con-

trasting them with our proposed approach.

(a) programming of sensor networks,

(b) redundancy elimination, and

(c) networking protocols.

3.1 Programming Sensor Networks

Designing and deploying applications on a sensor network can be challenging because of the ge-

ographical spread of the sensor nodes, as well as the heterogenous nature of the hardware and

software. In a traditional sense, the sensor networking applications are programmed at the oper-

ating system level, where a programmer may have to implement a distributed logic while having
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working with very low-level details. This method makes it difficult to create large-scale applica-

tions quickly, especially for users from non-computer-engineering backgrounds. Researchers have

long focused on developing programming tools that can help users from varied backgrounds to de-

velop applications for sensor networks at a macro scale; this process of programming a set of nodes

in a network is typically referred to as macro-programming. There is a wide spectrum of such macro-

programming tools serving varied applications that range from programming frameworks designed

to deploy application-specific virtual machines on sensor nodes to high-level programming abstrac-

tions that provide an abstract view of the network to a programmer. We will now discuss some of

these programming tools classified into programming frameworks, middleware and programming

abstractions.

3.1.1 Over-the-Air Programming Frameworks

Several programming frameworks have been proposed in the past that allow a user to deploy ap-

plications on sensor nodes over the wireless network rather than flashing a firmware by connecting

a node individually to a computer. This method of programming sensor networks is referred to as

over-the-air or in-network programming. Matè [32] is one of the earliest proposals that delivered an

efficient virtual-machine to each sensor node running TinyOS, rather than sending an entire binary

of a few kilobytes over the air. Virtual-machines in Matè are created using a special programming

language called TinyScript such that a typical sensor networking application can fit within a few tens

of bytes. A virtual machine is received and executed using a byte-code interpreter running on top

of TinyOS instances on each sensor node. A simplified architecture of Matè is shown in Figure 3.1.

An application created by a user is converted to byte-code, which is in turn split into one or more

code-capsules of 24 bytes each, such that one capsule can fit in one packet. The capsules correspond-

ing to an application are sent to sensor nodes over the wireless network and then they are stitched

again to form the virtual machine. The Matè byte-code interpreter then executes the virtual-machine.

The overall design and architecture of our proposed Nano-CF framework is similar to Matè, but in

contrast, Nano-CF supports multiple applications and allows a programmer to specify a set of nodes

that receive and execute a particular application.

Kairos [87] is a similar macro-programming approach that allows a programmer to write a high-

level code specifying node interactions. It provides constructs like get available nodes() and sleep()
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Figure 3.1: A simplified architecture diagram of the Matè virtual machine for sensor networks

to identify the presence of nodes in a network and control their active/sleep behavior, respectively.

The high-level code is broken into node-level binaries that are delivered to all the nodes in the net-

work.

More recently, solutions like PyoT [2] provide macro-programming support based on popular and

standard protocols like 6LowPAN [9] and the Constrained Application Protocol (CoAP) [88]. Since

it is built on top of well-known protocols, PyoT is suitable for rapid and interoperable application

development. PyoT uses the Python scripting language as the shell scripting interface to create ap-

plications. It also provides a graphical web-interface for visualizing the network status and polling

sensor values directly. The architecture of PyoT is shown in Figure 3.2. A PyoT worker node manages

one sensor network and also acts as interface link between the sensor network and the Internet. The

control center manages the overall network and provides the user with a view of the network through

the web-interface.

The scheme conceptually closer and nearly contemporaneous to our Nano-CF programming frame-

work is SenShare [3, 89] that is also designed to support multiple applications on a sensor networking

infrastructure. SenShare supports multiple TinyOS applications on sensor nodes through a hardware

abstraction layer that assembles low-level components into binaries to be executed on the underlying

operating system. One of the major disadvantages of SenShare as compared to Nano-CF is that it has

only been implemented for the Imote2 [90] sensor nodes running Linux operating system and it may

be impractical for low-powered devices. Nano-CF, on the other hand, allows multiple applications
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Figure 3.2: Architecture diagram of the PyoT macro-programming solution, as presented in [2]
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Figure 3.3: Architecture diagram of SenShare multi-application programming framework, as pre-
sented in [3]

to be deployed and supported on resource-constrained sensor networks, as recent versions of sensor

node operating systems have support for multiple tasks [60, 35].

The process of reprogramming all sensor nodes incurs a large overhead as multiple application

packets may need to be sent to individual nodes. Compressing the size of reprogramming packets

[91] and incrementally programming each node [92] are some of the techniques proposed for reduc-

ing this overhead. The frequency of reprogramming the nodes is typically lower than that of data

communication, hence it is more beneficial to optimize the resource consumption during the normal

use of the network.
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3.1.2 Middleware Approaches

Addressing the challenge of programming sensor nodes from a higher perspective, other works such

as [93, 94, 95] describe middleware for facilitating the development of sensor networking applications

on individual nodes. One of the most common middleware systems for generic computer systems,

CORBA [96] hides the location of remote objects and hides the application’s interactions with the

remote objects. The Lime middleware [97], designed for mobile and ad-hoc networks, abstracts the

underlying network and uses tuple-based interaction with the devices. Similar middleware have

been designed for sensor networking, where network details are hidden. Often times, middleware-

based approaches are limited in the flexibility of reprogramming, but act as an interface layer between

sensor-networking primitives available to the applications and the underlying networking infrastruc-

ture. For example, Mires [94] is a message-passing middleware with a publish/subscribe model for

collecting data from the sensor network; a high-level user application can select (subscribe to) a de-

sired data that is published by the sensors. The lower level intricacies of connecting the sensors,

establishing the routes and collecting the data are handled by the middleware, and are transparent

to the user. This is similar to the DSWare approach [95] that allows a user-application to query the

sensor network by creating an event in a high level programming language.

TinyLime [93], shown in Figure 3.4, is inspired from the Lime middleware, and is adapted to a

more complex scenario where mobile base-stations collect data from a network of stationary sensor

nodes. The users (clients) use a client host to connect to one or more base stations to exchange data

in the form of Lime tuples. The base station then exchanges the information with the motes that are

directly connected to it.

Query-based approaches for reprogramming sensor networks such as [33, 98] provide declara-

tive programming expressions for processing data gathered by the sensor nodes. These schemes

are useful to systems where different types of data are required frequently for monitoring and in-

ference purposes. TinyDB [33] allows the use of SQL-like queries for getting aggregated responses

from the sensor network in a transparent fashion. A TinyDB query consists of a clause of the type:

SELECT-FROM-WHERE-GROUPBY. The functions of these clauses are similar to that of SQL. A user can

specify a query in the following form:

SELECT nodeid, light, temp
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Figure 3.4: Architecture of the TinyLime middleware showing simplified interactions between a
client, a mobile base station and the sensor motes.
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TinyDB also has in-network aggregation mechanism to reduce the amount of data and number of

packets that needs to be exchanged in the network. Such in-network query processing approaches

are advantageous in applications where frequent processing of new but simple queries is required.

These schemes are convenient to use, but not very scalable, as individual programming of every node

may be required to implement a new query.

Most of the middleware solutions discussed so far, hide the network interactions from a user,

and provide a convenient user-interface to access the required information from the network. Such

schemes are, however, limited in the flexibility and are suitable mainly for data collection applica-

tions. They are not appropriate if the applications require more control (for example, changing the

device interactions in the network). Moreoverer, access from multiple users can be implemented

only in terms of sequential queries, which limits the possibility of efficiently using the underlying

multi-tasking operating systems such as Contiki or Nano-RK.
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3.1.3 Abstractions for Macro-programming

High-level programming abstractions like Regiment [31] and Hood [99] allow programmers to view

the network as a set of abstract subnets based on neighborhood, proximity to an event, sensor reading

or a combination of these. These abstractions allow convenient selection of nodes for reprogramming,

data collection, and aggregation; thereby optimizing the overall communication in the network. Reg-

iment is a macro-programming language and a runtime framework that presents the sensor network

as a set of distributed, time-varying signals to a programmer. The signals can correspond either to

the sensor readings, results of localized computation/signal processing or an aggregate value across

a set or region of sensor nodes. Regions can be defined in terms of geographical area, network topol-

ogy or capabilities (e.g., all the nodes with humidity sensors). Regiment uses a Functional Reactive

Programming (FRP) model that includes a function rmap(f,s) to map a function f to a region of all

sensors given by s.

On the other hand, the Hood programming abstraction allows a node to identify a subset of nodes

around it based on a variety of criteria and share data with those nodes. Hood includes several

programming interfaces that allow powerful-yet-simple interactions among devices to help in im-

plementing large-scale and distributed applications. These interfaces allow setting of key properties

of the network, such as attributes (e.g., sensor type), neighborhood size, read operation and write

operation with other sensor nodes. Hood also incorporates a code-generation tool that generates the

interfaces using the generate commands in nesC.

Logical Neighborhood [64] is also another powerful abstraction that replaces the conventional

physical neighborhood defined based on communication range with a logical one, where the prox-

imity of a node can defined by applicative information. Logical neighborhoods are specified declar-

atively using the specifically designed Spidey language. Our proposed framework, Nano-CF, can

easily make use of such abstractions for subnet selection and also support multiple applications si-

multaneously over the whole network.
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Figure 3.5: Finding the overlapping instants to collect samples across sensing windows of different
tasks as proposed in [4]

3.2 Redundancy Elimination across Applications

Redundancy elimination is a common optimization strategy in compilers, but it is mostly limited

to the case of a single program. Several compiler optimizations have also been designed for multi-

processor architectures for enhancing parallelism in sequential code [100, 101]. The direct application

of such compiler techniques, however, is not possible in the case of sensor networks, because of the

distributed nature of the network and the correlation of data to the physical environment and, hence,

the physical location. A compiler for network-level programming of sensor networks should take

into account the node characteristics including the hardware limitations and sensor peripherals, and

the network interactions.

Recently, there has been interest in using sensing infrastructure for multiple concurrent applica-

tions. The scheme proposed in [4] describes a system called Task-Cruncher for sharing sensor read-

ings among multiple tasks running on each sensor node by aligning sensing requests according to the

periods, and sensing at time-instants providing the maximum overlap as shown in Figure 3.5. The

system also reduces the communication incurred at a sensor node by combining data from each sens-

ing task. The redundancy in computation is minimized by optimally merging the data-flow graph

corresponding to each task. Such an optimization, however, is limited to an individual node. At a

network scale, the interaction between the multiple tasks on multiple nodes, requires a higher-level

framework for efficiently reducing the resource consumption in computation as well as communica-

tion. The solution proposed by the authors is a runtime algorithm that can significantly increase the

scheduler and timing complexity on a sensor node. Moreover, that work is limited to finding overlap

in case of one sensor per node, and efficiently extending it for multiple sensors is not trivial.
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Figure 3.6: Simplified architecture diagram of the Integrated Concurrency and Energy Manage-
ment (ICEM) approach, with Power Manager and Arbiter modules

Redundant sampling requests from different applications can also be handled at the device-driver

level without major change in the application code. Integrating Concurrency and Energy Manage-

ment (ICEM) [102] supports energy management at the device-driver level by providing explicit in-

terfaces called power-locks, which applications can leverage to minimize the energy consumption.

The concurrency and synchronization issues are transparently handled by ICEM. The power locks

are managed by a module called Arbiter that manages the queueing policy, and interacts with the

Power Manager as shown in Figure 3.6. In contrast, our approach of redundancy elimination across

applications not only shares the data from external devices, but also simplifies the execution on a

node by eliminating the complexities arising from a scheduler.

Furthermore, techniques for eliminating redundancies in sensor networks can also find inspiration

from the field of database research, as several optimizations have been developed in the past to iden-

tify redundant queries. The approach of detection of common expressions proposed in [103] creates

intermediate requests that assist reuse of intermediate data to save redundant accesses to overlap-

ping sections of a relational database. Query optimization for detecting common data, as described

in [104], also provides an improved solution based on interleaving smaller chunks of query execution.

These schemes are limited to parallel or temporally close queries, and optimized for large data-sets.

A window-based solution is proposed in [105] to share data among independent dynamically-issued

queries. Similar schemes may be applied to reduce redundancies across multiple queries in query-

based approaches for sensor networks (like [98, 33]) allowing temporal reuse of data-subsets. How-

ever, a node-level mechanism is still required to eliminate redundant sensing requests from different

applications or queries.
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Figure 3.7: An overview of the Unified Broadcast approach as shown in [5]

3.3 Network Coordination

Reducing the radio-usage for data delivery in wireless sensor networks is a well-researched area. The

solutions cover various aspects ranging from link-layer protocols to network flooding and distributed

TDMA solutions. Network resource-consumption in case of multiple applications is a new challenge

and not many works directly address this. The Low-Power Wireless Bus (LWB) approach [106] is

a flooding mechanism where data from one or more initiators is flooded across the network. Data

from each source is received by every other device, so it emulates a bus-like behavior even in the

case of multi-hop networks. LWB is based on Glossy [107], a flooding and synchronization approach

that leverages the property that multiple near-simultaneous and identical receptions at a node do

not interfere, and these packets can be demodulated with a high degree of success. However, the

flooding of packets, even if they are directed to a small subset of nodes, may lead to a high degree of

redundant transmissions. Moreover, in the case of multiple applications, the resulting overhead can

become prohibitively large.

In addition, there are many approaches that aim at reducing the amount of time that a node has

the radio in the ON state by defining a periodic wake-up scheme. Typically, these approaches are

distinguished between synchronous and asynchronous. In synchronous approaches, nodes agree

on a common sleep/wakeup schedule [108, 109] to save energy. However, in such schemes, nodes

may be forced to maintain several sleep/wakeup schedules if their neighbors have more than one

schedule. Asynchronous approaches are based on channel polling [78, 110]. In these protocols, nodes

periodically wake up and try to sense the channel, and if the channel is active, then nodes stay awake

to receive transmissions.
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Figure 3.8: Working of the DeSync Algorithm as illustrated in [6]: a) Random transmission sched-
ule, b) Nodes B and C adjust their transmission after listening to A’s transmission, c) Stable desyn-
chronized state.

Similar to our goal of batching data from multiple applications, the Unified Broadcast [5] approach

transmits unified data from various services running on a sensor node as shown in Figure 3.7. In Uni-

fied Broadcast, data from various services is transmitted when the number of accumulated packets

reaches a certain threshold. This approach is limited to sending data together from multiple services,

and therefore it is only valid for broadcast messages. In the case of multiple applications requiring

many-to-one communication, an additional protocol is required. The work by Hansen et al. [111] has

shown experimentally that it is still possible to preserve correctness of a set of representative WSN

protocols (such as FTSP [112], Trickle [85] or CTP [86]) when packets are delayed to minimize net-

work resource usage. In the case of Unified Broadcast, the periods of the applications are implicitly

detected when a second packet of the same protocol is requested to be transmitted. As we will see,

in this work, we explicitly take the period of the application into account to derive the harmonizing

period of communication.

The extreme of sleep/wakeup schemes is Time Division Multiple Access (TDMA), where nodes

only wakeup at the scheduled transmit/receive times, at a cost of tight synchronization and no flexi-

bility to changes. An interesting perspective to minimize the probability of collision such that nodes

transmit independently in non-overlapping time slots is proposed in Desync [6]. The Desync ap-

proach forms a round-robin TDMA schedule for reducing the power consumption. With the Desync

protocol, nodes are receptive to the neighbor node’s firing (transmission) period and they adjust their

offset equidistant from each other in a cyclic way. This mechanism is illustrated in Figure 3.8, where

starting with a random schedule of transmission of 5 nodes, the firing patterndesynchronizes over time,

implying that all the nodes are at evenly spaced in time. This scheme, however, is limited to single
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broadcast domain, and it is not easily extendable to multi-hop communication scenarios. TDMA for

multi-hop is typically achieved using 2-distance graph-coloring algorithms. Such protocols require

much more information about the network topology, and typically a central coordinator, as it is done

in RT-Link [82] or Distributed TDMA [113]. In contrast, our approach aims to achieve TDMA-like

efficiency without global state maintenance.

Summary

In this chapter, we outlined the related work addressing the challenges in programming sensor net-

works, eliminating redundancies and network coordination. We argued that supporting multiple

applications on a sensor network infrastructure is a relatively nascent research area. A few research

studies have addressed this issue but they target hardware and software platforms that differ sig-

nificantly from those covered in this dissertation. Furthermore, optimizing the overall resource-

consumption in sensor networks with multiple applications brings several other challenges that need

to be addressed from a different perspective.

In the next chapter, we describe our proposed Nano-CF programming framework that supports

multiple applications on resource-constrained sensor nodes.
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The Nano-CF Programming

Framework

Wireless Sensor Networks (WSN) are increasingly being deployed for large-scale sensing applica-

tions such as building monitoring, industrial sensing, and infrastructure monitoring. Often, sensor

networks are deployed in difficult terrains and it is expensive to re-program all the nodes individ-

ually, seriously limiting the manageability and usability of sensing infrastructure. Several macro-

programming schemes [32, 31, 98, 87, 114] have been proposed in the past to abstract away from low-

level details of sensor networking such as radio communication, analog-to-digital converter (ADC)

configuration, memory management and reliable packet delivery. Macro-programming systems typ-

ically provide a unified high-level view of the network, allowing programmers to focus on the se-

mantics of the applications to be developed rather than understanding the diverse characteristics of

underlying platforms.

A framework, which supports multiple users to write independent applications and execute them

seamlessly over a given sensor networking infrastructure, can be highly beneficial for sensor net-

work researchers and other interested users. Such a system should allow the users1 to use the sensor

network without being concerned about other users’ applications on the same network.

1We use the terms ‘users’ and ‘programmers’ interchangeably in this chapter, as the proposed solution is designed to sup-
port the users who are interested in programming the sensor network.
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4.1 Motivation

Many real-world deployments suffer from the problems of limited usability and low involvement

of users, either because (a) the sensors are expensive and it may not be practical to deploy them

with ideal or desired density, or (b) middleware support to allow seamless deployment of applica-

tions is inadequate. The former is addressed in [115] by sharing sensors among multiple deploy-

ments through human involvement and to address the latter, design requirements for a middleware

to support concurrent applications are outlined in [116]. A typical use-case of supporting multiple

applications simultaneously can be conceptualized on a university test-bed deployment like Sensor

Andrew [29]. Sensor Andrew is a sense-actuate infrastructure deployed across the Carnegie Mel-

lon University campus. The test-bed is used for inter-disciplinary research ranging from link-layer

protocol development to design and testing of applications such as building-energy estimation and

social-networking support systems like neighbor discovery.

All the nodes in Sensor Andrew need to be programmed individually for supporting any new

application. Furthermore, a user should contact a system administrator to re-program the network.

As this test-bed is an interdisciplinary effort, researchers from different technical backgrounds use

the infrastructure for their needs. To help better understand the goal of a middleware framework on

a sensor deployment, the following simple example can be used. Consider a task that monitors tem-

perature and humidity in various buildings regularly, and reports it to a civil engineering researcher

interested in constructing an air-flow map of the building. In another task, a building manager might

be interested in using the same infrastructure for a high-priority deadline-based fire alarm system.

Users from such diverse technical backgrounds may benefit from a middleware layer that helps them

program the network at an abstract higher level. A conventional macro-programming framework,

however, may not allow more than one user to independently program the sensor network for han-

dling these kinds of applications simultaneously. Furthermore, supporting multiple applications pose

the additional challenge of coordinating tasks on every sensor node and scheduling radio transmis-

sions. We propose a framework called Nano Coordination Framework (Nano-CF), to provide support

to multiple programmers to write independent applications for a given sensing infrastructure. The

framework seamlessly deploys those applications on the end nodes, and coordinates the packet de-

livery and data aggregation to reduce overall resource usage in the network.

The proposed framework has a global view of various applications running on the network and
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their mutual interactions, it batches the sensing tasks and radio-usage together, with the help of Rate-

Harmonized Scheduling (RHS) [41]. RHS proposes a scheduling scheme to maximize the sleep dura-

tion of a processor in case of periodic tasks. We adapt RHS to coordinate periodic radio usage tasks

such that the packets from several tasks can be transmitted together and smaller packets can com-

bined into larger ones . It is shown in the subsequent sections that significant savings in processor use

and packet transmissions can be achieved through such a batching mechanism. In Nano-CF, multiple

tasks are coordinated based on their timing parameters, within an allowable deviation as specified by

the user. The major contributions of our proposed coordination framework are as follows:

1. It facilitates the use of a sensor-networking infrastructure by multiple programmers for multiple

independent applications simultaneously.

2. It leverages the real-time and resource-centric features of an underlying sensor-network oper-

ating system for providing low-latency response.

3. It also improves the network lifetime by clustering processor usage and radio communication.

4.2 System Design

Nano-CF (Nano Coordination Framework) is an architecture for macro-programming with coordi-

nated operations in a WSN that encompasses multiple layers of a sensor networking system architec-

ture, as shown in Figure 4.1. A main consideration behind the design of our framework is to support

data-collection applications. Complex applications with actuation and distributed decisions can still

be supported. However, the complexity of the resulting program can be quite high as the framework

is not optimized for such programs.

A user interacts only with the top layer of our system, which we call the Coordinated Programming

Environment (CPE). For developing applications on the sensor network, a user only needs to write

programs using the Nano-Coordination Language (Nano-CL) we developed for Nano-CF. The re-

maining functionality of providing the abstraction from the lower-layer networking and topology is

handled by the CPE. The functions of the framework are divided into two main aspects: (i) to handle

control information including the re-programming packets, and (ii) to collect data from sensors. All

the three layers contribute towards the exchange of control information and data gathering. The CPE
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Figure 4.1: Layered architecture of Nano-CF

provides a programming interface to allow the user to write, compile and send programs over the air.

The CPE also returns the aggregated data corresponding to each the application independently to the

user. The CPE consists of a parser and a dispatcher. The parser or compiler converts the functional

definitions specified by the user to lower-level byte-codes and then the dispatcher sends them to the

deployed sensor nodes. We assume that multiple WSNs are connected to each other via the Internet,

where each WSN is composed of sensor nodes with at least one gateway node. The communication

from the CPE to the end nodes is handled through the Integration Layer (IL).

The Integration Layer encompasses all the nodes in the network and interfaces to the CPE through

a gateway node. The gateway node implements a forwarder function to associate a specific task to a

particular node and send corresponding programming packets to end nodes. An Aggregator module

spreads over all three layers in Nano-CF to gather data from children nodes at a parent node in the
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subnets and finally present the result to the user interacting at the CPE layer. In addition to packet

delivery and data aggregation, it is the function of the Integrator Layer to make sure that the timing

properties of the applications specified by the user are delivered to the OS. THE Integration layer also

handles the responsibility of batching tasks and packet transmissions together using RHS, details of

which are provided in Section 4.4.3.

The Runtime Environment of Nano-CF is implemented at each sensor node, above the operating

system. At the lowest layer of this architecture, each node runs a byte-code interpreter to translate

low-level instructions from the dispatcher to an executable form for the sensor node. Our architecture

is highly portable because we only need to change the code interpreter to support different sensor

network operating systems. Further implementation details along with the source code are provided

at the project website [117].

4.2.1 Nano-RK: a Resource-centric RTOS for Sensor Nodes

Nano-RK [35] is a Real-Time Operating System (RTOS) designed and implemented to support re-

source reservations for wireless sensor nodes with a multi-hop packet transmission. By leveraging

the timing characteristics of Nano-RK, such applications can be easily offered through Nano-CF. Vir-

tual energy reservations introduced in Nano-RK also help Nano-CF to manage energy consumptions

in each sensor node. By setting reservation values of (CPU, Network, Sensor) for runtime environment

in a sensor node, we can enforce the expected power consumption. Since most other popular sensor

node operating systems do not support multi-tasking by design, our current implementation is lim-

ited to Nano-RK. We aim to support more operating systems as future extensions of this framework.

We used FireFly [1] sensor nodes with the Nano-RK operating system for our framework. Each

node has an Atmel ATmega1281 processor and a Texas Instruments CC2420 Transceiver for IEEE

802.15.4 compliant wireless communication. In addition, a custom sensor expansion card can be con-

nected to the FireFly main board. In particular, the sensor expansion card offers voltage sensing,

dual axis acceleration, passive infrared motion, audio, temperature, and light. These diverse sensors

supported by the FireFly platform suit the goal of Nano-CF to deploy multiple applicatons simulta-

neously.
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4.2.2 Routing and Link Layer

Since Nano-CF requires byte-codes to be transferred to each sensor node in a multi-hop networking

environment, the framework requires the support of underlying routing and link layer protocols. For

the purpose of brevity, the details of the routing and MAC layer are not discussed in this chapter,

and a brief background of related technologies is provided in Chapter 2. Our framework is flexible to

operate over any transport layer as long as the gateway node is able to communicate with every node

through unique addresses. Many sensor networks employ modified versions of routing protocols

such as AODV [84] and DSR [118]. We used a DSR-based routing protocol with multicast for our

evaluation. Below the routing layer, the link layer is crucial for data delivery. Time-Division Multiple

Access-based RT-Link [82] and contention-based B-MAC [78] are two commonly used protocols with

Nano-RK. In our implementation, we opted for B-MAC, but the operation of Nano-CF is independent

of the lower-layer protocol used.

Based on this fundamental architecture, we now describe the three main components of Nano-CF;

Nano-CL in Section 4.3, the Integration Layer in Section 4.4, and the Runtime Layer in Section 4.5.

4.3 Nano-CL

We designed an imperative-style language called Nano-CL (Nano Coordination Language) that pro-

vides a unified interface to users for writing sensor networking applications. The language has been

designed to meet the following design goals:

1. The language should provide an abstraction from the lower-level details of the sensor network-

ing OS and radio communication.

2. The language design should facilitate the extraction of timing and communication properties

from user-written applications.

3. The syntax of the language should be simple and easy for non computer-scientists to understand

and program.

Each Nano-CL program is composed of two important sections: Job descriptor and Service descriptor,

as shown in Figure 4.2.
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JOB:

<service1> <nodes> <rate> <agg_func>

<service2> <nodes> <rate> <agg_func>

. . .

END

SERVICE:

<service1> <return_type>

/* instruction 1 */

/* instruction 2 */

. . .

END

Figure 4.2: A figure showing the format of a Nano-CL program, consisting of a job descriptor and
a service descriptor.

4.3.1 Service Descriptor

In Nano-CL, the user writes a service which is functionally equivalent to a task that is to be executed

on each node. Nano-CL consists of a set of primitives and programming constructs which provide

sufficient capability for programming the sensor nodes, as well as, an abstraction from the lower-level

implementation details of the operating system and radio communication. Each service descriptor

specifies the functionality of one task. The syntax for a service descriptor is similar to ‘C’-like se-

quential programming, where the user can make use of pre-defined library functions to interact with

the sensor hardware. The return value from the service corresponds to the data value that the user

wishes to collect from the sensor nodes, and, unlike the usual practice, more than one data value can

be returned. The framework converts the user program in service descriptor into byte-codes, which

are then sent over the wireless network to be interpreted and executed at each node.

4.3.2 Job Descriptor

A programmer can write multiple services and then each service can be mapped to a set of nodes

in the job descriptor. The job descriptor section can have more than one service call where each call

has the associated timing properties specified by the user. The timing properties include the periodic

rate at which the service should repeat at each node and the maximum allowable deviation from the

specified period. This deviation allows the framework to “batch” tasks together on sensor nodes,
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as well as, schedule the transmissions together to reduce the overhead associated with switching

on/off the radio and processor. This coordination of tasks and packet delivery across the network

is explained in Section 4.4. A set of nodes given by <nodes> in the Job Descriptor section contains a

list of all the nodes where the respective service should be executed. All the nodes in the network

are assumed to have a unique identity, and are also mapped to a physical location in the network.

The choice of having an explicit node-list to map the service is deliberate as Nano-CF can leverage

the adaptive selection of nodes using some of the techniques already proposed in the literature such

as [99, 119]. The routing layer can provide information about the network topology regularly, which

can be used to dynamically select nodes in the job descriptor. The role of the <agg func> is explained

in more detail in the next section.

4.3.3 Nano-CL Compiler

The Nano-CL compiler (nclC) converts the source code consisting of services into byte-code streams.

The compiler is designed with an aim to limit the byte-codes to a small subset of op-codes to allow

the code-interpreter task on the end-node to have a small memory footprint. nclC adds metadata

to the byte-code stream which helps the integration layer to extract information for batching the

computation and radio usage on each node. It also specifies the timing properties for network-wide

packet clustering. The metadata in the byte-code stream are generated from the information provided

by the user in the rate section of the job descriptor, which consists of the period of the task and the

allowable deviation from the period.

The following are the timing parameters handled by the compiler:

• T srv: Repeat rate of the current service.

• Dev srv: Allowable deviation in the repeat rate of the service.

The metadata are then sent along with the byte-code to individual nodes and are interpreted at the

integration layer and the code interpreter.
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4.3.4 Example Nano-CL Program

We provide a simple example of a Nano-CF program with two applications implemented using two

services, shown in Figure 4.3. The aim of the first application is to find the number of occupied rooms

in a building. We use a small network of four nodes at locations L1,L2,L3,L4 with one node in each

room. We assume that each of the nodes has light, audio and temperature sensors, and are placed in

such a way that the occupancy of the room can be determined by one node. Service occup monitor

returns value 1 if room is occupied or 0 otherwise. Occupancy2, in this example, is determined by

comparing an average of 10 samples of a weighted combination of light and audio levels in the room

against a threshold. Various parameters in this example are chosen based on experimentation, and

may not be applicable in all cases. In order to determine the number of occupied rooms from these

locations of sensors, we use the SUM aggregation function. In second service temp collect, the user

just wishes to collect readings of temperature every 50 secs. Please note that each of the services in

this example could be created and programmed to a given sensor infrastructure by multiple users

independently using Nano-CF. We have shown these services in a single program for ease of presen-

tation.

4.4 Integration Layer

The Integration Layer (IL) is responsible for byte-codes delivery, data aggregation, optimization of

task execution and data transmission on the nodes in the network. This layer, shown in Figure 4.4,

overlays across the gateway and the endnodes.

4.4.1 Byte-code Delivery

The Forwarder module on the gateway node forwards the byte-codes generated by Nano-CL to the

Receiver module on the end nodes. The primary features related to byte-code transfer are routing

table management and fault-tolerant packet delivery.

The routing table generated during the network initiation phase is used for communicating with

the end nodes. Sequence numbers, end-to-end acknowledgements and packet retransmissions must

2We are providing a simple example for understanding purposes. Precision of monitoring is not a goal of this example.
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JOB:

occup_monitor <L1,L2,L3,L4> <20s,5s> SUM

temp_collect <L1,L2,L3,L4> <50s,0s> NOAGG

END

SERVICE:

occup_monitor uint8

int16 light_sense, audio_level;

int32 sum;

int8 cnt, thresh;

sum = 0;

cnt = 10;

thresh=40;

for(i=1:cnt)

light_sense = gets(LIGHT);

audio_level = gets(AUDIO);

sum = sum + light_sense/100;

sum = sum + audio_level/100;

wait(1s);

endfor

if(sum/cnt > thresh)

return 1; // Return 1, if room is occupied

else

return 0;

endif

END

SERVICE:

temp_collect uint16

return gets(TEMP);

END

Figure 4.3: An example Nano-CL program with two services
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be used because one missing packet may cause the network to malfunction due to missing instruc-

tions. When end nodes try to reply to a request from their gateway, a broadcast storm problem may

occur. In order to avoid this problem, packets are scheduled with an offset as explained in the next

section. Each packet header contains additional fields like packet type, source address, destination

address, application identifier, re-programming packet sequence number, packet identifier and total

number of packets for this application.
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4.4.2 Data Aggregation

The Integration Layer covers gateway node and end nodes, and links the programming environ-

ment to the runtime layer on end nodes. Nano-CF supports in-network data aggregation through

the Aggregator module for reducing the packet overhead in the network. The aggregation scheme is

defined by the user in the Job Descriptor of the program. In our current implementation, we support

common commutative aggregation functions given in Table 4.1. The Aggregator handles different

Table 4.1: Aggregation functions supported in Nano-CF

Function Description

MIN Minimum value of data
MAX Maximum value of data
SUM Sum of all data
COUNT Number of replies received
NOAGG Forward all data to CPE

functionality at different levels. At the leaf nodes, the job of the aggregator is to send its own data. At

at an intermediate level in the network, it should combine its data with that from all the child nodes

according to the specified aggregate function. If the function is NOAGG, then the intermediate node

concatenates data from each of the child nodes along with the node id and forwards it towards the

gateway. The aggregator module at the gateway node communicates directly with the CPE and pro-

vides the aggregated data to the user. Whenever the Receiver module receives a new re-programming

packet from the gateway node, it coordinates with the runtime layer to manage multiple applications

from various users.

4.4.3 CPU/Data Coordination

The IL provides task/network coordination for saving energy on each sensor node. Because most

WSN applications are periodic, we utilize Rate-Harmonized Scheduling (RHS) [41].
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Figure 4.4: Architecture design of the Integration Layer of the Nano-CF programming framework
and its interactions with the other components in the framework.

Notation and Assumptions

Suppose that each sensor node ni is running a set of tasks, Γi, which is composed ofm tasks, τ1, τ2, ..., τm.

Each task, τj , is represented by (Cj , Tj , Dj), where Cj is its worst-case execution time, Tj is its period,

and Dj is its deadline. Tasks are arranged in a non-decreasing order of periods. The response time of

τj is denoted asRj . We assume that Tj is equal toDj . Each task τj may also generate aBj-byte packet

ρj every Pj ≥ Tj time units. Thus, ρj can be represented as (Bj , Pj). A packet ρj is not dropped at

the task level even if it may be lost in routing or the link layer. With Pj being the relative deadline

for sending the packet ρj , a separate communication task in each sensor node is used to send these

packets.

RHS clusters periodic tasks such that all task executions are grouped together in time to accumu-

late idle durations in the processor schedule. This accumulation helps each processor to get a chance

to go into a deep sleep state. This property is also applicable to packet transmissions, and sending

bigger concatenated packets will consume less energy than sending multiple packets more frequently.
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Composition with Rate-Harmonized Scheduling

Let packet response time be the time duration from sensing the environment to the instant when the

packet is delivered. Then, RPj denotes the packet response time of ρj . The harmonizing period of

tasks, TH, is chosen so that TH = T1 if Ψ = ∅ and TH = T1

2 if Ψ 6= ∅, where Ψ = {τj |Tj < 2T1, j 6= 1},
and Tj < Ti satisfies if j < i.

Now we prove some properties of RHS with data clustering.

Lemma 4.4.1. If a packet is generated by every job of τj , the worst-case packet response time, RPj , for any

packet ρj is bounded by 2Tj .

Proof. In the worst case, sensing the environment data can occur at the start of task execution, and

packet delivery can occur at the end of task execution. Therefore,RPj can be represented asRj+TH−
ε, where TH is added because a packet delivery can be delayed for TH−ε if a communication task just

misses the harmonization boundary. If ε is infinitesimal and TH is T1 as the worst case compared to T1

2 ,

RPj isRj +T1. SinceRj is bounded by Tj due to the implicit deadline of τj , RPj ≤ Tj +T1 ≤ 2Tj .

Corollary 4.4.2. Any packet, ρj , generated by τj will meet its packet transmission deadline if Pj ≥ 2Tj .

Proof. By Lemma 4.4.1, if Pj ≥ 2Tj , ρj will be delivered within Pj .

Theorem 4.4.3. If τc is the communication task and represented by (Cc, Tc), a set of given tasks, Γ, is schedu-

lable if
n∑
i=1

Ci
Ti

+
Cc
Tc
≤ 1

4
(4.1)

Proof. This follows from Lemma 4.4.2 and Theorem 4‡ from [41].

The result from Theorem 4.4.3 can be pessimistic because we strictly applied the packet deadline.

If Pj � Tj for τj and ρj , Equation (4.1) can be changed into
n∑
i=1

Ci
Ti

+
Cc
Tc
≤ 1

2
, which is the same as

the result from [41].

‡ Theorem 4 from [41] proves that a taskset is feasible under basic rate-harmonized scheduling if
n∑
i=1

Ci

Ti
≤ 0.5.
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Figure 4.5: A time-line showing the possibility of network-wide batching at various hops in the
network that can be achieved based on the Rate-Harmonized approach.

Energy-Saving with RHS

By using RHS for tasks, a processor in a sensor node can go into a deep-sleep state more frequently (at

TH boundaries). Applying RHS to packet transmissions allows each sensor node to send a merged

packet instead of sending packets whenever it has data in the queue. The amount of energy saved

by using RHS for tasks can be obtained from the length of the deep-sleep period given in the form

of (Csleep, Tsleep) [41]. The amount of saved energy can be derived from the number of transmitted

packets. The number of transmitted packets per unit time when we do not use RHS is given by
n∑
i=1

1

Ti
d Bi
Bmax

e, and by
n∑
i=1

1

TH
b Ti
TH
c · d Bi

Bmax
ewhen we use RHS. Here, Bmax is the maximum packet

size. We will evaluate these energy savings later.

4.4.4 Network-wide batching using RHS

As has been emphasized in earlier sections, a network programming framework like Nano-CF pro-

vides a global view of the network where efficient scheduling for packet aggregation at multiple hops

becomes feasible. An efficient approach to aggregate packets and schedule data has been proposed

in [120], however, we use Rate-Harmonized Scheduling across a network to save energy by reducing

the frequent turning On or Off of the radio. The main reason to use RHS is that it can help batch
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Figure 4.6: Probability of collision in a network when the nodes present in the network can trans-
mit uniformly at anytime within the period.

tasks together even if the periods of the various network transmissions mismatch. We use RHS in a

distributed fashion to batch packet events to be scheduled at the end of the harmonizing period TH .

However, if all the nodes in a subnet are scheduled to transmit at TH , multi-hop aggregation of the

packets cannot be supported, and packet collision will be high. However, if the packet transmission

at the kth hop can be offset to an earlier time, a parent node in the network can efficiently collect data

from its children.

For efficient data collection, it can be deduced that each node should transmit at an offset given

by:

Ωk = −(k × ttx) (4.2)

where, Ωk is the introduced offset of transmission from TH , ttx is the maximum amount of time a

node uses its radio while transmission and k is the depth of the node in the tree. Equation 4.2 gives

a simple schedule for packet transmissions in a multi-hop scenario. The nodes listen before they

transmit as shown in Figure 4.5 and this schedule can be maintained with some coarse-grained time

synchronization even over CSMA (Carrier Sense Medium Access) protocols. This allows collision

free scheduling in the network, whereas if the nodes can transmit uniformly anytime within the TH

duration; the probability of collision of any two packets with n nodes is given by:

Pc =
N !

(N − n)!×Nn
(4.3)
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where N is the number of possible slots in the harmonizing period, and is given by TH/ttx. Figure

4.6 shows the variation of Pc with respect to n for N = 100. It can be seen from the plot that the

probability of collision quickly increases with the increase in number of nodes.

In this section, we briefly described an approach that coordinates packet transmissions in a multi-

hop network to reduce energy-consumption and collisions. Further details of this approach are

provided in Chapter 7, where this coordinating mechanism is included in the proposed Network-

Harmonized Scheduling approach.

4.5 Runtime Architecture

The runtime layer of the framework consists of routing, communication and execution of byte-code

on individual sensor nodes. In our current implementation, each sensor node in Nano-CF uses Nano-

RK. The runtime environment has three types of tasks running on the OS: Receive (RX) Task, Trans-

mit (TX) Task, and a set of code interpreter tasks. There are pre-defined copies of the code-interpreter

tasks on each sensor node, corresponding to the number tasks to be supported in the framework. The

RX and TX tasks take care of reliable packet delivery and also implement the routing layer.

4.5.1 Routing

The framework requires at least a basic routing layer to ensure connectivity to all the nodes. In our

current implementation, we use a routing protocol similar to Dynamic Source Routing (DSR) [118],

but the system is flexible with respect to the routing layer as long as the higher layer is able to ad-

dress a node directly. The system can also support on-demand routing schemes, provided the user

generates a topology-map of the network before reprogramming the network nodes. The topology

map can be generated during the initiation phase and is beyond the scope of this manuscript. The

user can also make use of send() and receive() primitives available in the language for developing

ad-hoc routing schemes.
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Figure 4.7: Block diagram of the runtime layer of Nano-CF

4.5.2 Code Interpreter

As shown in Figure 4.7 the code interpreter receives byte-code from the Nano-CL compiler through

the RX Task. Table 4.2 lists the primary opcodes handled by the code interpreter. First, the code inter-

preter reads the metadata section of the byte-code and it saves the period (repeat rate) of the service

T srv and the deviation Dev srv into local variables. The interpreter has a local instruction stack and

it executes the byte-code corresponding to each instruction in a sequential manner. The interpreter

maintains a local stack of variables and a return stack to support function calls. It repeatedly executes

the byte-code with a period of T srv, and also listens for any new byte-code packets for node repro-

gramming. If the code-interpreter task receives a signal from the RX task that it has received a new

service to execute, it finishes the execution cycle of the current task, flushes the local stacks and copies

the new metadata and instructions into the local memory and restarts the execution.

We now propose a programming pattern named sMapReduce, inspired by the Google MapReduce

framework, for mapping application behaviors on to a sensor network and enabling complex data

aggregation. The proposed pattern requires a user to create a network-level application in two func-

tions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the

control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to

typical sensor networking operation which makes sensing and topological modalities accessible to

the user.

61



Chapter 4. The Nano-CF Programming Framework

Table 4.2: Commonly used Byte-Codes in Nano-CF

Instruction Type OpCode

Declare/Assign: DECL, AEQ

Arithmetic: ADD, SUB, MUL, DIV

Comparison: GE, LE, EQ, GT, LT

Constructs: IF, ELSE, FOR, GOTO

I/O: SET, GET, TOGGLE, CLR

Nano-RK: SEND, RECV, WAIT

Macros: LABEL, SECTION, END

4.6 The sMapReduce Programming Abstraction

In this section, we propose sMapReduce, a programming abstraction to divide the network-level user

program into explicit sMap and Reduce functions. Most of the sensor networking applications can be

visualised as accomplishing two important and largely disjoint functions, namely: i) Sense and com-

pute, ii) Forward and Aggregate. Isolating these functions at the programming abstraction level helps

a programmer not only to visualize the network operation with ease, but also to implement complex

application logic. The sMap operation maps the application behavior to the structure of the network.

Hence, we call our approach sMapReduce, which stands for structure-Map & Reduce. Structure means

the network topology and the configuration of nodes, including the hardware and software capabil-

ities. By application behavior, we mean the expected functionality of the structure of the network of

sensor nodes. The Reduce function handles the responsibility of data aggregation in the network-tree

topology.

In this regard, several abstraction concepts from the field of distributed computer systems can

be adapted to sensor networks. Sensor networking applications are typically less data-intensive but

data are highly correlated to physical location as nodes are deployed to sense the environment. In

addition, gathering data efficiently from the nodes in a multihop network requires aggressive packet

scheduling and aggregation to reduce the radio and computation resource-utilization. Our proposed

programming pattern is inspired from the MapReduce framework [121], a popular data-processing

approach in distributed systems. MapReduce framework requires a programmer to divide the pro-

cessing job into Map and Reduce functions. Map takes a key-value pair as input and converts it to
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1 smap ( service name , l i s t o f n o d e s , period ) {
2 for each node in l i s t o f n o d e s
3 temp value = gets (TEMP) ;
4 smap emit ( temp value , node id ) ;
5 end

(a) sMap Function

1 reduce ( data , l i s t o f n o d e s ) {
2 for each node in INNER . l i s t o f n o d e s
3 sum += data . temp value ; / / AGGREGATION
4 end
5 return sum ;
6 }

(b) Reduce Function

Figure 4.8: A simple example for collecting sum of temperatures from a wireless sensor network.

another intermediate key-value pair; Reduce does the job of combining this intermediate output from

Map. Researchers have adapted MapReduce for processing of data on large sensor networks [122]

with the premise that nodes carry huge amount of data and parallel computations are required in

some applications. We take this concept a step further by mapping behavior to sensor nodes based

on their logical and physical topology. The reduce concept is employed to implement aggregation

logic over the network tree.

4.6.1 The sMapReduce Programming Pattern

In this section, we describe our proposed sMapReduce programming pattern for developing applica-

tions on sensor networks. As has been emphasized earlier, the bifurcated operation of sensor net-

works into behavior mapping and data-aggregation motivates a corresponding split in network-level

programs. The user programs each application using two key functions: sMap and Reduce. The

main objective of sMap is to associate sensing and decision-making jobs to the sensor nodes and the

Reduce function handles collection of data through the network-tree while allowing the user to imple-

ment complex aggregation logic. sMapReduce is a higher-level programming pattern that maintains

its expressiveness though disjoint sMap and Reduce functions.

A simplified example of an sMap function is shown in Figure 4.8a. The sMap function takes three
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input arguments: service_name is the identifier of the application to be executed on the sensor nodes,

list of nodes is a handler for data structure (or a database) containing topology and tree information

of the nodes, and period is the period in ms at which the application repeats itself. The information

about the sensor nodes, their hardware and location is compiled and stored in a data-structure during

deployment. Most sensor network deployments are done manually, hence the mapping of physical

location to a node id can be obtained in this phase. Once such mapping is available, a programmer can

refer to a node through its unique id, or through the more abstract concept of physical location, logical

location in the tree or even filtered based on sensor capability. The sensor capability can be specified

by the availability of certain type of sensor, computation power or available battery capacity. Even in

the case of dynamic topologies, the underlying routing and communication infrastructure can share

the responsibility of providing frequently updated logical node location and topology information to

the programming abstraction.

The functionality of nodes is decided in an sMap function. The user can make use of predefined

library functions and programming constructs to create programs for the network. Some of the com-

monly used programming features have been listed in Table 4.3. Table 4.4 provides a list of operators

to select a subset of nodes from list_of_nodes. In the example shown in Figure 4.8, we present a

simple sMap application for collecting temperature data from all nodes in the network. The code for

this application consists of a for loop to iterate through the list of nodes, an instruction using get() to

read the temperature reading and then an smap_emit() to send the temperature reading along with

the node id towards the gateway.

The Reduce section of the program is used to specify the aggregation scheme. A separate dedicated

section in the program to perform aggregation provides more freedom and flexibility to implement

data collection algorithms. The user can assign aggregation responsibilities to different nodes in the

network tree. It makes it easier to overlay complex aggregation algorithms over the tree through

higher-level abstractions for node addressing. This two-fold advantage is made possible by separat-

ing the sensing operation from the data-aggregation in sMap and Reduce sections. Figure 4.8b shows

an example of a reduce function for calculating the sum of temperature readings obtained in the

sMap section in Figure 4.8a. In this example, the INNER operator is used to select non-leaf nodes and

the sum of the input temperature data is calculated over all nodes. The sum of these temperature

readings can be used to calculate a more useful parameter such as the average temperature at the
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Table 4.3: List of the sMapReduce programming constructs

Construct Details

list_of_nodes Data structure containing the list of nodes and their properties
smap_emit() Data to be returned by each node
get() Function to read sensor values into integers,

takes sensor name as argument
set() Function to set a GPIO Pin
clear() Clear a GPIO Pin
toggle() Toggle a GPIO Pin

Table 4.4: List of operators for selecting participating nodes from among the list of nodes

Operators Details

LEAF. Nodes on the periphery of the network
INNER. All nodes except the leaf nodes
HOP(k). All nodes at kth hop from the gateway
HAS(t). All nodes that have a t type sensor
BATT(c). All nodes having remaining

battery capacity of atleast c
CONN(n). Nodes having at least n neighbors

gateway node. It is trivial to compute commutative operations like sum, maximum, minimum and

count. Moreover, as a user can access the nodes according to their physical location or logical location

in the network tree, more complex aggregations schemes can be implemented as well.

4.6.2 A Target Tracking Example

Target tracking is a common application in sensor networks and requires considerable coordination

between nodes. We provide an example implementation using the signal strength of beacons from

a target node in order to demonstrate the advantage of using sMapReduce. The application logic is

split into sMap and Reduce functions as shown in Figure 4.10. The sMap function reads the Received

Signal Strength Indicator (RSSI) values from received packets as shown in line 3 in Figure 4.10a. The

Reduce function in Figure 4.10b triangulates the location of the target when an intermediate node

receives information packets from at least three children nodes.
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In the sMap function, each node generates four values: RSSI, corresponding time stamp, location

of target and its own ID, as shown in line 5 in Figure 4.10a. The Reduce function receives these values

from sMap, and evaluates an aggregation at all intermediate nodes. As shown in the example topol-

ogy in Figure 4.9, only node 6 is able to collect three values required for triangulation of the target

node T tracked by nodes 1, 2 and 3. The Reduce function in the example implements the majority of

the application logic because only an intermediate node can process the RSSI information to estimate

the location of the target. The reduce function also ascertains the temporal correlation of RSSI val-

ues from different nodes by checking whether all the time stamps lie within a window of size win

(line 6, Figure 4.10b). It is evident from this example that sMapReduce performs aggregation close to

the leaf nodes, reducing the communication and computation overhead near the gateway node. The

triangulate() function in line 8 calculates the location of a target node based on the RSSI values and

the coordinates of infrastructure nodes.

Approaches like TinyDB do not capture sensing or topological modalities, as the aggregation is

handled by an automated query planner. The design of application logic might be simpler in TinyDB

in many cases but sMapReduce allows a programmer more control with an implicit understanding

of physical and logical location of nodes. More complex schemes like Regiment do not isolate the

functionality from aggregation explicitly, which can complicate the application logic with sensing job

being undesirably coupled to various points in the program.

4.6.3 Mapping Applications for Mobile Nodes

The sociometric badge [123] is an example sensor network application that targets assisted-living sce-

narios. The infrastructure for such an application is expensive to maintain once the nodes have been

distributed and deployed. Adding additional features is likely to be impossible, and the lack of re-

sources on specific nodes restricts the services that they can offer. The presence of mobile nodes also

adds additional complexity with respect to node re-programming and data aggregation. The pro-

posed programming pattern, sMapReduce, provides a flexible and extensible mechanism to develop

such systems, which could consist of both mobile and static sensor nodes. In order to support such

systems, sMapReduce introduces two new aspects: (i) multi-level sMap and Reduce function support,

and (ii) periodic map execution. This enables system designers to use sMapReduce on sensor network

systems with mobile nodes. Figure 4.11a shows an example system, where a mobile node called Fire-
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Figure 4.9: An example topology to demonstrate location tracking of a target node

Fly badge [124] is used to build the above-mentioned assisted living infrastructure. The FireFly badge

could be hosting two location-based applications: (i) an emergency alarm application that needs to

be loaded when the user is in a bathroom, and (ii) a schedule reminder application that needs to be

loaded when the user is in a living room. The smap location function is executed periodically, and it

tracks the location of the FireFly badge so that smap location can map the corresponding application

to the badge. Then, smap service, the second-level map function, will map schedule reminder to

the badge if the user is in the living room and emergency alarm if the user is in the bathroom. There-

fore, depending on the user location, a different application can be dynamically mapped on to the

mobile node, and this enables programming of context-sensitive sMap or Reduce operations. This ex-

ample thus illustrates a simple scenario where the multi-level mapping and periodic map execution

features of sMapReduce can enable its use in networks with mobile nodes, where platforms such as

[31, 32, 33] cannot be easily applied.
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1 smap ( t a r g e t t r a c k , l i s t o f n o d e s , period ) {
2 for each node in l i s t o f n o d e s
3 r s s i v = get ( RSSI ) ;
4 t s = get ( time ) ;
5 smap emit ( r s s i v , ts , node id , l o c ) ;
6 end

(a) sMap Function

1 reduce ( data , l i s t o f n o d e s ) {
2 for each node in INNER . l i s t o f n o d e s
3 i f ( data . l o c != NULL)
4 return data . l o c ;
5 e lse
6 i f (max( t s )−min ( t s )<=win
7 && s i z e ( data . r s s i v ) >= 3)
8 t r i a n g u l a t e ( r s s i v , l o c ) ;
9 e lse

10 return data ;
11 end
12 end
13 end
14 }

(b) Reduce Function

Figure 4.10: A location tracking example using RSSI values of packets received by infrastructure
nodes from a mobile target.

4.6.4 Features

The design of the sMapReduce programming pattern is based on the principle that a typical sensor

network operation consists of two relatively disjoint functions. One associates a behavior to sensor

nodes and another executes data aggregation over the distributed network. Hence, dividing the user

program in explicit sMap and Reduce sections is a natural fit to sensor network operation. We provide

below some features of the pattern to emphasize on the design decisions behind the sMapReduce.

Two-fold operation A typical sensor network operation consists of programming of the nodes and

collection of data. These two are handled independently at different layers in the network.

Further details of this operation are provided in Section 4.7.

Data correlation A sensor network is a distributed system where data of interest comes from the

physical environment itself. Therefore, any computation on data should be conducted in the
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1 t a r g e t s e r v i c e = smap locat ion ( FireFly Badge , l i s t o f n o d e s , period ) ;
2 data = smap service ( t a r g e t s e r v i c e . name , t a r g e t s e r v i c e . nodes , t a r g e t s e r v i c e .

period ) ;
3 r e s u l t = reduce ( data , l i s t o f n o d e s ) ;

(a) An example code for supporting mobile nodes

1 smap locat ion ( serv ice , l i s t o f n o d e s , period ) {
2 for each node in INNER . l i s t o f n o d e s
3 i f ( node . l o c a t i o n == bathroom )
4 smap emit ( emergency alarm ) ;
5 e lse i f ( node . l o c a t i o n == livingroom )
6 smap emit ( schedule reminder ) ;
7 end
8 end
9 }

(b) Implementation of the first-level sMap function

Figure 4.11: An example of mobile node support

close neighborhood of the sensor node.

Programmer Support The explicit division of programs into sMap and Reduce sections allows the

programmers to easily isolate the key functions, thus helping in easy inference and debugging

of applications.

Balanced abstraction and control sMapReduce provides easy-to-use libraries and abstractions to de-

ploy large-scale applications in addition to the ability to address individual nodes for fine-

grained control to the user.

Expressiveness sMapReduce is a pattern derived from the operation of a sensor network, and it allows

the programmer to conveniently map the behavior of sensing and aggregation to the network

structure. The programmer can leverage subtle optimizations without much complexity in the

application logic.

4.7 System Design

As previously stated, a typical operation of a sensor network involves two major components: one

handles the programming of and coordination among nodes, and another governs aggregation of data
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Figure 4.12: sMapReduce system architecture with three major layers to support a network-level
programming abstraction

over the multi-hop network tree. We can conceptualize this two-fold operation as two independent

planes that we call the sMap plane and the Reduce plane. Based on this concept, sMapReduce facilitates

a programmer to distribute functionality in two separate sections.

4.7.1 sMap Plane

In the sMap operation of the system, the primary function is to assign specific behavior to each of the

nodes in the network. Behavior in this case means all tasks executing on the node, along with commu-

nication handling and participating in data forwarding and aggregation. The layered structure along

with sMap and Reduce operations is shown in Figure 4.13. The top-layer of this architecture is the

programming abstraction for the user to create network-level programs in sMap and Reduce sections.

The user-written program is compiled and converted into byte-codes to be executed on individual

nodes. Byte-code execution implements the node behavior with the support from the sensor operat-

ing system. Byte-code is sent via the wireless network to each of the nodes, which is handled by a

data-handler in the Integration Layer. The data-handler connects all sections of sensor networking
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Figure 4.13: A figure showing the operation of sMap and Reduce planes. sMap operation involves
top-down mapping of behavior to each node from gateway to leaf nodes, and Reduce handles data
aggregation from leaf-nodes upwards

infrastructure spread over various layers, from the user-end PC at the top to the gateway node and

intermediate nodes in the middle and to leaf nodes at the bottom. Once the byte-codes are delivered

to each node according to their function, a code-interpreter converts them to sensor networking OS

instructions. The byte-codes contain both the program to be executed and the aggregation scheme

to be followed at each intermediate node. The main job of the sMap plane is to provide network ab-

straction and assign jobs to nodes while maintaining coordination among multiple applications and

network hops.

4.7.2 Reduce Operation

Once the nodes receive the byte-code specifying their functionality/behavior, the nodes start the

execution of the new application. The role of each node in the Reduce plane is also included in the byte-

code where the intermediate nodes in the network tree help in aggregation of data. The aggregation

of data is specified by the user in the Reduce section of the program. The role of aggregation can
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be different for different nodes, depending on both the physical and logical location of the node in

the multi-hop network. A leaf node should only forward locally sensed and computed information,

and intermediate nodes may combine the data from their respective children nodes. In addition

to aggregation, the Reduce plane should align, merge and schedule packets to reduce the overhead

in communication. The Reduce plane is implemented through an aggregator module at every node

and the Integration Layer supports the communication of data among different aggregator modules.

Figure 4.13 shows how the Reduce plane overlaps over the right half of the system architecture. This

split in the operation of sensor network justifies having explicit sMap and Reduce sections.

4.8 Evaluation of Nano-CF

One of the key goals of a macro-programming framework is to provide usability to the end-user.

It should provide enough features to allow a programmer to program the network for most applica-

tions while being transparent to the underlying complicated details. This trade-off of complexity with

transparency is not trivial to evaluate, and is highly dependent on the concerned end-user. Another

major important aspect of the framework performance is the overhead in timing and energy con-

sumption. In this section, we will provide the detailed evaluation of the Nano-CF framework with

respect to energy savings, overhead of using a code-interpreter, and the usability of our programming

language in terms of Source Lines of Code (SLoC).

Table 4.5: Power consumption information of the FireFly platform

Power State Current Voltage

All Active 24.8 mA 3.0V
Both CPU and Radio Idle 0.20 µA 3.0V
CPU Active 6 mA 3.0V
Radio Tx 17.4 mA 3.0V
Radio Rx 18.8 mA 3.0V
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Figure 4.14: Applying RHS in packet delivery allows each sensor node save the energy by reducing
the number of packets to be sent.

4.8.1 Energy Savings with Rate-Harmonized Scheduling

By clustering task executions and packet transmissions on the FireFly sensor nodes with RHS, we

can reduce the energy consumed on each node. The power consumption of various components of

a sensor node is provided in Table 4.5. As sensor nodes usually have low CPU utilization, we can

guarantee even longer life expectation of each sensor node.

The framework supports delaying the packet transmission and hence combining the packets to-

gether, which yields significant power savings by using the transceiver for shorter durations at lower

duty-cycles. This effect is shown in Figure 4.14. The figure is obtained by estimating relative power

savings for randomly generated packets having a constant Period Pj with varying the maximum

packet size from each application from 1 to 100. Every data-point shows the average after 50 itera-

tions. When 3 applications are used, the energy consumption related to packet delivery can be saved

up to 35%. In addition, if we use 5 applications, the amount of energy saving is increased up to 50%.

As the maximum packet size increases, the effect of saving energy is decreasing. It happens because

large packets may not be merged anymore. In addition, we can obtain opportunities to save more

energy due to high possibilty of clustering packets from more number of applications. Aggregat-

ing packets together helps in reducing the number of packets transmitted in the network, which in

turn reduces the channel contention and packet loss due to collision. More detailed evaluation of

the network-layer performance is provided in Chapter 7, where a multi-hop networking protocol is
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Figure 4.15: Code Interpreter performance comparison with equivalent code running on Nano-
RK. The micro-benchmark used in this experiment calculates the moving average of light sam-
ples. This figure shows the average time taken per cycle by the micro-benchmark along with the
corresponding error bars.

proposed that leverages the process of aggregating the packets, proposed in this chapter.

4.8.2 Performance Evaluation of the Runtime Environment

The runtime environment consists of a code-interpreter which executes the Nano-RK instructions

corresponding to the received byte-code. We evaluated the overhead of the code interpreter task with

respect to compiled code running directly with Nano-RK on the FireFly. The application we tested

is a quite computationally-intensive task of finding a moving average of light sensor readings. The

sensor samples over a window of given size are consecutively added and then divided by the size of

the window. We observed the average time taken by the tasks to calculate the average with a varying

window size. A larger window size means more cycles for processing in the task and hence a longer

duration per cycle. Figure 4.15 shows the obtained results. It can be deduced from the plot that

the code interpreter does not add much overhead to computationally-intensive tasks. We found the

percentage overhead of the code-interpreter with respect to native Nano-RK code to be about 55.80%.

Since, sensor networking tasks typically involve less computation, this overhead is quite acceptable.

As shown in Table 4.5, the processor power is much lower than the communication power, where

using Nano-CF results in 50% savings. In future work, we plan to investigate just-in-time compilation

74



4.9. Summary

techniques that can reduce the overhead of executing interpreted code.

Table 4.6: Comparison of number of lines of code from example in Figure 4.3

Application Nano-CL Nano-RK

Occupancy Monitoring 20 205
Temperature Collection 2 80

Table 4.7: Comparison of flash memory requirements for different applications running individu-
ally on a sensor node

Application Nano-CL(Bytes) Nano-RK(Bytes)

Occupancy Monitoring 35306 27932
Temperature Collection 35306 29324

Nano-CL allows the programmers to write their applications as composition of small services,

where they do not need to consider the details of hardware setup and sensor configuration. We com-

pare the typical number of lines of code a programmer is required to write for a particular application.

Table 4.6 gives a comparison between the number of Source Lines of Code (SLoC) for the example in

Figure 4.3 to similar applications implemented on Nano-RK. We can see the overhead in case of Nano-

RK is more than a factor of 10. The number of SLoCs in Nano-RK programs are significantly higher

because of the code required for task and hardware initialization. Comparison of memory footprints

for these applications implemented using Nano-CF and directly on Nano-RK is provided in Table 4.7.

The flash memory required by a Nano-CL program on a sensor node is the same regardless of the

application, as the program is copied into RAM during in-network programming.

4.9 Summary

The ability to program a sensor network for multiple simultaneous applications using a macro-

programming framework is a desirable feature. In this chapter, we presented Nano-CF, a framework

which allows sensor network programmers to write applications on the sensing infrastructure with a
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simple macro-programming language. We demonstrated the motivation behind supporting multiple

independent applications through a macro-programming on a sensor network using the example of

Sensor Andrew. With the proposed Nano-CF, we could save up to 50% of the communication energy

when 5 applications are being used simultaneously on the sensor node. The code interpreter over-

head was measured to be 55.80% on the average. However, the use of a code interpreter improves

portability and maintainability. Furthermore, Nano-CF macroprogramming allows the user to create

applications with significantly reduced complexity. Compared to developing an application directly

on the sensor node operating system, we can implement the same function with only 10-15% of code

lines.

In the next chapter, we exploit the further scope of intelligently combining multiple application’s

source code to remove any redundancy across tasks, based on the timing properties and user speci-

fications. We plan to support the automated composition of multiple applications together into one

or more by identifying common functionalities in the code written by users. This would allow our

framework to be more efficient in the usage of resources at both the node and network level by com-

bining the common subparts of tasks and data packets.
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Chapter 5

Redundancy Elimination across

Applications

A large percentage of applications for wireless sensor networks is designed around sensing the phys-

ical environment and transmitting a processed data value to the user. We call the paradigm for such

applications as Sense-Compute-Transmit (SCT). In such applications, there is a high possibility of re-

dundancy across applications as they may contain several independent requests for sampling the

same sensors. In this chapter, we propose an approach for eliminating this redundancy to save en-

ergy in the processor usage on each sensor node and the network.

Let us consider a simple case of a sensor network deployed across an office building with each

node having a temperature and a humidity sensor. A building manager may be interested in col-

lecting the temperature values from the sensors for a fine-grained temperature control, and a civil

engineer may want to find the correlation between temperature and humidity for optimizing the

building’s HVAC system. Such applications can be executed concurrently on the sensor network

infrastructure. Both the building manager and the civil engineering researcher sample the tempera-

ture sensor for their independent applications, which provides an opportunity for sharing the sensed

value among both the applications. It turns out that reading a sensor value typically involves access-

ing the Analog-to-Digital Converter (ADC) module on the microprocessor, for converting the analog

sensor value into a digital format, and storing into a register. This process of sampling a sensor can



Chapter 5. Redundancy Elimination across Applications

consume about 2−3 orders of magnitude more processor cycles than a simple memory-based instruc-

tion. With the increase in the number of applications deployed on a sensor network, the overhead

because of sampling the sensors can also increase dramatically. Hence, by sharing the sensing re-

quests among the applications, a significant percentage of resource usage and energy can be saved

on a sensor node. We propose a solution able to achieve such energy savings through a compile-time

approach. The challenges involved in such an approach are discussed next.

Computer science researchers have long focused on designing compiler optimizations to remove

redundancies and dead-code in a program. Several simple optimizations are standard features in

most modern compilers; complex features can also be enabled for specific optimizations based on

overall program logic [125]. In general-purpose computing systems (e.g. desktop computers or data-

centers), independent applications may have similar logic but it is very unlikely that they share the

same data as well. This makes inter-application redundancy elimination a less-explored research area,

as the possibility of energy savings is quite low. For instance, two independent users may want to use

a distributed system to compute Fast Fourier Transform (FFT) over large datasets. Even though the

computation module of FFT is the same for both the users, it is highly unlikely that the dataset will be

the same as well. Hence, the provisions of sharing the same result among the two users may not be

beneficial in terms of energy savings. In sensor networks, however, the data of interest typically is the

sampled values of the physical quantities, and it is significantly more likely that different applications

may require sampling of the same sensors. We show using our proposed approach that sharing those

samples can achieve considerable energy savings.

As most sensing applications are periodic in nature and have low duty-cycles, eliminating redun-

dant sections in case of mismatching periods can be difficult, and may not provide significant gains

if elimination is carried out using simple temporal overlap detection. Secondly, the applications can

sample the sensors multiple times at different intervals and in different order. Compiler support is a

practical and effective technique for identifying such requests and optimizing them for finding better

overlap. Finally, redundancy elimination at each node at run-time can add significant complexity to

the scheduler on the sensor node. The scheduler in this case will have to pre-profile the execution of

the program to identify the overlapping sections.

We propose a novel solution to the problem of finding overlapping sensing requests issued by

network-wide applications created by independent users. We model each application as a linear se-
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quence of executable instructions, and find a merged sequence of multiple applications through the

use of well-known string-matching algorithms. In particular, we use the Longest Common Subse-

quence (LCS)[38] and the Shortest Common Super-sequence (SCS)[39] techniques. Our proposed

solution creates a monolithic task-block resulting from the optimized merging of user applications

with embedded scheduling information. This scheme is particularly advantageous in cases where

the relative order of sensing requests is important, and simply caching the values may not help. One

such case can be envisaged in an application where multiple sensors are sampled at different intervals

but in a specific order to infer patterns of target behavior as may be the case in assisted living sce-

narios, or sensor-fusion based localization. We show that our approach can help in achieving about

60% average energy savings in processor usage as compared to the execution of several applications

without eliminating such redundancies.

The organization of the rest of this chapter is as follows. First, we provide an overview of our

approach in Section 5.1. Section 5.2 and Section 5.3 provide the details of the modeling of applications

and the proposed redundancy elimination approach, respectively. We finally evaluate our approach

in Section 5.4.

5.1 Overview of the Approach

We assume that the users develop network-level sensing applications using a higher-level program-

ming framework. The application code written by the users can either be at an abstract network-level

using a macro-programming language like Regiment [31] or it can use node-specific virtual-machines

(for example Matè [32]). In both these cases, the programming framework creates node-level in-

termediate code based on the application logic specified by the user. Our approach is based on a

machine-language like intermediate code, generally referred to as bytecode. The architecture of such

a complete system is shown in Figure 5.1, where the user applications are converted into bytecode

by a parser, such that each output instruction is either an indivisible subexpression or a special func-

tion for accessing the hardware (including sensing, GPIO access or packet transmission). Bytecode

corresponding to all the applications are converted to a monolithic code by the Redundancy Eliminator

with Implicit Scheduler (REIS) module. This monolithic code, which we call REIS-bytecode and ρ-code

in short, is a merged sequence of all the applications with the redundancies eliminated according to
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Figure 5.1: Overview of the approach for redundancy elimination

the temporal overlap of the sensing requests. REIS-bytecode is then sent over the wireless network

to each sensor node where the applications are to be executed. A bytecode interpreter at the sensor

node executes the received REIS-bytecode.

Our approach assumes that a data link-layer and a suitable routing layer are already implemented

on the sensor node and our solution is transparent to it as long as end-to-end packet delivery is sup-

ported. A network manager module handles the responsibility of dynamically updating the rout-

ing tables, and maintaining the network topology information. As users issue applications to the

system independently, our approach requires an application storage database to store the bytecode

and merge them using the REIS module whenever a new application is submitted. The semantics

of each user application is embedded within the REIS-bytecode such that the maximum sharing of

sensing requests and radio transmissions is obtained. Bytecode from different applications share

non-overlapping variable and address space, which removes any need for context switching, and the

interleaving of bytecode provides an implicit schedule of execution.

The motivation behind the sharing of sensing requests can be justified based on the comparison

of the time taken for reading a sensor sample into memory with a simple memory-based instruction.

Figure 5.2 shows an oscilloscope capture of this comparison on a WSN platform with an Atmel AT-
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Figure 5.2: An oscilloscope screenshot showing the comparison of the time taken for reading a
sensor sample against a memory-based operation

MEGA1281 processor. This comparison is obtained by toggling a GPIO pin just before and after the

execution of a sensor sampling instruction (shown by Trace 1) and a memory-based loading of a 16-

bit value into a register (Trace 2). The former takes about 500 microseconds but the latter instruction

takes only 10 microseconds. Please note that this time comparison also includes the time taken for

toggling the I/O pins. As the ATMEGA1281 (8MHz) processor on the sensor node has on-chip mem-

ory, a load instruction takes a maximum of 3 cycles that correspond to 375 nanoseconds. A majority

of the time consumed in the case of Trace 2 is because of the pin toggling. Hence, a sensor sampling

instruction consumes up to (500−10)×10−6

375×10−9 = 1306 times more power. This factor, which we refer to as

φ (time-factor), is specific to the platform and the operating system. However, the order of magnitude

of φ can be assumed to be similar across most sensor network systems.

In addition, radios on newer System-on-Chip (SoC) solutions like the ATMEL ATmega 128RFA1 [40]

support 2 Mbps data rate, compared to 250 Kbps from the commonly used CC2420 [53] radio for

about 20% less power consumption. This implies that the power per packet can be reduced by a factor

of 8, bringing the power consumption of the radio closer to that of the processor. Hence, optimiza-

tions at the processor level are bound to play a significant role in reducing total energy consumption,
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in contrast to the majority of research efforts focusing mainly on energy savings at the radio.

5.2 Application Modeling

Our proposed optimizations are aimed at applications whose main goal is to sample sensors, process

the sensor data for more meaningful results, and then transmit the results towards a gateway node

through the network tree.

Each bytecode instruction contains a list of hex opcodes, and is of the form:

<TYPE OP1 OP2 OP3 ...>, where TYPE defines the kind of operation, and operand OP<K> can have

specific usage based on the bytecode. For the sake of clarity, example formats of some relevant byte-

codes are provided in Table 5.1. The specific implementation can vary based on the design of the

Parser and the Bytecode Interpreter.

Table 5.1: Example bytecode structure for some relevant subexpression instructions

Operation Opcode Details

Sense S t VAR Sample sensor t and
copy the value in VAR

Assign AEQ VAR1 VAR2 Assign VAR1 = VAR2

Transmit T DEST VAL1 VAL2 Transmit VAL1 & VAL2 to
DEST node

Compute C VAR1 VAR2 VAR3 VAR1 := VAR2 ‘C’ VAR3

5.2.1 Conversion to a sequence of nodes

Most sensor networking applications are of the form: Sense-Compute-Transmit (SCT), as the users are

typically interested in sampling one or more sensors, processing the data from the sensors and col-

lecting the processed results at a gateway node. Such applications can be modeled as a string of nodes

where each node represents a sub-expression in the bytecode, β, as shown in Figure 5.3. St represents

a sensing request (or a sampling request) for sensor type t, where t can be either be temperature (T ),

light (L), accelerometer (X,Y, Z) or any other sensor available on board. C denotes nodes with al-
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Figure 5.3: An example showing a linearized execution sequence for one instance of two applica-
tions. Application 1 samples three different sensors, and Application 2 samples the temperature
and transmits its scaled-down value.

gebraic computation. As most sensor nodes typically have one kind of radio for communication, we

use T to denote nodes corresponding to packet transfer via the radio. This conversion of bytecode

sub-expressions to nodes is captured by the function create node() in Algorithm 1. As algebraic

computations are generally data-dependent, finding the overlap across C nodes is considerably less

plausible. Moreover, there are no significant energy savings by eliminating such overlap, as these

instructions typically consume a small (about 1 to 2) number of machine cycles, particularly on a

sensor network platform having a RISC processor and on-chip memory. Hence St and T -type nodes

participate in finding the overlap across applications, and are called Anchor Nodes.

Conditional statements in an application may not allow it to be converted into a linear string. We

present the techniques for modeling applications having at least one anchor node inside the condi-

tional statements in the next subsection. The conditional statements without an anchor node can be

trivially mapped to a C type node.

5.2.2 Modeling Conditional Statements

As it cannot be known at compile-time which execution path can be taken in case of a conditional

statement, it is not possible to create a ρ-code (REIS-bytecode) from the input bytecodes based on a

linear application model as described in Section 5.2.1. We propose an algorithm to create a function-

ally equivalent code with a maximum possible number of sequential nodes, such that the conditional

statements in the output bytecode sequence βη are purely computational. Algorithm 1 provides a

solution where the anchor nodes (sensing/sampling requests) are moved to before the beginning of
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the outermost conditional statement in case of nested if-loops. An assign instruction is inserted in

the place of the original instruction, which loads the value returned by the sensing request into the

variable originally designed to read the output of sensing instruction, as shown in lines 19-21 in the

algorithm. An example scenario is shown in Figure 5.4, where the original sampling request inside

an if-condition is moved to before the outermost if-statement and the sampled value is stored in a

temporary variable var1 temp. The original variable, var1, is assigned the value of var1 temp at its

original location in the bytecode.

if (condition)!
...!
var1 = sense(TEMP)!
...!
end!

var1_temp = sense(TEMP) !
if (condition)!
... !
var1 = var1_temp!
...!
end!

Figure 5.4: An example showing the modeling of an if-condition for redundancy elimination
across applications.

Please note that the sensing requests are data-independent instructions; moving them to a previ-

ous point in the code does impact the application logic. Also, moving a sensing request earlier does

not impact the sampled value, because there will only be a very small change in the exact sampling

instant of the order of microseconds. Moreover, determining and enforcing an exact sampling in-

stant is not always feasible in most sensor network operating systems. Hence, the sensed value is not

compromised in terms of its temporal correctness.

5.2.3 Merging Packet Transmissions

It can be claimed that, for better power savings, the transmit nodes T should also be moved towards

the end of the bytecode sequence to obtain better overlap of radio usage across applications. We,

however, do not take such an approach in this chapter, since a solution is proposed in Chapter 7 to

harmonize packet transmissions from different applications. Instead of transmitting whenever the

applications request, the packets are queued in a local buffer and are transmitted at instants that

provide maximum overlap of radio transmissions. As the radio is a shared resource among applica-
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Algorithm 1: convert app(Ai): convert an application to bytecode βη

1

Algorithm 1: convert app(Ai): convert an application to bytecode �⌘

Input : Ai: A user created application
Output: (�⌘, Nan): Bytecode node sequence, Number of moved anchor nodes

1 Parse Ai to bytecode � using the parser
2 INITIALIZATIONS:
3 �⌘: = ;; if index := ;; node := ;
4 if depth := 0; Nan = 0;
5 foreach sub-expression ⌘ 2 � do
6 i = IndexOf(⌘)
7 if ⌘ is an if-clause then
8 if depth + +;
9 if index · append(i);

10 �⌘ · append(⌘);
11 else if ⌘ = S then
12 if if index·isEmpty() then
13 index = i;
14 else
15 index = if index(i);
16 Nan + +;
17 end
18 node := create node(type(⌘), var);
19 �⌘ · insert(index, node);

// move S node before the beginning of outermost if-condition

20 node := create node(assign, var, op2(node));
21 �⌘ · append(node);
22 else if ⌘ is an endif-clause then
23 if depth ��;
24 if index · pop back();
25 �⌘ · append(⌘);
26 else
27 �⌘ · append(⌘);

// Non anchor nodes remain at the same relative location

28 end
29 end

transmitted at instants that provide maximum overlap of radio-transmissions. As radio is a
shared resource among applications, such a queue based mechanism can help in achieving
what is aimed by our proposed approach. Many other solutions (such as [111]) have been
proposed to optimize the network-wide scheduling of packets. For brevity purposes, we

68

tions, such a queue-based mechanism can help in achieving what is aimed by our proposed approach.

Many other solutions (such as [126]) have also been proposed to optimize the network-wide schedul-
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Figure 5.5: Application 2 modified to be aligned with Application 1 for sharing sensing requests
and packet transmission (based on the example in Figure 5.3)

ing of packets.

5.3 Redundancy Elimination with Implicit Scheduling

5.3.1 String-Matching Algorithms

Once an application is modeled as a sequence of nodes as described in the previous section, the

problem of finding overlapping sections among two or more applications can be reduced to that of

finding a common subsequence between a pair of applications. The Longest Common Subsequence

(LCS) is a technique commonly used to find the overlap between a pair of strings of symbols such that

the relative order of common symbols is the same in both the input strings. LCS provides one such

common sequence having the longest possible length. Consider the two following string sequences:

SENSOR and NETWORK. The longest common subsequences are {N,O,R}, {E,O,R} but the Longest Com-

mon Sub-String (LCSS) would just be {O,R}. A longest common substring is always a subset of the

longest common subsequence, but the opposite may not be true. There are some commonly available

solutions [38] that are guaranteed to return a longest ordered subsequence between a set of input

strings.

LCSS can help in finding redundant anchor nodes that appear consecutively in the input se-

quences. As an improvement over LCSS, LCS finds a subsequence with maximum overlap such that

the relative order of nodes is not sacrificed. One or more of the input applications may be ‘stretched’

at various points, as illustrated in Figure 5.5 after applying LCS to the applications shown in Fig-

ure 5.3. An optimal merger of input sequences can be obtained by using an approach related to LCS
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called Shortest Common Super-sequence (SCS)[39].

Definition 1. Given input sequences X and Y , the shortest common super-sequence, Z = SCS(X,Y ), is the

shortest sequence such that both X and Y are subsequences of Z.

In the case of two input sequences, it is trivial to find the SCS if the LCS is known. For more than

two sequences, finding the SCS is not a direct application of the LCS solution.

Algorithm 2: REIS(Γ): Generate a monolithic ρ-code with implicit scheduling from an input set
of applications

Input : Γ: a set of n applications < A1, A2, . . . An > each with period Pi for ith application
Output: ρ-code: a monolithic bytecode sequence
// From Equation 5.1

1 PH := LCM(P1, P2 . . . Pn)
2 INITIALIZE:
3 for i = 1 : n do
4 βnew,i := ∅;
5 end
6 foreach application Ai ∈ Γ do
7 (βη,i, Nan,i) = convert app(Ai);
8 for j = 1 : PH

Pi
do

// create new strings

9 βnew,i := concatenate(βnew,i, βη,i);
10 end
11 end
12 ρ-code = SCS(βnew,1, βnew,2, . . . βnew,n);

One important aspect of applications designed to operate on sensor networks is periodicity. Ap-

plications are typically designed as tasks that repeat periodically with low duty-cycles. Different

applications deployed on a sensor network may have unequal periods. This adds further complexity

to the redundancy detection and elimination across applications. Let us assume that an application

Ai has a period Pi; the harmonizing period PH is given by:

PH = LCM(P1, P2, . . . Pn) (5.1)

where LCM stands for the Least Common Multiple of the input values.
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(a) An example execution scenario showing three applications with different
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every hyper-period
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(c) One possible output of the Algorithm 2, along with the degree of overlap
of each shared sensing request

Figure 5.6: Identifying overlap in sensing instructions in three different applications and creating
a merged ρ-code using Algorithm 2

5.3.2 Algorithm for generating a ρ-code (REIS-bytecode)

Let us consider a set Γ of n independent applications, where each application is denoted by Ai and

i = 1, 2, . . . n. The period of an applicationAi is Pi. First, each application is converted into a sequence

of bytecodes as described in Algorithm 1. The output of Algorithm 1 contains nodes within each

periodic execution. As the periods can mismatch, the minimum length of time for which the overlap

among two or more applications should be calculated is equal to the harmonizing period, PH . A

new sequence is created from each input bytecode sequence βη by self-concatenating it PH

Pi
times to

create a new sequence βnew. After this operation, all the sequences are of an equal length of PH .

Thereafter, the Shortest Common Supersequence (SCS) solution is applied to find a merged sequence

ρ-code from the concatenated input bytecode. This approach is expressed through Algorithm 2. This

may result in the size of a merged application being quite large as the concatenated code corresponds
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to PH . However, it should be noted that there may be several repeating code blocks in the merged

sequence that can be compressed significantly using simple compression approaches to save both

the radio power and the memory footprint. This issue is beyond the scope of this work, and is not

considered in our approach.

An example for demonstrating the merging of bytecode is shown in Figure 5.6. There are three

input application bytecodes as shown in Figure 5.6a. Please note that all applications only sample

one type of sensor for the sake of simplicity. The periods of the applications are different, and, in

this example, PH = P3. Application A1 consists of S and T nodes occurring consecutively with a

period of 6 units. A2 is a sequence < C,S, S, T > with a period of 9 units, and A3 is < S,C, S,C, T >

with a period of 18 units. Non-anchor nodes across different application sequences are considered as

dissimilar nodes. For example, C in A2 is not the same as C in A3, hence they are represented as C2

and C3, respectively. The SCS algorithm considers only S-type nodes as common across applications

and merges, such that the length of the merged sequence is the shortest possible. Figure 5.6b shows a

possible alignment of the S nodes, and Figure 5.6c shows a merged sequence with the overlapping S

nodes omitted. The degree of overlap δ for each merged node is also shown.

For n applications to be executed on a sensor node, each with Worst Case Execution Time (WCET)

C1, C2, ... Cn, respectively, the total execution time of the input applications per hyper-period is :

CT =

n∑
i=1

(
PH
Pi
× Ci

)
(5.2)

where PH is also the period of the ρ-code.

In the case of m overlapping instructions (anchor nodes), each with an execution time of Ei, the

total execution time of the ρ-code is given by:

CT,ρ =

n∑
i=1

(
PH
Pi
× Ci

)
−

m∑
i=1

((δi − 1)× Ei) (5.3)

where δi is the degree of overlap and is defined as the number of applications sharing a given anchor

node.
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5.3.3 Implicit Scheduling

The monolithic ρ-code obtained from the input applications is forwarded to the sensor nodes, where

an interpreter executes it with a period equal to PH . The design of the ρ-code is such that the con-

stituent applications have explicitly non-overlapping variable space. The interpreter module has its

own run-time stack to maintain its overall state, but it does not need to handle the responsibility of

deciphering the individual applications inside the ρ-code. The schedule of each application is em-

bedded in the sequence of instructions at the level of the hyper-period. If the total execution time

without overlap, CT , is less than the harmonizing period, the merged sequence ρ-code is guaranteed

to finish the execution before the end of each period.

5.4 Evaluation

5.4.1 Comparison of Online vs. Proposed Solution

We compare the average power consumed by the radio of a sensor node with respect to the rate of

re-programming of the network. The comparison is shown in Figure 5.7. It is intuitive that more fre-

quent re-programming will consume more power. We compare the average power for the following

scenarios.

1. The network is programmed using an online approach where a single application can be dy-

namically added.

2. Our proposed compile-time approach where a new monolithic ρ-code has to be sent to each

node even if one application has been changed or added. The size of the monolithic ρ-code

corresponds to 2 applications.

3. The ρ-code corresponds to 5 applications.

In this comparison, we assume that a node is only receiving application programming (bytecode)

packets, and there is no other traffic in the network. We compare the average power consumption

based on the assumption that the size of each application is equal to one data-packet of size 128 bytes

and the power consumption of the radio is 56.4 mW (based on a CC2420 IEEE 802.15.4-compliant ra-
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Figure 5.7: Comparison of average power consumed by the radio of a sensor node with respect to
the rate of re-programming

dio). We notice that the difference of power consumed between the online approach and the compile-

time approach diminishes fairly quickly. For instance, even if the network is re-programmed at a very

high rate of every 100 seconds, the online approach will consume about 2µW on average, whereas

our approach consumes about 11µW for a monolithic block of 5 applications. For more practical

re-programming rates of the order of days or weeks, the absolute difference in average power con-

sumption between our approach and an online approach will be negligible even for very power-

constrained sensor nodes. To put this comparison of power consumption in perspective, the average

power consumed by a basic LPL-CSMA (Low Power Listen - Carrier Sense Multiple Access) medium

access protocol (MAC) is about 138µW for a background operation of maintaining time synchroniza-

tion within 5ms accuracy [73]. We can therefore infer that even for a fairly frequent re-programming

rate of every 100 secs, the power consumed is at least an order of magnitude lower than just the

overhead of a light-weight MAC protocol. Even if the size of each application is bigger than one

packet, the power consumed by both the online and the compile-time approaches for sufficiently low

re-programming rates will be insignificant compared to the normal operation of the network.
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Figure 5.8: Energy savings with respect to increase in utilization of processor with different num-
ber of sensors.

5.4.2 Relative Energy Savings in Processor Usage

Energy savings in the processor usage after eliminating the redundancy in sensing requests can be

estimated based on the degree of overlap δ by subtracting (5.3) from (5.2) and multiplying by the

active power consumption of the processor. For the example scenario shown in Figure 5.6, the energy

savings when the merged ρ-code is executed on the Firefly sensor platform [1] can be calculated as:

∆E = (2 + 1 + 1 + 1) ∗ (490 ∗ 10−3) ∗ (8.4 ∗ 10−3). Hence, ∆E = 20.6µJ . On the other hand, the en-

ergy consumed by all applications running independently is approximately equal to Eorig = 37.0µJ

if we ignore the negligible power consumed by other computation instructions. This corresponds to a

significant 55% energy savings in processor usage for the particular example presented in Figure 5.6.

In addition to the above analysis, we conducted experiments to estimate the percentage power

savings achievable from our approach in various cases. The results from these experiments are pro-

vided in Figures 5.8, 5.9 and 5.10. Each data point is collected by averaging across 50 iterations,

and the error bars show the spread from the minimum to the maximum values over these iterations.

These figures show percentage energy savings from our approach compared to the normal execution

without any redundancy elimination. In this section, we consider only the processor usage because

of the sensing requests, and we also assume that the energy consumption from other computations

conducted on the processor is negligible in comparison. In Figure 5.8, energy savings are plotted in
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Figure 5.9: Savings in average energy with an increase in the number of applications.

the case of the execution of 5 randomly generated application strings on a sensor node and the total

processor utilization is increased from 1% to 50%. Higher total utilization in our experiments arise

from more sampling requests in the same ratio for each application. In this case, the average power

savings remains more or less constant around 66%, but, with low utilization, the error spread is quite

high. This is because, at low utilization, the number of sensing requests per application is low, and

hence the possibility of finding redundancy is highly dependent on the type of the applications. As

the utilization increases, the dependence of overall energy savings on application pattern reduces,

as the chances of overlap are high anyway. When the number of applications deployed on a sensor

node is increased, and the number of sensors per node is fixed to be 5, the energy savings increase as

shown in Figure 5.9. This is because more applications can provide a higher degree of overlap, and

hence more energy savings. The plot contains up to 100 applications just to illustrate the diminishing

gains after a certain point. Such a large number of applications may, however, be impractical for most

sensor nodes today. Figure 5.10 shows the reduction in energy consumption with respect to increas-

ing the number of sensors on a node, and the average relative savings remains constant around 50%

for 3 applications and 67% for 5 applications.

The intuition behind this behavior is the following. Even though the average degree of overlap, δ,

may be lower for a larger number of sensors per node, equivalent energy savings are obtained. This

is because there is a proportional increase in the types of sensing requests (anchor nodes) that leads

to lesser overlap, since the total utilization is kept constant.
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Figure 5.10: Percentage energy reduced with an increase in the number of sensors.

Overall, the achievable energy savings from the proposed approach is highly case-specific, but

there is a high potential of energy savings if there are more applications or the utilization is high

because of sensing-intensive workload.

5.5 Limitations

It can be argued that our application model is simplistic. It is, however, practical and it increasingly

covers more and more scenarios of applications of large-scale sensor network deployments. Indeed, it

does not support variable for-loops, and memory requirements can get prohibitive if loop unrolling is

implemented. We leave an assessment of these issues to future work. Our approach is a compile-time

technique, and therefore all applications are affected if one application changes or is added. On the

other hand, a dynamic run-time approach can add significant overhead to the bytecode interpreter

on the sensor node. In order for a run-time approach to efficiently eliminate redundancies across ap-

plications, pre-profiling of those may be required that can result in significant memory and processor

overhead. Moreover, a compile-time approach is still beneficial if the rate of re-programming of the

network is low.
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5.6 Summary and Discussion

In this chapter, we have proposed and discussed a novel compiler-assisted scheduling approach that

is able to identify and eliminate redundancies across applications in wireless sensor network infras-

tructures. Our approach models applications as linear sequences of executable instructions and we

propose suitable algorithms for constructing such a model. We then show how it is possible to exploit

and adapt well-known string-matching algorithms such as the Longest Common Subsequence (LCS)

and the Shortest Common Super-sequence (SCS) techniques to produce an optimal merged sequence

of the multiple applications with implicit scheduling.

As modern radio designs support higher data-rates for the same amount of power, the optimiza-

tions on processor power consumption become more relevant for energy-saving and increasing the

lifetimes of sensor networks. On the other hand, with the increase in the number of applications de-

ployed on a sensor network, the overhead because of sampling the sensors can increase dramatically.

However, by sharing sensing requests among applications, a significant percentage of resource usage

and energy can be saved on a sensor node. We demonstrate how our approach of using high-level

optimization leads to significant network-wide resource savings, importantly energy. Our approach

outperforms many other known techniques in the case of sensor node platforms supporting multi-

ple sensors of multiple types. Our approach is highly predictable and its runtime is fairly simple:

execution of bytecode with implicit scheduling. We show, based on experiments, that our proposed

compile-time redundancy elimination approach can provide on an average about 60% energy savings

on the processor with several simultaneous applications.

In the next chapter, we propose the design of a hierarchical system, where a monolithic REIS-

Bytecode can be assigned to one of the tasks running on the operating system, rather than being the

only executing block. Such a system can be modeled as an application of the classical bin-packing

problem, where tasks can be clubbed together based on properties such as priority and memory

requirements, providing scope for Quality-of-Service support in addition to resource optimizations.
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Chapter 6

Hierarchical Assignment

In the previous chapter, we extended the advantages of a holistic over-the-air programming scheme

by designing a novel compiler-assisted scheduling approach (called REIS) able to identify and elimi-

nate redundancies across applications. In this chapter, we propose a hierarchical assignment scheme

where the applications may be merged into multiple intermediate blocks, rather than one large mono-

lithic block. Our evaluation shows that significant energy savings can be obtained by removing re-

dundancies in sensor sampling, while meeting the resource constraints on the sensor nodes.

However, it might become impractical to combine all the applications into one large monolithic-

block, as the size of the block might grow to be too large. As a further optimization, we present a

hierarchical approach, where the tasks are merged into more than one intermediate task-block such

that certain constraints regarding timeliness and memory usage are satisfied. The task-blocks are

then executed as independent tasks on the sensor nodes. We show in this chapter that this hierarchi-

cal scheduling problem can be modeled in a way similar to that of a classical bin-packing problem.

We provide certain approximations such that the problem can be reduced to that of quadratic pro-

gramming and, hence, solvable with a reasonable time complexity.

If the relative sequence of the sensor sampling requests is not important, then a caching-based

solution can also be a possibility, where the sensor readings are cached in memory along with a time-

stamp. Whenever an application requests a new sample, the cached value is checked for its freshness,

and if it newer than a threshold, the value is used as it is. Otherwise, a new sensor sample is taken and
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1 typedef s t r u c t {
2 i n t 1 6 t value ;
3 t i m e t curr t ime ;
4 } s e n s o r t ;
5 s e n s o r t sensor ;
6 / / wrapper f u n c t i o n d e f i n i t i o n
7 s e n s o r t g e t s e n s o r v a l (SENSOR) {
8 t i m e t c t ;
9 c t = g e t c u r r t i m e ( ) ;

10 i f ( ct�sensor . curr t ime > THRESH) {
11 / / c o l l e c t new s e n s o r sample us ing
12 / / t h e o r i g i n a l f u n c t i o n
13 sensor . value = g e t s e n s o r (SENSOR) ;
14 sensor . curr t ime = g e t c u r r t i m e ( ) ;
15 }
16 e lse {
17 / / r e t u r n t h e c a c h e d v a l u e
18 return sensor ;
19 }
20 return sensor ;
21 } ;

Figure 6.1: Pseudo-code showing the wrapper function to collect sensor readings from a
cache-based solution

81

Figure 6.1: Pseudo-code showing the wrapper function to collect sensor readings from a cache-
based solution

provided to the application. Such a solution, devised using a wrapper function shown in Figure 6.1,

is disadvantageous in a few major ways compared to our compile-time approach. Firstly, caching

may not be practical in applications with fast-sampling rate. Secondly, it may not be directly applied

in the cases where the relative order of samples from different sensors is important. As an example,

an application may want to know when the light turned is on in a room by reading a light sensor,

and then compare it with the reading from a motion sensor. Cached values in such a case may jeop-

ardize the application semantics. If caching still needs to be used, the application behavior should be

modified to be able to compare the time-stamps corresponding to different sensor samples requiring

additional state maintenance. Thirdly, caching requires comparing of time-stamps which are typi-

cally 32-bit values; through simple experiments we found that it can take approximately 120µs to

return the cached value (using the else path in Figure 6.1). This is significantly more computationally

expensive as compared to reading a 16-bit value stored in memory with the Nano-RK [35] operating

system running on a Firefly [1] sensor node that takes about 10µs, as explained earlier and shown in

Figure 5.2.
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6.1 Hierarchical Assignment

In the approach described so far, all the user applications are merged into one monolithic task-block,

which may have some disadvantages listed below.

• Different periods of the deployed applications may result in a large hyper-period, causing the

size of the task-block to be prohibitively large. This not only increases the memory footprint, but

also increases the number of packets required to transmit merged applications to the end-nodes.

• The applications may lose some timeliness because different parts of the applications may be

executed with varying delays in the process of finding a better overlap.

• Some tasks may suffer significant delays in capturing the sensor sample and then using it, which

may negatively impact application semantics.

• Data from some critical tasks (e.g., monitoring fire) may not be delivered with the required

responsiveness.

• Including less sensing-intensive applications in the task-block may not conducive to energy

savings.

We now present a hierarchical approach where we merge the applications into one or more in-

termediate task blocks instead of a large monolithic block. Let us consider a sensor node Operating

System (OS) with support for multiple concurrent periodic tasks. The problem of executing the user-

applications in such an OS can be represented as a hierarchical assignment one as shown in Figure 6.2.

The goal is to strategically combine user-application tasks into multiple task-blocks such that several

application requirements can be met. For example, merging applications with differing periods can

cause the task-block to have a large memory footprint, and it may be beneficial to create more than

one task-blocks such that tasks with similar periods are together. Similarly, creating task blocks from

input tasks which share the same sensors may help in saving more energy.

6.1.1 Problem formulation

In order to find the assignment of tasks to intermediate blocks, we consider only the string model of

the tasks. Other properties of the tasks, such as the semantics and timing behavior, are maintained
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Figure 6.2: An architecture diagram showing the process of hierarchical assignment scheme for
redundancy elimination.

as described earlier in Section 5.2. Let us assume that we have a set τ of n tasks deployed on the

sensor nodes, and the corresponding bytecode string set is B. The ith string is represented by βi,

where i = 1, 2, . . . , n. The tasks can be mapped to m task-blocks denoted by ρj , where 1 ≤ j ≤ m and

m ≤ n. The task-block is denoted by the symbol ρ because each task-block corresponds to a merged

sequence of application strings, which we termed as REIS-bytecode or ρ-code as in Section 5.3. The

challenge is to find an optimal mapping of n bytecode strings to m blocks such that the total energy

consumption of all the applications is minimized within certain constraints. We model the problem as

one of quadratic integer programming, which is an NP-hard problem with a solution space growing

exponentially with respect to n. We also derive suitable approximations that provide a solution with

reasonable time-complexity, but at the expense of exact optimality.

The total energy consumed by the system can be considered as the sum of the energy consumption

of every application as follows:

Etotal =
∑
∀i

Eβi (6.1)

Also, if the tasks are combined into task blocks, the total energy consumed is the sum of the energy
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of all blocks. Therefore,

E′total =
∑
∀j

Eρj (6.2)

The energy consumption of the jth block can be obtained by subtracting the energy corresponding to

the total degree of overlap across the tasks in the block from the total energy consumed by the tasks

in the block, as follows.

Eρj =
∑
∀i∈ρj

Eβi −∆j · es (6.3)

where, ∆j is the total degree of overlap in the jth task-block, and es is the energy consumption of

each sensing request. It results from (6.1), (6.2) and (6.3) that the energy savings after mapping tasks

to task blocks can be estimated as:

Es = Etotal − E′total =
∑
∀j

∆j · es (6.4)

From (6.4) it is clear that, to maximize the energy savings, the total degree of overlap across all task-

blocks should be maximum. The estimation of ∆j is challenging as it involves finding the Shortest-

Common Supersequence (SCS) for application strings with respect to each block. The degree of over-

lap for a given set B ⊆ B of bytecode strings is given as:

∆j =
∑
∀βi∈B

(
PH
Pi

)Li − Lρ (6.5)

where, PH is the hyper-period of all the n tasks as defined in (5.1). Pi is the period of the ith task. Li

denotes the length of βi in number of bytecode instructions or nodes (Figure 5.3), and Lρ is the length

of the task-block obtained by finding the SCS of the input tasks strings. The challenge, however, lies

in calculating the SCS for all combinations of βi’s so that the optimum combinations can be chosen for

m blocks where
∑m
j=1 ∆j can be maximized. There can be a prohibitively large number of such com-

binations that can make the optimization problem intractable. The optimization problem can consist

of terms of arbitrary polynomial degree up to n. The problem will then require the partitioning of set

B into m number of disjoint subsets, and thus, there can be an exponential number of such partitions

that are typically calculated by the means of Bell number and Bell polynomials [127]. In order to be

able to find an optimum assignment of tasks to task-blocks, the SCS’s of all possible partitions may

101



Chapter 6. Hierarchical Assignment

need to be found along with solving the optimization problem. Hence, a major challenge lies in de-

coupling the problem from the calculation of SCS, so that it can be solved as a typical optimization

problem with an objective function to be maximized while meeting some constraints.

Let us assume that the jth block has h applications and λk,l denotes the longest-common sub-

sequence of the kth and the lth string in the set. The following theorem helps to approximate the

optimization problem to one of Quadratic Integer Programming (QIP) with linear constraints. Such

problems can still be NP -hard, but commercial solvers [128, 129] are available that and be used to

solve them. Subsequently, we further approximate the model to a Quadratic Continuous Program

that may be solved in polynomial time, but with loss of optimality.

Theorem 1. The total degree of overlap over a set S of bytecode strings is less than or equal to the sum of the

lengths of the Longest Common Subsequences (LCS’s) of all the pairs in this set.

∆j ≤
1

2

∑
∀k,l∈B

λk,l s.t. k, l ≤ n & k 6= l (6.6)

The equation is multiplied by a factor of half because λk,l = λl,k.

Proof. According to its definition, the Shortest Common Supersequence (SCS) of a set S of k strings

contains all the elements of all the input strings but without any redundant elements. The SCS ρ of

the strings in S is the shortest possible string such that all the strings in the set are subsequences of ρ.

The shortest possible string can be found by removing redundant elements across all pairs of strings

in the set S. The number of removed elements is equal to the sum of the lengths of the LCS’s of all

the pairs.

However, in this process, an element that participates in all possible pairs of LCS’s of p (2 < p < k)

strings, gets removed
(
p
2

)
times rather than its actual redundancy degree of p − 1. As

(
p
2

)
is greater

than p − 1, the total degree of overlap is less than the sum of the lengths of the LCS’s. The equality

prevails when no identical elements occur in more than two LCS’s.

As evident from the proof above, the exact value of the total degree of overlap is dependent on the

elements of the constituent strings. Hence, it is not possible to isolate the problem formulation from

finding the SCS, if an exact solution is to be found. The sum of the lengths of the LCS’s of all the pairs
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provides an upper-bound on the degree of overlap across all strings, and is used as an approximation

to strategically combine tasks into task-blocks. Based on Theorem 1, we can now re-formulate the

objective function so that the problem space can be reduced.

In order to formulate the optimization problem, we make use of inclusion variables denoted by Xj
i ,

where

Xj
i =

 1 if βi is assigned to block j

0 otherwise
(6.7)

Each task can only be assigned to one task-block to avoid repetition, which implies the following:

for each i,
∑
∀j

Xj
i = 1 (6.8)

To find an optimal assignment of tasks to task-blocks, we quantify the degree of overlap by summing

the pairwise degree of overlap multiplied by the inclusion variables, and the constraint in (6.8) ac-

complishes exclusion by making sure that each task is assigned to only one block. The goal of the

optimization problem now is to find the values of the inclusion variables such that the total degree of

overlap is maximized. Please note that the degree of overlap across two bytecode strings is the same

as the LCS of the two, as described in Section 5.3. Hence, we can say:

∑
∀pairs∈B

λeach pair =
∑

∀a,b∈{1,2,...n},a 6=b

Xj
aX

j
b δa,b (6.9)

From Theorem 1, the objective function for the jth task-block can now be written in an expanded form

as:

∆j ≤ Xj
1X

j
2δ1,2 +Xj

1X
j
3δ1,3 + · · ·+Xn

1X
j
nδ1,n+

Xj
2X

j
3δ2,3 + · · ·+Xj

2X
j
nδ2,n + · · ·+

Xj
n−1X

j
nδ(n−1),n

(6.10)

We can now create a general form so that the total degree of overlap Dtotal across all task-blocks

can be maximized. Let D represent the n × n matrix where the (k, l)th element is δk,l. The degree of
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overlap of a string with itself is assumed to be zero, hence δk,k = 0,∀k = {1, 2, . . . , n}.

Dtotal =

m∑
j=1

∆j

≤ 1

2
XT
n×mDn×nXn×m (6.11)

Most commercial optimization problem solvers, however, need the variables to be in a vector form.

So, in order to vectorize X, we need to replicate the matrix D into a matrix D̂ of size M ×M , where

M = m× n.

D̂ =


Dn×n 0n×n · · · 0n×n

0n×n Dn×n · · · 0n×n
...

...
. . .

...

0n×n 0n×n · · · Dn×n


M×M

(6.12)

Similarly, the vector form of X denoted by X̂ is:

X̂ =
[
X1

1 , X
1
2 , . . . X

1
n, X

2
1 , . . . , X

2
n, X

m
1 , . . . X

m
n

]T
(6.13)

Now, the total degree of overlap from (6.11) can be rewritten as:

Dtotal ≤
1

2
X̂T
M×1D̂M×MX̂M×1 (6.14)

As the degree of overlap for any two strings is always positive, the total degree of overlap is maxi-

mized when all the tasks are assigned to one task-block. The problem, however, has other solutions

if some other constraints come into play. As an example, if the maximum number of tasks in a task-

block is fixed, then solving the above equation optimally assigns the tasks to specific task-blocks.

6.1.2 Constraints

The motivation behind the hierarchical assignment of tasks in this case is based on the fact that some

constraints may not allow all the tasks to be merged into one monolithic block. These constraints may

arise either because of some limitations on the sensor networking platform, or to satisfy timeliness
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and criticality requirements of the applications.

Memory Constraint

As mentioned earlier, the length of a task-block corresponding to the hyper-period of all input appli-

cations may result in too large task-blocks for the amount of memory available on a typical sensor

node. Also, the length of re-programming packets may become prohibitive. Therefore, the overall

memory requirements of each block may be specified as a constraint as follows, where µ represents

the maximum amount of memory that can be allocated to each task-block:

for all j,
n∑
i=1

PH
Pi

LiXi,j ≤ µ (6.15)

where, PH is the hyperperiod, and is equal to the Least Common Multiple of the periods of all the

tasks. Li denotes the length of the ith task in number of bytecode instructions or nodes.

Number Constraint

The size of the task-block is also dependent on the number of tasks allocated to it. In order to simplify

the constraints, an upper-bound, U , on number of tasks-per-block can be set. The constraint in this

case can be written as:

for all j,
n∑
i=1

Xi,j ≤ U (6.16)
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6.1.3 Objective Function

Based on (6.14), (6.7), (6.8), (6.15) and (6.16), we can formulate the optimization problem as follows:

maximize
X̂

1

2
X̂T D̂X̂

subject to:

1. Xj
i = 0 or 1

2. for each i,
∑
∀j

Xj
i = 1

3. for all j,
n∑
i=1

PH
Pi

LiX
j
i ≤ µ

4. for all j,
n∑
i=1

Xj
i ≤ U

The objective function is an upper-bound on the total degree of overlap as explained with Theorem 1,

but can serve as a suitable approximation. This solution to the objective function provides an assign-

ment where n tasks are allocated tom blocks such that the total degree of overlap across all the blocks

can be maximized. Please note that Constraints 3 and 4 may or may not be simultaneously applied.

Using any one of them makes sure that all the tasks are not merged into one task-block.

6.1.4 Continuous approximation

The objective function described in the previous section can be solved under the constraint that the

inclusion variables are binary, and hence the problem is one of Quadratic Integer Programming. To

reduce the time-complexity, the problem can be relaxed to a Quadratic Continous Program (QCP)

where the inclusion variables can take continous values from 0 to 1 (0 ≤ Xj
i ≤ 1). The problem can

now be solved in polynomial-time, but the solution fractionally assigns tasks to task-blocks. Simple

heuristics can provide an integer solution, which may not be optimal, but is computationally inex-

pensive. We propose one as described below:

1. A solution is obtained by solving the QCP, where the tasks may be fractionally assigned to

task-blocks.
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2. The tasks in each block are sorted in a descending order of the values of inclusion variables.

3. Starting with the first block, the tasks are now assigned to blocks in a first-fit manner, until both

the number constraint (Constraint 3) and the memory constraint (Constraint 4) are satisfied.

4. The same process is continued in the next block, until all the blocks are considered.

5. If all the tasks cannot be assigned to blocks, while meeting Contraints 3 and 4, the algorithm

returns with a failure

6.2 Gains with Hierarchical Scheduling

The hierarchical assignment selectively merges tasks such that the degree of overlap is maximized

within the given constraints of memory consumption or the maximum number of tasks allowed in

each block. As shown in Section 6.1, Quadratic Integer Programming (QIP) can be used to compute an

optimal assignment of tasks to task-blocks. We use the Gurobi optimizer [129] to solve the QIP. One

example result with a maximum of 3 blocks is shown in Figure 6.3. We vary the number of tasks to

be allocated from 4 to 13. Each block can have up to (d Ntasks

Nblocks
e+ 1) number of tasks. For comparison,

we also found an assignment using Quadratic Continuous Programming (QCP) where the inclusion

variables Xi,j can have real values rather than being integers. This reduces the computation time

significantly, but the solution found may not be optimal. The values calculated for inclusion variables

are rounded off, while making sure that the number of tasks per block does not exceed a maximum

threshold. The QIP computation time becomes impractical as the number of tasks increases. Even for

20 tasks, the computation time was in excess of 4 hours on a dual-core 2.7 GHz machine.

6.3 Related Work

In the domain of real-time scheduling on uniprocessor and multiprocessor systems, hierarchical ap-

proaches have been employed in the past for providing isolation, scalability and improving the task-

allocation. A two-level scheduling approach for uniprocessor systems was proposed in [130] and

there have been several similar studies (e.g., [131]) that allow the allocation of tasks on processors

via intermediate servers, where servers represent abstract resources with pre-allocated budgets. In
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Figure 6.3: Relative energy savings in the case of hierarchical assignment. Better results are ob-
tained using the optimal Quadratic Integer Programming (QIP) compared to an approximation
obtained using Quadratic Continuous Programming (QCP or QP)

the case of multiprocessors, the task assignment is facilitated by virtually clustering the input tasks

and allocating clusters as one entity [132]. Our proposed scheme is conceptually similar to such hi-

erarchical systems, where tasks are merged into intermediate task-blocks to exploit energy savings

while ensuring other important requirements like timeliness or memory footprint are fulfilled. The

major difference between our approach and the above-mentioned schemes is in that, while hierarchi-

cal schemes are focused mainly towards providing hard timeliness guarantees, we focus primarily

on reducing energy consumption by eliminating redundancy of sensing with soft real-time consider-

ations.

6.4 Summary

In this chapter, we proposed a heirarchical approach that extends the inter-application redundancy

elimination approach from the previous chapter. Instead of merging all the applications into one
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monolithic block, the heirarchical approach consists of an optimization framework that creates a set

of task-blocks such the resource requirements on a sensor node are met while maximizing the redun-

dancy elimination. This heirarchical assignment scheme decouples the process of string matching

from the overall optimization framework and reduces the problem to one of quadratic programming.

We also proposed approximations that relax the problem from quadratic integer programming to

quadratic linear programming at the expense of optimality but with a significant reduction in com-

putation time.
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Chapter 7

Network-Harmonized Scheduling

In the previous chapters, we proposed optimizations for reducing the resource consumption at the

processor and sensor level by eliminating the redundancies across applications. However, there is

still scope for optimizing the network behavior when multiple applications are executed on sensor

nodes. It is often the case that applications release packets independently in the network, which

can lead to excess energy consumption due to factors like increase in the number of packets, more

frequent radio-switching and extra contention at the Medium Access Control (MAC) layer. The en-

ergy consumed in transmitting a packet from a source node to a destination node depends on many

aspects, and with common MAC approaches, a packet may undergo contention at several points

in a multi-hop network. This jeopardizes the deterministic behavior of the network and makes it

very difficult to provide any timing guarantees. In this work, we present the Network-Harmonized

Scheduling (NHS) approach, in which radio transmissions from multiple applications are coordinated

across a multi-hop network by harmonizing them around periodic boundaries, while obviating the

need for explicit MAC and routing layers. NHS is a simple and effective approach that is inspired

by Rate-Harmonized Scheduling (RHS) [41] and applied to the context of multi-hop networking. By

using NHS, it is possible to provide real-time performance guarantees in a multihop wireless network

without requiring any central coordination.

Even if applications release one or more packets in a periodic manner, the overall packet trans-

mission by a sensor node may no longer be periodic because of the mismatching periods of different
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applications. In such a case, the total number of packets released by a sensor node grows propor-

tionally with respect to the number of deployed applications. All the packets may suffer contention

at different hops in the network if the underlying MAC layer is based on a carrier-sense mechanism.

Therefore, multiple applications releasing packets independently may increase the overall resource

consumption in the network. Moreover, the latency suffered by packets in a dense multi-hop net-

work may become prohibitively large and non-deterministic. To overcome these issues, NHS aligns

packet releases from different applications around periodic boundaries at each node, and leverages

this periodic behavior to harmonize the transmissions at the network level.

NHS includes a light-weight protocol that groups periodic batched transmissions from different

devices, such that the nodes can turn on their radios when other devices transmit. We first describe

the protocol assuming that all nodes lie in a single broadcast domain. We further develop the proto-

col to support multi-hop scenarios, where we harmonize packet transmissions in a periodic manner

without any global state maintenance. One of the major advantages of our protocol is that it includes

an implicit link-layer mechanism, and, from its multi-hop operation, it can be inferred that dedicated

route maintenance is also not required. Moreover, the protocol provides deterministic bounds on the

end-to-end latency for packet delivery, and design parameters can be chosen such that the packet

deadlines can be met for real-time applications. This characteristic emphasizes the usefulness of NHS

in sensing and actuation networks with closed-loop operation, such as Cyber-Physical Systems [133].

We also analyze the performance of NHS with respect to parameters such as end-to-end latency,

maximum utilization of the channel and average power consumption. The implementation of NHS

is simple (∼ 400 lines of code), and does not require the modification of application semantics. Ap-

plications only need to declare their period of operation and the maximum number of packets they

may transmit in every round. Each node only maintains information about its neighbors, but can

still achieve a performance (in radio duty-cycle) similar to that of Time-Division Multiple Access

(TDMA). NHS requires only a few cycles to converge to a stable schedule, and does not need addi-

tional information exchange if the network remains static. Our approach can also optionally provide

a contention slot for supporting mobile and intermittently connected devices.

The key features of our Network-Harmonized Scheduling approach can be summarized as fol-

lows:

• A harmonizing task is designed for sensor nodes that batches together the transmissions from
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multiple applications by ensuring that packets are released into the network only at periodic

boundaries.

• A protocol is proposed that coordinates packet transmissions in a network around periodic

boundaries. For multi-hop networks, this protocol works in a distributed manner and pipelines

the transmissions from successive hops to make sure that no collisions occur at any node.

• We implemented NHS1 on the Contiki operating system, and we show through experiments

that the protocol is suitable for real-time applications by providing deterministic bounds on

parameters such as the end-to-end latency, channel utilization and radio duty-cycle.

The remainder of this chapter is organized as follows. We describe the state-of-the-art in the next

section, and contrast NHS with other studies that also aim at optimizing the network operation. In

Section 7.1, we outline the assumptions made in our approach and propose the model of the appli-

cations and the sensor network. The process of batching the packet transmissions using RHS (which

inspired NHS) is explained in Section 7.2. The protocol to harmonize data from multiple nodes in a

single broadcast domain is proposed in Section 7.3, followed by the description of the NHS approach

for generic multi-hop networks in Section 7.4. In Section 7.5, we discuss various design parameters,

Section 7.6 provides the details about our implementation of NHS on Contiki and Section 7.7 contains

the results from experimental evaluation. In Section 7.8, we provide a brief discussion of potential ap-

plications of NHS, its limitations and different possible ways to address them. We finally summarize

the NHS protocol in Section 7.9.

7.1 Model and Assumptions

In this work, we assume that several network-wide applications execute concurrently on a sensor

network, and each application has a corresponding node-level task that releases periodic jobs on

each sensor node. The set of all the tasks on a sensor node is represented by Γ. We assume that

there are n tasks in Γ, and the ith task is denoted by τi, where i ∈ {1, 2, ..., n}. The tasks execute

on top of the Network-Harmonized Scheduling layer as shown in Figure 7.1. Every task releases an

infinite number of jobs with a period of Ti. Without any loss of generality, we sort the tasks in an

1Our implementation of the Network-Harmonized Scheduling protocol can be obtained at [134]
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Figure 7.1: Layered architecture of Network-Harmonized Scheduling (NHS) protocol

non-descending order of their periods, and then assign serial indices to the tasks. Hence, it follows

that T1 ≤ T2 ≤ . . . Tn. Every job may sample the sensors, process the data from sensors or incoming

packets, and release one or more packets towards a destination node. Assuming that the maximum

number of packets a job of the ith task can transmit is pi, the time consumed by the packets for

transmission is wi = pi · δ, where δ is the duration corresponding to one packet. As an example, the

value of δ for IEEE 802.15.4 packets of size 128 bytes transmitted at 256 Kbps is 4ms.

One of the tasks deployed on a sensor node can act as a simple clock synchronization service, τsync,

that executes periodically. The management and exchange of MAC-level time-stamps and correction

of clock-drift is the responsibility of this clock synchronization task which sits above the Network-

Harmonized Scheduling protocol layer. As we will see in the next section, the harmonizing period

(period of network operation) is chosen to be at least as small as the period of the most frequent

task, allowing the synchronization task to comfortably operate at the desired frequency. It will be

evident from the description of the protocol that each node only maintains a schedule according to

its immediate neighbors and NHS only requires that a child node be synchronized with its parent.

The nodes are assumed to have unique id’s, and the number of nodes in the network is assumed

to be bounded by N , and a multi-hop operation may be required to communicate from a root node to

another node in the network, or vice-versa. Let hmax be the maximum number of hops required for

connecting a root to all other nodes in the network, and Q denotes the maximum degree of connec-

tivity in the network.
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7.2 Rate-Harmonized Scheduling for Packets

Rate-harmonized scheduling (RHS) [41] is a policy that optimizes the execution of tasks on a uni-

processor system such that the job executions of all the tasks are aligned near the period boundaries

of the task with the shortest period (the most frequent task). RHS saves power by removing inefficient

switching in processor states, namely active, idle, and sleep, based on the observation that the power

consumption in the sleep state is orders of magnitude lower than that in the idle state, but going to

and coming out of the sleep state takes longer time. RHS makes sure that the task executions are

harmonized and aligned in time, and the processor can optimally go to deep-sleep states more often

and for longer time-spans. We adapt RHS in this work to align packet transmissions by different

periodic applications on a sensor node, such that the overhead of radio switching can be avoided,

and the packets are released into the network in a periodic manner.

With multiple tasks releasing packets at every Ti time units, the transmission pattern can be ir-

regular as shown with an example in Figure 7.2a. The packets in the example are transmitted using

the well-known Rate-Monotonic Scheduling (RMS) approach. On the other hand, the packets from

various tasks are batched together with a harmonizing period TH = T1 as shown in Figure 7.2b. RHS

is implemented using a simple queueing mechanism, where every job of all the tasks submits packets

to a harmonizing task, τH , instead of directly copying them into the radio-buffer. τH then transmits

all the packets in its queue with a period of operation equal to a harmonizing period, TH . As the packets

from a node are transmitted in a contiguous manner (back-to-back) as a batch, the number of radio

switchings is reduced significantly.

An important distinction in the scheduling of packets is that preemptions are not possible once

the packets transmission begins, whereas, most task-scheduling approaches on a processor, however,

allow preemption. Harmonizing using the above mechanism converts intermittent packet transmis-

sions from a sensor node into periodic batch-releases, and this periodicity is a fundamental building-

block for further optimizations as described in the subsequent sections.

115



Chapter 7. Network-Harmonized Scheduling

τ1"
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τ3"
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Tx"

Radio Sleep! Transmit!

(a) Packet transmission from different tasks, if scheduled using Rate-Monotonic Scheduling. The task with
a shorter period has higher priority. The number of independent packet transmissions over a time-window
is the sum of number of packets from each task.

t=0! t=10! t=20! T=30! t=40!

τ1"
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τ3"

τH"
Radio Sleep!

Transmit!

(b) The transmission schedule after harmonizing the transmissions. The harmonizing task (with a period of
TH = T1 = 10 time-units) makes sure that the packets are dispatched in batches, never more often than the
harmonizing period.

Figure 7.2: A task set with three tasks τ1, τ2, τ3, with periods of 10, 15 and 26 time-units respectively,
scheduled by Rate-Monotonic Scheduling and Rate-Harmonized Scheduling. Block arrows show
the time-instants when the packets are released by different jobs of the tasks.

7.3 Single Broadcast Domain

Once the packet transmissions from multiple tasks are batched around the harmonizing period, we

can design a distributed online protocol to align packets transmitted by multiple nodes in a single

broadcast domain. Let us assume that the nodes have unique id’s and, for simplicity, the root (or a

cluster head) is already known among the nodes. The goal is to create a scheme where the transmis-

sions from all the nodes can be gathered at the root in a periodically regular manner. The protocol

works as follows. A simplified operation with a root node and 4 nodes with id’s a, b, c and d is shown

in Figure 7.3.

• Initially, all the nodes turn on their radios and listen to any incoming packets. The root transmits
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a b c d
t=0! t=TH! t=2TH!

a b cd

Figure 7.3: Aligning packet transmissions in a broadcast domain around periodic boundaries.

a b c d a b cd
t=0! t=TH! t=2TH!

Figure 7.4: Aligning packet transmissions before the scheduled transmission by the root node,
optimized for collection of data from all the nodes.

a beacon to initiate the protocol, with its node id and the harmonizing period.

• All the nodes listen to this beacon, and take note of the root id and the transmission period. The

nodes locally create a schedule by assigning transmission slots as a monotonic function of node

id, such that each transmission slot is unique to each node. This implies that the nodes with

lower id transmit earlier, and those with higher id transmit later.

• Until the next period boundary, all the nodes listen to the medium after transmitting a chosen

slot. As the node id’s are assumed to be unique, it is guaranteed that there is no collision in any

slot in the network.

• All the nodes listen to the medium during this period and they learn about the other nodes in

the broadcast domain, and their respective slots. It is possible that there may be several empty

slots in the schedule, and the nodes can then independently compress the schedule by removing

the empty slots in the next cycle as shown in the second cycle of Figure 7.3 and Figure 7.4.

• From the next round onwards, the packets are transmitted in a compressed schedule such that

the root only wakes up periodically for a duration equal to the total time required by all the

slots. All the other nodes only wake up close to their slot in the schedule to transmit their data.

In this example, the protocol is designed for nodes to choose slots after the scheduled transmission

by the root node in the next cycle. However, the protocol can also be modified such that the nodes
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transmit before the next transmission by the root as shown in Figure 7.4. This is more beneficial in data-

collection-oriented applications, because the root can receive the data and then react to the data in the

same cycle. The difference in these two approaches is more pronounced in the multi-hop scenario

(discussed in the next section), where the first approach is better suited for flooding and the second

for many-to-one communications.

This protocol helps to remove the overhead of contention and random back-off as in the case of

carrier-sense MAC protocols, and achieves TDMA-like timing efficiency without the need to maintain

a global schedule. The width of each slot, denoted by σ, has to be large enough to accommodate

batched packets, but short enough so that a Harmonizing Period can accommodate packets from all

the nodes; that is:

δ

n∑
i=1

pi ≤ σ ≤
TH
N

(7.1)

7.3.1 Addressing the Hidden-Terminal Problem

There can be cases of collisions in a multihop scenario due to hidden-terminal problems, because

some nodes may occupy the same slot as a hidden terminal when the schedule is being compressed.

This is avoided by ensuring that the root (or a parent) sends a message containing the list of success-

ful receptions during the bootstrapping phase. Hence, every node becomes aware of other hidden

terminals, and avoids choosing overlapping slots. If a node receives a packet from more than one

parent node in the bootstrapping phase, then it chooses a parent which is closest to it, by considering

the signal strength of the received packets. In this way, the network topology is generated by setting

up parent-child links. If the topology changes, and a node does not receive a packet from its parent

for a preset number of cycles, it choses a different parent within its neighborhood. By design, NHS is

more suitable and reliable for static and nomadic sensor deployments than mobile and intermittent

networks.

7.4 Harmonization in a Multi-Hop Network

We now extend the above approach to a multi-hop scenario where all the nodes have to send their

data to a sink in the network. The protocol described in the previous section is easily applicable to
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Figure 7.5: An example multi-hop network, with 15 nodes, and a root-node (r). Solid lines depict
bi-directional wireless links.

multi-hop topologies with minor modifications, so that the possibility of collisions and packet-drops

due to the hidden-terminal problem can be eliminated. The root initiates the protocol by broadcasting

a trigger beacon, which is received by the neighbors of the root. Similar to the case of a single broadcast

domain, the children nodes listen to the beacon, then choose slots as a function of their id’s and then

compress the schedule. The nodes at the second hop-level should not transmit until the schedule has

been compressed, because the nodes at this level cannot listen to all the transmissions at the next level

closer to the root. Each node in the network has information only about its 1-hop neighbors and its

peers (siblings with the same parent).

The main goal of this protocol is to enable scheduled transmissions in a distributed manner, with-

out requiring global knowledge of the network-topology and without explicit time-synchronization.

The working principle behind the protocol is to ensure more than 2-hop distance in simultaneous

transmissions in the network. Assigning slots to transmissions in a TDMA-based network is typi-
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Figure 7.6: Timeline of transmissions from nodes at different hops, showing the working of the
NHS protocol. The listening schedule is not explicitly shown, but the nodes can listen when the
children and the parent nodes transmit.

cally accomplished by applying a distance-two vertex coloring graph. To maximize the throughput,

the problem is equivalent to choosing the minimum number of colors [135]. In our approach, we

achieve the required 2-hop distance by dividing each harmonizing period into three equal slices and

nodes at consecutive hop-levels transmit only in non-overlapping slices. The number of slices can be

chosen to be greater or equal to 3, and we call it the cadence-factor, ω.

The nodes at each hop choose slots to avoid collision using the approach described in Section 7.3

for the single broadcast domain case. In addition to the data to be transmitted, each node transmits

a NHS-tuple as a part of the packet header. The NHS-tuple, denoted by λ, consists of η, the number

of hops the transmitter is from the root, and φ, its offset in terms of the number of slots from the

boundary of its section:

λ ≡< η, φ >

To illustrate the operation of this protocol, let us consider the example topology shown in Fig-

ure 7.5. We assume that data collection is the more important goal of the network, and the protocol

is programmed such that the nodes transmit before the transmission of the parent node in the next
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cycle, similar to the operation shown in Figure 7.4. The network consists of a root node r and several

other nodes, namely {a, b, . . . , o}. At the start, all the nodes turn on their radios and wait to receive

packets. The root node r broadcasts a trigger beacon at t = 0, and nodes a, b and c receive this beacon.

A simplified timeline of NHS operation corresponding to this example in shown in Figure 7.6, and

the labeled slots imply transmission by a node. Nodes a, b and c transmit at the period boundary

before the slot for the root. The transmissions are aligned around this boundary as explained in the

previous section. For the sake of simplicity, the step of choosing non-overlapping slots is deliberately

omitted in this example by assuming that the node id’s are consecutive within a broadcast domain.

At the next period boundary, nodes lying within the first hop create a compressed schedule, and

the transmissions from a, b and c are received by their respective children. Based on the λ values

transmitted by them, their children nodes now also participate in the same protocol to find a local

compressed schedule. The transmissions by the children nodes in the next cycle are carried out with

respect to a future relative reference time Ts, which is estimated as follows:

Ts =
2

3
TH + φ

The offset values are shown for nodes a and b in Figure 7.6. The factor of 2
3 is the key in dividing the

harmonizing period into three sections, and making sure that the nodes in successive hops transmit

earlier than their parents by one-third of the period.

Similarly, the children of the nodes in the second-hop, i.e. {i, j, ...o} also transmit according to

their respective Ts values and their transmissions do not overlap with any transmission in the first

or the second hop. Using Ts, the nodes in the fourth hop would have chosen to transmit simulta-

neously with the transmission from the first hop, and so on. Simultaneous transmissions with NHS

are guaranteed to have a hop-distance of three, making sure that no collision occurs at any receiving

node. Designing a protocol with a cadence-factor, ω, of less than three can result in collisions at the

receivers. On the other hand, if ω is chosen to be greater than 3, data from deeper hops can reach the

root within one harmonizing period. The choice of ω provides a tradeoff between the latency suffered

by a packet to reach from a leaf-node to the root and the maximum number of children a node can

have. In general, the reference time Ts can be calculated with respect to ω as follows:

Ts = (
ω − 1

ω
)TH + φ (7.2)
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In the steady state, the network operation is harmonized with respect to the cadence-factor (ω)

and the harmonizing period (TH ). Transmissions by any node in the network are conducted only

once every harmonizing period, but different hops are offset in a cyclic manner to avoid collisions.

This approach improves the end-to-end latency in a fashion similar to that of pipelining. The nodes

at the jth hop now listen only in the windows where the nodes in the (j + 1)th or (j − 1)th hop are

going to transmit. By listening to the nodes in the previous hop-level, the protocol ensures that the

communication from the root node to leaf nodes is also possible. It can be observed that the data

from ω number of hops can reach the root within one cycle, once the protocol reaches the steady

state. The packets in the opposite direction can reach the root in a number of cycles equal to the

number of hops. The network operation can be configured to be more responsive in either direction.

If data collection is the main goal, then the described design is appropriate, otherwise the children

nodes transmit just after the next transmission by their parent to enable fast delivery of data from

the root to the leaf in case of flooding applications. This asymmetric operation is practical for most

data collection applications, since the reverse data channel can be used for network maintenance,

acknowledgements, and other similar functions.

The NHS protocol is distributed by design and maintains very little state. The primary bene-

fit from this approach is that the transmissions are harmonized around periodic boundaries, and

packets do not suffer from contention. The radios on the nodes only need to be turned on in a pe-

riodic manner for a small timespan, which considerably reduces the radio-switching overhead. The

proposed protocol does not aim to achieve high throughput, since the goal is not to maximize the

number of possible simultaneous transmissions in the network. That optimization problem requires

global knowledge and has been solved in the past using graph-coloring approaches [82].

7.5 Real-Time Performance

So far, we have described the operation of the NHS protocol based on parameters such as the har-

monizing period (TH ), cadence-factor (ω) and node degree (Q). The choice of these parameters can

directly or indirectly impact the resource consumption and real-time characteristics of the network.

The following sections introduce an analysis that allows us to reason about the trade-offs between the

end-to-end latency and parameters: TH , ω, and Q.
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The observation that NHS parameters can be selected such that packets are always delivered be-

fore the next transmission, enables offline guarantees on end-to-end packet delivery deadlines, as

presented in Section 7.5.2.

7.5.1 End-to-End Latency

The worst-case end-to-end latency that may be suffered by a packet from the time it is released by

an application to the time it is delivered at the root node consists of the delays occurred due to the

packet-batching and the latency in the multi-hop network. Based on the design of our approach for

batching the packets from multiple applications, the worst-case delay a packet can suffer at a node

is equal to the harmonizing period, TH . The worst case happens when the packet is released by the

application just after the end of a TH cycle, and it can only be released into the network near the end

of the next period boundary, as evident from Figure 7.2b.

At the jth hop, the maximum number of slots that can be occupied for transmissions is equal to

the maximum number of children a node can have. Also, the worst-case network latency suffered by

a packet from a node at the jth hop to the root is

Lj =
(j − 1)TH

ω
+Qσ ≤ jTH

ω
(7.3)

Each node turns on its radio to listen to its children and its parent and then to forward the data in the

next slot. Therefore, the duty-cycle of the radio operation at each node, ∆, can be estimated as:

∆ =
(Q+ 2)σ

TH
(7.4)

The total worst-case latency (including the delay at the node) suffered by a packet released by a node

at the jth hop is given by:

Ltotal ≤ TH + d j
ω
eTH

We define the delivery factor ϕ, as

ϕ = (1 + dhmax
ω
e)
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Hence, the worst-case latency for a packet from the hmax hop level is:

Lmax = ϕ · TH (7.5)

If the harmonizing period is chosen to be less than half of the period of the most frequent task

(i.e., TH < T1/2), and if ω can be chosen to be greater than the maximum number of hops in the

network, NHS guarantees that a packet from any node in the network can always be delivered to

the root before the next packet is released by that node, and this determinism allows NHS to provide

real-time performance guarantees to applications as we will see in the next subsection.

7.5.2 End-to-End Deadlines

The Network-Harmonized Scheduling protocol can provide deterministic end-to-end latency that can

be leveraged to meet the packet delivery deadlines specified by the applications. We assume that the

applications specify relative deadlines given by Di, where i = 1, 2, ...n, considered from the point of

release of the packet. For ensuring that all the packets meet their delivery deadlines, the maximum

latency should be less than the minimum deadline, such that:

min(D1, D2, ...Dn) ≥ Lmax (7.6)

which implies:

Dmin ≥ ϕ · TH (7.7)

The above equation shows that a packet originating within ω number of hops can reach the root

node within two cycles of the harmonizing period. Conversely, the harmonizing period can be se-

lected such that the deadlines are always met.

The choice of the cadence factor, ω, is also important in determining the latency suffered by the

packets over a multi-hop path, as given by (7.3). An increase in ω also results in narrowing the offset

in the transmissions from successive hops; hence, it may not be possible to increase ω beyond the

point that the transmissions from nodes at a hop may not fit inside a time-window of tω = TH/ω. The
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number of slots in a time-window of tω can be calculated as:

nω = tω/σ =
TH
σω

Assuming that the maximum node degree is Q, the number of slots in each tω should at least be

equal to Q to accommodate all transmissions from all the nodes:

nω ≥ Q⇒
TH
σω
≥ Q (7.8)

By eliminating TH from (7.7) and (7.8), we can deduce that:

Dmin

ϕ
≥ Qσω (7.9)

We can now find a suitable value for the maximum number of children a node can have such that

the minimum end-to-end deadline is met.

Q ≤ Dmin

ϕσω
(7.10)

As the packets are batched with the same harmonizing period, we can say that, if the minimum

deadline is met, the larger deadlines will also be met. Equation 7.10 provides an upper limit on the

network size, such that the real-time requirements of applications are met.

The maximum number of packets or batches to be transmitted by the nodes in the first hop is the

cumulative sum of packets from all the nodes at all hopes. Hence, the width of a slot should be:

σ ≥ β
hmax∑
j=1

Qj = βQ
Qhmax − 1

Q− 1

where, β denotes the maximum duration of transmission of a batch from a sensor node. Now, the

relation between ω and Q can be written as:

Q ≤ TH

βω
∑hmax

j=1 Qj

125



Chapter 7. Network-Harmonized Scheduling

Table 7.1: Various fields in the NHS packet.

Field Description

ID ID of the transmitter
Slot Offset (φ), transmitter’s slot with respect to its parent
Parent ID of transmitter’s parent
Hopcnt Hop count (η), Transmitter’s Hop level
Cycle Current cycle in number of harmonizing periods
N child Number of transmitter’s children
Child k ID of the kth child
NHS Data Data from all the deployed applications, delineated by

application ID and length.

or,

ω ≤ TH

β
∑hmax

j=1 Qj+1
(7.11)

To ensure that the end-to-end latency for packet delivery is less than the harmonizing period, the

value of ω should be greater than the maximum number of hops.

hmax ≤ ω ≤
TH

β
∑hmax

j=1 Qj+1
(7.12)

If ω > hmax, then the latency will be greater than TH . The duty-cycle of each node in the network,

given by (7.4), does not depend on ω. This implies that ω can be chosen to be as large as possible to

reduce the end-to-end delay without incurring any energy-consumption overhead.

7.6 Implementation

We implemented the Network-Harmonized Scheduling protocol on the Contiki operating system,

such that it replaces the Radio Duty-Cycling (RDC) and the Medium Access Control (MAC) layers of

the Contiki network stack. The core of the NHS implementation is a simple state machine as shown

in Figure 7.8. The state machine is the same for all the nodes except the root node. The protocol starts

with all the nodes in the network waiting to receive a packet with their radios on. Whenever a node
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receives its first packet, it registers the id of the incoming packet as its parent node, and continues

to listen for incoming packets for another harmonizing period so that it can listen to its peers. The

packet header in the NHS implementation is shown in Figure 7.7, which contains several fields as

described in Table 7.1.

ID Slot Parent Hopcnt Cycle N_child Child_1 Child_2 Child_k NHS Data 

Figure 7.7: The packet header in NHS implementation

If a node receives a packet from a parent, it calculates the next relative time reference to transmit

based on the received λ-tuple using the function choose slot tx(). This function calculates the

reference time with the help of Equation 7.2, and conducts the slot selection algorithm among the

neighbors of this node as previously described in Section 7.3. Then, the node goes to the sleep state,

and wakes up at the time-reference Ts to transmit its data. Once the transmission is finished, the

node goes to sleep immediately. The time instants for the nodes to wake up to listen are calculated

using the function ready to listen(), that wakes up the nodes only when either the parent hop or

the children hop transmit. The implementation of the Network-Harmonized Scheduling protocol for

Contiki can be obtained at [134].

7.7 Experimental Evaluation

We implemented the Network-Harmonized Scheduling protocol for the Contiki [57] operating system

for TMote Sky sensor nodes. In order to evaluate the performance of NHS with respect to energy

efficiency, we compared the average radio duty-cycle achieved with NHS against an ideal TDMA

approach. For estimating the duty-cycle of each node with the ideal TDMA, we assume that each

node only turns on its radio at the exact instants to listen to its parent, its children and to transmit in

its allocated slot. All other overheads of radio-switching and clock-synchronization are assumed to

be negligible in the ideal TDMA estimation. The duty-cycle for each node in the case of ideal TDMA

for a given topology is calculated offline by considering the network graph.

We measured the average radio duty-cycle per node for two different topologies, with varying

values for the harmonizing period. Topology 1 is a linear topology as shown in Figure 7.9, where
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Wait!
radio_on()!

Receive!

Sleep!
radio_off()!

Transmit!

Ts = choose_slot_tx();!

tx_done()!

ready_to_listen()!

wake_at(Ts)!

At t=0, start!

Figure 7.8: State machine showing the core of implementation of the NHS protocol at each node.

8 nodes are arranged in a linear topology with the maximum number of hops equal to 6. Topology 2 is

a multi-hop tree topology shown in Figure 7.10. The values for duty-cycle are obtained after running

the network for a duration of 600 harmonizing periods. The experiments are conducted for a large

number of cycles to amortize the radio on-time in the bootstrapping phase, as the radio remains on

continuously for the first few cycles. The results of the experiment are shown in Figure 7.11 and

Figure 7.12. It can be observed from the results that the average duty-cycle in NHS is within 15% as

compared to the ideal TDMA case. This overhead appears partly because the radio remains on for the

first few cycles to identify the parents, peers and children, and partly because of the time consumed

in the switching of the radio. It can be observed that the relative overhead compared to the ideal is

larger for small values of harmonizing periods, which is about 30% for Topology 1 and about 12%

for Topology 2, with a period of 1 sec. The overhead is larger for the linear topology because each

node has only one parent and one child and the radio switching overhead accrues for each reception.

However, for the tree topology, a node receives several packets from its children back-to-back, thus

reducing the switching overhead. Overall, our evaluation shows that the average radio duty-cycle for

each node in NHS is close to that of an ideal TDMA scenario, where NHS does not require a global

knowldege of the network topology.
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r!

Figure 7.9: An example linear topology with 8
nodes.

r 

Figure 7.10: An example tree-like
topology with 10 nodes.
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Figure 7.11: Average radio duty-cycle for the
linear topology in Figure 7.9.
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Figure 7.12: Average radio duty-cycle for 10
nodes in a multi-hop graph shown in Fig-
ure 7.10.

7.7.1 Real-Time Performance Evaluation

We also simulated the operation of the Network-Harmonized Scheduling protocol to evaluate its

performance and validate the analytical results obtained in the previous section. The network topol-

ogy for simulation consists of a set of nodes spread randomly with a uniform distribution in a 2-

dimensional field of size 100m × 100m. A given number of nodes, N , is spread uniformly over the

field. The number of nodes in each broadcast domain is automatically selected during the proces-

sion of the protocol. Corresponding to the number of nodes in the broadcast domain at a given hop

level, successive hops are generated based on the nodes that lie within the radio transmission range.

The simulation utilizes a time-driven execution, where each node is autonomously assigned a slot to
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Figure 7.13: Impact on deadline misses with increase in TH with different radio ranges, averaged
over 20 iterations

transmit.

In this evaluation, we configured the transmission power of the nodes such that a receiver within a

certain radius (in meters) can receive the packets successfully with a probability of 100%. Various ex-

ternal factors such as interference from other devices and multi-path can result in unexpected packet-

loss, but our evaluation focuses on the performance limits of the protocol and its overall behavior

under perfect packet reception. The simulation environment is chosen to highlight the advantages of

the NHS protocol with respect to its real-time characteristics, and the impact of network capacity on

deadlines.

We observed the impact of the network size and the selection of the harmonizing period on the

real-time behavior of our protocol. The results are shown in Figure 7.13 and Figure 7.14. Firstly,

we measured the effect of the choice of harmonizing period on the number of packets that miss the

minimum deadline. The deadline is chosen corresponding to the harmonizing period as given by

(7.7). The harmonizing period is defined according to the minimum possible period (and deadline)

to show the performance limits of the NHS protocol. Longer deadlines are bound to provide better

performance in terms of deadline misses by allowing the choice of larger TH . Smaller harmonizing

periods will require more packets to be transmitted within a smaller window, thus more deadlines

will be missed. In Figure 7.13, we show the decrease in deadline misses as the harmonizing period
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Figure 7.14: Average deadline misses over 20 iterations with respect to the size of the network. The
error bars are also shown.

increases, for different values of the radio range. The total number of nodes, N , was fixed to 100 for

these experiments, and we assume that each node releases a packet every harmonizing period. Note

that, with larger radio range, more nodes are covered within one broadcast domain and more slots are

required at each hop. Hence, a short harmonizing period may not be sufficient to accommodate all

the transmissions. For example, a period of 1000ms or larger is enough to guarantee that all network

deadlines are met, if the radius of coverage by each node is equal to or less than 30m.

The next experiment studied the impact on deadline misses as the number of nodes in the network

increases, for different radio ranges, and a given harmonizing period of 1000ms. As the number of

nodes increases, more packets need to be transmitted in each slot, thus the number of deadline misses

also increases, as shown in Figure 7.14. This figure also shows that, with an harmonizing period of

1000ms, up to 100 nodes are supported with no deadline misses.

The energy consumption of a sensor node is directly dependent on the duty-cycle of the radio,

and we measured the average duty-cycle over all the nodes for different values of the harmonizing

period. If the harmonizing period can be made large while meeting the deadlines, then increasing

the harmonizing period improves the duty-cycle. Note that the offline guarantees offered by NHS

(presented in section 7.5) enable us check if our selection of the harmonizing period will allow us to

meet all deadlines. One of the key advantages of NHS lies in the fact that the nodes are autonomously
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Figure 7.15: Average radio-duty cycle over all the nodes after 20 iterations with the increase in the
harmonizing period.

assigned slots in the bootstrapping phase, and then the nodes do not need to listen to activity other

than in the slots of its neighbors. A node only transmits in one slot per harmonizing period, and

keeps the radio on during the transmission by its neighbors, which is always less than Q slots. The

results for the average radio duty-cycle over all the nodes in the network with the varying network

size are shown in Figure 7.15. The values are averaged over 20 iterations, and the error bars show the

range of deviation in the duty-cycle. With a network size of 100 nodes, NHS can achieve about 0.50%

duty-cycle at a period of 60 secs. The average duty-cycle remains below 2% for periods greater than

20 secs with a network size up to 200 nodes.

7.7.2 Latency and Throughput

We observed the end-to-end latency of a packet generated at different hop-levels with the help of

simulated experiments. The results obtained are shown in Figure 7.16, where the time a packet is

received at the root is shown on the y-axis. The time-values are scaled with respect to the harmonizing

period, to highlight the relative delay in the reception of packets at the root node. Latency for different

values of the cadence factor ω were also measured. The bold lines show the average latency for

packets from different hop levels and the error margins show the maximum and minimum latency

values observed in the experiments. The variability in the latency comes into play only because of the
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Figure 7.16: Average latency suffered by packets transmitted by nodes at different hop-levels.
The x-axis correspond to the number of hops. The y-axis corresponds to latency in time-units
normalized with respect to the harmonizing period.
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Figure 7.17: The number of packets received by the node with respect to time, shown on a loga-
rithmic scale. Different plots correspond to different settings of neighbor degree Q.
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relative location of the slot chosen by a node in its hop-level, which is small compared to the overall

time-scale of the NHS operation. As the maximum number of hops in the network is 6, for ω = 6, the

maximum latency is less than the harmonizing period. For smaller values of ω, the packet delivery

happens in the next cycle.

We also measured the number of packets received at the root node with respect to the maximum

node-degree Q, which is shown in Figure 7.17. We chose different values of Q, namely: 1, 3, 5, 10,

which capture the overall density of the network. As expected, the number of received packets in-

creases exponentially with time, until the protocol reaches steady state at the cycle number corre-

sponding to the number of hops in the network. Once the steady state is reached, the root periodically

receives the same number of packets indefinitely, if the network operation is not interrupted due to

external events. The number of packets grow linearly for Q = 1, since in this case, the network is

effectively a linear multi-hop topology.

7.8 Discussion

In this section, we discuss in detail the assumptions and limitations of the Network-Harmonized

Scheduling protocol as presented. The NHS protocol assigns static transmission slots to devices in a

network, where once a node chooses a slot in the bootstrapping phase, it uses the same slot (poten-

tially) indefinitely. In this manner, the NHS approach is mainly suitable for static deployments with

few or negligible topology changes. Typical examples of such deployments can include building

monitoring, industrial sensing and other applications involving stationary sensor placements. NHS

is a TDMA-scheduling approach that assigns static schedules. Hence, support for mobile nodes is not

provided in the current version of the protocol. It is, however, possible to provide contention slots at

each hop to allow mobile nodes to join the network and to facilitate existing nodes to request a new

slot.

It must be noted that there are cases where the network topology obtained as a consequence of

TDMA scheduling using the NHS protocol can be improved further. In particular, there is a possi-

bility for two of more devices to choose the same slot where simultaneous transmissions can result

in collisions. One such case is illustrated in Figure 7.18, where devices e and f with different parent

nodes (a and b, respectively) may choose the same NHS slot and transmit simultaneously. This is
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a case similar to the one shown in the timeline for multihop NHS in Figure 7.6. However, if nodes

e and f lie within the communication domain, but are not connected to the same parent, collisions

will occur when they transmit simultaneously. The bold-dashed line in Figure 7.18 shows such a

communication link between e and f.

a 
b

d

e f  

Figure 7.18: An example topology where nodes at same hop level (e and f ) have different parents,
a and b, respectively, but lie within their wireless communication range (shown with the thick
dotted line). In the NHS protocol, nodes e and f may transmit simultaneously and can result in
packet collisions.

The NHS protocol does not avoid the possibility of collision in such cases, as an explicit and opti-

mum topology is not always achieved during the network setup (bootstrapping) phase in the current

version of the protocol. Topology control [136] is typically a separate mechanism that generates an

optimal subgraph from the overall connectivity graph in a network. Yao Graphs [137], Minimum

Spanning Tree [138] and XTC [139] are some of the approaches that have been proposed in the past

for topology control in ad-hoc wireless networks. To avoid the collision problem described above,

we can use an approach similar to XTC, where, the NHS protocol can be modified to include a 2-

pass mechanism. In the bootstrapping phase, nodes can share with their neighbors the list of nodes

they are able to listen to, and also announce in advance the slot they will choose from the next cycle

onwards. Once this information is shared, nodes can re-align their schedule if there is a chance of

potential collision. With such a mechanism, node f can choose a different non-overlapping slot after

listening to the announcement from node e about its transmission schedule for the next-cycle. We

now provide a more detailed description of this mechanism.

Let us consider the example topology shown in Figure 7.18, where devices e and f can communi-
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Figure 7.19: First cycle in the bootstrapping phase, where nodes choose slots corresponding to
their unique id’s (for the example shown in Figure 7.18).

cate with each other, but are connected to different parent nodes. As explained earlier in Section 7.3

and Section 7.4, the NHS protocol involves a bootstrapping phase where devices first choose unique

slots corresponding to their id’s. Therefore, nodes d, e and f choose unique slots as shown in Fig-

ure 7.19. In this cycle, all the nodes also listen to the medium for any other packets and hence, they

become aware of their neighboring nodes at the same hop-level. In this way, node e can listen to the

transmissions from nodes d and f, and node f can listen only to node e. As it is evident from the

topology that node f is not aware of node d, it is not possible for node f to know which slot node e

will choose in the next cycle for compressing the transmission schedule. To avoid this problem, we

can include a second pass in the protocol as shown in Figure 7.20, where, instead of compressing the

schedule in the second bootstrapping cycle, the nodes announce the slots they are going to choose

from the third cycle onwards. These announcements are made in the same slots corresponding to the

unique id’s of the nodes, as in the first cycle. For example, node e will announce (in slot 6) that it is

going to choose slot 2 from the third cycle onwards because it knows about only one node (node d)

with a smaller id than its own. And node f will also announce (in slot 8) that it will choose slot 2

because it can listen to only one node (node e) with a smaller id than its own.

However, instead of transmitting directly in the slot announced by a node in the second cycle, each

node also listens to the slots announced by the other nodes. In this way, nodes can come to know if

there is a possibility for collision because of potentially overlapping slots. This conflict can then be

resolved in the next (third) cycle, where a node with a larger id can choose the next higher slot instead

of the slot it announced in the second cycle. Hence, node f can choose slot 3 instead of 2 as shown
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TH#
1/3TH# 1/3TH# 1/3TH#
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Figure 7.20: Second cycle in the bootstrapping phase, where nodes announce the slots they will
choose from the next cycle onwards

TH#
1/3TH# 1/3TH# 1/3TH#

123456789Slot#No.#

Figure 7.21: Third cycle in the bootstrapping phase, where devices choose slots such that poten-
tially colliding slots can be avoided. Node f chooses slot 3 instead of slot 2.

in Figure 7.21. If there are multiple such devices with a potential for collision, they autonomously

sort themselves in increasing order of their id’s to choose transmission slots. Hence, by including one

more cycle in the bootstrapping phase, where devices announce their transmissions slots for the next

cycle, potential collisions can be avoided. Such a scheme for avoiding collisions needs to be evaluated

in the future.

If there is still a possibility of collision between nodes associated with different parents, then the

nodes can make use of an acknowledgement mechanism to identify their packet-delivery rate. In

case of a low packet-delivery rate, a node can request a new slot to be assigned to it to avoid any

possible collisions. For such a mechanism to converge to a schedule with no collisions, it might

be beneficial to assign non-uniform number of slots at different hop-levels. Devices further away

from the root with respect to the hop-distance can have a larger number of slots to choose from

to avoid collisions. In general, the process of assigning slots to devices in a multi-hop network is
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based on finding a tree-based topology, and the possibility of collisions in a network is dictated by

the overall connectivity-graph. Finding a tree structure in the network graph to assign communication

slots requires the knowledge of the entire network and is typically a centralized approach. Our NHS

protocol, on the other hand, is a decentralized approach that assigns slots with only local information.

7.9 Summary

We proposed the Network-Harmonized Scheduling (NHS) protocol for distributed coordination of

packet transmissions in a multi-hop network. The concept of NHS is inspired by the Rate-Harmonized

Scheduling approach where the executions of various tasks are aligned around a period boundary

for saving power by enabling the processor to go into deep sleep states more often. We use a simi-

lar approach to batch packets from multiple applications together around periodic boundaries, which

makes the transmissions periodic. This periodic behavior is leveraged to create a network protocol

that obviates the need for an explicit medium access protocol, and pipelines the packet transmissions

over a multi-hop network. Our work shows that it is possible, and beneficial at the same time, to co-

ordinate network access across multiple hops in a simple manner, without global state maintenance.

This approach results in deterministic network operation, and allows offline delay guarantees to be

derived for the protocol.
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Conclusions and Future Research

Directions

The domain of Wireless Sensor Networks (WSNs) has seen a great amount of research beginning pri-

marily from the concept of Smart-Dust consisting of tiny sensors scattered randomly in the field. The

Smart-Dust vision is yet to accomplished, but a large number of projects covering a wide spectrum

of problems and issues hass been successfully proposed, tested and implemented. The process of

sensing the physical environment has evolved from large monitoring stations like the one shown in

Figure 8.1a to tiny sensor nodes that are only few centimeter in size as the one shown in Figure 8.1b.

Similarly, indoor-environment control has already evolved from simple analog devices like manually

controlled thermostats to smart devices like the Nest [140] thermostats that can already interact with

other home appliances such as washing machines as shown in Figure 8.2. The number of such inter-

connected devices that can sense the physical environment on one hand and accomplish actuation on

the other hand, is bound to increase at a rapid pace. One of the biggest challenges for extracting the

potential of a large number of devices interacting with each other is the development of an ecosystem

of distributed applications. It is therefore plausible to argue that suitable application developmen-

t/distribution platforms [141] for networked embedded systems can revolutionize the synergy of

daily life operations with devices around us, much like the way Mobile Apps have revolutionized

how we use mobile phones today.
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(a) A weather sensing station in the downtown
area of Porto city in Portugal.

(b) Coin sized sensor motes (Image source:
Crossbow Technologies)

Figure 8.1: Sensing equipments: from stationary sensing stations on the left sensing temperature,
pressure (barometer) and humidity (hygrometer) to tiny sensor nodes with wireless communica-
tion capability.

With this vision to enrich the ecosystem of applications for networked embedded systems and

wireless sensor networks in particular, supporting multiple simultaneous applications is important.

In this manner, a given infrastructure of embedded systems including sensors, actuators and other

appliances can be more cost-effectively utilized by more than one independent user. This means that

sensor networks should evolve from a typical application-specific technology to a multi-purpose in-

frastructure that, in addition to helping, should encourage users from varied backgrounds to develop

and deploy their own applications.

In this dissertation, we developed several techniques that facilitate the development, execution

and optimization of multiple applications on a sensor network infrastructure, with the overarching

goal of making wireless sensor networks a popular technology among multiple users. Towards this

goal, we proposed and implemented a holistic programming framework that allows users to develop

network-level applications with little effort and also to re-program the network with ease. In addition

to the programming support provided by our framework, we proposed relevant optimizations for

reducing the overall resource usage on the sensor node because of multiple applications, and we also
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Figure 8.2: A home appliance like a washing machine that can interact with a smart thermostat
like the Nest. (Image source: Whirlpool Home Appliances website)

proposed an efficient networking protocol to harmonize the packet exchange a in multi-hop network.

8.1 Research Contributions

The research contributions of this dissertation are as follows:

• The overarching goal of this dissertation is the design of a multi-dimensional framework to sup-

port multiple applications on a sensor network infrastructure. It will help in further promoting

the adoption of sensor networks in practical life such that independent users from diverse tech-

nical backgrounds can create multi-disciplinary applications.

• We proposed a framework called Nano-CF [34] to support multiple applications on a sensor

network, such that network-level applications can be easily programmed and deployed. We

also proposed a programming pattern called sMapReduce to make it easy to design sensor net-

working applications by splitting them into sMap and Reduce functions.

• We proposed optimizations that identify and eliminate various sources of over-consumption of

resources in a sensor network in the case of multiple applications. This is achieved by elimi-
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nating redundancy across applications [37] at the level of an individual node. Moreover, a hi-

erarchical assignment scheme is proposed that meets the resource constraints on a sensor node,

while maximizing the redundancy elimination across applications.

• We also proposed Network-Harmonized Scheduling approach that batches packet transmis-

sions from multiple applications and harmonizes the network operation [42] to achieve TDMA-

like energy efficiency.

• This work contributed to the Nano-RK source-code repository by adding the Nano-CF pro-

gramming framework to it and incorporating Network-Harmonized Scheduling in the Contiki

operating system as a link- and transport layer protocol.

We now provide a more detailed description of these contributions.

8.1.1 Programming framework for supporting multiple applications

In this dissertation, we presented a macro-programming framework to support more than one ap-

plication on sensor networks. Our proposed framework is called Nano Coordination Framework

(Nano-CF) [34] and it is built on top of the Nano-RK resource kernel. Nano-CF includes a compiler,

application manager, and runtime layer to help the development, deployment and executions of ap-

plications, respectively. The applications are created using our Nano-CL programming language with

descriptors that can be used to specify a set of nodes to execute a given application.

With Nano-CF, we demonstrated that supporting multiple applications is possible and advanta-

geous even on resource-constrained sensor nodes, and by making use of the resource kernel prop-

erties of Nano-RK the isolation among applications and the fair usage of resources can be enforced.

We showed using representative examples that simple data collection applications can be developed

with only 2-5 lines of code in Nano-CL, and a slightly more complex application aiming occupancy

monitoring requires only about 20 lines of code. The overhead incurred due to the execution of ap-

plications in the form of interpreted bytecode is qualitatively offset by the ease of programming in

terms of the number of lines of code.
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8.1.2 Compile-time Inter-application Redundancy Elimination and Hierarchical

Assignment

With multiple applications executing on a sensor node, redundant sampling of sensors can occur

and lead to over consumption of resources. To eliminate this redundant sampling, we proposed a

scheme called Redundancy Elimination with Implicit Scheduling (REIS) [37], that identifies the over-

lap (redundant sensor access) across applications by making use of the well-known string matching

algorithms, namely, Longest Common Subsequence and Shortest Common Supersequence. The REIS

approach creates a monolithic block from all the input applications such that the independent ap-

plications are logically executed, but at the runtime level only one monolithic application executes.

We showed that this scheme can save resources and energy consumed by the processor on a sen-

sor network. We also introduced a hierarchical assignment scheme [142] where instead of creating a

monolithic block from all the input applications, we created a set of task-blocks that execute indepen-

dently which helps in resource management while removing redundancies.

8.1.3 Network-Harmonization to coordinate packets transmitted by multiple ap-

plications

We proposed a network protocol called Network-Harmonized Scheduling (NHS) [42] that coordi-

nates packets across a multihop network such that the packet transmissions are harmonized along

periodic boundaries. This makes the network behavior more deterministic even though the nodes

choose their slots autonomously with only neighborhood information and the logical topology is also

created on the fly without the need for a central coordinator. At the node level, NHS harmonizes the

packet releases from multiple applications along periodic boundaries, such that the overall packet

release into the network can be made periodic. NHS leverages this concept to achieve network-level

coordination. We showed that NHS can achieve energy efficiency close to that of an ideal TDMA

protocol in terms of energy consumption.
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8.2 Validation of the Thesis Statement

We now revisit the thesis statement presented earlier in Chapter 1 and we validate it based on the

studies undertaken as a part of this dissertation.

A holistic framework with suitable optimizations can be designed for the deployment and execution

of multiple applications on a sensor network infrastructure without compromising the resource

usage and the overall energy consumption of the network.

We proposed the Nano-CF programming framework that allows the development, deployment

and management of multiple applications of a sensor network. Users can create network applications

using the Nano-CL programming language with significant ease in a very small number of lines of

code. The additional overhead in resource-usage because of the redundant sampling of sensors by dif-

ferent applications is eliminated using the Redundancy Elimination with Implicit Scheduling (REIS)

approach. Finally, the overall network behavior is coordinated using Network-Harmonized Schedul-

ing (NHS), that harmonizes the packet transmissions across the network while reducing the average

radio-duty cycle at each node in the network.

8.3 Future Directions

This dissertation addresses several aspects regarding the support of multiple applications, but some

challenges remain unaddressed that can be undertaken in the future to build our proposed solutions.

8.3.1 Multiple Applications on Dynamic Networks

The network topologies assumed in this dissertation are based on static, infrastructure-like sensor

networks that involve nodes deployed at fixed locations. However, in several cases, new devices may

join or leave the network quite frequently. Supporting multiple users with multiple applications in

such a dynamic network is a challenge that may require designing novel techniques. An advertising

mechanism may need to be designed so that a new device may join and broadcast its capabilities and

receive not only a joining confirmation but also one or more applications to execute. In such a case,

applications may also need to be re-assigned from the other nodes in the network because the newly
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joined node and the network topology itself may change. For example, an application that collects

the maximum luminosity levels in a room may benefit if executed on a new node placed closer to a

bright window. In such a case, the other nodes that sent their sensor reading as the maximum value

might only act as a router rather than a data source with the addition of the new better-placed node.

8.3.2 Distributed Responsibility sharing among sensor nodes

In our Nano-CF framework, the applications are assigned explicitly to all or a subset of nodes in a

network. Designing distributed responsibility sharing algorithms can be beneficial in decoupling the

application development from the application execution. A programmer may only need to specify the

spatial scope of the application and it becomes the responsibility of the network to decide which node

or a set of nodes is best to execute a particular application autonomously, while optimizing the overall

resource usage. Considering building monitoring as an example, an application may only specify that

it requires one temperature measurement from every room in a building and, in a deployment with

more than one temperature sensor per room, the most efficient nodes may be chosen to send their

sensor readings in a distributed way. One way to achieve this goal is by using a shared data structure

that can be exchanged within a neighborhood of nodes. Such a data structure can include id’s of the

nodes, their location, the applications that can be supported by a particular node, the applications

that a node is currently executing and several other attributes that can help in making distributed

optimization possible. With regular exchange of this data structure, the network can converge to a

state where only the most suitable nodes execute a given application and, with a few iterations, the

network converges to a stable application mapping. However, the challenges in this approach is to

ensure that the application requirements are met at all times, even during the convergence, and that

the size of this data structure does not become prohibitively large.

8.3.3 A General Application Model

In this dissertation, we have assumed a strictly periodic model for applications, where the periods are

known at design time. This model, however, does not cover all the possible types of applications in

sensor networks. Several applications may be an event triggered, where certain external factors may

start their execution. A simple example could be the case where, based on the value of a sensor or the
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reception of a sporadic message, an application is executed. On one hand, periodic applications can

cover a large variety of applications and can model event-based behavior to some extent, but on the

other hand, handling more generic application types by design can allow more fine-tuned resource

optimizations.

8.3.4 Context-aware application deployment

One of the challenges expected to be faced by the next-generation technologies such as smart-home or

building automation is context-aware applications. Context awareness typically refers to leveraging

the knowledge of several attributes about a user such as location, neighborhood and ambient envi-

ronment, to provide smarter services. A typical context-aware system has the potential to become

much more flexible if it has the provisions to deploy and execute new collaborative and distributed

applications at runtime. Such a system should support in an easy manner the definition of more

than one context and a corresponding action to be taken by a set of devices. Our framework could

be extended with support for multiple contexts, context resolution and the ability to take resulting

actions.

8.4 Prospective Vision: A Co-Operating System

In conclusion and as a future research direction, we present a vision and a design proposal for a

new paradigm of an operating system for networked embedded systems which can envelope the

optimizations proposed in this thesis, further facilitate the development of distributed applications

and tackle the unaddressed issues mentioned in the previous section.

The increase in penetration of embedded-systems has led researchers in academia and industry

to envision an Internet of Things, where many objects in the physical world will be connected to each

other and the Internet. Such a highly connected world will further enable several applications like

home automation, intelligent ambience, green buildings and so on. However, the full potential of

highly-connected cooperating objects is still difficult to perceive, as there is scope for diverse and

revolutionary applications that may not have been conceived yet.

To enable the development of such new applications, new paradigms for embedded systems
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software are required. We believe that the currently available operating systems and programming

abstractions may not encourage an environment for active application development for future net-

worked embedded systems. We argue that the design of the operating systems for networked embed-

ded systems needs to be thought from a different perspective than the one already taken in popular

solutions like TinyOS [56], Contiki [57] or Nano-RK [35]. Most of the popular research studies in the

direction of facilitating programming on sensor networks assume that the existing operating systems

are the de-facto platforms upon which the middleware or the programming abstractions have to be

built. This assumption needs to be thought again from a top-down perspective where the new goal

is to support dynamic deployment and management for network-level applications.

Existing operating systems were designed to ease the programming of specific hardware that was

developed as prototypes for wireless sensor networks. Programming these devices on bare metal is

complex and requires a high degree of expertise in embedded systems. Platforms like MicaZ and

TelosB are resource-constrained yet powerful-enough devices that can easily support a small oper-

ating system, custom communication stacks and one or more applications. Operating systems were

designed from the perspective of easing the application development process on individual devices

because, even in their standalone operation, they are complex systems with a processor, a radio, sev-

eral sensors, a programming/communication interface over the USB or the serial port and so on.

These hardware and software platforms have contributed a lot towards the development of ground-

breaking research and proof-of-concept ideas. Moreover, the research in these areas provided a vision

for the future of networked embedded systems. To achieve the goal of ubiquitous connectivity of

embedded devices described earlier, there is a need to design (distributed) operating systems from

scratch that completely isolate the users from node-level intricacies, and take the application devel-

opment to a higher level where the whole network ecosystem can be viewed as a single system. We

believe that revamping the way operating systems are designed is a first step towards this goal.

By networked embedded systems, we refer to the broader area of Cyber-Physical Systems (CPS)

that react to the environment in addition to just sensing the physical quantities as in the case of wire-

less sensor networks. Timeliness is an important requirement of CPS, because of the tight integration

of sensing and actuation. We believe that it is time we move from an operating system to a co-operating

system or CoS, that embodies all fundamental functionalities necessary for encouraging application

development for networked embedded systems directly above it. CoS is a truly distributed operating
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system, in the way that it provides a geographically distributed view of the operating system to the

user rather than abstracting the network as a single machine. In the rest of this chapter, we describe

a few key principles that can motivate the design of such a co-operating-system, and we propose a

possible architecture that can satisfy some of those principles.

8.4.1 Design Principles behind a CoOperating System

The motivation behind CoS is driven by the observation that the existing operating systems were only

designed for facilitating node-level application development, and middleware solutions designed to

allow macro- or network-level programming are limited in scope and are highly dependent on the

underlying operating systems. We discuss some of the principles that stress on the need for a new

perspective in the design of an operating system for cyber-physical systems.

Programming using CoS

As we have outlined in this dissertation, traditional network programming approaches typically in-

volve a middleware layer or a programming abstraction that inevitably tends to centralize the net-

work topology. A user has to interact with a programming layer, that generally resides on a central

server or a gateway. As shown in Figure 8.3, the middleware abstracts the network complexities from

a user with the help of a hierarchical setup that can be rigid and highly application-specific.

In contrast, CoS is designed to facilitate application development in a distributed way for net-

worked objects of the future. The programmer interacts with the operating system directly for creat-

ing network-level applications, instead of a middleware or a gateway. CoS makes it possible that the

user can interact with the system at any logical or topological location in the network, as shown in

Figure 8.4a. CoS manages the communication and dissemination of the application program to other

nodes, based on the user requirements embedded in the logic of the application. The communication

between the nodes can be transparent to the user, and the interaction among them is dictated by the

application logic. The user may deploy an application over one or more nodes, each running an in-

stance of CoS. Then the application is distributed to other participating nodes by CoS as exemplified

in Figure 8.4b.
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Figure 8.3: Programming with the help of a middleware, to emphasize the centralizing aspect

Truly Distributed Design

Traditional distributed operating systems were designed from a perspective of abstracting away the

presence of more than one machine from the user. According to Tanenbaum et al. in [143]:

“As a rule of thumb, if you can tell which computer you are using, you are not using a distributed

system. The users of a true distributed system should not know (or care) on which machine (or

machines) their programs are running, where their files are stored, and so on.”

This presents a major disconnect from cyber-physical systems, where the devices are not only log-

ically distributed but geographically as well, and it is often important for the applications to associate

the geographical location in their logic. For example, controlling the window blinds based on light

level readings in specific rooms A, B and C. Most middleware and programming abstractions tend to

centralize the network, and cause overheads in maintaining connectivity to all the nodes and may also

involve participation of the nodes that may otherwise not be required. A middleware layer would

require a hierarchical architecture to enable the deployment of applications. Similar to the example

of vehicles at a junction, the nodes may not provide enough support for an active higher layer in

dynamic topologies. Hence, the operating system executing on the nodes needs to allow application

deployment in a decentralized way, and then execute distributed logic. A distributed operating sys-

tem for cyber-physical systems (logically and geographically) can decentralize the operation of the
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Figure 8.4: Programming using a CoS

network. It should allow a user to deploy applications by connecting to any one or more nodes in the

network. CoS should obviate the requirement of having a middleware layer and/or a programming

abstraction to program the network.

Other Key Features

Modular: CoS should be modular in design supporting dynamic loading and unloading of modules

and applications. This can help a programmer create powerful applications with significant ease by

making use of existing modules, or creating new ones. Modules can either reside on the system flash

memory, or can be delivered over the air, if needed.

Integrated Network Management: CoS should support tightly integrated network management,

such that a device is able to discover its neighboring devices and thus allowing the updating of

routing information. This information should be made available to the programming interface for

network-wide application development.

Programming Interface: The traditional way of programming sensor nodes via a direct one-to-one

connection to a computer is designed to facilitate application development while making good use

of on-board peripherals. The programming interface of the proposed operating system should be at

the network-level by design, rather than being a layer on top of node-level programming abstraction.

The programming interface should have information about the network topology and capability of
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Figure 8.5: Typical architecture of a CoS

the nodes to provide a global view to the programmer in an intuitive way.

Isolation of Applications: Multiple independent applications on a network of nodes should be

supported, while making sure that the data exchange and operation of the applications remains iso-

lated. The data may need to be multiplexed in the network to save energy, and then de-multiplexed

to deliver to each user.

Support for Heterogenous Platforms: The real-world applications of sensor networks, especially

in the context of cyber-physical systems, may require diverse hardware, including processor, sensors,

actuators and communication peripherals. The operating system should be designed such that it

supports this varied ecosystem of hardware, and provides suitable programming provisions.

8.4.2 CoS Architecture

After discussing the design features of CoS, we now propose its architecture. An outline of the ar-

chitecture showing the various components is provided in Figure 8.5. The following important com-

ponents constitute CoS: Kernel, drivers, a data exchange plane and the applications. We will briefly

describe each of those next.
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Applications

One of the key motivating principles behind the design of CoS is easy and convenient deployment of

applications directly on top of the operating system, rather than having a network-wide middleware

or a programming framework. The status quo in the programming of networked embedded systems

involve either copying operating system images with embedded applications onto to the flash, or

using a network-level virtual-machine delivery system. Following from the typical trend of writing

applications on top of an OS for general-purpose computing systems, CoS should allow installing

applications at runtime, without the need of a middleware layer. Given the resource-constrained

nature of embedded systems, a programmer can create and compile applications on a PC, and then

deliver the binaries to CoS.

As explained earlier, the user may not need to depend on a gateway or a central-server to deploy

the application, CoS allows any one or more nodes to act as the point of delivery. The distribution of

an application to participating nodes is handled by the data exchange plane. The kernel provides a

mount point to the newly deployed application and adds its information to a local list. The mount-

point is a pointer to the memory location where the application resides, so that it can be executed

according to the scheduling policy of CoS, and the criticality or the priority of the application.

Each application has to specify a scope, both geographic and logical, to help determine the nodes

to be associated with that application. In case of more than one application submitted by independent

users, CoS ensures isolation between the state of the applications both at the node- and the network-

level, thus making sure that the data is delivered to the intended destination in a seamless manner and

appropriate action is taken in case of sense-and-react applications. This may require conflict resolution

or deadlock avoidance support from the kernel. For example, in an intelligent surroundings scenario,

if one application requires lights off in the night, and another requires the lights to be turned on

if the window shades are down, it may happen that they can be in conflict at some point in time.

This conflict has to be resolved among participating applications, and this responsibility lies with the

kernel to take a default action while taking applications semantics into account.

152



8.4. Prospective Vision: A Co-Operating System

Kernel

The kernel handles the core functionality, including managing the applications, task scheduling and

timing. Scheduling the applications is one of the most important functions of the kernel. The under-

lying hardware platform may be significantly resource-constrained that may not support more than a

certain number of applications, and the resource usage of applications has to be limited within certain

bounds. The kernel ensures that the applications do not misbehave, and their timing requirements

are met in the best manner possible. For this purpose, the kernel from the Nano-RK [35] operating

system can be adapted, as it has support for real-time scheduling and task-level resource reservations.

In addition to these optimizations, the kernel should be able to resolve conflicts in case of dissimilar

requirements of applications. The kernel can make use of priorities, or assign default behaviors to the

peripherals. In the example of conflict in the state of lights mentioned earlier, the kernel may choose

to keep the lights off at night, until over-ridden manually.

The kernel should be modular in design so that drivers or other modules can be added to enable

required functionalities. Cyber-physical systems can consist of varied sensor and actuator periph-

erals, and providing out-of-the-box support for such possibly large number of devices may not be

practical. Programmers or users should be able to install modules on the nodes covered by their ap-

plications. The kernel should allow dynamic loading and unloading of modules in a manner similar

to the SOS [144] operating system. The kernel can achieve this with the help of module management

and storage components.

As CoS may be run on battery-powered devices, minimizing the power consumption is impor-

tant. A power management module tries to put the device to sleep for as long as possible. Nodes

may operate at very low duty-cycles, hence the power-management module can ensure that different

applications execute in way to maximize the sleep interval.

Drivers

Hardware support for the peripherals on a node, including the radio, the sensors and the actuators,

is provided through drivers. In addition to the default drivers available with CoS, drivers can be

loaded as modules at runtime. Such a design allows the easy integration of heterogenous devices and

dynamic behavior in the long-term. The operating system does not need to be flashed again if some

153



Chapter 8. Conclusions and Future Research Directions

peripheral devices are added or removed. In addition to the peripherals, drivers can help applica-

tions to configure the communication layer as well. Radio configuration, medium-access control and

routing can be implemented as modules and changed on the fly, if needed.

Data Exchange Plane

One of the most important components of the CoS architecture is the data exchange plane. The data

exchange plane handles all the communication to and from the node. Applications created by the user

are delivered to the nodes through this plane, and are further relayed to other nodes that participate

in the given application. Other responsibilities of the data exchange plane are ensuring isolation

between the applications, delivering data to the nodes involved, and also directing actuation based

on the distributed logic of an application.

The data exchange plane uses information from the network management module in the kernel

about the topology and routing information in order to maintain the communication across a multi-

hop network. It can use a device-advertisement phase to construct a topology map of the system.

The advertisements allow the exchange plane to maintain information about the capabilities of the

neighboring nodes. The radius of the neighborhood may be pre-configured as a design-parameter or

specified by the applications. Developing an application may require knowledge about the capabili-

ties of the devices in the network and, hence, the advertisements available to the data exchange plane

should be provided to the programmer so that a distributed logic can be implemented, in accordance

with the truly distributed design principle explained in Section 8.4.1.

The flexibility of CoS lies mainly in the configurability of the data exchange plane and how con-

veniently a programmer can access and adapt this plane in her application. It allows on-demand

information gathering about the devices around and topology formation according to the application

needs. For more dynamic network topologies, the maintenance of network information and device

advertisements can be more frequent if an application requires so. Otherwise, the network may re-

main relatively dormant if no application-level updates are required.
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8.4.3 Summarizing the Co-operating System

We briefly discussed a potential research direction that consists of a new paradigm in operating

system design called Co-operating System or CoS, that aims to ease the application development for

cyber-physical systems. We argued that current sensor networking operating systems like TinyOS,

Contiki or Nano-RK are designed with a goal to facilitate the programming of individual nodes in

a network of embedded devices. Middleware or network programming frameworks are the other

end of the spectrum that may reduce the flexibility of applications and jeopardize the reliability and

robustness. Perhaps this is the reason that, even with the development of several such solutions,

not many have been widely adopted, and researchers still depend heavily on developing applica-

tions directly on top of the operating system. We presented our design principles behind CoS and

discussed its architectural aspects that may enable significant changes in the way applications are

developed and distributed for networked embedded systems. It can be argued that CoS may not be

significantly different from a middleware layer running on top of a traditional OS in terms of the

software-architecture, but the fresh perspective of creating network applications directly on CoS can

provide a conducive setup for rapid and diverse application development for cyber-physical systems.

In this dissertation, we presented our approach to facilitate and optimize multiple applications

developed by independent users. In such scenarios, where different users can make use of a given

infrastructure, security and privacy concerns can be of paramount importance and is a future research

area to be studied.
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