Carnegie Institute of Technology COLLEGE OF ENGINEERING AND SCIENCE

Thesis SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF... DOCTOR OF PHILOSOPHY

TITLE ON THE PLASTIC COLLAPSE OF STRUCTURES AND LINEAR PROGRAMMING
presented by ... WILLIIMM S. DORN \qquad

DEPARTMENT OF-------- MATHEMATICS

THESIS SUPERVISOR H. J. GREENBERG .-...-.-DEPARTMENT OF..... MATHEMATICS \qquad
ACCEPTED BY Lela seyples.
Department head MAY 17, 1955

APPROVED BY THE DEAN OF GRADUATE STUDIES

TABLE OF CONTENTS

Acknowledgments 1
Introduction 2
Chapter I. Fundamental Problems and Theorems of Limit Analysis 3
Chapter II. Special Collapse Problems and Solutions 8

1. The Neal-Symonds Mechanism Technique 8
2. Plastic Superposition 15
3. A Minimax Problem 19
4. The Effect of Axial Forces in Frames 23
5. Examples 32
Chapter III. Linear Programming Methods in Limit Analysis 41
6. Types of Linear Programming Problems 41
7. Computational Techniques 42
8. Collapse Under Proportional Loading 54
Chapter IV. Examples of Linear Programming Methods 63
Appendix A. The Determination of Complete Sets of
Basic Mechanisms 74
Appendix B. Proof of the Fundamental Theorems 78
Appendix C. Initial Solutions to Linear Programming Problems 84
Bibliography 89

LIST OF TABLES

I. Simplex Tableau 47
II. Bounded Variables Tableau 52
III. Dual Method Solution 68
IV. Simplex Method Solution 70
V. Initial Solution to Bounded Variables Problem 72
VI. Bounded Variables Solution 73

LIST OF FIGURES

1. Types of Basic Mechanisms 10
2. Yield Curves 25
3. Plastic Superposition of Forces 33
4. A Minimax Problem 35
5. Application of Theorem 5 37
6. Axial Force Effects in Frames 39
7. A Once Redundant Truss 64
8. Graphic Solution of Truss Problem 66

ACKNOWLEDGMENTS

The author would like to express his sincere gratitude to Professor H. J. Greenberg for his advice and suggestions during the investigation leading to this paper.

INTRODUCTION

This paper is concerned with the solution of various problems in the plastic collapse of plane structures.

In Chapter I the basic problems and theorems of limit analysis are reviewed and formulated in a convenient notation.

A pair of superposition principles are developed for limit analysis of structures in Chapter II. These principles lead to upper and lower bounds to the safety factor for a superimposed load system in terms of bounds to the safety factors for the individual loads. In addition several special problems are posed and solved in the second chapter. These include a minimax problem in which a safety factor which is valid for all load systems in a given range is found. Finally an iterative method is given for obtaining bounds to the safety factor for the proportional loading of frames when axial forces as well as bending moments are to be considered. Examples are included at the end of the chapter.

Chapter III reviews three basic methods of solution for linear programming problems. The problem of the plastic collapse of structures is reduced to forms suitable for the application of these three methods. A collapse problem is solved by the several linear programming methods in Chapter IV for demonstration and comparison.

A method for obtaining an initial feasible solution for Lemke's dual method of solving the linear programming problem is given in Appendix C. This method is analogous to a procedure developed by Dantzig for the simplex method.

Chapter I

FUNDAMENTAL PROBLEMS AND THEOREMS OF LIMIT ANALYSIS

The problems considered in this paper arise in the study of the plastic collapse of statically indeterminate plane structures, which are subjected to concentrated loads acting in the plane of the structure. These structures may be conveniently divided into three types: pin-jointed trusses, continuous beams, and frames.

Throughout, it will be assumed that all of the structural members are composed of an elastic-perfectly plastic material such as mild structural steel. For a member in pure bending this implies that the bending moment at any cross-section must lie between certain maximum and minimum values, the fully plastic moments. At a beam cross-section where the bending moment equals the fully plastic moment a yield hinge develops, and the beam segments adjacent to that cross-section are free to rotate about that point under constant moment.

Similarly for a bar in pure tension or compression the axial force is bounded by the fully plastic forces. A bar in which the axial force equals the fully plastic force (a yield bar) can undergo continuing change in length under constant force.

Since both bending moments and axial forces may be present in beams and frames, the yield condition for these structures in general involves both of these quantities. A more complete discussion of this situation is given in Section 4, Chapter II.

Most of the succeeding analysis, however, will deal specifically with frames in which the axial forces are assumed to be negligible compared with the bending moments. The yield criterion for pure
bending may, therefore, be assumed. The remarks regarding such frames also apply to continuous beams, while a parallel discussion can be given for trusses with axial forces replacing bending moments and yield bars replacing yield hinges.

If in the course of a loading program a yield hinge develops at some point in a statically indeterminate frame, then the degree of redundancy of the frame is reduced by one. The appearance of a sufficient number of yield hinges, therefore, transforms the frame or some part of it into a mechanism, i.e., the structure is no longer rigid. When this phenomenon occurs, the frame is said to collapse.

For a given redundant frame with the fully plastic moments, i.e., bounds on the bending moments, specified at each cross-section and with a finite number of given loads applied at specified points; the basic problem is to determine the largest number by which all of the given loads may be multiplied before the structure will collapse. This type of loading program in which load ratios are maintained as the loads increase is designated proportional loading, and the maximum value of the multiplier is termed the safety factor against collapse.

Any value of the multiplier, for which there exists a bending moment distribution which nowhere exceeds the fully plastic moments and which together with the loads corresponding to this multiplier satisfies equilibrium everywhere, is called a statically admissible multiplier.

On the other hand, through the equation of virtual work, there exists a value of the multiplier corresponding to each mode of collapse of the structure in the form of a kinematically possible mechanism. Such a multiplier is called a kinematically sufficient multiplier.

The two fundamental theorems in the limit analysis of structures are: THEOREM 1: The safety factor against collapse is the largest statically admissible multiplier.

THEOREM 2: The safety factor against collapse is the smallest kinematically sufficient multiplier.

There theorems were first stated and proved for frames by Greenberg and Prager $[1]^{1}$.

The basic problem of determining the safety factor against collapse may, therefore, be formulated and solved in two ways.

It will be assumed for convenience of notation that the fully plastic moments are constant along each individual member, and that the loads are all transverse, i.e., perpendicular to the beam to which they are applied.

Under these assumptions yield hinges can develop only at discrete cross-sections in the frame, i.e., where the bending moment has a turning point. Since only concentrated loads are applied to the frame, these critical cross-sections occur under loads and at the ends of members. The critical cross-sections may, therefore, be enumerated.

The bending moment at the ith critical cross-section is M_{i}, and $\mathrm{M}_{\mathrm{pi}}>0$ and $-\mathrm{M}_{\mathrm{pi}}^{\mathrm{r}}<0$ are the fully plastic moments in the two directions of bending. Finally the applied load at the ith cross-section is $\lambda_{b_{i}}$ (some of which may be zero).

The equations of equilibrium can be written as a system of linear equations in the quantities M_{i} and λb_{i}

[^0]\[

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} M_{j}=\lambda \sum_{k=1}^{n} h_{i k} b_{k} \quad(i=1,2, \ldots, m) \quad, n \geqslant m \tag{1.1}
\end{equation*}
$$

\]

where there are n critical cross-sections. If equations (1.1) are linearly independent and if there $n-m$ redundancies in the frame, then (1.1) is a complete set of equilibrium equations in the sense that all linear equilibrium relations between the bending moments can be expressed as a linear combination of this set. The $a_{i j}, h_{i k}$ are constants which depend on the geometrical configuration of the structure and loads.

The yield criteria take the form

$$
\begin{equation*}
-M_{p j}^{\prime} \leqslant M_{j} \leqslant M_{p j} \quad(j=1,2, \ldots, n) \tag{1.2}
\end{equation*}
$$

Given $a_{i j}, h_{i k}, b_{k}, M_{p i}$ and $M_{p i} ;$ the problem reduces in the one case to finding the maximum value of λ for which a solution M_{j} to (1.1) and (1.2) exists. This value of λ is, by Theorem 1 , the safety factor against collapse.

To formulate the problem in terms of the minimum principle expressed by Theorem 2, it is necessary to determine the value of the kinematically sufficient multiplier corresponding to every mechanism。 Let v_{j} be the linear velocity of the load λb_{j} in a mechanism. Then if θ_{j} represents the relative rotational velocity of the beam segments adjacent to the j th cross-section and if the θ_{j} are kinematically compatible with the velocities v_{j}, the virtual work equation for this mechanism is

$$
\begin{equation*}
\frac{1}{2} \sum_{j=1}^{n}\left\{M_{p j}\left[\left|\theta_{j}\right|+\theta_{j}\right]+M_{p j}^{\prime}\left[\left|\theta_{j}\right|-\theta_{j}\right]\right\}=\lambda \sum_{j=1}^{n} b_{j} v_{j} \tag{1.3}
\end{equation*}
$$

and it is required that

$$
\begin{equation*}
\sum_{j=1}^{n} b_{j} v_{j}>0 \tag{1.4}
\end{equation*}
$$

The value of λ in (1.3) is then a kinematically sufficient multiplier and hence an upper bound for the actual safety factor. By Theorem 2 then the safety factor against collapse is the minimum of

$$
\begin{equation*}
\frac{\frac{1}{2} \sum_{j=1}^{n}\left\{M_{p j}\left[\left|\theta_{j}\right|+\theta_{j}\right]+M_{p j}^{\prime}\left[\left|\theta_{j}\right|-\theta_{j}\right]\right\}}{\sum_{j=1}^{n} b_{j} v_{j}} \tag{1.5}
\end{equation*}
$$

over all v_{j}, θ_{j} which represent mechanisms subject to (1.4).
It is important to note that in any assumed mechanism the absolute magnitudes of θ_{j} and v_{j} are undetermined. Multiplying both by the same arbitrary constant does not alter the mechanism and also yields the same multiplier. The contraint (1.4) is, therefore, a matter of sign convention since v_{j}, θ_{j} can always be multiplied by -1 .

In cases where the mechanism has more than one degree of freedom, even the relative velocities of the different loads need not be uniquely determined. In such cases the value of the multiplier may depend on the ratios of the parameters representing the various degrees of freedom. This point will be discussed in more detail later.

In the above formulations the usual assumption has been made that the deformations prior to collapse are so small, i.e., of the order of elastic deformations, that the equilibrium equations are not significantly affected.

Throughout what follows it will be assumed for convenience that the cross-sections of the structural members are symmetric about the axis of bending. This implies that $M_{p j}=M_{p j}$ for all j and the functional (1.5) reduces to

$$
\begin{equation*}
\frac{\sum_{j=1}^{n} M_{p j}\left|\theta_{j}\right|}{\sum_{j=1}^{n} b_{j} v_{j}} \tag{1.6}
\end{equation*}
$$

Chapter II

SPECIAL COLLAPSE PROBLEMS AND SOLUTIONS

1. The Neal - Symonds Mechanism Technique.

A simple and rapid means of determining the safety factor against the collapse of plane frames which are not too complex is due to Neal and Symonds $[2,3,4]$. We will discuss their method, termed the "mechanism technique", in detail in this section, since it will be found useful in the solution of various collapse problems. In addition we will attempt to make this technique more rigorous by supplying proofs for certain heuristic arguments of the authors and we will extend the analysis to more complicated types of frames.

The mechanism technique is based on the minimum principle. Clearly, if the multipliers associated with all possible mechanisms could be found, then the smallest of these would be the safety factor. Since the virtual work equation yields the multiplier for any mechanism, it remains only to devise a technique for determining all possible mechanisms. This is supplied by the Neal and Symonds analysis.
A. Rectangular Frames. - A frame is called rectangular if it is constructed of rectangular bays or portals. The results and remarks regarding these frames apply also to any frame consisting of quadrilateral bays or portals.

For rectangular frames Neal and Symonds proposed the following three types of "elementary" or "basic" mechanisms:
(a) Beam: implying yield hinges at the end points of a beam and at some intermediate cross-section under a load (See Figure I(a)).
(b) Frame: implying motion of a panel or story (See Figure 1(b)).
(c) Joint: implying rotation at a joint where two ${ }^{1}$ or more beams unite (See Figures $I(c)$ and $l(d)$).

If a frame mechanism is assumed for each story and each cantilevered section; a beam mechanism for each load not at a joint; and a joint mechanism for each joint; then the authors state that every possible mechanism is some combination of this set of basic mechanisms. Designate this set of basic mechanisms by B.

Because there are only a finite number of cross-sections where yielding can occur for a frame under concentrated loads, it is usually tacitly assumed that there are only a finite number of possible mechanisms. However, a mechanism requires specification of the relative velocities, v_{i}, of the cross-sections where loads are applied. It has already been mentioned that when the mechanism has more than one degree of freedom, the relative velocities may be arbitrary and there may exist an infinite set of allowable $\left(v_{i}, \theta_{i}\right)$ which are not simple multiples of each other.

Two questions, therefore, arise regarding the Neal-Symonds procedure for rectangular frames: (1) whether all mechanisms can be obtained by combining the mechanisms of the set B , and (2) whether an infinite number of mechanisms need be examined to determine the lowest multiplier. In the following we shall attempt to clarify these points.

A mechanism for a given set of loads b_{j} is defined by a set of velocities, v_{i} and relative rotational velocities, θ_{i}, which are
${ }^{1_{\text {The }}}$ authors originally proposed a joint mechanism only for points where three or more members are joined. The generalization here leads to a more systematic treatment.

(a)

Beam

(c)

Joint
(b)

Frame

(d)

Joint

FIGURE 1
Types of Basic Mechanisms
compatible and satisfy (1.4). The virtual work principle requires that

$$
\begin{equation*}
\sum_{i=1}^{n} M_{i} \theta_{i}=\lambda \sum_{i=1}^{n} b_{i} v_{i} \tag{2.1}
\end{equation*}
$$

where the M_{i} are any set of bending moments in equilibrium with, the loads $\lambda \mathrm{b}_{\mathrm{i}}$. Thus (2.1) is an equation of equilibrium and must be satisfied by the actual bending moments at collapse.

Let m_{k} designate the k th basic mechanism in the set B in some order and let e_{k} be the corresponding equilibrium equation. Then if $\nabla_{i}^{(k)}, \theta_{i}^{(k)}$ are the velocities and rotational velocities defining m_{k}, the equation e_{k} can be written

$$
\begin{equation*}
\sum_{i=1}^{n} M_{i} \theta_{i}^{(k)}=\lambda \sum_{i=1}^{n} b_{i} v_{i}^{(k)} \tag{2.2}
\end{equation*}
$$

The set of equilibrium equations (2.2) associated with the set B of basic mechanisms forms a complete, linearly independent set. A proof of this statement is given in Appendix A.

Now an arbitrary mechanism, m^{*}, is defined by a compatible set of velocities and rotational velocities, v_{i}^{*} and θ_{i}^{*}. The equilibrium equation e^{*} associated with m^{*} is

$$
\begin{equation*}
\sum_{i=1}^{n} M_{i} \theta_{i}^{*}=\lambda \sum_{i=1}^{n} b_{i} v_{i}^{*} \tag{2.3}
\end{equation*}
$$

Now since (2.2) are complete and linearly independent, e^{*} can be written as some linear combination of (2.2), i.e.,

$$
\begin{equation*}
\sum_{k=1}^{m} \sum_{i=1}^{n} a_{k} M_{i} \theta_{i}^{(k)}=\lambda \sum_{k=1}^{m} \sum_{i=1}^{n} a_{k} b_{i} v_{i}^{(k)} \tag{2.4}
\end{equation*}
$$

Since (2.3) and (2.4) must be identical for all permissible M_{i}, it is necessary that

$$
\theta_{i}^{*}=\sum_{k=1}^{m} a_{k} \theta_{i}^{(k)} \text { and } v_{i}^{*}=\sum_{k=1}^{m} a_{k} v_{i}^{(k)}
$$

This implies that m^{*} is a linear combination of the m_{k} and resolves the

first question.

To clarify the second question consider the following theorem: THEOREM 3: If collapse occurs for a mechanism $\left(v_{j}, \theta_{j}\right)$ then all mechanisms $\left(\underset{j}{*}, \theta_{j}^{*}\right)$ for which

$$
\sum_{j=1}^{n} b_{j} v_{j}^{*}>0
$$

with the same arrangement of hinges and such that $\operatorname{sign} \theta_{j}=\operatorname{sign} \theta_{j}$, for all j, yield the same value of the multiplier.

PROOF: By Theorem 2 since collapse occurs for the mechanism v_{j}, θ_{j} the safety factor λ is given by

$$
\begin{equation*}
\lambda=\frac{\sum_{j=1}^{n} M_{p j}\left|\theta_{j}\right|}{\sum_{j=1}^{n} b_{j} v_{j}} \tag{2.5}
\end{equation*}
$$

Now the virtual work equation for the mechanism $\left(v_{j}^{*}, \theta_{j}^{*}\right)$ may be written

$$
\begin{equation*}
\sum_{j^{2}=1}^{n} M_{j} \theta_{j}^{*}=\lambda \sum_{j=1}^{n} b_{j} v_{j}^{*} \tag{2.6}
\end{equation*}
$$

where the M_{j} are any set of moments in equilibrium with the loads λb_{j}. Since λ is the safety factor and hence statically admissible, such a set of moments exists. Indeed such a set is obtained by taking $M_{j}=M_{p j}$ for $\theta_{j}>0$ and $M_{j}=-M_{p j}$ for $\theta_{j}<0$ since the collapse solution satisfies equilibrium everywhere. Substituting this set of M_{j} into (2.6)

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\theta_{j}}{\left|\theta_{j}\right|} M_{p j} \theta_{j}^{*}=\lambda \sum_{j=1}^{n} b_{j j} v_{j}^{*} \tag{2.7}
\end{equation*}
$$

Since $\operatorname{sign} \theta_{j}=\operatorname{sign} \theta_{j}^{*}$ by assumption,

$$
\theta_{j}^{*}=\frac{\left|\theta_{j}\right|}{\theta_{j}}\left|\theta_{j}^{*}\right|
$$

so (2.7) becomes

$$
\begin{equation*}
\sum_{j=1}^{n} M_{p j}\left|\theta_{j}^{*}\right|=\lambda \sum_{j=1}^{n} b_{j} v_{j}^{*} \tag{2.8}
\end{equation*}
$$

Now the multiplier, λ_{*}, associated with the mechanism ($v_{3}^{*}, \theta_{j}^{*}$) is by the principle of virtual work $\lambda_{*}=\frac{\sum_{j=1}^{n} M_{p j}\left|\theta_{j}^{*}\right|}{\sum_{j=1}^{n} b_{j} v_{j}^{*}}$

Comparing this with (2.8) it follows that

$$
\lambda_{*}=\lambda
$$

If, therefore, one mechanism is considered for each possible arrangement of yield hinges, the safety factor will be the smallest of the multipliers computed for these mechanisms. There are only a finite number of such mechanisms. They may be found by considering all combinations of the m basic mechanisms of the set B taken any number at a time. The total number of these combinations is $\sum_{k=1}^{m}\binom{m}{k}$ where $\binom{m}{k}$ denotes the number of combinations of m things taken k at a time.

Actually, all of these mechanisms need not be considered. If $n-m+1$ hinges appear, then the bending moments throughout the frame are uniquely determined. Therefore, for a mode of collapse involving more than $n-m+1$ hinges the moment distribution and multiplier can be determined from some mechanism where only $n-m+1$ hinges occur. It is, therefore, not necessary to consider any mechanisms involving more than $n-m+1$ hinges.

The number of combinations which must be tested can be reduced still further. Neal and Symonds have stated and shown by example that only those combinations of mechanisms for which a hinge is eliminated at some cross-section need be considered. This is a generally valid primciple and may be stated and proved as follows. THEOREM 4^{1} : If two mechanisms, in which the rotational velocities at all common hinges are in the same sense, are combined in positive amounts; 1. $I_{\text {A similar theorem proved by } R_{0} M_{0} \text {. Haythornthwaite in the discussion }}$ of [4] applies only to combinations of quite restricted types of mechanisms.
then the multiplier associated with the combined mechanism cannot be less than the smaller of the multipliers associated with the original mechanisms.

PROOF: Let the multipliers associated with the original mechanisms be
and

$$
\begin{equation*}
\lambda^{\prime}=\frac{\sum_{j=1}^{n} M_{p j}\left|\theta_{j}^{\prime}\right|}{\sum_{j=1}^{n} b_{j} v_{j}^{\prime}} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda^{\prime \prime}=\frac{\sum_{i=1}^{n} M_{p j}\left|\theta_{j}^{\prime \prime}\right|}{\sum_{j=1}^{n} b_{j} v_{j}^{\prime \prime}} \tag{2.10}
\end{equation*}
$$

$$
\sum_{j=1}^{n} b_{j} v_{j}^{\prime}>0, \quad \sum_{j=1}^{n} b_{j} v_{j}^{\prime \prime}>0
$$

Since the rotational velocities are all in the same sense

$$
\begin{equation*}
\operatorname{Sign} \theta_{j}^{\prime}=\operatorname{Sign} \theta_{j}^{\prime \prime} \tag{2.11}
\end{equation*}
$$

Now a positive combination of the two mechanisms is defined by relative velocities $\theta_{j}^{\prime}+g \theta_{j}^{\prime \prime}$ and $v_{j}^{\prime}+g v_{j}^{\prime \prime}$ where $g>0$. The multiplier assocrated with the combined mechanism is

$$
\lambda_{c}=\sum_{j=1}^{n} M_{p j}\left|\theta_{j}^{\prime}+g \theta_{j}^{\prime \prime}\right|
$$

From (2.11) it follows that $\sum_{j^{-1}}^{n} b_{j}\left(v_{j}^{\prime}+g v_{j}^{\prime \prime}\right)$

$$
\left|\theta_{j}^{\prime}+g \theta_{j}^{\prime \prime}\right|=\left|\theta_{j}^{\prime}\right|+g\left|\theta_{j}^{\prime \prime}\right|
$$

and thus

Now, assuming without loss of generality that $\lambda^{\prime} \leqslant \lambda^{\prime \prime}$, then from (2.9) and (2.10) the last equation yields

$$
\lambda^{\prime} \leqslant \lambda_{c} \leqslant \lambda^{\prime \prime}
$$

B. General Frames. - The mechanism technique may also be applied to more general frames which are composed of straight members. The concept of beam and joint mechanisms carries over immediately and such
mechanisms are identified as before. The idea of a frame mechanism requires generalization and the identification of such mechanisms is no longer obvious since the structure may no longer consist of simple bays and portals.

In order to carry out the mechanism technique it is necessary to find $n-r$ mechanisms whose corresponding equilibrium equations are linearly independent. The particular choice of basic mechanisms for rectangular frames was merely a matter of convenience. If the beam and joint mechanisms are retained as basic mechanisms in the general case, then exactly $2 \mathrm{v}-\mathrm{b}$ more independent mechanisms are needed to form a complete set ${ }^{1}$.

The additional set of $2 \mathrm{v}-\mathrm{b}$ mechanisms can be chosen so that hinges occur only at the ends of beams. A necessary and sufficient condition that such a set of mechanisms be independent is that none may be obtained from any of the others by rotation of joints.

With these criteria at hand it is usually not difficult to choose 2 v - b mechanisms, which may be arbitrarily termed frame mechanisms.

2. Plastic Superposition.

In the elastic analysis of frames the solution of problems can often be reduced to the solution of several simpler problems by use of the principle of superposition. This principle cannot be extended to limit analysis since for elastic-plastic behavior there is no longer a one-to-one correspondence between stresses and strains. However, we will now develop a pair of superposition principles for the limit analysis
${ }^{1}$ See Appendix A. The number of bars in the frame is b and the number of verticies, i.e., joints, is v.
of proportionally loaded frames. While neither principle determines the safety factor for superimposed loads, the two together yield upper and lower bounds for that quantity.
A. Lower Bounds. - Consider w different load systems $b_{j}^{(1)}, b_{j}^{(2)}$, . .., $b_{j}^{(w)}$ all applied to the same frame. Let $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{w}^{\prime}$ be statically admissible multipliers for each of these load systems respectively. Then there exist bending moments $M_{j}^{(1)}, M_{j}^{(2)}, \ldots, M_{j}^{(w)}$ such that

$$
\sum_{j=1}^{n} a_{i j} M_{j}^{(k)}=\lambda_{k}^{\prime} \sum_{j=1}^{n} h_{i j} b_{j}^{(k)} \quad(i=1,2, \ldots, m) \quad(k=1,2, \ldots, w)
$$

and

$$
-M_{p j} \leqslant M_{j}^{(k)} \leqslant M_{p j} \quad\left(\begin{array}{l}
(j=1,2, \ldots, n) \tag{2.12}\\
(k=1,2, \ldots, w)
\end{array}\right.
$$

Multiplying the equilibrium equations by c / λ_{k}^{\prime} and summing over k

$$
\sum_{j=1}^{n} a_{i j} \sum_{k=1}^{w} c \frac{M_{j}^{(k)}}{\lambda_{k}^{\prime}}=c \sum_{j=1}^{n} h_{i j} \sum_{k=1}^{\omega} b_{j}^{(k)}
$$

Now let

$$
\begin{align*}
\bar{M}_{j} & =c \sum_{k=1}^{\omega} \frac{M_{j}^{(k)}}{\lambda_{k}^{\prime}} \\
\bar{b}_{j} & =\sum_{k=1}^{\omega} b_{j}^{(k)} \tag{2.13}
\end{align*}
$$

so that the last equation becomes

$$
\sum_{j=1}^{n} a_{i j} \bar{M}_{j}=c \sum_{j=1}^{n} h_{i j} \bar{b}_{j}
$$

Since \bar{b}_{j} is the load system obtained from superimposing the load systems $b_{j}^{(k)}, c$ is a statically admissible multiplier for the superimposed loads provided it is chosen so that

$$
-M_{p j} \leqslant \bar{M}_{j} \leqslant M_{p j} \quad(j=1,2, \ldots, n)
$$

If λ_{a} is the safety factor for the loads \vec{b}_{j}, then

$$
\begin{equation*}
c \leq \lambda_{s} \tag{2.14}
\end{equation*}
$$

To get the largest lower bound to λ_{μ}, c is chosen as large as possible
so that

$$
\begin{equation*}
-M_{p j} \leq c \sum_{k=1}^{w} \frac{M_{j}^{(k)}}{\lambda_{k}^{\prime}} \leq M_{p j} \quad(j=1,2, \ldots, n) \tag{2.15}
\end{equation*}
$$

A lower bound \bar{c} to λ_{A} which will in general be smaller than c and therefore not as good a bound can be more easily obtained. Notice that (2.12) implies

$$
-\bar{c} M_{p j} \sum_{k=1}^{\omega} \frac{1}{\lambda_{k}^{\prime}} \leqslant \bar{c} \sum_{k=1}^{\omega} \frac{M_{j}^{(k)}}{\lambda_{k}^{\prime}} \leqslant \bar{c} M_{p j} \sum_{k=1}^{w} \frac{1}{\lambda_{k}^{\prime}}
$$

where $\bar{c}>0$. The continued inequality (2.15) is satisfied then if

$$
\bar{c} \sum_{k=1}^{\infty} \frac{1}{\lambda_{k}^{\prime}} \leqslant 1
$$

Now \bar{c} is a lower bound to λ_{s} as was c before, and the largest value of \bar{c} is obtained if equality is taken in the last inequality. From (2.14) therefore

$$
\begin{equation*}
\frac{1}{\lambda_{k}} \leq \sum_{k=1}^{w} \frac{1}{\lambda_{k}^{\prime}} \tag{2.16}
\end{equation*}
$$

As previously stated, this bound is in general not as good as that obtained by maximizing c in (2.15).

The largest lower bound in (2.16) is obtained if the λ_{k}^{\prime} are the safety factors for the load systems $b_{j}^{(k)}$ for all k. In general, however, this lower bound \bar{c} will not equal λ_{c} since the bending moments in equilibrium with loads $\overline{\mathrm{cb}}_{\mathrm{j}}$ may not equal the yield moment at sufficient cross-sections to produce collapse.
B. Upper Bounds. - Consider now a mechanism $\left(v_{j}, \theta_{j}\right)$ such that for all k. Let $\lambda_{i}^{*} \sum_{j=1} b_{j} v_{j}>0 \quad(k=1,2, \ldots, w)$ ciated with this mechanism for the load system $b_{j}^{(i)}$. Then $\lambda_{i}^{*}>0$ and

$$
\frac{1}{\lambda_{i}^{*}}=\frac{\sum_{i=1}^{n} b_{j}^{(i)} v_{j}}{\sum_{j=1}^{n} M_{p j}\left|\theta_{j}\right|}
$$

Summing this over i and using (2.13)

$$
\sum_{i=1}^{\omega} \frac{1}{\lambda_{i}^{+}}=\frac{\sum_{i=1}^{\infty} \bar{b}_{j} v_{j}}{\sum_{j=1}^{n} M_{p j}\left|\theta_{j}\right|}
$$

The right hand member is the reciprocal of the multiplier, λ^{*}, for this mechanism when associated with the superimposed loads. By Theorem 2

$$
\frac{1}{\lambda_{\kappa}} \geqslant \frac{1}{\lambda^{*}}
$$

so

$$
\frac{1}{\lambda_{k}} \geqslant \sum_{i=1}^{w} \frac{1}{\lambda_{i}^{*}}
$$

This may be combined with (2.16) to form the continued inequality

$$
\begin{equation*}
\sum_{k=1}^{\omega} \frac{1}{\lambda_{k}^{*}} \leq \frac{1}{\lambda_{2}} \leq \sum_{k=1}^{\omega} \frac{1}{\lambda_{k}^{\prime}} \tag{2.17}
\end{equation*}
$$

An example of the use of these superposition principles is given in Section 5, Part A of this chapter. THEOREM 5: If for a given frame the mode of collapse is the same for two different load systems, $b_{j}^{(1)}$ and $b_{j}^{(2)}$, and if the safety factors against collapse are λ_{1} and λ_{2} respectively; then the collapse mode for the combined load system $\bar{b}_{j}=b_{j}^{(1)}+b_{j}^{(2)}$ is the same, and the safety factor against collapse, $\bar{\lambda}$, is

$$
\bar{\lambda}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}
$$

PROOF: By the upper bound principle

$$
\begin{equation*}
\bar{\lambda} \leqslant \frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \tag{2.18}
\end{equation*}
$$

Now since λ_{1} and λ_{2} are safety factors, they are statically admissible multipliers, so bending moments $M_{j}^{(1)}$ and $M_{j}^{(2)}$ exist such that

$$
\begin{align*}
& \sum_{j=1}^{n} a_{i j} M_{j}^{(1)}=\lambda_{1} \sum_{k=1}^{n} h_{i k} b_{k}^{(1)} \\
& \sum_{j=1}^{n} a_{i j} M_{j}^{(2)}=\lambda_{2} \sum_{k=1}^{n} h_{i k} b_{k}^{(2)} \tag{2.19}
\end{align*}
$$

and

$$
-M_{p_{j}} \leqslant M_{j}^{(1)} \leqslant M_{p j}
$$

$$
-M_{p j} \leqslant M_{j}^{(2)} \leqslant M_{p j}
$$

Consider the bending moment distribution

Obviously

$$
\bar{M}_{j}=\frac{\lambda_{2} M_{j}^{(1)}+\lambda_{1} M_{j}^{(2)}}{\lambda_{1}+\lambda_{2}}
$$

$$
-M_{p j} \leq \bar{M}_{j} \leq M_{p j}
$$

Moreover

By (2.19)

$$
\sum_{j=1}^{n} a_{i j} \bar{M}_{j}=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \sum_{j=1}^{n} a_{i j} M_{j}^{(1)}+\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \sum_{j=1}^{n} a_{i j} M_{j}^{(2)}
$$

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} \bar{M}_{j} & =\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \sum_{k=1}^{n} h_{i k}\left[b_{k}^{(1)}+b_{k}^{(2)}\right] \\
& =\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \sum_{k=1}^{n} h_{i k} \bar{b}_{k}
\end{aligned}
$$

Thus $\lambda_{1} \lambda_{2} / \lambda_{1}+\lambda_{2}$ is a statically admissible multiplier for the load system \bar{b}_{k} and

$$
\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \leqslant \bar{\lambda}
$$

Combining this with (2.18), the result follows.
An example of the use of this theorem is given in Section 5, Part C.
-The theorem is easily extended to the case of w load systems where the mode of collapse is the same for each system.

3. A Minimax Problem.

Consider now the following generalization of the proportional loading problem defined by (1.1) and (1.2): To find the minimum over b_{j} of the maxima over M_{j} of λ subject to

$$
\begin{align*}
\sum_{j=1}^{n} a_{i j} M_{j}=\lambda \sum_{j=1}^{n} h_{i j} b_{j} & (i=1,2, \ldots, m) \tag{2.20}\\
-M_{p j} \leqslant M_{j} \leqslant M_{p j} & (j=1,2, \ldots, m) \tag{2.21}\\
\bar{b}_{j}-\Delta_{j} \leqslant b_{j} \leqslant b_{j}+\Delta_{j} & (j=1,2, \ldots, n) \tag{2.22}
\end{align*}
$$

$$
\begin{equation*}
\bar{b}_{j} \geqslant \Delta_{j} \geqslant 0 \quad(j=1,2, \ldots, n) \tag{2.23}
\end{equation*}
$$

where $a_{i j}, h_{i j}, M_{p j}, \bar{b}_{j}, \Lambda_{j}$ are given.
For every set of b_{j} satisfying (2.22) a value of the safety factor is obtained by maximizing λ over the statically admissible M_{j}, i.e., M_{j} satisfying (2.20) and (2.21). The present problem seeks the smallest of all these safety factors over all possible sets of loads b_{j} satisfying (2.22). Let λ_{c} be the solution to this minimax problem. Then λ_{c} is a true safety factor for all load systems in the given range, i.e., for all $\lambda<\lambda_{c}$ collapse will not occur for any set of loads satisfying (2.22). The final restriction (2.23) prevents the loads from changing direction and is a necessary simplification for the treatment which follows.

For a fixed set of loads b_{j} which satisfies (2.22), the problem reduces to the simple proportional loading problem posed in (1.1) and (1.2). It may therefore be formulated as a minimum problem given by (1.4) and (1.6), i.e., to minimize

$$
\begin{equation*}
\lambda=\frac{\sum_{j_{i=1}^{n}}^{n} M_{p j}\left|\theta_{j}\right|}{\sum_{j=1}^{n} b_{j} v_{j}} \tag{2.24}
\end{equation*}
$$

over all possible mechanisms $\left(v_{j}, \theta_{j}\right)$, where the v_{j} and θ_{j} are kinematically compatible velocities and rotational velocities respectively, and

$$
\begin{equation*}
\sum_{j=1}^{n} b_{j} v_{j}>0 \tag{2.25}
\end{equation*}
$$

The original minimax problem is therefore equivalent to minimizing (2.24) first over all mechanisms $\left(v_{j}, 0_{j}\right)$ and then over all loads b_{j} subject to (2.22), (2.23), and (2.25).

Although this minimum problem is actually an iterated one, it is
equivalent to the minimization of the functional (2.24) over the two sets of quantities $\left(v_{j}, \theta_{j}\right)$ and b_{j} without regard to order. If this latter minimum exists then the iterated one does also, and the two are equal.

The problem as stated is non-linear. All attempts to reduce it to a linear programming problem both in the present and in previous ${ }^{l}$ investigations have failed. A solution is obtained here by use of the NealSymonds technique.

THEOREM 6: Only the end points of the intervals of the loads, b_{j}, need by considered in seeking λ_{c}.

PROOF: Suppose in contradiction to the theorem that the functional (2.24) takes on its minimum for $b_{j}=\bar{b}_{j}+\epsilon_{j}$ where $\left|\epsilon_{j}\right|<\Delta_{j}$ for some j, say $j=p$. Then

$$
\Delta_{p} v_{p}>\epsilon_{p} v_{p}
$$

and the value of λ_{c} can be decreased by replacing ϵ_{p} by Δ_{p} contrary to assumption. Similarly if, (2), $\mathrm{v}_{\mathrm{p}}<0$, then

$$
-\Delta_{p} v_{p}>\epsilon_{p} v_{p}
$$

and a contradiction is reached. Finally if, (3), $v_{p}=0$, then the functional takes on the same value for all values of b_{p} and it is sufficient to consider the end points.

The problem therefore reduces to minimizing
${ }^{1}$ See pp. 53-58 of $[5]$.

$$
\begin{equation*}
\lambda_{c}=\frac{\sum_{j=1}^{n} M_{p j}\left|\theta_{j}\right|}{\sum_{j=1}^{n} \bar{b}_{j} v_{j}+\sum_{i=1}^{n} \Delta_{j}\left|v_{j}\right|} \tag{2.26}
\end{equation*}
$$

over all mechanisms $\left(v_{j}, \theta_{j}\right)$ subject to (2.25). Notice, however, that (2.25) may be replaced by the equivalent restriction

$$
\sum_{j=1}^{n} \bar{b}_{j} v_{j}>0
$$

These mechanisms are, therefore, identical with those arising in the Neal-Symonds solution for the proportionally loaded frame with loads \bar{b}_{j}. They are finite in number and thus the minimum exists.

In order to obtain a more convenient form of the functional in (2.26), let $v_{j}^{(k)}, \theta_{j}^{(k)}$ designate the velocities and rotational velocities of the kth mechanism arising from the Neal-Symonds analysis, and let the $v_{j}^{(k)}$ be so normalized that

$$
\begin{equation*}
\sum_{j=1}^{n} \bar{b}_{j} v_{j}^{(k)}=1 \tag{2.27}
\end{equation*}
$$

for all k. Then

$$
\frac{1}{\lambda_{c}}=\operatorname{Maximem} \frac{1}{\sum M_{p j}\left|\theta_{j}^{(k)}\right|}\left[1+\sum_{j=1}^{n} \Delta_{j}\left|v_{j}^{(k)}\right|\right]
$$

where the maximum is taken over all k.
The value of the multiplier associated with the kth mechanism for the loads \bar{b}_{j} is
so

$$
\bar{\lambda}^{(k)}=\sum_{j=1}^{n} M_{p_{j}}\left|\theta_{j}^{(k)}\right|
$$

$$
\begin{equation*}
\frac{1}{\lambda_{c}}=\text { Maximum } \frac{1}{\lambda^{(k)}}\left[1+\sum_{j=1}^{n} \Delta_{j}\left|v_{j}^{(k)}\right|\right] \tag{2.28}
\end{equation*}
$$

over all k.
The procedure for obtaining the solution to the minimax problem then is:
(1) Proceed as in the solution of the proportional loading collapse
problem for loads \bar{b}_{j} using the Neal-Symonds technique. Tabulate all mechanisms and the corresponding multipliers, $\bar{\lambda}^{(k)}$.
(2) Normalize the velocities, v_{j}, for each mechanism according to (2.27).
(3) Form the right hand member of (2.28) for each mechanism using the normalized velocities and select the largest of these numbers. This is the reciprocal of λ_{c}.

An example of this type of minimax problem and solution follows in Section 5, Part B of this chapter.

4. The Effect of Axial Forces in Frames.

Another modification of the Neal-Symonds technique leads to bounds on the collapse solution of a proportionally loaded frame when axial forces are significant. As mentioned in Chapter I, the addition of axial force effects requires a yield condition involving both moments and forces at each cross section.

A mechanism may now involve yield bars as well as yield hinges. It is, therefore, necessary to examine cross-sections where the bending moment and/or axial force has a turning point. Since all loads are assumed to be transverse, these are identical with the critical crosssections neglecting axial forces, i.e., at the ends of each member and under each load.

Let M_{i} be the bending moment at the ith critical cross-section, and let N_{j} be the axial force, considered positive for a tensile force, in the j th member. ${ }^{1}$ Furthermore, let $M_{p 1}$ be the fully plastic moment

[^1]at the ith cross-section and let $N_{p j}$ be the yield force in the j th member.

It should be noted that $M_{p i}$ and $N_{p i}$ are not independent but are related by

$$
M_{p i}=k_{i} N_{p i}
$$

where k_{i} is a constant which depends on the cross-section. ${ }^{2}$
The state of stress at a generic cross-section can be completely specified by a point, the stress point, in a two-dimensional Euclidean space whose rectangular coordinates are $N_{i} / N_{p i}$ and $M_{i} / M_{p i}$. Onat and Prager [6] have shown that for a beam of rectangular cross-section the stresses at a yielding cross-section must satisfy one of the two equations

$$
\left(\frac{N_{i}}{N_{p i}}\right)^{2} \pm \frac{M_{i}}{M_{p i}}=1
$$

In the stress point plane these are represented by two intersecting parabolas (dashed curves in Figure 2). All statically admissible stress states must be represented by stress points interior to these curves, designated the yield curves for rectangular cross-sections.

For beams with symmetric cross-sections, the yield curves are closed, convex curves symmetric about both axes. Some empirical curves have been given by Baker $[7]$.

As a linear approximation to all of these convex yield curves, each member. Specification of the axial force in each beam, therefore, is sufficient for the determination of N_{i} at every cross-section
${ }^{2}$ For rectangular cross-sections $k_{i}=h / 4 \propto$ where h is the length and \propto the length-depth ratio of the beam in which the cross-section is located. For idealized I-beams, $k_{i}=w / 2$ where w is the heighth of the web.

FIGURE 2
Yield Curves
the yield condition ${ }^{1}$

$$
\begin{equation*}
\frac{\left|M_{i}\right|}{M_{p i}}+\frac{\left|N_{i}\right|}{N_{p i}} \leq 1 \tag{2.36}
\end{equation*}
$$

may be taken. The yield curves for this criterion are the sides of the square EFGH (Figure 2). A stress point satisfying (2.36) must therefore lie inside the yield curves for all symmetric shapes. Hence safety factors based on this approximation will always be on the safe side, i.e., smaller than the safety factors based on the actual yield laws.

The problem of maximizing λ subject to the equilibrium conditions and the yield law (2.36) is the principal problem of this section and will be designated Problem 1. Only bounds to the solution of Problem 1 will be found here. An exact solution is obtainable by the linear programming methods outlined in Chapter III.

The proofs of the fundamental theorems, i.e., Theorems I and 2, for Problem 1 are given in Appendix B. The proofs of these theorems do not follow directly from the general theorems of limit analysis since forces or stress resultants are involved rather than pure stresses.

The mechanism technique cannot be immediately extended to solve Problem 1, however, since it is necessary to allow for relative displacements of the cross-sections adjacent to a yield hinge as well as for rotations of beam segments about the hinge. ${ }^{2}$. The axial force

[^2]${ }^{2}$ See discussion of flow vectors in Appendix B.
across a yield hinge, therefore, does work in a mechanism and must be included in the virtual work equation.

We now introduce a problem for which a mechanism technique is available and which will in turn lead to bounds on Problem 1.

Consider the problem of maximizing λ subject to the equilibrium conditions and the yield criteria

$$
\left|M_{i}\right| \leq M_{p i}
$$

and

$$
\begin{equation*}
\left|N_{i}\right| \leqslant N_{p i} \tag{2.37}
\end{equation*}
$$

We designate this as Problem 2. The proofs of Theorems 1 and 2 for this problem follow the proofs given in Appendix B for Problem 1 with only slight variations. The yield curves for Problem 2 are the sides of the square $A B C D$ (Figure 2).

A mechanism technique can be developed for Problem 2 since there are no relative displacements at yield hinges. Changes in length can only occur when the axial force equals the yield force and thus the member becomes a yield bar.
A. Upper Bounds. - The class of statically admissible moments M_{i} and forces N_{i} for Problem l is a sub-class of the statically admissible M_{i} and N_{i} for Problem 2. Thus any statically admissible stress state for Problem 1 is also admissible for Problem 2. By Theorem 1 the solution to Problem 1 cannot be larger than the solution to Problem 2, i.e.,

$$
\begin{equation*}
\lambda_{1} \leqslant \lambda_{2} \tag{2.38}
\end{equation*}
$$

where λ_{1} and λ_{2} are the safety factors for Problems I and 2 respectively.
As previously mentioned, the mechanism technique can be immediately extended to solve Problem 2 and therefore to find an upper bound for λ_{1}. It should be noted that the mechanisms for Problem 2 are not necessarily kinematically possible mechanisms for Problem 1.

The number of basic mechanisms necessary to form a complete set is equal to the number of independent equilibrium equations. In addition to the set B of beam, joint and frame mechanisms defined by Neal and Symonds ${ }^{l}, \mathrm{~b}$ more independent mechanisms are required where there are b members in the frame.

An axial failure mechanism is defined as a mechanism containing one and only one yield bar together with sufficient yield hinges so that the frame or some part of it is no longer rigid. There exist therefore b independent axial failure mechanisms and these are independent of the mechanisms of the set B. The set of mechanisms \bar{B} composed of the set B together with b independent axial failure mechanisms is a complete set for Problem 2.

All possible mechanisms are obtained as linear combinations of the set \bar{B}, and the combinatorial techniques of Neal and Symonds (Section 1) may be used to examine all combinations of \bar{B} necessary to determine λ_{2}.
B. Lower Bounds. - The solution of Problem 2 can also be used to find a lower bound for Problem 1. Let $M_{j}^{(2)}, N_{j}^{(2)}$ be a set of moments and forces statically compatible with λ_{2}. Define numbers μ_{i} at each critical cross-section as

$$
\begin{equation*}
\left.\mu_{i}=\operatorname{Maximum~}^{\min } \frac{\left|N_{i}^{(2)}\right|}{N_{p i}}, \frac{1}{2}\right\} \tag{2.39}
\end{equation*}
$$

, i.e., the larger of the two numbers in brackets. Notice that
$\frac{1}{2} \leq \mu_{i} \leq 1$ for $i=1,2, \ldots, n$.
$I_{\text {There }}$ are $n-r$ such mechanisms, where n is the number of critical cross-sections and r is the number of redundancies in the frame.

Consider now a new problem, Problem 3: to maximize λ subject to the equilibrium conditions and the yield criteria

$$
\begin{align*}
& \left|M_{i}\right| \leq M_{p i}^{*} \\
& \left|N_{i}\right| \leq N_{p i}^{*} \quad(i=1,2, \ldots, n) \tag{2.40}
\end{align*}
$$

where at son cromb-cecouton

$$
\begin{equation*}
M_{p i}^{*}=\mu_{i} M_{p i} \tag{2.41}
\end{equation*}
$$

$$
\begin{equation*}
N_{p i}^{*}=\mu_{i} N_{p i} \tag{2.42}
\end{equation*}
$$

Problem 3 is, therefore, Problem 2 for a weakened frame. Let λ_{3} be the solution to. Problem 3 and $\operatorname{let} M_{j}^{(3)}, N_{j}^{(3)}$ be moments and forces in equilibrium with loads $\lambda_{3} b_{j}$ and satisfying the yield criteria (2.40)

For a cross-section where $\mu_{i}=\frac{1}{2}$

$$
\begin{align*}
& \left|M_{i}^{(3)}\right| \leq \frac{1}{2} M_{p i} \\
& \left|N_{i}^{(3)}\right| \leq \frac{1}{2} N_{p i} \tag{2.43}
\end{align*}
$$

so

$$
\begin{equation*}
\frac{\left|M_{i}^{(3)}\right|}{M_{p i}}+\frac{\left|N_{i}^{(3)}\right|}{N_{p i}} \leq 1 \tag{2.44}
\end{equation*}
$$

and (2.36) is satisfied.
At cross-sections where $\mu_{i}>\frac{1}{2}$ from (2.39)

$$
\begin{equation*}
\left|N_{i}^{(2)}\right|=\left(1-\mu_{i}\right) N_{p i} \tag{2.45}
\end{equation*}
$$

Now from (2.41) and (2.42)

$$
\frac{\left|M_{i}^{(3)}\right|}{M_{p i}}+\frac{\left|N_{i}^{(3)}\right|}{N_{p i}}=\mu_{i}\left[\frac{\left|M_{i}^{(3)}\right|}{M_{p i}^{*}}+\frac{\left|N_{i}^{(3)}\right|}{N_{p i}^{*}}\right]
$$

and since $M_{i}^{(3)}$ satisfy $(2,40)$

$$
\begin{equation*}
\frac{\left|M_{i}^{(3)}\right|}{M_{p i}}+\frac{\left|N_{i}^{(3)}\right|}{N_{p i}} \leq \mu_{i}\left[1+\frac{\left|N_{i}^{(3)}\right|}{N_{p i}^{*}}\right] \tag{2.46}
\end{equation*}
$$

Two cases arise: (1) at all cross-sections

$$
\left|N_{i}^{(3)}\right| \leq\left|N_{i}^{(2)}\right|
$$

or (2) at some cross-section

$$
\left|N_{i}^{(3)}\right|>\left|N_{i}^{(2)}\right|
$$

If (1) holds then from (2.45) and (2.42)

$$
\left|N_{i}^{(3)}\right| \leqslant\left(1-\mu_{i}\right) N_{p i}=\left(1-\mu_{i}\right) \frac{N_{p i}^{*}}{\mu_{i}}
$$

thus

$$
\frac{\left|N_{i}^{(3)}\right|}{N_{p i}^{*}} \leq \frac{1-\mu_{i}}{\mu_{i}}
$$

Therefore in (2.46) $\frac{\left|M_{i}^{(3)}\right|}{M_{p i}}+\frac{\left|N_{i}^{(3)}\right|}{N_{p i}} \leq \mu_{i}\left[1+\frac{1-\mu_{i}}{\mu_{i}}\right]=1$
Thus $M_{i}^{(3)}, N_{i}^{(3)}$ satisfy the yield criteria (2.36) at every crosssection and since they are in equilibrium with loads $\lambda_{3} b_{j}, \lambda_{3}$ is a statically admissible multiplier for Problem 1 and

$$
\begin{equation*}
\lambda_{3} \leqslant \lambda_{1} \tag{2.47}
\end{equation*}
$$

If, however, (2) holds at some cross-section a similar analysis results in

$$
\frac{\left|M_{i}^{(3)}\right|}{M_{p i}}+\frac{\left|N_{i}^{(3)}\right|}{N_{p i}}>1
$$

This does not indicate that λ_{3} is an upper bound since the multiplier may not be kinematically sufficient. The procedure can be iterated, however, by further weakening the strength at all cross-sections.

Usually one or two iterations are sufficient to achieve a lower bound. If, however, the convergence is slow, a lower bound can be immediately obtained by letting $\mu_{i}=\frac{1}{2}$ for $i=1,2, \ldots, n$. Then
(2.43) and (2.44) hold everywhere. It also follows that

$$
\lambda_{3}=\frac{1}{2} \lambda_{2}
$$

and thus

$$
\frac{1}{2} \lambda_{2} \leqslant \lambda_{1} \leqslant \lambda_{2}
$$

Better bounds are obtained in general by using the μ_{i} defined in (2.39).
An example of the use of these techniques is given in Section 5, Part D of this chapter.

Notice that a different lower bound than λ_{3} could be found by defining quantities
at each cross-section and proceeding in an entirely analagous way with the rolls played by the moments and forces interchanged. For frames where the normalized axial forces, $N_{i} / N_{p i}$, are smaller than the normalized moments, $M_{i} / M_{p i}$, however the best lower bound is obtained from Problem 3 with the yield criteria (2.40).
C. Distributed Forces. - The methods developed in this section can also be extended to transverse distributed forces.

Following Neal and Symonds [2], an upper bound to Problem 2 can be found by assuming that a hinge appears at the midpoint of the beam in each beam mechanism involving a distributed load. After choosing a collapse mechanism in the usual way, the bound may be improved by letting each hinge appearing under a distributed load be at some distance x_{i} from the center of the member in which it appears. After computing the multiplier as a function of all of the x_{i} for beams subjected to distributed loads from the virtual work equation, the multiplier is minimized with respect to each x_{i} separately.

Since this is an upper bound for λ_{2} it is also greater than λ_{1}. To obtain a lower bound, assume on members where distributed loads act a set of concentrated forces whose resultant is the same as that of the distributed load [2]. This can be shown to yield a lower bound to λ_{2}. Problem 3 is then formulated for this frame which now is subjected to concentrated forces. The solution is a lower bound to λ_{1} for distributed loads.

5. Examples.

A. Superposition. - Consider the two-bay frame in Figure 3(a) where the fully plastic moment in each member is h. The 12 critical cross-sections are labeled and the sign convention is chosen so that positive moments cause compression in the fibers adjacent to the dotted lines.

To find an upper bound to the safety factor, λ, choose the mechanism in Figure 3(b). The kinematically sufficient multipliers associated with the loads of magnitude 1,2 , and 3 respectively are

$$
\lambda_{*}^{(1)}=6, \quad \lambda_{*}^{(2)}=9 / 2, \quad \lambda_{*}^{(3)}=6
$$

By superposition, an upper bound for the combined loads is

$$
\lambda_{*}=9 / 5
$$

The equilibrium equations for the loads $1,2,3$ are

$$
\begin{gathered}
M_{1}-M_{2}+M_{5}+M_{8}-M_{10}-M_{11}=\left(\begin{array}{c}
\lambda h \\
\frac{4}{3} \lambda h \\
\lambda h
\end{array}\right) \\
-2 M_{5}+3 M_{12}-M_{11}=\left(\begin{array}{c}
0 \\
\frac{4}{3} \lambda h \\
0
\end{array}\right)
\end{gathered}
$$

(b)

FIGURE 3
Plastic Superposition of Forces

$$
\begin{aligned}
-M_{8}+3 M_{9}-2 M_{10} & =\left(\begin{array}{c}
0 \\
0 \\
2 \lambda h
\end{array}\right) \\
M_{4}-M_{5}-M_{6} & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
M_{2}-M_{3}=M_{7}-M_{8} & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

The following statically admissible solutions are easily found:
For load $1:-M_{1}=h$, all other $M_{i}=0$ with $\lambda^{\prime(1)}=1$
For load 2: $-M_{2}=-M_{3}=-h, M_{12}=h / 3$, all other $M_{1}=0$ with $\lambda^{\prime(2)}=34$
For load 3: $-M_{7}=-M_{8}=-M_{9}=-h$, all other $M_{i}=0$ with $\lambda^{\prime(3)}=1$
The lower bound obtained from (2.16) is

$$
\lambda^{\prime}=3 / 10
$$

A better lower bound is obtained from maximizing c in (2.15)

$$
c=1
$$

Thus

$$
1 \leq \lambda \leq 9 / 5
$$

The correct safety factor is $7 / 4$.
B. Minimax Problem. - Consider the frame in Figure 4(a) loaded as indicated. The loads are bounded by $1 / 2 \leqslant H \leqslant 3 / 2,0 \leqslant P \leqslant 2$, $0 \leq Q \leq 4$. The fully plastic moment at each cross-section is h. We wish to find a multiplier λ_{c} for which collapse will not occur for any set of loads in the given range.

The base loads are chosen as the mean values of the end points, i.e., $\bar{H}=1, \bar{P}=1, \bar{Q}=2$. The deviations are $\Delta_{H}=\frac{1}{2}, \quad \Delta_{P}=1, \quad \Delta_{Q}=2$. The three basic mechanisms are shown in Figures $4(\mathrm{~b})$, (c), (d). The two combinations of these which follow from the Neal-Symonds analysis $\{(\mathrm{b})$ added to (d), and (c) added to (d) $\}$ are not shown. The multipliers associated with the base loads and the normalized angles are

(c)

(b)

(d)

FIGURE 4
A Minimax Problem

$$
\begin{array}{ll}
\bar{\lambda}^{(b)}=8 & \theta_{b}=2 / h \\
\bar{\lambda}^{(c)}=8 & \theta_{c}=2 / h \\
\bar{\lambda}^{(d)}=8 / 3 & \theta_{d}=2 / 3 h
\end{array}
$$

The values of λ computed from the right hand member of (2.28) for these modes are

$$
\lambda^{(6)}=4, \quad \lambda^{(c)}=16 / 3, \quad \lambda^{(d)}=16 / 15
$$

The values computed for the combinations not shown are $24 / 19$ and $3 / 2$. The multiplier desired then is

$$
\lambda_{c}=16 / 15
$$

The loads for which this multiplier is the actual safety factor under proportional loading are $H=\frac{1}{2}, 0 \leq P \leq 2, Q=4$. Notice that H takes on its minimum value to produce the solution to the minimax problem.
C. Application of Theorem 2. - We wish to find the safety factor against collapse for the frame in Figure 5(a) for $\alpha \geqslant \frac{1}{2}$. The fully plastic moment at each cross-section is taken to be h.

For $\alpha=\frac{1}{2}$, the Neal-Symonds technique leads to the collapse mode in Figure 5(b) and a safety factor $\lambda_{1}=4$.

For a single positive load at the upper left corner, Figure 5(b) is the only possible mode of collapse. Let this single load be $\lambda_{2}\left(\alpha-\frac{1}{2}\right)$ for $\alpha>\frac{1}{2}$. The virtual work equation yields $\lambda_{2}=4 /\left(\alpha-\frac{1}{2}\right)$.

By Theorem 5, the mode of collapse for the superimposed loads, i.e., $\alpha \lambda$ at the upper left and λ at the midpoint of the left leg, is also that shown in Figure 5(b) and the safety factor is

$$
\lambda=\frac{8}{2 \alpha+1} \quad \alpha>\frac{1}{2}
$$

(a)

(b)

FIGURE 5
Application of Theorem 5
D. Axial Forces in Frames. - Consider the shed-type portal frame shown in Figure 6(a). The fully plastic moment in the left inclined beam is $2 M_{p}$ and in the other three members, M_{p}. The beams all have rectangular cross-sections and the length-depth ratio of the legs is 10. Thus $3 N_{p} L=80 M_{p}$. Bounds will be found to the safety factor using the yield condition (2.37).

Since the load $2 \lambda \mathrm{~W}$ is not transverse, its point of application is treated as a joint and the load is decomposed into components normal and tangential to the member on which it acts. In the applications of the principle of virtual work it is also necessary to consider two velocities, normal and tangential, at the point of application of the $2 \lambda \mathrm{~W}$ load since either or both components of the load may do work in a. mechanism.

The ten critical cross-sections are numbered in Figure 6(a). There are twelve basic mechanisms for Problem 2: three frame, four joint, and five axial failure. The combination which produces the smallest value of the multiplier is shown in Figure 6(b). It follows from virtual work that

$$
\lambda_{2}=\frac{15}{7} \frac{M_{p}}{W L}
$$

The values of the moments, axial forces and μ_{i} calculated from (2.39) are $M_{1}^{(2)}=M_{p}$
$N_{1}^{(2)}=-.09196 \mathrm{~N}_{\mathrm{p}}$
$\mu_{1}=.90804$
$M_{2}^{(2)}=-3 / 14 M_{p}$
$N_{2}^{(2)}=-.09196 N_{p}$
$\mu_{2}=.90804$
$M_{3}^{(2)}=-3 / 14 M_{p}$
$N_{3}(2)=-.08585 N_{p}$
$\mu_{3}=.95708$
$M_{4}^{(2)}=-2 M_{p}$
$N_{4}^{(2)}=-.08585 N_{p}$
$\mu_{4}=.95708$
$M_{5}^{(2)}=-2 M_{p}$
$N_{5}^{(2)}=-.01397 \mathrm{~N}_{\mathrm{p}}$
$\mu_{5}=.99301$
$M_{6}^{(2)}=\frac{1}{2} M_{p}$
$\mathrm{N}_{6}^{(2)}=-.01397 \mathrm{~N}_{\mathrm{p}}$
$\mu_{6}=.99301$

(a)

(b)

FIGURE 6
Axial Force Effects in Frames

$M_{Z}^{(2)}=\frac{1}{2} M_{p}$	$N_{7}^{(2)}=-.08397 N_{p}$	$\mu_{7}=.91603$
$M_{8}^{(2)}=M_{p}$	$N_{8}^{(2)}=-.08397 N_{p}$	$\mu_{8}=.91603$
$M_{9}^{(2)}=M_{p}$	$N_{9}^{(2)}=-.06875 N_{p}$	$\mu_{9}=.93125$
$M_{10}^{(2)}=-M_{p}$	$N_{10}^{(2)}=-.06875 N_{p}$	$\mu_{10}=.93125$

For Problem 3 the mechanism in Figure 6(b) is also the correct mode of collapse. Thus from virtual work

$$
7 \lambda_{3} W L \theta=\left[2 \theta \mu_{1} M_{p}+3 \theta \mu_{4}\left(2 M_{p}\right)+4 \theta \mu_{8} M_{p}+3 \theta \mu_{10} M_{p}\right]
$$

and

$$
\lambda_{3}=2.00235 \frac{M_{p}}{W L}
$$

The axial forces in Problem 3 are
$N_{1}^{(3)}=-.08557 \mathrm{~N}_{\mathrm{p}}$
$\mathrm{N}_{2}^{(3)}=-.08557 \mathrm{~N}_{\mathrm{p}}$
$N_{3}^{(3)}=-.07957 \mathrm{~N}_{\mathrm{p}}$
$\mathrm{N}_{4}^{(3)}=-.07957 \mathrm{~N}_{\mathrm{p}}^{\mathrm{p}}$
$N_{5}^{(3)}=-.01242 N_{p}$
Since

$$
\left|N_{i}^{(3)}\right|<\left|N_{i}^{(2)}\right| \quad(i=1,2, \ldots, 10)
$$

then

$$
2.0023 \frac{M_{P}}{W_{L}}<\lambda_{1}<2.1429 \frac{M_{P}}{W L}
$$

If the axial forces were neglected the upper bound shown here, i.e., λ_{2}, would be taken as the correct safety factor. Assuming that the solution is the mean of the two bounds, then the error committed by neglecting the axial forces is approximately 3.5%

Chapter III

LINEAR PROGRAMMING METHODS IN LTMIT ANALYSIS

The linear programming problem may be defined as the problem of optimizing a linear functional subject to linear constraints. This type of problem has appeared in both formulations of the proportional loading problem (Chapter I). In order to utilize the special methods available for the solution of linear programming problems, it is necessary first to discuss the general types of these problems and to outline some of the methods of solution which have been developed.

1. Types of Linear Programming Problems.

The linear programming problems will be formulated using the standard vector notation and the collapse problems will then be reduced to this form.

Given $(n+1)$ column vectors $P_{0}, P_{1}, \ldots, P_{n}$ in a real, m-dimensional vector space, V_{m}, and given n real scalars $c_{1}, c_{2}, \ldots, c_{n}$. A linear programming problem is to minimize

$$
\begin{equation*}
z_{0}=\sum_{j=1}^{n} \rho_{j} c_{j} \tag{3.1}
\end{equation*}
$$

with respect to ρ_{j}, subject to

$$
\begin{align*}
& P_{0}=\sum_{j=1}^{n} p_{j} P_{j} \tag{3.2}\\
& \rho_{j} \geqslant 0 \quad(j=1,2, \ldots, n)
\end{align*}
$$

This will be called the simplex problem or a problem of Type I.
The dual problem to the simplex problem stated in (3.1), (3.2), (3.3) is to maximize

$$
\begin{equation*}
P_{0}^{\prime} w \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{j}^{\prime} w \leqslant c_{j} \quad(j=1,2, \ldots, n) \tag{3.5}
\end{equation*}
$$

The prime denotes transpose and w is a real m-tuple (or alternatively a vector in V_{m}). $P!j$ is the inner product of P_{j} and w considered as vectors. This problem is called a problem of Type II.

The dual theorem ${ }^{l}$ relating the above problems states that if either the minimum of z_{o} or the maximum of $P_{o}^{\prime} w$ exists and is finite, then

$$
\begin{equation*}
\text { Minimum } z_{0}=\text { Maximum } P_{0}^{\prime} w \tag{3.6}
\end{equation*}
$$

Type III problems are defined to be identical with Type I problems except that every variable is constrained by an upper bound, i.e.,

$$
\begin{equation*}
0 \leqslant \rho_{j} \leqslant b_{j} \quad(j=1,2, \ldots, n) \tag{3.7}
\end{equation*}
$$

This is alternately called a bounded variables problem. It includes the type of problems where some but not all of the variables are bounded since one may prescribe arbitrarily large bounds for the unbounded variables.
2. Computational Techniques.

Three finite iterative techniques for solving the above problems will be discussed here. They are included for completeness and for ease of reference in the limit analysis examples solved later by these methods.
A. The Simplex Method. - A problem of Type I is naturally adapted $1_{\text {See for example Chapter VIII of }}[10]$.
to the simplex technique. A complete discussion of this method may be found in $[9,10]$. Two assumptions will be made: (1) that the solution z_{0} is finite ${ }^{l}$ and (2) that P_{0} is linearly independent of any $m-1$ vectors selected from among the P_{j}. The latter assumption avoids the degenerate cases. Such occurrences, however, can be handled by the ϵ-procedure of Charnes [10].

From these assumptions it follows that there exists a set of m of the vectors P_{j} which are linearly independent and therefore form a basis for the vector space, V_{m}. Let such a set of basis vectors be designated by a_{i} for $i=1,2, \ldots, m$. The vector P_{0} may then be expressed as a linear combination of the a_{i}. This representation for P_{0} and the corresponding value of z_{0} will be a feasible solution to the simplex problem in (3.1), (3.2), (3.3) provided the coefficients of the a_{i} in (3.2) are all positive, i.e., $P_{o}^{\prime} a_{i}>0$. The second assumption assures that a basis satisfying this constraint exists. A method of determining one such basis and hence a feasible solution is given in Appendix C.

Consider now m vectors $\alpha_{j}{ }^{2}$ in V_{m} such that

$$
a_{i}^{\prime} \alpha_{j}=\delta_{i j} \quad(i, j=1,2, \ldots, m)
$$

The α_{j} are uniquely determined since the a_{i} are linearly independent.

[^3]Then the P_{j} and P_{0} may be written

$$
\begin{align*}
& P_{j}=\sum_{i=1}^{m} \frac{\left(P_{j}^{\prime} a_{j}\right) a_{i}}{a_{i}^{\prime} a_{i}}=\sum_{i=1}^{m}\left(P_{j}^{\prime} \alpha_{i}\right) a_{i} \quad(j=1,2, \ldots, n) \tag{3.8}\\
& P_{0}=\sum_{i=1}^{m} \frac{\left(P_{0}^{\prime} a_{i}\right) a_{i}}{a_{i}^{\prime} a_{i}}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) a_{i} \tag{3.9}
\end{align*}
$$

where $P_{0}^{\prime} \alpha_{i}>0$ for $i=1,2, \ldots, m_{\text {. Hence }}$

$$
\rho_{i}=\left\{\begin{array}{cl}
P_{0}^{\prime} \alpha_{i} & i=1,2, \ldots, m \tag{3.10}\\
0 & i=m+1, \ldots, n
\end{array}\right.
$$

is a feasible solution to the problem. The corresponding value of the functional is

$$
\begin{equation*}
z_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) c_{i} \tag{3.11}
\end{equation*}
$$

In order to obtain another feasible solution which yields a smaller value of the functional, consider first the n scalar quantities

$$
\begin{equation*}
z_{j}=\sum_{i=1}^{m}\left(P_{j}^{\prime} \alpha_{i}\right) c_{i} \tag{3.12}
\end{equation*}
$$

Either (i) $z_{j}-c_{j} \leqslant 0$ for all j, or (ii) $z_{j}-c_{j}>0$ for some j. If (i) holds then

$$
P_{j}^{\prime} \sum_{i=1}^{m} \alpha_{i} c_{i} \leq c_{j} \quad(j=1,2, \ldots, n)
$$

Therefore the point $w=\sum_{i=1}^{m} \alpha_{i} c_{i}$ in V_{m} is a feasible solution to the dual problem, (3.5). The value of the functional, z_{0}, is

$$
z_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) c_{i}=P_{0}^{\prime} \sum_{i=1}^{m} \alpha_{i} c_{i}=P_{0}^{\prime} w
$$

However from the dual theorem $P_{0} \|^{w} \leq z_{0}$ and therefore z_{0} takes on its minimum and Pow its maximum whenever equality holds. Thus if (i) holds the solution is optimum and the value of z_{0} in (3.11) is the minimum value of the functional and cannot be further decreased.

Suppose, therefore, that (ii) holds for some j, say $j=k$. Then
rewrite (3.9) as

$$
P_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) a_{i}-\theta P_{k}+\theta P_{k}
$$

where $\theta>0$ and P_{k} is not an a_{i}. Using (3.8) with $j=k$,

$$
\begin{equation*}
P_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}-\theta P_{k}^{\prime} \alpha_{i}\right) a_{i}+\theta P_{k} \tag{3.13}
\end{equation*}
$$

If the coefficients of a_{i}, P_{k} are non-negative, then the set of ρ_{j} defined by

$$
P_{j}= \begin{cases}P_{0}^{\prime} \alpha_{j}-\theta P_{k}^{\prime} \alpha_{j} & j=1,2, \ldots, m \tag{3.14}\\ \theta & j=k \\ 0 & \text { otherwise }\end{cases}
$$

are a feasible set for the simplex problem. The value of the functional associated with this feasible set is

$$
\begin{align*}
& z_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) c_{i}-\theta\left[\sum_{i=1}^{m}\left(P_{k}^{\prime} \alpha_{i}\right) c_{i}-c_{k}\right] \\
& z_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) c_{i}-\theta\left(z_{k}-c_{k}\right) \tag{3.15}
\end{align*}
$$

Now if $P_{k} \alpha_{i} \leq 0$ for all i, then the ρ_{j} defined in (3.14) are positive for arbitrarily large positive θ. Since $z_{k}-c_{k}>0$, the value of the functional z_{0} given in (3.15) can be made arbitrarily small contrary to assumption (1). Therefore $P_{k}^{\prime} \alpha_{i}>0$ for some i.

Since the coefficients of a_{i} in (3.13) must be non-negative

$$
\theta \leq \frac{P_{0}^{\prime} \alpha_{i}}{P_{k}^{\prime} \alpha_{i}} \quad \text { for } P_{k}^{\prime} \alpha_{i}>0
$$

Therefore in (3.15) the smallest permissible value of the functional is obtained if θ is chosen as

$$
\theta=M_{i n i m u m ~} \frac{P_{0}^{\prime} \alpha_{i}}{P_{k}^{\prime} \alpha_{i}} \text { for } P_{k}^{\prime} \alpha_{i}>0
$$

This minimum is taken on for one and only one value of i, say $i=s$, because of assumption (2). For this value of θ the coefficient of a_{s} in (3.13) vanishes and

$$
P_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}-\theta P_{k}^{\prime} \alpha_{i}\right) a_{i}+\theta P_{k}
$$

The a_{i}, $i \neq s$, and P_{k} are easily shown to form a basis for $V_{m}{ }^{l}$.
Notice that if (ii) holds for more than one value of j, there is a choice as to which vector shall enter the basis. Any choice will result in a decrease in the functional. The choice may be governed by experience and the physical interpretation of the problem. This will be discussed later in the structures examples.

Finally notice that the vectors α_{j} were not needed explicitly in the above analysis. It is only necessary to express the P_{0}, P_{j} in terms of the a_{i}, i.e., to find $P_{0}^{\prime} \alpha_{i}$ and $P_{j}^{\prime} \alpha_{i} . P_{0}, P_{j}$ may be expressed in terms of the new basis, a_{i} for $i \neq s$ and P_{k}, by the algorithm

$$
\begin{equation*}
P_{j}=\sum_{\substack{i=1 \\ i \neq s}}^{m}\left[P_{j}^{\prime} \alpha_{i}-\frac{P_{j}^{\prime} \alpha_{s}}{P_{k}^{\prime} \alpha_{s}} P_{k}^{\prime} \alpha_{i}\right] a_{i}+\frac{P_{j}^{\prime} \alpha_{2}}{P_{k}^{\prime} \alpha_{2}} P_{k} \tag{3.16}
\end{equation*}
$$

The coefficients on the right involve only quantities already computed. The z_{j} may then be formed as before and the entire process iterated. Only a finite number of bases, in fact at most $\binom{n}{m}^{2}$, are possible and no basis will reappear since the functional decreases at each iteration.
$I_{\text {See for example, Lecture }}$ IV of $[10]$.
$2\binom{n}{m}$ represents the number of combinations of n things taken m at a time.

Consequently the process converges in a finite number of iterations. To proceed from one iteration to the next it is convenient to assemble the information in tableau form ${ }^{1}$ as follows:

TABLE I

Simplex Tableau

The entry in the row labeled $a_{s}(s=1,2, \ldots, m)$ and column P_{k} $(k=1,2, \ldots, n)$ is $P_{k}^{\prime} \alpha_{s}$, the component of P_{k} along the vector a_{s}. The entry z_{k} at the base of a column is computed by taking the scalar product of the entries in that column with the column of c_{j} at the left. The entries in the P_{0} column constitute values of the variables ρ_{j} corresponding to the vectors a_{i}. All other ρ_{j} vanish at this stage.

[^4]A positive element is selected from the last row (if none exist an optimum value of the functional is given by z_{0}). The positive entries in that column are divided into the corresponding entries in the P_{0} col$u m n$, and the minimum of these quotients is selected as θ. To proceed to a new tableau the algorithm (3.16) is used.

In each iteration there are in general $(m+1)(n+1)$ multiplications required to complete the new tableau once the replaced and replacing vectors have been chosen.
B. The Dual Method. - A Type II Problem is well suited to solution by the dual method [II]. This method will be briefly reviewed here.

A point w_{0} is an extreme point of the set w satisfying (3.5) if from among the vectors P_{j} for which equality is satisfied in $P{ }_{j} w_{0} \leqslant c_{j}$, there exist m vectors which are linearly independent and hence form a basis for V_{m}. It can be shown that the functional $P_{0}^{\prime} w$ takes on its maximum at an extreme point of the set w satisfying (3.5).

It will be assumed that (1) the maximum value of the functional (3.4) is finite and also that (2) for every extreme point equality is satisfied in exactly m of (3.5). This latter assumption avoids the problem of "dual degeneracy". For a discussion of this case see Appendix I of [11].

Consider an extreme point w_{0}. Let the $m P_{j}$ for which equality is satisfied in (3.5) be designated by a_{i}, i.e., $a_{i} w=c_{i}$ for $i=1, \ldots, m_{\text {. }}$ The a_{i} are then a basis for V_{m} and the P_{j} may be expressed in terms of this basis as in (3.8) and (3.9).

Two cases arise: (i) $P_{0}^{\prime} \alpha_{i} \geqslant 0$ for all i or (ii) $P_{0}^{\prime} \alpha_{i}<0$ for some i.

Now if (i) holds then the value of the functional associated with
the point w_{0} is

$$
P_{0}^{\prime} w_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) a_{i} w_{0}=\sum_{i=1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) c_{i}
$$

Now defining n scalars ρ_{j} as

$$
p_{j}= \begin{cases}P_{0}^{\prime} \alpha_{j} & j=1,2, \ldots, m \\ 0 & j=m+1, \ldots, n\end{cases}
$$

It follows from (3.1) that
and moreover

$$
P_{0}^{\prime} w_{0}=\sum_{j=1}^{n} p_{j} c_{j}=z_{0}
$$

$$
\begin{gathered}
P_{0}=\sum_{j=1}^{n} \rho_{j} P_{j} \\
\rho_{j} \geqslant 0
\end{gathered}
$$

The ρ_{j} are, therefore, a feasible solution to the problem in (3.1), (3.2), (3.3) and by the dual theorem then $P_{0}^{t_{0}} W_{0}$ is the maximum value of the functional for the Type II problem defined in (3.4), (3.5). Suppose, therefore, that (ii) holds for some r, ie., $\mathrm{P}_{\mathrm{O}} \propto_{\mathrm{r}}<0$. Let

$$
\begin{equation*}
\bar{w}=w_{0}-\phi \alpha_{n} \quad, \phi \geqslant 0 \tag{3.17}
\end{equation*}
$$

where ϕ is chosen so that

$$
\begin{equation*}
P_{j}^{\prime} \bar{w} \leq c_{j} \quad(j=1,2, \ldots, n) \tag{3.18}
\end{equation*}
$$

The value of the functional (3.4) associated with the point \bar{w} is

$$
\begin{equation*}
P_{0}^{\prime} \bar{w}=P_{0}^{\prime} w_{0}-\phi P_{0}^{\prime} \alpha_{2} \geqslant P_{0}^{\prime} w_{0} \tag{3.19}
\end{equation*}
$$

Now if $P_{j}^{\prime} \alpha_{r} \geqslant 0$ for all j, then

$$
P_{j}^{\prime} \bar{w}=P_{j}^{\prime} w_{0}-\phi P_{j}^{\prime} \alpha_{n} \leqslant P_{j}^{\prime} w_{0} \leqslant c_{j}
$$

for any $\phi>0$, i.e., \bar{w} satisfies (3.18) for arbitrarily large positive ϕ. In (3.19), therefore, the functional $P_{o}^{\prime} \bar{w}$ may be made arbitrarily large contrary to assumption (1).

Thus for some $j, P_{j}^{\prime} \alpha_{r}<0$. From (3.17) and (3.18) therefore it is necessary that

$$
\phi \leq \frac{P_{j}^{\prime} w_{0}-c_{j}}{P_{j}^{\prime} \alpha_{n}} \quad \text { for } P_{j}^{\prime} \alpha_{n}<0
$$

The largest permissible increase in the functional is obtained then if ϕ is chosen as

$$
\phi=\text { Minimum } \frac{P_{j}^{\prime} \omega_{0}-c_{j}}{P_{j}^{\prime} \alpha_{2}} \quad, P_{j}^{\prime} \alpha_{2}<0
$$

If ϕ takes on its minimum for $j=q$, then from (3.17)

$$
P_{q}^{\prime} \bar{w}=P_{q}^{\prime} w_{0}-\phi\left(P_{q}^{\prime} \alpha_{n}\right)=c_{q}
$$

Moreover for $i=1,2, \ldots, r-1, r+1, \ldots, m$

$$
a_{i}^{\prime} \bar{w}=a_{i}^{\prime} w_{0}-\phi\left(a_{i}^{\prime} \alpha_{n}\right)=a_{i}^{\prime} w_{0}=c_{i}
$$

and thus \bar{w} is an extreme point. By assumption (2) it also follows that ϕ takes on its minimum for a unique value of j, ie., $j=q_{\text {. }}$ The vectors $a_{1}, \ldots, a_{r-1}, P_{q}, a_{r+1}, \ldots, a_{m}$ form the basis for V_{m} associated with the extreme point $\bar{w}_{\text {. }}$

The algorithm for computing the vectors P_{0}, P_{j} in terms of this new basis is given by (3.16) if r replaces s and q replaces k.

Recall that the points w_{0}, \bar{w} were not needed explicitly in the analysis. It is sufficient to compute $P_{j}^{\prime} W_{0}$ and $P_{j}^{1} \bar{w}$ for $j=0,1, \ldots, n$.

The tableau arrangement is identical with that for the simplex method (Table I). The quantities in the last row $\left(z_{j}-c_{j}\right)$ are now identified as $\mathrm{P}_{j}^{\prime} w-c_{j}$.

The procedure, however, is to select a negative element in the P_{o} column. The negative entries in that row are divided into the corresponcing entries in the last row, and the minimum of these quotients
is selected as ϕ. The algorithm (3.16) is then used to find the entries of the new tableau.

If $P_{0}^{\prime} \alpha_{i}<0$ for more than one value of i then there is a certain freedom in choosing the vector to leave the basis. This will be discussed later in the structures example.

The number of multiplications per iteration is identical with that for the simplex technique applied to the dual problem.
C. The Bounded Variables Technique. - The problem stated in (3.1), (3.2), (3.7) can be transformed into a simplex problem by introducing non-negative variables x_{j} such that

$$
p_{j}+x_{j}=b_{j}
$$

Now if b is the vector in V_{n} whose j th component is b_{j} and if Q_{j} is a unit vector in V_{n} with a l as the j th component and all others zero, we define the following vectors in $V_{m} n$

$$
\bar{P}_{0}=\left[\begin{array}{l}
P_{0} \\
b
\end{array}\right], \quad \bar{P}_{j}=\left[\begin{array}{l}
P_{j} \\
Q_{j}
\end{array}\right], \quad \bar{Q}_{j}=\left[\begin{array}{l}
0 \\
Q_{j}
\end{array}\right](j=1,2, \ldots, n)
$$

The bounded variables problem may then be written:
Maximize
subject to

$$
z_{0}=\sum_{j=1}^{n} \rho_{j} c_{j}
$$

$$
\begin{gathered}
P_{0}=\sum_{j=1}^{n} \rho_{j} \bar{P}_{j}+\sum_{j=1}^{n} x_{j} \bar{Q}_{j} \\
\rho_{j} \geqslant 0 \\
x_{j} \geqslant 0 \quad(j=1,2, \ldots, n)
\end{gathered}
$$

This is a problem of Type I of size $(m+n) x(2 n)$.
Charnes and Lemke [12] have shown that this may be treated as an m $\times \mathrm{n}$ problem, i.e., the inequalities, $\rho_{j} \leqslant b_{j}$, may be suppressed.

A brief outline of the computational procedure will be given here. The motivation and rigorous treatment can be found in [12].

Select first a basis, a_{i}, for V_{m} from among the P_{j} as before in the simplex method, and compute $P_{j}^{\prime} \alpha_{i}$ for $j=0,1,2, \ldots, n$. Then the vector \bar{P}_{j} corresponding to the a_{i} and all of the \bar{Q}_{j} for $j=1,2, \ldots, n$ constitute a basis for V_{m+n}. Designate the basis for V_{m+n} by B_{m+n}. Compute the quantities

$$
\begin{array}{rlr}
\varphi_{i} & =P_{0}^{\prime} \alpha_{i} \\
b_{i} & -\varphi_{i} & (i=1,2, \ldots, m) \\
z\left(P_{j}\right) & =\sum_{i=1}^{m}\left(P_{j}^{\prime} \alpha_{i}\right) c_{i}-c_{j} & (j=1,2, \ldots, n)
\end{array}
$$

The above information is then assembled in the following tableau:

TABLE II
Bounded Variables Tableau

The $(+,-)$ sign in the last row under the P_{j} column indicates that both \bar{P}_{j} and \bar{Q}_{j} are in B_{m+n}, while a single + (or -) means that \bar{P}_{j} (or \bar{Q}_{j}) is in the basis, B_{m+n}.

An optimum solution has been reached if both
(a) $z\left(P_{j}\right) \geqslant 0$ in each column having the sign - in the final entry and
(b) $z\left(P_{j}\right) \leqslant 0$ in each column having the sign + in the final entry.

If either of the above are violated then the following procedure is used to increase z_{0}. Case I: $z\left(P_{k}\right)>0$ when a + sign appears under this quantity. Then \bar{Q}_{k} enters B_{m+n}. Choose

$$
\theta=\text { Minimum } \begin{cases}\text { (i) } \min _{i n} \frac{\varphi_{i}}{\left(-P_{k}^{\prime} \alpha_{i}\right)} & , P_{k}^{\prime} \alpha_{i}<0 \\ \text { (ii) } \min _{i n} \frac{b_{i}-\varphi_{i}}{P_{k}^{\prime} \alpha_{i}} & , P_{R}^{\prime} \alpha_{i}>0 \\ (i i i) b_{k} & \end{cases}
$$

If the minimum θ occurs for $i=q$ in (i) then \bar{P}_{q} leaves B_{m+n}. If this minimum appears for $i=q$ in (ii) then \bar{Q}_{q} leaves the basis. Finally if $\theta=b_{k}$ then \bar{P}_{k} is removed.
Case II: $\mathrm{z}\left(\mathrm{P}_{\mathrm{k}}\right)<0$ when a - sign appears. Then \bar{P}_{k} enters $\mathrm{B}_{\mathrm{m}+\mathrm{n}}$. Let

$$
\theta=\text { Minimum } \begin{cases}(i) \quad m_{i n} \frac{\varphi_{i}^{\prime}}{P_{k}^{\prime} \alpha_{i}} & , P_{k}^{\prime} \alpha_{i}>0 \\ (i i) m_{i n} \frac{b_{i}-\varphi_{i}}{\left(-P_{k}^{\prime} \alpha_{i}\right)}, & P_{k}^{\prime} \alpha_{i}<0 \\ (i i i) \quad b_{k} & \end{cases}
$$

If the minimum θ occurs in (i) for $i=q$ then \bar{P}_{q} is replaced; if in (ii) for $i=q$, then \bar{Q}_{q} is replaced. Finally if $\theta=b_{k}$, then \bar{Q}_{k} is removed.

To proceed to a new tableau three cases are distinguished: Case A: \bar{Q}_{k} replaces \bar{P}_{k}. There is no change in B_{m}, but (I) the + sign under P_{k} is changed to $a-$, (2) φ_{i} is replaced by $\varphi_{i}+b_{k}\left(P_{k}^{\prime} \alpha_{i}\right)$, and (3) z_{o} is replaced by $z_{o}+b_{k} z\left(P_{k}\right)$.
Case B: \bar{P}_{k} replaces \bar{Q}_{k}. There is no change in B_{m}, but (1) the - under P_{k} is changed to $a+$, (2) φ_{i} is replaced by $\rho_{i}-b_{k}\left(P_{k}^{\prime} \alpha_{i}\right)$, and (3) z_{o} is replaced by $z_{0}-b_{k} z_{k}\left(P_{k}\right)$.

Case C: Either \bar{P}_{k} or \bar{Q}_{k} replaces either \bar{P}_{q} or \bar{Q}_{q}. Then P_{k} replaces P_{q} in B_{m}. The tableau changes are:
(1) P_{k} replaces P_{q} in the B_{m} column and c_{k} replaces c_{q}.
(2) Both $a+$ and - appear under P_{k}. The P_{q} column has $a+$ if \bar{Q}_{q} has been replaced or a - if \bar{P}_{q} has left B_{m+n}.
(3) φ_{i} is replaced by $\varphi_{i}-\theta\left(P_{k}^{\prime} \alpha_{i}\right)$ for $i \neq q_{0} . \varphi_{q}$ is replaced by θ and $b_{q}-\varphi_{q}$ is replaced by $b_{k}-\theta$.
(4) The P_{j} are expressed by the algorithm (3.16).

This completes the new tableau and the process is iterated. The number of multiplications per iteration is $(m+1)(n+1)$ for Case C.

It should be noted that the "modified" simplex and dual methods [5] may be used in all of the techniques outlined in this section. This modified technique has the advantage of controlling round-off errors without adding to the number of computations.

3. Collapse Under Proportional Loading.

The problem of finding the safety factor against collapse for proportionally loaded frames has been formulated in (1.1) and (1.2). We
turn now to the formulation of the same problem for pin-jointed trusses, which furnish simple examples for the purpose of the illustration of the use of linear programming methods. This is due to the fact that pinjointed trusses may have a single degree of redundancy while frames cannot.
A. Equilibrium Equations and Yield Criteria. - Consider a plane truss with no external redundancies and composed of s bars and k joints. If this truss is subjected to a finite number of concentrated loads at the joints, the equilibrium equations may be written ${ }^{l}$

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{i j} S_{j}=\lambda p_{i} \quad(i=1,2, \ldots, 2 k-3) \tag{3.20}
\end{equation*}
$$

where S_{j} is the axial force in the j th bar considered positive for tensile forces, p_{i} are the fixed loads, and λ is the multiplier common to each load. The $a_{i j}$ depend on the geometrical configuration of the truss and are direction cosines of the angles between the bars and the coordinate axes. If $s>2 k-3$ then the truss is redundant and equations (3.20) admit a non-trivial solution.

The yield conditions are

$$
\begin{equation*}
-L_{j} \leqslant S_{j} \leqslant U_{j} \quad(j=1,2, \ldots, s) \tag{3.21}
\end{equation*}
$$

where $U_{j}\left(-L_{j}\right)$ is the fully plastic force in tension (compression).
A value of λ for which there exist S_{j} satisfying (3.20) and (3.21) is a statically admissible multiplier. By Theorem 1 , therefore, the largest value of λ for which a solution S_{j} exists, is the safety factor against collapse.
B. Reduction to a Linear Programming Form. - Without loss of generality, the first $2 k-3$ bars are assumed to form a statically
$I_{\text {See }}$ for example, pp. 115-122 of $[13]$.
determinate truss. Rewriting (3.20)

$$
\sum_{j=1}^{2 k-3} a_{i j} S_{j}=\lambda_{p_{i}}-\sum_{q=2 k-2}^{\infty} a_{i q} S_{q}
$$

Now by the above assumption there exist ${ }^{1}$ elements $a_{t i}^{-1}$ such that

$$
\sum_{i=1}^{2 k-3} a_{t i}^{-1} a_{i j}=\delta_{t j} \quad(t, j=1,2, \ldots, 2 k-3)
$$

Multiplying (3.22) by $a_{t i}^{-1}$ and summing over i

$$
S_{t}=\lambda \sum_{i=1}^{2 k-3} a_{t i}^{-1} p_{i}-\sum_{i=1}^{2 k-3} \sum_{q=2 k-2}^{D} a_{t i}^{-1} a_{i q} S_{q}
$$

Substituting this into (3.21), the yield conditions become

$$
\begin{aligned}
-L_{j} & \leqslant-\sum_{i=1}^{2 k-3} \sum_{q=2 k-2}^{N} a_{j i}^{-1} a_{i q} S_{q}+\lambda \sum_{i=1}^{2 k-3} a_{j i}^{-1} p_{i} \leqslant U_{j} \quad(j=1,2, \ldots, 2 k-3) \\
& -L_{q} \leqslant S_{q} \leqslant U_{q} \quad(q=2 k-2, \ldots, s)
\end{aligned}
$$

The unknowns are $S_{2 k-2}, \ldots, S_{s}, \lambda$ which are $s-2 k+4$ in number. Now if the number of redundancies is r then $s=2 k-3+r$, so that the number of unknowns is $r+1$. We are led, therefore, to consider the following vectors in a space of $r+1$ - dimensions, V_{r+1}.

$$
Q_{j}=\left[\begin{array}{l}
-\sum_{i=1}^{2 k-3} a_{j i}^{-1}{ }_{i}, 2 k-2 \\
-\sum_{i=1}^{2 k-3} a_{j i}^{-1} a_{i, 2 k-1} \\
\vdots \\
-\sum_{i=1}^{2 k-3} a_{j i}{ }^{2}{ }_{i s} \\
\sum_{i=1}^{2 k-3} a_{j i}-1 \\
j
\end{array}\right] \quad(j=1, \ldots, 2 k-3)
$$

$$
Q_{2 k-3+j}=\left[\begin{array}{c}
\delta_{j l} \\
\vdots \\
\vdots \\
\delta_{j r} \\
0
\end{array}\right](j=1, \ldots, r) \quad x=\left[\begin{array}{c}
S_{2 k-2} \\
\vdots \\
s_{s} \\
\lambda
\end{array}\right]
$$

Then the yield criteria become

$$
\begin{array}{ll}
& Q_{j}^{\prime} x \leqslant U_{j} \\
\text { Finally let } & -Q_{j}^{\prime} x \leqslant L_{j}
\end{array} \quad\left(\begin{array}{ll}
j=1,2, \ldots, s) \\
P_{j} & =\left\{\begin{array}{cl}
Q_{j} & (j=1,2, \ldots, s) \\
-Q_{j-s} & (j=s+1, e+2, \ldots, 2)
\end{array}\right. \\
\text { and } & C_{j}= \begin{cases}U_{j} & (j=1,2, \ldots, \alpha) \\
L_{j-s} & \left(j=s+1, \alpha+2, \ldots, 2_{e}\right)\end{cases} \\
P_{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{array}\right.
$$

The problem then reduces to maximizing

$$
\begin{equation*}
\lambda=P_{0}^{\prime} x \tag{3.23}
\end{equation*}
$$

subject to

$$
\begin{equation*}
P_{j}^{\prime} x \leqslant c_{j} \quad\left(j=1,2, \ldots, 2_{e}\right) \tag{3.24}
\end{equation*}
$$

This is a problem of Type II with the following special properties

$$
\begin{equation*}
P_{j+e}=-P_{j} \quad(j=1,2, \ldots, 2) \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{j} \geqslant 0 \quad\left(j=1,2, \ldots, 2_{2}\right) \tag{3.26}
\end{equation*}
$$

It is now clear that a finite maximum value of λ exists. Recall that such is not the case if and only if $P_{j}^{\prime} \alpha_{r} \geqslant 0$ for all j where $P_{0}^{\prime} \alpha_{r}<0$. Without loss of generality assume that $a_{r}=P_{r}$ for $r \leq s$. Then from (3.25) $P_{r+s}^{\prime} \alpha_{r}=-1$ and the maximum value of the functional is therefore finite.

Now only the first s of the P_{j} need be carried in the tableau. The other entries can be computed from

$$
\begin{gather*}
P_{j+s}^{\prime} \alpha_{i}=-P_{j}^{\prime} \alpha_{i} \quad(j=1,2, \ldots, \infty) \tag{3.27}\\
\sum_{i=1}^{n+1}\left(P_{j+s}^{\prime} \alpha_{i}\right) c_{i}-c_{j+e}=-\left\{\sum_{i=1}^{n+1}\left(P_{j}^{\prime} \alpha_{i}\right) c_{i}-c_{j}\right\}-\left\{U_{j}+L_{j}\right\} \tag{3.28}\\
(j=1,2, \ldots, e)
\end{gather*}
$$

The entries on the right of (3.27) and (3.28) all appear in the first s columns.

This problem may, therefore, be treated as a Type II problem of size $(r+1) \times s$.

To formulate this as a Type I or simplex problem consider the dual problem to (3.23) and (3.24), i.e., to minimize
where

$$
\lambda=\sum_{j=1}^{2 a} \rho_{j} c_{j}
$$

and

$$
\begin{aligned}
& \sum_{j=1}^{2 a} \rho_{j} P_{j} \\
& \qquad P_{0} \\
& \rho_{j} \geqslant 0 \quad(j=1,2, \ldots, 2 \Omega)
\end{aligned}
$$

This minimum problem was shown to be equivalent to the kinematic principle (Theorem 2) by Charnes and Greenberg $[14]$.

A significant difference in the simplex and dual methods is that in the former a certain freedom of choice may be available in the vectors
entering the basis, while in the dual method a choice may exist in the vectors leaving the basis. A physical interpretation of the presence of certain vectors in the basis for the optimum solution will clarify the significance of this distinction.

If P_{j} for $j=1,2, \ldots, s$ is in the basis at the final solution then the j th bar yields in tension. Similarly if P_{j} is present for $j=s+1, \ldots, 2 s$ then the $(j-s)$ th bar is yielding in compression.

In the simplex technique when a choice is available then it is best to bring in those vectors corresponding to bars which experience or intuition indicates should yield in the collapse solution. In the dual technique, of course, one removes vectors when it appears that the corresponding bars should not be yielding at collapse.

The other major distinction between the two computational techniques lies in the method of obtaining initial solutions (Appendix C).
C. The Bounded Variables Problem. - To formulate the collapse problem as a bounded variables problem, return to equations (3.20) and (3.21) and let

$$
\begin{aligned}
& x_{j}=\frac{S_{j}}{L_{j}}+1 \\
& x_{2+1}=\lambda
\end{aligned} \quad(j=1,2, \ldots, 2)
$$

Then (3.20) may be written

$$
\begin{equation*}
\sum_{j=1}^{e+1} a_{i j}^{*} x_{j}=d_{i} \quad(i=1,2, \ldots, 2 k-3) \tag{3.29}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{i j}^{*}=a_{i j} L_{j} \quad(j=1,2, \ldots, s) \\
& a_{i, s+1}^{*}=-p_{i}
\end{aligned}
$$

and

$$
d_{i}=\sum_{j=1}^{\infty} a_{i j} L_{j} \quad(i=1,2, \ldots, 2 k-3)
$$

The yield conditions (3.21) are

$$
\begin{equation*}
0 \leqslant x_{j} \leqslant \frac{U_{j}+L_{j}}{L_{j}} \quad(j=1,2, \ldots, s) \tag{3.30}
\end{equation*}
$$

Since λ is non-negative

$$
\begin{equation*}
0 \leq x_{a+1} \leq M \tag{3.31}
\end{equation*}
$$

where M is an arbitrarily large positive number. Since the problem is to maximize x_{s+1}, if $c_{j}=0$ for $j=1$, ..., s and $c_{s+1}=1$, the problem defined in $(3.29),(3.30),(3.31)$ may be written to maximize

$$
\lambda=\sum_{j=1}^{a+1} x_{j} c_{j}
$$

subject to

$$
P_{0}=\sum_{j=1}^{\Delta+1} x_{j} P_{j}
$$

$$
0 \leqslant x_{j} \leqslant b_{j} \quad(j=1, \ldots, a+1)
$$

where
$P_{0}=\left[\begin{array}{c}\sum_{j=1}^{a} a_{1 j} L_{j} \\ \vdots \\ \sum_{j=1}^{2} a_{2 k-3, j} L_{j}\end{array}\right]$
$P_{j}=\left[\begin{array}{c}a_{1 j} L_{j} \\ \vdots \\ \vdots \\ a_{2 k-3, j} L_{j}\end{array}\right](j=1, \ldots, s)$

$$
\left[\begin{array}{c}
-p_{l} \\
\bullet \\
\bullet \\
-p_{2 k-3}
\end{array}\right] \quad b_{j}=\left\{\begin{array}{cc}
\frac{U_{j}+L_{j}}{L_{j}} & j=1, \ldots, s \\
M & j=s+1
\end{array}\right.
$$

This is a problem of Type III and the tableau is $(2 k-3) x(s+1)$.
A physical interpretation of the presence of certain vectors in the basis is also possible in this case. If in the optimum solution \bar{P}_{j} but not \bar{Q}_{j} is in the basis (only $a+$ sign in the P_{j} column), then the j th bar yields in tension. Correspondingly if \bar{Q}_{j} but not \bar{P}_{j} is in the basis (only a - sign in the P_{j} column), then the j th bar yields in compression. With these facts at hand the analyst may use his experience and intuition in selecting vectors to enter the basis when a choice is available.
D. Comparison of Methods. - As a measure of the number of arithmatical operations per iteration for the proportional loading problem, we may use the number of multiplications to be performed.

For Type I and II formulations the number of multiplications in each iteration is $(r+2)(s+1)$, while for a Type III formulation this number is $(s-r+1)(s+2)$. The preference for formulation on the basis of number of arithmatical operations, therefore, depends on the relationship between s, the number of bars, and r, the number of redundancies.

A seeming disadvantage of the first two type formulations is the apparent need for inverting the $a_{i j}$ matrix in order to eliminate the equalities. In general, however, the $a_{i j}^{-1}$ are never found explicitly, and because of the special nature of the equilibrium equations the solution for the redundant forces in terms of the non-redundant ones is usually not difficult.
E. Frames and Beams. - For frames and beams where axial force effects are assumed negligible a parallel discussion can be given. If the number of beams in the frame is b; the number of joints, v; and the number of loads not at joints, l; then the number of multiplications for a Type I or II formulation is $(3 b-3 v+2) x(2 b+l+1)$. For a Type III formulation this number is $(3 v-b+l+1) x(2 b+l+2)$.

If axial forces are to be considered, it is necessary to introduce a linearized yield criterion. A convenient choice which offers a good approximation is

$$
\frac{\left|M_{i}\right|}{M_{p i}}+\frac{\left|N_{i}\right|}{N_{p i}} \leqslant 1
$$

This has already been discussed in Section 4, Chapter II where bounds were found for the safety factor. Here a technique for determining the exact safety factor is briefly outlined.

The equilibrium equations are first solved for the non-redundant moments and forces in terms of a set of redundant moments and forces. Introducing these into the yield conditions, a Type II problem results. This may be solved by the techniques in Section 2, Parts A and B of this chapter.

Because of the nature of the yield conditions it is not possible to reduce this problem to a bounded variables problem (Type III).

Chapter IV

EXAMPLES OF LINEAR PROGRAMMING METHODS

To illustrate and compare the three methods of solution of linear programming problems described in Chapter III as applied to structural collapse problems, we consider a simple example and solve it by the three methods.

Consider the once redundant truss in Figure 7 loaded with a single concentrated force as shown. The members are numbered as indicated, and the equilibrium equations (3.20) may be written

$$
\begin{aligned}
-S_{2}-\frac{4}{5} S_{5} & =\lambda b \\
S_{2}+\frac{4}{5} S_{6} & =0 \\
S_{4}+\frac{4}{5} S_{5} & =0 \\
S_{1}+\frac{3}{5} S_{5} & =0 \\
S_{3}+\frac{3}{5} S_{6} & =0
\end{aligned}
$$

The fully plastic forces in tension and compression are taken to be the same and equal to N_{p}. The yield criteria (3.21) become then

$$
\left|S_{i}\right| \leq N_{p} \quad(i=1,2, \ldots, 6)
$$

Now letting $x_{1}=s_{6} / N_{p}$ and $x_{2}=\lambda b / N_{p}$ and solving the equilibrium equations for $S_{1}, S_{2}, \ldots, S_{5}$ in terms of these, the yield criteria may be written

$$
\begin{array}{r}
\left|-\frac{3}{5} x_{1}+\frac{3}{4} x_{2}\right| \leq 1 \\
\left|-\frac{4}{5} x_{1}\right| \leq 1 \\
\left|-\frac{3}{5} x_{1}\right| \leq 1
\end{array}
$$

FIGURE 7
A Once Redundant Truss

$$
\begin{gathered}
\left|-\frac{4}{5} x_{1}+x_{2}\right| \leq 1 \\
\left|x_{1}-\frac{5}{4} x_{2}\right| \leq 1 \\
\left|x_{1}\right| \leq 1
\end{gathered}
$$

The safety factor against collapse is the largest value of $x_{2} N_{p} / b$ consistent with the above inequalities.

Define 13 vectors in a two-dimensional space as

$$
\begin{array}{ll}
P_{1}=-P_{7}=\binom{-3 / 5}{3 / 4} & P_{2}=-P_{8}=\binom{-4 / 5}{0} \\
P_{3}=-P_{9}=\binom{-3 / 5}{0} & P_{4}=-P_{10}=\binom{-4 / 5}{1} \\
P_{5}=-P_{11}=\binom{1}{-5 / 4} & P_{6}=-P_{12}=\binom{1}{0}
\end{array}
$$

$$
P_{0}=\binom{0}{1}
$$

The problem in vector notation is then to maximize $x_{2}=P_{0}^{1} x$ subject to

$$
\begin{equation*}
P_{j}^{\prime} x \leq 1 \quad(j=1,2, \ldots, 12) \tag{4.1}
\end{equation*}
$$

The equation $P{ }_{j}^{l} x=I$ defines a line in two-space for each j. The vector P_{j} is normal to this line and points into the half-space for which the corresponding inequality is violated. All of the lines defined by equality in (4.1) are shown in Figure 8. The set of points
Λ for which all of (4.1) are satisfied is the parallelogram $A B C D$, and the maximum value of x_{2} is obtained at the point $D(1,8 / 5)$.

Thus
FIGURE 8
Graphic Solution of Truss Problem

The safety factor is then

$$
\lambda=\frac{8}{5} \frac{N_{p}}{b}
$$

An analytic solution is obtained by the dual method (Section 2B, Chapter III). Let

$$
e_{1}=\binom{1}{0} \quad e_{2}=\binom{0}{1}
$$

be the initial basis for the space. This is not an extreme point solution of Λ but is used here to find such an extreme point solution (Appendix C). The initial tableau appears in Table IIIA.

Since $P_{0}^{\prime} \alpha_{2}>0, \sigma_{2}$ is chosen to be -1 . This multiplys the e_{2} row by -1 . Now choose the minimumoover j of

$$
\begin{array}{cl}
\frac{P_{j}^{\prime} x-c_{j}}{P_{j}^{\prime} \alpha_{2}} & \text { for } P_{j}^{\prime} \alpha_{2}<0 \\
\frac{2+\left(P_{i}^{\prime} x-c_{j}\right)}{P_{j}^{\prime} \alpha_{2}} & \text { for } P_{j}^{\prime} \alpha_{2}>0
\end{array}
$$

This occurs for $j=5$ and is $4 / 5$. Since $P_{5}^{1} \alpha_{2}>0, P_{11}$ replaces e_{2} in the basis.

The result is Table IIIB. The process is iterated and σ_{1} is chosen to be -1 after which P_{6} replaces e_{1}. Table IIIC represents the final solution.

The maximum value of $x_{2}, 8 / 5$, appears in the P_{0} column and the $z\left(P_{j}\right)$ row. Thus $\lambda=8 N_{p} / 5 \mathrm{~b}$. The presence of P_{6} and P_{11} in the basis indicaters that bar 6 yields in tension and bar 5 in compression, i.e., $S_{5}=-N_{p}$, $S_{6}=N_{p}$. The other axial forces are read off from the last row since

$$
S_{i}=\left[1+z\left(P_{j}\right)\right] N_{p}
$$

Thus $S_{1}=3 N_{p} / 5, S_{2}=-4 N_{p} / 5, S_{3}=-3 N_{p} / 5, S_{4}=4 N_{p} / 5$.
The dual to this problem is a simplex problem and the same initial tableau (Table IIIA) may be used if the vectors e_{1}, e_{2} are given large

$\stackrel{\pi}{1}$

C_{j}			1	1	1	1	1	1
		a_{i}	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
1	P_{6}	$4 / 5$	0	$-4 / 5$	$-3 / 5$	0	0	1
1	P_{11}	$4 / 5$	$3 / 5$	0	0	$4 / 5$	-1	0
$Z\left(P_{j}\right)$	$8 / 5$	$-2 / 5$	$-9 / 5$	$-8 / 5$	$-1 / 5$	-2	0	

Table III
Dual Method Solution
positive weights, M. This changes the last row, $z\left(P_{j}\right)$ only. Now many vectors, i.e. those for which $z\left(P_{j}\right)>0$, may enter the basis. P_{6} is chosen on an intuitive basis and thus e_{1} leaves the basis. The resuiting tableau is shown in Table IVA. P_{4} then replaces e_{2} and Table IVB results. Finally P_{5} replaces P_{4} and the final tableau will be identical with Table IIIC.

Notice that the solution in Table IVA corresponds to the point (1, M) in Figure 8 and the solution in Table IVB to the point $G(1,9 / 5$) in that figure.

It should also be noted that J, H and all other intersections of the lines lying above D are feasible solutions to the above simplex problem.

Finally, to formulate the problem as a bounded variables problem (Type III), let $w_{j}=1+\left(S_{j} / N_{p}\right)$ for $j=1,2, \ldots, 6$ and let $w_{7}=\lambda \mathrm{b} / \mathrm{N}_{\mathrm{p}}$. The equilibrium equations become

$$
\begin{aligned}
& w_{2}+\frac{4}{5} w_{5}+w_{7}=9 / 5 \\
& w_{2}+\frac{4}{5} w_{6}=9 / 5 \\
& w_{4}+\frac{4}{5} w_{5}=9 / 5 \\
& w_{1}+\frac{3}{5} w_{5}=8 / 5 \\
& w_{3}+\frac{3}{5} w_{6}=8 / 5
\end{aligned}
$$

And the yield criteria are

$$
0 \leq w_{i} \leq 2 \quad(i=1,2, \ldots, 6)
$$

To this we add

$$
0 \leqslant w_{7} \leq M
$$

where M is an arbitrarily large positive number.

Table IV.
Simplex Method Solution

To find an initial basis, it is necessary to find a linearly independent set of column vectors defined by the matrix of the equilibrium equations. Using unit vectors e_{1}, \ldots, e_{5} in V_{5} with large negative weights, $-N$, these column vectors are expressed in Table VA. In one iteration e_{1} is replaced by P_{7}, e_{3} by P_{4}, e_{4} by P_{1}, and e_{5} by P_{3}. Table $V B$ shows the result. Then P_{2} replaces e_{2}.

This then leads to the initial bounded variables solution in Table VIA. The values in the φ column are values of w_{i}, i.e., $w_{1}=8 / 5, w_{2}=1 / 5, w_{3}=2 / 5, w_{4}=9 / 5$, $w_{7}=8 / 5$. Since a - appears under P_{5} and $a+$ under P_{6} then $S_{1}=3 N_{p} / 5, S_{2}=-4 N_{p} / 5, S_{3}=-3 N_{p} / 5$, $S_{4}=4 N_{p} / 5, S_{5}=-N_{p}, S_{6}=N_{p}$ and $\lambda=8 N_{p} / 5 \mathrm{~b}$.

	c_{j}			0	0	0	0	0	0	1
\cdots		a_{i}	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
	-11	e_{1}	9/5	,	1	3	0	$4 / 5$		(1)
	-N	e_{2}	9/5		1	a	8		4/5	
\rightarrow	-N	e_{3}	9/5				(1)	$4 / 5$	\%	
\rightarrow	- 11	0_{4}	8/5	(1)	1			3/5	In	
-->	-N	${ }^{5}$	8/5			(1)			3/5	
	$\mathrm{Z}\left(\mathrm{P}_{\mathrm{j}}\right) \xrightarrow{ }$			$-\mathrm{N}$	-2N	-N	-N	$-\frac{1112}{5}$	$-\frac{7 \mathrm{~N}}{5}$	-N
0				\hat{i}	a	\hat{i}		1/5	/5	$\hat{\mathrm{i}}$
	$c_{j} \longrightarrow$			0	0	0	0	0	0	1
		a_{i}	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
\rightarrow	1	P_{7}	9/5		1			4/5		1
	-N	e_{2}	9/5		(1)				$4 / 5$	
	0	P_{4}	9/5				1	4/5		
	0	P_{1}	$8 / 5$	1				3/5		
	0	P_{3}	8/5			1			3/5	
	$\mathrm{Z}\left(\mathrm{P}_{\mathrm{j}}\right) \longrightarrow$			0	$-\mathrm{N}+1$	0	0	4/5	$-4 \mathrm{~N} / 5$	0
					$\hat{\imath}$					

Table V
Initial Solution to Bounded Variable Problem

			\longrightarrow	2	2	2	2	2	(2)	M	
			\longrightarrow	0	0	0	0	0	0	1	
				P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}		P_{7}
1	P_{7}	0	M					$4 / 5$	$-4 / 5$	1	
0	P_{2}	9/5	1/5		1				$4 / 5$		
0	P_{4}	9/5	1/5				1	4/5			
0	P_{1}	8/5	2/5	1				$3 / 5$			
0	P_{3}	8/5	2/5			1			3/5		
$\mathrm{Z}\left(\mathrm{P}_{\mathrm{j}}\right) \longrightarrow$				0	0	0	0	4/5	(-4/5)	0	
$\mathrm{B}_{\mathrm{m}+\mathrm{n}} \longrightarrow$				+, -	+, -	+, -	+, -	-	-		+,

				2	2	2	2	2	2	M
				0	0	0	0	0	0	1
	B_{m}	P_{O} -		P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
1	P_{7}	8/5	M - $8 / 5$					4/5	$-4 / 5$	1
0	P_{2}	1/5	9/5		1				$4 / 5$	
0	P_{4}	9/5	1/5				1	$4 / 5$		
0	P_{1}	8/5	$2 / 5$	1				$3 / 5$		
0	P_{3}	$2 / 5$	8/5			1			3/5	
$\mathrm{Z}\left(\mathrm{P}_{\mathrm{j}}\right) \longrightarrow$				0	0	0	0	4/5	$-4 / 5$	0
$\mathrm{B}_{\mathrm{m} \text { }}+\mathrm{n} \longrightarrow$				+, -	+, -	+, -	+, -	-	+	+, -

Table VI
Bounded Variables Solution

Appendix A

THE DETERMINATION OF COMPLETE SETS OF BASIC MECHANISMS FOR FRAMES

A set of basic mechanisms is called complete if the equilibrium equations associated with the set form a complete, linearly independent set of equilibrium equations. For quadrilateral or rectangular frames it will be shown that the set B defined in Section 1, Chapter II is a complete set of basic mechanisms. For more general frames a definition of basic mechanisms which leads to a complete set will be given.

For quadrilateral frames the equilibrium equations associated with the set B of basic mechanisms form a complete, linearly independent set.

It will be shown first that the equations are linearly independent. Every beam mechanism equation contains a bending moment at a crosssection not at a joint. Moreover this bending moment does not appear in any other beam equation nor in the equilibrium equation for any joint or frame mechanism. Each beam mechanism equation is, therefore, independent of all others of the set. The equation for a joint mechanism contains at least one bending moment which does not appear in any frame mechanism since side-sway can occur in only one direction at each joint. Since the moments appearing in the joint equations are mutually exclusive, these equations are independent of all others.

Finally, the moments appearing in each frame mechanism equation are mutually exclusive. It follows that all of the equilibrium equations are linearly independent.

To show that these equations form a complete set it is necessary
to show there are exactly $n-r$ basic mechanisms where there are n critical cross-sections and redundancies in the frame (Chapter I).

Let F, J, B be the number of frame, joint, and beam mechanisms respectively. It must be shown that $F+B+J=n-r$. We let b represent the number of members in the frame; v, the number of joints or vertices; s, the number of supports; and f, the number of closed quadrilaterals in the frame.

Now the number of frame mechanisms, F, can be shown to be

$$
\begin{equation*}
F=2 v-b \tag{a.1}
\end{equation*}
$$

Starting with the simple frame

$\mathrm{F}=1, \mathrm{v}=2, \mathrm{~b}=3, \mathrm{f}=0$ so the relationship is valid. Now all quadrilateral frames can be constructed from this simple frame by adding a sequence of either closed quadrilaterals and/or open quadrilaterals plus supports. During any addition in the sequence, bars can be appended to the existing frame only at existing joints, i.e., beams may be joined only at their end points.

If a closed face is added then the increase in the number of joints, Δv, is either 1 or 2. If $\Delta v=1$, then the increase in frame mechanisms is $\Delta F=0$; and if $\Delta v=2, \Delta F=1$. On the other hand, for the addition of an open face and support, Δv is 0 or 1 . In the first case $\Delta F=-1$ and in the latter, $\Delta F=0$. In every case then

$$
\Delta F=\Delta v-1
$$

Now the number of bars added, $\Delta \mathrm{b}$, is related to $\Delta \mathrm{v}$ by

$$
\Delta b=\Delta_{v+1}
$$

Thus

$$
\Delta F=2 \Delta v-\Delta b
$$

and hence the number of frame mechanisms is given by (a.1) for any rectangular frame.

Now, from the definitions, $\mathrm{J}=\mathrm{v}$ and $\mathrm{B}=f$ where f is the number of loads not at joints. The total number of basic mechanisms is therefore

$$
\begin{equation*}
F+B+d=3 v-b+l \tag{a.2}
\end{equation*}
$$

A formula due to Euler [15] states that for a set of closed polygons lying in a plane and joined along their edges; the vertices, V; edges, E; and faces, F; are related by

$$
V-E+F=1
$$

Quadrilateral frames are just such a collection of polygons with some of the edges removed and supports placed at the free ends of beams. Now removing an edge also removes a face, so counting supports as vertices the Euler formula remains valid. In the notation we have used for frames

$$
\begin{equation*}
s+v-b+f=1 \tag{0.3}
\end{equation*}
$$

Thus

$$
3 v=3(1+b-s-f)
$$

and (a .2) becomes

$$
F+B+U=(2 b+l)-(3 f+3 s-3)
$$

The number of critical cross-sections is

$$
\begin{equation*}
n=2 b+l \tag{a,4}
\end{equation*}
$$

and the number of redundancies is

$$
\begin{equation*}
r=3 f+3(s-1)=3 f+3 s-3 \tag{a.5}
\end{equation*}
$$

Therefore,

$$
F+B+d=n-r
$$

This completes the proof of the statement.
A complete set of basic mechanisms can be obtained for more general frames consisting of any arrangement of straight beams rigidly joined as follows.

For general frames, joint and beam mechanisms are defined exactly as they are for quadrilateral frames (Section 1, Chapter II). There are v \& such mechanisms where v is the number of joints and f the number of loads not at joints. A total of $n-r$ independent mechanisms are needed to form a complete set. It follows from (a.3), (a.4), (a.5) then that $2 \mathrm{v}-\mathrm{b}$ independent mechanisms in addition to the joint and beam mechanisms are required.

For general frames the set of frame mechanisms is defined as $2 \mathrm{v}-\mathrm{b}$ independent mechanisms which are also independent of all joint and beam mechanisms. These can be found by considering mechanisms for which hinges appear only at ends of beams. A necessary and sufficient condition that they be independent of each other is that none may be obtained from the others by a rotation of joints.

For quadrilateral frames, of course, the set of frame mechanisms defined by Neal and Symonds satisfies this definition as well.

Appendix B

PROOF OF THE FUNDAMENTAL THEOREMS

For a beam cross-section which yields under the action of a bending moment and an axial force, the flow vector is defined as a two-dimensional vector whose first component is proportional to the relative axial velocity of the adjacent cross-sections and whose second component is in the same proportion to the relative rotational velocity of the beam segments adjacent to that cross-section.

An essential requirement for the theorems of limit analysis to apply is that the flow vector be orthogonal to the yield curve [16].

For a yield curve defined by (2.36) then the relative velocity, δ_{i}, and the relative rotational velocity, θ_{i}, at a yielding crosssection must satisfy

$$
\begin{equation*}
\frac{\left|\delta_{i}\right|}{M_{p i}}=\frac{\left|\theta_{i}\right|}{N_{p_{i}}} \tag{bol}
\end{equation*}
$$

Notice that if a cross section yields and either $N_{i}=0$ or $M_{i}=0$, the flow vector is arbitrary to within an angle $\pi / 2$, i.e., at a point on the yield curve where the tangent is discontinuous the flow vector is not uniquely determined. However for $N_{i}=0$

$$
\left|\delta_{i}\right| \leqslant \frac{M_{p i}}{N_{p i}}\left|\theta_{i}\right|
$$

and for $M_{i}=0$

$$
\left|\delta_{i}\right| \geqslant \frac{M_{p i}}{N_{p i}}\left|\theta_{i}\right|
$$

THEOREM: A statically admissible multiplier for Problem 1 is less than or equal to the safety factor for that problem. PROOF: Let λ be the safety factor against collapse and let M_{i}, N_{i}
be the bending moments and axial forces in equilibrium with the loads λb_{j}. If the collapse mechanism is defined by velocities, v_{j}, relative rotational velocities, θ_{j}, and relative axial velocities, δ_{j}, then from the equation of virtual work

$$
\sum_{i=1}^{n}\left(M_{i} \theta_{i}+N_{i} \delta_{i}\right)=\lambda \sum_{i=1}^{n} b_{i} v_{i}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i} v_{i}>0 \tag{b.2}
\end{equation*}
$$

Let λ^{\prime} be a statically admissible multiplier and let M_{i}, N_{i}^{\prime} be moments and forces in equilibrium with loads $\lambda^{\prime} b_{j}$. Then again from the primsiple of virtual work

$$
\sum_{i=1}^{n}\left(M_{i}^{\prime} \theta_{i}+N_{i}^{\prime} \delta_{i}\right)=\lambda^{\prime} \sum_{i=1}^{n} b_{i} v_{i}
$$

Subtracting the two virtual work equations there results

$$
\begin{equation*}
\left(\lambda-\lambda^{\prime}\right) \sum_{i=1}^{n} b_{i} N_{i}=\sum_{i=1}^{n}\left(M_{i}-M_{i}^{\prime}\right) \theta_{i}+\left(N_{i}-N_{i}^{\prime}\right) \delta_{i} \tag{b.3}
\end{equation*}
$$

Now since M_{i}^{\prime}, N_{i}^{\prime} are statically admissible

$$
\begin{equation*}
\frac{\left|M_{i}^{\prime}\right|}{M_{p i}}+\frac{\left|N_{i}^{\prime}\right|}{N_{p i}} \leq \frac{\left|M_{i}\right|}{M_{p i}}+\frac{\left|N_{i}\right|}{N_{p i}}=1 \tag{b.4}
\end{equation*}
$$

for each i,

$$
M_{i} \theta_{i}+N_{i} \delta_{i}=\left|M_{i}\right|\left|\theta_{i}\right|+\left|N_{i}\right|\left|\delta_{i}\right|
$$

Three cases arise: (i) $M_{i} \neq 0, N_{i} \neq 0$; (ii) $M_{i} \notin 0, N_{i}=0$; and (iii) $M_{i}=0, N_{i} \neq 0$.

For case (i)

$$
\begin{equation*}
\left|\delta_{i}\right|=\frac{M_{p i}}{N_{p i}}\left|\theta_{i}\right| \tag{b,5}
\end{equation*}
$$

and

$$
M_{i} \theta_{i}+N_{i} \delta_{i}=\left\{\left|M_{i}\right|+\frac{M_{p i}}{N_{p i}}\left|N_{i}\right|\right\}\left|\theta_{i}\right|
$$

Now from equation (b.5)

$$
\begin{aligned}
M_{i}^{\prime} \theta_{i}+N_{i}^{\prime} \delta_{i} & \leq\left\{\frac{\theta_{i}}{\left|\theta_{i}\right|} M_{i}^{\prime}+\frac{\delta_{i}}{\left|\delta_{i}\right|} N_{i}^{\prime} \frac{M_{p i}}{N_{p i}}\right\}\left|\theta_{i}\right| \\
& \leq\left\{\left|M_{i}^{\prime}\right|+\frac{M_{p i}}{N_{p i}}\left|N_{i}^{\prime}\right|\right\}\left|\theta_{i}\right|
\end{aligned}
$$

Each term in the sum on the right of (b.3) is then greater than or equal to

$$
\left[\left(\left|M_{i}\right|+\frac{M_{p i}}{N_{p i}}\left|N_{i}\right|\right)-\left(\left|M_{i}^{\prime}\right|+\frac{M_{p i}}{N_{p i}}\left|N_{i}^{\prime}\right|\right)\right]\left|\theta_{i}\right|
$$

But from (b.4), the term in equare brackets is nonnegative and, therefore, the corresponding term in the sum in (b.3) is also non-negative. For case (ii)

$$
\begin{equation*}
\left|\delta_{i}\right| \leq \frac{M_{p i}}{N_{p i}}\left|\theta_{i}\right| \tag{b.6}
\end{equation*}
$$

and

$$
\left|M_{i}\right|=M_{p i}
$$

Thus

$$
M_{i} \theta_{i}+N_{i} \delta_{i}=M_{p i}\left|\theta_{i}\right|
$$

and from (b.6)

$$
\begin{aligned}
M_{i}^{\prime} \theta_{i}+N_{i}^{\prime} \delta_{i} & \leq\left\{\frac{\theta_{i}}{\left|\theta_{i}\right|} M_{i}^{\prime}+\frac{\delta_{i}}{\left|\delta_{i}\right|} \frac{M_{p i}}{N_{p i}} N_{i}^{\prime}\right\}\left|\theta_{i}\right| \\
& \leq\left\{\left|M_{i}^{\prime}\right|+\frac{M_{p i}}{N_{p i}}\left|N_{i}^{\prime}\right|\right\}\left|\theta_{i}\right|
\end{aligned}
$$

Thus each term in the sum on the right of (b.3) is greater than or equal to

$$
\left[M_{p i}-\left\{\left|M_{i}^{\prime}\right|+\frac{M_{p i}}{N_{p i}}\left|N_{i}\right|\right\}\right]\left|\theta_{i}\right|
$$

From (b.4) the term in square brackets is non-negative and thus so is the corresponding term in (b.3).

$$
\begin{align*}
& \text { Finally for case (iii) } \\
& \qquad\left|\delta_{i}\right| \geqslant \frac{M_{p i}}{N_{p i}}\left|\theta_{i}\right| \tag{b.7}
\end{align*}
$$

and

$$
\left|N_{i}\right|=N_{p i}
$$

Thus

$$
M_{i} \theta_{i}+N_{i} \delta_{i}=N_{p i}\left|\delta_{i}\right|
$$

and from (b.7)

$$
\begin{aligned}
M_{i}^{\prime} \theta_{i}+N_{i}^{\prime} \delta_{i} & \leq\left\{\frac{\theta_{i}}{\left|\theta_{i}\right|} \frac{N_{p i}}{M_{p i}} M_{i}^{\prime}+\frac{\delta_{i}}{\left|\delta_{i}\right|} N_{i}^{\prime}\right\}\left|\delta_{i}\right| \\
& \leq\left\{\frac{N_{p i}}{M_{p i}}\left|M_{i}^{\prime}\right|+\left|N_{i}^{\prime}\right|\right\}\left|\delta_{i}\right|
\end{aligned}
$$

Thus each term in the sum on the right of $(b .3)$ is greater than or equal to

$$
\left[N_{p i}-\left\{\frac{N_{p i}}{M_{p i}}\left|M_{i}^{\prime}\right|+\left|N_{i}^{\prime}\right|\right\}\right]\left|\delta_{i}\right|
$$

From (b.4) the term in square brackets is nonnegative and thus so is the corresponding term in (b.3).

Therefore, every term in the sum on the right of (b.3) is nonnegative. Combining this result with (b.2), it follows that

$$
\lambda-\lambda^{\prime} \geqslant 0
$$

This completes the proof of the theorem.

THEOREM: A kinematically sufficient multiplier for Problem 1 is greater than or equal to the safety factor against collapse for that problem. PROOF: Consider a mechanism defined by velocities, v_{j}^{3}; rotational velocities, θ_{j}^{*}; and axial velocities, $\delta_{\underset{j}{*}}$; such that

$$
\begin{equation*}
\left|\delta_{j}^{*}\right|=\frac{M_{p_{j}}}{N_{p_{j}}}\left|\theta_{j}^{*}\right| \tag{b.7}
\end{equation*}
$$

The kinematically sufficient multiplier associated with this mechanism is

$$
\lambda^{*}=\frac{\sum_{j=1}^{n}\left|M_{j}^{*}\right| \theta_{j}^{*}\left|+\sum_{j=1}^{n} N_{j}^{*}\right| \delta_{j}^{*} \mid}{\sum_{i=1}^{n} b_{j} v_{j}^{*}}
$$

where M_{j}, N_{j}^{*} are a system of moments and forces compatible with the hinge distribution.

Now if λ is the safety factor then there exist moments and forces, M_{j}, N_{j}, in equilibrium with loads λb_{j} such that

$$
\begin{equation*}
\frac{\left|M_{j}\right|}{M_{p j}}+\frac{N_{j} \mid}{N_{p j}} \leqslant \frac{M_{j j}^{*} \mid}{M_{p j}}+\frac{\left|N_{j}^{*}\right|}{N_{p j}} \tag{b.g}
\end{equation*}
$$

at the yield hinges in the given mechanism. Moreover,

$$
\sum_{j=1}^{n}\left(M_{j} \theta_{j}^{*}+N_{j} \delta_{j}^{*}\right)=\lambda \sum_{j=1}^{n} b_{j} v_{j}^{*}
$$

from the principle of virtual work.
We will assume now that only isolated hinges appear in the given mechanism, i.e., there are no yield bars present. An argument similar to the one below can be given for the excluded case.

The last equation given above can be written
and using (b.7)

$$
\begin{gathered}
\lambda=\frac{\sum_{j=1}^{n}\left(M_{j} \theta_{j}^{*}+N_{j} \delta_{j}^{*}\right)}{\sum_{j=1}^{n} b_{j} v_{j}^{*}} \\
\lambda \leqslant \frac{\sum_{j=1}^{n}\left\{\left|M_{j}\right|\left|\theta_{j}^{*}\right|+\left|N_{j}\right| \frac{M_{p j}}{N_{p j}}\left|\theta_{j}^{*}\right|\right\}}{\sum_{j=1}^{n} b_{j} v_{j}^{*}}
\end{gathered}
$$

$$
\lambda \leqslant \frac{\sum_{j=1}^{n} M_{p i}\left\{\frac{M_{1} \mid}{M_{P_{i}}}+\frac{\mathbb{N}_{i} \mid}{M_{p i}}\right\}\left|\theta_{j}^{*}\right|}{\sum_{j=1}^{n} b_{j} v_{i}^{*}}
$$

Then from (b. 8)

$$
\lambda \leqslant \frac{\sum_{j=1}^{n} M_{p_{j}}\left\{\frac{\left|M_{p_{p}}^{*}\right|}{M_{p g}}+\frac{\left|N_{j}^{+}\right|}{N_{p i}}\right\}\left|\theta_{j}^{*}\right|}{\sum_{j=1}^{n} b_{j} v_{j}^{*}}
$$

$$
\lambda \leqslant \frac{\sum_{j=1}^{n}\left|M_{j}^{*}\right|\left|\theta_{j}^{*}\right|+\left|N_{j}^{*}\right|\left|\delta_{j}^{*}\right|}{\sum_{\delta^{-1}}^{n} b_{j} v_{j}^{*}}=\dot{\lambda}^{*}
$$

This completes the proof.

Appendix C

INITIAL SOLUTIONS TO LINEAR PROGRAMMING PROBLEMS
We present here methods for obtaining initial feasible solutions to Type I and Type II linear programming problems. For Type III problems it is sufficient to find a basis for the vector space of the equalities (3.2). The method developed for Type I produces such a basis.

1. Type I Problems.

Consider the following modification of the Type I problem formulated in (3.1), (3.2), (3.3): To minimize

$$
\begin{equation*}
z_{0}=\sum_{j=1}^{n} \rho_{j} c_{j}+\sum_{i=1}^{m} \mu_{i} M \tag{c.l}
\end{equation*}
$$

subject to

$$
\begin{gather*}
P_{0}=\sum_{j=1}^{n} \rho_{j} P_{j}+\sum_{i=1}^{m} \mu_{i} e_{i} \tag{c.2}\\
\rho_{j} \geqslant 0 \tag{c.3}\\
\gamma_{i} \geqslant 0 \quad(j=1,2, \ldots, n) \\
(i=1,2, \ldots, m)
\end{gather*}
$$

where e_{i} is a unit vector with plus or minus one as the ith component depending on whether the i th component of P_{0} is positive or negative, and where M is an arbitrarily large positive number.

The solution to this problem is identical with the one phrased in (3.1), (3.2), (3.3) since the minimum will occur for $\gamma_{i}=0$ for all i.

A basis for this problem, however, is readily available. Indeed, the basis a_{i} may be taken to be
 footnote to page 340.

$$
a_{i}=e_{i} \quad(i=1,2, \ldots, m)
$$

It follows from the definitions of e_{i} and α_{i} that

$$
\alpha_{i}=e_{i} \quad(i=1,2, \ldots, m)
$$

The entries of the tableau (Table I) are, therefore, easily computed.
The vectors e_{i} need not be carried in the tableau since if an e_{i} leaves the basis it cannot return because it carries a large positive weight, M. It will require exactly m iterations in order to obtain a basis comprised entirely of vectors chosen from among the P_{j}. However, in many cases these iterations are trivial and require a minimum of calculations.

As mentioned previously a basis a_{i} for V_{m} in a Type III problem can be obtained in the same way. The basis for V_{m+n} is then \bar{Q}_{j} for $j=1,2, \ldots ., n$ and $\bar{P}_{i}=\binom{a_{i}}{Q_{i}}$.
2. Type II Problems.

We now develop a method for finding an initial extreme point solution to Type II problems.

If any point w satisfying (3.5) can be found then a simple change of variables will translate this point to the origin. Starting from the origin, the following method then produces an extreme point solution by use of the dual method applied to a modified problem.

The Type II problem arising from the simple proportional loading collapse problem is given by (3.23) and (3.24). From (3.26), $c_{j} \geqslant 0$ and this implies that $\mathrm{x} \equiv 0$ is a solution to (3.24).

Consider now the modified ${ }^{I}$ problem to maximize $P_{0}^{\prime} x$ subject to

[^5]\[

$$
\begin{array}{cc}
P_{j}^{\prime} x \leq c_{j} & (j=1,2, \ldots, n) \\
\sigma_{i} e_{i}^{\prime} x \leq 0 & (i=1,2, \ldots, m) \\
c_{j} \geqslant 0 &
\end{array}
$$
\]

where e_{i} is a unit vector in V_{m} with $+l$ as the i th component and σ_{i} is either equal to +1 or -1 and is chosen according to the criteria described below.

Notice that the origin is an extreme point of the modified problem regardless of the choice of sign for σ_{i}. The basis vectors associated with this point are e_{i} for $i=1,2, \ldots, m_{\text {. }}$

The set of points x satisfying (c.4) is designated by Λ. The set satisfying both $(c .4)$ and (c.5) is Λ^{*}. Note that (c.5) is just a restriction to some orthant of V_{m} once the signs of σ_{i} have been chosen. In order that the solution to the modified problem coincide with the original problem, it is necessary and sufficient that the σ_{i} be chosen in (c.5) so that the point x in Λ for which $P_{0}^{\prime} x$ takes on its maximum also is contained in Λ^{*}, i.e., the correct orthant of V_{m} must be chosen.

The advantage of the modified problem is, of course, that $x \equiv 0$ is an extreme point solution. Starting from this solution and using the dual method a value of σ_{i} for some i is chosen at each iteration, and the corresponding e_{i} leaves the basis in favor of some P_{j}.

The procedure for accomplishing this is as follows: Let the basis at some stage be $e_{1}, \ldots, e_{s}, P_{s+l}, \ldots, P_{m}$ where the signs of σ_{s+1}, ..., σ_{m} have already been properly chosen. Let the dual vectors to
this basis be α_{j}, i.e.,

$$
\begin{array}{ll}
e_{i}^{\prime} \alpha_{j}=\delta_{i j} & (i=1,2, \ldots, 2) \\
(j=1,2, \ldots, m) \\
P_{i}^{\prime} \alpha_{j}=\delta_{i j} & (i=1+1, \ldots, m) \tag{c.7}\\
& (j=1,2, \ldots, m)
\end{array}
$$

Then

$$
P_{0}=\sum_{i=1}^{s}\left(P_{0}^{\prime} \alpha_{i}\right) e_{i}+\sum_{i=a+1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right) P_{i}
$$

and if x_{0} is the extreme point of Λ^{*} corresponding to this basis then by definition

$$
\begin{array}{ll}
e_{i}^{\prime} x_{0}=0 & (i=1,2, \ldots, s) \\
P_{i}^{\prime} x_{0}=c_{i} & (i=s+1, \ldots, m)
\end{array}
$$

Let

$$
\bar{x}=x_{0}-\theta \alpha_{q} \quad 1 \leq q \leq s
$$

then

$$
\begin{aligned}
& P_{0}^{\prime} \bar{x}=\sum_{\substack{i=1 \\
i \neq q}}^{\infty}\left(P_{0}^{\prime} \alpha_{i}\right)\left(e_{i}^{\prime} x_{0}\right)-\theta \sum_{\substack{i=1 \\
i \neq q}}^{2}\left(P_{0}^{\prime} \alpha_{i}\right)\left(e_{i}^{\prime} \alpha_{q}\right)+\left(P_{0}^{\prime} \alpha_{q}\right)\left(e_{q}^{\prime} \bar{x}\right) \\
& \quad+\sum_{i=a+1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right)\left(P_{i}^{\prime} x_{0}\right)-\theta \sum_{i=+\infty+1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right)\left(P_{i}^{\prime} \alpha_{q}\right)
\end{aligned}
$$

Now from (c.7)

$$
\begin{array}{ll}
e_{i}^{\prime} \alpha_{q}=0 & (i=1, \ldots, q-1, q+1, \ldots, s) \\
P_{i}^{\prime} \alpha_{q}=0 & (i=2+1, \ldots, m)
\end{array}
$$

and using (c.8)

$$
P_{0}^{\prime} \bar{x}=\left(P_{0}^{\prime} \alpha_{q}\right)\left(e_{q}^{\prime} \bar{x}\right)+\sum_{i=a+1}^{m}\left(P_{0}^{\prime} \alpha_{i}\right)\left(P_{i}^{\prime} x_{0}\right)
$$

The last sum is $P_{0}^{\prime} x_{0}$ so

$$
P_{0}^{\prime} \bar{x}=P_{0}^{\prime} x_{0}+\left(P_{0}^{\prime} \alpha_{q}\right)\left(e_{q}^{\prime} \bar{x}\right)
$$

Three cases arise: (i) $P_{0}^{\prime} \alpha_{q}<0$; (ii) $P_{0}^{\prime} \alpha_{q}>0$; (iii) $P_{0}^{\prime} \alpha_{q}=0$.
For case (i) if $e_{q}^{\prime} \bar{x}>0$ then $P_{o}^{\prime} \bar{x}<P_{o}^{\prime} x_{0}$. It follows that any \bar{x}
yielding a larger value of the functional than x_{0} cannot lie in the
half-space $e_{q}^{1} \bar{x}>0$, but must satisfy

$$
+e_{q}^{\prime} \bar{x} \leq 0
$$

Thus e_{q} is removed from the basis and we pick $\sigma_{q}=+1$.
For case (ii) if $e_{q}^{1} \bar{x}<0$ then again $P_{0}^{1} \bar{x}<P_{0}^{1} x_{0}$. Thus similarly it is necessary that

$$
-e_{q}^{\prime} \bar{x} \leq 0
$$

Again e_{q} is removed from the basis but σ_{q} is chosen to be -1 .
Finally for case (iii), $P_{o}^{\prime} \bar{x}=P_{o}^{\prime} x_{0}$ and the choice of σ_{q} is deferred for the present.

If at some stage of the computations, case (iii) holds for all e_{i} remaining in the basis then the choice of σ_{i} for those e_{i} is arbitrary.

The usual algorithm (3.16) is used to proceed to a new tableau.
In this way in m iterations all of the e_{i} are eliminated from the basis and the appropriate values of σ_{i} equal to +1 or -1 are chosen.

Notice that the "modified" simplex or dual techniques for control of round-off error [5] are readily adaptable to the methods of this appendix.

BIBLIOGRAPHY

1. Greenberg, H. J. and Prager, W., Limit Design of Beams and Frames, Proc. ASCE, Vol. 77, Sep. No. 59, (Feb 1951).
2. Symonds, P. S. and Neal, B. G., Recent Progress in the Plastic Methods of Structural Analysis, Jour. Franklin Inst., Vol. 252, Nos. 5, 6, pp. 383-407, 469-492, (Nov, Dec 1951).
3. Symonds, P. S. and Neal, B. G., The Interpretation of Failure Loads in the Plastic Theory of Continuous Beams and Frames, Jour. of Aero. Sci., Vol. 19, No. 1, pp. 15-22, (Jan 1952).
4. Neal, B. G. and Symonds, P. S., The Rapid Calculation of the Plastic Collapse Load for a Framed Structure, Proc. Instn. Civil Engrs., Vol. 1, No. 1, pp. 58-100, (Apr 1952).
5. Lemke, C. E. and Charnes, A., Extremal Problems in Linear Inequalities, Tech. Report 36, Dept. of Math., Carnegie Inst. of Tech., (May 1953).
6. Onat, E. T. and Prager, W., Limit Analysis of Arches, Jour. Mech. and Physics of Solids, Vol. 1, No. 2, pp . 77-89 (1953).
7. Baker, J. F., A Review of Recent Investigations into the Behaviour of Steel Frames in the Plastic Range, Jour. Instn. Civil Engrs., Vol. 31, No. 3, pp. 188-240, (Jan 1949).
8. Onat, E. T. and Prager, W., The Influence of Axial Forces on the Collapse Loads of Frames, Proc. First Midwest. Conf. on Solids Mechanics, Urbana, Ill., pp. 40-42, (1954).
9. Dantzig, G. B., "Maximization of a Linear Function of Variables Subject to Linear Inequalities", Chapter XXI of Activity Analysis $\frac{\text { of Production }}{J}$ and Allocation, Cowles Commission Monograph 13, John Wiley and Sons, (1951).
10. Charnes, A., Cooper, W., and Henderson, A., Introduction to Linear Programming, John Wiley and Sons, (1953).
11. Lemke, C. E., The Dual Method of Solving the Linear Programming Problem, Naval Research Logistics Quarterly, Vol. 1, No. I, pp. 36-47, (Mar 1954).
12. Charnes, A, and Lemke, C. E., Computational Theory of Linear Programming I: The "Bounded Variables" Problem, ONR Research Memorandum No. 10, Grad. School of Ind. Adm., Carnegie Inst. of Tech., (Jan 1954).
13. Nielsen, J., Vorlesungen Über Elementare Mechanik, Julius Springer, Berlin, (1935).
14. Charnes, A. and Greenberg, H. J., Plastic Collapse and Linear Programming, abstract presented at Summer Meeting of Amer. Math. Society, (Sep 1951).
15. Euler, L., Elementary Theory of Solids, Novi. Comm. Acad. Sc. Imp. Petropolitana.e 4, pp. 109-160, (1752).
16. Prager, W., The General Theory of Limit Design, Sectional Address presented at the 8th International Congress of Theoretical and Applied Mechanics, Istanbul (1952). (To appear in the Proc. of the Cong.)

[^0]: $1_{\text {Numbers in }}$ square brackets refer to the bibliography at the end of the discussion.

[^1]: 1. I Since the loads are transverse, the axial force is constant along
[^2]: $1_{\text {A mechanical interpretation of this yield law has been given by }}$ Onat and Prager in [8].

[^3]: $I_{\text {It will be shown later that this is indeed the case for the }}$ collapse problems considered.
 $2_{\text {The matrix }}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right]$ is the transpose of the inverse to the matrix $\left[a_{1}, a_{2}, \ldots . a_{m}\right]$. Note also that in $[11]$ the α_{j} are referred to as a^{j}.

[^4]: $I_{\text {This arrangement was developed by Orden, Dantzig, and Hoffman. }}$

[^5]: ${ }^{1}$ The author is indebted to Dr. C. E. Lemke for suggesting this modification.

