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INTRODUCTION 

This paper is concerned with the solution of various problems in 

the plastic collapse of plane structures. 

In Chapter I the basic problems and theorems of limit analysis 

are reviewed and formulated in a convenient notation. 

A pair of superposition principles are developed for limit analysis 

of structures in Chapter II. These principles lead to upper and lower 

bounds to the safety factor for a superimposed load system in terms of 

bounds to the safety factors for the individual loads. In addition 

several special problems are posed and solved in the second chapter. 

These include a minimax problem in which a safety factor which is valid 

for all load systems in a given range is found. Finally an iterative 

method is given for obtaining bounds to the safety factor for the 

proportional loading of frames when axial forces as well as bending 

moments are to be considered. Examples are included at the end of 

the chapter. 

Chapter III reviews three basic methods of solution for linear 

programming problems. The problem of the plastic collapse of structures 

is reduced to forms suitable for the application of these three methods. 

A collapse problem is solved by the several linear programming methods 

in Chapter IV for demonstration and comparison. 

A method for obtaining an initial feasible solution for Lemke's 

dual method of solving the linear programming problem is given in 

Appendix C. This method is analogous to a procedure developed by 

Dantzig for the simplex method. 
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Chapter I 

FUNDAMENTAL PROBLEMS AND THEOREMS OF LIMIT ANALYSIS 

The problems considered in this paper arise in the study of the 

plastic collapse of statically indeterminate plane structures, which 

are subjected to concentrated loads acting in the plane of the struc-

ture. These structures may be conveniently divided into three types: 

pin-jointed trusses, continuous beams, and frames. 

Throughout, it will be assumed that all of the structural members 

are composed of an elastic-perfectly plastic material such as mild 

structural steel. For a member in pure bending this implies that the 

bending jaoment at any cross-section must lie between certain maximum 

and minimum values, the fully plastic moments. At a beam cross-section 

where the bending moment equals the fully plastic moment a yield hinge 

develops, and the beam segments adjacent to that cross-section are free 

to rotate about that point under constant moment. 

Similarly for a bar in pure tension or compression the axial force 

is bounded by the fully plastic forces. A bar in which the axial force 

equals the fully plastic force (a yield bar) can undergo continuing 

change in length under constant force. 

Since both bending moments and axial forces may be present in beams 

and frames, the yield condition for these structures in general involves 

both of these quantities. A more complete discussion of this situation 

is given in Section 4, Chapter II. 

Most of the succeeding analysis, however, will deal specifically 
with frames in which the axial forces are assumed to be negligible 
compared with the bending moments. The yield criterion for pure 
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bending may, therefore, be assumed. The remarks regarding such frames 
also apply to continuous beams, while a parallel discussion can be 
given for trusses with axial forces replacing bending moments and yield 
bars replacing yield hinges. 

If in the course of a loading program a yield hinge develops at 

some point in a statically indeterminate frame, then the degree of re-

dundancy of the frame is reduced by one. The appearance of a sufficient 

number of yield hinges, therefore, transforms the frame or some part of 

it into a mechanism, i.e., the structure is no longer rigid. When this 

phenomenon occurs, the frame is said to collapse. 

For a given redundant frame with the fully plastic moments, i.e., 

bounds on the bending moments, specified at each cross-section and with 

a finite number of given loads applied at specified points; the basic 

problem is to determine the largest number by which all of the given 

loads may be multiplied before the structure will collapse. This type 

of loading program in which load ratios are maintained as the loads 

increase is designated proportional loading, and the maximum value of 

the multiplier is termed the safety factor against collapse. 

Any value of the multiplier, for which there exists a bending 

moment distribution which nowhere exceeds the fully plastic moments 

and which together with the loads corresponding to this multiplier 

satisfies equilibrium everywhere, is called a statically admissible 

multiplier. 

On the other hand, through the equation of virtual work, there 

exists a value of the multiplier corresponding to each mode of collapse 

of the structure in the form of a kinematically possible mechanism. Such 

a multiplier is called a kinematically sufficient multiplier. 
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The two fundamental theorems in the limit analysis of structures are: 
THEOREM Is The safety factor against collapse is the largest statically 
admissible multiplier. 

THEOREM 2: The safety factor against collapse is the smallest kine-
matically sufficient multiplier. 

There theorems were first stated and proved for frames by 
Greenberg and Prager 

The basic problem of determining the safety factor against collapse 

may, therefore, be formulated and solved in two ways. 

It will be assumed for convenience of notation that the fully 

plastic moments are constant along each individual member, and that the 

loads are all transverse, i.e., perpendicular to the beam to which they 

are applied. 

Under these assumptions yield hinges can develop only at discrete 

cross-sections in the frame, i.e., where the bending moment has a turn-

ing point. Since only concentrated loads are applied to the frame, 

these critical cross-sections occur under loads and at the ends of 

members. The critical cross-sections may, therefore, be enumerated* 

The bending moment at the ith critical cross-section is Mi, and 

M > 0 and -M^ < 0 are the fully plastic moments in the two directions 

of bending. Finally the applied load at the ith cross-section is Ab.. 

(some of which may be zero). 

The equations of equilibrium can be written as a system of linear 

equations in the quantities M^ and A b^ 

"̂Numbers in square brackets refer to the bibliography at the end 

of the discussion. 
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2 1 f̂ i - A (C'ljb'-s <*) V i ^ m (1#1) 

where there are n critical cross-sections. If equations (l.l) are 
linearly independent and if there n - m redundancies in the frame, 
then (1.1) is a complete set of equilibrium equations in the sense 
that all linear equilibrium relations between the bending moments 
can be expressed as a linear combination of this set. The a^j, hiic 
are constants which depend on the geometrical configuration of the 
structure and loads. 

The yield criteria take the form 

-n'fi ^ - ( j . K > (i.2) 

Given h^, bk, M ^ and M'; the problem reduces in the one 

case to finding the maximum value of A for which a solution M4 to (l.l) J 
and (1.2) exists. This value of A is, by Theorem 1, the safety factor 
against collapse. 

To formulate the problem in terms of the minimum principle ex-
pressed by Theorem 2, it is necessary to determine the value of the 
kinematically sufficient multiplier corresponding to every mechanism. 
Let Vj be the linear velocity of the load Kb^ in a mechanism. Then 
if 6 represents the relative rotational velocity of the beam segments 
adjacent to the jth cross-section and if the Q. are kinematically com-
patible with the velocities v., the virtual work equation for this 
mechanism is 

x t + 0,1 + t ^ i - ' A £ h (1.3) 
i" i" 



and it is required that 

"i i ' w (1.4) 

The value of A in (1.3) is then a kinematically sufficient multiplier 
and hence an upper bound for the actual safety factor. By Theorem 2 
then the safety factor against collapse is the minimum of 

ZM"> ( 1 - ! > 

over all Vj, which represent mechanisms subject to (1.4). 

It is important to note that in any assumed mechanism the 

absolute magnitudes of 8_, and v. aire undetermined. Multiplying 

both by the same arbitrary constant does not alter the mechanism and 

also yields the same multiplier. The contraint (1.4) is, therefore, 

a matter of sign convention since v., 6. can always be multiplied by -1. 
J J 

In cases where the mechanism has more than one degree of freedom, 

even the relative velocities of the different loads need not be uniquely 

determined. In such cases the value of the multiplier may depend on 

the ratios of the parameters representing the various degrees of free-

dom. This point will be discussed in more detail later. 

In the above formulations the usual assumption has been made that 

the deformations prior to collapse are so small, i.e., of the order of 

elastic deformations, that the equilibrium equations are not significantly 

affected. 

Throughout what follows it will be assumed for convenience that the 

cross-sections of the structural members are symmetric about the axis of 

bending. This implies that - M ^ for all j and the functional (1.5) vv reduces to 
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Chapter II 

SPECIAL COLLAPSE PROBLEMS AND SOLUTIONS 

1. The Neal - Symonds Mechanism Technique. 

A simple and rapid means of determining the safety factor against 

the collapse of plane frames which are not too complex is due to Neal 

"mechanism technique", in detail in this section, since it will be found 

useful in the solution of various collapse problems. In addition we 

will attempt to make this technique more rigorous by supplying proofs 

for certain heuristic arguments of the authors and we will extend the 

analysis to more complicated types of frames. 

The mechanism technique is based on the minimum principle. Clearly, 

if the multipliers associated with all possible mechanisms could be 

found, then the smallest of these would be the safety factor. Since 

the virtual work equation yields the multiplier for any mechanism, it 

remains only to devise a technique for determining all possible mechan-

isms. This is supplied by the Neal and Symonds analysis. 

A. Rectangular Frames. - A frame is called rectangular if it is 

constructed of rectangular bays or portals. The results and remarks 

regarding these frames apply also to any frame consisting of quadri-

lateral bays or portals. 

For rectangular frames Neal and Symonds proposed the following 

three types of "elementary" or "basic" mechanisms: 

(a) Beam: implying yield hinges at the end points of a beam and 

at some intermediate cross-section under a load (See Figure 1(a) ). 

We will discuss their method, termed the 
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(b) Frame: implying motion of a panel or story (See Figure 1(b) ). 
(e) Joint: implying rotation at a joint where two1 or more beams 

unite (See Figures 1(c) and 1(d) ). 

If a frame mechanism is assumed for each story and each cantilevered 
section; a beam mechanism for each load not at a joint; and a joint 
mechanism for each joint; then the authors state that every possible 
mechanism is some combination of this set of basic mechanisms. Desig-
nate this set of basic mechanisms by B# 

Because there are only a finite number of cross—sections where 

yielding can occur for a frame under concentrated loads, it is usually 

tacitly assumed that there are only a finite number of possible mechan-

isms. However, a mechanism requires specification of the relative 

velocities, v^, of the cross-sections where loads are applied. It has 

already been mentioned that when the mechanism has more than one degree 

of freedom, the relative velocities may be arbitrary and there may exist 

an infinite set of allowable (v̂ ,, Q i) which are not simple multiples 

of each other. 

Two questions, therefore, arise regarding the Neal-Symonds proce-

dure for rectangular frames: (1) whether all mechanisms can be obtained 

by combining the mechanisms of the set B, and (2) whether an infinite 

number of mechanisms need be examined to determine the lowest multiplier. 

In the following we shall attempt to clarify these points. 

A mechanism for a given set of loads b. is defined by a set of 
W 

velocities, v^, and relative rotational velocities,which are 
e authors originally proposed a joint mechanism only for points 

where three or more members are joined. The generalization here leads 

to a more systematic treatment. 



(a) (b) 

Beam Frame 

(c) 

Joint 

FIGURE 1 

•types of Basic Mechanisms 

(a) 
Joint 



compatible and satisfy (1.4). The virtual work principle requires that 

Z Mi & - A 1 & ^ (2.1) i-1 

where the M^ are any set of bending moments in equilibrium with.the 

loads A b^. Thus (2.1) is an equation of equilibrium and must be 

satisfied by the actual bending moments at Collapse. 

Let m^ designate the kth basic mechanism in the set B in some 

order and let ek be the corresponding equilibrium equation. Then if 
(k)

 n
 (k) vi 9 a r e t h e velocities and rotational velocities defining n^, 

the equation e can be written 
ka ^ \ V 0 ck) 

H t ^ Q , * (2.2) t <• ? I 

The set of equilibrium equations (2.2) associated with the set 

B of basic mechanisms forms a complete. linearly independent set. 

A proof of this statement is given in Appendix A. 

Now an arbitrary mechanism, m*, is defined by a compatible set of 

velocities and rotational velocities, v* and 6*. The equilibrium 

equation e* associated with m* is 

(2.3) i c11 

Now since (2.2) are complete and linearly independent, e* can be written 
as some linear combination of (2.2), i.e., 

£ I a k M . ft" - A t t ^ k ^ (2.4) 

K=< c-i «»-' 

Since (2.3) and (2.4) must be identical for all permissible M , it is necessary that 
* y ^(O * ^ 
* L- and ATc 9 

This implies that m* is a linear combination of the m and resolves the 
k 
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first question. 
To clarify the second question consider the following theorem: 

THEOREM 3: If collapse occurs for a mechanism (v.., 6^) then all 
J j 

mechanisms (v*,6*) for which 
o 

with the same arrangement of hinges and such that sign 0. « sign 
J J 

for all j, yield the same value of the multiplier, 
PROOF: By Theorem 2 since collapse occurs for the mechanism v^ Q 

J j 
the safety factor A is given by 

x . p W 
A " - f e (2.5) 

2L jt; -AT: 
4" 1 ' 

Now the virtual work equation for the mechanism (v^, Q*) may be written 

where the M. are any set of moments in equilibrium with the loads A b.. 
J J 

Since A is the safety factor and hence statically admissible, such a 

M I 
for Gj > o and M^ I -M^ for Q-<0 since the collapse solution satisfies 
equilibrium everywhere. Substituting this set of M. into (2.6) 

L ^ W r * £ v f 

Since sign 0. - sign ©* by assumption, 

'" 0 - . lajl 

set of moments exists. Indeed such a set is obtained by taking M. - .. , 
0 ~ Pj 

so (2.7) becomes 

Now the multiplier, A* , associated with the mechanism (vif, 0 #) is by 

the principle of virtual work 4 2_ Mpi I Q»*l 
A* * > ̂  n — - — 
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Comparing this with (2.8) it follows that 

A* » A 
If, therefore, one mechanism is considered for each possible 

arrangement of yield hinges, the safety factor will be the smallest of 
the multipliers computed for these mechanisms. There are only a finite 
number of such mechanisms. They may be found by considering all combi-
nations of the m basic mechanisms of the set B taken any number at a 

denotes the number of combinations of m things taken k at a time. 

Actually, all of these mechanisms need not be considered. If 

n - m -h 1 hinges appear, then the bending moments throughout the frame 

are uniquely determined. Therefore, for a mode of collapse involving 

more than n - m + 1 hinges the moment distribution and multiplier can 

be determined from some mechanism where only n - m +- 1 hinges occur. 

It is, therefore, not necessary to consider any mechanisms involving 

more than n - m + 1 hinges. 

The number of combinations which must be tested can be reduced still 
further. Neal and Symonds have stated and shown by example that only 
those combinations of mechanisms for which a hinge is eliminated at 
some cross-section need be considered. This is a generally valid prin-
ciple and may be stated and proved as follows. 

THEOREM 41: If two mechanisms, in which the rotational velocities at 

all common hinges are in the same sense, are combined in positive amounts; 

Â similar theorem proved by R.M. Haythornthwaite in the discussion 
of applies only to combinations of quite restricted types of mechan-

time. The total number of these combinations 

isms. 

CARNEGIE INSTITUTE 
OF TECHNOLOGY L1BRAR 
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then the multiplier associated with the combined mechanism cannot be 

less than the smaller of the multipliers associated with the original 
mechanisms, 

PROOF: Let the multipliers associated with the original mechanisms be 

X ' s £ n u iQjl 

a « 
(2.9) 

and 

V Z L ^ i e n A = fe L (2.10) „ u 

i v / > o , £ v / > ° 0 4 
Since the rotational velocities are all in the same sense 

S ^ 9 / = S lap. Q-' (2.11) 
Now a positive combination of the two mechanisms is defined by relative 

' r\ " l ' ' 

velocities ^ J ©J and AT- where <J>0. The multiplier asso-
ciated with the combined mechanism is 

a . • M * ' 
21 M (Ar' + AT/') 

From (2.11) it follows that*" * 4 ' 

a n d t h u s
 x ^ / V i L l i i Z W 

Now, assuming without *Loss of generality that A'^A' , then from (2.9) 
and (2.10) the last equation yields 

A' * Ac * A" 
B* General Frames. - The mechanism technique may also be applied 

to 
more general frames which are composed of straight members. The 

concept of beam and joint mechanisms carries over immediately and such 

where 



15 

mechanisms are identified as before. The idea of a frame mechanism 
requires generalization and the identification of such mechanisms is 
no longer obvious since the structure may no longer consist of simple 
bays and portals. 

In order to carry out the mechanism technique it is necessary to 
find n — r mechanisms whose corresponding equilibrium equations are 
linearly independent. The particular choice of basic mechanisms for 
rectangular frames was merely a matter of convenience. If the beam and 
joint mechanisms are retained as basic mechanisms in the general case, 
then exactly 2v - b more independent mechanisms are needed to form a 
complete set\ 

The additional set of 2v - b mechanisms can be chosen so that 

hinges occur only at the ends of beams. A necessary and sufficient 

condition that such a set of mechanisms be independent is that none 

may be obtained from any of the others by rotation of joints. 

With these criteria at hand it is usually not difficult to choose 

2v - b mechanisms, which may be arbitrarily termed frame mechanisms. 

2. Plastic Superposition. 

In the elastic analysis of frames the solution of problems can 

often be reduced to the solution of several simpler problems by use of 

the principle of superposition. This principle cannot be extended to 

limit analysis since for elastic-plastic behavior there is no longer a 

one-to-one correspondence between stresses and strains. However, we 

Kill nnv riftVftlnp a pair of superposition principles for the limit analysis 
See Appendix A. The number of bars in the frame is b and the 

number of verticies, i.e., joints, is v. 
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of proportionally loaded frames. While neither principle determines 
the safety factor for superimposed loads, the two together yield upper 
and lower bounds for that quantity. 

A. Lower Bounds. - Consider w different load systems b ^ , . 
( ) / » . ., bjW' all applied to the same frame. Let ij . . . , be 

statically admissible multipliers for each of these load systems re-

I ( 1 ) M ( 2 > M ( Ij > Mj > • • •> Mj spectively. Then there exist bending moments M ^ , M ^ , . . ., M ^ 

such that 

r1 * r 7 ^ ^ "' ̂  ^ 
and 

- A , « • * > 

Multiplying the equilibrium equations by c / a n d summing over k 

- ' i M t c 
FE^ ^ W--, 

Now let ^ CJt) 

4 A* 
7 v , cO 

X-, - 2 1 (2.13) « |z.«, 
so that the last equation becomes 

V, 

4 
Since b. is the" load system obtained from superimposing the load systems 
(k)

 J 

b. , c is a statically admissible multiplier for the superimposed, loads J 
provided it is chosen so that 

- M P I ^ V V J * > 

If AXL is the safety factor for the loads b^, then 

c - A 
C - (2.14) 

To get the largest lower bound to C is chosen as large as possible 
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so that /• L \ 

A lower bound c to Aa which will in general be smaller than c and 
therefore not as good a bound can be more easily obtained. Notice 
that (2.12) implies 

where c > 0. The continued inequality (2.15) is satisfied then if 

» Vt-1 
Now c is a lower bound to A* as was c before, and the largest value 
of c is obtained if equality is taken in the last inequality. From 
(2.14) therefore ^ 

ir - £ iz 
(2.16) 

As previously stated, this bound is in general not as good as that 
obtained by maximizing c in (2.15). 

The largest lower bound in (2.16) is obtained if the Ate. are the 
(k) 

safety factors for the load systems bj ' for all k. In general, however, 
this lower bound c will not equal A*. since the bending moments in 
equilibrium with loads cb̂  may not equal the yield moment at sufficient 
cross-sections to produce collapse. 

B. Upper Bounds. - Consider now a mechanism (v., 0.) such that 
— CIO J 0 

for all k. Let At be the kinematically sufficient multiplier asso-
(i) * ciated with this mechanism for the load system b . Then \ > o and 

I F = ^ A A 

£ < V e , I 
r1 
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Summing this over i and using (2.13) 

/ » LJU 

The right hand member is the* reciprocal of the multiplier, A , for this 

mechanism when associated with the superimposed loads. By Theorem 2 
_ L 

A. * A* 
so 

C~I 1 

This may be combined with (2.16) to form the continued inequality 
ur , U-
T - V ^ — f - V ^ K A^ K (2.17) 

An example of the use of these superposition principles is 
given in Section 5, Part A of this chapter. 

THEOREM 5: If for a given frame the mode of collapse is the same for 

two different load systems, b̂ . and and if the safety factors 

against collapse are and Av respectively; then the collapse mode 
(1) (2) for the combined load system b. r b. +- b. is the same, and the J J J 

safety factor against collapse, A , is 

At Av 
PROOF: By the upper bound principle 

T ^ A, Av . 
* - X 7 7 7

 ( 2

-
1 8 ) 

Now since A, and AV are safety factors, they are statically admissible 

multipliers, so bending moments M ^ and M ^ exist such that 

r< <> « feT, 
> (2-19) * (x.) Jl tO 

Z I Ocj ^ = ^^.Xlelfe 
and 
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Consider the bending moment distribution 

Obviously A.+Ax 

Moreover VX 

) * ' 

A X / ^ 
Thus ' y\,+ A\. is a statically admissible multiplier for the load 
system bk and 

^ 7 
X. + Av - A 

Combining this with (2.18), the result follows. 

An example of the use of this theorem is given in Section 5, Part C. 
The theorem is easily extended to the case of w load systems where 

the mode of collapse is the same for each system. 

3. A Miramax Problem. 

Consider now the following generalization of the proportional load-

ing problem defined by (l.l) and (1.2): To find the minimum over b.. of 
V 

the maxima over M. of A subject to 

H ac. h.1 = A. £ JL: I, k - (2.20) 

- M P i - ^ J ^ J (j = ',V-v*> (2.21) 



20 

(2.23) 

where a^, h , M , b^ are given. 

For every set of bj satisfying (2.22) a value of the safety 

factor is obtained by maximizing A over the statically admissible 

V i-6** MJ satisfying (2.20) and (2.21). The present problem seeks 

the smallest of all these safety factors over all possible sets of 

loads bj satisfying (2.22). Let A
T
 be the solution to this minimax 

problem. Then Ac is a true safety factor for all load systems in the 

given range, i.e., for all A < A
C
 collapse will not occur for any set 

of loads satisfying (2.22). The final restriction (2.23) prevents the 

loads from changing direction and is a necessary simplification for the 

treatment which follows. 

For a fixed set of loads b̂ . which satisfies (2.22), the problem 
reduces to the simple proportional loading problem posed in (1.1) and 
(1.2). It may therefore be formulated as a mj.ni.*nnTn problem given by 
(1.4) and (1.6), i.e., to minimize 

over all possible mechanises (v , Q,), where the vi and 8. are kine-
J J J J 

matically compatible velocities and rotational velocities respectively, 
and 

£ h ^ > 0 (2.25) 
The original minimax problem is therefore equivalent to minimizing 

(2.24) first over all mechanisms (v., 0.) and then over all loads b. 
j 

subject to (2.22), (2.23), and (2.25). 

Although this minimum problem is actually an iterated one, it is 



equivalent to the minimization of the functional (2.24) over the two 
sets of quantities (v^, 0^) and b, without regard to order. If this 
latter minimum exists then the iterated one does also, and the two are 
equal. 

The problem as stated is non-linear. All attempts to reduce it to 
a linear programming problem both in the present and in previous1 inves-
tigations have failed. A solution is obtained here by use of the Neal-
Symonds technique. 

THEOREM 6: Only the end points of the intervals of the loads, b,, 
J 

need by considered in seeking Ac. 
PROOF: Suppose in contradiction to the theorem that the functional 

(2.24) takes on its minimum for b. zb. 4 where < 
J J 3 J j 

for some j, say j = p. Then v 

A -
L ^ + 21 ̂  ^ 

Three cases arise: (l) vp > 0, in which case 

A p ATp > ATp 
and the value of A^ can be decreased by replacing 6p by contrary 
to assumption. Similarly if, (2), v < 0, then 

— ApATp > £pATp 
and a contradiction is reached. Finally if, (3), vp = 0, then the 
functional takes on the same value for all values of bD and it is 

sufficient to consider the end points. 

The problem therefore reduces to minimizing 

"'"See pp. 53-58 of 



22 

^i.A^. +2L A . U I (2.26) 
^ « <J ic« 4 ' 

over all mechanisms (v^, 0J subject to (2.25). Notice, however, that 
(2.25) may be replaced by the equivalent restriction 

> 0 

These mechanisms are, therefore, identical with those arising in the 
Neal-Symonds solution for the proportionally loaded frame with loads 

b.. They are finite in number and thus the minimum exists. 
J 

In order to obtain a more convenient form of the functional in 
(k) (k) (2.26), let v. , 0 ; designate the velocities and rotational velo-
J J 

cities of the kth mechanism arising from the Neal-Symonds analysis, 
(k) 

and let the v. be so normalized that 
J 

y T c 0 

4, * ̂  " 1 (2.27) 
for all k. Then 

- x * + t 

where the maximum is taken over all k. 
The value of the multiplier associated with the kth mechanism for 

the loads b. is ,, N w ibu 0 W ST M \ ' 

so 
I ' L H r W r 

X = [ j + ^ A K M (2.a) 
over all k. 

The procedure for obtaining the solution to the minimax problem 

then is: 

(l) Proceed as in the solution of the proportional loading collapse 
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problem for loads b^ using the Neal-Symonds technique. Tabulate all 
"TO) mechanisms and the corresponding multipliers, A . 

(k) 
(2) Normalize the velocities, v̂  , for each mechanism according 
to (2.27). 
(3) Form the right hand member of (2.28) for each mechanism using 
the normalized velocities and select the largest of these numbers. 
This is the reciprocal of A

C
. 

An example of this type of minimax problem and solution follows 
in Section 5, Part B of this chapter. 

4. The Effect of Axial Forces in Frames. 

Another modification of the Neal-Symonds technique leads to bounds 

on the collapse solution of a proportionally loaded frame when axial 

forces are significant. As mentioned in Chapter I, the addition of 

axial force effects requires a yield condition involving both moments 

and forces at each cross section. 

A mechanism may now involve yield bars as well as yield hinges. 

It is, therefore, necessary to examine cross-sections where the bending 

moment and/or axial force has a turning point. Since all loads are 

assumed to be transverse, these are identical with the critical cross-

sections neglecting axial forces, i.e., at the ends of each member and 

under each load. 

Let M^ be the bending moment at the ith critical cross-section, 
and let N be the axial force, considered positive for a tensile force, 

J 1 
in the jth member. Furthermore, let M be the fully plastic moment Pi 

^Since the loads are transverse, the axial force is constant along 
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at the ith cross-section and let Npj be the yield force in the jth 
member* 

It should be noted that M ^ and Npi are not independent but are 
related by 

/ V = 

where k. is a constant which depends on the cross-section.2 

The state of stress at a generic cross-section can be completely 

specified by a point, the stress point, in a two-dimensional Euclidean 
space whose rectangular coordinates are N,/N . and M /M ,, Onat and 

i pi i pi 
Prager [6] have shown that for a beam of rectangular cross-section the 

stresses at a yielding cross-section must satisfy one of the two equations 
i f ± - 1 

U P J ~ 1 

In the stress point plane these are represented by two intersecting 

parabolas (dashed curves in Figure 2)# All statically admissible stress 

states must be represented by stress points interior to these curves, 

designated the yield curves for rectangular cross-sections. 
For beams with symmetric cross-sections, the yield curves are 

closed, convex curves symmetric about both axes. Some empirical 
curves have been given by Baker [7J . 

As a linear approximation to all of these convex yield curves, 
each member. Specification of the axial force in each beam, therefore, 

is sufficient for the determination of N^ at every cross-section 

^For rectangular cross-sections r h/4<< where h is the length 

and oc the length-depth ratio of the beam in which the cross-section 

is located. For idealized I-beams, k^ = w/2 where w is the heighth 

of the web. 



FIGURE 2 

Yield Curves 



the yield condition1 

m iN-i 
- 1 

/ \ Npc - 1 (2.36) 
may be taken. The yield curves for this criterion are the sides of 
the square EFGH (Figure 2). A stress point satisfying (2.36) must 
therefore lie inside the yield curves for all symmetric shapes. 
Hence safety factors based on this approximation will always be on 
the safe side, i.e., smaller than the safety factors based on the 
actual yield laws. 

The problem of maximizing A subject to the equilibrium condi-
tions and the yield law (2.36) is the principal problem of this section 
and will be designated Problem 1. Only bounds to the solution of 
Problem 1 will be found here. An exact solution is obtainable by the 
linear programming methods outlined in Chapter III. 

The proofs of the fundamental theorems, i.e., Theorems 1 and 2, 
for Problem 1 are given in Appendix B. The proofs of these theorems 
do not follow directly from the general theorems of limit analysis 
since forces or stress resultants are involved rather than pure 
stresses. 

The mechanism technique cannot be immediately extended to solve 

Problem 1, however, since it is necessary to allow for relative dis-

placements of the cross-sections adjacent to a yield hinge as well as 

for rotations of beam segments about the hinge/ The axial force 

1 a mechanical interpretation of this yield law has been given by 
Onat and Prager in Js] • 

2 See discussion of flow vectors in Appendix B. 



across a yield hinge, therefore, does work in a mechanism and must be 
included in the virtual work equation. 

We now introduce a problem for which a mechanism technique is 
available and which will in turn lead to bounds on Problem 1. 

Consider the problem of maximizing A subject to the equilibrium 
conditions and the yield criteria 

1/na £ / v 
and , x 

I Nil ± N r
 (2-37> 

We designate this as Problem 2. The proofs of Theorems 1 and 2 for 
this problem follow the proofs given in Appendix B for Problem 1 with 
only slight variations. The yield curves for Problem 2 are the sides 
of the square ABCD (Figure 2). 

A mechanism technique can be developed for Problem 2 since there 
are no relative displacements at yield hinges. Changes in length can 

only occur when the axial force equals the yield force and thus the 
member becomes a yield bar. 

A. U22er Bounds. - The class of statically admissible moments % 
and forces for Problem 1 is a sub-class of the statically admissible 
Mt and for Problem 2. Thus any statically admissible stress state 
for Problem 1 is also admissible for Problem 2. By Theorem 1 the solu-
tion to Problem 1 cannot be larger than the solution to Problem 2, i.e., 

A- - A . (2.38) 
where A, and A^ are the safety factors for Problems 1 and 2 respectively 

As previously mentioned, the mechanism technique can be immediately 
extended to solve Problem 2 and therefore to find an upper bound for A , 

It should be noted that the mechanisms for Problem 2 are not necessarily 
kinematically possible mechanisms for Problem 1. 
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The number of basic mechanisms necessary to form a complete set 

is equal to the number of independent equilibrium equations. In addi-

tion to the set B of beam, joint and frame mechanisms defined by Neal 

and Symonds1, b more independent mechanisms are required where there 

are b members in the frame. 

An axial failure mechanism is defined as a mechanism containing 

one and only one yield bar together with sufficient yield hinges so 

that the frame or some part of it is no longer rigid. There exist 

therefore b independent axial failure mechanisms and these are inde-

pendent of the mechanisms of the set B. The set of mechanisms B 

composed of the set B together with b independent axial failure 

mechanisms is a complete set for Problem 2. 

All possible mechanisms are obtained as linear combinations of 

the set B, and the combinatorial techniques of Neal and Symonds 

(Section 1) may be used to examine all combinations of B necessary 

to determine A 2* 
B. Lower Bounds. - The solution of Problem 2 can also be used to 

(oV (2) find a lower bound for Problem 1. Let Mv , N . be a set of moments 
J 0 

and forces statically compatible with A 2. Define numbers yU, at each 

critical cross-section as 

j\L = W o ^ W ^ , "t] (2.39) 

, i.e., the larger of the two numbers in brackets. Notice that 

h ± jjl^ ̂  1 for i : 1,2,. . .. n. 2 

^There are n - r such mechanisms, where n is the number of critical 

cross-sections and r is the number of redundancies in the frame. 
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Consider now a new problem, Problem 3: to maximize X subject to 

the equilibrium conditions and the yield criteria 

(c i,*, • v n ) (2.40) 

where 

Njc = / u NPi 
Problem 3 is, therefore, Problem 2 for a weakened frame. 

(o) (3) 
Let A, be the solution to Problem 3 and let My", HY be 3 J J 

moments and forces in equilibrium with loads Â b,. and satisfying 

the yield criteria (2.40) 
For a cross-section where yî  = J 

(3)1 

(2.41) 

(2.42) 

| C I 
(2.43) 

so 
ijCi , 

flP; + Nfi . " 
and (2.36) is satisfied. 

At cross-sections where yÛ  > 5 from (2.39) 

|Nri - d - ^ N f j . 

Now from (2.41) and (2.42) 

(2.44) 

(2.45) 

.(3) 

K l + Ijfl _ 
/V N 'p 

l riMr 
: = a L f c 

I N F L ~ 

and since satisfy (2.40) 
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(Nr — — +• -n— 
N, - ^ [l 

IN: 
0)1 -T 

Alpc 
Two cases arise: (l) at all cross-sections 

(3) \ , (z) 

NPC - (2.46) 

or (2) at some cross-section 

i n > int 
If (1) holds then from (2.45) and (2.42) 

If I * ( 1 - j N p c = (i-u,) 
thus 

N : 

0) 
T J fi 

I N : 

Nf* 
'•A 

A 

S 3 . I j p & r [ u . 1 

Therefore in (2.46) 
I 

(3) (3) ^ ' ^ Thus M. , N± satisfy the yield criteria (2.36) at every cross-
section and since they are in equilibrium with loads \ b., L is 

3 J 3 
a statically admissible multiplier for Problem 1 and 

- A , ( 2 # 4 7 ) 

If, however, (2) holds at some cross-section a similar analysis 
results in 

I K I J N T I 

> 1 

This does not indicate that A 3 is an upper bound since the multiplier 

may not be kinematically sufficient. The procedure can be iterated, 

however, by further weakening the strength at all cross-sections. 

Usually one or two iterations are sufficient to achieve a lower 

bound. If, however, the convergence is slow, a lower bound can be 
immediately obtained by letting z i for i = 1, 2, • . ., n. Then 
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(2,43) and (2,44) hold everywhere. It also follows that 

A 3 * ~fc X-u-
and thus 

± ± X, ^ 

Better bounds are obtained in general by using the JX̂  defined in (2.39). 

An example of the use of these techniques is given in Section 5, 
Part D of this chapter. 

Notice that a different lower bound than \^ could be found by 
defining quantities 1 \ 

at each cross-section and proceeding in an entirely analagous way with 

the Tolls played by the moments and forces interchanged. For frames 

where the normalized axial forces, N^/N^, are smaller than the nor-

malized moments, M. /M ,, however the best lower bound is obtained from i pi' 
Problem 3 with the yield criteria (2.40). 

C. Distributed Forces. - The methods developed in this section 

can also be extended to transverse distributed forces. 

Following Neal and Symonds (j2 J , an upper bound to Problem 2 

can be found by assuming that a hinge appears at the midpoint of the 

beam in each beam mechanism involving a distributed load. After 

choosing a collapse mechanism in the usual way, the bound may be 

improved by letting each hinge appearing under a distributed load 

be at some distance x^ from the center of the member in which it 

appears. After computing the multiplier as a function of all of the 

x^ for beams subjected to distributed loads from the virtual work 

equation, the multiplier is minimized with respect to each x^ seperately. 
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Since this is an upper bound for A2 it is also greater than A ^ 

To obtain a lower bound, assume on members where distributed 

loads act a set of concentrated forces whose resultant is the same as 

that of the distributed load [2] . This can be shown to yield a lower 

bound to A 2. Problem 3 is then formulated for this frame which now 

is subjected to concentrated forces. The solution is a lower bound 

to A x for distributed loads. 

5. Examples. 

A. Superposition. - Consider the two-bay frame in Figure 3(a) 
where the fully plastic moment in each member is h. The 12 critical 
cross-sections are labeled and the sign convention is chosen so that 
positive moments cause compression in the fibers adjacent to the dotted 
lines. 

To find an upper bound to the safety factor, A > choose the 

mechanism in Figure 3(b). The kinematically sufficient multipliers 

associated with the loads of magnitude 1, 2, and 3 respectively are 
= 6 , A : = y , , A:'= <, 

By superposition, an upper bound for the combined loads is 

A. = Vs 

The equilibrium equations for the loads 1, 2, 3 are 

/ A M 

V \ij 

- z A + m ^ - M , , m 
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(b) 

FIGURE 3 

Plastic Superposition of Forces 



The following statically admissible solutions are easily found: 

For load 1 : h, all other H. : 0 with z 1 

For load 2: — M^ I -M = -h, M12 = h/3, all other 1 ^ = 0 with = 

For load 3: — My z -Mg I -M^ z -h, all other Mi = 0 with ^>(3) . i 

The lower bound obtained from (2.16) is 
A'= 3/,o 

A better lower bound is obtained from maximizing o in (2.15) 
C = I 

Thus 
I * A s- ? / r 

The correct safety factor is 7/4. 

B. Minimax Problem. - Consider the frame in Figure 4(a) loaded 

as indicated. The loads are bounded by 1/2 ̂  H ̂  3/2, P^ 2, 

0 ̂  Q ̂  4. The fully plastic 
moment at each cross-section is h. 

We wish to find a multiplier A
C
 for which collapse will not occur for 

any set of loads in the given range. 
The base loads are chosen as the mean values of the end points, i.e. 

H = 1, P = 1, Q = 2. The deviations are A
H
 = J, A

p
 = 1, A

Q
 = 2. 

The three basic mechanisms are shown in Figures 4(b), (c), (d). 

The two combinations of these which follow from the Neal-Symonds analysis 

added to (d), and (c) added to (d)} are not shown. The multipliers 

associated with the base loads and the normalized angles are 
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A KLnimax Problem 



r - s 

A u ) « % 

6 b = 

6c - Vjl 

9a = 
The values of A computed from the right hand member of (2.28) for these 

The values computed for the combinations not shown are 24/19 and 3/2. 
The multiplier desired then is 

The loads for which this multiplier is the actual safety factor under 

proportional loading are H = J, 0 £ P ^ 2, Q z 4. Notice that H takes 

on its minimum value to produce the solution to the minimax problem. 

C. Application of Theorem j># - We wish to find the safety factor 

against collapse for the frame in Figure 5(a) for <K ̂  The fully-

plastic moment at each cross-section is taken to be h. 

For < r i, the Neal-Symonds technique leads to the collapse mode 
in Figure 5(b) and a safety factor A x = 4. 

For a single positive load at the upper left corner, Figure 5(b) 
is the only possible mode of collapse. Let this single load be Av(<*~i) 
for oC > i. The virtual work equation yields 4/(* m 

By Theorem 5, the mode of collapse for the superimposed loads, i.e., 
A at the upper left and A at the midpoint of the left leg, is also 

that shown in Figure 5(b) and thf safety factor is 

modes are 

A = 4 , A = % , A -- H s 

Ac = ,l/,5-



X 

JL 

(a) 

fs-e 

A 

FIGURE 5 

Application of Theorem 5 
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D. Axial Forces in Frames. - Consider the shed-type portal 

frame shown in Figure 6(a). The fully plastic moment in the left 

inclined beam is 2Mp and in the other three members, Mp. The beams 

all have rectangular cross-sections and the length-depth ratio of the 

legs is 10. Thus 3NpL z 80Mp. Bounds will be found to the safety 

factor using the yield condition (2.37)• 

Since the load 2 \W is not transverse, its point of application 

is treated as a joint and the load is decomposed into components normal 

and tangential to the member on which it acts. In the applications of 

the principle of virtual vrork it is also necessary to consider two 

velocities, normal and tangential, at the point of application of the 

2 AW load since either or both components of the load may do work in 

a mechanism. 

The ten critical cross-sections are numbered in Figure 6(a). There 

are twelve basic mechanisms for Problem 2: three frame, four joint, 

and five axial failure. The combination which produces the smallest 

value of the multiplier is shown in Figure 6(b). It follows from 

virtual work that 

The values of the moments, axial forces and jx^ calculated from (2.39) are 



(b) 

FIGURE 6 

Axial Force Effects in Frames 



(2) i ( 2 ) m
7 = i Mp Ny = -.08397N ii = .91603 
(2) Cp̂ ) ' M
8
 = ^ Ng z -.08397N = .91603 
(2) (2) ' 

^ = Mp N9 = -.06875N u = .93125 
(2) (2) 7 

M10 = - M p
 N10 = -.06875Np .93125 

For Problem 3 the mechanism in Figure 6(b) is also the correct 

mode of collapse. Thus from virtual work 

T \ 3 w L e = [ 2 © A M r + + 49/AsMp M f J 
and 

\ J1k A3 - 2L. 0 0 1 3 5 " W L 

The axial forces in Problem 3 are 

4 3 ) = -•08557Np N£3) = -.01241Np 
= -.08557Np = -.07834Np 

N^3) = -.07957Np = -.07834Np 
N[3) = -.07957Np = -.0646lNp 
N^3) = -.01241Np = -.0646lNp 
Since 

M < l N f \ C ^ w ) 
then 

Z . 0 o Z 3 ^ < A, < 2. K H ^ 

If the axial forces were neglected the upper bound shown here, 

i.e., \ w o u l d be taken as the correct safety factor. Assuming 

that the solution is the mean of the two bounds, then the error 
i 

committed by neglecting the axial forces is approximately 3.5 %. 



Chapter III 

LINEAR PROGRAMMING METHODS IN LIMIT ANALYSIS 

The linear programming problem may be defined as the problem of 

optimizing a linear functional subject to linear constraints. This 

type of problem has appeared in both formulations of the proportional 

loading problem (Chapter I). In order to utilize the special methods 

available for the solution of linear programming problems, it is 

necessary first to discuss the general types of these problems and to 

outline some of the methods of solution which have been developed. 

1. Types of Linear Programming Problems. 

The linear programming problems will be formulated using the stan-

dard vector notation and the collapse problems will then be reduced to 

this form. 

Given (n+-l) column vectors PQ, P^, . . ., Pn in a real, m-dimen-

sional vector space, V , and given n real scalars c->, Co, . . ., c„. m ** 
A linear programming problem is to minimize 

(3. 
J*' 

with respect to p y subject to 

B = (3.2) 
r* 

2-0 Q (3.3) 

This will be called the simplex problem or a problem of Type I. 

The dual problem to the simplex problem stated in (3«l)> (3.2), 

(3.3) is to maximize 
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p : ^ (3.4) 

where 
P^'ur^C^ - ,vi) (3.5) 

The prime denotes transpose and w is a real m-tuple (or alternatively 

a vector in V ). P'w is the inner product of P. and w considered as m J J 
vectors. This problem is called a problem of Type II. 

The dual theorem"1" relating the above problems states that if 

either the minimum of zQ or the maximum of P^w exists and is finite, 

then 

P. ̂  (3.6) 

Type III problems are defined to be identical with Type I problems 

except that every variable is constrained by an upper bound, i.e., 

O ^ f t ^ A i (3.7) 

This is alternately called a bounded variables problem. It includes 

the type of problems where some but not all of the variables are 

bounded since one may prescribe arbitrarily large bounds for the 

unbounded variables. 

2. Computational Techniques. 

Three finite iterative techniques for solving the above problems 

will be discussed here. They are included for completeness and for 

ease of reference in the limit analysis examples solved later by these 

methods. 

A. The Simplex Method. - A problem of Type I is naturally adapted 

^See for example Chapter VIII of [lo] . 



to the S implex technique. A complete discussion of this method may 

be found in [?, lo] . Two assumptions will be made: (l) that the 

solution zQ is finite1 and (2) that Pq is linearly independent of 

any m - 1 vectors selected from among the P.. The latter assumption 

avoids the degenerate cases. Such occurrences, however, can be 

handled by the £ -procedure of Charnes jjLC>3 . 

From these assumptions it follows that there exists a set of m 

of the vectors P. which are linearly independent and therefore form 

a basis for the vector space, Vffl. Let such a set of basis vectors 

be designated by a. for i = 1, 2, . . m. The vector PQ may then 

be expressed as a linear combination of the a r This representation 

for P0 and the corresponding value of z0 will be a feasible solution 

to the simplex problem in (3.1), (3.2), (3.3) provided the coefficients 

of the ̂  in (3.2) are all positive, i.e., P ^ X ) . The second assump-

tion assures that a basis satisfying this constraint exists. A method 

of determining one such basis and hence a feasible solution is given 
in Appendix C. 

Consider now m vectors Q(. in V such that 
J m 

A - <*• = , H V ) 

The o(, are uniquely determined since the are linearly independent. 

1It will be shown later that this is indeed the case for the 
collapse problems considered. 

2The matrix O.,*^.. • is the transpose of the inverse 

to the matrix fax, a ^ . . ., a j . Note also that in [ll]the^ are 
referred to as a^. 



Then the P^ and PQ may be written 

p . • • » ) < , « 
C - I 

where P ^ ^ O for i = 1, 2, . . m. Hence 
rt> ' r» i = l;lj j K 

. O i^HHj ...,>, (3.10) A 

is a feasible solution to the problem. The corresponding value of 
the functional is 

(3.11) 
In order to obtain another feasible solution which yields a 

smaller value of the functional, consider first the n scalar quantities 

(3.12) 
Either (i) Z j - 0 j 6 o for all j, or (ii) , _ 0j > 0 for some j. If 
(i) holds then 

Therefore the point ^ i n ^ i s a feasible solution to the 
dual problem, (3.5). The value of the functional, z , is 

However from the dual theorem P'w - Vj and therefore z0 takes on its 

minimum and P<$w its maximum whenever equality holds. Thus if (1) holds 

the solution is optimum and the value of zQ in (3.11) is the minimum 

value of the functional and cannot be further decreased. 
Suppose, therefore, that (ii) holds for some j, say j = k. Then 



rewrite (3.9) as ^ 

P. = Z L C P . W K - 6 + e? f e C - I 
where 8>Oand Pk is not an a.. Using (3.3) with j = k, 

R ^ F C R ^ - E A V J A ^ G P , ( 3 A 3 ) 

If the coefficients of ai, are non-negative, then the set of />j 
defined by 

r Po ~ & Pk 
A M e O . H ) 

are a feasible set for the simplex problem. The value of the functional 
associated with this feasible set is 

•z, s £ C& ) C i - 6 (*k-C k) (3.15) 
c- I 

Now if P ^ f S 0 for all i, then the f . defined in (3.14) are 
positive for arbitrarily large positive 0. Since zk - ck>0, the 
value of the functional zQ given in (3.15) can be made arbitrarily small 
contrary to assumption (l). Therefore P j ^ X ) for some i. 

Since the coefficients of in (3.13) must be non-negative 

0 — ' p ^ R V , > O 

Therefore in (3.15) the smallest permissible value of the functional is 
obtained if 0 is chosen as 

P . V 0 - y p f ^ ^ ^ ^ 



This minimum is taken on for one and only one value of i, say i = s, 

because of assumption (2). For this value of 6 the coefficient of 
as i n (3*13) vanishes and 

P. = + e P k t = i 
i i-a-

The i ̂  s, and Pk are easily shown to form a basis for V^. 

Notice that if (ii) holds for more than one value of j, there is 

a choice as to which vector shall enter the basis. Any choice will 

result in a decrease in the functional. The choice may be governed 

by experience and the physical interpretation of the problem. This 

will be discussed later in the structures examples. 

Finally notice that the vectors were not needed explicitly in 

the above analysis. It is only necessary to express the P , P. in 

terms of the a^ i.e., to find P« and Pj P0> P may be ex-

pressed in terms of the new basis, a. for i ̂  s and by the algo-
rithm 

vn 

The coefficients on the right involve only quantities already computed. 

The z. may then be formed as before and the entire process iterated. 

Only a finite number of bases, in fact at n*>st^)2, are possible and 

no basis will reappear since the functional decreases at each iteration. 

"^ee for example, Lecture IV of jjLoJ . 

(m)rePresents the number of combinations of n things taken m 
2 

at a time. 



Consequently the process converges in a finite number of iterations. 

To proceed from one iteration to the next it is convenient to 
assemble the information in tableau form1 as follows: 

c > j 

-r ai P 0 

c 1 ai - • • • • . . 

• 
• . 

• . • 

c s 
. 
as 

. 
P'o/ 0^ s 

. 

1 S 
. • 

n^s 
• 
• 

c m 

. 
• 

a m 

• 
• 

o^m 

. 

. 
Pi<m ' ' • 

• . 

k m 

• 
• 

n^m 

zo Z1 ~ C1 . . 

TABLE I 

Simplex Tableau 

The entry in the row labeled ag (s = 1, 2, . . B) and column Pk 

(k r 1, 2, . . n) is the component of Pk along the vector a . s 
The entry zk at the base of a column is computed by taking the scalar 
product of the entries in that column with the column of c. at the left. 

J 
The entries in the Pq column constitute values of the variables p . 

corresponding to the vectors a.. All other p vanish at this stage. 

^his arrangement was developed by Orden, Dantzig, and Hoffman. 
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A positive element is selected from the last row (if none exist an 
optimum value of the functional is given by 2q). The positive entries 
in that column are divided into the corresponding entries in the P col-

o 
umn, and the minimum of these quotients is selected as 9. To proceed 
to a new tableau the algorithm (3.16) is used. 

In each iteration there are in general (m + l)(n+ 1) multiplica-
tions required to complete the new tableau once the replaced and replac-
ing vectors have been chosen. 

B. The Dual Method. - A Type II Problem is well suited to solution 

by the dual method [ll] . This method will be briefly reviewed here. 

A point Wq is an extreme point of the set w satisfying (3.5) if 
from among the vectors P for which equality is satisfied in P!w c J j o y 

there exist m vectors which are linearly independent and hence form a 
basis for V^. It can be shown that the functional PQ'w takes on its 
maximum at an extreme point of the set w satisfying (3.5). 

It will be assumed that (l) the maximum value of the functional (3.4) 
is finite and also that (2) for every extreme point equality is satisfied 
in exactly m of (3.5). This latter assumption avoids the problem of 
"dual degeneracy". For a discussion of this case see Appendix I of [ll] . 

Consider an extreme point wQ. Let the m P. for which equality is 
satisfied in (3.5) be designated by a., i,e,, a.w r ct for i r 1, 
The are then a basis for and the P may be expressed in terms 
of this basis as in (3.8) and (3.9). 

Two cases arise: (i) P^c^ £ 0 for all i or (ii) P ^ i < 0 for 
some i. 

Now if (i) holds then the value of the functional associated with 

• • y m. 



the point Wq is 

Now defining n scalars p as 
r J 

1 = 1 C - I 

and moreover ® 
p

- • .4 f,p. 

Pi > Q 

The p^ are, therefore, a feasible solution to the problem in (3.1), 

(3.2), (3.3) and by the dual theorem then P£Wq is the maximum value 

of the functional for the Type II problem defined in (3.4), (3.5). 

Suppose, therefore, that (ii) holds for some r, i.e., P'oc < 0. o x r 
Let 

' ̂  o io- = — cf) 
(3.17) 

where <j> is chosen so that 

( i ' b ^ y , , * ) (3.18) 
The value of the functional (3.4) associated with the point w is 

R>'ur * - cf> PoV. ^ ?. (3a9) 

Now if Pj «rr ̂  0 for all j, then 

for any <f>y 0, i.e., w satisfies (3.18) for arbitrarily large positive <j6 . 
In (3.19), therefore, the functional P^w may be made arbitrarily large 
contrary to assumption (l). 



Thus for some j, PJ % < 0. From (3.17) and (3.UJ) therefore it 
is necessary that 

6 ^ ~ % 1 -D/ r Pj ̂  o 

The largest permissible increase in the functional is obtained then 
if <j> is chosen as 

J r. w0 ~ q{ n i f - Minimum " J D ~ & H 
U ^ ' ^ 

If <f> takes on its minimum for j = q, then from (3.17) 

Moreover for i = 1, 2, . ., r-1, r+1, . ., m dc & a-! ur0 - cf Ca/c^) a - un - cc 

and thus w is an extreme point. By assumption (2) it also follows 
that <f> takes on its minimum for a unique value of j, i.e., j Z q . 

The vectors a p . a ^ , P a . ., a form the basis for V,, m m 
associated with the extreme point w. 

The algorithm for computing the vectors PQ, P in terms of this 
new basis is given by (3.16) if r replaces s and q replaces k. 

Recall that the points wQ, w were not needed explicitly in the 
analysis. It is sufficient to compute PjwQ and Pjw for j z 0, 1, . r 

The tableau arrangement is identical with that for the simplex 
method (Table I). The quantities in the last row (z. - c.) are now 
identified as P'.w - c . 

J j 
The procedure, however, is to select a negative element in the P 

o 
column. The negative entries in that row are divided into the corres-

ponding entries in the last row, and the minimum of these quotients 



is selected as $ . The algorithm (3.16) is then used to find the entries 
of the new tableau. 

I f Po*i < 0 for 11501,6 t h a n value of 1 then there is a certain 
freedom in choosing the vector to leave the basis. This will be dis-
cussed later in the structures example. 

The number of multiplications per iteration is identical with that 
for the simplex technique applied to the dual problem. 

C. The Bounded Variables Technique. - The problem stated in (3.1), 
(3.2), (3.7) can be transformed into a simplex problem by introducing 
non-negative variables x. such that 

Now if b is the vector in Vn whose jth component is b^ and if Q is a 

unit vector in ̂  with a 1 as the jth component and all others zero, 
we define the following vectors in V 

m n 

P I o 
P 

- P J = 

P. J 
S - i 

Q. r 
0 

j 
(j ~ 1> 2, . •, n) 

The bounded variables problem may then be written: 
Maximize w 

subject to J ' 

y Cr 1 

* 
This is a problem of Type I of size (m -f n) x (2n). 

Charnes and Lemke jjL2~] have shovm that this may be treated as an 
m x n problem, i.e., the inequalities, p . - b , may be suppressed. 



A brief outline of the computational procedure will be given here. The 
motivation and rigorous treatment can be found in [12] . 

Select first a basis, a., for Vm from among the P as before in the 
simplex method, and compute P - ^ for j I 0, 1, 2 „. Then the 

vector Pj corresponding to the a. and all of the Q. for j = 1, 2, . ., n 

constitute a basis for V Designate the basis L V by B m4"n nn-n J m+n 
Compute the quantities 

f. -- Po'< 

C i - C j -

The above information is then assembled in the following tableau: 

bj > bl bm bm+l • . . . 

N 

c. Ci C cm+l . . . . cn 

N t 

y 1 m cm+l . . . . cn 

N t B m Po P1 Pm m̂-fl . . . . 

°1 • 
• • 
c r 
• • • 
c m 

ai • 
• • 
a r 
• * • 
a m 

<Pl 
• 
• 

fr • 
• 

fm 

bl~fl 
• 
• • 

b -cp 
r Tr • 
• 

b Id) m 7m 

P ^ 1 
• • 

• • 
p{* r PV x 1 m r • • 
• • 1 

P'W P'ce 1 m m m 

pm+l°< 1 
• • 
• • 

P m ^ r 
• • 

• • p' 'cY . . . . P*", 

zo z(Pj z(P ) x m • 0 ^ ) z(Pn) 

B ^ nw-n x +»- 1-, - • . . • *•* 

TABLE II 

Bounded Variables Tableau 



The (-h, - )^sign in the last row under the P column indicates that 
both J . and Q. are in B ^ , while a single V(or -) means that P. 
(or Q ) is in the basis, B 

J m+n 
An optimum solution has been reached if both 

(a) z(P J 7/Oin each column having the sign - in the final entry 
and 

(b) z(P,) ̂  o in each column having the sign + in the final entry 
If either of the above are violated then the following procedure 

is used to increase z . 

Case I: z(Pk) > 0 when a + sign appears under this quantity. Then Qk 

to V * u j z f r r j , 

enters B . Choose m+n r 
o 

© * Minimum j (jC) YvL, ^ ^ j ^ ^ Q 

Mu) ^ 
If the minimum © occurs for i = q in (i) then P leaves B . If 

q m+n 
this minimum appears for i : q in (ii) then Q leaves the basis. 

HL 
Finally if Q I bk then Pk is removed. 

Case II: z(P ) < 0 when a - sign appears. Then \ enters B . Let K im-n 
f(c) R V U P W 

' fc. Og, ) 

8 = Minimum j^ij ^ 

If the minimum d occurs in (i) for i = q then P is replaced; if in 
HI 

(ii) for i =,q, then ̂  is replaced. Finally if 6= bR> then Qk is 
removed* 



To proceed to a new tableau three cases are distinguished: 
Case A: replaces Pfe. There is no change in Bm, but (l) the +• 
sign under Pk is changed to a (2) f . i s r e p l a e e d b y ft + ^ r ^ ) , 
and (3) ẑ  is replaced by z + b z(P ). 

o k k 
Case B: ? k replaces QJ<. There is no change in Bm, but (1) the - under 
Pk is changed to « t , ( 2) f . i s replaced by f - b^P-^), and 
(3) z_ is replaced by z - b z(P ) 

u o k k 
Case C: Either Pk or replaces either Pq or Q . Then P replaces 
q i n Bm« T h e tableau changes are: 

(1) Pk replaces Pq in the Bm column and c replaces c . 

{2) Both a -b and appear under Pfe. The P column has a + if Q has 4 q been replaced or a - if ? has left B q m+n 
(3) f. is replaced b7 f. - 0 (P^.) for i f q. ^ i s r e p l a c e d b y 

0 and b^ - Cf)̂  is replaced by bk - 0 . 

(4) The P̂. are expressed by the algorithm (3.16). 

This completes the new tableau and the process is iterated. 
The number of multiplications per iteration is (m H)(n + l) for 

Case C. 

It should be noted that the "modified" simplex and dual methods |j] 
may be used in all of the techniques outlined in this section. This 
modified technique has the advantage of controlling round-off errors 
without adding to the number of computations. 
3. Collapse Under Proportional Loading. 

The problem of finding the safety factor against collapse for pro-
portionally loaded frames has been formulated in (1.1) and (1.2). We 



turn now to the formulation of the same problem for pin-jointed trusses, 

which furnish simple examples for the purpose of the illustration of the 

use of linear programming methods. This is due to the fact that pin-

jointed trusses may have a single degree of redundancy while frames cannot. 

A. Equilibrium Equations and Yield Criteria. - Consider a plane 

truss with no external redundancies and composed of s bars and k joints. • 

If this truss is subjected to a finite number of concentrated loads at 

the joints, the equilibrium equations may be written1 
AS 

£ S ( - S V . (3.20) 

where 3. is the axial force in the jth bar considered positive for 

tensile forces, P± are the fixed loads, and A is the multiplier common 

to each load. The a ^ depend on the geometrical configuration of the 

truss and are direction cosines of the angles between the bars and the 

coordinate axes. If s > 2k - 3 then the truss is redundant and equa-

tions (3.20) admit a non-trivial solution. 

The yield conditions are 

~ L4 - ^ - V ] C ^ - s ^ ) (3.2!) 
where ^ (-Lj) is the fully plastic force in tension (compression). 

A value of \ for which there exist Ŝ  satisfying (3.20) and (3.21) 

is a statically admissible multiplier. By Theorem 1, therefore, the 
largest value of A for which a solution Sj exists, is the safety factor 
against collapse. 

B. Reduction to a Linear Programming: Form. - Without loss of 

generality, the first 2k - 3 bars are assumed to form a statically 

^ee for example, pp. 115-122 of [13] . 



determinate truss. Rewriting (3.20) 

4 " ̂  ~ L 
Now by the above assumption there exist1 elements such that 

Multiplying (3.22) by and summing over i 

(3.22) 

v- . ^ ^ 
* ~ ^ - 2_ z l \ 

Substituting this into (3.21), the yield conditions become 

~ L < 6 L i ? a \ + A £ c p & Vi I 

- L 5, IX = a.) 
I = ^ " ^ t ^ 

The unknowns are S ^ , . . , Sg, A which are s - 2k 4 4 in number. 
Now if the number of redundancies is r then s = 2k - 3 + r, so that 
the number of unknowns is r + 1. We are led, therefore, to consider 
the following vectors in a space of r +- 1 - dimensions V j— 9 r+1 zM-} 

V 

Z_ajiai,2k-2 
C - I 
2-k-l 

Zlajiai,2k-l 

T -1 - /-a.iiai <•= t 
2M.-3 

J l i s 

-1 
ZLajipi 

(j . 2k - 3) 

^ee Theorem III, p. 122 of [ 1 3 J . 



Mi 2k-2 

'2k-3 + J 
h 

(j = 1, . r) x = 
jr 

0 
s 
K 

Then the yield criteria become 
^ U q; 

Finally let 

and 

- « * L i 

' I Q ' 

' I J . 

C, • , X ^ J * ' ) 

P. ^ 
O 
0 L IJ The problem then reduces to maximizing 

^ = R ' * (3.23) 

subject to 

( r ^ y , ^ ) (3.24) 

This is a problem of Type II with the following special properties 
to tte Uw*»U« 

r 1 ' 1 ' - - ^ ) (3.25) 
P » - P 

and 

c, > O 
(3.26) 



It is now clear that a finite maximum value of A exists. Recall 
that such is not the case if and only if P ^ ^ 0 for all i where j r 
P<Wr < With°ut loss of generality assume that ar = Pr for r ̂  s. 
Then from (3.25) = -1 and the maximum value of the functional 
is therefore finite. 

Now only the first s of the P need be carried in the tableau. 
d 

The other entries can be computed from 
p' p ' 
* + ~ ' ~ * < l a.) (3.27) 

• jA) 
The entries on the right of (3.27) and (3,28) all appear in the first 
s columns. 

This problem may, therefore, be treated as a Type II problem of 
size (r+-l) x s. 

To formulate this as a Type I or simplex problem consider the dual 
problem to (3.23) and (3.24), i.e., to minimize 

where ' J 

and £ / i 9 ? P. 

Pi** 

This minimum problem was shown to be equivalent to the kinematic 
principle (Theorem 2) by Charnes and Greenberg fl4J. 

A significant difference in the simplex and dual methods is that 

in the former a certain freedom of choice may be available in the vectors 



entering the basis, while in the dual method a choice may exist in the 
vectors leaving the basis. A physical interpretation of the presence 
of certain vectors in the basis for the optimum solution will clarify 
the significance of this distinction. 

I f Pj f°r ^ " 2> * * s is in the basis at the final solution 
then the jth bar yields in tension. Similarly if P is present for 
j = s+1, . . , 2s then the (j - s)th bar is yielding in compression. 

In the simplex technique when a choice is available then it is 
best to bring in those vectors corresponding to bars which experience 
or intuition indicates should yield in the collapse solution. In the 
dual technique, of course, one removes vectors when it appears that 
the corresponding bars should not be yielding at collapse. 

The other major distinction between the two computational techni-
ques lies in the method of obtaining initial solutions (Appendix C). 

C. The Bounded Variables Problem. - To formulate the collapse 
problem as a bounded variables problem, return to equations (3.20) and 
(3.21) and let 5 

- \ 
Then (3.20) may be written 

4L+ ' 

L a * X. - M (3.29) 
r* ' * where I 

* 

0-i 



and Ay 

di = 21 ati L; 
r* 

The yield conditions (3.21) are 

0 - *x ~ L, 
Since \ is non-negative 

(3.30) 

° ~ - (3.31) 
where M is an arbitrarily large positive number. Since the problem 
is to maximize xs+1, if c. = 0 for j = 1, . . s ^d ^ = x> the 

problem defined in (3.29), (3.30), • (3.31) may be written to maximize 

A - L 
subject to i s 

I 

where 

P Z o 

P- - £ "i 1 

L 

iL. 
Li3' 

P J Z 

aU L; 

l2k-3,jLj 

Cj = 1, . s) 

S+-1 

-PI 

-p 2k-3 

V i 

M 

J — lj • • y S 

j = S1-1 



This is a problem of Type III and the tableau is (2k - 3) x (• -r 1). 

A physical interpretation of the presence of certain vectors in 
the basis is also possible in this case. If in the optimum solution 
Pj but not Q. is in the basis (only a + sign in the P. column), then 
the jth bar yields in tension. Correspondingly if Q. but not P. is in 

j 
the basis (only a - sign in the P column), then the jth bar yields in j 
compression. With these facts at hand the analyst may use his experi-
ence and intuition in selecting vectors to enter the basis when a 
choice is available. 

D. Comparison of Methods. - As a measure of the number of arith-
matical operations per iteration for the proportional loading problem, 
we may use the number of multiplications to be performed. 

For Type I and II formulations the number of multiplications in 
each iteration is (r + 2)(s^-l), while for a Type III formulation this 
number is ( s - r t l ) ( s t 2). The preference for formulation on the 
basis of number of arithmatical operations, therefore, depends on the 
relationship between s, the number of bars, and r, the number of redun-
dancies. 

A seeming disadvantage of the first two type formulations is the 
apparent need for inverting the a±. matrix in order to eliminate the 
equalities. In general, however, the are never found explicitly, 
and because of the special nature of the equilibrium equations the 
solution for the redundant forces in terms of the non-redundant ones is 
usually not difficult. 
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E« Frames and Beams. - For frames and beams where axial force 

effects are assumed negligible a parallel discussion can be given. 

If the number of beams in the frame is b; the number of joints, v; 

plications for a Type I or II formulation is (3b - 3v + 2)x(2b+^t- l). 

For a Type III formulation this number is (3v - b 4- X +- l)x(2b 2). 

If axial forces are to be considered, it is necessary to introduce 

a linearized yield criterion. A convenient choice which offers a 

good approximation is 

This has already been discussed in Section 4, Chapter II where bounds 

were found for the safety factor. Here a technique for determining the 

exact safety factor is briefly outlined. 

The equilibrium equations are first solved for the non-redundant 

moments and forces in terms of a set of redundant moments and forces. 

Introducing these into the yield conditions, a Type II problem results. 

This may be solved by the techniques in Section 2, Parts A and B of this 

chapter. 

Because of the nature of the yield conditions it is not possible to 

reduce this problem to a bounded variables problem (Type III). 

and the number of loads not at joints, £ ; then the number of multi-
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Chapter IV 

EXAMPLES OF LINEAR PROGRAMMING METHODS 

To illustrate and compare the three methods of solution of 

linear programming problems described in Chapter III as applied to 

structural collapse problems, we consider a simple example and solve 

it by the three methods. 

Consider the once redundant truss in Figure 7 loaded with a single 

concentrated force as shown. The members are numbered as indicated, 

and the equilibrium equations (3*20) may be written 

~ - S
 5
 - XX-

- o 
^ * 0 

S, * ^ " ° 

+ ^ 5 t = ° 

The fully plastic forces in tension and compression are taken to be 

the same and equal to N^. The yield criteria (3.21) become then 

I S J ^ N , G-bK-A) 

Now letting x1 Z S6/Np and x2 = Xb/Np and solving the equilibrium 

equations for S-^ S2, . . ., S^ in terms of these, the yield criteria 

may be written 
--f- x, : * U & I 

1 - 4 x. | x, i ^ 

K x. I * 



4 

FIGURE 7 

A Once Redundant Truss 
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x, + x ^ l - I 

u , - f U i 

U , I * I 

The safety factor against collapse is the largest value of X2Np/b 

consistent with the above inequalities. 

Define 13 vectors in a two-dimensional space as 

-3/5 \ f -4/5 
V -p? = ( 3A 

P 3 = - P 9 r ( P4 = -P10 = ^-4/5 ̂  

P5 = "Pll Z ( 1 \ P6 = "p12 " 

The problem in vector notation is then to maximize x^ = P^x subject to 
"I . 1 ' S I ' A S 
Pj 'x - » Q = (4.1) 

The equation P*x I 1 defines a line in two-space for each j. The 
vector P. is normal to this line and points into the half-space for j 
which the corresponding inequality is violated. All of the lines de-

fined by equality in (4.1) are shown in Figure 8. The set of points 

A- for which all of (4.1) are satisfied is the parallelogram ABCD, 

and the maximum value of x2 is obtained at the point D (l, 8/5). 
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FIGURE 8 

Graphic Solution of Truss Problem 
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The safety factor is then ^ 
. 8 (Hp 
A = ^ Jr 

An analytic solution is obtained by the dual method (Section 2B, 

Chapter III), Let v / 

be the initial basis for the space. This is not an extreme point 

solution of A . but is used here to find such an extreme point solution 

(Appendix C). The initial tableau appears in Table IIIA. 

Since 2 > 0> 2 i s chosen to b e T h i s multiplys the e2 

row by -1. Now choose the minimumoover j of 

P ^ ^ P/^ o 

+ ^ P/^ > o Pi 
This occurs for j = 5 and is 4/5. Since °r2 > °> P n replaces e2 

in the basis. 

The result is Table IIIB. The process is iterated and C~1 is 

chosen to be -1 after which P6 replaces e r Table IIIC represents the 

final solution. 

The maximum value of x^ 8/5, appears in the PQ column and the z(P^) 

row. Thus A I 8Np/5b. The presence of P6 and P n in the basis indi-

cates that bar 6 yields in tension and bar 5 in compression, i.e., S^ = -Np, 

S^ : N , The other axial forces are read off from the last row since 

Thus S1 z 3Np/5, S2 = -4N/5, S3 - -3Np/5, S^ = 4Np/5. 

The dual to this problem is a simplex problem and the same initial 

tableau (Table IIIA) may be used if the vectors e1, e2 are given large 



— ^ 1 1 1 1 1 1 

1 ai Po Pi P2 P3 
P

4 
P

5 
p

6 

0 ei 0 -3/5 -4/5 -3/5 -4/5 1 1 

0 ©2 1 3/4 0 0 1 -5/4 0 

Z(Pj) 0 -1 -1 -1 -1 -1 -1 

/1\ 
1 
1 

C

J 
— * 1 1 1 1 1 1 

\ ai Po Pi P2 P3 
p

5 
P

6 

0 ©1 4/5 0 -4/5 -3/5 0 0 1 

1 Pll 4/5 3/5 0 0 4/5 -1 0 

z <
P j
) 4/5 -2/5 -1 -1 -1/5 -2 -1 

A 
1 
1 

CJ 1 1 1 1 1 1 

ai Po Pi P2 P3 
P

4 
p

5 
p

6 

1 
p

6 4/5 0 -4/5 -3/5 0 0 1 

1 Pn 4/5 3/5 0 0 4/5 •1 0 

Z (Pj) 8/5 -2/5 -9/5 -8/5 -1/5 -2 0 

Table III 

Dual Method Solution 



69 

positive weights, M. This changes the last row, z(Pj) only. Now many 

vectors, i.e. those for which z(Pj) ? 0, may enter the basis. P^ is 

chosen on an intuitive basis and thus e leaves the basis. The re-

sulting tableau is shown in Table IVA. P then replaces e9 and Table IVB 
4 

results. Finally P^ replaces P^ and the final tableau will be identical 

with Table IIIC. 

Notice that the solution in Table IVA corresponds to the point 

(1, M) in Figure 8 and the solution in Table IVB to the point G(l, 9/5) 

in that figure. 

It should also be noted that J, H and all other intersections of 

the lines lying above D are feasible solutions to the above simplex 

problem. 

Finally, to formulate the problem as a bounded variables problem 
(Type III), let w. = 1 +- (S./N ) for j = 1, 2, . ., 6 and let 

J J p 

WY = A B/Np. The equilibrium equations become 
Lj t + ujf. + ?/<T 

uj-^ + ^ u/t = ̂ /s-

+ ^ " Vs-

+ ^ - 'ts-

ur3 + lji - ?/s-

And the yield criteria are 

o ± • ^ x ' (c * \ .. v C ) 

To this we add 

where M is an arbitrarily large positive number. 



c 

1 

7> 1 1 1 I 1 1 c 

1 V 
Po Pi P2 P3 p4 P5 

p

6 

1 
p

6 0 -3/5 -4/5 -3/5 -4/5 1 1 

M ®2 1 3/4 0 0 1 -5/4 0 

z(Pj) M 
3M/4 y 

-3/5 > -9/5 -a/5 M - 9/! 5 -5M/4 0 

As J 
1 

1 
** 1 1 I 1 1 1 

r H Po Pi P2 P3 P4 p5 P6 

1 p6 4/5 0 -4/5 -3/5 0 0 1 

1 P4 1 3/4 0 0 1 -5/4 0 

z (Pj) 9/5 -1/4 -9/5 -a/5 0 -9/4 0 

A 

Table IV 

Simplex Method Solution 
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To find an initial basis, it is necessary to find a linearly in-

dependent set of column vectors defined by the matrix of the equilibrium 

equations. Using unit vectors e-,, , ,, e in V with large negative x 5 
weights, -N, these column vectors are expressed in Table VA. In one 

iteration e1 is replaced by P , e^ by P^, e^ by P^ and e^ by Py 

Table VB shows the result. Then P2 replaces e^. 

This then leads to the initial bounded variables solution in 

Table VIA. The values in the ̂ column are values of v., i.e., 

wx r 8/5, w2 = 1/5, w3 = 2/5, w4 = 9/5, w7 = 8/5. Since a - appears 

under P^ and a i-under P6 then S 1 - 3Np/5, S2 = -4Np/5, S3 = -3Np/5, 

S4 z 4Np/5, S5 = -Np, S6 = Np and K Z SN^b. 
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0 0 0 0 0 0 1 r 0 0 0 0 0 0 1 

> f ai Po Pi P2 P3 P5 p6 P7 
-N e1 9/5 1 4/5 © 
-N ©2 9/5 1 4/5 
-N ©3 9/5 ® 4/5 
-N e4 8/5 ® 3/5 

-N e5 8/5 ® 3/5 

Z (Pj) -N -2N -N -N _ 11N 7N -N Z (Pj) > -N -2N -N -N 
5 5 

-N 

i A i 

> 0 0 0 0 0 0 1 

j al Po Pi p2 p3 P4 p5 p6 P7 
1 P7 9/5 1 4/5 1 

-N 9/5 ® 4/5 

0 P4 9/5 1 4/5 

0 Pi 8/5 1 3/5 

0 P3 8/5 1 3/5 

Z (pp * 0 -N + 1 0 0 4/5 -4N/5 0 

i B 

Table V 

Initial Solution to Bounded Variable Problem 
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b J — * 2 2 2 2 2 © M 

c f- 0 0 0 0 0 0 1 

x 
j 

Bm Pi P2 P3 P4 P5 p6 P7 
1 P7 0 M 4/5 -4/5 1 
0 P8 9/5 1/5 1 4/5 
0 p4 9/5 1/5 1 4/5 
0 Pi 8/5 2/5 1 • 3/5 
0 Ps 8/5 2/5 1 3/5 
Z (Rj) t> 0 0 0 0 4/5 (4/5) 0 

Bm + n > - - - - -

bj T 2 2 2 2 2 2 M 

C 0 0 0 0 0 0 1 C j 
Bm 

r1 0 0 0 0 0 0 1 

\ 

j 
Bm 

Po b - Pi P2 
p3 P4 P5 p6 P7 

1 P7 3/5 M -^5 4/5 -4/5 1 

0 P2 1/5 9/5 1 4/5 
0 P4 9/5 1/5 1 4/5 

0 Pi 8/5 2/5 1 3/5 

0 P3 2/5 8/5 1 3/5 

Z (Pj) * ! 0 ,0 0 0 4/5 -4/5 0 

Bm + n - +> - +> - S - - + 

Table VI. 

Bounded Variables Solution 
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Appendix A 

THE DETERMINATION OF COMPLETE SETS OF BASIC MECHANISMS FOR FRAMES 

A set of basic mechanisms is called complete if the equilibrium 

equations associated with the set form a complete, linearly independent 

set of equilibrium equations. For quadrilateral or rectangular frames 

it will be shown that the set B defined in Section 1, Chapter II is a 

complete set of basic mechanisms. For more general frames a definition 

of basic mechanisms which leads to a complete set will be given. 

For quadrilateral frames the equilibrium equations associated 

with the set B of basic mechanisms form a complete, linearly inde-

pendent set. 

It will be shown first that the equations are linearly independent. 

Every beam mechanism equation contains a bending moment at a cross-

section not at a joint. Moreover this bending moment does not appear 

in any other beam equation nor in the equilibrium equation for any 

joint or frame mechanism. Each beam mechanism equation is, therefore, 

independent of all others of the set. The equation for a joint mechan-

ism contains at least one bending moment which does not appear in any 

frame mechanism since side-sway can occur in only one direction at each 

joint. Since the moments appearing in the joint equations are mutually 

exclusive, these equations are independent of all others. 

Finally, the moments appearing in each frame mechanism equation 

are mutually exclusive. It follows that all of the equilibrium equations 

are linearly independent. 

To show that these equations form a complete set it is necessary 
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to show there are exactly n - r basic mechanisms where there are n 
critical cross-sections and r redundancies in the frame (Chapter I)# 

Let F, J, B be the number of frame, joint, and beam mechanisms 
respectively. It must be shown that F + B + J - n - r . We let b 
represent the number of members in the frame; v, the number of joints 
or vertices; s, the number of supports; and f, the number of closed 
quadrilaterals in the frame. 

Now the number of frame mechanisms, F, can be shown to be 

F = 1ar-ir (a.l) 

Starting with the simple frame 

F r 1, v = 2, b = 3, f = 0 so the relationship is valid. Now all 

quadrilateral frames can be constructed from this simple frame by 

adding a sequence of either closed quadrilaterals and/or open 

quadrilaterals plus supports. During any addition in the sequence, 

bars can be appended to the existing frame only at existing joints, i.e., 

beams may be joined only at their end points. 

If a closed face is added then the increase in the number of 

joints, Av, is either 1 or 2, If Av = 1, then the increase in frame 

mechanisms is A f = 0; and if Av = 2, A F = 1. On the other hand, 

for the addition of an open face and support, Av is 0 or 1. In the 

first case AF = -1 and in the latter, Af = 0. In every case then 
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A F = A A T - \ 

Now the number of bars added, Ab, is related to Av by 
= A A T + I 

Thus 
A F = 2_ A*r -AX-

and hence the number of frame mechanisms is given by (a.l) for any 
rectangular frame. 

Now, from the definitions, J = v and B r \ vrhere % is the number 

of loads not at joints. The total number of basic mechanisms is 

therefore 

A formula due to Euler[l5] states that for a set of closed 

polygons lying in a plane and joined along their edges; the vertices, 

V; edges, E; and faces, F; are related by 
V - E- + F - I 

Quadrilateral frames are just such a collection of polygons with 

some of the edges removed and supports placed at the free ends of 

beams. Now removing an edge also removes a face, so counting supports 

as vertices the Euler formula remains valid. In the notation we have 

used for frames 
/L AT - A + i - 1 (a.3) 

Thus > 
3 A T - 1) ( U I - ^ - ^ ) 

and (a.2) becomes \ 
F + 6 + J = ( W l ) -

The number of critical cross-sections is 
XJtr- + JL (a,4) 



and the number of redundancies is 

Therefore, 
F + B + J - "H-A, 

This completes the proof of the statement. 

A complete set of basic mechanisms can be obtained for more 

general frames consisting of any arrangement of straight beams rigidly 

joined as follows. 

For general frames, joint and beam mechanisms are defined exactly 

as they are for quadrilateral frames (Section 1, Chapter II). There 

are v % such mechanisms where v is the number of joints and % the 

number of loads not at joints. A total of n - r independent mechanisms 

are needed to form a complete set. It follows from (a.3), (a.4), (a.5) 

then that 2v - b independent mechanisms in addition to the joint and 

beam mechanisms are required. 

For general frames the set of frame mechanisms is defined as 

2v - b independent mechanisms which are also independent of all joint 

and beam mechanisms. These can be found by considering mechanisms for 

which hinges appear only at ends of beams. A necessary and sufficient 

condition that they be independent of each other is that none may be 

obtained from the others by a rotation of joints. 

For quadrilateral frames, of course, the set of frame mechanisms 

Refined by Neal and Symonds satisfies this definition as well. 
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Appendix B 

PROOF OF THE FUNDAMENTAL THEOREMS 

For a beam cross-section which yields under the action of a 

bending moment and an axial force; the flow vector is defined as a 

two-dimensional vector whose first component is proportional to the 

relative axial velocity of the adjacent cross-sections and whose 

second component is in the same proportion to the relative rotational 

velocity of the beam segments adjacent to that cross-section. 

An essential requirement for the theorems of limit analysis to 

apply is that the flow vector be orthogonal to the yield curve [Jl6] • 

For a yield curve defined by (2.36) then the relative velocity, 

, and the relative rotational velocity, at a yielding cross-

section must satisfy 
\tt i M . 

N f i (b.i) 

Notice that if a cross section yields and either N^ = 0 or • 0, 

the flow vector is arbitrary to within an angle TT/2, i.e., at a point 

on the yield curve where the tangent is discontinuous the flow vector 

is not uniquely determined. However for N^ = 0 

and for = 0 

U . U 3 * 1 * 1 
THEOREM: A statically admissible multiplier for Problem 1 is less 

than or equal to the safety factor for that problem. 

PROOF: Let A be the safety factor against collapse and let N^ 
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be the bending moments and axial forces in equilibrium -with the loads 

A b.. If the collapse mechanism is defined by velocities, v , rela-3 j 
tive rotational velocities, and relative axial velocities, , 

3 j 
then from the equation of virtual work 

h j J - A 
i ~ i c = i 

and 

hi > o ( b # 2 ) 
c -i 

Let A be a statically admissible multiplier and let Mj, be moments 

and forces in equilibrium with loads A'b..* Then again from the prin-j 
ciple of virtual work 

Subtracting the two virtual work equations there results 

(b.3) 
L ~ I 

Now since M!, NJ are statically admissible 

m + m , m + m M <«>.*> 

Mfi NPi ~ M fi N f; 
for each i, 

•+ = i M a tea + i m . h s j 

Three cases arise: (i) £ 0, N± ± 0; (ii) % / 0, % = 0; and 

(iii) M. = 0, N± i 0, 
For case (i) ^ 

l U - ^ i e a (b.5) 



m 

and 

Now from equation (b.5) 

C Ot + IX. 0t - (_ |6i| He + jy-j M M, 
Npc 

(6, 

M / U ^ W I J i m 
Each term in the sum on the right of (b.3) is then greater than 
equal to 

O ^ U ^ I i t l M l M / U ^ ( M / l ) ] (6. 

or 

But from (b.4), the term in equare brackets is non-negative and, there-
fore, the corresponding term in the sum in (b.3) is also non-negative. 

For case (ii) 

U J * I Gil 

and 

Thus 

Np; 

^ + N J c - M p j e d 

(b.6) 

and from (b.6) 

I M . V 

Thus each term in the sum on the right of (b,3) is greater than or equal 
to 



Nfi 

From (b.4) the term in square brackets is non-negative and thus so 
is the corresponding term in (b.3). 

Finally for case (iii) 

and 

iNil - N p ; 

Thus 

and from (b.7) 

- ( l ^ W l v l N ^ U c I 

Thus each term in the sum on the right of (b.3) is greater than or 
equal to 

From (b.4) the term in square brackets is non-negative and thus so is 
the corresponding term in (b.3). 

Therefore, every term in the sum on the right of (b.3) is non-

negative. Combining this result with (b.2), it follows that 

A - A ' o 

This completes the proof of the theorem. 
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THEOREM: A kinematically sufficient multiplier for Problem 1 is greater 

than or equal to the safety factor against collapse for that problem. 

PROOF: Consider a mechanism defined by velocities, v*; rotational 
j 

velocities, B*; and axial velocities, <$*; such that 
J J 

S * ̂  Np^ r (b.7) 
The kinematically sufficient multiplier associated with this mechanism is 

I n ; i e f i + In;|s?l 

r ii 
where M*, N* are a system of moments and forces compatible with the 

J J 

hinge distribution. 

Now if \ is the safety factor then there exist moments and forces, 
M., N , in equilibrium with loads A b. such that 

at the yield hinges in the given mechanism. Moreover, 

p v M t p - x f v ; 
from the principle of virtual work. 

We will assume now that only isolated hinges appear in the given 

mechanism, i.e., there are no yield bars present. An argument similar 

to the one below can be given for the excluded case. 

The last equation given above can be written 
X - f n 6,- + "lSL 

and using (b.7) jr. <i ̂  

A 14 

E ^ 
\ -» 



S3 

£ 
Then from (b.8) 

IN t 
X - ^ — I L ^ I I Np, j ' 

and using (b.7) again 

f 

A - z i , ^ — " x 

This completes the proof. 

I 



Appendix C 

INITIAL SOLUTIONS TO LINEAR PROGRAMMING PROBLEMS 

We present here methods for obtaining initial feasible solutions 

to Type I and Type II linear programming problems. For Type III pro-

blems it is sufficient to find a basis for the vector space of the 

equalities (3.2). The method developed for Type I produces such a 
basis. 

T.ype I Problems. 

Consider the following modification1 of the Type I problem for-

mulated in (3.1), (3.2), (3.3): To minimize 

- t f ^ ^ l ^ n ( c a ) 

subject to 

P, - L f i Pj + I e t (c.2) 

where e± is a unit vector with plus or minus one as the ith component 

depending on whether the ith component of Pq is positive or negative, 

and where M is an arbitrarily large positive number. 

The solution to this problem is identical with the one phrased 
in (3.1), (3.2), (3.3) since the minimum will occur for o . = 0 for 
all i. 

A basis for this problem, however, is readily available. Indeed, 

the basis a^ may be taken to be 

^This modification was first suggested by Dantzig [9] , see 
footnote to page 340. 



It follows from the definitions of e. and that 
1 1 

~ tji-j VK) 

The entries of the tableau (Table I) are, therefore, easily computed. 
The vectors ei need not be carried in the tableau since if an e. i 

leaves the basis it cannot return because it carries a large positive 

weight, M. It will require exactly m iterations in order to obtain a 

basis comprised entirely of vectors chosen from among the P . However. j 
in many cases these iterations are trivial and require a minimum of 
calculations. 

As mentioned previously a basis â^ for Vm in a Type III problem 
can be obtained in the same way. The basis for V is then Q. for mtn j 
j = 1, 2, . . ., n and = ( Q* j. 

2. Type II Problems. 

We now develop a method for finding an initial extreme point solution 
to Type II problems. 

If any point w satisfying (3.5) can be found then a simple change 

of variables will translate this point to the origin. Starting from 

the origin, the following method then produces an extreme point solution 

by use of the dual method applied to a modified problem. 

The Type II problem arising from the simple proportional loading 

collapse problem is given by (3.23) and (3.24). From (3.26), c- ̂  0 j 
and this implies that x = 0 is a solution to (3.24). 

Consider now the modified"*" problem to maximize P^x subject to 

T̂he author is indebted to Dr. C. E. Lemke for suggesting this 
modification. 
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( I = F, X, VM_) (c.5) 

(c.6) 

where e. is a unit vector in Vm with H-1 as the ith component and crc 
is either equal to + 1 or -1 and is chosen according to the criteria 
described below. 

Notice that the origin is an extreme point of the modified problem 
regardless of the choice of sign for cr.. The basis vectors associated 
with this point are e± for i = 1, 2, . . ., m. 

The set of points x satisfying (c.4) is designated by A . The 

set satisfying both (c.4) and (c.5) is A*. Note that (c.5) is just a 

restriction to some orthant of Vm once the signs of CT. have been chosen. 

In order that the solution to the modified problem coincide with the 

original problem, it is necessary and sufficient that the C~± be chosen 

in (c.5) so that the point x in A for which P^x takes on its maximum 

also is contained in A * , i.e., the correct orthant of Vm must be chosen. 

The advantage of the modified problem is, of course, that x « 0 is 

an extreme point solution. Starting from this solution and using the 

dual method a value of CT. for some i is chosen at each iteration, 

and the corresponding e. leaves the basis in favor of some P . 
1 j 

The procedure for accomplishing this is as follows: Let the basis 

at some stage be e^ . . es, Pg+1, where the signs of cr 

. . ., crm have already been properly chosen. Let the dual vectors to 

07 e/ x ^ o 



this basis be i.e. j > • j 

, c (<> v 

Then ^ ^ 
P0 « r C P . ' ^ J e , + L C P o V O ^ 

«- I 
-V 

(c.8) 

and if xQ is the extreme point of A corresponding to this basis then 
by definition 

X 0 « 0 G = i, i, . . . , ̂  ) 

p.' X o - C t * ) 
Let 

X - V . ~ ( ̂  ^ ^ ^ 
then 

A* 

('«-» Ĉ I ft 6 0 

Now from (c,7) 

O Cc = /,..., <1-1 tfl,..., ̂  ) 

and using (c.8) 
Pi' ot^ = 0 (i I, ... , 

The last sum is P^ xQ so 

Po( K ^ Fo 4 (Po ' a ^ X ) 
Three cases arise: (i) P£cXq<0; (ii) P ^ q > 0 ; (iii) P ^ = o. 

For case (i) if e^ x > 0 then P^x <P(^x0. It follows that any x 

yielding a larger value of the functional than cannot lie in the 
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half-space ejx >0, but must satisfy 

+ e ^ x ^ o 
Thus eq is removed from the basis and we pick cr s +-1. 

4. 
For case (ii) if e^x < 0 then again P^x < P^xQ. Thus similarly 

it is necessary that 

Again e is removed from the basis but cr is chosen to be -1. 
q 

Finally for case (iii), P^x = P^xQ and the choice of c3~q is deferred 
for the present. 

If at some stage of the computations, case (iii) holds for all ei 
remaining in the basis then the choice of <J~± for those ei is arbitrary. 

The usual algorithm (3.16) is used to proceed to a new tableau. 

In this way in m iterations all of the e± are eliminated from the 

basis and the appropriate values of cr equal to +lor-l are chosen. 
Notice that the "modified" simplex or dual techniques for control 

of round-off error £5] are readily adaptable to the methods of this 
appendix. 
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