4-54-Im

CARNEGIE INSTITUTE oF TECHNOLOGY

COLLEGE OF ENGINEERING AND SCIENCE

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE oF. DOCTOR _OF PHILOSOPHY =~

PRESENTED BY... WILLIAM S. DORN

DEPARTMENT OF. MATHEMATICS

THESIS sUPERVIsOR.. H. _J. GREENBERG

ACCEPTED BY

DEPARTMENT HEAD

APPROVED BY THE DEAN OF GRADUATE STUDIES

EF welo

MAY 17, 1955

DATE

ﬂ('-a—(( 1 Iff,/"‘

DEAN

DATE



TABLE OF CONTENTS

Acknowledgments 3
Introduction 2

Chapter I. Fundamental Problems and Theorems of

Iimit Analysis 3

Chapter II. Special Collapse Problems and Solutions 8
1. The Neal-Symonds Mechanism Technique 8

2, Plastic Superposition 15

3. A Minimax Problem 19

L. The Effect of Axial Forces in Frames 23

5. Examples 32
Chapter III, Linear Programming Methods in Limit Analysis 41
1. Types of Linear Programming Problems 41

2. Computational Techniques L2

3. Collapse Under Proportional Loading 54
Chapter IV. Examples of Linear Programming Methods 63

Appendix A. The Determination of Complete Sets of

Basic Mechanisms 74
Appendix B, Proof of the Fundamental Theorems 78
Appendix C. Initial Solutions to Linear Programming Problems 8.4

Bibliography 89

) CARNEGIE INSTITUTE i
OF TECHNOLOGY LIBRA







1.
2.
3.
ke
5
6.
7.

LIST OF FIGURES

Types of Basic Mechanisms
Yield Curves

Plastic Superposition of Forces
A Minimax Problem

Application of Theorem 5

Axial Force Effects in Frames
A Once Redundant Truss

Graphic Solution of Truss Problem

iv

1C
25
33
35
37
39
A
66







INTRODUCTION

This paper is concerned with the solution of various problems in
the plastic collapse of plane structures,

In Chapter I the basic problems and theorems of limit analysis
are reviewed and formulated in a convenient notation.

A pair of superposition principles are developed for limit analysis
of structures in Chapter II. These principles lead to upper and lower
bounds to the safety factor for a supefimposed load system in terms of
bounds to the safety factors for the individual loads. In addition
several special problems are posed and solved in the second chapter.
These include a minimax problem in which a safety factor which is valid
for all load systems in a given range is found. Finally an iterative
method is given for obtaining bounds to the safety factor for the
proportional loading of frames when axial forces as well as bending
moments are to be considered. Examples are included at the end of
the chapter.

Chapter III reviews three basic methods of solution for linear
programming problems. The problem of the plastic collapse of structures
is reduced to forms suitable for the application of these three methods.
A collapse problem is solved by the several linear programming methods
in Chapter IV for demonstration and comparison.

A method for obtaining an initial feasible solution for Lemke's
dual method of solving the linear programming problem is given in
Appendix C., This method is analogous to a procedure developed by

Dantzig for the simplex method.




Chapter I
FUNDAMENTAL PROBLEMS AND THEOREMS OF LIMIT ANALYSIS

The problems considered in this paper arise in the study of the
plastic collapse of statically indeterminate plane structures, which
are subjected to concentrated loads acting in the plane of the struc-
ture. These structures may be conveniently divided into three types:
pin-jointed trusses, continuous beams, and frames,

Throughout, it will be assumed that all of the structural members
are composed of an elastic—perfectly plastic material such as mild
structural steel. For a member in pure bending this implies that the
bending moment at any cross-section must lie between certain maximum
and minimum valués, the fully plastic moments., At a beam cross-section
where the bending moment equals the fully plastic moment a yield hinge
develops, and the beam segments adjacent to that cross-section are free
to rotate about that point under constant moment.

Similarly for a bar in pure tension or compression the axial force
is bounded by the fully plastic forces. A bar in which the axial force
equals the fully plastic force (a yield bar) can undergo continuing
change in length under constant force.

Since both bending moments and axial forces may be present in beams
and frames, the yield condition for these structures in general involves
both of these quantities. A more complete discussion of this situation
is given in Section 4, Chapter II.

Most of the succeeding analysis, however, will deal specifically

with frames in which the axial forces are assumed to be megligible

compared with the bending moments. The yield criterion for pure



bending may, therefore, be assumed. The remarks regarding such frames
also apply to continuous beams, while a parallel discussion can be
given for trusses with axial forces replacing bending moments and yield
bars replacing yield hinges.

If in the course of a loading program a yield hinge develops at
some point in a statically indeterminate frame, then the degree of re-
dundancy of the frame is reduced by one. The appearance of a sufficient
number of yield hinges, therefore, transforms the frame or some part of
it into a mechanism, i.e., the structure is no longer rigid. When this
phenomenon occurs, the frame is said to collapse,

For a given redundant frame with the fully plastic moments, i.e.,
bounds on the bending moments, specified at each cross-section and with
a finite number éf given loads applied at specified points; the basie
problem is to determine the largest number by which all of the given
loads may be multiplied before the structure will collapse. This type
of loading program in which load ratios are maintained as the loads
increase is designated proportional loading, and the maximum value of
the multiplier is termed the safety factor against collapse.

Any value of the multiplier, for which there exists a bending
moment distribution which nowhere exceeds the fully plastic moments
and which together with the loads corresponding to this multiplier
satisfies equilibrium everywhere, is called a statically admissible
multiplier,

On the other hand, through the equation of virtual work, there
exists a value of the multiplier corresponding to each mode of collapse
of the structure in the form of a kinematically possible mechanism. Such

a multiplier is called a kinematically sufficient multiplier,



The two fundamental theorems in the limit analysis of structures are:
THEOREM 1: The safety factor against collapse is the largest statically
admissible multiplier,

THEOREM 2: The safety factor against collapse is the sﬁallest kine-
matically sufficient multiplier,

There theorems were first stated and proved for frames by

Greenberg and Prager [1]1.

The basic problem of determining the safety factor against collapse
may, therefore, be formulated and solved in two ways.

It will be assumed for convenience of notation that the fully
plastic moments are constant along each individual member, and that the
loads are all transverse, i.e., perpendicular to the beam to which they
are applied. .

Under these assumptions yield hinges can develop only at discrete
cross-sections in the frame, i.e., where the bending moment has a turn-
ing point. Since only concentraied loads are applied to the frame,
these critical cross-sections occur under loads and at the ends of
members, The critical cross-sections may, therefore, be enumerated,

The bending moment at the ith critical cross-section is l{i, and
Hpi >0 and 'Ml'ai < 0 are the fully plastic moments in the two directions
of bending, Finally the appliad load at the ith cross-section is /\bi
(some of which may be zero).

The equations of equilibrium can be written as a system of linear
equations in the quantities M:l. and A by

lNumbers in square brackets refer to the bibliography at the end

of the discussion.
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where there are n critical cross-sections. If equations (1.1) are
linearly independent and if there n - m redundancies in the frame,
then (1.1) is a complete set of equilibrium equations in the sense
that all linear equilibrium relations between the bending moments
can be expressed as a linear combination of this set. The 3 45 hy
are constants which depend 'on the geometrical configuration of the
structure and loads.

The yield criteria take the form
Mg Sy Mo Getizym) (1.2)

Given a; 3? hik’ bk’ H'pi and l‘%i; the problem reduces in the one
case to finding the maximum value of A for which a solution Hj teo (1.1)
and (1.2) exists. This value of A is, by Theorem 1, the safety factor
against collapse.

To formulate the problem in terms of the minimum principle ex-
pressed by Theorem 2, it is necessary to determine the value of the
kinematically sufficient multiplier corresponding to every mechanism.
Let Vs be the linear velocity of the load Abj in a mechanism., Then
if 6 j represents the relative rotational velocity of the beam segments
adjacent to the jth cross-section and if the ej are kinematically com-
patible with the velocities Vys the virtual work equation for this

mechanism is

i i i {Mvs[‘e;\ +8,] + M;"j L8 ‘Gs]) il 2 ke vy (1.3)
i |

&'



and it is required that

ey L Gty (1.4)

The value of A in (1.3) is then a kinematically sufficient multiplier
and hence an upper bound for the actual safety factor. By Theorem 2

then the safety factor against collapse is the minimum of
T2 {Mp; Loyl 48,1 + Mpy (1g)-6,1}
320

szz‘ i"‘ N‘&' (1.5)

over all vy, eJ which represent mechanisms subject to (1.4).

It is important to note that in any assumed mechanism the
absolute magnitudes of GJ and v j are undetermined. Multiplying
both by the same arbitrary constant ﬂoes not alter the mechanism and
also yields the same multiplier. The contraint (1.4) is, therefore,

a matter of sign convention since v 5 Gj can always be multiplied by -1,

In cases where the mechanism has more than one degree of freedom,
even the relative velocities of the different loads ne;d not be uniquely
determined. In such cases the value of the multiplier may depend on
the ratios of the parameters representing the various degrees of free-
dom. This point will be discussed in more detail later,

In the above formulations the usual assumption has been made that
the deformations prior to collapse are so small, i.e., of the order'of
elastic deformations, that the equilibrium equations are not significantly

affected.
' Throughout what follows it will be assumed for convenience that the

cross-sections of the structural members are symmetric about the axis of

bending, This implies that H§ - Hpj for all j and the functional (1,5)
w
reduces to :

. (1.6)
Ly v
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Chapter II
SPECIAL COLLAPSE PROBLEMS AND SOLUTIONS
1. The Neal - Symonds Mechanism Technigue.

A simple and rapid means of determining the safety factor against
the collapse of plane frames which are not too complex is due to Neal
and Symonds E2, 3 h] o« We will discuss their method, termed the
"mechanism techniqﬁe" » in detail in this section, since it will be found
useful in the solution of various eollapse problems. In addition we
will attempt to make this technique more rigorous by supplying proofs
for certain heuristic arguments of the authors and we will extend the
analysis to more complicated types of frames,

The mechanism technique is based on the minimum principle, Clearly,
if the multipliers associated with all possible mechanisms could be
found, then the smallest of these would be the safety factor. Since
the virtual work 'equation yields the multiplier for any mechanism, it
remains only to devise a technique for determining all possible mechan-
isms., This is supplied by the Neal and Symonds analysis.

A. Rectangular Frames. - A frame is called rectangular if it is
constructed of rectangular bays or portals. The results and remarks
regarding these frames apply also to any frame consisting of quadri;-
lateral bays or portals.

For rectangular frames Neal and Symonds proposed the following
three types of "elementary" or "basic" mechanisms:

(a) Beam: implying yield hinges at the end points of a beam and

at some intermediate cross-section under a load (See Figure 1(a) ).



’

(b) Frame: implying motion of a panel or story (See Figure 1(b) ).

1

(e) Joint: implying rotation at a joint where two™ or more beams

unite (See Figures 1(c¢) and 1(d) ).

If a frame mechanism is assumed for each story and each cantilevered
section; a beam mechanism for each load not at a joint; and a joint
mechanism for each joint; then the authors state that every possible
mechanism is some combination of this set of basic mechanisms. Desig-
nate this set of basic mechanisms by B,

Because there are only a finite number of cross-sections where
yielding can occur for a frame under concentrated loads s it is usually
tacitly assumed that there are onl& a finite number of possible mechan-
isms, However, a mechanism requires specification of the relative
velocities, Vis of the cross-sections where loads are applied. It has
already been mentioned that when the mechanism has more than one degree
of freedoin, the relative velocities may be arbitrary and there may exist
an infinite set of allowable (vi 5 91) which are not simple multiples
of each other,

Two questions, therefore, arise regarding the Neal-Symonds proce-
dure for rectangular frames: (1) whether all mechanisms can be obtained
by combining the mechanisms of the set B, and (2) whether an infinite
number of mechanisms need be examined to determine the lowest multiplier,
In the following we shall attempt to clarify these points,

A mechanism for a given set of loads b, is defined by a set of

J
¥elocities, vi, and relative rotational velocities,H;, which are

11»;,9. authors originally proposed a Joint mechanism only for points
where three or more members are joined. The generalization here leads

to a more systematic treatment,






compatible and satisfy (1l.4)., The virtual work principle requires that »

LZ:: MO = A :‘Z b e (2.1)

where the Mi are any set of bending moments in equilibrium with,the
loads )\bi. Thus (2.1) is an equation of equilibrium and must be
satisfied by the actual bending moments at collapse.

Let m, designate the kth basic mechanism in the set B in some
order and let e be the corresponding equilibrium equation. Then if
(k) g (k)

vy j are the velocities and rotational velocities defining m .,

the equation ek can be written

w | 3
> M8 = A Lin (2.2)

The set of equilibrium equations (2.2) associated with the set
B of basic mechanisms forms a complete, linearly independent set.

A proof of this statement is given in Appendix A.

Now an arbitrary mechanism, m¥*, is defined by a compatible set of
veiocities and rotational velocities » V¥ and ef. The equilibrium
equation e¥* associated with m* is

2 M= A) bow (2.3)

Now since (2.2) are complete and linearly independent, e* can be written

as some linear combination of (2.2), ice.,

2 )., MBT ANl 4y biv™ (2.0)

R=1 =1 o m
Since (2.3) and (2.4) must be identical for all permissible Mi, it is

necessary that

x & (k) * (k)
O. ’RZaue; and N"cahiak"”i
T =

This implies that m* is a linear combination of the mk and resolves the




first question.
To clarify the second question consider the following theorem:
THEOREM 3: If collapse occurs for. a mechanism (v 3 S} j) then all

mechanisms (v¥*,0#) for which w
Ry Z L, A;; >0

with the same arrangement of hinges and such that sign 93. = sign 6*,

for all j, yield the same value of the multiplier.

PROOF: By Theorem 2 since collapse occurs for the mechanism v:j , O

J
the safety factor A is gives‘l by

Mpi 16
X £=Mei 8, (2.5)
Zt by ar;

Now the virtual work equation for the mechanism (v¥*, e*) may be written
J

ims }\ZL Ar (2,6)

where the Mj are any set of moments in equilibrium with the loads Ab 30

Since A is the safety factor and hence statically admissible, such a

set of moments exists., Indeed such a set is obtained by taking M M

g% 7pd
for 6‘- >0 and Mj uct -Mp 3 for 64- <0since the collapse solution satisfies
equilibrium everywhere, Substituting this set of Hj into (2.6)

w @ x n X
i 13 . = L N
'57; e, Mn Qs )‘; A (2.7)
Since sign O gt sign 63" by assumption,
¥ 19\ X
.= —4 :
6 =g |9
so (2.7) becomes
;Mmie\ AZI,» e
Now the multiplier, o s associated with the mechanism (v'a‘ 63) is by

the principle of virtual work

2" Mg 161
2 by

}*l

Ax -
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Comparing this with (2.8) it follows that
)\* 3 }\

If, therefore, one mechanism is considered for each possible
arrangement of yield hinges, the safety factor will be the smallest of
the multipliers computed for these mechanisms, There are only a finite
number of such mechanisms. They may be found by considering all combi-
nations of the m basic mechanisms of the set B taken any number at a

w
time., The total number of these combinations is g (":) where C;)
‘ g

denotes the number of combinations of m things taken k at a time,

Actually, all of these mechanisms need not be considered., If
n - m + 1 hinges appear, then the bending moments throughout the frame
are uniquely determined, Therefore, for a mode of collapse involving
more than n - m + 1 hinges the moment distribution and multiplier can
be determined from some mechanism where only n = m + 1 hinges occur,

It is, therefore, not necessary to consider any mechanisms involving
more than n = m + 1 hinges.

The number of combinations which must be tested can be reduced still
further, Neal and Symonds have stated and shown by example that only
those combinations of mechanisms for which a hinge is eliminated at
some cross-section need be considered, This is a generally valid prin-
ciple and may be stated and proved as follows. |
THEOREM 1.1: If two mechanisms, in which the rotational velocities at
ail common hinges are in the same sense, are combined in positive amounts;

lA similar theorem proved by R.M, Haythornthwaite in the discussion
of fh] applies only to combinations of quite restricted types of mechan-
isms.

TITE
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then the multiplier associated with the combined mechanism cannot be
less than the smaller of the multipliers associated with the original
mechanisms,
PROOF: Let the multipliers associated with the original mechanisms be
}\' - Z. Mf & B ‘
(2.9)
b Ly

and i

}\“ g Z_ NN |6;'l

= _‘i (2.10)

Z: by o
4

where

¢ )

Since the rotational velocities are all in the same sense

R 0 v Bk @ (2.11)

Now a positive combination of the two mechanisms is defined by relative
velocities 9‘-'1 4 eJ" and ”'i'+3%' where 370. The multiplier asso-
ciated with the combined mesha.nism is

R SRR
21,,(M+% i

From (2,11) it follows that!
16 +46,) = 161 + ¢ 1§/1
and thus ‘ Z!;Mpale\"’?ZMH |

it ZL M '~ % 2 _ﬂ /v by
Now, assuming without ‘loss of generality that N <A » then from (2,9)

and (2.10) the last equation ‘yields
AN <Ac=)\
B, General Frames, - The mechanism technique may also be applied
to more general frames which are composed of straight members., The

concept of beam and joint mechanisms carries over immediately and such
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mechanisms are identified as before. The idea of a frame mechanism
requires generalization and the identification of such mechanisms is
no longer obvious since the structure may no longer consist of simple
bays and portals,

In order to carry out the mechanism technique it is necessary to
find n - r mechanisms whose corresponding equilibrium equations are
linearly independent. The particular choice of basic mechanisms for
rectangular frames was mbrely a matter of convenience. If the beam and
Jjoint mechanisms are retained as basic mechanisms in the general case,
then exactly 2v - b more independent mechanisms are needed to form a
complete setl. |

The additional set of 2v - b mechanisms can be chosen so that
hinges occur only at the ends of beams, A necessary and sufficient
condition that such a set of mechanisms be independent is that none
may be obtained from any of the others by rotation of joints,

With these criteria at hand it is usually not difficult to choose

2v - b mechanisms, which may be arbitrarily termed frame mechanisms,

2, Plastic Superposition.

In the elastic analysis of frames the solution of problems can
often be reduced to the solution of several simpler problems by use of
the principle of superposition. This principle cannot be extended £o
limit analysis since for elastic-plastic behavior there is no longer a
one-to-one correspondence between stresses and strains, However, we

ulll now develop a pair of superposition principles for the limit analysis
1See Appendix A, The number of bars in the frame is b and the

number of verticies, i.e., joints, is v.




of proportionally loaded frames. While neither principle determines
the safety factor for superimposed loads, the two together yield upper
and lower bounds for that quantity.

A. lower Bounds. - Consider w different load systems b(l) §2) biie

s bgw) all applied to the same frame., Let N,/\-, iin ,Au— be

statically admissible multipliers for each of these load systems re-

spectively. Then there exist bending moments M( ) §2) v e H§W)
such that (h) R ey
,.Z,acx Zﬂ‘w b
and : - Tty w)
- M e /V\ < M” &Q ‘: J) (2.12)

Multiplying the equilibrium equations by c/ )‘k and summing over k

" . (h)
Zacagc Z.ju.‘ Z )6'

Now let w (h)
M‘ Cg; }\R
fr hZz fr (2.53)

so that the last equation becomes

Z a My = < ZLJJL

Since b j is the load system obtained from superimposing the load systems
bg ), ¢ is a statically admissible multiplier for the superimposed.loads
provided it is chosen so that

f™ M” S/"\,e/ﬂm (‘i:t,l,---,")

If )\4 is the safety factor for the loads b 5? then

7= M (2.14)

To get the largest lower bound to /\,;, ¢ is chosen as large as possible

16
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o ; —(&- < : R ) gl
MPG = CZ MP‘ (b-l_, Y ,h) (2.15)

A lower bound ¢ to )\A which will in general be smaller than ¢ and
therefore not as good a bound can be more easily obtained. Notice

that (2.12) implies

[V (L) o
|
—CMPjhg‘ )‘Léc‘_; k éQ_M ZAR

where ¢ » 0. The continued inequality (2.15) is satisfied then if

Now ¢ is a lower bound to A, as was ¢ before, and the largest value

of ¢ is obtained if equality is taken in the last inequality. From

(2.14) therefore f
e S 8 i
Ae R= A (2.16)

As previously stated, this bound is in general not as good as that
obtained by maximizing ¢ in (2.15).

The largest lower bound in (2,16) is obtained if the /\L are the
safety factors for the load systems bgk) for all k. In general, however,
this lower bound ¢ will not equal )\, since the bending moments in
equilibrium with loads 'EEJ may not equal the yield moment at sufficient
cross-sections to produce collapse.

B. Upper M. = Consider now a mechanism (v,, 6 ) such that

Z_L v 70 (h=n....Jw)
for all k., Let A, b 't.he kinematlcally sufficient multiplier asso-

ciated with this mechanism for the load system b§ ). Then X; > O and




Summing this over i and usi§ (2,13)

= 1 L
Z Al T
d MP‘ IG ‘ *
The right hand member is th reciprocal of the multiplier, A , for this

mechanism when associated with the superimposed loads. By Theorem 2
|

|
% 2V
| ii \
s .2 1
A" i =) X’.'
This may be combined with (2.16) to form the continued inequality
W (%
{ { \
e W Z_ i
hZ A Ax %, A (2.17)

An example of the use of these superposition principles is
given in Section 5, Part A of this chapter.,

THEOREM 5: 1If for a given frame the mode of collapse is the same for

(2)

(1)
two different load systems, b and bj s and if the safety factors

J
against collapse are A. and )\,_ respectively; then the collapse mode
for the combined load system b 5= - b§ )+ b§2)
safety factor against collapse, X s 18

A~ A+ As
PROOF: By the upper bound principle
P 212
Now since )\ and A,_ are safety factors, they are statically admissible
multipliers, so bending moments M( ) and M( ) exist such that

2 a;a- M"m = )\ Z/e-s.k fm

) Syl =,
i a\.a }\ Zickﬂ'k)-
.

(a)
My, = < Mg,

is the same, and the

(2.19)

and







Liz 4 =0 (j=Lr--un) (2.23)

where a4 hi § gj’ L\j are given,

g

For every set of bj satisfying (2.22) a value of the safety
factor is obtained by maximizing A over the statically admissible
Hj, i.e., Hj satisfying (2.20) and (2.21). The present problem seeks
the smallest of all these safety factors over all possible sets of
loads b, satisfying (2.22), et ,\; be the solution to this minimax
problem. Then )\.; is a true safety factor for all load systems in the
given range, i,e., for all )\<)\c_collapse will not occur for any set
of loads satisfying (2.22). The final restriction (2.23) prevents the
loads from changing direction and is a necessary simplification for the
treatment which follows,

For a fixed set of loads b 3 which satisfies (2,22), the problem
reduces to the simple proportional loading problem posed in (1.1) and
(1.2). It may therefore be formulated as a minimum problem given by

(1.4) and (1.6), i.e., to minimize

=1 ' (2.24)
. Wy
over all possible mechanishs (vJ, ej)’ where the v; and ej are kine-

matically compatible velocities and rotational velocities respectively,

and
B

Z fqi”; i . : (2.25)
i
The original minimax problem is therefore equivalent to minimizing

(2.24) first over all mechanisms (v,, Oj) and then over all loads b

J
subject to (2.22), (2.23), and (2.25).

Although this minimum problem is actually an iterated one » it is
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equivalent to the minimization of the functional (2.24) over the two
sets of quantities (VJ’ &) ,j) and b,j without regard to order., If this
latter minimum exists then the iterated one does also s and the two are
equal,

The problem as stated is non-linear. All attempts to reduce it to
a linear progrémming problem both in the present and in previous1 inves-
tigations have failed. A solution is obtained here by use of the Neal-
Symonds technique.

THEOREM 6: Only the end points of the intervals of the loads, bj 5
need by considered in seeking i
PROOF: Suppose in contradiction to the theorem that the functional -

(2.24) takes on its minimum for by = Bj + € vhere \éj\ < Aj

wn

for some j, say j = p. Then

&5 ) o
: l.*-vj+‘z;éju'}'

Three cases arise: (1) ji >’.=('), in which case
Dewp > Cpwp
and the value of AQ can be decreased by replacing € by Ap contrary
to assumption, Similarly if, (2), V< 0, then
Doy > &
and a contradiction is reached. Finally if, (3), v = 0, then the
functional takes on the same value for all values of b, and it is
sufficient to consider the end points,

The problem therefore reduces to minimizing

lsee pPpP. 53-58 of B] o




2 ZIJMJ*'{:,.A”V"' (2.26)

over all mechanisms (v,, ej) subject to (2.25). Notice, however, that

(2.25) may be replaced by the equivalent restriction

—

- bjw; >0

These mechanisms are, therefore, identical with those arising in the
Neal-Symonds solution for the proportionally loaded frame with loads

‘Sj. They are finite in number and thus the minimum exists,

In order to obtain a more convenient form of the functional in

(2.26), let vgk), o
o

cities of the kth mechanism arising from the Neal-Symonds analysis,

designate the velocities and rotational velo-

k
and let the v( ) be so normalized that

: ik
Zl’q"ﬁ,‘ (i

- 2.2
b (2.27)

for all k., Then

\ A b 0 P
4 MZMPHG;D‘[\ 1-{: A&‘v‘ ‘:\

Ac

where the maximum is taken over all k.
The value of the multiplier associated with the kth mechanism for

the loads b, is

J 7\0:): i MP& ‘ G;k)'
a-n

l .
_;‘; = Mo -F [l + ;A; l"’;w\] (2.28)

over all k.

folo}

The procedure for obtaining the solution to the minimax problem
then is:

(1) Proceed as in the solution of the proportional loading collapse

22




problem for loads bJ using the Neal-Symonds technique., Tabulate all
mechanisms and the corresponding multipliers,.;fﬁ
‘(2) Normalize the velocities, v§k), for each mechanism according
to (2.27). |
(3) Form the right hand member of (2,28) for each mechanism using
the normalized velocities and select the largest of these numbers,
This is the reciprocal of Ac.

An example of this type of minimax problem and solution follows

in Section 5, Part B of this chapter.

4. The Effect of Axial Forces in Frames.

Another modification of the Neal-Symonds technique leads to bounds
on the collapsé solution of a proportionally loaded frame when axial
forces are significant. As mentioned in Chapter I, the addition of
axial force effects requires a yield condition involving both moments
and forces at each cross section.

A mechanism may now involve yield bars as well as yield hinges,

It is, therefore, necessary to examine cross-sections where the bending
moment and/or axial force has a turning point. Since all loads are
assumed to be transverse, these are identical with the critical cross-
sections neglecting axial forces, i.e., at the ends of each member and
under each load,

Let Mi be the bending moment at the ith critical cross-section,
and let N3 be the axial force, considered positive for a tensile force,

ki
in the jth member, Furthermore, let H}i be the fully plastic moment

1Since the loads are transverse, the axial force is constant along



at the ith cross-section and let ij be the yield force in the jth

member.,

It should be noted that Mbi and Nbi are not independent but are
related by |

IV\PL i k.’. Npi.
where ki is a constant which depends on the cross-section.2
The state of stress at a generic cross-section can be completely
specified by a point, the stress point, in a two;dimensional Euclidean
space whose rectangular coordinates are N’i/Npi and Mi/npi° Onat and
Prager [6] have shown that for a beam of rectangular cross-section the
stresses at a yielding cross-secﬁion must satisfy one of the two equations

(&) = s - 1

In the stress point plane these are rgpresented by'two intersecting
parabolas (dashed curves in Figure 2), All statically admissible stress
states must be represented b& stress points interior to these curves,

designated the yield curves for rectangular cross-sections.

For beams with symmetric cross-sections, the yield curves are
closed, convex curves symmetric about both axes. Some empirical
curves have been given by Baker [7] ¢

As a linear apﬁroxihation to all of these convex yield curves,
each member. Specification of the axial force in each beam, therefore,

is sufficient for the determination of Ni at every cross-section

2For rectangular cross-sections ky = h/L o« where h is the length
and o the length-depth ratio of the beam in which the cross-section
is located. For idealized I-beams, k; = W/2 where w is the heighth

of the web,
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assoptesaviidttiagh. o
|M: IN.|
AR (2.36)

may be taken. The yield curves for this criterion are the sides of
tha‘sqnare EFGH (Figure 2). A stress point satisfying (2.36) must
therefore lie inside the yield curves for all symmetric shapes,
Hencé safety factors based on this approximation will always be on
the safe side, i.e., smaller than the safety factors based on the
actual yield laws.

The problem of maximizing .A.subject to the equilibrium condi-
tions and the yield law (2.36) is the principal problem of this section
and will be designated Problem 1. Only bounds to the solution of
Problem 1 will be found here. An exact solution is obtainable by the
linear programming methods outlined in Chapter III.

The proofs of the fundamental theorems, i.e., Theorems 1 and 2,
for Problem 1 are given in Appendix B. The proofs of these theorems
do not follow directly from the general theorems of limit analysis
since forces or stress resultants are involved rather than pure
stresses,

The mechanism technique cannot be immediately extended to solve
Problem 1, however, since it is necessary to allow for relative dis-
placements of the cross-sections adjacent to a yield hinge as weli as

for rotations of beam segments about the hinge.2 The axial force

1A mechanical interpretation of this yield law has been given by
Onat and Prager in [é] .

2See discussion of flow vectors in Appendix B,
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across é yield hinge, therefore, does work in a mechanism and must be
included in the virtual work equation,
We now introduce a problem for which a mechanism technique is
available and which will in turn lead to bounds on Problem 1,
Consider the problem of maximizing A subject to the equilibrium
conditions and the yield eriteria
‘p«L\ & P\P‘

(2.37)
““&\ i-l“fi
We designate this as ?roblem 2. The proofs of Theorems 1 and 2 for

and

this problem follow the proofs given in Appendix B for Problem 1 with
only slight variations. The yield curves for Problem 2 are the sides
of the square ABCD (Figure 2). |

: A mechanism technique can be developed for Problem 2 since there
are nb relative displacements at yield hinges. Changes in length can
6n1y occur when the axial force equals the yield force and thus the
member becomes a yield bar.

A. Upper Bounds. - The class of statically admissible moments M;
and forces Ni for Problem 1 is a sub-class of the statically admissible
Hi and Ni for Problem 2, Thus any statically admissible stress state
for Problem 1 is also admissible for Problem 2. By Theorem 1 the solu-

tion to Problem 1 cannot be larger than the solution to Problem 2, i,e.,
s (2.38)
where )“ and At_are the safety factors for Problems 1 and 2 respectively.

As previously mentionéd, the mechanism technique can be immediately

extended to solve Problem 2 and therefore to find an upper bound for ,A,.

It should be noted that the mechanisms for Problem 2 are not necessarily

kinematically possible mechanisms for Problem 1s
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' lN(s)’ IN(B)
M,; [\ Ny ] (2.46)

?«.
Two cases arise: (1) at 2ll cross-sections
INC| = (N7
or (2) at some cross-section
INGT > INT|
If (1) holds then from (2.45) and (2.42)

i Py ! NT
'Ni l ™ (“‘/(A;)Nf"e i (l-/»h) 7{'?

thus

Bolagdd] - 5 e
‘M—; b NPL [‘ 7&)‘]

satisfy the yield criteria (2.36) at every cross-

Thus M(B ) j(_B)

section and since they are in equilibrium with loads )\Bbj, }\3 is

a statically admissible multiplier for Problem 1 and

As £ A, (2.47)
If, however, (2) holds at some cross-section a similar analysis
results in (s)' \N(a)'
| M,h Ao o]

This does not indicate that )\3 is an upper bound since the multiplier
may not be kinematically sufficient., The procedure can be iterated,
however, by further weakening the strength at all cross-sections,
Usually one or two iterations are sufficient to achieve a lower
bound. If, however, the convergence is slow, a lower bound can be

immediately obtained by letting o ditor Lyt 3 sty mers Then
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(2.43) and (2.44) hold everywhere., It also follows that

Ryns, dposiey
~*5 R W

Better bounds are obtained in general by using the ot defined in (2.39).

and thus

An example of the use of these techniques is given in Section 5,
Part D of this chapter.
Notice that a different lower bound than XB could be found by

defining quantities @

at each cross-section and proceeding in an entirely analagous way with
‘the‘rolls played by the moments and forces interchanged. For frames
where the norpalized axial foreces, Ni/N , are smaller than the nor-
malized moments, Mi/Hbi, however the best lower bound is obtained from
Problem 3 with the yield criteria (2.40).

C. Distributed Forces. = The methods developéd in this section
can also be extended to transverse distributed forces.

Following Neal and Symonds [?jl, an upper bound to Problem 2
can be found by assuming that a hinge appears at the midpoint of the
beém in each beam mechanism involving a distributed load. After
choosing a collapse mechanism in the usual way, the bound may be .
improved by letting each hinge appearing under a distributed load
be at some distance X5 from the center of the member in which it
appears. After computing the multiplier as a function of all of the
X5 for beams subjected to distributed loads from the virtual work

equation, the multiplier is minimized with respect to each x; seperately.
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Since this is an upper bound for Az it is also greater than A]f
To obtaip a lower bound, assume on members where distributed
loads act a set of concentrated forces whose resultant is the same as
that of the distributed load [2] « This can be shown to yiéld a lower

bound to )\2. Problem 3 is then formulated for this frame which now

is subjected to concentrated forces. The solution is a lower bound

to Alifor distributed loads.

5. Examples.

A. Superposition. - Consider the two-bay frame in Figure 3(a)
where the fully plastic moment in each member is h, The 12 critical
: cross-sections are labeled and the sign convention is chosen so that
positive moments cause compression in the fibers adjacent to the dotted
lines. .

To find an upper bound to the safety factor, A s choose the
mechanism in Figure 3(b). The kinematically sufficient multipliers
associated with the loads of magnitude 1, 2, and 3 respectively are

e R T
By superposition, an upper bound for the combined loads is
| M® e

The equilibrium equations for the loads 1, 2, 3 are
A

Mq‘ML+M5' +M8“M1°"’Mu: '.:})\j\
A

Q

’Z—Ms +3Mn. - Mu :(%)\‘a

0]
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gl el ‘LM”:(SJ\»

/"\+~M5—Mg=(g>

0

)
ML-Ma:M~,—M% > (O
O
The following statically admissible solutions are easily found:

For load 1 :—= My = h, all other ¥, = 0 with )'(}) =1

For load 2: -- M, = -M3 = -h, My, = h/3, all other M; =0 with A.(Z) s34
For load 3: — M, = -Mg = My = -h, all other ¥; =0 with '(3) 21

The lower bound obtained from (2.16) is

/

¥ %o

A better lower bound is obtained from maximizing ¢ in (2,15)
c= | ‘

| =A = s
The correct safety factor is 7/4.

Thus

B, Minimax Problem. - Consider the frame in Figure 4(a) loaded
as indicated. The loads are bounded by 1/2 £ H< 3/2, 0< P< 2,
0 £Q< 4, The fully plastic moment at each cross-section is h,
We wish to find a multiplier Ac for which collapse will not occur for
any set of loads in the given range;
The base loads are chosen as the mean values of the end poinfs, Vi.e.,
H=1,P=1,Q =2, The deviations are AH =4 A,P =1, AQ = 2,
The three basic mechanisms are shown in Figures 4(b), (c¢), (d).
The two combinations of these which follow from the Neal-Symonds analysis
{(b) added to (d), and (c) added to (d)} are not shown. The multipliers

associated with the base loads and the normalized angles are



Al
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'}\(b) 8 95 " ?'/jb
_A(C) 8 eC i LLQ\.
’)‘\(A) = Y 0, = 2l

The values of A computed from the right hand member of (2.28) for these

"

modes are

/\(6)24 /\mz “73 : )\(d): 'L’/as

Y

The values computed for the combinations not shown are 24/19 and 3/8.

A= /s

The loads for which this multiplier is the actual safety factor under

The multiplier desired then is

proportional loading are H= 3, 0 £ P< 2, Q = 4. Notice that H takes
on its minimum value to produce the solution to the minimax problem,

C. Application of Theorem 5, - We wish to find the safety factor

against collapse for the frame in Figure 5(a) for o« > %. The fully
plastic moment at each cross-section is taken to be h.

For « = %, the Neal-Symonds technique leads to the co‘llapse mode
in Figure 5(b) and a safety factor )\l = k.

For a single positive load at the upper left corner, Figure 5(b)
is the only possible mode of collapse. Let this single load be /\,_ («—{)
for o > %. The virtual work equation yields \,= 4/(« 4 )k

By Theorem 5, the mode of collapse for the superimposed load:;, i.e.,
< A at the upper left and A at the midpoint of the left leg, is also

that shown in Figure 5(b) and the safety factor is

A= 2 i
Lx + | e
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D. Axial Forces in Frames, - Consider the shed-type portal

frame shown in Figure 6(a). The fully plastic moment in the left
inclined beam is 2Mp and in the other three members, Mp. The beams
all have rectangular cross-sections and the length-dépth ratio of the
legs is 10, Thus 3NpL - 80Mp. Bounds will be found to the safety
factor using the yield condition (2.37).

Since the load 2 AW is not transverse, its point of application
is treated as a joint and the load is decomposed into components normal
and tangential to the member on which it acts. In the applications of
the principle of virtual work it is also necessary to consider two
velocities, normal and tangential, at the point of application of the
2 AW load since either or both components of the load may do work in
"a mechanism,

The ten critical cross-sections are numbered in Figure 6(a). There
are twelve basic mechanisms for Problem 2: three frame, four joint,
and five axial failure. The combination which produces the smallest
value of the multiplier is shown in Figure 6(b). It follows from

virtual work that
A=

WL

The values of the moments, axial forces and 3 calculated from (2,39) are
i) % . : 4

My = Hp o -.09196151p /U 1 = 50804
2 2 o

H;(g ) = -3/ Hp Ng ) = -.09196Np /Uz = +90804
b % LB .

M2 = /u 82) = -.08585N, g = 95708
2) . i o

H,S = -2 Hp _ N£ - .08585Np /uh 2 .95708

ng) = -2 M Ngz) = -.01397N ps = <9901
(2) _ {2) . i

Mg < 2 Mp ) --.0139'7Np /“6 = 99301






w? -, M, N.(72) = ~08397N Py = +91603
ng) '8 Né?') = -.08397N Mg = 91603
) = M, N((;Z) = ~06875N, Ho = +93125
M) =-u M2 = ~.06875N, o= +93125

For Problem 3 the mechanism in Figure 6(b) is also the correct
mode of collapse. Thus from virtual work
TAWLE = [ze/u. Mp + 30 pa (2 Mp) + 48 M, + 38, M, ]
and
A =.2.00235. L8

The axial forces in Problem 3 are

5 e 5
N% ! = -.08557N,, N? , = -.01241N,
i D7 -
N, = -.08557N, Ny = -.07834N,,
) = --07957N Y = -.O7834N,
o' S ' () -
N% ) = -.07957Np Nz : = -.06461Np
» » L
NS = =e01241N N’ = -.o£>z.(>1mp
Since

\N?' <\N(;u\ Biia ., )

2.0013\7,/1(,': < NI< 3 l42qWﬂf_
If the axial forces were neglected the upper bound shown here,
i.e., )\2, would be taken as the correct safety factor. Assuming '
that the solution is the mean of the two bounds, then the error

committed by neglecting the axial forces is approximately 3.5 %.

40
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Chapter III
LINEAR PROGRAMMING METHODS IN LIMIT ANALYSIS

The linear programming problem may be defined aé the problem of
optimizing a linear functional subject to linear constraints. This
type of problem has appeared in both formulations of the proportional
loading problem (Chapter I), In order to utilize the special methods
available for the solution of linear programming problems, it is
necessary first to discuss the general types of these problems and to
outline some of the methods of solution which have been developed.

1, Types of Linear Programming Problems.

The linear programming problems will be formulated using the stan-
dard vector notation and the collapse problems will then be reduced to
this form.

Given (n+1) column vectors A Pl’ e « «5 P in a real, m-dimen-
sional vector space, Vﬁ, and given n real scalars €1, €3, « « +5 Cpe

A linear programming problem is to minimize

&, .» ; % (3.1)

with respect to fﬁ’ subject to
% pal :
R 4 JZ Ay (3.2)

P‘ 20 (s:‘,LJ"'I“) (303)
This will be called the simplex problem or a problem of Type I.

The dual problem to the simplex problem stated in (3.1), (3.2),
(3.3) is to maximize



fagky
P" (3.4)
where

P w = by < )

y W =Qy PPls, W (3.5)
The prime denotes transpose and w is a real m-tuple (or alternatively
a vector in Vm). P&w is the inner product of PJ and w considered as
vectors. This problem is called a problem of Type II.

The dual theorem; relating the above problems states that if
either the minimum of z, or the maximum of Péw exists and is finite,
then

' (
Wy idnpas. et etolVig sy Rite- (3.6)

Type III problems are defined to be identical with Type I problems

except that every variable is constrained by an upper bound, i.e.,

T on . 4 ;=
O‘/D} —,@J_ (J (JZ./ /“) (307)
This is alternately called a bounded variables problem. It includes

the type of problems where some but not all of the variables are
bounded since one may prescribe arbitrarily large bounds for the
unbounded variables,

2. Computational Technigues.

Three finite iterative techniqneé for solving the above problems
will be discussed here. They are included for completeness and for
ease of reference in the limit analysis examples solved later by these
methods.

A, The Simplex Method. - A problem of Type I is naturally adapted

- 1see for example Chapter VIII of [;O] .
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to the simplex technique. A complete discussion of this method may
be found in [§, lQ] « Two assumptions will be made: (1) that the
solution z, is finite1 and (2) that P° is linearly independent of
any m - 1 vectors selected from among the Pj’ The laﬁter assumption
avoids the degenerate cases. Such occurrences, however, can be
handled by the € -procedure of Charnes [10] o

From these assumptions it follows that there exists a set of m
of the vectors Pj which are linearly independent and therefore form
a basis for the vector space, V. Let such a set of basis vectors
be designated by a; mrixi 2,'. « «y m. The vector P, may then
be expressed as a linear combination of the a;. This representation
for P, and the corresponding value of Zo will be a feasible solution
to the simplex problem in (3.1), (3.2), (3.3) provided the coefficients
of the aj in (3.2) are all positive, i.e., Pga; >0. The second assump-
tion assures that a basis sétisfying this constraint exists. A method
of determining one such basis and hence a feasible solution is given
in Appendix C.

Consider now mAvectors <xj2 in Vm such that

P PR RS

The QB are uniquely determlned since the aj are linearly independent,

1It will be shown later that this is indeed the case for the

collapse problems considered.

2The matrix [}(.,q&,.---/qn;] is the transpose of the inverse

to the matrix [a), a,, . . ., 8 ]. Note also that in [11] thea are

referred to as aJ.



Then the P and P may be written

Rl il 88, .y g,

Z(Pa)a =Z(R’q4)a¢ (3.9)

ool @1 i 0
where Péc\’i>o LNl 2 . .8 Naee
i W Gl
T o el (3.10)

is a feasible solution to the problem, The corresponding value of

the functional is

Z (P (3.11)

In order to obtain another feasible solution which yields a

smaller value of the functional, consider first the n scalar quantities

z(P « ) (3.12)

Either (i) 25 = c'j < 0 for all j, or (ii) . Tl i O for some j. If

P iqc = C, (}=(,2_,.../h)

‘Therefore the point ¢, = Z iaynin V is a feasible solution to the

(1) holds then

dual problem, (3.5). The value of the functional, z " is

= ZM ® c\q)c $ Z o:cc = P
However from the dual theorem p'w = zo and therefore z, takes on its
minimum and Pdw its maximum whenever equality holds. Thus if (1) holds
the solution is optimum and the value of Z, in (3.11) is the minimum

value of the functional and cannot be further decreased,

Suppose, therefore, that (ii) holds for some Js say j = k. Then
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rewrite (3.9) as

P = L(Po’cn)ag -6P, +68k

where 8>0and P, is not an aj. Using (3.8) with j = k,

k
Pk Z(P' ~0Rx)a, + 0 B (3.13)
If the coefficients of aj, Py are non-negative, then the set of Vit
defined by
R%‘@Rlxj FLL o, m
18 § k (3.14)
0 ; Thoruris o

are a feasible set for the simplex problem. The value of the functional

associated with this feasible set is

?(E'o«)ci e Bk Z'(Re'e(é T8 “Cand
£°:i@’°ﬁ)C¢"é<zk‘ck> | (3.15)

=,

Now if Pfo(; = O for all i, then the P j defined in (3.14) are
positive for arbitrarily large positive ©., Since 2 = ¢ >0, the
value of the functional Zg given in (3.15) can be made arbitrarily small
contrary to assumption (1). Therefore Pfca/i70 for some i,

Since the coefficients of ay in (3.,13) must be non-negative

APV o
= : f« eh 3O
Q Ry k

Therefore in (3.15) the smallest permissible value of the functional is

6btained if O is chosen as

B 1;:; «6a«_ v >0



This minimum is taken on for one and only one value of i, say i = s,
because of assumption (2). For this value of O the coefficient of

a  in (3.13) vanishes and

P = ZM(R@(; -6 B/ «)a. + 6 Py

&1
The a;s i#s, and Pk ;:': easily shown to form a basis for le.

Notice that if (ii) holds for more than one value of j, there is
a choice as to which vector shall enter the basis. Any choice will
result in a decrease in ihe functional. The choice may be governed
by experience and the physical interpretation of the problem, This
will be discussed later in the stfuctures examples,

Finally notice that the vectors & j were not needed explicitly in
the above analysis., It is only necessary to express the Pos Pj in
terms of the ) i.e., to find P o} and Pj o™ PR, Pj may be ex-
pressed in terms of the new basis, a; for i #s and Py, by the algo-
rithm

P, Z[ | Mo O(‘L Pw]“ +qu~P (3.16)

= k L
(=t J—O,l,-ﬂ,n

(¥a
The coefficients on the right involve only quantities already computed,
The z j, may then be formed as before and the entire process iterated.
Only a finite number of bases, in fact at most(;)z, are possible and

no basis will reappear since the functional decreases at each iteration,

lSee for example, Lecture IV of [10] .

n
2( m)represents the number of combinations of n things taken m

at a time,
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Consequently the process converges in a finite number of iterations,
To proceed from one iteration to the next it is convenient to

assemble the information in tableau form1 as follows:

CJ = CI e s Yl e g ck e W N e cn

l a-i PO Pl e N e Pk |G S kg Y e M Pn

01 a.l Po'o<l P]'.ql. e o o o o Pl'( l. D Jime B e Pr'lc(l

3 . L ]

cy a ngs Pixs.. $ 4 kay &y ..kas
! 1 t

cm am PO (°¢ m PiO< m® * Pk °<mo * o e o o Pn o(m
ZO zl x cl g T AP zk-ck . . 8. a8 o @ zn i cn

TABIE I

Simplex Tableau

The entry in the row labeled a (020 2/ o i i, B) and colum P,
el 8.0 5. 20 Pj Xg, the component of P, along the vector ag.

The entry 2, at the base of a column is computed by taking the scalar
product of the entries in that column with the column of cj at the left.
The entries in the PB column constitute values of the variables joj

corresponding to the vectors 3. All other /Dj vanish at this stage,

lThis arrangement. was developed by Orden, Dantzig, and Hoffman,

47
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A positive element is selected from the last row (if none exist an
optimum value of the functional is given by z_ ). The positive entries
in that column are divided into the corresponding entries in the Po col-
umn, and the minimum of these quotients is selected a$ . To proceed
to a new tableau the algorithm (3.16) is used.

In each iteration there are in general (m + 1)(n + 1) multiplica=
tions required to complete the new tableau once the replaced and replac-
ing vectors have been chosen,

B. The Dual Method. - A Type II Problem is well suited to solution

by the dual method [11] . This method will be briefly reviewed here.

A point wb is an extreme point of the set w satisfying (3.5) if
from among the vectors Pj for which equality is satisfied in Pj“b'é:cj:
there exist m vectors which are linearly independent and hence form a
basis for V&. It can be shown that the functional FJw takes on its
maximum at an extreme point of the set w satisfying (3.5).

It will be assumed that (1) the maximum value of the functional (3.4)
is finite and also that (2) for every extreme point equality is satisfied
in exactly m of (3.5)., This latter assumption avoids the problem of
"dual degeneracy", For a discussion of this case see Appendix I of [il} .

' Consider an extreme point W,e Let the m Pj for which equality is
satisfied in (3.5) be designated by a,, i.e., a;w=c; fori =1, . ., m.
The a; are then a basis for Yﬁ and the Pj may be expressed in terms
of this basis as in (3.8) and (3.9).

Two cases arise: (i) Py oy 7 0 for all i or (ii) Ploecy < O for
some i,

Now if (i) holds then the value of the functional associated with
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the boint wo is ¢ :
Rl = L% o, = L),

Now defining n scalars P j as

#ofee.

It follows from (3.1) that

R '0(3 35 R

O .=M+'J..41v\

mn
Pu/‘*ra b Zf, CJ = 2,

and moreover i
i i’i' ol PJ
g =

The jo j are, therefore, a fea.siblevsolution to the problem in (3.1),
(3.2), (3.3) and by the dual theorem then Plw is the maximum value
of the functional for the Type II problem defined in (3.4), (3.5).
Suppose, therefore, that (ii) holds for some r, i.e., Ploc < O.
Let
= wo— fan ,#zo0 (3.17)

where ¢ is chosen so that

/N .
Hesc . Goun.,w) (3.18)
The value of the functional (3.4) associated with the point w is
’ /
B wrendlalyy so ¢P‘,o(¢>/R W, (3.19)

Now 1f P!oc 20 for all j, then

3 - B =P £ Bl =
for any ¢7 0, i.e., w satisfies (3.18) for arbitrarily large positive ¢.
In (3.19), therefore, the functional Pc'); may be made arbitrarily large

contrary to assumption (1).



Thus for some j, P3 Xp < 0. TFrom (3.17) and (3.18) therefore it

is necessary that
PJar°—~ e,
Jrrgmmy v i) P
R *
The largest permissible increase in the functional is obtained then
if ¢ is chosen as
‘ ‘D‘l“\J_° - p b
¢ € M ntiegl ™ WSy R
P& BCA-
If & takes on its minimum for j = q, then from (3.17)
/ / /
F) (r & 1) e — (.P 0
0wl £ enad (Ro) = o4
Moreover for i = Ay 2y o o5 Pl 2410 e |

a-C":r o a'\lbd; i C/ (Q"‘¥/\,) 2ac"«/2'~‘ C(

and thus w is an extreme point. By assumption (2) it also follows
that ¢ takes on its minimum for a unique value of j, l.0., § = q.
The vectors 845 + o5 8, 1) Pq, 8412 ¢ o .:-J.m form the basis for L ™
associated with the extreme point w.

The algorithm for computing the vectors P 0? Pj in terms of this
new basis is given by (3.16) if r replaces s and q replaces k,

Recall that the points Wos W were not needed explicitly in the
a.naiysis.‘ It is sufficient to compute P'wo and P3; WY 3290, 3, v s

The tableau arrangement is identical with that for the simplex
method (Table I). The quantities in the last row (zj - cj) are now
identified as ij -c 5

The procedure, however, is to select a negative element in the Po

column, The negative entries in that row are divided into the corres-

ponding entries in the last row, and the minimum of these quotients

50
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is selected as ¢ + The algorithm (3.16) is then used to find the entries
of the new tableau.

= P(;o( i <. 0 for more than one value of i then there is a certain
freedom in choosing the vector to leave the basis. This will be dis-
cussed later in the structures example,

The number of multiplications per iteration is identical with that
for the simplex technique applied to the dual problem,

C. The Bounded Variables Technigue., = The preblem stated in (3.1),
(3.2), (3.7) can be transformed into a simplex problem by introducing

non-negative variables xj such that

Pityg A ,
Now if b is the vector in Vn whose jth component is bj and if Qj is a
unit vector in Vn with a 1 as the jth component and all others zero,
we define the following vectors in Vm o

P - °) F-PJ 5-0(3-12 n)
- > 4T ) j-Q = 4y S5 o o

The bounded variables problem may then be written:

Maximize a8
. ZﬁZ_,/”JCJ
subject to N }\ ‘ -+ S
G- JZ,‘/OJ ¢ ;XJQ’
/J Zo (J:'Jll ,v\.)
X; 20

This is a problem of Type I of size (m+ n) x (2n).
Charnes and Lemke [12] have shown that this may be treated as an

m x n problem, i.e., the inequalities, /oj = b,j’ may be suppressed.
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A brief outline of the computational procedure will be given here. The
motivation and rigorous treatment can be found in [iZ] .

Select first a basis, a;, for Vh from among the Pj as before in the
simplex method, and compute iji foncinl OF Mot . . «» N, Then the
vector 55 corresponding'to the ai and all of the 55 e 3% 25085 & sym

by B

constitute a basis for Vv, Designate the basis for V N
m+n m+n

men
Compute the quantities }
(Pc'.: Po ol
L — P,
2('3*): 2<P“’°(;)CL‘—CJ (J':[“L/.,..,n/)

The above information is then assembled in the following tableau:

((-.:(J L,'--,M)

bj bl ® o o o o bm bm+l » P bn
Ci S 01 T s et S cm Cm+1 Sl cn
Bm Po Pl o WiNILe e Pm Pm+1 PRER Y T Pn
! 1
S e i e T Bl 1= ecsii 42 4Photy R 1PEgeE s o anl
(.: ;. ; pi . : by 5

e o o
.
]
-

Qe o o

2, 5(Py) piaiiis o3(B) T T z(P )
Bm+n 7‘+’- oocoo+,- o7 g g L
TABLE II

Bounded Variables Tableau
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The (+, - ) sign in the last row under the Pj column indicates that
both P, and Q. are inB , while a single + (or -) means that P.

J J m+n J
(or Q,) is in the basis, B ,

J m+n

An optimum solution has been reached if both

(a) Z(Pj) 70 in each column having the sign - in the final entry
and

(b) z(Pj) £ 0 in each column having the sign + in the final entry.

If either of the above are violated then the following procedure

is used to increase 2 .

Case I: z(Pk) > O when a + sign appears under this quantity. Then ak

enters Bm+n' Choose . F /
g S o, A (L‘_ i ko <0
gy A d ¥ ey g y l
© = Minimum (tt)m ‘P—,?‘ jPqu->o
R i

If the minimm © oceurs for i = q in (i) then Fq leaves Bm-m' ir
this minimum appears for i = q in (ii) then aq leaves the basis.
Finally if &= b, then Py is removed.

Case II: z(Pk) <0 when a - sign appears. Then Fk enters By . Let
() me, - i R
k. L
E ; bbby, CiiB S
e Mimmu.m <___1:)k IO(L) J R xg
(Cl'i) _,e—-k

If the minimum O occurs in (1) for i = q then iq is replaced; if in
(ii) for i =,q, then aq is replaced. Finally if O= bk’ then 61( is

removed,
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To proceed to a new tableau three cases are distinguished:

Case A: ak replaces ik‘ There is no change in B» but (1) the +

sign under Pk is changed to a -, (2) (Pi is replaced by (?i'*bk(Pi‘¥i)’
and (3) z_ is replaced by 2, + bkz(Pk)'

Case B: ?k replaces Ek. There is no change in B » but (1) the - under
P, is changed to a +, (2) ¢; is replaced by Py = bk(Pl'ca(i)’ and

(3) z_ is replaced by $ien bkz(Pk).

o
Case C: Either P, or Qg replaces either ,Ij_q\or Qq. Then Pk replaces
Pq in Bm. The tableau changes are:

(1) Pk replaces Pq in the Bm column and ¢ replaces cq.

k
(2) Both a + and - appear under Pk' The Pq column has a + if aq has

been replaced or a - if P_ has left B

q
(3) @; is replaced by Py = 6 (Pl'fo(i) for 1 Z q. gﬂq is replaced by
O and bq - qu is replaced by b - 6.

(4) The Pj are expressed by the algorithm (3,16).
This completes the new tableau and the process is iterated,

The number of multiplications per iteration is (m +1)(n + 1) for
Case C.

It should be noted that the "modified” simplex and dual methods [5]
may be used in all of the techniques outlined in this section, This
modified technique has the advantage of controlling round-off erroré
without adding to the number‘ of computations.

3. Collapse Under Proportional Loading.

The problem of finding the safety factor against collapse for pro-

portionally loaded frames has been formulated in (1.1) and (1.2)." %o
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turn now to the formulation of the same problem for pin-jointed trusses,
which furnish simple examples for the purpose of the illustration of the
use of linear programming methods. This is due to the fact that pin-
Jointed trusses may have a single degree of redundancy while frames cannot.

A. Equilibrium Equations and Yield Criteria. - Consider a plane
truss with no external redundancies and composed of s bars and k Jjoints,
If this truss is subjected to a finite number of concentrated loads at

the joints, the equilibrium equations may be writtenl

A

Z a-‘i S‘ =/\P¢ (cu,z,..,,zk—a) (3.20)
where Sj fs the axial force in the Jth bar considered positive for
tensile forces, p; are the fixed loads, and A is the multiplier common
to each load. The aij depend on the geometrical configuration of the
truss and are direction cosines of the angles between the bars and the

coordinate axes. If s > 2k - 3 then the truss is redundant and equa-

tions (3.20) admit a non-trivial solution.

The yield conditions are

¢
where Uj (-Lj) is the fully plastic force in tension (compression).,

- Lj é;‘Ss £ i (}1'117"‘1‘D) (3.21)

A value of A for which there exist S satisfying (3.20) and (3,21)
is a statically admissible multiplier, By Theorem 1, therefore, thé
largest value of A for which a solution Sj exists, is the safety factor
against collapse,

B. Reduction to a Linear Programming Form. - Without loss of

generality, the first 2k - 3 bars are assumed to form a statically

lSee for example, pp. 115-122 of [13] »
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determinate truss. Rewrit.ing (3.20)
2k-3

Z q‘é i Z a‘“(; 5 (3.22)

-Lk 2.

Now by the above assu.mption there existl elements ay l i such that

~1
Za ag < &, (ﬁ,r.ﬂ,..,m-s)

Multiplying (3.22) by a;i' and summing over i
2k-3 Lk 3

‘ ~Lh 2
Substitating bhis into (3 21), the yleld conditlons become
Lie-3
._Z: Z;tltat S X Z:a : 5:[5 (}:bg”)LhQ)
[ %-zh z_s 15 »

_L% % S% 5 T)_ : (%: Ny e

The unknowns are st-Z’ S Ss’ A which are s = 2k+ 4 in number.
Now if the number of redundancies is r then s = 2k ~ 3 + r, so that
the number of unknowns is r +1. We are led, therefore, to consider

the following vectors in a space of r + 1 - dimensions, Vr+l'
. wa e

) i
Jl i,2k=2

’ e Gz1, .., 2%=-3)

ISee Theorem III, p. 122 of E.B] .
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Fé 1 % i
31 S2k-2
Uy-3+3 = g VIR .
5jr s
}h@ #1:4 A
o —
Then the yield criteria become
' i i .
CD; X E Lﬁ
/ it L (A: ,J ll' /'4/)
..(ps ¢ W
Finally let :
P_:{Qa‘ G, o)
J ‘QJ"A— (J‘—AHJ P A 343
C‘.:{UJ i 4
- SRR ey

i

The problem then reduces to maximizing

/
S A (3.23)
subject to
/ N
¢ < : £y
Ji SR S
This is a problem of Type II with the following special properties
PJ-l—a/ 2.2 T)J (J‘l'ILJ bt 4) (3'25)
and

CJ- 20 CJ::I/)_}.__IIL) (3.26)
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It is now clear that a finite maximum value of A exists. Recall
that such is not the case if and only if Péc(r 2 0 for all j where
Pé°‘r < 0. Without loss of generality assume that 8, = Pp forr = s,
Then from (3.25) Pl sXyp - -1 and the maximum value of the functional
is therefore finite.

Now only the first s of the Pj need be carried in the tableau.

The other entries can be computed from

I S e (3.27)

!

(Z;(P;MA"-)C; i C‘J*‘ gl (?;G}"’(( ) g = C& —{ UJ . LJE (3.28)

j: '/ l; J’d’)
The entries on the right of (3.27) and (3.28) all appear in the first

s columns,
This problem may, therefore, be treated as a Type II problem of
size (r+1) x s.

To formulate this as a Type I or simplex problem consider the dual

problem to (3.23) and (3.24), i.e., to minimize

A é:ifzicd

Zpf %R

and’ J:|

where

‘/DJ'ZO (}':'111'”)1‘-)
 This minimum problem was shown to be equivalent to the kinematic

principle (Theorem 2) by Charnes and Greenberg [ihj].
A significant difference in the simplex and dual methods is that

in the former a certain freedom of choice may be available in the vectors
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entering the basis, while in the dual method a choice may exist in the
vectors leaving the basis. A physical inserpretation of the presence
of certain vectors in the basis for the optimum solution will clarify
the significance of this distinction.

It Pj for j =1, 2, . . ., 8 is in the basis at the final solution
then the jth bar yields in tension. Similarly if Pj is present for
J =s+1, . ., 2s then the (j - s)th bar is yielding in compression.,

In the simplex technique when a choice is available then it is
best to bring in those vectors corresponding to bars which experience
or intuition indicates should yield in the collapse solution., In the
dual technique, of course, one removes vectors when it appears that
the corresponding bars should not be yielding at collapse.,

The other major distinction between the two computational techni-
ques lies in the method of obtaining initial solutions (Appendix C).

C. The Bounded Variables Problem, - To formulate the collapse

problem as a bounded variables problem, return to equations (3.20) and

(3.21) and let 5
G e N
Xv) Lé + | <'}:\'1).A.//‘L)
4—+\ >\
Then (3. 20) may be written
ot! .
Z a‘& x; = d (£=12,2k3) . (3,29
where
X
o e b R SRR
*

ai,u\ I PL



and

Y
CLC = ZQL}LJ (/L.,:l,l,---,)’k-s)
N

The yield conditions (3.21) are

Lhadle,
e i g (3.30)
Since A is non-negative
B ed, tpote o \ (3.31)

where M is an arbitrarily large positive number. Since the problem
is to maximize Xyqr 11 c'j =0fr izl iy ad Cg,1 = 1, the

problem defined in (3.29), (3.30), (3.31) may be written to maximize

o+ )

A: JZ;XJCJ

subject to
44 ! P
P ;‘XJ !
where a4
J-Z:,aleJ i
r e : B = . UML)
‘/ * .
Z:azk-B,ij 22k-3, 3%
g # B
-p
: Uy + 1,
. [ T j - l, e ey S
Ps+l i 4 bj i LU
p2k-3 M jJ=s+1l




This is a problem of Type III and the tableau is (2k - 3) x (s + 1)s

A physical interpretation of the presence of certain vectors in
the basis is also possible in this case. If in the optimum solution
55 but not 63 is in the basis (only a + sign in the Pj column), then
the jth bar yields in tension. Correspondingly if aj but not 55 is in
the basis (only a - sign in the Pj column), then the jth bar yields in
compression., With these facts at hand the analyst may use his experi-
ence and intuition in selecting vectors to enter the basis when a
choice is available,

D. Comparison of Methods. - - As a measure of the number of arith-
matical operations per iteration for the proportional loading problem,
we may use the number of multiplications to be performed.

For Type I and II formulations the number of multiplications in.
each iteration is (r+2)(s+1), while for a Type III formulation this
number is (s - r + 1)(s + 2). The preference for formulation on the
basis of number of arithmatical operations, therefore, depends on the
relationship between s, the number of bars, and r, the number of redun-
dancies.

A seeming disadvantage of the first two type formulations is the
apparent need for inverting the aiJ matrix in order to eliminate the
equalities. In general, however, the ai? are never found explicitly,
and because of the special nature of the equilibrium equations the

solution for the redundant forces in terms of the non-redundant ones is

usually not difficult,

61
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E. Frames and Beams, -~ For frames and beams where axial force

effects are assumed negligible a parallel discussion can be given.

If the number of beams in the frame is b; the number of joints, v;

and the number of loads not at joints, E ; then the number of multi-

plications for a Type I or II formulation is (3b - 3v+ 2)x(2b+£+ 1),

For a Type III formlation this number is (3v - b + L+ 1)x(2b + L+ 2),
If axial forces are to be considered, it is necessary to introduce

a linearized yield criterion. A convenient choice which offers a

good approximation is lﬁﬁit : [DlLL

Mpa Nl?k'

This has already been discussed in Section 4, Chapter II where bounds

<\

were found for the safety factor. Here a technique for determining the
exact safety factor is briefly outlined.

The equilibrium equations are first solved for the non-redundant
moments and forces in terms of a set of redundant moments and forces.
Introducing these into the yield conditions, a Type II problem results,
This may be solved by the technigques in Section 2, Parts A and B of this
chapter.

Because of the nature of the yield conditions it is not possible to

reduce this problem to a bounded variables problem (Type III).
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Chapter IV
EXAMPLES OF LINEAR PROGRAMMING METHODS

To illustrate and compare the three methods of solution of
linear programming problems described in Chapter III as applied to

structural collapse problems, we consider a simple example and solve

it by the three methods.,

Consider the once redundant truss in Figure 7 loaded with a single

concentrated force as shown. The members are numbered as indicated,

and the equilibrium equations (3;20) may be written

Jg .~ Kl

T?
e
Sy = D
e g e

,

W
W
+
‘4}»
e
o
It

The fully plastic forces in tension and compression are taken to be

the same and equal to Np. The yield criteria (3.21) become then

‘SJéNP ((‘:IJL/"'/L’)
Now letting x; = S6/Nﬁ and x, = }\b/Np and solving the equilibrium
equations for Sl, Sz, ks S5 in terms of these, the yield criteria
may be written .

-2 «x, +%¥Ll$l
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\—-{%: X, + X\—\ =\

\K\—%XL\é‘
el =1

The safety factor against collapse is the largest value of szp/b
consistent with the above inequalities.

Define 13 vectors in a two-dimensional space as

. »3/5 o =4/5
Pl = --P7 = N P2 = -P8 = i
=3/5
Py = -P9:( 0) P, = -P10:<-a/5)
1
1
P5: -P11:< l\ Pg 2 =l ™ ¢
=5/k

»2)

The problem in vector notation is then to maximize x2 = Pc',x subject to

/
PS Nt .(&':lj)_l...,n_) (4.1)
The equation P;jx = 1 defines a line in two-space for each j. The
vector Pj is normal to this line and points into the half-spacg for
which the corresponding inequality is violated. All of the lines de-
fined by equality in (4.1) are shown in Figure 8. The set of points
.A_ for which all of (4.l1) are satisfied is the parallelogram ABCD,

and the maximum value of x, is obtained at the point D (1, 8/5).
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The safety factor is then

s N
k=g

An analytic solution is obtained by the dual method (Section 2B,

KRk

be the initial basis for the space. This is not an extreme point

Chapter III). Let

solution of_/\. but is used here to find such an extreme point solution
(Appendix C). The initial tableau appears in Table IIIA.
Since Pé X5 >0, T , is chosen to be =1, This multiplys the e,

row by -1, Now choose the minimumcover j of

P./x ._.C ’, e
B2 o Bls=o
% & (P/x-('-') i

This occurs for j = 5 and is 4/5. Since P§<x2'7 0, Py, replaces e,
in the basis.

The result is Table IIIB, The process is iterated and T, is
chosen to be -1 after which P6 replaces €. Table IIIC represents the
final solution.

The maximum value of X,) 8/5, appears in the P, column and the z(Pj)
row. Thus A = 8Np/5b. The presencé of Py and Pll in the basis indi-
cates that bar 6 yields in tension and bar 5 in compression, i.e., 55 = -Np,
56 . Np. The other axial forces are read off from the last row since

o ’D I E(Pi)] Np
Thus S, = 3up/5, S, = -aNp/s, S3 = -3Np/5, 5, = th/B.
The dual to this problem is a simplex problem and the same initial

tableau (Table IIIA) may be used if the vectors e,, e, are given large



B e 1 3 1 1 1 1
l aj P, P, P, Ps P, Py Py
0 e 0 | -3/5 | =u/5| =3/5|=4/5| 1 1
0 ez 1 3/b| O 0 1 | =5/b| ©
Z (PJ) 0 -1 -1 -1 -1 -1 -1
i

C 3 g it b 1 ¢ ;i & 1
l ai P, P, P, Py P, Py Py
Y ey | u/5 0 | -u/5| =3/5 o 0 1
1 Pyy | B/5 | 3/5 0 0 L/5 | -1 0
z (Py) i e e R W e R B
.

CJ : 3 1 1 1 | 1l
aj Py P, P, Ps P, Ps Pg

1 B L A5 00 |-u/5] =3/5 0 0 1
1 Pyy | 4/5 3/51 "o 0 L5 | =1 0
z (Py) 8/5 ['=2/5'1-9/5 15-8/5 | 4/5 | = 0

Table III
Dual Method Solution
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positive weights, M. This changes the last row, z(Pj) only. Now many
vectors, i.e. those for which z(Pj) 7 0, may enter the basis. Py is
chosen on an intuitive basis and thus e leaves the basis. The re-
sulting tableau is shown in Table IVA, Ph then replaces e, and Table IVB
results, Finally P5 replaces Ph and the final tableau will be identical
with Table IIIC.

Notice that the solution in Table IVA corresponds to the point
(1, M) in Figure 8 and the solution in Table IVB to the point G(1, 9/5)
in that figure.

It should also be noted that J, H and all other intersections of
the lines lying above D are feasible solutions to the above simplex
problem,

Finally, to formulate the problem as a bounded variables problem
(Type III), let wj=l 1—(sj./Np) Tor 1= L. 3 v as D and 1t
Wy = A b/N_. The equilibrium equations become

O e o P /s
U\_+%—LJ], =Wis | |
We + —‘5‘: hly W s
e T
2

w“3+ L«/“,:Y/S
And the yield criteria are

02 W, & 2 (c=/1...14)
To this we add .

osw-,éM

where M is an arbitrarily large positive number,



cj 7 ¥ & " 3 5 1 1l
ai Po P, Pz P3 Ph PS P6
1 Pg | O |=3/5 Pu/5 |3/5|4/5 |1 1
M es 4 3/L 0 0 1 5/4 0
3M/L
z(P3) M -8/5| -9/5| -8/5| M - 9/5 =54/u| ©
A
i
|
Cj e 1 1 1 : 4 1
l ai Po P1 Pg P3 Pl& PS P6
1 | W | O |=W5] a5} @ 0 1
1 P, 1 3/b 0 0 1 | =5/} ©
z (Py) 9/5 | <4/ | =9/5| -8/5 | © | =9/u| O

Table IV

Simplex Hethod Solution

70
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To find an initial basis, it is necessary to find a linearly in-
dependent set of column vectors defined by the matrix of the equilibrium
equations. Using unit vectors €15 o o e5 in V5 with large negative
weights, =N, these column vectors are expressed in Table VA, In one

iteration ey is replaced by P7, e3 by Ph’ e, by Pl, and e_ by P,.

4 5 3

Table VB shows the result. Then P2 replaces 5.
This then leads to the initial bounded variables solution in

Table VIA. The values in the { column are values of Wy i.e.,

w, = 8/5, W, = 1/5, wy = 2/5, W, = 9/5, wy = 8/5. Since a - appears

under P; and a + under Py then S; = 3Np/5, Sy = -uNp/5, 83 = -3Np/5,

S, = hNy/5, S5 = -Np, Sg = N and A = 8N /5b.
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Cy > | o 0 0 0 0 0 1
l aj Po P, P, Ps P, Py P P,
P e ey | 9/5 1 L/5 @
N es | 9/5 1 L/5
i el | es | 9/5 @ | whs
—->| ¥ e, |85 | @ 3/5
—=>| =N es | 8/5 @ 3/5
2 Bdgret—rr | ¥ 2N | -N | «N |- ms— - —?l -
srumeiudo
C > | o 0 0 0 0 0 1
l aj P, P, P, Py P, Ps Py P,
X P | 9/5 1 ‘ L/5 1
—-> | N ea | 9/5 ) L/5
0 R e 1 | 4/5
0 Py 8/5 1 3/5
0 Ps | 8/5 1 3/5
o AR R ML W 0 L/5 | =LN/5 0
T B
|
Table V. .

Initial Solution to Bounded Variable Problem
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- gl 0 2 2 2 2 ©) M
C L 0 0 0 0 0 1
l By 4y A P, " W0 R SRR O T
1 P, | © M A5 | =5 | 1
0 Pa. |08 L..0/5 3 /5
0 Bl HALLVE A S
0 P, | 85| 2/5 1 3/5
0 i Asl an : 1 3/5 |
Z (Pj) »1 .0 0 0 0 L/5 @@ 0
L R T S e S p b ., -
by ——| 2 2 2 2 2 2 M
Cy i | g 0 0 0 0 0 3
Bp i P, P, P, Ps P4 Py
1 P, | 8/5 |M -85 MS [LsE | 2
0 bl /S| 25 1 L/5
0 Baed 35 L A3 1 | w5
0 P, | 8/5| 2/5 ! 3/5 :
0 Bl a8 | 85 1 3/5
z (py) ».1 0 .0 0 0 L/5 | =L/5 0
Bp + n > | 4, = |+, = | #, = | 4, - + +, -
Table VI.

Bounded Variables Solution |
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Appendix A
THE DETERMINATION OF COMPLETE SETS OF BASIC MECHANISMS FOR FRAMES

A set of basic mechanisms is called complete if the equilibrium
equations associated with the set form a complete, linearly independent
set of equilibrium equations., For quadrilateral or rectangular frames
it will be shown that the set B defined in Section 1, Chapter II is a
complete set of basic mechanisms, For more general frames a definition
of basic mechanisms which leads to a complete set will be given.

For quadrilateral frames the equilibrium equations associated

with the set B of basic mechanisms form a complete, linearly inde-

pendent set.

It will be shown first that the equations are linearly independent.
Every beam mechanism equation contains a bending moment at a cross-
section not at a joint, Moreover this bending moment does not appear
in any other beam equation nor in the equilibrium equation for any
joint or frame mechanism, Each beam mechanism equation is, therefore,
independent of all others of the set, The equation for a joint mechan-
ism contains at least one bending moment which does not appear in any
frame mechanism since side-sway can occur in only one direction at each
joint. Since the moments appearing in the joint equations are mutually
exclusive, these equations are independent of all others.

Finally, the moments appearing in each frame mechanism equation
are mitually exclusive. It follows that all of the equilibrium equations

are linearly independent.

To show that these equations form a complete set it is necessary
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to show there are exactly n - r basic mechanisms where there are n
critical cross-sections and r redundancies in the frame (Chapter I).

let F, J, B be the number of frame, joint, and beam mechanisms
respectively. It must be shown that F+B+J =n -r, We let b
represent the number of members in the frame; v, the number of joints
or vertices; s, the number of supports; and f, the number of closed
quadrilaterals in the frame.

Now the number of frame mechanisms, F, can be shown to be

k= 7—'*“}" (a.1)

Starting with the simple frame

F=1l, v=2, b =3, f=0 so the relationship is valid. Now all
quadrilateral frames can be constructed from this simple frame by

adding a sequence of either closed quadrilaterals and/or open
quadrilaterals plus supports. During any addition in the sequence,

bars can be appended to the existing frame only at existing joints, i.e.,
beams may be joined only at their end points. :

If a closed face is added then the increase in the number of
joints, Av, is either 1l or 2, If Av = 1, then the increase in frame
mechanisms is AF = 0; and if Av =2, AF =1, On the other ha.r.ld,
for the addition of an open face and support, Av is 0 or 1. 1In the

first case [\F = -1 and in the latter, AF = 0. In every case then
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At D)
Now the number of bars added, Ab, is related to Av by

Ajr 7 A/u‘+ {
Thus

AF = 2 A - AL

and hence the number of frame mechanisms is given by (a.l) for any
rectangular frame.

Now, from the definitions, J = v and B = { where { is the number
of loads not at joints. The total number of basic mechanisms is

therefore

F+B+d=3/\f“/(r+£ (8..2)

A formula due to Euler EL5] states that for a set of closed
polygons lying in a plane and joined along their edges; the vertices,

V; edges, E; and faces, F; are related by

. il Bt
Quadrilateral frames are just such a collection of polygons with ¢

some of the edges removed and supports placed at the free ends of
beams., Now removing an edge also removes a face, so counting supports
as vertices the Euler formula remains valid. In the notation we have

used for frames

A +N"—1r+/6 =1 (a.3)
Thus :

i 3(|+L—¢—{§)
and (a.2) becomes

NG S TR )
The number of critical cross-sections is

W= 14@-+£ (a;h)
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and the number of redundancies is

JL=3«6+ 3(4—l)= 3'6'\—3‘.—3 e

Therefore,
. 5 A e
This completes the proof of the statement.

A complete set of basic mechanisms can be obtained for more
general frames consisting of any arrangement of straight beams rigidly
joined as follows.

For general frames, joint and beam mechanisms are defined exactly
as they are for quadrilateral frames (Section 1, Chapter II). There
are v { such mechanisms where v is the number of joints and ¢ the
number of loads not at joints, A total of n = r independent mechanisms
are needed to form a complete set. It follows from (a.3), (a.4), (a.5)
then that 2v - b independent mechanisms in addition to the joint and
beam mechanisms are required.

For general frames the set of frame mechanisms is defined as
2v - b independent mechanisms which are also independent of all joint
and beam mechanisms., These can be found by considering mechanisms for
which hinges appear only at ends of beams. A necessary and sufficient
condition that they.be independent of each other is that none may be
obtained from the others by a rotation of joints,

For quadrilateral frames, of course, the set of frame mechanisms

defined by Neal and Symonds satisfies this definition as well,



Appendix B
PROOF OF THE FUNDAMENTAL THEOREMS

For a beam cross-section which yields under the action of a
bending moment and an axial force,the flow vector is defined as a
two-dimensional vector whose first componqnt is proportional to the
relative axial velocity of the adjacent cross-sections and whose
second component is in the same proportion to the relative rotational
velocity of the beam segménts adjacent to that cross-section.

An essential requirement for the theorems of limit analysis to
apply is that the flow vector be orthogonal to the yield curvel:i6] .

For a yield curve defined by (2.36) then the relative velocity,

Ji’ and the relative rotational velocity, ei? at a yielding crgss-

section must satisfy

50 _ 16
M Np: (b.1)
Notice that if a cross section yields and either N; =0 or M =0,

the flow vector is arbitrary to within an angle /2, i.e., at a point
on the yield curve where the tangent is discontinuous the flow vector
is not uniquely determined. However for Ny = O
5. | 80 104
5 NPL
and for M; = 0 M ;
¢
lg;'7/ ‘N"E_"Qc\
Pl
THEOREM: A statically admissible multiplier for Problem 1 is less

than or equal to the safety factor for that problem.

PROOF: Let A be the safety factor against collapse and let M, Ni
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be the bending moments and axial forces in equilibrium with the loads
A bj' If the collapse mechanism is defined by velocities, Vj’ rela-
tive rotational velocities, Qj, and relative axial velocities, J.,
then from the equation of virtual work

Zh: (M6, +N; &) w i :‘Z’,@cm

(3
and

R %Y

Z bixt >0 (b.2)

=y

Let 4\'be a statically admissible multiplier and let M{, N{ be moments
and forces in equilibrium with loads ):bj. Then again from the prin-
ciple of virtual work
n
_Z (M(IQ,; + N;( SQ) =2 )\' Zj_/ﬁ;/\)';
Subtracting the two virtual work equations there results
n W
O\—X) Z/erg/U} oo Z(ML'M(/)QL +(N:”Ncl) gg (b.3)
bl § ¥
Now since M{, N{ are statically admissible
' ! (
L{V‘,‘_‘.+M5M+M = | (b.4)
Mpi NP( /Y\PC NP;
for each i, ;
M8, + N = (M8 + [N (8]
Three cases arise: (i) My # 0, N, #0; (ii) Mj g0, Ny = 0; and
(ii1) M, =0, N; £ 0.
For case (i) M

\g(l: bl—\l—? '&\ (ba5)
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and

! My ‘
MeBoe NG 8. = (ot g I} 16l
Now from equation (b.5)

‘ : - 8. / &; / Mc /
M O +N: 4 _{W M. + e N T\{;B(&l

< {1md) o 2 1N} 1

Each term in the sum on the right of (b.3) is then greater than or

equal to

LM e R gy = (uoacte G ()] (6

But from (b.4), the term in equare brackets is non-negative and, there-
fore, the corresponding term in the sum in (b.3) is also non-negative,

For case (ii)

L
lfgxl & —g': let‘ (be6)
and
[Mi‘:MPi
Thus

and from (b.6)

/ { 0. ' Sc (V\( (
M( @;‘\'N( 5;- -~ {T@T\ Ms*"_g‘:\’l\f;: thlet\

& {lMJ\ + %vﬂ lNJ\} 16, |

Thus each term in the sum on the right of (b.3) is greater than or equal

to



8l

[(V\?& {1m/| + e Nr» - [N \\1 (6.\

From (b.4) the term in square brackets is non-negative and thus so
is the corresponding term in (b.3).

Finally for case (iii)

Vo] > P—,:}J‘;— 16! (b.7)

e

and

U\U =N
MLSL + N(gc" Nptl g\\

Thus

and from (b.7)

M8+ N/ < {‘G\M?M +lgs‘N Slgl
é{%ﬁlﬂli’\ +lN{\BlM

Thus each term in the sum on the right of (b.3) is greater than or

[ Npe - (R et + NS

From (b.4) the term in square brackets is non-negative and thus so is

equal to

the corresponding term in (b.3).

Therefore, every term in the sum on the right of (b.3) is non-

negative. Combining this result with (b.2), it follows that
/
A-N >

This completes the proof of the theorem,
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THEOREM: A kinematically sufficient multiplier for Problem 1 is greater

than or equal to the safety factor against collapse for that problem,

PROOF: Consider a mechanism defined by velocities, vg; rotational
velocities, 8‘3"; and axial velocities, 5‘3;*; such that
L7\ = g 1]
$ blﬁ { (b.7)

The kinematically sufficient multiplier associated with this mechanism is

- z/vl*te*\ + ZN (871
: A

where M?, N§ are a system of moments and forces compatible with the

hinge distribution.
Now if A is the safety factor then there exist moments and forces,

Mj’ B, equlllbrlum with loads A b such that
N

LR B |
T R bt
P¢ P4 P Pt
at the yield hlnges in the given mechanism. Moreover,
%S
*.
ZW8+NS)=A§%ﬁ
from the prlnclple of virtual work.
We will assume now that only isolated hinges appear in the given
mechanism, i.e., there are no yield bars present., An argument similar
to the one below can be given for the excluded case,

The last equation given 2 bove can be written
. g(md- o +N; &)
2i,J$JAq?
i
Z(IMHG’*IHNI e
;-L Ljwy

and using (b.7)







Appendix C

INITIAL SOLUTIONS TO LINEAR PROGRAMMING PROBLEMS

We present here methods for obtaining initial feasible solutions
to Type I and Type II linear programming problems. For Type III pro-
blems it is sufficient to find a basis for the vector space of the
equalities (3.2). The method developed for Type I produces such a
basis.
1. Type I Problems.

Consider the following modificationl of the Type I problem for-

mulated in (3.1), (3.2), (3.3): To minimize

=, /oJ b % z\f‘ M (c.1)
subject to
W
P, = Z:/o&- L (c.2)
‘=l Wt
Ly e SRl k) (c.3)

ri 7/0 (‘:3’/)'1"‘/»“)
where e; is a unit vector with plus or minus one as the ith component

depending on whether the ith component of Pb is positive or negative,
and where M is an arbitrarily large‘positive number,

The solution to this problem is identical with the one phrased
in (3.1), (3.2), (3.3) since the minimum will occur for xg_: 0 for
all i.

A basis for this problem, however, is readily available. Indeed,

the basis a; may be taken to be

1This modification was first suggested by Dantzig [é] » See

footnote to page 340.
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a;:e¢ (C?IJL,..A m)

7

It follows from the definitions of & and O(i that

yt :e.'_ (l:tljl,--." \f"\)
The entries of the tableau (Table I) are, therefore, easily computed.

The vectors e.

1 need not be carried in the tableau since if an ei

leaves the basis it cannot return because it carries a large positive
weight, M. It will require exactly m iterations in order to obtain a
basis comprised entirely of vectors chosen from among the Pj. However,
in many cases these iterations are trivial and require a minimum of
calculations.,

As mentioned previously a basis ay for Vm in a Type III problem
can be obtained in the same way. The basis for Vﬁ+n is then aj for
I8 12,1 nand?i =(ai).

Qi
2. Type 1I Problems.

We now develop a method for finding an initial extreme point solution
to Type II problems.

If any point w satisfying (3.5) can be found then a simple change
of variables will translate this point to the origin. Starting from
the drigin, the following method then produces an extreme point solution
by use of the dual method applied to a modified problem.

The Type II problem arising from the simple proportional loading
collépse problem is given by (3.23) and (3.24). From (3.26), ;7 0
and this implies that x = 0 is a solution to (3.24).

Consider now the modifiedl problem to maximize Pix subject to

IThe author is indebted to Dr. C. E. Lemke for suggesting this

modification.
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‘-'x écd- (J:pJL,...,u) (c.4)
o; ePx = o (c:;lxj...,w.)‘ (c.5)
CJ 0 (c.6)

where ei is a unit vector in Vm with +1 as the ith component and o
is either equal to +1 or -1 and is chosen according to the criteris
described below,

Notice that the origin is an extreme point of the modified problem
regardless of the choice of sign for ng The basis vectors associated
with this point are e 1ol O T Sogb e U

The set of points x satisfying (c.4) is designated by {\. The
set satisfying both (c.4) and (c.5) is lYﬁ Note that (c.5) is just a
restriction to some orthant of Vﬁ once the signs of (Ti have been chosen,
In order that the solution to the modified problem coincide with the
original problem, it is necessary and sufficient that the Cri be chosen
in (e.5) so that the point x in /\ for which Plx takes on its maximum
also is contained in Jﬁ?, i.e., the correct orthant of V, must be chosen.

The advantage of the modified problem is, of course, that x = 0 is
an extreme point solution. Startiné from this solution and using the
dual method a value of Cfi for some i is chosen at each iteration,
and the corresponding ei leaves the basis in favor of some Pj'

The procedure for accomplishing this is as follows: Let the basis
at some stage be‘el, s o ey €, Ps+1’ ..,Pm where the signs of Tas

1’
o1 5% b crm have already been properly chosen. Let the dual vectors to



this basis be ij, i.e,,

T e
(e.7)
/ " i (L‘4+|/ w\) '
P‘, e SLJ (J “Haain £in
Then
Z(P’ Jer ¢ Z(P «)P.

C=a+

and if X, is the extreme point of A corresponding to this basis then

by definition

€¢1X°° 0 (C:v,z,...IA_)
(c.8)
R/X N (¢ A pilhieg 3
Let
: gk, o G"( lé% <o
then
Z(P )(G N GZ@QQ (elo() +(P/ )(e
% - hR U )(PX)—SZ@ (P« )
Now from (c.7) S AN
€</Mi 2 o ((:[},“’%-11%+11__J,4)
F{/CXT) =0 (( Sadig u‘)

and uéing (c.8)
fir- 18 (P,’o(%)(e%'x
The last sum is P! x, so
P'x = Pl kih ,%)(%/Y)

Three cases arise: (i) Pc'>°(q<05 (i1) Péo(q)O; (1ii) Péo(q =0,

Z@«KPx)

(=a+

For case (i) if e(';

yielding a larger value of the functional than X, cannot lie in the

x >0 then Pix <P!x,. It follows that any x
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half-space e('l; 20, but must satisfy
+ e%' X £ 0
Thus o is removed from the basis and we pick o T kg
For case (ii) if ea; < 0 then again Péz < Pix . Thus similarly

it is necessary that

Again eq is removed from the basis but crq is chosen to be =1,
Finally for case (iii), Pé;c = Plx, and the choice of G“q is deferred
for the present,
If at some stage of the computations, case (iii) holds for all e;
remaining in the basis then the choice of O—i for those e; is arbitrary.
The usual algorithm (3.16) is used to proceed to a new tableau.
In this way in m iterations all of the e; are eliminated from the
basis and the appropriate values of o 1 equal to +1 or -1 are chosen,
Notice that the "modified" simplex or dual techniques for control
of round-off error [ 5] are readily adaptable to the methods of this

appendix, »
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