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abstract

This dissertation contains three chapters, and each examines the securitization of student loans.

The first two chapters focus on the underpricing of Asset-Backed Securities (ABS) collateralized

by government guaranteed student loans during the financial crisis of 2007–2009. The findings

add to the literature that documents persistent arbitrages during the crisis and doing so in the

ABS market is a novelty. The last chapter focuses on the securitization of private student loans,

which do not benefit from government guarantees. This chapter concentrates on whether the

disclosure to investors is sufficient to prevent the selection of underperforming pools of loans. My

findings have normative implications for topics ranging from the regulation of securitization to

central banks’ exceptional provision of liquidity during crises.

Specifically, in the first chapter, “Near-Arbitrage among Securities Backed by Government
Guaranteed Student Loans,” I document the presence of near-arbitrage opportunities in the student

loan ABS (SLABS) market during the financial crisis of 2007–2009. I construct near-arbitrage lower

bounds on the price of SLABS collateralized by government guaranteed loans. When the price of

a SLABS is below its near-arbitrage lower bound, an arbitrageur that buys the SLABS, holds it

to maturity and finances the purchase by frictionlessly shorting short-term Treasuries is nearly

certain to make a profit. The underpricing on some SLABS relative to Treasuries exceeded 22%

during the crisis.

In the second chapter, “SLABS Near-Arbitrage: Accounting for Historically Unprecedented
Macroeconomic Events,” I analyze whether the risks associated with unprecedented macroe-

conomic events, such as exceptionally high inflation or default by the government on its loan

guarantee, could explain the large underpricing of SLABS relative to Treasuries observed during

the financial crisis of 2007–2009. Using data on inflation caps, interest rate swaps and interest

rate basis caps, and comparing the price dynamics of SLABS to other securities benefiting from a

similar government guarantee, I find that for 90% of SLABS, the aforementioned risks explain at

most 25% of the near-arbitrage gaps.

In the third chapter, “Securitization with Asymmetric Information: The Case of PSL-ABS”

(joint with Adam Ashcraft), we empirically analyze the adverse selection of loans in the private

student loan (PLS) ABS market. Using loan-level data, we demonstrate the potential for an issuer

of PSL-ABS to select loans in such a way that could result in materially adverse outcomes for

investors (credit rating downgrades or market value losses). We find that an issuer could increase

pool losses on the non-cosigned portion of securitized pools by 6%–20% among pre-crisis deals

and by 16%–36% among post-crisis deals while still matching the pool characteristics disclosed to

investors. The shifts in pool losses are achieved by exploiting the coarseness of the disclosure and

by jointly overrepresenting unseasoned loans in the low credit score region and overrepresenting

seasoned loans in the high credit score region. We present multiple additional channels for adverse

selection of private student loans that could substantially increases losses without altering the
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disclosed characteristics of PSL-ABS deals (e.g. overrepresenting college drop-outs, the share of

which is known to the securitizer but not disclosed). The existence of such channels indicates that

our estimates of ABS issuers’ ability to affect pool performance via loan selection at the time of

securitization should be interpreted as lower bounds.
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Chapter 1

Near-Arbitrage among Securities Backed
by Government Guaranteed Student
Loans

1.1 introduction

The financial crisis of 2007-2009 presented several challenges for central banks in perform-
ing their role of liquidity provider of last resort. In the preceding decade, the origination
of consumer loans became increasingly reliant on their indirect sale to investors purchas-
ing asset-backed securities (ABS). Most ABS markets experienced sharp declines in prices
during the crisis. Simultaneously, the cost of raising funds to originate loans increased.
These events raise several questions. Were these declines in prices excessive? Could cen-
tral banks have reduced the distress of financial intermediaries by purchasing ABS above
market price, and yet be taking virtually no risk with taxpayer money? Central banks
attempted to stimulate the origination of some types of consumer loans by providing
non-recourse loans to ABS buyers. Were the cash-down requirements on the loans to ABS
buyers sufficiently large to virtually eliminate the risk taken with taxpayer money?

I contribute to answering the above questions by documenting large underpricings
among securities backed by government guaranteed student loans, henceforth SLABS,
relative to Treasuries during the crisis. SLABS are unique among the universe of ABS.
Holders of SLABS receive cash flows from a pool of loans that are explicitly guaranteed
against borrower’s default by the US federal government.1

1The guarantee on student loans issued under the Federal Family Education Loan (FFEL) program
is explicit since it is mandated by US federal law. It is in contrast with the implicit guarantee that many
investors expected the US government to fulfill on bonds issued by some of its government-sponsored
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I proceed by first computing lower bounds on the price of SLABS. I call these bounds
near-arbitrage lower bounds. Once the price of a SLABS is below its near-arbitrage lower
bound, an arbitrageur that buys a SLABS, holds it to maturity and finances the purchase by
frictionlessly shorting short-term Treasuries, is nearly certain to make a profit. Events that
can cause a loss on that trade are: i) hyperinflation, ii) default by the US government on
its loan guarantee or iii) the credit worthiness of the US government becoming worse than
that of the average large commercial bank. During the crisis, the probabilistic assessment
of market participants, revealed through derivative and bond markets, indicated that
these events were extremely unlikely to occur in the next two decades.

I show that the lowest observed price of some SLABS was 8% to 22% below their near-
arbitrage lower bounds during the crisis.2 The aggregate principal of SLABS outstanding
was approximately $190 billion in 2008.3 For the majority of SLABS that presented near-
arbitrage opportunities, their underpricing first exceeded 2% at the end of August 2008
and only reverted to less than 2% at the end of July 2009. Therefore, the near-arbitrage
underpricings were large and persistent.

In Chapter 2, I present empirical evidence that for more than 90% of SLABS, the risks
associated with historically unprecedented macroeconomic events, such as exceptionally
high inflation and default by the government on its loan guarantee, explain at most
25% of their underpricing. Therefore, puzzlingly large relative mispricings remain after
accounting for all sources of risk.

Some of the normative implications of my paper set it apart from the existing literature.
My paper is the first to document severe relative underpricing in any ABS markets. These
findings have novel normative implications for central banks’ measures of liquidity
provision and their attempt at stimulating the origination of loans during crises. I also
propose an original reform that would reduce the costs of the guaranteed loan program
for the US government. Implementing the reform without putting taxpayer money at risk
requires my methodology to compute near-arbitrage lower bounds. Finally, my findings
have implications for a US government asset purchase program.

The US government can issue Treasuries to finance the purchase of SLABS. The

enterprises, such as Fannie Mae and Freddie Mac.
2Appendix 1.7.1 contains the list of SLABS trusts that satisfied all selection criteria that makes the

analytical derivation of near-arbitrage lower bounds applicable to those trusts. Among the SLABS issued
by those trusts, the difference between their near-arbitrage lower bounds (Pt) and the lowest observed price
exceeds 8% when the senior overcollateralization ratio of the pool exceeds 1.06 and the expected paydown
date of the SLABS is 2015q1 or later.

3In the fall of 2008, the aggregate volume of government guaranteed loans found in the securitized
pools of SLM corp. alone was greater than $100 billion. SIFMA estimates the volume of SLABS outstanding
to $191.9 billion for 2008.
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purchase of SLABS at a price below their near-arbitrage lower bounds, but higher than
their market price, would have helped reduce the financial distress of some financial
intermediaries, and would have produced a profit for the government with near certainty.

Near-arbitrages among SLABS can act as a canary in the coal mine by signaling a
severe need for liquidity provision. A temporary program of liquidity provision, such as
the Term Asset-Backed Securities Loan Facility, would be more effective at dampening
an excessive contraction of credit if implemented as soon as near-arbitrages are present.
Furthermore, the near-arbitrages among SLABS allows a decomposition of the discounts
on ABS collateralized by other types of loans, such as auto or credit loans, into a liquidity
component and credit component. The central bank can ask for greater compensation for
credit risk than the market, but little to no compensation for liquidity risk, when it sets
its cash-down requirements on the collateralized loans it offers.

My findings provide insights to reduce the costs of the US federal program of guar-
anteed student loans. Outside of crises, near-arbitrage lower bounds could be used to
establish a guaranteed price at which the government promises to repurchase SLABS in
the future. In exchange for the provision of these put options, the government would
reduce its supplemental interest payments.4 As of the end of 2013, there were still more
than $250 billion dollar in loans guaranteed by the US federal government, also called
FFEL loans, outstanding. Therefore, small reductions in supplemental interest payments,
on the order of 0.10%, would translate into savings of $250 million, just in the first year
following the reform.5

My findings also contribute to the asset pricing literature. Classical asset pricing
theory generally assumes that a sufficient number of arbitrageurs can frictionlessly short
an expensive asset to raise funds to purchase a cheaper asset with identical cash flows.
The trades of arbitrageurs should lead to convergence in prices between the two assets.
My paper adds to a growing empirical literature that documents large mispricings during
the crisis that pose a major puzzle for the classical asset pricing theory. The TIPS-Treasury
arbitrage documented by Fleckenstein, Longstaff, and Lustig (2014), the convertible
debenture arbitrage in Mitchell and Pulvino (2012) and the Treasury bond-Treasury note
arbitrage in Musto, Nini, and Schwarz (2014) are notable examples in the literature.

Arbitrageurs generally attempt to minimize the cost of financing the purchase of an
asset by pledging it as collateral for the funds lent to them. Arbitraging capital would be
irrelevant for the relative price of SLABS and Treasuries if cash-down requirements on

4The government makes interest payments to holders of government guaranteed loans that supplement
the payments made by borrowers.

5Assumes 100% participation rate in a voluntary loan swapping program that involves the exchange of
a FFEL loan for a loan with a put option that receives smaller supplemental interest payments.
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loans collateralized by SLABS were 0% when SLABS become near-arbitrage opportunities.
However, the empirical work of Gorton and Metrick (2009), Copeland, Martin, and
Walker (2014) and Krishnamurthy, Nagel, and Orlov (2014), suggests that cash-down
requirements were at least 5% for SLABS during the crisis. This stream of empirical work
partially explains the presence of near-arbitrage among SLABS.

The simultaneous occurrence of near-arbitrage among SLABS and other arbitrages
during the crisis supports the hypothesis that arbitraging capital was spread too thinly
across a multitude of arbitrages to eliminate them all. Thus, my findings support the
slow-moving capital explanation of arbitrage persistence. I hence provide additional
evidence in favor of the recent theoretical work by Gromb and Vayanos (2002), Duffie
(2010), Ashcraft, Garleanu, and Pedersen (2011), Garleanu and Pedersen (2011) that
stresses how arbitraging capital can be an important determinant of the relative pricing
of assets.

The remainder of this Chapter is organized as follows. Section 1.2 describes the cash
flows on SLABS. Section 1.3 presents benchmark no-arbitrage lower bounds on simplified
SLABS.6 Benchmark no-arbitrage lower bounds on simplified SLABS are analytically
derived and denoted by Pt

††. Bankruptcy of the initial servicer and risks associated with
unprecedented macroeconomic events are ignored to derive Pt

††. Section 1.4 presents
near-arbitrage lower bounds, denoted by Pt, computed by simulations for a large sample
of SLABS. The computation of Pt only ignores the risks associated with unprecedented
macroeconomic events.7 The examination of the pricing and the cost of hedging risks
associated with unprecedented macroeconomic events that can cause a loss on a SLABS-
Treasury trade initiated at Pt ≤ Pt takes place in Chapter 2. Section 1.5 examines the
implications of near-arbitrages in SLABS for exceptional measures of liquidity provision
to market participants and a government-run asset purchase program. A cost-saving
reform of the FFEL loan program that relies on the near-arbitrage lower bounds on SLABS
is also discussed. In Section 1.6, I make concluding remarks.

1.2 sources of cash flow on slabs

In this section, I describe the sources of cash flow on pools of FFEL loans that collateralize
SLABS and the rules of distribution of that cash flow among various claimholders.

6Section 1.3 presents the simplifying assumptions imposed to obtain a simplified SLABS.
7Conditional near-arbitrage lower bounds for SLABS, which are computed after abandoning the

simplifying assumptions, but under the maintained condition that the initial servicer avoids bankruptcy
and ignoring risks associated with unprecedented macroeconomic events, are denoted by Pt

† and presented
in section 1.4.2.
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ABS collateralized by FFEL loans are not perfectly homogeneous and many SLABS
have features that differ from the one presented in this paper. For tractability, this paper
focuses on a subsample of the SLABS issued by SLM, which is the largest issuer.8 All the
institutional details that I present are accurate for that subsample and the near-arbitrage
lower methodology is directly applicable to it. For brevity, I simply refer to SLABS, where
it would be more accurate to use SLABS in the selected sample. The selected sample is
listed in Table 1.10.9 Also, I only document near-arbitrage among senior SLABS, although
a securitized pool of FFEL loans commonly collateralizes both senior and subordinate
SLABS. For brevity, I use SLABS to refer to senior SLABS.

A SLABS is an amortizing variable-rate bond. Let yt denote the aggregate payment
to holders of SLABS collateralized by a given pool of loans in period t. Throughout the
paper, time periods are 3-months long, which is the frequency at which SLABS holders
receive distributions and the frequency at which interest rates reset. Let ρt denote the
aggregate principal of SLABS outstanding for a given pool of loans. SLABS promise an
interest payment that is tied to the 3-month LIBOR rate,10 plus a spread, s, that ranges
from 0 to 114 basis points.11 Throughout the paper, interest rates are described on an
annualized basis in the text of the paper, and in the spread analysis of Section 1.4.1, but
they must be inputted on a non-annualized basis in other equations.12 The equation that
describes the evolution of ρt over time is:

ρt+1 = ρt · (1 + (rLIBOR
t + s))− yt+1, (1.1)

where yt+1 ≥ 0 and rLIBOR
t denotes the LIBOR rate. Throughout the paper, I refer to the

full repayment of a SLABS, which is formally defined as ρt = 0 for some t.
I present the cash flows on SLABS in two steps. First, I present cash flows from a pool

of FFEL loans, as depicted in Figure 1.1. Second, I present the rules of distribution of the

8SLM uses the Sallie Mae brand to market its student loans. Sallie Mae was a subsidiary of SLM that
lost its government-sponsored enterprise status in 2004. SLM had securitized over 50% of the SLABS
outstanding in 2008.

9In most cases of SLABS with unusual features, a minor modification of the near-arbitrage methodology
would be needed.

10The London Interbank Offered Rate, LIBOR, reflects an average rate charged between large banks for
uncollateralized short-term loans.

11Two SLABS in the selected sample have negative spreads of 1–2 basis points. As shown in Section
1.4.1, there is roughly 0.40% of excess arbitrageur’s spread under the simplifying assumptions and the
worst assumptions that do not violate the interest rate ordering condition (C.2) of Section 1.3, in particular
rLIBOR

t = rt. Therefore, the proof of Section 1.3 would also apply to those SLABS.
12For instance, the annualized interest on SLABS is equal to the annualized 3-month LIBOR rate at time

t, plus an annualized spread of s%. However, in equation (1.1), the non-annualized rate must be plugged in
to recover the proper law of motion.
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cash flow from the pool to various claimholders, as depicted in Figure 1.2.
Let xt denote the cash flow from a pool of FFEL loans. The pool of loans is formed

prior to the issuance of SLABS.13 As loans in the pool amortize over time, cash flows
from the pool are used to pay down SLABS. The rules of distribution of the cash flow
from the pool to the various claimholders lead to yt/xt that is generally greater than 90%
and to a tight link between the amortization of the pool and the amortization of SLABS.

Pool of FFELP 

loans 

(              Principal 

of the pool) 

Students/Borrowers 

=
t
f

Principal payments 

Interest payments 

U.S 

Dept. 

of 

Educ. 

l

t
i

Supplement 

Rebate 

1 

2 

Guarantors 

Guarantee payments 3 

1  + 2 3  + = 
t
x

Figure 1.1: Cash flows from pool of FFEL loans: This figure shows the three sources of cash
flows from a pool of FFEL loans that collateralizes a SLABS. Students/borrowers make princi-
pal payments. Students make interest payments and the U.S. Department of Education either
supplements those interest payments or requires that a fraction be rebated to the government. A
net interest payment il

t results. Upon default by a borrower, a guarantor pays a fraction of the
student’s debt outstanding. The fact that the guarantee is backed by the U.S. federal government
is represented by a dashed line.

A pool of FFEL loans has three sources of cash flow. First, students/borrowers make
principal payments. Second, students make interest payments and the federal government
either supplements those interest payments or requires that a fraction be rebated to the
government. A net interest payment, il

t, results.14 Third, upon default by a borrower, a
guarantor pays a fraction of the student’s debt outstanding.

13From the date of issuance of the SLABS onward, no loan gets added to the pool. Using the structured
product terminology, SLABS are collateralized by a static pool of loans. A minority of student loan ABS
have a revolving pool of loans, but they are not covered in this paper.

14The U.S. Department of Education supplements interest payments in two ways. First, a borrower may
make full interest payment at a given rate, but the government supplements those interest payments in
order for the holder of the loan to receive a higher rate. These supplements are called special allowance
payments. Second, the government pays interest on behalf of students that received subsidized loans, while
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The formulas of the Department of Education that determine interest supplements
and rebates on FFEL loans result in a net interest payment of il

t = rFCP
t,t+1 + m, where

m ≥ 1.74%.15 rFCP
t denotes the financial commercial paper rate with a maturity of 3-

month. rFCP
t,t+1 denotes its quarterly average.16 I model loans as accruing interest with

m = 1.74%.
The FFEL program relies on a network of not-for-profit agencies, called guarantors,

to guarantee the student loans. Upon default by a borrower, conditional on proper
origination and servicing of the loan, a guarantor pays a fraction of the student’s debt
outstanding. This fraction may vary with the year of origination of a FFEL loan, but it
is always at least 97%.17 There is an explicit guarantee from the government to make
payments on default claims, if a guarantor becomes insolvent.18

Default claims filed with guarantors can be rejected because of improper servicing
or improper origination. Historically, SLM’s contractual obligation to repurchase loans
whenever rejected default claims have a “materially adverse effect” for SLABS holders
has kept write-downs due to default claims rejected below 0.03% of pool balance. Write-
downs due to default claims rejected would have been less than 0.05% without the
proceeds from the repurchases.19

Figure 1.2 presents the rules of distribution of the cash flow from the pool to various
claimholders.20 The rules of distribution are hierarchical. The cash flow is first used to
pay the loan servicer and the administrator of the SLABS trust.21 Then, if anything is left,

they are in-school. Although the payment of interest by the government on subsidized loans is a form of
credit enhancement, I conservatively treat all loans as unsubsidized in this paper. Finally, prospectuses for
SLABS use floor income rebate to refer to the rebating of interest payments to the government.

15The net interest rate can differ between loans disbursed at different dates and between loan in various
statuses, (such as in-school, in repayment, or in deferment.), but it is always at least rFCP

t,t+1 + 1.74%.
16The Federal Reserve Bank publishes a 3-month financial commercial paper rate daily (publication

H.15). rFCP
t,t+1 is computed by averaging those rates over a quarter.

17FFEL loans are either 100%, 98% or 97% guaranteed. For my analytical analysis, if a pool of loans
contains any loans that are 97% guaranteed, then I assume that the entire pool is 97% guaranteed. If a pool
of loans only contains loans that are either 98% or 100% guaranteed, I assume that the entire pool is 98%
guaranteed. While SLM does not explicitly disclose a balance-weighted average loan guarantee for a SLABS
pool in its quarterly distribution reports, it discloses a balance-weighted average coupon and since coupon
and loan guarantee have a one-to-one relation, it becomes possible to infer the balance-weighted average
loan guarantee. I use inferred balance-weighted average loan guarantee when computing near-arbitrage
lower bounds by simulations.

18See Federal Law, 20 U.S.C. §1082 (o).
19Based on a sample that covers the period from December 2001 to March of 2011, with an increasing

number of deals in each period, reaching 60 deals by the end of the sample.
20I only present the rules of distribution that are relevant for the senior SLABS. For example, Figure 1.2

and the rest of the paper abstracts from the principal distribution to subordinate SLABS holder, because
they only occur, if they occur at all, after all senior SLABS have been repaid in full.

21The trust is the entity that intermediates collection from the pool of loans and distribution to various
claimholders.
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the remaining cash flow is used to make a second type of payment. Then, if anything
is left, a third kind of payment is made, etc. In Figure 1.2, the first type of payment is
depicted at the top and each successive type of payments is placed below.22

Event of 

reprioritization? 

Interest payment on SLABS: ),min( 1112 -- ×-= ttttt ix rzz

Interest payment on sub. SLABS:  

Payment of principal on SLABS:  

Payment of servicing and admin. fees:   ),min( 11 -×= tttt fx fz

),min( 11

3

1

4 t

sub

tt

i

ittt x frrzz -+-= --

-

å

),min( 11

2

1

3

sub

t

sub

t

i

ittt ix --

-

×-= å rzz

Payment of excess distributions:  å
-

-=
4

1

5

i

ittt x zz

Distributions 

to sr. SLABS 

holders: 

 

ttx 1z-

No (                ) 1/ >tt rf

tx

t1z

Yes (               ) 1/ £tt rf

Figure 1.2: Distribution of cash flows from pool of FFEL loans: This figure shows the distri-
bution of the cash flow from the pool, xt, among various claimholders. ft is expressed as a
percentage of the pool balance. Specifically, ft is obtained by dividing servicing and administrative
fees in dollars, at period t, by the pool balance, at period t− 1. it denotes the interest rate on
SLABS. isub

t denotes the interest rate on subordinate SLABS. ρsub
t denotes the aggregate principal

of subordinate SLABS collateralized by a given pool of loans.

Two sets of rules of distribution are possible. Which rules apply depend on whether
an event of reprioritization has occurred. Either way, the cash flow from the pool is
used to pay servicing and administrative fees first. Servicing and administrative fees
are expressed as a percentage of the pool balance and denoted by ft. Let φt denote the
aggregate principal of FFEL loans in a pool. When φt/ρt ≤ 1, an event of reprioritization

22This paper focuses on SLABS issued by SLM and yet not all of them have the same rules of distribution.
The SLABS that do not conform with the rules of distribution presented in this section are excluded from
the selected sample.
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is triggered. The senior overcollateralization ratio is computed from φt/ρt. For brevity, I
use overcollateralization ratio to refer to the senior overcollateralization ratio.

If no event of reprioritization is triggered, the pool of loans is performing relatively
well, and the cash flow from the pool is applied to interest payments on subordinate
SLABS prior to being applied to principal distribution on senior SLABS. If an event of
reprioritization is triggered, the entire cash flow that is left after paying the servicing
and administrative fees is distributed to senior SLABS holders. Therefore, the rules of
distributions are such that symptoms of underperformance by the pool of FFEL loans
trigger a reprioritization that advantages senior SLABS.

Two features of SLABS that have not been presented yet will be used in later sections.
First, annualized servicing fees are at most 0.90% of the pool balance. Administrative
fees are at most $25,000 per quarter.23 For SLABS in the selected sample, their individ-
ual pool balance was at least $98 millions throughout the crisis, thus initial annualized
administrative fees were at most 0.11%. Second, a close look at Figure 1.2 reveals that
payments of principal on SLABS under the no-event of reprioritization rules of distri-
bution, denoted by ζ4t, are constrained to be no greater than (ρt−1 + ρsub

t−1 − φt), where
ρsub

t denotes the aggregate principal of subordinate SLABS collateralized by a given pool.
I refer to this constraint as the total overcollateralization constraint because it prevents
φt/(ρt + ρsub

t ) > 1 from occurring. The total overcollateralization constraint is removed
once the pool balance is less than 10% of the initial pool balance.24 Excess distribution
certificate holders receive positive cash flows when the total overcollateralization con-
straint binds. The overcollateralization ratio on SLABS generally increases from their
issuance onward. The total overcollateralization constraint slows down the build up
of overcollateralization. If structured without the total overcollateralization constraint,
SLABS would become safer sooner after issuance.

I sum up the information presented in this section with a set of equations. The
equations abstract from minor features of SLABS that will be accounted for in the final
computation of near-arbitrage lower bounds in Section 1.4. Let xk

t denote the cash flow
on an individual FFEL loans and φk

t denote its principal. Incorporating the minimum
loan guarantee and re-arranging the law of motion for the principal of an individual loan,

23One would plug in ft = 25, 000/φt−1 +
0.90%

4 in Figure 1.2, and equations (1.10) and (1.12).
24For clarity, initial pool balance refers to the balance of a pool of loans at time of issuance of the SLABS.
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gives:

xk
t =


φk

t−1 · (1 + il
t−1)− φk

t , without default,

0.97 · φk
t−1 · (1 + il

t−1), with default and default claim paid,

reck · φk
t−1 · (1 + il

t−1), with default and default claim rejected,

(1.2)

where il
t denotes the net interest rate on FFEL loans and reck the recovery on loan k that

would follow the rejection of its default claim. Note that for the case with default claim
paid, cash flow from the loan can be re-written as xk

t = 0.97 · (φk
t−1 · (1 + il

t−1) − φk
t ),

since φk
t = 0. Note that, making worst case assumption on recovery, reck = 0, the

cash flow from the loan for the case with default claim rejected can be rewritten as
xk

t = 0.97 · (φk
t−1 · (1 + il

t−1)− φk
t )− 0.97 · (φk

t−1 · (1 + il
t−1)), since φk

t = 0. Let 1k
{def. reject}

denote the indicator function that takes value 1 if loan k entered default and the default
claim was rejected by the guarantor, and value 0 otherwise. Therefore, the following
inequality holds:

xk
t ≥ 0.97 ·

(
φk

t−1 · (1 + il
t−1)− φk

t
)
− 0.97 · 1k

{def. reject}
(
φk

t−1 · (1 + il
t−1)

)
. (1.3)

For a pool with N borrowers, let the write-downs in period t, wt be given by:

wt =
N

∑
k=1

1k
{def. reject} · φ

k
t−1 · (1 + il

t−1), (1.4)

and let write-downs as a percentage of pool balance be denoted by ωt.
Therfore, for a pool with N borrowers, the following inequalities hold:

N

∑
k=1

xk
t ≥0.97 ·

( N

∑
k=1

φk
t−1 · (1 + il

t−1)−
N

∑
k=1

φk
t
)
− 0.97 ·wt, (1.5)

N

∑
k=1

xk
t ≥0.97 ·

( N

∑
k=1

φk
t−1 · (1 + il

t−1)−
N

∑
k=1

φk
t
)
− 0.97 ·ωt · φt−1, (1.6)

xt ≥0.97 ·
(

φt−1 ·
(
1 + (il

t−1 −ωt)
)
− φt

)
, (1.7)

xt ≥0.97 ·
(
φt−1 − φt + φt−1 · (il

t−1 −ωt)
)
. (1.8)

Consider the cash flow from a pool consistent with the issuance of SLABS at time 0
and with first distribution date at time 1. Let Tφ denote the termination date of the pool,
meaning the first period when φt = 0 occurs. Re-arranging and aggregating over time,
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gives:
Tφ

∑
t=1

xt ≥ 0.97 ·
(
φ0 +

Tφ−1

∑
t=0

φt · (il
t−1 −ωt)

)
. (1.9)

And, the aggregate cash flow on the SLABS, yt, is given by:

yt =

ζ2t + ζ4t, if φt/ρt > 1,

xt − ζ1t, if φt/ρt ≤ 1.
(1.10)

where equations that explain the ζit terms can be found in Figure 1.2. ζ1t is at most
ft · φt−1. Let Tρ denote the termination date of the SLABS, meaning the earlier of the
termination date of the pool and the date of full repayment of the SLABS. The special
case with ρ0 = φ0 and φt/ρt ≤ 1 for all t ≥ 1, gives:

Tρ

∑
t=1

yt ≥
Tρ

∑
t=1

xt −
Tρ

∑
t=1

ft · φt−1≥ 0.97 ·
(
φ0 +

Tρ−1

∑
t=0

φt · (il
t−1 −ωt)

)
−

Tρ

∑
t=1

ft · φt−1, (1.11)

≥ 0.97 ·
(
ρ0 +

Tρ−1

∑
t=0

φt · (il
t−1 −ωt)

)
−

Tρ

∑
t=1

ft · φt−1. (1.12)

In Section 1.3, I place these cash flows in an environment with an arbitrageur that
can frictionlessly short Treasuries. I identify weak conditions on {il

t}
Tρ

t=0, {rLIBOR
t }Tρ

t=0,
and the 3-month Treasury rate {rt}

Tρ

t=0, and stronger conditions on { ft}
Tρ

t=0 and {ωt}
Tρ

t=0,
such that an arbitrageur that buys a SLABS at a sufficiently low price is guaranteed to
make a profit on a trade that goes long SLABS and short Treasuries. In Section 1.4, I
present near-arbitrage lower bounds that yield at least 99.9% probability of profit on
the SLABS-Treasury trade, when weak conditions on interest rates are maintained and
no default by the government on loan guarantees is assumed. The near-arbitrage lower
bounds are computed after relaxing the condition on { ft}

Tρ

t=0 and {ωt}
Tρ

t=0 by setting them
equal to empirically derived upper bounds.

1.3 benchmark no -arbitrage lower bounds on the

price of simplified slabs

In this section, I analytically derive benchmark no-arbitrage lower bounds for simplified
SLABS under the assumption that the initial servicer avoids bankruptcy and ignoring
risks associated with historically unprecedented macroeconomic events. The no-arbitrage
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lower bounds, denoted by Pt
†† serve as a reference point that provides intuition for the

near-arbitrage lower bounds that are computed by simulations in section 1.4.
Three simplifying assumptions characterize a simplified SLABS:

Simplifying assumption 1 (SA.1): All supplemental interest payments by the govern-
ment and payments by guarantors upon default are paid without delay.

SA.2: The net interest rate on FFEL loans is at least rFCP
t + 1.74%.

SA.3: Administrative fees are 0.20% of the pool balance or less.25

Next, I explicitly state an assumption that is standard in the financial literature when
frictionless no-arbitrage exercises are conducted:

Modelling assumption 1 (MA.1): Investors can frictionlessly short Treasuries to finance
their purchase of SLABS. There are no transaction costs.

The analytical no-arbitrage lower bounds only apply to SLABS that meet the following
conditions, thus I refer to them as selection criteria:

Selection criterion 1 (SC.1): The rules of distribution of the cash flow from a securitized
pool of loans among various claimholders is as presented in Figure 1.2.

SC.2: The SLABS trust receives offsetting payments from the servicer for reductions in
interest rate or principal offered to borrowers.

SC.3: The interest rate spread over LIBOR promised on SLABS is positive, s ≥ 0.

SC.4: None of the SLABS collateralized by the pool are auction-rate securities.26

SC.1 is partly to reiterate that not all ABS collateralized by government guaranteed
student loans are structured the same way. However, all SLABS in the selected sample,
which are listed in Table 1.10, satisfy SC.1 as well as SC.2 to SC.4.27

The following two conditions have a very low probability of being violated and I
assume that they are met in order to derive analytical no-arbitrage lower bounds:

25Both administrative fees and servicing fees are annualized for easy comparison with the annualized
interest on SLABS and pools of FFEL loans.

26For an analysis of the collapse of the auction rate securities market, see Han and Li (2010).
27There are a few exceptions of SLABS with negative spreads of no more than a few basis points. As

shown in Section 1.4.1, there is roughly 0.40% of excess arbitrageur’s spread on a simplified SLABS when
worst case assumptions that do not violate the conditions of this section are used, meaning rLIBOR

t = rt
and rFCP

t = rt. Therefore, Proposition 1 would also apply to those SLABS. But, it might not apply to
out-of-sample SLABS that would have negative spreads smaller or equal to -0.40%.
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C.1: The U.S. federal government does not default on its guarantee on FFEL loans.28

C.2: rFCP
t ≥ rt and rLIBOR

t ≥ rt in every time period.29

The following two conditions have low probability of being violated and I use them to
derive the benchmark no-arbitrage lower bounds of this section:

C.3: Servicing fees are 0.90% of the pool balance.

C.4: Default claims rejected cause write-downs of no more than 0.05% of the pool balance,
per quarter.

A sufficient condition for C.3 to hold is that SLM, which is under contract to service
the underlying loans of all SLABS in the selected sample, avoids bankruptcy. Historically,
SLM’s contractual obligation to repurchase loans whenever default claims rejected have a
“materially adverse effect” for SLABS holders has kept write-downs due to default claims
rejected below 0.03% of pool balance. Write-downs due to default claims rejected would
have been less than 0.05% without the proceeds from the repurchases. Both conditions
C.3 and C.4 are guaranteed to hold as long as SLM avoids bankruptcy. Conditions C.3
and C.4 could also hold despite the bankruptcy of SLM, but this would require that the
SLABS trust finds a successor servicer that accepts the terms of SLM’s servicing contract
which is uncertain.

Let Pt denote the price of a SLABS with a principal of $100. Proposition 1 establishes
a benchmark no-arbitrage lower bound for SLABS:

Proposition 1: If conditions C.1 to C.4 hold, then buying a simplified SLABS when
Pt <$97 and the overcollateralization ratio is greater or equal to 1 (φt/ρt ≥ 1), and
financing the purchase by shorting 3-month Treasuries leads to a positive cash flow
97− Pt at time t and non-negative cash flows in every subsequent period. Thus, the
simplified SLABS-Treasury trade is an arbitrage.

Proof See Appendix 1.7.2.

The series of equations presented at the end of Section 1.2 provides intuition about the
asset side of an arbitrageur’s balance sheet. The shorting of Treasuries creates a liability

28The full statement of the condition would end with the qualifier “between the date a SLABS is
purchased and its termination”. The qualifier is intuitive and is omitted for brevity. The qualifier is also
omitted from conditions C.2, C.3 and C.4.

29In other words, the risk of default by the U.S. federal government is perceived as lower than the risk of
default of financial institutions that issue commercial paper, which determines the rFCP rate, and the risk of
default on inter-bank loans, which determine the rLIBOR rate.
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for the arbitrageur. The proof shows that the cash flow from a simplified SLABS with a
principal of $100, which is purchased when its overcollateralization ratio is greater than
one, is certain to repay the arbitrageur’s debt that has face value of $97 or less and accrues
interest at the 3-month Treasury rate.

Proposition 1 can be modified and generalized in two ways. Let Pt
††|φt/ρt≥1 denote

the benchmark no-arbitrage lower bound on the price of a simplified SLABS with overcol-
lateralization ratio greater or equal to one. For SLABS collateralized by pools of FFEL
loans that only contain loans that are at least 98% guaranteed, Pt

††|φt/ρt≥1 = $98. If a
SLABS has an overcollateralization ratio below one, then an analytical no-arbitrage lower
bound can easily be computed by scaling Pt

††|φt/ρt≥1 by a factor of φt/ρt.
Taking as given that conditions C.1 and C.2 hold, Pt

††|φt/ρt≥1 can be interpreted in two
ways. First, no matter how high the default rates on the pool of FFEL loans, if SLM avoids
bankruptcy, then a SLABS-Treasury trade initiated when Pt < Pt

††|φt/ρt≥1 and φt/ρt ≥ 1
will be profitable. If SLM goes bankrupt, but a successor servicer accepts SLM’s original
servicing contract, then again, a SLABS-Treasury trade initiated when Pt < Pt

††|φt/ρt≥1

and φt/ρt ≥ 1 will be profitable.

1.4 near-arbitrage lower bound on the price of

slabs

In this section, I make two kinds of adjustments on the benchmark no-arbitrage lower
bounds derived in the previous section. On the one hand, all simplifying assumptions
on SLABS are abandoned to compute near-arbitrage lower bounds. Furthermore, the
near-arbitrage lower bounds do not rely on the survival of SLM or on the successor
servicer accepting the terms of the original servicing contract. These changes open up the
possibility of a loss on a SLABS-Treasury trade initiated at Pt =$97 when φt/ρt = 1. On
the other hand, all SLABS in the selected sample had overcollateralization ratio greater
than 1.03 throughout the crisis. I tighthen the lower bounds on the price of SLABS by
giving them credit for their overcollateralization ratio in excess of 1.

1.4.1 simulations , overcollateralization and relation with

analytical lower bounds

The benchmark no-arbitrage lower bound of Proposition 1 (Pt
††|φt/ρt≥1) did not give

credit to SLABS for their overcollateralization ratio in excess of one (φt/ρt > 1). Giving
full credit for the overcollateralization of a SLABS is important in order to compute
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near-arbitrage lower bounds that are tight. Figure 1.3 plots a pair of points for every
SLABS found in Table 1.10. The overcollateralization ratios range between 1.034 and 1.28
on January 2008 and they increase over time.

The simulation model allows a decomposition of the near-arbitrage lower bounds
into two components. Pt|φt/ρt=1 denotes the near-arbitrage lower bound obtained after
abandoning all simplifying assumptions and relaxing condition C.3 and C.4, but assuming
a counterfactual overcollateralization ratio of 1. Let γ(φt/ρt) be a scaling function that
depends on overcollateralization. Near-arbitrage lower bounds can be decomposed as:

Pt|φt/ρt(θt) = Pt|φt/ρt=1(θt) · γ(φt/ρt, θt), (1.13)

where θt is a vector of parameters that includes the pool balance, φt, the interest rate
level, rt, the interest rate spread on the subordinate SLABS, ssub, and a few other variables.
Holding Pt|φt/ρt=1(θt) < 100 constant, and starting from an overcollateralization ratio such
that Pt|φt/ρt(θt) < 100, increases in φt/ρt lead to increases in γ. Past a certain threshold,
increases in φt/ρt no longer lead to increases in γ, but they increase the payment of excess
distributions, as defined in Figure 1.2. This excess cash flow can help insure against losses
due to risks associated with historically unprecedented macroeconomic events.

Figure 1.3 depicts an important relation between two initial parameters used in the
simulations: SLABS that are collateralized by a pool with a low balance have high levels of
overcollateralization. If one focuses on the downward adjustment needed to go from the
benchmark no-arbitrage lower bound, Pt

††|φt/ρt≥1, to the lower bound Pt|φt/ρt=1 obtained
after abandoning all simplifying assumptions and relaxing condition C.3 and C.4, then
the downward adjustment would be larger on SLABS with a smaller pool balance.30

However, once proper credit is given for overcollateralization, the near-arbitrage lower
bounds for the sample of SLABS found in Table 1.10 become more similar and close to
$100.

positive arbitrageur ’s spread : sufficient but not neces-

sary

This subsection introduces the arbitrageur’s spread and explains how abandoning all
simplifying assumptions and relaxing servicing fee condition C.3 and write-down condi-

30The smaller pool balance is correlated with a smaller average principal per borrower. Therefore, the
presence of fixed administrative fees, after abandoning simplifying assumption SA.1, and the introduction
of servicing fees per borrower, as a consequence of relaxing condition C.4, cause a larger downward
adjustment on SLABS with smaller pool balance.

15



1
1.

1
1.

2
1.

3
1.

4
1.

5
O

ve
rc

ol
la

te
ra

liz
at

io
n 

R
at

io

0 1000 2000 3000 4000
Pool Balance ($ mill.)

Jan. 2008 Dec. 2009

Figure 1.3: Overcollateralization Ratio and Pool Balance. This figure plots the overcollateraliza-
tion ratio, φt/ρt, and the pool balance for all SLABS found in Table 1.10. There is a pair of points
for each SLABS: one for January 2008 and one for December 2009. There is an arrow showing the
dynamic between the two points.

tion C.4 can lead to quarters of negative arbitrageur’s spread. The occurence of quarters
of negative arbitrageur’s can easily be handle by the simulation model, but would be
challenging to handle analytically.

I define the SLABS spread, ςSLABS
t , by combining cash flows from the pool and rules

of distribution of the cash flow to SLABS:

ςSLABS
t =

φt−1 · (il
t−1 −ωt − ft)− ρt−1 · (rLIBOR

t−1 + s)− ρsub
t−1 · (rLIBOR

t−1 + ssub), if φt/ρt > 1,

φt−1 · (il
t−1 −ωt − ft)− ρt−1 · (rLIBOR

t−1 + s), if φt/ρt ≤ 1.

Assume an arbitrageur that buys the aggregate principal of SLABS collateralized
by a pool and finances the purchase by shorting 3-month Treasuries frictionlessly. Let
darb

t denote the arbitrageur’s debt, where darb
t = Pt/100 · ρt and let it evolve over time

according to:
darb

t = darb
t−1 · (1 + rt−1)− yt. (1.14)
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Let the arbitrageur’s spread, ςarb
t , be given by:

ςarb
t =

φt−1 · (il
t−1 −ωt − ft)− darb

t−1 · rt−1 − ρsub
t−1 · (rLIBOR

t−1 + ssub), if φt/ρt > 1,

φt−1 · (il
t−1 −ωt − ft)− darb

t−1 · rt−1, if φt/ρt ≤ 1.

And let the worst case arbitrageur spread, ςarb
t be given by:

ςarb
t =

0.97 · φt−1 · (il
t−1 −ωt)− φt−1 · ft − darb

t−1 · rt−1 − ρsub
t−1 · (rLIBOR

t−1 + ssub), if φt/ρt > 1,

0.97 · φt−1 · (il
t−1 −ωt)− φt−1 · ft − darb

t−1 · rt−1, if φt/ρt ≤ 1.

The simplifying assumptions and conditions imposed to derive Pt
††|φt/ρt≥1 = $97 in

Section 1.3 form a set of sufficient conditions that guarantees that, for a SLABS-Treasury
trade initiate at time 0 with darb

0 /ρ0 ≤ 0.97 and φ0/ρ0 ≥ 1, the worst case arbitrageur’s
spread is positive whenever φt/ρt ≤ 1. This can be illustrated by considering the special
case with darb

0 /φ0 = 0.97, φ0/ρ0 = 1 and φt/ρt ≤ 1 for all t ≥ 1, which gives:

ςarb
t = 0.97 · φt−1 · (il

t−1 −ωt)− φt−1 · ft − darb
t−1 · rt−1. (1.15)

Then, plugging in ft = 1.10%, and the worst case interest rate under condition C.2,
il
t−1 = rt−1 + 1.74% gives:

ςarb
t = darb

0 · (r0 + 1.74%− 0.20%)− 1
0.97
· darb

0 · 1.10%− darb
0 · r0 ≈ 0.40% · darb

0 (1.16)

in the first period. The “interest payment” portion of the cash flow from the pool, net of
write-downs, 0.97 · φt−1 · (il

t−1 − ωt), is more than sufficient to i) pay the servicing and
administrative fees and iii) pay the interest on the arbitrageur’s debt.31 Therefore, the
entire “principal payment” portion of the cash flow from the pool is available to make
principal payment on the SLABS, resulting in:

darb
1 ≤ darb

0 − 0.97 · (φ0 − φ1) (1.17)

darb
1 ≤ 0.97 · φ1 (1.18)

31The inequality that relates cash flow from the pool with interest rates and changes in pool balance,
equation (1.8), contains a φt−1 · il

t term that can be interpreted as an “interest payment” term. In the
background, we may have a situation where lots of borrowers are making interest and principal payments,
other borrowers making no payments, resulting in a constant pool balance. From the point of view of the
equation at the pool level, it looks as if all borrowers are making their interest payments and none are
making principal payment and the entire cashflow from the pool is categorized as “interest payment”.
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By iteration, with positive arbitrageur’s spread in every period, darb
t ≤ 0.97 · φt holds for

all t, and darb
t = 0 occurs for some t no greater than the date at which φt = 0. Therefore,

the arbitrageur’s debt is guaranteed to be repaid by the cash flow from the SLABS.
The special case above, and it’s generalized version, as summarized by Proposition 1,

is achieved by making worst case assumption that does not violate condition C.2, meaning
rFCP

t = rt. However, it relies on: i) simplifying assumption SA.3 on administrative fees and
condition C.3 on servicing fees to bound ft at 1.10%, ii) simplifying assumption SA.2 that
interest rate on FFEL loans is linked to rFCP

t instead of the actual rFCP
t,t+1, and iii) condition

C.4 to bound write-downs due to rejections of default claims. Abandoning all simplifying
assumptions and relaxing condition C.3 and C.4 allows for negative arbitrageur’s spread
in some periods.

Positive arbitrageur’s spreads in every period, while sufficient to guarantee the
profitability of a SLABS-Treasury trade initiated at $97, is not necessary for the SLABS-
Treasury trade to be profitable. The statement is valid even if we focus on worst case
scenario of defaults and start from a counterfactual level of overcollateralization φt/ρt = 1.
There are strictly positive arbitrageur’s spreads of at least 0.40% · darb

t in every quarters in
the environment of Section 1.3 for Pt ≤ $97, but the analytical no-arbitrage lower bound
of Pt

††|φt/ρt≥1 = $97 did not give credit to the SLABS for it.
In this section, simulations give proper credit to quarters of positive arbitrageur’s

spread, which helps offset the effect of some quarters of negative spreads and derive
near-arbitrage lower bounds that are not excessively loose. This is especially important
with respect to the replacement of rFCP

t by the actual rFCP
t,t+1 because of path dependencies.

For example, recurrent quarters of negative spreads may occur during a long period of
declining interest rates. However, because interest rates were low during the crisis, a
long period of declining interest rates must be preceded by a long period of increasing
interest rates, which creates positive spreads that either increase SLABS cash flow directly
or contribute to overcollateralization build up.

Recurrent quarters of negative SLABS spreads can occur when ft > (il
t − rt) in the tail

of the amortization of the pool. However, thanks to positive arbitrageur’s spreads early
in the life of a SLABS or thanks to overcollateralization, the arbitrageur’s debt can be
much smaller than the the pool balance once SLABS spreads become negative and the
cash flow from the SLABS may nonetheless finish to pay down the arbitrageur’s debt.

My simulation model allows taking the complicated path dependencies and dynamics
described above into account and gives proper credit to SLABS for quarters with positive
arbitrageur’s spread. It also allows to check whether immediate full default by all
borrowers or alternative scenarios lead to the largest downward adjustment relative to
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Pt
††|φt/ρt≥1.

simulations and pools with multiple tranches of senior

slabs

There is one additional reason for using simulations. Up to this point, I have assumed
that every pool of FFEL loans collateralizes a single senior tranche of SLABS. However,
empirically, the majority of pools collateralize multiple tranches of senior SLABS. SLM
2007-2 is a representative deal with four senior tranches collateralized by the same pool:
there is tranche A-1, all the way to A-4. When multiple senior tranches are outstanding
and no reprioritization event has been triggered, the principal distribution to senior
SLABS holders is entirely applied to the top tranche of a deal, until it is paid down.

Following the triggering of an event of reprioritization, the distribution of principal
payments among senior tranches of SLABS can either continue to be sequential or become
pro rata. When distributions are pro rata, the benchmark no-arbitrage lower bound of
Pt

††|φt/ρt≥1 = $97 applies to all tranches of a deal. Relative to pro rata distributions
among senior tranches, sequential distributions are detrimental to the bottom tranche
and beneficial to all other senior tranches. Therefore, Pt

††|φt/ρt≥1 = $97 is invalid for the
bottom tranche and too loose for the other tranches. The simulation model can compute
near-arbitrage lower bounds precisely for all cases.

The vector of inputs for cases with multiple tranches and overcollateralization strictly
greater than 1 is larger. For all tranches in the deal, the aggregate principal, ρ

Aj
t , and

interest rate spread over LIBOR, sj, of every tranche are determinants of the near-arbitrage
lower bounds.

1.4.2 abandoning the simplifying assumptions

fixed admnistrative fees

Administrative fees on securitized pools are at most $25,000 per quarter. On a percentage
basis, the pool balance needs to be smaller than $50 million for administrative fees to
exceed the 0.20% annualized fees assumed under simplifying assumption SA.3. Figure
1.3 shows that securitized pools either had balances 25 times greater than $50 million or
overcollateralization ratio greater than 1.10.

Furthermore, the total overcollateralization constraint presented in Section 1.2 no
longer applies when the pool balance is less than 10% of the initial pool balance.32 Once

32For clarity, initial pool balance refers to the balance of a pool of loans at time of issuance of the SLABS.
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the total overcollateralization constraint no longer applies, the payment of principal
on SLABS becomes accelerated. SLABS directly benefit from accelerated payment of
principal in quarters with positive spread. Since all pools in the selected sample have
initial principal balance greater than $1.3 billion, the total overcollateralization constraint
does not apply when there is less than $130 million left in the pool, at the latest. This
occurs at a much earlier date than the point in time at which the pool balance falls below
$50 million, which helps build up overcollateralization.

By simulation, I combine administrative fees of $25,000 per quarter with a staircase
scenario of amortization of the pool that maximizes the impact of default and fixed
administrative fees on the downward adjustment from Pt

††|φt/ρt≥1 to Pt|φt/ρt=1(θt). This
leads to a downward adjustment of at most $2, with largest adjustments among SLABS
with a low pool balance. Because pools with a low balance benefit from significant
overcollateralization, once overcollateralization is taken into account, switching from
administrative fees on a percentage basis to fixed administrative fees has either no effect
on the near-arbitrage lower bounds or trivial effects of at most $0.10.

r F C P
t , t+1 instead of r F C P

t

The Department of Education computes the net interest rate on FFEL loans by using the
quarterly average of the 3-month financial commercial paper rate. The interest payment
at time t + 1 on most consumer loans is based on the interest rate that was realized at
time t. The computation of interest payments on FFEL loans is unusual: interest rate
payments that occur at time t + 1 are computed by averaging realized rates between t
and t + 1.33 My notation attempts to reflect this peculiar feature of FFEL loans.

If interest rates during a quarter are lower than the interest rate at the beginning
of the quarter, then rFCP

t > rFCP
t,t+1 occurs. The simulation method uses the worst case

assumption that does not violate the interest rate condition C.2, meaning that rFCP
t = rt is

used. Thus, in my simulations, it is the difference between rt,t+1 and rt that determines
the arbitrageur’s spread. Furthermore, rLIBOR

t ≥ rt is required to prevent situations where
a SLABS is repaid in full, but the arbitrageur’s debt, incurred to purchase SLABS with
Pt = 100, is not repaid in full. rLIBOR

t > rt creates slack that is beneficial to the SLABS

33For example, the payment of an interest rate supplement to a FFEL loan holder on March 30th, 2008
would be based on the principal of the FFEL loan on January 1st, 2008, the average of the 3-month financial
commercial paper published daily from January 1st, 2008 to March 30th, 2008, plus a margin ranging
between 1.74% and 2.64%. The holder of a FFEL loan must partially rebate interest payments rather than
receive interest supplement when a borrower’s interest payment is in excess of the net interest promised by
the government to the holder of a FFEL loan. Whether the government pays an interest supplement or the
holder of the FFEL loan must rebate interest to the government, the computation is the same.
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holder. Therefore, the worst case assumption under condition C.2 implies rLIBOR
t = rt as

well as rFCP
t = rt.

How does one makes sure that the near-arbitrage is initiated at a sufficiently low price
to be robust to quarters with rt > rt,t+1? I check that near-arbitrage lower bounds are
robust to a wide universe of interest rate paths by simulations.

I use the regime-switching stochastic volatility model of Kalimipalli and Susmel (2004).
Interest rate paths produced by the model have a tendency to revert to a long-run mean,
a common feature of models of interest rate with short maturity. The model has shocks
that can counterweigh the tendency of interest rate to mean revert. The volatility of
these shocks is stochastic. For a given interest rate, the mean of the stochastic process for
volatility can either be high or low and switches between low-volatility and high-volatility
regimes can occur when interest rate paths are simulated. The following set of equations
describes the interest rate model that I use:

rt − rt−1 = a0 + a1rt−1 +
√

htr2α
t−1εt,

ln(ht)− µt = ψ(ln(ht−1)− µt−1) + σηηt,

µt = β + νλt, where ν > 0, (1.19)

P[λt = λj|λt−1 = λi] = pij, where λt = {0, 1},

where εt and ηt are independently distributed ∼ N(0, 1).

I estimate parameters a0, a1, ψ, ση, β, ν, p01, p10 using the Monte Carlo Markov Chain
(MCMC) approach of Kalimipalli and Susmel. The model is estimated on data for the
period 01/04/54 to 07/31/08. Therefore, the data contains periods with switches from
low to high volatility regimes and the period of high volatility and high inflation of the
early 80s. Details of the estimation method and parameter estimates can be found in
Appendix 1.7.3.

In addition, in my simulation model, I abandon simplifying assumption SA.1 that
supplemental interest payments by the government and payments by guarantors upon
default are paid without delay. Abandoning the assumption of no delays in government
and guarantor payments pushes near-arbitrage lower bounds to trivially lower levels.

1.4.3 upper bound on servicing fees

In my simulations, servicing fees are set equal to the maximum of i) the initial servicing
fee and ii) fees on a delinquency-robust marginal servicing contract.
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Table 1.1: Intermediate near-arbitrage lower bounds

Interest rate

Initial rate (rt) Type of path Pt
†|ρt/φt=1

1% Constant 96.98
2% Constant 96.84
15% Constrant 95.09

1% Stochastic 96.94
2% Stochastic 96.75
15% Stochastic 94.30

Simplifying assumption SA.1 of payments without delays is abandoned
and loans accrue interest at the rFCP

t,t+1 rate, meaning that SA.2 is abandoned
as well. The frictionless shorting assumption MA.1 is maintained and
conditions C.1 to C.4 hold. The near-arbitrage lower bounds are robust
to 1000 interest rate paths combined with extremely high rates of default
(cumulative default rate of 100% within 5–8 quarters of the initiation
of a SLABS-Treasury trade ), as well as another 1000 interest rate paths
combined with varying rates of default. Lower bounds guaranteeing
profitability of the trade obtained with the former set of scenario are
lower than the lower bounds obtained with the latter set of scenarios. The
“representative SLABS” used to set parameter values is the bottom tranche
of pool 2003-3, with a counter-factually low minimum loan guarantee of
97% and a counter-factually low overcollateralization ratio of 1.

Table 1.2: Servicing fees under initial contract with SLM

SLABS collateralized by non-consolidation loans: 0.90%
SLABS collateralized by consolidation loans: 0.50%

Table 1.3: Fees on a delinquency-robust marginal servicing contract

Fee to service a delinquent borrower (annualized): $70
Fee to service a non-delinquent borrower (annualized): $40
Upfront fee per borrower: $10
Default claim filing cost: $23
Default claim filing cut: 0.50%

22



Table 1.4 shows the main source of data used to derive fees for the delinquency-robust
marginal servicing contract. I use the fees bid by servicer to obtain contract from the
Department of Education to bound the cost of servicing a non-delinquent loan. I use
hand collected data, found in Appendix 1.7.4, to estimate the difference in the cost of
servicing a delinquent loan and a non-delinquent loan. I use the servicing fee on the
contract between Goal Financial and ACS to infer an upper bound on the profit margin
for non-delinquent borrower of approximately $17 or 70%. Applying the same profit
margin to the cost of servicing a delinquent loan, I obtain a fee on delinquent loan of
approximately $70. I add an upfront fee of $10 to insure against pre-payment risk. I
abstract from the fee charged to file default claims by servicer in Table 1.4, but they are
part of the servicing contract between ACS and Goal Financial. I add those fees to the
package of fees found in Table 1.3. This package of fees is sufficient to secure a new
servicer, regardless of the delinquency rate of in a pool.

Table 1.4: Servicing fees per borrower

Borrower’s Status DoE-Big 4 MOHELA-PHEAA Goal-GL Goal-ACS

In School: 13 N/A 15 22
In Grace: 26 N/A 37 45
Current: 26 36 39 43
Deferment/Forbearance: 25 36 39 45
Delinquent 0-30 days: 26 36 39 45
Delinquent 30+ days: 20 36 39 45

Duration: 5 years Life of loan 5 year 5 year
Borrower count (approx.): 1,000,000 100,000 5000-10000 500-2000

This table reports the terms of third party servicing contracts. The first column reports annualized fees
that constituted the winning bids from four large servicers (Big 4) for large servicing contracts from the
Department of Education (DoE). The second column reports the terms of a medium size contract between
MOHELA and PHEAA. The third and fourth columns report the terms of a very small contract between
Goal Financial and Great Lakes, and a marginal contract between Goal Financial and ACS. Servicing fees
are reported in dollar, maximum value is reported when a contract included a range of values and fees are
rounded up to the nearest dollar.

In addition, the servicing fees are indexed to inflation. The universe of inflation paths
considered for the purpose of deriving near-arbitrage lower bounds are those consistent
with the interest rate paths drawn from the regime-switching stochastic volatility model.
Assuming a real rate of 0%, inflation rate is set equal to the nominal interest rate. The
near-arbitrage lower bounds are robust to the indexing of servicing fees to inflation
and the inflation paths produced by the regime-switching stochastic volatility model of
interest rate. However, inflation paths that are abnormally high, combined with a scenario
of bankruptcy of the initial servicer, followed by servicing fees indexed to inflation, could
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be a source of loss on a SLABS-Treasury near-arbitrage initiated when the price of a
SLABS is at its near-arbitrage lower bound or below. Therefore, we had the following
conditions to conditions C.1 and C.2 for the near-arbitrage lower bounds computed in
this Chapter:

C.3.B: Servicing fees following the initiation of a SLABS-Treasury trade are set equal to
the periodic maximum of the initial fee (0.90% of pool balance on an annualized
basis) and the sum of the delinquency-adjusted fee of a marginal servicing contract
(unit fee per borrower that depend on borrower’s status). Servicing fees are indexed
to inflation. Inflation paths are limited to those consistent with the interest rate
paths drawn from the estimated regime-switching and stochastic-volatility model of
interest rate.

The hedging of inflation consistent with paths that fall outside those covered by
condition C.3.B is discussed in Chapter 2. The consequent downward revision of near-
arbitrage lower bounds on some SLABS, to reflect the cost of purchasing inflation caps, is
also presented in Chapter 2.

bounding write -downs due to the rejection of default

claims

Guarantors are allowed to refuse to make loan guarantee payment if they determine that
a loan was improperly serviced. SLM’s historical ratios of aggregate default claims over
aggregate principal across its securitized pools have never exceeded 0.05%.34 Aggregate
write-downs due to default claims rejected represent an even smaller percentage of
the aggregate principal of securitized pools: they have never exceeded 0.03%. SLM’s
contractual obligation to repurchase loans whenever default claims rejected have a
“materially adverse effect” on SLABS holders has three implications. First, it mechanically
explains the 0.02% difference between the first and second measure. Second, it justifies
the validity of conservatively bounding write-downs to 0.05% of the pool as long as
SLM avoids bankruptcy, as was done under condition C.4. Third, SLM’s obligation to
repurchase loans provides incentives that may contribute to the historically low levels of
default claims.

Should SLM go bankrupt and reject the initial servicing contract in bankruptcy, the
SLABS trust might find a successor servicer that accepts the same servicing contract as

34Based on a sample that covers the period from December 2001 to March of 2011, with an increasing
number of deals in each period, reaching 60 deals by the end of the sample.
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SLM and condition C.4 would continue to hold. However, a successor servicer may not
agree to such a low write-down threshold for the repurchase of default claims rejected
when a pool is expected to have an abnormally high level of default. In this section, I
propose a contract that possesses several desirable features. First, it is designed to be
appealing to a successor servicer, no matter how high the default rate on the pool of
loans. Second, it jointly incentives the successor servicer to properly service loans and
generously compensates him for providing insurance against abnormally high ratios of
default claims rejected over default claims submitted.

The ratio of default claims rejected over the pool balance can be decomposed into two
components: 1) the ratio of total default claims over the pool balance, and 2) the ratio of
default claims rejected over total default claims. My near-arbitrage methodology already
allows 1) to reach 100%. My near-arbitrage methodology draws 2) from a distribution
that is estimated from historical data. The distribution has no upper bound, thus it allows
for draws that have no historical precedents.

Figure 1.4 shows the rate of rejection of default claims in SLM’s aggregate portfolio
of securitized FFEL loans.35 I fit a gamma distribution to the data. I compute the
maximum likelihood estimators and their 80% confidence intervals. I assume that the
successor servicer draws rates of rejection of default claims from a gamma distribution
with shape and scale parameter set equal to the upper bound of the 80% confidence
intervals estimated. This constitutes a conservative distribution for the successor servicer
since the likelihood ratio statistics indicates that the probability that SLM’s data was truly
drawn from a gamma distribution with parameters this large is less than 1 in 250.

The contract with the successor servicer is designed to punish high rates of rejection
of default claims and to reward low rates. I force the servicer to repurchase default
claims rejected when they represent more than 2.85% of default claims. The repurchase
threshold represents the 99th percentile of the conservative gamma distribution, meaning
that only 1% of draws trigger a repurchase.36 Whenever the fraction of default claims
rejected is less than 2.85%, part of the cash flow received from loans is directed into a
bonus pool according to the formula:

bonust = 2.85% · default claims($)t − default claims rejected($)t. (1.20)

35I take the sum of default claims rejected ($) and divide it by the sum of all default claims ($) across all
pools of loans that collateralize SLABS for which SLM provides disclosure.

36I use the pre-crisis data. Using the full sample data would yield a repurchase threshold of 2.70%.
Which data to use depends on the question that is asked: since my current objective is to show that the
predictions of the frictionless no-arbitrage approach failed during the crisis, I use pre-crisis data. If the
objective is to determine near-arbitrage lower bounds to be used by the government for a future asset
purchase program, then the full sample should be used.
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Figure 1.4: Rate of rejection of default claims. This figure plots the time se-
ries of the aggregate rate of rejection of default claims, which is computed from
(default claims rejected($))/(default claims submitted($)) x 100, using all of SLM’s securitized
pools.

The formula yields a negative bonus when the fraction of default claims rejected exceeds
2.85%, which is exactly how I compute the repurchase obligation of the servicer. The
successor servicer does not need capital in order to cushion against repurchases: the
SLABS trust allows the successor servicer to carry a liability that the servicer should
be able to repay by drawing lower rejection rates in future periods. The bonus, when
positive, is not paid immediately to the servicer, but it accumulates in a bonus pool where
it accrues interest at the risk-free rate. In other words,

bonus poolt+1 = bonus poolt · (1 + rt) + bonust. (1.21)

The bonus is paid at the termination of the pool of loans.
In my simulations, I draw the rejection rate on default claims from the conservative

gamma distribution and use the bonus/repurchase scheme to compute cash flows to/from
the successor servicer. The successor servicer obtains a negative bonus in less than 1% of
simulations. Furthermore, since the servicing fee paid to the successor servicer produces
a profit of $20 per loan annually, total profits are positive more than 99.9% of the time.
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Table 1.5: Gamma distribution fitted to SLM’s rejection rate data

Panel A: 80% C.I. of the ML Estimators(MLE)

80% C.I. of MLE

κ (shape) θ (scale)

Pre-crisis [0.461, 0.838] [0.281, 0.674]
Full sample [0.618, 1.034] [0.287, 0.577]

Panel B: Testing joint hypothesis on parameters of gamma distribution

H0 : κ0 = ub0.80 and θ0 = ub0.80

Likelihood ratio statistics p-value

Pre-crisis 11.180 0.0037
Full sample 13.351 0.0013

Panel A of this table reports the 80% confidence interval of the Maximum Likelihood
Estimators(MLE) for the pre-crisis sample and full sample. The probability density function

of the gamma distributions is given by: f (y) = yκ−1exp(−y/κ)
Γ(κ)θκ . Panel B of this table reports

likelihood ratio statistics and p-value for the joint test that rates of rejection of default claims
for SLM were drawn from a gamma distribution with shape and scale parameters set equal
to the upper bound of the 80% confidence interval of the Maximum Likelihood Estimators.

This is despite worst case assumptions that the recovery on loans whose default claim
was rejected is 0% and the cure rate of default claims rejected is 0%.37 Thus, my analysis
suggests that the contract would have no difficulty attracting a servicer willing to succeed
SLM and SLABS holder can be almost certain that the successor servicer will be able to
make good on its promise to repurchase default claims rejected whenever they exceed
2.85% of default claims.

The vast majority of simulated scenarios require write-downs due to default claims
rejected and payment to the bonus pool of the servicer that are equivalent to write-downs
of 2.85% of default claims in every quarter. Combined with the worst case scenario
of cumulative borrower’s default rate of 100%, the write-downs due to default claims
rejected and bonus payment are significantly greater than the 0.05% of the pool balance

37The assumption is extremely conservative for several reasons. First, between 2005 and 2007, SLM was
able to cure between 50% and 73% of default claims rejected and obtained close to full reimbursement on
them. Second, the recovery rate of guarantors on regular default claims are roughly 40%. For example,
USA funds, a guarantor, had recovery rates ranging between 38% and 45% from 2006 to 2008. So, the
expected recovery rate of a servicer on uncured default claims rejected should be close to 40%. Finally,
I abstract from an endogenous adjustment in servicing effort and/or technology: the contract produces
incentives for the successor servicer to adjust is effort and/or technology in response to lower recovery rate
in order to maximize profit. If the successor servicer truly faced recovery rate of 0% on uncured default
claims rejected, the servicer would likely make adjustments to his effort and/or technology to reduce the
fraction of default claims that get rejected and increase his profit.
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assumed by condition C.4. Therefore, the near-arbitrage lower bounds obtained by
simulations are robust to a severe relaxation of condition C.4.

1.4.4 examples of slabs -treasury near-arbitrage

If we only maintain assumptions C.1 (no government default on loan guarantees), C.2
(the interest rate ordering rFCP

t ≥ rt and rLIBOR
t ≥ rt, for all t), and C.3.B (no historically

unprecedented inflation paths), what is the largest amount of arbitrageur’s debt that can
be repaid with near certainty from the cash flow on SLABS? What are the near-arbitrage
lower bounds now that we allow the bankruptcy of SLM and allow servicing fees to be as
high as the upper bound derived in Section 1.4.3? I answer those questions and present
the size of the gap between price observed during the crisis and near-arbitrage lower
bounds for the SLABS collateralized by two pools of loans.

slm 2003-3 a4: case with a single senior tranche outstand -

ing

From December 15th, 2005 onward, SLM 2003-3 A4 was the only senior tranche outstand-
ing on a pool of FFEL loans that initially collateralized four senior tranches of SLABS.38

Thus, the intuition of Section 1.3 applies to SLM 2003-3 A4 throughout the crisis. To build
on the intuition of Section 1.3, I first abstract from the overcollateralization ratio in excess
of 1 and examine the near-arbitrage lower bound under a counterfactual overcollateraliza-
tion ratio of 1. Table 1.6 reports a counterfactual near-arbitrage lower bound, Pt|φt/ρt=1,
of $93.00 for SLM 2003-3 A4. All the FFEL loans that collateralize SLM 2003-3 are at least
98% guaranteed. How does the near-arbitrage bound of $93.00 relates to the no-arbitrage
benchmark of Section 1.3? Proposition 1 states that if the difference between interest rate
on FFEL loans and interest on 3-month Treasuries exceeds servicing and administrative
fees in every period, then the SLABS-Treasury trade initiated at Pt ≤ $98.00 is always
profitable. The near-arbitrage lower bound is pushed down for several reasons.

The lowest break-even price on the SLABS-Treasury trade is obtained when two events
occur the day after the trade is initiated: i) all borrowers stop making payments on their
loans, and ii) SLM goes bankrupt. In addition to the 2% write-down due to default, there
are two other sources of write-downs: i) with 100% default, 2.85% of the principal is
paid to the successor servicer as bonus to properly service loans under the new servicing
contract and ii) 0.50% of the principal is paid to the servicer for filing default claims. If,

38I only discusses the case of SLM 2003-3-A4 in the text of this paper, but tables report data on SLM
2003-8 A4 as well. The two SLABS are nearly identical.
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for Pt = $98, arbitrageur’s spreads would have been positive in every period without the
additional write-downs, then the no-arbitrage lower bound would become $94.65 with the
additional write-downs. However, the arbitrageur’s spread is not positive in every period:
in the worst case scenario, the sum of the upfront servicing fee charged by the successor
servicer, the fee for a delinquent loan, and the fee for default filing, the arbitrageur’s
spread for Pt = $98 is -0.44% in the first year.39 In the simulation model, when a loan
defaults, the SLABS trust continues to pay servicing fees until a payment is received from
the guarantor. There is a delay of 60 days before the submission of a default claim and
its payment, and no interest accrues on the loan during this delay. Under the worst case
scenario of default, the delay in payment requires a downward adjustment of 0.30%.

SLM 2003-3 A4 enjoyed a large overcollateralization ratio during the crisis, so its
actual near-arbitrage lower bound was $100.18. The simulations are performed with the
difference between the LIBOR rate and the 3-month T-bill rate set to zero, the smallest
difference that does not violate condition C.2. Thus, although SLM 2003-3 A4 holders are
promised an interest rate of LIBOR plus 0.22%, in the simulations receiving what they were
promised means receiving the 3-month T-bill rate, plus 0.22%. The overcollateralization
ratio is so large that SLM 2003-3 A4 holders always receive what they were promised,
which leads to a near-arbitrage lower bound of $100.18. In the case of SLM 2003-3 A4, an
overcollateralization ratio of 1.09 would be sufficient to obtain a near-arbitrage bound of
$100.18. An overcollateralization ratio above 1.09 represents insurance against violations
of conditions C.1, C.2 or C.3.B.

Any fully informed investors would view SLM 2003-3 A4 as an asset that, if purchased
below its near-arbitrage lower bound and held to maturity, is almost certain to outperform
a roll-over investment in 3-month Treasuries. Yet, during the crisis of 2007-2009, SLM
2003-3 A4 was transacted for prices ranging between $92.50 and $96.06 on two occasions
by insurance companies.40 Since insurance companies only represent a fraction of market
participants on the SLABS market, it is very likely that other transactions occurred at a
significant discount to the near-arbitrage lower bound of $100.18. Quoted prices obtained
from the Bloomberg system are below $98.00 from late August 2008 to July of 2009.
Quoted prices reach a minimum of $91.60 in late December of 2008. Figure 1.5 combines
near-arbitrage lower bound with quoted and transaction prices and shows the magnitude

39All loans are delinquent, so a servicing fee of $10 + $70 + $23 = $103 per borrower is charged when
the average principal per borrower is $4,720, producing a servicing fee of 2.18% that is charged on loans
that accrue interest at the 3-month Treasury rate plus a spread that can be as low as 1.74%. The simulation
model assumes the minimum spread value of 1.74% for all loans.

40I collected data provided by the National Association of Insurance Commissioners on a Bloomberg
terminal.
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of the underpricings observed during the crisis.
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Figure 1.5: Near-arbitrage lower bounds and prices on a SLABS. This figure plots the quoted
prices and near-arbitrage lower bounds for SLM 2003-3 A4. Corresponding overcollateralization
ratio is presented for each point. The prices of seventeen transactions are added to the figure to
show that transactions at significant discount to the near-arbitrage lower bounds occurred.

slm 2007-2: case with several senior tranches of slabs

outstanding

In this subsection, I analyze near-arbitrage lower bounds for the four tranches of senior
SLABS (A1, A2, A3 and A4) collateralized by the pool SLM 2007-2.41

Table 1.6 reports four types of near-arbitrage lower bounds for SLABS collateralized
by the pool SLM 2007-2. The first type of near-arbitrage lower bounds, which is easiest
to relate to the benchmark no-arbitrage lower bound of Section 1.3, Pt

††|φt/ρt≥1, assumes
a counterfactual overcollateralization ratio of 1 and counterfactual pro rata rules of
distribution of the cash flow from the pool among senior SLABS following an event of
reprioritization. In that case, all tranches have near-arbitrage lower bound of $92 after
rounding down to the nearest dollar. The downward adjustment from Pt

††|φt/ρt≥1 = $97.8

41There is also a subordinate SLABS or a B tranche. The principal and spread over LIBOR paid on the
subordinate SLABS are inputted to compute the near-arbitrage lower bounds on senior SLABS. However, I
do not report on the subordinate tranche in Table 1.6.
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to Pt|φt/ρt=1 = $92 results from abandoning all simplifying assumption from Section
1.3 and setting servicing fees and write-downs due to default claims rejected equal to
their upper bounds. The second type of near-arbitrage lower bounds, uses the actual
overcollateralization ratio of 1.04, but maintains the counterfactual assumption of pro
rata rules of distribution of the cash flow from the pool among senior SLABS following
an event of reprioritization. The overcollateralization increases the near-arbitrage lower
bounds on the A1 and A2 tranche by $5 and $4 respectively. There is a small increase
in the near-arbitrage lower bound on the A3 tranche, but it is too small to show when
results are rounded down to the nearest dollar. The overcollateralization increases the
near-arbitrage lower bounds on the A4 tranche by $1.

Empirically, the cash flow from pool SLM 2007-2 is distributed sequentially among se-
nior SLABS after an event of reprioritization. Abandoning the counterfactual assumption
of pro rata rules of distribution and using sequential rules benefits tranches A1 to A3, but
harms tranche A4. With rules of distribution that continue to be sequential after an event
of reprioritization, the near-arbitrage lower bounds on tranche A1 to A3, whether using a
counterfactual level of overcollateralization ratio of 1 or the actual overcollateralization
ratio of 1.04, are $100. The near-arbitrage lower bound on the A4 tranche is $82 under
sequential rules, instead of $93 under pro rata rules. The A4 tranche benefits significantly
from the overcollateralization under sequential rules: its near-arbitrage lower bound
increases from $61 to $82 when the overcollateralization ratio increases from 1 to 1.04.

Table 1.6 reports a variable that quantifies how safe SLABS can be beyond a near-
arbitrage lower bound of $100. The slack variable is given by:

slackj
t =

∑all jj ρ
jj
t · Pt

∑jj≤j ρ
jj
t · 100

− 1, (1.22)

where j = 1 is assigned to the A1 tranche, j = 2 is assigned to the A2 tranche, etc. The
slack variable indicates how many additional dollars of SLABS can be repaid from the
cash flow on the pool after a given SLABS is paid down. For example, the slack of 0.40
on tranche A2 of pool 2007-2 means that for every dollar of A2 SLABS paid down by
the pool, an additional $0.40 of SLABS can be paid down from the cash flow on the pool
afterward. This level of slack roughly means that the SLABS-Treasury near-arbitrage
initiated with 2007-2 A2 when Pt = 100 would be profitable despite a 100% default rate,
default by the government on its loan guarantee and recovery on the loans of 72% instead
of the 97.8% obtained without default by the government on its loan guarantee.

Finally, Table 1.9 reports data on the persistence of near-arbitrage opportunities among
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SLABS. For the majority of SLABS, near-arbitrage underpricings of 2% or more first
appear in August 2008, at the latest, and disappear in July 2009, at the earliest. However,
there are exceptions, such as the A1 tranche of 2007-2, which had an extremely large level
of slack and was expected to be repaid within a 2-year horizon from the crisis, that have
shorter period of significant underpricings.

Table 1.9: Near-arbitrage persistence

Distribution
post event of Overcollat. Pt < 98

Pool Tranche reprioritization ratio Pt Begin End

2003-3 A4 pro rata 1.23 100 Aug-08 Jul-09
2003-8 A4 pro rata 1.23 100 Jul-08 Jul-09

2007-2 A1 sequential 1.04 100 Nov-08 Jan-09
2007-2 A2 sequential 1.04 100 Oct-07 Aug-09
2007-2 A3 sequential 1.04 100 Sep-07 Apr-12

This table reports the first date at which the price of SLABS dropped below $98 and
the last date at which the price of SLABS remained below $98 for a sample of SLABS
with a near-arbitrage lower bound of $100 from the fall of 2007 to the fall of 2009. The
overcollateralization ratio and the type of rules of distribution that follows an event of
reprioritization are important determinants of the near-arbitrage lower bounds and they
are also reported. The minimum overcollateralization ratio during the crisis is reported.

1.5 normative implications

This section examines the implications of near-arbitrages in SLABS for a government-run
asset purchase program and presents a cost-saving reform of the FFEL loan program that
relies on near-arbitrage lower bounds on SLABS.

1.5.1 central banks ’ exceptional measures of liquidity pro -

vision

The Term Asset-Backed Securities Loan Facility (TALF) was announced on November 25,
2008 and began operation in March 2009 (Ashcraft, Malz, and Pozsar (2012). The facility
lent on a non-recourse basis to investors that collateralized their borrowing with ABS that
had been pre-approved as TALF-eligible. Issuers of ABS would apply for TALF eligibility
and obtain it if their ABS met a list of eligibility criteria, notably a high proportion of
loans collateralizing the ABS originated no earlier than 2007. The goal of the program
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was to lower originators’ cost of funding recently disbursed consumer and small business
loans and to stimulate the origination of such loans.

The near-arbitrage gaps among SLABS that began in September 2007 and became more
important in August 2008 were an early signal that the cost of funding the origination
of consumer loans was becoming excessive. For policy-makers looking for an early
signal that there might be a need for an exceptional measure of liquidity provision, the
near-arbitrage gaps among SLABS can provide such a signal. The origination of FFEL
loan stopped in June 2010 after the Department of Education decided to abandon the
government guaranteed loan program and switched entirely to loans directly funded
by the government. The outstanding balance of FFEL has since been shrinking. While
ABS collateralized by FFEL loans are disappearing, their high correlation with other
arbitrages, such as the TIPS-Treasury arbitrage documented by Fleckenstein, Longstaff,
and Lustig (2014), means that these other arbitrages could become signals for exceptional
intervention.

Also, should a future crisis occur before the disappearance of SLABS or should the
US government re-instate a guaranteed student loan program in the future, then the
near-arbitrage gaps could guide the guide the setting of terms (haircut, interest rate)
at a facility that would complement a TALF-like facility and lend against ABS that are
more seasoned. If near-arbitrage lower bounds on SLABS indicate that financial markets
demand excessively large haircuts and interest rate given the price of SLABS (e.g. a
haircut that is greater than necessary to make a loan collateralized by a SLABS nearly-
riskless given the price of the SLABS), this can be a starting point to analyze whether a
central bank might want to extend ABS-collateralized loan to market participants on more
favorable terms than those offered by other market participants. By lending against ABS
that are more seasoned, the injection of capital would not necessarily translate into the
stimulation of the origination of loans that collateralized the ABS, but helping financial
market participants releverage their informational advantage into whichever asset class
they find most attractive would likely trickle down to some form of increase in real
investment or lending that would lead to increases in consumption.

1.5.2 asset purchase program

During the crisis, the private arbitraging capital was spread too thinly over several
arbitrages to eliminate them all and this provided an opportunity for the US federal
government to take advantage of some arbitrages. How should one analyze the situation
where the US government incurs a loss on the SLABS-Treasury near-arbitrage because of
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default on the loan guarantee?
From the point of view of the US government, a loss on the SLABS-Treasury near-

arbitrage caused by a default on the guarantee on FFEL loans means that every dollar
of loss on the near-arbitrage implies a dollar saved by the government in payment of
guarantee. Is this kind of loss relevant when analyzing whether a trade constitute
an arbitrage for the government? The short answer is yes, but not as much as for a
non-governmental arbitrageur. Suppose that the government and a hypothetical non-
governmental arbitrageur that can short Treasuries frictionlessly execute the same trade.
If the non-governmental arbitrageur loses $10 on the trade, then the government would
look back on the trade and regret initiating it because a valuable option to default on
creditors was forgiven. Ex-post, and assuming rational default, the option to default is
worth $10 minus the cost of default and this difference is positive.

If the government defaults on 3-month Treasuries at the same time that it defaults
on its guarantee on FFEL loans, then the hypothetical frictionless arbitrageur does not
lose money on the SLABS-Treasury arbitrage and neither does the government. If the
government defaults on its guarantee on FFEL loans, but not on 3-month Treasuries,
then the frictionless arbitrageur could lose money on the trade. Every dollar of shortfall
to the arbitrageur caused by the default on the guarantee means a dollar saved for the
government. If the government is the arbitrageur, then default on the guarantee does
not save any money. If the government defaults on the guarantee on FFEL loans held by
non-governmental investors, such as the non-governmental investors in ABS collateralized
by FFEL loans, then there is a cost to default, in the form of higher future borrowing
costs on all forms of government debt. Rational default occurs when the money saved by
defaulting on the guarantee on FFEL loans exceeds the present value of the cost of default.
It is unlikely that the government would find itself in a state of the world where default
on the guarantee is rational. And even less likely that the government would find itself in
a state of the world where default on the guarantee on FFEL loans, without default on
short-term Treasuries would be rational. It is even unclear whether the US government
would have the freedom to choose to default on the guarantee on FFEL loans without
default on other forms of debt. But, assuming the worst case, assuming that it is possible
to default on the guarantee on FFEL loans without defaulting on 3-month Treasuries, then
only in those rare state of the world where it is rational to choose both of these actions
at the same time, might the government look at the loss on the SLABS-Treasury trade
negatively and regret, ex-post, having initiated it.

Based on 1) the low probability that the US government defaults on any kind of debt
or guarantee, 2) the even lower probability that the government defaults on the guarantee
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on FFEL loans without defaulting on 3-month Treasuries, 3) the cost of a loss on the
SLABS-Treasury near-arbitrage should the government default on the guarantee on FFEL
loans and not on 3-month Treasuries is less than for a hypothetical non-governmental
frictionless arbitrageur, 4) the low probability that all borrowers default on their loan as
assumed to perform my cash flow simulations, I conclude that purchasing SLABS when
they sell at or below their near-arbitrage lower bounds provides generous compensation
for the small risk taken with taxpayers’ money.

1.5.3 fire -sale insurance

The merit of the proposal found in Gorton (2010)42 that the government should offer
fire sale insurance on some ABS can be analyzed for the special case of SLABS. More
precisely, what would happen if the government initiated a program today, or at any date
in the future outside of crisis, that would allow investors to exchange their SLABS for
their near-arbitrage lower bound price at any time in the future? My analysis suggests
that investors would very rarely, and possibly never, exercise this option. This prediction
relies on my findings that once SLABS sell for less than their near-arbitrage lower bound,
a SLABS that is held to maturity is almost certain to outperform a roll-over investment
in 3-month Treasuries. This should make SLABS attractive for money market funds that
roll-over trillions of dollars in Treasuries and similar assets. Money market funds, (MMF),
did not prevent the price of SLABS from dropping below their near-arbitrage lower
bounds during the crisis for two reasons. The first and straightforward reason is that
MMF cannot invest in assets with maturity of more than 397 days. A second and deeper
reason is that MMF are given a clear mandate by their investors to buy assets that present
virtually no risk of declining in value over their holding period, which is not the case
for a SLABS, even when it trades below its near-arbitrage lower bound. However, if the
government offers a guarantee on SLABS, eliminating the risk that a SLABS purchased at
the near-arbitrage lower bound could decline further in value, then MMF would provide
support for the price of SLABS at the near-arbitrage lower bound.

My near-arbitrage methodology provides a trigger point for the initiation of the
SLABS-Treasury arbitrage. The trigger point depends on a set of state variables that
includes the interest rate, the average principal per borrower and the overcollateralization
ratio. Near-arbitrage lower bounds can decrease over time has the state variables change.
For the government to face minimal risk, it would have to be allowed to reset the strike
price on the put it offers on SLABS periodically. If the government resets the strike price

42See p.55 where Gorton prescribes a policy package in which “Senior tranches of securitizations of
approved asset classes should be insured by the government.”
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for puts every 90 days, and announces the strike price for the put one day before it is reset,
then 1) should the put option be exercised, the government is exposed to a minimal risk
of paying a price superior to the near-arbitrage lower bound because the state variables
move relatively little over a 90 days period, and 2) MMF do not face any price risk inside
90-day windows and they would support the price of SLABS above the strike price.

What would be the benefits for the government of offering fire-sale insurance? In the
case of SLABS, the government could make smaller special allowance payment on FFEL
loans without causing a reduction in the supply of FFEL loans. Institutional investors
demand a higher interest rate on SLABS if the security can decrease in price below its
near-arbitrage bounds during financial crisis, a time when they are more likely to need
to trade their asset for cash in order to shrink their balance sheet or to satisfy investors’
withdrawals. Once the fire-sale risk is removed, once a SLABS is guaranteed to never fall
below its near-arbitrage lower bound, investor do not demand as high an interest rate.
Originators of FFEL loans could sell securities collateralized by pool of FFEL loans that
promise a lower interest rate and obtain the same proceeds from the sale, because these
securities would no longer bear the fire-sale risk. As of the end of 2013, there were still
more than $250 billion dollar in FFEL loans outstanding. Therefore, small reductions in
supplemental interest payments, on the order of 0.10%, would translate into savings of
$250 million, just in the first year following the reform.43 To sum up, the government
could achieve the same level of financial support for students at a lower cost, thanks to
fire-sale insurance.

1.6 conclusion

In this paper, I show that ABS collateralized by government guaranteed student loans
that benefit from significant overcollateralization are nearly riskless variable-rate bonds.
The frictionless no-arbitrage framework predicts a market price of $100 for a riskless
variable-rate bond with a principal of $100. I quantify underpricings on some SLABS that
exceeded $20 per $100 principal during the crisis.

While other mispricings of a similar magnitude have been documented since I began
work on this project, most notably by Fleckenstein, Longstaff, and Lustig (2014), several
of the normative implications of my findings are novel. To my knowledge, this is the
first paper to document large underpricings in the ABS market that would present nearly
certain opportunities for profit for the US government. Other arbitrages have limited

43Assumes 100% participation rate in a voluntary loan swapping program that involves the exchange of
a FFEL loan for a loan with fire-sale insurance that receives smaller supplemental interest payments.
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implications for US central bank’s liquidity provision facility and temporary programs of
liquidity provision. SLABS can be used as a canary in the coal mine, meaning that near-
arbitrages signal an extraordinary need for liquidity provision. To nearly eliminate risk on
a non-recourse loan collateralized by SLABS, the Fed could set cash-down requirements
to the greater of 0% and the premium between market prices and near-arbitrage lower
bounds.

The are also normative implications that arise from the co-occurrence of the underpric-
ing of SLABS relative to Treasuries and those of TIPS relative to Treasuries. Since FFEL
loans stopped being originated on June 30, 2010, SLABS collateralized by FFEL loans
will gradually amortize over the next twenty-five years or so. Since the underpricing of
SLABS is correlated with other types of large mispricings, the latter could become the
signal for extraordinary need for liquidity provision in a future crisis.

The US government could save hundreds of millions of dollar by providing fire-sale
insurance on SLABS collateralized by FFEL loans. FFEL loans with fire-sale insurance
on SLABS could be an alternative to the current policy of direct origination of all federal
loans by the government. Through the adoption of the current origination policy, the
government has given up a fiscal hedging option. The US government would not give up
its fiscal hedging option by providing fire-sale insurance on SLABS: defaulting jointly
on the loan guarantee and the fire-sale insurance would have similar impact on future
borrowing costs as a default on the loan guarantee alone. It would be interesting to see
whether a FFEL program with fire-sale insurance on SLABS could compete with the
cost-saving of the switch from FFEL loans to direct loans estimated by Lucas and Moore
(2010).

The release of data on haircuts for finer categories of asset classes than is currently
published in Gorton and Metrick (2009), Copeland, Martin, and Walker (2014) and
Krishnamurthy, Nagel, and Orlov (2014), would allow a detailed empirical analysis of
the link between the price of SLABS and the time variation of haircuts. This could help
disentangle whether time-varying haircuts or another mechanism, such as shocks to the
balance-sheet of financial intermediaries combined with differential capital requirements,
is the more likely cause of the dynamic of underpricings of SLABS relative to Treasuries
during the crisis. The same data could help us better understand the drastically different
price dynamic between SLABS and variable-rate ABS guaranteed by the Small Business
Administration. More research is needed in the area.
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1.7 appendix

1.7.1 slabs that satisfy all selection criteria

Table 1.10: SLABS that satisfy all selection criteria. This table lists the SLABS trusts that satisfy
all selection criteria used to derive benchmark no-arbitrage lower bounds in Section 1.3. Selection
criterion SC.1 requires that the rules of distribution of the cash flows from the pool among various
claimholders be as presented in Figure 1.2. SC.2 requires that the SLABS trust receives offsetting
payments from the securitizer for reductions in interest rate or principal offered to borrowers,
which are also called borrower’s incentive programs. SC.3 requires that the interest rate spread
over LIBOR promised on a SLABS is positive, s ≥ 0. SC.4 requires that none of the SLABS
collateralized by a pool are auction-rate securities, which are denoted by ARS in the table.

Minimum Rules Borrowers’ Positive
loan of incentive interest rate Loan

Pool guarantee distrib. programs spread ARS type
(SC.1) (SC.2) (SC.3) (SC.4)

SLM 2003-3 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2003-6 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2003-8 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2003-9 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2004-4 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2004-6 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2004-7 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2004-9 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2005-1 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2005-2 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2005-10 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2006-1 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2006-3 98% Fig. 1.2 Offset Yes No Non-consol.
SLM 2007-2 97% Fig. 1.2 Offset Yes No Non-consol.
SLM 2007-3 97% Fig. 1.2 Offset Yes No Non-consol.
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1.7.2 proof of proposition 1

I prove Proposition 1 for the special case where an arbitrageur buys the aggregate
principal of SLABS collateralized by a given pool of FFEL loans. Since distributions
among SLABS holders for a given pool are pro rata to their ownership of SLABS in
Sections 1.2 and 1.3, the generalization from this special case to the case where a SLABS
holder owns a fraction of the SLABS collateralized by a pool is immediate.

Consider an arbitrageur who purchases at time 0 the aggregate principal of SLABS, ρ0,
that is collateralized by a pool of FFEL loans with balance of φ0, where φ0/ρ0 ≥ 1. The
arbitrageur pays P0/100 · ρ0 < 0.97 · ρ0 for the SLABS. The arbitrageur shorts Treasuries
and raises $0.97 · ρ0. In other words, the arbitrageur’s debt is $0.97 · ρ0.

Recall that the principal of the SLABS evolves according to:

ρt+1 = ρt · (1 + (rLIBOR
t + s))− yt+1, (1.23)

subject to the constraint ρt+1 ≥ 0. The full repayment of the SLABS means that ρt = 0 for
some t > 0.

Every sequence of cash flows on a SLABS, {yt}t≥1, can be categorized into one of two
groups:

• Cash flows that repay the SLABS in full;

• Cash flows that do not repay the SLABS in full.

The proof of Proposition 1 is presented in two parts.

Proof of Proposition 1, Part 1: This part shows that the SLABS-Treasury trade produces
a strictly positive cash flow for the arbitrageur at time 0 and non-negative cash flows at
time t ≥ 1 when cash flows on the SLABS repay the SLABS in full.

The arbitrageur pockets 0.97 · ρ0 − P0/100 · ρ0 > 0 at time 0. The arbitrageur’s debt
evolves over time according to:

darb
t+1 = darb

t · (1 + rt)− yt+1, (1.24)

subject to darb
t+1 ≥ 0.

To show that cash flows at time t ≥ 1 are non-negative, it is sufficient to show that the
cash flows from the SLABS, {yt}t≥1, can repay the arbitrageur’s debt in full (i.e. darb

t = 0
holds for some t > 0).
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I use a proof by induction that shows that ρt is an upper bound for darb
t and that since

ρt converges to 0, so must darb
t . At time 1, the following inequality holds:

ρ1 = ρ0 · (1 + (rLIBOR
0 + s))− y1 > darb

0 · (1 + r0)− y1 = darb
1 . (1.25)

Inequality (1.25) results from interest rate condition C.2, rLIBOR
t ≥ rt for all t, selection

criterion SC.3, s ≥ 0, and from ρ0 > darb
0 (initial conditions ρ0 > 0, darb

0 > 0 and
0.97 · ρ0 = darb

0 imply ρ0 > darb
0 ).

Assuming that ρt > darb
t ≥ 0 holds for a given t, the following inequality holds at

t + 1:
ρt+1 = ρt · (1 + (rLIBOR

t + s))− yt+1 > darb
t · (1 + rt)− yt+1 = darb

t+1, (1.26)

again, because of rLIBOR
t ≥ rt and s ≥ 0.

Thus, by induction, starting from ρ0 > darb
0 ≥ 0, ρt > darb

t holds for t ≥ 1, whenever
darb

t−1 ≥ 0. Let (*) denote this intermediate result. By the definition of a cash flow that
repays a SLABS in full, ρt = 0 holds for some t ≥ 1. Therefore, either darb

t = 0 occurs
prior to ρt = 0 or darb

t = 0 occurs at the same time as ρt = 0 (and the darb
t ≥ 0 constraint

binds). Any other outcome is in contradiction with (*). �

Proof of Proposition 1, Part 2: This part shows that the SLABS-Treasury trade produces
a strictly positive cash flow for the arbitrageur at time 0 and non-negative cash flows at
time t ≥ 1, even when the cash flow on a SLABS, {yt}t≥1, is not sufficient to repay the
SLABS in full.

Again, the arbitrageur pockets 0.97 · ρ0 − P0/100 · ρ0 > 0 at time 0. I show that the
cash flows from the SLABS, {yt}t≥1, can repay the arbitrageur’s debt in full in order to
show that cash flows at time t ≥ 1 are non-negative.

Let τ denote the time period when φt = 0 first occurs. Note that when the cash flow
on a SLABS is not sufficient to repay the SLABS in full, an event of reprioritization is
triggered for some t ≤ τ. To understand why, consider the following: if the cash flow on
a SLABS is not sufficient to repay the SLABS in full, then we have a positive principal of
SLABS outstanding, ρτ > 0, when the pool balance is zero, φτ = 0. Since ρt > φt triggers
an event of reprioritization, as mentioned in Section 1.2, then an event of reprioritization
is triggered at time τ, at the latest. I let t̂ denote the first time period when an event of
reprioritization is triggered.

From time 0 to t̂− 1, since no event of reprioritization has been triggered, the inequality
φt ≥ ρt holds. Starting from darb

0 = 0.97 · ρ0, intermediate result (*) of Part 1 can be
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strengthened in two steps. First, at time 1, the following inequalities hold:

0.97 · ρ1 = 0.97 · (ρ0 · (1 + (rLIBOR
0 + s))− y1) (1.27)

≥ 0.97 · (ρ0 · (1 + r0)− y1) (1.28)

≥ 0.97 · ρ0 · (1 + r0)− y1 (1.29)

= darb
0 · (1 + r0)− y1

= darb
1 . (1.30)

Inequality (1.28) results from interest rate condition C.2, rLIBOR
t ≥ rt for all t, and selection

criterion SC.3, s ≥ 0. Inequality (1.29) results from −0.97 · y1 ≥ −y1 since y1 ≥ 0. All
equalities either result from the initial condition 0.97 · ρ0 = darb

0 or the laws of motion for
ρt and darb

t .
Second, assuming that 0.97 · ρt ≥ darb

t ≥ 0 holds for a given t, the following inequalities
hold at t + 1:

0.97 · ρt+1 = 0.97 · (ρt · (1 + (rLIBOR
t + s))− yt+1) (1.31)

≥ 0.97 · (ρt · (1 + rt)− yt+1)

≥ 0.97 · ρt · (1 + rt)− yt+1

≥ darb
t · (1 + rt)− yt+1

= darb
t+1. (1.32)

All equalities and inequalities hold for the same reasons given for the case at t = 1, except
that initial condition 0.97 · ρt ≥ darb

t replaces 0.97 · ρ0 = darb
0 . Therefore, by induction, we

have that darb
t ≤ 0.97 · ρt for all t. Let (**) denote this intermediate result.

By definition of an event of reprioritization, the inequality φt ≥ ρt holds at any time
t ∈ [0, t̂ − 1]. Combining this inequality with intermediate result (**), the inequality
darb

t ≤ 0.97 · φt holds holds at any time t ∈ [0, t̂− 1].
Recall that the following inequality, which was derived in Section 1.2, holds for the

cash flow from the pool, xt:

xt ≥ 0.97 ·
(
φt−1 − φt + φt−1 · (il

t−1 −ωt)
)
. (1.33)

Following an event of reprioritization, the law of motion for the arbitrageur’s debt
becomes:

darb
t = darb

t−1 · (1 + rt−1)− (xt − ft · φt−1). (1.34)
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Combining equations (1.33) and (1.34), the following inequalities hold at t = t̂:

darb
t̂−1 − darb

t̂ = xt̂ − f t̂ · φt̂−1 − darb
t̂−1 · rt̂−1,

≥ 0.97 ·
[
φt̂−1 − φt̂ + φt̂−1 · (il

t̂−1 −ωt̂)
]
− f t̂ · φt̂−1 − darb

t̂−1 · rt−1,

≥ 0.97 ·
[
φt̂−1 − φt̂

]
+ 0.97 · φt̂−1 · (il

t̂−1 −ωt̂)− f t̂ · φt̂−1 − darb
t̂−1 · rt−1,

≥ 0.97 · (φt̂−1 − φt̂). (1.35)

The following steps show the validity of inequality (1.35). Let ςarb
t denote the term

(0.97 · φt̂−1 · (il
t̂−1−ωt̂)− f t̂ · φt̂−1− darb

t̂−1 · rt−1).44 Using the initial condition, 0.97 · φt̂−1 ≥
darb

t̂−1, and plugging in values for il
t̂−1, f t̂−1, ωt̂, the following inequalities hold:

ςarb
t = 0.97 · φt̂−1 · (il

t̂−1 −ωt̂)− f t̂ · φt̂−1 − darb
t̂−1 · rt̂−1,

≥ 0.97 · φt̂−1 · (il
t̂−1 −ωt̂)− f t̂ · φt̂−1 − 0.97 · φt̂−1 · rt̂−1, (1.36)

≥ 0.97 · φt̂−1 · (rFCP
t̂−1 + 1.74%− 0.20%)− 1.10% · φt̂−1 − 0.97 · φt̂−1 · rt̂−1, (1.37)

≥ 0.97 · φt̂−1 · (rt̂−1 + 1.74%− 0.20%)− 1.10% · φt̂−1 − 0.97 · φt̂−1 · rt̂−1, (1.38)

= 0.97 · (1.74%− 0.20%) · φt̂−1 − 1.10% · φt̂−1, (1.39)

≥ 0.39% · φt̂−1

≥ 0. (1.40)

Inequality 1.36 holds because of the initial condition, 0.97 · φt̂−1 ≥ darb
t̂−1 (and darb

t̂−1 ≥ 0).
Inequality 1.37 results from plugging in il

t ≥ rFCP
t + 1.74%, along with ft = 1.10% and

ωt = 0.20%.45 Inequality 1.38 holds because of interest rate condition C.2, which imposes
rFCP

t ≥ rt for all t.
Therefore, darb

t̂−1 − darb
t̂ ≥ 0.97 · (φt̂−1 − φt̂) holds. This can be re-arranged to obtain:

0.97 · φt̂ ≥ 0.97 · φt̂−1 − darb
t̂−1 + darb

t̂ ≥ darb
t̂ (1.41)

Note that all the steps followed to obtain 0.97 · φt̂ ≥ darb
t̂ rely on the initial condition

0.97 · φt̂−1 ≥ darb
t̂−1 and on conditions on il

t, ft and ωt that hold for every t. It follows that
by assuming that 0.97 · φt ≥ darb

t holds for some t ∈ [t̂, τ− 1], it is straightforward to show
that 0.97 · φt+1 ≥ darb

t+1 holds in the following time period. Thus, by induction, starting

44ςarb
t here is a special case of the worst case arbitrageur’s spread that will be introduced formally in

Section 1.4.
45Note that annualized values for f t̂−1, il

t̂−1, ωt̂ are inputted here, since for the purpose of showing that
ςarb

t > 0, it is without loss of generality. However, one would want to input the non-annualized values in
equations that represent laws of motion to recover the proper dynamic.
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from 0.97 · φt̂−1 ≥ darb
t̂−1, it follows that darb

t ≤ 0.97 · φt for t ∈ [t̂, τ]. Let (***) denote this
intermediate result. Therefore, by (***) either darb

t = 0 occurs prior to φt = 0 or darb
t = 0

occurs at the same time as φt = 0. Any other outcome, in particular darb
τ > 0 when ρτ = 0,

is in contradiction with (***). �

The proof presented above covers the case where a single senior tranche is issued from
a given pool of FFEL loans, which is the only type of SLABS presented in section 1.2
and 1.3. Can this result be applied to empirical cases where there are multiple senior
tranches of SLABS issued on a given pool, which are first introduced in section 1.4.1? If
the distributions among senior tranches are pro rata following an event of reprioritization,
then a nearly identical proof to the one presented above, which would simply require
the introduction of additional notation, could be constructed. I take a close look at
SLM 2003-3 in Table 1.6 and in Figure 1.5. In Table 1.6, the near-arbitrage lower bound
computed by simulations on the bottom tranche of SLM 2003-3, the A4 tranche, under
a counter-factually low overcollateralization ratio of 1, Pt|φt/ρt=1 is $93, which is lower
than the $98 that would be consistent with the analytical proof and the 98% minimum
guarantee on the FFEL loans that collateralize pool SLM 2003-3. This is because the lower
bound computed by simulations are obtained after relaxing conditions C.3 on servicing
fees and C.4 on write-downs due to default claim rejected. A similar reason explain why
in Figure 1.5, at issuance of SLABS on pool SLM 2003-3, despite an overcollateralization
ratio of 1.02, the near-arbitrage lower bound under factual overcollateralization of 1.02 Pt

is significantly below $100. The downward adjustment from $100 to $93 at issuance of the
SLABS is needed to insure against worst case scenario of default immediately after SLABS
purchase, as well as bankruptcy of the initial servicer, resulting in a worst case servicing
contract with higher fees to service the loans of delinquent borrower and retention of
small fraction of the loan guarantee payment by the new servicer (to incentivize proper
servicing). After accounting for these adjustments, the near-arbitrage lower bounds are
similar for the A1, A2, A3 and A4 tranche because of the pro rata distributions after
the triggering of an event of reprioritization and the fact that the worst case scenario
of default quickly triggers pro rata distribution. This is illustrated by looking at 2007-2
A1, A2, A3 and A4 in Table 1.6, under pro rata rules of distribution after an event of
reprioritization (this is especially apparent in the counter-factual case with φt/ρt = 1,
because there are very few quarters during which the A1 tranche is the only senior
tranche to receive distribution of principal).

I do not attempt a derivation of a proof that covers the case of SLABS trusts, such
as SLM 2007-2, with multiple senior tranches of SLABS and distributions among senior
tranches that continue to be sequential following an event of reprioritization. At the very

47



least, the no-arbitrage lower bound of Pt
††|φt/ρt≥1 = $97 is valid for the top tranche of

SLM 2007-2 and similar SLABS trust. However, this is a loose lower bound, as shown by
the near-arbitrage lower bounds computed by simulations Pt for SLM 2007-2 A1 in Table
1.6.
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1.7.3 estimation of parameters of the interest rate model

The data used to estimate the model consists of annualized yields on Treasuries with a
maturity of 3-months for the period 01/04/54 to 07/31/08, sampled at a daily frequency.46

h and λ are latent variables that we do not observe and MCMC is a popular method for
the estimation of models with latent variables. I begin by estimating a0 and a1 by an
ordinary least square (OLS) regression. Like Kalimipalli and Susmel, I set α = 0.5 and
estimate the other parameters of the model by feeding the residuals of the OLS regression
into an MCMC algorithm. Table 1.12 presents the parameter estimates used to simulate
interest rate paths. Table 1.13 provides priors and posterior of the MCMC estimation:

Table 1.12: Parameters of the interest rate model.

Parameter Estimate

a0 0.0030
a1 −5.82 · 10−4

ψ 0.915
ψ 0.915
σ2

η 0.234
β -7.887
ν 1.573

p01 0.0839%
p10 0.456%

My estimates imply a long-run mean for interest rates of −a0/a1 = 5.15% and an
half-life for volatility shock of −ln(2)/ln(ψ) = 7.8 days.47 When the economy is in
a low-volatility regime, it can be expected to remain in that regime for 1/p01 = 1192
days.48 The expected duration of high-volatility regime is shorter at 1/p10 = 219 days or
219/250 ≈ 0.88 year. β represents the long-run mean for ln(h) when in a low-volatility
regime, thus the average daily standard deviation on interest rate is given by

√
eβ = 0.0194,

which is 0.0194 percentage point; when in a high-regime, the same statistics is computed

from
√

expβ+ν = 0.0426.

46The Treasury bills (secondary market) data published by the Federal Reserve System can be found at
http://www.federalreserve.gov/releases/h15/data.htm.

47I only consider business days, thus my estimates imply a half-life of 7.8 business days or 7.8 days out
of a calendar with 250 days, which corresponds roughly to half-life of 11.4 days for a 365 days calendar.

48Let X denote the number of trials needed for a transition from state 0 to state 1 to occur. Then, X has a
geometric distribution and E[X] = 1/p01.
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Table 1.13: Estimation of parameters of the interest rate model. The data used to estimate
the model consists of annualized yields on Treasuries with a maturity of 3-months for the
period 01/04/54 to 07/31/08, sampled at a daily frequency. The sample size is 13635. Prior
distribution of σ2

η is improper. See Kalimipalli and Susmel (2004) for details about the model
estimation. Parameters estimates reported here for β∗ differs from those used in simulations:
β = β∗ − ln(10000). The difference arises because residuals from the OLS regression are scaled by
a factor of 100 before they are feed into the MCMC algorithm.

Parameters Prior values Posterior values

Mean Standard Mean Standard 95% C.I.
deviation (std. error) deviation

ψ 0 1 0.9147 0.0067 [0.89,0.93]
(0.0012)

σ2
η - - 0.2340 0.0142 [0.21, 0.26]

(0.0025)
β∗ 0 50 1.3231 0.0495 [1.23,1.41]

(0.0069)
ν 1 50 1.5734 0.1964 [1.10,1.96]

(0.0216)
p01 0.2 0.16 8.4 ·10−4 4.5 ·10−4 [(2.1, 190.3)·10−4]

(5.3 ·10−5)
p10 0.2 0.16 0.0046 0.0014 [(2.2, 8.2)·10−3]

(1.5 ·10−4)
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1.7.4 data and computation of the servicing cost difference

between delinquent and current borrower

The main additional tasks that must be performed by a servicer on a delinquent loan is to
contact a delinquent borrower by phone a minimum of 4 times and to send a minimum of
6 collection letters between the moment that a borrower becomes delinquent and the point
at which the borrower enters default. In addition, when an address or phone number
for a delinquent borrower is found to be invalid, a servicer must perform skip-tracing
activities an attempt to obtain valid contacts for the borrower.

Table 1.14 presents the data I used to compute a cost differential between current and
delinquent borrowers.

Table 1.14: Data used to compute servicing cost difference between delinquent and current
borrowers.

Unit cost of collection letters $1.50
Average duration of phone contacts with delinquent borrowers 2 minutes
Median hourly wage of customer representative within financial service $14.56
Median of salaries as a % of op. exp. in the “for-profit services” sector 50%
Fraction of borrowers who default that require skip-tracing 12%
Fraction of delinquent borrowers who require skip-tracing 6%
Skip-tracing fee $28

I obtained quotes from mailing company that handle the task of printing and mailing
collection letters: the unit cost of sending collection letters, including postage fee, is
approximately $1.50. A small-scale servicer of FFELP loans provided the data on the
average duration of phone contact with delinquent borrowers. Contacting borrowers by
phone is labor-intensive and the Bureau of Labor Statistics reports that the median hourly
wage for customer representative within the banking industry is $14.56.49 The Society
for Human Resource Management reports that the median of salaries as a percentage
of operating expenses in the “for-profit services” sector is 50%. A small-scale servicer
provided data on fraction of borrower who default that require ski-tracing. The skip-
tracing fee is from the servicing contract between MOHELA and PHEAA.

I estimate the cost of the additional tasks that must be performed on deliquent loans
to be $17.

6 ∗ $1.50 + 4 ∗ $14.56/60min ∗ 2min ∗ 1/0.5 + 0.12 ∗ $28 ≈ $17 (1.42)

49SLM pays its customer service representative $12 an hour at the entry-level position.
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1.7.5 near-arbitrage lower bounds on slabs deals with a

stepdown date

For deals issued by SLM that contains consolidation loans, the rules of distribution are
not as presented in Figure 1.2. After the stepdown date is reached, the distribution of
principal to subordinate SLABS becomes pro rata with the distribution of principal to
senior SLABS under some conditions. For distributions to be pro rata among subordinate
SLABS and senior SLABS, the total overcollateralization ratio from the stepdown date
onward must be non-decreasing and there must be no event of reprioritization. Otherwise,
senior SLABS receive a disproportionate fraction of the distribution of principal or all of
it.

Table 1.15 presents the minimum market price during the crisis, Pt, and minimum
near-arbitrage lower bounds during the same period. On the one hand, the presence
of a stepdown date reduces the build-up of senior overcollateralization over time in
pools collateralized by consolidation loans. On the other hand, the net interest rate on
consolidation loans is the quarterly average of the financial commercial paper, plus an
annualized margin of 2.64%, instead of the minimum annualized margin of 1.74% for
non-consolidation loans.
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Chapter 2

SLABS Near-Arbitrage: Accounting for
Historically Unprecedented
Macroeconomic Events

2.1 introduction

In this Chapter, I analyze whether the risks associated with historically unprecedented
macroeconomic events, such as exceptionally high inflation and default by the government
on its loan guarantee, could explain the large underpricings observed on SLABS during
the financial crisis of 2007–2009 that was documented in Chapter 1. Let near-arbitrage gaps
consist of the difference between the minimum near-arbitrage lower bounds on SLABS
during the crisis and their minimum market price (as they are reported in Tables 1.7
and 1.8). I present evidence that for more than 90% of SLABS the aforementioned risks
explain at most 25% of the SLABS-Treasury near-arbitrage gaps. I proceed in three steps.

First, the rules of distribution of the cash flow from the securitized pools of guaranteed
loans that I analyze prioritize payments of servicing fees over payments to SLABS holders.
The servicing fee under the initial servicing contract is a constant percentage of the pool
balance and tight lower bounds on the price of SLABS can be derived when the initial
servicer remains solvent and no unprecedented macroeconomic event occurs. However,
following the bankruptcy of the initial servicer and his rejection of the initial servicing
contract, a SLABS trust would need to find a new servicer or to renegotiate with the initial
servicer. In this context, the new servicing contract would need to pay servicing fees
that can cover the costs of servicing the loans over their remaining life. It could become
necessary to index the servicing fees to inflation and exceptionally high inflation rates
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could ultimately lead to a loss on a SLABS-Treasury near-arbitrage without hedging of
inflation risk. However, it is relatively inexpensive to buy inflation protection via inflation
caps that would insure against this scenario: for 90% of SLABS, the cost of hedging
inflation risk shrinks the near-arbitrage gaps by at most 10%.

Second, in the case of SLABS, I use basis risk to refer to the risk that the uncollateralized
costs of US government borrowing exceed those of the average commercial bank.1

Interest rate swaps data suggests that, in the process of hedging the basis risk on SLABS,
arbitrageurs should have been able to lock in a positive spread that would have been
incremental to their profits from capital gains. When near-arbitrage lower bounds are
computed, basis risk is ignored, but the extremely conservative assumption that the
LIBOR rate equals the Treasury rate is used. As a result of jointly i) adding the basis
risk, ii) letting the arbitrageur enter interest rate swaps, and iii) allowing the LIBOR rate
to be as expected from swap traders, meaning generally greater than the Treasury rate,
a SLABS with hedging of basis risk becomes more valuable than a SLABS under the
original near-arbitrage methodology.

Third, I price the risk of default on the government guarantee. I match SLABS to
other variable-rate securities that benefit from government guarantees: Pool Certificates
guaranteed by the US Small Business Administration (henceforth, SBA PCs). The price
change among SBA PCs was less than one fifth of the near-arbitrage underpricings in
SLABS. Identifying the causes of the difference in the price dynamics of SLABS and SBA
PCs is beyond the scope of this Chapter. However, there are two features that could lead
to larger discounts on SLABS during a period of fire-sale of financial assets: SLABS are
more complex securities, with guarantees covering the collaterals instead of the bond
payments, and their risk-based capital requirements are higher.

2.2 insuring against inflation risk

Cash flow from a pool of securitized government-guaranteed student loans must be
used to first pay servicing fees before they can be applied to the payment of interest
or principal on SLABS. Under the initial servicing contract, the servicing fee consists
of a fixed percentage of the pool balance and it is not indexed to inflation.2 One can
imagine scenarios where the initial servicer goes bankrupt, the servicing fees paid to the
successor servicer are indexed to inflation and inflation is exceptionally high. I refer to

1In general, basis risk simply refers to the risk associated with changes in relative interest rates.
2The statement is true for all SLABS in my selected sample (which is listed in Appendix 1.7.1). Other

SLABS issued by smaller securitizers have servicing fees indexed to inflation in the initial servicing contract.
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these scenarios as high-inflation scenarios in the rest of this section.
If inflation is sufficiently high, high-inflation scenarios can lead to a loss on a SLABS-

Treasury near-arbitrage. Near-arbitrage lower bounds computed by simulations in Chap-
ter 1 were already robust to inflation paths consistent with interest paths drawn from a
model estimated on historical data.3 Given the relatively modest inflation paths created
by the interest rate model and the slow build up of inflation when nominal interest are
initially low, it is the scenarios involving extremely high levels of borrower default and
extremely fast amortization of the pool, leaving little opportunity for inflation to have
much of an impact, that would lead to cash flow with the smallest capacity to repay
the arbitrageur’s debt and thus, the near-arbitrage lower bound. However, as shown by
Table 2.2 under the near-arbitrage-breaking constant inflation rate (CIR) column, for most
SLABS, a combination of a slowly amortizing pool (9 or more years) and an extreme
scenario of inflation (annual rate of 15% or more) that co-occur with the bankruptcy of
the initial servicer and the indexing of servicing fees to inflation could lead to a loss on
a SLABS-Treasury near-arbitrage (i.e. a SLABS-Treasury trade initiated at the original
near-arbitrage lower bound).

For example, a SLABS-Treasury near-arbitrage initiated at $100 on SLM 2003-3 A4 in
November 2007, when the pool that collateralizes it could conservatively be expected to
fully amortize within a 9-year horizon, combined with a scenario that includes a 0% rate
of default and a 0% rate of prepayment to exacerbate the effect of a ramp up in servicing
fees via inflation, makes a constant inflation rate of 21% over 9 years sufficient to generate
a loss on the SLABS-Treasury near-arbitrage. The SLABS-Treasury near-arbitrage would
have been profitable under a high-inflation scenario with a CIR of 20%. SLM 2003-3 A4
already had an overcollateralization ratio of 1.23 in November 2007 and this contributes
to the high level of near-arbitrage-breaking CIR. Scenarios with a 0% rate of default and a
0% rate of prepayment to exacerbate the effect of a ramp up in servicing fees caused by
inflation are used to derive the near-arbitrage breaking CIR for all SLABS in table 2.2.

Inflation caps are derivative instruments that can be used by an arbitrageur to protect
a SLABS-Treasury trade against inflation risk at a low cost. Two factors contribute to
these low costs. First, as revealed by the maximum (risk-adjusted) expected rate of
inflation observed during the crisis and reported in Table 2.1, inflation was expected to
remain under an annualized rate of 3% over horizons of 20 years or less. The maximum

3This meant drawing nominal interest rate paths with the estimated regime-switching and stochastic
volatility interest rate model of Kalimipalli and Susmel (2004) and inferring upper bound on inflation
consistent with the interest paths (specifically, inflation rate given by the nominal interest rate minus a real
rate of 0%). These periodic upper bounds on inflation rates were used to create a cumulative inflator that
was then applied to scale up the servicing fees over time.
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expected rate of inflation occurred close to the August 22, 2008 date when the historical
data on inflation caps begins on the Bloomberg system for the maturities found in table
2.1. Expected rate of inflation were lower later in the crisis. Second, inflation, even at
the high levels of CIR found in Table 2.2, can be visualized as slowly eating away the
senior overcollateralization of a SLABS pool by scaling up the servicing fees. Eventually,
servicing fees can become greater than the cash flow generated by the pool of loans, but
this occurs late in the life of the pool. Therefore, it is generally sufficient to buy inflation
caps, the derivative instrument offering insurance against inflation, for a notional that is
a small fraction of the principal of the SLABS purchased in the SLABS-Treasury trade.
This would be true even if the strike of the inflation cap was close to the near-arbitrage-
breaking CIR, but this is amplified by the following factor. Data on inflation caps on the
Bloomberg system is available up to a strike value of 6%. For simplicity, I conduct my
entire analysis on the cost of insuring against inflation risk using inflation caps with a
strike value of 4.5%. Using inflation caps with a strike value that is much lower than the
near-arbitrage breaking level of CIR contributes to the low levels of notional needed on
most SLABS to insure against high-inflation scenarios.

In exchange for the price paid to acquire a year-over-year inflation cap with maturity
of T years, an investor receives T independent caplets that pay at the end of year 1,2,...,T.
Every caplet pays according to:

max
(
0,

CPIm−2

CPIm−14
− (1 + strike)

)
×Notional, (2.1)

where m is the maturity of the caplet, in months, and CPI stands for the consumer price
index.

To illustrate, assume that the realized inflation rate over the next ten years is 5%. An
investor who purchases the cap with a strike of 4.5% and maturity of 10 years would
be entitled to a cash flow of (max(0, 1.05− 1.045)×Notional) at the end of year 1 to T.
The maximum price that had to be paid to insure $100 notional against annual inflation
rate exceeding 4.5% ranged from $0.72 for the two-year maturity to $17.05 for the 30-year
maturity.4

In addition to showing the CIR levels that would lead to a loss on SLABS-Treasury
near-arbitrage in absence of protection against inflation risk, Table 2.2 shows the revision

4Fleckenstein, Longstaff, and Lustig (2013) validate the quality of the zero-coupon inflation caplet and
floorlet quoted on the Bloomberg system. They check the quality of the data by ensuring that the caplet and
floorlet prices satisfy standard option pricing bounds such as those described in Merton (1973) including
put-call parity, monotonicity, intrinsic value lower bounds, strike price monotonicity, slope, and convexity
relations. They do so on data ranging from October 5, 2009 to October 5, 2012.
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Table 2.1: Inflation caps and risk-adjusted expected
inflation

Maturity Cap Price ($) Expected inflation
(year) (max) (max)

2 0.72 2.78%
3 1.26 2.74%
5 2.53 2.71%

10 6.70 2.82%
20 11.87 2.87%
30 17.05 3.13%

This table reports the maximum price, observed between
August 25, 2008 and June 30, 2009, for year-over-year infla-
tion caps with a strike of 4.5%, for the indicated maturities.
The prices are expressed in dollars per $100 notional. Ma-
turity is expressed in years. The last column reports on the
zero-coupon inflation swap rate, a risk-adjusted measure of
expected inflation. The maximum swap rate over the August
25, 2008 to June 30, 2009 is reported.

(if any) to the near-arbitrage lower bound that makes the SLABS-Treasury trade robust to
a CIR of 4.5% and ultimately, incorporating the discount needed to purchase inflation
caps, a near-arbitrage lower bound on the price of SLABS that enables a SLABS-Treasury-
and-inflation-cap near-arbitrage.

The low costs of insuring against inflation risk support two points. First, they reflect
the unlikeliness of the inflation paths needed to produce losses on SLABS-Treasury near-
arbitrages. Second, they demonstrate that inflation risk cannot explain the large gaps
observed between actual prices of SLABS and their near-arbitrage lower bounds.

For example, an arbitrageur could acquire SLM 2003-3 A4 bonds with a principal
of $100 for as little as $92 during the crisis. I showed in Section 1.4 that, setting aside
historically unprecedented inflation scenarios, maintaining the no government default
condition (C.1) and the interest rate ordering condition (C.2), the cash flow from the
SLABS was nearly certain to repay a debt of $100 that accrues interest at the 3-month
Treasury rate. Thus, under frictionless shorting of Treasuries, an arbitrageur could borrow
$100 at the 3-month Treasury rate, use $92 to purchase SLM 2003-3 A4 bonds with a
principal of $100, pocket $8, then let the cash flow from the SLABS repay the $100 that
he borrowed with near certainty. Insuring against inflation risk with caps is relatively
inexpensive, thus the change that results from the addition of high-inflation scenarios is
small. The arbitrageur borrows $100 at the 3-month Treasury rate, uses $92 to purchase
SLM 2003-3 A4 bonds with a principal of $100 and uses $0.21 to purchase a 10-year
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inflation cap on $3 of notional with strike at 4.5%.5 The arbitrageur pockets $7.79 and
then lets the combined cash flow from the SLABS and the cap repay the $100 that he
borrowed and some more. In other words, the inflation-robust near-arbitrage lower bound
on SLM 2003-3 A4 is $99.79 and market prices below $99.79 represent near-arbitrage
opportunities.

To sum up, for more than 90% of SLABS, inflation risk explains less than 15% of
the near-arbitrage gaps. Hedging against inflation risk is cheap and inflation risk alone
cannot explain the large discounts below their near-arbitrage lower bounds observed on
SLABS during the crisis. Once inflation risk is hedged, default on government payments
on the (government-guaranteed) FFEL student loans and violation of the interest rate
ordering conditions remain as the only possible events that could lead to a loss on the
SLABS-Treasury trade initiated when the price of the SLABS is at its near-arbitrage lower
bound or below.

2.3 basis risk

Basis risk refers to the risk associated with changes in relative interest rates. The relation-
ships between three interest rates determine whether a SLABS-Treasury near-arbitrage is
profitable. The net interest rate that is paid by the government and the borrower on FFEL
loans is tied to the quarterly average of the 3-month financial commercial paper rate rFCP

t,t+1.
The SLABS promises interest rate payments that are tied to the 3-month LIBOR rate,
rLIBOR

t . The arbitrageur’s debt, which was contracted to finance the purchase of SLABS,
accrues interest at the 3-month Treasury rate rt. The interest rate ordering condition (C.2),
rLIBOR

t ≥ rt and rFCP
t ≥ rt for all t, was used to derive benchmark near-arbitrage lower

bounds in Chapter 1. It places weak restrictions on changes in the relative interest rates,
essentially assuming that the credit worthiness of the US government for the repayment
of its nominal debt, with its capacity to “print money”, is always superior to that of the
average bank that contributes to the rLIBOR

t and rFCP
t rate indexes. For the near-arbitrage

lower bounds established via simulations in Chapter 1, the worst conditions that do
not violate the interest rate ordering condition were assumed, meaning rFCP

t = rt and
rLIBOR

t = rt for all t. Absent a violation of the interest rate ordering condition, and absent

5The ex-post paydown factor of SLM 2003-3 A4 between September 2008 and February 2015 was 100%.
This amortization was highly predictable. Therefore, there is little need to insure against inflation beyond a
10-year horizon. A more involved hedging strategy would include inflation caps at less than 10-year horizon
on $2.60 notional, inflation caps at 10-year horizon on $0.50 notional and inflation caps at 20-year horizon
on $0.10 notional. The cost of this portfolio of inflation caps would be of the same order of magnitude as
the 10-year cap on $3 notional that I use for simplicity of exposition.
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a default by the US government on its loan guarantee, a SLABS-Treasury near-arbitrage
is nearly certain to be profitable.

If the interest rate ordering condition is relaxed and rt > rLIBOR
t is allowed, then

sufficiently large and persistent occurrences of rt > rLIBOR
t would lead to a loss on the

SLABS-Treasury near-arbitrage. However, an arbitrageur could insure against rt > rLIBOR
t .

An arbitrageur could enter a swap and pay rLIBOR
t in return for rt + s1, where s1 > 0.

However, the swapping of rLIBOR
t for rt introduces a new source of risk. A near-arbitrage

lower bound of $100 indicates that the arbitrageur’s debt, which accrues interest at rt, with
a principal of $100 is always repaid in full from the cash flow on the SLABS; it does not
imply that the SLABS, which accrues interest at rLIBOR

t , with a principal of $100 is always
repaid in full from the same cash flow. In order for the full repayment of the SLABS to
co-occur with the full repayment of the arbitrageur’s debt, one must place an upper
bound on the difference between rLIBOR

t and rFCP
t,t+1.

Therefore, after relaxing the interest rate ordering condition, a SLABS-Treasury trade
with swapping of rLIBOR

t for rt exposes the arbitrageur to losses caused by an extreme
widening of the rLIBOR

t and rFCP
t,t+1 spread. This is in contrast with the SLABS-Treasury

trade under normal interest rate ordering condition, where the spread between rFCP
t,t+1

and rt matters for the profitability of the SLABS-Treasury near-arbitrage, but the spread
between rLIBOR

t and rFCP
t,t+1 can be of any sign and any size and never lead to a loss on the

SLABS-Treasury near-arbitrage.6

During the crisis, SLM 2003-3 A4 had initial overcollateralization ratio of 1.30 or more,
and two kinds of widening of the rLIBOR

t -rFCP
t,t+1 spread could have caused a loss on the

SLABS-Treasury trade, with swapping of rLIBOR
t for rt, initiated at Pt = $100. First, a

moderate scenario of default of 2% of pool balance in every quarter, leading to a full
amortization of the pool over an 8 year period, combined with a constant spread of
2% over that period would break the near-arbitrage at Pt = $100. Second, for extreme
scenarios of default that lead to amortization of the pool balance within a one to 2 year
period, a spread of 12% would break the near-arbitrage at Pt = $100. As shown by Figure
2.1, 12% over a 2-year period and 2% over an 8-year period are extremely unlikely relative
to the pre-crisis and in-crisis data. The mean pre-crisis spread between rLIBOR

t -rFCP
t was

0.14% and the 99th percentile of the distribution was 0.28%; the mean in-crisis spread

6Under normal interest rate ordering condition, the rLIBOR
t and rt would matter in the following way:

the larger the spread between rLIBOR
t and rt, the larger the proportion of the cash flow from the pool

distributed to SLABS holder (the lower the proportion of the cash flow from the pool distributed to excess
distributions certificate holder), thus a larger rLIBOR

t − rt is beneficial to SLABS holder. It is in this sense
that setting rLIBOR

t = rt to establish near-arbitrage lower bounds in Chapter 1 corresponds to the worst
spread that does not violate the normal interest rate ordering condition.
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was 0.13% and the 99th percentile of the distribution was 1.01%.7
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Figure 2.1: LIBOR-FCP spread. This figure plots the difference between the 3-month LIBOR rate,
rLIBOR

t , and the 3-month financial commercial paper rate rFCP
t , expressed in percentage points.

The shaded area represents an abnormal period because of the offering of guarantees covering the
commercial paper issued by participating banks under the FDIC’s Temporary Liquidity Guarantee
Program. The program depressed the rFCP

t rate relative to the rLIBOR
t .

Furthermore, these loss-causing spreads between rLIBOR
t and rFCP

t,t+1 on a SLABS-
Treasury near-arbitrage after swapping of rLIBOR

t for rt are derived under the extremely
conservative assumption (as used in Chapter 1) that the margin over rFCP

t,t+1 paid on the
government guaranteed student loans is always 1.74%. Truly, as shown in Table 2.4, the
margin is at least 0.60% higher on the loans of borrowers that have entered repayment
status and who are no longer in-school, grace or deferment status. Thus, for scenarios
with lower default rates and slower amortization of the pool over time, it would already
be extremely conservative to use a “representative pool” of loans that accrue interest at
rFCP

t,t+1 + 1.74% during the first 3 years that follow the initiation of a SLABS-Treasury trade,
and accrue interest at rFCP

t,t+1 + 2.34% afterward. Revisiting the example of SLM 2003-3 A4,
but using this better approximation yet still extremely conservative assumption relative
to the empirical performance of pools, the loss-causing constant spread between rLIBOR

t

and rFCP
t,t+1 becomes 2.5% (instead of 2.0%) for a pool with a constant default rate of 2%

that amortizes over 8 years.
The fact that the rLIBOR

t -rFCP
t spreads tends to be narrow is not surprising: rLIBOR

7Includes data from 1997 to 2007.
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Table 2.4: Margin over rFCP
t,t+1 on government guaranteed loans

Loan type Status Margin

All In-School, Grace or Deferment 1.74%
Non-consolidation In Repayment 2.34%
PLUS and consolidation In Repayment 2.64%

This table reports the annualized interest rate margin over the rFCP
t,t+1 index on government

guaranteed loans.

reflects the interest rate paid by very large banks to obtain an uncollateralized loan from
other banks and the rFCP reflects the interest rate demanded by investors to hold the
uncollateralized debt of banks. LIBOR is based on the inter-bank borrowing rate of 18
of the largest banks in the world.8 The financial commercial paper rate is based on the
primary sale of commercial paper to investors, by financial institutions with “1” or “1+”
ratings from Moody’s and Standard & Poor’s.9 Sales are weighted by their face value,
thus large issuers have a disproportionate impact on the rFCP rate. Therefore, we are
essentially looking at the same type of liability from groups of banks that have a lot of
overlap and similar outside sources of funding.

If concerned about an extreme widening of the rLIBOR
t -rFCP

t spread, an arbitrageur
that already swaps rLIBOR

t for rt could enter a second interest rate derivative contract.
The arbitrageur receives rt + s1 for rLIBOR

t , with s1 > 0, and the arbitrageur could enter
a basis cap where he receives max(0, rLIBOR

t − rFCP
t − K%) in exchange for paying s2. K

corresponds to the strike of the basis cap. With s1 ≥ s2, the basis cap is financed by the
spread on the swap and the cap insures against a widening of the rLIBOR

t -rFCP
t spread

that could prevent the cash flow from the pool from repaying the SLABS in full. Figure
2.2 illustrates the strategy.

Figure 2.3 demonstrates why a good case can be made that an arbitrageur who sought
a single swap-and-cap counter-party, acting as both swap-counter-party 1 and swap
counter-party 2 in Figure 2.2 would have a high likelihood of finding a counter-party
willing to accept a strike of 30 basis points in exchange for s1 − s2 = 0 when interest rate
are low (r0 < 2%). Figure 2.3 shows the net payoff (pay-in, minus payout) for the combined
swap-and-cap counter-party. Net payoffs are computed daily, using the difference between
the pay-in rate rLIBOR

t and the payout rate rt + (s1 − s2) + max(0, rLIBOR
t − rFCP

t,t+1 − K%).
Historically, the net payoff of the swap-and-cap counter-party has been positive 98.4%

of the time for s1 − s2 = 0 and K = .30%. For a strike of K >= 1.03%, the net payoff of

8Three banks are US based. All foreign banks have significant US activities, borrow in USD and use US
market to raise capital.

9“1” or “1+” represent the highest ratings for commercial paper issuance.
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Figure 2.2: Hedging basis risk. This figure depicts a hedging strategies that insures against
the risk that rt > rLIBOR

t . The purchase of a cap, via quarterly payments s2, in exchange for the
variable leg that pays max(0, rLIBOR

t − rFCP
t,t+1 − K%) is complementary to the swapping of rLIBOR

t
for rt because of the risk that an extremely wide and positive rLIBOR

t -rFCP
t,t+1 spread might prevent

the full repayment of a SLABS.

the swap-and-cap counter-party has been positive 100% of the time. The rare instances of
negative net payoff with K = .30% correspond to periods of declining interest rate, where
the rLIBOR

t − rFCP
t,t+1 spread widens, while the rLIBOR

t − rt stays relatively constant.
The fact that interest rates were low during the crisis, during the period of underpricing

of SLABS, helps make the case that an arbitrageur seeking a swap-and-cap counter-party
and offering that this counter-party keeps the difference between rLIBOR

t − rt (if positive),
in exchange for insurance against a widening of the rLIBOR

t − rFCP
t,t+1 beyond 30 basis points

would successfully find such a counter-party. Given the high correlation between a
widening of the rLIBOR

t − rFCP
t and a widening of the rLIBOR

t − rt a deterioration in the
relative credit worthiness of the banks contributing to rLIBOR

t versus those contributing
to rFCP

t is not a scenario that would lead to a negative net payoff for the swap-and-
cap counter-party. As supported by Figure 2.3, historically, the only way a non-trivial
widening rLIBOR

t − rFCP
t,t+1 occurs without the increment in spread between rLIBOR

t − rFCP
t,t+1

being matched one-to-one by increments in the rLIBOR
t − rt is when interest rate falls.
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Starting from a low interest, before interest rate can decline, they will have to increase. As
long as interest rate are flat or increasing the net payoff of the swap-and-cap counter-party
are positive. Therefore, before a drop in interest that is sufficiently large to lead to a
negative net payoff on one settlement date could occur for the swap-and-cap counter-
party, it would be preceded by many quarters of positive net payoff. Table 2.5 shows
that conditioning on low interest rate (rt < 2%), the net payoff of the swap-and-cap
counter-party have historically been positive, 100% of the time, for s1 − s2 = 0 and
K = .30%.

0

2

4

6

%

1997 2002 2007 2012 2017
date

Strike: 30bps Strike: 110bps
3m−Tbill

Figure 2.3: Net payoff of the swap-and-cap counter-party. This figure shows the daily net payoff
(pay-in, minus payout) of the swap-and-cap counter-party for two strike values (30 basis points
and 110 basis points). Payoff are for s1 − s2 = 0. The figure also shows the contemporaneous
(3-month) T-bill rate.

Based on the above evidence, it appears likely that an arbitrageur would be able
to find a swap-and-cap counter-party willing to enter a rLIBOR

t -for-rt swap and offer a
cap on the rLIBOR

t − rFCP
t,t+1 basis at a strike of 0.30% for s1 − s2 = 0 when rt < 2% at the

time of execution of the contract. The majority of SLABS that presented near-arbitrage
opportunities are easily repaid in full, meaning paid the rLIBOR

t rate they were promised
and the full repayment of their balance, when rLIBOR

t − rFCP
t,t+1 < 0.70% holds. When
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Table 2.5: Net payoff of the swap-and-cap counter-party

Panel A: No restriction on rt

Net payoff (pay-in, minus payout)

Strike Mean Std. dev. Min Max 1 pctile 5 pctile Freq(Payoff>0)

0.3 0.43 0.33 -0.72 3.03 -0.08 0.14 0.98
1.1 0.48 0.38 0.08 3.13 0.13 0.16 1.00
1.9 0.49 0.41 0.09 3.84 0.13 0.16 1.00

Panel B: rt < 2%
Net payoff (pay-in, minus payout)

Strike Mean Std. dev. Min Max 1 pctile 5 pctile Freq(Payoff>0)

0.3 0.34 0.30 0.01 3.03 0.12 0.15 1.00
1.1 0.37 0.38 0.09 3.13 0.12 0.15 1.00
1.9 0.38 0.42 0.09 3.84 0.12 0.15 1.00

rLIBOR
t − rFCP

t,t+1 ≥ 0.70%, if the arbitrageur had simply entered a rLIBOR
t -for-rt, he would

be at risk of not receiving rLIBOR
t from the SLABS and not be able to deliver on his

contractual promise to that swap counter-party. If failing to deliver on his contractual
promise to the swap counter-party, this would be a form of realized loss on the SLABS-
Treasury trade. However, thanks to having jointly entered a cap and a swap, whenever
rLIBOR

t − rFCP
t,t+1 ≥ 0.70% occurs, any shortfall between rLIBOR

t and the interest rate received
would be fine because thanks to the cap with a strike of 0.30% the shortfall in interest
rate received would be offset by a one-to-one decrease in the interest rate that needs to be
delivered to the swap-and-cap counter-party.

Therefore, in switching from the extremely conservative assumption that rLIBOR
t = rt

and rFCP
t = rt that was used to derive near-arbitrage lower bound by simulations in

Chapter 1, to an environment where the risk of rt > rLIBOR
t is considered and hedged,

and this is done based on interest rate swap and cap “pricing” that reflect the probabilistic
relationship between rLIBOR

t , rFCP
t and rt, there is no need to revise near-arbitrage lower

bounds downward.
Therefore, revisiting our example with SLM 2003-3 A4, following the textbook narra-

tive of an arbitrage, which implicitly assumes the frictionless shorting of Treasuries, an
arbitrageur would borrow $100 at the 3-month Treasury rate, purchase SLM 2003-3 A4
bonds with $100 notional for $92, spend $0.21 to insure against inflation and enter the
swap-and-cap with a single counter-party that combines the swap and cap depicted with
separate counter-parties in Figure 2.2. The arbitrageur would pocket $7.79 at the initiation
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of the trade, then let the cash flow from the SLABS, the inflation cap, the interest rate
swap and cap repay the $100 of debt with near certainty. Only one potential source of
loss on the SLABS-Treasury near-arbitrage remains: default by the US government on its
guarantees.

2.4 default on government guarantees

This section explores two kinds of default by the US government that could lead to a loss
on the SLABS-Treasury near-arbitrage. I show that the pricing of the risk of default on
government obligations and guarantees cannot explain the large underpricing of SLABS.

First, one can imagine a scenario in which the government defaults on supplemental
interest payments on guaranteed student loans, without a simultaneous default on short-
term Treasuries. Borrowers pay an interest rate on FFEL loans that is either i) fixed
or ii) variable and subject to a cap. Holders of FFEL loans receive an interest that is
variable without a cap. Therefore, the size of the supplemental interest payments that the
government must make to fill the gap between interest payments by the borrowers and
the interest paid to holders of the loans increases with the interest rate level. As inflation
pushes interest rate higher, the nominal cost of the FFEL loans program becomes larger.
One can image a scenario in which the U.S. might be able to honor its nominal debt by
simply “printing more money”, but then not be able to pay off its inflation-linked and
variable interest rate liabilities, a group of liabilities that includes supplemental interest
payments on FFEL loans and payments on TIPS. The comparison of the supplemental
interest rate payments with payments on TIPS is appropriate: the promise to make
supplemental interest rate payments on FFEL loans is backed by the full faith and credit
of the US government.10

Second, one can imagine a scenario in which the government defaults on the explicit
guarantee against borrower’s default offered by the US Department of Education, without
a simultaneous default on short-term Treasuries.11 I concede that Treasuries play a central
role in the worldwide financial system, but the prioritization of payments on Treasuries
over payments on guarantees may be slightly challenged by the following consideration.
Default on the guarantee on student loans could undermine the credibility of the insurance
on bank deposits, offered by the FDIC, which is another form of government guarantee.
If depositors no longer have confidence in deposit insurance, bank runs and an insolvent

10See Federal law under 20 U.S.C. §1075 and 20 U.S.C. §1087-1.
11Federal law (20 U.S.C. §1082) states that should the guarantor for a FFEL loan become insolvent, the

holder of a FFEL loan can obtain guarantee payment directly from the Department of Education.
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banking system could result. The government may succeed in convincing depositors that
the guarantee on student loans is different, but it is an operation that is not without risks.

To explore what fraction, if any, of the near-arbitrage discounts could be explained by
an increased risk of default on the government’s obligation and guarantees with respect
to FFEL loans, I turn to data on another type of variable-rate bond that benefits from US
federal guarantees. The Small Business Administration guarantees a portion of the small
business loans originated by banks under various programs. The guaranteed portion of
SBA-guaranteed loans is often securitized and the SBA, in addition to the guarantee on
the collaterals, guarantees the payment of interest and principal on the small-business
loans Pool Certificates (PCs). By attributing the entire price dynamic among SBA PCs to
changes in the risk of default on government guarantees and obligations, an upper bound
on the price change in SLABS that can be explained by such changes in risk is obtained.

More specifically, I form price indexes from SBA PCs with similar maturities. I then
construct conservatively extended amortization schedule for SLABS and based on their
conservatively extended paydown date, SLABS are matched to an SBA PC price index.
The arbitrage gap on SLABS is compared to the price change on their matched SBA
PC price index. Table 2.6 reports the result of this comparison. Figure 2.4 shows the
difference in price change for a group of SLABS with conservatively extended paydown
dates ranging between 2016Q1-2016Q4 and their matched SBA price index formed from
SBA PCs with a 2016-2017 maturity. The average through-to-peak price change among
the SLABS is 8%.12 The average through-to-peak price change among the matched group
of SBA PCs is less than 1.7%. The computations are based on data from Bloomberg13 for
SLABS, and quoted prices obtained by the Federal Reserve System from Interactive Data
Corporation for SBA PCs.14

Table 2.7 in the Appendix reports the price changes on the SBA PC price indexes.
The price changes are computed by taking the difference between i) the maximum price
index observed between 01/01/2010–10/11/2011, and ii) the minimum price observed
between 11/10/2008–03/30/2009. The difference is converted into a percent price change
by dividing this difference by the minimum price.

Table 2.6 reports the near-arbitrage gaps on SLABS, computed from the difference
between their minimum near-arbitrage lower bound value and their minimum price

12Includes SLM 2003-3 A4, SLM 2003-6 A4 and SLM 2003-8 A4.
13I obtained quoted price data from a Bloomberg terminal and validated it with transaction data

involving insurance companies retrieved from a Bloomberg terminal.
14The Federal Reserve System started to acquire data on the price of SBA PCs on November 10th, 2008.

Hence, the comparison of through-to-peak price change between SLABS and SBA PCs over that period,
instead of some other measure.
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Figure 2.4: SLABS versus SBA PCs. This figure plots the price of SLM 2003-3 A4 and a price
index constructed with SBA PCs maturing in 2016-2017. Ex-post, SLM 2003-3 A4 amortized
roughly linearly between the crisis and 2016Q1. SBA PCs maturing in 2016-2017 have a similar or
slower rate of amortization.

during the crisis of 08-09. The near-arbitrage gaps are then compared to the price changes
on a matched SBA price index. The last column of Table 2.6 shows the proportion of the
original near-arbitrage gap that remains after accounting for the risks associated with
historically unprecedented macroeconomic events. For 90% of SLABS, 75% or more of
the near-arbitrage gaps is unexplained by the aforementioned risks.

2.5 conclusion

Using data on inflation caps, interest rate swaps and interest rate basis caps, and compar-
ing the price dynamic on SLABS to other securities benefiting from a similar government
guarantee, I find that for 90% of SLABS the risks associated with historically unprece-
dented macroeconomic events explain at most 25% of the near-arbitrage gaps. These
results support the findings reported in Chapter 1 and confirm the presence of large
and persistent underpricing of SLABS relative to Treasuries during the financial crisis of
2007–2009.

On the normative side, my findings support the claim from Chapter 1 that SLABS
presented near-arbitrage opportunities for the US government during the crisis. These
results also support the other normative implications discussed in Chapter 1. On the
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Table 2.6: Near-arbitrage among SLABS versus SBA PC price changes

Sr. O/C Near-Arb. Conserv. Matched SBA Remaining
Tranche ratio gap paydown index gap

(min.) (orig.) (infl. robust) (date) (mat.) (% ch.) (% pt.) (%)

03-3 A4 1.230 8.4% 8.3% 2016q1 2016-17 1.60% 6.7% 79%
03-6 A4 1.276 8.7% 8.5% 2016q2 2016-17 1.60% 6.9% 80%
03-8 A4 1.227 9.0% 8.8% 2016q4 2016-17 1.60% 7.2% 80%
03-9 A4 1.221 13.2% 13.0% 2016q3 2016-17 1.60% 11.4% 87%
04-4 A4 1.175 9.7% 9.5% 2016q3 2016-17 1.60% 8% 82%
04-6 A4 1.175 2.2% 2.2% 2012q2 2012-13 0.17% 2% 89%
04-6 A5 1.175 13.1% 12.9% 2017q2 2016-17 1.60% 11% 86%
04-7 A4 1.153 3.5% 3.4% 2013q2 2012-13 0.17% 3% 93%
04-7 A5 1.153 14.6% 14.3% 2017q2 2016-17 1.60% 13% 87%
04-9 A4 1.134 4.8% 4.7% 2014q3 2014-15 0.99% 4% 78%
04-9 A5 1.134 16.5% 16.2% 2017q2 2016-17 1.60% 15% 88%
05-2 A4 1.126 5.3% 5.2% 2014q3 2014-15 0.99% 4% 80%
05-2 A5 1.126 18.0% 17.7% 2017q3 2016-17 1.60% 16% 89%
05-10 A3 1.076 3.3% 3.3% 2013q2 2012-13 0.17% 3.1% 93%
05-10 A4 1.076 13.7% 13.3% 2017q3 2016-17 1.60% 11.7% 85%
05-10 A5 1.076 12.3% 10.8% 2018q4 2018-19 1.96% 8.8% 72%
06-1 A3 1.072 2.3% 2.1% 2013q4 2012-13 0.17% 2.0% 86%
06-1 A4 1.072 14.5% 14.1% 2017q3 2016-17 1.60% 12.5% 87%
06-1 A5 1.072 19.0% 17.8% 2018q4 2018-19 1.96% 15.8% 83%
06-3 A3 1.072 3.4% 3.3% 2013q4 2012-13 0.17% 3.1% 93%
06-3 A4 1.072 14.1% 13.7% 2017q3 2016-17 1.60% 12.1% 86%
06-3 A5 1.072 25.1% 23.7% 2018q4 2018-19 1.96% 21.8% 87%
07-2 A1 1.041 2.1% 2.0% 2012q4 2012-13 0.17% 1.9% 89%
07-2 A2 1.041 11.6% 11.4% 2017q4 2016-17 1.60% 9.8% 84%
07-2 A3 1.041 22.6% 21.8% 2019q1 2018-19 1.96% 19.9% 88%
07-2 A4 1.041 15.2% 13.3% 2020q1 2020-21 2.53% 10.7% 70%
07-3 A1 1.039 2.5% 2.5% 2013q2 2012-13 0.17% 2.3% 91%
07-3 A2 1.039 11.8% 11.6% 2017q4 2016-17 1.60% 10.0% 84%
07-3 A3 1.039 22.5% 21.8% 2019q1 2018-19 1.96% 19.8% 88%
07-3 A4 1.039 14.6% 11.4% 2020q1 2020-21 2.53% 8.8% 61%

This table reports the near-arbitrage price gaps on SLABS, original and inflation-risk-robust, and compares
them to price changes on a matched SBA price index. Near-arbitrage price gaps are computed from the
difference between the minimum near-arbitrage lower bound value on a SLABS and its minimum market
price during the crisis of 07-09, expressed as a percentage of the former.
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positive side, my findings also support the claim that market participants faced important
arbitraging frictions during the crisis and that the underpricing of SLABS is evidence in
favor of the slow-moving capital explanation of arbitrage persistence.
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2.6 appendix

2.6.1 sba pc price indexes

Table 2.7:
SBA PC price indexes

Maturity Time to maturity Price change
(as of 12/31/2008)

2012–2013 4 0.17%
2014–2015 6 0.99%
2016–2017 8 1.60%
2018–2019 10 1.96%
2020–2021 12 2.53%
2022–2023 14 2.50%
2024–2025 16 2.61%
2026–2027 18 2.79%
2028–2029 20 2.96%
2030–2031 22 3.34%
2032–2033 24 2.73%

This table presents price changes for SBA PC price indexes
constructed with SBA PCs of various maturities. The first col-
umn reports the range of maturity years of the constituent
SBA PCs that contribute to an index. The second column re-
ports the time to maturity of the constituent SBA PCs, as of
12/31/2008. The third column reports the difference in price
between two points i) the maximum price observed between
01/01/2010–10/11/2011, and ii) the minimum price observed
between 11/10/2008–03/30/2009. The difference is expressed as
a percentage of the minimum price.
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Chapter 3

Securitization with Asymmetric
Information: The Case of PSL-ABS

joint with Adam Ashcraft1

3.1 introduction

Getting securitization right — retaining its potential benefits while correcting flaws that
contributed to the financial crisis of 2007–2009, or flaws that could potentially contribute
to a future crisis — is a common objective of market participants, policy-makers, and
regulators. At its best, securitization is a financial intermediation process that can create
low-risk, highly-rated, information-insensitive and liquid securities via pooling and
tranching (DeMarzo (2005); Gorton and Metrick (2012)). It has been well documented
that the underperformance of private-label mortgage-backed securities (MBS)2 was a
contributor to the crisis of 2007–2009. For example, it has been estimated that among “all
mortgage-backed securities Moody’s had rated triple-A in 2006, it downgraded 73% to
junk" by April 2010.3 This is suggestive of design flaws in the structuring of MBS.

This paper analyzes a subset of private student loan asset-backed securities (PSL-ABS)
that performed relatively well in comparison to MBS.4 To our knowledge, our paper is

1The views expressed in this paper are those of the authors and do not necessarily reflect the position
of the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the
responsibility of the authors.

2Securities collateralized by mortgages without a guarantee against default from a government spon-
sored enterprise.

3According to estimates in “The Financial Crisis Inquiry Report” of the National Commission on the
Causes of the Financial and Economic Crisis in the United States, published in 2011 (p. 122).

4In contrast to the massive downgrades from triple-A to junk among MBS, among the PSL-ABS that we
analyze, no downgrades have pushed a triple-A rated ABS below the investment grade cutoff to date. If
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the first to analyze informational frictions in the securitization of PSL and we focus on
the adverse selection friction between a PSL-ABS issuer and investors. We focus on the
adverse selection friction because some loan characteristics that strongly predict defaults
are only coarsely disclosed (e.g. borrower credit score at time of securitization) and at
least one strong predictor of default (share of college drop-outs) is not disclosed at all. In
contrast to private-label MBS, PSL-ABS have experienced a relatively sustained issuance
during the post-crisis period.5 This provides additional motivation for taking a closer
look at PSL-ABS.

When disclosures of pool characteristics to investors are sufficiently coarse a broad
range of performance outcomes is possible. In such a scenario, the past performance of
observationally–similar pools risks being a poor predictor of a pool’s future performance.
We quantify the extent to which a PSL-ABS issuer can engage in adverse selection, given
its disclosure at issuance of PSL-ABS deals; this can help PSL-ABS buyers better assess the
potential for adverse selection and encourage vigilance among investors for conditions
that could encourage an issuer to begin engaging in adverse selection. Financial distress,
a reduced reliance on the ABS market for loan funding, the intention to exit the ABS
market, or some form of increase in managerial short-termism could each contribute to
greater discounting of future reputational costs. When discounted reputational costs are
sufficiently low relative to the benefits of adverse selection (raising funds from investors
that exceed the expected value of the cash flows from a securitized pool), an issuer is
likely to engage in adverse selection.

In contrast with MBS (Piskorski et al. (2015); Elul (2016); Agarwal et al. (2011); Berndt
et al. (2010)), there are fewer agents involved in the supply chain of credit among the
PSL-ABS that we analyze. The loan origination, ABS issuance and loan servicing activities
are all integrated within the same firm. Furthermore, the vertically-integrated originator-
issuer-servicer retains ownership of the residual cash flows from the securitized assets
(another feature that differs from MBS). Residual cash flows refer to the cash flows
generated by a securitized pool of loans after all ABS holders have been repaid (if any
such cash flows remain). This kind of ownership was not generally present among MBS

one excludes PSL-ABS deals containing senior auction rate notes, the worst downgrade to date has been to
an Aa3 rating (equivalent to an AA- rating). Including PSL-ABS deals containing senior auction rate notes,
the worst downgrade to date has been to Baa2 (equivalent to a BBB rating).

5PSL-ABS, after experiencing a hiatus in issuance in 2008 and using the support of the Term Asset-
Backed Securities Loan Asset Facility (TALF) for issuances in 2009–2010, have been issued multiple times
per year during the post-crisis period. The volume of issuance between 2011–2013 was about 80% of its
2005–2007 level. In contrast, the issuances of private-label MBS between 2011–2013 represented less than
5% of its 2005–2007 level.
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originated before the crisis.6 These features may have contributed to mitigating the
frictions resulting from the asymmetric information between the issuer of PSL-ABS and
investors as well as the superior historical performance of PSL-ABS relative to MBS. An
emerging literature provides empirical evidence that credit risk retention contributes to
mitigating adverse selection (Begley and Purnanandam (2017)).

Slightly more broadly, our findings inform the understanding of securitization cases
involving a firm that a) vertically integrates the loan origination, ABS issuance, and loan
servicing activities, b) retains credit risk, and c) coarsely discloses or does not disclose
to investors important predictors of loan losses. The majority of PSL-ABS issued before
the crisis possessed all those features, as do nearly all PSL-ABS issued after the crisis.
Insights from our findings could also become useful if securitization cases that have
historically been different (e.g. subprime mortgages (Ashcraft and Schuermann (2008))
came to converge toward the securitization case that we analyze.

We make a methodological contribution by developing and employing a novel method-
ology to analyze the adverse selection friction between an ABS issuer and investors. To
our knowledge, all prior empirical studies on the adverse selection friction between an
issuer/broker/originator and investors/buyers have used data sets that either identify
securitized loans and unsecuritized loans or allow for the construction of a measure of the
probability of securitization (Berndt and Gupta (2009); Agarwal et al. (2012); Benmelech
et al. (2012); Krainer and Laderman (2014); Adelino et al. (2016)). This is true of the
papers on the topic of adverse selection listed here and everywhere else in this paper.
The loan-level data set that we use does not identify securitized loans and unsecuritized
loans, thus we develop a new methodology: we put ourselves in the shoes of an issuer of
PSL-ABS at the time of the selection of the loans into a securitized pool. We use historical
deals to parameterize our exercise and the selection of loans is constrained by the pool
characteristics disclosed to investors on these deals. For each historical deal, we form one
loss-maximizing pool and multiple “random” pools that each match the disclosed charac-
teristics but differ in their level of cumulative pool losses. Our deal-specific estimated
shifts are simply the percentage difference between the cumulative gross losses on the

6Pre-crisis, originators did not typically hold an equity position in MBS that contained the loans that
they originated, and while issuers would usually hold an equity position at issuance, they would typically
sell that equity position soon after. While the lack of ownership of equity by originators is observable from
MBS deal documents and covered in (Ashcraft and Schuermann (2008)), the data on the sale of issuers’
equity positions is more scarce. A subset of the equity positions in MBS were sold into Net Interest Margin
(NIM) securities. Park (2011) reports that about $168 billion in NIM securities on subprime MBS deals
were issued between 2004 and 2007, versus $1,309 billion in other types of securities on these deals. This
suggests a very high rate of sale of equity positions into NIM securities since the book value of equity was
typically less than 5% of asset value in subprime MBS deals.
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loss-maximizing pool and the average among random pools.
Previewing our results, we find that the PSL-ABS issuer that we analyze could increase

pool losses by 6%–20% among pre-crisis deals and 16%–36% among post-crisis deals while
still matching the disclosed pool characteristics. This is achieved purely by exploiting
the coarseness of the disclosures — specifically, by jointly overrepresenting unseasoned
loans in the low credit score region and overrepresenting seasoned loans in the high
credit score region. The magnitude of these shifts is material and could result in adverse
outcomes for investors (credit rating downgrades or market value loss).

The rest of this paper is organized as follows. In Section 3.2, we review the related
literature, mainly on the securitization of mortgages, and use our institutional knowledge
to adapt prior findings on MBS to the case of PSL-ABS. This review aids the interpretation
of our estimates for potential adverse selection as lower bounds. In Section 3.3, we
introduce the data that we use in greater detail. In Section 3.4, we quantify the extent of
adverse selection that can be achieved via the sources of asymmetric information that we
can exploit. We present concluding remarks in Section 3.5.

3.2 related literature and lower bound inter-

pretation

At a high level, our approach assumes that all loans have a similar expected return
at origination, which requires that the interest rate be set in such a way as to fully
compensate for the risk of loss, as expected at origination. However, divergence in
expected returns occurs over time based on the information acquired by the vertically-
integrated servicer-issuer-originator. The issuer acquires this information between the
origination of a loan and the time at which it is considered for securitization, but little of
this information is disclosed to investors; we analyze this important source of asymmetric
information.7 Due to data limitations, we only quantify a fraction of the potential for
adverse selection in PSL-ABS.

One such piece of information that is acquired after the loans are originated and
which goes undisclosed to investors is enrollment status. Prior studies (Knapp and Seaks
(1992); Mezza and Sommer (2015)) have estimated that a college drop-out is between 2.2

7The requirement that loans be fully disbursed before they become eligible for securitization and the
general use of multiple disbursement on private student loans creates a minimum delay between the
origination of loan and their eligibility for securitization. Empirically, delays between origination and
securitization are significantly longer than the 3 quarters that generally separates the partial disbursements
on a loans, with weighted average loan age at securitization WALAS, ranging between 4 and 11 quarters
among the PSL-ABS deals we analyze.
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and 9 times more likely to default on student loans than a college graduate, yet PSL-ABS
issuers do not disclose the enrollment or degree-completion information they possess.
Particularly relevant for our analysis is evidence presented by Mezza and Sommer (2015)
that college drop-outs, even after controlling for credit score immediately before entering
into repayment, are more than twice as likely to become delinquent on their loans.8

Results that control for credit score best complement our analysis because summary
statistics on credit score at securitization are disclosed to PSL-ABS investors and we
match this disclosure in our exercise. However, we lack critical pieces of information
(e.g. the distribution of private student loan dollars across school type and between
college graduates versus college drop-outs) that would allow us to quantify how much
the overrepresentation of college drop-outs would add to our shifts. Nonetheless, it is
unquestionable that the effect would be more adverse to investors, and this supports to a
lower bound interpretation of our estimated shifts.

Maintaining our focus on the information that is acquired after a loan is originated, a
vertically-integrated originator-issuer-servicer has the opportunity to use data-mining
techniques on the loans it services (both those on its books and those in the pools
collateralizing the PSL-ABS it issues) to uncover predictors of default that are not disclosed
to investors. While disclosed credit bureau scores (e.g. FICO credit scores) are a borrower-
level measure, an originator-issuer-servicer can use the data at its disposal to develop
loan-level adjustments based on observations specific to a loan. For example, Aiello (2016)
finds that mortgage borrowers who make their first six payments at least a day prior to
the due date are 14.8% percentage points less likely to become delinquent.9 Payment prior
to due date is thus highly correlated with non-default, observable to an issuer-servicer
and never disclosed to investors; this combination makes it a clear avenue for potential
adverse selection. The hypothesized presence of similar delinquency predictors for PSL
further supports interpreting our estimated shifts as lower bounds on the degree of
feasible adverse selection.

While we focus on default risk and the literature on MBS has mainly focused on
default, selection with respect to prepayment risk can also affect the performance of
a pool. In our exercise, we match both the disclosed balance-weighted average credit
score at securitization and the disclosed distribution of loan balance across intervals of
credit score at origination. We maximize pool losses by mixing particularly bad loans
that experience decline in credit score after their origination with loans that experience

8Figure 4 of Mezza and Sommer (2015) summarizes their estimates of differential delinquency risk
between college graduates and drop-outs controlling for credit score.

9Table III of Aiello (2016) shows that these results are obtained after controlling for FICO credit scores.
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modest increases in credit score. This is done ignoring prepayment risk. If the good
loans that are mixed with the particularly bad loans in the loss-maximizing pool were
selected based on a high likelihood of prepayment, they would generate a short stream of
revenues that would have a limited impact at offsetting the selection of the particularly
bad loans into a securitized pool. Agarwal et al. (2012) finds evidence of adverse selection
on prepayment risk in the selection of securitized mortgages. This again, intensifies the
argument for the interpretation of our estimated shifts as lower bounds.

Conceptually, our exercise does not require that loans with a negative Net Present
Value (NPV) be originated. Loans that undergo a downward migration in credit score
between their origination and their consideration for securitization (and no observation
that offsets this negative signal (e.g. staying current when positive payments are due))
provide an ample supply of loans with a negative NPV at securitization. In a nutshell, we
determine which of these declining-NPV loans to select and which loans among those
experiencing increases in scores to mix them with so as to maximize pool losses while
matching the disclosed characteristics on credit scores.

By combining our institutional knowledge of PSL-ABS with our review of the literature,
we identified multiple channels that contributed or that could contribute to the origination
of PSLs with a negative NPV. The origination of such loans increases the supply of loans
with a negative NPV available at the time of forming a securitized pool. Negative NPV
loans that do not require downward migration in credit score, or that remain negative
NPV loans despite an upward migration in score, would add to the supply of negative
NPV loans that we could exploit. This is yet another reason to interpret our estimated
shifts as lower bounds.

First, among contributors to the origination of private loans with negative NPV was the
willingness of issuers of PSL to originate a moderate volume of private student loans that
were expected to be unprofitable in order to improve their relationships with some schools
and to secure the origination and servicing of larger federal (government-guaranteed)
student loan volume.10 Competition among originators of government-guaranteed loan
for a top placement on the list of “Preferred Lenders” that schools provided to students
was fierce.11 For a small volume of private student loans (at most 15%) the “subsidized

10Senator Durbin raised awareness of “pay-to-play” or “subsidized-private-loans-for-federal-loan-volume”
arrangements in 2007 (Congressional Record (2007)).

11Many lenders used unethical inducements. The unethical inducements were significant enough
that New York state’s attorney general Cuomo’s “nationwide investigation into the student loan
industry [. . . ] resulted in agreements with twelve student loan companies, including the eight
largest lenders in America — Citibank, Sallie Mae, Nelnet, JP Morgan Chase, Bank of Amer-
ica, Wells Fargo, Wachovia, and College Loan Corporation” (https://ag.ny.gov/press-release/
cuomo-announces-settlement-student-loan-company). The Student Loan Sunshine Act (“H.R. 890
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rate” offered on private loans was so low relative to the risk of default that lenders
would negotiate a risk-sharing agreement with schools.12 The presence of the 90–10 rule,
which mandates that no more than 90% of the loan volume at a for-profit school comes
from federal loans, created strong incentives for for-profit schools with exceptionally
high default rates to negotiate such agreements with originators of private loans. The
risk-sharing agreement ensured continued access to federal loan for their current and
prospective students. The risk-sharing transfers from the schools to the lender would not
be transferred to the PSL-ABS trusts. Therefore, from the point of view of a PSL-ABS
investors, the overrepresentation of loans covered by a risk-sharing agreement would
have had an adverse effect on investors.13

A second potential contributor to the origination of negative NPV private loans, or
loans with relatively lower expected values, are the fair lending laws. Many studies
have shown borrower race to be a statistical predictor of default, even after controlling
for credit score (Board of Governors of the Federal Reserve System (2007); Jiang et al.
(2014a)). But differential treatment in the approve/decline decision or the setting of
the interest rate based on race is forbidden by fair lending laws. To our knowledge,
however, no law prevents issuers from overrepresenting borrowers belonging to a race
group associated with higher delinquencies (and for which the originator-issuer was
unable to set a compensating higher interest rate because of fair lending restrictions) in a
securitized pool of loans.14

A third potential contributor to the origination of negative NPV private loans is the
competition for origination volume, especially the competition from non-bank lenders

— 110th Congress: Student Loan Sunshine Act.” www.GovTrack.us. 2007. May 14, 2017 https:
//www.govtrack.us/congress/bills/110/hr890) was passed in Congress under expedited rules on May 9,
2007 with only three dissenting votes. It aimed to make unethical inducements practices illegal. Provisions
of the Student Loan Sunshine Act were incorporated in the Higher Education Opportunity Act, which was
signed into law on Aug 14, 2008.

12Risk-sharing agreements would take two main forms, either discount loans, which required that
a school pays $0.20-$0.30 to a lender for every $1 of private student loan disbursed to its student
(https://www.sec.gov/Archives/edgar/data/1286613/000114036111016427/form10k.htm, or recourse
loans, which required that schools purchase back loans if default exceeded some threshold http:
//securities.stanford.edu/filings-documents/1050/ESI00_01/2014115_r01c_13CV01620.pdf.

13The federal government guaranteed-loan program ended in June 2010 and many PSL originators
terminated relations with schools involved in “subsidized-private-loans-for-federal-loan-volume” arrange-
ments by the end of 2009. For example, in SLM’s 10-K for 2009, the company states “This significant
level of provision expense, compared with prior and subsequent quarters, [sic] primarily related to the
non-traditional portion of the Company’s Private Education Loan portfolio which the Company had been
expanding over the past few years. The Company has terminated these non-traditional loan programs [...]”.

14We obtained copies of SLM’s pre-crisis application forms for private loans. No information on race is
collected on these forms. However, the technology to statistically categorize a borrower into a race group
based on his name and ZIP Code exists; this statistical categorization could be used to overrepresent certain
race groups into securitized pools.
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that are subject to a different set of regulations.15 Lenders are sometimes willing to incur
losses in segments of the market where competition is the strongest in order to remain
a “full-spectrum” lender that offers competitive rates to all borrowers and to potentially
squeeze out competition. A good example of a fiercely competitive non-bank lender prior
to the crisis is MRU Holdings. It issued private student loans under the MyRichUncle
brand between 2005 and 2008 and became the fourth-largest provider of student loans in
2007. It did not accept deposits and was funded with bank loans. MRU Holdings filed for
bankruptcy in February 2009. Post-crisis examples of non-bank lenders that attempt to
“cream-skim” traditional lenders by focusing on students pursuing high-earning majors
or programs at institutions with superior job placement include FinTech companies such
as SoFi.16

Finally, our exercise assumes that the disclosed information properly represents the
content of securitized pools. A series of recent papers have shown this assumption to
be violated on a widespread scale in the MBS market (Piskorski et al. (2015); Griffin
and Maturana (2016)).17 Particularly relevant for the case of PSL-ABS is the evidence
presented by Griffin and Maturana (2016) that both originator and MBS issuer fixed
effects explain a particular type of misrepresentation: unreported second liens. This
constitutes evidence that both false representation by originators to MBS issuers (with
MBS issuers failing to perform their due diligence and passing the false information on
to investors) and truthful representation by originators followed by false representation
by MBS issuers were occurring. The latter form of misrepresentation is most relevant for
the PSL-ABS that we analyze because of the vertical integration of the loan origination
and ABS issuance activities within the same firm. Therefore, the lack of an adequate
governance structure to verify that the disclosed information properly represents the
content of a securitized pool is another channel that could add to the shifts that we
compute and thus contribute to the lower bound interpretation of our shifts.

15The portion of SLM’s funding that was obtained via deposits was small prior to the crisis, but the
presence of Sallie Mae bank (a bank chartered in the state of Utah) within the SLM Corp. holding partially
subjected SLM to the regulation that applies to banks. The portion of SLM’s funding that comes from
deposits has increased over time, especially after SLM was fully privatized in December 2004.

16Weiss, Miles. “Harvard Graduates Targeted for Loans With Alumni-Backed Funds.” Bloomberg News.
Bloomberg. Web. 12 Dec. 2012.

17These papers document widespread misrepresentation in the securitization of residential mortgages.
These papers were preceded by others that were narrower in scope (Ben-David (2011); Jiang et al. (2014a);
Garmaise (2015); Carrillo (2013).
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3.3 data description

We first describe pool-level characteristics of historical PSL-ABS deals. These characteris-
tics are used to parameterize our computation of shifts in gross pool losses in Section
3.4. Second, we describe the loan-level performance data. Two important components of
our computation of shifts in pool losses rely on this loan-level data. First, it provides the
distributions of loan balance across credit scores at the time of securitization and across
loan seasoning groups. Second, we use it to estimate the relationships between gross loss,
credit score, and loan seasoning.

3.3.1 pool characteristics data

We hand-collected data on pool-level characteristics of historical deals from prospectuses.
All the deals that we analyze were issued by SLM Corporation18 and have a consistent
set of pool characteristics disclosed in their prospectuses. SLM is a vertically integrated
originator-issuer-servicer and it held the residual claim on cash flows from the securitized
pools that collateralize these deals. Table 3.1 presents the proportion of non-cosigned
loans in historical pools and various statistics related to credit scores on the non-cosigned
portion of pools. The table focuses on credit score statistics for the non-cosigned portion
of pools because our computations of shifts in gross pool losses in Section 3.4 are obtained
from samples of non-cosigned loans. Shifts computed on the non-cosigned portion of
pools can confidently be treated as upper bounds on the co-signed portion of pools: in
preliminary regressions using the loan-level data with credit score of the co-signer at
securitization as the independent variable, we found the level of default and the sensitivity
to credit score to be significantly lower among loans with a co-signer than without.

Prospectuses have only limited credit score disclosure for the time of securitization,
but more detailed score information for the time of origination. At securitization, there
is only the proportion of pool balance with a score below 630 and the balance-weighted
mean credit score. At origination, a more detailed grid of scores is disclosed. Appendix
3.6.1 provides an example illustrating the granularity of the disclosure. We match these
disclosed characteristics when computing shifts in pool losses.

Table 3.1 also presents the balance-weighted average loan age at securitization, or
(WALAS). Loan age is simply the time elapsed since the origination of a loan, in quarters.
Empirically, there is a lag between the origination of PSL and their securitization. One
factor that contributes to this lag is the common practice of splitting the disbursement of

18SLM had a Government Sponsored Enterprise (GSE) subsidiary, Sallie Mae, until in December 2004.
All the deals that we analyze were issued after the dissolution of the GSE subsidiary.
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PSL across more than one semester and the requirement that loans be fully disbursed
before they become eligible for securitization. Other factors contribute to lengthening the
lags. The WALAS reported in Table 3.1 range between four and six quarters among the
pre-crisis PSL-ABS deals and between seven and eleven quarters among post-crisis deals.

Let ψo denote credit score at origination and ψs denote credit score at securitization.
The deals that we analyze have trivial amounts to no loans with ψo < 630, but the ψs < 630
is a region that offers greater potential for selection, as we will see in Section 3.4.3. A
longer WALAS means more time for loans with ψo ≥ 630 to transition to ψs < 630, thus
deals with a longer WALAS generally have a greater proportion of loans with ψs < 630
and this contributes to the potential for larger shifts in gross losses.

Table 3.1:
Pool characteristics of historical deals

Credit score (Non-cosigned)
Deal WALAS Non-cosigned At origination At Securitization Pick

(qtr) ψo < 630 ψo ψs < 630 ψs

SLM 2005-A 5 52% 0.16% 696 15% 675 3.24
SLM 2005-B 4 49% 0.20% 697 14% 681 3.21
SLM 2006-A 5 49% 0.20% 698 14% 681 3.84
SLM 2006-B 5 42% 0.08% 697 11% 681 3.68
SLM 2006-C 6 52% 0.39% 696 17% 678 6.50
SLM 2007-A 4 42% 0.16% 694 14% 681 6.16

SLM 2009-A 10 38% 0% 701 24% 675 6.53
SLM 2009-B 7 37% 0% 703 19% 680 5.86
SLM 2009-C 7 37% 0% 704 17% 684 11.60
SLM 2010-A 7 28% 0% 714 11% 691 8.87
SLM 2013-A 11 20% 0% 703 22% 683 12.73
SLM 2013-B 10 20% 0% 702 21% 684 13.26

This table presents the pool characteristics of historical deals. The first column reports deal name
composed of the issuer followed by the year of issuance. The second column reports the WALAS for all
loans in the pool that collateralizes deal. The third column reports the non-cosigned proportion of pool
balance. The fourth to seventh columns report pool characteristics disclosed to investors and related
to the credit scores of the non-cosigned portion of a pool. The fourth and fifth (sixth and seventh)
columns report the proportion of pool balance with ψo < 630 (ψs < 630) and the balance-weighted
average ψo (ψs). The last column presents the pick parameter, which represents the inverse of the
ratios of the balance of the non-cosigned portion of a pool over the balance of non-cosigned loans
outstanding and not yet securitized by SLM.

The pick parameter, also reported in Table 3.1, is the inverse of the ratio of the non-
cosigned pool balance over the balance of non-cosigned loans outstanding and not yet
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securitized by SLM.19 For example, deal 2005-A has a pick parameter of 3.24; this means
that the pool was formed by securitizing 1 out of every 3.24 outstanding loans that had
not yet been securitized by SLM. Holding everything else constant, the larger pick is, the
greater the potential to shift gross losses between a baseline pool without selection and a
pool with maximum adverse selection. Appendix 3.6.2 provides additional details on the
type of data used to construct the pool-level parameters pick and WALAS.

3.3.2 loan -level performance data

The student loan performance data is from the Consumer Credit Panel (CCP) data set of
the Federal Reserve Bank of New York. The CCP data set contains quarterly longitudinal
data and covers a representative sample of U.S. consumers with a credit bureau file:
it contains 5% of consumers for whom Equifax, one of three major national reporting
agencies, possesses a credit file.20 The reporting on consumers in the CCP data set occurs
at various levels of aggregation on different debt products. The reporting on student
loans is at the loan level. Appendix 3.6.3 contains a table that lists the variables that we
use from the CCP or derive from it.

The raw CCP data identifies student loans, but does not indicate whether a student
loan is private or federal. Carving out a clean subsample of private student loans
from the CCP is essential because the differences in the underwriting process between
private and federal loans21 lead to significantly different performance. Lucas and Moore

19This is a simplified description of the pick parameter. Truly, the pick parameter is the inverse of a
weighted average of vintage-specific ratios of the non-cosigned pool balance over the balance of non-
cosigned loans outstanding and not yet securitized. Weights are determined by the distribution of pool
balance across vintages. In order to properly estimate vintage-specific time-series of balances of non-
cosigned loans outstanding and not yet securitized, we had to collect data on the non-cosigned pool balance
of all PSL-ABS deals that contain loans from vintages that are also present in the deals that we analyze.

20Additional information about the construction of the CCP can be found in Lee and Van der Klaauw
(2010).

21The criteria to qualify for federal loans in the post-2000 era are minimal: an applicant must i) submit a
Free Application for Federal Student Aid (FAFSA), ii) have no current delinquency on federal loans, and
iii) attend an institution that is eligible (Title IV institution). There is generally greater stringency in the
underwriting process for private loans. For example, a freshman who satisfies conditions i)-iii) would be
approved for a federal loan; however, for 90% of postsecondary programs, the same freshman would need a
co-signer in order to obtain a private loan and the credit score of the co-signer would need to be sufficiently
high. As a sophomore, meeting the same criteria required of the freshman would lead to an approval for a
federal loan; however, the same sophomore would need a sufficiently thick credit history in order to have a
credit score and this credit score would need to be sufficiently high in order to be approved for a private
loan, otherwise, the sophomore would need a co-signer, and if he is unable or unwilling to find a co-signer
with a sufficiently high credit score, then, his private loan application would be declined. Hard data on
schools where private loans are offered are not readily available, but anecdotal evidence suggests that 1)
private loans are offered at many of the same schools that are eligible for federal loans, but not all of them,
for example, private loans may not be offered at some 2-year public colleges with low cost of attendance
and high dropout rates, and 2) private loans are likely offered at a small number of schools that are not
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(2010) estimate that gross default rates among federal loans are 1.8% of outstanding
principal per annum, versus 1% for private loans. These unconditional differences do not
necessarily imply conditional differences (differences in the relationships between gross
losses on loans, credit score, and loan seasoning), but they make them very likely. The
quantification of these relationships is a key building block for our results. In addition to
the likely differences in the estimated relationships between private and federal loans, the
distribution of loan balances across credit scores and levels of seasoning would also very
likely be different. Since these distributions are another building block for our results, it
was critical to obtain them from samples that only contained private loans.

The best means to identify private loans that we have discovered relies on the fact that
all federal loans originated after 2006Q3 have a fixed interest rate, whereas more than 95%
of private loans originated between 2006Q3 and 2011Q2 have a variable rate (Consumer
Financial Protection Bureau (2012)). The interest rate on loans is not directly observable
in the CCP data, and imputing an interest rate based on changes in balance and payment
due proved too noisy to cleanly categorize loans as having fixed or variable interest rate.
However, starting in 2010Q1 a change in the reporting by a set of loan servicers, unrelated
to balance and payment due, permitted us to consistently identify loans with a variable
rate. A series of check on the properties of the loans that we identified as private lead us
to believe that they would be representative of the loans originated by SLM.

Our computations of shifts in gross pool losses rely on the construction of deal-specific
samples of private student loans. These are subsamples of the student loans we identified
as private in the CCP. Summary statistics of the deal-specific samples can be found in
Table 3.2 alongside historical pool characteristics. These statistics are for loans without a
co-signer, as was the case for credit score in Table 3.1. This focus on non-cosigned loans
will apply for all subsequent statistics reported in this paper, unless otherwise noted.

Table 3.2 shows that the origination quarters of loans in the deal-specific samples
generally fall outside the range of vintages present in historical deals. This unexpected
feature arises because the largest and cleanest sample of private loans we could identify
from the CCP data requires that loans be originated after 2006Q2 and that their reporting
continue until at least 2010Q2. For pre-crisis deals, we chose to use origination quarters
2008Q2-2009Q1. This reflected a compromise between loan volume, the length of the per-
formance window and survival bias.22 For post-crisis deals, we could obtain sufficiently

eligible for federal loans. The anecdotal evidence on the latter comes from schools that lost their eligibility
for federal loans, because of excessively high default rates, and responded by offering institutional loans
and enticing a private lender to lend to their students via a risk-sharing agreement with the lender.

22For the pre-crisis deals, using loans originated in 2008Q3-2009Q2 instead of 2008Q2-2009Q1 would
have eliminated survival biases, mainly in the form of very small volume of missing prepaying loans, for
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large loan volume and sufficiently long performance window without having to accept
any survival bias, thus we chose to do so.

Finally, it should be noted that the CCP data set does not contain a variable indicating
whether a loan was securitized or not. This is in contrast with much of the empirical
literature on the securitization of residential mortgages. Endowed with such an indicator
variable, many researchers (Elul (2015); Jiang et al. (2014b)) have analyzed the historical
differences in performance between securitized and non-securitized mortgages. If we
were endowed with such an indicator variable, issuer-specific private loans data and a
sample covering all the vintages present in a deal, we could have conducted a similar
analysis, which would have been complementary to ours. This complementary analysis
would have allowed us to determine whether PSL-ABS issuer historically engaged in
adverse selection or not.

However, our framework to quantify the full possible extent of adverse selection,
which does not require a securitization indicator, would remain valuable. A lack of
differences in historical performance would not address whether and to what extent an
issuer could engage in adverse selection in the future on deals that are observationally
similar to the historical ones. This is particularly relevant because incentives to engage
in adverse selection can vary over time. Furthermore, finding historical evidence of
adverse selection would not necessarily imply that an issuer was engaging in adverse
selection to its fullest extent, whereas this could be a possibility in the future. To sum up,
a securitization indicator, along with the other conditions permitting a complementary
analysis, would not have fundamentally changed the approach we took to answer our
research question.

3.4 shifts in pool losses via selection

The first step in the computation of a shift in pool losses consists of forming a number of
pools by randomly selecting loans while matching a set of pool characteristics disclosed
to PSL-ABS investors. Additionally, we impose that pools also match a distribution of
loan seasoning. The empirical derivation of the distribution of loan seasoning will be

deal 2006-C and reduced it for all other pre-crisis deals. However, using this later origination window
would have shrunk the aggregate balance in the deal-specific samples by about 20%. Using loans originated
in 2008Q4-2009Q3 instead of 2008Q2-2009Q1 would have eliminated survival biases for deal 2005-A, 2006-A,
2006-B and 2006-C, and reduced it for other pre-crisis deals. However, using this later origination window
would have shrunk the aggregate balance by more than 60%. In addition, non-cosigned loans from 2008Q2
belong to an origination regime that is more representative of the pre-crisis period, with looser underwriting
standards, whereas loans originated in 2009Q2 are more representative of the post-crisis period, with tighter
underwriting standards.
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explained later in this section. The second step is to form a pool that also matches the
stated pool characteristics, but maximizes the expected gross pool losses. We call this
pool the loss-maximizing pool. It represents the preferred securitized pool of a myopic
originator-issuer who ignores or infinitely discount reputational costs.23 By maximally
leveraging the undisclosed information, the worst possible performing pool is securitized
and the best performing residual pool is retained on the originator-issuer’s balance sheet.

We repeat the exercise with various sets of parameters, which are chosen to proxy
for 12 historical deals24. The key output of interest, which we call shift, consists of
the difference in cumulative gross losses (CGL) between the loss-maximizing pool and
the average CGL of the random pools with the same disclosed characteristics. Shift is
expressed as a percentage of the average CGL of the random pools. For example, a
loss-maximizing pool having an expected CGL of 19.3% means that the balance of the
loans that enter default (at the time of entry into default) divided by the initial pool
balance equals 19.3%. The average CGL among the corresponding random pools is
16.0%, so we report a shift of 20.6%.25 This means that the CGL for the loss-maximizing
pool is 20.6% higher than an investor would expect at deal issuance based on historical
performance of observationally equivalent pools, assuming an historical performance
without selection and no anticipation of selection on the issued deal.

3.4.1 matched pool characteristics and empirical constraints

Empirically, disclosure on credit score at securitization (ψs) is limited to two summary
statistics: the balance-weighted average credit score and the proportion of pool balance
with a credit score below 630. In our exercise, both the loss-maximizing pool and the
corresponding random pools match those two summary statistics. The disclosure on
credit score at origination (ψo) is more detailed. Appendix 3.6.1 shows side-by-side, for
an example deal, the empirical distribution of pool balances across ψo intervals and the
distribution over the coarsened grid that we match when computing shifts in pool losses.

Empirically, issuers also disclose the distribution of pool balance across vintages, which
combined with the date of securitization, produces a distribution of pool balance across
loan age at securitization. When creating the sample from which loans can be selected

23Myopia could be caused by managerial short-termism due to improper alignment of their incentives
with those of shareholders and heavy discounting, practically equivalent to infinite discounting, could
be rational for the managers of a firm that is close its bankruptcy boundary or intending to exit the ABS
market.

24SLM had issued 6 pre-crisis deals after the dissolution of its Government Sponsored Enterprise
subsidiary, Sallie Mae, in December 2004. We matched that deal count with 6 post-crisis deals that
possessed pool characteristics suggesting greater potential for loan selection.

25((19.3% - 19.3%)/16.0%) = 20.6%.
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in a deal-specific exercise, all loans must be eligible for securitization, mainly meaning
no more than 30 days delinquent26, when their loan age equals the balance-weighted
average loan age of the pool under analysis.

In our exercise, all loans in a deal-specific sample have the same loan age. Despite
a common loan age, loans can differ in their seasoning. Unlike other consumer loans,
which have a positive required payment in the month that follows their disbursement,
the required payments on student loans can be zero for months and often years after
their disbursement. Following the disbursement of a student loan, as long as a student
maintains sufficient enrollment (usually more than half time) then a student can choose
required payments of $0. The vast majority of students choose to do so. There is also
a grace period (usually 6 months in duration) that follows the disenrollment, due to
drop-out or graduation, during which the required payment on a loan can remain $0.

If one tries to use the longest possible window of post-securitization performance so to
estimate expected gross loss (EGL) on loans, there can be large differences in EGL between
the loans that enter repayment soon after securitization or are already in repayment at
securitization versus loans that are still years away from entering repayment when they
are securitized.27 This is why we estimate the relationship between EGL and credit score
at securitization separately for different levels of seasoning.

Seasoning at the time of consideration for securitization (seass) is constructed as
follows. Let Φ(p>0, t) be an indicator function that takes value 1 if the payment due on a
loan in a quarter is positive and value 0 otherwise. Let us define four time indicators: tp

for the first quarter with a positive payment due, to for the quarter of origination, ts for
the time of consideration for securitization and τ for the end of the post-securitization
performance window. Let ` denote the length of the performance window. We construct

26Some deals treat loans 30-60 days past due as also eligible. The full disbursement of the loan is another
eligibility criterion. Loans with ψo < 630 do not appear in post-crisis deals; we treat this has an eligibility
criterion. For pre-crisis deals, when forming pools, loans ψo < 630 are eligible, but when estimating
relations between gross loss and loan characteristics at securitization, we exclude them because this leads
to a more representative sample.

27We use the term “at securitization” in two ways. First, the more intuitive use, which is to indicate the
actual time of securitization when discussing characteristics of loans found in historical pools. Second,
to indicate the point in time of potential securitization in i) our exercises of selection of pools and ii)
our estimation of relationship between gross loss (over a potential post-securitization period) and loan
characteristics (at the time of potential securitization). We omit the “potential” qualifier for brevity in the
second case. In a deal-specific exercise, all loans from the quarters of origination selected to form the
deal-specific sample (listed in Table 3.2) and that are eligible for securitization are all used to estimate the
relation between gross loss and its predictors.
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seass using:

seass =
ts

∑
to

Φ(p>0, t), if tp ≤ ts, (3.1)

seass = −(tp − ts), if tp > ts, (3.2)

where we set seass = −(`+ 1) if ∑τ
to Φ(p>0, t) = 0.28

Loans belonging to relatively narrow ranges of seasoning are grouped together. We
chose to group loans into four seasoning groups for each deal, with cutoffs that vary with
the WALAS of deals. Given our sample size, this approach gives reasonable opportunities
for significant differences in the relationship between EGL and ψs to be found between
these groups. The classification of loans into seasoning groups is also a component of our
approach to separate two types of shifts: i) shifts in pool losses that are likely to persist
over the life of a pool, and ii) shifts in the timing of losses (especially higher losses during
the in-sample window of post-securitization performance) without necessarily increasing
losses over the life of a pool. To isolate the shifts in pool losses that are likely to persist
over the life of a pool, we follow a three-step process.

First, for every deal-specific sample of loans, all loans are categorized across seasoning
groups and we run our algorithm to form random pools that match the disclosed pool
characteristics related to credit scores (both at securitization and at origination). We then
compute the average proportions of pool balance in the four seasoning groups across
the random pools. Appendix 3.6.4 presents these average proportions for each deal.
Second, and this will be explained in greater details in Section 3.4.2, we estimate the
relationship between gross loss and credit score separately for each seasoning group while
compensating for the underexposure to default risk of the less seasoned loans (especially
those that had not yet entered repayment at ts). Third, we form loss-maximizing and
random pools that match the proportion of pool balance across seasoning groups obtained
in the first step, and use them to compute shifts in gross pool losses.

An additional set of constraints that enter our pool formation algorithm are the
aggregate balance of loans at clusters in deal-specific samples. We form clusters of
loans with identical ψs, common ψo interval (see Appendix 3.6.1 for an example of a
coarsened grid of ψo intervals) and a common seasoning group. When forming pools, the
balance from any cluster cannot exceed the aggregate balance available at that cluster in
the deal-specific sample of loans eligible for securitization. Appendix 3.6.5 provides a

28Since we use information revealed after ts to construct tp for loans with tp > ts, our exercise can be
interpreted as assuming perfect foresight with respect to the time it takes for loans with ∑ts

to
Φ(p>0, t) = 0 to

enter repayment.
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comprehensive and mathematical presentation of the constraints on pool formation that
the issuer faces in our exercise.
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Figure 3.1:
Density of loan balance across credit scores at securitization
This figure shows the marginal densities of balance of student loan across credit scores at
securitization by seasoning groups. The densities are those from the sample specifically used for
deal 2006-C, which is a sample of loans that were eligible for securitization 6 quarters after their
origination. The densities are for the sample obtained after loans with ψo < 630 were excluded,
which is the most relevant sample, considering that loans with ψo < 630 only represent 0.39% of
the balance in pool 2006-C. In contrast, without the exclusion, the aggregate balance of loans with
ψo < 630 would represent 15% of the aggregate balance in the deal-specific sample and greater
densities would be present in the low ψs regions. Raw data source: FRBNY CCP/Equifax.

Figure 3.1 presents, separately for each seasoning group, the marginal distribution of
loan balance across credit score at securitization, for deal 2006-C. To give an example of
how the empirical densities of a deal-specific sample could affect the computation of shifts
in pool losses, consider the following. Let expected gross losses (EGL) be relatively higher
for a particular seasoning group in the ψs < 630 region. Deal 2006-C has a pick parameter
of 6.5, but the densities of the deal-specific sample are thin in ψs < 630 region. Therefore,
when forming this deal’s loss-maximizing pool, it might not be possible to reach 17%
of pool balance with ψs < 630, as needed to match the historical proportion, by only
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selecting loans from the seasoning group that delivers highest EGL in the ψs < 630 region.
Thus, the empirical densities might force the loss-maximizing pool to contain loans from
seasoning groups other than the one with highest EGL in the ψs < 630 region. This
will reduce the loss-maximizing pool’s separation from the random pools. This example
illustrates how the distribution of loan balance across the range of loan characteristics
in the deal-specific samples is an important component of computing the shifts in pool
losses.

3.4.2 estimation

The measure of performance of interest at the pool level is cumulative gross loss (CGL) —
the aggregate balance of defaulting loans at the time of default, expressed as a percentage
of the initial pool balance. The dependent variable in our regressions is therefore the
product of i) a binary default indicator and ii) the ratio of the balance at default over the
balance at securitization (which is positive for defaulting loans and zero otherwise). We
use Locally Weighted Scatterplot Smoothing (LOWESS) curves — obtained via a two-step
process of weighted pointwise local linear regressions followed by weighted smoothing —
to represent expected gross losses by credit score at securitization. Expected gross loss
(EGL) is normalized by loan balance at securitization. We estimate a separate LOWESS
curve for each seasoning group.29 We estimate a different set of LOWESS curves for every
deal-specific sample.

Our rationale for using LOWESS curves instead of alternative methods to estimate the
relationship between gross loss and loan characteristics at securitization is the following.
LOWESS curves lean toward linearity more than alternative methods. Given that pools,
both loss-maximizing and random, must match the same ψs, we wanted estimated
relationships that only retain non-linearities that are empirically supported and avoid
the risk of using estimated relationships that are non-linear as an artifact of the non-
linearities that are parametrically built into many of the alternative methods.30 Another
advantage of LOWESS curves is the ease of presenting expected gross losses, along with
their confidence intervals, in one plot, instead of having to show separately the results
of regressions with default as the dependent variable and regressions with the ratio of

29In the first step, we use a bandwidth of 0.8, which means that up to 80% of each seasoning group’s
subsample enters the regression used to estimate EGL at a given point. Tricube weights are used: for points
inside the bandwidth, less weight is placed on points that are farther away from the point at which we
are trying to make a prediction, and none is placed on points outside the bandwidth. In the second step,
a smoothing process turns the first-step predicted gross losses into a final EGL curve by taking a tricube
weighted mean over the first-step predicted gross losses.

30Ex-post, the relationship estimated with LOWESS curves provides empirical support for the built-in
non-linearities of other methods.
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balance at default divided by balance at securitization as the dependent variable. Despite
the slight biases toward linearity of LOWESS curves, we still find statistically significant
shift values, an indication of the robustness of our findings.
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Figure 3.2:
Expected gross losses
The figure shows the relationship between expected gross losses (EGL), credit score at securiti-
zation and seasoning at securitization. The estimates were obtained from the sample of loans
used to draw mimicking pools for deal 2006-C (after exclusion of loans with ψo < 630). The
lines correspond to LOWESS curves computed with a bandwidth of 0.8 and the shaded areas
are 90% confidence intervals obtained from the local linear regressions performed as first step
in the construction of LOWESS curves. In the left panel, the EGL estimates are over a fixed and
truncated post-securitization performance window. In the right panel, the relative underexposure
to default risk of all but the most seasoned loans is corrected for and the EGL estimates reflect
the first e quarters of exposure to default risk after loans enter repayment (excluding post-entry
into repayment quarters that occurred before a loan was considered for securitization). Raw data
source: FRBNY CCP/Equifax.

The left panel of Figure 3.2 shows the estimated relationship between gross losses,
credit score at securitization and seasoning over a fixed post-securitization window of 16
quarters. The relationship is deal-specific in the sense that the post-securitization window
begins when loans are six quarters old, matching the WALAS for deal 2006-C which is six
quarters.31 Credit score at securitization is a strong predictor of gross losses. The same is
true for seasoning over a wide range of ψs.

However, some of the predictive power of seasoning over a fixed and truncated post-
securitization window is due to the mechanical relation between seasoning and duration

31The relationship are estimated on a subsample of loans with ψo ≥ 630 because of the trivial proportion
of loans with ψo < 630 in deal 2006-C. The deal-specific (sub)sample only contain loans that are eligible for
securitization when six quarters old, mainly meaning outstanding and less than 30 days delinquent.
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of exposure to default risk. Observing loans over a truncated post-securitization window
is a challenging limitation of our data: the ideal data would show the performance
of all loans until their termination, either via paydown or default. When forming a
loss-maximizing pool, the originator-issuer wants to securitize the loans that perform
the worst over their securitized life and retain the loans that perform the best from their
time of consideration for securitization onward. Therefore, the relationships between
gross losses over the securitized life of loans and loan characteristics at securitization are
needed.

The right panel of Figure 3.2 also shows the relationship between EGL and loan
characteristics at securitization, but these curves are adjusted to compensate for the
relative underexposure to default risk of all but the most seasoned loans in the sample.
We present an example to provide intuition for our adjustment procedure and define
terms that would be used to present our procedure more generally along the way.

For a deal-specific sample, let the length of the post-securitization performance
window that we observe be 16 quarters (` = 16). Take a loan in the deal-specific sample
that is 8 quarters away from entering repayment at ts (seass = −8). Let the mean
seass among the most-seasoned group of loans be 3 quarters (seass

most = 3).32 Let our
initial loan survive until τ and cumulate 3 quarters with positive payment due by τ − 4:

∑τ−4
to

Φ(p>0, t) = 3. Our initial loan is only exposed to default risk “as a most seasoned
loan” for 4 quarters (h = 4).

Because it survived until τ, our initial loans would enter the local linear regression
that contributes to building the unadjusted LOWESS curve with a realized loss value of
$0. When LOWESS curves are adjusted for the relative underexposure to default risk of
our initial loans (of all loans with seass < seass

most and seasτ ≥ seass
most), the loss value

that enters the local linear regression corresponds to the product of i) expected gross loss
between ts + h and τ among most-seasoned loans (expressed per dollar at ts + h), and ii)
the ratio of the balance at τ over the balance at ts for our initial loan. The imputed value
is conditional on ψτ. The EGL curves used for imputation are separately estimated with
most-seasoned loans that survive up to ts + h for h = 1, . . . , `.33

32For the purpose of the adjustments, we effectively use seass
most after rounding it down to the nearest

integer. Effective seass
most for each deal can be recovered from Table 3.3 by taking the difference between

the maximum duration of exposure to default risk, e, and `.
33Iterating backward, we repeat the above steps for loans with seasτ < seass

most and seasτ ≥ seass
more.

Prior to estimating gross loss between ts + h and τ among more-seasoned loans, where h is now given
by h = τ − t(∑t

to Φ(p>0, t) = seass
more), we impute an expected gross loss over ` quarters forward for

more-seasoned loans that survive to τ but have seasτ < seass
most by assuming that seasτ = seass

most and
using the imputation method described above. Then, similar steps are followed to input non-zero realized
losses into the local linear regressions for loans with seasτ < seass

more and seasτ ≥ seass
least.
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Let the maximum exposure to default risk be denoted by e (e = `+ seass
most). After the

adjustment, it is as if loans that are not yet in repayment at securitization (seass ≤ 0) were
exposed to e quarters of default risk, and loans that were already in repayment (seass > 0)
are exposed to (max{q− seass, `}) quarters of default risk. Across all the deal-specific
samples, our adjustments ensure that loans are exposed to default risk for at least 16
quarters after their entry into repayment, i.e. e, ` ≥ 16. Monteverde (2000) estimates that
more than half of the cumulative default on private student loans occurs within the first
four years after a student’s graduation.34 Therefore, the shifts in estimated gross losses
within the first e quarters after loans enter repayment, with e > 16, are likely to proxy
well for the shifts that would be found with larger e and `.

Briefly analyzing the right-panel of Figure 3.2, the significantly lower expected losses
among loans with even a very modest level of seasoning (having remained current for as
little as one quarter after entering repayment) can likely be attributed to the following
reasons. Private loans are non-dischargeable in bankruptcy. The decrease in expected loss
in response to a bit of seasoning is stronger among the loans of borrowers with a lower
credit score. Borrowers with a low credit score and a positive level of seasoning, no matter
how small, are likely revealing that they are prioritizing the repayment of their student
loans, which are not dischargeable in bankruptcy, over the repayment of other types of
debt. The dischargeability of credit cards in bankruptcy and the non-recourse nature of
other types of debt, either legally or based on enforcement practices, can contribute to
such a prioritization. The prioritization of mortgage and credit card payments has been
analyzed (Andersson et al. (2013)), but an analysis that would incorporate student loan
payments is an area for future research.

The deal-specific equivalent of the right panel of Figure 3.2 represents an important
component of computing shifts in pool losses. There is some variation in the relative
positioning of LOWESS curves across the deal-specific samples. However, two significant
features are common across samples. First, non-linearities are present. Second, the
most-seasoned group has a significantly lower EGL than all other groups. Furthermore,
the distance between the EGL curve of the most-seasoned group and the other groups
is always greater in the ψs < 730 region than in the ψs > 730 region. Since the deals
that we analyze contain a proportion of pool balance from the most-seasoned group

34The sample used in Monteverde (2000) is peculiar: it consists of law school students who were
scheduled to graduate between 1992 and 1994. In addition to the usual six month grace period after
graduation, law students often obtain an additional period of deferment if they request it while studying
for the bar exam. Thus, if trying to apply Monteverde’s estimate to a more representative population of
private loan borrowers, it is likely that more than half of the cumulative default occurs within the first four
years after a loan enters repayment.

97



of at least 14%, these common features help to create separation between the EGL of
loss-maximizing pools and their corresponding random pools.

3.4.3 forming loss -maximizing and random pools

The loss-maximizing pool solves the issuer’s problem. Let EGL denote the expected gross
loss, which is a function of ψs and seasoning group, seass

i . EGL are deal specific (i.e. are
estimated with deal-specific samples).

Using the notation of Appendix 3.6.5, K denotes the set of loans in a deal-specific
sample, k indexes the loans, bal denotes balance, and δk denotes a scaling factor in the
[0− 1] range. Thus, in forming a loss-maximizing pool, the objective of the issuer is to
select the pool that maximizes expected gross loss:

max
δk∀k∈K

δk · balk · EGL(ψs, seass
i ). (3.3)

The issuer chooses the scaling factors for all k ∈ K subject to a constraint that links the
chosen scaling factors, the loan balances, the aggregate balance of loans in the deal-specific
sample (φagg), the target pool balance (φt), and the pick parameter:

∑
k∈K

δk · balk = φt = φagg/pick. (3.4)

Other constraints, related to the matching of summary statistics on ψs, distribution across
ψo-intervals and distribution across seass

i are presented in Appendix 3.6.5.
The left panel of Figure 3.3 shows our approximate solution to the issuer’s problem

for deal 2006-C. We use cluster to refer to a group of loans with identical ψs, a common
ψo-interval and a common seasoning group. Given that there are more than one thousand
clusters of loans (and thus more than one thousand δk to choose) and given that we allow
for δk to be continuous in the [0− 1] range, we opted for a numerical solution method
that would give us an approximate solution to the issuer’s problem.

Our numerical solution method builds on the intuition obtained from an analytical
solution to a simplified issuer’s problem. We assume away the constraints posed by the
aggregate balance of loans available at any cluster of loans (allowing δk > 1). We only
retain two constraints: the one expressed in equation (3.4) and the constraint of matching
the balance-weighted mean ψs of the historical pool, ψs t. We then build on the intuition
gained by solving this simplified issuer’s problem, progressively add other constraints
back in, develop solution methods for those increasingly more complicated problems and
ultimately have our solution method for the (full) issuer’s problem.
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Proportion with ψs<630: 16.8% Mean ψs: 678
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(a) Loss-maximizing pool
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(b) One of many corresponding random pools

Figure 3.3:
Loss-maximizing pool and a corresponding random pool
The left panel shows the loss-maximizing pool for the exercise parameterized to mimic historical
deal 2006-C. The markers on the figure represent the location of the pool balance over the range
of credit scores and the seasoning groups. For each seasoning group, one marker appears on the
figure for both the minimum and maximum credit score with a positive balance. Moving from the
minimum to the maximum, there are also markers whenever crossing over a ψs value changes
the integer value of the cumulative pool balance, expressed as a percentage. The right panel
shows one of the corresponding random pools. All mimicking pools have identical distribution
across seasoning groups: starting from least-seasoned and ending with most-seasoned, the
respective proportions of pool balance are: [17.9%, 19.5%, 30.1%, 32.5%]. Raw data source: FRBNY
CCP/Equifax.

We solve the simplified issuer’s problem in three steps. Much of the intuition behind
our solution method can be gained by making visual reference to the (ψs × EGL) two-
dimensional plane and the EGL curves in the left panel of Figure 3.3 (and abstracting
from the markers for our solution to the (full) issuer’s problem). First, restricting attention
to points on the upper envelope of the EGL curves, we draw lines that link every point
to the left of ψs t to every point to the right of ψs t.35 Second, we compute the levels of
EGL at the intersection of these lines with the vertical line at ψs = ψs t. These are the
balance-weighted average EGL levels that can be achieved by combining those points
with balances that satisfy the constraints. The (left-right) pair of points that have their
line intersect the vertical line at ψs = ψs t at the highest level are partial solutions to the
simplified issuer’s problem. Third, once partial solutions are found, we compute the

35While Figure 3.3 shows continuous EGL curves, the true EGL curves are actually seasoning-group-
specific discontinuous loci of ψs values with a positive balance in the deal-specific sample. Points at
ψs = ψs t can be viewed as degenerate lines, with the left and right points being the same point.
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corresponding balances for each point that satisfy the constraints.36

For the rest of this section, as the constraints that were omitted or relaxed in the
simplified issuer’s problem are added back to the problem, we repeatedly refer to the
pair of points, among a shrinking set of points available for pair formation, that would
solve the simplified issuer’s problem. Let us use (lp, rp)∗ to denote this pair.

Given the empirical distribution of balances across clusters and the size of the target
pool balance, re-adding the constraints posed by the loan balance available at clusters
(i.e. re-imposing δk ≤ 1) renders the solution to the simplified issuer’s problem infeasible.
However, the above intuition carries over when these constraints are added back. The
“one-shot” optimization problem becomes one of sequential optimization, with a shrinking
set of points available for pair formation. In the context of a bottom-up approach to pool
formation, in which loans are added one-by-one to the pool, this forces us to make the
following adjustments.

At first, all points are available for pair formation, thus the left and right point from
the (lp, rp)∗ pair are selected and their δk value is set to 1. Next, our constrained EGL-
maximizing algorithm determines whether to add a left or a right point. Let φ denote
the product of δk and balk at the points selected thus far. Our algorithm checks whether

∑k
δk·balk

φ · ψs > ψs t. If so, our balance-weighted mean ψs is too high and an additional
left point is added to the pool; otherwise, an additional right point is added. The most
recently selected left point remains available to form pairs with right points, as long as the
algorithm is selecting right points; as soon as the algorithm attempts to add an additional
left point, the most recently selected left point is removed from the set of points available
for pair formation. The converse statement for right points holds as well.

Within the context of this sequential removal of points from the set of points available
for pair formation, the algorithm takes three iterative steps. First, restricting itself to the
set of points available for pair formation, (lp, rp)∗ is identified. Second, it checks whether
to add a left-of-mean or right-of-mean point based on the comparison of (∑k

δk·balk
φ · ψs)

with ψs t. Third, the left or right point that is part of (lp, rp)∗ is selected and the entire
balance available at that point is added to the pool (i.e. δk is set to 1). This process
continues until using δk = 1 for a selected loan leads to φ ≥ φt; at that point, 0 < δk ≤ 1
can be used to exactly match φ = φt.37

36For all the sets of EGL curves estimated on deal-specific samples, there was sufficient convexity to the
upper envelope of the EGL curves that the solution to the simplified issuer’s problem was unique. Each
had the entire pool balance split between one left and one right point. Appendix 3.6.6 presents a proof that
these steps, identify solutions to the simplified (mean-ψs matching) issuer’s problem.

37This simplified algorithm, given the deal parameters and given the loan densities over the range of
credit score in deal-specific samples, converges to an EGL-maximizing pool with a balance-weighted mean
ψs within one decimal point of its target.
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It is relatively straightforward to modify the above algorithm to handle the additional
constraint of the proportion of pool balance that can be drawn from the ψs < 630 region.
All the deals that we analyze have ψs t

> 630. Therefore, the left-of-mean points can be
split into two groups, those with ψs < 630 and those with (630 ≤ ψs < ψs t

). Among
the sets of expected gross loss curves estimated on the deal-specific samples, there is
enough convexity in the upper envelope of expected gross loss curves that the sequential
addition of loans from the (lp, rp)∗ pair among points available for pair formation tends
to initially select left-of-mean points in the ψs < 630 region. Thus, the algorithm tends to
achieve its target pool balance in the ψs < 630 region, explicitly given by

∑
k∈K

Φ(ψs
k<630) · δk · balk = θt(ψs < 630) · φt, (3.5)

before it achieves its target pool balance in the ψs ≥ 630 region.

∑
k∈K

Φ(ψs
k≥630) · δk · balk = (1− θt(ψs < 630)) · φt, (3.6)

If the pool building process achieves its target pool balance in the ψs < 630 region first,
the algorithm removes all points with ψs < 630 from those available for pair formation
and continues to alternate between the addition of left and right points, while abiding by
the restriction that left points be selected in the (630 ≤ ψs < ψs t

) region, until φ = φt is
reached.

If the pool building process achieves its target pool balance in the ψs ≥ 630 region
first, it is necessary to relaunch the pool-building algorithm and force-fill the ψs < 630
region before condition 3.6 occurs. This manually constrains the selection of left-of-mean
points within the ψs < 630 region before condition 3.6 occurs. We experimented with
changes in the timing of the force-filling, because force-filling the ψs < 630 region earlier
than necessary could affect the subsequent availability of right-of-mean points for pair
formation with left-of-mean points in the (630 ≤ ψs < ψs t

) region. Empirically, we found
the timing to have little effect. Changes in timing would move the balance-weighted
average EGL of the EGL-maximizing pool by less than one decimal point.

It is again relatively straightforward to modify the above algorithm to handle the
addition of constraints stemming from the distribution of loans across ψo-intervals.
Instead of having two conditional pool balance targets, those for the ψs < 630 and
the ψs ≥ 630 regions, there is an additional 20-22 conditional pool balance targets
corresponding to the ψo-intervals (Appendix 3.6.1 shows the coarsened grid of ψo-intervals
for deal 2006-C). As a conditional pool balance target is reached, all points that share this
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condition become excluded from the set of points available for pair formation. Otherwise,
the algorithm is essentially unchanged: i) it alternates between the selection of left-of-
mean and right-of-mean points, ii) picks points from the (lp, rp)∗ pair among points
available for pair formation, and iii) δk = 1 is used on a selected point unless doing so
makes the conditional pool balance exceed its target (in which case 0 < δk < 1 such that
the conditional pool balance equals its target is used).

The final algorithm solves the issuer’s problem with its full set of constraints by
building on the intuition gained from solving the issuer’s problem with a partial set
of constraints. The last set of constraints added back to the problem is related to the
proportions of pool balance from the various seasoning groups. For all deals, those
constraints are binding: the maximum balance-weighted average EGL achieved with
these constraints in place is lower than the maximum balance-weighted average EGL
that could be achieved previously. Two factors, common across deals, contribute to
this reduction in maximum balance-weighted average EGL and lead us to modify our
pool-building algorithm: i) as shown in Table 3.6, pools must have at least 14% of their
balance from the most-seasoned group, and ii) the EGL curve for the most-seasoned
group lies below the curves for other groups. An additional factor contributed to our
choice of modification of our pool-building algorithm: the vertical distance between the
EGL curves is much smaller in the ψs > 750 region.

Building on the intuition granted by the simplified problem, a good way to assess
the marginal contribution of loans (at a point in the (ψs × EGL) plane) toward the
maximization of a balance-weighted average EGL, under mean-ψs constraint, is to look at
the maximum balance-weighted average EGL that would be delivered by the loan if it
were paired with a loan on the opposite side of ψs t and if the entire pool balance came
only from these two points. For a given point, it is possible to visually determine the
maximum balance-weighted average EGL that could be achieved via pair formation: it is
given by the highest level of EGL at the intersection of the line linking the pair of points
and the vertical line at ψs = ψs t.

Anticipating the 14% or more in pool balance that needs to be selected from the
most-seasoned group, and equipped with the above intuition to compare the marginal
contribution of loans toward the maximization of a balance-weighted average EGL, we
determined that prioritizing the selection of loans from the most-seasoned group in the
ψs > 750 region would contribute toward an optimal solution. This is because the EGL
curve for the most-seasoned group lies below the EGL curves for the other groups and
the vertical distance between the curves is much smaller in the ψs > 750 region. The
prioritization contributes to the formation of pairs that include most-seasoned loans and
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deviate little from those that would have been selected absent the constraints on the
proportion of pool balance from the seasoning groups.

Conditional on picking right-of-mean loans, it is important to first prioritize the
selection of loans from the most-seasoned group as our code does. Otherwise, by simply
alternating between the selection of left-of-mean and right-of-mean points from the
(lp, rp)∗ pair among points available for pair formation, the algorithm would end up
selecting points from the most-seasoned group in the 630 < ψs < ψs t region.38 These
points are very suboptimal, based on the maximum balance-weighted average EGL
they can deliver via pair formation and given the corresponding balances needed for a
balance-weighted ψs equal to ψs t.

Thus, for all deals, our final algorithm first prioritizes the selection of right-of-mean
loans from the most-seasoned group until the targeted pool balance from that group is
reached. Appendix 3.6.7 provides the details for an additional adjustment that is used on
deals 2009-B, 2009-C and 2010-A. The intuition for the additional adjustment is similar to
that for the prioritized selection of right-of-mean loans from the most-seasoned group.39

Other than for those modifications, the final algorithms select loans similarly to the
algorithm that was used prior to adding back the constraints related to the proportions of
pool balance across seasoning groups.

The algorithm to select random pools is similar, except that there is no attempt to
sequentially select left-of-mean and right-of-mean points from the (lp, rp)∗ pair among
points available for pair formation. The code alternates the selection of left-of-mean and
right-of-mean points, but the left-of-mean and right-of-mean points are randomly sorted
and the order in which conditional pool balance targets are reached has large degree of
randomness.40

38An algorithm that does not anticipate the binding constraints would achieve its targeted pool balance
from the least-, less- and more-seasoned groups before achieving its targeted pool balance from the most-
seasoned group. When left to select exclusively among loans from the most-seasoned group, the targeted
proportion in the ψs < 630 region would already have been reached. Thus, the algorithm would select
points from the most-seasoned group in the 630 < ψs < ψs t region, which are very suboptimal.

39The additional adjustment is due the relative positioning of the EGL curve for more-seasoned loans
relative to least- and less-seasoned loans. In that case, the a priori removal of points from the least- and
less-seasoned groups in the ψs > 730 region from the set of points available for pair formation is used to
favor the selection of loans from the more-seasoned group in the ψs > 730 region.

40The selection of loans cannot be perfectly random because of the requirement to achieve the same
conditional pool balance on matched characteristics as the loss-maximizing pool. Our algorithm has a
“look-ahead” component and automatically “force-fills the pool” with loans that will allow it to reach a
conditional pool balance target when it finds that the tentative addition of another loan would make it
infeasible to reach the conditional pool balance target in question. The force-filling conditionally respects
the random sorting of loans. The automation of the force-filling means that force-filling is only ever used
as a last resort in the formation of random pools and the initial random sorting of the loans and the joint
distribution of loan characteristics strongly determine the composition of the random pools.
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3.4.4 shifts in pool losses

Table 3.3 reports shifts in gross pool losses for exercises parameterized to mimic 12
historical deals. The (percentage) shifts reported in Table 3.3 are computed by taking the
difference in expected CGL between the loss-maximizing pool and the average among its
corresponding random pools, and expressing it as a percentage of the latter.

Table 3.3:
Shifts in gross pool losses

Deal Window (`) Exposure (e) Cumulative gross losses Shift

(qtrs) (qtrs) Loss-max. Random (av.) (Pct pts) (%)

2005-A 18 21 19.7% 18.3% 1.4%* 7.8%
2005-B 18 21 20.4% 19.2% 1.2%* 6.4%
2006-A 18 21 19.3% 17.6% 1.7%* 9.4%
2006-B 18 21 19.1% 17.6% 1.5%* 8.6%
2006-C 16 19 19.1% 15.9% 3.2%* 20.0%
2007-A 18 21 21.2% 19.3% 1.9%* 10.1%

2009-A 16 24 22.2% 18.2% 4.0%* 22.0%
2009-B 16 22 19.3% 16.6% 2.7%* 15.9%
2009-C 16 22 19.3% 16.0% 3.3%* 20.8%
2010-A 16 22 17.3% 14.5% 2.8%* 19.4%
2013-A 16 24 21.6% 15.9% 5.7%* 36.0%
2013-B 16 24 21.6% 16.8% 4.9%* 29.0%

This table shows the shifts in gross losses for 12 historical deals. The second column reports the
length of the fixed performance windows, denoted by `. The third column reports the maximum
duration of the exposure to default risk, e, to which loans are exposed to when constructing expected
gross loss curves that compensate for the underexposure to default risk of all loans but those in
the most-seasoned group. Loans with seass < 0 are exposed to e quarters of default risk. Loans
seass ≥ 0 are exposed to (max{q− seass, `}) quarters of default risk. The fourth column reports the
expected CGL of the loss-maximizing pool. It is obtained by taking a balance-weighted average of the
exposure-to-default-risk-adjusted expected gross losses. The fifth column reports the average of the
expected CGL across ten corresponding random pools. The sixth column simply reports the difference
in expected CGL between the loss-maximizing pool and the average among its corresponding random
pools, expressed in percentage points. ∗ indicates statistical significance at the 1% level. The seventh
column reports the difference in expected CGL between the loss-maximizing pool and the average
among its corresponding random pools, expressed as a percentage of the latter. Raw data source:
FRBNY CCP/Equifax.

For the loss-maximizing pool for deal 2006-C, the distribution of pool balance across
ψs and seass

i , and their corresponding EGL, is shown in the left panel of Figure 3.3. The
counter-part for one random pool is shown in the right panel of Figure 3.3.

Shifts in gross losses for the non-cosigned portion of pools are generally larger among
post-crisis deals than pre-crisis deals. This is despite balance-weighted average credit
scores that are larger for post-crisis deals, as shown in Table 3.1. The larger proportion
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of pool balance with ψs < 630 and the larger pick parameters among post-crisis deal
dominate and explain the larger feasible shifts among post-crisis deals. The differences
in expected loss across seasoning groups are greater in the ψs < 630 region, thus a
larger proportion of pool balance with ψs < 630 helps achieve greater separation between
a loss-maximizing pool and random pools. It is intuitive that a larger pick parameter,
a larger inverse ratio of the pool balance over the balance of loans outstanding and
not yet securitized by the originator-issuer, allows for greater separation between a
loss-maximizing pool and random pools.

3.4.5 matched credit score , performance and interest rate

The matching of the disclosed average ψs obviously limits the magnitude of the estimated
shifts in gross pool losses. In addition, a combination of factors make the matching of a
lower proportion of loans with ψs < 630 reduce the magnitude of the shifts. Those factors
are: i) the within-seasoning-group convexity of the relations between gross losses and ψs,
especially in the ψs > 550 region, and ii) the larger differences in expected losses between
seasoning group in the ψs < 630 region.

Among the deals that we analyze, the matching of the disclosed distribution of loans
across the ψo-intervals has a much smaller effect on the reduction of the magnitude of
shifts than the matching of the disclosed summary statistics on ψs. There is one channel
through which the matching of the distribution of loans across the ψo-intervals has a
non-trivial effect and this channel only affects pre-crisis deals. Pre-crisis deals have a
positive, but tiny proportion of loans with ψo < 630. This proportion never exceeds 0.40%,
as shown in Table 3.1. In comparison, as shown in Table 3.2, 15%-16% of the aggregate
balance of deal-specific samples is found in the ψo < 630 region. Furthermore, loans
with ψo < 630 tend to be overrepresented in the ψs < 630 region, and our pool-building
algorithm for loss-maximizing pools sequentially selects pairs of loans that deliver highest
balance-weighted EGL and the left-of-mean loans tend to be selected first in the ψs < 630
region. Thus, our algorithm tends to rapidly reach its target proportion of loans from the
ψo < 630 region. Once that target is reached, loans with ψo < 630 are no longer available
for selection into the loss-maximizing pool and the loan densities in the ψs < 630 region
becomes significantly thinner after that point. These thinner densities are one of the
reasons why loans that do not lie on the upper envelope of EGL tend to be selected in
the ψs < 630 region among pre-crisis deals. Other than through this effect, matching
the distribution of loans across the ψo-intervals has little effect on the magnitude of the
estimated shifts.

The matching of the disclosed distribution of pool balance across ψo-intervals is
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nonetheless important. This is because, given the information available at origination,
credit score at origination is a strong predictor of default. Therefore, by matching the
distribution of pool balance across ψo-intervals, the loss-maximizing pool and the random
pools should have similar distributions of interest rates. This makes it less likely that the
higher losses in the loss-maximizing pool would be offset by higher interest payments
paid by the surviving loans in the loss-maximizing pool.

3.5 concluding remarks

A substantial literature has analyzed the moral hazard (lax origination) (Keys et al. (2010);
Purnanandam (2011)) and adverse selection frictions (Elul (2015); Jiang et al. (2014b);
Krainer and Laderman (2014)) in the securitization of mortgages. To our knowledge, our
paper is the first to take a close look at an informational friction in the securitization
chain for private student loans.

The PSL-ABS that we analyze have performed significantly better than private-label
MBS. However, two features could contribute to their unexpected underperformance in the
presence of time-varying incentives for an originator-issuer to engage in adverse selection.
First, is the lack of a contractual commitment to a random selection of securitized loans.
Second, is the coarseness of disclosures on some loan characteristics that are strong
predictors of default and the non-existence of disclosures for at least one strong predictor
of default.

We find it puzzling that issuers of PSL-ABS do not contractually commit to randomly
select securitized loans. Theoretically, a commitment to random selection should benefit
issuers of PSL-ABS — the overcollateralization required to issue a deal would be lower
and/or the cost of funding the origination of loans would be lower. For clarity, we
envision a flexible process of random selection that would proceed in two steps. First, the
marginal distribution of loans across vintages would be pre-determined (to allow for a
mix of loan seasoning that produces a sufficiently high probability that cash flows from
the pool are sufficient to make periodic interest rate payments on the bonds) and a limited
number of exclusion criteria could be employed (e.g. no loans subject to a risk-sharing
agreement with a school). Second, after applying the exclusion criteria, loans from each
vintage would be drawn randomly.

Given this flexibility, the only apparent cost of committing to random selection is
foregoing the option to engage in adverse selection. Therefore, either a flexible framework
of random selection has not been considered or issuers of PSL-ABS are demonstrating
that they assign a positive value to the adverse selection option, and that the value of
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this option outweighs the benefits of a contractual commitment to random selection. Our
analysis, by bringing closer scrutiny to the potential for adverse selection in PSL-ABS may
reduce the value of the adverse selection option and might contribute to the adoption of
a contractual commitment to the random selection of securitized loans.
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3.6 appendix

3.6.1 disclosure on credit score at origination

Table 3.4:
Grids of credit score at origination

Disclosed Coarsened
ψo interval Pool balance ψo interval Pool balance

<630 0.38% <630 0.39%
630 - 639 3.59% 630 - 639 3.77%
640 - 649 7.90% 640 - 649 8.29%
650 - 659 8.44% 650 - 659 8.85%
660 - 669 8.95% 660 - 669 9.39%
670 - 679 8.96% 670 - 679 9.39%
680 - 689 8.47% 680 - 689 8.89%
690 - 699 7.44% 690 - 699 7.81%
. . . . . .
790 - 799 0.92% 790 - 799 0.96%
800 - 809 0.53% 800 - 809 0.56%
810 - 819 0.13% 810 - 819 0.14%
820 - 829 ∗ 820+ 0.01%
830 - 839 ∗

840 - 849 ∗

N/A 4.66%
Total 100.00% Total 100.00%

This table presents the disclosure on credit score at origination for a
specific deal, SLM 2006-C, and is representative of the disclosure in deal
prospectuses. Intervals increase by increments of 10 from 630 upward.
Intervals from 700 to 789 were suppressed for brevity; the proportion of
pool balance decreases monotonically in that region. ∗ denotes a pool
balance of less than 0.01% in an interval. The coarsened grid is obtained
by first collapsing the top intervals, which, in isolation, are so thinly
populated that when forming mimicking pools in Section 3.4, filling all of
these intervals separately would be unfeasible. A second step consists of
the proportional re-allocation to the other intervals of the weight placed
on the “N/A” interval, which consists of loans with no credit score at
origination or loans that were underwritten without relying on credit
score.

3.6.2 type of data used to construct pool level parameters

The balance-weighted average loan age at securitization, or (WALAS), is computed by
combining: i) the distribution of pool balance across vintages, ii) an empirically estimated
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distribution of loans across quarters of origination within a year, and iii) the date of
securitization.41

The pick parameter is computed by combining four pieces of data: i) the annual
volume of origination of non-cosigned loans (obtained by combining various forms of
disclosure by SLM)42 ii) vintage-specific time-series of amortization of loan balances
(estimated from the loan performance data), and two pieces of information disclosed
in deal prospectuses, iii) the distribution of pool balance across vintages and iv) the
non-cosigned pool balance.

3.6.3 loan level variables from ccp : raw and derived

Table 3.5 lists the variables that we use and that are found in the CCP or derived from it.
The construction of loan seasoning (at time of consideration for securitization) is described
in Section 3.4.1 and the construction of seasoning level at any other time is similar. We
construct our default indicator by combining information contained in the delinquency
status variable and the narrative code variable. The narrative code contains a three digit
code that can be matched to a list of descriptions that servicers use to report information
that falls outside of the pre-determined fields. Some loans have delinquency status that
indicate outright default and are classified as such. Other loans have delinquency status
that indicate severe delinquency, which once combined with the content of the narrative
code, provide sufficient evidence for the classification of a loan as a defaulting one.

41The disclosure on the distribution of pool balance across vintages is presented jointly for loans with
a co-signer and loans without, instead of being presented separately as is the case for statistics related
to credit score. Therefore, (WALAS) is a pool characteristic that reflects both co-signed and non-cosigned
loans. When parameterizing our exercise to compute shifts in gross pool loss for the non-cosigned portion
of pools, we treat (WALAS) as if it only represented loans without a co-signer, a simplifying assumption
that we acknowledge. The assumption is likely a good reflection of investors’ expectations in the absence
of negative selection on deals that have a) a narrow range of vintages, and b) a relatively constant fraction
of origination volume that is co-signed within that range of vintages. These features are approximately
accurate for all the deals that we study, except for 2013-A and 2013-B. For deals 2013-A and 2013-B, with
a range of vintages that extends from 2007 to 2012, the assumption is probably not be the best reflection
of investors’ expectations in the absence of negative selection, since investors would probably expect
non-cosigned loans to have more of their weights on the earlier years of the range of vintages, because
of a large decrease in the non-cosigned fraction of origination volume from 2007 to 2009. We nonetheless
proceed with the simplifying assumption for the time being.

42Data on annual origination volume of private loans, combining co-signed and non-cosigned loans, can
be found in SLM’s 10-K filings, which are retrievable from the SEC EDGAR website. The fraction of the
annual origination volume that is co-signed is not disclosed in the 10-K filings. We obtained those fractions
from investor presentations by SLM, which were filed with the SEC and retrieved on the SEC EDGAR
website, and earnings call presentations, which were retrieved on SLM’s website.
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Table 3.5:
Observable characteristics in the CCP data set

Variable Type

Loan characteristics
Anonymized loan identifier Raw
Origination date Raw
Balance Raw
Delinquency status Raw
Co-signed indicator Raw
Payment due Raw
Narrative code Raw
Private/Federal indicator Derived
Seasoning Derived
Default indicator Derived
Anonymized servicer identifier Raw

Borrower characteristics
Anonymized consumer identifier Raw
Credit score (Equifax RiskScore (ERS) 3.0) Raw

The list is not comprehensive with respect to borrower character-
istics. The birthyear of borrowers and geographical information
on their residence is available (e.g. ZIP Code), but we do not use
these variables in our analysis.
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3.6.4 distribution across seasoning groups

Table 3.6:
Distribution of pool balance across seasoning groups

Seasoning
Deal WALAS Least Less More Most

≤ -8 [-7,-4] [-3,0] ≥ 1

2005-A 5 24.3% 24.5% 31.0% 20.3%
2005-B 4 28.2% 26.6% 29.2% 16.1%
2006-A 5 24.5% 23.9% 30.6% 21.0%
2006-B 5 25.1% 24.4% 30.7% 19.8%
2006-C 6 17.9% 19.5% 30.1% 32.5%
2007-A 4 27.7% 26.2% 30.2% 15.9%

≤ -4 [-3,0] [1,3] ≥ 4

2009-B 7 31.7% 27.8% 25.9% 14.6%
2009-C 7 31.6% 28.4% 25.2% 14.8%
2010-A 7 31.2% 28.1% 24.2% 16.5%

≤ -4 [-3,0] [1,4] ≥ 5

2009-A 10 18.1% 19.9% 30.0% 31.9%
2013-A 11 16.4% 17.4% 27.5% 38.6%
2013-B 10 17.8% 20.3% 29.3% 32.6%

This table presents the matched distribution of pool balance across
seasoning groups when loss-maximizing and random pools are
formed to compute shifts in gross pool losses. Across deals, 4
seasoning groups are used. The cutoffs of the seasoning groups
vary in response to the balance-weighted average loan age of deals.
Raw data source: FRBNY CCP/Equifax.
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3.6.5 matched pool characteristics

In our exercise, the pools formed by an issuer must match a set of pool characteristics.
Let K denote the set of loans in the deal-specific sample of loans eligible for securitization,
let balk denote the balance at securitization of loan k and let δk be a scaling factor in the
[0− 1] range. This section of the appendix will end by expanding on this point, but let us
state that the δk scaling factors, due to the algorithm that we use to form pools, generally
take either a value of 0 or 1 (this approximates the real world practice of placing whole
loans into pools), but 0 < δk < 1 is allowed and is used on a small number of loans to
facilitate exact matching of as many pool characteristics as possible. With the presence
of scaling factors, the issuer’s problem of forming a pool consist in choosing the set of
δk, and a formed pool can be thought of as the set of loans with δk > 0, which generally
consists of loans with δk = 1.

Letting φagg denote the aggregate balance of loans in the deal-specific sample, a
formed pool must match the target pool balance φt, giving us the following constraint:

∑
k∈K

δk · balk = φ = φt = φagg/pick, (3.7)

where φ denotes the balance of the formed pool.
Second, the formed pool must match the target balance-weighted average credit score

at securitization, i.e. the empirical ψs of the historical pool, giving us:

∑
k∈K

δk · balk
φ

· ψs = ψs t, (3.8)

where the s superscript denotes the time of securitization and is only used on credit
scores to distinguish credit score at securitization, ψs, from credit score at origination,
ψo. It is implicit that for all other loan characteristics without a time superscript, namely
balance and seasoning, they are measured at securitization (i.e. at pool formation).

Third, let Φ(ψs
k<630) be an indicator function that takes a value of 1 if loan k has

ψs < 630 and value 0 otherwise, and let θt(ψs < 630) denote the targeted proportion. The
formed pool must match the empirical proportion of pool balance with credit score at
securitization less than 630, giving us:

∑
k∈K

Φ(ψs
k<630) · δk · balk = θt(ψs < 630) · φt. (3.9)

Fourth, let j index the intervals of the coarsened grid of credit score at origination
in the empirical pool, let J denote the set of intervals, and let the target proportion of
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pool balance in each interval be denoted by θt(ψo ∈ j). The formed pool must match the
distribution of pool balance across intervals of the coarsened grid of ψo, giving us:

∑
k∈K

Φ(ψo
k∈j) · δk · balk = θt(ψo ∈ j) · φt ∀j ∈ J. (3.10)

Fifth, let i index the loan seasoning groups, and let the targeted proportion of pool
balance in each seasoning group be denoted by θt(seas ∈ i). The formed pool must match
the distribution of pool balance across the seasoning groups, giving us:

∑
k∈K

Φ(seask∈i) · δk · balk = θt(seas ∈ i) · φt for i = 1, 2, 3, 4. (3.11)

Sixth, the deal-specific sample places restriction on the balance at securitization
available at any (ψs, ψo

j , seasi) combination, any cluster of loans with identical credit
score at securitization, a common interval of credit score at origination and common
seasoning group. Let K denote the set of clusters with positive balance. Putting the
restriction in mathematical terms gives:

∑
k∈(ψs, ψo

j , seasi)

δk · balk ≤ φ
agg
(ψs, ψo

j , seasi)
∀(ψs, ψo

j , seasi) ∈ K. (3.12)

Lastly, to explicitly complete the set of constraints, we have:

δk ≥ 0 ∀k ∈ K, (3.13)

and
δk ≤ 1 ∀k ∈ K. (3.14)

Finally, we expand on the reason for allowing 0 < δk < 1 to facilitate exact matching
of as many equality constraints as possible. The deal-specific samples that we use often
have a loan count that is 15 times smaller or more than the aggregate sample of loans
empirically available to SLM, which consists of the loans originated within the range of
vintages disclosed for a securitized pool, eligible for securitization and not yet securitized.
The much smaller loan count in our deal-specific samples is because the CCP data set
contains a 5% sample of the U.S. population with credit reports and because we form
pools with loans originated in quarters that had smaller volume of origination than the
quarters of origination of the loans in historical pools. With this smaller sample size,
had we restricted δk to only take value 0 or 1, but allowed for approximate matching
with greater tolerance levels, there would have been two sources of variation behind the
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differences in expected gross loss across the random pools and between the random pools
and the loss-maximizing pools: i) different levels of deviation from the targeted pool
characteristics and ii) different pool compositions. By allowing 0 < δk < 1, the deviations
from the targeted pool characteristics are tiny and differences in expected gross loss
across pools are almost entirely due to differences in pool composition while matching
the targeted pool characteristics.

Previewing the method that we use to form pools, it should be noted that the number
of loans with δk < 1 is very small. Our algorithm builds up pools, random and loss-
maximizing, with a bottom up approach of selection of loans and only relies on δk < 1
whenever after trying δk = 1 on a loan, the algorithm finds out that this would push
the left hand-side of equations (3.9), (3.10), or (3.11) above their right-hand side. When
that occurs, the left-hand side of either equations (3.9), (3.10), or (3.11) that just exceeded
its right-hand side by the largest amount is identified and δk is scaled back to a value
such that its left-hand side equals its right-hand side. It should also be noted that the
deviations from equation (3.8) are very small because our algorithm of formation of pools
alternatively adds loan with ψs < ψs t when ∑k

δk·balk
φ · ψs > ψs t and vice-versa.

3.6.6 geometric solution to a simplified issuer ’s problem

The simplified, mean-matching, issuer’s problem has the following objective:

max
δk∀k∈K

∑
k∈K

δk · balk · EGL(ψs
k, seass

k). (3.15)

The following constraint on the pool balance target is maintained:

∑
k∈K

δk · balk = φ = φt = φagg/pick. (3.16)

So are the constraints on the balance-weighted mean credit score at securitization,

∑
k∈K

δk ·
balk
φt · ψ

s
k = ψs t, (3.17)

and δk ≥ 0, but all other constraints are abandoned, including δk ≤ 1.
Since the simplified problem allows for δk > 1 the objective can be re-written as the

maximization of the balance-weighted average EGL, with the set of {balk}K
k=1 being the

choice variables:
max

balk∀k∈K
∑
k∈K

balk
φt · EGL(ψs

k, seass
k). (3.18)
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The pool balance constraint can be re-written as shares of pool balance summing to 1:

∑
k∈K

balk
φt = 1, (3.19)

and the δk terms disappear from the mean-ψs constraint, which becomes:

∑
k∈K

balk
φt · ψ

s
k = ψs t. (3.20)

The above makes it immediately apparent that the objective is to maximize a linear
combination of EGL(ψs, seass). We use the terms point and line in reference to the
(ψs × EGL) 2-dimensional plane. Given a level of ψs, there are up to 4 levels of feasible
EGL associated with that level of ψs, one for each seasoning group. The 4 curves linking
the various (ψs, EGL) points associated with each seasoning group give an overview of
the feasible points, although underneath there is truly a discontinuous locus of points,
with ψs only taking integer values and gaps in ψs value can be present. We do not assume
continuity of the expected gross loss curves at any point in this appendix. We assume
continuity on the balances, however, which allows us to match constraints exactly.

Solving the simplified issuer’s problem can be viewed as a stepwise process of
selecting points or combination of points, truly meaning selecting on which points to
place a positive balance, and then computing/selecting what level of balance to place
on each one of those points to satisfy the constraints. This is the context behind the use
of terms such as “combination of points”, or “selecting points and their corresponding
balances”.

Note that given the mean-ψs constraint, any combination that contains a point with
ψs < ψs t, a point to the left of ψs t for short, or a left point for additional brevity, must
contain at least one right point, a point with ψs > ψs t, and vice-versa.

This appendix proves three lemmas, which together support the following proposition:

Proposition 1 When searching for a solution to the simplified, mean-ψs matching, issuer’s
problem, over a given set of K points, it is sufficient to compare combinations formed from points
on the upper envelope of expected gross loss curves. Within those points, it is sufficient to compare
i) the levels of balance-weighted average EGL achieved by all the left-right 2-point combinations,
along with the unique corresponding pair of balances that satisfy the mean-ψs constraint, and ii)
the level of EGL achieved by the single point at ψs = ψs t, with the entire pool balance placed at
that point. The maximum level of balance-weighted EGL achieved in that set is the maximum
level that can be achieved by any combinations on the given set of K points. All point-balance
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combinations that match that maximum level of EGL, are solutions to the simplified issuer’s
problem. The level of balance-weighted EGL achieved by a left-right 2-point combination, and
corresponding balances that satisfy the balance-weighted mean-ψs constraint, is given by the
level of EGL at the intersection of the line linking the two points and the vertical line drawn at
ψs = ψs t.

Proposition 1 implies that in order to find a solution to the simplified issuer’s problem,
it is sufficient to follow the following steps. First, compare a) the levels of EGL at the
intersection of the line linking all the left-right combinations of points with the vertical
line drawn at ψs = ψs t, and b) the highest level of EGL among single points at ψs = ψs t,
if any. Second, select one, of possibly many, combination of points that achieves the
highest level of EGL among a) and b). Third, if the selected combination of points is from
a pair of points, compute the balances that satisfy constraints on balance.

A formal definition of the upper envelope of the expected gross loss curves will
be given in Lemma 2, but the term is sufficiently intuitive that Proposition 1 can be
momentarily understood without a formal definition. Note that Proposition 1 does
not rule out the possibility that a combination involving 3 or more points could be a
solution to the simplified issuer’s problem. The proposition is about sufficient steps to
find a solution to the simplified issuer’s problem. The proposition states that should a
combination of 3 or more points be a solution to the simplified issuer’s problem, it would
be possible to match the balance-weighted EGL delivered by the combination of 3 or
more points with at least one combination of 2 points or less.

Lemma 1 Given a combination with one point with ψs < ψs t and one point with ψs > ψs t, the
balance-weighted level of EGL that is delivered by selecting shares of pool balance that satisfy the
mean-ψs constraint corresponds to the level of EGL at the intersection of the line linking the two
points and the vertical line drawn at ψs = ψs t.

Proof of Lemma 1: Let the lp subscript denote the left point, with ψs < ψs t, and the rp

subscript denote the right point, with ψs > ψs t. When only taking a linear combination
between a left point and a right point, the mean-ψs constraint can be re-written as:

ballp

φt · ψ
s
lp + (1−

ballp

φt ) · ψs
rp = ψs t. (3.21)

The level of EGL at the point of intersection between the line linking the left and right
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points and the vertical line drawn at ψs = ψs t, denoted EGL∗ is given by:

EGL∗ = EGLlp +(ψs t − ψs
lp) ·

EGLrp−EGLlp

ψs
rp − ψs

lp
. (3.22)

The right-hand side can be re-arranged in way that more closely resembles a weighted
average between EGLlp and EGLrp:

EGL∗ = (1−
ψs t − ψs

lp

ψs
rp − ψs

lp
) · EGLlp +

ψs t − ψs
lp

ψs
rp − ψs

lp
· EGLrp . (3.23)

With the above equation re-arranged this way, the question becomes whether setting

ballp

φt = (1−
ψs t − ψs

lp

ψs
rp − ψs

lp
) (3.24)

is indeed a proportion of pool balance on the left point, along with proportion (1−
ballp/φt) on the right point, that satisfies the mean-ψs constraint.

With a couple steps of algebra, equation (3.21) can be re-written to isolate ballp/φt:

ballp

φt · (ψ
s
lp − ψs

rp) = ψs t − ψs
rp , (3.25)

ballp

φt =
ψs t − ψs

rp

ψs
lp − ψs

rp
, (3.26)

=
ψs

rp − ψs t

ψs
rp − ψs

lp
. (3.27)

Finally, note how the right-hand side of equation (3.24) can be re-arranged as:

(1−
ψs t − ψs

lp

ψs
rp − ψs

lp
) = (

ψs
rp − ψs

lp

ψs
rp − ψs

lp
−

ψs t − ψs
lp

ψs
rp − ψs

lp
) =

ψs
rp − ψs t

ψs
rp − ψs

lp
. (3.28)

�

Lemma 2 Let the construction of the upper envelope of the expected gross loss curves be the
following: i) take the set of all ψs values taken by the loan in set K, ii) at each ψs value, retain the
loan(s) with maximum EGL(ψs, seass

i ) value. All solutions to the simplified, mean-ψs matching,
issuer’s problem consist of combinations of points on the upper envelope of the expected gross loss
curves.
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Proof of Lemma 2: The proof proceeds by contradiction. Suppose a solution to the
issuer’s problem, which maximizes the balance-weighted EGL, has shares of pool balance
that satisfy the mean-ψs constraint and contains a point that is not on the upper envelope
of the expected gross loss curves. Then, it is feasible to substitute the loan that is not on
the upper envelope by a point that is on the upper envelope, maintain shares of pool
balance and continue to satisfy the mean-ψs constraint since the substituting loan has the
same ψs. In addition, all other terms that enter the expression for the balance-weighted
EGL stay the same, but the product of the share of pool balance and EGL on the loan that
was substituted in is higher than the product of the same share of pool balance and EGL
on the loan that was substituted out, by definition of the loan being substituted in being
on the upper envelope. Thus, we have:

EGLsub−in > EGLsub−out , (3.29)
balsub−out

φt EGLsub−in >
balsub−out

φt EGLsub−out , (3.30)

balsub−in
φt EGLsub−in >

balsub−out
φt EGLsub−out . (3.31)

A contradiction with the claim that the point that was substituted out was part of
combination of points that solved the issuer’s problem.

�

Lemma 3 Let a set of combinations of points consist of i) all the pairs of left and right points and

corresponding shares of pool balance, given by
ballp

φt =
ψs

rp−ψs t

ψs
rp−ψs

lp
and balrp

φt =
ψs t−ψs

lp
ψs

rp−ψs
lp

, and ii) the

points with ψs = ψs t, with a share of pool balance of 1 placed at ψs = ψs t. Furthermore, limit
the set of combinations to those formed exclusively from points that are on the upper envelope
formed by the expected gross loss curves. It is sufficient to consider the points and corresponding
balances from this set in order to achieve the maximum balance-weighted average EGL under
the constraints of the simplified, mean-ψs matching, issuer’s problem. All combinations, possibly
including combinations of more than two points, that satisfy the constraints and match the
maximum balance-weighted average EGL achieved in the aforementioned set are solutions to the
simplified issuer’s problem.

Proof of Lemma 3: Limiting the search for a solution to points on the upper envelope
formed by the expected gross loss curves is without loss of generality, as shown by Lemma
2. This reduces notation since EGL(ψs) will be used, with the understanding that the
maximum level of EGL among the, up to 4, levels of EGL(ψs, seass

i ) at a ψs value is being
used.
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The proof will proceed by contradiction. We will show that for an any combination
of NL left points and NR right points, with (NL + NR) > 2, and corresponding balances
on those points of {balk}NL+NR

k=1 that satisfy the constraints, the balance-weighted average
EGL delivered by the combination cannot exceed the maximum balance-weighted EGL
that can be achieved from the (NL × NR) left-right pairwise combination that can be
formed from the (NL + NR) points. We will also show, via comments in the proof
for the case with NL + NR points, that any combination with NL left points, NR right
points, with NL + NR ≥ 2, and one point at ψs t, and corresponding balances on those
points of {balk}

(NL+NR+1)
k=1 that satisfy the constraints, the balance-weighted average

EGL delivered by the combination of (NL + NR + 1) points cannot exceed both i) the
maximum balance-weighted EGL that can be achieved from the (NL × NR) left-right
pairwise combination that can be formed from the (NL + NR) points, and ii) the EGL
at ψs = ψs t. This has for implication that the balance-weighted average EGL that can
be delivered by any combination of (NL + NR) points, with (NL + NR) > 2, or any
combination of (NL + NR + 1) points, with (NL + NR) ≥ 2, is bounded from above by
the balance-weighted average EGL that can be delivered by either i) or ii). This also has
for implications that if one computes the maximum balance-weighted average EGL that
can be achieved from the set of iii) all possible pairwise combination of left and right
points, with corresponding balances such that the constraints are met, and iv) placing the
entire pool balance at ψs = ψs t, then this maximum is an upper bound on the balance-
weighted average EGL that can be achieved by any combination of (NL + NR) points,
with (NL + NR) > 2, and any combination (NL + NR + 1 points, with (NL + NR) ≥ 2.
Therefore, it is sufficient to limit the search to iii) and iv) in order to find the maximum
balance-weighted average EGL that can be achieved by any combinations.

The statement, which we will show to be contradictory, is the following. Let there
be a combination of NL left points and NR right points, with (NL + NR) > 2, with
corresponding balances that satisfy the constraints, and assume that this combination
delivers a balance-weighted average EGL that exceeds the balance-weighted average EGL
that can be delivered by any 2-point or single-point combinations, with corresponding
balances that satisfy the constraints. We will show this statement to be contradictory
without even having to compare the balance-weighted average EGL of the combination of
(NL+ NR) points to all pairwise combination of left and right points in the set of K points:
we will show this statement to be contradictory even when one limits the comparison
to the balance-weighted average EGL that can be achieved with the (NL× NR) left-right
pairwise combination that can be formed from the (NL + NR) points.

We explicitly conduct our proof for the case with (NL + NR) points that can be
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separated into NL left point(s), with ψs < ψs t, and NR right point(s), with ψs > ψs t,
but we will comment at one point in the proof on how it would be modified to handle
the addition of one point with ψs = ψs t. It is sufficient to consider the case with one
point at ψs

c = ψs t and corresponding balance balc since, by Lemma 2, limiting the search
for combination of points that maximize balance-weighted EGL means only considering
points on the upper envelope of the expected gross loss curves. Therefore, our proof will
comprehensively cover all cases.

Let the balance-weighted average EGL achieved with the (NL+ NR) points be denoted
with EGL. We have:

NL+NR

∑
k=1

balk
φt · EGL(ψk) = EGL. (3.32)

Let a (NL× NR)-by-2 vector contains all the pairwise combinations that can be formed
from the NL left points and the NR right points. For ease of exposition, we illustrate
segments of the proof with an example, an example with 3 left points and 2 right points.
Denoting the location of the points by ψlp1, ψlp2, ψlp3, ψrp1, ψrp2 the vector of pairwise
combination would be:

ψlp1, ψrp1,

ψlp1, ψrp2,

ψlp2, ψrp1,

ψlp2, ψrp2,

ψlp3, ψrp1,

ψlp3, ψrp2.

Let there be a set of scalars 0 ≤ αk,j ≤ 1 with j = 1, ..., max {1, NR− 1} on the left
point(s) and j = 1, ..., max {1, NL− 1} on the right point(s). Create a new (NL × NR)-
by-1 vector that multiplies the element on each row of the (NL × NR)-by-2 vector by
their corresponding shares of pool balance and then sums them. Insert the αkj scalar
sequentially, from top to bottom, as pre-multipliers on each term in the sums , letting the
indices increase up to their maximum, and using (1−∑j αk,j) after that. Returning to our
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example, this gives:

αlp1,1 ·
ballp1

φt · ψlp1 + αrp1,1 ·
balrp1

φt · ψrp1 ,

(1− αlp1,1) ·
ballp1

φt · ψlp1 + αrp2,1 ·
balrp2

φt · ψrp2 ,

αlp2,1 ·
ballp2

φt · ψlp2 + αrp1,2 ·
balrp1

φt · ψrp1 ,

(1− αlp2,1) ·
ballp2

φt · ψlp2 + αrp2,2 ·
balrp2

φt · ψrp2 ,

αlp3,1 ·
ballp3

φt · ψlp3 + (1− αrp1,1 − αrp1,2) ·
balrp1

φt · ψrp1 ,

(1− αlp3,1) ·
ballp3

φt · ψlp3 + (1− αrp2,1 − αrp2,2) ·
balrp2

φt · ψrp2.

Note that summing down the rows of the above (NL× NR)-by-1 vector, one simply
recovers the left-hand side of the mean-ψs constraint, thus the sum of the rows is equal to
ψs t. This is true in our example and in the general case as well. Furthermore, note that
this holds whatever the set of scalars chosen. Let’s arbitrarily pick a set of

{
αk,j
}

. Given
those

{
αk,j
}

and looking one-by-one at the rows of the (NL× NR)-by-1 vector, only two
terms, out of the (NL× NR) terms that guarantee that ψs t is reached, are being summed.
Note, for completeness, that balk ≥ 0 and ψs > 0. Therefore, one-by-one, the rows of the
(NL× NR)-by-1 vector are smaller or equal to ψs t and thanks to all the terms in each row
being non-negative, this means that each row can be expressed as the product of a scalar
θi, with 0 ≤ θi ≤ 1, and ψs t. Returning to our example, this means:

αlp1,1 ·
ballp1

φt · ψlp1 + αrp1,1 ·
balrp1

φt · ψrp1 = θ1 · ψs t, (3.33)

(1− αlp1,1) ·
ballp1

φt · ψlp1 + αrp2,1 ·
balrp2

φt · ψrp2 = θ2 · ψs t, (3.34)

αlp2,1 ·
ballp2

φt · ψlp2 + αrp1,2 ·
balrp1

φt · ψrp1 = θ3 · ψs t, (3.35)

(1− αlp2,1) ·
ballp2

φt · ψlp2 + αrp2,2 ·
balrp2

φt · ψrp2 = θ4 · ψs t, (3.36)

αlp3,1 ·
ballp3

φt · ψlp3 + (1− αrp1,1 − αrp1,2) ·
balrp1

φt · ψrp1 = θ5 · ψs t, (3.37)

(1− αlp3,1) ·
ballp3

φt · ψlp3 + (1− αrp2,1 − αrp2,2) ·
balrp2

φt · ψrp2 = θ6 · ψs t. (3.38)

121



Let us briefly comment on how the proof would be modified if one point with ψs = ψs t

was added to a combination, giving us a combination with (NL + NM + 1) points. We
have yet to explain how λi is constructed on each left-right pair of points, but let us
state that for the point at ψs = ψs t, it is straightforward: λc = EGL/(balc · EGL(ψs

c)),
where EGL would of course be the balance-weighted average EGL over the (NL+ NM+ 1)
points and their corresponding balances. In terms of modifying the (NL×NM) equivalent
of equations (3.33) to (3.38), one would simply add an (NL× NM + 1)th equation, with
(balc/φt) · ψs

c = θNL×NM+1 · ψs t. The rest of the proof for a combination of (NL×NM + 1)
points would essentially proceed as done below for combinations of NL + NM points.

The case with one left point, one right point and one point at ψs = ψs t is trivial, in
the sense that the θ1 achieved by the pair of left and right points can immediately be
computed and so can the λ1 on the pair, just like the θ2 on the point at ψs = ψs t and the
λ2. Given those θi and λi, one could immediately jump to the paragraph that contains
equation (3.56) and use the argumentation from that paragraph onward to complete the
proof for the special case with one left point, one right point and one point at ψs = ψs t.

Returning to our proof for combinations of left and right points only, note that one
can express EGL as the sum of the rows of the (NL× NR)-by-1 vector after the ψs terms
have been replaced by EGL(ψs) terms. Returning to our example, this means:

EGL =

[
αlp1,1 ·

ballp1

φt · EGL(ψlp1) + αrp1,1 ·
balrp1

φt · EGL(ψrp1)

]
+ . . .

+

[
(1− αlp3,1) ·

ballp3

φt · EGL(ψlp3) + (1− αrp2,1 − αrp2,2) ·
balrp2

φt · EGL(ψrp2)

]
.

(3.39)

Since all of the above holds for any set of
{

αk,j
}

, with the understanding that different{
αk,j
}

lead to different {θi}, let us choose the
{

αk,j
}

in a way that will be useful. Starting
with the specifics of our example and generalizing it afterward, consider the first row of
the (NL× NR)-by-1 vector. αlp1,1 and αrp1,1 can be chosen in such a way that if one took

the αlp1,1 ·
ballp1

φt weight on the lp1 point and the αrp1,1 ·
balrp1

φt weight on the rp1 point, and
scaled it up by 1/θ1 then the pair, in isolation, would satisfy the share of pool balance
constraint and the mean-ψs constraint. How does one do that? If we want αlp1,1 and
αrp1,1 to allow for a scale up by 1/θ1 to deliver a pair of points and weights that would
constitute shares of pool balance that satisfy the mean-ψs constraint, according to the
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work done to prove Lemma 1, in particular equation (3.27) we need to set:

αlp1,1 · ballp1/φt

θ1
= wlp(lp1, rp1) =

ψrp1 − ψs t

ψrp1 − ψlp1
⇒ αlp1,1 =

φt

ballp1
·

ψrp1 − ψs t

ψrp1 − ψlp1
· θ1,

(3.40)

αrp1,1 · balrp1/φt

θ1
= (1− wlp(lp1, rp1)) =

ψs t − ψlp1

ψrp1 − ψlp1
⇒ αrp1,1 =

φt

balrp1
·

ψs t − ψlp1

ψrp1 − ψlp1
· θ1.

(3.41)

Note that picking αlp1,1 and αrp1,1 to allow for a scale up by 1/θ1 of the weights on the
(ψlp1, ψrp1) pair that would deliver a pair of points and weights that would constitute
shares of pool balance that satisfy the mean-ψs constraint implies:

αlp1,1

αrp1,1
=

balrp1

ballp1
·

ψrp1 − ψs t

ψs t − ψlp1
. (3.42)

Using a similar logic line-by-line gives:

(1− αlp1,1)

αrp2,1
=

balrp2

ballp1
·

ψrp2 − ψs t

ψs t − ψlp1
, (3.43)

αlp2,1

αrp1,2
=

balrp1

ballp2
·

ψrp1 − ψs t

ψs t − ψlp2
, (3.44)

(1− αlp2,1)

αrp2,2
=

balrp2

ballp2
·

ψrp2 − ψs t

ψs t − ψlp2
, (3.45)

αlp3,1

(1− αrp1,1 − αrp1,2)
=

balrp1

ballp3
·

ψrp1 − ψs t

ψs t − ψlp3
, (3.46)

(1− αlp3,1)

(1− αrp2,1 − αrp2,2)
=

balrp2

ballp3
·

ψrp2 − ψs t

ψs t − ψlp3
. (3.47)

Equations (3.42) to (3.47) is a system of 7 variables, with 6 restrictions imposed on the
value that the ratios can take. The system can be re-arranged in such a way that all
αk,j other than αlp1,1 are functions of αlp1,1. Using βi to represent the terms on the right
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hand-side of equations (3.42) to (3.47), we have:

Eq. 39 ⇒ αrp1,1 = 1/β1 · αlp1,1 , (3.48)

Eq. 40 ⇒ αrp2,1 = 1/β2 − 1/β2 · αlp1,1 , (3.49)

Eq. 41 ⇒ αrp1,2 = 1/β3 · αlp2,1 , (3.50)

Eq. 42 ⇒ αrp2,2 = 1/β4 − 1/β4 · αlp2,1 , (3.51)

Eq. 43 ⇒ αlp3,1 = β5 · (1− 1/β1 · αlp1,1 − 1/β3 · αlp2,1) , (3.52)

Eq. 44 ⇒ (1/β6 − 1/β6 · αlp3,1) = (1− (1/β2 − 1/β2 · αlp1,1)− (1/β4 − 1/β4 · αlp2,1)).
(3.53)

Therefore, plugging the right-hand side of equation (3.52) to substitute for αlp3,1 into
equation (3.53), gives an expression with constant terms, αlp2,1 terms and αlp1,1 terms, thus
this can be used to obtain αlp2,1 as a function of αlp1,1. Thus, arbitrarily picking an αlp1,1

value, with 0 < αlp1,1 < 1, and using equations (3.48) to (3.53), this would immediately
set the αrp1,1, αrp2,1 and αlp2,1 value. With the αlp2,1 value set, equations (3.50) and (3.51)
indicate how to set the αrp1,2 and αrp2,2 values. Finally, using the set values for αlp1,1 and
αlp2,1, equation (3.52) indicates how to set the αlp3,1 value.

Thus, picking an αlp1,1 value, with 0 < αlp1,1 < 1, after imposing restrictions on how
the relative weights placed on each element of the pairs of left and right points found in
the (NL× NR)-by-2 vector, restrictions such that the ratios of balances on the pairs are
identical to the ratio of balances needed to match the mean-ψs constraint when the pairs
are viewed in isolation, sets all other αk,j values. With all αk,j values set, the θi values
appearing on the right-hand side of equations (3.33) to (3.38) are set.

All of the above, which we showed to be feasible for the NL = 3 and NM = 2 cases
could be used for an arbitrary number of left and right points in any initial combination
with NL ≥ 2 & NM ≥ 2 & (NL + NM) ≥ 5. There would be (NL×NM) linear restrictions
on the αk,j ratios, or (NL×NM) linear relations for the (NM× (NL− 1) + NL× (NM− 1)){

αk,j
}

parameters, with (NL×NM) < (NM× (NL− 1)+ NL× (NM− 1)) allowing for the
arbitrary choice of ((NM× (NL− 1) + NL× (NM− 1))− (NL× NM)) free parameters.
Setting the value on ((NM × (NL − 1) + NL × (NM − 1)) − (NL × NM)) parameters
located on the same side (either left or right) and setting values sequentially would prevent
the setting of values that would become contradictory with the linear restrictions. It
should be noted that ((NM× (NL− 1) + NL× (NM− 1))− (NL× NM)) is the minimum
number of free parameters, the number of free parameters when none of the lines linking
the left-right pairwise combination have both a common intercept and a common slope.

Cases with N ≥ 2 points on one side and 1 point on the other, are special cases with
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N linear restrictions on (N − 1) parameters. Letting the N points be on the left side, it is

straightforward to show that in those cases, setting
{

αk,j
}

such that 1
αrp,i

=
balrp
ballpi
· ψrp−ψs t

ψs t−ψlpi

on the first N − 1 parameters, as required by the first N − 1 restrictions, delivers a
(1−∑N−1

i=1 αi) term that agrees with the (1−∑N−1
i=1 αi) term required by the Nth restriction.

The Nth restriction requires 1
(1−∑N−1

i=1 αi)
=

balrp
ballpN

· ψrp−ψs t

ψs t−ψlpN
. After the first N− 1 restrictions

have been imposed, verifying whether the Nth restriction simultaneously holds amounts
to checking, after a couple steps of algebra, that
balrp · (ψrp − ψs t

) = ∑i ballpi · (ψs t − ψs
lpi), which clearly holds due to the fact that the

initial (ψs
k, balk) combination satisfied the balance-weighed mean-ψs constraint. Assuming

that the N points were on the left side was arbitrary, a similar logic could easily be used
on a case with N right points and one left point.

The case with, with NL = 2 and NM = 2, is similar to the above: there would generally
be a unique solution to the set of αk,j ratios that satisfy the four restrictions on the pairwise
ratios, unless the lines linking the (lp1, rp1) and (lp2, rp2) points had a common slope
and a common intercept.

After linear restrictions are imposed and free parameters, 0 < αk,j < 1, if any, are
picked, the θi values are set. Given values of

{
αk,j
}

translate into a given decomposition
of EGL, the balance-weighted average EGL achieved with the combination of (NL + NM)

points. Returning to our example with NL = 3 and NM = 2, we have:

EGL =

[
αlp1,1 ·

ballp1

φt · EGL(ψlp1) + αrp1,1 ·
balrp1

φt · EGL(ψrp1)

]
+ . . .

+

[
(1− αlp3,1) ·

ballp3

φt · EGL(ψlp3) + (1− αrp2,1 − αrp2,2) ·
balrp2

φt · EGL(ψrp2)

]
,

(3.54)

EGL = λ1 · EGL + . . . + λ6 · EGL, (3.55)

where λ1 =
[
αlp1,1 ·

ballp1
φt · EGL(ψlp1) + αrp1,1 ·

balrp1
φt · EGL(ψrp1)

]
/ EGL. Thus, for a cho-

sen set of
{

αk,j
}

, whether it was fully determined by the linear restrictions or it required
the choice of some free parameters, we have (NL× NM) pairwise combinations that each
account for a θi fraction of the sum of the products of shares of pool balance and ψs,
which together sum to ψs t, and a λi fraction of the sum of the products of shares of pool
balance and EGL(ψs), which together sum to EGL.

Note, that given the construction of the pairs and the restrictions on the αk,j, the
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following balance-weighted average EGL are feasible:

EGL1 =
1
θ1
· λ1EGL, (3.56)

. . . , (3.57)

EGL(NL×NM) =
1

θ(NL×NM)
· λ(NL×NM)EGL. (3.58)

Achieving those levels of EGL is simply the result of using the left and right points of the
ith pairwise combination of the (NL× NM)-by-2 vector and using balances corresponding
to the terms in front of the ψs term in the (NL× NM) equivalent of equations (3.33) to
(3.38), and scaling them up by 1/θi.

We have finally reached the point of the contradiction. If λi/θi > 1 for any pairwise
combinations, then EGLi > EGL and it is possible to exceed the balance-weighted average
EGL achieved with the (NL + NM) combination of points with a 2-point combination,
which is a contradiction with the initial claim. If λi/θi = 1, ∀i, then any left-right 2-point
combination formed from the (NL + NM) points matches the balance-weighted average
EGL achieved with the combination of (NL + NM) points, which is another type of
contradiction with the initial claim.

�
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3.6.7 forming loss -maximizing pool (post -crisis deals )
To identify the loss-maximizing pool for deals 2009-B, 2009-C and 2010-A, which have
identical deal-specific samples thus identically shaped expected gross loss curves (and
similar ψs t parameters and similar proportions of pool balance in the ψs < 630 region)
we make an additional adjustment to the EGL maximizing algorithm we use to solve
the (full) issuer’s problem. For those deals, the curve for the more-seasoned loans lies
sufficiently below the curves for the least- and less-seasoned loans in the (620 < ψs < 730)
range that excluding least- and less-seasoned loans from being selected in the ψs > 730,
favors the selection of more-seasoned loans in ψs > 730 region and leads to higher levels
of balance-weighted average EGL. Figure 3.4 shows the loss-maximizing pool for deal
2009-B.

Proportion with ψs<630: 19.3% Mean ψs: 680
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Figure 3.4:
Loss-maximizing pool for a post-crisis deal
This figure shows the loss-maximizing pool for deal 2009-B. For each seasoning group, one marker
appears on the figure for both the minimum and maximum credit score with a positive balance.
Moving from the minimum to the maximum, there are also markers whenever crossing over
a credit score value changes the integer value of the cumulative pool balance, expressed as a
percentage. Raw data source: FRBNY CCP/Equifax.
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