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ABSTRACT

This dissertation contains three chapters, and each examines the securitization of student loans.
The first two chapters focus on the underpricing of Asset-Backed Securities (ABS) collateralized
by government guaranteed student loans during the financial crisis of 2007-2009. The findings
add to the literature that documents persistent arbitrages during the crisis and doing so in the
ABS market is a novelty. The last chapter focuses on the securitization of private student loans,
which do not benefit from government guarantees. This chapter concentrates on whether the
disclosure to investors is sufficient to prevent the selection of underperforming pools of loans. My
findings have normative implications for topics ranging from the regulation of securitization to
central banks” exceptional provision of liquidity during crises.

Specifically, in the first chapter, “Near-Arbitrage among Securities Backed by Government
Guaranteed Student Loans,” I document the presence of near-arbitrage opportunities in the student
loan ABS (SLABS) market during the financial crisis of 2007-2009. I construct near-arbitrage lower
bounds on the price of SLABS collateralized by government guaranteed loans. When the price of
a SLABS is below its near-arbitrage lower bound, an arbitrageur that buys the SLABS, holds it
to maturity and finances the purchase by frictionlessly shorting short-term Treasuries is nearly
certain to make a profit. The underpricing on some SLABS relative to Treasuries exceeded 22%
during the crisis.

In the second chapter, “SLABS Near-Arbitrage: Accounting for Historically Unprecedented
Macroeconomic Events,” I analyze whether the risks associated with unprecedented macroe-
conomic events, such as exceptionally high inflation or default by the government on its loan
guarantee, could explain the large underpricing of SLABS relative to Treasuries observed during
the financial crisis of 2007-2009. Using data on inflation caps, interest rate swaps and interest
rate basis caps, and comparing the price dynamics of SLABS to other securities benefiting from a
similar government guarantee, I find that for 90% of SLABS, the aforementioned risks explain at
most 25% of the near-arbitrage gaps.

In the third chapter, “Securitization with Asymmetric Information: The Case of PSL-ABS”
(joint with Adam Ashcraft), we empirically analyze the adverse selection of loans in the private
student loan (PLS) ABS market. Using loan-level data, we demonstrate the potential for an issuer
of PSL-ABS to select loans in such a way that could result in materially adverse outcomes for
investors (credit rating downgrades or market value losses). We find that an issuer could increase
pool losses on the non-cosigned portion of securitized pools by 6%—-20% among pre-crisis deals
and by 16%-36% among post-crisis deals while still matching the pool characteristics disclosed to
investors. The shifts in pool losses are achieved by exploiting the coarseness of the disclosure and
by jointly overrepresenting unseasoned loans in the low credit score region and overrepresenting
seasoned loans in the high credit score region. We present multiple additional channels for adverse

selection of private student loans that could substantially increases losses without altering the



disclosed characteristics of PSL-ABS deals (e.g. overrepresenting college drop-outs, the share of
which is known to the securitizer but not disclosed). The existence of such channels indicates that
our estimates of ABS issuers” ability to affect pool performance via loan selection at the time of
securitization should be interpreted as lower bounds.
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Chapter 1

Near-Arbitrage among Securities Backed
by Government Guaranteed Student

Loans

1.1 INTRODUCTION

The financial crisis of 2007-2009 presented several challenges for central banks in perform-
ing their role of liquidity provider of last resort. In the preceding decade, the origination
of consumer loans became increasingly reliant on their indirect sale to investors purchas-
ing asset-backed securities (ABS). Most ABS markets experienced sharp declines in prices
during the crisis. Simultaneously, the cost of raising funds to originate loans increased.
These events raise several questions. Were these declines in prices excessive? Could cen-
tral banks have reduced the distress of financial intermediaries by purchasing ABS above
market price, and yet be taking virtually no risk with taxpayer money? Central banks
attempted to stimulate the origination of some types of consumer loans by providing
non-recourse loans to ABS buyers. Were the cash-down requirements on the loans to ABS
buyers sufficiently large to virtually eliminate the risk taken with taxpayer money?

I contribute to answering the above questions by documenting large underpricings
among securities backed by government guaranteed student loans, henceforth SLABS,
relative to Treasuries during the crisis. SLABS are unique among the universe of ABS.
Holders of SLABS receive cash flows from a pool of loans that are explicitly guaranteed

against borrower’s default by the US federal government.'

!The guarantee on student loans issued under the Federal Family Education Loan (FFEL) program
is explicit since it is mandated by US federal law. It is in contrast with the implicit guarantee that many
investors expected the US government to fulfill on bonds issued by some of its government-sponsored



I proceed by first computing lower bounds on the price of SLABS. I call these bounds
near-arbitrage lower bounds. Once the price of a SLABS is below its near-arbitrage lower
bound, an arbitrageur that buys a SLABS, holds it to maturity and finances the purchase by
frictionlessly shorting short-term Treasuries, is nearly certain to make a profit. Events that
can cause a loss on that trade are: i) hyperinflation, ii) default by the US government on
its loan guarantee or iii) the credit worthiness of the US government becoming worse than
that of the average large commercial bank. During the crisis, the probabilistic assessment
of market participants, revealed through derivative and bond markets, indicated that
these events were extremely unlikely to occur in the next two decades.

I show that the lowest observed price of some SLABS was 8% to 22% below their near-
arbitrage lower bounds during the crisis.” The aggregate principal of SLABS outstanding
was approximately $190 billion in 2008.° For the majority of SLABS that presented near-
arbitrage opportunities, their underpricing first exceeded 2% at the end of August 2008
and only reverted to less than 2% at the end of July 2009. Therefore, the near-arbitrage
underpricings were large and persistent.

In Chapter 2, I present empirical evidence that for more than 90% of SLABS, the risks
associated with historically unprecedented macroeconomic events, such as exceptionally
high inflation and default by the government on its loan guarantee, explain at most
25% of their underpricing. Therefore, puzzlingly large relative mispricings remain after
accounting for all sources of risk.

Some of the normative implications of my paper set it apart from the existing literature.
My paper is the first to document severe relative underpricing in any ABS markets. These
tindings have novel normative implications for central banks” measures of liquidity
provision and their attempt at stimulating the origination of loans during crises. I also
propose an original reform that would reduce the costs of the guaranteed loan program
for the US government. Implementing the reform without putting taxpayer money at risk
requires my methodology to compute near-arbitrage lower bounds. Finally, my findings
have implications for a US government asset purchase program.

The US government can issue Treasuries to finance the purchase of SLABS. The

enterprises, such as Fannie Mae and Freddie Mac.

2Appendix 1.7.1 contains the list of SLABS trusts that satisfied all selection criteria that makes the
analytical derivation of near-arbitrage lower bounds applicable to those trusts. Among the SLABS issued
by those trusts, the difference between their near-arbitrage lower bounds (P;) and the lowest observed price
exceeds 8% when the senior overcollateralization ratio of the pool exceeds 1.06 and the expected paydown
date of the SLABS is 2015q1 or later.

3In the fall of 2008, the aggregate volume of government guaranteed loans found in the securitized
pools of SLM corp. alone was greater than $100 billion. SIFMA estimates the volume of SLABS outstanding
to $191.9 billion for 2008.



purchase of SLABS at a price below their near-arbitrage lower bounds, but higher than
their market price, would have helped reduce the financial distress of some financial
intermediaries, and would have produced a profit for the government with near certainty.

Near-arbitrages among SLABS can act as a canary in the coal mine by signaling a
severe need for liquidity provision. A temporary program of liquidity provision, such as
the Term Asset-Backed Securities Loan Facility, would be more effective at dampening
an excessive contraction of credit if implemented as soon as near-arbitrages are present.
Furthermore, the near-arbitrages among SLABS allows a decomposition of the discounts
on ABS collateralized by other types of loans, such as auto or credit loans, into a liquidity
component and credit component. The central bank can ask for greater compensation for
credit risk than the market, but little to no compensation for liquidity risk, when it sets
its cash-down requirements on the collateralized loans it offers.

My findings provide insights to reduce the costs of the US federal program of guar-
anteed student loans. Outside of crises, near-arbitrage lower bounds could be used to
establish a guaranteed price at which the government promises to repurchase SLABS in
the future. In exchange for the provision of these put options, the government would
reduce its supplemental interest payments.* As of the end of 2013, there were still more
than $250 billion dollar in loans guaranteed by the US federal government, also called
FFEL loans, outstanding. Therefore, small reductions in supplemental interest payments,
on the order of 0.10%, would translate into savings of $250 million, just in the first year
following the reform.’

My findings also contribute to the asset pricing literature. Classical asset pricing
theory generally assumes that a sufficient number of arbitrageurs can frictionlessly short
an expensive asset to raise funds to purchase a cheaper asset with identical cash flows.
The trades of arbitrageurs should lead to convergence in prices between the two assets.
My paper adds to a growing empirical literature that documents large mispricings during
the crisis that pose a major puzzle for the classical asset pricing theory. The TIPS-Treasury
arbitrage documented by Fleckenstein, Longstaff, and Lustig (2014), the convertible
debenture arbitrage in Mitchell and Pulvino (2012) and the Treasury bond-Treasury note
arbitrage in Musto, Nini, and Schwarz (2014) are notable examples in the literature.

Arbitrageurs generally attempt to minimize the cost of financing the purchase of an
asset by pledging it as collateral for the funds lent to them. Arbitraging capital would be
irrelevant for the relative price of SLABS and Treasuries if cash-down requirements on

4The government makes interest payments to holders of government guaranteed loans that supplement
the payments made by borrowers.

> Assumes 100% participation rate in a voluntary loan swapping program that involves the exchange of
a FFEL loan for a loan with a put option that receives smaller supplemental interest payments.



loans collateralized by SLABS were 0% when SLABS become near-arbitrage opportunities.
However, the empirical work of Gorton and Metrick (2009), Copeland, Martin, and
Walker (2014) and Krishnamurthy, Nagel, and Orlov (2014), suggests that cash-down
requirements were at least 5% for SLABS during the crisis. This stream of empirical work
partially explains the presence of near-arbitrage among SLABS.

The simultaneous occurrence of near-arbitrage among SLABS and other arbitrages
during the crisis supports the hypothesis that arbitraging capital was spread too thinly
across a multitude of arbitrages to eliminate them all. Thus, my findings support the
slow-moving capital explanation of arbitrage persistence. I hence provide additional
evidence in favor of the recent theoretical work by Gromb and Vayanos (2002), Duffie
(2010), Ashcraft, Garleanu, and Pedersen (2011), Garleanu and Pedersen (2011) that
stresses how arbitraging capital can be an important determinant of the relative pricing
of assets.

The remainder of this Chapter is organized as follows. Section 1.2 describes the cash
flows on SLABS. Section 1.3 presents benchmark no-arbitrage lower bounds on simplified
SLABS.® Benchmark no-arbitrage lower bounds on simplified SLABS are analytically
derived and denoted by P;'. Bankruptcy of the initial servicer and risks associated with
unprecedented macroeconomic events are ignored to derive &H. Section 1.4 presents
near-arbitrage lower bounds, denoted by P;, computed by simulations for a large sample
of SLABS. The computation of P; only ignores the risks associated with unprecedented
macroeconomic events.” The examination of the pricing and the cost of hedging risks
associated with unprecedented macroeconomic events that can cause a loss on a SLABS-
Treasury trade initiated at P; < P; takes place in Chapter 2. Section 1.5 examines the
implications of near-arbitrages in SLABS for exceptional measures of liquidity provision
to market participants and a government-run asset purchase program. A cost-saving
reform of the FFEL loan program that relies on the near-arbitrage lower bounds on SLABS
is also discussed. In Section 1.6, I make concluding remarks.

1.2 SOURCES OF CASH FLOW ON SLABS

In this section, I describe the sources of cash flow on pools of FFEL loans that collateralize
SLABS and the rules of distribution of that cash flow among various claimholders.

®Section 1.3 presents the simplifying assumptions imposed to obtain a simplified SLABS.

’Conditional near-arbitrage lower bounds for SLABS, which are computed after abandoning the
simplifying assumptions, but under the maintained condition that the initial servicer avoids bankruptcy
and ignoring risks associated with unprecedented macroeconomic events, are denoted by P; and presented
in section 1.4.2. B



ABS collateralized by FFEL loans are not perfectly homogeneous and many SLABS
have features that differ from the one presented in this paper. For tractability, this paper
focuses on a subsample of the SLABS issued by SLM, which is the largest issuer.® All the
institutional details that I present are accurate for that subsample and the near-arbitrage
lower methodology is directly applicable to it. For brevity, I simply refer to SLABS, where
it would be more accurate to use SLABS in the selected sample. The selected sample is
listed in Table 1.10.” Also, I only document near-arbitrage among senior SLABS, although
a securitized pool of FFEL loans commonly collateralizes both senior and subordinate
SLABS. For brevity, I use SLABS to refer to senior SLABS.

A SLABS is an amortizing variable-rate bond. Let y; denote the aggregate payment
to holders of SLABS collateralized by a given pool of loans in period t. Throughout the
paper, time periods are 3-months long, which is the frequency at which SLABS holders
receive distributions and the frequency at which interest rates reset. Let p; denote the
aggregate principal of SLABS outstanding for a given pool of loans. SLABS promise an
interest payment that is tied to the 3-month LIBOR rate,'” plus a spread, s, that ranges
from 0 to 114 basis points.!! Throughout the paper, interest rates are described on an
annualized basis in the text of the paper, and in the spread analysis of Section 1.4.1, but
they must be inputted on a non-annualized basis in other equations.'” The equation that

describes the evolution of p; over time is:

pri1 = pr- (1+ (PR +9)) —yiya, (1.1)

where ;1 > 0 and rBOR denotes the LIBOR rate. Throughout the paper, I refer to the
full repayment of a SLABS, which is formally defined as p; = 0 for some t.

I present the cash flows on SLABS in two steps. First, I present cash flows from a pool
of FFEL loans, as depicted in Figure 1.1. Second, I present the rules of distribution of the

8SLM uses the Sallie Mae brand to market its student loans. Sallie Mae was a subsidiary of SLM that
lost its government-sponsored enterprise status in 2004. SLM had securitized over 50% of the SLABS
outstanding in 2008.

9In most cases of SLABS with unusual features, a minor modification of the near-arbitrage methodology
would be needed.

19The London Interbank Offered Rate, LIBOR, reflects an average rate charged between large banks for
uncollateralized short-term loans.

Two SLABS in the selected sample have negative spreads of 1-2 basis points. As shown in Section
1.4.1, there is roughly 0.40% of excess arbitrageur’s spread under the simplifying assumptions and the
worst assumptions that do not violate the interest rate ordering condition (C.2) of Section 1.3, in particular
rHBOR — ¢, Therefore, the proof of Section 1.3 would also apply to those SLABS.

12For instance, the annualized interest on SLABS is equal to the annualized 3-month LIBOR rate at time
t, plus an annualized spread of s%. However, in equation (1.1), the non-annualized rate must be plugged in
to recover the proper law of motion.



cash flow from the pool to various claimholders, as depicted in Figure 1.2.

Let x; denote the cash flow from a pool of FFEL loans. The pool of loans is formed
prior to the issuance of SLABS.!® As loans in the pool amortize over time, cash flows
from the pool are used to pay down SLABS. The rules of distribution of the cash flow
from the pool to the various claimholders lead to y;/x; that is generally greater than 90%

and to a tight link between the amortization of the pool and the amortization of SLABS.

Students/Borrowers

Interest payments
l Principal payments

0

Supplement
u.s
Dept. Rebate \ Pool of FFELP O+R+O = X,
of loans >
Educ. ( @, = Principal
of the pool)

Guarantee payments /@

Guarantors

Figure 1.1: Cash flows from pool of FFEL loans: This figure shows the three sources of cash
flows from a pool of FFEL loans that collateralizes a SLABS. Students/borrowers make princi-
pal payments. Students make interest payments and the U.S. Department of Education either
supplements those interest payments or requires that a fraction be rebated to the government. A
net interest payment i} results. Upon default by a borrower, a guarantor pays a fraction of the
student’s debt outstanding. The fact that the guarantee is backed by the U.S. federal government
is represented by a dashed line.

A pool of FFEL loans has three sources of cash flow. First, students/borrowers make
principal payments. Second, students make interest payments and the federal government
either supplements those interest payments or requires that a fraction be rebated to the
government. A net interest payment, ii, results.'* Third, upon default by a borrower, a
guarantor pays a fraction of the student’s debt outstanding.

13From the date of issuance of the SLABS onward, no loan gets added to the pool. Using the structured
product terminology, SLABS are collateralized by a static pool of loans. A minority of student loan ABS
have a revolving pool of loans, but they are not covered in this paper.

14The U.S. Department of Education supplements interest payments in two ways. First, a borrower may
make full interest payment at a given rate, but the government supplements those interest payments in
order for the holder of the loan to receive a higher rate. These supplements are called special allowance
payments. Second, the government pays interest on behalf of students that received subsidized loans, while

6



The formulas of the Department of Education that determine interest supplements

and rebates on FFEL loans result in a net interest payment of i} = 7/ ffl

m > 1.74%.1 rFCP denotes the financial commercial paper rate with a maturity of 3-

+ m, where

month. ?tF’ tcfl denotes its quarterly average.'® I model loans as accruing interest with
m = 1.74%.

The FFEL program relies on a network of not-for-profit agencies, called guarantors,
to guarantee the student loans. Upon default by a borrower, conditional on proper
origination and servicing of the loan, a guarantor pays a fraction of the student’s debt
outstanding. This fraction may vary with the year of origination of a FFEL loan, but it
is always at least 97%.!” There is an explicit guarantee from the government to make
payments on default claims, if a guarantor becomes insolvent.'®

Default claims filed with guarantors can be rejected because of improper servicing
or improper origination. Historically, SLM’s contractual obligation to repurchase loans
whenever rejected default claims have a “materially adverse effect” for SLABS holders
has kept write-downs due to default claims rejected below 0.03% of pool balance. Write-
downs due to default claims rejected would have been less than 0.05% without the
proceeds from the repurchases.'”

Figure 1.2 presents the rules of distribution of the cash flow from the pool to various
claimholders.”’ The rules of distribution are hierarchical. The cash flow is first used to

pay the loan servicer and the administrator of the SLABS trust.’! Then, if anything is left,

they are in-school. Although the payment of interest by the government on subsidized loans is a form of
credit enhancement, I conservatively treat all loans as unsubsidized in this paper. Finally, prospectuses for
SLABS use floor income rebate to refer to the rebating of interest payments to the government.

15The net interest rate can differ between loans disbursed at different dates and between loan in various
statuses, (such as in-school, in repayment, or in deferment.), but it is always at least ?E ffl + 1.74%.

16The Federal Reserve Bank publishes a 3-month financial commercial paper rate daily (publication
H.15). ?E tcfl is computed by averaging those rates over a quarter.

I7FFEL loans are either 100%, 98% or 97% guaranteed. For my analytical analysis, if a pool of loans
contains any loans that are 97% guaranteed, then I assume that the entire pool is 97% guaranteed. If a pool
of loans only contains loans that are either 98% or 100% guaranteed, I assume that the entire pool is 98%
guaranteed. While SLM does not explicitly disclose a balance-weighted average loan guarantee for a SLABS
pool in its quarterly distribution reports, it discloses a balance-weighted average coupon and since coupon
and loan guarantee have a one-to-one relation, it becomes possible to infer the balance-weighted average
loan guarantee. I use inferred balance-weighted average loan guarantee when computing near-arbitrage
lower bounds by simulations.

18See Federal Law, 20 U.S.C. §1082 (o).

9Based on a sample that covers the period from December 2001 to March of 2011, with an increasing
number of deals in each period, reaching 60 deals by the end of the sample.

20 only present the rules of distribution that are relevant for the senior SLABS. For example, Figure 1.2
and the rest of the paper abstracts from the principal distribution to subordinate SLABS holder, because
they only occur, if they occur at all, after all senior SLABS have been repaid in full.

2IThe trust is the entity that intermediates collection from the pool of loans and distribution to various
claimholders.



the remaining cash flow is used to make a second type of payment. Then, if anything
is left, a third kind of payment is made, etc. In Figure 1.2, the first type of payment is

depicted at the top and each successive type of payments is placed below.??

|

No (¢4 /p>1) €& Eventof 15 Yes (,/p, <1)

reprioritization?

! !

Payment of servicing and admin. fees: ¢, =min(x,, f, - ¢, ,) Gy
v y
Interest payment on SLABS: Co =min(x, =&\, Py iy y)
i

sub  -sub

2
Interest payment on sub. SLABS: ¢, = min(x, —;amﬂ 0 Distributions

N2 to sr. SLABS
holders:

3
Payment of principal on SLABS: ¢, =min(x,= Y {,.p. + " —4)

- X = glt

v

4
Payment of excess distributions: G5 =X, — Zé}
i—1

Figure 1.2: Distribution of cash flows from pool of FFEL loans: This figure shows the distri-
bution of the cash flow from the pool, x;, among various claimholders. f; is expressed as a
percentage of the pool balance. Specifically, f; is obtained by dividing servicing and administrative
fees in dollars, at period t, by the pool balance, at period t — 1. i; denotes the interest rate on
SLABS. i§#? denotes the interest rate on subordinate SLABS. p{*? denotes the aggregate principal
of subordinate SLABS collateralized by a given pool of loans.

Two sets of rules of distribution are possible. Which rules apply depend on whether
an event of reprioritization has occurred. Either way, the cash flow from the pool is
used to pay servicing and administrative fees first. Servicing and administrative fees
are expressed as a percentage of the pool balance and denoted by f;. Let ¢; denote the
aggregate principal of FFEL loans in a pool. When ¢;/p; < 1, an event of reprioritization

22This paper focuses on SLABS issued by SLM and yet not all of them have the same rules of distribution.
The SLABS that do not conform with the rules of distribution presented in this section are excluded from
the selected sample.



is triggered. The senior overcollateralization ratio is computed from ¢;/p;. For brevity, I
use overcollateralization ratio to refer to the senior overcollateralization ratio.

If no event of reprioritization is triggered, the pool of loans is performing relatively
well, and the cash flow from the pool is applied to interest payments on subordinate
SLABS prior to being applied to principal distribution on senior SLABS. If an event of
reprioritization is triggered, the entire cash flow that is left after paying the servicing
and administrative fees is distributed to senior SLABS holders. Therefore, the rules of
distributions are such that symptoms of underperformance by the pool of FFEL loans
trigger a reprioritization that advantages senior SLABS.

Two features of SLABS that have not been presented yet will be used in later sections.
First, annualized servicing fees are at most 0.90% of the pool balance. Administrative
fees are at most $25,000 per quarter.”’> For SLABS in the selected sample, their individ-
ual pool balance was at least $98 millions throughout the crisis, thus initial annualized
administrative fees were at most 0.11%. Second, a close look at Figure 1.2 reveals that
payments of principal on SLABS under the no-event of reprioritization rules of distri-

iﬁ”l — ¢¢), where

bution, denoted by (4, are constrained to be no greater than (o;—1 +p
"% denotes the aggregate principal of subordinate SLABS collateralized by a given pool.
I refer to this constraint as the total overcollateralization constraint because it prevents
¢t/ (ot + p*?) > 1 from occurring. The total overcollateralization constraint is removed
once the pool balance is less than 10% of the initial pool balance.”* Excess distribution
certificate holders receive positive cash flows when the total overcollateralization con-
straint binds. The overcollateralization ratio on SLABS generally increases from their
issuance onward. The total overcollateralization constraint slows down the build up
of overcollateralization. If structured without the total overcollateralization constraint,
SLABS would become safer sooner after issuance.

I sum up the information presented in this section with a set of equations. The
equations abstract from minor features of SLABS that will be accounted for in the final
computation of near-arbitrage lower bounds in Section 1.4. Let x¥ denote the cash flow
on an individual FFEL loans and ¢ denote its principal. Incorporating the minimum

loan guarantee and re-arranging the law of motion for the principal of an individual loan,

20ne would plug in f; = 25,000/ ¢; 1 + % in Figure 1.2, and equations (1.10) and (1.12).
24For clarity, initial pool balance refers to the balance of a pool of loans at time of issuance of the SLABS.



gives:

¢F - (1+il ) —¢F,  without default,

xk=<097. gblt‘_l (14 ii_l), with default and default claim paid, (1.2)

reck . 4’,{,(—1 1+ ii_l), with default and default claim rejected,

where i} denotes the net interest rate on FFEL loans and rec® the recovery on loan k that
would follow the rejection of its default claim. Note that for the case with default claim
paid, cash flow from the loan can be re-written as xf = 0.97 - (¢ |- (1 +il_|) — ¢F),
since ¢f¥ = 0. Note that, making worst case assumption on recovery, reck = 0, the
cash flow from the loan for the case with default claim rejected can be rewritten as
xf =097 (¢f_y - (1 +i_y) — ¢F) =097 (¢} - (1 +1ij_y)), since ¢f = 0. Let T ¢ iy
denote the indicator function that takes value 1 if loan k entered default and the default
claim was rejected by the guarantor, and value 0 otherwise. Therefore, the following

inequality holds:
xlt( > 0.97 - (‘Pf—l ) (1 + iilf—l) - 4)1() —097- ]llidef. reject} (4)]1‘(—1 ’ (1 + ii—l))‘ (1.3)
For a pool with N borrowers, let the write-downs in period t, w; be given by:
N k k 1
Wi = Z ll{def. reject} Pi 1 (1 + lt—l)' (1.4)
k=1

and let write-downs as a percentage of pool balance be denoted by wy.
Therfore, for a pool with N borrowers, the following inequalities hold:

N N N
Yoxf 2097 (Y ¢ty (1+itq) = Y ¢f) —0.97 - w, (1.5)
k=1 k=1 k=
N N N1
Y o xf>097- (Y ¢f - (A+iq) = Y ¢f) =097 wy - 1, (1.6)
k=1 k=1 k=1
x >0.97 - (4>t_1 A+ —wr) - ¢t>, (1.7)
Xt >0.97 - (¢r1 — e+ pr1- (i —wr)). (1.8)

Consider the cash flow from a pool consistent with the issuance of SLABS at time 0
and with first distribution date at time 1. Let Ty denote the termination date of the pool,

meaning the first period when ¢; = 0 occurs. Re-arranging and aggregating over time,

10



gives:
Ty Ty—1

Y x>097 (po+ Y - (ity —wr)). (1.9)
t=1 t=0

And, the aggregate cash flow on the SLABS, y;, is given by:

, if > 1,
i Cot + Cat 1 ¢t/ pt (1.10)
xt—Ci,  ifgi/pr <1

where equations that explain the {;; terms can be found in Figure 1.2. (y; is at most
ft - ¢i—1. Let T, denote the termination date of the SLABS, meaning the earlier of the
termination date of the pool and the date of full repayment of the SLABS. The special
case with pg = ¢p and ¢;/p; < 1forall t > 1, gives:

T, T,—1

T, T, T,
Yo=Y =Y fiopr1=097 (po+ Y Pt (i1 — wr)) — Y fio¢i1,  (11D)
=1 =1 =0 =1

t=1

T,—1 Tp
>097 (po+ Y ¢ (il —wp) =Y fr-pr. (112)
t=0 =1

In Section 1.3, I place these cash flows in an environment with an arbitrageur that

T,
{rtLIBOR}ti()’

T, . T, T,
and the 3-month Treasury rate {r:},’,, and stronger conditions on {f;},”, and {w;},",,

can frictionlessly short Treasuries. I identify weak conditions on {zi} Lor

such that an arbitrageur that buys a SLABS at a sufficiently low price is guaranteed to
make a profit on a trade that goes long SLABS and short Treasuries. In Section 1.4, I
present near-arbitrage lower bounds that yield at least 99.9% probability of profit on
the SLABS-Treasury trade, when weak conditions on interest rates are maintained and
no default by the government on loan guarantees is assumed. The near-arbitrage lower
bounds are computed after relaxing the condition on { ft}tTi o and {a)t}tTi o by setting them

equal to empirically derived upper bounds.

1.3 BENCHMARK NO-ARBITRAGE LOWER BOUNDS ON THE

PRICE OF SIMPLIFIED SLABS

In this section, I analytically derive benchmark no-arbitrage lower bounds for simplified
SLABS under the assumption that the initial servicer avoids bankruptcy and ignoring

risks associated with historically unprecedented macroeconomic events. The no-arbitrage

11



lower bounds, denoted by P, serve as a reference point that provides intuition for the
near-arbitrage lower bounds that are computed by simulations in section 1.4.

Three simplifying assumptions characterize a simplified SLABS:

Simplifying assumption 1 (SA.1): All supplemental interest payments by the govern-
ment and payments by guarantors upon default are paid without delay.

SA.2: The net interest rate on FFEL loans is at least rtF CP 4 1.74%.
SA.3: Administrative fees are 0.20% of the pool balance or less.””

Next, I explicitly state an assumption that is standard in the financial literature when

frictionless no-arbitrage exercises are conducted:

Modelling assumption 1 (MA.1): Investors can frictionlessly short Treasuries to finance

their purchase of SLABS. There are no transaction costs.

The analytical no-arbitrage lower bounds only apply to SLABS that meet the following

conditions, thus I refer to them as selection criteria:

Selection criterion 1 (SC.1): The rules of distribution of the cash flow from a securitized

pool of loans among various claimholders is as presented in Figure 1.2.

SC.2: The SLABS trust receives offsetting payments from the servicer for reductions in

interest rate or principal offered to borrowers.
SC.3: The interest rate spread over LIBOR promised on SLABS is positive, s > 0.

SC.4: None of the SLABS collateralized by the pool are auction-rate securities.”®

SC.1 is partly to reiterate that not all ABS collateralized by government guaranteed
student loans are structured the same way. However, all SLABS in the selected sample,
which are listed in Table 1.10, satisfy SC.1 as well as SC.2 to SC.4.>

The following two conditions have a very low probability of being violated and I

assume that they are met in order to derive analytical no-arbitrage lower bounds:

ZBoth administrative fees and servicing fees are annualized for easy comparison with the annualized
interest on SLABS and pools of FFEL loans.

26For an analysis of the collapse of the auction rate securities market, see Han and Li (2010).

¥ There are a few exceptions of SLABS with negative spreads of no more than a few basis points. As
shown in Section 1.4.1, there is roughly 0.40% of excess arbitrageur’s spread on a simplified SLABS when

worst case assumptions that do not violate the conditions of this section are used, meaning rt” BOR — 4,
and P = r,. Therefore, Proposition 1 would also apply to those SLABS. But, it might not apply to

out-of-sample SLABS that would have negative spreads smaller or equal to -0.40%.
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C.1: The U.S. federal government does not default on its guarantee on FFEL loans.””

C.2: rf CP > ¢, and rtLIBOR > r¢ in every time period.29

The following two conditions have low probability of being violated and I use them to
derive the benchmark no-arbitrage lower bounds of this section:

C.3: Servicing fees are 0.90% of the pool balance.

C.4: Default claims rejected cause write-downs of no more than 0.05% of the pool balance,

per quarter.

A sufficient condition for C.3 to hold is that SLM, which is under contract to service
the underlying loans of all SLABS in the selected sample, avoids bankruptcy. Historically,
SLM’s contractual obligation to repurchase loans whenever default claims rejected have a
“materially adverse effect” for SLABS holders has kept write-downs due to default claims
rejected below 0.03% of pool balance. Write-downs due to default claims rejected would
have been less than 0.05% without the proceeds from the repurchases. Both conditions
C.3 and C.4 are guaranteed to hold as long as SLM avoids bankruptcy. Conditions C.3
and C.4 could also hold despite the bankruptcy of SLM, but this would require that the
SLABS trust finds a successor servicer that accepts the terms of SLM’s servicing contract
which is uncertain.

Let P; denote the price of a SLABS with a principal of $100. Proposition 1 establishes
a benchmark no-arbitrage lower bound for SLABS:

Proposition 1: If conditions C.1 to C.4 hold, then buying a simplified SLABS when
Py <$97 and the overcollateralization ratio is greater or equal to 1 (¢;/p; > 1), and
financing the purchase by shorting 3-month Treasuries leads to a positive cash flow
97 — P at time t and non-negative cash flows in every subsequent period. Thus, the
simplified SLABS-Treasury trade is an arbitrage.

Proof See Appendix 1.7.2.

The series of equations presented at the end of Section 1.2 provides intuition about the

asset side of an arbitrageur’s balance sheet. The shorting of Treasuries creates a liability

2The full statement of the condition would end with the qualifier “between the date a SLABS is
purchased and its termination”. The qualifier is intuitive and is omitted for brevity. The qualifier is also
omitted from conditions C.2, C.3 and C.4.

2In other words, the risk of default by the U.S. federal government is perceived as lower than the risk of
default of financial institutions that issue commercial paper, which determines the 7" rate, and the risk of
default on inter-bank loans, which determine the rL/5OR rate.
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for the arbitrageur. The proof shows that the cash flow from a simplified SLABS with a
principal of $100, which is purchased when its overcollateralization ratio is greater than
one, is certain to repay the arbitrageur’s debt that has face value of $97 or less and accrues
interest at the 3-month Treasury rate.

Proposition 1 can be modified and generalized in two ways. Let P;'| ¢1/p:>1 denote
the benchmark no-arbitrage lower bound on the price of a simplified SLABS with overcol-
lateralization ratio greater or equal to one. For SLABS collateralized by pools of FFEL
loans that only contain loans that are at least 98% guaranteed, &++|¢t /o1 = $98. If a
SLABS has an overcollateralization ratio below one, then an analytical no-arbitrage lower
bound can easily be computed by scaling &H\@ /o:>1 by a factor of ¢¢/py.

Taking as given that conditions C.1 and C.2 hold, P;'' | /0:>1 can be interpreted in two
ways. First, no matter how high the default rates on the pool of FFEL loans, if SLM avoids
bankruptcy, then a SLABS-Treasury trade initiated when P; < P;'' g /0,>1 and ¢/ pr > 1
will be profitable. If SLM goes bankrupt, but a successor servicer accepts SLM’s original
servicing contract, then again, a SLABS-Treasury trade initiated when P; < &H |90/ 021
and ¢;/p; > 1 will be profitable.

14 NEAR-ARBITRAGE LOWER BOUND ON THE PRICE OF

SLABS

In this section, I make two kinds of adjustments on the benchmark no-arbitrage lower
bounds derived in the previous section. On the one hand, all simplifying assumptions
on SLABS are abandoned to compute near-arbitrage lower bounds. Furthermore, the
near-arbitrage lower bounds do not rely on the survival of SLM or on the successor
servicer accepting the terms of the original servicing contract. These changes open up the
possibility of a loss on a SLABS-Treasury trade initiated at Py =$97 when ¢;/p; = 1. On
the other hand, all SLABS in the selected sample had overcollateralization ratio greater
than 1.03 throughout the crisis. I tighthen the lower bounds on the price of SLABS by
giving them credit for their overcollateralization ratio in excess of 1.

141 SIMULATIONS, OVERCOLLATERALIZATION AND RELATION WITH

ANALYTICAL LOWER BOUNDS

The benchmark no-arbitrage lower bound of Proposition 1 (&++|¢f /o>1) did not give
credit to SLABS for their overcollateralization ratio in excess of one (¢;/p; > 1). Giving

full credit for the overcollateralization of a SLABS is important in order to compute
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near-arbitrage lower bounds that are tight. Figure 1.3 plots a pair of points for every
SLABS found in Table 1.10. The overcollateralization ratios range between 1.034 and 1.28
on January 2008 and they increase over time.

The simulation model allows a decomposition of the near-arbitrage lower bounds
into two components. P[4, /p,—1 denotes the near-arbitrage lower bound obtained after
abandoning all simplifying assumptions and relaxing condition C.3 and C.4, but assuming
a counterfactual overcollateralization ratio of 1. Let y(¢:/p¢) be a scaling function that

depends on overcollateralization. Near-arbitrage lower bounds can be decomposed as:

Ptlg, /0, (01) = Pilg,/0=1(61) - ¥ (¢t / o1, 64), (1.13)

where 0; is a vector of parameters that includes the pool balance, ¢;, the interest rate
level, r, the interest rate spread on the subordinate SLABS, s50 and a few other variables.
Holding Py|p,/,—1(60¢) < 100 constant, and starting from an overcollateralization ratio such
that P ](pt /ot (6¢) < 100, increases in ¢;/p; lead to increases in . Past a certain threshold,
increases in ¢;/p; no longer lead to increases in <y, but they increase the payment of excess
distributions, as defined in Figure 1.2. This excess cash flow can help insure against losses
due to risks associated with historically unprecedented macroeconomic events.

Figure 1.3 depicts an important relation between two initial parameters used in the
simulations: SLABS that are collateralized by a pool with a low balance have high levels of
overcollateralization. If one focuses on the downward adjustment needed to go from the
benchmark no-arbitrage lower bound, P |¢¢/0,>1, to the lower bound P|g, /,,—1 obtained
after abandoning all simplifying assumptions and relaxing condition C.3 and C.4, then
the downward adjustment would be larger on SLABS with a smaller pool balance.™
However, once proper credit is given for overcollateralization, the near-arbitrage lower
bounds for the sample of SLABS found in Table 1.10 become more similar and close to
$100.

POSITIVE ARBITRAGEUR'S SPREAD: SUFFICIENT BUT NOT NECES-

SARY

This subsection introduces the arbitrageur’s spread and explains how abandoning all

simplifying assumptions and relaxing servicing fee condition C.3 and write-down condi-

30The smaller pool balance is correlated with a smaller average principal per borrower. Therefore, the
presence of fixed administrative fees, after abandoning simplifying assumption SA.1, and the introduction
of servicing fees per borrower, as a consequence of relaxing condition C.4, cause a larger downward
adjustment on SLABS with smaller pool balance.
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Figure 1.3: Overcollateralization Ratio and Pool Balance. This figure plots the overcollateraliza-
tion ratio, ¢;/p¢, and the pool balance for all SLABS found in Table 1.10. There is a pair of points
for each SLABS: one for January 2008 and one for December 2009. There is an arrow showing the
dynamic between the two points.

tion C.4 can lead to quarters of negative arbitrageur’s spread. The occurence of quarters
of negative arbitrageur’s can easily be handle by the simulation model, but would be
challenging to handle analytically.

I define the SLABS spread, ¢7/42%, by combining cash flows from the pool and rules
of distribution of the cash flow to SLABS:

siaps )P —we—fr) —pr-1- (rHBOR 4 5) — psub . (yLIBOR  gsub) —if ¢y /py > 1,
; _

I
tf
¢
¢r1- (i —wr — fir) —p—1 - (rHEOR 1), if ¢/ pr < 1.

Assume an arbitrageur that buys the aggregate principal of SLABS collateralized
by a pool and finances the purchase by shorting 3-month Treasuries frictionlessly. Let
d7 denote the arbitrageur’s debt, where d?"* = P;/100 - p; and let it evolve over time
according to:

di’’ = df™ - (1+r11) = yr. (1.14)
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Let the arbitrageur’s spread, ¢?'?, be given by:

ab ) Pr-1- (i —wr— i) —dm - rq — pMY - (PHIBOR 4 gsub) - if ¢y /0 > 1,
1
t

Gt = ) )
Gr1- (I —wr — f) — darl re1, if ¢¢/pr < 1.

And let the worst case arbitrageur spread, ;" 4rb be given by:

0.97 - g1+ (fj_y — wi) = Py fr — a1 — o} - (rpIROR +5%0), if i/ pr > 1,
0.97 - ¢p_1- (iy_y —wr) — 1 - fr —di™ -1, if pr/pr < 1.

The simplifying assumptions and conditions imposed to derive &H g /0i>1 = $97 in
Section 1.3 form a set of sufficient conditions that guarantees that, for a SLABS-Treasury
trade initiate at time 0 with d%”/py < 0.97 and ¢/po > 1, the worst case arbitrageur’s
spread is positive whenever ¢;/p; < 1. This can be illustrated by considering the special
case with dg’b/(po =0.97, ¢o/po =1 and ¢;/pr <1 for all t > 1, which gives:

¢ =097y (i1 —wi) — o1 fr —di™y 1y (1.15)

Then, plugging in f; = 1.10%, and the worst case interest rate under condition C.2,
ii_l = ri_1 + 1.74% gives:

1

arb arb
= 1.74% — 0.20%) —
6" = df - (ro + 1.74% — 0.20%) ~ o>

A8 1.10% — d¥ - rg = 0.40% - d&T0 (1.16)
in the first period. The “interest payment” portion of the cash flow from the pool, net of
write-downs, 0.97 - ¢_1 - (i_; — w;), is more than sufficient to i) pay the servicing and
administrative fees and iii) pay the interest on the arbitrageur’s debt.’! Therefore, the
entire “principal payment” portion of the cash flow from the pool is available to make
principal payment on the SLABS, resulting in:

d’? < df’* —0.97 - (g0 — 1) (1.17)
di < 0.97 - ¢, (1.18)

31The inequality that relates cash flow from the pool with interest rates and changes in pool balance,
equation (1.8), contains a ¢ 1 - it term that can be interpreted as an “interest payment” term. In the
background, we may have a situation where lots of borrowers are making interest and principal payments,
other borrowers making no payments, resulting in a constant pool balance. From the point of view of the
equation at the pool level, it looks as if all borrowers are making their interest payments and none are
making principal payment and the entire cashflow from the pool is categorized as “interest payment”.
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By iteration, with positive arbitrageur’s spread in every period, d’t”b < 0.97 - ¢ holds for
all t, and d¥” = 0 occurs for some t no greater than the date at which ¢; = 0. Therefore,
the arbitrageur’s debt is guaranteed to be repaid by the cash flow from the SLABS.

The special case above, and it’s generalized version, as summarized by Proposition 1,
is achieved by making worst case assumption that does not violate condition C.2, meaning
rFCP = 1. However, it relies on: i) simplifying assumption SA.3 on administrative fees and
condition C.3 on servicing fees to bound f; at 1.10%, ii) simplifying assumption SA.2 that

f CP instead of the actual ?tF tcfl, and iii) condition

interest rate on FFEL loans is linked to r
C.4 to bound write-downs due to rejections of default claims. Abandoning all simplifying
assumptions and relaxing condition C.3 and C.4 allows for negative arbitrageur’s spread
in some periods.

Positive arbitrageur’s spreads in every period, while sufficient to guarantee the
profitability of a SLABS-Treasury trade initiated at $97, is not necessary for the SLABS-
Treasury trade to be profitable. The statement is valid even if we focus on worst case
scenario of defaults and start from a counterfactual level of overcollateralization ¢;/p; = 1.
There are strictly positive arbitrageur’s spreads of at least 0.40% - d%" in every quarters in
the environment of Section 1.3 for Py < $97, but the analytical no-arbitrage lower bound
of &++|¢t /or>1 = $97 did not give credit to the SLABS for it.

In this section, simulations give proper credit to quarters of positive arbitrageur’s
spread, which helps offset the effect of some quarters of negative spreads and derive
near-arbitrage lower bounds that are not excessively loose. This is especially important
with respect to the replacement of I by the actual 75 tcfl because of path dependencies.
For example, recurrent quarters of negative spreads may occur during a long period of
declining interest rates. However, because interest rates were low during the crisis, a
long period of declining interest rates must be preceded by a long period of increasing
interest rates, which creates positive spreads that either increase SLABS cash flow directly
or contribute to overcollateralization build up.

Recurrent quarters of negative SLABS spreads can occur when f; > (il — ;) in the tail
of the amortization of the pool. However, thanks to positive arbitrageur’s spreads early
in the life of a SLABS or thanks to overcollateralization, the arbitrageur’s debt can be
much smaller than the the pool balance once SLABS spreads become negative and the
cash flow from the SLABS may nonetheless finish to pay down the arbitrageur’s debt.

My simulation model allows taking the complicated path dependencies and dynamics
described above into account and gives proper credit to SLABS for quarters with positive
arbitrageur’s spread. It also allows to check whether immediate full default by all

borrowers or alternative scenarios lead to the largest downward adjustment relative to
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SIMULATIONS AND POOLS WITH MULTIPLE TRANCHES OF SENIOR

SLABS

There is one additional reason for using simulations. Up to this point, I have assumed
that every pool of FFEL loans collateralizes a single senior tranche of SLABS. However,
empirically, the majority of pools collateralize multiple tranches of senior SLABS. SLM
2007-2 is a representative deal with four senior tranches collateralized by the same pool:
there is tranche A-1, all the way to A-4. When multiple senior tranches are outstanding
and no reprioritization event has been triggered, the principal distribution to senior
SLABS holders is entirely applied to the top tranche of a deal, until it is paid down.

Following the triggering of an event of reprioritization, the distribution of principal
payments among senior tranches of SLABS can either continue to be sequential or become
pro rata. When distributions are pro rata, the benchmark no-arbitrage lower bound of
P ¢i/o>1 = $97 applies to all tranches of a deal. Relative to pro rata distributions
among senior tranches, sequential distributions are detrimental to the bottom tranche
and beneficial to all other senior tranches. Therefore, P;'' g /0,>1 = $97 is invalid for the
bottom tranche and too loose for the other tranches. The simulation model can compute
near-arbitrage lower bounds precisely for all cases.

The vector of inputs for cases with multiple tranches and overcollateralization strictly
greater than 1 is larger. For all tranches in the deal, the aggregate principal, pf‘j , and
interest rate spread over LIBOR, s/, of every tranche are determinants of the near-arbitrage

lower bounds.

142 ABANDONING THE SIMPLIFYING ASSUMPTIONS

FIXED ADMNISTRATIVE FEES

Administrative fees on securitized pools are at most $25,000 per quarter. On a percentage
basis, the pool balance needs to be smaller than $50 million for administrative fees to
exceed the 0.20% annualized fees assumed under simplifying assumption SA.3. Figure
1.3 shows that securitized pools either had balances 25 times greater than $50 million or
overcollateralization ratio greater than 1.10.

Furthermore, the total overcollateralization constraint presented in Section 1.2 no

longer applies when the pool balance is less than 10% of the initial pool balance.’” Once

32For clarity, initial pool balance refers to the balance of a pool of loans at time of issuance of the SLABS.
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the total overcollateralization constraint no longer applies, the payment of principal
on SLABS becomes accelerated. SLABS directly benefit from accelerated payment of
principal in quarters with positive spread. Since all pools in the selected sample have
initial principal balance greater than $1.3 billion, the total overcollateralization constraint
does not apply when there is less than $130 million left in the pool, at the latest. This
occurs at a much earlier date than the point in time at which the pool balance falls below
$50 million, which helps build up overcollateralization.

By simulation, I combine administrative fees of $25,000 per quarter with a staircase
scenario of amortization of the pool that maximizes the impact of default and fixed
administrative fees on the downward adjustment from &++’¢t /oi>1 t0 Pt|g, /0,—1(0). This
leads to a downward adjustment of at most $2, with largest adjustments among SLABS
with a low pool balance. Because pools with a low balance benefit from significant
overcollateralization, once overcollateralization is taken into account, switching from
administrative fees on a percentage basis to fixed administrative fees has either no effect

on the near-arbitrage lower bounds or trivial effects of at most $0.10.

75?}:1 INSTEAD OF rfCP

The Department of Education computes the net interest rate on FFEL loans by using the
quarterly average of the 3-month financial commercial paper rate. The interest payment
at time ¢t + 1 on most consumer loans is based on the interest rate that was realized at
time t. The computation of interest payments on FFEL loans is unusual: interest rate
payments that occur at time t + 1 are computed by averaging realized rates between t
and t + 1.>* My notation attempts to reflect this peculiar feature of FFEL loans.

If interest rates during a quarter are lower than the interest rate at the beginning

of the quarter, then rtF CP ?f tcfl occurs. The simulation method uses the worst case
assumption that does not violate the interest rate condition C.2, meaning that rtF CP — ¢, is

used. Thus, in my simulations, it is the difference between 7;;,1 and r; that determines
the arbitrageur’s spread. Furthermore, rt“ BOR > 4, is required to prevent situations where
a SLABS is repaid in full, but the arbitrageur’s debt, incurred to purchase SLABS with
P; = 100, is not repaid in full. rtLIBOR > r; creates slack that is beneficial to the SLABS

33For example, the payment of an interest rate supplement to a FFEL loan holder on March 30th, 2008
would be based on the principal of the FFEL loan on January 1st, 2008, the average of the 3-month financial
commercial paper published daily from January 1st, 2008 to March 30th, 2008, plus a margin ranging
between 1.74% and 2.64%. The holder of a FFEL loan must partially rebate interest payments rather than
receive interest supplement when a borrower’s interest payment is in excess of the net interest promised by
the government to the holder of a FFEL loan. Whether the government pays an interest supplement or the
holder of the FFEL loan must rebate interest to the government, the computation is the same.
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holder. Therefore, the worst case assumption under condition C.2 implies rt“ BOR — 4, as
well as TP =7y,

How does one makes sure that the near-arbitrage is initiated at a sufficiently low price
to be robust to quarters with r; > 7;;,1? I check that near-arbitrage lower bounds are
robust to a wide universe of interest rate paths by simulations.

I use the regime-switching stochastic volatility model of Kalimipalli and Susmel (2004).
Interest rate paths produced by the model have a tendency to revert to a long-run mean,
a common feature of models of interest rate with short maturity. The model has shocks
that can counterweigh the tendency of interest rate to mean revert. The volatility of
these shocks is stochastic. For a given interest rate, the mean of the stochastic process for
volatility can either be high or low and switches between low-volatility and high-volatility
regimes can occur when interest rate paths are simulated. The following set of equations

describes the interest rate model that I use:
Ty =741 =4do+ a1+ htrfflf-it,

In(he) — pr = P(In(he—1) — pe—1) + oyt
ut = B+ vAy, where v > 0, (1.19)
PA = )\j|)tt,1 = A = pij, where Ay = {0,1},
where €; and 7; are independently distributed ~ N(0,1).

I estimate parameters ag, a1, 9, 0y, B, v, po1, p1o using the Monte Carlo Markov Chain
(MCMC) approach of Kalimipalli and Susmel. The model is estimated on data for the
period 01/04/54 to 07/31/08. Therefore, the data contains periods with switches from
low to high volatility regimes and the period of high volatility and high inflation of the
early 80s. Details of the estimation method and parameter estimates can be found in
Appendix 1.7.3.

In addition, in my simulation model, I abandon simplifying assumption SA.1 that
supplemental interest payments by the government and payments by guarantors upon
default are paid without delay. Abandoning the assumption of no delays in government

and guarantor payments pushes near-arbitrage lower bounds to trivially lower levels.

143 UPPER BOUND ON SERVICING FEES

In my simulations, servicing fees are set equal to the maximum of i) the initial servicing

fee and ii) fees on a delinquency-robust marginal servicing contract.
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Table 1.1: Intermediate near-arbitrage lower bounds

Interest rate

Initial rate (r¢) Type of path P ot/ dr=1
1% Constant 96.98
2% Constant 96.84
15% Constrant 95.09
1% Stochastic 96.94
2% Stochastic 96.75
15% Stochastic 94.30
Simplifying assumption SA.1 of payments without delays is abandoned

and loans accrue interest at the 7% tC+Pl rate, meaning that SA.2 is abandoned

as well. The frictionless shorting assumption MA.1 is maintained and
conditions C.1 to C.4 hold. The near-arbitrage lower bounds are robust
to 1000 interest rate paths combined with extremely high rates of default
(cumulative default rate of 100% within 5-8 quarters of the initiation
of a SLABS-Treasury trade ), as well as another 1000 interest rate paths
combined with varying rates of default. Lower bounds guaranteeing
profitability of the trade obtained with the former set of scenario are
lower than the lower bounds obtained with the latter set of scenarios. The
“representative SLABS” used to set parameter values is the bottom tranche
of pool 2003-3, with a counter-factually low minimum loan guarantee of
97% and a counter-factually low overcollateralization ratio of 1.

Table 1.2: Servicing fees under initial contract with SLM

SLABS collateralized by non-consolidation loans: 0.90%
SLABS collateralized by consolidation loans: 0.50%

Table 1.3: Fees on a delinquency-robust marginal servicing contract

Fee to service a delinquent borrower (annualized): $70
Fee to service a non-delinquent borrower (annualized):  $40
Upfront fee per borrower: $10
Default claim filing cost: $23
Default claim filing cut: 0.50%
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Table 1.4 shows the main source of data used to derive fees for the delinquency-robust
marginal servicing contract. I use the fees bid by servicer to obtain contract from the
Department of Education to bound the cost of servicing a non-delinquent loan. I use
hand collected data, found in Appendix 1.7.4, to estimate the difference in the cost of
servicing a delinquent loan and a non-delinquent loan. I use the servicing fee on the
contract between Goal Financial and ACS to infer an upper bound on the profit margin
for non-delinquent borrower of approximately $17 or 70%. Applying the same profit
margin to the cost of servicing a delinquent loan, I obtain a fee on delinquent loan of
approximately $70. I add an upfront fee of $10 to insure against pre-payment risk. I
abstract from the fee charged to file default claims by servicer in Table 1.4, but they are
part of the servicing contract between ACS and Goal Financial. I add those fees to the
package of fees found in Table 1.3. This package of fees is sufficient to secure a new

servicer, regardless of the delinquency rate of in a pool.

Table 1.4: Servicing fees per borrower

Borrower’s Status DoE-Big 4 MOHELA-PHEAA  Goal-GL  Goal-ACS
In School: 13 N/A 15 22

In Grace: 26 N/A 37 45
Current: 26 36 39 43
Deferment/Forbearance: 25 36 39 45
Delinquent 0-30 days: 26 36 39 45
Delinquent 30+ days: 20 36 39 45
Duration: 5 years Life of loan 5 year 5 year
Borrower count (approx.): 1,000,000 100,000 5000-10000  500-2000

This table reports the terms of third party servicing contracts. The first column reports annualized fees
that constituted the winning bids from four large servicers (Big 4) for large servicing contracts from the
Department of Education (DoE). The second column reports the terms of a medium size contract between
MOHELA and PHEAA. The third and fourth columns report the terms of a very small contract between
Goal Financial and Great Lakes, and a marginal contract between Goal Financial and ACS. Servicing fees
are reported in dollar, maximum value is reported when a contract included a range of values and fees are
rounded up to the nearest dollar.

In addition, the servicing fees are indexed to inflation. The universe of inflation paths
considered for the purpose of deriving near-arbitrage lower bounds are those consistent
with the interest rate paths drawn from the regime-switching stochastic volatility model.
Assuming a real rate of 0%, inflation rate is set equal to the nominal interest rate. The
near-arbitrage lower bounds are robust to the indexing of servicing fees to inflation
and the inflation paths produced by the regime-switching stochastic volatility model of
interest rate. However, inflation paths that are abnormally high, combined with a scenario
of bankruptcy of the initial servicer, followed by servicing fees indexed to inflation, could
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be a source of loss on a SLABS-Treasury near-arbitrage initiated when the price of a
SLABS is at its near-arbitrage lower bound or below. Therefore, we had the following
conditions to conditions C.1 and C.2 for the near-arbitrage lower bounds computed in
this Chapter:

C.3.B: Servicing fees following the initiation of a SLABS-Treasury trade are set equal to
the periodic maximum of the initial fee (0.90% of pool balance on an annualized
basis) and the sum of the delinquency-adjusted fee of a marginal servicing contract
(unit fee per borrower that depend on borrower’s status). Servicing fees are indexed
to inflation. Inflation paths are limited to those consistent with the interest rate
paths drawn from the estimated regime-switching and stochastic-volatility model of

interest rate.

The hedging of inflation consistent with paths that fall outside those covered by
condition C.3.B is discussed in Chapter 2. The consequent downward revision of near-
arbitrage lower bounds on some SLABS, to reflect the cost of purchasing inflation caps, is
also presented in Chapter 2.

BOUNDING WRITE-DOWNS DUE TO THE REJECTION OF DEFAULT

CLAIMS

Guarantors are allowed to refuse to make loan guarantee payment if they determine that
a loan was improperly serviced. SLM’s historical ratios of aggregate default claims over
aggregate principal across its securitized pools have never exceeded 0.05%.>* Aggregate
write-downs due to default claims rejected represent an even smaller percentage of
the aggregate principal of securitized pools: they have never exceeded 0.03%. SLM’s
contractual obligation to repurchase loans whenever default claims rejected have a
“materially adverse effect” on SLABS holders has three implications. First, it mechanically
explains the 0.02% difference between the first and second measure. Second, it justifies
the validity of conservatively bounding write-downs to 0.05% of the pool as long as
SLM avoids bankruptcy, as was done under condition C.4. Third, SLM’s obligation to
repurchase loans provides incentives that may contribute to the historically low levels of
default claims.

Should SLM go bankrupt and reject the initial servicing contract in bankruptcy, the

SLABS trust might find a successor servicer that accepts the same servicing contract as

34Based on a sample that covers the period from December 2001 to March of 2011, with an increasing
number of deals in each period, reaching 60 deals by the end of the sample.
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SLM and condition C.4 would continue to hold. However, a successor servicer may not
agree to such a low write-down threshold for the repurchase of default claims rejected
when a pool is expected to have an abnormally high level of default. In this section, I
propose a contract that possesses several desirable features. First, it is designed to be
appealing to a successor servicer, no matter how high the default rate on the pool of
loans. Second, it jointly incentives the successor servicer to properly service loans and
generously compensates him for providing insurance against abnormally high ratios of
default claims rejected over default claims submitted.

The ratio of default claims rejected over the pool balance can be decomposed into two
components: 1) the ratio of total default claims over the pool balance, and 2) the ratio of
default claims rejected over total default claims. My near-arbitrage methodology already
allows 1) to reach 100%. My near-arbitrage methodology draws 2) from a distribution
that is estimated from historical data. The distribution has no upper bound, thus it allows
for draws that have no historical precedents.

Figure 1.4 shows the rate of rejection of default claims in SLM’s aggregate portfolio
of securitized FFEL loans.* I fit a gamma distribution to the data. I compute the
maximum likelihood estimators and their 80% confidence intervals. I assume that the
successor servicer draws rates of rejection of default claims from a gamma distribution
with shape and scale parameter set equal to the upper bound of the 80% confidence
intervals estimated. This constitutes a conservative distribution for the successor servicer
since the likelihood ratio statistics indicates that the probability that SLM’s data was truly
drawn from a gamma distribution with parameters this large is less than 1 in 250.

The contract with the successor servicer is designed to punish high rates of rejection
of default claims and to reward low rates. I force the servicer to repurchase default
claims rejected when they represent more than 2.85% of default claims. The repurchase
threshold represents the 99th percentile of the conservative gamma distribution, meaning
that only 1% of draws trigger a repurchase.”® Whenever the fraction of default claims
rejected is less than 2.85%, part of the cash flow received from loans is directed into a

bonus pool according to the formula:

bonus; = 2.85% - default claims($); — default claims rejected ($);. (1.20)

3] take the sum of default claims rejected ($) and divide it by the sum of all default claims ($) across all
pools of loans that collateralize SLABS for which SLM provides disclosure.

361 use the pre-crisis data. Using the full sample data would yield a repurchase threshold of 2.70%.
Which data to use depends on the question that is asked: since my current objective is to show that the
predictions of the frictionless no-arbitrage approach failed during the crisis, I use pre-crisis data. If the
objective is to determine near-arbitrage lower bounds to be used by the government for a future asset
purchase program, then the full sample should be used.

25



°
° 'Y
o o, %%, e Lo °
0q0p [ ]
o] eee © °e

1/1/2002 1/1/2004 1/1/2006 1/1/2008 1/1/2010 1/1/201;
Date

Figure 1.4: Rate of rejection of default claims. This figure plots the time se-
ries of the aggregate rate of rejection of default claims, which is computed from
(default claims rejected($))/(default claims submitted($)) x 100, using all of SLM’s securitized
pools.

The formula yields a negative bonus when the fraction of default claims rejected exceeds
2.85%, which is exactly how I compute the repurchase obligation of the servicer. The
successor servicer does not need capital in order to cushion against repurchases: the
SLABS trust allows the successor servicer to carry a liability that the servicer should
be able to repay by drawing lower rejection rates in future periods. The bonus, when
positive, is not paid immediately to the servicer, but it accumulates in a bonus pool where

it accrues interest at the risk-free rate. In other words,
bonus pool, ,; = bonus pool, - (14 7;) + bonus;. (1.21)

The bonus is paid at the termination of the pool of loans.

In my simulations, I draw the rejection rate on default claims from the conservative
gamma distribution and use the bonus/repurchase scheme to compute cash flows to/from
the successor servicer. The successor servicer obtains a negative bonus in less than 1% of
simulations. Furthermore, since the servicing fee paid to the successor servicer produces

a profit of $20 per loan annually, total profits are positive more than 99.9% of the time.
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Table 1.5: Gamma distribution fitted to SLM'’s rejection rate data

Panel A: 80% C.I. of the ML Estimators(MLE)
80% C.I. of MLE

x (shape) 6 (scale)
Pre-crisis [0.461, 0.838] [0.281, 0.674]
Full sample [0.618, 1.034] [0.287, 0.577]

Panel B: Testing joint hypothesis on parameters of gamma distribution

Hp : ko = ubpgo and 6y = ubp.go

Likelihood ratio statistics p-value
Pre-crisis 11.180 0.0037
Full sample 13.351 0.0013

Panel A of this table reports the 80% confidence interval of the Maximum Likelihood
Estimators(MLE) for the pre-crisis sample and full sample. The probability density function
k—1

of the gamma distributions is given by:f(y) = %W

likelihood ratio statistics and p-value for the joint test that rates of rejection of default claims
for SLM were drawn from a gamma distribution with shape and scale parameters set equal
to the upper bound of the 80% confidence interval of the Maximum Likelihood Estimators.

. Panel B of this table reports

This is despite worst case assumptions that the recovery on loans whose default claim
was rejected is 0% and the cure rate of default claims rejected is 0%.%” Thus, my analysis
suggests that the contract would have no difficulty attracting a servicer willing to succeed
SLM and SLABS holder can be almost certain that the successor servicer will be able to
make good on its promise to repurchase default claims rejected whenever they exceed
2.85% of default claims.

The vast majority of simulated scenarios require write-downs due to default claims
rejected and payment to the bonus pool of the servicer that are equivalent to write-downs
of 2.85% of default claims in every quarter. Combined with the worst case scenario
of cumulative borrower’s default rate of 100%, the write-downs due to default claims
rejected and bonus payment are significantly greater than the 0.05% of the pool balance

37The assumption is extremely conservative for several reasons. First, between 2005 and 2007, SLM was
able to cure between 50% and 73% of default claims rejected and obtained close to full reimbursement on
them. Second, the recovery rate of guarantors on regular default claims are roughly 40%. For example,
USA funds, a guarantor, had recovery rates ranging between 38% and 45% from 2006 to 2008. So, the
expected recovery rate of a servicer on uncured default claims rejected should be close to 40%. Finally,
I abstract from an endogenous adjustment in servicing effort and/or technology: the contract produces
incentives for the successor servicer to adjust is effort and/or technology in response to lower recovery rate
in order to maximize profit. If the successor servicer truly faced recovery rate of 0% on uncured default
claims rejected, the servicer would likely make adjustments to his effort and/or technology to reduce the
fraction of default claims that get rejected and increase his profit.
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assumed by condition C.4. Therefore, the near-arbitrage lower bounds obtained by

simulations are robust to a severe relaxation of condition C 4.

144 EXAMPLES OF SLABS-TREASURY NEAR-ARBITRAGE

If we only maintain assumptions C.1 (no government default on loan guarantees), C.2
(the interest rate ordering rf CP >y, and rtLI BOR > y,, for all t), and C.3.B (no historically
unprecedented inflation paths), what is the largest amount of arbitrageur’s debt that can
be repaid with near certainty from the cash flow on SLABS? What are the near-arbitrage
lower bounds now that we allow the bankruptcy of SLM and allow servicing fees to be as
high as the upper bound derived in Section 1.4.37 I answer those questions and present
the size of the gap between price observed during the crisis and near-arbitrage lower
bounds for the SLABS collateralized by two pools of loans.

STM 2003-3 A4: CASE WITH A SINGLE SENIOR TRANCHE OUTSTAND-

ING

From December 15th, 2005 onward, SLM 2003-3 A4 was the only senior tranche outstand-
ing on a pool of FFEL loans that initially collateralized four senior tranches of SLABS.*®
Thus, the intuition of Section 1.3 applies to SLM 2003-3 A4 throughout the crisis. To build
on the intuition of Section 1.3, I first abstract from the overcollateralization ratio in excess
of 1 and examine the near-arbitrage lower bound under a counterfactual overcollateraliza-
tion ratio of 1. Table 1.6 reports a counterfactual near-arbitrage lower bound, P[4, /0,—1,
of $93.00 for SLM 2003-3 A4. All the FFEL loans that collateralize SLM 2003-3 are at least
98% guaranteed. How does the near-arbitrage bound of $93.00 relates to the no-arbitrage
benchmark of Section 1.3? Proposition 1 states that if the difference between interest rate
on FFEL loans and interest on 3-month Treasuries exceeds servicing and administrative
fees in every period, then the SLABS-Treasury trade initiated at P; < $98.00 is always
profitable. The near-arbitrage lower bound is pushed down for several reasons.

The lowest break-even price on the SLABS-Treasury trade is obtained when two events
occur the day after the trade is initiated: i) all borrowers stop making payments on their
loans, and ii) SLM goes bankrupt. In addition to the 2% write-down due to default, there
are two other sources of write-downs: i) with 100% default, 2.85% of the principal is
paid to the successor servicer as bonus to properly service loans under the new servicing
contract and ii) 0.50% of the principal is paid to the servicer for filing default claims. If,

381 only discusses the case of SLM 2003-3-A4 in the text of this paper, but tables report data on SLM
2003-8 A4 as well. The two SLABS are nearly identical.
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for Py = $98, arbitrageur’s spreads would have been positive in every period without the
additional write-downs, then the no-arbitrage lower bound would become $94.65 with the
additional write-downs. However, the arbitrageur’s spread is not positive in every period:
in the worst case scenario, the sum of the upfront servicing fee charged by the successor
servicer, the fee for a delinquent loan, and the fee for default filing, the arbitrageur’s
spread for P; = $98 is -0.44% in the first year.:“9 In the simulation model, when a loan
defaults, the SLABS trust continues to pay servicing fees until a payment is received from
the guarantor. There is a delay of 60 days before the submission of a default claim and
its payment, and no interest accrues on the loan during this delay. Under the worst case
scenario of default, the delay in payment requires a downward adjustment of 0.30%.

SLM 2003-3 A4 enjoyed a large overcollateralization ratio during the crisis, so its
actual near-arbitrage lower bound was $100.18. The simulations are performed with the
difference between the LIBOR rate and the 3-month T-bill rate set to zero, the smallest
difference that does not violate condition C.2. Thus, although SLM 2003-3 A4 holders are
promised an interest rate of LIBOR plus 0.22%, in the simulations receiving what they were
promised means receiving the 3-month T-bill rate, plus 0.22%. The overcollateralization
ratio is so large that SLM 2003-3 A4 holders always receive what they were promised,
which leads to a near-arbitrage lower bound of $100.18. In the case of SLM 2003-3 A4, an
overcollateralization ratio of 1.09 would be sufficient to obtain a near-arbitrage bound of
$100.18. An overcollateralization ratio above 1.09 represents insurance against violations
of conditions C.1, C.2 or C.3.B.

Any fully informed investors would view SLM 2003-3 A4 as an asset that, if purchased
below its near-arbitrage lower bound and held to maturity, is almost certain to outperform
a roll-over investment in 3-month Treasuries. Yet, during the crisis of 2007-2009, SLM
2003-3 A4 was transacted for prices ranging between $92.50 and $96.06 on two occasions
by insurance companies.’ Since insurance companies only represent a fraction of market
participants on the SLABS market, it is very likely that other transactions occurred at a
significant discount to the near-arbitrage lower bound of $100.18. Quoted prices obtained
from the Bloomberg system are below $98.00 from late August 2008 to July of 2009.
Quoted prices reach a minimum of $91.60 in late December of 2008. Figure 1.5 combines

near-arbitrage lower bound with quoted and transaction prices and shows the magnitude

3 All loans are delinquent, so a servicing fee of $10 + $70 + $23 = $103 per borrower is charged when
the average principal per borrower is $4,720, producing a servicing fee of 2.18% that is charged on loans
that accrue interest at the 3-month Treasury rate plus a spread that can be as low as 1.74%. The simulation
model assumes the minimum spread value of 1.74% for all loans.

40 collected data provided by the National Association of Insurance Commissioners on a Bloomberg
terminal.
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of the underpricings observed during the crisis.
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Figure 1.5: Near-arbitrage lower bounds and prices on a SLABS. This figure plots the quoted
prices and near-arbitrage lower bounds for SLM 2003-3 A4. Corresponding overcollateralization
ratio is presented for each point. The prices of seventeen transactions are added to the figure to
show that transactions at significant discount to the near-arbitrage lower bounds occurred.

SLM 2007-2: CASE WITH SEVERAL SENIOR TRANCHES OF SLABS

OUTSTANDING

In this subsection, I analyze near-arbitrage lower bounds for the four tranches of senior
SLABS (A1, A2, A3 and A4) collateralized by the pool SLM 2007-2.*!

Table 1.6 reports four types of near-arbitrage lower bounds for SLABS collateralized
by the pool SLM 2007-2. The first type of near-arbitrage lower bounds, which is easiest
to relate to the benchmark no-arbitrage lower bound of Section 1.3, &H|¢t /py>1, assumes
a counterfactual overcollateralization ratio of 1 and counterfactual pro rata rules of
distribution of the cash flow from the pool among senior SLABS following an event of
reprioritization. In that case, all tranches have near-arbitrage lower bound of $92 after

rounding down to the nearest dollar. The downward adjustment from P;'* |ge/pi>1 = $97.8

#IThere is also a subordinate SLABS or a B tranche. The principal and spread over LIBOR paid on the
subordinate SLABS are inputted to compute the near-arbitrage lower bounds on senior SLABS. However, 1
do not report on the subordinate tranche in Table 1.6.
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to Pilg,/p—1 = $92 results from abandoning all simplifying assumption from Section
1.3 and setting servicing fees and write-downs due to default claims rejected equal to
their upper bounds. The second type of near-arbitrage lower bounds, uses the actual
overcollateralization ratio of 1.04, but maintains the counterfactual assumption of pro
rata rules of distribution of the cash flow from the pool among senior SLABS following
an event of reprioritization. The overcollateralization increases the near-arbitrage lower
bounds on the Al and A2 tranche by $5 and $4 respectively. There is a small increase
in the near-arbitrage lower bound on the A3 tranche, but it is too small to show when
results are rounded down to the nearest dollar. The overcollateralization increases the
near-arbitrage lower bounds on the A4 tranche by $1.

Empirically, the cash flow from pool SLM 2007-2 is distributed sequentially among se-
nior SLABS after an event of reprioritization. Abandoning the counterfactual assumption
of pro rata rules of distribution and using sequential rules benefits tranches Al to A3, but
harms tranche A4. With rules of distribution that continue to be sequential after an event
of reprioritization, the near-arbitrage lower bounds on tranche A1l to A3, whether using a
counterfactual level of overcollateralization ratio of 1 or the actual overcollateralization
ratio of 1.04, are $100. The near-arbitrage lower bound on the A4 tranche is $82 under
sequential rules, instead of $93 under pro rata rules. The A4 tranche benefits significantly
from the overcollateralization under sequential rules: its near-arbitrage lower bound
increases from $61 to $82 when the overcollateralization ratio increases from 1 to 1.04.

Table 1.6 reports a variable that quantifies how safe SLABS can be beyond a near-
arbitrage lower bound of $100. The slack variable is given by:

ji
Yanjify P

slacki = 7
Yji<jpl - 100

(1.22)

where j = 1 is assigned to the Al tranche, j = 2 is assigned to the A2 tranche, etc. The
slack variable indicates how many additional dollars of SLABS can be repaid from the
cash flow on the pool after a given SLABS is paid down. For example, the slack of 0.40
on tranche A2 of pool 2007-2 means that for every dollar of A2 SLABS paid down by
the pool, an additional $0.40 of SLABS can be paid down from the cash flow on the pool
afterward. This level of slack roughly means that the SLABS-Treasury near-arbitrage
initiated with 2007-2 A2 when P; = 100 would be profitable despite a 100% default rate,
default by the government on its loan guarantee and recovery on the loans of 72% instead
of the 97.8% obtained without default by the government on its loan guarantee.

Finally, Table 1.9 reports data on the persistence of near-arbitrage opportunities among
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SLABS. For the majority of SLABS, near-arbitrage underpricings of 2% or more first
appear in August 2008, at the latest, and disappear in July 2009, at the earliest. However,
there are exceptions, such as the Al tranche of 2007-2, which had an extremely large level
of slack and was expected to be repaid within a 2-year horizon from the crisis, that have

shorter period of significant underpricings.

Table 1.9: Near-arbitrage persistence

Distribution

post event of Overcollat. P <98
Pool  Tranche reprioritization ratio Pt Begin End
2003-3 A4 pro rata 1.23 100 Aug-08 Jul-09
2003-8 A4 pro rata 1.23 100 Jul-08  Jul-09
20072 Al sequential 1.04 100 Nov-08 Jan-09
2007-2 A2 sequential 1.04 100 Oct-07  Aug-09
2007-2 A3 sequential 1.04 100 Sep-07  Apr-12

This table reports the first date at which the price of SLABS dropped below $98 and
the last date at which the price of SLABS remained below $98 for a sample of SLABS
with a near-arbitrage lower bound of $100 from the fall of 2007 to the fall of 2009. The
overcollateralization ratio and the type of rules of distribution that follows an event of
reprioritization are important determinants of the near-arbitrage lower bounds and they
are also reported. The minimum overcollateralization ratio during the crisis is reported.

1.5 NORMATIVE IMPLICATIONS

This section examines the implications of near-arbitrages in SLABS for a government-run
asset purchase program and presents a cost-saving reform of the FFEL loan program that
relies on near-arbitrage lower bounds on SLABS.

151 CENTRAL BANKS EXCEPTIONAL MEASURES OF LIQUIDITY PRO-

VISION

The Term Asset-Backed Securities Loan Facility (TALF) was announced on November 25,
2008 and began operation in March 2009 (Ashcraft, Malz, and Pozsar (2012). The facility
lent on a non-recourse basis to investors that collateralized their borrowing with ABS that
had been pre-approved as TALF-eligible. Issuers of ABS would apply for TALF eligibility
and obtain it if their ABS met a list of eligibility criteria, notably a high proportion of
loans collateralizing the ABS originated no earlier than 2007. The goal of the program
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was to lower originators’ cost of funding recently disbursed consumer and small business
loans and to stimulate the origination of such loans.

The near-arbitrage gaps among SLABS that began in September 2007 and became more
important in August 2008 were an early signal that the cost of funding the origination
of consumer loans was becoming excessive. For policy-makers looking for an early
signal that there might be a need for an exceptional measure of liquidity provision, the
near-arbitrage gaps among SLABS can provide such a signal. The origination of FFEL
loan stopped in June 2010 after the Department of Education decided to abandon the
government guaranteed loan program and switched entirely to loans directly funded
by the government. The outstanding balance of FFEL has since been shrinking. While
ABS collateralized by FFEL loans are disappearing, their high correlation with other
arbitrages, such as the TIPS-Treasury arbitrage documented by Fleckenstein, Longstaff,
and Lustig (2014), means that these other arbitrages could become signals for exceptional
intervention.

Also, should a future crisis occur before the disappearance of SLABS or should the
US government re-instate a guaranteed student loan program in the future, then the
near-arbitrage gaps could guide the guide the setting of terms (haircut, interest rate)
at a facility that would complement a TALF-like facility and lend against ABS that are
more seasoned. If near-arbitrage lower bounds on SLABS indicate that financial markets
demand excessively large haircuts and interest rate given the price of SLABS (e.g. a
haircut that is greater than necessary to make a loan collateralized by a SLABS nearly-
riskless given the price of the SLABS), this can be a starting point to analyze whether a
central bank might want to extend ABS-collateralized loan to market participants on more
favorable terms than those offered by other market participants. By lending against ABS
that are more seasoned, the injection of capital would not necessarily translate into the
stimulation of the origination of loans that collateralized the ABS, but helping financial
market participants releverage their informational advantage into whichever asset class
they find most attractive would likely trickle down to some form of increase in real

investment or lending that would lead to increases in consumption.

1.52 ASSET PURCHASE PROGRAM

During the crisis, the private arbitraging capital was spread too thinly over several
arbitrages to eliminate them all and this provided an opportunity for the US federal
government to take advantage of some arbitrages. How should one analyze the situation

where the US government incurs a loss on the SLABS-Treasury near-arbitrage because of
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default on the loan guarantee?

From the point of view of the US government, a loss on the SLABS-Treasury near-
arbitrage caused by a default on the guarantee on FFEL loans means that every dollar
of loss on the near-arbitrage implies a dollar saved by the government in payment of
guarantee. Is this kind of loss relevant when analyzing whether a trade constitute
an arbitrage for the government? The short answer is yes, but not as much as for a
non-governmental arbitrageur. Suppose that the government and a hypothetical non-
governmental arbitrageur that can short Treasuries frictionlessly execute the same trade.
If the non-governmental arbitrageur loses $10 on the trade, then the government would
look back on the trade and regret initiating it because a valuable option to default on
creditors was forgiven. Ex-post, and assuming rational default, the option to default is
worth $10 minus the cost of default and this difference is positive.

If the government defaults on 3-month Treasuries at the same time that it defaults
on its guarantee on FFEL loans, then the hypothetical frictionless arbitrageur does not
lose money on the SLABS-Treasury arbitrage and neither does the government. If the
government defaults on its guarantee on FFEL loans, but not on 3-month Treasuries,
then the frictionless arbitrageur could lose money on the trade. Every dollar of shortfall
to the arbitrageur caused by the default on the guarantee means a dollar saved for the
government. If the government is the arbitrageur, then default on the guarantee does
not save any money. If the government defaults on the guarantee on FFEL loans held by
non-governmental investors, such as the non-governmental investors in ABS collateralized
by FFEL loans, then there is a cost to default, in the form of higher future borrowing
costs on all forms of government debt. Rational default occurs when the money saved by
defaulting on the guarantee on FFEL loans exceeds the present value of the cost of default.
It is unlikely that the government would find itself in a state of the world where default
on the guarantee is rational. And even less likely that the government would find itself in
a state of the world where default on the guarantee on FFEL loans, without default on
short-term Treasuries would be rational. It is even unclear whether the US government
would have the freedom to choose to default on the guarantee on FFEL loans without
default on other forms of debt. But, assuming the worst case, assuming that it is possible
to default on the guarantee on FFEL loans without defaulting on 3-month Treasuries, then
only in those rare state of the world where it is rational to choose both of these actions
at the same time, might the government look at the loss on the SLABS-Treasury trade
negatively and regret, ex-post, having initiated it.

Based on 1) the low probability that the US government defaults on any kind of debt

or guarantee, 2) the even lower probability that the government defaults on the guarantee
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on FFEL loans without defaulting on 3-month Treasuries, 3) the cost of a loss on the
SLABS-Treasury near-arbitrage should the government default on the guarantee on FFEL
loans and not on 3-month Treasuries is less than for a hypothetical non-governmental
frictionless arbitrageur, 4) the low probability that all borrowers default on their loan as
assumed to perform my cash flow simulations, I conclude that purchasing SLABS when
they sell at or below their near-arbitrage lower bounds provides generous compensation
for the small risk taken with taxpayers” money.

1.53 FIRE-SALE INSURANCE

The merit of the proposal found in Gorton (2010)** that the government should offer
tire sale insurance on some ABS can be analyzed for the special case of SLABS. More
precisely, what would happen if the government initiated a program today, or at any date
in the future outside of crisis, that would allow investors to exchange their SLABS for
their near-arbitrage lower bound price at any time in the future? My analysis suggests
that investors would very rarely, and possibly never, exercise this option. This prediction
relies on my findings that once SLABS sell for less than their near-arbitrage lower bound,
a SLABS that is held to maturity is almost certain to outperform a roll-over investment
in 3-month Treasuries. This should make SLABS attractive for money market funds that
roll-over trillions of dollars in Treasuries and similar assets. Money market funds, (MMF),
did not prevent the price of SLABS from dropping below their near-arbitrage lower
bounds during the crisis for two reasons. The first and straightforward reason is that
MMF cannot invest in assets with maturity of more than 397 days. A second and deeper
reason is that MMF are given a clear mandate by their investors to buy assets that present
virtually no risk of declining in value over their holding period, which is not the case
for a SLABS, even when it trades below its near-arbitrage lower bound. However, if the
government offers a guarantee on SLABS, eliminating the risk that a SLABS purchased at
the near-arbitrage lower bound could decline further in value, then MMF would provide
support for the price of SLABS at the near-arbitrage lower bound.

My near-arbitrage methodology provides a trigger point for the initiation of the
SLABS-Treasury arbitrage. The trigger point depends on a set of state variables that
includes the interest rate, the average principal per borrower and the overcollateralization
ratio. Near-arbitrage lower bounds can decrease over time has the state variables change.
For the government to face minimal risk, it would have to be allowed to reset the strike
price on the put it offers on SLABS periodically. If the government resets the strike price

#2Gee p.55 where Gorton prescribes a policy package in which “Senior tranches of securitizations of
approved asset classes should be insured by the government.”
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for puts every 90 days, and announces the strike price for the put one day before it is reset,
then 1) should the put option be exercised, the government is exposed to a minimal risk
of paying a price superior to the near-arbitrage lower bound because the state variables
move relatively little over a 90 days period, and 2) MMF do not face any price risk inside
90-day windows and they would support the price of SLABS above the strike price.
What would be the benefits for the government of offering fire-sale insurance? In the
case of SLABS, the government could make smaller special allowance payment on FFEL
loans without causing a reduction in the supply of FFEL loans. Institutional investors
demand a higher interest rate on SLABS if the security can decrease in price below its
near-arbitrage bounds during financial crisis, a time when they are more likely to need
to trade their asset for cash in order to shrink their balance sheet or to satisfy investors’
withdrawals. Once the fire-sale risk is removed, once a SLABS is guaranteed to never fall
below its near-arbitrage lower bound, investor do not demand as high an interest rate.
Originators of FFEL loans could sell securities collateralized by pool of FFEL loans that
promise a lower interest rate and obtain the same proceeds from the sale, because these
securities would no longer bear the fire-sale risk. As of the end of 2013, there were still
more than $250 billion dollar in FFEL loans outstanding. Therefore, small reductions in
supplemental interest payments, on the order of 0.10%, would translate into savings of
$250 million, just in the first year following the reform.*> To sum up, the government
could achieve the same level of financial support for students at a lower cost, thanks to

fire-sale insurance.

1.6 CONCLUSION

In this paper, I show that ABS collateralized by government guaranteed student loans
that benefit from significant overcollateralization are nearly riskless variable-rate bonds.
The frictionless no-arbitrage framework predicts a market price of $100 for a riskless
variable-rate bond with a principal of $100. I quantify underpricings on some SLABS that
exceeded $20 per $100 principal during the crisis.

While other mispricings of a similar magnitude have been documented since I began
work on this project, most notably by Fleckenstein, Longstaff, and Lustig (2014), several
of the normative implications of my findings are novel. To my knowledge, this is the
first paper to document large underpricings in the ABS market that would present nearly

certain opportunities for profit for the US government. Other arbitrages have limited

43 Assumes 100% participation rate in a voluntary loan swapping program that involves the exchange of
a FFEL loan for a loan with fire-sale insurance that receives smaller supplemental interest payments.
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implications for US central bank’s liquidity provision facility and temporary programs of
liquidity provision. SLABS can be used as a canary in the coal mine, meaning that near-
arbitrages signal an extraordinary need for liquidity provision. To nearly eliminate risk on
a non-recourse loan collateralized by SLABS, the Fed could set cash-down requirements
to the greater of 0% and the premium between market prices and near-arbitrage lower
bounds.

The are also normative implications that arise from the co-occurrence of the underpric-
ing of SLABS relative to Treasuries and those of TIPS relative to Treasuries. Since FFEL
loans stopped being originated on June 30, 2010, SLABS collateralized by FFEL loans
will gradually amortize over the next twenty-five years or so. Since the underpricing of
SLABS is correlated with other types of large mispricings, the latter could become the
signal for extraordinary need for liquidity provision in a future crisis.

The US government could save hundreds of millions of dollar by providing fire-sale
insurance on SLABS collateralized by FFEL loans. FFEL loans with fire-sale insurance
on SLABS could be an alternative to the current policy of direct origination of all federal
loans by the government. Through the adoption of the current origination policy, the
government has given up a fiscal hedging option. The US government would not give up
its fiscal hedging option by providing fire-sale insurance on SLABS: defaulting jointly
on the loan guarantee and the fire-sale insurance would have similar impact on future
borrowing costs as a default on the loan guarantee alone. It would be interesting to see
whether a FFEL program with fire-sale insurance on SLABS could compete with the
cost-saving of the switch from FFEL loans to direct loans estimated by Lucas and Moore
(2010).

The release of data on haircuts for finer categories of asset classes than is currently
published in Gorton and Metrick (2009), Copeland, Martin, and Walker (2014) and
Krishnamurthy, Nagel, and Orlov (2014), would allow a detailed empirical analysis of
the link between the price of SLABS and the time variation of haircuts. This could help
disentangle whether time-varying haircuts or another mechanism, such as shocks to the
balance-sheet of financial intermediaries combined with differential capital requirements,
is the more likely cause of the dynamic of underpricings of SLABS relative to Treasuries
during the crisis. The same data could help us better understand the drastically different
price dynamic between SLABS and variable-rate ABS guaranteed by the Small Business

Administration. More research is needed in the area.
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1.7 APPENDIX

171 SLABS THAT SATISFY ALL SELECTION CRITERIA

Table 1.10: SLABS that satisfy all selection criteria. This table lists the SLABS trusts that satisfy
all selection criteria used to derive benchmark no-arbitrage lower bounds in Section 1.3. Selection
criterion SC.1 requires that the rules of distribution of the cash flows from the pool among various
claimholders be as presented in Figure 1.2. SC.2 requires that the SLABS trust receives offsetting
payments from the securitizer for reductions in interest rate or principal offered to borrowers,
which are also called borrower’s incentive programs. SC.3 requires that the interest rate spread
over LIBOR promised on a SLABS is positive, s > 0. SC.4 requires that none of the SLABS
collateralized by a pool are auction-rate securities, which are denoted by ARS in the table.

Minimum  Rules Borrowers’ Positive

loan of incentive  interest rate Loan

Pool guarantee distrib. programs spread ARS type
(SC.1) (SC.2) (SC.3) (SC.4)

SLM 2003-3 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2003-6 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2003-8 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2003-9 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2004-4 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2004-6 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2004-7 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2004-9 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2005-1 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2005-2 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2005-10 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2006-1 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2006-3 98% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2007-2 97% Fig. 1.2 Offset Yes No  Non-consol.
SLM 2007-3 97% Fig. 1.2 Offset Yes No  Non-consol.
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1.72 PROOF OF PROPOSITION 1

I prove Proposition 1 for the special case where an arbitrageur buys the aggregate
principal of SLABS collateralized by a given pool of FFEL loans. Since distributions
among SLABS holders for a given pool are pro rata to their ownership of SLABS in
Sections 1.2 and 1.3, the generalization from this special case to the case where a SLABS
holder owns a fraction of the SLABS collateralized by a pool is immediate.

Consider an arbitrageur who purchases at time 0 the aggregate principal of SLABS, po,
that is collateralized by a pool of FFEL loans with balance of ¢y, where ¢o/po > 1. The
arbitrageur pays Py/100 - pg < 0.97 - po for the SLABS. The arbitrageur shorts Treasuries
and raises $0.97 - pg. In other words, the arbitrageur’s debt is $0.97 - po.

Recall that the principal of the SLABS evolves according to:

orr1 = pt - (1+ (PR +5)) — yrpa, (1.23)

subject to the constraint p;; > 0. The full repayment of the SLABS means that p; = 0 for
some t > 0.
Every sequence of cash flows on a SLABS, {y;}>1, can be categorized into one of two

groups:
e Cash flows that repay the SLABS in full;
e Cash flows that do not repay the SLABS in full.

The proof of Proposition 1 is presented in two parts.

Proof of Proposition 1, Part 1: This part shows that the SLABS-Treasury trade produces
a strictly positive cash flow for the arbitrageur at time 0 and non-negative cash flows at
time t > 1 when cash flows on the SLABS repay the SLABS in full.

The arbitrageur pockets 0.97 - pg — Py/100 - pg > 0 at time 0. The arbitrageur’s debt

evolves over time according to:
dly = df’ - (141 =y, (1.24)

subject to d?frbl > 0.
To show that cash flows at time t > 1 are non-negative, it is sufficient to show that the
cash flows from the SLABS, {y;}:>1, can repay the arbitrageur’s debt in full (i.e. d’t”b =0

holds for some t > 0).
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I use a proof by induction that shows that p; is an upper bound for d¥% and that since
pr converges to 0, so must d¥"°. At time 1, the following inequality holds:

o1 =p0 - (1+ (5% +5)) —y1 > dg’" - (1 +19) —y1 = df”. (1.25)

IBOR >y, for all t, selection

Inequality (1.25) results from interest rate condition C.2, r}
criterion SC.3, s > 0, and from py > dgrb (initial conditions py > 0, dgrb > (0 and
0.97 - pg = d¥? imply pg > d&'?).

Assuming that p; > d¥"* > 0 holds for a given ¢, the following inequality holds at
t+1:

o1 =0 (14 (rFBOR £ 6)) —yp g > AP0 (14 71) — ypq = AP0, (1.26)

again, because of rtLIBOR >rrand s > 0.

Thus, by induction, starting from py > dg’b >0, pr > d;”b holds for ¢ > 1, whenever
d?lbl > 0. Let (*) denote this intermediate result. By the definition of a cash flow that
repays a SLABS in full, p; = 0 holds for some ¢ > 1. Therefore, either d¥? = 0 occurs
prior to oy = 0 or d%"" = 0 occurs at the same time as p; = 0 (and the d7"* > 0 constraint

binds). Any other outcome is in contradiction with (*). [ |

Proof of Proposition 1, Part 2: This part shows that the SLABS-Treasury trade produces
a strictly positive cash flow for the arbitrageur at time 0 and non-negative cash flows at
time t > 1, even when the cash flow on a SLABS, {y: };>1, is not sufficient to repay the
SLABS in full.

Again, the arbitrageur pockets 0.97 - pg — Py/100 - pp > 0 at time 0. I show that the
cash flows from the SLABS, {y; };>1, can repay the arbitrageur’s debt in full in order to
show that cash flows at time t > 1 are non-negative.

Let T denote the time period when ¢; = 0 first occurs. Note that when the cash flow
on a SLABS is not sufficient to repay the SLABS in full, an event of reprioritization is
triggered for some t < 7. To understand why, consider the following: if the cash flow on
a SLABS is not sufficient to repay the SLABS in full, then we have a positive principal of
SLABS outstanding, pr > 0, when the pool balance is zero, ¢ = 0. Since p; > ¢; triggers
an event of reprioritization, as mentioned in Section 1.2, then an event of reprioritization
is triggered at time 7, at the latest. I let f denote the first time period when an event of
reprioritization is triggered.

From time 0 to f — 1, since no event of reprioritization has been triggered, the inequality
¢+ > p; holds. Starting from d%% = 0.97 - py, intermediate result (*) of Part 1 can be
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strengthened in two steps. First, at time 1, the following inequalities hold:

0.97- 01 =0.97 - (0o - (14 (r5"BOR 4-5)) — 1) (1.27)
> 0.97 - (po - (1+70) —y1) (1.28)
>0.97-po - (14 r0) — 11 (1.29)
=d§" - (1+r0) —
= drb, (1.30)

Inequality (1.28) results from interest rate condition C.2, rtU BOR > 4, for all t, and selection
criterion SC.3, s > 0. Inequality (1.29) results from —0.97 - y; > —y; since y; > 0. All
equalities either result from the initial condition 0.97 - pg = d%' or the laws of motion for
pr and dérb.

Second, assuming that 0.97 - p; > d¥"* > 0 holds for a given ¢, the following inequalities
hold at £ 4 1:

0.97 - py1 = 0.97 - (o5 - (1 + (rHBOR L 6)) — 1) (1.31)
> 097 (ot - (L+7¢) — Yit1)
> 097 pr- (T+71) = Y11
>di" - (1+ 1) — Y
=drt. (1.32)

All equalities and inequalities hold for the same reasons given for the case at t = 1, except
that initial condition 0.97 - p; > df'? replaces 0.97 - pg = da'’. Therefore, by induction, we
have that d‘t”b < 0.97 - p; for all t. Let (**) denote this intermediate result.

By definition of an event of reprioritization, the inequality ¢; > p; holds at any time
t € [0,f —1]. Combining this inequality with intermediate result (**), the inequality
d?? < 0.97 - ¢; holds holds at any time t € [0, — 1].

Recall that the following inequality, which was derived in Section 1.2, holds for the
cash flow from the pool, x;:

X > 097 (¢r1 — P+ 1 (i — wr)). (1.33)

Following an event of reprioritization, the law of motion for the arbitrageur’s debt
becomes:
d?rb = d?r_bl . (1 + rt—l) — (xt — ft . (Pt—l)- (134)
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Combining equations (1.33) and (1.34), the following inequalities hold at t = #:

b b b
di”) — d?r =x;— fi ¢pq —di T,
> 097 (g1 — ¢+ 9pr - (if_y —wp)] = fi- Gy — iy 11,
> 097 [fr_y — @3] +0.97 ¢y (if_y —wp) = i pp_g — {1,
> 097 (¢ — $1)- (1.35)
The following steps show the validity of 1nequahty (1.35). Let ¢§™ b denote the term
(0.97 - ¢; ;- (it i —wp) = fio g — d‘tlibl -74_1).** Using the initial condition, 0.97 - ¢; | >
d?ibl, and plugging in values for ié_l, fi_1, w;, the following inequalities hold:
¢f" =097 ¢p_y - (i —wp) = fi-pg — A 1y,
]
f—

(
> 097 ¢ ;- (i
(

1~ wp) = S p 1 =097 ¢y g1y, (1.36)
> 097 ¢y - (PP +1.74% — 0.20%) — 1.10% - ¢s_; — 097 -1 -r;_q,  (1.37)
> 097 - 1 - (rp_q +1.74% — 0.20%) — 1.10% - ¢;_; — 0.97 - ¢_, - 171,  (1.38)
= 0.97 - (1.74% — 0.20%) - ¢_; — 1.10% - ¢;_1, (1.39)
> 0.39% - ¢y,
> 0. (1.40)

Inequality 1.36 holds because of the initial condition, 0.97 - ¢;_; > d‘gr_bl (and d‘gr_bl > 0).
Inequality 1.37 results from plugging in it > rf“P 4+ 1.74%, along with f; = 1.10% and
wi = 0.20%.* Inequality 1.38 holds because of interest rate condition C.2, which imposes
rf CP >y, for all ¢.

Therefore, d?ibl - d’tfrb > 0.97 - (¢;_1 — ¢;) holds. This can be re-arranged to obtain:

0.97 - ¢ > 0.97 - py_y — d"®, +d9"? > 4or? (1.41)

Note that all the steps followed to obtain 0.97 - ¢; > d”b rely on the initial condition
097 -¢;_1 > d‘”b and on conditions on i}, f; and w; that hold for every t. It follows that
by assuming that 0.97 - ¢ > d?'? holds for some t € [f, T — 1], it is straightforward to show
that 0.97 - ¢4 > d?j_bl holds in the following time period. Thus, by induction, starting

440 here is a special case of the worst case arbitrageur’s spread that will be introduced formally in
Section 1.4.

Note that annualized values for fio1 i w; are inputted here, since for the purpose of showing that

t 1/
¢i? > 0, it is without loss of generality. However, one would want to input the non-annualized values in
equations that represent laws of motion to recover the proper dynamic.
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from 0.97 - ¢;_, > d‘gibl, it follows that d9"? < 0.97 - ¢ for t € [, 7]. Let (***) denote this
intermediate result. Therefore, by (***) either d¥"* = 0 occurs prior to ¢ = 0 or d4"" = 0
occurs at the same time as ¢y = 0. Any other outcome, in particular d?* > 0 when p; = 0,
is in contradiction with (***). |

The proof presented above covers the case where a single senior tranche is issued from
a given pool of FFEL loans, which is the only type of SLABS presented in section 1.2
and 1.3. Can this result be applied to empirical cases where there are multiple senior
tranches of SLABS issued on a given pool, which are first introduced in section 1.4.1? If
the distributions among senior tranches are pro rata following an event of reprioritization,
then a nearly identical proof to the one presented above, which would simply require
the introduction of additional notation, could be constructed. I take a close look at
SLM 2003-3 in Table 1.6 and in Figure 1.5. In Table 1.6, the near-arbitrage lower bound
computed by simulations on the bottom tranche of SLM 2003-3, the A4 tranche, under
a counter-factually low overcollateralization ratio of 1, Pt[y,/0,—1 is $93, which is lower
than the $98 that would be consistent with the analytical proof and the 98% minimum
guarantee on the FFEL loans that collateralize pool SLM 2003-3. This is because the lower
bound computed by simulations are obtained after relaxing conditions C.3 on servicing
fees and C.4 on write-downs due to default claim rejected. A similar reason explain why
in Figure 1.5, at issuance of SLABS on pool SLM 2003-3, despite an overcollateralization
ratio of 1.02, the near-arbitrage lower bound under factual overcollateralization of 1.02 P;
is significantly below $100. The downward adjustment from $100 to $93 at issuance of the
SLABS is needed to insure against worst case scenario of default immediately after SLABS
purchase, as well as bankruptcy of the initial servicer, resulting in a worst case servicing
contract with higher fees to service the loans of delinquent borrower and retention of
small fraction of the loan guarantee payment by the new servicer (to incentivize proper
servicing). After accounting for these adjustments, the near-arbitrage lower bounds are
similar for the Al, A2, A3 and A4 tranche because of the pro rata distributions after
the triggering of an event of reprioritization and the fact that the worst case scenario
of default quickly triggers pro rata distribution. This is illustrated by looking at 2007-2
Al, A2, A3 and A4 in Table 1.6, under pro rata rules of distribution after an event of
reprioritization (this is especially apparent in the counter-factual case with ¢;/p; = 1,
because there are very few quarters during which the Al tranche is the only senior
tranche to receive distribution of principal).

I do not attempt a derivation of a proof that covers the case of SLABS trusts, such
as SLM 2007-2, with multiple senior tranches of SLABS and distributions among senior

tranches that continue to be sequential following an event of reprioritization. At the very
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least, the no-arbitrage lower bound of &H](pt /or>1 = $97 is valid for the top tranche of
SLM 2007-2 and similar SLABS trust. However, this is a loose lower bound, as shown by
the near-arbitrage lower bounds computed by simulations P; for SLM 2007-2 A1 in Table
1.6.
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173 ESTIMATION OF PARAMETERS OF THE INTEREST RATE MODEL

The data used to estimate the model consists of annualized yields on Treasuries with a
maturity of 3-months for the period 01/04/54 to 07/31/08, sampled at a daily frequency.*
h and A are latent variables that we do not observe and MCMC is a popular method for
the estimation of models with latent variables. I begin by estimating a9 and a; by an
ordinary least square (OLS) regression. Like Kalimipalli and Susmel, I set « = 0.5 and
estimate the other parameters of the model by feeding the residuals of the OLS regression
into an MCMC algorithm. Table 1.12 presents the parameter estimates used to simulate
interest rate paths. Table 1.13 provides priors and posterior of the MCMC estimation:

Table 1.12: Parameters of the interest rate model.

Parameter Estimate
ag 0.0030

n —5.82-107*

P 0.915

P 0.915

oy 0.234

B -7.887

v 1.573

Po1 0.0839%

P10 0.456%

My estimates imply a long-run mean for interest rates of —ag/a; = 5.15% and an
half-life for volatility shock of —In(2)/In(y) = 7.8 days.”” When the economy is in
a low-volatility regime, it can be expected to remain in that regime for 1/py; = 1192
days.*® The expected duration of high-volatility regime is shorter at 1/p19 = 219 days or
219/250 ~ 0.88 year. B represents the long-run mean for /n(h) when in a low-volatility
regime, thus the average daily standard deviation on interest rate is given by VeP = 0.0194,
which is 0.0194 percentage point; when in a high-regime, the same statistics is computed
from /expPtv = 0.0426.

46The Treasury bills (secondary market) data published by the Federal Reserve System can be found at
http://www.federalreserve.gov/releases/hl5/data.htm.

471 only consider business days, thus my estimates imply a half-life of 7.8 business days or 7.8 days out
of a calendar with 250 days, which corresponds roughly to half-life of 11.4 days for a 365 days calendar.

48Let X denote the number of trials needed for a transition from state 0 to state 1 to occur. Then, X has a
geometric distribution and E[X] = 1/ po;.
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Table 1.13: Estimation of parameters of the interest rate model. The data used to estimate
the model consists of annualized yields on Treasuries with a maturity of 3-months for the
period 01/04/54 to 07/31/08, sampled at a daily frequency. The sample size is 13635. Prior
distribution of 0,% is improper. See Kalimipalli and Susmel (2004) for details about the model
estimation. Parameters estimates reported here for p* differs from those used in simulations:
B = B* —In(10000). The difference arises because residuals from the OLS regression are scaled by
a factor of 100 before they are feed into the MCMC algorithm.

Parameters Prior values Posterior values
Mean Standard Mean Standard 95% C.I
deviation (std. error) deviation
P 0 1 0.9147 0.0067 [0.89,0.93]
(0.0012)
o - - 0.2340 0.0142 [0.21, 0.26]
(0.0025)
B* 0 50 1.3231 0.0495 [1.23,1.41]
(0.0069)
v 1 50 1.5734 0.1964 [1.10,1.96]
(0.0216)
po1 0.2 0.16 84-107% 45-.107% [(2.1,190.3)-1074]
(5.3 -1079)
P10 0.2 0.16 0.0046 0.0014 [(2.2,8.2)-1077]
(1.5 -107%)

50



1.74 DATA AND COMPUTATION OF THE SERVICING COST DIFFERENCE

BETWEEN DELINQUENT AND CURRENT BORROWER

The main additional tasks that must be performed by a servicer on a delinquent loan is to
contact a delinquent borrower by phone a minimum of 4 times and to send a minimum of
6 collection letters between the moment that a borrower becomes delinquent and the point
at which the borrower enters default. In addition, when an address or phone number
for a delinquent borrower is found to be invalid, a servicer must perform skip-tracing
activities an attempt to obtain valid contacts for the borrower.

Table 1.14 presents the data I used to compute a cost differential between current and

delinquent borrowers.

Table 1.14: Data used to compute servicing cost difference between delinquent and current
borrowers.

Unit cost of collection letters $1.50
Average duration of phone contacts with delinquent borrowers 2 minutes
Median hourly wage of customer representative within financial service $14.56
Median of salaries as a % of op. exp. in the “for-profit services” sector 50%
Fraction of borrowers who default that require skip-tracing 12%
Fraction of delinquent borrowers who require skip-tracing 6%
Skip-tracing fee $28

I obtained quotes from mailing company that handle the task of printing and mailing
collection letters: the unit cost of sending collection letters, including postage fee, is
approximately $1.50. A small-scale servicer of FFELP loans provided the data on the
average duration of phone contact with delinquent borrowers. Contacting borrowers by
phone is labor-intensive and the Bureau of Labor Statistics reports that the median hourly
wage for customer representative within the banking industry is $14.56.*° The Society
for Human Resource Management reports that the median of salaries as a percentage
of operating expenses in the “for-profit services” sector is 50%. A small-scale servicer
provided data on fraction of borrower who default that require ski-tracing. The skip-
tracing fee is from the servicing contract between MOHELA and PHEAA.

I estimate the cost of the additional tasks that must be performed on deliquent loans
to be $17.

6 * $1.50 4 4 x $14.56 /60min x 2min x 1/0.5 + 0.12 x $28 ~ $17 (1.42)

49SLM pays its customer service representative $12 an hour at the entry-level position.
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175 NEAR-ARBITRAGE LOWER BOUNDS ON SLABS DEALS WITH A

STEPDOWN DATE

For deals issued by SLM that contains consolidation loans, the rules of distribution are
not as presented in Figure 1.2. After the stepdown date is reached, the distribution of
principal to subordinate SLABS becomes pro rata with the distribution of principal to
senior SLABS under some conditions. For distributions to be pro rata among subordinate
SLABS and senior SLABS, t