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Abstract

Today large software systems (i.e., giants) thrive in commodity markets, but

are untrustworthy due to their numerous and inevitable software bugs that can be

exploited by the adversary. Thus, the best hope of security is that some small, simple,

and trustworthy software components (i.e., wimps) can be protected from attacks

launched by adversary-controlled giants. However, wimps in isolation typically give

up a variety of basic services (e.g., file system, networking, device I/O), trading

usefulness and viability with security.

Among these basic services, isolated I/O channels remained an unmet challenge

over the past three decades. Isolated I/O is a critical security primitive for a myriad of

applications (e.g., secure user interface, remote device control). With this primitive,

isolated wimps can transfer I/O data to commodity peripheral devices and the data

secrecy and authenticity are protected from the co-existing giants.

This thesis addresses this challenge by proposing a new security architecture to

provide services to isolated wimps. Instead of restructuring the giants or bloating the

Trusted Computing Base that underpins wimp-giant isolation (dubbed underlying

TCB), this thesis presents a unique on-demand I/O isolation model and a trusted

add-on component called wimpy kernel to instantiate this model. In our model, the

wimpy kernel dynamically takes control of the devices managed by a commodity

OS, connects them to the isolated wimps, and relinquishes controls to the OS when

done. This model creates ample opportunities for the wimpy kernel to outsource

I/O subsystem functions to the untrusted OS and verify their results. The wimpy

kernel further exports device drivers and I/O subsystem code to wimps and mediates

the operations of the exported code. These two methodologies help to significantly

reduce the size and complexity of the wimpy kernel for high security assurance.

Using the popular and complex USB subsystem as a case study, this thesis illustrates

the dramatic reduction of the wimpy kernel; i.e., over 99% of the Linux USB code

base is removed. In addition, the wimpy kernel also composes with the underlying

TCB, by retaining its code size, complexity and security properties.
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Chapter 1

Introduction

1.1 Wimps and Giants

Modern architectures can isolate security-sensitive application code from the untrusted code of

commodity platforms, thereby enabling their safe coexistence [21, 22, 24, 54, 80, 83, 84, 86,

100, 112–114, 127]. This is necessary because large untrustworthy software components will

certainly continue to exist in future commodity platforms. Competitive markets with low cost

of entry, little regulation, and no liability will always produce innovative, attractively priced,

large software systems comprising diverse-origin components with uncertain security properties.

As Lampson metaphorically put it a decade ago, among software components, only the giants

survive [74]. Thus, the best one can hope for is that some trustworthy software components can

be protected from attacks launched by adversary-controlled giants. To be trustworthy, software

components must be verified, and to be verified they must be comparatively small, simple, and

limited in function. In contrast to the giants, these software components are wimps.

Unfortunately, isolating security-sensitive wimps from untrusted giants does not guarantee

the wimps’ survival on commodity platforms. To avoid re-creating giants inside their isolated ex-

ecution environments, wimps often give up a variety of basic services, which greatly undermines

their usefulness and viability. For example, wimps typically lack persistent memory [91], file

system and network services [21, 22, 24, 54, 80], flexible trusted paths to users [23, 30, 37, 137],

and isolated I/O services [15, 25, 27, 40, 49, 69, 82, 87, 98, 112, 118, 119] needed for many

applications in fields like industrial control, finance, health care, and defense.

1



Past multi-year efforts to restructure giants (e.g., commercial OSes) and provide trustwor-

thy services for applications led to successful research [67, 105], but failed to deliver trustworthy

OSes that met the product compatibility and timeliness demands of competitive markets [45, 81].

For example, the VAX VMM security kernel [67], after eight years of considerable design effort,

was never deployed due to the absence of Ethernet support, whose popularity was not anticipated

initially. Moreover, including basic services in the trusted computing bases (TCBs) 1 that guaran-

tee safe giant-wimp coexistence has been equally unattractive. With this approach, TCBs would

become bloated, unstable, and unverifiable, and thereby lose their assurance; i.e., they would use

large and complex code bases of diverse, uncertain origin (e.g., device drivers) needed for dif-

ferent applications and would require frequent updates because of function additions, upgrades,

and patches.

In contrast, this thesis presents a unique solution to this problem by placing the basic services

in the giants. To survive, wimps must rely on giant-provided services but only after efficiently

verifying their results. In turn, wimps could make their own isolated services available to giants

for protection against persistent threats. Continuing with the wimp-giant metaphor, trustworthy

wimps must engage in a carefully choreographed dance (i.e., secure composition) with untrust-

worthy giants.

1.2 Why Isolated I/O?

Among the basic services needed by wimps, isolated I/O is a critical security primitive, but has

remained an unmet challenge in both academia and industry.

An isolated I/O channel connects an input/output (I/O) device with an isolated software pro-

gram that is trusted by the user, and protects the secrecy and authenticity of data transfers between

them. The user of the trusted path should be able to verify the channel status, i.e., whether the

isolated software or the device is the one the user intends to use, and also whether the channel is

active.

The most commonly used isolated I/O channels are user-oriented, which are also known as

1TCBs include security kernels [14, 104], micro-kernels [70, 110], exokernels [33], virtual machine monitors [15,

21, 22, 25, 40, 54], micro-hypervisors [83, 112–114, 119, 127, 137], and separation/isolation kernels [49, 94, 98,

118].

2
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Figure 1.1: Examples of Isolated I/O Channels. (a) shows user-oriented isolated I/O channels

between Bob’s keyboard and display and the database client software in Bob’s computer. (b)

presents an application-oriented isolated I/O channel that connects a control program on Alice’s

remote embedded camera system with the camera itself.

the trusted paths in the Orange Book [30]. This channel connects a user’s I/O devices (e.g.,

keyboard, mouse, and display screen) with a program trusted by that user. For example, in

Figure 1.1(a), Bob is using his personal computer to access and modify his private data (such

as health, investment, and banking data) in a remote database. Of course, Bob wants nobody

to reveal or modify his private data input, output or transfer. A user-oriented trusted path is

a necessary response to what Clark and Blumenthal call the “ultimate insult” directed at the

end-to-end argument in system design [26]; namely, that a protected channel between a user’s

end-point and a remote end-point provides no assurance without a protected channel between the

user himself and his own end-point. Without a trusted path, an adversary (e.g., malware in an OS)

could surreptitiously record Bob’s key strokes, modify his commands to corrupt the database, or

display unauthentic output to trigger Bob’s mis-behaviors.

In contrast, application-oriented isolated I/O channels are useful in a variety of application

scenarios, such as the remote control of embedded real-time systems. As shown in Figure 1.1(b),

the application-oriented channel protects the communication between the surveillance camera

and the camera control program on the remote embedded system. Without this channel, the

control program of the embedded system (and thus the operator Alice) would be unable to de-

termine the true state of the surveillance camera and to effectively control it, in the presence of

a malware-compromised embedded operating system. This is a particularly egregious problem

in the control of mission critical systems, such as unmanned drones [108], uranium enrichment
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centrifuges [35], and networked electricity generators [65].

Despite the incontestable necessity of isolated I/O channels as fundamental security primi-

tives, for the past thirty years, attempts over the last thirty years to provide isolated I/O channels

of peripheral devices to security-sensitive applications on commodity systems have been unsuc-

cessful; viz. Sections 3.1 and 8. This thesis focuses on developing innovative architecture and

methodology to address this particular challenge and opening up possibilities for implementing

the isolated I/O channels in a myriad of high-assurance mission-critical applications in corporate,

governmental, military, and consumer areas.

1.3 Thesis Overview

There is a pressing need for providing isolated I/O channels to security-sensitive applications

or software modules on commodity platforms. With these isolated I/O channels, the security-

sensitive code, which is isolated from the untrusted commodity operating system and other ap-

plications, is able to transfer data to/from commodity peripheral devices with I/O data secrecy

and authenticity remaining protected.

Thesis Statement. Based on a root-of-trust mechanism for code isolation, small and simple

add-on security components can provide isolated I/O channels to security-sensitive applications

on commodity platforms.

Specifically, we presents a general-purpose, simple, human-verifiable I/O isolation system

that coexists with a commodity operating system. The system is general in that it allows arbitrary

software code to be isolated from arbitrary OSes it runs upon and to be connected with arbitrary

commodity peripheral devices. It is simple in that the TCB of the system is small and simple

enough to achieve complete and accurate definitions of the adversary and security properties of

the system, and to facilitate formal verification of those properties. It is human-verifiable in that

a human using the system can verify that the desired isolated I/O channel is in effect (e.g., that

the keyboard is acting as a secure channel to a banking program on that machine). The system

is truly useful only when human users can securely communicate with it and when they can be

sure that the system is up and running whenever the users need it. This system is commodity in

that it does not require any intrusive modification or restructuring of the coexisting OSes. The
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compatibility with commodity off-the-shelf platforms allows users to enjoy the functional rich-

ness and convenience of commodity platforms, and to utilize high-assurance security-sensitive

applications on-demand.

Instead of supporting secure I/O services in a restructured or redesigned OS or bloating an

underlying TCB that guarantees wimp-giant code isolation with the I/O services, we propose

a security architecture for on-demand isolated I/O channels, which enables security-sensitive

applications (i.e., wimps) to dynamically connect to diverse peripheral devices of unmodified

commodity OSes. The new architecture is based on a wimpy kernel, a trusted “add-on” that con-

structs on-demand I/O channels for wimp applications and securely composes with the commod-

ity OS; i.e., it relies on the I/O services in the commodity OS but only after efficiently verifying

their results. The wimpy kernel does not increase the size and complexity of the underlying

TCB, modify its security properties or increase the formal verification effort. The wimpy kernel

removes a wimp app’s direct interfaces with the underlying TCB. Thus, future I/O function inno-

vation that enhances the untrusted OS or wimp apps would only affect the wimpy kernel, leaving

the underlying TCB unchanged.

We apply two innovative methods to dramatically reduce the size and complexity of the

wimpy kernel for high assurance. First, we outsource I/O subsystem functions to the untrusted

OS, but only if the wimpy kernel can verify that the execution of that code is correct. For example,

the configuration of the entire USB controller-hub-device hierarchy is initialized by the untrusted

OS and handed over to the wimpy kernel when a wimp app attempt to use a USB device. The

wimpy kernel verifies the hierarchy efficiently without enumerating any other device in the hi-

erarchy. Second, we further minimize the wimpy kernel by de-privileging and exporting drivers

and driver-subsystem code to security-sensitive applications, and implementing wimpy-kernel

checks that mediate applications’ use of the exported code. Exporting code requires identifica-

tion and removal of all driver-code dependencies on the untrusted OS services (e.g., memory

management, synchronization, kernel utility libraries), either because they become redundant

in the new on-demand mode of operation or because they can be satisfied by the application

themselves or wimpy kernel.

In short, this thesis makes the following contributions:

5



• We introduce the notion of on-demand isolated I/O channels for security-sensitive appli-

cations (i.e., for wimps) on unmodified commodity platforms (i.e., on giants).

• We present a security architecture based on a minimal wimpy kernel, which implements

on-demand I/O isolation and securely composes with the untrusted giants, the underlying

TCB, and the wimp apps.

• We illustrate the detailed design of the wimpy kernel, and show how to use outsource-and-

verify and export-and-mediate methods to minimize its code base. The reduction of the

wimpy kernel is dramatic; i.e., 99% of the Linux USB code is removed.

• We implement the wimpy-kernel-based I/O isolation system for the PCI and the USB sub-

systems of Linux and evaluate its performance. Experimental results indicate that the

system incurs acceptable performance overhead.

• We instantiate two security-sensitive applications, namely secure user interface (a.k.a trusted

path) and trustworthy corporate key management system, to show the practicality of the

proposed on-demand I/O isolation architecture.

Thesis Organization. The remainder of this thesis includes the following chapters: Chap-

ter 2 defines the security properties achieved in the I/O isolation system and its adversary model.

Chapter 3 analyzes the insufficiency of past attempts to provide isolated I/O channels, and high-

lights the fundamental challenges of achieving this goal. Chapter 4 introduces the idea of on-

demand I/O isolation and its advantages and unique challenges, and overviews the wimpy-kernel-

based architecture we propose to instantiate this idea. Chapter 5 illustrates the concrete design

of multiple aspects of the I/O isolation system. Chapters 6 and 7 present the implementation and

evaluation of the secure user interface application (trusted path) and trustworthy corporate key

management system, respectively. Chapter 8 summarizes the related work. Chapter 9 discusses

various software and hardware extensions of the system, and Chapter 10 concludes the thesis.
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Chapter 2

Problem Definition

This chapter defines security properties achieved in I/O isolation systems and the adversary

model.

2.1 Desired Properties

A practical and trustworthy I/O isolation system must have the following properties:

Generality. The generality of the I/O isolation system is three-fold: First, the security sen-

sitive applications or software modules can be any program that is isolated from the untrusted

OS, not just a small number of special programs (e.g., log-in commands and administrative com-

mands) as in early I/O isolation systems [12, 14, 28, 30, 34, 46, 52, 104]. Second, the devices

that are connected to the security-sensitive applications can be any commodity character device

(e.g., USB thumb drives, embedded cameras and accelerometer sensors on mobile phones), not

just a small number of user-oriented I/O devices (e.g., a keyboard, mouse, or video display),

and not special devices that have data encryption or authentication capabilities. Third, isolated

I/O channels are independent of the coexisting OSes; i.e., they can be used with monolithic

(e.g.,Windows), kernel-based (e.g., Linux, SELinux), or virtualized (e.g., Xen, Xoar [27]) OSes.

This enables isolated I/O channels to function end-to-end across different platform configura-

tions; e.g., from an application running on the x86-based Windows OS on a PC to an application

running on ARM-based Android OS on a smartphone.

Small and Simple. An I/O isolation system must employ a small and simple Trusted Comput-

ing Base (TCB). This enables the isolation system to be fully verified by formal methods, and
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thus to achieve higher security assurance. For example, many OSes offer isolated I/O channels in

the form of secure attention sequences (e.g., Ctrl+Alt+Del) to initiate user communication with

the OS. The TCB for the isolated I/O channels is the entire OS, which is large and routinely com-

promised. These isolated I/O channels, though users may be forced to trust them in practice, are

not adequately trustworthy. Note that a small and simple code base is a necessary but insufficient

condition for formal verification. This arises from the practical constraints of state-of-the-art as-

surance methods. To date, even the seemingly simple property of address-space separation has

only been formally proved for very small code bases; i.e., fewer than 10K lines of code [39].

Human-Verifiable. An I/O isolation system must allow human users to verify the status of

the system; i.e., the users must know whether the isolated channels are in effect, and whether

the protected devices and program are the ones that the users desire. For example, in a secure

user interface application, a user needs to verify that the keyboard is securely connected to the

banking application on his/her machine when he/she is typing in sensitive information, such as

passwords and transaction amounts. The user also needs to verify that what he/she sees on the

graphic display of the machine is exactly what the banking program displays. Without human-

verifiability, the user might have no idea what is really happening to the banking application on

a malware-infected machine and may lose control of his/her banking account. Similar problems

apply to the application-oriented isolated I/O channels.

Commodity. An I/O isolation system must coexist with commodity OSes and platforms such as

personal computers, laptops, mobile phones, tablets, and embedded systems. The I/O isolation

system must not rely on special or extensively modified or restructured OSes, nor does it require

dedicated and complicated devices and appliances. For example, some I/O isolation systems [36,

111] only work with dedicated microkernel-based OSes. These systems are difficult to deploy in

the mass market and are often limited to a few applications and implementation scenarios.

2.2 Adversary Model

We consider an adversary that has compromised the operating system (OS), which we henceforth

refer to as the compromised OS. A compromised OS can access any system resources that it

controls (e.g., it can access any physical memory address and read/write any device I/O port) and
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break any security mechanisms that rely on it (e.g., process isolation, file system access control).

The adversary can then leverage the compromised OS to actively reconfigure any device (e.g., it

can modify a device’s memory mapping, or change the operating mode of a device) and induce it

to perform arbitrary operations (e.g., trigger interrupts, issue DMA write requests) using any I/O

commands. We say manipulated device to reference the devices that the adversary is controlling.

In addition, a rogue or compromised isolated application may attempt to escalate its privilege

by manipulating the interfaces with the I/O isolation system or configuring the isolated devices.

It could also try to break the application isolation (e.g., process isolation, file system controls)

enforced by the OS, or control its devices to compromise the execution or data of the OS, the I/O

isolation system or other isolated applications.

We do not address attacks on device firmware and hardware in this thesis. We assume that

all chipset hardware and peripheral devices are not malicious. They do not contain Trojan-

Horse circuits, microcode, or malware that would violate the I/O isolation in response to an

adversary’s surreptitious commands. We assume that the devices operate exactly according to

their specifications and will not actively perform unintended operations, such as intercepting bus

traffic that is not destinated to them, remaining awake after receiving a “sleep” command, or

writing data to a memory address that is not specified in any DMA command.

In addition, we do not consider side-channel attacks that attempt to extract useful informa-

tion about the isolated I/O channel data (e.g., timing or power analysis). We envision that, if

necessary, security-sensitive application would employ countermeasures to defend against such

attacks. Denial-of-service attacks are also out of scope; we seek only to guarantee the secrecy

and authenticity of the isolated I/O channel.
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Chapter 3

Challenges

3.1 Insufficiency of Previous Systems

Past attempts to provide isolated I/O channels of peripheral devices to security-sensitive applica-

tions on commodity systems have been unsuccessful. In the following sections and in Table 3.1,

we detail the related work and analyze its insufficiency..

Code Isolation Systems. Recent research has demonstrated the removal of the OS from the TCB

for security-sensitive applications or code modules [13, 21, 22, 24, 54, 80, 83, 84, 100, 112–

114, 127]. These mechanisms enable the safe coexistence of the commodity OS and security-

sensitive code. A compromised OS and manipulated devices cannot interfere with the execution

of the isolated code, nor can they reveal or tamper with any run-time data of the isolated code.

While this work is necessary for isolating security-sensitive applications and the drivers of

their devices, it fails to provide a mechanism to enable isolated modules to communicate with

devices with high security guarantees. For storage and networking devices, the isolated modules

can simply outsource the I/O services of these devices to the untrusted OS by using data encryp-

tion [21, 22, 24, 29, 43, 47, 48, 54, 80], because storage and networking devices transfer data in

bulks. Specifically, the wimps can use authenticated encryption techniques to encrypt the data

and send the encrypted data to the storage and networking subsystem of the untrusted OS. When

the wimps get the data back, they can easily verify the authenticity of the data.

However, providing isolated I/O channels of the rest of the devices, character devices, to the

isolated module remains a unsolved challenge. Character devices (e.g., video/audio, camera, sen-
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Table 3.1: A Comparison of Existing I/O Isolation Systems. X* represents that only some of

the systems in the category has the property.

I/O Isolation System Generality Small & Human- Commodity

Simple TCB Verifiability

W/ limited device support ✗ X* ✗ ✗

W/ static device partition ✗ X X* X*

On commodity OS X ✗ ✗ X

W/ device virtualization X ✗ ✗ X

On restructured OS X X ✗ ✗

W/ special devices ✗ X X* ✗

Our system X X X X

sors, user input devices) are pervasive. They account for 57% of device types and 52% of driver

code in Linux [66]. They are used to connect software with human and physical world. More

importantly, isolation by data encryption does not work for character devices because character

devices transfer real-time data in bytes and typically do not have cryptographic capability.

Achieving isolated I/O channels of character devices on commodity platforms is a vastly

more challenging exercise than program and device driver isolation. The diversity and complex-

ity of I/O devices far exceeds that of most non-I/O objects (e.g., code and data memory); hence,

the complexity of mediating and isolating access to I/O devices also vastly exceed that of non-I/O

isolation. Moreover, the I/O hardware of present-day commodity platforms is designed to scale

the multiplexing of very diverse peripheral devices and to provide extensive sharing of physical

resources, but it includes insufficient support for I/O channel isolation; viz. Section 3.2.

Systems with Limited Device Support. For the past three decades, a few systems have imple-

mented isolated I/O with limited configurations on boutique computer systems. These systems

comprise a small number of user-oriented I/O devices (such as a keyboard, mouse, video display,

or printer) and a small number of programs of a Trusted Computing Base (TCB) [14, 30, 46, 52,

104, 133]. Limited configurations and their use within small and special evaluated TCBs enable

significant assurance of I/O isolation. Due to this high level of trustworthiness, these systems do

not intend to provide extra mechanisms for human-verifiability to the user.

Some more recent systems provide isolated I/O channels within system TCBs [23, 37, 94,
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137] but only for a few selected devices. Even limited support for a few devices invariably

increases the size and complexity of trusted code and undermines assurance. For example, in-

cluding only the Linux USB bus subsystem in the XMHF micro-hypervisor [127] would more

than double its code-base size and significantly increase its complexity ; e.g., it would introduce

concurrency in the serial micro-hypervisor code since it would require I/O interrupt handling.

Systems with Static Device Partition. Other attempts statically allocate selected peripheral de-

vices to isolated system partitions [49, 69, 98, 118, 119, 129] by allocating devices to different

system partitions. The partitioning is statically defined at system configuration time and is dif-

ficult to change during system run-time, thus it achieves channel isolation at the cost of losing

on-demand (e.g., plug-and-play) capabilities of commodity systems. Some of these system only

support a limited number of I/O devices in special application scenarios; e.g., network interface

cards, storage devices, and graphic cards on a cloud platform [69, 119].

Systems on Commodity OS. Many OSes offer isolated I/O in the form of secure attention

sequences–key-combinations (e.g., Ctrl+Alt+Del) to initiate user communication with the OS.

The Trusted path on the DirectX system [76] and the Trusted Input Proxy system [16] reserve

dedicated areas of the screen to output the identity and status of the current applications. The

TCB of these systems include the OSes, which are large and routinely compromised. These

isolated I/O channels, though they support a variety of commodity devices, are not adequately

trustworthy.

Device Virtualization and Pass-through. During the past decade, advances in device virtualiza-

tion have decreased the trusted code base for isolated I/O channels, gradually evolving from the

monolithic hypervisors/VMMs to hypervisors with privileged device management domains [15].

It then continually evolved to hypervisors with disengaged privileged domains [27], then to hy-

pervisors with isolated driver domains [40, 87], and finally to hypervisors with device pass-

through support (e.g., Xen, KVM, and [82]) or para-passthrough support (e.g., BitVisor [112]),

which assign I/O devices to a specific guest VM. However, applications in the guest VMs still

communicate with virtualized or pass-through devices via the untrusted guest OS on which they

run, which still implies that a huge code base has to be trusted for isolated I/O. To make things

worse, virtualizing hardware devices of commodity OSes also introduces a huge code base (e.g.,
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hypervisor, privileged domain, and/or driver domains) ; viz. Section 8.3.3 and Table 8.3.2.

Systems on Restructured OS. Trusted-window managers (such as Nitpicker [36], EROS win-

dow manager [111]) mediate and protect user input and output on nicely designed micro-kernel-

based OSes. The micro-kernels provide the near-minimum mechanisms needed to implement

an operating system (e.g., low-level address space management, thread management, and inter-

process communication), while traditional OS functions (e.g., device drivers and file systems)

are modularized and removed from the micro-kernels and run in the user space [42, 117]. Thus,

ideally, isolated I/O channels on these OSes only rely on the small micro-kernel, the necessary

I/O components, and the drivers of the isolated devices, which represents a dedicated but very

small TCB. However, the technical and business-related complexities of restructuring a com-

modity OS to a micro-kernel-based design are immense. In addition, these I/O isolation systems

do not claim to provide human-verifiability to their users.

Special Devices. Other attempts to isolate I/O channels rely on special hardware devices equipped

with data encryption capabilities [72, 85, 103] to establish cryptographic channels to applica-

tions [53, 77, 85, 130]. This approach excludes commodity devices, which lack encryption capa-

bilities, and adds TCB complexity by requiring secure key management for the special devices.

It also raises fundamental usability concerns for commodity platforms. For example, how can a

user securely set or change the secret key within an isolated program without using some isolated

I/O channels of user interface devices to reach that program?

3.2 Complexity of I/O Isolation

As suggested in Section 3.1, isolating the security-sensitive code and device drivers does not

sufficiently guarantee I/O isolation because we still need to isolate the devices used by the

security-sensitive code from the entire complex hardware architecture. Modern I/O architecture

of commodity platforms is designed to multiplex diverse peripheral devices among different ap-

plications and to provide extensive sharing of physical I/O resources, but it includes insufficient

supports for I/O channel isolation.
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Figure 3.1: Attacks against Shared Device I/O Resources. A manipulated device (ManD)

launches an MMIO mapping attack and an interrupt spoofing attack against the path between the

isolated code and its device (WimpD).

3.2.1 Shared Device I/O Resources

There are substantial I/O resources (e.g., memory, I/O ports, interrupts) on commodity platforms

that are shared by the devices of the isolated code and other devices. To provide I/O isolation,

it is necessary to protect the access to the shared hardware resources used by the devices of the

isolated code from the untrusted OS. We identify two categories of shared hardware resources on

current commodity platforms, and highlight attacks that exploit these shared resources to breach

the I/O isolation.

I/O Memory and Ports. The memory-mapped I/O (MMIO) regions of device on commodity

platforms share the same physical memory address space and are configurable by system soft-

ware, such as an OS. A compromised OS (or device driver) may launch an attack, which we call

an MMIO mapping attack, to breach the isolation of device memory. The compromised OS can

intentionally configure the MMIO region of a device (ManD in Figure 3.1) to overlap the MMIO

region of the protected device (WimpD in Figure 3.1). During to this mis-configuration, ManD

15



can then intercept or tamper with the MMIO access of the wimp app to the WimpD. For example,

the malicious OS may map the internal transmission buffer of a network interface card over top

of the frame buffer of a graphics card, so the display output may be directly sent to a remote

adversary via the network. Note that the typical mechanisms for protecting CPU-to-memory

access (e.g., by configuring AMD Nested Page Table (NPT) [8]) or DMA (e.g., leveraging Intel

VT-D [61]) cannot defend against this “MMIO mapping attack”. Similar attacks apply to I/O

ports. A compromised OS can intentionally configure the I/O port(s) of the protected device to

conflict with those of other devices and thus violate the isolation of I/O ports.

Interrupts. Software-configurable interrupts such as Message Signaled Interrupts (MSI) and

Inter-processor Interrupts (IPI) share the same interrupt vector space with hardware device in-

terrupts. By modifying the MSI registers of the ManD, a compromised driver of the ManD can

spoof the MSI interrupts of the WimpD. As shown in Figure 3.1, the unsuspecting driver in the

isolated code may consequently perform incorrect or harmful operations by processing spoofed

interrupts from the ManD.

3.2.2 Shared I/O Hardware Configurations

Peripheral devices are interconnected by a variety of I/O chipset hardware such as northbridge,

southbridge, and bus controllers, as shown in Figure 3.1. The chipset hardware physically trans-

fers the I/O data and commands (e.g., keyboard scan code, DMA write requests) and interrupts

between the protected devices and the CPU and memory used by the isolated software. For the

isolation of I/O channels, it is therefore necessary to protect the configurations of the shared

chipset hardware and to mediate data transfers to the devices.

For example, USB devices are connected to the computer via a hierarchy of USB host con-

troller and hubs. Instead of directly communicating with USB devices’ I/O resources (Sec-

tion 3.2.1), the program running in CPU must indirectly perform I/O operations to the devices

via the USB bus hierarchy. I/O channel isolation for this USB subsystem is the most complex

among the diverse bus subsystems (e.g., PCI, USB, Bluetooth, HDMI) in modern I/O archi-

tectures [66], due to three complexity aspects: It (1) mixes control and data channels, (2) uses

(untrusted) software to maintain the device hierarchy, and (3) uses software-initialized device

addresses (in versions earlier than USB 3.0). The configurations of device hierarchy, address and
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Figure 3.2: I/O Code Base in Commodity OSes.

channels in the USB bus subsystem are initialized and managed by the OS, which is untrustwor-

thy. Thus a compromised OS can misconfigure USB host controller, hubs and other devices that

shares the same USB bus with the isolated devices, in order to launch subtle attacks against the

I/O isolation; viz., the USB address overlap attack and the remote wake-up attack as discussed

in Section 5.2.2. Using these attacks, a USB device manipulated by the compromised OS can

intercept secret messages transferred between the isolated code and its devices, or inject fake

data to tamper with the communication integrity. All in all, I/O channel isolation systems must

control the multiplexing of complex bus subsystems for different devices.

3.2.3 Complex I/O Code Base

Due to the diversity and complexity of commodity peripheral devices and chipset hardware,

modern device drivers constitute a huge body of code in the OS [66]. The drivers are also tightly

integrated with the OS kernel and depends on a variety of utilities from the OS, such as memory

management, synchronization and scheduling, bus subsystem management, and interactions with

low-level I/O resources, as shown in Figure 3.2.

However, it is insecure and incorrect to include the large and complex I/O code base in the

I/O isolation system’s TCB. It is insecure because the added I/O code base will greatly swell the

size of the TCB and significantly increase its complexity; e.g., interrupt handling code would
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introduce concurrency into the TCB. This dramatically increases the complexity of the formal

proof of TCB security properties, and thus greatly undermines the security assurance of the I/O

isolation system. It is incorrect in that the I/O code base used by the isolated security-sensitive

code will conflict with the one in the commodity OS when they both attempt to manage the same

set of chipset hardware.

The challenge, therefore. is to find standard and scalable methods to reduce and simplify the

I/O code base that is introduced in the I/O isolation system, and to securely and correctly cope

with the I/O subsystem in the coexisting commodity OS.

18



Chapter 4

On-demand Isolated I/O

To address the challenges described in Chapter 3, this thesis proposes a unique on-demand I/O

isolation idea and a wimpy-kernel-based architecture to instantiate this idea. This chapter first

introduces the on-demand I/O isolation and its advantages against other I/O isolation models

(Section 4.1). We then describe the security challenges and properties associated with the on-

demand model in Sections 4.2 and 4.3, respectively. Section 4.4 provides an overview of the

wimpy-kernel-based architecture.

4.1 Why On-demand Isolated I/O?

In the on-demand I/O isolation model, the untrusted OS manages all commodity hardware re-

sources and devices on the platform most of the time. However, when a security-sensitive ap-

plication demands exclusive use of a device, the I/O isolation system takes control of necessary

hardware communication resources from the untrusted commodity OS, verifies their OS config-

urations, and allocates them to the application. When the application is done with a channel, the

system returns all resources used to the untrusted OS.

The on-demand I/O isolation model has four significant advantages. First, it enables wimp

applications to obtain isolated I/O channels to any subset of a system’s commodity devices

needed during a session, not just to a few devices statically selected at system and application

configuration [137]. Cryptographically enabled channels, device virtualization, and pass-through

of hardware devices become unnecessary.

Second, it enables trusted audit and control of physical devices without stopping and restart-
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ing applications, since all devices can be time-shared between trusted and untrusted applications.

This makes it possible to maintain control of physical devices in long-running applications on

untrusted commodity OSes; e.g., industrial process control, air-traffic control, and defense.

Third, it allows unmodified commodity OSes to have unfettered access to all hardware re-

sources and to preserve the entire application ecosystem unchanged. Relinquishing and reclaim-

ing hardware resources for on-demand I/O isolation is handled by non-intrusive OS plug-ins

(e.g., loadable kernel modules), without requiring any OS re-design or recompilation.

Fourth, it offers a significant opportunity for the reduction of the trusted I/O kernel size and

complexity, and hence for enhanced verifiability. That is, the kernel can outsource many of its I/O

functions to an untrusted OS and use them whenever it can verify the results of the outsourced

functions correctly and efficiently. This opportunity is unavailable in the static device allocation

and virtualization models. In the first model the OS cannot configure devices in wimp partitions,

and in the second it does not have direct access to hardware devices.

4.2 Security Challenges

In the giant-wimp isolation model, on-demand I/O channels offer ample opportunity for a giant

to interfere with a wimp’s I/O operation and compromise its secrecy and integrity. One faces

three key challenges in providing such channels.

I/O Channel Interference. Given the fact that hardware resources and devices are dynamically

shared by the giant (i.e., untrusted OS) and wimp applications on a time-multiplexed basis, the

giant can misconfigure a device, or a transfer path to it, and compromise the secrecy and/or in-

tegrity of a wimp’s I/O. For example, most devices are interconnected by diverse bus subsystems

(e.g., PCI, USB, Bluetooth, HDMI) in modern I/O architectures [66], which become exposed

to subtle isolation attacks; viz., the USB address overlap attack and the remote wake-up attack

of Section 5.2.2. Hence, I/O channel isolation must control the multiplexing of complex bus

subsystems for different devices.

Mediation of Shared Access to Devices. Further opportunities for interference arise from

on-demand I/O; e.g., a rogue wimp/giant may refuse to release the use of I/O resources shared

with the giant/wimp (e.g., shared interrupts) after I/O completion. Although both wimps and
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giants must have time-bounded, exclusive access to shared I/O resources and devices, they must

be unable to retain unilateral control over shared I/O resources beyond time bounds specified by

mediation policies for device access.

Verifiable I/O Code Base. The opportunity for minimizing I/O kernel size and complexity

created by the on-demand I/O isolation model (viz., Section 4.1) poses a significant design ques-

tion: if outsourcing of I/O kernel functions to the untrusted OS is possible only if the results of

the outsourced functions can be verified correctly and efficiently by the kernel, which functions

can be outsourced? Answering this question is important, since the trusted code minimization

can be dramatic, as illustrated in Section 6.2.3 below.

Minimization of I/O kernel code base for verifiability reasons goes beyond the outsource-

and-verify method. For example, device driver and bus subsystem code could be decomposed

into modules that can be exported to applications, whenever the trusted I/O kernel can mediate

the exported modules’ access to I/O kernel functions and objects.

Finally, the composition of a trusted I/O kernel with the rest of the TCB must not diminish

the existing assurance; i.e., it must not invalidate the TCB’s security properties and their proofs.

4.3 Security Properties

The security challenges described above indicate that the typical giant-wimp isolation model

must be augmented with additional security properties. These properties specify how the trusted

I/O kernel interacts with wimp applications, giants, and the underlying TCB to provide on-

demand isolated I/O channels to peripheral devices. These properties are presented below.1

P1. I/O Channel Isolation. This property implies that both the giant and wimp applications

cannot compromise the authenticity and secrecy of their I/O transfers, and wimps cannot com-

promise other wimps’ transfers.

P2. Complete Mediation. This property implies that all time-multiplexed accesses of wimp

applications to devices via shared I/O hardware resources and bus subsystem software must be

mediated.

1 The similarity of these security properties to those of a traditional reference monitor [10] is not entirely acci-

dental. However, achieving these properties for on-demand isolated I/O channels on a commodity OS is a vastly

more challenging exercise than building a reference monitor for non-I/O objects from scratch.
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P3. Minimization of the Trusted Codebase. This property implies that (1) the code base of

a trusted I/O kernel must be minimized to facilitate formal verification; and (2) the underlying

TCB must be unaffected by the addition of a trusted I/O kernel.

4.4 System Overview

To fulfill all three security properties of on-demand isolated I/O systems, we propose an add-on

security architecture based on a wimpy kernel (WK), which composes with the underlying TCB,

the untrusted OS, and wimp applications [139]. This section illustrates this architecture and

highlights the code base minimization methodology of the wimpy kernel. Note that the under-

lying TCB used in this thesis is a slightly modified version of XMHF [127] – a non-virtualizing

micro-hypervisor whose memory integrity has been formally verified. We stress, however, that

any type of TCB with similar isolation properties as XMHF could be used to support the wimpy

kernel.

4.4.1 Wimpy Kernel: An Add-on Trustworthy Component

As shown in Figure 4.1, the micro-hypervisor (mHV ) – the underlying trusted code base of the

I/O isolation system – runs at the highest privilege level, protects itself, and provides typical

isolated execution environments for wimp apps to defend against the untrusted OS and other

applications (i.e., the giant). The micro-hypervisor is a trustworthy component “added on” to

existing commodity OSes - not a native foundation built at OS inception [45]. The mHV , which

is a slightly modified version of XMHF [127], implements the giant-wimp isolation model in the

sense that it controls only the few hardware resources needed for its isolation, whereas the giant

directly controls the remaining system chip-set hardware and peripheral devices.

The wimpy kernel is also an add-on trustworthy component, which is isolated from untrusted

OS by mHV . It executes at the OS’s privilege level, dynamically controls the hardware resources

necessary to establish isolated I/O channels between wimp apps and I/O devices, and prevents

the untrusted OS from interfering with these channels and vice-versa; viz., Property 1 of Sec-

tion 4.3. mHV maps the wimpy kernel into the address space of each supported wimp app to

facilitate efficient communication between wimp apps and the wimpy kernel. The wimpy ker-

nel leverages typical system techniques, such as CPU rings and guest page table permissions, to
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Figure 4.1: Overview of the I/O Isolation Architecture. The grey area represents the trusted

code base of wimp applications.
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protect itself from the non-privileged wimp apps. The wimp apps incorporate modified, unpriv-

ileged device drivers to communicate with the isolated I/O devices, under the mediation of the

wimpy kernel. The mHV , wimpy kernel, and wimp app interactions for channel isolation are

described in Section 5.5.

Figure 4.1 shows that the wimpy kernel must compose with three other system components.

First, it must compose with the underlying micro-hypervisor, mHV . The key goal of this com-

position is to retain the stable and formally verified properties of mHV , as required by Property

P3 (part 2); e.g., memory integrity and address space separation [127]. Second, it must compose

with the untrusted OS (giant) to remain small and simple; viz. Property 3 (part 1). Specifically,

the wimpy kernel outsources its most complex functions to the untrusted OS whenever it can

efficiently verify their results. Third, it must compose with wimp apps. This is because the min-

imization of its code base suggests that it should de-privilege and export some of its code (e.g.,

drivers) to wimp applications whenever it can mediate all accesses of the exported code to I/O

devices and channels under its control; viz., Property 2.

4.4.2 Composition with the Underlying TCB

The composition of the wimpy kernel with mHV has three important characteristics: it preserves

mHV ’s wimp-giant isolation model; it avoids the addition of new abstractions to mHV ; and it

retains the verifiability of mHV and its security proofs.

First, the wimpy kernel does not add any security primitives or services to the underlying

mHV beyond those already required by the typical wimp-giant isolation model, which include

physical memory access control [8, 62], device Direct Memory Access (DMA) control [7, 61],

and sealed storage and attestation root-of-trust [50].

Second, the wimpy kernel does not require any new abstraction beyond wimp registration and

un-registration, which are already offered to the untrusted OS for wimp-giant isolation. These

services rely on the separation of address spaces and physical memory of the wimps and untrusted

OS and preserve the memory isolation semantics of mHV .

Third, the wimpy kernel does not invalidate mHV ’s security properties or their proofs. For

example, it does not add services and primitives that support I/O channels or virtualization. I/O

channels include memory mapping operations that directly affect address-space separation and
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memory protection proofs, and interrupt processing that greatly complicates those proofs due to

added concurrency. Hence, interrupt processing must completely bypass mHV and dynamically

select handling procedures located in either the untrusted OS or WK, depending on which system

component controls the device at the time.2

Satisfying these composition goals preserves the simplicity and stability of the underly-

ing micro-hypervisor. With XMHF as its foundation, mHV continues to remain much sim-

pler than all past virtualizing hypervisors/VMMs as well as more recent micro-hypervisor de-

signs [23, 83, 112–114]. Considering an alternative underlying TCB, a micro-kernel such as

seL4 [70], the complexity of the micro-hypervisor is demonstrably lower than that of the for-

mally verified seL4 microkernel [71]. Specifically, seL4 implements more complex abstractions

with richer functionality than our hypervisor. For example, seL4 supports full-fledged threads

and interprocess communication primitives (as opposed to simple locks), memory allocation (as

opposed to mere memory partitioning), and capability-based object addressing (as opposed to

merely address space separation via paging).

4.4.3 Composition with the Untrusted OS and Wimp Apps

To assure the I/O channel isolation, the wimpy kernel needs to control all I/O hardware that is

shared by devices of the untrusted OS and wimp apps. For example, the USB device of a wimp

app could share the USB host controller and hubs with untrusted-OS-controlled devices using

this controller. However, including all OS code that ordinarily controls shared I/O hardware in

the wimpy kernel would bloat its code base and substantially increase its verification effort.

To minimize the code base size and complexity of the wimpy kernel, we apply two classic

methods of trustworthy system engineering (see Figure 4.2), namely outsource-and-verify func-

tions (whose various cryptographic versions have been used since the late 1970s [21, 22, 24, 29,

43, 47, 48, 54, 80]) and export-and-mediate code [64, 67, 105]. However, neither method has

ever been used for high-assurance, on-demand I/O isolation kernels for commodity platforms.

I/O isolation was either done in security kernels for a few simple devices and not on demand,

or was performed outside security kernels and not minimized for high assurance; viz., related

2Wimpy kernel uses similar mechanisms to those of references [40, 137] to isolate the interrupts of OS- and

wimp-app-controlled devices and bypass mHV .

25



!!!

!"##"$%&'()*((

((+,-#"$%./$0(

"#$%&#'!

()'!*)+','-&.'!

1%#2'(3/4-/5(+130(

1%#2((

(622(

OS-  
privileged 

non- 
privileged 

()'!*)+','-&.!*&,7(

"#$%&#!
*)//0#-!

Legend Verifier Mediator 
Module Use 

Dependency 
Exported  

Module  

1//2!1//3!1//!4! . . .  1//!5!

Outsource  
& Verify 

Export &     
Mediate 

"#$%&#!

*)//0#-!

60789&%&9!

:;<!

60789&%&9!
:;<!

"#$%&#!

Bus  
Subsystem 

Figure 4.2: Outsourced Functions and Exported Code of the Wimpy Kernel.

work in Section 8.3. We achieve significant code base reduction results using these two meth-

ods; i.e., we manage to cut down over 99% of Linux USB code from the wimpy kernel, as shown

in Section 6.2.3.1.

Outsource-and-Verify. We decompose the bus subsystem functions, outsource them to the

untrusted OS, and then efficiently verify the results of those functions; viz., Figure 4.2. For

example, the untrusted OS initializes the USB hierarchy, which includes the USB host controller,

hubs and devices, and configures the I/O channels for a specific wimp device, whereas the wimpy

kernel verifies their correct configuration and initialization. Without verification, the untrusted

OS could intentionally misconfigure the shared USB host controller and hubs, and violate I/O

channel isolation in an undetectable manner; viz., the USB address overlap and remote wake-

up attacks in Section 5.2.2. The verification code is much smaller and simpler than the bus

subsystem code and various device drivers left in the untrusted OS, and relies only on generic host

controller and hub operations, instead of the device-specific operations. In short, the outsource-

and-verify approach enables us to substantially decrease the code base of the wimpy kernel and

also avoid reliance on the untrusted OS.
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Export-and-Mediate. We further minimize the wimpy kernel code base by exporting device

drivers and bus subsystem code to isolated wimp applications3 which would otherwise have to

be supported in the wimpy kernel itself; e.g., the Bus Subsystem Stub of Figure 4.2 denotes bus

subsystem code exported by the wimpy kernel to a wimp app. In Section 5.2.3, we illustrate how

to export bus subsystem code using USB as an example. In particular, we show how different

transfer descriptors for USB transactions are created for wimp apps, and how the wimpy kernel

mediates the wimp-app’s use of these descriptors by checking the validity of a few isolation-

relevant descriptor fields.

To export device driver and bus subsystem code to wimp apps, the wimpy kernel must iden-

tify and remove all code dependencies on the untrusted OS. To do this, the wimpy kernel de-

privileges the driver support code (e.g., memory management, kernel utility libraries) and medi-

ates the wimp apps’ use of it, whenever necessary; viz. Figure 4.2. Some code dependencies,

such as those of synchronization functions for device multiplexing, disappear in the on-demand

I/O model because the devices are exclusively owned by the wimp apps during their run time.

Other functions, such as low-level I/O operations, are de-privileged to the wimp applications and

may require mediation of the wimpy kernel after code export. For example, memory manage-

ment functions are reimplemented for drivers in wimp apps without explicit mediation, since the

wimpy kernel and the underlying TCB already isolate chunks of memory and pass it to wimp

apps before wimp app execution. We illustrate how wimpy kernel performs low-level I/O re-

source isolation and driver support code exporting in Sections 5.1 and 5.3, respectively.

Generality of the Design Methods. The outsource-and-verify method, which we illustrate with

the USB subsystem in this thesis, applies to all other bus subsystems with similar code size and

complexity minimization results. This is the case because device initialization and configuration

functions, which we outsource to the untrusted OS, comprise about 51% of driver code on aver-

age [66]. Verification algorithms for the outsourced results are much simpler for all other sub-

systems (e.g., PCI, Firewire) than for the USB. For example, the verification algorithm for PCI

bus is able to collect hierarchy information directly from the hardware registers of PCI bridges

without having to derive it. For the Firewire bus, all bus bridges store routing information on how

3Wimp apps can also outsource-and-verify driver functions (e.g., device initialization, power management) to

the OS, and reduce their size and complexity.

27



to reach a specific device, which can be directly accessed by the verification algorithm. In addi-

tion, for power management code (which comprises 7.4% of driver code on average), verifying

the power state of bus controller and hubs/bridges are general operations for any bus subsystem

because they comply with the widely accepted ACPI standard.

Our export-and-mediate method follows classic trustworthy-system engineering principles

(mentioned above). Although the security-sensitive operations may differ for various types of

bus subsystems and devices, their identification is well understood. In the on-demand I/O iso-

lation model, we identify all operations which, if misused by malicious or compromised wimp

apps, could violate the isolation I/O channels belonging to other wimp apps or to the OS. The

mediation code of the wimpy kernel verifies that wimp-app operations do not cross the isolation

boundary of low-level I/O resources allocated to wimp app devices. This code can be used by

all devices and bus subsystems. For example, the wimpy kernel performs simple range checks

to ensure that a wimp app’s operations only touch its own I/O ports, MMIO memory, and DMA

memory. Mediation code also validates interrupt settings by comparing the interrupt vector,

which is set by wimp apps, with others set by the untrusted OS. The wimpy kernel does not need

to mediate wimp app operations that affect functional properties or the availability of the isolated

devices, which are more likely to have complex semantics of specific devices or buses. In addi-

tion, the method used to export driver-support code (e.g., low-level I/O, memory management,

synchronization) to wimp apps (Section 5.3) applies to all devices and buses. However, drivers

for different types of devices and buses may have different dependencies on support code.
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Chapter 5

System Design

This chapter first presents how to use the outsource-and-verify and the export-and-mediate de-

sign methods to perform on-demand I/O isolation and to minimize low-level I/O functions (Sec-

tion 5.1), bus subsystems (Section 5.2), and driver support code (Section 5.3) in the wimpy

kernel. We then describe the wimp-OS communication service provided by the wimpy kernel

(Section 5.4) and major operations in the wimp application’s lifecycle (Section 5.5). After that,

we discusses the system design to support user verifiability and the development effort of wimp

apps in Sections 5.6 and 5.7, respectively.

5.1 Isolating Low-level I/O Resources

This section illustrates the detailed mechanisms of isolating the low-level I/O resources (e.g., I/O

ports, device-memory, configuration space, interrupts) of the protected devices from those of the

other devices.

5.1.1 Protection of I/O-port Access

Software programs use the IN/OUT family of CPU instructions to read/write data from/to the

I/O ports of devices. To control access to device I/O ports, the wimpy kernel must prevent the

device-port-mapping conflicts that may be intentionally created by the compromised OS, and

mediate the I/O port access from both the wimp apps and the untrusted OS.

Preventing Port-mapping Conflicts. The compromised OS can re-map a manipulated device’s

I/O ports to overlap those of a wimp device. Read/write access from/to those I/O ports will have

unpredictable results, since both the manipulated device and wimp device will respond to the I/O
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access command. Thus, a manipulated device (and a compromised OS) may potentially intercept

or tamper with the I/O port data of the wimp app.

To address this problem, the wimpy kernel isolates the wimp device’s I/O ports from the

shared I/O port space of the platform. Specifically, before executing the wimp app, the wimpy

kernel scans through all I/O port mappings of the chipset hardware and enumerates all plug-and-

play (PnP) devices to detect their configured I/O ports. For example, the wimpy kernel accesses

the PCI configuration spaces of all PCI devices in the system and parses their I/O port settings

via the PCI Base Address Registers in the configuration spaces. If any of the above port settings

conflict with those of the wimp device, the wimpy kernel issues an exception to the wimp app.

The wimpy kernel must protect all I/O port mappings in the device configuration space from

modification by a compromised OS or manipulated devices throughout the run-time of the wimp

app. We defer the details of scanning and protecting device configuration space to Section 5.1.3.

Mediating I/O-port Access. The wimpy kernel configures the I/O port-access-permission

bitmap of the Task State Segment (TSS) used by the wimp app, so that the wimp app can only

access the I/O ports of its associated wimp device(s). To prevent the untrusted OS from access-

ing the I/O ports of the wimp device(s), the wimpy kernel invokes the mHV to configure the I/O

port-access-interception bitmap in the hypervisor control block that describes the OS’s execution

environment (a standard feature of x86 hardware virtualization support [8, 58]). Any unautho-

rized access from the OS to the I/O ports of the wimp device(s) will be trapped and filtered out

by the mHV .

5.1.2 Protection of I/O-memory Access

There are two methods for the wimp app to interact with the wimp device via physical memory

space: Memory Mapped I/O (MMIO) and Direct Memory Access (DMA). The compromised

OS and manipulated devices can breach the isolation of the wimp device-associated physical

memory regions in three ways: via an MMIO mapping attack, through unauthorized CPU-to-

memory access, or via unmediated DMA.

Preventing MMIO Mapping Attacks. The compromised OS can launch a MMIO mapping

attack on the MMIO memory regions associated with a wimp device, as shown in the left half of

Figure 5.1. To defend against this attack, the wimpy kernel must ensure that all MMIO memory
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ranges used by the chipset hardware and other peripheral devices do not overlap with those of

the wimp device.

Before executing a wimp app, the wimpy kernel scans through all MMIO memory mappings

specified by the chipset hardware and enumerates all PnP devices to discover their MMIO mem-

ory ranges (e.g., by checking the PCI Base Address Registers in the PCI configuration space).

If overlaps with the wimp device’s memory ranges exist, an MMIO mapping attack may be in

progress, and the I/O isolation may be violated. Upon detection, the wimpy kernel issues an

exception to the wimp app. During the wimp app’s execution, the wimpy kernel must prevent

the compromised OS and manipulated devices from modifying the MMIO memory mappings of

all devices, by calling the mHV to protect the device configuration space. We elaborate on our

mechanisms for protecting device configurations in Section 5.1.3.

Preventing Unauthorized Memory Access. The compromised OS can directly access the

wimp device’s MMIO and DMA memory regions or manipulate a device outside the isolated

I/O channels to issue unauthorized DMA requests to access those regions. The wimpy kernel

and mHV defend against these attacks by leveraging standard features for x86 CPU and chipset

hardware virtualization support. For example, the mHV configures the access permissions in

Nested Page Tables (or Extended Page Tables) [8, 58] to prevent unauthorized CPU-to-memory

access. The mHV also sets up the IOMMU [7, 61] to prevent other devices from performing

DMA access to the memory regions associated with the wimp app. Note that IOMMU protection

relies on the assumption that it can correctly identify DMA requests from the devices. We discuss

DMA request ambiguity and its influence on I/O isolation in Section 9.1.

5.1.3 Protection of Device Configuration Space

A fundamental building block of our prevention mechanisms against I/O port conflicts (Sec-

tion 5.1.1) and MMIO mapping attacks (Section 5.1.2) is protecting the device configuration

space. Specifically, the hypervisor intercepts all accesses to the device configuration space of the

wimp device(s) throughout the execution of wimp applications. The mHV grants the wimp app

only the access permissions to the configuration space of its devices, and prevents the OS and

manipulated devices from modifying the I/O ports and MMIO memory mappings of any device.

For the x86 I/O architecture, the device PCI/PCIe configuration space is accessed via special
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Figure 5.1: MMIO Mapping Attack against I/O Memory Isolation. In the left half of the

figure, ManD’s MMIO memory is remapped to overlap that of the wimp device (0x20-0x30),

and the MMIO mapping attack will succeed. The right half shows that MMIO mapping attacks

cannot compromise the access to PCI/PCIe configuration space.

I/O ports [19, 109] or through reserved MMIO memory regions [19]. At first glance, this appears

to lead to a cyclic dependency: protecting the device configuration space, in reverse, relies on

protecting the special I/O ports and MMIO memory regions.

However, this seemingly cyclic dependency can be resolved. The key observation is that

I/O port conflicts and MMIO memory mapping attacks cannot corrupt the access to the device

configuration space (shown in the right half of Figure 5.1). Even if some manipulated device

has its I/O ports or MMIO memory regions overlapping those of the configuration space, the

manipulated device still can not intercept any configuration space access destinated to other

devices. Specifically, both the special I/O port numbers and the base address of the configuration
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space MMIO memory are located in dedicated registers in the northbridge chipset [38]. The

northbridge interposes on every port and memory access from the CPU(s). If the requested ports

or memory regions fall into those of the configuration space, the northbridge transforms the

access requests into PCI/PCIe configuration bus cycles with special address information. This

address information is only correlated with the targeted device’s static geographic position in

the system hierarchy where the targeted PCI/PCIe device is hard-wired or plugged. I/O ports

and MMIO memory remapping cannot manipulate device hierarchic positions, and thus cannot

cause the manipulated devices to claim the configuration space cycles of other devices.

Therefore, during the execution of the secure application, the mHV only needs to config-

ure the I/O port-access-interception bitmap (Section 5.1.1), Nested/Extended Page Tables, and

IOMMU (Section 5.1.2), to prevent unauthorized CPU-to-memory access and DMA to the whole

device configuration space. After that, the wimpy kernel can securely scanning through the

I/O port and memory settings in the configuration space to detect possible I/O-port-mapping or

MMIO mapping attacks. Protection of the device configuration space remains active until the

wimp app is torn down.

5.1.4 Interrupt Isolation and Delivery

Our system handles three types of device interrupts, including hardware interrupts managed

by the [Advanced] Programmable Interrupt Controller ([A]PIC), Message Signaled Interrupts

(MSI), and Inter-Processor Interrupts (IPIs). The wimpy kernel should fulfill the following two

requirements for device interrupt isolation: (1) Interrupts should be correctly routed, i.e., inter-

rupts from the wimp device are exclusively delivered to the CPUs that run the respective wimp

app, and other interrupts should not arrive at those CPUs. 1 (2) Spoofed interrupts should not

compromise the I/O isolation.

A common pitfall in interrupt isolation is ignoring requirement (2). One may argue that (2) is

unnecessary, because the driver of the trusted-path device endpoint can verify the identity of the

interrupts it receives. When the wimp app receives an interrupt that appears to originate from the

1 However, this mechanism does not apply to the interrupts which are shared by the untrusted OS and wimp

apps and cannot be separated using Message Signaled Interrupts (MSIs). Similar to other related work [15, 40],

we assume that this limitation will disappear once MSI becomes mainstream. Note that the PCI Express (PCIe)

specification already mandates the MSI implementation on all PCIe devices.
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Figure 5.2: Interrupt Spoofing Attacks. IOAPIC*/LAPIC* denotes the interrupt controllers

manipulated by the compromised OS. Intr(DE’s vector) represents spoofed hardware

interrupts with the DE’s interrupt vector. When the IOMMU interrupt remapping feature is

enabled, spoofed MSIs with incorrect issuer identifiers will be filtered out by the IOMMU (Sec-

tion 5.1.4.2).

wimp device, it communicates with the wimp device to check whether the wimp device indeed

has a pending interrupt. If not, the wimp app refuses to service this interrupt. However, not

all wimp device device drivers are robust against spoofed interrupts. For example, MSI device

drivers often assume that the OS avoids interrupt conflicts when initializing MSI-capable devices.

As a result, a spoofed MSI may cause device driver misbehavior. MSI device drivers that receive

a spoofed DMA Finish interrupt, without checking with the interrupting device, may operate on

incomplete or inconsistent data.

To meet both interrupt isolation requirements, the wimpy kernel must modify the configu-

rations of the interrupt controllers, MSI-capable devices, and other chipset hardware along the

interrupt delivery route during the establishment of isolated I/O channels. The compromised OS
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may subvert those configurations during the execution of the wimp apps, in order to misroute

device interrupts or launch interrupt spoofing attacks (Figure 5.2). We will detail the protec-

tion mechanisms for hardware interrupts and message signaled interrupts in Sections 5.1.4.1

and 5.1.4.2, respectively. Interprocess-interrupts handling mechanisms are deferred to Sec-

tion 5.4.

Note that for interrupt delivery to the wimp app, WK implements a signal notification mech-

anism similar to that of the Linux signals [17]. Using this mechanism, wimp apps register their

interrupt handler with the WK, either at wimp registration, if the wimp device has fixed hard-

ware interrupts, or during run-time, if the interrupts are software-initiated (e.g., MSIs). The WK

intercepts the wimp device interrupts, and generates corresponding signals to the wimp apps.

5.1.4.1 Isolating Hardware Interrupts

Hardware interrupts are managed by a PIC on uni-processor systems, and by an IOAPIC and

per-processor Local APICs (LAPIC) on multi-processor platforms. The PIC and IOAPIC are

deployed with redirection tables that map device hardware interrupts to their corresponding in-

terrupt vectors (with vector numbers and delivery destinations). The PIC or LAPICs then decide

when and whether to deliver messages with those interrupt vectors to targeted CPU(s). During

the establishment of isolated I/O channels, the wimpy kernel isolates hardware interrupts by the

following steps:

• Modify the redirection table on PIC or IOAPIC to reroute wimp device interrupts and to

remove any interrupt-to-vector mapping conflicts between the wimp device interrupts and

others.

• Setup corresponding the PIC/LAPIC registers of the CPU that runs the wimp app to enable

delivery of the wimp device’s interrupts and to temporarily disable interrupts from other

devices.

• Manipulate the Interrupt Descriptor Table (IDT) so that the wimp device interrupts will

trigger the interrupt handler in the wimpy kernel.

While the wimp app is running, the mHV provides run-time I/O port and memory protections

to the redirection tables, the interrupt controller registers, and the IDT (using the mechanisms
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described in Sections 5.1.1- 5.1.3). Note that no run-time protection is needed on uni-processor

systems, since the OS is held in a pending state during the execution of the wimp app.

5.1.4.2 Isolating Message Signaled Interrupts

An MSI-capable device can generate MSIs by writing a small amount of data to a special physical

memory address. A chipset component interprets the special memory write and delivers the

corresponding interrupts to the targeted processor(s) [19, 109].

Challenges. MSI-capable devices use Message Address Registers to store the memory address

range, and Message Data Registers to store the data that defines the interrupt vectors. To launch

an MSI-spoofing attack against a wimp app-wimp device trusted-path, a compromised OS can

change the Message Data Registers of other devices to include the wimp device’s interrupt vector.

By programming the device’s DMA scatter-gather unit, the OS can also spoof arbitrary MSI

messages, without modifying any Message Address/Data Register on any device [132].

The software-configurable nature of MSIs and the complexity of the potential spoofing at-

tacks make MSI isolation extremely difficult. Enumerating every MSI-capable device in the

system and configuring their MSI control registers is not only time-consuming and inefficient,

but also fails to defend against the above “scatter-gather attack” [132].

Solution. We design a comprehensive and efficient solution for isolating MSIs, which does

not require controlling any MSI-capable devices other than the wimp device. Our solution lever-

ages the Interrupt Remapping features in the IOMMU [7, 61]. For example, with Intel VT-D

Interrupt Remapping, MSI messages are embedded with a specified handle [61]. Upon receiving

an MSI message, the IOMMU uses that handle as an index to locate a corresponding Interrupt

Remapping Table entry, which stores a device-specific interrupt vector.

To re-route MSIs from the wimp device, the wimpy kernel modifies the wimp device’s MSI

message handle to point to a specific interrupt vector with a chosen vector number and delivery

destination (only the CPU(s) executing the wimp app). The wimpy kernel also configures the

LAPIC registers and IDT entries to ensure that MSIs are delivered to, and serviced by, the correct

interrupt handlers. Note that the chipset hardware that interprets MSI messages (e.g., the PCI host

controller on the southbridge) often sits between the devices and the IOMMU on the northbridge.

The compromised OS and manipulated devices may modify the configuration of this hardware to
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Table 5.1: Decomposition of the Linux USB Bus Subsystem.
Code Modules Design Decisions

Bus enumeration Outsourced to OS

Power Management Outsourced to OS

Information & VFS Removed

Device hot-plug Removed

Request handling Exported to wimp apps

suppress or mistransform MSI signals. Thus, the wimpy kernel must also configure and protect

the corresponding registers on that interpreting hardware to enable and correctly transform MSI

messages.

To defend against the MSI spoofing attacks, the wimpy kernel configures the corresponding

interrupt remapping table entry of IOMMU to only accept MSI messages with the wimp device’s

device identifier. As shown in Figure 5.2, spoofed interrupts generated by manipulated devices do

not have the interrupt identifier of the wimp device, and thus are filtered out by the IOMMU. Note

that this defense mechanism relies on the assumption that the IOMMU can correctly identify the

MSI issuer (similar to identifying the sender of DMA requests). We discuss this assumption in

more detail in Section 9.1.

Throughout the execution of wimp apps, the wimpy kernel protects all the above registers

and tables using the mechanisms described in Sections 5.1.1 - 5.1.3.

5.2 Decomposing Bus Subsystem

In this section, we chose the USB subsystem to illustrate the wimpy kernel design of bus sub-

system decomposing and code minimization method for two reasons. First, the USB bus is very

popular in terms of device connectivity. For example, in Linux, 35% of device drivers use USB

and 36% PCI; 10% of higher-level protocol drivers use either [66]. Second, channel isolation

for the USB subsystem is the most complex since it mixes control and data channels, and uses

(untrusted) software to maintain the device hierarchy and initialize device addresses (in versions

earlier than USB 3.0).

In contrast, channel isolation for all other subsystems (e.g., PCI) is much simpler. For ex-

ample, they already have separate control channels: some (e.g., PCI, Firewire) store hierarchy

information in hardware, and others (e.g., Bluetooth and HDMI) have hardware-assigned de-

37



vice addresses. These channel control components can be directly accessed and protected by the

wimpy kernel. Specifically, in PCI bus, the devices can be directly accessed via low-level I/O

resources (e.g., the I/O ports and MMIO memory), we can use the mechanisms described in Sec-

tion 5.1 to isolate the I/O resources of the target devices. The PCI devices have their separated

control channels, the PCI configuration space, which can be decided by the physical positions

of the devices in the bus (e.g., where the devices are hardware-wired or which slots the devices

are plugged in) and the configurations of PCI bridges. Once the wimpy kernel identifies, verifies

and protects the control channels, the untrusted OS cannot compromise them again. The wimpy

kernel can further verifies the data channel configurations via the control channels to guarantee

the I/O channel isolation. For example, the wimpy kernel verifies the MMIO settings in the PCI

configuration space of all devices to avoid MMIO mapping attacks on the protected wimp device

(Section 5.1.2). The wimpy kernel also verifies the MMIO memory range settings on the on-path

PCI bridges and make sure that MMIO access to the wimp device is correctly routed.

5.2.1 Example: Linux USB Bus Subsystem

The Linux USB bus subsystem implements a variety of I/O functions such as bus enumeration,

power management, device-information bookkeeping and the virtual file system (VFS) presen-

tation to user-level application, device hot-plug, and request handling. We apply the outsource-

and-verify and the export-and-mediate approaches to decompose this subsystem and include only

necessary code in the wimpy kernel. The results are summarized in Table 5.1.

Specifically, we outsource the USB bus enumeration function to the OS, and design a simple

and efficient verification algorithm in the wimpy kernel to verify the OS’s configuration of the

USB bus hierarchy (Section 5.2.2). We also outsource power management functions of the USB

host controller and hubs to the OS, since the wimpy kernel can efficiently verify the power

status and prevent the OS from selectively disabling the bus hierarchy and compromising I/O

data integrity of wimps. In contrast, device information bookkeeping and virtual file system

services become unnecessary, because the wimpy kernel manages only a few devices for wimp

apps on-demand. Instead, user-level wimp apps include the device drivers and directly access

their devices, without any file-system representation. Also, the device hot-plug is excluded from

the wimpy kernel, because it is not applicable to the on-demand I/O isolation model. Finally, the
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wimpy kernel exports the USB request handling code, which sets up USB transfer descriptors

according to the requests from USB device drivers, to the wimp apps. However, the wimpy

kernel verifies a few fields in the wimp-app-generated descriptors to ensure that the wimp apps’

use of device I/O resources does not violate I/O channel isolation (Section 5.2.3).

5.2.2 Verifying the Outsourced USB Bus Enumeration

To motivate the need to verify the USB device hierarchy whose management is outsourced to

an untrusted OS, we briefly illustrate two attacks in which the compromised OS can breach the

I/O data secrecy and integrity of wimp apps. Then we present the algorithm to defend against

these attacks and verify the OS-initialized USB hierarchy. The concrete implementation of this

algorithm is described in Section 6.2.2.1.

5.2.2.1 Attacks

Address Overlap Attack. A compromised OS can intentionally create duplicate addresses for

various devices or hubs in the USB hierarchy, as is shown in Figure 5.3. The ultimate purpose

of this type of device misconfiguration is to surreptitiously compromise the wimp I/O data, as

illustrated below.

A device with a duplicate USB address can hide from the WK during hierarchy verification,

if it responds to control transfers from the WK (e.g., reading device descriptors) slower than

the wimp device whose address it duplicates. However, the hidden device (“hidden dev”) may

still intercept or respond to other types of USB data transfers faster. Thus the hidden device can

be directed to compromise both I/O data secrecy and integrity of a wimp device with the same

address.

Remote Wake-up Attack. A subtle attack can be launched by USB devices in suspended

state which can still respond to external wake-up signals (e.g., a special packet sent to a USB

Ethernet card) and resume their active state. Taking advantage of this remote wake-up feature, a

compromised OS can configure a hidden dev, suspend it to evade verification, and later resume

it to launch a “USB address overlap attack”. However, we note that the remote waking up of a

device needs to be coordinated by an upstream, non-suspended USB hub [4]. In a more potent

attack, the OS could configure the hub upstream of the suspended device as a hidden dev (e.g.,
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Figure 5.3: USB Address Overlap and Remote Wake-up Attacks. Legend: The root of the

USB bus denotes the USB host controller, the leaves the USB devices, and the intermediate

nodes the USB hubs. The number of each tree node denotes the USB device address. The dotted

nodes represent the USB devices whose addresses are duplicated in an attack. The grey node

denotes the USB device that is suspended by the untrusted OS and can be remotely woken up

using external signals (e.g., a special packet sent to a USB Ethernet card).

the dotted node No.3 in Figure 5.3), which would hide the remote wake-up event from the wimpy

kernel. Thus, to defend against this subtle attack, the wimpy kernel verifies (1) that only the hubs

that connect the wimp device to the host controllers are in non-suspended state during wimp

execution, (2) that there is no hidden hub in the hierarchy, and (3) the status of all non-suspended

hubs to detect any remote wake-up signals.

Proof-of-concept Experiments. We experiment with the USB address overlap attack, and

analyze its impact on I/O channel isolation. Note that USB device communication has two

directions: IN means data is transferred from device to host controller, while OUT represents the

opposite. There are four types of data transfer: control, interrupt, bulk, and isochronous. Each

type has different latency and bandwidth guarantees, and is performed by different types of USB

devices.

We perform the analysis using two keyboards, one is Dell SK8115, as the wimp device, the

other one is Dell L100, as a device controlled by the adversary. We changed the USB address

of Dell L100 to overlap that of Dell SK8115. In the experiment, when performing control trans-

fer IN direction communication (e.g., reading device descriptors), Dell SK8115 always replies

faster, so we only read its device descriptors from the host controller. Dell L100 is hidden from
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the control software (e.g., verification software, wimp applications). However, when performing

control transfer OUT direction communication (e.g., sending command to light the caps-lock

LED on the keyboard), we discovered that the caps-lock LEDs on both keyboards are always

lighted together. This means the hidden Dell L100 can silently intercept control OUT data of

the isolated-channel device, which breaks the secrecy of the I/O channel. Moreover, if we per-

form interrupt control IN communication (e.g., reading keyboard input), key-presses on both

keyboards are accepted normally, which means that the hidden Dell L100 can inject data into the

isolated channel and break its integrity.

In summary, the USB device address overlap attack can break both the secrecy and integrity

of isolated I/O channels, without being noticed by any control software.

5.2.2.2 Hierarchy Verification Algorithm

The purpose of the verification algorithm is to check that only the USB paths of the wimp devices

are in active state under a USB host controller. Here a USB path denotes a chain of USB devices

from the the host controller, via the on-path hubs, and to a specific wimp device.

To design this algorithm, we need to overcome several challenges posed by the two attacks

and the complexity of USB bus (illustrated in Section 3.2.2). For instance, the USB hierarchy

information about USB address and hub-device connectivity is maintained only in the bus sub-

system software of the untrusted OS. There is no hardware-stored hierarchy information that can

be directly used by the WK. When discovering the hierarchy information, the WK must com-

municate with the USB devices using common operations instead of device-specific ones (to

minimize code size and complexity). In addition, the WK must not interfere with the normal

functions of the I/O hardware being verified; e.g., it must not make un-recoverable configuration

changes.

In the on-demand isolation model, the untrusted OS prepares a set of USB paths for all wimp

devices, and provides them as inputs to the WK verification algorithm. Specifically, the OS backs

up the state of all non-USB-path devices, suspends them, and passes the USB path information

to the WK. The USB path information includes the addresses of all devices and on-path hubs,

and the ports of their upstream hubs that they connect to. The WK protects the host controller so

that the untrusted OS can no longer issue any USB command via this host controller. The WK
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then executes the following algorithm to verify the OS-prepared USB paths:

(1) WK periodically monitors the port status of all on-path hubs to detect remote wake-up events.

If any is detected, the verification fails.

(2) WK examines all hub ports that do not have any downstream wimp device. These ports

should either be disabled or suspended. Otherwise, the WK suspends those ports.

(3) WK scans all the device addresses (e.g., 127 addresses possible for USB 2.0). If it detects

any that are active non-USB-path devices, the verification fails.

(4) For each device in USB path, WK suspends it, and then communicates using its address. If

there is any reply, a hidden dev or hub is detected, and verification fails.

Extensions to Support Multiple Wimps. The same USB hierarchy may be shared by multiple

wimp applications. The above algorithm is used for the first wimp application. For the subse-

quent applications, we add the following two preliminary steps before running the algorithm.

(1) WK notifies the previously registered wimp apps and suspends their USB paths.

(2) WK activates the USB paths of the requesting wimp app.

Step (1) is necessary, because the USB paths activated in (2) may have hidden devices that

conflict with the devices in the USB paths of the previous wimp apps.

5.2.2.3 Algorithm Analysis

In this section, we present an informal analysis of the algorithm and argue that it prevents both

the USB address overlap and remote wake-up attacks.

We first analyze that Steps 1 to 3 are able to find out all non-USB-path devices that are still in

active state. The untrusted OS may attempt to hide a device when the WK scans it in Step 3, and

remotely wake it up later. However, the remote wake-up event of a device must be coordinated

by a non-suspended hub. This hub is either be a non-USB-path hub, or a hub on a USB path.

For the former the WK will always discover it in the linear scan, and for the latter the remote

wake-up event will be detected by the WK, as shown in Step 1.

Although Steps 1 to 3 guarantee that all non-suspended devices have correct addresses are

on the USB paths, this does not prove that the given USB paths are correct, because hidden devs

(or hubs) may still be on USB paths. Step 4 can rule out any hidden dev that is on a different
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USB-path with the targeted device whose address the hidden dev duplicates, but it cannot detect

the hidden dev that is on the same USB-path with the targeted device (“same-path hidden dev”).

We now provide a informal correctness argument on a proposition that the untrusted OS

cannot configure any “same-path hidden dev” that manages to evade the WK verification and

compromise the wimp I/O data isolation later. To be “meaningful”, the same-path hidden device

must either be able to intercept/fake messages between the host controller and the targeted device,

or it must have suspended devices that are hidden downstream and can be remotely woken up

later.

Before continuing with the argument, we need to make four observations on USB 2.0 specifi-

cation. First, a non-malicious device/hub in its Configured state will not respond to SET Address

commands, unless it is deconfigured by a SET Configuration command and transits back to Ad-

dress state. Second, if a hub is in the Deconfigured state, all its downstream devices lose power

and transit back to the Attached state, which is similar to resetting all downstream devices. Third,

the remote wake-up capability is disabled by default, and can only be enabled when the de-

vice/hub is in its Configured state. Forth, a hidden device downstream to its target device cannot

affect the message secrecy and integrity of the target device, because the target device always

receives and responds to USB transactions faster than the downstream hidden device.

Our informal correctness argument is as follows: If the untrusted OS intends to configure a

hidden device to duplicate the address of its upstream device, the SET Configuration command to

the hidden device is always intercepted by the upstream device, thus the hidden device can never

transit to the Configured state, and thus “meaningless”. If the untrusted OS sets a hidden device

to duplicate the address of its downstream device, the hidden device must first be deconfigured,

and thus all downstream devices will lose power and all their configurations. The hidden device

itself becomes “meaningless”.

In conclusion, we informally argue that the hierarchy verification algorithm can prevent both

the USB address overlap and remote wake-up attacks.

5.2.2.4 Discussion

The two main advantages of the USB hierarchy verification algorithm are as follows: (1) it only

uses a few standard operations of the USB host controller and hubs; (2) it does not use the driver
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Figure 5.4: USB Transfer Descriptor Verification by the Wimpy Kernel.

of any other device that shares the same USB bus with the wimp device. Note that some USB

host controller and hubs may have device-specific operations that can violate the I/O channel

isolation. For example, some host controllers or hubs may be configured to record a few of their

latest data transfers for debugging purpose. This feature may be abused by the untrusted OS to

reveal some secret data of a isolated I/O channel. The algorithm should verify the configurations

of these device-specific operations. A future work is to develop an automatic device specification

checker to scan through the open specifications of all host controllers and hubs and to identify

the sensitive device-specific operations. For devices that have no open specifications, there is

no guarantee that we can use some black-box fuzz testing technique to identify the sensitive

operations. Thus the verification algorithm should warn the users of the isolated I/O channels

about the potential risks. Users that have higher security concerns can choose to avoid these

devices on their platforms. This is one example of how users adapt the I/O isolation system for

different usage models that could have various levels of security requirements.

5.2.3 Mediating the Exported USB Request Handling

In our system, most of the USB device operation module is deprivileged and pushed to the

wimp apps. WK only verifies the behavior of the wimp apps that may affect wimp app isolation
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from the OS. For example, as shown in Figure 5.4, if a wimp app intends to perform certain

operations to its device, it generates a set of transfer descriptors qhs. However, it cannot directly

add descriptors to controller hardware, which is controlled by WK. Instead, the wimp app invokes

the WK using a system call like interface (WKcall) with the descriptors qhs as input. The WK

copies the descriptors to its kernel space, verifies them, and submits the valid descriptors to the

host controller hardware. The copied descriptors are placed in a shared memory area to allow

efficient descriptor status polling by the wimp app. This cannot compromise security, because

the shared memory is read-only for the wimp app.

In this outsourcing model, the wimp apps bookkeep their USB transfer information, and fill

a large amount of other descriptor fields. The WK only needs to verify a few security-critical

descriptor fields to verify that wimp apps filled them correctly. The principle of verification

is that those fields in the descriptors do not affect the isolation of the wimp apps’ devices and

other devices controlled by the wimpy kernel and the untrusted OS. The wimpy kernel does not

verify descriptor fields that only affect the availability of the wimp apps’ devices. In addition, the

verification algorithm of the security-sensitive fields are general and simple, without complicated

bus-specific semantics. For example, the wimpy kernel performs simple range checking on the

Buffer Pointer fields in the descriptors, and makes sure that these fields point to the wimp apps’

DMA memory region. Similar checking also applies to other bus subsystems. Section 6.2.2.2

presents the details of USB transfer descriptor verification.

5.3 Exporting Driver Support Code

Aside from communicating with bus subsystems, device drivers also use a variety of services of

commodity OS subsystems; e.g., kernel library, memory management, synchronization, device

library and other kernel services [66]. The wimpy kernel must provide the necessary driver

support code to the wimp apps with small and simple code base.

To analyze the driver dependencies, this thesis focuses on character-oriented I/O devices for

two reasons. First, these devices are pervasive (e.g., their drivers constitute about 52% of all

Linux drivers [66]) and the isolation of their channels is more complex than for storage and

network I/O devices. Second, the wimpy kernel need not support any storage or network I/O
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Table 5.2: Minimizing driver support code in Wimpy Kernel.
Driver Support Code Minimization Decisions

Memory Virt & phys memory Exported to wimp apps

Management Page permissions Mediated by WK

Synchronization

Locks Exported to wimp apps

Threads Exported to wimp apps

Signals Exported to wimp apps

Kernel Utility functions Exported to wimp apps

Library Timer Exported to wimp apps

Device Library

Class functions Exported to wimp apps

I/O ports & mem Exported to wimp apps

Config space & Interrupts Mediated by WK

Kernel File system Outsourced to OS

Services CPU scheduling Mediated by WK

device functions. The reason is that the wimp apps can safely outsource these functions to

the untrusted OS and retain their wimpy size and complexity. Wimp apps can do this very effi-

ciently using cryptographic outsource-and-verify techniques [29, 47, 48], whereby they use either

authenticated-encryption or MAC modes2 to checksum and protect the integrity, and when nec-

essary confidentiality, of the objects outsourced to untrusted OS services; e.g., files, databases,

emails and other messages.

5.3.1 Exporting Decisions

Table 5.2 shows examples of such interfaces in each category and how we export them to min-

imize the code base of WK, according to the on-demand I/O isolation model. We present the

results for each category of driver dependencies as follows:

(1) Memory management interfaces are further divided into three types: virtual memory

pages, physical pages, page permissions. Virtual and physical page management is done in

wimp apps, because during wimp registration, memory (including the code, data and I/O mem-

ory) of wimp apps is provisioned by the OS, and isolated by the micro-hypervisor and wimpy

kernel. The wimpy kernel verifies that the OS provisions contiguous memory in both virtual

and physical address spaces to the wimp apps, so that the wimp apps can easily perform page

mapping translation. However, the WK sets page permissions for wimp apps to prevent buggy

or compromised wimp code from subverting the WK’s virtual memory isolation.

2An isolated subsystem for key distribution is presented by Zhou et al. [138].
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(2) Synchronization functions (e.g., locks, threads, and signals) are either unnecessary in

the on-demand isolation model, or can be deprivileged to wimp apps. First, locks (e.g., mutex,

semaphore, conditional variable) that are used for multiplexing devices among different applica-

tions are unnecessary, because wimp apps exclusively own their devices during execution. Locks

for other usage can be easily implemented in user-level. Second, wimp apps implement their own

thread management and scheduling functions using user space thread libraries [2] and timer in-

terrupts delivered by WK. Third, if multi-process is needed3, wimp apps manage the signals

between their processes, using user-space signal implementation.

(3) Kernel library for utilities, timers, debugging and book-keeping are unprivileged and can

be replaced by user-level libraries in wimp apps. For example, wimp apps manage their own

timers, because WK delivers timer interrupts to wimp apps.

(4) Device library include routines supporting a class of device and other low-level I/O re-

lated functions. Device-class functions are now placed in wimp apps, similar to device drivers.

Low-level I/O resources such as I/O ports, MMIO and DMA memory are already isolated by

the wimpy kernel, thus the wimp apps directly manage them without any run-time mediation by

WK. However, configuration space access code (e.g., changing MMIO base address registers,

modifying Message Signaled Interrupt Capability) and interrupt management functions (e.g., ac-

knowledging End of Interrupts register, enable/disable interrupts) exported to wimp apps should

be mediated by WK, because this code could be exploited by malicious or compromised wimp

apps to breach I/O channel isolation.

(5) Kernel services include code for driver interaction with other OS subsystems, such as

file systems and CPU scheduling. File system functions are outsourced to the OS by wimp

apps, using the wimp-OS communication channels of WK (discussed below). Multi-process

CPU scheduling, if needed, is implemented in wimp apps. However, the wimpy kernel needs

to sanitize the new process page tables created by wimp apps during forking processes, and

mediates page table switches.

3Multi-thread is usually sufficient for wimp apps that exclusively own their CPUs during execution.

47



Table 5.3: Driver Support Code Minimization Results. “In Linux” columns show the unique

OS interfaces used in all drivers and Character-oriented device drivers, respectively.

Driver Dependency
In Linux

In Wimpy Kernel
All Char Dev

Memory Management 113 67 set page permission

Synchronization 189 95 None

Kernel Library 863 349 None

Device Library 612 212 en/disable irq, config write

Kernel Services 442 254 None

5.3.2 Methodology and Results

We perform device driver study on Linux Ubuntu 12.04 with kernel 3.2.0. We develop automatic

scripts to extract the external interfaces that character device drivers use, by analyzing the symbol

tables in drivers’ binary headers and looking for undefined symbols. We filter out the undefined

symbols that point to the functions implemented in other drivers, and leave only the symbols of

Linux kernel services. To verify correctness and completeness, we compare the results of these

scripts with those of the OCaml/CIL source code analysis tools used in [66], and the CodeSurfer

software analyzer [11]4.

We manually study those driver dependencies, and present the result of deprivileging the

relevant OS support code in Table 5.3, following the interface categories defined in [66]. Ac-

cording to the analysis presented in Section 5.3, we identify only a few interfaces that should

be implemented in the WK, and the support code of other interfaces can be all deprivileged to

wimp apps. The wimpy kernel should verify the set page permission requests to prevent

the wimp app from subverting the wimpy kernel’s virtual memory isolation. The wimp apps use

enable irq and disable irq WKcalls to enable/disable the interrupts of their devices, and

use config write to modify configuration space registers, under the WK’s mediation.

Drivers also invoke privileged instructions, such as wrmsr/rdmsr, wbinvd, lgdt/lidt,

and ltr, which are available at the user-level. However, by scanning through all character

device drivers in Linux, we found only one instruction (wbinvd for invalidating cache entries)

used in one video driver during device initialization. When migrating this driver, wimp apps can

outsource the initialization functions to the untrusted OS. Otherwise, the WK simply provides a

4We are able to compile driver sub-directories using the academic version of CodeSurfer, though building the

entire Linux kernel fails.
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WKcall interface for this instruction.

5.4 Wimp-OS Communication

The wimp-OS channels enable bidirectional communication between the untrusted OS and the

wimpy kernel or wimp apps. For example, a wimp app can request extra memory from the OS,

when it runs out of the memory provisioned. The WK contacts the relevant OS services, and

verifies that the dynamically assigned memory regions returned by the OS services are valid

(e.g., they do not overlap with the memory regions of other wimp apps).

Conversely, the untrusted OS can use these wimp-OS channels to protect itself from poten-

tial buggy wimp behavior or defend against privilege escalation attacks from malicious wimps.

When the OS invokes the wimp apps, it places upper bounds on the wimp apps’ resources. If a

wimp app exceeds these bounds, the OS requests the WK to take appropriate action. WK verifies

these requests using the resource accounting information it keeps during wimp app execution.

For example, if the OS detects a potentially deadlocked wimp app (e.g., which holds a CPU in

excess of an established time bound), it notifies WK with the total running time as an input mes-

sage. WK verifies this request by calculating the elapsed time of the wimp app, using the CPU

time stamp it records during wimp app invocation and the current time stamp. If the total running

time is correct, WK then notifies the wimp app to prepare for a descheduling. If the wimp app

acts normally in descheduling, it can still be invoked by OS later. However, if the wimp app fails

to deschedule for a certain amount of time, the untrusted OS can request the WK to terminate

the wimp app. Similarly, an OS helper (e.g., a loadable kernel module) can constantly monitor

shared interrupts of OS’ devices. If it discovers that a shared interrupt with a wimp app is blocked

for a long time, it could also complain to WK using wimp-OS channels.

We designed efficient asynchronous primitives for wimp-OS communication, which are com-

patible with standard commodity OS implementations. For example, when a wimp app re-

quests OS services, it invokes WK-provided interfaces, instead of directly triggering high-weight

context switches coordinated by the underlying micro-hypervisor. This yields substantially

better performance for fine-granularity protection than that offered by security/separation ker-

nels [14, 49, 98, 104, 118], recent micro-hypervisors [69, 112, 119], and traditional hypervisor
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designs [21, 22, 24, 54]. We demonstrated its efficiency in Section 6.2.3.2. Specifically, the

wimp app provides an OS service number, inputs, and a completion call-back function to WK.

The WK signals the OS running on other CPUs using Interprocessor Interrupts (IPIs) [8, 62],

which is a standard facility of the Local Advanced Programmable Interrupt Controller (LAPIC)

in main-stream multi-processor CPUs. It is frequently used to coordinate multi-processor boot-

strap, but we use this capability to send an interrupt to other processors where the OS executes, as

a signal of service requests. Before sending the IPIs, WK places the wimp app-provided inputs

in a dedicated memory region shared with the OS, which is established by the micro-hypervisor

during wimp app registration. After IPIs are sent, WK transfers control back to the requesting

wimp app, and the wimp app continues to perform other operations. Later, the OS sends an IPI

to WK to signal the service completion, and returns service results using the shared memory

region. The WK verifies the service results and passes them to wimp app.

5.5 System Life-cycle

We illustrate the life cycle of isolated I/O channels and the interactions between the micro-

hypervisor, the wimpy kernel and the wimp apps, as shown in Figure 5.5.

Registration. The untrusted OS provisions the code, data and I/O memory required by the

wimp app, configures the isolated I/O channels to the wimp devices, and explicitly registers the

wimp app through an OS-hypervisor interface. During registration, the mHV isolates the wimp

app’s memory, maps the WK to the virtual address space of the wimp app, and transfers control

to WK. The WK creates the virtual address page table of the wimp app and itself, verifies the

configurations of the isolated I/O channels to wimp devices, and connects the wimp devices to

the wimp app (but not delivers the wimp device interrupts). Until unregistration, the untrusted

OS can no longer tamper with the memory regions and I/O resources of the registered wimp

apps.

Invocation. The OS implicitly invokes the wimp app by executing one of the wimp app’s entry

points. The mHV detects this execution and switches the context to the WK. The WK establishes

the wimp-OS channels for the wimp app, sets up the wimp device interrupt delivery, and then

begins executing the requested entry points at the wimp app’s privilege level. Upon finishing
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Figure 5.5: The Life-cycle of Wimp Applications.
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execution, the wimp app suspends its devices and transfers control to the WK. The WK disables

the wimp-OS channels and wimp device interrupt delivery, and then the mHV takes control and

performs a context switch to the OS. Between invocations, the OS can run other applications, but

cannot use the wimp devices or tamper with the wimp app. The wimp app could be invoked for

arbitrary times after registration, and the invocation is efficient, because most I/O configuration

overhead has already been offloaded to registration. Note that the wimp app can outsource the

initialization of the wimp devices to the untrusted OS, if the wimp app is capable of verifying

the OS’s configurations. Otherwise, the wimp app should reset the wimp devices and reinitialize

them to known good states, in order to defend against misconfigurations of the untrusted OS. The

device resetting techniques depend on the implementation of the wimp devices and their device

drivers. For example, for some USB devices, it is sufficient to simply deconfigure the devices

and switch them back to the Address state [4]. For some PCI devices, the driver would set the

device to ACPI D3 power state and then switch back to ACPI D0 power on state.

Unregistration. The OS explicitly requests wimp app unregistration via the wimp-OS channel,

which is faster than via an OS-hypervisor interface. The wimp app finishes its execution and puts

the wimp devices to a clean state. The WK tears down the isolated I/O resources of the wimp

app with the help of the mHV and returns the CPU, memory regions and I/O resources of the

wimp app to the OS. The OS may resume the original states of the wimp devices based on the

wimp device state returned by the wimp app, if the OS can verify that the wimp device states

are recoverable and will not compromise the OS (e.g., via DMA misconfiguration). The OS may

also directly reset the wimp devices and resume the correct wimp device states. The detailed

resuming mechanisms depend on the implementation of the wimp devices and the OS plug-in

that works with the wimp app.

5.6 User Verifiablitiy

Our design enables verification of the system state (e.g., correct configuration and activation) to

a third party who is often a human user. We use two simple devices for this task: a TPM that is

widely accessible in many commodity computers, and a simple hand-held verification device.

Our hand-held device is simpler and more widely applicable than the special I/O devices
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in some related works (Section 8). First, the standard remote attestation protocol is identical

for different configurations, and thus a general-purpose verifier suffices to work for all secure

applications. Second, our device only performs standard public-key cryptographic operations

(e.g., certificate and digital signature verification) and a few cryptographic hash operations. It

does not store any secrets. Third, our device outputs the verification result to the user via only

one red-green, dual-color LED. The green light indicates the correct secure application-device

connection state [? ]. Moreover, our design can also support multiple I/O channels to different

secure applications on a platform using just one simple device.

Note that all user-verification of the isolated I/O channel state in the presence of malware re-

quires some external trusted device. Otherwise a user cannot possibly obtain malware-independent

verification that the output displayed on the video display originates from a correctly configured

and isolated trusted component, rather than from malware.5

Channel Status Verification Protocol. We describe a simple protocol for user verification

of the I/O channel state. The hand-held verifier starts remote attestation by sending a pseudo-

random nonce (for freshness) to an untrusted application on the host platform. Upon receiving the

nonce from the untrusted application via some pre-reserved shared memory region, the isolated

security-sensitive application requests a TPM Quote containing cryptographic hashes of the code

and static initialized data of the wimp app, the wimpy kernel, and the mHV and a digital signature

of the hashes generated by using a TPM-based key. The wimp app returns the signed quote to

the untrusted OS and the untrusted OS sends the quote to the hand-held verifier. The verifier

checks the validity of the signature and cryptographic hashes and displays the result to the user

via a red-green dual-color LED. If the green LED is on, the user knows that the intended mHV ,

WK and wimp app are running on the host platform and the isolated I/O channels have been

established. If the red light comes on, the security properties of the isolated I/O channels are not

guaranteed.

5 To obtain malware-independent verification of the I/O channel state we must detect the effect of the Cuckoo

attack [90], which exploits the difficulty of a human in possession of a physical computer to guarantee that s/he

is communicating with the true hardware TPM inside that computer. This is a generic attack for all attestation

schemes that use TPMs, and we address it by requiring that (1) the public key (certificate) of the TPM be loaded

in the verifier device before that verifier is used for the first time, and (2) the verifier checks the validity of the

signatures originating from the local TPM.
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Supporting Multiple Application-device I/O Channels. If activation of multiple isolated I/O

channels to different program endpoints is desired from the same hand-held device, we envision

that a single isolated I/O channel to a trusted shell [52] can first be executed on the target platform.

This trusted shell, together with the wimpy kernel and the underlying micro-hypervisor, can be

verified by the user as explained above. All other isolated application can then be registered using

some trusted shell commands. A user can also identify, select, invoke, manage, monitor, and tear

down any desired secure application via the trusted shell. Because the isolated I/O channels for

the trusted shell has already been verified by the user using a hand-held device, the user input

and the screen output by the shell can be trusted, so there is no need to use the external device to

verify any subsequent isolated I/O channels.

5.7 Application Development

Our system design calls for the implementation of the device drivers of the wimp devices within

the wimp applications for three assurance reasons. First, our goal is to produce a small and

simple TCB, which can be verified with a significant level of assurance; i.e., assurance based

on formal verification techniques. Including all device drivers would enlarge the hypervisor

or the wimpy kernel beyond the point where significant assurance could be obtained. Second,

placing the wimp device’s driver within a wimp app is a natural choice: wimp device driver

isolation can leverage all the mechanisms that protect the wimp app code and data from external

attacks. Third, wimp devices are dedicated devices for a specific wimp application during its

execution. Consequently, the device drivers are typically simpler than their full-fledged, shared-

device versions. That is, we have the freedom to customize the wimp device driver for the specific

needs of wimp applications.

The alternative of placing a wimp device device driver in a separately isolated domain in user

or OS space would have two maintainability advantages over our choice. First, it would allow the

driver to be updated or even replaced with a different copy without having to modify application

code. Second, it would remove the need to maintain two versions of a device driver (one within

the commodity OS and the other within the wimp app).

However, this alternative would have at least two security disadvantages. First, an addi-
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tional protected channel would become necessary between the isolated wimp device driver and

separately-isolated wimp app, and an additional protection boundary would have to be crossed

and checked—not just the one between the hypervisor wimpy kernel and wimp app. Sec-

ond, driver isolation in separate user or system space would require extra mechanisms in ad-

dition to those for wimp app isolation. For example, an additional protection mechanism would

become necessary to control the access of application wimp apps to isolated drivers in user

space. Furthermore, serious re-engineering of a commodity OS/hypervisor would become nec-

essary [27, 71], which would run against our stated goals.

In balance, we pick the “driver-in-wimp-app” model since security and ease of commodity

platform integration have been our overriding concerns in developing wimp apps.
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Chapter 6

Application: Trusted Path System

6.1 A Simple Hypervisor-based Trusted Path

We implement a user-oriented trusted-path using a simple hypervisor-based system (directly im-

plement I/O functions in the underlying micro-hypervisor mHV ) and evaluate its performance.

This trusted-path system protects a user’s keyboard input sent to an isolated software module,

and the output from the software module to the computer’s display. The system defends against

attacks launched by the compromised OS, other applications, and manipulated devices.

We implement the trusted-path system and perform all measurements on an off-the-shelf

desktop machine with an AMD Phenom II X3 B75 tri-core CPU running at 3 GHz, an AMD

785G northbridge chip, and an AMD SB710 southbridge chipset. The machine is equipped with

a PS/2 keyboard interface, an STMicro v1.2 TPM, and an integrated ATI Radeon HD 4200 with

VGA compatible graphics controller 9710. This machine runs 32-bit Ubuntu 10.04 as its Desktop

OS.

6.1.1 Hypervisor Implementation

We implement our hypervisor by extending a earlier version of TrustVisor [83]. Our extension

includes configuration access protection, device I/O ports, MMIO and DMA memory protection,

and interrupt redirection and isolation. Our wimp devices are a PS/2 keyboard and a VGA-

capable integrated graphics controller. Specifically, the mHV protects the device configuration

space (Section 5.1.3), and then securely enumerates all devices. The mHV also sets up the

IOAPIC and LAPIC to deliver the keyboard interrupt to the CPU that runs the wimp app (Sec-
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Table 6.1: A Comparison of Hypervisor Code Bases.

Debug Code C/Assembly Code Header Files

Our Hypervisor 513 12556 2918

TrustVisor 468 11704 2566

tion 5.1.4), and protects the IOAPIC and LAPIC configuration using the mechanisms described

in Sections 5.1.1 and 5.1.2. In addition, the mHV also downgrades the graphics controller to ba-

sic VGA text mode, identifies the corresponding VGA display memory region, and protects both

this memory region and the entire graphics controller MMIO region by configuring the IOMMU

and Nested Page Tables. Note that we have not implemented the MSI interrupt protection mech-

anisms and the LAPIC x2APIC mode virtualization (Section 5.1.4).

Small TCB. We use the sloccount1 program to count the number of lines of source code in

TrustVisor and our hypervisor. As shown in Table 6.1, our hypervisor implementation adds

only 1,200 lines of code to TrustVisor’s codebase, among which around 200 lines of code are

for controlling the device configuration space (Section 5.1.3), 450 lines are for the interrupt

protection mechanisms in Section 5.1.4, and 300 lines are for the I/O port and memory protection

mechanisms in Sections 5.1.1 and 5.1.2. Our software TCB for the hypervisor (not including the

source code for debug purposes) is about 15,500 lines of code in total.

6.1.2 Application Implementation

The wimp app comprises a PS/2 keyboard driver, which handles the keyboard interrupt, receives

and parses keystroke data, and a VGA driver, which writes keystroke data to the VGA display

memory. The wimp app runs in CPU Ring 3. This unprivileged setting allows for more efficient

isolation mechanisms between the wimp app and the rest of the system. That is, instead of

trapping every port access from the wimp app (Section 5.1.1), the mHV simply configures the

OS’s I/O permission bitmap in the Task State Segment to confine the wimp app’s access to only

the wimp device’s I/O ports.

However, running the wimp app in Ring 3 makes wimp device driver porting more difficult.

First, some sensitive I/O instructions (e.g., IN, OUT) and some critical device-driver instruc-

1Developed by David A. Wheeler, http://www.dwheeler.com/sloccount
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tions (e.g., IRET) can only execute with system privileges (CPU Ring 0). Second, device drivers

sometimes need to perform operations directly on physical memory addresses (e.g., to manip-

ulate device registers), but drivers running unprivileged within a wimp app do not have access

to the mappings between virtual addresses and physical addresses. Third, some of the physical

memory pages are protected so that only privileged system code (running at CPU Ring 0) can

access them.

During program endpoint implementation, we minimize invocations of the mHV for the

above operations, while still maintaining the isolation of the wimp app from the OS. For exam-

ple, the graphics card in VGA mode provides an MMIO memory region where software writes

the contents that are displayed on the screen. To perform memory writes to this physical memory

region, the wimp app reserves a region in its virtual memory space and then makes a hypercall to

the mHV . The mHV re-maps the reserved wimp app memory pages to the VGA display memory

region. After this hypercall, the wimp app has direct access to that memory region without any

additional hypercalls.

Note that the hypervisor still needs to emulate some privileged instructions, e.g., when the

wimp device interrupt handler finishes execution and returns control back to the wimp app, the

interrupt handler should run a return-from-interrupt (IRET) instruction. The mHV provides a

hypercall that emulates this IRET instruction.

6.1.3 Micro-benchmarks

We present micro-benchmark results to demonstrate: (1) the overhead of trusted-path establish-

ment and tear-down is reasonable, and (2) our optimized wimp app implementation can achieve

good performance by minimizing invocations of the mHV .

Trusted-path Setup and Tear-down. To measure the mHV overhead for trusted-path estab-

lishment, we compared the time required for the creation of a wimp app’s isolated environment

and a trusted path between a wimp app and a wimp device with the time required to create only

a wimp app’s isolated environment using TrustVisor. As shown in Table 6.2, TrustVisor took

about 1.752 milliseconds to create the isolated environment, while our mHV took about 1.925

milliseconds to create the same environment and establish the trusted-path. Thus, trusted-path

establishment adds about 9.8% overhead to the original TrustVisor implementation.
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Table 6.2: Trusted-path Setup and Tear-down Overhead. Average (in ms) of 10,000 trials.
TrustVisor HV

Trusted-path Setup 1.752±1.7% 1.925±2.2%

Trusted-path Tear-down 0.436±1.9% 0.528±1.8%

Table 6.3: Wimp Device Driver Performance. Average latency overhead (in µs) of 100,000

trials.

Direct Access Invoking HV

I/O Port Access (INB) 18±6.2% 40±3.4%

I/O Port Access (OUTB) 19±5.4% 40±3.7%

VGA Display Memory Write 15±3.2% 39±2.7%

We also measured the mHV overhead incurred in trusted-path tear-down after the wimp app

completes all of its operations. In 10,000 trials, TrustVisor tore down the isolated environment

of the wimp app in approximately 0.436 milliseconds, while mHV tore down the same isolated

environment and the trusted path in approximately 0.528 milliseconds. Thus, the trusted-path

tear-down adds approximately 21% overhead to the original TrustVisor implementation. This is

because it takes much less time to tear-down an isolated environment than to create one, while

setting up and protecting the APICs and graphics controller configuration during trusted-path

establishment takes roughly the same time as restoring and unprotecting them during trusted-

path tear-down.

In our experiments, both the latency overhead of trusted-path establishment and tear-down

were negligible compared to the duration of an ordinary TP session, which often lasts for seconds

or more.

Device Driver Performance. We measure the mHV overhead in emulating the INB and OUTB

operations to a device (PS/2 keyboard in this case study) and data writes to MMIO memory

(VGA display memory region in this case study), since these are common operations for most

trusted-path applications. The measurements in Table 6.3 illustrate that our optimized imple-

mentation of user-level wimp device drivers can achieve good performance by minimizing the

frequency of mHV invocations for operations that require system-level privileges. Our optimized

wimp app implementation took only 18 microseconds to perform INB and 19 microseconds for

OUTB. In contrast, invoking the mHV and performing a same operation would take around 40
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microseconds. wimp app writes to VGA display memory take approximately 15 microseconds,

but it would take more than 39 microseconds to invoke the mHV to perform the same operation.

This implies that a context switch between the trusted-path program endpoint and the hypervisor

takes roughly 23 microseconds.

6.2 A Wimpy-kernel-based USB Trusted Path

In this section, we present the implementation of a more complex trusted path application using

the wimpy-kernel-based architecture. The trusted path application accepts input from a USB

keyboard.

6.2.1 Micro-hypervisor Implementation

The micro-hypervisor implementation is based on XMHF open source package v0.2.2 [1]. We

extend XMHF with two main functions. First, we implement a fine-grained DMA protection

function of the IOMMU, which allows the wimpy kernel to enable/disable DMA access of a

device to a certain memory region, because the original XMHF only supports coarse-grained

DMA protection, which simply disables DMA access of any device to a specific memory region.

Our fine-grained DMA protection is based on Xen-4.3.0 source code. Second, we implement

the wimp app registration and unregistration interfaces, using the XMHF’s memory isolation

primitive and the DMA protection primitive we have implemented. The registration interface is

the only interface provided to the untrusted OS, and the unregistration interface to the WK. The

code base break-down of the micro-hypervisor is shown in Section 6.2.3.1.

6.2.2 Wimpy Kernel Implementation

Due to the simplicity of the reduced USB code in the wimpy kernel, we implement it from scratch

based on the source code of Coreboot/Seabios [3] and the Enhanced Host Controller Interface

(EHCI) host controller driver in Linux, adding the USB hierarchy verification and transfer de-

scriptor (TD) verification algorithm. As for wimpy kernel interfaces, we implement the WKcall

for wimp apps based on x86 fast system call instructions, and the wimp-OS communication

channel based on IPIs and shared memory. Note that our prototype is implemented on x86 plat-

forms, and we have not fully implemented the interrupt delivery and isolation mechanisms. The

experimental results in Section 6.2.3 show the minimality and efficiency of the WK.

61



6.2.2.1 USB Hierarchy Verification

The hierarchy verification algorithm only requires a few standard operations, including PCI con-

figuration space operations to access EHCI host controller registers [5], and basic USB control

and interrupt transfer operations to access registers of USB hubs, via the host controller [4]. The

control and interrupt transfers are much easier to configure than the other two USB transfers (i.e.,

bulk and isochronous) and require smaller TCB.

In Step 1 of the algorithm, WK monitors remote wake-up events by setting periodic interrupt

transfers to the port status endpoints of all on-path hubs. The endpoint data contains a bit to

indicate that the hubs have coordinated a wake-up event. This type of event is always be detected

by the periodic checking.

In Step 2, WK scans through all device addresses by sending standard SET Configuration

commands to each address. By specification, every USB device supports at least a default con-

figuration No.1, thus an active device should always respond to a SET Configuration=1 com-

mand. We choose this command, because its USB transaction does not have a data stage and

introduces less latency overhead. A non-malicious USB device should always acknowledge this

command within 50ms. If a scanned device address does not exist, the command will return an

error immediately.

In Step 3, WK suspends an on-path hub or wimp device by sending a SET Feature command

to the upstream hub port that the hub/device connects to. If the upstream hub is the root-hub, WK

directly accesses the port status registers of the host controller using PCI read command. After a

device is suspended, WK finds out hidden devices by sending a SET Configuration command to

the same address device.

6.2.2.2 USB Transfer Descriptor Verification

There are four different types of descriptors specified in USB 2.0, namely Queue Head (QH),

Isochronous Transfer Descriptor (iTD), Split Transaction Isochronous Transfer Descriptor (siTD)

and Frame Span Traversal Node (FSTN) [4]. QH contains zero or more Queue Element Transfer

Descriptors (qTD).

The WK exposes seven interfaces to wimp apps, in two categories: attach QH, attach iTD,
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attach siTD and attach FSTN for submitting descriptors; reactivate qTD, reactivate iTD

and reactivate siTD for reactivating the executed descriptors. FSTN descriptors need not

be reactivated [5].

For the first four interfaces, WK verifies the following fields of the descriptors: the Device

Address fields in QH, iTD, and siTD, to assure that the addresses refer to the correct wimp

device; the Buffer Pointer fields in qTD, iTD, and siTD, to make sure that the addresses point to

the wimp app’s own DMA memory region; a few other fields that lead to undefined operations

if configured incorrectly, such as the Maximum Packet Length field in QH and iTD, the Total

Bytes to Transfer field in siTD, and the Typ field in FSTN.

6.2.2.3 Wimpy-Kernel Interfaces

We implement the WKcall interface using the standard x86 Fast System Call instruction [8,

62] (SYSENTER for requesting wimpy kernel services, and SYSEXIT for the wimpy kernel to

switch to the wimp app, both after serving syscalls and when invoking the wimp app). Parameters

(e.g., service ID, pointers to input/output data structures) are passed by registers. Alternatives

like SYSCALL/SYSRET and “int 0x80” work, but SYSENTER/SYSEXIT is widely available

on x86 platform and is more efficient.

For wimp-OS channels, WK triggers an IPI by programming the interrupt command register

(ICR) of LAPIC to specify the IPI vector number and delivery destination. The delivery status bit

of ICR indicates whether the IPI is sent. On the receiving CPUs, the IPIs are delivered as normal

edge-triggered interrupts. The IPIs are used as notifiers of wimp-OS communication. The real

data, including wimp-OS service ID and input/output parameters, is passed by shared memory

buffer, which is established during wimp app registration, by mHV .

6.2.3 Evaluation

We implement and evaluate the system on an off-the-shelf HP Elitebook 8540p with a Dual-Core

Intel Core i5 M540 CPU running at 2.53 GHz, 4GB memory; a Hitachi GST Travelstar 7200 rpm

500GB SATA-II disk; an Intel 82577LM Gigabit network card; and an Infineon v1.2 TPM. The

machine is also equipped with two USB 2.0 host controllers and two immediate downstream rate

matching hubs for transforming high-speed USB transactions to low-speed ones. The machine
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Table 6.4: System Code Base Size. (*) In micro-hypervisor implementation, we augment the

original XMHF with fine-grained DMA protection capability.

(a) Micro-hypervisor

Modules SLoC

Registration 447

Unregistration 213

XMHF* 24551

Total 25211

(b) Wimpy Kernel

Modules SLoC

USB Subsystem 2144

WKcall 249

Wimp-OS Channel 106

Others 1038

Total 3537

runs a 32-bit Ubuntu 12.04 OS with Linux kernel 3.2.0-36.56. The wimp application tested

in our experiments is a prototype that includes a USB keyboard device driver. In all network

experiments, the machines are connected via 1Gbps Ethernet links.

6.2.3.1 Code Base Size Evaluation

We use sloccount to calculate the Source Lines of Code (SLoC) of the mHV and the WK. As

shown in Table 6.4(a), the micro-hypervisor has 25211 SLoC, adding 660 SLoC to the XMHF [1]

code base for wimp app registration and unregistration, and 4925 SLoC to complete the XMHF’s

DMA protection primitive. The code addition does not invalidate the XMHF’s formally-proved

memory integrity property [127]. The code base of our micro-hypervisor is smaller than other

micro-hypervisors, and much smaller than full functioning VMMs/hypervisors2.

Table 6.4(b) shows the code base break-down of the current WK prototype. The WK code

size is about 3.6K SLoC, 60% of which is USB bus subsystem relevant code. This code base

is sufficient to support all types of USB 2.0, 1.1, and 1.0 devices, and all types of USB transfer

mode, such as control, interrupt, bulk and isochronous transfers [4].

Table 6.5 compares the WK USB software stack to the commodity Linux one (Both only

support USB EHCI host controller). We manage to introduce only 2144 SLoC of USB code

to the wimpy kernel, which represents more than 99% reduction compared with the over 22K

SLoC of Linux USB code base. Note that the reduction result in practice is even better, because

2 Fides [114] has 7.2K SLoC, but without DMA protection, multi-core and AMD x86 virtualization support.

The new version of TrustVisor based on XMHF [127] has about 24K SLoC without implementing fine-grained

DMA protection. Guardian [23] has approximately 25K SLoC. NOVA’s code base contains 36K SLoC [113].

BitVisor [112] has 194K SLoC. Most full-function VMM/hypervisors have code-base sizes which are nearly an

order of magnitude larger than our micro-hypervisor; e.g., Xen (263K SLoC), VMWare ESXi (200K SLoC), KVM

(200K SLoC), and Hyper-V (100K SLoC).
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Table 6.5: A Comparison of USB Code Base of Wimpy Kernel and Linux. (*) We calculate

only the USB drivers included in the Linux kernel tree.
Wimpy Kernel Linux

Verification
Others Total

USB

Subsystem

USB

Drivers
Total

Hierarchy TD

93 107 1944 2144 19820 >206376* >226196*

when calculating the Linux USB code, we do not include a significant number of third party

USB drivers out of the Linux kernel tree and drivers relevant to high-level protocols (e.g. SCSI

drivers for USB flash drive). In addition, the USB hierarchy verification algorithm and transfer

descriptor verification algorithm only use 93 and 107 SLoC, respectively.

6.2.3.2 Micro-benchmarks

USB Hierarchy Verification. Table 6.6 shows the latency of each step in the USB hierarchy

verification algorithm. Among them, device address scanning (step 3) dominates the latency

overhead. However, this overhead is acceptable, because this algorithm is only invoked once per

wimp application registration, and does not affect the more frequent wimp app invocations.

USB Transfer Descriptor Verification. In our experiments, the latency overhead of TD ver-

ification is negligible. For example, verifying a QH and an iTD only takes about 0.28 µs and

0.42µs, respectively. In comparison, a micro-frame, the minimum time unit in USB specifica-

tion, takes 125µs.

Wimpy-Kernel Interfaces. Table 6.7 illustrates the latency overhead of two main wimpy ker-

nel interfaces; i.e., the WKcalls for communicating with wimp applications, and the IPI-based

wimp-OS channels for communicating with the OS. These two interfaces avoid the more heavy-

weight micro-hypervisor-involved context switches and greatly improve overall system perfor-

mance. Hypercalls and hardware page faults are the two most widely used methods of triggering

hypervisor-involved context switches. In comparison, our WKcalls are about 20 times faster

than hypercalls and 54 times faster than page faults. Our wimp-OS IPI channels are 33 times

faster than hypercalls and 90 times faster than page faults. In addition, using the asynchronous

wimp-OS channels, the wimp apps and wimpy kernel do not block waiting for the OS services.

System Life-cycle Operations. Table 6.8 presents the latency overhead of the registration,
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Table 6.6: Latency Break-down of the USB Hierarchy Verification Algorithm.
Step 1 Step 2 Step 3 Step 4 Total

Time (ms) 0.29 0.54 573.03 1.32 575.18

Table 6.7: Latency Comparison of WK- and Hypervisor-involved Context Switches.
WKcall Wimp-OS Channel Hypercall Page Fault

Time (µs) 0.38 0.23 7.56 20.68

invocation and unregistration of a wimp application. The latency of wimp application invocation

and unregistration are much smaller than those of registration, because the more heavy-weight

hardware configuration verification is only invoked during registration.

6.2.3.3 Macro-benchmarks

In this section, we attempt to evaluate the overhead of the micro-hypervisor and the wimpy kernel

to the co-existing OS, both in CPU and I/O performance. We use the standard SPECint 2006 as

our CPU-bound benchmarks. For I/O workloads, we choose the iozone 3.397 for disk read/write,

netperf 2.5.0 (TCP and UDP) and Apache Benchmark (ab) for networking. Specifically, in the

iozone test suite, we choose evaluation parameters to be (block size: 4KB, file size: 8GB). For

netperf, we set the message size to be 16384 bytes and select a 120 seconds duration. For Apache,

we run the Apache HTTP Server 2.2.22 on our testbed and run ab on another machine to generate

200, 000 transactions using 20 concurrent connections.

We evaluate the performance overhead in two steps. First, we compare the performance over-

head of TrustVisor and mHV (named “TrustVisor” and “mHV ” in Figure 6.1), as both of them

are based on XMHF and provide basic isolated execution environments. In the TrustVisor test

cases, we run TrustVisor along with the OS, without registering or invoking any isolated soft-

ware modules. In the mHV test cases, we run the mHV without registering any wimp application

(the WK is not mapped to any wimp app’s address space). Second, we further measure the per-

formance overhead introduced by the WK on the same benchmarks (named “mHV w/ WK” in

Table 6.8: Latency of Wimp-app Life-cycle Operations.
Registration Invocation Unregistration

Time (ms) 583.79 0.26 0.97
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Figure 6.1: CPU and I/O Macro-benchmark Results.

Figure 6.1), by registering the wimp app but not invoking it. The results shown in Figure 6.1 are

all normalized to the benchmark results on the vanilla OS.

CPU Benchmarks. As shown in Figure 6.1(a), the mHV incurs similar performance overhead

as TrustVisor, because they have similar memory foot-print, and rely on the same hardware

virtualization support for memory isolation. The performance overhead introduced by the WK

memory foot-print is negligible, comparing to that of the TrustVisor and the mHV .

I/O Benchmarks. The I/O evaluation results are shown in Figure 6.1(b). We measure the net-

work transfer rate (KB/s) of Apache web server and netperf benchmark, and the disk read/write

throughput (KB/s) of the iozone benchmark. All disk and network I/O test results in our ex-

periment show less than 4% performance downgrade, comparing with the vanilla OS case. The

performance of the mHV is similar to that of the TrustVisor, and the mHV w/ WK cases always

have slightly worse performance. This is because the first two cases use coarse-grained DMA

protection, which is more light-weight than the fine-grained DMA protection used in the wimpy

kernel. We expect that the I/O performance overhead will decrease along with more advanced

hardware for DMA protection.
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Chapter 7

Application: Corporate Key Management System

Deploying a corporate key management system faces fundamental challenges, such as fine-

grained key usage control and secure system administration. None of the current commercial

systems (either based on software or hardware security modules) or research proposals ade-

quately address both challenges with small and simple Trusted Computing Base (TCB). This

chapter presents a new key management architecture, called KISS, to enable comprehensive,

trustworthy, user-verifiable, and cost-effective key management. KISS protects the entire life cy-

cle of cryptographic keys. In particular, KISS allows only authorized applications and/or users to

use the keys. Using simple devices, administrators can remotely issue authenticated commands

to KISS and verify system output. KISS leverages readily available commodity hardware and

trusted computing primitives to design system bootstrap protocols and management mechanisms,

which protects the system from malware attacks and insider attacks.

7.1 Motivation and System Overview

As consumers and corporations are increasingly concerned about security, deployments of cryp-

tographic systems and protocols have grown from securing online banking and e-commerce to

web email, search, social networking and sensitive data protection. However, the security guar-

antees diminish with inadequate key management practices, as exemplified by numerous real-

world incidents. For example, in 2010 Stuxnet targeted Iranian uranium centrifuges, installing

device drivers signed with private keys stolen from two high-tech companies [35]. In another

incident, the private keys of DigiNotar, a Dutch certificate authority, were maliciously misused
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to issue fraudulent certificates for Gmail and other services [126]. Even high-profile, security-

savvy institutions fall prey to inadequate key security, let alone companies with a lower priority

for security.

Despite its indisputable significance, none of the current corporate key management systems

(KMS) – either industrial solutions based on software, or hardware security modules (HSM),

or research proposals known to us – provide comprehensive key management with small and

simple trusted computing base (TCB). There are at least two significant challenges that lead to

the insufficiency of the KMS, as shown in Table 7.1.

Fine-grained Key Usage Control. A comprehensive life-cycle KMS should enforce fine-

grained key usage control (i.e., whether an application operated by a user has the permission to

access a specific cryptographic key). This problem is exacerbated with the current trend of Bring

Your Own Device (BYOD), which allows client devices (e.g., tablets and laptops) to increasingly

host both personal and security-sensitive corporate applications and data.

Although commercial HSMs [55, 89, 97, 99, 120] provide high-profile physical protection

of cryptographic keys and algorithms, they fail to control key usage requests from outside their

physical protection boundary (e.g., the users and applications on other client computers). The

attackers can cause key misusage [126] by compromising client computers and submitting fake

key usage requests to the HSMs. Some HSMs enable porting key usage applications to an in-

module secure execution environment [99, 120]. This method only provides application-level

key usage control, and is not scalable due to the limited resources of the dedicated environment.

Some HSMs enforce key usage control by accepting requests from client machines that deploy

special hardware tokens only. This mechanism is insecure because it cannot block requests from

a compromised operating system (OS) or an application on an authenticated machine.

Cost-sensitive companies commonly deploy key management software [57, 88, 115] on com-

modity servers, and rely heavily on the underlying OS services to protect cryptographic keys and

management operations. These systems are untrustworthy because modern OSes are large and

routinely compromised by malware.

Research proposals (e.g., credential protection systems [20, 41, 73] and hypervisor-based

solutions [83, 84]) leverage Trusted Platform Modules (TPM) sealed storage. It assures that the
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Table 7.1: A Comparison between KISS and Current Key Management Systems. “HSM”,

“SW”, and “TPM” represent the KMS that are based on HSM, software packages, and TPM seal

storage, respectively. “ROT” denotes the root of trust of the systems.
Systems Key Usage Control Administration Interfaces TCB ROT

HSM

[18,20,7,16,17]

coarse-grained (applica-

tion or machine control)

HSM & complex admin dev,

non-verifiable

large HSM,

admin dev

SW

[15,19,9]

insecure (rely on OS) keyboard/display, non-verifiable large OS

TPM

[5,11,2,13,14]

coarse-grained (only ap-

plication control)

keyboard/display, non-verifiable large TPM

KISS fine-grained (both appli-

cation and user control)

trusted path & simple admin dev,

verifiable

small TPM,

admin dev

cryptographic keys sealed by an application can only be accessed by the same software. However,

this approach is coarse-grained; it does not enforce any user authentication of the sealed keys.

Secure System Administration. A trustworthy KMS should allow benign administrators to

securely manage the system and defend against attacks from malicious insiders. It must guaran-

tee the authenticity of the communication between the administrators and the KMS. Otherwise,

an adversary can cause unintended key management operations by stealing administrator login

credentials, modifying or spoofing the administrator command input or the KMS output (e.g.,

operation result, system status).

The HSMs usually mandate the administrators to perform management operations via the

I/O devices (e.g., keyboard and display) that are physically attached to the modules. For remote

administration, they need complicated management software running on a commodity OS or a

dedicated administrator device. Both mechanisms significantly increase system TCB and thus

exposes larger attack surface. For software-based KMS, the I/O interfaces and authentication-

relevant devices are controlled directly by the underlying OS, which means that the administrator

credentials, input commands, and KMS output can easily be compromised by malware in the

OS. Similarly, research proposals [20, 41, 73] do not support trustworthy remote management

mechanisms. More importantly, none of KMS solutions provide intuitive ways for administrators

to verify the status of the administration interfaces. Without such verification, administrators

cannot trust any displayed system output and may mistakenly perform operations.

Contributions. To address the above challenges, this chapter presents KISS (short for “Key it
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Simple and Secure”), a comprehensive, trustworthy, user-verifiable, and cost-effective enterprise

key management architecture. Table 7.1 compares KISS with mainstream KMS and research

proposals. Among them, KISS is the first KMS that supports fine-grained key usage control

based on users, applications, and configurable access-control policies. To do this, KISS isolates

authorized corporate applications from the untrusted OS and measures the code identities (cryp-

tographic hash) of the protected applications. KISS also directly accepts user authentication by

isolating user-interface devices and authentication relevant devices from the OS. Moreover, KISS

enables secure system administration, leveraging a simple external device with minimal soft-

ware/hardware settings. The KISS administrators execute thin terminal software on commodity

machines. The thin terminal accepts administrator input via trusted paths, remotely transfers

the input to and receives system output from the KISS system. The administrators use the ex-

ternal devices to verify the execution of the thin terminal and trusted paths and guarantee the

authenticity of the input/output.

KISS leverages hypervisor-based code isolation and wimpy-kernel-based I/O isolation to pro-

tect the key management software and cryptographic keys from the large untrusted OS, applica-

tions, and peripheral devices. The administrators securely bootstrap the KISS system using the

simple administrator devices and lightweight protocols, regardless of malware attacks and insider

attacks from malicious administrators. These mechanisms together significantly reduce and sim-

plify the KISS TCB, enabling higher security assurance. Because KISS leverages commodity

hardware and trusted computing techniques, it is cost-effective and makes the wide adoption of

KISS in small- and medium-sized business possible, in addition to financial or governmental in-

stitutions. KISS showcases how trusted computing technologies achieve tangible benefits when

used to design trustworthy KMS.

Chapter Organization. First, we describe the KISS attacker model in Sections 7.2. Section 7.3

describes in detail the KISS system model and administrative policies. In Section 7.4, we il-

lustrate the unified architecture on different KISS components and the simplicity of the external

administrator devices. Sections 7.5, 7.6, and 7.7 introduce the detailed mechanisms for system

bootstrap, secure administration, and fine-grained key usage control, respectively. We analyze

potential attacks on KISS and our defense mechanisms in Section 7.8. Section 7.9 discusses
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KISS extensions with stronger security properties or address real-world application issues. We

then compare our solution with related work (Section 7.10) and conclude the chapter.

7.2 Attacker Model

Aside from the adversary model described in Section 2.2, we also consider insider attacks from

malicious administrators that attempt to leak, compromise, or misuse the cryptographic keys.

They can actively issue unauthorized key management operations, intentionally misconfigure the

KMS and corporate applications, or steal the administrator devices or credentials (e.g., password,

smart cards) of benign administrators. However, benign administrators are trusted to protect their

administrator devices and credentials and comply with the KISS protocols.

7.3 System Overview

Corporate key management in this chapter refers to the establishment and usage of cryptographic

keys in corporate and distributed environments. In this section, we provide a high-level overview

of KISS system entities and model, and demonstrate how this model enables scalable and hier-

archical enterprise key management.

7.3.1 System Entities

Figure 7.1 shows the four major entities in the KISS system.

Key Management Server (KISS Server). A commodity server machine that executes the

key management software to perform server-side key life-cycle operations (e.g., key generation,

registration, backup, revocation, de-registration, and destruction).

Key Management Clients (KISS Clients). Distributed machines (e.g., employees’ desktops or

corporate web servers) that install the KISS client software to receive cryptographic keys from

the KISS server and use the keys to provide services to corporate applications. For example, On

employees’ desktops, the cryptographic keys stored in the KISS client software can be used to

encrypt confidential documents. For a corporate web server, the keys are used to authenticate the

outgoing network traffic.

Remote Managers (KISS Managers). Commodity machines used by KISS administrators to

perform remote management. These machines install the KISS manager software to securely
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Figure 7.1: KISS System Model. Major operations include: (1) Administrators perform key

management operations on KISS server and clients (e.g., key generation, backup, update, and

revocation). (2) KISS server securely distributes cryptographic keys to clients. (3) On KISS

client, cryptographic keys are isolated in key management regime, and are used to decrypt pro-

tected corporate data. (4) Users operate applications in isolated corporate regime of the clients

to access corporate data.

transfer administrative commands to and receive system output from the KISS server or clients.

Trusted Administrator Devices (KISS TAD). Small, dedicated devices that are directly con-

nected (e.g., via USB) to the KISS server or clients for local administration, or connected with

the KISS managers for remote management.

7.3.2 System Model

Figure 7.1 also demonstrates a basic workflow of bootstrapping and using the KISS system. In

Steps (1) and (2), administrators install and execute the KISS software on the server or clients,

and perform bootstrap protocols to establish cryptographic channels between the server soft-

ware, client software and TADs. We design our system to protect the server/client software and
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the channel keys against malware attacks (see Section 7.4). The bootstrap protocols must be

performed by a quorum of administrators to defend against malicious insider attacks. Each par-

ticipating administrator use his/her TAD to confirm that the KISS bootstrap process succeeds.

After bootstrap, the KISS server software starts recording subsequent system operations in a

tamper-evident audit log, which helps the administrators detect insider attacks. Section 7.5 il-

lustrates the KISS bootstrap protocols, cryptographic channel establishment, and audit log in

detail.

In Step (3), the administrators remotely manage the KISS server/client software, leveraging

their TADs and KISS managers. The KISS system protects the manager software (acting as a

thin terminal) and user-interfaces devices (e.g., keyboard, and display) against malware attacks

from the KISS manager OS. The administrators can securely input commands and review system

output via the KISS manager user interfaces. The administrators use their TADs to authenticate

the outgoing commands, and verify the authenticity of the operation results back from the KISS

server/client software. Section 7.6 describes the remote management process and how our design

significantly reduces KISS TCB.

In Step (4), new cryptographic keys (which are our key management products) are generated

in the KISS server and securely distributed to the clients via the cryptographic channels estab-

lished in step (2). In Step (5), the KISS client software protects the distributed keys, and handles

key usage requests from various applications. KISS enables more fine-grained control of key

usage than previous key management systems and proposals. It isolates the applications (similar

to the isolation of KISS server software from the server OS) and measures their code identities.

It also provides protected channels between authentication devices and the KISS client software,

so that the KISS client software can directly authenticate the users of the applications. If the

requests are from authorized users (e.g., company employees) and corporate applications (e.g.,

corporate document editors), the KISS client software uses the corresponding cryptographic keys

to process the requests (e.g., decrypt confidential documents). The KISS client software rejects

any key usage request from unauthorized users (e.g., visitors that are not allowed to read any

confidential document) or applications (e.g., personal web browsers, media players). Section 7.7

describes the detailed mechanisms of our fine-grained key usage control.
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Figure 7.2: System Architecture for KISS Client, Server, and Manager. Sec Dev is the hard-

ware (e.g., TPM) that provides trusted computing primitives. UI Dev denotes the user-interface

devices, such as a keyboard and a display. Auth Dev is the device used for authentication (e.g.,

fingerprint scanner, and keypad). The KISS machines communicate via the network interface

cards (NIC), and connects with TADs via USB interfaces.

The KISS client is necessary for collecting application and user information to perform key

usage control. By receiving keys from the server, it also supports offline key usage, which

reduces the key access latency and allows key usage when network connections are unavailable

(e.g., while traveling on flights). However, offline key usage increases the risk of key abuse

(e.g., when client machines are stolen). Companies might enforce special key usage policies to

reduce this risk, such as requiring client machines to periodically obtain key usage permissions

from the KISS server. Note that KISS can easily be modified to serve as the key usage control

front end of the HSM. The KISS server software receives approved key usage requests from the

clients, and securely transfers them to the HSM on the server machines via trusted paths. Both

the cryptographic keys and algorithms are always protected inside HSM.
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7.4 System Architecture

In this section, we introduce the unified architecture for the KISS server, client, and manager,

and the hardware/software settings of TAD. We demonstrate how our architectural design sig-

nificantly reduces and simplifies the TCB of the whole system, which is necessary for achieving

high security assurance.

7.4.1 KISS Server, Client, and Manager

KISS server, client, and manager share the same architecture, hence we only illustrate the KISS

client in detail here. As shown in Figure 7.2, the KISS hypervisor and wimpy kernel are dedicated

to three main tasks:

Isolation. The KISS hypervisor divides the client to three isolated software regimes. The key

management regime runs the KISS client software and stores all cryptographic keys during its

run time. We also leverage TPM sealed storage to protect the cryptographic keys at rest. Each

authorized application that uses the keys is isolated in its own corporate regime. The untrusted

regime consists of the commodity OS, other applications, and devices.

Trusted Paths. When the administrators locally manage the client machine, the hypervisor and

wimpy kernel establish trusted paths between the client software and the UI Dev or Auth Dev

(Figure 7.2). The trusted paths protect the administrator command input and the client software

output and safeguard the user authentication credentials. We defer the detailed explanation to

subsequent sections.

Key Usage Control. The hypervisor and wimpy kernel helps the KISS client software to col-

lect the identifier of the corporate applications and users that request key usage. When isolating

the corporate applications in corporate regimes, the KISS hypervisor computes a cryptographic

hash of the code and static data of the wimpy kernel and the corporate application, and transfers

the hash value as application identifiers to the KISS client software. Trusted paths between the

authentication-relevant devices and the KISS client software are established for user authentica-

tion. Section 7.7 describes the key usage control procedure.
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7.4.2 Trusted Administrator Device

TAD is a small, dedicated, embedded device that assists system administration, both locally and

remotely. TAD employs much simpler software/hardware than the typical administrator devices

in current KMS. TAD does not need a full user-interface hardware for the key management

command input and system output. Instead, the administrator can leverage the trusted paths

provided by the KISS hypervisor and wimpy kernel on the server, client or manager. TAD does

not implement complicated key management software to interpret operation input/output. These

are directly handled by the KISS server/client software. During remote management, the KISS

manager software only collects and transfers administrator input to server/client, and receives

returning operation results.

TAD implements software for the KISS bootstrap protocol, standard cryptographic primi-

tives, remote attestation protocol, and necessary hardware drivers (note that the USB driver code

is included, but not in the TCB). The TAD software is responsible for three tasks: (1) performing

server/client bootstrap; (2) remotely attesting to the KISS server, client, and manager software;

and (3) authenticating the administrator input and verifying the authenticity of the server/client

output. To meet these functional requirements, TAD includes only a low-end CPU, small on-chip

RAM and flash storage, a USB controller, a few buttons, a minimal display to show hexadecimal

values, and a physical out-of-band channel receiver (e.g., QR code scanner).

7.5 System Bootstrap

In this section, we introduce the lightweight KISS bootstrap protocols. These protocols allow

a quorum of administrators to verify that the “known good” KISS software is executing on the

server/clients, and to establish cryptographic channels between their TADs, the server software

and the client software. These channels (depicted in Figure 7.3) are used in secure system ad-

ministration and key life-cycle operations. The bootstrap protocols are resilient against malware

and insider attacks.

7.5.1 Server Bootstrap

During the KISS server bootstrap, a quorum of administrators execute authentic KISS server soft-

ware and establish the Srv-TAD cryptographic channel (Figure 7.3(a)). Our lightweight server
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Figure 7.3: Cryptographic Channels Established during KISS Bootstrap. Before the

bootstrap, the server and clients only have their TPM keys, and TADs has no pre-injected keys.

bootstrap protocol needs minimal administrator involvement. It does not require pre-sharing

secrets in TAD (e.g., vendor-injected device private keys). After the bootstrap, the server soft-

ware starts recording subsequent system operations in a tamper-evident audit log, which help the

administrators detect insider attacks.

Bootstrap Protocol. Figure 7.4 illustrates the server bootstrap protocol. Before the protocol

begins, we assume that the administrators creates the necessary configuration file, Ci, of the

KISS server software independently and store them in TADs. The Ci includes the number of

participating administrators, N, a quorum threshold, t, and other necessary server parameters. In

Step 1, each administrator gathers the information of the hardware root of trust, i.e., the TPM

public key KT PM S of the server, via a trusted out-of-band (OOB) channel. We suggest a secure

and practical OOB channel, in which KT PM S is encodes as a tamper-evident physical label, e.g.,

an etched QR code on TPM chip surface. Each TADi securely attains KT PM S by scanning the

QR code.

After that, each TADi generates a device key pair, {KTADi
,K−1

TADi
}, and sends Ci along with

the public key, KTADi
, to the server (Steps 2 and 3). In Steps 4–6, the server executes the KISS

hypervisor, wimpy kernel, and server software via late launch primitives [8, 60] Late launch

resets a special Platform Configuration Register (PCR) of the TPM, and stores the cryptographic
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1. TPM
OOB
−→TADi : KT PM S

2. TADi : Generates device key pair {KTADi
,K−1

TADi
}

3. TADi → Server : {Ci,KTADi
}, where Ci lists the configurations of the Server,

e.g., # of involved administrators N, and quorum threshold t.

4. Server : Gathers N messages from TADi before timeout,

late launches HYP and Server (their measurement is stored in TPM).

5. Server : Checks that all Ci are consistent, and N ≥ t,

generates Server key pair {KSrv,K
−1
Srv}

6. Server → TPM : Stores the measurement of {KSrv,Ci,Λ = {K1, · · · ,KN}}
7. TADi → TPM : Nonce Ri

8. TPM → Server : Signature Si = {Ri,M}K−1
TPM S

,

where M is the measurement of {HY P,Server,KSrv,Ci,Λ}.

9. Server → TADi : IDi, Si, Λ, KSrv, where IDi is a unique identifier for TADi

10. TADi : Verifies Si and M, checks KTADi
∈ Λ, #(Λ) = N, and stores KSrv

Figure 7.4: KISS Server Bootstrap Protocol. Each administrator possesses a TADi.

measurement of the HYP and the server software in this register for further remote attestation.

After that, the server software generates a key pair, {KSrv,K
−1
Srv}, and a key list, Λ, by receiving

the public keys, KTADi
, from all participating TADs. The server software stores the measurement

of KSrv, Ci, and Λ into other PCRs of the TPM. The accumulated measurement, together with its

signature generated by TPM attestation keys (linked with the TPM private key, K−1
T PM S), are sent

to the verifier during remote attestation (Step2 7– 9).

Upon receiving the attestation response, TAD verifies the signature using KT PM S, and trusts

the authenticity of the accumulated measurement, M (Step 10). TAD re-computes M using its

pre-installed knowledge (e.g., cryptographic hash of HYP and server software, configuration file

Ci), the received KSrv and Λ. If the verification succeeds, TAD trusts that the authentic hyper-

visor, wimpykernel and server instance are executing on the KISS server with the appropriate

configurations, and that the server instance has the server private key and a correct list of TAD

public keys. TAD also verifies that its own public key is included in the public key list, Λ, and

the number of keys in Λ equals to the number of participating administrators. If all verifica-

tion passes, TAD notifies its administrator via the display. The only task that each administrator

needs to perform is to visually check that all TADs display verification success messages. KISS

introduces an additional computational overhead (e.g., remote attestation and quorum checking)

compared to traditional system bootstrapping. However, we argue that this cost is acceptable,
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considering the security guarantees it achieves.

Audit Log. During the server bootstrap, malicious administrators may inject spurious con-

figuration files with a small quorum threshold, or even forge administrator public keys. These

administrators are then capable of passing the quorum check that is necessary for any key man-

agement operations. In KISS, the server software maintains an operation log to record all of the

system administration operations, including bootstrap operations. This helps legitimate admin-

istrators/auditors detect any insider attacks during the server bootstrap. In addition, the audit log

helps relaxes the quorum control and improves system usability. Becasue all key management

operations are held accountable, KISS may allowing a smaller number of administrators or even

merely one to perform operations.

The audit log is stored in the untrusted regime. The KISS server software maintains an ag-

gregated hash of the log entries in the TPM non-volatile memory (NVRAM). The TPM NVRAM

access-control (similar to sealed storage) ensures that only KISS server software can access/update

that hash, Note that frequent NVRAM updates are impractical on TPM. To minimize NVRAM

updates, we leverage an update mechanism that is similar to the PCR-NVRAM two stage update

technique presented in [92]. During the audit procedure, the auditor verifies the integrity of the

log by recomputing the aggregated hash and comparing it with the hash stored in TPM NVRAM.

7.5.2 Client Bootstrap and Registration

Bootstrapping a KISS client is similar to the server bootstrap. A quorum of administrators veri-

fies the authenticity of the KISS hypervisor, wimpy kernel, client software, and its configuration

file. The client software securely sends its public key, KCli, to each of the participating TADs,

and collects the device public keys KTADi
(generated during the server bootstrap). The configu-

ration file sent to the client software differs from the one established during the server bootstrap.

It contains the server public key, KSrv, and the client-side system parameters (e.g., access-control

policies of key usage, user authentication information, and the corporate application informa-

tion). These client-side configurations are used in the fine-grained key usage control (See Sec-

tion 7.7). Upon a successful client bootstrap, TADs establish Cli-TAD cryptographic channels

with the KISS client, which allows subsequent client administration.

The administrators then register the client to the server by sending the client software public
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key, KCli, to the server software, via Srv-TAD cryptographic channels. This establishes the Srv-

Cli cryptographic channel (see Figure 7.3(b)). This channel diffs from the Srv-/Cli-TAD channel

in that it provides both secrecy and integrity protection to the data transferred between the server

and the clients (e.g., KISS product keys).

7.6 Secure System Administration

This section describes how the KISS administrators perform local and remote operations using

their TADs and remote managers. Unlike traditional KMS, our remote management mechanism

introduces a very small TCB that consists of a thin terminal, the KISS hypervisor, the wimpy

kernel, the user-interface devices on KISS manager, and the simple TADs. In addition, it enables

flexible administrative policies for better usability.

Secure Local Management. Administrators physically present at the KISS server or client

connect the TADs directly with the machines to perform management. TADs first perform re-

mote attestation to verify that the connected KISS machine is executing the desired hypervisor,

wimpy kernel, KISS software, and trusted paths. Thus, any command input (or KISS system

output) is securely directed to (or displayed by) the KISS server/client software. The administra-

tors also use the TADs to authenticate their command input, by allowing the KISS server/client

to display the command input with its digest (a cryptographic hash, H(input)) to the adminis-

trators. The alleged digest H(input) is sent to the TADs via untrusted USB connection. The

administrator confirms that the digest value displayed on his/her TAD is identical to the one on

the server/client display. Then, the administrator press a button on the TAD to generate an au-

thentication blob (digital signature) on digest H(input) with the Srv-/Cli-TAD channel keys. The

KISS server/client software verifies this blob to ensure the authenticity of launched commands.

Secure Remote Management. Administrators not physically present at the KISS server or

client leverage the KISS managers and the TADs to perform maintenance tasks. The KISS man-

ager software is isolated from the untrusted regime, and connects with the user-interface devices

via trusted paths. The administrators not only use their TADs to authenticate the command in-

put (the same as in local management), but also to verify the authenticity of the system output

returning from the KISS server or client software. The KISS server/client generate similar au-
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Category Operations
Local or Quorum Manual or

remote? or any? automatic?

1 server bootstrap, adding administrators local quorum manual

2
server software and config update,

either quorum manual
removing administrators

3 client bootstrap local either manual

4
client registration, software and config update

either either manual
(e.g., change key usage control policy)

5
server/client key life-cycle operations

either either either
(e.g., key generation, distribution, usage)

Table 7.2: KISS System Operation Categorization.

thentication blobs for each of their responses, using the Srv-/Cli-TAD channel keys. The KISS

manager software recomputes the digest H(response), and displays it to the administrators via

the trusted paths. It also forwards the digest and the authentication blob to the TADs. The

TADs verify the authenticity of the blobs, and display the digest on the screen. If the two di-

gests are identical, the administrators trust that the response indeed originated from the KISS

server/clients. Note that our remote management mechanism can be extended to protect the se-

crecy of the command input and system output, and avoid the hash computation overhead and

comparison efforts (Section 7.9).

Administrative Policies. KISS fully considers the balance between security and usability when

making administrative policies. We categorize different system operations according to their

administrative requirements, as is shown in Table 7.2.

In KISS, only three operations require the physical presence of administrators at the KISS

server/client; the majority of operations can be performed remotely. In Category 1, server boot-

strap and adding new administrators require the physical presence of a quorum of administrators.

These two operations bootstrap cryptographic channels between TADs and the KISS server soft-

ware and require our server bootstrap protocol (Section 7.5.1). Client bootstrap also mandates

the physical presence of administrators, because administrators scan the TPM public key to their

TADs.

In KISS, only a few operations mandate a quorum of administrators. We require all server-

side administrative operations in Category 1 and 2 to be performed by an administrator quorum
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in an attempt to prevent malicious insider attacks on the KISS server. However, once the server

audit log is bootstrapped, all subsequent client-side administrative operations in Categories 3

and 4 and server/client key life-cycle operations in Category 5 could possibly relax the quorum

requirement, because we can always detect insider attacks by analyzing the audit log.

In addition, for efficiency and usability, all Category 5 operations can be automatically per-

formed by the KISS server/client software, without the involvement of administrators. For ex-

ample, once an authorized corporate application requests a new key, the KISS client software

can immediately contact the server for the new key. These automatic operations are controlled

by the administrator-configured key usage policies (see Section 7.7), and can be recorded in the

server audit log (or similar audit logs on clients).

7.7 Fine-grained Key Usage Control

This section explains how the KISS client software, hypervisor, and wimpy kernel perform fine-

grained control of key usage. Figure 7.5 presents a typical workflow where a user executes a

KISS-capable application that uses the cryptographic key generated by KISS.

Application Verification. The user selects the corporate application he/she intends to run

via the untrusted regime (e.g., via a pop-up dialog by the OS). The OS loads and executes the

selected corporation application and notifies the KISS hypervisor of the application execution.

The hypervisor creates a corporate regime and protects the executed application in this regime.

The hypervisor then measures that application and the wimpy kernel and sends the measurement

as the application identifier to the KISS client software. The software compares the received

measurement with the known-good value in its application database and notifies the result to the

user via trusted paths. Recall that the authorized application database in the KISS client software

was configured during the client bootstrap and can be updated by the administrators via remote

management.

The KISS-capable corporate applications are not legacy applications. They are developed to

execute in corporate regimes, communicating with the wimpy kernel instead of the OS [83, 84].

Note that recent research [54] eases this development effort by allowing protected applications

to securely use OS services. The corporate application should also be modified to communicate
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Figure 7.5: Work Flow of Key Usage Control on KISS Client. Dashed lines are interactions

via trusted paths. UI, Sec, and Auth Dev are identical to those in Fig. 2. UserV denotes the

users’ dedicated verifier that can remotely attest to the KISS client.

with the KISS client software for key usage. While allowing key usage control, this introduces

context switch overhead between the application and the KISS client software. A corporate ap-

plication can be a stand-alone application (e.g., a KISS-capable document editor) or the security-

sensitive modules of a legacy application that uses cryptographic keys (e.g., the ServerKeyEx-

change authentication module in an HTTPS server software). This is an application-specific

design choice that depends on the application complexity (e.g., how the application is modular-

ized and privilege-separated) and the strictness of the key usage control policy (application-wise

or module-wise).

Remote Attestation. To trust the application verification results displayed in last step, and

to defend against subtle user-oriented credential stealing attacks (e.g., tricking the user to input

passwords), the users should leverage a small, dedicated device, called UserV, to attest that they

are interacting with the correct KISS software and corporate applications. The UserV is similar

85



to, but much simpler than TAD. The only task of the UserV is to perform standard remote attes-

tation to the KISS hypervisor, the wimpy kernel and the client software. It does not generate or

store any secrets (e.g., shared secrets or private keys). It merely needs one button to start the at-

testation, and a LED to display attestation results [137]. Upon successful remote attestation, the

user verifies that the application displayed is the one that he/she intends to run. Otherwise, the

user should stop interacting with the corporate applications to prevent any sensitive information

leakage.

User Authentication. In order to use the corporate application, the user needs to authen-

ticate the KISS client software. If the authentication fails, the KISS hypervisor immediately

teminates the corporate application. KISS can support all types of common authentication

methods (knowledge, inherence, and ownership-based) and multi-factors authentication. For

knowledge-based authentication (e.g., password, PIN) or inherence-based methods (e.g., finger-

print scanning, voice pattern recognition), the users should leverage the trusted paths between the

authentication-relevant devices (e.g., keyboard, fingerprint reader) and the KISS client software.

With the trusted paths, malware in the untrusted regime cannot intercept the users’ credentials 1.

For ownership-based authentication, users usually carry certain authenticators (e.g., smart cards,

security tokens) and rely on the embedded secrets to respond to the challenges of the KISS client

software. No trusted path is needed between the authentication devices (e.g., smart card reader)

and KISS client software. For all the authentication methods above, the KISS client software

should be configured with necessary authentication information (e.g., password hash, fingerprint

database, and keys to verify smart cards’ responses) by the administrators during client bootstrap

or remote management.

Key Usage Control. During execution, the corporate applications trigger key usage requests

to the KISS client software via KISS hypervisor, or via similar communication channels as the

Wimp-OS channels (Section 5.4). The key usage requests can be driven by the users (e.g., the

user wants to encrypt a confidential document) or by the application itself (e.g., the HTTPS web

server software digitally signs its ServerKeyExchange messages). Upon receiving the key usage

1Even if the attackers have the users’ credentials, they still need to physically be present at the KISS client to

input the credentials. The KISS client software takes inputs directly from the hardware devices via trusted-paths,

not from any software.
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requests, the KISS client software knows the identifiers of the requesting application and the

user. The KISS client software leverages the pre-configured access control policies to decide

whether to approve or deny the requests. KISS supports flexible access-control policies with

different granularity. It can perform simple ON/OFF key usage control. For example, KISS

allows user Alice to use the authorized document editor to decrypt her own documents, but

restricts other users who are using the same editor or Alice using different software (e.g., an

email client, or a compromised document editor) from accessing the documents. It can also

support more complicated policies, such as rate limiting, access time restriction, and role-based

access control. The administrators decide the access control policies, configure them in the client

software during bootstrap, and update the policies via remote management.

7.8 Security Analysis

This section analyzes potential attacks on KISS and our defense mechanisms.

System Bootstrap. During the system bootstrap, malicious administrators or malware on KISS

server/clients may tamper with the code or configurations of the hypervisor, the wimpy kernel,

and the KISS software. The benign administrators can detect this attack via TAD remote attes-

tation. Malicious administrators may also launch Sybil attacks by creating bogus administrator

accounts during the bootstrap process. As described in Section 7.5, the administrators visually

check that all TADs display success messages. This confirms that the server/client software

receives only the public keys of the participating TADs, not any bogus key.

Key Life-cycle Operations. Malware in the server/client untrusted regime may try to modify

the KISS software code, interfere with its execution, or access the cryptographic keys generated

or stored by the software. The KISS hypervisor prevents these attacks by protecting the code

and data memory of the KISS software from the untrusted regime. When the KISS software is

at rest, the cryptographic keys are protected by the TPM sealed storage. Only the same KISS

software can unseal the keys; the malware or the compromised KISS software cannot. Malware

attacks that compromise the client software to trigger unintended KISS server operations also

fail, because the client private key for authenticating operation requests is sealed by the TPM.

System Administration. Any manual administrative operation requires at least one authorized
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TAD. The malware cannot steal the private keys in TADs, nor can it intercept other administrator

credentials, such as bio-metric information or passwords, which are transferred to the KISS

software via trusted paths, and/or Srv-/Cli-TAD authentic channels (Section 7.6). Similarly,

the administration commands and system output are also transferred via trusted paths or Srv-

/Cli-TAD channels. The attackers cannot modify any command or forge any system output.

Though malicious administrators may use their TADs to execute operations that do not require

the quorum, those operations are recorded in the server/client audit log and held accountable.

Key Usage Control. As described in Section 7.7, unauthorized applications and users cannot

bypass the KISS hypervisor, the wimpy kernel, and the client software to use any cryptographic

key. A malicious administrator may intentionally update the application and user database in the

KISS client software to allow key mis-uses. However, this administrative operation is recorded

in the client audit log and held accountable. The malware cannot steal users’ authentication

credentials, because those credentials are delivered to the KISS client software via trusted paths.

The users also verify that they are communicating with the authentic KISS client software before

inputting their authentication credentials.

7.9 Discussion

This section discusses the KISS system extensions that provide higher security guarantees and

address some real-world application issues (e.g., cloud computing).

Administrative Operation Secrecy. Section 7.6 describes how KISS protects the authenticity

of administrative inputs and system outputs. We could extend KISS to protect input/output se-

crecy by establishing encryption keys for Srv-/Cli-TAD channels, and an extra trusted path on

KISS manager between the manager software and the USB controllers that connects the TAD.

Note that this trusted path also avoids the hash computation overhead and comparison efforts

described in Section 7.6, because it protects the authenticity of data between the TAD and the

manager software.

TPM 2.0 Enhanced Authorization. The TPM 2.0 library specification [123] is currently

under public review. It supports enhanced authorization by allowing the construction of complex

authorization policies using multiple authorization qualifiers (e.g., password, command HMAC,
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PCR values, NVRAM index values, and TPM time information). KISS can reduce its TCB

by offloading some authorization checking to TPM 2.0, given that it can securely collect the

authorization information, deliver it to the TPM, and protect it from the untrusted OS. However,

it is not clear how the performance of TPM authorization checking compares to that of the KISS

software.

Compatibility to Cloud Computing. The KISS hypervisor is a small, dedicated hypervisor

that runs on bare metal. If the KISS servers and clients are deployed on an enterprise private

cloud, we could consider (1) integrating KISS hypervisor with the full-functioning the hyper-

visor/VMM or (2) adding nested virtualization support [135] to KISS hypervisor and running

the full-functioning hypervisor/VMM upon it. Option (1) has much larger TCB, but has better

compatibility and performance than option (2).

7.10 Related Work

We review the state-of-the-art key management systems and related technologies. The first cate-

gory of KMS solutions are software-based solutions, such as OpenSolaris Crypto KMS Agent

Toolkit [88], IBM Tivoli Key Manager [57], and StrongKey open-source KMS software [115].

These rely on process isolation, user privilege control, and file permissions provided by the OS

to protect cryptographic keys and control the applications’ access to them. Their implementation

of trusted paths for administrators is based on the OS services (e.g., Ctrl+Alt+Del command or

trusted window manager). Compared with KISS, the software-only approaches are more cost-

effective and easier to deploy on commodity computers (e.g., no hypervisor, work with legacy

corporate applications, no security hardware requirement). However, they rely heavily on the

large OS and thus fail to provide the same level of security assurance as KISS.

An alternative is leveraging high profile HSMs [55, 89, 97, 99, 120]. An HSM provides

hardware-level tamper-resistant protection to cryptographic keys and algorithms for both run-

time and at rest, while KISS provides hypervisor-based software isolation for keys and algorithm

during run-time, and TPM level hardware protection for keys at rest. For performance, an HSM

may employ customized hardware engine to accelerate cryptographic algorithms. It is more ef-

ficient than KISS and the software-only solutions. The downside of the HSM is that it fails to
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provide the same secure level of key usage control as in KISS, as we have explained in Sec-

tion 7.1. Indeed, the KISS system can be extended to serve as the key usage control front end

of the HSM, which may achieve the benefits of both systems. For system administration, some

high-end HSMs [99, 120] achieve the same level of security guarantees as KISS (e.g., quorum

control, trusted paths using on-HSM I/O devices, remote management using administrator de-

vices). However, their administrator devices introduce larger TCB than KISS (e.g., complicated

key management software stack for interpreting commands and operation results). The HSM ad-

ministrators usually blindly trust the devices, and have no intuitive way to verify their software

status.

There are research proposals that seek to offer similar protections for user credentials in the

key management systems. Wallet-based web authentication systems (e.g., [41]) isolate user cre-

dentials in an isolated domain (e.g., a L4 process upon L4 Micro-kernel) during run-time and

protect the credentials at rest by TPM-based sealed storage. They only allow authenticated web-

sites to access their own credentials. These systems have a reasonable TCB size, but do not

provide fine-grained and flexible key usage control as in KISS (e.g., user-based control). Bugiel

and Ekberg [20] propose a system that only allows the application to access its own credentials

(protected in mobile trusted module). The On-board Credentials (ObC) [73] approach enables

an isolation environment (like KISS) for both third-party credential algorithms/applications and

credentials, on smartphones and conventional computers. However, one faces multiple chal-

lenges extending these systems for corporate key management. For example, ObC approach

lacks protection mechanisms against malicious administrators and do not support trusted paths

for administrator management. PinUP [32] binds files to the applications that are authorized to

use them by leveraging the SELinux capability mechanisms. This suggests that PinUP introduces

a larger TCB to provide security assurance on par with KISS.

7.11 Summary

In this chapter, we present a trustworthy key management system architecture by leveraging

micro-hypervisor-based code isolation and wimpy-kernel-based I/O isolation. KISS aims to re-

duce cost by relying solely on commodity computer hardware, and minimize the system TCB
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by the design of micro-hypervisor and wimpy kernel, and lightweight administrator devices.

KISS is the first key management system to support fine-grained control of key usage. KISS is

bootstrapped and operated in the face of software attacks from malware in the OS and insider

attacks from malicious administrators. KISS provides user-verifiable trusted paths and simple

dedicated external devices for secure system administration. KISS showcases the benefits of

applying trusted computing techniques, program isolation, and I/O isolation to designing trust-

worthy systems. KISS offers trustworthy key management systems at a price point that enables

wide-spread adoption beyond the security-sensitive financial or governmental institutions.
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Chapter 8

Related Work

This chapter compares our on-demand I/O isolation system with the related work of code isola-

tion, device driver isolation and I/O isolation, as shown in Sections 8.1, 8.2, and 8.3, respectively.

8.1 Isolated Execution Environments

Recent advances on isolated execution environments (IEEs), using both software [83, 84, 100,

113, 114, 127] and hardware architectures [86], illustrate the safe co-existence of software code

modules or applications with an untrusted OS. However, most IEEs lack basic services for ap-

plication development. Other systems add a few such services to the IEE with minimal TCB

support; e.g., persistent memory [91], file system and network services [21, 22, 24, 54, 80],

inter-IEE communication [114], and limited user trusted path [137]. They do not include ser-

vices for on-demand isolated I/O channels to diverse and complex peripheral devices (e.g., USB

devices). In contrast, this paper addresses this unmet challenge on commodity platforms. In ad-

dition, most of these systems [21, 22, 24, 54, 91] adopt a synchronous, or blocking, service com-

munication model (i.e., the application execution ceases during services) and entail additional

overhead for application-OS context switches with low-level hypervisor support. In contrast, we

support asynchronous and more efficient wimp-OS communication channels without any low-

level micro-hypervisor support and hence avoid extra overhead, on multi-core platforms. More

recently, the Drawbridge/Library OS system [95] packaged rich, high-level application services

(e.g., rendering engines, language run-time) with IEE software, but left the device drivers and

kernel driver subsystem to the host OS. Thus, the trusted code base of their application I/O ser-
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vices is much larger than ours.

8.2 Device Driver Isolation and Decomposition

Several approaches [18, 42, 78, 79, 87, 117, 131] exist to isolate device drivers from the OS

kernel, and/or move them to user-space, primarily for the purpose of improving driver reliability

and fault isolation. Swift et al. propose using hardware memory protection domains to isolate

the drivers of a monolithic kernel [117]. LeVasseur et al. [79] and Nikolaev et al. [87] pro-

pose running unmodified device drivers of guest operating systems in separate virtual machines.

SUD [18] moves device drivers to an emulated Linux kernel environment in user-space. Leslie et

al. [78] implement user-level device drivers on a Linux kernel. I/O channel isolation of all these

systems relies on very large and untrusted OS code bases. In contrast, the overriding goal of our

system is to decouple the I/O channels from an untrusted OS to obtain much higher isolation as-

surance. Ganapathy et al. [42] propose a microdriver architecture that splits driver code, leaving

the critical path code in the kernel and moving the rest (e.g., initialization, configuration) to a

user-level process. They aim to achieve high driver performance and compatibility with com-

modity OSes. We share similar driver decomposition goals, but we focus primarily on reducing

a system’s trusted code base by outsourcing I/O management functions to the untrusted OS and

verifying their behaviors in the wimpy kernel.

Williams et al. [131] develop an architecture that isolates device drivers in user space and a

reference validation mechanism (RVM) that mediates their low-level interactions (e.g., MMIO,

DMA, interrupts) with I/O devices. RVM relies on safety specifications for individual devices

to identify allowed and prohibited interactions. This architecture has different goals than ours as

it is based on an extensively re-designed OS. Also, enforcing safety specifications for individual

devices is insufficient in the on-demand I/O model, since this model requires the composition

of safety specifications for multiple interconnected devices via complex bus subsystems that are

shared on a time-multiplexed basis.

Similarly, micro-kernels [70, 110] restructure commodity OSes by leaving essential functions

like task scheduling and IPCs in the kernel, and moving the rest of OS functions to user-space;

e.g., device drivers and bus subsystems. Though providing high assurance, these systems require
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extensive OS re-design, which is precisely what we avoid. Instead, we achieve safe co-existence

of our trusted code base with unmodified commodity OSes. For our purposes, it would be equally

undesirable to use a micro-kernel [70] and its user-level driver subsystems as our wimpy kernel,

because we seek to retain the I/O programming model of commodity OSes, and encourage wimp

applications to reuse commodity device drivers to the largest possible extent.

8.3 I/O Isolation Systems

8.3.1 Limited Device Support

Security kernels [14, 30, 46, 52, 104, 133], isolation kernels [94], and micro-hypervisors [23,

138] support isolated channels for a few selected user-interface devices (e.g., security adminis-

trators) within their TCBs. This approach inevitably increases the size and complexity of trusted

code and does not apply to the wide variety of devices that need to be supported outside the

TCB. Zhou et al. [137] illustrate a limited form of user-verifiable trusted paths to application-

code modules, protected by a micro-hypervisor [83].

Filyanov et al. [37] proposes an isolated software module to control user-centric I/O devices

(e.g., keyboard and display) and enables a remote server to verify that a transaction summary

is confirmed by a local user’s keyboard input. However, the UTP system does not provide lo-

cal, user-verifiable evidence of the output trusted path; i.e., malicious code can display a fake

transaction output to the user. Unfortunately, UTP does not defend against all the attacks we

address, e.g., MMIO mapping attack, MSI spoofing, IPI spoofing, and attacks that exploit the

DMA request ambiguity.

The DriverGuard system [25] protects the confidentiality of the I/O flows between commod-

ity peripheral devices and some Privileged Code Blocks (PCBs) in device driver code. Moreover,

DriverGuard does not claim that they protect the I/O data from MMIO mapping attacks. Thus,

the I/O data in PCBs may still be revealed to a potentially compromised OS. In addition, Driver-

Guard’s I/O port access isolation is incomplete. PCBs are in a higher privilege level than the OS

kernel, and thus can access any I/O ports of any other devices. In contrast with these systems, we

address the seemingly conflicting and more challenging requirements of supporting diverse and

complex I/O devices while, at the same time, maintaining overall system simplicity. Our sys-
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Table 8.1: A Comparison of Different I/O Isolation Architectures. “Dom0” denotes the

monolithic root domain in the “split-driver” model [15]. “Structured dom0” represents the root

domain in the hypervisor model where each device driver is separated into a VM domain (“Dev

VMs” in this table).

Monolithic Hypervisor Hypervisor w/ Hypervisor w/ Our

OS/hypervisor w/ dom0 dev pass-through drv domains System

Secure App app VM app VM app

Device Driver OS/hypervisor dom0 guest OS drv VMs app

Others in TCB hyp hyp+dom0 hyp+Dev VMs micro-hyp+WK

TCB Size (SLoC) >10M >1.2M >1.2M >1.2M ≈30K

tem protects I/O data against subtle device mis-configuration attacks (e.g., USB address overlap

attacks and remote wake-up attacks), which these systems do not (claim to) counter.

8.3.2 Static Device Allocation

Separation kernels [49, 98, 118] can isolate I/O channels by allocating devices to different sys-

tem partitions, which are statically defined at system configuration time. They also enforce strict

information flow policies among these partitions – a goal that we do not share.

NoHype [69, 119] dedicates I/O devices with virtualization support (e.g., SR-IOV [63]) to

virtual machines (VMs) through a static pre-allocation process. Their system design is based on

the observation that a VM running on a cloud platform only needs a limited number of I/O de-

vices; e.g., network interface cards, storage, and graphic cards. Thus, they cannot protect I/O data

from user devices such as a mouse, VGA, or printer. In contrast, our system focuses on providing

dynamic, on-demand isolation of a wide variety of peripheral devices. LockDown [129] and Se-

cureSwitch [116] partition system sources, such as CPU, memory, hard disks, network interface

cards, and graphic cards, among a untrusted OS and a trusted OS, as proposed in Lampson’s

red/green system separation idea [75]. The resource partition is statically configured by a micro-

hypervisor or the BIOS. Different from our system, these systems do not claim to support trusted

execution environment for applications, nor do they support the isolation or partition of other

plug-and-play devices, such as USB keyboards, cameras, thumb drives.
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8.3.3 OS/Hypervisor-based Systems

Trusted path on the DirectX system [76] and the Trusted Input Proxy system [16] reserve dedi-

cated areas of the screen to output the identity and status of the current applications. These sys-

tems are built atop large operating systems. The Not-a-Bot system [51] implements a software

module to capture human keyboard inputs and to use them to identify human-triggered network

traffic. This system builds a small code module upon a reduced version of the Xen hypervisor

and mini-OS kernel, which is still around 30K SLoC. Saroiu and Wolman propose a system that

runs a root virtual machine (e.g., a dom0 in Xen) to read a mobile device’s sensors [103]. This

design trusts a full virtual machine monitor, and only protects data integrity. Similarly, Gilbert et

al. propose a trustworthy mobile sensing architecture [44] that enables a remote data receiver to

verify that the sensed data is from the intended sensors and has only been manipulated by trusted

software (e.g., the intended sensing application, trusted OS, and VMM).

During the past decade, advances in device virtualization have decreased the trusted code

base for isolated I/O channels, gradually evolving from the monolithic hypervisors/VMMs to

hypervisors with privileged device management domains [15], then to hypervisors with disen-

gaged privileged domains [27], and finally to hypervisors with isolated driver domains [40, 87]

(Table 8.3.2). However, applications in their guest domains still communicate with virtualized

devices via the untrusted guest OS on which they run, which still implies that a huge code base

has to be trusted for on-demand, isolated I/O. Hypervisors with device pass-through support (e.g.,

Xen, KVM, and [82]) or para-passthrough support (e.g., BitVisor [112]) exclusively assign I/O

devices to a specific guest VM. A driver of the pass-through device still has to co-exist with the

untrusted guest OS. Worse, a compromised control domain can break the isolation of the pass-

through devices. In contrast, our system is specially designed to avoid virtualizing hardware

devices of commodity OSes. We control only the necessary hardware for I/O channel isolation,

and rely on a small and simple trusted code base.

Hypervisors that are based on the “split-driver” model [15] move device management from

the hypervisor to a root domain, dom0, which is frequently large and unstructured [27]. Hence,

it merely exposes the trusted-path to a different set of attacks from those possible in a monolithic

OS (e.g., Windows) or VMM (e.g., VMware Workstation), but does not eliminate these attacks.
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Equally undesirable is that a program endpoint typically communicates with the wimp device of

a trusted path via the untrusted guest OS upon which it runs.

Hypervisors with device pass-through support [82] (e.g., Xen, KVM) or para-passthrough

support (e.g., BitVisor [112]) enable exclusive assignment of I/O devices to a specific guest VM.

However, the driver of the pass-through device is still in the guest VM and co-exists with the

guest OS. There is no device driver isolation in this mechanism. Also, a compromised root

domain, dom0, can still break the device isolation and communication path isolation. For ex-

ample, typically the user must explicitly “hide” the pass-through devices from dom0 via some

administrative settings in dom0.

Another recent advance is the ability to structure device drivers in a hypervisor-based system

into driver-domains, giving different driver virtual machines (VMs) direct access to different de-

vices [27, 96]. However, this work only demonstrates how to isolate device driver address spaces

and Direct Memory Access (DMA). It does not fully isolate devices from compromised OS

code in other administrative domains (e.g., system-wide configurations for I/O ports, Memory-

Mapped I/O (MMIO), and interrupts remain unprotected). Manipulated devices may still breach

the isolation between device drivers and gain unauthorized access to the registers and memory

of the isolated devices.

In contrast, our system is specially designed to avoid virtualizing hardware devices of com-

modity OSes. We control only the necessary hardware for I/O channel isolation, and rely on a

small and simple trusted code base.

8.3.4 Special Devices

Some systems take advantage of special hardware devices – equipped with data encryption ca-

pability – to establish secure I/O channels with isolated software [53, 72, 85, 130]. Saroiu et

al. [103] propose another sensor reading protection system based on the assumption that the read-

ing is digitally signed by a TPM on the sensor (c.f. [31]). The Zone Trusted Information Channel

(ZTIC) is a dedicated device with a display, buttons and cryptographic primitives [77, 130]. ZTIC

enables users to securely confirm their banking transactions via the dedicated display and but-

ton, completely bypassing the user’s computer, which may be infected by malware. The Bumpy

system requires a special keyboard that supports cryptographic primitives including encryption
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and certificate validation [85].

Solutions using cryptographic channels and special devices with cryptographic primitives

often require the protection of secrets in user-level programs and/or commodity I/O devices,

which is often impractical and raises fundamental usability concerns for commodity platforms.

How could a user securely set or change the secret key within a trusted-path program endpoint

without using some trusted path to reach that program? Our system avoids the attendant secure

key management issues and special devices, and supports protected I/O channels to commodity

peripheral devices.
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Chapter 9

Discussion and Future Work

This chapter discusses various software design choices and I/O hardware modifications that may

lead to simpler, higher performance, more secure and usable system implementations in the

future.

9.1 I/O Hardware Modifications
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(a) DMA Request Ambiguity (b) Unmonitored Peer-device Communication

Figure 9.1: Architectural Challenges for I/O Isolation. ManD denotes a device outside

wimps that is manipulated by compromised OS.

DMA Request Ambiguity. DMA-capable peripherals that are the downstream of one or more

PCI/PCI-to-PCIe bridges cannot be uniquely identified by the system’s IOMMU, enabling de-

vices in such locations to impersonate other nearby devices. Manipulated devices may leverage

this attack to violate the isolation of the DMA memory region of the isolated device [101].

We first describe a software work-around to this DMA request ambiguity problem, which

provides the desired security properties but incurs significant performance overhead. The wimpy
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kernel identifies all devices behind the same PCI/PCI-to-PCIe bridges that connect the wimp de-

vice by enumerating the PCI configuration space. Before executing the wimp app, these devices

are put into a quiescent state (e.g., sleep, or a pending state). The wimpy kernel can verify the de-

vices’ quiescent state by reading device-specific status registers before approving the execution

of the wimp app. During the wimp app’s execution, the wimpy kernel prevents the compromised

OS from waking the pending devices by interposing on the relevant I/O ports and memory ranges

(Sections 5.1.1 and 5.1.2).

However, quiescing all devices sharing the same PCI/PCI-to-PCIe bridge with a wimp de-

vice reduces I/O performance. During the execution of the wimp app, an OS cannot communicate

with any of those devices. To eliminate this uncomfortable trade-off between security and perfor-

mance, we suggest several potential architectural changes. First, motherboard manufacturers can

assign only one PCI device to each PCI or PCI-to-PCIe bridge. Alternatively, the PCI/PCI-to-

PCIe bridge design specifications might be changed to transmit the identifiers of the originating

devices when relaying I/O transactions. A third proposal is to enhance the DMA request ID

specifications to include additional information, such as the contents of the PCI vendor ID and

device ID configuration register fields. This information should not be changed or replaced by

PCI/PCI-to-PCIe bridges.

Unmonitored Peer-Device Communication. Manipulated PCI/PCIe and USB 2.0+ devices

may establish peer-to-peer connections with a wimp device, bypassing all isolation mechanisms

implemented by the hypervisor [102, 121, 122]. PCI/PCIe peer-to-peer communication complies

with the PCI/PCIe specifications [19, 109], and thus cannot be denied by the device itself. The

MMIO protection can neither prevent nor detect peer-to-peer communication, since this com-

munication operates directly on the internal memory of the communicating devices. In addition,

the IOMMU cannot mediate communication for PCI and USB devices that are connected to the

southbridge chip, because the IOMMU is integrated into the northbridge chip.

To prevent PCI peer-to-peer communication, we propose using the new PCIe Access Control

Services (ACS) [9]. The ACS on an I/O bus/bridge will actively check the originator’s identity in

I/O requests, and prevent I/O command spoofing and unauthorized I/O access. The I/O isolation

system configures the ACS on all corresponding bridges to prevent any peer-to-peer commu-
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nication between the wimp device and other devices. The I/O isolation must also protects the

ACS configuration using the mechanisms described in Section 5.1. The remaining problem is

that ACS is not yet a common feature of the I/O architecture, and most current PCI bridges and

chipset hardware do not implement it.

The prevention of USB On-The-Go (OTG) peer-to-peer communication [124] is easier, be-

cause the communication only succeeds when both communicating devices enable OTG and

comply with OTG protocols. Thus, the wimpy kernel or wimp app can explicitly configure the

wimp device to disable USB OTG.

9.2 Defend against Firmware Attacks

A future direction would be relaxing the adversary model and considering devices with com-

promised or malicious firmware. We integrate a software attestation mechanism [106, 107, 134]

to verify wimp device’s firmware authenticity and, if necessary, eliminate any known malware

from its firmware [68, 121, 122]. However, verification of firmware authenticity cannot, and is

not intended to, guarantee full firmware correctness with our system; e.g., the elimination of ex-

ploitable firmware vulnerabilities is an important, separate assurance exercise not addressed here.

Here the correctness of device firmware means that (1) devices respond to few wimpy kernel and

mHV commands, such as those to enter a quiescent state, report MMIO and PMIO mapping, and

disable peer-device connectivity, and that (2) device firmware does not actively tamper with the

I/O data or leak the data to external entities. Note that even if all device firmware is correct but

devices are not isolated from untrusted OS code, devices could still be misused by the untrusted

OS to breach I/O isolation.

At a high level, the software attestation process is applied to wimp device’s firmware as

follows [106, 107, 134]: A small verification function loaded in device wimp device proves to

the verifier wimp app that it is operating correctly and is isolated from wimp device’s firmware.

To do this, the verification function uses a time-bounded, challenge response protocol. Then it

computes a cryptographic hash over wimp device’s internal memory content and sends the result

back to the verifier wimp app, which compares the computed hash value with the expected value

of the unmodified firmware to confirm the authenticity of the firmware.
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9.3 Cope with Other I/O Architecture

QuickPath/HyperTransport. Intel’s QuickPath Architecture [59] provides high-speed, point-

to-point interconnects between microprocessors and external memory, and between micropro-

cessors and an I/O hub. This architecture is designed to reduce the number of system buses

(e.g., replace the front-side bus between the CPU and memory), and to improve interconnect

performance between CPU, memory, and I/O peripherals.

However, QuickPath is not intended to, and indeed does not, solve the device isolation prob-

lems any more than the commodity x86-based I/O architecture. Our design can directly apply to

the QuickPath architecture. The changes are merely in the composition of the chipset hardware:

for the x86 architecture, a northbridge and a southbridge are involved, whereas in the QuickPath

architecture, a QuickPath controller and an I/O hub are used. In addition, memory management

units are directly embedded in QuickPath-enabled CPUs. Our I/O isolation system design is

equally applicable to other similar I/O architectures, including AMD’s HyperTransport [56].

ARM. Recent advances to ARM’s TrustZone security extensions [6] and virtualization sup-

port [125] make the application of our I/O isolation design to ARM-based I/O architectures pos-

sible [128]. ARM’s TrustZone Security Extensions [6] split a single physical processor state to

safely and efficiently execute code in two separate worlds: a more-privileged secure world, and a

normal world. System designers can leverage multiple hardware primitives, such as TrustZone-

aware memory management units, DMA and interrupt controllers, and peripheral bus controllers,

to partition critical system resources and peripheral devices and assign them to different worlds.

In addition, with forthcoming virtualization support [125], it is possible to run a hypervisor in

a special mode of the normal world that can optionally trap any calls from the normal world’s

guest OS to the secure world. Porting our I/O isolation system to the ARM architecture, and

supporting a wide range of applications on mobile and embedded platforms, is future work.
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Chapter 10

Conclusion

To be trustworthy, security-sensitive applications must be formally verified, and therefore they

must be small and simple (i.e., wimps). High-assurance security-sensitive applications do not

exist on commodity platforms today, where large and untrustworthy systems (i.e., giants) are

typically chosen to address diverse user needs in different application scenarios.

We argue that the two mainstream mechanisms to guarantee trustworthiness of security-

sensitive applications – patching and restructuring the giants – will remain ineffective. Con-

stantly applying security patches to commodity giants and attempting to secure whole systems

and the applications run upon them does not work because it is extremely difficult to obtain

complete and accurate adversary definitions for large commodity systems, which gives attackers

a persistent cost advantage over defenders. Fully restructuring commodity giants and building

security from ground up is equally unattractive, because the immense technical complexity of

restructuring would require years of design and engineering effort, which will never keep pace

with the innovation speed in the mass market. In this thesis, we present a third mechanism, an

on-demand add-on, to get rid of the daunting complexities of patching and restructuring and to

achieve benefits of both giants and wimps. This mechanism keeps commodity giants unchanged,

plugs in a minimal system to guarantee the giant-wimp code isolation and other security proper-

ties of the wimps, and unplugs when the applications are done.

Trustworthy wimp applications are unlikely to survive in the marketplace without the ability

to use a variety of basic services securely, such as on-demand isolated I/O channels to peripheral

devices. This thesis presents a security architecture based on a trusted add-on, called wimpy
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kernel, which provides these services without bloating the underlying trusted computing base. It

also presents a concrete implementation of the wimpy kernel for major I/O subsystems, namely

the PCI and the USB subsystems, and a variety of device drivers. The size and complexity of

the wimpy kernel are minimized by safely outsourcing I/O subsystem functions to an untrusted

commodity operating system. In other words, wimps are not only isolated from giants, but also

securely composed with them: they rely on giants’ services but only after efficiently verifying

their results. The reduction of the wimpy kernel is further achieved by exporting driver and

I/O subsystem code to wimp applications. Experimental measurements show that we achieve

the desired minimality goals for the wimpy kernel, which has never been done in any previous

I/O isolation system. For example, over 99% of the Linux USB code base is removed from the

wimpy kernel.

We demonstrate the power of this new architecture using two applications, secure user in-

terface [137, 139] and trustworthy corporate key management systems [138]. These are the two

most important primitives for any security-sensitive application [93, 136] because these applica-

tions always need a trusted path to reach the users and a infrastructure to bootstrap and distribute

cryptographic keys for secure data storage and transfer. The systems designed in this thesis open

up new possibilities and facilitate the wide-spread adoption of high-assurance security-sensitive

applications in the commodity market.
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