
Online Learning Techniques for Improving
Robot Navigation in Unfamiliar Domains

Boris Sofman
CMU-RI-TR-10-43

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

December 2010

Thesis Committee:
Tony Stentz, co-chair

J. Andrew Bagnell, co-chair
Christopher Urmson

Lawrence Jackel, AT&T Labs Division Manager (Emeritus)

Copyright c© 2010 Boris Sofman

Keywords: Mobile robots, field robotics, robot perception, overhead data interpretation,
online learning, novelty detection, change detection, candidate selection, list maintenance

Abstract

Many mobile robot applications require robots to act safely and intelligently in complex un-
familiar environments with little structure and limited or unavailable human supervision. As a
robot is forced to operate in an environment that it was not engineered or trained for, various as-
pects of its performance will inevitably degrade. Roboticists equip robots with powerful sensors
and data sources to deal with uncertainty, only to discover that the robots are able to make only
minimal use of this data and still find themselves in trouble. Similarly, roboticists develop and
train their robots in representative areas, only to discover that they encounter new situations that
are not in their experience base. Small problems resulting in mildly sub-optimal performance are
often tolerable, but major failures resulting in vehicle loss or compromised human safety are not.

This thesis presents a series of online algorithms to enable a mobile robot to better deal with
uncertainty in unfamiliar domains in order to improve its navigational abilities, better utilize
available data and resources and reduce risk to the vehicle. We validate these algorithms through
extensive testing onboard large mobile robot systems and argue how such approaches can in-
crease the reliability and robustness of mobile robots, bringing them closer to the capabilities
required for many real-world applications.

iii

Funding Sources

We gratefully acknowledge the sponsors of this research, without whom this thesis would not be
possible:

This work was partially sponsored by DARPA under contract Unmanned Ground Combat
Vehicle - PerceptOR Integration (contract number MDA972-01-9-0005) and by the U.S. Army
Research Laboratory under contract Robotics Collaborative Technology Alliance (contract num-
ber DAAD19-01-2-0012).

I have also been partially supported for most of my PhD by a Sandia National Laboratories
Excellence in Engineering Fellowship. I would like to gratefully acknowledges Sandia’s Campus
Executive Laboratory Directed Research and Development Program (LDRD) for this support. I
truly appreciate the freedom and flexibility that this generous fellowship has given me.

v

vi

Acknowledgments
There are many to thank for this dissertation, but I must start with my advisors,

Tony and Drew. They have been a source of endless support, insight, guidance and
patience, putting up with my changing interests, and even a nine month leave from
the program midway through to chase an exciting opportunity in California. I have
tremendous respect for both of you and hope that we will stay part of each other’s
lives. Thank you also to my committee members, Chris Urmson and Larry Jackel,
for the insightful discussions and suggestions for this work.

The projects I have had the pleasure of working on would not have been possible
without a large number of people behind the scenes. Thank you to Dave S., Cliff,
Dave B., Cris, Carl, Mike, Tom, Constantine, and the entire UPI project team who
came together on a truly special project. Many thanks also go out to John Cole,
Nicolas Vandapel and Ellie Lin with whom I collaborated heavily on the earlier
portions of this work.

Switching onto the CTA project for my later work was special because I’d started
my robotics career at Carnegie Mellon on this project as an undergraduate, and now
I returned to it to conclude my PhD. Thanks to everyone involved, both past (Marc,
Dave, Nidhi, Rob, Juan Pablo) and present (Dave, Dom, Balajee, Bernadine, Fred-
die, Jimmy, Nisarg). I want to specifically thank Brad Neuman, the super-undergrad
that everyone looks for but seldom finds. He’s been a great partner throughout the
past year and his contribution to the later change detection research has been enor-
mous. Good luck in starting your own PhD journey this year.

Carnegie Mellon has been a special place to me for a long time, and one of the
main reasons has been a wonderful collection of friends and colleagues. You are too
numerous to mention but without you my time here would not have been nearly as
enjoyable. You know who you are: thank you.

And finally, I want to give special thanks to my family. My parents, Lev and
Anna, for pushing me in the right directions in life, my sister Marianna, who saw my
enthusiasm for Carnegie Mellon and is now finishing her undergraduate here, and of
course Dana, my wife and best friend. Dana, you’ve celebrated the good times with
me and helped me through the tough times. We’ve been through a lot these past few
years, and I’m sure we’ll have plenty more adventures together in the future.

Finally, thank you to Carnegie Mellon. This is a wonderful place to be a student.
I’ve learned more than I could have imagined and have met some incredible people
along the way. Thanks for the best lesson of all:

viii

Contents

1 Introduction 1
1.1 Operating Under Uncertainty . 4

2 Thesis Statement 7

3 Technical Approach 9
3.1 High-Level Approach . 9
3.2 Integration Into Autonomy System . 10

3.2.1 Far-Range Perception (Chapter 4) . 12
3.2.2 Online Novelty and Change Detection (Chapter 5) 12
3.2.3 Online Candidate Selection (Chapter 6) 13
3.2.4 Joint Integration . 13

3.3 System Architecture . 13
3.3.1 Perception System . 14
3.3.2 Overhead Data Usage . 18

4 Onboard and Overhead Robot Perception in Unfamiliar Domains 23
4.1 Related Work . 24
4.2 Approach . 26

4.2.1 Formalization . 26
4.2.2 Advantages of the Bayesian Learning Approach 28

4.3 Application to Mobile Robotics . 30
4.3.1 Terrain Traversal Cost Prediction . 30
4.3.2 Training and Prediction . 32
4.3.3 Applications of Trained Algorithm . 33

4.4 Experimental Results . 35
4.4.1 Field Test Results . 35
4.4.2 Field Test Data Post-Processing Results 39

ix

4.4.3 Offline Map Alignment . 42
4.4.4 Feature Selection . 42

5 Anytime Online Novelty and Change Detection 45
5.1 Related Work . 47
5.2 Approach . 49

5.2.1 Formalization . 49
5.2.2 Improved Dimensionality Reduction . 50
5.2.3 Framing as Instance of NORMA . 51
5.2.4 Query Optimization . 52

5.3 Extension to Change Detection . 52
5.4 Improving Performance through Scene Segmentation 55

5.4.1 Segmentation Pipeline . 56
5.4.2 Similarity Classifier . 59
5.4.3 Seed Voxel Selection . 60
5.4.4 MRF-Based Segment Identification . 61

5.5 Application to Mobile Robotics . 66
5.6 Experimental Results . 67

5.6.1 Novelty Detection Results . 67
5.6.2 Change Detection Results . 78

6 Online Candidate Selection 85
6.1 Related Work . 86
6.2 Approach . 88

6.2.1 Contextual Multi-Armed Bandit Setting 88
6.2.2 Exploration-Exploitation Trade-off . 89
6.2.3 Linear Optimization as Multi-Armed Bandits Problem 90
6.2.4 Formalization . 90

6.3 Experimental Results . 91
6.3.1 Adjustable Autonomy . 91
6.3.2 Online Overhead Data Selection . 93

7 Conclusions 97
7.1 Summary and Contributions . 97

7.1.1 Improved Perception in Unfamiliar Domains 97
7.1.2 Anytime Online Novelty and Change Detection 98
7.1.3 Online Candidate Selection . 99

x

7.2 Future Work . 99
7.2.1 Additional Applications of Self-Supervised Learning 99
7.2.2 Novelty and Change Detection . 100
7.2.3 Intelligent Uncertainty Resolution . 101

A Bayesian Linear Regression 103
A.1 Basic Gaussian Properties . 104
A.2 Initialization . 105
A.3 Training . 105
A.4 Prediction . 107
A.5 Sample Use for Online Learning Task . 108

B Self-Organizing Lists 111
B.1 Dictionary Problem . 111
B.2 Min-Sum Weighted Set Cover . 114
B.3 Related Problems . 115

B.3.1 Set Cover Problem . 115
B.3.2 Min-Sum Set Cover Problem . 116
B.3.3 Pipelined Set Cover Problem . 116

B.4 Submodularity . 117
B.5 Online Submodular Minimization . 120

Bibliography 123

xi

xii

List of Figures

1.1 Example real-world applications of mobile robotics 1
1.2 Limited perception range results in suboptimal paths 2

3.1 Sample online traversal cost prediction . 10
3.2 Same result from online novelty detection algorithm 11
3.3 Spinner and Crusher robots . 14
3.4 E-gator autonomous vehicle . 15
3.5 High-level system data flow . 15
3.6 Example raw engineered features from the UGV’s perception system 16
3.7 Example of voxelization within perception system 17
3.8 Example of perception system features . 18
3.9 Use of HDR within autonomy system . 19
3.10 Overhead data processing system architecture 19
3.11 Ground classification of 3-D overhead data . 20
3.12 Sample overhead cost map production pipeline 20

4.1 Typical ladar response from vehicle’s perception system 24
4.2 Graphical depiction of the scoped learning model 27
4.3 Online learning system data flow . 30
4.4 Sample clustering results using GMM . 31
4.5 Training progress for online learning algorithm 34
4.6 Comparison of paths executed by baseline system, FROLL, and MOLL 36
4.7 Additional path comparisions for baseline system, FROLL, and MOLL 37
4.8 Effect of FROLL performance at Ft. Bliss . 38
4.9 FROLL use by year . 39
4.10 Prior path planning using MOLL-based training 40
4.11 Log-scale traversal cost error using various cost-estimation techniques 41
4.12 Average FROLL error . 42
4.13 Using MOLL for data registration . 43

xiii

4.14 Effects of using feature selection on traversal cost prediction error 44

5.1 An example of the change detection system in use 46
5.2 Example segmentation results for several scenes 55
5.3 The control flow through the segmentation-based change detection system. 57
5.4 Example scene segmentation output and impact on performance 63
5.5 Effects of varying smoothness parameter λ. 64
5.6 Illustration of the MRF optimization procedure. 65
5.7 Examples of hand labeled class categories . 69
5.8 Training examples projected into PCA and MDA based subspaces 70
5.9 Sample labeled examples from man-made class 71
5.10 ROC analysis of novelty detection performance 72
5.11 Novelty detection on vegetation shortly after initialization 72
5.12 Novelty detection of initial denser vegetation 73
5.13 Novelty detection of similar dense vegetation later in navigation 74
5.14 Change in detected novelty throughout early training 74
5.15 Detected novelty for encountered barrels . 75
5.16 Dangerous scenario arising from system’s incorrect interpretation of fence’s traver-

sal cost . 76
5.17 Additional examples of novel instances identified during later traversal 76
5.18 Average computation time of novelty detection algorithms 77
5.19 Performance of the change detection system with and without segmentation across

all logs . 79
5.20 Change detection performance on selected individual scenarios 81
5.21 Visualization of position error across two runs 82
5.22 Change detection performance under additional registration error 82
5.23 Area-under-curve plots for change detection performance under additional reg-

istration error . 83

6.1 Aerial image of candidate selection test site . 92
6.2 Online operator selection performance . 93
6.3 Estimated traversal time using DTED data . 94
6.4 Overhead data selection performance . 95

7.1 Sample scenario for uncertainty resolution technique 102

B.1 List positions before lookup . 113
B.2 List positions after lookup . 114

xiv

B.3 Visual proof of submodularity of equation B.5 119

xv

xvi

List of Tables

4.1 Statistics for Course Traversals With and Without the Online Learning Algorithm 37
4.2 Types of Overhead Data Used by Overhead Online Learning (MOLL) and Hand-

Trained Algorithms Used To Produce Prior Cost Maps 41

5.1 A summary of the relevant parameters used for the segmentation-based change
detection system . 59

6.1 Online Operator Selection Performance . 92
6.2 Online Overhead Data Selection Performance 95

xvii

xviii

List of Algorithms

1 Hyper-parameter re-estimation procedure . 29
2 Online novelty detection algorithm . 49
3 Online novelty detection algorithm with query optimization 53
4 Online change detection algorithm (modification of Algorithm 2) 54
5 Segmentation-based change detection algorithm 58
6 Sample use of Bayesian Linear Regression for Online Learning Task 108
7 Online algorithm from [125] for submodular resource allocation problems 121

xix

xx

Chapter 1

Introduction

The vision of autonomous mobile robots revolutionizing the way we live our lives dates back
almost a century. It is easy to justify their appeal: robots could automate many of the tasks that
are too unappealing or dangerous to be suitable for humans and handle others at which they are
simply more productive and accurate than humans can ever hope to be. These systems could
automate tasks in diverse domains such as transportation, military reconnaissance and supply
routes, agricultural tasks, space exploration, border and property patrolling and working in toxic
environments.

The current state of autonomous robot navigation, however, has yet to fulfill these expecta-
tions. Almost all real-world uses of unmanned ground vehicles (UGVs) operate either in highly
structured or controlled environments, where the state of the world is fully known at all times
and plans can be precisely executed with minimal uncertainty or risk, or with extensive human
involvement (see Figure 1.1).

Figure 1.1: Example real-world applications of mobile robotics: from left, the Kiva Systems inventory management
robot, the KUKA industrial robot and the iRobot Packbot used for remote bomb disposal. As with most current
real-world applications of robotics, these systems do not have to deal with complicated robot perception problems
since they operate in controlled and structured environments or through tele-operation.

In reality, for mobile robots to be truly useful, they need to be robust enough to be able to
sense and operate in partially unknown and unstructured environments. While many autonomous
UGVs have advanced to a level where they are competent and reliable a high percentage of
the time in many environments [12, 40, 52, 59, 129, 135], most of these systems are heavily
engineered for the domains they are intended to operate in. Any deviation from these domains

1

often results in sub-optimal performance or even complete failure. Given the cost of such systems
and the importance of safety and reliability in many of the tasks that they are intended for, even
a relatively rare rate of failure is unacceptable. In many domains that are prime candidates
for mobile robotic applications, the risk of catastrophic failure, however small, is a primary
reason why autonomous systems are still under-utilized despite already demonstrating impressive
abilities.

A majority of the effort to date in applying machine learning to robotics has been focused on
offline learning, either in processing data prior to or after a traversal or in training portions of an
autonomy system prior to operation. Such efforts have resulted in a great deal of progress, but
these approaches are simply not well suited for dealing with some of the challenges a robot will
face. While roboticists do everything they can to equip robots with capabilities relevant to a wide
range of domains, in order for real-world applications of UGVs to increase, they must be able to
adapt to changing and unfamiliar aspects of their environments. The uncertainty throughout the
UGV development and deployment process can lead to degraded performance through several
challenging circumstances:

Figure 1.2: UGVs navigating with a limited perception range will often execute highly suboptimal paths. The path
above was executed by a large UGV whose goal was to navigate to the goal at the left portion of the environment
using an onboard perception system with a range of approximately 15 meters. Due to its limited visibility range,
the UGV lost significant time navigating through the heavy vegetation while taking heavy risks in the process that
necessitated a human intervention at one point.

Developmental Uncertainty. Roboticists equip UGVs with powerful sensors and data sources
to deal with uncertainty, only to discover that the UGVs are able to make only minimal use of this
data and still find themselves in trouble. Overhead imagery data, for instance, has the potential
to greatly enhance autonomous robot navigation in complex outdoor environments. In practice,
reliable and effective automated interpretation of imagery from diverse terrain, environmental
conditions, and sensor varieties proves to be challenging. As a result, a system that needs to per-

2

form reliably across many domains without major re-engineering must rely on only the subset
of available information that generalizes well across many domains. Due to the data accuracy,
consistency and density required for such features, this often limits a system to utilizing only
onboard sensor data within a short proximity to the vehicle. This can lead to highly suboptimal
behavior, often putting the UGV in dangerous situations such as the one shown in Figure 1.2.

In many difficult domains it is important to be able to interpret terrain well at a distance.
Finding out about world as early as possible allows a UGV to construct more globally efficient
paths while reducing risk. It is therefore important for a system to be able to take advantage of
all potentially useful data sources and extend the range of its perception system by adapting to
changing conditions without the necessity of human-supervised retraining.

Deployment Uncertainty. Similarly, roboticists develop and train their robots in represen-
tative areas, only to discover that they encounter new situations that are not in their experience
base. If the perception system does not extend well to situations that were not represented during
training, encounters with novel situations can lead to unexpectedly poor performance or even
complete failures. Since it is impossible to prepare for the unexpected, one must assume that
such situations will arise during real-world operation. To mitigate this risk a UGV must be able
to identify situations that it is likely untrained to handle before it experiences a major failure.
This problem therefore becomes one of novelty detection: how a robot can identify when per-
ception system inputs differ from prior inputs seen during training or previous operation in the
same area. With this ability, the system can either avoid novel locations to minimize risk or
stop and enlist human help via supervisory control or tele-operation. For maximal impact such
a system must be well-suited for online use as the system must incorporate feedback received
throughout its continued progress and human aid.

Autonomy system limitations. At times, even the most robust autonomous systems are sim-
ply unfit to handle a given situation. Fortunately, in many cases an autonomous UGV is able to
seek occasional help from a remote operator. The key is knowing when to ask for this help as
human time is often valuable and limited. If we treat the human as an oracle with a high query
cost, reasoning about the possible impact of human involvement in a situation can avoid a large
number of unnecessary human queries. Since novel situations pose the greatest risk, if resolving
such uncertainty through human help has a high potential benefit, a system can stop and call
for remote help based on the assumption that humans are better able to negotiate new situations
than autonomous vehicles. Furthermore, a learning system can observe the performance of the
autonomous vehicle in particular situations and compare that performance to remote human-
control performance in similar situations. When the vehicle encounters such situations in the
future, it can then invoke whichever expert demonstrated better performance: the remote human
or autonomous vehicle. When used in conjunction with a novelty detection system, such an ap-
proach can safeguard a UGV while maximizing the benefit from human availability throughout
autonomous navigation.

Throughout this thesis, we address each of these challenges by presenting a series of online
approaches that allow a UGV to adapt to the uncertainty of unfamiliar domains where human
aid is limited or unavailable. For each problem we present relevant existing techniques followed
by our approaches and an examination of how they address the limitations of similar techniques.

3

We implement and test these algorithms on large outdoor mobile robots and argue how the added
ability to navigate safely and reliably in diverse real-world environments may facilitate the de-
ployment of such robotic systems years earlier than otherwise possible.

1.1 Operating Under Uncertainty

Operating under uncertainty is a central requirement of most non-trivial mobile robot tasks and
a central focus of this thesis. The obvious initial step for dealing with such uncertainty is with
sensors and a perception system to interpret the incoming sensor data. These perception systems
are often trained extensively on data representative of the environment the robot is to operate
in, allowing them to parse meaningful information from this sensor data and identify degrees of
traversability for the environment. A variety of sophisticated planning algorithms such as Field
D* [33] are adept at handling streams of traversal information updates and modifying paths
appropriately in real-time.

In existing commercial robots, sensor systems can range from the simple bump and react
mechanism of the iRobot Roomba vacuum cleaner to the much more sophisticated line of in-
dustrial material handling robots from Seagrid Corporation that construct and operate on three-
dimensional occupancy maps. Within the research domain, such examples are varied and numer-
ous, including the systems mentioned earlier [12, 40, 52, 59, 129, 135].

All of these systems make assumptions about the types of environments they need to oper-
ate within. The limitation of such robots thus becomes their dependency on their pre-trained
perception systems. While they often allow robots to operate within varieties of controlled or
predictable environments, such techniques only work for limited ranges from the robot. Addi-
tionally, these systems will inevitably struggle when the environment sufficiently changes. Since
robot behavior can become unpredictable, in many applications it is critical to detect such situa-
tions and apply vehicle safeguarding techniques.

With current techniques there is no sure way for a vehicle to autonomously deal with all
situations it may encounter using only a pre-trained perception system. One way to address
this problem is to revert to tele-operation for some or all of the mission. Full tele-operation is
prohibitively expensive for many applications due to the degree of required human attention and
communications bandwidth. In cases where tele-operation is employed a portion of the time, a
policy must determine under which conditions the robot or the human are to take control. Just as
in the medical domain, false positives are preferable to false negatives due to the potentially high
cost of mistakes. Stentz et al. rely on this idea in their system of semi-autonomous tractors [122].
These tractors would execute a specified task and stop when they detect that something may be
an obstacle and send an image over a wireless link to a human supervisor. The human can then
either attend to the problem or tell the robot to proceed if the obstacle was a false alarm. This
allows the system to function autonomously a large portion of the time while remaining cautions
and allowing a human to quickly intervene in questionable situations. Since the time required to
verify an obstacle is minimal, this allows a single operator to oversee several machines. Effective
safeguarding techniques are one of the keys to applying robotic technologies to various outdoor
industrial tasks [120].

4

An extensive discussion on related work in hybrid tele-operation control schemes is presented
in section 6.1. As discussed in that section, many systems are designed to ask for help only after
they find themselves in trouble. In many domains, robots do not have this luxury: a significant
mistake may result in the end of the mission or the loss of lives. We argue that online learning
techniques are the correct way to deal with such situations and present a series of algorithms to
deal with the difficulties described previously.

Because this thesis spans several broad areas of robot autonomy, we reserve a full discussion
of each area’s related work for their respective chapters.

5

6

Chapter 2

Thesis Statement

In this thesis we consider the problem of a highly robust autonomous mobile robot whose mission
is to navigate through complex, natural terrain to a specified destination. We assume that this
terrain does not have a known structure and is not engineered to support navigation as in the
case of highway or urban driving and that all obstacles can be treated as static. Since this terrain
is either previously untraversed or has potentially changed since the last traversal, the robot is
equipped with a variety of near and far range laser and camera based onboard sensors to perceive
its environment, as well as the possible availability of overhead imagery and elevation data. We
assume the robot’s location is known to within several meters of its true position throughout
navigation.

The robot’s perception system is able to take advantage of ample computing resources to
interpret the terrain through sophisticated algorithms that can be trained prior to this navigation
on other terrain. However, there is no guarantee that training terrain will be representative of
terrain encountered during a mission, even though there is an expectation of strong overlap.

We assume, however, that a non-expert human may be available for a nominal percentage
of operation time during navigation to provide remote tele-operation support at the request of
the robot. Other than this limited remote assistance, the robot must deal on its own with any
environmental, seasonal or temporal differences that complicate its mission.

A combination of three metrics of performance are reasonable in such a domain:
Safety. The safety of the vehicle is of highest priority. At all times during live testing, a

human operator supervises the robot behavior and is ready to intervene if the vehicle poses a
risk to itself or its environment. The occurrences of such human interventions are tracked and
are viewed extremely unfavorably since if the situations occurred during actual operation, there
would be a high possibility of critical failure or unacceptable environmental impact.

Human assistance required. Human time is considered expensive and therefore should be
limited to as small of a portion of total operation time as possible.

Time and distance traveled. As with most navigation tasks, we want to reach our destina-
tion while minimizing the overall time and distance of travel.

The approaches we present in this thesis are intended to allow a mobile robot to deal with the

7

described domain while improving its performance under the above-mentioned metrics.

8

Chapter 3

Technical Approach

3.1 High-Level Approach

We deal with the common scenario where a UGV must act safely and intelligently in a complex
natural environment with little structure and limited or unavailable human involvement. As a
UGV’s autonomy system is forced to operate in an environment that it was not engineered or
trained for, various aspects of its performance will inevitably degrade. We present a series of
online algorithms to deal with the challenges discussed earlier and enable a UGV to better deal
with uncertainty in order to improve performance and reduce risk to the vehicle.

We begin in Section 4 by proposing an online, probabilistic model to effectively learn to use
potentially powerful but domain specific features by leveraging other features that, while perhaps
otherwise more limited, generalize reliably. This technique allows the system to capture maximal
benefit from common data sources such as overhead imagery without the need for human training
as in other overhead interpretation techniques (sample results are shown in Figure 3.1). This
efficient, self-supervised learning method allows a UGV to significantly extend the effective
range of its onboard perception system in unfamiliar domains.

Small problems resulting in mildly sub-optimal performance are often tolerable, but major
failures resulting in vehicle loss or compromised human safety are not. In Section 5 we consider
the problems of online novelty and change detection for situations where even a well-adapting
near-range perception system is potentially unfit to accurately evaluate the environment. We first
propose an online novelty detection algorithm that operates on onboard perception system based
features and also has anytime properties allowing it to deal reasonably with time-critical situa-
tions. We then extend this to the problem of change detection, a location-dependent version of
novelty detection where the goal is to identify when areas of the environment have significantly
changed from a previous traversal. This capability is well-suited for UGVs tasked with navigat-
ing a route repeatedly as in the case of supply routes or patrolling. Such systems would be the
first safeguards for UGVs by identifying potentially dangerous situations during traversal such
as the situation shown in Figure 3.2.

Finally, in Section 6 we discuss an online approach to candidate selection where a system
must choose online between one of several operating modes and explore several applications of

9

Figure 3.1: Sample results of online terrain traversal cost predictions from the Spinner UGV operating in Texas
scrub lands using the system described in Section 4. 0.35 m resolution color overhead imagery used by our online
learning algorithm is shown on the left and corresponding predictions of terrain traversal costs are shown on the right.
Traversal costs are color-scaled for improved visibility. Blue and red correspond to lowest and highest traversal cost
estimates, respectively.

such a system relevant to mobile robot navigation. We pursue this problem using an on-line,
reinforcement learning approach. The system’s goal is to learn to interpret available onboard
and overhead sensor data in order to maximize its cumulative performance over the course of
operation. This inevitably becomes a trade-off between exploring situations that will allow it
to learn more about the world and exploiting those that appear to be optimal based on past
experiences. In the case of learning to trade-off between autonomous and human tele-operation
control, such a capability would enable a single operator to assist many UGVs, ensuring peak
performance for the entire team with minimal human involvement.

We concede that the complexity and unpredictability of the real world forces robotic systems
to have to adapt online. The key is to identify the feedback that allows online training, whether
it is one part of the system serving as an expert to train another or a human operator serving as
the expert at opportune times. Such techniques then enable robots to adapt to and improve their
performance in diverse environments with minimal human involvement and greatly expand the
effectiveness and potential real-world applications of robotic systems.

3.2 Integration Into Autonomy System

Each of the approaches described above was primarily developed and evaluated independently
of the others, allowing us to focus on rigorously evaluating the performance and benefits of each.
This section will briefly discuss the expected use of each of these systems within an autonomy
system on a fielded robot, as well as how all three could be used simultaneously for maximal
benefit.

10

Figure 3.2: Sample result from online novelty detection algorithm onboard the Crusher UGV operating in western
Pennsylvania. Chain-link fence was detected as novel (top and left, novelty shown in red) with respect to the
large variety of terrain and vegetation previously encountered. After an initial stretch being identified as novel,
subsequent portions of the fence are no longer flagged (right) due to the algorithm’s online training ability. As with
all future similar images, insets within the top image show a first-person view (left inset) and the classification of the
environment by the perception system into road, vegetation, and solid obstacle in blue, green and red respectively
(right inset).

11

3.2.1 Far-Range Perception (Chapter 4)

The purpose of the online-learning based far range perception systems described in Chapter 4 is
to supplement the standard near-range perception system. In most cases the near-range percep-
tion system is assumed to be more accurate and robust due to its more powerful features (in fact
that the far-range system uses the near-range system as an expert). An autonomy system should
therefore fuse estimates from these multiple data sources using each sub-system’s measure of
confidence.

In locations where both near-range and far-range perception (most likely at close ranges)
estimates are available, the near-range estimates should be favored. An exception to this may
be in situations where the far-range perception system has some advantage over the near-range
system, such as a better vantage point for negative obstacles as in the case of overhead data. In
a majority of situations, however, the autonomy system would want to merge far-range percep-
tion estimates into the map used for planning, but overwrite them as more reliable near-range
perception estimates become available.

3.2.2 Online Novelty and Change Detection (Chapter 5)

The novelty and change detection systems described in Chapter 5 allow a mobile robot to detect
potentially hazardous situations before they result in a mission-ending mistake. In the case of
novelty detection, the system should be initialized with a set of examples that captures the current
perception system’s experience base. Anything that is novel with respect to that model is assumed
to be a potential hazard. Similarly, the change detection system requires perception features
computed during a previous navigation of the intended environment, from which it will perform
location-specific instances of novelty detection to detect changes.

A decision point occurs when a situation is detected as novel (or changed). The simplest
thing to do is to assume the situation is hazardous and avoid it entirely (especially if a human tele-
operator is unavailable or highly expensive). The other option is to request the aid of a human
tele-operator to tell the robot how to deal with the situation. Deciding between these options
could be handled by an intelligent uncertainty resolution approach as proposed in Section 7.2.3.
Since a majority of situations could be simply avoided using such an approach, a much higher
false-positive rate could be tolerated, allowing for improved overall performance.

Once a remote human operator has demonstrated to the system how to handle the situation in
question several additional steps may be beneficial. If the human has specified that the situation
in question is not dangerous (or can be adequately handled by the existing perception system), the
novelty or change detection system can absorb this example into its model so that future similar
situation are no longer flagged. On the other hand, if the remote operator needs to override the
robot’s default behavior, an approach such as that described in [112] can use the demonstrated
path to encourage the robot’s behavior to match that of the operator’s, allowing the robot to han-
dle similar scenarios in the future autonomously. In this way, a mobile robot can gradually adapt
to unfamiliar domains, utilizing operator preference to improve future autonomous performance.

12

3.2.3 Online Candidate Selection (Chapter 6)

The online candidate selection system described in Chapter 6 allows the autonomy system to
model and trade-off between multiple operating modes in real-time during operation. The choice
points throughout navigation must be selected along the intended path, allowing the system to
measure the performance of the chosen mode in between selections (we chose a distance-based
discretization).

If the choices are among multiple autonomous modes then the frequency of mode changes
have little impact so the algorithm can be used without further modification. If, however, one
mode is far more limited or expensive than another (as in the case of a human tele-operator),
additional care must be taken when utilizing the operating mode in question. We present a
linear programming based approach to allow the system to optimize the use of a limited mode
of operation, finding an optimal allocation based on the current model of each operating mode
and the contextual information for the environment. As in the case of novelty detection, the
intelligent uncertainty resolution technique described in Section 7.2.3 would allow the system
to further improve its utilization of scarce resources by avoiding uncertain or difficult situations
entirely.

3.2.4 Joint Integration

The three described approaches complement each other well and can be used in tandem within
an autonomy system.

The far-range perception systems would operate at all times without human involvement,
allowing the robot to better plan paths and react to upcoming obstacles.

The novelty (and change) detection and candidate selection systems are more tightly coupled,
as they both potentially require limited human attention. As the perception system receives new
data, the novelty detection system would first make a judgment on whether the new situation is
novel. Only after the novelty detection system has finished processing the situation as described
above would the candidate selection system be allowed to potentially query the human operator
to improve performance.

Human attention is required for both handling novelty and changes in the scene as well as
improving the performance of the system as directed by the candidate selection system. Be-
cause safety is of highest priority, the system needs to carefully regulate the use of this limited
resource to ensure that the novelty and change detection systems will have access when neces-
sary. Achieving this balance without significantly hurting performance is a difficult problem and
another potential area of future work.

3.3 System Architecture

It is important to introduce the system specifications on the UGVs we operate with as we will be
referring to many aspects of these systems throughout later chapters.

13

Figure 3.3: Spinner (left) and Crusher (right) robots used for experimentation throughout earlier thesis work. The
natural terrain shown here is representative of the domains they operate within.

This work is focused on improving autonomous navigation in complex outdoor environments
where a mission will often consist of a desired destination that must be reached in a reasonable
amount of time, with the possible availability of varying quality overhead data. The lack of
structure such as lane markings on a road or the flat drivable surfaces and binary traversability
assumptions of indoor environments lays much of the complexity of this problem on the UGV’s
perception system. It must now be able to not only identify the presence or absence of obstacles,
but also accurately interpret the relative risks to safety and progress of each situation. Bushes
and small rocks may share similar qualities as seen by the perception system but differentiating
between the two is vital to safe navigation.

The Spinner and Crusher UGVs of the UGCV-PerceptOR Integrated (UPI) Program that
were used throughout the first half of this thesis (shown in Figure 3.3) are intended for operation
in complex, outdoor environments, performing local sensing using a combination of ladar and
camera sensors [124].

Due to the completion of the UPI Program in 2008, the remaining tests were performed using
E-Gator vehicles of the R-CTA project (see Figure 3.4). These smaller UGVs were equipped
with fewer sensors but the same core autonomy systems as that used on the Spinner and Crusher
vehicles in order to be able to continue development and testing using similarly sophisticated
perception features and sub-systems.

The autonomy system will be described briefly here with references to other literature pro-
vided for more details. Additionally, an article describing learning approaches utilized through-
out the system as a whole can be found in [7].

3.3.1 Perception System

Figure 3.5 outlines the high level data flow within the autonomy systems of the UGVs used
throughout this thesis. The perception system generates features from the color, position, den-
sity, and point cloud distributions of the environment [13, 70]. A large variety of engineered
features that could be useful for this task are computed in real-time (see Figure 3.6) and the local

14

Figure 3.4: A modified John Deere E-Gator autonomous vehicle of the R-CTA program used for later portions of
thesis work.

Figure 3.5: A high-level illustration of the perception system data flow (left) and a more detailed data flow of the
perception system within the dotted box (right). Sensor data is interpreted to generate a variety of laser and camera
based features. These features are grouped into 3D voxels which are interpreted by the perception system into
traversal costs that the onboard planners can use for navigating to a goal.

15

Figure 3.6: Example raw engineered features from the UGV’s perception system. NDVI (normalized difference of
vegetation index) is a useful metric for detecting vegetation [13]. PCA eigenvalue features are used to analyze the
spacial distribution of the laser data. The cone features check whether there are any points in a cone starting from
each point and are useful in identifying vegetation.

environment is segmented into columns of 20 cm3 3D voxels (see Figure 3.7) in order to capture
all potentially relevant information.

This vertical voxelization approach is effective for mobile robots since the presence of spe-
cific features at certain vertical positions is highly relevant to their impact on traversal cost. For
example, solid objects at wheel height are likely to be small rocks while similar features higher
off of the ground are more likely to be trees or man-made objects.

Sample voxel features computed for a possible environment are shown in Figure 3.8. Color
and texture features for the environment are computed from camera imagery and tagged to each
voxel by projecting the voxel into each image (colorized laser data can be see in Figure 3.8(b)).
Consistency within color features is maintained using high dynamic range (HDR) imaging on
pairs of images. The exposure times for the pairs of images are regulated using a controller that
tries to minimize the number of pixels that are over-saturated or under-saturated between the
images (see Figure 3.9 for an example of this approach).

Spatial features that are useful for describing the local shape of the point clouds can be seen
in Figure 3.8(c). For example, the ground or a building wall will generate strong ’planar’ features
while bushes or tree canopy may have stronger ’spherical’ features and poles or power lines will
have stronger ’linear’ features.

A central element of successful rough terrain navigation systems is the estimation of the
terrain supporting surface. Identifying the surface enables the autonomy system to detect hazards
due to its shape including high grades, ditches, holes or high-centering hazards. Further, the
traversal cost estimator uses an estimate of the terrain supporting surface to interpret voxel data.
Voxels classified as ground-like which are above the estimated terrain surface could be dangerous
rocks. Similarly, a tree limb at the level of the sensors can potentially disable the robot while at

16

Figure 3.7: Illustration of the perception system’s voxelization of vertical columns within the environment and
subsequent classification. The voxels here are actually much smaller within the system but are enlarged for demon-
stration purposes. In the perception system, each voxel is a 20 cm3 cube. Due to the size of the Spinner and Crusher
vehicles, 10 voxels in the vertical direction are computed at each location in order to include all potentially relevant
information.

a higher elevations it may not interfere at all. Sample ground height estimates can be found in
Figure 3.8(d). Further details on this system can be found in [143].

Each voxel, tagged with its corresponding features, creates a compact set of intermediate
features for each location in the world that is more suitable for traversal cost computation. The
system then interprets these features through hand-tuned or learned methods to create a final
traversal cost for that location in the world that can be used for path planning purposes.

A useful and common abstraction for navigation is to represent the world as a 2-D horizontal
grid around the robot. Navigation through the environment is achieved by first producing a
traversal cost for driving through each cell in the 2-D grid and then planning the minimum cost
path through the grid. These costs are generated as a function of the features associated with
each 3-D voxel within the appropriate 2-D column.

Traversal costs are interpreted as relative measures of mobility risk (our robot works with
traversal costs in the range of 16 to 65535). For example, the robot’s on-board perception system
assigns traversal costs of 16 (the minimum) to roads while grass is assigned a traversal cost of
48, implying the robot would be willing to take a detour of three times the distance in order to
stay on a road as opposed to driving over grass. Meanwhile, dense vegetation is often assigned
traversal costs of over 10000 in order to encourage the robot to traverse elsewhere except under
extreme necessity. The optimization of this cost function is an extremely difficult problem and
rather than tuning this function by hand, a reinforcement learning approach described in [112] is
used to quickly capture operator preferences.

The robot re-plans its global path in real-time by finding minimum cost paths through the
environment using the Field D* algorithm [33] (an extension of the original D* algorithm [121])
and makes use of a sophisticated local planner to align its local behavior with the global plan
[59].

17

(a) Camera image of scene (b) Colorized ladar data

(c) Spatial features: green, blue and red correspond
to spherical, planar and linear features respectively

(d) Computed height off of ground plane

Figure 3.8: Example output of aspects of the perception system for shown scene.

An extensive log playback and processing infrastructure allowed us to develop and optimize
many of our approaches offline.

3.3.2 Overhead Data Usage

Improvements in both path safety and efficiency were achieved on the UPI program by taking
advantage of prior overhead data when available. Prior data can come from a variety of sources.
Low resolution imagery (1 meter resolution gray scale) and topographic data (10 to 30 meter
resolution) are already available for most of the world. In addition, higher resolution imagery
and dense three-dimensional (3-D) data can be collected commercially upon request. Traversal
cost maps for the environment can be produced from this data a priori using a hand-trained system
or human demonstration for aiding online global path planning. The robot’s onboard perception
system is then used during navigation to fine-tune prior traversal estimates and adjust for areas
of limited aerial visibility or changes in the environment from the time data was gathered.

18

(a) High exposure (b) Low exposure (c) Combined image

Figure 3.9: High-Dynamic-Range imaging is used within the perception system to maintain consistency in image-
based features. Pairs of images with different exposure times are used to maximize the number of pixels in the
image that are adequately and consistently saturated.

Figure 3.10: Overview of overhead data processing system: from raw data to cost maps.

In the human-supervised overhead cost prediction system, traversal costs are computed from
a combination of semantic and geometric data as described in Figure 3.10 [110]. Semantic
information of the terrain is obtained through supervised classification using features extracted
from imagery and 3-D data [114]. A neural network with one input node for each feature,
one hidden layer, and one output node for each desired classification category is used. Each
terrain class is assigned a traversal cost by a human operator designed to mimic the behavior of
the onboard perception system. Mobility analysis is then performed using the ground surface
recovered from 3-D data (see Figure 3.11) or an available elevation map and traversal costs are
assigned to reflect the capabilities of the vehicle based on computed parameters such as roll,
pitch and ground clearance. Traversal costs are independently computed using the results of
terrain classification and vehicle mobility analysis for each location in the world and summed to
produce final traversal costs as shown in Figure 3.12.

Another approach used for taking advantage of overhead data sources is to have the system
learn from demonstrated behavior [111]. Once provided with examples of how a domain expert
would navigate based on the data, an imitation learning approach can learn mappings from raw
data to cost that reproduce similar behavior. Because it is often difficult to pick and hand-tune
traversal costs to achieve acceptable behavior, this approach produces cost functions with less
human interaction and often better performance.

19

Figure 3.11: 3-D points are classified as ground (brown) or non-ground (green).

Figure 3.12: Sample results of cost map production for generally flat Texas terrain with a large vegetation variety.
From left to right: an image of the environment, extracted ground surface, classification cost map, mobility cost map
and final traversal cost map (sum of classification and mobility based cost maps). Each image is 368× 595 meters.

20

While these techniques for interpreting overhead data have been shown to significantly im-
prove navigational performance, the requirement of manual retraining each time a new environ-
ment is encountered is a notable limitation that we address in this thesis.

21

22

Chapter 4

Onboard and Overhead Robot Perception
in Unfamiliar Domains

Autonomous robot navigation in unstructured natural environments has been demonstrated ex-
tensively in a large variety of terrain, sensor payload and mission scenarios. Even though pow-
erful at sensing, modeling, and interpreting the environment, these systems required significant
tuning of parameters, either by hand or supervised training, to best adjust their algorithms to the
local environment where the tests are conducted.

This highlights a common problem that arises in mobile robotics where potentially power-
ful sensor data and features are often difficult to take advantage of because they are situation or
location specific. As mentioned previously, outdoor robot navigation can benefit from the now
widespread availability of high quality overhead imagery and elevation data from satellite and
aircraft. With this overhead data, many of the difficulties associated with autonomous robot op-
eration can be alleviated, even with the coarsest of terrain resolution. Systems can then dispense
with myopic exploration and instead pursue routes that are likely to be effective. Unfortunately,
features computed from such sources can vary greatly due to diversity in terrain, environmental
conditions and sensor varieties. This often invalidates pre-trained systems so the necessity for
frequent manual retraining reduces the appeal of such approaches.

In much the same way, the complete use of onboard sensor data (such as ladar), if interpreted
correctly, can help a robot make better decisions and increase traversal speed through improved
knowledge of the environment. Unfortunately, as the complexity of environments increases, a
robot’s perception system must be engineered to evaluate its environment by first computing a
set of intermediate features such as ground slope, object density, and vegetation classification.
While such features are consistent and generalizable, fixed techniques that successfully interpret
onboard sensor data across many environments begin to fail past short ranges as the density and
accuracy necessary for such computation quickly degrade and features that are able to be com-
puted from distant data are very domain-specific (see Figure 4.1). This limits the effectiveness
of such perception systems to a proximity of about 15 meters even though sensor data is often
available at much higher ranges.

Building systems that can reliably interpret these scope-limited features is far from easy as
even the smallest variations in lighting, season, terrain or even sensor calibration can have sig-

23

Figure 4.1: Typical ladar response from vehicle’s perception system. Ladar points are color coded by elevation with
lowest points appearing in blue and highest points appearing in yellow. Vehicle position is shown by the orange
square. Notice the large drop in ladar response density (especially on the ground) as distance from the vehicle
increases. Large objects such as the trees on the left generate ladar responses even at far ranges but are difficult to
interpret through fixed techniques across different environments.

nificant effects on data. Additionally, such estimates must be well calibrated with other onboard
perception estimates of the terrain, or system performance may suffer. Developing approaches
that can leverage these potentially powerful resources on an autonomous robot can significantly
improve the versatility of many unmanned ground vehicles by allowing them to traverse highly
varied terrains with increased performance.

One way to address such limitation is through on-line self-supervised learning where the au-
tonomous system adjusts itself via perception and interaction with the environment. We propose
to address the problem of learning and inferring between two heterogeneous data sources that
vary in density, accuracy and scope of influence. The objective is to generalize from one data
source, viewed as a reliable estimate, to be able to work with another, which may be high per-
formance (e.g., long range or high accuracy) but difficult to generalize to new environments. We
frame the problem as a simple, linear probabilistic model for which inference results in a self-
supervised online learning algorithm that fuses the estimates from the two data sources. We also
explore the advantages of this framework including reversible learning, feature selection, data
alignment capabilities, reliable use of multiple estimates, as well as confidence-rated predictions
[115].

4.1 Related Work

When navigating in an environment without full knowledge, robotic systems primarily rely on
on-board perception systems. There are cases, however, when it is not possible to get an ade-
quate understanding of the environment from the vehicle-based view of terrain without sacrific-
ing speed or path optimality. For example, a vehicle navigating at high speeds in off-road envi-
ronments may be unable to react to negative obstacles such as large holes and cliffs without the
prior availability of overhead data. Even when the vehicle can safely navigate an environment,
aerial sensing can dramatically improve path planning performance by detecting large obstacles
such as buildings, forests and bodies of water as well as areas of preferable terrain such as roads.

Even low resolution prior data can provide significant improvement to vehicle performance,

24

as demonstrated by numerous simulations in [134]. In [132], low resolution (25-30 meter) eleva-
tion maps were used to aid long distance planning. [105] demonstrated the extraction of features
(roads, trees, water, etc.) from aerial surveys, for later correlation by an autonomous vehicle.

Similar research conducted by Charaniya et al. classified terrain into roads, grass, build-
ings, and trees using aerial LiDAR height data, height texture, and signal reflectance, achieving
classification rates in the range of 66%-84% [21]. Cao et al. attempted to identify man-made
objects from overhead imagery [16]. Knudsen and Nielson attempted to classify buildings using
a previously available GIS database and RGB information for an environment [62].

The DARPA PerceptOR program contained an important prior data component. Aerial Li-
DAR data was used to predict vehicle roll and pitch over stretches of terrain, as well as to detect
vegetation [123, 137]. This information was used to generate prior cost maps for use in global
planning.

Within the UPI Program, several overhead data processing techniques were used extensively
to achieve safe and efficient navigation over many kilometers (see Section 3.3) [110, 112, 114].

While such overhead data interpretation techniques proved crucial to successful navigation
in some difficult environments, they were limited by the fact that they required human training
or demonstration prior to use in new domains. Also, as discussed earlier, training onboard per-
ception systems for general far-range use is infeasible due to the large variability in the features
generated past short distances from the robot. As a result, such systems are often engineered or
trained to perceive the environment in close proximity to the robot where features more often
generalize well across many domains. In such cases the large portion of sensor data that cannot
be interpreted through such techniques is often discarded.

Our approaches is one of several to use self-supervised learning to deal with the common
robotics situation where data sources that, while highly relevant, are domain specific. For in-
stance, camera imagery can potentially detect unpaved road in the desert significantly farther
than some ladar-based systems can. Unfortunately, such data can prove very resistant to auto-
mated interpretation. In particular, classifiers that prove to be powerful indicators of road in a
particular area often do not generalize to new conditions. Detecting such roads from a distance in
a self-supervised manner proved to be a crucial component in Stanford Racings winning Grand
Challenge entry [25]. A similar version of this approach using reverse optical flow has also been
proposed [73] and subsequently extended to off-road navigation [75].

Similarly, [119] presents a self-supervised approach for estimating terrain roughness from
laser range data. Sensor, terrain and vehicle varieties contribute large errors that must be consid-
ered when making estimates. This system learns to model error by providing its own labels of
terrain roughness in real-time from actual shock measured when driving over the target terrain.
The vehicle in effect capitalizes on its ability to measure terrain roughness from the vehicle’s
inertial sensors to its range sensors.

Others have built systems that optimize parameters online using real-time performance as
feedback. For example, such a technique allowed an adaptive motion planning system on an
autonomous excavator to learn to perform at levels approaching skilled operators [98].

Numerous other research efforts have taken advantages of such techniques for obstacle avoid-
ance using monocular camera [72, 138], estimating the depth from monocular imagery [84], au-

25

tomated learning of noise parameters in Kalman filters [1], terrain traversability classification
[60], slip prediction [2], and estimating ground height from an autonomous tractor [143].

4.2 Approach

4.2.1 Formalization

We approach the problem of leveraging the powerful, but difficult to generalize, features in a
Bayesian probabilistic framework using the notion of scoped learning [11]. The scoped learning
model admits the idea of two types of features: “global” and “local”. Global features are gen-
erally useful, and their predictive power extends well to new domains, while local ones, which,
although often very powerful, typically generalize poorly and are more difficult to take advantage
of in a consistent way. These local features have scope that is limited to one particular domain.
We wish to apply our system to extend the scope of such features to many possible domains.
For our canonical problem of learning to leverage the extended range of overhead and far-range
sensor data, these names may prove counter-intuitive, so we refer to them instead as general and
locale-specific features. From this point on, ”global” and ”local” will refer to the proximity to
the robot. Features generated from dense, vehicle-based ladar perception serve as our general
features, while features generated from overhead based imagery and elevation data and far-range
sensor data serve as our locale-specific features. The latter are particularly valuable to mobile
robots because of their extended range and widespread availability.

Model. The scoped learning approach is a simple probabilistic model (shown graphically in
Figure 4.2) that captures this notion of features that have scope. The outer plate L represents in
graphical model notation that there are independent locales in which the model will be applied
[57]. These correspond to new areas of the world in which our robot will operate.

Within the plate, we see a sequence of locale-specific features and corresponding general
feature-based estimates. At each point in the sequence, we wish to make predictions about c
(either all or a subset of them.) Here, c is the true variable we wish to predict, and c̃ is an esti-
mate of that variable coming from the general features, while x are our locale-specific features.
The parameters β common to the locale (plate) capture the relationship between locale-specific
features and the variables of interest c. The length of our sequence is n.

This learning model captures the idea of self-supervised learning [58] in a Bayesian frame-
work and extends the idea to integrate both the general feature-based estimates and the self-
supervised locale-specific estimates. Driven by our application, we are particularly interested in
the online regression case1 where the goal is to learn to infer the true continuous values ci in an
online fashion as general feature-based estimates c̃i become available. We choose a simple model
for c as a function of the k locale-specific features x = (x1, . . . , xk) by modeling the distribution
for c given x as a Gaussian with mean a linear function of x and with a variance of σ2

l , giving us

1The original scope learning work [11] was developed in the context of classification using discrete features,
generative descriptions of those features, and in batch.

26

the following expected value for c:

E(c|β,x) = βTx (4.1)

We assume that the estimates from the general feature-based predictors have Gaussian noise
and thus are distributed:

c̃ ∼ Normal(c, σ2
g)

We take the σg and σl to be hyper-parameters lying outside the locale-specific plate.

Figure 4.2: Graphical depiction of the scoped learning model. ci are the true traversal costs for the locations in the
world and c̃i are the estimates for those locations from the perception system. xi are the locale specific features
that we are trying to infer from where β are the model parameters that govern the relationships between xi and
ci. Hyper-parameters, including priors on the locale-specific parameters β and noise variances, lie outside the plate
indexed by L and are not depicted.

To clarify this model using a real-world example, consider the case of learning online to
predict traversal costs from overhead imagery data. In this scenario, ci are the true traversal costs
for locations in the world and c̃i are the general feature-based estimate for traversal costs of those
location coming from the UGVs onboard perception system. These estimates are gathered online
and are only available for a small subset of the locations in the world. The locale-specific features
xi are computed from overhead imagery for the environment and include color and texture based
features as discussed later. In the case of overhead imagery, features x1...n are available for all
location, but we do not have a way to interpret these features a priori. We assume that ci is a
linear function of xi governed by some weights β. As we traverse through the environment and
observe additional perception system-based estimates c̃i, we can refine online our best estimate
of the mapping from overhead imagery-based features x to c.

Inference. We develop the inference for the model in an online fashion. Given a new data
point c̃i estimating the true variable ci, our goal is to compute new estimates2 of the variables cj ,
assuming we have already seen data D = {x1...n, c̃1...i−1}. We can compute this by integrating
over the uncertain parameters β which describe the relationship between the true variable and
the local features.

2We assume that our prior on β is a priori independent of the features x so that inference will remain the same
even in the case where the features become available in some sequence.

27

p(cj|c̃i,xi, D) =

∫
dβ p(cj|β, c̃i,xi)p(β|c̃i,xi, D)

We can compute the required distribution over β as:

p(β|c̃i,xi, D) ∝ p(β|D)

∫
dci p(c̃i|ci)p(ci|β,xi)

In our linear-Gaussian model, this can be understood as revising the posterior distribution from
p(β|D) in light of a Gaussian likelihood that takes into account noise from both general and
locale-specific features.

Our computation of the posterior distribution p(β|c̃i,xi, D) is as follows. We first initialize
our distribution to the prior distribution p(β). Then, for every training example i, we multiply
our distribution by p(c̃i|β,xi). Since the prior distribution and p(c̃i|β,xi) are normal, the pos-
terior distribution is also normal. We use the notation β̂ to represent the mean of the posterior
distribution and Vβ to represent the variance. Thus, computing p(β|c̃i,xi, D) is performing a
self-supervised learning using a Bayesian linear regression model with noise variance σ2

l + σ2
g .

We use our current estimate of the posterior distribution when we want to predict a future
outcome cj . We are interested in predictions in two cases: first, when we have no general feature-
based estimate c̃j for a particular cj , and second, when such an estimate is available. In the first
case, the predictive distribution p(c) has mean cp = xT β̂ and variance σ2

p = σ2
l + xTVβx [37].

When we also have an estimate c̃j , inference combines these two estimates:

p(cj) = Normal(σ′2p (
cp
σ2
p

+
c̃j
σ2
g

), σ′2p)

where
σ′2p =

1
1
σ2
p

+ 1
σ2
g

.

We note that it is possible to compute the posterior distribution in batch, but we prefer to
maintain an estimate of the posterior distribution as we receive general feature-based cost esti-
mates so that we may immediately apply our algorithm to new data.

4.2.2 Advantages of the Bayesian Learning Approach

Using the online Bayesian scope learning model provides a number of important benefits.
Confidence Rated Prediction. The variance estimate provided by our algorithm for the

probability of each c can be used as a metric of confidence in the prediction. If a situation arises
in which we must choose which one of several predicted outcomes to trust, we could simply use
the one with the smallest variance.

Learning of the Hyper-Prior and Feature Selection. Our algorithm depends on a number
of hyper-parameter terms that may be chosen based on data from multiple locales. We discuss
ways to choose the noise variance terms σl and σg in section 4.2.1 and the prior distribution

28

on parameters β in section 4.3.3. The prior distribution p(β) is an isotropic Gaussian that is
independent for each weight, and each weight is dependent on a shared hyperparameter α that
moderates the strength of our belief over the values our weights β might take. That one α value
controls the inverse variance of each weight β. We can modify our prior p(β|α) to consist of
K hyperparameters, with each αk independently controlling the inverse variance of each weight
and define hyperpriors over all the αk values. We can then use Tipping’s hyperparameter re-
estimation algorithm to do feature selection (see Algorithm 1) [130]. In this way, we can both
automate feature selection and bias our algorithm to prefer certain features for new locales [93].

Algorithm 1 Hyper-parameter re-estimation procedure

1: given: Initial values for all αk and σ2
l

2: while α has not converged do
3: Compute the mean β̂ and covariance Vβ of the distribution of our weights β
4: For all K features, γk ← 1− αkVβkk
5: For all K features, αk ← γk

β̂2
i

6: end while
7: return α

Once our αk values have converged, we can remove any feature xk with a corresponding optimal αk value
that tends toward∞. Since an αk value controls the inverse variance of each weight βk, an αk value that
tends toward∞ implies that the mean of the weight βk value tends toward 0. Thus, we can remove that
feature xk since its weight βk value of 0 would remove its contribution to predicting the output c̃.

Reversible Learning. A problem that often arises in online learning is the handling of mul-
tiple estimates of a particular quantity. For instance, in our canonical example, our general
feature-based estimates c̃i may improve as we get closer and denser laser readings of the terrain.
It is not appropriate to treat these as independent training examples: while they may differ in
their variance, they are generally highly correlated. Neither is it useful to simply take the first
estimate available: often this is a poor substitute for all the data.

In our model, we maintain an exact posterior distribution that lies inside the exponential fam-
ily and assume that the observation errors are independent and have equal variance. We may
therefore effectively remove the effects of a previous training example j on our posterior distri-
bution by dividing out P (c̃j|β,xj), the likelihood term we had used to include it in the posterior
[37]. In this way, we always have an estimate of the posterior distribution of β using the current
best estimate c̃i. Minka has developed an alternate use of this “removal trick” for approximate
inference [85].

An extended discussion of the Bayesian Linear Regression algorithm, its derivation and full
use can be found in Appendix A.

29

Figure 4.3: In the baseline system (left), aerial data can only be used after the cost prediction module is trained either
through human labeling or demonstration. Utilizing the online learning framework (right) allows the perception
system to learn mappings from locale-specific data features (overhead or far-range sensor data) to locally computed
terrain traversal costs (computed from general features) and make prediction elsewhere in the environment.

4.3 Application to Mobile Robotics

We demonstrate this approach in the context of long range navigation onboard the Spinner and
Crusher UGVs described in Section 3.3 during various field tests in complex natural environ-
ments. These environments in western Pennsylvania and Texas consisted of a variety of vegeta-
tion ranging from grass and short bushes to large, dense forests as well as other diverse obstacles
such as large rocks, hills, dunes and ditches.

The information flow within the baseline system discussed in Section 3.3 is modified as
shown in Figure 4.3. As the UGV traverses an environment, it utilizes its on-board perception
system and these difficult to interpret features (computed from overhead imagery and eleva-
tion data or far-range sensor data) to learn the mapping from these features to computed terrain
traversal costs in order to predict traversal costs elsewhere in the environment where only over-
head data or far range sensor data is available, effectively extending the range of the vehicle’s
local perception system and allowing more effective navigation of the environment.

4.3.1 Terrain Traversal Cost Prediction

We chose to predict traversal cost rather than intermediate results such as slope, density, or pres-
ence of vegetation because traversal cost is the metric that most closely governs a vehicles navi-
gation strategy through an environment. Our robots perception system is proficient at effectively
assessing terrain traversal costs, so it is desirable to be able to mimic its predictive abilities. We
therefore use estimates from the robots perception system to evaluate the accuracy of traversal
cost predictions.

Overhead Data Features. A set of feature maps for the vehicle’s environment was generated

30

Figure 4.4: Sample clustering results from using the Gaussian Mixture Model algorithm on generated features.
Overhead color imagery data used to generate features (left) and resulting clustering into six clusters (right). Mem-
bership features were generated by computing the fractional degree of membership of each pixel in each cluster.

from each overhead data source for use as inputs to the algorithm (these are our locale-specific
features as defined in Section 4.2.1). In our implementation, HSV (hue, saturation, value) fea-
tures were used to represent color imagery data while the pixel intensity of the black and white
imagery data was used as a single feature. Raw RGB (red, green, blue) color data was inade-
quate for our approach due to its sensitivity to illumination variations. A hue (in degrees) of α
was represented by the pair of values, sin(α) and cos(α) to address the continuity problem at
hue values close to 0◦.

A feature containing the maximum response to a set of ten Gabor filters at various orienta-
tions centered at each pixel was also generated to capture texture in each type of imagery. Ad-
ditional features for the black and white imagery data were generated by computing the means
and standard deviations in intensity within windows of five meters around each pixel. Additional
elevation-based features were computed as described in Section 3.3.2 and [110] when such data
was available. All features were rescaled to the [−1, 1] range and a constant feature was also
included.

Finally, clustering of all previously computed features was performed that helped the algo-
rithm to overcome the limitations of a linear model and easier identify patterns in the feature
input space. Clustering of the input data was done through Gaussian Mixture Models in order to
generate membership features by assigning each data point a fractional degree of membership in
each output cluster (see Figure 4.4) [29]. Six clusters were chosen for our implementation.

The characteristics of an environment change with varying conditions. However, even out-
dated overhead data can be useful since most distinct areas in an environment will maintain uni-
formity in their characteristics despite these variations. By relaxing restrictions on the recency
of overhead data, our algorithm further increases its impact on improving robot navigation.

Far-Range Sensor Data Features. Ladar and camera data were used to create the far-range
sensor features used for training (once again, these are our locale-specific features as defined in
Section 4.2.1). Ladar points in the environment were tagged with color values from the camera
sensors by computing the pixel the ladar would appear in within the camera image. Color features
were computed just as with overhead data. Additionally, the positions of the ladar points were
used to compute the maximum vertical point spread and standard deviation of point heights. In

31

order to incorporate contextual information about the neighbors of a location, similar features
were computed from the location’s neighbors within a small window. A constant feature was
included as well. As a robot travels toward a location, features for that location are computed
regularly (to account for variations in features due to distance from the robot) and stored to be
used as possible future training examples.

Finally, it should be noted that the lack of ladar data in an area in front of the robot can serve
as a confirmation of free space since ladar hits are rarely available on road or grass past about
30 meters due to the angle with respect to the sensor. We identify such free space by tracing
away from the robot until a sensed object is encountered (up to 40 m away) and setting a tracing
feature in all encountered cells. This features is the sole feature for such areas.

In some applications, subsets of features may not always be available. For example, in the
case of far-range sensor data, some laser data may fall outside of the field of view of the onboard
cameras making color-based features unavailable for those locations. In such a scenario, an in-
dependent instance of the learner can be trained simultaneously for each potentially possible set
of features. New examples can then be sent to the learner that is trained to handle its available
feature set.

Such techniques may be used to generate features from any combination of data sources
gathered through a variety of methods.

4.3.2 Training and Prediction

Because traversal costs act as distance ratios as described in Section 3.3.1, errors in traversal cost
estimates in low-cost areas are more detrimental than similar errors in high-cost areas. An error
of 100 to an area of extremely high traversal cost would have negligible effect, while the same
error at an area of desirable terrain would radically change the behavior of the robot.

In order to work with the linear model used by our algorithm, we deal with traversal costs
within our algorithm on a logarithmic scale, converting from the normal traversal cost space
for the purposes of training and prediction. The Gaussian error assumption embedded in our
probabilistic model is a much better approximation when we measure error on this scale. Unlike
in the regular traversal cost space, small errors in the log space lead to small errors in the traversal
distance ratios.

Training examples are constructed from xi, the vector of feature values from either overhead
data or far-range sensor data, and c̃i, the average of all traversal cost estimates that have been
calculated within the corresponding area. As with many robotic systems, the performance of our
robot’s on-board perception system quickly degrades as the distance from the robot increases
(due to the lowered accuracy and density of sensor data), so the quality of a training example
is measured by its proximity to the robot. Rather than struggling to decide at which point to
utilize an example for training, the reversible learning capabilities of our algorithm allow us to
maintain an optimal level of predictive abilities by ensuring that only the highest quality data
available impact its state. As the robot approaches locations that had previously been used for
training, obsolete examples are unlearned in favor of higher quality training examples available

32

for those areas. Estimates greater than 12 m from the robot are ignored since such estimates
are very unreliable and would only corrupt the quality of training in cases where they cannot be
replaced with better estimates.

An example of this training process can be seen in Figure 4.5. As the vehicle explores more
of the environment, the greater sample of training data allows it to more accurately interpret the
locale-specific data sources. Notice how the shadow from the tree at the top right is initially
estimated incorrectly as a very high-cost area (Figure 4.5c) but as the robot explores more of the
environment, it begins to recognize its error and lower its estimate (Figure 4.5d).

As the algorithm acquires more training data, its predictive performance improves, allowing it
to revise previously made traversal cost estimates. The algorithm specifies a degree of confidence
for each prediction based on the similarity of the example to past training data (as indicated by
the variance estimate), so predictions in which the algorithm lacks confidence can be ignored
in favor of an alternative source of predictions or a default value. Notice how in Figure 4.5b
the algorithm is able to identify its estimates for the trees in the environment as areas of low
confidence (shown in blue) until the robot first encounters the tree below its starting position and
is able to refine estimates for similar areas.

4.3.3 Applications of Trained Algorithm

This algorithm can be used in a variety of ways to aid in unmanned ground vehicle navigation,
both in real-time on-board a robot and offline once it has been trained. In the case of online
terrain traversal cost prediction, the algorithm can be used to periodically update traversal cost
estimates within a region around the robot where features have been computed so that a real-
time path planning algorithm such as D* can revise the vehicle’s global path to account for the
changes. As shown in the following section, the use of this algorithm to extend the robot’s field
of view results in significantly shorter and more intelligent paths.

When using overhead data, one can make traversal cost predictions for a large area without
ever having to traverse or acquire training examples from that area beforehand since the predic-
tive state of the algorithm can be captured at any time by the vector β at that moment. Instead,
as long as identical features are computed for the two areas, one can simply drive through a rep-
resentative area for a short period of time in order to train the algorithm to make predictions in a
much larger area. We will also show that a priori traversal cost maps produced by this technique
can be more accurate than even those produced from hand-trained techniques that utilize superior
data sources.

It is important when using overhead data that the data be aligned with the estimated position
of the robot. Even slight mis-registration can significantly hinder the performance of algorithms
such as ours that are sensitive to such errors. An advantage of using an online Bayesian linear
regression model is the ability to detect and correct such misalignments with relative ease.

When predicting a new traversal cost cj , the model creates a predictive distribution p(c) with
a mean µp and a variance σ2

p . Evaluating the predictive distribution at the traversal cost ci of a
training example gives the probability of having seen that traversal cost given its corresponding
feature vector. We can use the probability of having seen all of our data, p(c̃1, . . . , c̃n), to detect

33

(a) (b)

(c) (d)

Figure 4.5: Training progress of online learning algorithm using overhead color imagery data for traversal of envi-
ronment shown in (a) is shown in (b) - (d). Dimensions of shown areas are 150 m × 150 m. Accumulated ground
truth traversal costs computed by the robot’s on-board perception system and vehicle path (shown in red) are over-
laid on estimated traversal costs generated by the algorithm. Lower costs appear as darker colors and predictions
that the algorithm lacked confidence in (due to insufficient representative training examples) are shown in blue.

34

map misalignments between overhead data sources and estimated vehicle positions by searching
through a space of potential alignments for the one that maximizes the probability of the data.

Since p(c̃1, . . . c̃n) can be computed via the chain rule as the product of the predictive dis-
tributions evaluated at every c̃i used for training, the log data probability is the cumulative sum
of − log σp − (y−µp)2

σ2
p

for every predictive distribution. After all examples have been received,
we compute the average log data probability over all training examples and use this to com-
pare against other alignments. As shown in the following section, correcting such misalignment
produces traversal cost maps with better defined obstacles that more accurately reflect the true
environment.

Note that for the results in the following section, we chose the hyper-parameter for noise
variance σ2

l with ML-II and chose an isotropic Gaussian with high variance for the prior on β
based on observations from previous robot traversals [37].

This approach allows increased versatility of many UGVs by allowing them to take advantage
of data sources that are often ignored while improving performance and removing the necessity
of human involvement and parameter engineering.

4.4 Experimental Results

When dealing with overhead data, our algorithm will be referred to as MOLL (Map On-Line
Learning)3 and when dealing with far range sensor data, our algorithm will be referred to as
FROLL (Far-Range On-Line Learning). All imagery data was gathered from satellite on average
several months prior to traversal and all elevation data was gathered by surveying from helicopter.
Both MOLL and FROLL were run on a 1.8 GHz processor with 2 GB of memory. Because of
the large amount of aerial data potentially required by MOLL, we implemented a paging system
so that only currently relevant areas of overhead data are kept in memory.

4.4.1 Field Test Results

The algorithm was tested with both overhead data and far-range sensor data in real-time on-board
our unmanned ground vehicle to measure its impact on navigation performance. The test envi-
ronments contained a large variety of vegetation, various-sized dirt roads (often leading through
narrow passages in dense vegetation), hills, and ditches. The vehicle traversed series of courses
defined by series of waypoints by using only its on-board perception system for navigation. It
then traversed the same courses with the help of MOLL, first with 40 cm resolution overhead
imagery and elevation data to supplement the on-board perception system with traversal cost
updates computed within a 75 m radius once every 2 seconds and then with FROLL used to
interpret and make predictions from far-range sensor data every 1 second. The algorithm was
initialized for each course with no prior training (see Figures 4.6 and 4.7 for sample results).
Notice how in Figure 4.6 the MOLL path shows how the robot learned to avoid the dense area
of trees after its initial encounter with the area immediately chose to follow the road to the goal.

3This algorithm at times has also been referred to as OOLL (Overhead On-Line Learning)

35

Figure 4.6: Comparison of paths executed by our robot for shown course when using only on-board perception
(in solid red), and with MOLL (in dashed blue) and FROLL (in dotted cyan) used in real-time on-board the robot.
Course started at the top right and ended at the bottom left.

The FROLL path shows how the robot chose a similar path to the baseline system but was able
to give up on dead ends quicker and was able to avoid the large detour at the end of the course
due to its extended perception range.

As shown in Table 4.1, our algorithm allowed the vehicle to complete the courses using
MOLL in 27% less time while traversing 7% less distance and with FROLL in 34% less time
while traversing 13% less distance. Additionally, while we were forced to manually intervene
during the tests with only the perception system in order to correct the vehicle’s heading when
it became trapped in heavy vegetation and could not escape on its own, no manual interventions
were necessary when using our algorithm.

While it appears from the shown statistics that FROLL overall resulted in more effective paths
than MOLL, we found that with MOLL, the vehicle chose to drive further distances on more
preferable terrain in order to avoid difficult or dense areas that presented a larger possibility of
damage to the sensors or the need for human intervention. Such an instance an be seen in Figure
4.7a.

Figure 4.7b shows a situation where MOLL can be most useful. Since each traverse began

36

(a) (b) (c)

(d) (e) (f)

Figure 4.7: Comparison of paths executed for shown situations when using only on-board perception (in solid red)
and with MOLL (in dashed blue) and FROLL (in dotted cyan) are shown in (a) and (d). In (a) the course started at
the bottom and ended at the top and in (d) the course started at the top right and ended at the left. Predictions of
terrain traversal costs for the environment by our algorithm at the times the vehicle chose to avoid the large obstacles
in front of it are shown for MOLL in (b) and (e) and for FROLL in (c) and (f). Traversal costs are color-scaled for
improved visibility. Blue and red correspond to lowest and highest traversal cost areas, respectively, with roads
appearing in black. In (a) the MOLL path chose to travel slightly further on road in order to avoid the more difficult
passage to the left while the FROLL path was able to detect the opening to the left much sooner than the baseline
path. In (d) MOLL helped the vehicle avoid the area of dense trees by executing a path that is 43% shorter in 73%
less time.

Table 4.1: Statistics for Course Traversals With and Without the Online Learning Algorithm

Without Algorithm With MOLL With FROLL
Total Traversal Time (sec) 1370 1001 898

Total Distance Traveled (m) 1816 1682 1575
Average Speed (m/s) 1.33 1.68 1.75

Number of Interventions 1 0 0

37

Figure 4.8: The terrain at Fort Bliss is shown at left. Due to the sparseness of the obstacles, using FROLL has a
small impact on the total distance traveled, but average speed is significantly increased due to better anticipation of
upcoming obstacles (right).

with an untrained algorithm, the MOLL course was given an additional waypoint at the right of
the image in order to give it an opportunity to train on a small sample of the environment. As
seen in Figure 4.7d, this small amount of training allowed it to identify the wall of trees that
heavily hindered the progress of the vehicle in the traverses using only the perception system or
FROLL.

In general, we found that both techniques not only improved the quality of the paths chosen
by the vehicle but also allowed higher speed navigation by increasing the time the vehicle had
to react to upcoming obstacles and identifying safer terrain such as roads. The demonstrated
quantitative impact of these algorithms, however, cannot accurately capture their potential impact
on overall performance. Rather, it is important to understand the types of situations that a UGV
may encounter for which these algorithms will be most beneficial. If obstacles in an environment
are fairly sparse or largely known prior to navigation, extending the range of the perception
system will not significantly improve performance metrics. On the other hand, if the environment
is full of dense obstacles, hazards and cul-de-sacs with less visible routes towards the goal then
the degree of benefit when using such approaches can be arbitrarily large.

The impact of these far-range perception systems depends highly on the environment the
robot is operating within. For example, the FROLL system aids navigation in a different way
when the environment is more open but has a large number of small isolated obstacles. This
type of environment is was encountered at a field test in Fort Bliss in El Paso, Texas in early
2007. A long course through the terrain shown in Figure 4.8 (left image) was executed using
only the perception system and then using the FROLL extended perception system. While the
total distance traveled using each system was similar due the the sparseness of the obstacles
(approximately 3.3 kilometers), the average speed for the system using FROLL was significantly
higher due to the ability to detect and avoid obstacles earlier (see Figure 4.8 on right).

FROLL was shown to be a beneficial to autonomous navigation performance and shortly after

38

Figure 4.9: After its initial introduction, FROLL quickly became a part of the standard autonomy system used
throughout the UPI program. It has been used in official DARPA field tests in over 740 kilometers of autonomous
navigation over more than 67 hours.

its initial demonstration it became a standard part of the UPI autonomy system. In late 2007 the
FROLL module was rewritten by Cliff Olmstead to make use Velodine laser data. Since initial
development in 2006, FROLL was used in official DARPA field tests in over 740 kilometers of
autonomous navigation over more than 67 hours (see Figure 4.9), as well as multiples more time
and distance throughout development and testing.

4.4.2 Field Test Data Post-Processing Results

MOLL was also used to produce a priori traversal cost maps for a multi-kilometer course over a
large area of complex terrain with heavy vegetation and elevation obstacles defined by a series
of GPS waypoints (see Figure 4.10). The algorithm was trained for about 7 minutes using two
types of overhead imagery data by driving the vehicle by remote control at about 5 meters per
second through the training course outlined by the red box in Figure 4.10a. The trained algo-
rithm was then used off-line to generate a traversal cost map and plan an initial path through the
much larger course. Closeups of generated traversal cost maps and resulting planned paths are
shown. For comparison, we also included the resulting path from a traversal cost map generated
by a supervised learning algorithm with human-picked examples from the actual course and fea-
tures generated from both overhead imagery and high-density elevation data (see Table 4.2 for a
description of data sources) [110].

39

(a)

(b)

(c) (d) (e)

Figure 4.10: Circular course with the GPS waypoints for which a priori paths were planned is shown in (a). MOLL
was trained during a short traversal of the training course outlined in the red box. Shown area is 2000 m× 750 m. A
priori paths generated by a human-trained algorithm (solid red), MOLL using color imagery data (dashed cyan), and
MOLL using black and white imagery data (dotted blue) are shown in (b). Traversal cost maps produced by MOLL
for the closeup area in (c) using overhead color imagery and black and white imagery are shown in (d) and (e)
respectively. See Table 4.2 for description of data sources. Traversal costs are color-scaled for improved visibility
where blue and red correspond to lowest and highest traversal cost areas respectively.

40

Table 4.2: Types of Overhead Data Used by Overhead Online Learning (MOLL) and Hand-Trained Algorithms
Used To Produce Prior Cost Maps

Algorithm Data Used Resolution
MOLL (color) Color imagery 0.35 m

MOLL (B & W) Terraserver B & W imagery 1.0 m
Human-Supervised Color imagery 0.35 m

Elevation < 0.2 m

Figure 4.11: Average absolute error between log scale traversal costs computed by the robot’s on-board perception
system over the course of a multi-kilometer traverse of terrain and traversal cost estimates computed using three
techniques: human-trained supervised learning algorithm using high resolution imagery and elevation data (solid
red) and MOLL using only color imagery (dashed cyan) and black and white imagery (dotted blue) as a function
of training time by driving in a similar environment. See Table 4.2 for a description of data sources. The erratic
performance for the first few minutes of training are due to the large effects of new training examples when so
little previous data was available. In the case of MOLL with black and white imagery, the initial sample of terrain
happened to correspond well to the rest of the course. MOLL training takes longer with color imagery due to a
greater number and variety of features.

We evaluated the performance of MOLL against the human-trained technique by accumu-
lating all the traversal costs generated by the vehicle’s on-board perception system during a
traversal of the course shown in Figure 4.10 and comparing those costs to the estimates from
each of the generated prior cost maps. The average absolute error in traversal cost (on a log
scale as described earlier) for each method is shown in Figure 4.11 as a function of training time.
This result shows that MOLL is competitive with respect to the human-trained algorithm using
only imagery data after only a short period of training. However, it should be pointed out that
maintaining a tight correspondence from traversal costs assigned by the human-trained algorithm
to those assigned by the perception system was difficult to strictly enforce. This highlights an-
other advantage of the online learning approach over a human-trained approach: by relieving the
need for manual manipulations of traversal cost assignment strategies, the entire system is more
adaptable to changes in both the environment and the perception system.

During post-analysis of this test, we discovered that the overhead imagery data and the esti-

41

Figure 4.12: Average absolute error between log scale traversal costs computed by the robot’s on-board perception
system and traversal cost estimates generated by FROLL as a function of training time.

mated position of the vehicle were in fact misaligned by about 1.5 m. While this result shows
that our algorithm is robust to such map misalignment, this article also demonstrates how our al-
gorithm can be used to detect such errors in alignment in order to achieve optimal performance.

Performance of FROLL was similarly evaluated by comparing its estimates to all computed
perception costs during a course as a function of training time. Only estimates that had not
been used for training yet were included in this calculation (so as not to use the training set for
testing). The results can be seen in Figure 4.12. Notice how after only three minutes of training
the algorithm has mostly converged to its final predictive performance.

4.4.3 Offline Map Alignment

We applied our map alignment technique to a manually misaligned log of perception data and
overhead imagery features. A brute force search across all potential map alignments in 0.35 m
increments in the four cardinal directions detected a misalignment of 3.85 m west and 4.9 m
north. Such a search is too computationally expensive to be performed in real-time but was
completed in about an hour through offline processing. Computed probabilities of observed
perception data and the corresponding improvement in traversal cost estimates can be seen in
Figure 4.13. As expected, correcting the misalignment improved the definition of obstacles in
the traversal cost maps and resulted in a stronger correspondence with the actual environment,
correctly showing that the traveled path is clearly on the road.

4.4.4 Feature Selection

We applied our feature selection imagery to a set of 33 overhead imagery and elevation data
based features. While these features were all relevant to the environment, we assumed that many

42

(a)

(b)

(c)

(d)

Figure 4.13: Example of how misalignment between overhead data sources and estimated vehicle position can be
detected using our algorithm. Computed log probability of the perception system sensor data encountered over a
12.6 m × 12.6 m search space of alignment shifts is shown in (a). MOLL cost prediction for area shown in (b)
before alignment correction and after correcting detected misalignment of 3.85 m west and 4.9 m north) appear
in (c) and (d) respectively (best alignment is assumed to be that which produces the highest probability of seen
perception data). Darker colors in the images correspond to lower traversal costs. The robot’s path is shown in red.

43

Figure 4.14: Average absolute error between log scale traversal costs computed by unmanned ground vehicle’s
on-board perception system over the course of a multi-kilometer traversal of terrain and traversal cost estimates
computed before and after feature selection: results of using the full set of 33 features from both imagery and
elevation data (dotted blue) and a subset of 14 features selected using the feature selection algorithm (solid green)
are shown.

of them were redundant and therefore selected the 14 most important from the set. Figure 4.14
depicts the accuracy of cost predictions as a function of training time using this reduced set of
features compared to the original set. As expected, the smaller set of selected features resulted
in a decreased training time.

44

Chapter 5

Anytime Online Novelty and Change
Detection

Mission-ending mistakes are a key concern in deploying mobile robots. One approach to facil-
itating safe traversal is for a UGV to be able to identify situations that it is likely untrained to
handle before it experiences a major failure. This problem therefore becomes one of novelty
detection: how a robot can identify when perception system inputs differ from prior inputs seen
during training or operation. With this ability, the system can either avoid novel locations to
minimize risk or stop and enlist human help via supervisory control or tele-operation.

Change detection is a closely related (though less studied) problem to novelty detection where
a robot needs to operate repeatedly in an environment and must detect when a significant change
has occurred from a previous operation. Such changes could include the appearances of obstacles
such as cars, barriers, fallen trees or humans. A reliable change detection system allows a robot
to rely on the fact that if it had successfully navigated through an area multiple times in the past,
the most likely potential for hazards comes from changes to the environment.

We pursue this problem of change detection as a location-specific version of novelty detection
where we detect novelty of locations in the current scene with respect to those same locations
in a past navigation (rather than with respect to all prior experiences as we would with novelty
detection). Using such a formulation allows us to address both problems using algorithms that
are at their core quite similar. Furthermore, we present an online scene segmentation algorithm
that when used in conjunction with our change detection system can lead to significantly more
accurate performance across diverse environments. When operating frequently in the same area,
a robust and reliable change detection system can safeguard both the vehicle and the environment
(see Figure 5.1 for an example use).

Two common limitations of novelty detection systems are particularly relevant to the mobile
robotics domain. Autonomous systems often need to learn from their experiences and continually
adjust their models of what is normal and what is novel. For example, if human feedback were
to confirm that a certain type of environment selected as novel is actually safe to handle with the
existing autonomy system or demonstrate to the system the proper way to handle the situation
(as in [112]), the model no longer needs to identify such inputs as novel. Most novelty detection
approaches, however, build a model of the normal set of examples a priori in batch in order to

45

(a) Original Scene (b) Changed Scene

(c) Real-time Segmentation Result (d) Detected Changes

Figure 5.1: An example of the change detection system in use. In 5.1(b) a change to the original scene shown in
5.1(a) is introduced. The result of the online scene segmentation system (shown in 5.1(c)) are helpful in reducing
false positives, allowing more accurate detection of introduced changes (shown in 5.1(d)).

detect novel examples in the future but are unable to update that model online without retraining.
Furthermore, existing novelty detection techniques see diminished performance when using

high-dimensional feature spaces, particularly when some features are less relevant, redundant, or
noisy. These qualities are particularly common in features from many UGV perception systems
due to the variety of sensors and uncertainty about how these features relate to novelty. For
example, a large variety of camera-based features from color and texture might be computed
for use in various components of the perception system. While these features are potentially
powerful, subsets of these features often contain redundant irrelevant information. It is therefore
important for novelty detection techniques to be resilient to such feature properties.

We present an online approach that addresses these common problems with novelty (and
change) detection techniques. In order to deal with the diversity of possible data, we approach
these problems with a kernel machine that we use to make estimates of similarity. Because we
want seen examples to generate an influence of familiarity in feature space toward future exam-

46

ples, a big challenge becomes identifying a feature space for operation that has the property that
proximity implies similarity. When prior class information is available, we show how using Mul-
tiple Discriminant Analysis (MDA) for generating a reduced dimensional subspace to operate in
rather than other common techniques such as Principal Components Analysis (PCA) can make
the novelty and change detection system more robust to issues associated with high-dimensional
feature spaces. In effect, this creates a lower dimensional subspace that truly captures what
makes things novel.

Additionally, our algorithm can be framed as a variant of the NORMA algorithm, an online
kernelized Support Vector Machine (SVM) optimized through stochastic gradient descent, and
therefore shares its favorable qualities [61]. However, by incorporating a simple data structure
optimization step, our algorithm greatly improves its ability to maintain an accurate model over
long periods of operation while benefiting from its anytime properties and strong bounds on
necessary computation time.

While this work was targeted toward mobile robotics applications, the approaches here are
more generally applicable to any domain which has similar requirements.

The next section presents background on novelty and change detection techniques and some
example applications. Section 5.2 presents our novelty detection algorithm and Section 5.3 shows
how it can be extended to be able to perform change detection. Following that is an explanation of
the online scene segmentation system in Section 5.4, Section 5.5 explains how these techniques
can be applied to mobile robotics and field test results from several large UGVs are presented in
Section 5.6.

5.1 Related Work

Techniques dealing with novelty detection (also referred to as anomaly or outlier detection) prob-
lems and the closely related change detection problem have been applied to a wide range of
domains such as detecting structural faults [145], abnormal jet engine operation [45], computer
system intrusion detection [100], and identifying masses in mammograms [127]. In the robotics
domain some have incorporated novelty detection systems within inspection robots [81, 91].

Novelty detection is often treated as a one-class classification problem. In training the system
sees a variety of “normal” examples (and corresponding features) and later the system tries to
identify input that does not fit into the trained model in order to separate novel from non-novel
examples. Instances of abnormalities or novel situations are often rare during the training phase
so a traditional classifier approach cannot be used to identify novelty in most cases.

Most novelty detection approaches fall into one of several categories. Statistical or density
estimation techniques model the “normal” class in order to identify whether a test sample comes
from the same distribution or not. Such approaches include Parzen window density estimators,
nearest neighbor-based estimators, and Gaussian mixture models [29]. These techniques often
use a lower-dimensional representation of the data generated through techniques such as PCA.

Other approaches attempt to distinguish the class of instances in the training set from all
other possible instances in the feature space. Schölkopf et al. [103] show how an SVM can

47

be used for specifically this purpose. A hyper-plane is constructed to separate the data points
from the origin in feature space by the maximum margin. One application of this technique was
document classification [78]. A noticeable drawback of this approach is that it makes an inherent
assumption that the feature space origin is a suitable prior for the novel class. This limitation was
addressed by [15] by attracting the decision boundary toward the center of the data distribution
rather than repelling it from the origin. A similar approach encloses the data in a sphere of
minimal radius, using kernel functions to deal with non-spherically distributed data [128]. These
techniques all require solutions to linear or quadratic programs with slack variables to handle
outliers.

Another class of techniques attempts to detect novelty by compressing the representation of
the data and measuring reconstruction error of the input. The key idea here is that instances of the
original data distribution are expected to be reconstructed accurately while novel instances are
not. A simple threshold can then be used to detect novel examples. The simplest method of this
type uses a subset of the eigenvectors generated by PCA to reconstruct the input. An obvious
limitation here is that PCA will perform poorly if the data is non-linear. This limitation was
addressed by using a kernel PCA based novelty detector [48]. Benefits of more sophisticated
auto-encoders, neural networks that attempt to reconstruct their inputs through narrow hidden
layers, have been studied as well [53].

Online novelty detection has received significantly less attention than its offline counterpart.
Since it is often important to be able to adjust the model of what is considered novel in real-time,
many of the above techniques are not suitable for online use as they require significant batch
training prior to operation. While Neto et al. [91] replaced the use of PCA for novelty detection
with an implementation of iterative PCA, performance was still largely influenced by the initial
data set used for training. Marsland proposed a unique approach that models the phenomenon of
habituation where the brain learns to ignore repeated stimuli [81]. This is accomplished through
a clustering network called a Grow When Required (GWR) network. This network keeps track
of firing patterns of nodes and allows the insertion of new nodes to allow online adaptation.

Markou and Singh have written a pair of extensive survey articles detailing many additional
novelty detection applications and techniques [79, 80].

While change detection is less frequently studied directly than novelty detection, many nov-
elty detection approaches (including those discussed above) can be adapted for change detection
problems (or are already performing change detection). An obvious application of change de-
tection is to the problem of real-time surveillance. Several researchers in the computer vision
community detect changes in video streams using temporal difference methods [51, 77, 95]. An-
other approach simply compares each current image with the same background at a previous time
[67]. These image-based techniques are obviously sensitive to varying viewpoints and variations
in lighting.

Others have applied change detection techniques to analyzing land-cover changes over long
periods of time. These include the analysis of forest defoliation [87], reductions of tropical
forests [133], and an analysis of land use over time [118]. A quality survey of various change
detection techniques for monitoring land-cover changes can be found in [82].

One of the more rigorous studies on change detection in the mobile robotics domain can be

48

found in [96]. Here the authors approached the problem by directly comparing features computed
by the perception system, attempting to identify changes from variations within those individual
features. This approach had two significant limitations. First, in order to perform these direct
comparisons, it relied on a highly-accurate positioning system whose error was at almost all times
less than 20 cm, an unrealistic expectation for a majority of systems utilizing GPS technologies.
Also, because the system relied on individual features, the final system was heavily tuned to use
certain features over others and varied the sensitivity manually for each. The strict registration
requirements and sensitivity to features resulted in a large number of false positives and would
be a difficult approach to generalize to other scenarios.

One of the main limitations that the above-mentioned novelty and change detection ap-
proaches share is a quick deterioration in performance as the number of less relevant or noisy
features grows. The disproportionately high variance of many of these features make it difficult
for many of these algorithms to capture an adequate model of the training data and their effects
quickly begin to dominate more relevant features in making predictions. Our algorithm addresses
this crucial limitation in cases where class information is available within the training set while
still being suitable for online use.

5.2 Approach

5.2.1 Formalization

The goal of novelty detection can be stated as follows: given a training set D = {x}1...N ∈ X
where xi = {x1i , . . . , xki }, learn a function f : X → {novel, not-novel}. In the online scenario,
each time step t provides an example xt and a prediction ft(xt) is made.

Algorithm 2 Online novelty detection algorithm

1: given: A sequence of features S = (xi)1...T ; a novelty threshold γ; a learning rate η
2: outputs: A sequence of hypotheses f = (f1(x1), f2(x2), . . .)
3: for t = 1 to T do
4: ft(xt)←

∑t−1
i=1 αik(xi, xt)

5: if ft(xt) < γ then
6: αt ← η
7: else
8: αt ← 0
9: end if

10: end for

We perform online novelty detection with a kernel machine that we use to make estimates of
similarity as shown in Algorithm 2 [117]. All possible functions f are elements of a reproducing
kernel Hilbert spaceH [102]. All f ∈ H are therefore linear combinations of kernel functions:

49

ft(xt) =
t−1∑
i=1

αik(xi, xt) (5.1)

We make the assumption that proximity in feature space is directly related to similarity. Ob-
served examples deemed as novel are therefore remembered and have an influence of familiarity
on future examples through the kernel function k(xi, xj). A novelty threshold, γ, and a learning
rate, η, are initially selected. For each example xt, the algorithm accumulates the influence of
all previously seen novel examples (line 4). If this sum does not exceed γ then the example is
identified as novel and is remembered for future novelty prediction (line 6)1. Non-novel exam-
ples are not stored as they are assumed to have minimal impact on future novelty computations
(even though a coefficient of 0 is assigned in line 8 for clarity, these examples are not stored).
We suggest simply using the Gaussian kernel with an appropriate variance σ2:

k(xi, xj) = e−
‖xi−xj‖

2

σ2 (5.2)

This algorithm assumes that every seen query is novel until it can be proven otherwise. It is
therefore important to understand that the threshold of γ in line 5 is the point at which a query
becomes non-novel. Only those examples that are similar to the query (those that contribute
toward this threshold) will therefore impact the final decision.

5.2.2 Improved Dimensionality Reduction

Especially if the number of features is large, it may first be necessary to project the high-
dimensional input xt into a lower-dimensional subspace more suitable for novelty detection using
distance metrics. The big challenge becomes how to construct this feature transformation so that
this space has the property where proximity implies similarity.

PCA, the most common approach for this purpose among dimensionality reduction (and
novelty detection) techniques, finds a linear transformation that minimizes the reconstruction
error in a least-squares sense. If subsets of the features are redundant, noisy or are dominated
disproportionately by a subset of the training set, however, applying techniques such as PCA,
or any other unsupervised dimensionality reduction technique, may yield disappointing results
as precisely the most relevant directions for differentiation may be discarded in order to reduce
reconstruction error of a less relevant portion of the feature space.

Rather than optimizing for reconstruction error, discriminant analysis seeks transformations
that are efficient for discriminating between different classes within the data. Multiple Discrimi-
nant Analysis (MDA), a generalization of Fischer’s linear discriminant for more than two classes,
computes the linear transformation that maximizes the separation between the class means while
keeping the class distributions themselves compact, making it useful for classification tasks [29].

We argue that when prior class information for the training set is available, using MDA to
construct a lower dimensional subspace using labeled classes not only optimizes for known class

1While both the novelty threshold, γ, and the learning rate, η, are included for clarity, they only represent one
degree of freedom since the equations can be simply rescaled to be functionally equivalent with η = 1.

50

separability but likely leads to separability between known classes and novel classes. In cases
described earlier that result in poor performance when using PCA, MDA will largely ignore
features that do not aid in class discrimination, instead focusing on the strongly differentiating
features.

Novelty detection is about encountering new classes, so by using discriminating ability as the
metric for constructing a subspace, one can capture the combinations of features that make known
classes novel with respect to each other and likely generalize to previously unseen environments,
in effect capturing what makes things novel. We are in effect performing transfer learning here
where we learn an optimal kernel function from one task in order to perform well on a related
task.

Additionally, we can take advantage of the labeled prior class data that we used for train-
ing to choose an appropriate σ by finding the value that optimizes the ratio between inter-class
contribution to outer-class contribution for a random subset of examples.

While this algorithm could be performed in other domains using the raw features, from this
point forward xt will refer to the projection of the raw features into the lower dimensional space
rather than the raw features themselves. Experimental validation of this theory within the domain
of mobile robotics is presented in Sections 5.5 and 5.6.

5.2.3 Framing as Instance of NORMA

The NORMA algorithm is a stochastic gradient descent algorithm that allows the use of kernel
estimators for online learning tasks [61]. As with our algorithm, f is expressed as a linear
combination of kernels (see equation 5.1). NORMA uses a piecewise differentiable convex loss
function l such that at each step t we add a new kernel centered at xt with the coefficient:

αt = −ηl′(xt, yt, ft) (5.3)

Our algorithm can easily be framed as an online SVM instance of NORMA using a hinge
loss function as follows:

yt = γ (5.4)
l(xt, yt, ft) = max(0, yt − ft(xt)) (5.5)

Taking the subgradient [109] of (5.5), we get:

l′(xt, yt, ft) =

{
−1 if ft(xt) < γ

0 otherwise (5.6)

As before, the gradient of our loss is non-zero only when the accumulated contributions from
stored examples are less than the novelty threshold γ, signifying that the example is novel. From
(5.3) and (5.6) we then get:

αt =

{
η if ft(xt) < γ
0 otherwise (5.7)

51

This is equivalent to the update steps in lines 6 and 8 of Algorithm 2, showing that our
algorithm can be framed as a specific instance of the NORMA algorithm which produces a
variety of useful bounds on the expected cumulative loss [61].

5.2.4 Query Optimization

Without further measures, the potential number of basis functions stored by Algorithm 2 could
grow without bound. NORMA deals with this issue by decaying all coefficients αi and dropping
terms when their coefficients fall below some threshold. We found that to prune in this way to an
effective fixed capacity, the decay rate has to be relatively high which leads to a forgetting effect.
The qualitative effect is that examples that were previously encountered are re-flagged as novel
which would result in unnecessary human interventions.

Instead, we propose in Algorithm 3 a modified anytime version of Algorithm 2 that better
utilizes a fixed buffer size while ensuring efficient and bounded computation. This algorithm
takes advantage of the fact that the familiarity contribution to new queries is often dominated
by only a few examples. First, we can easily gain some efficiency by only processing stored
examples until we have reached the novelty threshold (line 7).

The key performance improvement comes from the sequence optimization step in line 17.
For each prediction, the stored example that breaks the novelty threshold γ, or the new novel
example itself, is moved to the front of the list as it is more likely to impact future queries.

In addition to allowing us to bound the number of stored examples (line 19) and perform
favorably with respect to NORMA, this gives our algorithm an anytime property by enabling it
to quickly classify as much of the environment as possible as not novel. When this algorithm is
unable to run to completion due to time constraints, it will fail intelligently by generating false
positives but never potentially dangerous false negatives.

This is a slight variation of the traditional problem of dynamically maintaining a linear list
for search queries for which the move-to-front approach was proven to be constant-competitive,
meaning no algorithm can beat this approach by more than a constant factor [113]. This approach
works extremely well in practice because a large majority of queries are not novel, meaning that
we are racing to reject them as quickly as possible. By continually adjusting the list in this way,
we are able to adapt to changing environments while maintaining fast operation times.

A rigorous discussion of this list maintenance problem and a variety of potential strategies
can be found in Appendix B.

5.3 Extension to Change Detection

In many scenarios a robot must operate repeatedly in the same area. Examples of such domains
include construction, mining, patrolling, or supply routes. If the robot has navigated through
an environment multiple times successfully before, it is likely do to so again if the environment
remains unchanged. Therefore, the biggest indicator of a potential hazard is when something
in the environment has changed. For example, such changes could include a vehicle or barrier

52

Algorithm 3 Online novelty detection algorithm with query optimization

1: given: A sequence of features S = (xi)1...T ; a novelty threshold γ; a learning rate η; a
maximum example storage capacity N

2: outputs: A sequence of hypotheses f = (f1(x1), f2(x2), . . .)
3: initialize: n← 0
4: for t = 1 to T do
5: i← 1
6: ft(xt)← 0
7: while ft(xt) < γ and i ≤ n do
8: ft(xt)← ft(xt) + αik(xi, xt)
9: i← i+ 1

10: end while
11: if ft(xt) < γ then
12: αn+1 ← η
13: xn+1 ← xt
14: n← n+ 1
15: i← i− 1 {i was incremented one extra time}
16: end if
17: optimize sequence: Move (αi, xi) to front
18: if n > N then
19: Delete (αi, xi)i>N {crop to list size N}
20: n← N
21: end if
22: end for
At line 17, if ft(xt) = not-novel, i indexes the example that broke the novelty threshold. Otherwise, i
indexes xt.

53

appearing in the road, significant vegetation growth, or most importantly, a human entering the
scene.

This is an exceptionally difficult problem for several reasons. First, the system must be able
to deal with natural variations in the environment from one traversal to the next, including slight
variations in paths driven and resulting variations in sensing angles and density. Such changes
would obviously cause variations in computed features between the two traversals that must be
filtered to avoid excessive false positives. Also, such techniques must be able to handle small
amounts of registration error typical of real-world scenarios. The approach described in this
section is able to handle both challenges while maintaining low rates of false positives.

We treat the problem of change detection as a location-specific instance of novelty detection.
Rather than trying to identify situations that are novel with respect to everything seen previously,
a change detection system needs to identify when a situation is novel with respect to how the
situation looked at an earlier time (from a stored log for example). To accomplish this we use a
compact instance of Algorithm 2 at each location in the visible scene and detect novelty against
a stored representation of the scene at a previous time.

Algorithm 4 Online change detection algorithm (modification of Algorithm 2)

1: given: A set of voxel features (xi)1...N from a location in the current scene; a sequence of
corresponding voxel features from within a specified radius r of that location from a previous
navigation S = (x̃j)1...M ; a novelty threshold γ

2: outputs: A sequence of hypotheses f = (f1(x1), f2(x2), . . . , fN(xN)) where fi(xi) specifies
if voxel xi has changed from the previous iteration

3: for i = 1 to N do
4: y ← 0
5: y ←

∑
x̃j∈S k(xi, x̃j)

6: if y < γ then
7: fi(xi)← true {This voxel has changed}
8: else
9: fi(xi)← false {This voxel is un-changed}

10: end if
11: end for

Algorithm 4 shows this slight modification of the novelty detection algorithm shown in Al-
gorithm 2 for use in change detection. We assume a log of all seen voxel features is available
from a previous traversal of the environment (only the lower-dimensional representation of the
features needs to be stored since comparisons happen in the MDA-defined space rather than the
raw feature space).

For each seen voxel, the kernel function is used to sum the measures of similarity of that voxel
with respect to all voxels near that location from the previous traversal (line 5). If the example
is novel with respect to that set of voxels, then the system specifies that the voxel has changed
from before. All voxels in some region around the example are used to allow the algorithm to be
robust to moderate amounts of registration error between the two data sets.

Because the addition of any irrelevant voxels provides little contribution toward the novelty

54

threshold in the final prediction (only similar voxels will contribute to the final measure), the
addition of these extra buffer voxels does not influence the prediction in a majority of scenarios.
For example, if a change has been introduced into the scene, using a slightly larger footprint
for comparison from the previous traversal would still result in a change being detected because
the extra voxels would only help the query reach the novelty threshold γ in the unlikely case
where they were extremely similar to the changed object itself. Further discussion on dealing
with registration error can be found in Section 5.6.2.

Notice that the query optimization improvement from Algorithm 3 is not necessary here
because each instance of novelty detection will only be used once and will operate on only a
small number of examples.

5.4 Improving Performance through Scene Segmentation

Figure 5.2: Example segmentation results for several scenes. The left, center, and right images show the camera
view, 3-D laser data, and final segmentations respectively.

The approach to change detection described in Section 5.3 is analogous to a sliding window
approach for image classification. Evaluating one voxel at a time works for many situations, but
losing the ability to reason contextually about the scene leads to many false positives in the same
way that classifying objects in an image is difficult when only considering one pixel or small
region at a time. We now propose an improvement to the change detection system described
earlier that first performs an online segmentation of the scene and then uses that information
within the voxel-based change detection system to better analyze the environment. Example
segmentation results can be seen in Figure 5.2.

This system learns and makes use of a general “similarity” classifier to iteratively segment
the scene, allowing us to deal with any number or segments and previously unseen objects. This

55

segmentation module adds contextual information to the change detection process, increasing
accuracy and reliability as shown in the example in Figure 5.2. Although the same extension
could improve the novelty detection system as well, we will focus here only on its impact on the
change detection system.

The problem of segmenting data into meaningful regions has been extensively researched in
the computer vision domain [22, 32, 107, 108], and to a lesser degree in the context of 3D data.
In the case of 3D segmentation, a scene is often represented with a graphical model connecting
the 3D components (in our case voxels). A basic approach is to segment based purely on 3D
geometry [41], but this approach is obviously limited in that it considers only spatial dimensions
and ignores valuable feature information.

Others have worked to create basic classifiers from feature-rich 3D scenes that can segment
a scene into vegetation, ground, and non-traversable obstacles [89]. It performed well on the
classes of objects with which it was trained, but does not generalize to general-purpose segmen-
tation in unknown environments. More recently, some approaches have tried to directly detect
known objects in the scene [50, 54] or detect and analyze shapes inside point clouds [86, 99], but
this is again unable to deal with previously unknown object classes.

Others have tried to create a discriminative 3D segmentation technique which uses a subclass
of Markov Random Fields that provided impressive experimental results [3]. Their approach
is not entirely applicable to change detection because they require training data which contains
representative objects, and then they use segmentation to detect those same types of objects in
point clouds.

Unlike many of the previously-mentioned approaches, our approach is able to generalize to
new environments because it trains and utilizes a classifier which operates on any two voxels’ fea-
tures to predict whether they are in the same class or not, without explicitly requiring knowledge
about the various classes themselves. Similar to our use of MDA for dimensionality reduction,
this classifier also learns to identify the core combinations of features that make objects different
with respect to each other, regardless of their class.

5.4.1 Segmentation Pipeline

In this section we will briefly discuss the segmentation pipeline and how it is integrated into the
change detection system described in Section 5.3. A more detailed description of each compo-
nent and discussions about possible alternative choices within each can be seen in [92].

Figure 5.3 shows a high-level graphical overview of how the segmentation system fits within
the existing change detection pipeline. Because the number of segments in a particular scene is
unknown ahead of time, we perform scene segmentation in an iterative manner. When finding
a single segment, the problem is formed as a two-class classification problem where one class
represents voxels within the current segment (where the current segment is initiated with some
seed voxel) while the other segment represents voxels outside of this segment. This makes use of
a general purpose similarity classifier as well as an MRF-based smoothing technique to eliminate
outlier segments caused by occasional noise. Each time a segment is identified, the change
detection system is used to identify which voxels within it are considered changed, and a final

56

Figure 5.3: The control flow through the segmentation-based change detection system.

decision for the segment as a whole is made after considering all voxel decisions within.
Algorithm 5 presents an overview of the entire pipeline for detecting changes using seg-

mentation and each major step in the segmentation pipeline is briefly described in the following
sections. Prior to operation a general purpose classifier is trained as described in Section 5.4.2 to
be used through the segmentation process. The scene is then iteratively segmented one segment
at a time by finding a suitable seed voxel to start the segment from (Section 5.4.3) and creating
and solving an MRF that balances the outputs of the classifier with a neighborhood smoothness
constraint (Section 5.4.4).

The procedure is terminated when the scene is fully segmented or a suitable seed voxel cannot
be selected. Because segmentation of a scene can change significantly from one iteration to the
next due to additional sensor data or randomness within the algorithm, our algorithm relies on
the fact that bad segmentations will be rejected by the change detection system until more data
is collected and a good segmentation of the relevant area is produced, allowing accurate change
detection to be performed.

There are several parameters throughout the system that can significantly effect overall per-
formance. To optimize them we perform a manual coordinate descent optimization on an inde-
pendent test set, iteratively optimizing one parameter at a time until convergence. The selected
values for the most significant parameters are shown in Table 5.1. Because of the system’s sensi-
tivity to some of these parameters, this step is critical to achieving good performance (see Figure
5.5 to see the effects of an incorrectly chosen smoothing parameter λ).

57

Algorithm 5 Segmentation-based change detection algorithm

1: given: A set of voxel features (xi)1...N from the current scene; a sequence of corresponding
voxel features from the nearby locations from a previous navigation S = (x̃i)1...M ; a novelty
threshold γ; a segment change threshold η

2: outputs: A sequence of hypotheses f = (f1(x1), f2(x2), . . . , fN(xN)) where fi(xi) specifies
if voxel xi has changed from the previous iteration

3: while there are any voxels unassigned to a segment do
4: s← seed(x) {The voxel index selected by the seed selection algorithm (Section 5.4.3)}
5: if s = −1 then {Segmentation termination criteria reached}
6: break
7: end if
8: Run the similarity classifier between xs and every other unlabeled voxel (Section 5.4.2)
9: Create an MRF representing classifier output and neighbor constraints (Section 5.4.4)

10: Solve MRF to get y, the labels for all voxels which minimize the MRF energy function in
equation 5.10

11: S ← {i ∀i : yi = 1} {All voxels labeled as part of current segment}
12: g ← ∆(x,S, γ) {Evaluate each voxel in S independently using ∆, the original voxel-

based change detection system described in Algorithm 4.}

13: if
|{gi = 1 ∀i ∈ S}|

|g|
≥ η then {See if percent of segment that has changed passes thresh-

old}
14: for each i in g do {Entire segment labeled changed}
15: fi(xi)← true
16: end for
17: else
18: for each i in g do {Entire segment labeled unchanged}
19: fi(xi)← false
20: end for
21: end if
22: end while

58

Name Description Value
k The number of seed candidates used during seed selection (Section

5.4.3).
12

λ The MRF smoothing parameter from equation 5.10 0.25
η The percentage of a segment which must be changed for a changed

segment from algorithm 5
45

Table 5.1: A summary of the relevant parameters used for the segmentation-based change detection system. These
were optimized using coordinate gradient descent on an independent test set.

An example of a final segmentation of a scene is shown in Figure 5.4(a) while the resulting
detected changes with and without the use of this intermediate step are shown in Figures 5.4(b)
and 5.4(c) respectively. The result when including the scene segmentation step within the change
detection system contains significantly fewer false positives.

5.4.2 Similarity Classifier

To be able to deal with arbitrary environments, we train a single similarity classifier across a
variety of known classes to be able to predict how likely any two voxels in a previously unknown
environment are to be in the same segment:

f(xi, xj) =

{
≥ 0 if xi and xj are in the same segment
< 0 otherwise (5.8)

The output of this classifier predicts whether the two voxels are in the same segment or not,
and the magnitude of this prediction represents the confidence of the prediction. The key to this
classifier is that it operates on any voxels regardless of their classes so that it can generalize well
to new environments.

To be able to generalize to any portion of feature space, the classifier utilizes a function φ that
maps a pair of voxel feature vectors to a vector of features that captures the differences between
voxels’ raw features: φ(xi, xj) → x’. Using a scalar function such as Euclidean distance would
reduce the problem to that of finding a single difference threshold. By using a higher dimensional
difference function allows the classifier to learn more sophisticated non-linear boundaries.

After extensive experimentation, we found that concatenating differences and sums of the
original voxels’ features worked well since it would allow the classifier to reason about both
relative distances in feature space (|xi − xj|) as well as having some representation of where in
the feature space these examples were located (xi + xj).

Our choice for the classifier balanced computational requirements with performance. After
experimentation with a variety of methods, we chose for this classifier to use a kernelized SVM2

with radial basis functions operating on the output of φ(xi, xj). Using a kernelized SVM rather
than a linear SVM increases computation time as a function of the number of stored examples

2We used the kernelized SVM implementation provided by libsvm[20].

59

(approximately 1000 in our case), but allowed the construction of a powerful, non-linear classifier
for this task.

Our training examples for this classifier were generated from the labeled set of examples used
to develop other parts of the system as described in Section 5.5. We then trained the classifier
to accurately classify between members of the same object and those from different categories.
We used pairs of randomly selected voxels for this learning task. The sampling was done such
that there are an equal number of sampled similar pairs (those which appear in the same log as
neighbors and are tagged with the same category label) as non-similar pairs (non-adjacent voxels
labeled with different categories). To prevent over-fitting, we perform cross-validation with 20%
of the original labeled examples.

Parameter values for the slack variable and kernel bandwidth were then optimized using a
grid search at several granularities over possible values across random training and test sets.

This approach allowed us to achieve a 95% overall test accuracy for the classifier.

5.4.3 Seed Voxel Selection

The segmentation system identifies one segment at a time in the environment, starting at a suit-
able seed voxel and growing that segment to encompass the appropriate portion of the scene.
This relies on an efficient and accurate way to identify a seed voxel at each step.

An ideal seed voxel has the property that it is a good representative of all the other voxels
that are part of that segment and easily differentiated from other segments’ voxels. A poor seed
voxel on the other hand might be at the boundary of two segments and have features of both
segments without being truly representative of either, making a useful segmentation from that
voxel impossible.

To capture these desired properties, we select the seed voxel at each iteration from the set
of unsegmented voxels by choosing k of them at random and quantitatively evaluating each
candidate’s quality. Each potential seed xi in this randomly chosen set X is scored using the
classifier c(x1, x2) trained earlier (Section 5.4.2) as follows:

score(xi) =
∑

xj∈X ,i 6=j

max{0, c(xi, xj)} (5.9)

The seed candidate with the highest score is then chosen as xs, the seed for the current
segmentation iteration. Because |c(xi, xj)| is the confidence of the classifier, this metric can be
interpreted as choosing the candidate voxel that is most strongly associated with other voxels,
meaning it is a good representative of a segment. The voxels that are determined to be different
from that voxel (when c(xi, xj) < 0) are not factored into the metric as they are presumably
voxels in other segments.

We found that setting k = 12 worked well. A larger k increases the effectiveness of this step
but requires more computation since the technique described here is O(k2).

60

5.4.4 MRF-Based Segment Identification

As the final step in identifying the segment for each iteration, the problem is represented using
a binary MRF that is optimized to account for all classifier evaluations as well as an assumption
of local continuity (to prevent tiny segments due to feature noise). This approach is similar to
the ground height estimation system in [144] where evidence from noisy laser data is balanced
against an assumption of local ground height continuity.

This MRF optimization step is formed as an energy minimization problem where the final
solution tries to minimize the degree to which classifier or neighbor constraints are violated. For
a segmentation step with N remaining voxels, the final segmentation is represented by the labels
y1...N where yi = 1 if node i is in the current segment (same segment as the seed voxel) and
yi = 0 otherwise. The first voxel, x1) is is assumed to be the seed voxel, meaning y1 = 1. The
energy optimization problem can therefore be expressed as:

E(y1...N) =
N∑
i=2

Ec(x1, xi) +

λ
∑
{i,j}∈N

δ(yi = yj) +

∞δ(y1 6= 1) (5.10)

Ec(x1, xi) =

{
|c(x1, xi)| if δ(c(x1, xi) > 0) 6= yi
0 otherwise

}
(5.11)

Where c(x1, xi) is the output of the similarity classifier described in Section 5.4.2, N is the
set of all neighboring voxels and λ is the weight on the neighbor smoothness constraint. The
first term of Equation 5.10 represents the degree to which the segmentation disagrees with the
classifier evaluations between the seed voxel and the rest of the voxels. If the assignment of
a label does not match the output of the classifier, the labeling is penalized by the magnitude
(confidence) of the classifier output. The second term encourages neighborhood continuity by
penalizing mismatching neighbors by the smoothness parameter λ. Finally, the third term insures
that the seed voxel x1 is in the current segment.

In general, optimizing an multi-class MRF is NP-hard, but computing the optimal labeling
of a binary MRF is a special case that can be solved in polynomial time using the graph-cut
algorithm if the energy of the distribution of each pair of binary variables is submodular [63, 148].

To take advantage of this binary MRF property, we encode the energy optimization from
Equation 5.10 into a binary MRF structure as illustrated in Figure 5.6. The initial MRF with
neighbor constraints is shown in Figure 5.6(a) (the seed node is identified with a ’*’). Figure
5.6(b) shows the MRF with neighbor constraints as well as the output of classifier evaluations
between the source node and all other nodes (negative numbers mean the classifier predicts they
are not in the same segment).

In Figure 5.6(c) virtual source and sink nodes are created to represent the current segment
and all other voxels respectively. All constraints with positive weights are encoded by an edge
to the source node while all constraints with negative weights are encoded by an edge to the sink

61

node. All neighbors are tied by edges with weight λ, the neighborhood constraint weight, and
an edge of infinite weight ties the source to the seed node ensuring it will be part of the current
segment. At this point all edges have positive weights, making each of them submodular and
allowing us to solve the MRF optimally and efficiently using graph-cut.

The final outcome for this example problem is shown in Figure 5.6(d) (constraints that are
violated by this solution are crossed). Notice how in this example the weak recommendation of
the classifier for the top-right node is overruled by the optimal solution due to the neighborhood
constraints surrounding it.

Once the MRF is solved, all voxels that are in the connected set of voxels tied to the source
node are then labeled as part of the current segment, completing that iteration of the segmentation
system. Those voxels are removed from the original set and the segmentation iterations are
repeated on the remaining voxels until the entire scene is segmented or no further acceptable
segments can be computed.

62

(a) Computed segmentation for a scene

(b) Detected changes without segmentation (c) Detected changes with segmentation

Figure 5.4: Example output of scene segmentation system and resulting effects on change detection performance in
eliminating false positives (manikin was introduced as a change).

63

(a) λ = 0.05: low smoothing pa-
rameter results in too many seg-
ments, hurting change detection
performance

(b) λ = 0.25: the optimal smooth-
ing parameter results in an ade-
quate segmentation

(c) λ = 5.0: high smoothing pa-
rameter enforces strong segment
continuity but does not allow the
system to correctly segment the
fence which needs to be split be-
tween more segments due to fea-
ture variation.

Figure 5.5: Effects of varying smoothness parameter λ.

64

(a) The seed voxel is marked
with a ’*’ and the neighbor con-
straints are shown in blue.

(b) MRF with neighbor con-
straints (blue) and classifier
constraints between the seed
voxel and all other voxels (red).

(c) Graph-cut representation of MRF. Each
voxel is tied to a virtual source or sink node de-
pending on the sign of the corresponding classi-
fier evaluation.

(d) Final segmented MRF. Edges with bars
through them represent violated constraints.

Figure 5.6: Illustration of the MRF optimization procedure.

65

5.5 Application to Mobile Robotics

A natural application of these novelty and change detection algorithms is to the field of mo-
bile robots. The Crusher UGV shown in Figure 3.3 was used throughout our novelty detection
testing and the smaller E-Gator platform shown in Figure 3.4 was used for all change detection
experiments.

As often the case in robotics, we were forced to deal on both systems with a relatively high-
dimensional feature space (49 features on Crusher and 30 features on the eGator platform) that
contained many features of varying importance and accuracy as described earlier. We dealt with
this problem on each platform by computing an MDA-based transformation into a lower dimen-
sional subspace using an available library of hand-labeled examples across many environments
as described in Section 5.2.2.

The following experiment on the Crusher platform demonstrates the benefits of this approach
for novelty detection. By the same intuition this approach was a key component of the change
detection system on the eGator platform, both because of the improved ability to measure sim-
ilarity as well as by allowing a more compact representation of the perception data from the
previous traversal.

Of the available classes, four were used to construct a three-dimensional subspace: road/grass/dirt,
rocks, bushes and barrels (see Figure 5.7). A fifth class of examples corresponding to various
non-barrel man-made objects (various man-made structures, barriers, vehicles, poles, human-
sized plastic figures, etc.) was withheld for testing purposes (see Figure 5.9). It is important to
note that class labels are only used initially for generating this transformation and are unneces-
sary for later processing3.

After training using the first four classes, examples from those classes as well as the held-out
data set of man-made examples were projected onto the first three basis vectors computed by
PCA and MDA (see Figure 5.8)4. The MDA projections clearly show better separation between
the previously-unseen set of man-made examples and the original four classes. As expected, the
most overlap occurs with the barrel class as barrels share common properties with other man-
made objects such as smooth surfaces, colors, etc. Since we would desire these new examples to
be identified as novel relative to the rest of the classes, this separation implies that this is a more
suitable subspace for use as a similarity metric within a novelty detection system.

This benefit is clearly visible in the ROC curves shown in Figure 5.10. These curves show
the false positive rate vs. the true positive rate for novelty detection under various configurations
while varying γ, the threshold for novelty. A random 1500-example subset of each training
category was used as the baseline set with respect to which novelty was detected in a held-out
test set coming from the same training categories (to detect false-positives) as well as the man-
made category (to test for true-positives).

Because our algorithm is optimized for online use, the novelty model can start uninitialized
or can be seeded with a sampling of examples used during training so that it can identify areas

3For many robust autonomy systems including ours, such data is required regardless for perception system
development (for example, for training and validation of onboard classifier systems).

4All features were initially rescaled to zero-mean, unit-variance.

66

that are novel and potentially unsafe to handle with the current perception system.

5.6 Experimental Results

We now report on experimental results for both the novelty detection and change detection algo-
rithms described in the previous chapters. All features were projected into the three-dimensional
subspace generated by MDA as described in the previous section. As the environment was ex-
plored, perception system features were averaged into 0.8 cm2 grid locations for use as online
batches of examples.

5.6.1 Novelty Detection Results

To best exhibit the online novelty detection abilities of our algorithm, we ran experiments with
the model initialized to contain no prior examples. Those examples that were identified as novel
relative to the current model (composed of everything previously identified as novel) were in-
corporated into the model as described earlier. Ideal behavior would identify objects as novel
initially, while future instances of those objects would no longer be novel. Camera and third-
person virtual views (constructed using ladar point clouds colorized by camera imagery) within
figures identify novel locations in the scene with a red shading.

Our novelty detection algorithm with query optimization (Algorithm 3) was tested using
the Crusher UGV shown in Figure 3.3 in a natural outdoor environment to evaluate its online
novelty detection performance (the algorithm ran in real-time on similar hardware using logged
data). The test environment traversed by the robot consisted of combinations of road, grass and
dirt, a large variety of vegetation, a series of small barrels, several ditches, large heavily-sloped
piles of rocks and a long chain-link fence.

The vehicle’s initial environment consisted of fairly open terrain with some light vegetation
scattered on both sides. As expected, instances of such vegetation were detected as novel the first
few times they were seen (see Figure 5.11).

The vehicle then encountered areas of much denser, larger vegetation. Initially, a majority
of such vegetation was identified as novel with respect to previous inputs (see Figure 5.12). As
the vehicle continued navigating through similar vegetation, the model adapted and no longer
identified such stimuli as novel (see Figure 5.13).

Figure 5.14 demonstrates this learning process through a series of overhead images of this
initial environment. Of all locations encountered in this run, these images those that are com-
puted to be novel with respect to the vehicle’s novelty model as of the shown position. Output
is shown at three points in time: near the beginning of navigation, just before initial encounters
with dense vegetation and after sensing a small amount of dense vegetation. It is clearly visible
how the system adapts quickly as it navigates more of the environment, causing future instances
of similar situations to no longer be flagged as novel.

Proceeding through the environment, the vehicle then encounters a series of plastic barrels
(see Figure 5.15). As desired, the first several appear as novel with respect to the large variety of

67

vegetation previously seen while later barrels are no longer novel due to their strong similarity
to the initially seen barrels. Similarly, a long stretch of a chain-link fence is identified as novel
late in the course (see Figure 3.2). Again, the initial portions of the fence triggered the novelty
detection algorithm while later portions were no longer novel due to the algorithm’s adaptation
to seen data.

The value of such an approach is apparent when considering the UGV perception system’s
interpretation of the fence compared to more familiar vegetation (see Figure 5.16). Even though
the fence is significantly more hazardous to the vehicle than any of the vegetation, it is not in
the perception systems experience base and its traversal cost is therefore significantly underes-
timated. Such a scenario could be catastrophic to a vehicle without such a novelty detection
system.

Additional examples of novel instances identified during traversal appear in Figure 5.17.
Overall, the novelty detection algorithm was able to identify all major unique objects (veg-

etation, barrels, fence, etc.) with a relatively small amount of false positives due to effective
adaptation to the environment. When PCA was used to create the feature subspace, errors in-
creased due to the lack of separability between classes. As with any algorithm, the success of
this approach is heavily dependent on the quality of features.

Computation time comparisons between Algorithms 2 and 3 on this course highlight the ef-
fectiveness of query optimization technique (see Figure 5.18). The average computation time
required per novelty query using Algorithm 2 grows with the number of stored examples in a
way that would not scale to extremely long operation. Algorithm 3, on the other hand, experi-
ences temporary spikes in average computation time as novel areas are encountered but the query
optimization step allows the algorithm to quickly adapt its ordering of stored examples so that
it can maintain a bound on computation time throughout navigation and allow effective anytime
novelty prediction.

68

Figure 5.7: Examples of hand labeled class categories (bush, grass, tree trunk, tree branches, dirt, etc.)

69

Figure 5.8: All training examples projected onto the subspace defined by the first three basis vectors computed by
PCA (top) and MDA (bottom). Only the first four classes were used to construct the subspaces (’other man-made’
class was withheld as a test class). The MDA-based projection clearly shows significantly more separation between
the new man-made class and the known classes, implying a more suitable subspace for novelty and change detection.

70

Figure 5.9: Sample labeled examples in the ’other man-made’ class used for validation of dimensionality reduction
effectiveness. This category excluded instances of barrels which were used as a separate known class.

71

Figure 5.10: ROC analysis of novelty detection performance while varying γ, the threshold for novelty. Performance
using lower-dimensionality spaces created through MDA and PCA (shown in Figure 5.8) are shown in solid red
and dotted red, respectively. When storage for only 150 examples is available, performances under the query
optimization approach described in Algorithm 3 as well as the NORMA truncation approached described in [61] are
shown in solid and dotted blue, respectively. For all tests, the learning rate, η, was set to 1, and σ2 was computed
to be 0.9 as described earlier. Novelty detection performance using the MDA-based space was shown to uniformly
outperform the PCA-based space and the query optimization approach for dealing with limited memory was shown
to uniformly outperform the suggested NORMA approach.

Figure 5.11: Shortly after initialization with no prior novelty model, various small vegetation was detected as novel
(identified in red). In several such images throught this section where the marked novel region is hard to see a red
arrow has been added to help identify the relevant region.

72

Figure 5.12: A third-person visualization from logged data of the output of the novelty detection system upon an
initial encounter with larger and denser vegetation. Because this vegetation is vastly different from anything seen
previously, much of it is immediately detected as novel (identified in red). As with all future similar images, insets
within the top image show a first-person view (left inset) and the classification of the environment by the perception
system into road, vegetation, and solid obstacle in blue, green and red respectively (right inset). The bottom two
images show areas of detected novelty visualized on an image from the robot.

73

Figure 5.13: Similar vegetation as that shown in Figure 5.12 encountered a short time later. Notice how almost all
vegetation is no longer novel due to similarity to previous stimuli.

Figure 5.14: Novelty of all future perception input using current novelty model on vegetation-heavy terrain shown
in Figures 5.11, 5.12 and 5.13 at three points throughout traversal. Robot’s past and future path is shown in light
and dark green respectively and novelty of terrain is indicated by a gradient from yellow (moderately novelty) to red
(high novelty). Robot is initialized without a prior novelty model.

74

Figure 5.15: Series of barrels encountered later in the course. The initial barrels are detected as novel (red shade)
even after significant exposure to a large variety of vegetation (top and left). Later barrels are no longer identified as
novel due to online training.

75

Figure 5.16: The perception system’s interpretation of the chain-link fence from Figure 3.2 (left) and the dense
bushes from Figure 5.12 (right). Lower and higher traversal cost regions appear in darker and brighter shades
of white respectively, with areas that are considered impassable appearing in purple. Even though the fence is
significantly more hazardous to the vehicle than any of the vegetation, it is not in the perception system’s experience
base and its traversal cost is therefore significantly underestimated.

Figure 5.17: Additional examples of novel instances identified during later traversal (red shade): first encounter with
a ditch (left) and a large, heavily-sloped pile of rocks (right).

76

Figure 5.18: Average computation in milliseconds per novelty query on 3.2 GHz CPU for Algorithm 2 (dashed red
line) and Algorithm 3 (solid blue line) over the previous 5 seconds throughout navigation. Computational complexity
of Algorithm 3 remains bounded due to the order optimization step (line 17). These timings do not include feature
computation and projection costs which are identical under both algorithms.

77

5.6.2 Change Detection Results

The performance of the change detection system was evaluated on 17 pairs of traversals of diverse
environments (from logged data) where various changes were introduced for the second traversal.
The scenes consisted of a variety of natural and man-made environments and the types of changes
tested varied from introductions of manikins (to represent unexpected human presence) to various
man-made objects such as barrels, small junk, cones, or cars. These changes were hand-labeled
by us to identify the voxels that should have been selected as changed and the performance of
the change detection algorithm (both with and without the use of the segmentation system) was
evaluated. The system operated on all locations within 12 meters of the robot and within the
sensors’ fields of view.

Performance was measured for the change detection system with and without the online seg-
mentation component through an ROC analysis of the voxel labeling. By varying γ, the novelty
threshold parameter, we were able to change the sensitivity of the change detection system to
trade-off between false positives and false negatives and analyze the overall robustness of these
systems.

It is also important to note that the ground truth labeling process itself likely added a signif-
icant amount of artificial error. In the cluttered 3D environments that we deal with, it was often
difficult to accurately label the boundaries of objects. This was particularly true when trying to
label objects obscured within vegetation. As a result, even when an object was correctly detected
as changed, some error was often still measured during the evaluation of the boundary voxels.

For comparison purposes we also measured performance against several simple occupancy-
based approach to the change detection problem. We first considered a direct voxel-based oc-
cupancy method where we directly compare each voxel against the same 3D location in the
previous traversal’s log and consider a location changed if there was a voxel in one scene and not
another. Another method we tested against was a region-based occupancy test where a voxel is
considered changed only if there is no matching voxel at the same height off of the ground (us-
ing the system’s estimated ground height) within a one meter window in the previous scene. As
expected, such an approach makes fewer false positives (due to a small resistance to registration
error) while sacrificing the true positive rate.

In addition to only being able to detect occupancy changes, rather than changes to previously
existing objects, these naive approaches are highly suboptimal for several reasons. First, they are
extremely vulnerable to registration error throughout navigation. Even small positioning uncer-
tainty will lead to significant false positives, making these approaches impractical for the types
of systems we deal with. Further discussion about the problems posed by registration error can
be found in Section 5.6.2. Additionally, many objects such as vegetation are not rigid, meaning
small variations in wind or season may shift the positions of objects enough to register false
changes. Finally, variations will naturally occur due to differences in sensing and driving speeds,
causing the perceived sizes of objects to vary across different runs. When coupled with the dis-
cretization error resulting from the perception systems voxel-based approach to representing the
scene, such naive approaches are destined for poor performance.

We do not quantitatively evaluate the direct performance of the segmentation system itself
for several reasons. First, unlike in the case of a classification problem, an ideal segmentation is

78

highly subjective and makes it impossible to label a ground truth. Also, we use segmentation as
an intermediate step in the change detection system pipeline, so for our purposes its performance
is better measured by the degree to which it improves the overall system’s accuracy.

Figure 5.19: Performance of the change detection system when using segmentation (Algorithm 5) and without
segmentation (Algorithm 4) across all logs. The optimal value of the threshold parameter γ is marked for the
situation where false positives and negatives are penalized equally.

The change detection system that uses scene segmentation identified 84% of the chagned
voxels across all all data sets with only a 17.76% false positive rate (see Figure 5.19). To achieve
the same true positive rate without the use of segmentation, the system would have to incur a
35% false positive rate. As expected, the performance of the naive occupancy-based algorithm
suffered large false-positive rates and significantly underperformed both systems.

The use of online segmentation within the change detection system yielded an improvement
in a majority of the scenarios we tested. We also found that the optimal value of the novelty
threshold γ (assuming false positives and false negatives are valued equally) remained fairly
consistent at approximately 0.1 across all logs. The performance on several individual scenarios,
including those where the system struggled, can be seen in Figures 5.4 and 5.20.

It is important to realize that the goal of the scene segmentation system is not to be visually
consistent and accurate as is the case for many of the related segmentation approaches discussed.
The segmentation results shown throughout these figures often do not precisely fit the objects
in the environment for several reasons. First of all, these segmentations are meant to capture
consistent regions in feature space rather than objects as interpreted by humans. This feature
space includes many features from both color and laser data that varies significantly based on
factors like the orientation with respect to the robot, distance from the robot and the lighting in
the scene.

Also, due to the role of the segmentation system within the change detection pipeline, it
is much preferable to over-segment the scene than under-segment it. Because each segment

79

is evaluated as a possible change as a whole (the final decision is conservative, only decided
on changes when evidence is strong), changed regions in the scene may then be identified as
changes through a series of smaller segments that together encompass the object.

Finally, because of the fast pace of online data acquisition, the segmentation for a scene will
change constantly, making a poor segmentation for one cycle irrelevant to the overall system’s
performance (since the regions from that cycle will simply be discarded). As long as each rele-
vant object segmented well in at least one iteration, overall performance will be good.

By far the most computationally intensive component of the change detection system is the
online segmentation step. We ran the entire autonomy system (including the perception system
and feature generation) on logged data at about a fifth of real-time (without segmentation the
entire system can easily be run in real-time). We are confident, however, that this system can
be made to achieve real-time performance with some optimization effort. The most obvious
optimization step would be to parallelize the segmentation process rather than having it process
each segment sequentially. Such a parallelization effort could on its own yield the necessary
improvements for real-time operation.

Effects of Registration Error

Because the change detection system is comparing the scene against a stored representation of
that scene from an earlier time, a key challenge to overcome is dealing with any registration
error between one navigation and another. As mentioned previously, GPS systems often produce
especially large vertical (z-axis) errors. This is clearly visible in the visualization in Figure 5.21
of perception data from two traversals of the same scene at different times where a vertical drift
of almost 2 meters is present. We correct for this type of error by using our online ground plane
estimation system as a baseline for the vertical axis rather than the GPS measurement.

Dealing with positioning (x-axis and y-axis) error is a more challenging problem. Unless the
system uses extremely high-end positioning tools, registration errors of up to a meter or more
are common. To show how our system responds to more severe registration error, we artificially
mis-registered each pair of logs with added errors of varying amounts (this is in addition to the
inherent error already present in the log pairs). To account for the higher expected registration
noise, the radius from the previous navigation from which voxels are used for comparison are
grown accordingly. Figure 5.22 shows how our system performs under these conditions.

As shown in this figure, the described change detection algorithm performs well under these
increasingly difficult conditions. The system’s ability to not rely on strict position matches be-
tween voxels allows it to keep a relatively low rate of false positives. The segmentation system
further helps by eliminating local error caused by portions of objects no longer aligning. Because
decisions are made on contiguous segments as a whole, the system can withstand some amount
of mis-registration for portions of these segments while limiting the amount of additional false
positives. This improved resistance to registration error can clearly be seen in Figure 5.23 which
shows the area under each ROC curve from Figure 5.22. The area-under-curve measure is a
common way of evaluating the robustness of an algorithm under varying thresholds.

80

(a) Despite never having trained on an object this shape or color, the system has no problem identifying
the manikin as a change to the scene

(b) The first manikin was successfully detected but the later one was missed due to imperfect segmentation.

(c) In this exceptionally difficult scenario, the segmentation system was unable to distinguish camouflaged
manikin from the logs resulting in a high false-positive rate before any correct changes were detected. It
is possible that in this scenario the features generated for the environment are simply not rich enough to
adequately characterize this scene.

(d) Two manikins introduced into the scene were detected perfectly. The second was pinned underneath
the vehicle, making accurate detection of this manikin especially difficult.

Figure 5.20: Performance on selected individual scenarios. The ROC performance, scene segmentation, and de-
tected changes are shown from left to right. The occupancy tests in the ROC plots refer to the tests described in
Section 5.6.2.

81

Figure 5.21: Visualization of perception data from two navigations of a scene at different times. While positional
error is often relatively small, vertical error is usually much larger (often several meters).

Figure 5.22: Change in performance as additional registration error between past and present navigation is added
(in addition to the already existing error inherent in the logs). The change detection system with segmentation is
most resilient to this added noise while the other methods begin to suffer.

82

Figure 5.23: Area-under-curve for the ROC curves of each approach under additional introduced registration error.
Both systems maintain their performance well even under large additional registration error, but the segmentation-
based change detection system is clearly more resistant due to its improved ability to eliminate false positives.

83

84

Chapter 6

Online Candidate Selection

As we argued previously, many UGVs possess competent autonomy systems that are capable
of dealing with a wide variety of situations. These systems are not perfect, however, and their
performance degrades as characteristics of their environment begin to diverge from the environ-
ments used throughout training. In some domains it is therefore reasonable to assume that a
human operator may be available for short periods of time to provide remote supervision or tele-
operation. The responsibility of deciding how and when to use this remote operator assistance to
improve performance and mitigate risk lies with the autonomy system.

The final portion of this thesis is devoted to a candidate selection system that observes the
performance of the autonomous vehicle in particular situations and compares that performance
to remote human-control in similar situations [116]. When the vehicle encounters such situations
in the future, it will be able to make a decision about which candidate will perform better.

It is important for such a system to be well-suited for online use. Not only is it unpredictable
in advance how well the autonomy system will perform in novel situations, but human operator
performance can also vary depending on factors such as bandwidth limitations, operator handi-
caps such as limited skill or familiarity with the interface, fatigue and weather conditions. When
little prior knowledge about the operators’ abilities is available, a learning system can observe the
performance of the autonomous vehicle in particular situations and compare that to performance
under remote human-control in similar situations. When the vehicle encounters similar situations
in the future, it can then invoke whichever expert demonstrated better performance: the remote
human or autonomous vehicle. Such a capability would enable a single operator to assist many
UGVs, ensuring peak performance for the entire team with minimal human involvement.

We pursue this problem using an on-line, reinforcement learning approach and demonstrate
its performance on logged data from the Crusher vehicle shown in Figure 3.3. The candidate
selection system’s goal is to learn to interpret available overhead sensor data in order to make
decisions that maximize its overall long-term performance. This inevitably becomes a trade-off
between exploring candidates’ performance in situations that will allow it to learn more about
the world and taking advantage of their learned models to maximize current performance.

One way to take advantage of such a system is to combine limited human availability with
the online novelty detection capabilities of Section 5. Since it is impossible to predict what a

85

UGV may encounter, the key to success is for the UGV to seek help before it experiences a
major failure. The human can then either inform the robot that it is safe to proceed or handle
the novel situation himself, significantly reducing mission risk. Once the significant mission risk
posed by novel situations is mitigated, the candidate selection system could be utilized to further
optimize the systems navigational performance through selective human control. We call such a
two-pronged approach the Assisted-Autonomy Framework. We explore the novelty detection and
candidate selection problems independently in this thesis, although it is likely that a combined
approach may be most effective for certain situations.

Because this technique is applicable to any scenario with repeated online choices, we also
show how this approach can be used to deal with scenarios where limited high-resolution over-
head data is available to aid the robot in navigating through an environment. The Digital Terran
Elevation Data (DTED) level of an overhead elevation data set specifies its density of coverage.
Higher resolution overhead data can be used to produce more accurate traversal cost estimates
that the UGV can use for better prior path computation but often require expensive and time-
consuming aerial surveying and a large amount of bandwidth if remotely supplied to the vehicle.
In scenarios where the availability of such data is limited, our algorithm can be extended to allow
the robot learn to identify the situations where it will most benefit from high resolution data in
order to allocate it to areas that maximize its impact.

The next section presents background on adjustable autonomy techniques and some example
applications. Section 6.2 presents our online candidate selection algorithm, followed by experi-
mental results in Section 6.3.

6.1 Related Work

As robotic systems continue to play a larger role in our societies, there has been increased atten-
tion on how to optimize the interactions between humans and robots. This field is often referred
to as Human-Robot Interaction, or HRI.

Many researchers have investigated approaches for heterogeneous human-robot teams. In
such a scenario, humans and robots act as independent agents that must cooperate on a given
task. Such techniques have been explored in domains such as the “Treasure Hunt” scenario
[27, 56], robot soccer [4], forest fire monitoring [18], border patrol [39] and search and rescue
assistance [19, 94, 104, 147].

We deal instead with the scenario where a human can contribute limited attention to improve
a robotic system’s performance but is not himself an independent agent in the scenario. In this
case, a robotic system operates somewhere on the spectrum between full autonomy, where there
is no human involvement, and full tele-operation, where the human is in complete control at
all times. Scenarios where the degree and methods of human interactions with robots within a
system can be varied dynamically in order to optimize performance are often referred to as ones
of sliding autonomy or adjustable autonomy. While most mobile robot systems tend to lie on
one of the two extremes of this spectrum, effectively balancing autonomy with limited human
involvement can lead to significant improvements in safety, efficiency and overall cost.

The extreme of full tele-operation is already common in many tasks such as remote bomb dis-

86

posal or reconnaissance [146], operation in hazardous environments [23, 24] and robotic surgery
[126]. On the other extreme, full autonomy has been heavily studying in the research community
but often is unable to transition into real-world applications due to high reliability requirements
and cost constraints. We argue that the way to optimizing the value and impact of robotic sys-
tems is to find a compromise on this spectrum that balances cost and development time with
autonomous abilities, allowing these systems to be fielded years before otherwise possible.

In some scenarios where the human is the primary operator, the autonomy system is intended
to aid by request or when it detects a dangerous situation. This is especially common in various
driving assistance systems that are gradually becoming available in high-end vehicles. These
include systems that detect drowsiness [43], provide parking assistance [139], automate cruise
control [136], and provide situation aware brake assistance for collision avoidance [83]. Similar
techniques have also been applied to trains, busses, semi-trucks, many forms of public transit
[10], and aiding flight and air traffic control [131].

Similar approaches have been applied to surgery to decrease surgeon fatigue and improve
performance. Through the use of force feedback and vision systems, researchers are developing
a hybrid control scheme to perform basic subtasks in robotic-assisted laparoscopic surgery [66].
Such systems can automate repetitive tasks such as the cleaning-suction process, a simple yet
tiring procedure that often limits durations of surgical procedures.

Much of the success in space exploration has been largely due to robotic technologies. The
immense cost of rovers that are to operate on Mars or the moon makes it imperative that their
safety is protected. While the space program has historically been conservative in introducing
autonomous capabilities to robotic systems, NASA and the research community are gradually
beginning to explore the potential benefits of limited autonomous operation. While tele-operation
is possible in most cases, the distances over which commands must travel make the associated
time delays troublesome. Commands sent to the moon would experience up to a 2.5 second delay
while tele-operation of a rover on the surface of Mars can experience delays of up to 45 minutes.

A safeguarded tele-operation approach sharing control of the rover using a command fusion
strategy was proposed for time-delayed remote driving [65]. In benign situations, users remotely
drive the rover, while in hazardous situations, a safeguarding system running on-board the rover
overwrites user commands to ensure vehicle safety and deal with the user’s inability to evade
obstacles effectively due to the time delay.

Specifying series of waypoints at once can partially alleviate this issue but would be still
hindered by the operator’s limited field of view at any given point in time. In an effort to in-
crease performance through autonomy, NASA began utilizing navigational autonomy at times
on its Mars Exploration Rovers, Spirit and Opportunity. In May 2005, NASA integrated a ver-
sion of the Field D* algorithm into the navigation software of the rovers, enabling local and
global planning [17, 33]. Such approaches have the potential to improve productivity while sig-
nificantly reducing supervision requirements and personnel costs. Others are exploring the roles
of adjustable autonomy in future space missions to allow humans to closely interact with robotic
systems at whatever level of control is most appropriate [28].

The formulation for most of the situations described above is sometimes referred to as user-
based autonomy: adjustable autonomy is driven by the need to support user control [76]. We

87

instead deal with scenarios within the agent-based autonomy formulation where autonomy is the
default mode of operation and an agent explicitly reasons about whether and when to transfer
decision-making control to a human. Since interrupting the human often has high costs, com-
plexity falls on defining an acceptable transfer-of-control strategy.

The Trestle system, for example, consists of three different robots that must work together
to assemble a small structure from individual beams [46, 106]. These robots can either function
autonomously or through tele-operation from a human. Through decision trees and Markov
Decision Processes trained from prior performance data, the system was able to utilize the human
intermittently to achieve a balance between human use and overall performance. However, in
scenarios such as the one we address, prior performance information is often unavailable and
the system must learn such models online. Furthermore, this system is able to request human
assistance to correct failure, a luxury that is not available in many situations.

For single-agent systems some have suggested relinquishing control when there is an ex-
pectation of high benefit [47, 49] or the degree of uncertainty is high [44]. In scenarios where
a single human must supervise multiple robots, adjustable autonomy becomes a requirement.
Scerri et al. have extensively studied transfer-of-control strategies for large multi-agent teams
using Markov Decision Processes [101]. Similar techniques have enabled NASA to replace a
full-time multi-person operating staff for supervising satellite behavior with automated systems
that signal for human help only when unexpected events occur [14].

Fong introduced the idea of collaborative control to allow the human and the robot to engage
in dialog to exchange information, ask questions or to resolve differences, allowing a single
human to supervise multiple robots simultaneously [34, 35]. This is accomplished through a set
of approximately thirty defined queries enabled at specific situations. While this improved robot
performance in situations that matched the pre-defined system specifications, the system would
not extend well to novel situations due to its rigid definition and lack of online learning abilities.

Goodrich and Schultz have written an extensive survey article on the field of Human-Robot
Interaction exploring many additional approaches and applications [42].

The key difference in our approach from the above-mentioned approaches is that we do not
constrain the system by any pre-determined rules or models. Since it is not possible to prepare
for all possible circumstances a robot may encounter, the ability to learn online the capabili-
ties of each potential expert allows our systems to better adapt to more diverse and challenging
environments.

6.2 Approach

6.2.1 Contextual Multi-Armed Bandit Setting

The candidate selection problem involves choosing an operator for each encountered situation
from a set of candidate systems, in our case the autonomy system and the human tele-operator,
whose performance we assume comes from some unknown distribution. It is therefore intuitive
to frame this problem as an instance of the commonly studied multi-armed bandit problem [6,
69, 97]. Bandit problems are relevant to a wide range of domains such as statistics, economics

88

and clinical trial decisions [38, 68, 142].
In the k-armed bandit setting, at each time step the world chooses k losses (or rewards),

l1, . . . , lk, and the player makes a choice of an arm i ∈ {1, k} without knowledge of the hidden
losses. The player then observers only the loss li corresponding to the chosen arm. Since the loss
distributions are unknown, there is an inevitable conflict between minimizing the immediate loss
and gathering information that will be useful for long-term performance. This is often referred to
as the exploration-exploitation trade-off since we must choose between exploring our unknown
loss distributions and exploiting the arm we currently believe to be best.

We deal with a more suitable variation of this setting called the contextual bandits setting
where at each time step t the player also observes some contextual information xt which can
be used to determine which arm to pull [71, 140]. We compute these features from commonly
available overhead imagery and DTED 3 elevation data for the given environment as described
in Section 3.3.2 and convolve them with a Gaussian kernel in order to blur the data, in effect
introducing an influence from surrounding areas into each location. This creates a more realistic
modeling problem since navigational performance at a given location is heavily influenced by
factors from the surrounding area.

As is common with bandit problems, our goal is to minimize regret, the difference between
the performance of the algorithm and that of the optimal algorithm in hindsight:

R =
T∑
t=1

(lt − l∗t) (6.1)

where l∗t is the loss incurred in round t by the optimal strategy.

6.2.2 Exploration-Exploitation Trade-off

Finding the right balance between exploration and exploitation when dealing with a bandit setting
is one of the core problems in the field. For the standard multi-armed bandit problem, some
simple approaches include:

ε-greedy strategy. The best known arm is selected for a proportion 1 − ε of the time and a
random arm is selected for a proportion ε [141].

ε-first strategy. A pure exploration phase is followed by a pure exploitation phase. For an
experiment of length T , the exploration phase where a random arm is chosen occupies εT steps
and the exploitation phase where the best arm is chosen occupies the remaining (1− ε)T steps.

ε-decreasing strategy. Similar to the ε-greedy strategy, except that the value of ε decreases
as the experiment progresses, resulting in higher exploration earlier in the experiment and more
exploitative behavior later.

Approaches such as these are not well-suited our problem since they ignore the availability of
contextual information. We therefore choose to deal with the exploration-exploitation trade-off
through the use of confidence bounds. With a model that is able to supply confidence bounds,
the widths of the confidence bounds reflect the uncertainty of the algorithm’s knowledge. By

89

choosing the candidate with the highest upper confidence bound at each time step, the algorithm
elegantly trades off between exploration and exploitation. When uncertainty is high, choosing
that candidate will provide information that will quickly reduce uncertainty in that region of the
model. As we gain knowledge about each candidate, confidence bounds will shrink and we will
choose the candidate with the highest expected performance. This approach was well-justified
for the bandits setting and shown to have small regret [5].

6.2.3 Linear Optimization as Multi-Armed Bandits Problem

An algorithm that was very influential on our approach was a linear optimization analog of the k-
armed bandits problem proposed by Dani et al. where rather than finitely many arms, the decision
set is a compact subsetD ⊂ Rn [26]. At each step, the algorithm must choose a decision xt ∈ D,
and each choice results in a loss lt = ct(xt) where ct is assumed to be a fixed linear function with
some amount of additional noise.

Their algorithm utilizes upper confidence bounds by maintaining an ellipsoidal region in
which the optimal decision µ is contained with high probability. Suppose decisions x1, . . . , xt−1
have been made, incurring corresponding losses l1, . . . , lt−1. Then their estimate µ̂ to the true
cost vector µ can be constructed by minimizing the square loss:

µ̂ = argmin
v
L(v), where L(v) =

∑
τ<t

(vTxτ − lτ)2 (6.2)

A natural confidence region for µ is then the set v of decisions for which L(v) exceeds L(µ̂)
by at most some amount β:

{v|L(v)− L(µ̂t) <= β} (6.3)

The confidence region at time t, Bt, is defined to be the ellipsoid that contains the region
defined in (6.3). The decision at the next round is then the greedy optimistic decision:

xt = argmin
x∈D

min
v∈Bt

(vTx) (6.4)

We propose to utilize a variation of this approach as described in the following section.

6.2.4 Formalization

We frame online candidate selection problems as follows. At each time step t, we get some
contextual features xt for our environment and must choose from one of k candidates to operate
the robot for that time step1. These features will be generated from either on-board or overhead
sources using similar methods to those described earlier and will contain information over a

1In the case of choosing between a human and the autonomy system, k = 2. We discuss this problem in the more
general case as it could also be applied to choosing between multiple autonomy systems, multiple human operators,
etc.

90

broader area. The goal in such a setting is to minimize the amount of time spent dealing with the
situation at that time step, measured by the period of time it takes the robot to enter and exit a
3 meter radius window around that location.

After each selection, the algorithm observes the noisy feedback lit of only the chosen can-
didate i. We model the distribution for lit as a Gaussian whose mean is a linear function of the
contextual features xt:

E(lit|µi, xt) = µixt (6.5)

We assume the estimates have Gaussian noise and are therefore distributed:

l̃it ∼ Normal(lit, σ
2) (6.6)

Our problem differs from the linear optimization scenario of Dani et al. described above in
that we do not choose xt ∈ D at each time step but rather receive a fixed xt and must choose
among our k candidates. We are therefore tracking k instances of the linear optimization problem
in parallel, one for each candidate. This makes our confidence region problem simpler as we only
have k alternatives to evaluate, the upper confidence estimate of xt for each of the k candidates,
rather than all hypotheses contained in the ellipsoidBt. Bayesian Linear Regression as described
in Section 4.2.1 is therefore an appropriate algorithm for maintaining estimates for each µi and
generating upper confidence-based predictions.

6.3 Experimental Results

We validate this candidate selection algorithm offline through the following two applications
relevant to mobile robot navigation.

6.3.1 Adjustable Autonomy

While we do not have the system infrastructure to be able to trade-off online between tele-
operation and autonomous vehicle control, we simulated such an online scenario by using a
pair of logged traversals of the same long course in western Pennsylvania by each candidate: a
human tele-operator using a high-bandwidth camera system and the autonomy system. All loca-
tions where the path of the human driver and the autonomous driver were in sufficient proximity
were used as a test point for the system. As the algorithm chose a candidate, the traversal time
for only the specified candidate was revealed to the algorithm.

The course and estimated relative performance of each candidate using a trained model ap-
pear in Figure 6.1. Quantitative results comparing our algorithm to various alternatives appear in
Figure 6.2 and Table 6.1.

91

Figure 6.1: Aerial image of test site with course driven using each operating mode (left) and the estimated differences
in traversal time in seconds per meter for this site using the final models learned by the online candidate selection
algorithm (right). The algorithm found that human performance tended to excel in open areas where the human
was better able to interpret sparse obstacles and drive aggressively and at perimeters of heavy obstacles when the
human’s situational awareness allowed him to better interact with the environment.

Table 6.1: Online Operator Selection Performance

Algorithm Cumulative Time (seconds)a Percent Improvement over Always-Human
Online Algorithm 9551.7 9.41

Optimal 7809.3 25.94
Worst-Case 12791.0 -21.31

Always-Human 10544.4 0.00
Always-Autonomy 10055.9 4.63

Random Driver 10307.4 2.95
a Note that since 3 meter regions at example locations often overlapped with each other, these

cumulative traversal times are greater than the total navigation time.

92

Figure 6.2: Online operator selection performance: cumulative navigation time for our algorithm and various alter-
natives (left) and the average regret of our algorithm over previous examples compared to alternatives (right).

6.3.2 Online Overhead Data Selection

We also show how the same technique can be used to deal with scenarios where limited high-
resolution overhead data is available to aid the robot in navigating through an environment. The
Digital Terrain Elevation Data (DTED) level of an overhead elevation data set specifies its density
of coverage. DTED level 3 overhead data is available for a majority of the world but is so sparse
that in most cases it adds very little to the features that can be generated from overhead imagery.
Meanwhile, higher resolution overhead data can be used to produce more accurate traversal cost
estimates that the UGV can use for better prior path computation but often require expensive and
time-consuming aerial surveying and a large amount of bandwidth if remotely supplied to the
vehicle. In scenarios where there is either limited time to gather that data or limited bandwidth
for wireless transmission of the data to the vehicle during navigation, the vehicle must decide
online how to best utilize the availability of data for upcoming navigation. In such situations, our
algorithm can be extended to allow the robot learn to identify the situations where it will most
benefit from high resolution data in order to allocate it to areas that maximize its impact.

We simulated this scenario by analyzing sets of multi-waypoint logged runs from a field test
at Fort Carson in Colorado on sets of courses using DTED levels 3, 4 and 5 overhead data. The
candidates for each waypoint in this case were the choice of density of aerial data for an area
bounding that path segment. The candidate selection system therefore had the goal of learning a
mapping from the average of feature values (computed as described earlier) within the segment’s
bounding box to the average traversal speed for the vehicle over that segment of the path using
each candidate type of data.

While DTED 5 data almost always resulted in the best performance, we simulated a scenario
where high-density data is available for only a fraction of all segments: a maximum of 20%

93

availability for DTED 5 and 30% availability for DTED 4.

Figure 6.3: Aerial image of sample terrain for data selection experiments is shown in top-left. Estimated traversal
time in seconds per meter is shown for DTED 3, 4 and 5 data at top-right, bottom-left and bottom-right respectively.
As expected, DTED 5 data shows large improvements in navigation speed for difficult terrain but does not provide
much benefit on roads and open fields.

At each step we used a linear program to optimize the allocations of remaining data availabil-
ity using the predicted performance on all remaining segments from the learned models for each
candidate at that time. Selections at each step were based on the initial step of this locally com-
puted optimal allocation. To avoid having to do integer programming, we chose the candidate
with the highest allocation at the first step.

The course and estimated rate of progress using each data source predicted by the trained
model appear in Figure 6.3. Quantitative results for this scenario appear in Figure 6.4 and Table
6.2.

Our algorithm shows a clear improvement over naive or random approaches for both scenar-
ios with quickly-converging regret properties.

94

Figure 6.4: Overhead data selection performance: sum of average navigation speed over each path segment for our
algorithm and various alternatives (left) and the average regret of our algorithm over previous segments (right).

Table 6.2: Online Overhead Data Selection Performance

Algorithm Average Speed (meters / second) Percent Improvement over Random
Online Algorithm 2.45 5.60

Optimal 2.71 16.81
Worst-Case 2.04 -12.07

Random Data Source 2.32 0.00

95

96

Chapter 7

Conclusions

This thesis presents a series of online learning techniques that enable a robot to better handle
navigation in difficult and unstructured natural environments. The online learning approaches for
perception significantly improve the range of a robot’s near-range perception system, allowing
it to navigate faster and more safely. The online novelty and change detection systems allow a
mobile robot to identify potentially dangerous situations in order to request the aid of a human
before it gets into trouble. The online candidate selection system allows a robot to trade-off
between multiple modes of operation, learning to improve its utilization of the different modes
with experience.

We demonstrate through both offline and online testing how combining the adaptive per-
formance of these algorithms with the inherent mobility of a capable UGV can lead to more
efficient navigation of complex environments. Finally, we present theoretical justification for our
approaches as well as a variety of extensions to our algorithms that will further their impact on
the field of mobile robotics.

The combination of such techniques can overcome the limitations of offline methods by im-
proving the effectiveness and range of the robot’s perception system, dramatically reducing the
number of mission-ending errors by identifying potentially hazardous unfamiliar situations, re-
liably detecting unexpected changes in previously traversed environments and allowing better
utilization of the availability of limited human assistance. Such capabilities will increase the re-
liability and robustness of mobile robot systems and will be a step towards enabling more UGVs
to be fielded in real-world applications.

This section presents a short summary of each of the main research topics, reviews the core
contribution of each component, and offers some future directions for this work.

7.1 Summary and Contributions

7.1.1 Improved Perception in Unfamiliar Domains

Chapter 4 presented a self-supervised online learning algorithm to learn and infer between dif-
ferent types of data sources that vary in density, reliability, and scope. By applying the scoped

97

learning model, we were able to generalize from one type of data source to be able to work
with another which may be difficult to generalize to new environments. As a result, we were
able to extend the scope of such features to many possible domains without requiring any time-
consuming human-supervised training.

We showed how the algorithm can be used to improve the navigation capabilities of un-
manned ground vehicles by learning in real-time to interpret overhead and far-range sensor data
to predict terrain traversal costs generated from an on-board perception system. We demonstrated
this approach through field tests on-board a large robot in complex natural environments. Both
online and offline results were given to demonstrate several applications of the algorithm. While
performance could be hampered because of limitations in the available features or availability of
representative training examples, the use of this algorithm was shown to significantly improve
robot navigation performance when compared to using just the baseline hand-tuned system.

While our approaches are related to recent sensor fusion ideas, we were the first to apply this
type of self-supervised framework to mobile robot perception in this way. As a result we were
able to achieve unparalleled perception range for a mobile robot, demonstrating groundbreak-
ing autonomous navigation performance for unstructured natural terrain over many hundreds of
kilometers. Since then, many variations of this approach have been demonstrated in numerous
other areas of robotics.

7.1.2 Anytime Online Novelty and Change Detection

A variety of algorithms were presented in Chapter 5 for enabling online novelty and change de-
tection and applications for these algorithms in mobile robotics were explored. The presented
novelty detection algorithm addresses two significant limitations of most novelty detection ap-
proaches. By operating within a lower-dimensional subspace created by using MDA (rather than
techniques such as PCA), this algorithm operates in a feature space that is more conducive to
viewing novelty as a distance metric and is therefore more resistant to many of the issues as-
sociated with high-dimensional feature spaces. Additionally, this algorithm’s adaptive abilities,
computational bounds and anytime properties make it a logical choice for many online novelty
detection tasks including those valuable for mobile robots.

The presented online novelty detection algorithm was also extended to deal with the problem
of online change detection. By using an online scene segmentation system, the change detection
system was able to achieve further improvements to accuracy and robustness. As robotic systems
continue to improve, incorporating such approaches into these systems can allow earlier and
more effective deployment by acting as a safeguard against the inevitable dangers of unfamiliar
domains.

Safeguarding a mobile robot is most often handled by the perception system that is engi-
neered to estimate degrees of traversability. As robots encounter unfamiliar environments, these
engineered systems lose accuracy as the raw data inputs themselves are no longer in the experi-
ence set of the robot. While others have explored approaches for novelty (anomaly) and change
detection in other domains, much of their focus was on the offline batch application that would
be unsuitable for helping mobile robotics to deal with such situations. We are the first to make

98

a push into online real-time applications of novelty and change detection for robotics, enabling
a system to operate for extended periods of time while updating its model and maintaining ac-
curate real-time performance. This type of long-term learning will be critical to enabling robust
real-world uses of mobile robots.

7.1.3 Online Candidate Selection

Chapter 6 presented an online algorithm for dealing with scenarios where the robot must learn
to trade-off between multiple operating modes. The proposed approach relies on a bandit-based
framework and uses confidence bounds to deal with exploration-exploitation trade-offs. The
algorithm was demonstrated on two scenarios relevant to the mobile robotics domain: trading off
between autonomous and tele-operator control and strategically utilizing limited high-resolution
overhead data to maximize its impact on navigation performance. Such techniques could increase
the potential real-world applications of mobile robots by allowing them to adapt in real-time to
changing environments and better allocate available resources, including the limited availability
of human attention.

Other researchers have studied the idea of intermixing human and teleoperator control (re-
ferred to as sliding autonomy or adjustable autonomy), but a majority of their approaches apply
fixed rules and logic to identify when to transition control. We were the first to approach this
problem with a general purpose online framework for modeling the performance of arbitrary
modes of operation online using contextual information without any prior assumptions. This
more general approach would allow these systems to better extend to new environments without
requiring additional human engineering.

7.2 Future Work

There are several areas of future research that can follow from this thesis work.

7.2.1 Additional Applications of Self-Supervised Learning

An obvious future area is exploring how other sub-systems within a mobile robot’s autonomy
system can benefit from online self-supervised learning techniques where the robot itself can act
as an expert to train other parts of the system. While most of the algorithms in this thesis focused
on the perception system, many opportunities are available in improving onboard planners online.
For example, a mobile robot’s local planner, often in charge of maneuvering the vehicle to be
able to keep it in line with a global path, is notoriously difficult to tune because it must take
into account the vehicle’s mobility and interaction with the environment. When the environment
changes due to rain or different type of terrain for example, the models that are required for
accurate planning could also change significantly. Being able to refine these models online using
real-time performance could allow robotic systems to adapt robustly to changing conditions.

99

7.2.2 Novelty and Change Detection

The novelty and change detection systems described in Chapter 5 have shown promising results
but more work remains to be done to get these systems to a point where they can be fully fielded
on a real-world mobile robot system.

Various improvements are likely to further help performance. The features used for both
the novelty and change detection systems were generated by the perception system primarily
for the purposes of traversal cost estimation. There are likely additional features that are not
currently utilized that may be more applicable for measuring novelty. Feature limitations are an
especially large concern for the change detection work as it entirely utilized the Gator platform
whose sensing capabilities were limited compared to the UPI robots (the Gators were equipped
with only one SICK laser scanner and one camera, providing a limited sensing density and field
of view). Furthermore, the novelty detection system would surely benefit from an online scene
segmentation component just as the change detection system did.

Also, since segmentation has been shown to be a key to precise change detection, improving
the quality and consistency of the segmentation system output can significantly improve perfor-
mance. Scene segmentation in computer vision has received an incredible amount of attention
which we may be able to leverage within our system. For example, influencing 3D segmentation
with the results of a robust 2D segmentation computed on the camera could significantly help
consistency.

Finally, the system’s sensitivity to registration error has proven to be a limiting factor in
some difficult scenarios. While normal GPS systems will always have some uncertainty in their
estimates, online vision-based registration techniques have the potential to reduce registration
error to unprecedented levels, likely resulting in a sharp performance boost.

The ROC curves in Figures 5.10 and 5.19 also raise several questions. First, these results
measure performance over a large number of voxels. While such a volume-based evaluation is
the fairest way to evaluate performance on such a broad number of tests, the size of an object is
obviously not always directly related to its potential threat to the robot (and therefore importance
in evaluation).

Furthermore, a concern that arises from these figures is the false positive rate required to
achieve accurate identification of novel or changed locations. As in many machine learning
problems, this trade-off between true and false positives is a key concern. While the correct
balance is highly dependent on the particular domain the robot is operating within, various steps
can be taken to improve performance to necessary levels while limiting false positives.

For example, if a change is detected and a human operator identifies it as a false positive,
an additional novelty detection instance can be used within the same run to identify and ignore
similar false positives from further consideration. Any irrelevant changes would be added to the
novelty detection model and all future situations would only be considered for potential changes
if they are novel with respect to the remembered false positives. The highest impact approach to
improving this trade-off, however, would likely be the intelligent uncertainty resolution approach
proposed in in the next section.

The systems described in this thesis have been analyzed thoroughly both qualitatively and

100

quantitatively, but the true measure of their performance is their impact on a robot during op-
eration. To enable this, a robust tele-operation system for allowing a remote human operator to
control the robot needs to be developed. Such a system would enable the operator to either send
desired commands back to the robot or to take control of the robot directly. It would then be pos-
sible to more thoroughly evaluate the performance of the system by also measuring the amount
of human attention required and how much such a system improves overall system safety and
performance.

7.2.3 Intelligent Uncertainty Resolution

Another high-impact line of research is a form of intelligent uncertainty resolution. When uti-
lizing novelty detection and candidate selection systems such as the ones proposed here in an
autonomous navigation scenarios, the availability and cost of a human operator is often high.
The system must therefore consider beyond just estimated performance or uncertainty in choos-
ing the candidate for each situation.

A logical extension would be to incorporate an intelligent uncertainty resolution technique
to minimize the potential number of human queries during navigation. With a functioning nov-
elty or change detection system, it is important to consider the benefit of resolving uncertainty,
presumably through a human query. For example, if a novel object blocks a primary route to the
goal and the next best alternative has a much higher cost, then the potential benefit of involving
a human exceeds the cost (see an example scenario in Figure 7.1). Similarly, a candidate se-
lection system choosing between autonomous and human control can avoid unnecessary human
involvement in situations that can be relatively easily circumnavigated autonomously, allowing
larger human utilization at more critical situations. By considering the possible impact on the
optimal global path of both possible extremes (first assuming the location is trivially traversable
and then assuming it is completely untraversable), the system can choose to simply avoid novel
or potentially difficult situations that cannot significantly improve our metrics.

Such an approach provides several key advantages. As mentioned previously, it enables us
to better utilize human attention during hybrid control systems such as the candidate selection
framework. Possibly of even higher impact, such an approach would allow a higher sensitivity
within novelty or change detection systems without unacceptably high human time commit-
ments. Because only a minority of situations will have the potential to significantly influence
our relevant metrics (and therefore trigger a human query), the system could tolerate more false
positives without the potential of heavily burdening a human supervisor.

Finally, each of these systems was evaluated individually. It would be beneficial to see how
an autonomy system that fully utilizes the state of the art in learning approaches, both a priori
(such as training through demonstration as shown in [112]) and online, can perform in diverse,
unstructured environments.

101

Figure 7.1: An uncertainty resolution technique that can distinguish between situations such as those above could
further improve the impact of techniques such as those in this thesis. In the left image, resolving the uncertainty at
this pinch point through a human query can potentially save significant time and travel distance. In the right image,
the outcome of a human query cannot significantly effect the quality of the path.

102

Appendix A

Bayesian Linear Regression

Bayesian Linear Regression is a simple yet powerful algorithm whose properties make it highly
suitable for online learning applications. The online learning systems for improving perception
(Chapter 4) and the online candidate selection systems (Chapter 6) in this thesis use Bayesian
Linear Regression as their core learner.

If a linear model is sufficient for an online learning task, Bayesian Linear Regression is
a great algorithm for several reasons. First, it allows the model to be updated efficiently in
real-time without recomputation or consideration of old data. This means that the performance
scales well in online learning tasks meant to operate for long periods of time rather than growing
in complexity with the amount of training data considered. In fact, the computation time for
prediction depends only on the number of features and is completely independent of the number
of examples incorporated into the model. This powerful property allows the system to represent a
potentially infinite amount of training data without having to remember these examples for future
use. This is a significant advantage over approaches like Gaussian Processes where the the cubic
dependency on the number of examples considered makes using large training sets infeasible for
online tasks.

Additionally, if the problem has the property that several varying quality estimates may be
available for each example, Bayesian Linear Regression enables un-learning of old data so that
the example can be re-learned with the more accurate estimate (in this case the old features and
labels need to be remembered so that the model can properly adjust when un-learning them).

Finally, Bayesian Linear Regression can also provide variance estimates when making pre-
dictions which are often useful for applications such as mobile robotics. The combination of
these properties and ease of implementation make it a versatile tool for numerous online learning
scenarios.

We will assume for the rest of this chapter that x represents features for an incoming example
and y represents the prediction for those features. Assuming that d is the dimensionality of these
feature vectors, then x ∈ <d and y ∈ <. Training examples arrive in the form of (x, y) pairs
while examples for prediction will only have the features x and the system tries to make an
estimate of the output, ỹ, given all previously seen data.

We assume that x and y are related through some weights θ as follows:

103

y = θTx+ ε (A.1)

where ε is an assumed Gaussian noise of the form:

ε ∼ N(0, σ2) (A.2)

The goal of Bayesian Linear Regression is to maintain online an estimate distribution for θ
that takes into account all seen data and takes into account any assumptions of noise.

In this chapter we will derive the algorithm and discuss in detail its various properties and typ-
ical uses. Section A.1 will present relevant background on Gaussian distributions that will prove
useful throughout the rest of this chapter. Section A.2 will discuss the initialization process for
Bayesian Linear Regression, and the process for training and prediction for incoming examples
will be discussed in Sections A.3 and A.4 respectively. Finally, Section A.5 will explain a typical
implementation and use of Bayesian Linear Regression through simple pseudocode.

A.1 Basic Gaussian Properties

The density function of a Gaussian distribution can typically be parameterized in two ways. The
more familiar parameterization, called Moment Parameterization, represents a distribution for θ
as follows:

p(θ) ∝ e−
1
2(θ−µ)TΣ−1(θ−µ) (A.3)

where µ is the mean of the distribution and Σ is the covariance matrix, representing the
interdependencies between the variables of θ.

An alternative parameterization, called Natural Parameterization, represents a distribution
for θ as follows:

p(θ) ∝ e−
1
2θ
TPθ+JT θ (A.4)

where the two parameterizations are related as follows:

P = Σ−1 (A.5)
J = Σ−1µ = Pµ (A.6)
µ = P−1J (A.7)

(A.8)

where P is often referred to as the precision matrix and J is a vector sometimes called the
information vector.

For clarity, we will sometimes refer to the mean estimate for θ as θ̂ rather than µ.

104

A.2 Initialization

We assume that p(θ) is initialized to some initial distribution p0(θ) = N(µ,Σ) that captures the
initial belief about θ.

If one has no prior knowledge about our model, this may simply be a zero-mean Gaussian
with an initial covariance matrix diag(σ2). If, on the other hand, there is an initial belief about
the model, one may initialize µ to that belief and set the covariance matrix Σ to represent the
appropriate level of confidence in that initial model (more detail on this approach can be found
in Section A.5). As described in Chapter 4, such a technique can be used to initialize a model to
a state learned from many previous examples and then continue to adjust it an more information
about the current environment becomes available.

A.3 Training

We begin with our prior distribution p0(θ). We then receive an example (x, y). Through Bayes
Rule, we know that:

p(θ|y, x) ∝ p(y|x, θ)p(θ) (A.9)

This can be seen as revising the posterior distribution for p(θ) in light of a new Gaussian
likelihood term.

To perform these update steps in an efficient fashion, it is easier to operate on the Natural
Parameterization of the distribution p(θ). We assume we have the initial distribution:

p(θ) ∝ e−
1
2θ
TPθ+JT θ (A.10)

and the new likelihood term:

p(y|x, θ) ∝ e
−(y−θ

T x

2σ2
)2 (A.11)

Expanding the exponent in equation A.11 we get:

p(y|x, θ) ∝ e
−y2
2σ2

+2yθT x

2σ2
− (θT x)2

2σ2 (A.12)
The third term in the exponent can be further expanded as follows:

− (θTx)2

2σ2
= −(θTx)(xT θ)

2σ2
= −θ

T (xxT)θ

2σ2
(A.13)

giving us the likelihood term:

105

p(y|x, θ) ∝ e
−y2
2σ2

+yθT x

σ2
−θ

T (xxT)θ

2σ2 (A.14)
From equation A.9, we combine and rearrange equations A.10 and A.14 as follows:

p(θ|y, x) ∝ p(θ)p(y|x, θ) (A.15)

p(θ|y, x) ∝ e−
1
2θ
TPθ+JT θe

−y2
2σ2

+2yθT x

2σ2
−θ

T (xxT)θ

2σ2 (A.16)

p(θ|y, x) ∝ e
−y2
2σ2 e

−1
2(θTPθ+

θT (xxT)θ

σ2
)+(JT θ+yθT x

σ2
) (A.17)

p(θ|y, x) ∝ e
−y2
2σ2 e

−1
2θ
T (P+xxT

σ2
)θ+(J+ yx

σ2
)T θ (A.18)

The first term in A.18 gets absorbed by the normalizer term, giving us:

p(θ|y, x) ∝ e
−1

2θ
T (P+xxT

σ2
)θ+(J+ yx

σ2
)T θ (A.19)

Therefore, to update the model θ at some timestamp t to take into account a new training
example (xt, yt), we simply need to update P and J as follows:

Pt+1 = Pt +
xtx

T
t

σ2
(A.20)

Jt+1 = Jt +
ytxt
σ2

(A.21)

Computational complexity for incorporating a new training example into the model is simply
O(d2) regardless of how many examples were already incorporated into the model.

Intuitively, what’s happening here is that as we see more examples, the precision matrix
P grows, and Σ therefore shrinks, meaning that we are reducing our uncertainty about new
examples (see Equation A.27 for how to make variance predictions).

One exciting capability that this form allows is unlearning an example by simply subtracting
out its likelihood term:

P = P − xxT

σ2
(A.22)

J = J − yx

σ2
(A.23)

As shown in Chapter 4, this is highly beneficial in fields such as robotics when you may
receive many estimates for the same quantity that vary in accuracy. As more accurate estimates

106

of y become available, the system can easily undo the effects of the old, noisy example and
relearn the example with the more accurate measurement.

A.4 Prediction

To perform prediction, we convert back to Moment Parameterization of θ:

θ̂ = P−1J (A.24)
Σ = P−1 (A.25)

We can now use θ̂ to predict y for a given x:

p(y|x) = θTx+ ε

E[y] = E[θTx+ ε]

E[y] = E[θTx] + E[ε]

E[y] = E[θTx] + 0

E[y] = θ̂Tx (A.26)

We can also make an variance estimate (a measure of confidence in our prediction) as follows:

V ar[y] = V ar[θTx+ ε]

V ar[y] = V ar[θTx] + V ar[ε]

V ar[y] = V ar[θTx] + σ2

V ar[y] = E[(θTx)2]− E[θTx]2 + σ2

V ar[y] = E[xT (θθT)x]− xT θ̂θ̂Tx+ σ2

V ar[y] = xT (E[θθT]− θ̂θ̂T)x+ σ2

Cov[θ] = E[θθT]− E[θ]E[θ]T

Cov[θ] = E[θθT]− θ̂θ̂T

V ar[y] = xT (Cov(θ))x+ σ2

V ar[y] = xTΣθx+ σ2 (A.27)

Note that Σ is dependent only on x and is independent of y. The variance estimate there-
fore measures how well the example’s features x are represented by previously seen examples’
features that were incorporated into the model.

It is now visible that the computational complexity for prediction on a new example is only
O(d) for mean prediction and O(d2) for variance prediction.

107

A.5 Sample Use for Online Learning Task

When using Bayesian Linear Regression, one would constantly switch between the Natural Pa-
rameterization Form (P and J) for training and the Moment Parameterization form (θ̂ and Σ) for
prediction. As shown earlier, computational time per new example within each of these modes
is short.

The most computationally expensive step transitioning between training and prediction which
requires O(d3) time due to the inversion of a matrix. Fortunately, in applications such as mobile
robotics, examples for training and for prediction often come in large batches, so the penalties
for changing forms are relatively small.

Typical use of Bayesian Linear Regression for an online learning task can be seen in Al-
gorithm 6. We assume for this example that the model is initialized to some prior uncertainty
defined by σ2 and that training and prediction examples arrive in batches. Each time the sys-
tem needs to switch from one mode to another, it switches which representation it uses for the
distribution of θ in order to facilitate the mode it is in.

Algorithm 6 Sample use of Bayesian Linear Regression for Online Learning Task

1: given: Assumed prior variance, σ2.
2: initialize: µ← ~0; Σ← diag(σ2)
3: loop
4: Convert to Natural Parameterization for training batch
5: P ← Σ−1

6: J ← Pµ
7: for each training example (x, y) in training batch do
8: Update model to incorporate example
9: P ← P + xxT

σ2

10: J ← J + yx
σ2

11: end for
12: Convert to Moment Parameterization for prediction batch
13: Σ← P−1

14: θ̂ ← P−1J
15: for each prediction example (x) in prediction batch do
16: Compute estimate ỹ for features x
17: ỹ ← θ̂Tx
18: V ar[ỹ]← xTΣx+ σ2

19: end for
20: end loop

In this example the initially untrained system is initialized to a zero-mean model with a large
initial prior variance (line 2). If one desires the system to continue training from a previously
trained model, one would simply initialize µ and Σ to that model’s last computed µ and Σ.

In some scenarios, it may be useful to initialize a model to a previously trained state but to
put a low confidence in that initial model so that it will be quickly replaced as new information

108

is acquired. One such scenario is when using a far-range perception system such as the one
described in Chapter 4. Such a system could be trained in a set of known environments and must
now operate in an unknown environment. In such scenarios the previously computed values of µ
are obviously more accurate than initializing to a zero-mean model, but we have a low confidence
in this model and want it to be quickly replaced by newly acquired knowledge.

Because the confidence in a model is entirely captured by Σ, one can replicate the behavior
of a less trained system by simply initializing Σ to that of such a system. For example, in such
a scenario one could initialize µ to the best-known prior model and initialize Σ to a covariance
matrix stored after several minutes of training on a previous traversal. The model will then be
gradually replaced at a rate appropriate for a model trained for the amount of time captured by
Σ.

In general, lower values within Σ signify more confidence in the model meaning more evi-
dence will be required to modify it significantly. It may therefore be advantageous to make sure
values within Σ do not fall below some constant value so that the model is able to quickly adapt
to new terrain throughout operation.

109

110

Appendix B

Self-Organizing Lists

A core component of the anytime online novelty detection system described in Chapter 5 is
the list maintenance strategy used to continually re-order the stored examples to maintain a low
average query time throughout navigation. This section looks in more detail into the area of self-
organizing lists, explains the specific formulation of the problem we deal with, presents some
related problems and proofs, and evaluates various approaches for the specific online case we are
dealing with.

B.1 Dictionary Problem

A well-known problem referred to as the dictionary or list search problem involves maintaining
and adjusting a set of items in response to an intermixed sequence of queries taking the following
form:

access(i) : Locate item i in the set.
insert(i) : Insert item i in the set.
delete(i) : Delete item i from the set.

A common way to solve this problem is to represent the set as an unsorted list. Accessing
an item involves scanning through the list sequentially from the front until the item is located1.
Likewise, inserting an item involves scanning through the list to verify that it does not already
exist and then inserting it in the rear. Deleting an item involves scanning from the front of the
list to find the item and then removing it from the list.

In addition to performing these three operations, we may rearrange the list throughout these
processes by moving encountered elements to earlier portions of the list2. Such a strategy can

1We assume that if i is not in the list, access(i) will insert it into the list.
2We assume that the list can be represented as a linked list so that rearranging elements in the list can be per-

formed in constant time.

111

speed up future operations.
Based on the definitions of the operations above, the costs of the various operations are as

follows. Accessing or deleting the ith item in the list costs i (based on the time to find that ele-
ment). Inserting a new item costs i+1 where i is the size of the list before insertion. Immediately
after an access or insertion of an item i, i can be moved at no cost to any position closer to the
front of the list.

One of the most intuitive approaches for list organization is the move-to-front (MF) approach
where after accessing or inserting an item, it is moved to the front of the list, without changing
the relative order of the other items.

In the following discussion, n shall be used to denote the maximum number of items ever in
the set at one time and m will denote the total number of operations. Also, for any algorithm A
let cA be the cost of a single operation to A and CA be the cumulative cost of all accesses.

Among algorithms that do no rearranging of the list, it can be easily shown that ordering
the elements in decreasing frequency (DF) of accesses minimizes the cumulative access cost. A
well-known result by Bentley and McGeoch [9] showed that for a fixed list of n items on which
only accesses are permitted, for any sequence of accesses s, CMF ≤ 2∗CDF (s). This means that
the total cost when using the move-to-front algorithm with sequence s is no worse than twice the
cost of using the optimally ordered static list for this sequence.

We now present a result by Sleator and Tarjan that generalizes the result by Bentley and
McGeoch to non-static lists [113]. While the original proof deals with a more general case of list
search optimality, we focus on the formulation that is relevant to our problem.

For any Algorithm A and any sequence of operations s, let CA(s) be the total cost of all the
operations and let FA(s) be the number of free exchanges (immediately following an access or
insertion).

Theorem 1. For the list-search problem, for any Algorithm A and any sequence of operations s
starting with the empty set, CMF (s) ≤ 2CA(s)−m− FA(s).

Proof. This proof makes use of the concept of a potential function. If algorithmA andMF were
run in parallel on s, a potential function maps a configuration of A’s and MF ’s lists into a real
number φ. If we perform an operation that takes time t and changes the configuration to one with
potential φ′, we define the amortized time of the operation to be t + φ′ − φ. The amortized time
of an operation is therefore its running time plus the increase it causes in the potential.

If we perform a sequence of operations such that the ith operation takes actual time ti and
has amortized time ai, then we have the following relationship:

ai = ti + φi − φi−1
ti = ai + φi−1 − φi∑

i

ti =
∑
i

ai + φ0 − φm

112

Figure B.1: Example states of lists under algorithms A and MF (for the list search problem) prior to an access call
for element i. For the initial k elements of list A, those shaded in red compose set xi, those elements that represent
inversions relative to element i. Elements shaded in green appear before i in both lists. The striped region contains
cells that could possibly contain inversions relative to i.

where φ0 is the initial potential and φm is the final potential. We can therefore estimate the total
running time by choosing a potential function and bounding φ, φm, and ai for each i.

For this theorem, we use as the potential function the number of inversions in MF ’s list with
respect to A’s list. For any two lists containing the same items, an inversion in one list with
respect to the other is an unordered pair of items, i and j, such that i occurs anywhere before j
in one list and anywhere after j in the other.

This proof shall show that the amortized time for MF to access item i is at most 2i− 1 and
the amortized time for MF to insert an item into a list of size i is at most 2(i+ 1)− 1, where we
identify an item by its position inA’s list. Furthermore, the amortized time charged toMF when
A does an exchange is −1. Because an item is identified by its position in A’s list, an access or
insertion would then have amortized time 2cA − 1, where cA is the cost of the operation to A.
The −1’s, one per operation, sum to −m. Proving these properties will show that the amortized
time of MF is bounded by the true cost of A.

The initial configuration, φ0, has zero potential since the initial lists are empty, and the final
configuration, φm has a nonnegative potential, so the actual cost to MF of a sequence of opera-
tions,

∑
i ti, is bounded by the sums of the operations’ amortized times,

∑
i ai. The sum of the

amortized times is in turn bounded by the right-hand side of the inequality we wish to prove.
All that remains is for us to bound the amortized times of the operations. Consider an access

byA to an item i (see Figure B.1). Let k be the position of i inMF ’s list and let xi be the number
of items that precede i in MF ’s list but follow i in A’s list (shown with red shade). The number
of items preceding i in both lists is therefore k − 1− xi (shown with a blue shade).

Moving i to the front of MF ’s list will create k − 1 − xi new inversions and destroy xi
other inversions (see Figure B.2). Since the lookup cost to MF is k, the amortized time for the
operation (cost plus the increase in the number of inversions) is k+(k−1−xi)−xi = 2(k−xi)−1.
k − xi is the number of elements that are before i in both lists (the elements shaded in green in
Figure B.1). Because only i − 1 items precede i in A’s list, k − xi ≤ i. The amortized time
for the access is therefore at most 2i − 1. Since the cost of this access to algorithm A is i, the

113

Figure B.2: State of the lists shown in Figure B.1 after a move-to-front action on element i in MF . The inversion
states of the first k − 1 elements in Figure B.1 are inverted, meaning k − 1 − xi new inversions are created and xi
of the original inversions are deleted. The striped region is the same as that shown in Figure B.1.

amortized time of this access to MF is at most 2cA − 1.
The argument for the amortized time for insertions and deletions apply almost identically.
An exchange action (moving a queried element to earlier in the list) by algorithm A has

zero cost to MF , so the amortized time of an exchange is simply the increase in the number
of inversions caused by the exchange. This increase is at most −1 because each movement of
element i to earlier in list A will decrease the number of inversions (since i is now at the front of
MF).

The total cost of MF (s) for the list search problem is therefore bounded by 2CA(s) −m −
FA(s), meaning it’s within a factor of two of the best possible algorithm.

B.2 Min-Sum Weighted Set Cover

We are interested in exploring a variant of the dictionary problem that is relevant to online sce-
narios such as the novelty detection approach described in Chapter 5. We will call the offline
version of this problem the min-sum weighted set cover problem and its online counterpart the
online min-sum weighted set cover problem. An explanation of how our problem is related to the
set cover problem and its variations (and hence the chosen name) will be discussed in Section
B.3.

Rather than searching for a single quantity at each time step, in this online scenario each time
step t provides an example xt consisting of some vector of features and the system must make a
prediction ft(xt) where f : X → {novel, not-novel}.

The result of this function depends on the influence on this new example, xt, from all previ-
ously stored examples {x}1...t−1 computed using the positive symmetric kernel function k(xi, xj)
and some novelty threshold γ as follows:

ft(xt) =

{
not-novel if

∑t−1
i=1 k(xi, xt) ≥ γ

novel otherwise
(B.1)

114

This novelty query problem therefore is one of accumulating the non-negative contributions
from all previously stored examples onto this query to see if the sum exceeds the threshold
γ. If the previously stored examples are maintained in a list, the ordering of those examples
can have a large impact on computational complexity. While novel incoming examples (where
f(x) < γ) will require processing each element in the stored examples list regardless of its
ordering, for non-novel examples (where f(x) ≥ γ) the function can return the moment the
cumulative contribution reaches γ (since future contributions cannot change the outcome of the
query). If a majority of queries are non-novel, as is the case for many novelty detection tasks,
an intelligent list maintenance can lead to fewer required evaluations and therefore have a large
impact on overall system performance.

For each query, there will be some index i in the stored examples list at which the query
is fully resolved. This parallels to directly searching for the element at index i in the dictio-
nary problem. Our objective is to minimize the sum of these first indices over all examples by
reaching the novelty threshold γ for each query (covering that query) after evaluating as few
stored examples as possible. This would minimize the average computation time per query for a
decision to be made.

B.3 Related Problems

Closer examination reveals that this formulation of the cumulative-contribution version of the
dictionary problem resembles several well-studied problems in computer science.

B.3.1 Set Cover Problem

The set cover problem is a classical question in computer science. You are given several sets that
may have some elements in common. You must select a minimum number of these sets so that
the sets you have picked contain all the elements that in the union of all the sets. This problem
was shown to be NP-hard and has received heavy focus in the field of approximation algorithms.
Johnson [55] showed in 1974 that the greedy approach gives a lnn approximation to the optimal
set covering and Feige later showed that this is a tight bound [31].

Our list maintenance problem can be viewed as a variation of the set cover problem. The
incoming query, or set of queries, parallel the set of elements that need to be covered in the set
cover problem. Each stored example in turn act as the sets themselves, each contributing some
amount to the incoming queried elements. Covering an element in our case means satisfying the
novelty threshold γ using some number of stored examples, or sets.

There are two added points of complexity to the min-sum weighted set cover problem over
the basic set cover problem. First, each stored example may not fully cover an incoming query,
but rather contribute some non-negative amount toward its novelty threshold γ, so each query
will need to be covered by multiple sets. Second, the order of the chosen sets is also important
because we want to minimize the average number of stored examples that we must evaluate
before resolving a query.

115

We can, however, show that the min-sum weighted set cover problem is NP-hard by reducing
the standard set cover problem to our min-sum weighted set cover problem.

Theorem 2. Min-Sum Weighted Set Cover is NP-hard.

Proof. Given a set cover problem, it can be transferred to a min-sum weighted set cover problem
as follows. Each element to be covered in the set cover problem becomes one of the queries to
be covered and each set becomes a stored example that fully covers (provides the entire required
contribution) the elements within that set and provides zero contribution to the remaining queries.
The solution to this min-sum weighted set cover problem would then also be a solution to the
original set cover problem. This polynomial time reduction from the set cover problem proves
that the min-sum weighted version of set cover is also NP-hard.

B.3.2 Min-Sum Set Cover Problem

Feige introduced a variation of the set cover problem called the min-sum set cover problem (a
close relative of the min-sum vertex cover problem) [30]. Like in the set cover problem, the input
to min-sum set cover is a collection of n sets that jointly cover m elements. The output is a linear
ordering on the sets where at every time step from 1 to n exactly one set is chosen. For every
element, this induces a first time step at which it is first covered. The objective is to find a linear
arrangement of the sets that minimizes the sum of these first time steps over all elements.

Feige showed in [30] that the greedy approach (iteratively adding the element which maxi-
mally increases the objective value) approximates min-sum set cover within a ratio of 4 and the
results from [8] show that finding a closer approximation is NP-hard.

Even though it does not consider partial coverage of queries, the min-sum set cover problem is
closely related to the cumulative contribution set cover problem because it incorporates the time
at which each element is covered into the metric. We call our problem the min-sum weighted set
cover problem because it closely resembles this min-sum set cover problem but adds a weight
onto the contributions from each set onto each element.

B.3.3 Pipelined Set Cover Problem

A generalization of the set cover problem called the pipelined set cover problem was discussed
in [88]. This formulation is similar to that of the min-sum set cover problem except that the cost
of using each set does not need to be uniform. Here the costs of using each set are weighted
rather than the impacts of each set on each element like as in our case. This problem is especially
relevant to database applications where the cost of evaluating a set is proportional to the number
of elements in that set, rather than constant as discussed in the previous set cover problems.

The greedy approximation was shown to also approximate the optimal solution for the pipelined
set cover problem within a factor of 4.

116

B.4 Submodularity

Many problems can be characterized by the property of submodularity [36, 64, 90]. These prob-
lems satisfy the intuitive diminishing returns property: adding elements to the solution helps
more early on and less over time. More formally, consider a set function F which maps subsets
A ⊆ V of a finite set V to the real numbers. F is called submodular if, for all A ⊆ B ⊆ V and
S ∈ V \ B it holds that

F (A ∪ S)− F (A) ≥ F (B ∪ S)− F (B) (B.2)

In other words, adding set S to a small set A helps at least as much as when it’s added to a
superset B.

If one can prove that a problem is submodular, then using a greedy algorithm for that problem
can provide a strong performance guarantee:

Theorem 3 (From [90]). If F is a non-decreasing submodular function, then the solutionAgreedy
returned by the greedy algorithm satisfies

F (Agreedy) ≥ (1− 1

e
)OPT (B.3)

where OPT is the value obtained by an optimal solution.

Therefore, the greedy algorithm is guaranteed to obtain a solution which achieves at least a
constant fraction of (1 − 1

e
) ≈ 63% of the optimal value. Because many NP-hard problems

are submodular, this powerful result shows that a simple greedy approach can often closely
approximate an optimal solution that is extremely difficult to find.

For our cumulative contribution set cover problem, we want to fully cover a set of incoming
queries X ⊆ V (in our case this means resolving those queries) using a set of stored examples
A ⊆ V and a symmetric kernel function k. The function F we are maximizing is therefore:

F (A) =
∑
x∈X

min

{
γ,
∑
a∈A

k(a, x)

}
(B.4)

In other words, for the set of queries X , we want to maximize the total contribution from
the stored examplesA where the cumulative contribution for each query is capped at the novelty
threshold γ.

As shown in Theorem 2, finding the optimal subset and ordering for list A that optimizes
this function is NP-hard, but if we can show that F is submodular, then using a greedy approach
to populate A will provide an efficient way to find a solution to the cumulative contribution set
cover problem that closely approximates the optimal solution.

Theorem 4. The value function for the cumulative contribution set cover problem (function F in
equation B.4) is submodular.

117

Proof. We begin by considering Fx which optimizes over a single query element x ∈ X :

Fx(A) = min

{
γ,
∑
a∈A

k(a, x)

}
(B.5)

Assume we are given sets A ⊆ B ⊆ V , S ∈ V \ B and a set of queries X ⊆ V that we want
to cover. From equations B.2 and B.5 we need to prove the following inequality:

Fx(A ∪ S)− Fx(A) ≥ Fx(B ∪ S)− Fx(B) (B.6)

LetR = B \A, the set of elements that are in B but not inA. SinceA∪R = B, we can now
rewrite equation B.6 as follows:

Fx(A ∪ S)− Fx(A) ≥ Fx(A ∪R ∪ S)− Fx(A ∪R) (B.7)

Let β =
∑

a∈A k(a, x), the baseline total contribution (before cropping it at γ) from the
stored elements of A before adding the contribution from the elements in S. Using equation B.5
we can now expand and evaluate the left side of equation B.7 as follows:

Fx(A ∪ S)− Fx(A) = min

{
γ,
∑
a∈A

k(a, x) +
∑
s∈S

k(s, x)

}
(B.8)

−min

{
γ,
∑
a∈A

k(a, x)

}

Fx(A ∪ S)− Fx(A) = min

{
γ, β +

∑
s∈S

k(s, x)

}
−min {γ, β} (B.9)

Fx(A ∪ S)− Fx(A) =


0 if β ≥ γ

γ − β if β > γ −
∑

s∈S k(s, x) and
β < γ∑

s∈S k(s, x) if β ≤ γ −
∑

s∈S k(s, x)

(B.10)

Expanding and evaluating the right side of equation B.7 through similar fashion gives us the
following:

Fx(A ∪R ∪ S)− Fx(A ∪R) = min

{
γ,
∑
a∈A

k(a, x) +
∑
r∈R

k(r, x) +
∑
s∈S

k(s, x)

}
(B.11)

−min

{
γ,
∑
a∈A

k(a, x) +
∑
r∈R

k(r, x)

}

Fx(A ∪R ∪ S)− Fx(A ∪R) = min

{
γ, β +

∑
r∈R

k(r, x) +
∑
s∈S

k(s, x)

}
(B.12)

118

Figure B.3: Visualization of each side of equation B.7. Fx(A ∪ S)− Fx(A) and Fx(A ∪R ∪ S)− Fx(A ∪R) as
a function of the initial contribution β are shown in red and blue respectively. The gained value for the left side of
equation B.7 dominates the gained value of the right side for all values of β, proving that B.5 is submodular.

−min

{
γ, β +

∑
r∈R

k(r, x)

}

=


0 if β ≥ γ −

∑
r∈R k(r, x)

γ − (β +
∑

r∈R k(r, x)) if β > γ − (
∑

r∈R k(r, x) +
∑

s∈S k(s, x)) and
β < γ −

∑
r∈R k(r, x)∑

s∈S k(s, x) if β ≤ γ − (
∑

r∈R k(r, x) +
∑

s∈S k(s, x))

(B.13)

Using the values found in equations B.10 and B.13, the improvement gained for each side of
equation B.7 can be seen in Figure B.3.

Because the gained value for the left side of equation B.7 (shown in red) dominates the gained
value of the right side (shown in blue) for all values of β, adding a set S to a smaller existing set
always has at least as much impact as when S is added to a larger set. Fx from equation B.5 is
therefore submodular.

119

From equations B.4 and B.5, it is easy to see that:

F (A) =
∑
x∈X

Fx(A) =
∑
x∈X

min

{
γ,
∑
a∈A

k(a, x)

}
(B.14)

Because Fx is submodular and submodularity is closed under nonnegative linear combina-
tions, it follows that F is submodular as well.

Following Theorems 3 and 4, a greedy algorithm for the offline cumulative contribution set
cover problem would provide a solution within a constant factor of the optimal.

However, taking advantage of this property for the online scenario we are interested in is
impractical. The direct goal here is to resolve queries as quickly as possible, not necessarily to
identify the set of stored examples that would do so in the most efficient way. In order to execute
the greedy algorithm for this problem, for each query we must evaluate the impact of each stored
example at each step in the ordering. With such a high overhead for this step, it is computationally
simpler to just compute the influence of every stored example on every incoming query, at which
point the order of evaluation no longer matters.

Furthermore, if we wanted to replicate the behavior of the greedy algorithm on the entire set
of examples seen so far, we would have to measure and store the impact of each element in our
stored list on each element in the query list. This is impractical to maintain, especially if the
stored elements change over time as they would under our implementation.

B.5 Online Submodular Minimization

For a specific class of submodular online resource allocation problems, Streeter and Golovin
[125] introduced an online algorithm whose worst-case performance approaches that of the
offline greedy approximation algorithm asymptotically. Specifically, the online algorithm’s 4-
regret (regret with respect to the factor of 4 approximation from the offline algorithm) for the
min-sum set cover problem described in Section B.3.2 approaches zero as the number of incom-
ing queries approaches infinity.

For their online setting, we are fed a sequence {f1, f2, . . . , fn} of jobs one at a time. Prior to
receiving job fi, we must specify a schedule Si that defines the sequence of sets that will be used
to satisfy this job, where the number of sets is at most T .

One of the key components of this algorithm makes use of the experts problem. In this
problem one has k experts, each of whom gives out a piece of advice at each step. At each step
i, one must select an expert ei whose advice to follow. Following the advice of expert j on step
i yields a reward rij . At the end of step i, the value of the reward xij for each expert j is made
public, and can be used as the basis for making choices on subsequent steps. One’s regret at the
end of n steps is then measured with respect to the best single expert over all examples seen:

120

max
1≤j≤k

{
n∑
i=1

xij

}
−

n∑
i=1

xiei (B.15)

Because some randomized decision-making algorithms exist whose regret grows sub-linearly
in the number of steps, by picking experts using such an algorithm, one can be guaranteed to
obtain asymptotically an average reward that is as large as the maximum reward that could have
been obtained following the advice of any fixed expert for all n days. The online algorithm from
[125] makes use of this surprising property as shown in Algorithm 7. In this case, the randomized
weighted majority algorithm [74] can be used for each expert to achieve this zero-regret property.

Algorithm 7 Online algorithm from [125] for submodular resource allocation problems
1: given: Integer T , expert algorithms E1, E2, . . . , ET
2: for i = 1 to n: do
3: For each t, 1 ≤ t ≤ T , use Et to select an action ait
4: Select the schedule Si = {ai1, ai2, . . . , aiT }
5: Receive the job fi
6: For each t, 1 ≤ t ≤ T , and each action a ∈ A, feed back the gained function value as the

payoff Et would have received by choosing action a.
7: end for

The algorithm runs T distinct copies of expert algorithms: E1, E2, . . . , ET . Just before job
fi arrives, each expert algorithm Et selects an action ait. The set order used on job fi is then
Si = {ai1, ai2, . . . , aiT}. The payoff that Et associates with action a is the increase in the function
value achieved after using action a.

It is shown in [125] that Algorithm 7 with randomized weighted majority as the subroutine
expert algorithm has an expected regret of O(

√
Tn ln |A|) in the worst case, a sub-linear regret

that asymptotically approaches the offline regret as n→∞.
While this is an impressive theoretical bound, using such an algorithm for the online scenario

described in Chapter 5 would again be impractical. The prohibitive step can be found on line
6 of Algorithm 7. In this step we must update each expert with the gained function value for
using each potential stored example at that step. Because varying the position of the evaluation
can change the resulting contribution, if we have m stored examples and therefore set T = m,
we would incur an m2 cost for every incoming query. With such a high overhead for this book-
keeping step, it would again be computationally simpler to just compute the influence of every
stored example on every incoming query, at which point the order of evaluation no longer mat-
ters.

121

122

Bibliography

[1] Pieter Abbeel, Adam Coates, Michael Montemerlo, and Andrew Y. Ng andSebastian
Thrun. Discriminative training of kalman filters. In Proceedings of Robotics: Science
and Systems, 2005. 4.1

[2] A. Angelova, L. Matthies, D. Helmick, G. Sibley, and P. Perona. Learning to predict slip
for ground robots. In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, 2006. 4.1

[3] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and A. Ng. Dis-
criminative learning of markov random fields for segmentation of 3D scan data. In CVPR,
pages II: 169–176, 2005. 5.4

[4] Brenna Argall, Yang Gu, Brett Browning, and Maria Manuela Veloso. The first segway
soccer experience: Towards peer-to-peer human-robot teams. In In Proceedings First
Annual Conference on Human-Robot Interactions, March 2006. 6.1

[5] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. The Journal of
Machine Learning Research, 3:397–422, 2003. 6.2.2

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47, 2(3):235–256, 2002. 6.2.1

[7] James Andrew Bagnell, David Bradley, David Silver, Boris Sofman, and Anthony Stentz.
Learning for autonomous navigation: Advances in machine learning for rough terrain
mobility. IEEE Robotics and Automation Magazine, 17(2):74–84, June 2010. 3.3

[8] Bar-Noy, Halldorsson, and Kortsarz. A matched approximation bound for the sum of a
greedy coloring. IPL: Information Processing Letters, 71, 1999. B.3.2

[9] J. L. Bentley and C. A. Cole. Worst-case analyses of self-organizing sequential search
heuristics. 20th Annual Allerton Conf. on Communication, Control, and Computing, pages
452–461, 1982. B.1

[10] Richard Bishop. Intelligent vehicle applications worldwide. IEEE Intelligent Systems, 15
(1):78–81, 2000. 6.1

[11] David Blei, James Bagnell, and Andrew McCallum. Learning with scope, with application
to information extraction and classification. In Proceedings of the 2002 Conference on
Uncertainty in Artificial Intelligence, June 2002. 4.2.1, 1

[12] B. Bodta and R. Camden. Technology readiness level 6 and autonomous mobility. In
Proceedings of the SPIE, Volume 5422, Unmanned Ground Vehicle Technology VI, 2004.

123

1, 1.1

[13] David M. Bradley, Ranjith Unnikrishnan, and James Bagnell. Vegetation detection for
driving in complex environments. In ICRA, pages 503–508. IEEE, 2007. 3.3.1, 3.6

[14] David M. Brann, David A. Thurman, and Christine M. Mitchell. Human interaction with
lights-out automation: a field study. In In Proceedings of the 1996 Symposium on Human
Interaction and Complex Systems, pages 276–283, 1996. 6.1

[15] Colin Campbell and Kristin P. Bennett. A linear programming approach to novelty de-
tection. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, NIPS, pages
395–401. MIT Press, 2000. 5.1

[16] Guo Cao, Xin Yang, and Zhihong Mao. A two-stage level set evolution scheme for man-
made objects detection. In Proceedings of the International Conference on Computer
Vision and Pattern Recognition, 2005. 4.1

[17] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz. Global path planning on board the
mars exploration rovers. Aerospace Conference, 2007 IEEE, pages 1–11, March 2007.
ISSN 1095-323X. 6.1

[18] D.W. Casbeer, R.W. Beard, T.W. McLain, Sai-Ming Li, and R.K. Mehra. Forest fire
monitoring with multiple small UAVs. American Control Conference, 2005. Proceedings
of the 2005, pages 3530–3535 vol. 5, June 2005. ISSN 0743-1619. 6.1

[19] Jennifer Casper and Robin R. Murphy. Human-robot interactions during the robot-assisted
urban search and rescue response at the world trade center. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 33(3):367–385, 2003. 6.1

[20] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.
2

[21] Amin P. Charaniya, Roberto Manduchi, and Suresh K. Lodha. Supervised parametric
classification of aerial lidar data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, June 2004. 4.1

[22] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Trans. Pattern Anal. Mach. Intell, 24(5):603–619, 2002. 5.4

[23] R. Craig Coulter, Anthony Stentz, Paul G. Keller, Gary K. Shaffer, William Red L. Whit-
taker, Barry Brummit, and William Burky. A system for telerobotic control of servicing
tasks in a nuclear steam generator. Technical Report CMU-RI-TR-90-24, Robotics Insti-
tute, Pittsburgh, PA, December 1990. 6.1

[24] R. Craig Coulter, Anthony Stentz, P. Keller, and William Red L. Whittaker. A telerobotic
solution for tool insertion tasks in nuclear servicing. In Remote Systems Session of the
ANS Winter Meeting, November 1991. 6.1

[25] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian Thrun, and Gary R. Brad-
ski. Self-supervised monocular road detection in desert terrain. In Gaurav S. Sukhatme,
Stefan Schaal, Wolfram Burgard, and Dieter Fox, editors, Robotics: Science and Systems.
The MIT Press, 2006. 4.1

124

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[26] Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Stochastic linear optimization
under bandit feedback. In 21st Annual Conference on Learning Theory - COLT 2008,
Helsinki, Finland, July 9-12, 2008, pages 355–366. Omnipress, 2008. 6.2.3

[27] M Bernardine Dias, Balajee Kannan, Brett Browning, Edward Jones, Brenna Argall, Mal-
colm Frederick Dias, Marc B. Zinck, Maria Manuela Veloso, and Anthony Stentz. Sliding
autonomy for peer-to-peer human-robot teams. In 10th International Conference on In-
telligent Autonomous Systems 2008, July 2008. 6.1

[28] Gregory A. Dorais, R. Peter Bonasso, David Kortenkamp, Barney Pell, and Debra
Schreckenghost. Adjustable autonomy for human-centered autonomous systems on mars,
April 12 1998. 6.1

[29] R. O. Duda and P. E. Hart. Pattern Classification. John Wiley and Sons, 2000. 4.3.1, 5.1,
5.2.2

[30] Feige, Lovasz, and Tetali. Approximating min sum set cover. ALGRTHMICA: Algorith-
mica, 40, 2004. B.3.2

[31] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,
1998. B.3.1

[32] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation.
International Journal of Computer Vision, 59(2):167–181, September 2004. 5.4

[33] David Ferguson and Anthony Stentz. Using interpolation to improve path planning: The
field D* algorithm. In Journal of Field Robotics, volume 23, pages 79–101. John Wiley
& Sons, February 2006. 1.1, 3.3.1, 6.1

[34] Terrence W. Fong. Collaborative Control: A Robot-Centric Model for Vehicle Teleopera-
tion. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Novem-
ber 2001. 6.1

[35] Terrence W. Fong, Chuck Thorpe, and Charles Baur. Multi-robot remote driving with
collaborative control. IEEE Transactions on Industrial Electronics, 2003. 6.1

[36] Satoru Fujishige. Submodular Functions and Optimization. Elsevier, 2 edition, 2005. B.4

[37] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data
Analysis. Chapman and Hall/CRC, 2004. 4.2.1, 4.2.2, 4.3.3

[38] B.K. Ghosh and P.K. Sen. Handbook of sequential analysis. Marcel Dekker, 1991. 6.2.1

[39] A.R. Girard, A.S. Howell, and J.K. Hedrick. Border patrol and surveillance missions
using multiple unmanned air vehicles. Decision and Control, 2004. CDC. 43rd IEEE
Conference on, 1:620–625 Vol.1, Dec. 2004. ISSN 0191-2216. 6.1

[40] S. Goldberg, Maimone, and L. Matthies. Stereo vision and rover navigation software for
planetary exploration. In Proceedings of the IEEE Aerospace Conference, 2002. 1, 1.1

[41] Aleksy Golovinskiy and Thomas Funkhouser. Min-cut based segmentation of point
clouds. Princeton University. 5.4

[42] Michael A. Goodrich and Alan C. Schultz. Human-robot interaction: A survey. Founda-
tions and Trends in Human-Computer Interaction, 1(3):203–275, 2007. 6.1

125

[43] Richard Grace, V.E. Byrne, D.M. Bierman, J.-M. Legrand, D. Gricourt, B.K. Davis, J.J.
Staszewski, and B. Carnahan. A drowsy driver detection system for heavy vehicles. In
Proceedings of the 17th Digital Avionics Systems Conference, volume 2, pages I36/1 –
I36/8, 2001. 6.1

[44] James P. Gunderson and Worthy N. Martin. Effects of uncertainty on variable autonomy in
maintenance robots. In In Workshop on Autonomy Control Software, pages 26–34, 1999.
6.1

[45] Paul Hayton, Bernhard Schölkopf, Lionel Tarassenko, et al. Support vector novelty detec-
tion applied to jet engine vibration spectra. In Todd K. Leen, Thomas G. Dietterich, and
Volker Tresp, editors, NIPS, pages 946–952. MIT Press, 2000. 5.1

[46] Frederik W. Heger and Sanjiv Singh. Sliding autonomy for complex coordinated multi-
robot tasks: Analysis & experiments. In Gaurav S. Sukhatme, Stefan Schaal, Wolfram
Burgard, and Dieter Fox, editors, Robotics: Science and Systems. The MIT Press, 2006.
ISBN 0-262-69348-8. 6.1

[47] Henry Hexmoor. A cognitive model of situated autonomy. Lecture Notes in Computer
Science, 2112:325–, 2001. ISSN 0302-9743. 6.1

[48] H. Hoffmann. Kernel PCA for novelty detection. Pattern Recognition, 40(3):863–874,
March 2007. 5.1

[49] Eric Horvitz, Andy Jacobs, and David Hovel. Attention-sensitive alerting. In Kathryn B.
Laskey and Henri Prade, editors, Proceedings of the 15th Conference on Uncertainty in
Artificial Intelligence (UAI-99), pages 305–313, S.F., Cal., July 30–August 1 1999. Mor-
gan Kaufmann Publishers. 6.1

[50] Daniel Huber, Anuj Kapuria, Raghavendra Rao Donamukkala, and Martial Hebert. Parts-
based 3d object classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 04), June 2004. 5.4

[51] S. Huwer and H. Niemann. Adaptive change detection for real-time surveillance applica-
tions. In Third IEEE International Workshop on Visual Surveillance, pages 37–45, Dublin,
July 2000. IEEE. 5.1

[52] L. D. Jackel, Eric Krotkov, Michael Perschbacher, Jim Pippine, and Chad Sullivan. The
DARPA LAGR program: Goals, challenges, methodology, and phase I results. Journal of
Field Robotics, 23(11-12):945–973, 2006. 1, 1.1

[53] Nathalie Japkowicz, Catherine Myers, and Mark A. Gluck. A novelty detection approach
to classification. In IJCAI, pages 518–523, 1995. 5.1

[54] A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in clut-
tered 3D scenes. IEEE Trans. Pattern Analysis and Machine Intelligence, 21(5):433–449,
May 1999. 5.4

[55] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, Academic, 9, 1974. B.3.1

[56] Edward Jones, Brett Browning, M Bernardine Dias, Brenna Argall, Maria Manuela
Veloso, and Anthony Stentz. Dynamically formed heterogeneous robot teams perform-

126

ing tightly-coordinated tasks. In International Conference on Robotics and Automation,
pages 570 – 575, May 2006. 6.1

[57] M. I. Jordan and Y. Weiss. Graphical models: Probabilistic inference. MIT Press, 2002.
4.2.1

[58] Sham M. Kakade and Andrew Y. Ng. Online bounds for bayesian algorithms. In
Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Informa-
tion Processing Systems 17, pages 641–648. MIT Press, Cambridge, MA, 2005. 4.2.1

[59] Alonzo Kelly, Anthony Stentz, Omead Amidi, et al. Toward reliable off road autonomous
vehicles operating in challenging environments. The International Journal of Robotics
Research, 25(5-6):449–483, 2006. 1, 1.1, 3.3.1

[60] D. Kim, J. Sun, S. Oh, J. Rehg, and A.Bobick. Traversability classification using unsu-
pervised on-line visual learning for outdoor robot navigation. In Proceedings of the IEEE
International Conference on Robotics and Automation, 2006. 4.1

[61] Jyrki Kivinen, Alex J. Smola, and Robert C. Williamson. Online learning with kernels.
In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, NIPS, pages
785–792. MIT Press, 2001. 5, 5.2.3, 5.2.3, 5.10

[62] Thomas Knudsen and Allan Aasbjerg Nielson. Detection of buildings through multivariate
analysis of spectral, textural, and shape based features. In Proceedings of IGARSS, 2004.
4.1

[63] Kolmogorov and Zabih. What energy functions can be minimized via graph cuts. IEEET-
PAMI: IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 2004. 5.4.4

[64] Andreas Krause. Optimizing Sensing: Theory and Applications. PhD thesis, Carnegie
Mellon University, 2008. B.4

[65] Eric Krotkov, Reid Simmons, Fabio Cozman, and Sven Koenig. Safeguarded teleoperation
for lunar rovers: From human factors to field trials. In In Proc. IEEE Planetary Rover
Technology and Systems Workshop, 1996. 6.1

[66] Alexandre Krupa, Michel de Mathelin, Christophe Doignon, Jacques Gangloff, Guillaume
Morel, Luc Soler, and Jacques Marescaux. Development of semi-autonomous control
modes in laparoscopic surgery using automatic visual servoing. Lecture Notes in Com-
puter Science, 2208:1306–??, 2001. ISSN 0302-9743. 6.1

[67] Y. Kuno, T. Watanabe, Y. Shimosakoda, and S. Nakagawa. Automated detection of human
for visual surveillance system. In International Conference on Pattern Recognition, pages
III: 865–869, 1996. 5.1

[68] T.L. Lai. Adaptive treatment allocation and the multi-armed bandit problem. The Annals
of Statistics, pages 1091–1114, 1987. 6.2.1

[69] TL Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985. 6.2.1

[70] Jean-Francois Lalonde, Nicolas Vandapel, Daniel Huber, and Martial Hebert. Natural
terrain classification using three-dimensional ladar data for ground robot mobility. Journal
of Field Robotics, 23(1):839 – 861, November 2006. 3.3.1

127

[71] J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed ban-
dits. Advances in Neural Information Processing Systems, 2007. 6.2.1

[72] Yann LeCun, Urs Muller, Jan Ben, Eric Cosatto, and Beat Flepp. Off-road obstacle avoid-
ance through end-to-end learning. In Proceedings of the Neural Information Processing
Systems, 2005. 4.1

[73] David Lieb, Andrew Lookingbill, and Sebastian Thrun. Adaptive road following using
self-supervised learning and reverse opticalflow. In Proceedings of Robotics: Science and
Systems, June 2005. 4.1

[74] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Foundations of
Computer Science, 0:256–261, 1989. B.5

[75] A. Lookingbill, J. Rogers, D. Lieb, J. Curry, and S. Thrun. Reverse optical flow for self-
supervised adaptive autonomous robot navigation. International Journal of Computer
Vision, 74(3):287–302, September 2007. 4.1

[76] Rajiv T. Maheswaran, Milind Tambe, Pradeep Varakantham, and Karen L. Myers. Ad-
justable autonomy challenges in personal assistant agents: A position paper. In Matthias
Nickles, Michael Rovatsos, and Gerhard Weiß, editors, Agents and Computational Auton-
omy, volume 2969 of Lecture Notes in Computer Science, pages 187–194. Springer, 2003.
ISBN 3-540-22477-7. 6.1

[77] A. Makarov, J. M. Vesin, and M. Kunt. Intrusion detection using extraction of moving
edges. In International Conference on Pattern Recognition, pages A:804–807, 1994. 5.1

[78] Larry M. Manevitz and Malik Yousef. One-class SVMs for document classification. Jour-
nal of Machine Learning Research, 2:139–154, 2001. 5.1

[79] Markos Markou and Sameer Singh. Novelty detection: a review - part 1: statistical ap-
proaches. Signal Processing, 83(12):2481–2497, 2003. 5.1

[80] Markos Markou and Sameer Singh. Novelty detection: a review - part 2: neural network
based approaches. Signal Processing, 83(12):2499–2521, 2003. 5.1

[81] Stephen Marsland, Ulrich Nehmzow, and Jonathan Shapiro. On-line novelty detection for
autonomous mobile robots. Robotics and Autonomous Systems, 51(2-3):191–206, 2005.
5.1

[82] J.-F. Mas. Monitoring land-cover changes: A comparison of change detection techniques.
1999. 5.1

[83] J.C. McCall and M.M. Trivedi. Driver behavior and situation aware brake assistance for
intelligent vehicles. Proceedings of the IEEE, 95(2), 2007. 6.1

[84] Jeff Michels, Ashutosh Saxena, and Andrew Y. Ng. High speed obstacle avoidance us-
ing monocular vision and reinforcement learning. In Proceedings of the International
Conference on Machine Learning, 2006. 4.1

[85] T. Minka. A family of algorithms for approximate bayesian inference, 2001. 4.2.2

[86] G. Mori, S. J. Belongie, and J. Malik. Shape contexts enable efficient retrieval of similar
shapes. In CVPR, pages I:723–730, 2001. 5.4

128

[87] D. M. Muchoney and B. N. Haack. Change detection for monitoring forest defoliation.
Photogrammetric Engineering and Remote Sensing, 60(10):1243–1251, October 1994.
5.1

[88] Munagala, Babu, Motwani, and Widom. The pipelined set cover problem. In ICDT: 10th
International Conference on Database Theory, 2005. B.3.3

[89] Daniel Munoz, Nicolas Vandapel, and Martial Hebert. Onboard contextual classification
of 3-d point clouds with learned high-order markov random fields. The Robotics Institute,
Carnegie Mellon University. 5.4

[90] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions. Mathematical Programming, 14:265–294, 1978.
B.4, 3

[91] Hugo Vieira Neto and Ulrich Nehmzow. Visual novelty detection with automatic scale
selection. Robotics and Autonomous Systems, 55(9):693–701, 2007. 5.1

[92] Bradford Neuman. Segmentation-based online change detection for mobile robots. Tech-
nical Report CMU-RI-TR-10-30, Robotics Institute, August 2010. 5.4.1

[93] Andrew Y. Ng and Michael I. Jordan. Convergence rates of the voting gibbs classifier, with
application to bayesianfeature selection. In Proceedings of the International Conference
on Machine Learning, 2001. 4.2.2

[94] I.R. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, and S. Burion. Human-robot
teaming for search and rescue. Pervasive Computing, IEEE, 4(1):72–79, Jan.-March 2005.
ISSN 1536-1268. 6.1

[95] N. Paragios and G. Tziritas. Detection and location of moving objects using deterministic
relaxation algorithms. In International Conference on Pattern Recognition, pages I: 201–
205, 1996. 5.1

[96] Thomas Pilarski, James Bagnell, and Anthony Stentz. Hazard detection for familiar ter-
rains via change detection. Master’s thesis, Carnegie Mellon University, 2007. 5.1

[97] H. Robbins. Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc,
58(5):527–535, 1952. 6.2.1

[98] Patrick Rowe. Adaptive Motion Planning for Autonomous Mass Excavation. PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, January 1999. 4.1

[99] Salvador Ruiz-Correa, Linda G. Shapiro, Marina Meila, and Gabriel Berson. Discrimi-
nating deformable shape classes. In Sebastian Thrun, Lawrence K. Saul, and Bernhard
Schölkopf, editors, NIPS. MIT Press, 2003. ISBN 0-262-20152-6. 5.4

[100] Jake Ryan, Meng-Jang Lin, and Risto Miikkulainen. Intrusion detection with neural net-
works. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in
Neural Information Processing Systems, volume 10. The MIT Press, 1998. 5.1

[101] Paul Scerri, David V. Pynadath, and Milind Tambe. Towards adjustable autonomy for the
real world. Journal of Artificial Intelligence Research, 17:2002, 2002. 6.1

[102] B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press, Cambridge, MA,

129

2002. 5.2.1

[103] Bernhard Schölkopf, Robert C. Williamson, Alex J. Smola, et al. Support vector method
for novelty detection. In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller, editors,
NIPS, pages 582–588. The MIT Press, 1999. ISBN 0-262-19450-3. 5.1

[104] Jean Scholtz, Jeff Young, Jill L. Drury, and Holly A. Yanco. Evaluation of human-robot
interaction awareness in search and rescue. In International Conference on Robotics and
Automation, pages 2327–2332. IEEE, 2004. 6.1

[105] Chris Scrapper, Ayako Takeuchi, Tommy Chang, Tsai Hong, and Michael Shneier. Using
a priori data for prediction and object recognition in an autonomous mobile vehicle. In
Proceedings of the SPIE Aerosense Conference, April 2003. 4.1

[106] Brennan Peter Sellner, Frederik Heger, Laura Hiatt, Reid Simmons, and Sanjiv Singh. Co-
ordinated multi-agent teams and sliding autonomy for large-scale assembly. Proceedings
of the IEEE - Special Issue on Multi-Robot Systems, 94(1):1425 – 1444, July 2006. 6.1

[107] Linda G. Shapiro and George C. Stockman. Computer Vision. Prentice-Hall, 2001. 5.4

[108] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Conf. Computer
Vision and Pattern Recognition, June 1997. 5.4

[109] N. Z. Shor, Krzysztof C. Kiwiel, and Andrzej Ruszcayǹski. Minimization methods for
non-differentiable functions. Springer-Verlag New York, Inc., New York, NY, USA, 1985.
ISBN 0-387-12763-1. 5.2.3

[110] David Silver, Boris Sofman, Nicolas Vandapel, J. Andrew Bagnell, and Anthony Stentz.
Experimental analysis of overhead data processing to support long range navigation. In
IEEE International Conference on Intelligent Robots and Systems (IROS), pages 2443 –
2450, October 2006. 3.3.2, 4.1, 4.3.1, 4.4.2

[111] David Silver, James (Drew) Bagnell, and Anthony (Tony) Stentz. High performance out-
door navigation from overhead data using imitation learning. In Robotics Science and
Systems, July 2008. 3.3.2

[112] David Silver, J. Andrew (Drew) Bagnell, and Anthony (Tony) Stentz. Learning from
demonstration for autonomous navigation in complex unstructured terrain. International
Journal of Robotics Research, June 2010. 3.2.2, 3.3.1, 4.1, 5, 7.2.3

[113] Daniel Sleator and Robert Tarjan. Amortized efficiency of list update and paging rules.
CACM: Communications of the ACM, 28, 1985. 5.2.4, B.1

[114] Boris Sofman, J. Andrew Bagnell, Anthony Stentz, and Nicolas Vandapel. Terrain classi-
fication from aerial data to support ground vehicle navigation. Technical report, Robotics
Institute, Carnegie Mellon University, August 2005. 3.3.2, 4.1

[115] Boris Sofman, Ellie Lin Ratliff, J. Andrew Bagnell, John Cole, Nicolas Vandapel, and An-
thony Stentz. Improving robot navigation through self-supervised online learning. Journal
of Field Robotics, 23(1), December 2006. 4

[116] Boris Sofman, J. Andrew Bagnell, and Anthony Stentz. Bandit-based online candidate
selection for adjustable autonomy. In 7th International Conferences on Field and Service
Robotics, July 2009. 6

130

[117] Boris Sofman, J. Andrew Bagnell, and Anthony Stentz. Anytime online novelty detection
for vehicle safeguarding. In IEEE International Conference on Robotics and Automation,
May 2010. 5.2.1

[118] K. Solaimani, S. Modallaldoust, and S. Lotfi. Investigation of land use changes on soil
erosion process using geographical information system. (3/603010), 2009. 5.1

[119] David Stavens and Sebastian Thrun. A self-supervised terrain roughness estimator for
off-road autonomous driving. In UAI. AUAI Press, 2006. ISBN 0-9749039-2-2. 4.1

[120] A. Stentz. Robotic technologies for outdoor industrial vehicles. In Proceedings of SPIE
AeroSense, 2001. 1.1

[121] Anthony Stentz. Optimal and efficient path planning for partially-known environments.
In ICRA, pages 3310–3317, 1994. 3.3.1

[122] Anthony Stentz, Cristian Dima, Carl Wellington, Herman Herman, and David Stager. A
system for semi-autonomous tractor operations. Autonomous Robots, 13(1):87–104, 2002.
1.1

[123] Anthony Stentz, Alonzo Kelly, Peter Rander, Herman Herman, and Omead Amidi. Real-
time, multi-perspective perception for unmanned ground vehicles. In Proceedings of the
Association for Unmanned Vehicle Systems International, 2003. 4.1

[124] Anthony Stentz, John Bares, Thomas Pilarski, and David Stager. The crusher system for
autonomous navigation. In AUVSIs Unmanned Systems North America, August 2007. 3.3

[125] Matthew J. Streeter and Daniel Golovin. An online algorithm for maximizing submodular
functions. In NIPS, pages 1577–1584. MIT Press, 2008. (document), B.5, B.5, 7, B.5

[126] GT Sung and IS Gill. Robotic laparoscopic surgery: a comparison of the da vinci and zeus
systems. Urology, 58(6):893–8, 2001. 6.1

[127] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady. Novelty detection for the iden-
tification of masses in mammograms. In Proceedings of the Fourth International IEEE
Conference on Artificial Neural Networks, volume 409, pages 442–447, 1995. 5.1

[128] David M. J. Tax and Robert P. W. Duin. Support vector domain description. Pattern
Recognition Letters, 20(11-13):1191–1199, 1999. 5.1

[129] Sebastian Thrun, Michael Montemerlo, Hendrik Dahlkamp, et al. Stanley: The robot that
won the darpa grand challenge. Journal of Field Robotics, 23(9):661–692, June 2006. 1,
1.1

[130] Michael E. Tipping. Bayesian inference: An introduction to principles and practice in
machinelearning. In Proceedings of the Advanced Lectures on Machine Learning, 2003.
4.2.2

[131] C. Tomlin, G.J. Pappas, and S. Sastry. Conflict resolution for air traffic management: a
study in multiagent hybrid systems. Automatic Control, IEEE Transactions on, 43(4):
509–521, Apr 1998. ISSN 0018-9286. 6.1

[132] Paul Tompkins. Mission-Directed Path Planning for Planetary Rover Exploration. PhD
thesis, Robotics Institute, Carnegie Mellon University, 2004. 4.1

131

[133] C. Tottrup. Forest and land cover mapping in a tropical highland region. Photogrammetric
Engineering and Remote Sensing, 73(9):1057–1066, September 2007. 5.1

[134] Chris Urmson. Navigation Regimes for Off-Road Autonomy. PhD thesis, Robotics Insti-
tute, Carnegie Mellon University, 2004. 4.1

[135] Chris Urmson, Joshua Anhalt, Drew Bagnell, et al. Autonomous driving in urban envi-
ronments: Boss and the urban challenge. Journal of Field Robotics, 25(8):425–466, 2008.
ISSN 1556-4959. 1, 1.1

[136] A. Vahidi and A. Eskandarian. Research advances in intelligent collision avoidance and
adaptive cruise control. Intelligent Transportation Systems, IEEE Transactions on, 4(3):
143–153, 2003. 6.1

[137] Nicolas Vandapel, Raghavendra Rao Donamukkala, and Martial Hebert. Experimental
results in using aerial ladar data for mobile robot navigation. In Proceedings of the Inter-
national Conference on Field and Service Robotics, 2003. 4.1

[138] Paul Vernaza, Ben Taskar, and Daniel D. Lee. Online, self-supervised terrain classification
via discriminatively trained submodular markov random fields. In ICRA, pages 2750–
2757. IEEE, 2008. 4.1

[139] M. Wada, Kang Sup Yoon, and H. Hashimoto. Development of advanced parking assis-
tance system. Industrial Electronics, IEEE Transactions on, 50(1):4–17, Feb 2003. ISSN
0278-0046. 6.1

[140] C.C. Wang, SR Kulkarni, and HV Poor. Bandit problems with side observations. IEEE
Transactions on Automatic Control, 50(3):338–355, 2005. 6.2.1

[141] C.J.C.H. Watkins. Learning from delayed rewards. Cambridge University, 1989. 6.2.2

[142] M.L. Weitzman. Optimal search for the best alternative. Econometrica: Journal of the
Econometric Society, pages 641–654, 1979. 6.2.1

[143] Carl Wellington. Learning a Terrain Model for Autonomous Navigation in Rough Terrain.
PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, December
2005. 3.3.1, 4.1

[144] Carl Wellington, Aaron Courville, and Anthony Stentz. Interacting markov random fields
for simultaneous terrain modeling and obstacle detection. In Proc. of Robotics Science
and Systems, June 2005. 5.4.4

[145] K. Worden. Structural fault detection using a novelty measure. Journal of Sound and
Vibration, 201(1):85–101, 1997. 5.1

[146] B.M. Yamauchi. Packbot: a versatile platform for military robotics. In Proceedings of
SPIE, volume 5422, pages 228–237, 2004. 6.1

[147] Holly A. Yanco and Jill L. Drury. Rescuing interfaces: A multi-year study of human-robot
interaction at the AAAI robot rescue competition. Auton. Robots, 22(4):333–352, 2007.
6.1

[148] R. Zabih, O. Veksler, and Y. Y. Boykov. Fast approximate energy minimization via graph
cuts. In ICCV, pages 377–384, 1999. 5.4.4

132

	1 Introduction
	1.1 Operating Under Uncertainty

	2 Thesis Statement
	3 Technical Approach
	3.1 High-Level Approach
	3.2 Integration Into Autonomy System
	3.2.1 Far-Range Perception (Chapter 4)
	3.2.2 Online Novelty and Change Detection (Chapter 5)
	3.2.3 Online Candidate Selection (Chapter 6)
	3.2.4 Joint Integration

	3.3 System Architecture
	3.3.1 Perception System
	3.3.2 Overhead Data Usage

	4 Onboard and Overhead Robot Perception in Unfamiliar Domains
	4.1 Related Work
	4.2 Approach
	4.2.1 Formalization
	4.2.2 Advantages of the Bayesian Learning Approach

	4.3 Application to Mobile Robotics
	4.3.1 Terrain Traversal Cost Prediction
	4.3.2 Training and Prediction
	4.3.3 Applications of Trained Algorithm

	4.4 Experimental Results
	4.4.1 Field Test Results
	4.4.2 Field Test Data Post-Processing Results
	4.4.3 Offline Map Alignment
	4.4.4 Feature Selection

	5 Anytime Online Novelty and Change Detection
	5.1 Related Work
	5.2 Approach
	5.2.1 Formalization
	5.2.2 Improved Dimensionality Reduction
	5.2.3 Framing as Instance of NORMA
	5.2.4 Query Optimization

	5.3 Extension to Change Detection
	5.4 Improving Performance through Scene Segmentation
	5.4.1 Segmentation Pipeline
	5.4.2 Similarity Classifier
	5.4.3 Seed Voxel Selection
	5.4.4 MRF-Based Segment Identification

	5.5 Application to Mobile Robotics
	5.6 Experimental Results
	5.6.1 Novelty Detection Results
	5.6.2 Change Detection Results

	6 Online Candidate Selection
	6.1 Related Work
	6.2 Approach
	6.2.1 Contextual Multi-Armed Bandit Setting
	6.2.2 Exploration-Exploitation Trade-off
	6.2.3 Linear Optimization as Multi-Armed Bandits Problem
	6.2.4 Formalization

	6.3 Experimental Results
	6.3.1 Adjustable Autonomy
	6.3.2 Online Overhead Data Selection

	7 Conclusions
	7.1 Summary and Contributions
	7.1.1 Improved Perception in Unfamiliar Domains
	7.1.2 Anytime Online Novelty and Change Detection
	7.1.3 Online Candidate Selection

	7.2 Future Work
	7.2.1 Additional Applications of Self-Supervised Learning
	7.2.2 Novelty and Change Detection
	7.2.3 Intelligent Uncertainty Resolution

	A Bayesian Linear Regression
	A.1 Basic Gaussian Properties
	A.2 Initialization
	A.3 Training
	A.4 Prediction
	A.5 Sample Use for Online Learning Task

	B Self-Organizing Lists
	B.1 Dictionary Problem
	B.2 Min-Sum Weighted Set Cover
	B.3 Related Problems
	B.3.1 Set Cover Problem
	B.3.2 Min-Sum Set Cover Problem
	B.3.3 Pipelined Set Cover Problem

	B.4 Submodularity
	B.5 Online Submodular Minimization

	Bibliography

