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CHAPTER 1

Introduction

This thesis consists of two parts. The first one is a result obtained under the
supervision of Steven Shreve and with the collaboration of Gennady Shaikhet. Our
work yielded a detailed description of the optimal strategies for a large investor,
when she needed to buy a large amount of shares of a stock over a finite time horizon.
The dynamics of the limit order book of the underlying stock is a generalization
of known results to continuous time and to arbitrary distributions of the said limit
order book. See the introduction section in chapter 2 for a more detailed discussion.

The second part is a result obtained under the supervision of Dmitry Kramkov.
Our work yielded a sufficient condition on the structure of the economic factors,
dividends of traded assets and total endowment in a single-agent economy, such
that in an Arrow - Debreu - Radner equilibrium the market is complete. The main
result is formulated as an integral representation theorem. Our work generalizes
and complements fairly recent results in this direction (at the time of this thesis) by
requiring less smoothness of the driving diffusion process at the expense of seemingly
stronger conditions on the terminal dividends of the assets. See the introduction
section in chapter 3 for a more detailed discussion.

5





CHAPTER 2

Optimal Execution in a General One-Sided
Limit-Order Book

1. Introduction

We consider optimal execution over a fixed time interval of a large asset pur-
chase in the face of a one-sided limit-order book. We assume that the ask price
(sometimes called the best ask price) for the underlying asset is a continuous mar-
tingale that undergoes two adjustments during the period of purchase. The first
adjustment is that orders consume a part of the limit-order book, and this increases
the ask price for subsequent orders. The second adjustment is that resilience in the
limit-order book causes the effect of these prior orders to decay over time. In this
paper, there is no permanent effect from the purchase we model. However, the
temporary effect requires infinite time to completely disappear.

We assume that there is a fixed shadow limit-order book shape toward which
resilience returns the limit-order book. At any time, the actual limit-order book
relative to the martingale component of the ask price has this shape, but with some
left-hand part missing due to prior purchases. An investor is given a period of time
and a target amount of asset to be purchased within that period. His goal is to
distribute his purchasing over the period in order to minimize the expected cost
of purchasing the target. We permit purchases to occur in lumps or to be spread
continuously over time. We show that the optimal execution strategy consists of
three lump purchases, one or more of which may be of size zero, i.e., does not occur.
One of these lump purchases is made at the initial time, one at an intermediate
time, and one at the final time. Between these lump purchases, the optimal strategy
purchases at a constant rate matched to the limit-order book recovery rate so that
the ask price minus its martingale component remains constant. We provide a
simple condition under which the intermediate lump purchase is of size zero (see
Theorem 4.2 and Remark 4.4 below).

Bouchaud, et. al. [9] provide a survey of the empirical behavior of limit order
books. Dynamic models for optimal execution designed to capture some of this
behavior have been developed by several authors, including Bertsimas and Lo [8],
Almgren and Chriss [6, 7], Grinold and Kahn [15] (Chapter 16), Almgren [5],
Obizhaeva and Wang [10], and Alfonsi, Fruth and Schied [1, 4]. Trading in [8] is
on a discrete-time grid, and the price impact of a trade is linear in the size of the
trade and is permanent. In [8], the expected-cost-minimizing liquidation strategy
for an order is to divide the order into equal pieces, one for each trading date.
Trading in [6, 7] is also on a discrete-time grid, and there are linear permanent and
temporary price impacts. In [6, 7] the variance of the cost of execution is taken into
account. This leads to the construction of an efficient frontier of trading strategies.
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In [15] and [5], trading takes place continuously and finding the optimal trading
strategy reduces to a problem in the calculus of variations.

Other authors focus on the possibility of price manipulation, an idea that traces
back to Huberman and Stanzl [16]. Price manipulation is a way of starting with
zero shares and using a strategy of buying and selling so as to end with zero shares
while generating income. Gatheral et. al. [13] permit continuous trading and use
an integral of a kernel with respect to the trading strategy to capture the resilience
of the book. In such a model, Gatheral [12] shows that exponential decay of market
impact and absence of price manipulation opportunities are compatible only with
linear market impact. In [14] this result is reconciled with the nonlinear market
impact in models such as [2, 3, 4, 10] and this paper. Alfonsi, Schied and Slynko
[3] discover in a discrete-time version of the model of [13], even under conditions
that prevent price manipulation, it may still be optimal to execute intermediate
sells while trying to execute an overall buy order, and they provide conditions to
rule out this phenomenon.

For the type of model we consider in this paper, based on a shadow limit-order
book, Alfonsi and Schied [2] show that price manipulation is not possible under very
general conditions. Furthermore, it is never advantageous to execute intermediate
sells while trying to execute an overall buy order. In [2], trading takes place at
finitely many stopping times, and execution is optimized over these stopping times.
In the present paper, where trading is continuous, we do not permit intermediate
sells. This simplification of the model is justified by Remark 3.1 below, which
argues that intermediate sells cannot reduce the total cost.

The present paper is inspired by Obizhaeva and Wang [10], who explicitly
model the one-sided limit-order book as a means to capture the price impact of
order execution. Empirical evidence for the model of [10] and its generalizations
by Alfonsi, Fruth and Schied [1, 4] and Alfonsi and Schied [2] are reported in
[1, 2, 4, 10] . In [10] and [1], the limit-order book has a block shape, and in this
case the price impact of a purchase is linear, the same as in [8] and [7]. However, the
change of mind set is important because it focuses attention on the shape of the limit
order book as the determinant of price impact, rather than making assumptions
about the price impact directly. This change of mind set was exploited by [2, 4],
who permit more general limit-order book shapes, subject to the condition discussed
in Remark 4.4 below. In [2, 4] trading is on a discrete-time grid and it is shown
that for an optimal purchasing strategy all purchases except the first and last are
of the same size. Furthermore, the size of the intermediate purchases is chosen so
that the price impact of each purchase is exactly offset by the order book resiliency
before the next purchase. Similar results are obtained in [2], although here trades
are executed at stopping times.

In contrast to [2, 4, 10], we permit the order book shape to be completely
general. However, in our model all price impact is transient; [4, 10] also include
the possibility of a permanent linear price impact. In contrast to [2, 4], we do
not assume that the limit order book has a positive density. It can be discrete or
continuous and can have gaps. In contrast to [2, 4, 10], we permit the resilience in
the order book to be a function of the adjustments to the martingale component of
the ask price. Weiss [18] argues in a discrete-time model that this conforms better
to empirical observations.
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Finally, we set up our model so as to allow for both discrete-time and continuous-
time trading, whereas [4, 10] begin with discrete-time trading and then study the
limit of their optimal strategies as trading frequency approaches infinity. The sim-
plicity afforded by a fully continuous model is evident in the analysis below. In
particular, we provide constructive proofs of Theorems 4.2 and 4.5 that describe
the form of the optimal purchasing strategies.

Section 2 of this paper presents our model. It contains the definition of the cost
of purchasing in our more general framework, and that is preceded by a justification
of the definition. Section 3 shows that randomness can be removed from the optimal
purchasing problem and reformulates the cost function into a convenient form. In
Section 4, we solve the problem, first in the case that is analogous to the one solved
by [4], and then in full generality. Sections 4.1 and 4.3 contain examples.

2. The model

Let T be a positive constant. We assume that the ask price of some asset, in
the absence of the large investor modeled by this paper, is a continuous nonnegative
martingale At, 0 ≤ t ≤ T , relative to some filtration {Ft}0≤t≤T satisfying the usual
conditions. We assume that

(2.1) E
[

max
0≤t≤T

At
]
<∞.

We show below that for the optimal execution problem of this paper, one can
assume without loss of generality that this martingale is identically zero. We make
this assumption beginning in Section 3 in order to simplify the presentation.

For some extended positive real number M , let µ be an infinite measure on
[0,M) that is finite on each compact subset of [0,M). Denote the associated left-
continuous cumulative distribution function by

F (x) , µ
(
[0, x)

)
, x ≥ 0.

This is the shadow limit-order book, in the sense described below. We assume
F (x) > 0 for every x > 0. If B is a measurable subset of [0,M), then in the
absence of the large investor modeled in this paper, at time t ≥ 0 the number of
limit orders with prices in B +At , {b+At; b ∈ B} is µ(B).

There is a strictly positive constant X such that our large investor must pur-
chase X shares over the time interval [0, T ]. His purchasing strategy is a non-
decreasing right-continuous adapted process X with XT = X. We interpret Xt to
be the cumulative amount of purchasing done by time t. We adopt the convention
X0− = 0, so that X0 = ∆X0 is the number of shares purchased at time zero. Here
and elsewhere, we use the notation ∆Xt to denote the jump Xt−Xt− in X at time
t.

The effect of the purchasing strategy X on the limit-order book is determined
by a resilience function h, a strictly increasing, locally Lipschitz function defined
on [0,∞) and satisfying

(2.2) h(0) = 0, h(∞) , lim
x→∞

h(x) >
X

T
.
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The function h together with X determine the volume effect process1 E satisfying

(2.3) Et = Xt −
∫ t

0

h(Es) ds, 0 ≤ t ≤ T.

It is shown in Appendix 1 that there is a unique nonnegative right-continuous finite-
variation adapted process E satisfying (2.3). As with X, we adopt the convention
E0− = 0. We note that ∆Xt = ∆Et for 0 ≤ t ≤ T .

Let B be a measurable subset of [0,M). The interpretation of E is that in the
presence of the large investor using strategy X, at time t ≥ 0 the number of limit
orders with prices in B+A(t) is µt(B), where µt is the σ-finite infinite measure on
[0,M) with left-continuous cumulative distribution function (F (x)−Et)+, x ≥ 0. In
other words, Et units of mass have been removed from the shadow limit-order book
µ. In any interval in which no purchases are made, (2.3) implies d

dtEt = −h(Et).
Hence, in the absence of purchases, the volume effect process decays toward zero
and the limit-order book tends toward the shadow limit-order book µ, displaced by
the ask price A.

To calculate the cost to the investor of using the strategy X, we introduce the
following notation. We first define the left-continuous inverse of F ,

ψ(y) , sup{x ≥ 0|F (x) < y}, y > 0.

We set ψ(0) , ψ(0+) = 0, where the second equality follows from the assumption
that F (x) > 0 for every x > 0. The ask price in the presence of the large investor
is defined to be At +Dt, where

(2.4) Dt , ψ(Et), 0 ≤ t ≤ T.
This is the price after any lump purchases by the investor at time t (see Fig. 1).
We give some justification for calling At+Dt the ask price after the following three
examples.

Figure 1. Limit order book at time t. The shaded region corre-
sponds to the remaining shares. The white area Et corresponds to
the amount of shares missing from the order book at time t. The
current ask price is At +Dt.

1The case that resilience is based on price rather than volume is also considered in [2, 4].
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Example 2.1 (Block order book). Let q be a fixed positive number. If q is
the quantity of shares available at each price, then for each x ≥ 0, the quantity
available at prices in [0, x] is F (x) = qx. This is the block order book considered by
[10]. In this case, ψ(y) = y/q and F (ψ(y)) = y for all y ≥ 0. �

Example 2.2 (Modified block order book). Let 0 < a < b <∞ be given, and
suppose

(2.5) F (x) =





x, 0 ≤ x ≤ a,
a, a ≤ x ≤ b,
x− (b− a), b ≤ x <∞.

Figure 2. Density and cumulative distribution of the modified
block order book

This is a block order book, except that the orders with prices between a and b
are not present (see Fig 2). In this case,

(2.6) ψ(y) =
{
y, 0 ≤ y ≤ a,
y + b− a, a < y <∞.

We have F (ψ(y)) = y for all y ≥ 0. �

Example 2.3 (Discrete order book). Suppose that

(2.7) F (x) =
∞∑

i=0

I(i,∞)(x), x ≥ 0,

which corresponds to an order of size one at each of the nonnegative integers (see
Fig. 3). Then

(2.8) ψ(y) =
∞∑

i=1

I(i,∞)(y), y ≥ 0.

For every nonnegative integer j, we have F (j) = j, F (j+) = j + 1, ψ(j + 1) = j,
ψ(j+) = j, F (ψ(j)+) = j and ψ(F (j)+) = j. �

We return to the definition of the ask price as At + Dt to provide some jus-
tification, leading up to Definition 2.4, for the total cost of a purchasing strategy.
Suppose, as in Example 2.2, F is constant on an interval [a, b], but strictly increas-
ing to the left of a and to the right of b. Let y = F (x) for a ≤ x ≤ b. Then ψ(y) = a
and ψ(y+) = b. Suppose at time t, we have Et = y. Then Dt = a, but the measure
µt assigns mass zero to [a, b). The ask price is At + Dt, but there are no shares
for sale at this price, nor in an interval to the right of this price. Nonetheless, it is
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Figure 3. Measure and cumulative distribution function of the
discrete order book

reasonable to call At +Dt the ask price for an infinitesimal purchase because if the
agent will wait an infinitesimal amount of time before making this purchase, shares
will appear at the price At + Dt due to resilience. We make this argument more
precise.

Suppose the agent wishes to purchase a small number ε > 0 shares at time t at
the ask price At +Dt. This purchase can be approximated by first purchasing zero
shares in the time interval [t, t+δ], where δ is chosen so that

∫ t+δ
t

h(Es) ds = ε and

Es = Xt −
∫ s

0

h(Eu) du, t ≤ s < t+ δ.

In other words, Es for t ≤ s < t + δ is given by (2.3) with X held constant
(no purchases) over this interval. With δ chosen this way, E(t+δ)− = Et − ε.
Resilience in the order book has created ε shares. Suppose the investor purchases
these shares at time t+ δ, which means that ∆Xt+δ = ∆Et+δ = ε and Et+δ = Et.
Immediately before the purchase, the ask price is At+δ + ψ(Et − ε); immediately
after the purchase, the ask price is At+δ+ψ(Et) = At+δ+a. The cost of purchasing
these shares is

(2.9) εAt+δ +
∫

[ψ(Et−ε),a]
ξ d
(
F (ξ)− Et + ε

)+
,

Because
∫
[ψ(Et−ε),a] d

(
F (ξ)−Et+ε)+ = ε, the integral in (2.9) is bounded below by

εψ(Et−ε) and bounded above by εa. But a = ψ(Et) = Dt and ψ is left continuous,
so the cost per share obtained by dividing (2.9) by ε converges to At +a = At +Dt

as ε (and hence δ) converge down to zero.
On the other hand, an impatient agent who does not wait before purchasing

shares could choose a different method of approximating an infinitesimal purchase
at time t that leads to a limiting cost per share At + b. In particular, it is not
the case that our definition of ask price is consistent with all limits of discrete-time
purchasing strategies. Our definition is designed to capture the limit of discrete-
time purchasing strategies that seek to minimize cost.
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To simplify calculations of the type just presented, we define the functions

ϕ(x) =
∫

[0,x)

ξ dF (ξ), x ≥ 0,(2.10)

Φ(y) = ϕ
(
ψ(y)

)
+
[
y − F

(
ψ(y)

)]
ψ(y), y ≥ 0.(2.11)

We note that Φ(0) = 0, and we extend Φ to be zero on the negative half-line. In
the absence of the large investor, the cost one would pay to purchase all the shares
available at prices in the interval [A(t), A(t) + x) at time t would be A(t) + ϕ(x).
The function Φ(y) captures the cost, in excess of At, of purchasing y shares in the
absence of the large investor. The first term on the right-hand side of (2.11) is the
cost less At of purchasing all the shares with prices in the interval [At, At+ψ(y)). If
F has a jump at ψ(y), this might be fewer than y shares. The difference, y−F (ψ(y))
shares, can be purchased at price At + ψ(y), and this explains the second term on
the right-hand side of (2.11). We present these functions in the three examples
considered earlier.

Example 2.1 (Block order book, continued). We have simply ϕ(x) = q
∫ x
0
ξ dξ

= q
2x

2 for all x ≥ 0, and Φ(y) = q
2ψ

2(y) = 1
2qy

2 for all y ≥ 0. Note that Φ is
convex and Φ′(y) = ψ(y) for all y ≥ 0, including at y = 0 because we define Φ to
be identically zero on the negative half-line. �

Example 2.2 (Modified block order book, continued). With F and ψ given
by (2.5) and (2.6), we have

ϕ(x) =





1
2
x2, 0 ≤ x ≤ a,

1
2
a2, a ≤ x ≤ b,

1
2

(x2 + a2 − b2), b ≤ x <∞,

and

Φ(y) =





1
2
y2, 0 ≤ y ≤ a,

1
2
(
(y + b− a)2 + a2 − b2

)
, a ≤ y <∞.

Note that Φ is convex with subdifferential

(2.12) ∂Φ(y) =




{y}, 0 ≤ y < a,
[a, b], y = a,
{y + b− a}, a < y <∞.

In particular, ∂Φ(y) = [ψ(y), ψ(y+)] for all y ≥ 0 (see Fig. 4). �
Example 2.3 (Discrete order book, continued). With F given by (2.7), we

have ϕ(x) =
∑∞
i=0 iI(i,∞)(x). In particular, ϕ(0) = 0 and for integers k ≥ 1 and

k − 1 < x ≤ k,

ϕ(x) =
k−1∑

i=0

i =
k(k − 1)

2
.

For 0 ≤ y ≤ 1, ψ(y) = 0 and hence ϕ(ψ(y)) = 0, [y − F (ψ(y))]ψ(y) = 0, and
Φ(y) = 0. For integers k ≥ 1 and k < y ≤ k + 1, (2.8) gives ψ(y) = k, and hence
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Figure 4. Functions Φ and ψ for the modified block order book
with parameters a = 4 and b = 14

ϕ(ψ(y)) = k(k−1)
2 . Finally, for y in this range, [y − F (ψ(y))]ψ(y) = k(y − k). We

conclude that

(2.13) Φ(y) =
∞∑

k=1

k

(
y − 1

2
k − 1

2

)
I(k,k+1](y).

For each positive integer k, Φ(k−) = Φ(k+) = 1
2k(k − 1), so Φ is continuous.

Furthermore, ∂Φ(k) = [k − 1, k] = [ψ(k), ψ(k+)]. For nonnegative integers k and
k < y < k + 1, Φ′(y) is defined and is equal to ψ(y) = k. Furthermore Φ′(0) =
ψ(0) = 0. Once again we have ∂Φ(y) = [ψ(y), ψ(y+)] for all y ≥ 0, and because ψ
is nondecreasing, Φ is convex (see Fig. 5). �

Figure 5. Functions Φ and ψ for the discrete order book

We decompose the purchasing strategy X into its continuous and pure jump
parts Xt = Xc

t +
∑

0≤s≤t ∆Xs. The investor pays price At + Dt for infinitesimal
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purchases at time t, and hence the total cost of these purchases is
∫ T
0

(At+Dt) dXc
t .

On the other hand, if ∆Xt > 0, the investor makes a lump purchase of size ∆Xt =
∆Et at time t. Because mass Et− is missing in the shadow order book immediately
prior to time t, the cost of this purchase is the difference between purchasing Et and
purchasing Et− from the shadow order book, i.e., the difference in what the costs of
these purchases would be in the absence of the large investor. Therefore, the cost
of the purchase ∆Xt at time t is At∆Xt + Φ(Et) − Φ(Et−). These considerations
lead to the following definition.

Definition 2.4. The total cost incurred by the investor using purchasing strat-
egy X over the interval [0, T ] is

C(X) ,
∫ T

0

(
At +Dt) dXc

t +
∑

0≤t≤T

[
At∆Xt + Φ(Et)− Φ(Et−)

]

=
∫ T

0

Dt dX
c
t +

∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+
∫

[0,T ]

At dXt.

Our goal is to determine the purchasing strategy X that minimizes EC(X).

3. Problem simplifications

To compute the expectation of C(X) defined by (2.14), we invoke the integra-
tion by parts formula

∫

[0,T ]

At dXt = ATXT −A0X0− −
∫ T

0

Xt dAt

for the bounded variation process X and the continuous martingale A. Our in-
vestor’s strategies must satisfy 0 = X0− ≤ Xt ≤ XT = X, 0 ≤ t ≤ T , and hence
E
∫ T
0
Xt dAt = 0 (see Appendix 2) and E

∫ T
0
At dXt = XEAT = XA0. It follows

that

(3.1) EC(X) = E
∫ T

0

Dt dX
c
t + E

∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+XA0.

Since the third term on the right-hand side of (3.1) does not depend on X, min-
imization of EC(X) is equivalent to minimization of the first two terms. But the
first two terms do not depend on A, and hence we may assume without loss of gen-
erality that A is identically zero. Under this assumption, the cost of using strategy
X is

(3.2) C(X) =
∫ T

0

Dt dX
c
t +

∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

But with A ≡ 0, there is no longer a source of randomness in the problem.
Consequently, without loss of generality we may restrict the search for an optimal
strategy to nonrandom functions of time. Once we find a nonrandom purchasing
strategy minimizing (3.4) below, then even if A is a continuous non-zero nonnegative
martingale, we have found a purchasing strategy that minimizes the expected value
of (2.14) over all (possibly random) purchasing strategies.
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Remark 3.1. We do not allow our agent to make intermediate sells in order
to achieve the ultimate goal of purchasing X shares because doing so would not
decrease the cost, at least when the total amount of buying and selling is bounded.
Indeed, in addition to the purchasing strategy X, suppose the agent has a selling
strategy Y , which we take to be a non-decreasing right-continuous adapted process
with Y0− = 0. We assume that both X and Y are bounded. For each t, Xt

represents the number of shares bought by time t and Yt is the number of shares
sold. These processes must be chosen so that XT −YT = X. We have not modeled
the limit buy order book, but if we did so in a way analogous to the model of the
limit sell order book, then the bid price at each time t would be less than or equal
to At. Therefore, the net cost of executing the strategy (X,Y ) would satisfy

C(X,Y ) ≥
∫ T

0

Dt dX
c
t +

∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+
∫

[0,T ]

At dXt −
∫

[0,T ]

At dYt.

The integration by parts formula implies
∫

[0,T ]

At dXt −
∫

[0,T ]

At dYt = AT (XT − YT )−A0(X0− − Y0−)

−
∫ T

0

(Xt − Yt) dAt

= ATX −
∫ T

0

(Xt − Yt) dAt.

Because we can apply Lemma 2.1 to both X and Y , the expectation of
∫ T
0

(Xt −
Yt) dAt is zero and

(3.3) EC(X,Y ) ≥ E
∫ T

0

Dt dX
c
t + E

∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+XA0.

The right-hand side of (3.3) is the formula (3.1) obtained for the cost of using the
purchasing strategy X alone, but the X in inequality (3.3) makes a total purchase of
XT = X+YT ≥ X. If we replace X by min{X,X}, we obtain a feasible purchasing
strategy whose total cost is less than or equal to the right-hand side of (3.3). �

Theorem 3.2. Under the assumption (made without loss of generality) that A
is identically zero, the cost (3.2) associated with a nonrandom nondecreasing right
continuous function Xt, 0 ≤ t ≤ T , satisfying X0− = 0 and XT = X is equal to

(3.4) C(X) = Φ(ET ) +
∫ T

0

Dth(Et) dt.

Proof: The proof proceeds in two steps. In Step 1 we show that, as we have
seen in the examples, Φ is a convex function with subdifferential

(3.5) ∂Φ(y) = [ψ(y), ψ(y+)], y ≥ 0.

In Step 2 we justify the integration formula

(3.6) Φ(ET ) =
∫ T

0

D−Φ(Et) dEct +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
,



OPTIMAL EXECUTION 17

where D−Φ(Et) denotes the left-hand derivative ψ(Et) = Dt of Φ at Et, and Ec is
the continuous part of E: Ect = Et −

∑
0≤s≤t ∆Es. From (2.3) and (3.6) we have

immediately that

Φ(ET ) =
∫

[0,T ]

Dt dX
c
t −

∫ T

0

Dth(Et) dt+
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
,

and (3.4) follows from (3.2).
Step 1. Using the integration by parts formula xF (x) =

∫
[0,x)

ξ dF (ξ)+
∫ x
0
F (ξ) dξ,

we write

Φ(y) =
∫

[0,ψ(y))

ξ dF (ξ) + [y − F (ψ(y))]ψ(y)

=
∫ ψ(y)

0

(
y − F (ξ)

)
dξ

=
∫ ψ(y)

0

∫ y

F (ξ)

dη dξ

=
∫ y

0

∫ ψ(η)

0

dξdη,

where the last step follows from the fact that the symmetric difference of the sets
{(η, ξ)|ξ ∈ [0, ψ(y)], η ∈ [F (ξ), y]} and {(η, ξ)|η ∈ [0, y], ξ ∈ [0, ψ(η)]} is at most a
countable union of line segments and thus has two-dimensional Lebesgue measure
0. Therefore,

(3.7) Φ(y) =
∫ y

0

ψ(η) dη,

and by Problem 3.6.20, p. 213 of [17], with ψ and Φ extended to be 0 for the
negative reals, we conclude that Φ is convex and that ∂Φ(y) = [ψ(y), ψ(y+)], as
desired.
Step 2. We mollify ψ, taking ρ to be a nonnegative C∞ function with support on
[−1, 0] and integral 1, defining ρn(η) = nρ(nη), and defining

ψn(y) =
∫

R
ψ(y + η)ρn(η) dη =

∫

R
ψ(ζ) ρn(ζ − y) dζ.

Then each ψn is a C∞ function satisfying 0 ≤ ψn(y) ≤ ψ(y) for all y ≥ 0. Further-
more, ψ(y) = limn→∞ ψn(y) for every y ∈ R. We set Φn(y) =

∫ y
0
ψn(η) dη, so that

each Φn is also a C∞ function and limn→∞Φ′n(y) = D−Φ(y).
Because Φn(E0−) = Φ(0) = 0, we have

(3.8) Φn(ET ) =
∫ T

0

Φ′n(Et) dEct +
∑

0≤t≤T
[Φn(Et)− Φn(Et−)];

see, e.g., [11], p. 78. The function Et, 0 ≤ t ≤ T , is bounded. Letting n → ∞ in
(3.8) and using the bounded convergence theorem, we obtain

(3.9) Φ(ET ) =
∫ T

0

D−Φ(Et) dEct + lim
n→∞

∑

0≤t≤T

[
Φn(Et)− Φn(Et−)

]
.

To conclude the proof of (3.6), we divide the sum in (3.9) into two parts.
Given δ > 0, we define Sδ = {t ∈ [0, T ] : 0 < ∆Et ≤ δ} and S′δ = {t ∈ [0, T ] :
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∆Et > δ}. The sum in (3.9) is over t ∈ Sδ ∪ S′δ, and because E has finite vari-
ation,

∑
t∈Sδ∪S′δ ∆Et < ∞. Let ε > 0 be given. We choose δ > 0 so small that∑

t∈Sδ ∆Et ≤ ε. Because ψ and hence each ψn is bounded on [0, ET ], the function
Φ and each Φn is Lipschitz continuous on [0, ET ] with the same Lipschitz constant
L = ψ(ET ). It follows that

∑

t∈Sδ

[
Φ(Et)− Φ(Et−)

]
≤ L

∑

t∈Sδ
∆Et ≤ Lε,

∑

t∈Sδ

[
Φn(Et)− Φn(Et−)

]
≤ L

∑

t∈Sδ
∆Et ≤ Lε, n = 1, 2, . . . .

Hence the difference between
∑
t∈Sδ

[
Φ(Et)−Φ(Et−)

]
and any limit point as n→∞

of
∑
t∈Sδ

[
Φn(Et)−Φn(Et−)

]
is at most 2Lε. On the other hand, the set S′δ contains

only finitely many elements, and thus

lim
n→∞

∑

t∈S′δ

[
Φn(Et)− Φn(Et−)

]
=
∑

t∈S′δ

[
Φ(Et)− Φ(Et−)

]
.

Since ε > 0 is arbitrary, (3.9) reduces to (3.6). �

4. Solution of the Optimization Problem

In view of Theorem 3.2, we want to minimize Φ(ET ) +
∫ T
0
Dth(Et) dt over the

set of deterministic purchasing strategies. The main result of this paper is that
there exists an optimal strategy X under which the trader buys a lump quantity
X0 = E0 of shares at time 0, then buys at a constant rate dXt = h(E0) dt up to
time t0 (so as to keep Et = E0 for t ∈ [0, t0)), then buys another lump quantity
of shares at time t0, subsequently trades again at a constant rate dXt = h(Et0) dt
until time T (so as to keep Et = Et0 for t ∈ [t0, T )), and finally buys the remaining
shares at time T . We shall call this strategy a Type B strategy. We further show
that if the nonnegative function

(4.1) g(y) , yψ
(
h−1(y)

)

is convex, then the purchase at time t0 consists of 0 shares (so X has only jumps
at times 0 and T ). We call such a strategy a Type A strategy. Clearly the latter is
a special case of the former.

Although g is naturally defined on [0, h(∞)) by (4.1), we will want it to be
defined on a compact set. Therefore we set

(4.2) Y = max
{
h(X),

X

T

}

and note that because of assumption (2.2), h−1 is defined on [0, Y ]. We specify
the domain of the function g to be [0, Y ]. For future reference, we make three
observations about the function g. First,

(4.3) lim
y↓0

g(y) = g(0) = 0.

Secondly, using the definition (2.4) of Dt, we can rewrite the cost function formula
(3.4) as

(4.4) C(X) = Φ(ET ) +
∫ T

0

g
(
h(Et)

)
dt.



OPTIMAL EXECUTION 19

Lemma 1.1(iv) in the appendix shows that 0 ≤ Et ≤ X, so the domain [0, Y ]
of g is large enough in order for (4.4) to make sense. Because h−1 is strictly
increasing and continuous and ψ is nondecreasing and left continuous, the function
g is nondecreasing and left continuous, hence lower semicontinuous. In particular,

(4.5) g
(
Y ) = lim

y↑Y
g(y).

4.1. Convexity and Type A Strategies.

Remark 4.1. A Type A strategy XA can be characterized in terms of the
terminal value EAT of the process EA related to XA by (2.3), and the cost of using
a Type A strategy can be written as a function of EAT . It is this function of EAT we
will minimize. To see that this is possible, let XA be a Type A strategy and let
EA be related to XA via (2.3), so that EAt = XA

0 for 0 ≤ t < T . Then

XA
T− = EAT− +

∫ T

0

h(EAt ) dt = XA
0 + h(XA

0 )T,(4.6)

∆XA
T = X −XA

T− = X −XA
0 − h(XA

0 )T,(4.7)

EAT = EAT− + ∆XA
T = X − h(XA

0 )T.(4.8)

A Type A strategy is fully determined by its initial condition XA
0 , and from (4.8),

we now see that choosing XA
0 is equivalent to choosing EAT . According to (4.4) and

(4.8), the cost of this strategy

(4.9) C(XA) = Φ(EAT ) + Tg
(
h(XA

0 )
)

= Φ(EAT ) + Tg

(
X − EAT

T

)

can be written as a function of EAT .
We conclude this remark by determining the range of values that EAT can take

for a Type A strategy. We must choose XA
0 so that XA

0 ≥ 0 and XA
T− given by

(4.6) does not exceed X. The function k(x) , x+ h(x)T is strictly increasing and
continuous on [0,∞), and k(X) > X. Therefore, there exists a unique e ∈ (0, X)
such that k(e) = X. i.e.,

(4.10) e+ h(e)T = X.

The constraint on the initial condition of Type A strategies that guarantees that
the strategy is feasible is 0 ≤ XA

0 ≤ e. From (4.8) and (4.10) we see that the
corresponding feasibility condition on EAT for Type A strategies is

(4.11) e ≤ EAT ≤ X.
�

Theorem 4.2. If g given by (4.1) is convex on [0, Y ], then there exists a Type
A purchasing strategy that minimizes C(X) over all purchasing strategies X. If g
is strictly convex, this is the unique optimal strategy.

Proof: Assume that g is convex and let X be a purchasing strategy. Jensen’s
inequality applied to (4.4) yields the lower bound

C(X) = Φ(ET ) + T

∫ T

0

g
(
h(Et)

)dt
T
≥ Φ(ET ) + Tg

(∫ T

0

h(Et)
dt

T

)
.
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From (2.3) we further have
∫ T
0
h(Et) dt = X − ET , and thus the lower bound can

be rewritten as

(4.12) C(X) ≥ Φ(ET ) + Tg

(
X − ET

T

)
.

Recall that 0 ≤ ET ≤ X, so the argument of g in (4.12) is in [0, Y ].
This leads us to consider minimization of the function

G(e) , Φ(e) + Tg

(
X − e
T

)

over e ∈ [0, X]. By assumption, the function g is convex on [0, Y ] and hence
continuous on (0, Y ). Equations (4.3) and (4.5) show that g is also continuous at
the endpoints of its domain. Because Φ has the integral representation (3.7), it also
is convex and continuous on [0, X]. Therefore, G is a convex continuous function
on [0, X], and hence the minimum is attained.

We show next that the minimum of G over [0, X] is attained in [e,X]. For this,
we first observe that because g is convex,

D+g(y) ≥ g(y)− g(0)
y

= ψ
(
h−1(y)

)
, 0 < y ≤ Y .

This inequality together with (3.5) and (4.10) implies

(4.13) D−G(e) = ψ(e)−D+g(y)
∣∣∣
y=X−e

T

≤ ψ(e)− ψ
(
h−1

(
X − e
T

))
= 0.

Therefore, the minimum of the convex function G over [0, X] is obtained in [e,X].
Let e∗ ∈ [e,X] attain the minimum of G over [0, X]. The Type A strategy XA

with initial condition XA
0 = h−1(X−e

∗

T ) satisfies EAT = e∗ (see (4.8)), and hence
the strategy is feasible (see (4.11)). The cost associated with this strategy is less
than or equal to the right-hand side of (4.12) (see (4.9)). This strategy is therefore
optimal.

If g is strictly convex at the point X−e∗
T , where e∗ minimizes G, then G is

strictly convex at e∗, and this point is thus the unique minimizer of G. Therefore,
every optimal strategy strategy must satisfy ET = e∗. By strict convexity of g, a
strategy that does not keep h(E) equal to X−e∗

T almost everywhere in (0, T ), would
result in strict inequality in (4.12). Since h is strictly increasing and a process E
does not have negative jumps, we conclude that the only optimal strategy is the
Type A strategy constructed above. �

If g is not strictly convex at the point X−e∗
T found in the proof of Theorem 4.2,

then G might still be strictly convex at e∗, in which case there would be only one
optimal strategy of Type A, but there could be optimal strategies that are not of
Type A. We demonstrate this phenomenon with an example.

Example 4.3 (Non-uniqueness of optimal purchasing strategy). Suppose

F (x) =





x, 0 ≤ x ≤ 2,
4

4−x , 2 ≤ x ≤ 3,
4 + 1

8 (x− 3), x ≥ 3.
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This function is continuous and strictly increasing, and hence

ψ(y) =





y, 0 ≤ y ≤ 2,
4− 4

y , 2 ≤ y ≤ 4,
8y − 29, y ≥ 4,

is also continuous and strictly increasing. This implies that

Φ(y) =
∫ y

0

ψ(η)dη =





1
2y

2, 0 ≤ y ≤ 2,
4y − 6− 4 log y

2 , 2 ≤ y ≤ 4,
4y2 − 29y + 62− 4 log 2, y ≥ 4.

We take h(x) = x, so that

g(y) = yψ(y) =





y2, 0 ≤ y ≤ 2,
4y − 4, 2 ≤ y ≤ 4,
8y2 − 29y, y ≥ 4,

and

g′(y) =





2y, 0 ≤ y ≤ 2,
4, 2 ≤ y < 4,
16y − 29, y > 4,

Note that g′ is nondecreasing, so g is convex, but g is affine on the interval [2, 4].
Finally, we take X = 10 1

8 and T=2.
In the notation of the proof of Theorem 4.2, we have e∗ = 4 1

8 and hence X−e∗
T =

3. Indeed, G′
(
4 1

8

)
= ψ

(
4 1

8

)
− g′(3) = 0, and because ψ is strictly increasing, G is

strictly convex, and hence 4 1
8 is the unique minimizer of G.

The Type A strategy with EAT = 4 1
8 begins with an initial purchase of XA

0 = 3
and then consumes at rate 3 over the interval [0, 2], so that EAt = 3 for 0 ≤ t < T .
At the final time T = 2, there is an additional lump purchase of 11

8 , so that
EAT = 4 1

8 . The total cost of this strategy is

Φ(EAT ) +
∫ T

0

g(EAt ) dt = Φ
(

4
1
8

)
+
∫ 2

0

(
4EAt − 4

)
dt = Φ

(
4

1
8

)
+ 16.

In particular,
∫ 2

0
EAt dt = 6.

In fact, any policy that satisfies 2 ≤ Et ≤ 4, 0 ≤ t < 2, and
∫ 2

0
Et dt = 6 will

result in the same cost. Indeed, for such a policy we will have

ET = XT −
∫ T

0

Et dt = 10
1
8
− 6 = 4

1
8

= EAT

and ∫ T

0

g(Et) dt =
∫ T

0

(4Et − 4) dt = 16 =
∫ T

0

g(EAt ) dt,

so Φ(ET ) +
∫ T
0
g(Et) dt = Φ(EAT ) +

∫ T
0
g(EAt ) dt. There are infinitely many policies

like this. One such is to make an initial lump purchase of size 2, then purchase at
rate 2 up to time 1

2 so that Et = 2, 0 ≤ t < 1
2 , make a lump purchase of size 1

at time 1
2 , then purchase at rate 3 up to time 3

2 so that Et = 3, 1
2 ≤ t < 3

2 , make
a lump purchase of size 1 at time 3

2 , then purchase at rate 4 up to time 2 so that
Et = 4, 3

2 ≤ t < 2, and conclude with a lump purchase of size 1
8 at time 2 so that

E2 = 4 1
8 . �
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Remark 4.4. Alfonsi, Fruth and Schied [4] consider the case that the measure
µ has a strictly positive density f . In this case, the function F (x) =

∫ x
0
f(ξ) dξ

is strictly increasing and continuous with derivative F ′(x) = f(x), and its inverse
ψ is likewise strictly increasing and continuous with derivative ψ′(y) = 1/f(ψ(y)).
Furthermore, in [4] the resilience function is h(x) = ρx, where ρ is a positive
constant. In this case,

g′(y) = ψ(y/ρ) +
y/ρ

f
(
ψ(y/ρ)

) ,

and Theorem 4.2 guarantees the existence of a Type A strategy under the assump-
tion that g′ is nondecreasing. This is equivalent to the condition that

ψ(y) +
y

f
(
ψ(y)

)

is nondecreasing.
Alfonsi, Fruth and Schied [4] obtain a discrete-time version of a Type A strategy

under the assumption that

h1(y) , ψ(y)− e−ρτψ(e−ρτy)

is strictly increasing, where τ is the time between trading dates. In order to study
the limit of their model as τ ↓ 0, they observe that

lim
τ↓0

h1(y)/(1− e−ρτ ) = ψ(y) +
y

f
(
ψ(y)

) ,

which is thus nondecreasing. Thus g given by (4.1) is convex in their model.
To find a simpler formulation of the hypothesis of Theorem 4.2 under the

assumption that µ has a strictly positive density f and h(x) = ρx for a positive
constant ρ, we compute

d

dy

(
ψ(y) +

y

f
(
ψ(y)

)
)

=
2

f
(
ψ(y)

) − yf ′
(
ψ(y)

)

f3
(
ψ(y)

) .

This is nonnegative if and only if 2f2
(
ψ(y)

)
≥ yf ′

(
ψ(y)

)
. Replacing y by F (x), we

obtain the condition
2f2(x) ≥ F (x)f ′(x), x ≥ 0.

This is clearly satisfied under the assumption of [10] that f is a positive constant.
�

Example 2.1 (Block order book, continued) In the case of the block order
book with h(x) = ρx, where ρ is a strictly positive constant,

g(y) =
yh−1(y)

q
=
y2

ρq
,

which is strictly convex. Theorem 4.2 implies that there is an optimal strategy of
Type A, and this is the unique optimal strategy. From the formula Φ(e) = 1

2q e
2,

we have

G(e) =
e2

2q
+

(X − e)2
ρqT

.
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The minimizer is e∗ = 2X
2+ρT , which lies between e = X

1+ρT and X, as expected.
According to Remark 4.1, the optimal strategy of Type A is to make an initial
purchase of size

XA
0 = h−1

(
X − e∗
T

)
=

X

2 + ρT
,

then purchase continuously at rate dXA
t = h(XA

0 ) dt = ρX
2+ρT dt over the time

interval [0, T ], and conclude with a lump purchase

e∗ −XA
0 =

X

2 + ρT

at the final time T . In particular, the initial and final lump purchases are of the
same size, and there is no intermediate lump purchase.

4.2. Type B Strategies.

Theorem 4.5. In the absence of the assumption that g given by (4.1) is convex,
there exists a Type B purchasing strategy that minimizes C(X) over all purchasing
strategies X.

The proof of Theorem 4.5 depends on the following lemma, whose proof is given
in Appendix 3.

Lemma 4.6. The convex hull of g, defined by

(4.14) ĝ(y) , sup
{
`(y) : ` is an affine function and `(η) ≤ g(η)∀η ∈ [0, Y ]

}
,

is the largest convex function defined on [0, Y ] that is dominated by g there. It is
continuous and nondecreasing on [0, Y ], ĝ(0) = g(0) = 0, and ĝ(Y ) = g(Y ). If
y∗ ∈ (0, Y ) satisfies ĝ(y∗) < g(y∗), then there exists a unique affine function ` lying
below g on [0, Y ] and agreeing with ĝ at y∗. In addition, there exist numbers α and
β satisfying

0 ≤ α < y∗ < β ≤ Y ,(4.15)
`(α) = ĝ(α) = g(α), `(β) = ĝ(β) = g(β),(4.16)

`(y) = ĝ(y) < g(y), α < y < β.(4.17)

Proof of Theorem 4.5: Using ĝ in place of g in (4.4), we define the modified
cost function

Ĉ(X) , Φ(ET ) +
∫ T

0

ĝ
(
h(Et)

)
dt.

For any purchasing strategy X, we obviously have Ĉ(X) ≤ C(X). Analogously to
(4.12), for any purchasing strategy X the lower bound

Ĉ(X) ≥ Φ(ET ) + T ĝ

(
X − ET

T

)

holds. This leads us to consider minimization of the function

(4.18) Ĝ(e) , Φ(e) + T ĝ

(
X − e
T

)

over e ∈ [0, X]. As in the proof of Theorem 4.2, this function attains its minimum
at some e∗ ∈ [0, X].
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For the remainder of the proof, we use the notation

(4.19) y∗ =
X − e∗
T

, x∗ = h−1(y∗),

where it is assumed without loss of generality that e∗ is the largest minimizer of Ĝ
in [0, X]. There are two cases. In both cases, we construct a strategy that satisfies
EBT = e∗ and

(4.20) C(XB) = Ĝ(e∗).

In the first case, the strategy is a Type A strategy, and it is Type B in the second
case. In both cases, we exhibit the strategy explicitly.

Case I. ĝ(y∗) = g(y∗).
It is tempting to claim that we are now in the situation of Theorem 4.2 with

the convex function ĝ replacing g. However, the proof needed here that e∗ ≥ e,
where e is determined by (4.10), cannot follow the proof of Theorem 4.2. In the
proof of Theorem 4.2, this inequality was a consequence of (4.13), which ultimately
depended on the definition (4.1) of g(e). But we only have ĝ(e) ≤ eψ(h−1(e)); we
do not have an equation analogous to (4.1) for ĝ. We thus provide a different proof,
which depends on e∗ being the largest minimizer of Ĝ in [0, X].

If x∗ = 0, then y∗ = 0, e∗ = X, and Ĝ(e∗) = G(e∗). The Type A strategy that
waits until the final time T and then purchases X is optimal. In particular, this
strategy satisfies the initial condition XA

0 = x∗.
If x∗ > 0, we must consider two subcases. It could be that 0 < x∗ ≤ F (0+).

In this subcase, ĝ(y∗) = g(y∗) = y∗ψ(x∗) = 0 because ψ ≡ 0 on [0, F (0+)]. But
ĝ(0) = 0 and ĝ is nondecreasing, so ĝ ≡ 0 on [0, y∗]. Furthermore, x∗ is positive,
so e∗ < X. For e ∈ (e∗, X), the number X−e

T is in (0, y∗), and by (3.5), D+Ĝ(e) =
D+Φ(e) = ψ(e+). On the other hand, e∗ is the largest minimizer of Ĝ in [0, X],
which implies D+Ĝ(e) > 0. This shows that ψ(e+) > 0 for every e ∈ (e∗, X), which
implies that ψ(e) > 0 for every e ∈ (e∗, X) and further implies that e ≥ F (0+) for
every e ∈ (e∗, X). We conclude that e∗ ≥ F (0+). Applying h to this inequality
and using the subcase assumption x∗ ≤ F (0+), we obtain

(4.21) h(e∗) ≥ h
(
F (0+)

)
≥ h(x∗) =

X − e∗
T

.

In other words, e∗ + h(e∗)T ≥ X, and by the defining equation (4.10) of e, we
conclude that e∗ ≥ e. The corresponding optimal strategy, which is Type A,
satisfies XA

0 = x∗ and EAT = e∗. The proof of optimality of this strategy follows
the proof of Theorem 4.2 with ĝ replacing g.

Finally, we consider the subcase x∗ > F (0+). Because y∗ = h(x∗) is positive,
the left-hand derivative of ĝ at y∗ is defined, and it satisfies

(4.22) D−ĝ(y∗) ≥ ĝ(y∗)− ĝ(0)
y∗

=
g(y∗)
y∗

= ψ(x∗).

In fact, the inequality in (4.22) is strict. It it were not, the affine function

`(y) = ψ(x∗)
(
y − y∗

)
+ ĝ(y∗) = yψ(x∗)

would describe a tangent line to the graph of ĝ at (y∗, ĝ(y∗)) lying below ĝ(y), and
hence below g(y), for all y ∈ [0, Y ]. But the resulting inequality yψ(x∗) ≤ g(y) =
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yψ(h−1(y))) yields ψ(x∗) ≤ ψ(h−1(y)) for all y ∈ (0, Y ], and letting y ↓ 0, we
would conclude ψ(x∗) = 0. This violates the subcase assumption x∗ > F (0+). We
conclude that D−ĝ(y∗) > ψ(x∗). The strict inequality, the fact that e∗ minimizes
Ĝ, and (3.5) further imply

0 ≤ D+Ĝ(e∗) = D+Φ(e∗)−D−ĝ(y∗) < ψ(e∗+)− ψ(x∗).

But ψ(x∗) < ψ(e∗+) implies x∗ ≤ e∗. Consequently, h(e∗) ≥ h(x∗) = X−e∗
T . This

is the essential part of inequality (4.21), and we conclude as above, constructing an
optimal Type A strategy with XA

0 = x∗ and EAT = e∗.

Case II. ĝ(y∗) < g(y∗).
Recall from Lemma 4.6 that this case can occur only if 0 < y∗ < Y . In

particular, x∗ > 0. We let ` to be the affine function and α and β be numbers as
described in Lemma 4.6, and we construct a Type B strategy. To do this, we define
t0 ∈ (0, T ) by

(4.23) t0 =

(
β − y∗

)
T

β − α ,

so that αt0 +β(T − t0) = y∗T . Consider the Type B strategy that makes an initial
purchase XB

0 = h−1(α), then purchases at rate dXB
t = αdt for 0 ≤ t < t0 (so

EBt = h−1(α) for 0 ≤ t < t0), follows this with a purchase ∆XB
t0 = h−1(β)−h−1(α)

at time t0, thereafter purchases at rate dXB
t = β dt for t0 ≤ t < T (so EBt = h−1(β)

for t0 ≤ t < T ), and makes a final purchase X − XB
T− at time T . According to

(2.3),

XB
t =





h−1(α) + αt, 0 ≤ t < t0,
h−1(β) + αt0 + β(t− t0), t0 ≤ t < T,
X, t = T.

In particular,

(4.24) ∆XB
T = X −h−1(β)−αt0−β(T − t0) = X −h−1(β)− y∗T = e∗−h−1(β).

We show at the end of this proof that

(4.25) h−1(β) ≤ e∗.

This will ensure that ∆XB
T is nonnegative, and since XB is obviously nondecreasing

on [0, T ), this will establish that XB is a feasible purchasing strategy.
Accepting (4.25) for the moment, we note that (4.24) implies

(4.26) EBT = EBT− + ∆EBT = h−1(β) + ∆XB
T = e∗.
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Using (4.4), (4.26), (4.16), the linearity of `, and (4.17) in that order, we compute

C(XB) = Φ(EBT ) +
∫ T

0

g
(
h(EBt )

)
dt

= Φ(e∗) + g(α)t0 + g(β)(T − t0)
= Φ(e∗) + `(α)t0 + `(β)(T − t0)

= Φ(e∗) + T`

(
αt0 + β(T − t0)

T

)

= Φ(e∗) + T`(y∗)
= Φ(e∗) + T ĝ(y∗)

= Ĝ(e∗),

This is (4.20).
Finally, we turn to the proof of (4.25). Because e∗ is the largest minimizer

of the convex function Ĝ in [0, X] and e∗ < X (because x∗ > 0), the right-hand
derivative of Ĝ at e∗ must be nonnegative. Indeed, for all e ∈ (e∗, X), this right-
hand derivative must in fact be strictly positive. For e greater than but sufficiently
close to e∗, X−e

T is in (α, y∗), where ĝ is linear with slope g(β)−g(α)
β−α . For such e,

0 < D+Ĝ(e)

= D+Φ(e+)−D−ĝ(y)
∣∣∣
y=X−e

T

= ψ(e+)− g(β)− g(α)
β − α

= ψ(e+)− βψ
(
h−1(β)

)
− αψ

(
h−1(α)

)

β − α

≤ ψ(e+)− βψ
(
h−1(β)

)
− αψ

(
h−1(β)

)

β − α
= ψ(e+)− ψ

(
h−1(β)

)
.

This inequality ψ
(
h−1(β)

)
< ψ(e+) for all e greater than but sufficiently close to

e∗ implies (4.25). �

Remark 4.7 (Uniqueness). In Case I of the proof of Theorem 4.5, when ĝ(y∗) =
g(y∗), strict convexity of ĝ at y∗ implies uniqueness of the optimal purchasing
strategy. The proof is similar to the uniqueness proof in Theorem 4.2.

However, in Case II ĝ is not strictly convex at y∗. In this case, if ψ is strictly
increasing at e∗ and if the affine function ` of Lemma 4.6 agrees with g only at
α and β, then the optimal purchasing strategy is unique. Indeed, if ψ is strictly
increasing at e∗, then Φ and hence Ĝ are strictly convex at e∗, which implies that
e∗ is the unique minimizer of Ĝ. In order to be optimal, a purchasing strategy must
satisfy the two inequalities

(4.27)
∫ T

0

g
(
h(Et)

)
dt ≥

∫ T

0

ĝ
(
h(Et)

)
dt ≥ T ĝ

(∫ T

0

h(Et)
dt

T

)

with equality, as we explain below, and must also satisfy ET = e∗. When the
inequalities (4.27) hold, we can use (2.3) to obtain a lower bound on the cost of an
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arbitrary purchasing strategy X by relations

C(X) = Φ(ET ) +
∫ T

0

g(h(Et))dt

≥ Φ(ET ) + T ĝ

(∫ T

0

h(Et)
dt

T

)

= Φ(ET ) + T ĝ

(
X − ET

T

)

= Ĝ(ET ).

The minimal cost is Ĝ(e∗) = Φ(e∗) + T ĝ(X−e
∗

T ) = Φ(e∗) + T ĝ(y∗), and hence
optimality of a strategy requires that equality hold in both parts of (4.27). The
second inequality in (4.27) is Jensen’s inequality, and equality holds if and only if
h(Et), 0 ≤ t < T , stays in the region in which ĝ is affine. But the average value of
h(Et), 1

T

∫ T
0
h(Et)dt, is equal to y∗, and hence we cannot have h(Et) < y∗ for all

t ∈ [0, T ), nor can we have h(Et) > y∗ for all t ∈ [0, T ). Hence the region in which
h(Et) stays must be the region in which ĝ agrees with `. To get an equality in the
first inequality in (4.27), h(Et), 0 ≤ t < T , must stay in the region where ĝ agrees
with g. If ` agrees with g only at the two points α and β, then h(Et), 0 ≤ t < T ,
must stay in the two-point set {α, β}. Because ∆Et = ∆Xt ≥ 0 for all t, there
must be some initial time interval [0, t0) on which h(Et) = α and there must be
some final time interval [t0, T ) on which h(Et) = β. In order to achieve this and to
also have 1

T

∫ T
0
h(Et) = y∗, t0 must be given by (4.23). �

4.3. Examples of Type B optimal strategies.
Example 2.2 (Modified block order book, continued). We continue Example

2.2 under the simplifying assumptions T = 1 and h(x) = x for all x ≥ 0, so
h−1(y) = y for all y ≥ 0 and Y = X. Recalling (2.6) and (4.1), we see that

g(y) =
{
y2, 0 ≤ y ≤ a,
y2 + (b− a)y, a < y <∞.

The convex hull of g over [0,∞), given by (4.14), is

ĝ(y) =





y2, 0 ≤ y ≤ a,
(2β + b− a)(y − a) + a2, a ≤ y ≤ β,
y2 + (b− a)y, β ≤ y <∞,

where

(4.28) β = a+
√
a(b− a)

(see Fig. 6). We take X = Y > β so that this is also the convex hull of g over
[0, Y ].

For a < y∗ < β, we have ĝ(y∗) < g(y). For constants α and β from the
statement of Lemma 4.6 (see (3.1)–(3.2) in Appendix 3), we have α of (3.1) is a,
and β of (3.2) is given by (4.28). In order to illustrate a case in which a Type B
purchasing strategy is optimal, we assume

(4.29) a+ 2β < X < 3β.

The function Ĝ of (4.18) is minimized over [0, X] at e∗ if and only if

0 ∈ ∂Ĝ(e∗) = ∂Φ(e∗)− ∂ĝ(X − e∗),
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Figure 6. Function g for the modified block order book with pa-
rameters a = 4 and b = 14. The convex hull ĝ is constructed by
replacing a part {g(y) , y ∈ (a, β)} by a straight line connecting
g(a) and g(β). Here β = 10.3246.

which is equivalent to ∂Φ(e∗) ∩ ∂ĝ(X − e∗) 6= ∅. We show below that the largest
value of e∗ satisfying this condition is e∗ = 2β. According to (4.29), e∗ = 2β is in
(X − β,X − a). Because β > a, e∗ is also in (a,∞). We compute (recall (2.12))

∂Φ(e) =




{e}, 0 ≤ e < a,
[a, b], e = a,
{e+ b− a}, a < e <∞,

∂ĝ(X − e) =





{
2(X − e) + b− a

}
, 0 ≤ e ≤ X − β,{

2β + b− a
}
, X − β ≤ e < X − a,

[2a, 2β + b− a], e = X − a,{
2(X − e)

}
, X − a < e ≤ X,

and then evaluate

∂Φ(e∗) = {e∗ + b− a} = {2β + b− a} = ∂ĝ(X − e∗).

Therefore, Ĝ attains its minimum at e∗.
To see that there is no e ∈ (2β,X] where Ĝ attains its minimum, we observe

that for e ∈ (2β,X − a), ∂Φ(e) ∩ ∂ĝ(X − e) = {e + b − a} ∩ {2β + b − a} = ∅.
For e ∈ [X − a,X], all points in ∂ĝ(X − e) lie in the interval [0, 2a], whereas the
only point in ∂Φ(e), which is e+ b− a, lies in the interval [X + b− 2a,X + b− a].
Because of (4.29), we have 2a < X + b− 2a, and hence ∂Φ(e) ∩ ∂ĝ(X − e) = ∅ for
e ∈ [X − a,X].

As in the proof of Theorem 4.5, we set y∗ = X − e∗ = X − 2β, x∗ = h−1(y∗) =
X − 2β. Condition (4.29) is equivalent to a < y∗ < β, which in turn is equivalent
to ĝ(y∗) < g(y∗). The first inequality in (4.29) shows that x∗ > 0, and we are thus
in Case II of the proof of Theorem 4.5. In this case, we define

t0 =
β − y∗
β − a =

3β −X
β − a .
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The optimal purchasing strategy is

XB
t =





a(t+ 1), 0 ≤ t < t0,
at0 + β(t+ 1− t0), t0 ≤ t < 1,
X, t = 1.

In particular, ∆X0 = a, ∆Xt0 = β − a, ∆X1 = β (see (4.24) for the last equality).
The corresponding EB process is

EBt =





a, 0 ≤ t < t0,
β, t0 ≤ t < 1,
2β, t = 1.

The initial lump purchase moves the ask price to the left endpoint a of the gap
in the order book. Purchasing is done to keep the ask price at a until time t0, when
another lump purchase moves the ask price to β, beyond the right endpoint b of
the gap in the order book. Purchasing is done to keep the ask price at β until the
final time, when another lump purchase is executed. �

Example 2.3 (Discrete order book, continued). We continue Example 2.3
under the simplifying assumptions that T = 1 and h(x) = x for all x ≥ 0, so that
h−1(y) = y for all y ≥ 0 and Y = X. From (2.8) and (4.1) we see that g(0) = 0,
and g(y) = ky for integers k ≥ 0 and k < y ≤ k + 1. In particular, g(k) = (k − 1)k
for nonnegative integers k. The convex hull of g interpolates linearly between the
points (k, (k−1)k) and (k+1, k(k+1)), i.e., ĝ(y) = k(2y−(k+1)) for k ≤ y ≤ k+1,
where k ranges over the nonnegative integers (see Fig. 7).

Figure 7. Function g for the discrete order book. The convex
hull ĝ interpolates linearly between the points (k, (k − 1)k) and
(k + 1, k(k + 1)).

Therefore,

∂ĝ(y) =




{0}, y = 0,
[2(k − 1), 2k], y = k and k is a positive integer,
{2k}, k < y < k + 1 and k is a nonnegative integer.
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Recall from the discussion following (2.13) that

∂Φ(y) =




{0}, y = 0,
[k − 1, k], y = k and k is a positive integer,
{k}, k < y < k + 1 and k is a nonnegative integer.

We seek the largest number e∗ ∈ [0, X] for which ∂Φ(e∗) ∩ ∂ĝ(X − e∗) 6= ∅.
This is the largest minimizer of Ĝ(e) = Φ(e) + ĝ(X − e) in [0, X]. We define k∗ to
be the largest integer less than or equal to X

3 , so that

3k∗ ≤ X < 3k∗ + 3.

We divide the analysis into three cases:
Case A:: 3k∗ ≤ X ≤ 3k∗ + 1,
Case B:: 3k∗ + 1 < X < 3k∗ + 2,
Case C:: 3k∗ + 2 ≤ X < 3k∗ + 3.

We show below that in Cases A and B, the optimal strategy makes an initial lump
purchase of size k∗, which executes the orders at prices 0, 1, . . . , k∗ − 1. In Case A
the optimal strategy then purchases at rate k∗ over the interval (0, 1), and at time
1 makes a final lump purchase of size X − 2k∗, which is in the interval [k∗, k∗ + 1].
This is a Type A strategy. In Case B there is an intermediate lump purchase of size
one at time 3k∗ + 2 −X. Before this intermediate purchase, the rate of purchase
is k∗ and after this purchase, the rate of purchase is k∗ + 1. In Case B at time 1
there is a final lump purchase of size k∗. In Case B we have a Type B strategy.
In Case C, the optimal strategy makes a lump purchase of size k∗ + 1 at time 0,
which executes the orders at prices 0, 1, . . . , k∗ − 1, k∗. The optimal strategy then
purchases continuously at rate k∗ + 1 over the interval (0, 1), and at time 1 makes
a final lump purchase of size X − 2k∗− 2, which is in the interval [k∗, k∗+ 1). This
is a Type A strategy.
Case A: 3k∗ ≤ X ≤ 3k∗ + 1.

We define e∗ = X − k∗, so that 2k∗ ≤ e∗ ≤ 2k∗ + 1 and k∗ = X − e∗. Then
2k∗ ∈ ∂Φ(e∗) and ∂ĝ(X − e∗) = [2(k∗ − 1), 2k∗], so the intersection of ∂Φ(e∗)
and ∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗, then
∂Φ(e) ⊂ [2k∗, X] and ∂ĝ(X − e) ⊂ [0, 2(k∗ − 1)], so the intersection of these two
sets is empty.

In this case, y∗ and x∗ defined by (4.19) are both equal to k∗ and hence ĝ(y∗) =
g(y∗). If k∗ = 0, we are in the first subcase of Case I of the proof of Theorem 4.5.
The optimal purchasing strategy is to do nothing until time 1, and then make a
lump purchase of size X. If k∗ = 1, which is equal to F (0+), we are in the second
sub-case of Case I of the proof of Theorem 4.5. We should make an initial purchase
of size x∗ = 1, purchase continuously over the time interval (0, 1) at rate 1 so that
that Et ≡ 1 and Dt ≡ 0, and make a final purchase of size X − 2. If k∗ ≥ 2, we
are in the third subcase of Case I of the proof of Theorem 4.5. We should make
an initial purchase of size k∗, purchase continuously over the time interval (0, 1) at
rate k∗ so that Et ≡ k∗ and Dt ≡ k∗−1, and make a final purchase of size X−2k∗.
Case B: 3k∗ + 1 < X < 3k∗ + 2.

We define e∗ = 2k∗ + 1, so that k∗ < X − e∗ < k∗ + 1. Then ∂Φ(e∗) =
[2k∗, 2k∗ + 1] and 2k∗ ∈ ∂ĝ(X − e∗), so the intersection of ∂Φ(e∗) and ∂ĝ(X − e∗)
is nonempty, as desired. On the other hand, if e > e∗, then ∂Φ(e) ⊂ [2k∗ + 1, X]
and ∂ĝ(X − e) ⊂ [0, 2k∗], so the intersection of these two sets is empty.
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In this case, y∗ and x∗ defined by (4.19) are both equal to X − e∗. Hence k∗ <
y∗ < k∗ + 1, ĝ(y∗) < g(y∗), and we are in Case IIof the proof of Theorem 4.5 with
α = k∗ and β = k∗ + 1 (see (4.14)–(4.17) and (3.1)–(3.2)).The optimal purchasing
strategy is Type B. In particular, with t0 = β − y∗ = k∗ + 1 − x∗ = 3k∗ + 2 −X,
the optimal purchasing strategy makes an initial lump purchase α = k∗, which
executes the orders at prices 0, 1,. . . ,k∗ − 1, then purchases continuously over the
interval (0, t0) at rate k∗ so that Et ≡ k∗ and Dt ≡ k∗−1, at time t0 makes a lump
purchase of size β − α = 1, which consumes the order at price k∗, then purchases
continuously over the interval (t0, 1) at rate k∗+1 so that Et ≡ k∗+1 and Dt ≡ k∗,
and finally executes a lump purchase of size e∗−β = k∗ (see (4.24)) at time 1. The
total quantity purchased is

k∗ + k∗t0 + 1 + (k∗ + 1)(1− t0) + k∗ = X,

as required.
Case C: 3k∗ + 2 ≤ X < 3k∗ + 3.

We define e∗ = X−k∗−1, so that 2k∗+ 1 ≤ e∗ < 2k∗+ 2 and X−e∗ = k∗+ 1.
Then 2k∗ + 1 ∈ ∂Φ(e∗) and ĝ(X − e∗) = [2k∗, 2k∗ + 2], and the intersection of
∂Φ(e∗) and ∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗, then
∂Φ(e) ⊂ [2k∗ + 1, X] and ∂ĝ(X − e) ⊂ [0, 2k∗], so the intersection of these two sets
is empty. In this case, y∗ and x∗ are both equal to k∗+ 1. The optimal purchasing
strategy falls into either second (if k∗ = 0) or third (if k∗ ≥ 1) subcases of Case I
of the proof of Theorem 4.5. �





Bibliography

[1] A. Alfonsi, A. Fruth and A. Schied, Constrained portfolio liquidation in a limit order

book model, Banach Center Publ. 83 (2008), pp. 9–25.
[2] A. Alfonsi and A. Schied, Optimal trade execution and absence of price manipulations in

limit order models, SIAM J. Financial Math. 1 (2010), pp. 490–522.

[3] A. Alfonsi, A. Schied and A. Slynko, Order book resilience, price manipulation, and the
positive portfolio problem, (2010). Available at SSRN: http://ssrn.com/abstract=1498514.

[4] A. Alfonsi, A. Fruth and A. Schied, Optimal execution strategies in limit order books

with general shape functions, Quant. Finance 10 (2010), pp. 143–157.
[5] R. Almgren, Optimal execution with nonlinear impact functions and trading-enhanced risk,

Appl. Math. Finance 10 (2003), pp. 1–18.
[6] R. Almgren and N. Chriss, Value under liquidation, Risk 12(12) (1999), pp. 61–63.

[7] R. Almgren and N. Chriss, Optimal execution of portfolio transactions, J. Risk 3 (2001),

pp. 5–39.
[8] D. Bertsimas and A. W. Lo, Optimal control of liquidation costs, J. Financial Markets 1

(1998), pp. 1–50.

[9] J.-P. Bouchaud, J. D. Farmer and F. Lillo, How markets slowly digest changes in supply
and demand, in Handbook of Financial Markets: Dynamics and Evolution, North-Holland

Elsevier, 2009.

[10] A. Obizhaeva and J. Wang, Optimal trading strategy and supply/demand dynamics. EFA
2005 Moscow Meetings Paper, (2005). Available at SSRN: http://ssrn.com/abstract =666541.

[11] P. Protter, Stochastic Integration and Differential Equations, 2nd Edition, Springer, 2005.

[12] J. Gatheral, No-dynamic-arbitrage and market impact, Quantitative Finance, to appear.
Available at SSRN: http://ssrn.com/abstract=1292353.

[13] J. Gatheral, A. Schied and A. Slynko, Transient linear price impact and Fredholm integral
equations (2010). Available at SSRN: http://papers/ssrn.com/abstract=1531466.

[14] J. Gatheral, A. Schied and A. Slynko, Exponential resilience and decay of market impact,

2010. Available at SSRN: http://ssrn.com/abstract=1650937.
[15] R. C. Grinold and R. N. Kahn, Active Portfolio Management (2nd ed.), McGraw Hill,

1999.

[16] G. Huberman and W. Stanzl, Price manipulation and quasi-arbitrage, Econometrica 72
(2004), 1247–1275.

[17] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991.

[18] A. Weiss, Executing large orders in a microscopic market model, (2009). Available at
http://arxiv.org/abs/0904.4131v1.

1. The process E

In this appendix we prove that there exists a unique adapted process E satis-
fying (2.3) pathwise, and we provide a list of its properties.

Lemma 1.1. Let h be a nondecreasing, real-valued, locally Lipschitz function
defined on [0,∞) such that h(0) = 0. Let X be a purchasing strategy. Then there
exists a unique bounded adapted process E depending pathwise on X such that (2.3)
is satisfied. Furthermore,

(i) E is right continuous with left limits;
(ii) ∆Et = ∆Xt for all t;

33
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(iii) E has finite variation on [0, T ];
(iv) E takes values in [0, X].

Proof: Because we do not know a priori that E is nonnegative, we extend h to all
of R by defining h(x) = 0 for x < 0. This extended h is nondecreasing and locally
Lipschitz.

In Section 2 we introduced the filtration {Ft}0≤t≤T . The purchasing strategy X
is right-continuous and adapted to this filtration, and hence is an optional process,
i.e., (t, ω) 7→ Xt(ω) is measurable with respect to the optional σ-algebra, the σ-
algebra generated by the right-continuous adapted processes. For any bounded
optional process Y , h(Y ) and

∫ ·
0
h(Ys) ds are also bounded optional processes.

Optional processes are adapted, and hence
∫ t
0
h(Ys) ds is Ft-measurable for each

t ∈ [0, T ].
We first prove uniqueness. If E and Ê are bounded processes satisfying (2.3),

then there is a local Lipschitz constant K, chosen taking the bounds on E and Ê
into account, such that

|Et − Êt| =
∣∣∣∣
∫ t

0

(
h(Es)− h(Ês)

)
ds

∣∣∣∣ ≤ K
∫ t

0

|Es − Ês| ds.

Gronwall’s inequality implies E = Ê.
For the existence part of the proof, we assume for the moment that h is globally

Lipschitz with Lipschitz constant K, and we construct E as a limit of a recursion.
Let E0

t ≡ X0. For n = 1, 2, . . . , define recursively

Ent = Xt −
∫ t

0

h(En−1
s ) ds, 0 ≤ t ≤ T.

Since X is bounded and optional, each En is bounded and optional. For n =
1, 2, . . . , let Znt = sup0≤s≤t |Ens − En−1

s |. A proof by induction shows that

Znt ≤
Kn−1tn−1

(n− 1)!
max

{
X,Th(X0) +X0

}
.

Because this sequence of nonrandom bounds is summable, En converges uniformly
in t ∈ [0, T ] and ω to a bounded optional process E that satisfies (2.3). In particular,
Et is Ft-measurable for each t, and since X is nondecreasing and right-continuous
with left limits and the integral in (2.3) is continuous, (i), (ii) and (iii) hold.

It remains to prove (iv). For ε > 0, let Xε
t = Xt + εt and define tε0 = inf{t ∈

[0, T ] : Eεt < 0}. Assume this set is not empty. Then the right-continuity of Eε

combined with the fact that Eε has no negative jumps implies that Eεtε0 = 0. Let
tεn ↓ tε0 be such that Eεtεn < 0 for all n. Then

∫ tεn

tε0

h(Eεs) ds = Xε
tεn
−Xε

tε0
− (Eεtεn − E

ε
tε0

) > Xε
tεn
−Xε

tε0
≥ ε(tεn − tε0).

But since ∫ tεn

tε0

h(Eεs) ds ≤ K( max
tε0≤s≤tεn

Eεs)(tεn − tε0),

there must exist sεn ∈ (tε0, t
ε
n) such that Eεsεn ≥

ε
K . This contradicts the right

continuity of Eε at tε0. Consequently, the set {t ∈ [0, T ] : Eεt < 0} must be empty.
We conclude that Eεt ≥ 0 for all t ∈ [0, T ].
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Now notice that for 0 ≤ t ≤ T ,

Eεt − Et = εt−
∫ t

0

(h(Eεs)− h(Es)) ds,

and hence

|Eεt − Et| ≤ εt+K

∫ t

0

|Eεs − Es| ds.

Gronwall’s inequality implies that Eε → E as ε ↓ 0. Since Eεt ≥ 0, we must have
Et ≥ 0 for all t. Equation (2.3) now implies that Et ≤ Xt, and therefore Et ≤ X.
The proof of (iv) is complete.

When h is locally but not globally Lipschitz, we let h̃ be equal to h on [0, X],
h̃(x) = 0 for x < 0, and h̃(x) = h(X) for x > X. We apply the previous arguments
to h̃, and we observe that the resulting Ẽ satisfies the equation corresponding to
h. �

Remark 1.2. The pathwise construction of E in the proof of Lemma 1.1 shows
that if X is deterministic, then so is E.
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2. E
∫ T
0
Xt dAt = 0

Lemma 2.1. Under the assumptions that 0 ≤ Xt ≤ X, 0 ≤ t ≤ T , and that the
continuous nonnegative martingale A satisfies (2.1), we have E

∫ T
0
Xt dAt = 0.

Proof: The Burkholder-Davis-Gundy inequality implies that the continuous
local martingale Mt =

∫ t
0
Xs dAs satisfies

E
[

max
0≤t≤T

|Mt|
]
≤ CE

[
〈M〉1/2T

]

= CE



(∫ T

0

X2
t d〈A〉t

)1/2



≤ CXE
[
〈A〉1/2T

]

= C ′XE
[

max
0≤t≤T

At
]
,

where C and C ′ are positive constants. By virtue of being a local martingale, M
has the property that EMτn = 0 for a sequence of stopping times τn ↑ T . The
dominated convergence theorem implies EMT = 0. �

3. Convex hull of g

Proof of Lemma 4.6: Recall the definition

ĝ(y) , sup
{
`(y) : ` is an affine function and `(η) ≤ g(η)∀η ∈ [0, Y ]

}
(4.14)

of the convex hull of g, defined for y ∈ [0, Y ]. The function ĝ is the largest convex
function defined on [0, Y ] that is dominated by g there.

For each 0 ≤ y < Y , the supremum in (4.14) is obtained by the support line of
ĝ at y. For y = 0 the zero function is such a support line, and hence 0 ≤ ĝ(0) ≤
g(0) = 0 (recall (4.3)). At y = Y the only support line might be vertical, in which
case the supremum in (4.14) is not attained. Because ĝ(0) = 0, ĝ is nonnegative,
and ĝ is convex, we know that ĝ is also nondecreasing. Being convex, ĝ is continuous
on (0, Y ), upper semi-continuous on [0, Y ], and we have continuity at 0 because of
(4.3). We also have continuity of ĝ at Y , as we now show. Given ε > 0, the definition
of ĝ implies that there exists an affine function ` ≤ g such that `(Y ) ≥ ĝ(Y ) − ε.
But ĝ ≥ `, and thus lim infy↑Y ĝ(y) ≥ limy↑Y `(y) = `(Y ) ≥ ĝ(Y ) − ε. Since ε > 0
is arbitrary, we must in fact have lim infy↑Y ĝ(y) ≥ ĝ(Y ). Coupled with the upper
semicontinuity of ĝ at Y , this gives us continuity.

We next argue that ĝ(Y ) = g(Y ). Suppose, on the contrary, we had ĝ(Y ) <
g(Y ). The function g is continuous at Y (see (4.5)) and ĝ is upper semicontinuous.
Therefore, there is a one-sided neighborhood [γ, Y ] of Y (with γ < Y ) on which
g − ĝ is bounded away from zero by a positive number ε. The function

ĝ(y) +
ε(y − γ)
Y − γ , 0 ≤ y ≤ Y ,

is convex, lies strictly above ĝ at Y , and lies below g everywhere. This contradicts
the fact that ĝ is the largest convex function dominated by g. We must therefore
have ĝ(Y ) = g(Y ).

Finally, we describe the situation when for some y∗ ∈ [0, Y ], we have ĝ(y∗) <
g(y∗). We have shown that this can happen only if 0 < y∗ < Y . Let ` be a support
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line of ĝ at y∗,which is an affine function that attains the maximum in (4.14) at
the point y∗. In particular, ` ≤ ĝ ≤ g and `(y∗) = ĝ(y∗). Define

α = sup{η ∈ [0, y∗] : g(η)− `(η) = 0},(3.1)

β = inf{η ∈ [y∗, Y ] : g(η)− `(η) = 0}.(3.2)

Because g is continuous, the minimum of g−` over [0, Y ] is attained. This minimum
cannot be a positive number ε, for then `+ε would be an affine function lying below
g. Therefore, either the supremum in (3.1) or the infimum in (3.2) is taken over a
nonempty set. In the former case, we must have g(α) = `(α), whereas in the latter
case g(β) = `(β).

Let us consider first the case that g(α) = `(α). Define γ = 1
2 (α + y∗). Like α,

γ is strictly less than y∗. The function g− ` attains its minimum over [γ, Y ]. If this
minimum were a positive number ε, then the affine function

`(y) +
ε
(
y − γ

)

Y − γ , 0 ≤ y ≤ Y ,

would lie below g but have a larger value at y∗ than `, violating the choice of `. It
follow that g−` attains the minimum value zero on [γ, Y ], and since this function is
strictly positive on [γ, y∗], the minimum is attained to the right of y∗. This implies
that g(β) = `(β). Similarly, if we begin with the assumption that g(β) = `(β), we
can argue that g(α) = `(α).

In conclusion, α and β defined by (3.1) and (3.2) satisfy (4.15) and (4.16).
Finally, (4.16) shows that ` restricted to [α, β] is the largest affine function lying
below g on this interval, and hence (4.17) holds.

Because of (4.16), every affine function lying below g on [0, Y ] must lie below `
on [α, β]. If such an affine function agrees with ĝ and hence with ` at y∗, it must in
fact agree with ` everywhere. Hence, ` is the only function lying below g on [0, Y ]
and agreeing with ĝ at y∗. �
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CHAPTER 3

Integral Representation of Martingales and
Endogenous Completeness of Financial Models

1. Introduction

Let (Ω,F1,F = (Ft)t∈[0,1],P) be a complete filtered probability space, Q be an
equivalent probability measure, and S = (Sjt ) be a J-dimensional martingale under
Q. It is often important to know whether any local martingale M = (Mt) under Q
admits an integral representation with respect to S, that is,

(1) Mt = M0 +
∫ t

0

HudSu, t ∈ [0, 1],

for some predictable S-integrable process H = (Hj
t ). For instance, in mathematical

finance, which is the topic of a particular interest to us, the existence of such a
martingale representation corresponds to the completeness of the market model
driven by stock prices S, see Harrison and Pliska [5].

A general answer is given in Jacod [7], Section XI.1(a). Jacod’s theorem states
that the integral representation property holds if and only if Q is the only equivalent
martingale measure for S. In mathematical finance this result is sometimes referred
to as the 2nd fundamental theorem of asset pricing.

In many applications, including those in finance, the process S is defined in
terms of its predictable characteristics under P. The construction of a martingale
measure Q for S is then accomplished through the use of the Girsanov theorem and
its generalizations, see Jacod and Shiryaev [8]. The verification of the existence of
integral representations for all Q-martingales under S is often straightforward. For
example, if S is a diffusion process under P with the drift vector-process b = (bt)
and the volatility matrix-process σ = (σt), then such a representation exists if and
only if the volatility matrix-process σ has full rank dP× dt almost surely.

In this paper we assume that the inputs are the random variables ξ > 0 and
ψ = (ψj)j=1,...,J , while Q and S are defined as

dQ
dP
, ξ

E[ξ]
,

St , EQ[ψ|Ft], t ∈ [0, 1].

We are looking for (easily verifiable) conditions on ξ and ψ guaranteeing the integral
representation of all Q-martingales with respect to S.

Our study is motivated by the problem of endogenous completeness in financial
economics, see Anderson and Raimondo [1]. Here ξ is an equilibrium state price
density, usually defined implicitly by a fixed point argument, and ψ = (ψj) is the
random vector of the cumulative discounted dividends for traded stocks. The term
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“endogenous” is used because the stock prices S are now computed as an output of
equilibrium.

We focus on the case when ξ and ψ are defined in terms of a weak solution X to
a d-dimensional stochastic differential equation. With respect to x the coefficients
of this equation satisfy classical conditions guaranteeing weak existence and unique-
ness: the drift vector b(t, ·) is measurable and bounded and the volatility matrix
σ(t, ·) is uniformly continuous and bounded and has a bounded inverse. With re-
spect to t our assumptions are more stringent: b(·, x) and σ(·, x) are required to be
analytic functions. We give an example showing that the t-analyticity assumption
on the volatility matrix σ cannot be removed.

Our results complement and generalize those in Anderson and Raimondo [1],
Hugonnier, Malamud, and Trubowitz [6], and Riedel and Herzberg [18]. In the
pioneering paper [1], X is a Brownian motion. The proofs in this paper rely on non-
standard analysis. In [6] and [18], among other conditions, the diffusion coefficients
b = b(t, x) and σ = σ(t, x) are assumed to be analytic functions with respect to
(t, x). In one important aspect, however, the assumptions in [1], [6], and [18] are
less restrictive. If ψ = F (X1), where F = F j(x) is a J-dimensional vector-function
on Rd, then these papers require the Jacobian matrix of F to have rank d only on
some open set. In our framework, this property needs to hold almost everywhere
on Rd. We provide an example showing that in the absence of the x-analyticity
assumption on b and σ this stronger condition cannot be relaxed.

2. Main results

Let X be a Banach space and D be a subset of either the real line R or the
complex plane C. We remind the reader that a map f : D → X is called analytic
if for any x ∈ D there exist a number ε > 0 and a sequence A = (An)n≥0 in X
(both ε and A depend on x) such that

f(y) =
∞∑

n=0

An(y − x)n, y ∈ D, |y − x| < ε,

where the series converges in the norm ‖·‖X of X.
In the statements of our results, D = [0, 1] and X will be one of the following

spaces:
L∞ = L∞(Rd, dx): : the Lebesgue space of bounded measurable real-valued func-

tions f on an Euclidean space Rd with the norm ‖f‖L∞ , ess supx∈Rd |f(x)|.
As usual, the term a measurable function is used for an equivalence class of
Borel measurable functions indistinguishable with respect to the Lebesgue
measure.

C = C(Rd): : the Banach space of bounded and continuous real-valued functions
f on Rd with the norm ‖f‖C , supx∈Rd |f(x)|.

We shall use standard notations of linear algebra. If x and y are vectors in
an Euclidean space Rn, then xy denotes the scalar product and |x| , √xx. If
a ∈ Rm×n is a matrix with m rows and n columns, then ax denotes its product on
the (column-)vector x, a∗ stands for the transpose, and |a| ,

√
trace(aa∗).

Let Rd be an Euclidean space and the functions b = b(t, x) : [0, 1]× Rd → Rd
and σ = σ(t, x) : [0, 1]× Rd → Rd×d be such that for all i, j = 1, . . . , d:

(A1) t 7→ bi(t, ·) is an analytic map of [0, 1] to L∞.
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(A2) t 7→ σij(t, ·) is an analytic map of [0, 1] to C. For t ∈ [0, 1] and x ∈ Rd the
matrix σ(t, x) has the inverse σ−1(t, x) and there exists a constant N > 0,
same for all t and x, such that

(2) |σ−1(t, x)| ≤ N.
Moreover, there exists a strictly increasing function ω = (ω(ε))ε>0 such
that ω(ε)→ 0 as ε ↓ 0 and, for all t ∈ [0, 1] and all x, y ∈ Rd,

|σ(t, x)− σ(t, y)| ≤ ω(|x− y|).
Note that (2) is equivalent to the uniform ellipticity of the matrix-function a , σσ∗:
for all y ∈ Rd and (t, x) ∈ [0, 1]× Rd,

ya(t, x)y = |σ(t, x)y|2 ≥ 1
N2
|y|2.

Let X0 ∈ Rd. The classical results of Stroock and Varadhan [19], Theorem 7.2.1
and Krylov [16, 14] imply that under (A1) and (A2) there exist a complete filtered
probability space (Ω,F1,F = (Ft)t∈[0,1],P), a Brownian motion W , and a stochastic
process X, both with values in Rd, such that

(3) Xt = X0 +
∫ t

0

b(s,Xs)ds+
∫ t

0

σ(s,Xs)dWs, t ∈ [0, 1],

and, moreover, all finite dimensional distributions of X are defined uniquely. In
view of (2), we can (and will) assume that the filtration F is generated by X:

(4) F = FX .

In this case, P is defined uniquely in the sense that if Q ∼ P is an equivalent
probability measure on (Ω,F1) = (Ω,FX1 ) such that

Wt =
∫ t

0

σ−1(s,Xs)(dXs − b(s,Xs)ds), t ∈ [0, 1],

is a Brownian motion under Q, then Q = P.

Remark 2.1. With respect to x, (A1) and (A2) are, essentially, the minimal
classical assumptions guaranteeing the existence and the uniqueness of the weak
solution to (3). This weak solution is also well-defined when b and σ are only
measurable functions with respect to t. As we shall see in Example 2.6, the re-
quirement on σ to be t-analytic is, however, essential for the validity of our main
results, Theorems 2.3 and 2.5.

Remark 2.2. It is well-known that any local martingale M adapted to the
filtration FW , generated by the Brownian motion W , is a stochastic integral with
respect to W , that is, there exists an FW -predictable process H with values in Rd
such that

(5) Mt = M0 +
∫ t

0

HudWu ,M0 +
d∑

i=1

∫ t

0

Hi
udW

i
u, t ∈ [0, 1].

The example in Barlow [2] shows that under (A1) and (A2) the filtration FW

may be strictly smaller than F = FX . Nevertheless, for every local martingale M
adapted to F the integral representation (5) still holds with some F-predictable H.
This follows from the mentioned fact that any Q ∼ P such that W is a Q-local
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martingale (equivalently, a Q-Brownian motion) coincides with P and the integral
representation theorems in Jacod [7], Section XI.1(a).

Recall that a locally integrable function f on (Rd, dx) is weakly differentiable
if for any index i = 1, . . . , d there is a locally integrable function gi such that the
identity ∫

Rd

gi(x)h(x)dx = −
∫

Rd

f(x)
∂h

∂xi
(x)dx

holds for any function h ∈ C∞ with compact support, where C∞ is the space of
infinitely many times differentiable functions. In this case, we set ∂f

∂xi , gi. The
weak derivatives of higher orders are defined recursively.

Let J ≥ d be an integer and the functions F j , G : Rd → R and f j , αj , β :
[0, 1]× Rd → R, j = 1, . . . , J , be such that for some N ≥ 0

(A3) The functions F j are weakly differentiable, e−N |·| ∂F
j

∂xi ,
(
e−N |x| ∂F

j

∂xi (x)
)
x∈Rd ∈

L∞, i = 1, . . . , d, and the Jacobian matrix
(
∂F j

∂xi

)
i=1,...,d, j=1,...,J

has rank

d almost surely under the Lebesgue measure on Rd.
(A4) The functionG is strictly positive and weakly differentiable and e−N |·| ∂G∂xi ∈

L∞, i = 1, . . . , d.
(A5) The maps t 7→ e−N |·|f j(t, ·) ,

(
e−N |x|f j(t, x)

)
x∈Rd , t 7→ αj(t, ·), and

t 7→ β(t, ·) of [0, 1] to L∞ are analytic.
We now define the random variables

ψj , F j(X1)e
R 1
0 α

j(t,Xt)dt +
∫ 1

0

e
R t
0 α

j(s,Xs)dsf j(t,Xt)dt, j = 1, . . . , J,(6)

ξ , G(X1)e
R 1
0 β(t,Xt)dt,(7)

and state the main results of the paper.

Theorem 2.3. Suppose that (4) and (A1)–(A5) hold. Then the equivalent
probability measure Q with the density

dQ
dP
, ξ

E[ξ]
,

and the Q-martingale

St , EQ[ψ|Ft], t ∈ [0, 1],

with values in RJ are well-defined and any local martingale M under Q is a sto-
chastic integral with respect to S, that is, (1) holds.

Remark 2.4. The t-analyticity condition on f j in (A5) cannot be relaxed
even if X is a one-dimensional Brownian motion, see Example 2.7 below. By
contrast, the x-regularity assumptions on the functions F j , G, and f j in (A3),
(A4), and (A5) admit weaker formulations with the L∞ space being replaced by
appropriate Lp spaces (with the power p > 1 different for each of these functions).
This generalization leads, however, to more delicate and longer proofs and will be
dealt with elsewhere.

The proof of Theorem 2.3 will be given in Section 5 and will rely on the study of
parabolic equations in Section 4. In Section 3.2 we shall apply Theorem 2.3 to the
problem of endogenous completeness in an economy with terminal consumption.



2. MAIN RESULTS 43

The following result, which, in fact, is an easy corollary of Theorem 2.3, will
be used in Section 3.3 to study the endogenous completeness in an economy with
intermediate consumption. For i = 1, . . . , d let the functions γi = γi(t, x) on
[0, 1]× Rd be such that

(A6) the maps t 7→ γi(t, ·) of [0, 1] to L∞ are analytic.

Theorem 2.5. Suppose that (4), (A1)–(A3), and (A5)–(A6) hold. Then the
equivalent probability measure Q with the density

dQ
dP

= exp
(∫ 1

0

γ(s,Xs)dWs −
1
2

∫ 1

0

|γ(s,Xs)|2ds
)

and the Q-martingale

St , EQ[ψ|Ft], t ∈ [0, 1],

with values in RJ are well-defined and any local martingale under Q is a stochastic
integral with respect to S.

Proof. By Girsanov’s theorem,

WQ
t = Wt −

∫ t

0

γ(s,Xs)ds

is a Brownian motion under Q. After this substitution the equation (3) becomes

dXt =
(
b(t,Xt) + σ(t,Xt)γ(t,Xt)

)
dt+ σ(t,Xt)dW

Q
t , X0 = x.

The result now follows from Theorem 2.3, where we can assume ξ = 1, if we observe
that, similarly with b, each component of b̃ , b + σγ defines an analytic map of
[0, 1] to L∞. �

We conclude with a few counter-examples illustrating the sharpness of the
conditions of the theorems. Our first two examples show that the time analyticity
assumptions on the volatility coefficient σ = σ(t, x) and on the functions f j =
f j(t, x) in Theorems 2.3 and 2.5 cannot be relaxed. In both cases, we take b(t, x) =
α(t, x) = β(t, x) = γ(t, x) = 0 and G(x) = 1; in particular, Q = P.

Example 2.6. We show that the assertions of Theorems 2.3 and 2.5 can fail to
hold when all their conditions are satisfied except the t-analyticity of the volatility
matrix σ. In our construction, d = J = 2 and both σ and its inverse σ−1 are
C∞-matrices on [0, 1] × R2 which are bounded with all their derivatives and have
analytic restrictions to [0, 1

2 )× R2 and ( 1
2 , 1]× R2.

Let g = g(t) be a C∞-function on [0, 1] which equals 0 on [0, 1
2 ] and is analytic

and strictly positive on ( 1
2 , 1]. Let h = h(t, y) be a non-constant analytic function

on [0, 1]× R such that 0 ≤ h ≤ 1 and

∂h

∂t
+

1
2
∂2h

∂y2
= 0.

For instance, we can take

h(t, y) =
1
2

(1 + e
t−1
2 sin y).



44 3. ENDOGENOUS COMPLETENESS

Define a 2-dimensional diffusion (X,Y ) on [0, 1] by

Xt =
∫ t

0

√
1 + g(s)h(s, Ys)dBs,

Yt = Wt,

where B and W are independent Brownian motions. Clearly, the volatility matrix

σ(t, x, y) =
(√

1 + g(t)h(t, y) 0
0 1

)

has the announced properties and coincides with the identity matrix for t ∈ [0, 1
2 ].

Define the functions F = F (x, y) and H = H(x, y) on R2 as

F (x, y) = x,

H(x, y) = x2 − 1− h(1, y)
∫ 1

0

g(t)dt.

As h(1, ·) is non-constant and analytic, the set of zeros for ∂h
∂y (1, ·) is at most

countable. Since the determinant of the Jacobian matrix for (F,H) is given by

∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
= −∂h

∂y
(1, y)

∫ 1

0

g(t)dt,

it follows that this Jacobian matrix has full rank almost surely.
Observe now that

St , E[F (X1, Y1)|Ft] = Xt,

Rt , E[H(X1, Y1)|Ft] = X2
t − t− h(t, Yt)

∫ t

0

g(s)ds,

which can be verified by Ito’s formula. As g(t) = 0 for t ∈ [0, 1
2 ], it follows that

St = Bt and Rt = B2
t − t on [0, 1

2 ]. Hence, the Brownian motion Y = W cannot be
written as a stochastic integral with respect to (S,R).

Example 2.7. This counter-example shows the necessity of the t-analyticity
assumption on f j = f j(t, x) in (A5). Let g = g(t) be a C∞-function on [0, 1] which
equals 0 on [0, 1

2 ], is analytic on ( 1
2 , 1], and is such that g(1) 6= 0. For the functions

f(t, x) = −
(
g′(t)x+

1
2
g2(t)

)
eg(t)x,

F (x) = eg(1)x,

the conditions (A3) and (A5) hold except the time analyticity of the map t →
e−N |·|f(t, ·) of [0, 1] to L∞. This map belongs instead to C∞ and has analytic
restrictions to [0, 1

2 ) and (1
2 , 1].

Take X to be a one-dimensional Brownian motion:

Xt = Wt, t ∈ [0, 1],

and observe that, by Ito’s formula,

St , E[ψ|Ft] = eg(t)Wt −
∫ t

0

(
g′(s)Ws +

1
2
g2(s)

)
eg(s)Wsds,

where

ψ = F (X1) +
∫ 1

0

f(t,Xt)dt.



3. ENDOGENOUS COMPLETENESS 45

For t ∈ [0, 1
2 ] we have g(t) = 0 and, therefore, St = 1. Hence, any local martingale

M which is non-constant on [0, 1
2 ] cannot be a stochastic integral with respect to

S.

When the diffusion coefficients σij = σij(t, x) and bi = bi(t, x) and the functions
f j = f j(t, x) in (A5) are also analytic with respect to the state variable x, the results
in [6] and [18] show that in (A3) it is sufficient to require the Jacobian matrix of
F = F (x) to have rank d only on an open set. The following example shows that
in the case of C∞ functions this simplification is not possible anymore.

Example 2.8. Let d = J = 2 and let g : R → R be a C∞ function such that
g(x) = 0 for x ≤ 0, while g′(x) > 0 and g′′(x) is bounded for x > 0.

Define the diffusion processes X and Y on [0, 1] by

Xt = Bt,

Yt =
∫ t

0

g′′(Xs)ds+Wt,

where B and W are independent Brownian motions. Clearly, the diffusion coeffi-
cients of (X,Y ) satisfy (A1) and (A2).

Define the functions F = F (x, y) and H = H(x, y) on R2 as

F (x, y) = y,

H(x, y) = y − 2g(x),

and the function f = f(t, x, y) on [0, 1]× R2 as

f(t, x, y) = −g′′(x).

Observe that the determinant of the Jacobian matrix for (F,H) is given by
∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
= 2g′(x),

and, hence, this Jacobian matrix has full rank on the set (0,∞)× R.
A simple application of Ito’s formula yields

St , E[F (X1, Y1) +
∫ 1

0

f(s,Xs, Ys)ds|Ft] = Wt,

Rt , E[H(X1, Y1)|Ft] = Wt − 2
∫ t

0

g′(Xs)dBs.

Hence, any martingale in the form

Mt =
∫ t

0

h(Xs)dBs,

where the function h = h(x) is different from zero for x ≤ 0, cannot be written as
a stochastic integral with respect to (S,R).

3. Endogenous completeness

In this section, Theorems 2.3 and 2.5 will be applied to the problem of endoge-
nous completeness in financial economics.

As before, the uncertainty and the information flow are modeled by the filtered
probability space (Ω,F1,F = (Ft)t∈[0,1],P) with the filtration F generated by the
solution X to (3).
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3.1. Financial market with exogenous prices. Recall first the “standard”
model of mathematical finance, where the prices of traded securities are given as
model inputs or, in more economic terms, exogenously.

Consider a financial market with J + 1 traded assets: a bank account and J
stocks. The bank account pays the continuous interest rate r = (rt) and the stocks
pay the continuous dividends θ = (θjt ) and have the prices P = (P jt ), where t ∈ [0, 1]
and j = 1, . . . , J . We assume that P is a continuous semimartingale with values in
RJ and ∫ 1

0

(|rt|+ |θt|)dt <∞.

We shall use the abbreviation (r, θ, P ) for such a model.
The wealth of a (self-financing) strategy evolves as

(8) Vt = v +
∫ t

0

ζu(dPu + θudu) +
∫ t

0

(Vu − ζuPu)rudu, t ∈ [0, 1],

where v ∈ R is the initial wealth and ζ = (ζjt ) is the predictable process with values
in RJ of the number of stocks such that the integrals in (8) are well-defined. This
balance equation can be written more compactly in terms of discounted values:

Vte
−

R t
0 rudu = v +

∫ t

0

ζudSu, t ∈ [0, 1],

where, for j = 1, . . . , J ,

Sjt , P jt e−
R t
0 rudu +

∫ t

0

θjse
−

R s
0 rududs, t ∈ [0, 1],

denotes the discounted wealth of the “buy and hold” strategy for jth stock, that is,
the strategy where we start with one unit of such a stock and reinvest the continuous
dividends θ = (θt) in the bank account.

It is common to assume that the familyQ of the equivalent martingale measures
for S is not empty:

Q = Q(r, θ, P ) , {Q ∼ P : S is a Q-martingale} 6= ∅.

This is equivalent to the absence of arbitrage if one is allowed to sell short both the
bank account and the stock until the maturity; see [4].

The following property is the primary focus of our study.

Definition 3.1. The model (r, θ, P ) is called complete if for any random vari-
able µ such that |µ| ≤ 1 there is a self-financing strategy such that |Vte−

R t
0 rudu| ≤ 1,

t ∈ [0, 1], and V1e
−

R 1
0 rudu = µ.

Recall, see Harrison and Pliska [5] and Jacod [7], Section XI.1(a), that for a
(r, θ, P )-model with Q 6= ∅ the completeness is equivalent to any of the following
conditions:

(1) there exists only one Q ∈ Q;
(2) if Q ∈ Q then any Q-local martingale is a discounted wealth process or,

equivalently, is a stochastic integral with respect to S.
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3.2. Economy with terminal consumption. Consider an economy with a
single (representative) agent. We assume that the agent consumes only at maturity
1 and denote by U =

(
U(x)

)
x>0

his utility function for terminal wealth.

(B1) The utility function U = U(x) is twice weakly differentiable on (0,∞)
and U ′ > 0. Moreover, it has a bounded relative risk aversion, that is, for
some constant N > 0,

1
N
≤ A(x) , −xU

′′(x)
U ′(x)

≤ N, x ∈ (0,∞).

Note that (B1) implies that U is strictly increasing, strictly concave, and continu-
ously differentiable, that it satisfies the Inada conditions:

lim
x↓0

U ′(x) =∞ and lim
x→∞

U ′(x) = 0,

and that its asymptotic elasticity is strictly less than 1:

lim sup
x→∞

xU ′(x)
U(x)

< 1.

Given an (r, θ, P )-market, a basic problem of financial economics is to determine
an optimal investment strategy V̂ (v) of the agent starting with the initial capital
v > 0. More formally, if

V(v) , {V ≥ 0 : (8) holds for some ζ}
denotes the family of positive wealth processes starting from v > 0, then V̂ (v) is
defined as an element of V(v) such that

(9) ∞ > E[U(V̂1(v))] ≥ E[U(V1)] for all V ∈ V(v),

where we used the convention:

E[U(V1)] , −∞ if E[min(U(V1), 0)] = −∞.
We are interested in an inverse problem: given a terminal wealth Λ for the

agent and final dividends Θ = (Θj) for the stocks find a price process P = (P jt )
such that P1 = Θ and, in the (r, θ, P )-market, V̂1(v) = Λ for some initial wealth
v > 0. We particularly want to know whether the family Q(r, θ, P ) is a singleton
and, hence, the (r, θ, P )-model is complete. Since the price process P is now an
outcome, rather than an input, the latter property is referred to as an endogenous
completeness.

We make the following assumptions:
(B2) The interest rate rt = β(t,Xt), t ∈ [0, 1], where the function β = β(t, x)

satisfies (A5).
(B3) The continuous dividends θ = (θjt ) and the terminal dividends Θ = (Θj)

are such that, for t ∈ [0, 1] and j = 1, . . . , J ,

θjt = f j(t,Xt)e
R t
0 α

j(s,Xs)ds,

Θj = F j(X1)e
R 1
0 α

j(s,Xs)ds,

where the functions F j = F j(x) satisfy (A3) and the functions f j and αj

satisfy (A5).
(B4) The terminal wealth Λ = eH(X1), where the function H = H(x) on Rd is

weakly differentiable and ∂H
∂xi ∈ L∞, i = 1, . . . , d.
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Note that a function H = H(x) on Rd satisfies (B4) if and only if it is Lipschitz
continuous, that is, there is N ≥ 0 such that

|H(x)−H(y)| ≤ N |x− y|, x, y ∈ Rd.

For j = 1, . . . , J denote

(10) ψj , Θje−
R 1
0 rudu +

∫ 1

0

θjue
−

R u
0 rsdsdu,

the cumulative values of the discounted cash flows generated by the stocks.

Theorem 3.2. Let (4), (A1)–(A2), and (B1)–(B4) hold. Then there exists
a continuous process P = (P jt ) with the terminal value P1 = Θ such that, in the
(r, θ, P )-market, for some initial capital v0 > 0 the optimal terminal wealth V̂1(v0)
in (9) equals Λ and such that the set of martingale measures Q = Q(r, θ, P ) is a
singleton; in particular, the (r, θ, P )-market is complete.

Further, P = (P jt ), Q ∈ Q, and v0 are unique and given by

Pt = Ste
R t
0 rudu −

∫ t

0

e
R t

s
ruduθsds, t ∈ [0, 1],(11)

dQ
dP

=
U ′(Λ)e

R 1
0 rudu

E[U ′(Λ)e
R 1
0 rudu]

,(12)

v0 = EQ[Λe−
R 1
0 rudu],(13)

where, for ψ = (ψj) from (10),

(14) St , EQ[ψ|Ft], t ∈ [0, 1].

Proof. It is well-known, see [9, Theorem 3.7.6] and [11, Theorem 2.0], that
for the utility function U = U(x) as in (B1) and a complete market with unique
Q ∈ Q the optimal terminal wealth equals Λ if and only if (12) holds. Clearly,
the martingale property of the discounted wealth process of an optimal strategy
yields (13). Hence, it remains only to verify the completeness of the (r, θ, P )-market
with P = (P jt ) given by (11).

Define the function

G(x) , U ′(eH(x)), x ∈ Rd,

and observe that

∂ lnG
∂xi

=
U ′′

U ′
(eH)eH

∂H

∂xi
= −A(eH)

∂H

∂xi
∈ L∞,

by the boundedness of A and ∂H
∂xi . This implies the existence of N ≥ 0 such that

e−N |·|
(
G+

d∑

i=1

| ∂G
∂xi
|
)
∈ L∞,

which, in particular, yields (A4).
Since e−N |·|(G + eH + |F |) ∈ L∞ for some N ≥ 0, we deduce the existence of

N ≥ 0 such that
U ′(Λ)(1 + Λ + |ψ|) ≤ eN(1+supt∈[0,1]|Xt|).
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As the diffusion coefficients b = b(t, x) and σ = σ(t, x) are bounded, the random
variable supt∈[0,1]|Xt| has all exponential moments. It follows that

E[U ′(Λ)(1 + Λ + |ψ|)] <∞,

and, in particular, P , Q, v0, and S are well-defined by (11)–(14).
By construction, Q ∈ Q(r, θ, P ). With (A4) verified above, the assumptions

of Theorem 2.3 for Q and S hold trivially. The results cited after Definition 3.1
then imply that the (r, θ, P )-market is complete and that Q is the only martingale
measure. �

We conclude this section with an important corollary of Theorem 3.2. Theo-
rem 3.3 below yields dynamic completeness of all Pareto equilibria in an economy
where M investors trade in the exogenous bank account paying the interest rate
r and in the endogenous stocks paying the continuous dividends θ and the ter-
minal dividends Θ. The economic agents have utility functions Um = Um(x),
m = 1, . . . ,M , and they collectively possess the terminal wealth Λ. A result of
this kind plays a crucial role in the proof of the existence of a continuous-time
Arrow-Debreu-Radner equilibrium, see [1], [6], and [18].

Theorem 3.3. Let (4), (A1)–(A2), and (B2)–(B4) hold. Suppose each util-
ity function Um, m = 1, . . . ,M , satisfies (B1). Fix w ∈ (0,∞)N and define the
function

(15) U(x) , sup
x1+···+xM=x

M∑

m=1

wmUm(xm), x ∈ (0,∞).

Let the price process P be defined by (11), (12), and (14). Then the (r, θ, P )-market
is complete.

Proof. The result is an immediate consequence of Theorem 3.2 as soon as
we verify that U satisfies (B1). This follows from the well-known identity for the
relative risk-aversions:

M∑

m=1

x̂m(x)
Am(x̂m(x))

=
x

A(x)
, x ∈ (0,∞).

Here x̂1(x) > 0, . . . , x̂m(x) > 0 are the arguments of maximum in (15) and Am
is the relative risk-aversion of Um. The arguments leading to this equality will be
recalled in the proof of Lemma 3.6. �

3.3. Economy with intermediate consumption. Consider now an econ-
omy where a single (representative) agent consumes continuously on [0, 1]. We
denote by u(t, x) : [0, 1]× (0,∞)→ R the agent’s utility function for intermediate
consumption and assume that

(B5) u = u(t, x) is analytic in t and 3-times weakly differentiable in x. More-
over, ux > 0 and uxx < 0 and t 7→ a(t, ·), t 7→ 1

a(t,·) , t 7→ p(t, ·), and
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t 7→ q(t, ·) are analytic maps of [0, 1] to L∞, where

a(t, x) , −xuxx(t, x)
ux(t, x)

,

p(t, x) , −xuxxx(t, x)
uxx(t, x)

,

q(t, x) , −∂ lnux(t, x)
∂t

= −uxt
ux

(t, x),

are, respectively, the relative risk aversion, the relative prudence, and an
“impatience” rate of the utility function u.

Note that (B5) implies that u(t, ·) is twice continuously differentiable, strictly in-
creasing, and strictly concave and that there is a constant N > 0 such that

(16) a(t, x) +
1

a(t, x)
+ |p(t, x)|+ |q(t, x)| ≤ N, (t, x) ∈ [0, 1]× R.

Recall the formulation of the investment problem with continuous consumption
in a given (r, θ, P )-market. Let η = (ηt) be a non-negative adapted process such
that

∫ 1

0
ηtdt <∞. The wealth process of a strategy with the consumption process

η is defined as

(17) Vt = v +
∫ t

0

ζu(dPu + θudu) +
∫ t

0

(Vu − ζuPu)rudu−
∫ t

0

ηudu,

or, in discounted terms,

Vte
−

R t
0 rsds = v +

∫ t

0

ζudSu −
∫ t

0

ηue
−

R u
0 rsdsdu, t ∈ [0, 1].

Here, as before, v and ζ = (ζjt ) stand, respectively, for the initial wealth and the
process of the number of stocks. We consider the optimization problem

(18) E[
∫ 1

0

u(t, ηt)dt]→ max, η ∈ W(v),

where W(v) denotes the family of consumption processes obtained from the initial
wealth v, that is,

W(v) , {η ≥ 0 : (17) holds for some V ≥ 0 and ζ},
and we have used the convention:

E[
∫ 1

0

u(t, ηt)dt] , −∞ if E[
∫ 1

0

min(u(t, ηt), 0)dt] = −∞.

As in the previous section, we study an inverse problem to (18): given a con-
sumption process λ = (λt) for the agent and final dividends Θ = (Θj) for the
stocks, find an interest rate process r = (rt) and a price process P = (P jt ) such
that P1 = Θ and, in the (r, θ, P )-model, the upper bound in (18) is attained at
λ = (λt) for some initial wealth v > 0. We are particularly interested in the
completeness of the resulting (r, θ, P )-market.

(B6) The consumption process λt = eg(t,Xt), t ∈ [0, 1], where the function
g = g(t, x) on [0, 1]×Rd is analytic in t and twice weakly differentiable in
x. Moreover, t 7→ ∂g

∂t (t, ·), t 7→
∂g
∂xi (t, ·), and t 7→ ∂2g

∂xi∂xj (t, ·) are analytic
maps of [0, 1] to L∞ for all i, j = 1, . . . , J .
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Theorem 3.4. Suppose that (4), (A1)–(A2), (B3), and (B5)–(B6) hold. Then
there exist a bounded process r = (rt) and a continuous process P = (P jt ) with
the terminal value P1 = Θ such that, in the (r, θ, P )-market, the set of martingale
measures Q is a singleton and, for some initial wealth v0 > 0, the consumption
process λ = (λt) solves (18).

The interest rate process r = (rt) and the density process Z = (Zt) of Q ∈ Q
are uniquely determined from the decomposition

ux(t, λt) = ux(0, λ0)Zte−
R t
0 rsds, t ∈ [0, 1].(19)

The price process P = (Pt) is unique and given, in terms of r = (rt) and Q, by (11),
(14), and (10). Finally, the initial wealth v0 is unique and given by

(20) v0 = EQ
[∫ 1

0

e−
R t
0 ruduλtdt

]
<∞.

Proof. The well-known results on optimal consumption in complete markets,
see [9, Theorem 3.7.3], imply that for a utility function u = u(t, x) as in (B1) and
a complete (r, θ, P )-market with unique Q ∈ Q, a non-negative process λ = (λt)
solves (18) if and only if (19) holds. Moreover, the initial wealth of an optimal
strategy yielding the consumption process λ = (λt) is given by (20).

The function

w(t, x) , ux(t, eg(t,x)), (t, x) ∈ [0, 1]×Rd,

is analytic in t and twice weakly differentiable in x. Further, there is N > 0
such that the second derivatives ∂2w

∂xi∂xj are bounded by eN |x|. Although the second
derivatives are not continuous, a version of Ito’s formula from Krylov [15], Theorem
2.10.1 can still be applied to

Yt , ux(t, λt) = ux(t, eg(t,Xt)) = w(t,Xt), t ∈ [0, 1],

yielding

(21) dYt = Yt(−β(t,Xt)dt+ γ(t,Xt)dWt).

The functions β = β(t, x) and γi = γi(t, x), i = 1, . . . , d, on [0, 1]×Rd are given by

β = q(t, eg) + a(t, eg)


∂g
∂t

+
d∑

k=1

∂g

∂xk
bk +

1
2

d∑

k,l,m=1

σkmσlmckl


 ,

γi = −a(t, eg)
d∑

k=1

∂g

∂xk
σki,

where we omitted the common argument (t, x) and

ckl = (1− p(t, eg)) ∂g

∂xk
∂g

∂xl
+

∂2g

∂xk∂xl
.

The assumptions of the theorem imply that β = β(t, x) and γi = γi(t, x), i =
1, . . . , d, satisfy the conditions (A5) and (A6), respectively.



52 3. ENDOGENOUS COMPLETENESS

From (21) we deduce that a local martingale Z such that Z0 = 1 and a pre-
dictable process r = (rt) are uniquely determined by (19) and are given by

Zt = exp
(∫ t

0

γ(s,Xs)dWs −
1
2

∫ t

0

|γ(s,Xs)|2ds
)
,

rt = β(t,Xt).

Since γ = γ(t, x) is bounded on [0, 1]×Rd, we obtain that Z is, in fact, a martingale
and, hence, is a density of some Q ∼ P. Given r = (rt) and Q we define P = (P jt )
and S = (Sjt ) by (11) and (14), respectively. By construction, Q ∈ Q(r, θ, P ).
Observe now that the conditions of Theorem 2.5 hold trivially for these Q and S.
Hence the (r, θ, P )-market is complete and Q is its only martingale measure.

Finally, from (B6) we deduce the existence of N ≥ 0 such that

λt = eg(t,Xt) ≤ eN(1+|Xt|),

which, in view of the boundedness of the functions β and γi and of the diffusion
coefficients bi and σij , easily yields the finiteness of v0 in (20). �

We conclude with a criteria for dynamic completeness of Pareto equilibria in the
case of intermediate consumption. Consider an economy populated by M investors
who trade in the bank account and the stocks; both are defined endogenously. The
stocks pay the continuous dividends θ and the terminal dividends Θ. The economic
agents jointly consume with the rate λ = (λt) and have the utility functions um =
um(t, x), m = 1, . . . ,M .

We are interested in the validity of the assertions of Theorem 3.4 when the
function u = u(t, x) is given by

(22) u(t, x) , sup
x1+···+xM=x

M∑

m=1

wmum(t, xm), (t, x) ∈ [0, 1]× (0,∞),

for some w ∈ (0,∞)M . The delicacy of the situation is that the t-analyticity of
u does not follow automatically from the t-analyticity of um, m = 1, . . . ,M . We
consider two special cases:

(B7) For every m = 1, . . . ,M the function um = um(t, x) satisfies (B5) and is
jointly analytic in (t, x).

(B8) For every m = 1, . . . ,M the function um = um(t, x) is given by

um(t, x) = e−ν(t)Um(x), (t, x) ∈ [0, 1]× (0,∞),

where ν = ν(t) is an analytic function on [0, 1] and the function Um =
Um(x) satisfies (B1) and has a bounded relative risk-prudence:

−N ≤ −xU
′′′(x)

U ′′(x)
≤ N, x ∈ (0,∞),

for some N > 0.

Theorem 3.5. Assume (4), (A1)–(A2), (B3), and (B6). Suppose also that the
utility functions um = um(t, x) satisfy either (B7) or (B8). Fix w ∈ (0,∞)M and
define u = u(t, x) by (22). Then the assertions of Theorem 3.4 hold.

The result is an immediate corollary of Theorem 3.4 and the following
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Lemma 3.6. Assume the utility functions um = um(t, x) satisfy either (B7)
or (B8) and let w ∈ (0,∞)M . Then for u = u(t, x) defined by (22) condition (B5)
holds true.

Proof. We shall focus on the case when (B7) holds. The proof under (B8) is
analogous. Denote by am, pm, and qm the coefficients for um from (B5).

Condition (B5) for um implies that

lim
x↓0

umx (t, x) =∞, lim
x→∞

umx (t, x) = 0.

It follows that the upper bound in (22) is attained at unique x̂(t, x) = (x̂m(t, x))m=1,...,M

determined by

M∑

m=1

x̂m(t, x) = x,(23)

wmumx (t, x̂m(t, x)) = wMuMx (t, x̂M (t, x)), m = 1, . . . ,M − 1.(24)

On [0, 1]× (0,∞)× (0,∞)M define the functions

hm(t, x, y) = wmumx (t, ym)− wMuMx (t, yM ), m = 1, . . . ,M − 1,

hM (t, x, y) =
M∑

m=1

ym − x.

Clearly,

hm(t, x, x̂(t, x)) = 0, m = 1, . . . ,M,

and

∂hm

∂yl
(t, x, x̂(t, x)) = wmumxx(t, x̂m(t, x))1{l=m}, m, l = 1, . . . ,M − 1,

∂hm

∂yM
(t, x, x̂(t, x)) = −wMuMxx(t, x̂M (t, x)) m = 1, . . . ,M − 1,

∂hM

∂ym
(t, x, x̂(t, x)) = 1, m = 1, . . . ,M.

As umxx < 0 the Jacobian matrix of h1(t, x, ·), . . . , hm(t, x, ·) at x̂(t, x) has a full rank.
Since the functions hm are analytic in (t, x, y) the implicit function theorem yields
that the functions x̂m are analytic in (t, x), see Krantz and Parks [12], Theorem
2.3.5. Moreover, standard computations in the implicit function theorem show that

(25)
∂x̂l

∂x
(t, x) =

x̂l

al(t, x̂l)
/

(
M∑

m=1

x̂m

am(t, x̂m)

)
.

Since

u(t, x) =
M∑

m=1

wmum(t, x̂m(t, x)),

the function u is analytic in (t, x). Hence, to complete the proof it only remains to
verify (16) for this function.
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Accounting for (23) and (24) we obtain

ut(t, x) =
M∑

m=1

wmumt (t, x̂m),

ux(t, x) = wmumx (t, x̂m), m = 1, . . . ,M.

By differentiating these equalities a necessary number of times with respect to x
and accounting for (25) we arrive to the identities:

1
a(t, x)

=
M∑

m=1

1
am(t, x̂m)

x̂m

x
,

p(t, x) =
M∑

m=1

pm(t, x̂m)
(

a(t, x)
am(t, x̂m)

)2
x̂m

x
,

q(t, x) =
M∑

m=1

qm(t, x̂m)
a(t, x)

am(t, x̂m)
x̂m

x
,

which readily imply (16). �

4. A time analytic solution of a parabolic equation

The proof of Theorem 2.3 will rely on the study of a parabolic equation in
Theorem 4.4 below.

For reader’s convenience, recall the definition of the classical Sobolev spaces
Wm

p on Rd where m ∈ {0, 1, . . .} and p ≥ 1. When m = 0 we get the classical
Lebesgue spaces Lp = Lp(Rd, dx) with the norm

‖f‖Lp
,
(∫

Rd

|f(x)|pdx
) 1

p

.

When m ∈ {1, . . .} the Sobolev space Wm
p consists of all m-times weakly differen-

tiable functions f such that

‖f‖Wm
p
, ‖f‖Lp +

∑

1≤|α|≤m
‖Dαf‖Lp <∞

and is a Banach space with such a norm. The summation is taken with respect to
multi-indexes α = (α1, . . . , αd) of non-negative integers, |α| ,∑d

i=1 αi and

Dα , ∂|α|

∂xα1
1 . . . ∂xαd

d

.

Recall also that a function h = h(t) : [0, 1]→ X with values in a Banach space X
is called Hölder continuous if there is 0 < γ < 1 such that

sup
t∈[0,1]

‖h(t)‖X + sup
0≤s<t≤1

‖h(t)− h(s)‖X
|t− s|γ <∞.

For t ∈ [0, 1] and x ∈ Rd consider an elliptic operator

A(t) ,
d∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑

i=1

bi(t, x)
∂

∂xi
+ c(t, x),

where aij , bi, and c are measurable functions on [0, 1]× Rd such that
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(C1) t 7→ aij(t, ·) is an analytic map of [0, 1] to C, t 7→ bi(t, ·) and t 7→ c(t, ·)
are analytic maps of [0, 1] to L∞. The matrix a is symmetric: aij = aji,
uniformly elliptic: there exists N > 0 such that

ya(t, x)y ≥ 1
N2
|y|2, (t, x) ∈ [0, 1]× Rd, y ∈ Rd,

and is uniformly continuous with respect to x: there exists a decreasing
function ω = (ω(ε))ε>0 such that ω(ε) → 0 as ε ↓ 0 and for all t ∈ [0, 1]
and y, z ∈ Rd

|aij(t, y)− aij(t, z)| ≤ ω(|y − z|).
Let g = g(x) : Rd → R and f = f(t, x) : [0, 1]× Rd → R be measurable functions
such that for some p > 1

(C2) the function g belongs to W1
p and t 7→ f(t, ·) is a Hölder continuous map

from [0, 1] to Lp whose restriction to (0, 1] is analytic.

Theorem 4.1. Let p > 1 and suppose the conditions (C1) and (C2) hold. Then
there exists a unique measurable function u = u(t, x) on [0, 1]× Rd such that

(1) t 7→ u(t, ·) is a Hölder continuous map of [0, 1] to Lp,
(2) t 7→ u(t, ·) is a continuous map of [0, 1] to W1

p,
(3) t 7→ u(t, ·) is an analytic map of (0, 1] to W2

p,

and such that u = u(t, x) solves the parabolic equation:

∂u

∂t
= A(t)u+ f, t ∈ (0, 1],(26)

u(0, ·) = g.(27)

The proof is essentially a compilation of references to known results. We first
introduce some notations and state a few lemmas.

Let X and D be Banach spaces. By L(X,D) we denote the Banach space of
bounded linear operators T : X→ D endowed with the operator norm. A shorter
notation L(X) is used for L(X,X). We shall write D ⊂ X if D is continuously
embedded into X, that is, the elements of D form a subset of X and there is a
constant N > 0 such that ‖x‖X ≤ N‖x‖D, x ∈ D. We shall write D = X if D ⊂ X
and X ⊂ D.

Let D ⊂ X. A Banach space E is called an interpolation space between D and
X if D ⊂ E ⊂ X and any linear operator T ∈ L(X) whose restriction to D belongs
to L(D) also has its restriction to E in L(E); see Bergh and Löfström [3], Section
2.4.

The following lemma will be used in the proof of item 2 of the theorem.

Lemma 4.2. Let D, E, and X be Banach spaces such that D ⊂ X, E is an
interpolation space between D and X, and D is dense in E. Let (Tn)n≥1 be a
sequence of linear operators in L(X) such that limn→∞‖Tnx‖X = 0 for any x ∈ X
and limn→∞‖Tnx‖D = 0 for any x ∈ D. Then limn→∞‖Tnx‖E = 0 for any x ∈ E.

Proof. The uniform boundedness theorem implies that the sequence (Tn)n≥1

is bounded both in L(X) and L(D). Due to the Banach property, E is a uniform
interpolation space between D and X, that is, there is a constant M > 0 such that

‖T‖L(E) ≤M max(‖T‖L(C), ‖T‖L(D)) for any T ∈ L(X) ∩ L(D);
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see Theorem 2.4.2 in [3]. Hence, (Tn)n≥1 is also bounded in L(E). The density of
D in E then yields the result. �

Let A be an (unbounded) closed linear operator on X. We denote by D(A) the
domain of A and assume that it is endowed with the graph norm of A:

‖x‖D(A) , ‖Ax‖X + ‖x‖X.
Then D(A) is a Banach space. Recall that the resolvent set ρ(A) of A is defined
as the set of complex numbers λ for which the operator λI − A : D(A) → X,
where I is the identity operator, is invertible; the inverse operator is called the
resolvent and is denoted by R(λ,A). The bounded inverse theorem implies that
R(λ,A) ∈ L(X,D(A)) and, in particular, R(λ,A) ∈ L(X).

The operator A is called sectorial if there are constants M > 0, r ∈ R, and
θ ∈

(
0, π2

)
such that the sector

(28) Sr,θ , {λ ∈ C : λ 6= r and |arg(λ− r)| ≤ π − θ}
of the complex plane C is a subset of ρ(A) and

(29) ‖R(λ,A)‖L(X) ≤
M

1 + |λ| , λ ∈ Sr,θ.

The set of such sectorial operators will be denoted by S(M, r, θ). Sectorial operators
are important, because when their domains are dense in X they coincide with
generators of analytic semi-groups, see Pazy [17], Section 2.5.

The following lemma will enable us to use the results from Kato and Tanabe
[10] to verify item 3 of the theorem.

Lemma 4.3. Let X and D be Banach spaces such that D ⊂ X and let A =
(A(t))t∈[0,1] be closed linear operators on X such that D(A(t)) = D for all t ∈ [0, 1].
Suppose A : [0, 1]→ L(D,X) is an analytic map, and there are M > 0, r < 0, and
θ ∈

(
0, π2

)
such that A(t) ∈ S(M, r, θ) for all t ∈ [0, 1].

Then there exist a convex open set U in C containing [0, 1] and an analytic
extension of A to U such that A(z) ∈ S(2M, r, θ) for all z ∈ U and the function
A−1 : [0, 1]→ L(X,D) is analytic.

Proof. If A ∈ S(M, r, θ), then for λ ∈ Sr,θ
‖R(λ,A)‖L(X,D(A)) = ‖R(λ,A)‖L(X) + ‖AR(λ,A)‖L(X) ≤M + 1,

where we used (29) and the identity AR(λ,A) = λR(λ,A) − I. As A : [0, 1] →
L(D,X) is a continuous function, the Banach spaces D and D(A(t)), t ∈ [0, 1], are
uniformly equivalent, that is, there is L > 0 such that ‖x‖D(A(t)) ≤ L‖x‖D and
‖x‖D ≤ L‖x‖D(A(t)) for every t ∈ [0, 1] and every x ∈ D. It follows that one can
find N > 0 such that

(30) ‖R(λ,A(t))‖L(X,D) ≤ N, λ ∈ Sr,θ, t ∈ [0, 1].

Since r < 0, the operator A(t) is invertible for every t ∈ [0, 1]. As A : [0, 1]→
L(D,X) is analytic, the inverse function B = A−1 : [0, 1] → L(X,D) is well-
defined and analytic. Clearly, there is an open convex set U in C containing [0, 1]
on which both A and B can be analytically extended. Then B = A−1 on U , as AB
is an analytic function on U with values in L(X) which on [0, 1] equals the identity
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operator. Of course, we can choose U so that for any z ∈ U there is t ∈ [0, 1] such
that

(31) ‖A(z)−A(t)‖L(D,X) ≤
1

2N
,

where the constant N > 0 is taken from (30).
Fix λ ∈ Sr,θ and take t ∈ [0, 1] and z ∈ U satisfying (31). By (30) and (31)

‖(A(z)−A(t))R(t, A(t))‖L(X) ≤
1
2
.

Hence the operator I − (A(z)−A(t))R(t, A(t)) in L(X) is invertible and its inverse
has norm less than 2. Since

λI −A(z) = (I − (A(z)−A(t))R(t, A(t)))(λI −A(t)),

we obtain that the resolvent R(λ,A(z)) is well-defined and

‖R(λ,A(z))‖L(X) ≤
2M

1 + |λ| .

This completes the proof. �

Proof of Theorem 4.1. It is well-known that under (C1) for every t ∈ [0, 1]
the operator A(t) is closed in Lp and has W2

p as its domain:

(32) D(A(t)) = W2
p.

Moreover, the operators (A(t))t∈[0,1] are sectorial with the same constants M > 0,
r ∈ R, and θ ∈

(
0, π2

)
:

(33) A(t) ∈ S(M, r, θ), t ∈ [0, 1].

These results can found, for example, in Krylov [13], see Section 13.4 and Exercise
13.5.1.

It will be convenient for us to assume that that the sector Sr,θ defined in (28)
contains 0 or, equivalently, that r < 0. This does not restrict any generality as
for s ∈ R the substitution u(t, x) → estu(t, x) in (26) corresponds to the shift
A(t) → A(t) + s in the operators A(t). Among other benefits, this assumption
implies the existence of inverses and fractional powers for the operators −A(t); see
Section 2.6 in [17] on fractional powers of sectorial operators.

From (C1) we clearly deduce the existence of M > 0 such that for any v ∈W2
p

(34) ‖(A(t)−A(s))v‖Lp
≤M |t− s|‖v‖W2

p
, s, t ∈ [0, 1].

Conditions (32), (33), and (34) for the operators A = A(t) and condition (C2) for
f and g imply the existence and uniqueness of the classical solution u = u(t, x)
to the initial value problem (26)–(27) in Lp; see Theorem 7.1 in Section 5 of [17].
Recall that u = u(t, x) is the classical solution to (26) and (27) if u(t, ·) ∈W2

p for
t ∈ (0, 1], the map t 7→ u(t, ·) of [0, 1] to Lp is continuous, the restriction of this
map to (0, 1] is continuously differentiable, and the equations (26) and (27) hold.

To verify item 1 we use Theorem 3.10 in Yagi [20] dealing with maximal reg-
ularity properties of solutions to evolution equations. This theorem implies the
existence of constants δ > 0 and M > 0 such that

(35) ‖∂u
∂t

(t, ·)‖Lp
≤Mtδ−1, t ∈ (0, 1],
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provided that the operators A = A(t) satisfy (32)–(34), the function f is Hölder
continuous as in (C2), and for some 0 < γ < 1

(36) g ∈ D((−A(0))γ),

where D((−A(0))γ) is the domain of the fractional power γ of the operator −A(0)
acting in Lp. The inequality (35) clearly implies the Hölder continuity of u(t, ·) :
[0, 1]→ Lp and, hence, to complete the proof of item 1 we only need to verify (36).

Since g ∈W1
p, we obtain (36) if

W1
p ⊂ D((−A(0))γ), γ ∈ (0,

1
2

).

This embedding is an immediate corollary of the classical characterization of Sobolev
spaces Wm

p as the domains of (1−∆)m/2 in Lp:

Wm
p = D((1−∆)m/2), m ∈ {0, 1, . . .},

where ∆ ,
∑
i
∂2

∂x2
i

is the Laplace operator, and the fact that for 0 < α < β < 1 and
sectorial operators A and B such that D(B) ⊂ D(A) and such that the fractional
powers (−A)α and (−B)β are well-defined we have D((−B)β) ⊂ D((−A)α). These
results can be found, respectively, in [13, Theorem 13.3.12] and [20, Theorem 2.25].
This finishes the proof of item 1.

Another consequence of the maximal regularity properties of u given in [20,
Theorem 3.10] is that the map u(t, ·) : [0, 1] → W2

p is continuous if g ∈ W2
p =

D(A(0)). We shall apply this result shortly to prove item 2.
For t ∈ [0, 1] define a linear operator T (t) on Lp such that for h ∈ Lp the

function v = v(t, x) given by v(t, ·) = T (t)h is the unique classical solution in Lp of
the homogeneous problem:

(37)
∂v

∂t
= A(t)v, v(0, ·) = h.

Actually, T (t) = U(t, 0), where U = (U(t, s))0≤s≤t≤1 is the evolution system for
A = A(t); see Pazy [17], Chapter 5. However, we shall not use this relation. Of
course, the properties established above for u = u(t, x) will also hold for the solution
v = v(t, x) to (37). It follows that for any h ∈ Lp the map t 7→ T (t)h is well-defined
and continuous in Lp and if h ∈W2

p then the same map is also continuous in W2
p.

Recall now that W1
p is an interpolation space between Lp and W2

p, more precisely,
a midpoint in complex interpolation, see, for example, Bergh and Löfström [3],
Theorem 6.4.5. Since W2

p is dense in W1
p, Lemma 4.2 yields the continuity of the

map t 7→ T (t)h in W1
p.

Observe now that u = u(t, x) can be decomposed as

u(t, ·) = T (t)g + w(t, ·),
where w(t, ·) is the unique classical solution in Lp of the inhomogeneous problem:

∂w

∂t
= A(t)w + f, w(0, ·) = 0.

Since w coincides with u in the special case g = 0, the map t 7→ w(t, ·) is continuous
in W2

p and, hence, also continuous in W1
p. This completes the proof of item 2.

Finally, let us prove item 3. To simplify notations suppose that the map f =
f(t, ·) : [0, 1] → Lp is actually analytic; otherwise, we repeat the same arguments
on [ε, 1] for 0 < ε < 1. The condition (C1) implies the analyticity of the function
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A = A(t) : [0, 1]→ L(W2
p,Lp). Let U be an open convex set in C containing [0, 1]

on which there is an analytic extension of A satisfying the assertions of Lemma 4.3.
We choose U so that f = f(t, ·) : [0, 1] → Lp can also be analytically extended
on U . Theorem 2 in Kato and Tanabe [10] now implies the analyticity of the map
t 7→ u(t, ·) in Lp. However, as

u(t, ·) =
(
A(t)

)−1(
∂u

∂t
− f(t, ·)),

and since, by Lemma 4.3, the L(Lp,W2
p)-valued function

(
A(t)

)−1 on [0, 1] is ana-
lytic, the map t 7→ u(t, ·) is also analytic in W2

p.
The proof is completed. �

In the proof of our main Theorem 2.3 we actually need Theorem 4.4 below,
which is a corollary of Theorem 4.1. Instead of (C2) we assume that the measurable
functions g = g(x) : Rd → R and f = f(t, x) : [0, 1]× Rd → R have the following
properties:

(C3) There is a constant N ≥ 0 such that e−N |·| ∂g∂xi (·) ∈ L∞ and for any p ≥ 1
we have t 7→ e−N |·|f(t, ·) is a Hölder continuous map from [0, 1] to Lp
whose restriction to (0, 1] is analytic.

Fix a function φ = φ(x) such that

(38) φ ∈ C∞(Rd) and φ(x) = |x| when |x| ≥ 1.

Theorem 4.4. Suppose the conditions (C1) and (C3) hold. Let φ = φ(x) be as
in (38). Then there exists a unique continuous function u = u(t, x) on [0, 1] × Rd
and a constant N ≥ 0 such that for any p ≥ 1

(1) t 7→ e−Nφu(t, ·) is a Hölder continuous map of [0, 1] to Lp,
(2) t 7→ e−Nφu(t, ·) is a continuous map of [0, 1] to W1

p,
(3) t 7→ e−Nφu(t, ·) is an analytic map of (0, 1] to W2

p,
and such that u = u(t, x) solves the Cauchy problem (26) and (27).

Proof of Theorem 4.4. From (C3) we deduce the existence of M > 0 such
that

| ∂g
∂xi
|(x) ≤MeM |x|, x ∈ Rd,

and, therefore, such that

|g(x)− g(0)| ≤M |x|eM |x|, x ∈ Rd.

Hence, for any N > M and any function φ = φ(x) as in (38)

e−Nφg ∈W1
p, p ≥ 1.

Hereafter, we choose the constant N ≥ 0 so that in addition to (C3) it also has the
property above.

Define the functions b̃i = b̃i(t, x) and c̃ = c̃(t, x) so that for any t ∈ [0, 1] and
any v ∈ C∞

Ã(t)
(
e−Nφv

)
= e−NφA(t)v,

where

Ã(t) ,
d∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑

i=1

b̃i(t, x)
∂

∂xi
+ c̃(t, x).
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It is easy to see that b̃i and c̃ satisfy the same conditions as bi and c in (C1). From
Theorem 4.1 we deduce the existence of a measurable function ũ = ũ(t, x) which
for any p > 1 complies with the items 1–3 of this theorem and solves the Cauchy
problem:

∂ũ

∂t
= Ã(t)ũ+ e−Nφf, ũ(0, ·) = e−Nφg.

For p > d, by the classical Sobolev’s embedding, the continuity of the map t 7→
ũ(t, ·) in W1

p implies its continuity in C. In particular, we obtain that the function
ũ = ũ(t, x) is continuous on [0, 1]× Rd.

To conclude the proof it only remains to observe that u = u(t, x) complies with
the assertions of the theorem for p > 1 if and only if ũ , e−Nφu has the properties
just established. The case p = 1 follows trivially from the case p > 1 by taking N
slightly larger. �

5. Proof of Theorem 2.3

Throughout this section we assume the conditions and the notations of Theo-
rem 2.3. We fix a function φ satisfying (38). We also denote by L(t) the infinitesimal
generator of X at t ∈ [0, 1]:

L(t) =
1
2

d∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑

i=1

bi(t, x)
∂

∂xi
,

where a , σσ∗ is the covariation matrix of X. The proof is divided into several
lemmas.

Lemma 5.1. There exist unique continuous functions u = u(t, x) and vj =
vj(t, x), j = 1, . . . , J , on [0, 1]× Rd and a constant N ≥ 0 such that

(1) For any p ≥ 1 the maps t 7→ e−Nφu(t, ·) and t 7→ e−Nφvj(t, ·) are
(a) Hölder continuous maps of [0, 1] to Lp;
(b) continuous maps of [0, 1] to W1

p.
(c) analytic maps of [0, 1) to W2

p.
(2) The function u = u(t, x) solves the Cauchy problem:

∂u

∂t
+ (L(t) + β)u = 0, t ∈ [0, 1),(39)

u(1, ·) = G,(40)

(3) The function vj = vj(t, x) solves the Cauchy problem:

∂vj

∂t
+ (L(t) + αj + β)vj + uf j = 0, t ∈ [0, 1),(41)

vj(1, ·) = F jG.(42)

Proof. Observe first that (A2) on σ = σ(t, x) implies (C1) on the covariation
matrix a = a(t, x). The assertions for u = u(t, x) and, then, for vj = vj(t, x),
j = 1, . . . , J , follow now directly from Theorem 4.4, where we need to make the
time change t→ 1− t. �

Hereafter, we denote by u = u(t, x) and vj = vj(t, x), j = 1, . . . , J , the func-
tions defined in Lemma 5.1.
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Lemma 5.2. The matrix-function w = w(t, x), with d rows and J columns,
given by

(43) wij(t, x) ,
(
u
∂vj

∂xi
− vj ∂u

∂xi

)
(t, x), i = 1, . . . , d, j = 1, . . . , J,

has rank d almost surely with respect to the Lebesgue measure on [0, 1]× Rd.

Proof. Denote

g(t, x) , det(ww∗)(t, x), (t, x) ∈ [0, 1]× Rd,

the determinant of the product of w on its transpose, and observe that the result
holds if and only if the set

A , {(t, x) ∈ [0, 1]× Rd : g(t, x) = 0}

has the Lebesgue measure zero on [0, 1]× Rd or, equivalently, the set

B , {x ∈ Rd :
∫ 1

0

1A(t, x)dt > 0}

has the Lebesgue measure zero on Rd.
From Lemma 5.1 we deduce that the existence of a constant N ≥ 0 such that

for any p ≥ 1 the map t 7→ e−Nφg(t, ·) from [0, 1) to W1
p is analytic and the same

map of [0, 1] to Lp is continuous. Taking p ≥ d, we deduce from the classical
Sobolev embedding of W1

p into C that this map is also analytic from [0, 1) to C.
It follows that if x ∈ B then g(t, x) = 0 for all t ∈ [0, 1) and, in particular,

lim
t↑1

g(t, x) = 0, x ∈ B.

Since

‖g(t, ·)− g(1, ·)‖Lp = ‖g(t, ·)− det(ww∗)(1, ·)‖Lp → 0, t ↑ 1,

the Lebesgue measure of B is zero if the matrix-function w(1, ·) has rank d almost
surely. This follows from the expression for w(1, ·):

wij(1, ·) = G
∂(F jG)
∂xi

− F jG∂G
∂xi

= G2 ∂F
j

∂xi
,

and the assumptions (A3) and (A4) on F = (F j) and G. �

Recall the notations ψj , j = 1, . . . , J , and ξ for the random variables defined
in (6) and (7).

Lemma 5.3. The processes Y and Rj, j = 1, . . . , J , on [0, 1] defined by

Yt , e
R t
0 β(s,Xs)dsu(t,Xt),

Rjt , e
R t
0 (αj+β)(s,Xs)dsvj(t,Xt) + Yt

∫ t

0

e
R s
0 α

j(r,Xr)drf j(s,Xs)ds,
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are continuous uniformly integrable martingales with the terminal values Y1 = ξ
and Rj1 = ξψj. Moreover, for t ∈ [0, 1],

Yt = Y0 +
d∑

i,k=1

∫ t

0

e
R s
0 β(r,Xr)dr

(
∂u

∂xi
σik
)

(s,Xs)dW k
s ,(44)

Rjt = Rj0 +
d∑

i,k=1

∫ t

0

e
R s
0 (αj+β)(r,Xr)dr

(
∂vj

∂xi
σik
)

(s,Xs)dW k
s

+
∫ t

0

(∫ s

0

e
R r
0 α

j(q,Xq)dqf j(r,Xr)dr
)
dYs.

(45)

Proof. From the continuity of u and vj on [0, 1] × Rd we obtain that Y and
Rj are continuous processes on [0, 1]. The expressions (40) and (42) for u(1, ·) and
vj(1, ·) imply that Y1 = ξ and Rj1 = ξψj .

Let N ≥ 0 be the constant in Lemma 5.1. Choosing p = d + 1 in Lemma 5.1
we deduce that the maps t 7→ e−Nφu(t, ·) and t 7→ e−Nφvj(t, ·) of [0, 1) to W2

d+1

are continuously differentiable. This enables us to use a variant of the Ito formula
due to Krylov, see [15, Section 2.10, Theorem 1]. Direct computations, where we
account for (39) and (41), then yield the integral representations (44) and (45).

In particular, we have shown that Y and Rj are continuous local martingales.
It only remains to verify their uniform integrability. By Sobolev’s embeddings,
since t 7→ e−Nφu(t, ·) and t 7→ e−Nφvj(t, ·) are continuous maps of [0, 1] to W1

d+1,
they are also continuous maps of [0, 1] to C. This implies the existence of c > 0
such that

sup
t∈[0,1]

(|Yt|+ |Rjt |) ≤ ec(1+supt∈[0,1]|Xt|).

The result now follows from the well-known fact that, for bounded bi and σij , the
random variable supt∈[0,1]|Xt| has all exponential moments. �

Proof of Theorem 2.3. Let Y andR be the processes defined in Lemma 5.3.
This lemma implies, in particular, that

E[|ξ|+
J∑

j=1

|ξψj |] <∞,

and, hence, the probability measure Q and the Q-martingale S = (Sj) are well-
defined. Since ξ > 0, the measure Q is equivalent to P and Y is a strictly positive
martingale. Observe that

St , EQ[ψ|Ft] =
E[ξψ|Ft]
E[ξ|Ft]

=
Rt
Yt
, t ∈ [0, 1].

From (44) and (45) we deduce, after some computations, that

(46) dSjt = d
Rjt
Yt

= e
R t
0 α

j(s,Xs)ds 1
u2(t,Xt)

d∑

i,k=1

(wijσik)(t,Xt)dW
Q,k
t ,

where the matrix-function w = w(t, x) is defined in (43) and

WQ,k
t ,W k

t −
d∑

l=1

∫ t

0

(
1
u

∂u

∂xl
σlk
)

(t,Xt)dt, k = 1, . . . , d, t ∈ [0, 1].
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By Girsanov’s theorem, WQ is a Brownian motion under Q. Note that the division
on u(t,Xt) is safe as the process u(t,Xt) = Yte

−
R t
0 β(s,Xs)ds, t ∈ [0, 1], is strictly

positive.
As we have already observed in Remark 2.2, any P-local martingale is a sto-

chastic integral with respect to W . This readily implies that any Q-local martingale
M is a stochastic integral with respect to WQ. Indeed, since L , YM is a local
martingale under P, there is a predictable process ζ with values in Rd such that

Lt = L0 +
∫ t

0

ζudWu , L0 +
d∑

i=1

∫ t

0

ζiudW
i
u

and then

dMt = d
Lt
Yt

=
1
Yt

d∑

i=1

(
ζit − Lt

d∑

k=1

(
1
u

∂u

∂xk
σki
)

(t,Xt)

)
dWQ,i

t .

In view of (46), to conclude the proof we only have to show that the matrix-
process ((w∗σ)(t,Xt))t∈[0,1] has rank d on Ω×[0, 1] almost surely under the product
measure dt × dP. Observe first that by (2) and Lemma 5.2 the matrix-function
w∗σ = (w∗σ)(t, x) has rank d almost surely under the Lebesgue measure on [0, 1]×
Rd. The result now follows from the well-known fact that under (A1) and (A2)
the distribution of Xt has a density under the Lebesgue measure on Rd, see [19,
Theorem 9.1.9]. �
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