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Abstract

Optimal Investment and Pricing in Models where the Underlying Asset May Default

by

Tetsuya Ishikawa

Doctor or Philosophy in Mathematics

Carnegie Mellon University

The need for the pricing and hedging of credit events has increased since the financial

crisis. For example, large banks are now mandated to compute prices of credit risk for all

over-the-counter contracts. Such prices are known by the acronym CVA (Credit Valuation

Adjustment), or more generally, XVA. Industry practitioners typically use risk-neutral

pricing for such computations, the validity of which is questioned in incomplete markets. In

our research, we consider an incomplete market where investment returns and variances are

driven by a partially hedgeable factor process, modelled by a multi-dimensional diffusion.

Additionally, the issuer of the stock may default, with the default intensity also driven

by the factor process. Investors can freely trade the stock to hedge their positions in

this market, and do so to maximize their utility. However, in the event of default, the

investors lose their position in the stock. In this setting, we price defaultable claims using

utility indifference pricing for an exponential investor. Due to the Markovian structure

of the problem, we rely on PDE theory rather than BSDE theory to solve the utility

maximization problem. This leads to explicit candidate solutions which we verify using

the well-developed duality theory. As an application of our optimal investment result,
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we define, and compute, the dynamic utility indifference price for insurance against the

defaultable stock.



This work is dedicated to the memory of my mother.
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CHAPTER 1

Introduction

The need for the pricing and hedging of credit events has increased since the financial

crisis. For example, large banks are now mandated to compute prices of credit risk for all

over-the-counter contracts. Such prices are known by the acronym CVA (Credit Valuation

Adjustment), or more generally, XVA. For banks, the computations of such prices tend to

be intensive because they are always of 1. a cross-asset-class nature between credit and the

asset class of original contracts, and, 2. an option-pricing nature, even for linear products,

because what is in question is essentially the present value of the positive/negative part

of the future exposure subject to credit risk. See [BMP13] for comprehensive treatment

of this matter from industry practitioners’ view.

From a theoretical standpoint, the problem boils down to pricing contingent claims

when either party of the contract can default. Industry practitioners typically use risk-

neutral pricing for such computations, the validity of which, however, is questioned in

incomplete markets. In such markets, the choice of the risk-neutral measure is not clear.

Thus the meaning of hedging using greeks computed in the chosen measure is even less

clear.

In our research, we consider an incomplete market where stock returns and variances

are driven by a partially hedgeable factor process, modeled by a multi-dimensional dif-

fusion. Additionally, the issuer of the stock may default, with the default intensity also

driven by the factor process (known as intensity-based modeling of default, see [Duf05]).

Investors can freely trade the stock to hedge their positions in this market, and do so to

maximize the expected exponential utility of their final net wealth and the endowment of

1



2 1. INTRODUCTION

a claim at maturity, that may depend on the value of the factor process as well. However,

in the event of default, the investors lose their position in the stock and the claim payoff.

Note that our model is set up in the physical measure, rather than in a specific risk-neutral

measure, and that the hedging is explicitly done in the liquid stock market. An immedi-

ate application of our optimal investment result is the utility indifference pricing of such

defaultable claims.

There is abundant literature on the optimal investment problem under exponential

utilities. Thus, rather than giving a complete literature review, we would like to explain

where our research stands in relation to the previous studies.

For the optimal investment problem under exponential utilities, the abstract duality

theory provides the definitive results regarding the existence and uniqueness of the optimal

investment strategies in a general locally bounded semimartingale context [Fri00, GR02,

DGR+02, KS02]. However, for given models of the market, it is still difficult to obtain

explicit solutions to the optimal investment problem. One way to obtain explicit solutions

is through backward stochastic differential equations (BSDEs). The main difficulties in

this approach are quadratic drivers in BSDEs due to market incompleteness, and the

presence of jumps. Among many papers regarding this topic, the closest to our current

setting is [LQ+11], although it explicitly excludes the possibility that the stock process

jumps to zero. In the paper, they first restrict the range of the strategy to compact sets to

reduce the driver of their BDSE from quadratic to Lipschitz continuous. They then obtain

the solutions to such localized BSDEs. The optimal value function is obtained through

taking the limit of the localized solutions. This idea of reducing quadratic BSDEs to

Lipschitz continuous drivers and then taking a limit of thus obtained solutions can be

traced back to [Mor09].

When the model is Markovian, as in our case, we can write down the Hamilton-Jacobi-

Bellman (HJB) equation for the optimal investment problem, which yields a semilinear

parabolic partial differential equation (PDE). We use the classical parabolic PDE theory
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in Hölder spaces to solve the PDE, as opposed to seeking viscosity solutions or solutions in

a weak sense. The solutions in Hölder spaces already have enough regularity to guarantee

the existence of candidate optimal strategies. Therefore we can use the aforementioned

duality theory results to verify our solutions. This program was already carried out in a

stochastic volatility market, but without default, under exponential utilities in [BK05].

The paper relies on [FS06, IV.4] for the existence of classical solutions to PDEs, but

this result cannot be used for our problem because of the non-polynomial term of the

value function G in the Hamiltonian of our HJB equation. Instead, we use the nonlinear

parabolic PDE theory in [Lie96] together with some estimations in [Fri13] to solve our

PDE. To our knowledge, this is the first result to solve the HJB equation for the optimal

investment problem in a defaultable market using the classical parabolic PDE theory, and

complete the verification steps from the duality theory.

The thesis is organized as follows. Chapter 2 introduces the market model and the

investor in the market, and states our main optimal investment result, Theorem 7, where

the value function is given in terms of the solution to the semilinear parabolic PDE. Before

the proof of Theorem 7, we explore a simple case where the coefficients of the model are

constant, so that we can obtain an almost closed-form solution to the optimal investment

problem. We embark on the proof of Theorem 7 in Chapter 4. There, we are able to

show the existence of classical solutions to our semilinear parabolic PDE under rather

general conditions, but to complete the verification we need more stringent conditions in

which our factor process is an extension of the multi-dimensional Ornstein-Uhlenbeck (OU)

process. In Chapter 5, we define and compute the dynamic utility indifference price for

loss-insurance against the stock defaulting. This connects the problem in [SZ07], where

the investor receives full pre-default market value on her stock holdings on liquidation

without having any default protection, to our problem with no default protection. The

investor can choose to fully protect herself against default by purchasing insurance, and

the price process of insurance is endogenously set so that the investor is indifferent between
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holding or not holding this insurance at any time before the time of default. The price of

this insurance is explicitly computed in Theorem 44 with an example in the simple case

of constant coefficients.



CHAPTER 2

Model and Main Result

2.1. Model Setup

We now introduce the model we will be using for the optimal investment problem. We

assume the risk-less, or safe, asset price is identically equal to one. As for the risky asset,

instantaneous returns and variances are driven by an exogenous factor process X which is

only partially hedgeable. Thus, even absent defaults, there are unspanned risks and hence

the model is incomplete. Furthermore, we assume the stock may default, with the default

intensity also governed by the factor process.

To precisely define the asset dynamics, we first identify the factor process. To do this,

let (Ω,F , P ) denote a complete probability space, and assume it is rich enough to support

an n + 1 dimensional standard Brownian motion W = (W 0,W 1, . . . ,Wn). The risky

asset will be driven by W whereas the factor process will be driven by (W 1,W 2, . . . ,Wn).

Denote by F the P -augmentation of the natural filtration FW so that F satisfies the usual

conditions of right-continuity and completeness.

Let Cb(Rn) be the set of bounded continuous functions on Rn, and C1
b (Rn) be the set

of continuously differentiable functions on Rn where the first-order derivative is bounded

(thus the function value is not necessarily bounded).

The factor process X is a solution to a stochastic differential equation (SDE) taking

values in Rn. The dynamics for X are

dXi
t = bi(Xt) dt+

n∑
j=1

cij dW j
t ; 1 ≤ i ≤ n,

X0 = x ∈ Rn.

(1)

5



6 2. MODEL AND MAIN RESULT

For the drift function b : Rn → Rn and the volatility c above, we assume

Assumption 1. bi ∈ C1
b (Rn) for 1 ≤ i ≤ n and c is an n× n-invertible constant matrix.

As such, for a , cc>/2, we can pick constants Λ ≥ λ > 0 such that for all ξ in Rn,

Λ|ξ|2 ≥ aijξiξj ≥ λ|ξ|2.

Assumption 1 yields a unique non-explosive strong solution X to the SDE in (1) and hence

X is F adapted (more specifically, it is FW 1,W 2,...,Wn
-adapted).

Having established the well-posedness of X, we now turn to the default time τ for the

risky asset. We wish for τ to have F intensity (γt)t≥0, where γt = γ(Xt) for an exogenously

specified function γ : Rn → (0,∞). More precisely, we assume

Assumption 2. γ ∈ Cb(Rn) ∩ C1
b (Rn) and infx∈Rn γ(x) > 0.

Given the candidate intensity function γ there are numerous methods by which to con-

struct the default time. Rather than defining τ abstractly and then enforcing, for example,

the H-hypothesis [EJY00], we construct τ directly. Specifically, we assume (Ω,F , P ) sup-

ports a random variable U ∼ U(0, 1) which is independent of W . Then set

τ = inf

{
t ≥ 0 :

∫ t

0
γ(Xu)du = − log(U)

}
, (2)

so that

Ft , P (τ ≤ t|Ft) = 1− e−Γt ,

where

Γt ,
∫ t

0
γ(Xu)du.

Using the default time τ we create the indicator process H via Ht , 1τ≤t and the enlarged

filtration G via G = F ∨ H where H is the P -augmented version of the natural filtration

associated to H. Note that this setup clearly implies the H hypothesis of [EJY00] that

every F-square integrable martingale is a G-square integrable martingale. Furthermore,
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we know that G satisfies the usual conditions and

Mt , Ht − Γτ∧t,

is a (G, P )-martingale.

As a last step, we introduce the Brownian motion which will drive the risky asset. To

do so, define B by

B· =
n∑
j=1

∫ ·
0
ρj(Xt) dW

j
t +

∫ ·
0

√
1− |ρ(Xt)|2 dW 0

t . (3)

Above, the correlation ρ : Rn → Rn is a given function satisfying

Assumption 3. ρi ∈ C1
b (Rn) for 1 ≤ i ≤ n satisfying 0 ≤ |ρ(x)| ≤ 1 in Rn.

Clearly, B is a Brownian motion adapted to F. With all the notation and assumptions in

place, the risky asset S has dynamics

dSt
St−

= 1t≤τ (µ(Xt)dt+ σ(Xt)dBt)− dHt;

= 1t≤τ [(µ(Xt)− γ(Xt))dt+ σ(Xt)dBt]− dMt.

(4)

In other words, S follows a strictly positive continuous diffusion process until τ , at which

time it jumps to zero and stays there. Thus S is a locally bounded, G-adapted semi-

martingale. Regarding the coefficients µ, σ we assume

Assumption 4. µ, σ ∈ Cb(Rn) ∩ C1
b (Rn) and infx∈Rn σ(x) > 0.

Finally, to ease notation going forward, we consolidate Assumptions 1 – 4 into one

assumption, which will be in force in the sequel:

Assumption 5. Assumptions 1 – 4 hold.
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2.2. Optimal Investment Problem and the Main Result

2.2.1. Investor Preferences and Wealth Processes. We assume the investor has

preferences modeled by the exponential utility function

U(w) = − exp(−αw); w ∈ R,

so that α > 0 measures the absolute risk aversion. Now, fix a finite time horizon T > 0.

The investor’s goal is to maximize her expected utility from terminal wealth by trading in

the risky and safe assets, taking into account the fact the stock may default. To precisely

define the class of acceptable wealth processes, it is first necessary to define the class of

equivalent local martingale measures. As such, we set

Me , {Q ∼ P on GT : S is a local martingale under Q} . (5)

For Q ∈Me define the relative entropy of Q with respect to P by

H(Q|P ) , E
[
dQ

dP
log

(
dQ

dP

)]
1, (6)

and let

Me,f , {Q ∈Me : H(Q|P ) <∞} .

Note that Assumption 5 insures

Me,f 6= ∅, (7)

and in fact we will construct a concrete element in Me,f in Section 4.4.

The relation (7) is intimately related to the lack of arbitrage in the market and from

[Fri00, KS02] it is well known that (7) implies there exists a unique Q
0 ∈Me,f such that

H(Q
0|P ) = min

Q∈Me,f

H(Q|P ) <∞. (8)

1Unless otherwise mentioned, all Radon-Nikodym derivatives will be on GT .
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Q
0

is known as the minimal entropy martingale measure, or MEMM, under P .

Having defined the class of equivalent local martingale measures with finite relative

entropy we may now define the class of trading strategies available to the investor. Let π

be a G-predictable, S-integrable processes, where πt denotes the dollar amount invested

in S at time t. For an initial capital w, the self-financing wealth process Wπ associated

to π has dynamics

Wπ
· = w +

∫ ·
0
πt
dSt
St−

;

= w +

∫ ·
0
πt1t≤τ (µ(Xt)dt+ σ(Xt)dBt)−

∫ ·
0
πtdHt;

= w +

∫ ·
0
πt1t≤τ ((µ(Xt)− γ(Xt))dt+ σ(Xt)dBt − dMt) .

(9)

The acceptable class of trading strategies is defined as

AG = {π :Wπ is a Q super-martingale for all Q ∈Me,f} . (10)

Having defined the class of trading strategies, we now consider when the investor, in

addition to trading in the underlying assets, also has a non-traded random endowment

with payoff ϕ(XT ) provided that τ > T . Regarding ϕ we assume

Assumption 6. ϕ ∈ C2+β
loc (Rn) for some β ∈ (0, 1), i.e., ϕ has second-order derivatives

which are β-Hölder continuous on any compact set in Rn. Furthermore, we assume

sup
Rn
|ϕ| <∞, lim sup

|x|→∞

|Dϕ|
|x|

<∞.

The investors goal is to maximize her expected utility by trading in the underlying

market and owning the defaultable claim: i.e. to identify

v(x,w;ϕ) = sup
π∈AG

E [U (Wπ
T + ϕ(XT )1τ>T )] , (11)
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where the x and w are initial values of the processes X and Wπ defined in (1) and (9),

respectively. Since v(x,w;ϕ) = e−αwv(x, 0;ϕ), we take w = 0 throughout. At an abstract

level, this problem is well understood. Indeed, under the given assumptions it was shown

in [KS02] that an optimizer πϕ ∈ AG exists and is unique. Furthermore, there is a

measure Q
ϕ ∈ Me,f so that, with Wϕ

= Wπϕ denoting the optimal wealth process, Wϕ

and Q
ϕ

satisfy the first-order conditions

dQ
ϕ

dP
=

e−αW
ϕ
T−αϕ(XT )1τ>T

E
[
e−αW

ϕ
T−αϕ(XT )1τ>T

] ;

= e−α(W
ϕ
T+ϕ(XT )1τ>T−G(x;ϕ)),

(12)

where we have set G(x;ϕ) as the certainly equivalent to v(x;ϕ) , v(x, 0;ϕ) so that

v(x;ϕ) = U(G(x;ϕ)). In fact, Wϕ
is a Q uniformly integrable Q-martingale for all Q ∈

Me,f .

Despite these general facts, there is still much to be learned by studying this problem:

first and foremost, what do the optimal strategies look like? How do they differ from the

strategies obtained in the absence of default? How may strategies be computed? What

is the indifference price for the defaultable option? To answer these questions, we seek to

identify the value function v(;ϕ) with a partial differential equation. Thus in Chapter 4

we

(1) Use the dynamic programming principle to (informally) obtain the HJB equation for

the value function,

(2) State our main PDE existence result regarding solutions to the HJB equation,

(3) State our main verification result where solutions to the HJB equation are shown to

be the value function.

We remark that in the above verification steps, we are able to obtain smooth solutions

to the HJB equation under the general conditions outlined in Section 4.2. However,

the verification argument requires us to restrict the model to more stringent conditions;
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Assumptions 5 and 6. In particular, under Assumption 1 within Assumption 5, the factor

process X is an extension of the multi-dimensional OU process in Rn.

We are now ready to state our main result.

Theorem 7 (Optimal Investment). Under Assumptions 5 and 6, we have

sup
π∈AG

E [U(Wπ
T + ϕ(XT )1τ>T )] = U(G(0, x;ϕ)) = −e−αG(0,x;ϕ),

where the supremum is attained by the optimal control πϕ in AG given in (54) below, and

G(;ϕ)2 ∈ C1,2([0, T ]×Rn) is a pre-default certainty equivalent for the investor, satisfying

the PDE (25) below. Moreover, Wϕ
is a Q-uniformly integrable (G, Q)-martingale for all

Q ∈Me,f .

Proof. See Chapter 4. �

Corollary 8 (Utility Indifference Pricing for Defaultable Claims). Under As-

sumptions 5 and 6, the buyer’s indifference price for the defaultable claim ϕ(XT )1τ>T is

G(0, x;ϕ)−G(0, x; 0).

Proof. The buyer’s indifference price for the defaultable claim ϕ(XT )1τ>T , pϕB, should

satisfy

sup
π∈AG

E
[
U(Wπ

T − p
ϕ
B + ϕ(XT )1τ>T )

]
= sup

π∈AG

E [U(Wπ
T )] .

From Theorem 7, the above relation becomes

U(−pϕB +G(0, x;ϕ)) = U(G(0, x; 0)),

which yields the relation pϕB = G(0, x;ϕ)−G(0, x; 0). �

Remark 9. Taking ϕ ≡ 1 in Corollary 8 will give the price of one unit of a defaultable

bond. We will price it explicitly for the simple case of constant coefficients in Remark 14,

Chapter 3.

2G(t, x;ϕ) is the extension of the certainty equivalent introduced in (12) as G(x;ϕ) = G(0, x;ϕ).





CHAPTER 3

Simple Case

Before proving Theorem 7, we look at a simpler version of the problem where,

Assumption 10 (Simple Case). µ ∈ R, σ > 0, and γ > 0 are constant and the Brownian

filtration F is generated by a one-dimensional Brownian motion W . Thus there is no factor

process X. For the payoff ϕ, we assume ϕ ∈ R is constant.

Here, the problem becomes considerably simpler because the default time τ defined in (2)

is independent of the Brownian motion W . The HJB equation gives rise to an ordinary

differential equation (ODE) rather than PDE, which allows a rather explicit solution to

our optimal investment problem. More importantly, we can compare this result with the

celebrated Merton problem, and observe that there is a non-vanishing difference in the

optimal strategies as the time horizon increases, due to stock defaulting.

This simple case result is not new in the literature: for example, [LR12] discusses

when the coefficients are not just constants but time-dependent deterministic functions.

They obtain a coupled system of ODEs by the duality argument, which is basically the

same as our ODE (13) below derived from the HJB equation. Yet, it is worthwhile to state

the result here for analytical tractability. We revisit this simple model when we price the

insurance coupon rate in Section 5.3.

Under Assumption 10, the PDE (25) below for the pre-default certainty equivalent

turns into an ODE because the x-dependency is lost. Thus, G(t;ϕ) = G(t, x;ϕ) now

13
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satisfies

Gt(t;ϕ)− σ2

2α

(
θ2(G(t;ϕ)) + 2θ(G(t;ϕ))

)
+ γ̄ = 0; 0 ≤ t < T,

G(T ;ϕ) = ϕ,

(13)

where (see (24) and (31) below),

θ(z) = W
( γ
σ2
e
µ

σ2
+αz
)
, γ̄ =

1

α

(
γ +

µ2

2σ2

)
. (14)

Above, W (·) is the product-log function or Lambert W function, satisfying the relation

x = W (x)eW (x). It is straightforward to see W is well defined and infinitely differentiable

on (0,∞).

Notice that Assumption 10 implies Assumptions 5 and 6. Thus the conclusion of

Theorem 7 holds. Therefore we have

Theorem 11. Under Assumption 10,

sup
π∈AG

E [U(Wπ
T + ϕ1τ>T )] = U(G(0;ϕ)) = −e−αG(0;ϕ),

where the supremum is attained by the optimal control πϕ in AG given in (16) below, and

G(;ϕ) ∈ C1[0, T ] is a pre-default certainty equivalent for the investor, satisfying the ODE

(13). Moreover, Wϕ
is a Q-uniformly integrable (G, Q)-martingale for all Q ∈Me,f .

We can obtain a rather closed solution of (13) as follows. As in (26) in Section 4.2

below, we first reverse the time in (13) to change the terminal condition to an initial one.

As such, we define

u(t) = G(T − t;ϕ); t ≤ T,
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where ϕ is dropped for simplicity. Using (13), we see that u solves the ODE,

−u′(t)− σ2

2α

(
θ2(u(t)) + 2θ(u(t))

)
+ γ̄ = 0; 0 < t ≤ T,

u(0) = ϕ.

Next, set

p(t) , θ(u(t)) = θ(G(T − t;ϕ)), (15)

so that the optimal position in the stock, π, becomes (see (23) below),

πϕ(t) =
1

α

( µ
σ2
− θ(G(t;ϕ))

)
=

1

α

( µ
σ2
− p(T − t)

)
; t ≤ T. (16)

Thus the function p acts as a deviation from the optimal position in stock from the Merton

problem, where the exponential investor holds µ/(ασ2)-dollar amount of stock to maximize

her utility.

From Lemma 54 below, we have

θ′(z) =
αθ(z)

1 + θ(z)
.

Thus the ODE for p(t) becomes

p′(t) = u′(t)θ′(u(t))

=
αp(t)

1 + p(t)

[
−σ

2

2α

(
p2(t) + 2p(t)

)
+ γ̄

]
= −σ

2

2

p(t)(p(t)− p+)(p(t)− p−)

1 + p(t)
; 0 < t ≤ T, (17)

where

p± , −1±
√

1 + 2
γ

σ2
+
µ2

σ4
,

and the initial condition is given by

p(0) = θ(u(0)) = W
( γ
σ2
e
µ

σ2
+αϕ

)
> 0.
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-1

p+

0

p-

Figure 1. Sketch of the flow of the ODE (17). It has two fixed points, 0
(unstable) and p+ (stable).

Figure 1 shows the flow of the ODE (17). Noticing the shape of the curve in the figure,

we see that there is a unique solution for p(t) that starts at p(0) > 0 and converges to p+

as t→∞.

This result in turn gives G(;ϕ) ∈ C1[0, T ] as,

G(t;ϕ) =
1

α
log

[
p(T − t)ep(T−t)

γ
σ2 e

µ

σ2

]
. (18)

from the definition of θ in (14) and (15).

Remark 12. When ϕ ≡ 0, we can judge the sign of the optimal position in stock (16)

from the values µ and γ as follows. Lemma 57 below with x = γ/σ2 and y = µ/σ2 gives

p(0) = W (γ/σ2eµ/σ
2
) ≤ p+, where the equality holds only when µ = γ. Therefore, in light

of the flow of ODE from (17), we observe the relations that for t ∈ [0, T ],
γ > µ : µ/σ2 < p(0) ≤ p(t) ≤ p(T ) < p+ < γ/σ2 −→ π0 < 0,

µ > γ : γ/σ2 < p(0) ≤ p(t) ≤ p(T ) < p+ < µ/σ2 −→ π0 > 0,

µ = γ : p(t) ≡ µ/σ2 −→ π0 ≡ 0.
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In other words, when the default intensity exceeds the return of the stock, the investor is

better off betting on the default, thus she shorts the stock. By contrast, when the return

of the stock exceeds the default intensity, she longs the stock. Indeed µ − γ acts as an

effective drift of the risky asset when µ/σ2 and γ/σ2 are equally small compared to 1,

because in that case we have p+ ≈ γ/σ2. Thus for long horizons,

lim
T→∞

π0(0) =
1

α

( µ
σ2
− p+

)
≈ µ− γ

ασ2
,

which is the optimal position in stock in the Merton problem when the stock drift is µ−γ.

Remark 13. We observe that there is a non-vanishing difference in the optimal strategies

from the Merton problem in the long-time-horizon, small-default-intensity limit. First, we

see from (16) and W (0) = 0 that

lim
γ→0+

πϕ(0) = lim
γ→0+

1

α

(
µ

σ2
− p(T )

∣∣∣
p(0)=W

(
γ

σ2
eµ/σ

2+αϕ
)
)

=
µ

ασ2
,

which is the same as the Merton case, because for any fixed time horizon, taking the

default intensity to zero makes the market default-free. Thus the problem boils down to

the Merton problem.

However, for long horizons,

lim
γ→0+

lim
T→∞

πϕ(0) = lim
γ→0+

lim
T→∞

1

α

(
µ

σ2
− p(T )

∣∣∣
p(0)=W

(
γ

σ2
eµ/σ

2+αϕ
)
)

= lim
γ→0+

1

α

( µ
σ2
− p+

)
=

1

α

(
µ

σ2
−

(√
1 +

µ2

σ4
− 1

))
.

This manifests the fact that, however small the default intensity is, the position in the

Merton problem µ/(ασ2) is too high. The stock will almost surely default in the long-

time-horizon limit. Thus the investor prepares for it by holding a smaller amount of stock

than she would in Merton case.
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Remark 14 (Defaultable Bond Pricing). Using Corollary 8 for the simple case with

ϕ ≡ 1, we can compute the buyer’s indifference price of one unit of a defaultable bond,

p1
B, as

p1
B = G(0; 1)−G(0; 0).

Figure 2 shows the associated yield to maturity of the defaultable bond, defined by

− log(p1
B(T ))/T for each T > 0, under parameters µ = .04, σ = .3, γ = .03 and α = 1.

For comparison, γ the default intensity of τ under the physical measure is plotted, too.

Figure 3 shows the behavior of p1
B with varied α, or more precisely, with the varied

risk tolerance parameter 1/α. The increasing and concave nature of the price curve can

be understood by the duality formulation of the buyer’s indifference price [IJS05]:

p1
B = inf

Q∈Me,f

{
EQ1τ>T +

1

α

(
H(Q|P )−H(Q

0|P )
)}

(19)

where Q
0

is defined in (8). Moreover, by [Bec03, Proposition 3.2], we know that p1
B

converges to the “risk-neutral” price under MEMM in the zero risk-aversion limit, i.e.,

lim
1/α→∞

p1
B = EQ

0

1τ>T = e−
∫ T
0 σ2θ(G(t))dt,

where the last equality follows from the fact that the default intensity of τ under Q
0

becomes the deterministic process γ(t) = σ2θ(G(t)) (see (65) below). Computing the last

integration numerically, we obtain

lim
1/α→∞

p1
B = 0.967942,

which is the horizontal asymptote for the curve in Figure 3. On the other hand, when

taking 1/α → 0, we can bring the limit inside the infimum in (19) to get ([DGR+02,

Proposition 5.1]),

lim
1/α→0+

p1
B = inf

Q∈Me,f

EQ1τ>T = 0.
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Figure 2. Above: Yield to maturity of the defaultable bond when µ =
.04, σ = .3, γ = .03, and α = 1. Below: γ, which is the default intensity of
τ under the physical measure.
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Figure 3. Defaultable bond price under various risk tolerance parameter
1/α when µ = .04, σ = .3, γ = .03, T = 1. The horizontal asymptote is at
0.967942.





CHAPTER 4

Proof of the Main Result: Theorem 7

We now embark on the proof of our main result, Theorem 7. The semilinear parabolic

PDE for the pre-default certainty equivalent is derived from the HJB equation in Section

4.1. We state and solve our Cauchy problem for the pre-default certainty equivalent in

Sections 4.2 and 4.3. Using the obtained solution, we construct explicit candidates for

the optimal wealth process and the martingale measure, then explore the implications by

the well-developed duality result to those candidates in Section 4.4. The verification is

completed in Section 4.6.

We assume Assumption 5 and 6 for the entire chapter except Sections 4.2 and 4.3,

where we can solve the Cauchy problem under fairly general conditions, given in Assump-

tions 20, 21, and 22.

4.1. HJB to PDE

We will denote by AF ⊂ AG the class where π is F-predictable. Using the dynamic

programming principle, we can (informally) derive the pre-default expected utility at time

21
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t as,

ess sup
π∈AG

E [1τ>tU(Wπ
T + ϕ(XT )1τ>T )|Gt]

= ess sup
π∈AG

E
[
1τ>tU(Wπ

(τ∧T )− − πτ1τ≤T + ϕ(XT )1τ>T )|Gt
]

;

=1τ>te
Γt ess sup

π∈AF

E
[∫ ∞

t
U(Wπ

(u∧T )− − πu1u≤T + ϕ(Xu∧T )1u>T )dFu

∣∣∣∣Ft] ;

=1τ>te
Γt ess sup

π∈AF

E
[∫ T

t
U(Wπ

u− − πu)dFu + (1− FT )U(Wπ
T + ϕ(XT ))

∣∣∣∣Ft] ;

=1τ>t ess sup
π∈AF

E
[∫ T

t
U(Wπ

u− − πu)e−
∫ u
t γsdsγudu+ e−

∫ T
t γsdsU(Wπ

T + ϕ(XT ))

∣∣∣∣Ft] ,
where in the second equality, we used [BR04, Proposition 5.1.1.(ii)] noting that U(Wπ

(τ∧T )−−

πτ1τ≤T + ϕ(XT )1τ>T ) is the time τ value of an F-predictable process1 U(Wπ
(·∧T )− −

π·1·≤T +ϕ(X·∧T )1·>T ). By the Markovian nature of the model, the expression in the last

line prompts us to define the pre-default value function v(t, x, w;ϕ)2 as

ess sup
π∈AG

E [1τ>tU(Wπ
T + ϕ(XT )1τ>T )|Gt] = 1τ>tv(t,Xt,Wt;ϕ),

where

v(t, x, w;ϕ)

= sup
π∈AF

E
[∫ T

t
U(Wπ

u− − πu)e−
∫ u
t γ(Xs)dsγ(Xu)du+ e−

∫ T
t γ(Xs)dsU(Wπ

T + ϕ(XT ))

∣∣∣∣Xt = x,Wt = w

]
.

This is exactly of the form to which the extension result of [Pha09, Section 3.4.2] is

applicable. We can thus derive the HJB equation as (here and in all that follows, the

1Wπ
(·∧T )− is G-predictable but we can take a unique F-predictable process that coincide with Wπ

(·∧T )− on

[0, τ). Look at the remark after [BR04, Corollary 5.3.1].
2v(t, x, w;ϕ) is the extension of v(x,w;ϕ) introduced in (11) as v(x,w;ϕ) = v(0, x, w;ϕ).
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appearance of the same index used twice in a term indicates summation from 1 to n),

vt + max
π

[
−γv + πµvw + bivxi +

π2

2
σ2vww + πσcijρjvxi,w

+
(cc>)ij

2
vxi,xj − γe−α(w−π)

]
= 0, (20)

with the terminal condition,

v(T, x, w;ϕ) = −e−α(w+ϕ(x)).

As introduced in Theorem 7, let G(t, x;ϕ) be the pre-default certainty equivalent at

time t with X starting at Xt = x for the terminal payoff of ϕ(XT ), so that

v(t, x, w;ϕ) = −e−αwe−αG(t,x;ϕ).

Substituting into (20), we have3

Gt +
(cc>)ij

2
DijG−

α

2
(cc>)ijDiGDjG

+ max
π

[
(bi − ασπcijρj)DiG−

α

2
σ2π2 + µπ +

γ

α

(
1− eα(G+π)

)]
= 0, (21)

with the terminal condition,

G(T, x;ϕ) = ϕ(x); x ∈ Rn.

The maximum of (21) is attained when

−µ+ ασ2π + ασcijρjDiG+ γeα(G+π) = 0. (22)

We introduce θ by setting

π =
1

α

( µ
σ2
− α

σ
cijρjDiG− θ

)
. (23)

3We use notations DiG = Gxi , DijG = Gxi,xj , and DG = (Gx1 , Gx2 , . . . , Gxn).
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Thus θ denotes the deviation of the optimal strategy from an incomplete but no default

market case (at least in a formal level because G here already takes account of the default).

Substituting (23) back into (22), we see that θ must satisfy

θeθ =
γ

σ2
exp

( µ
σ2

+ αG− α

σ
cijρjDiG

)
,

or θ = θ(x,G,DG) at the maximum in (21), where

θ(x, z, p) ,W

[
γ(x)

σ2(x)
exp

(
µ(x)

σ2(x)
+ αz − α

σ(x)
cij(x)ρj(x)pi

)]
; (x, z, p) ∈ Rn×R×Rn,

(24)

and W (·) is the product-log function already introduced in (14).

With θ = θ(x,G,DG), we can set π as in (23) to get the following partial differential

equation for G,

0 = Gt +
(cc>)ij

2
DijG−

α

2

[
(cc>)ijDiGDjG− (cijρjDiG)2

]
+ (bi − µ

σ
cijρj)DiG

−σ
2

2α
(θ2 + 2θ) +

1

α

(
γ +

µ2

2σ2

)
; in [0, T )× Rn,

G(T, x;ϕ) = ϕ(x); x ∈ Rn.

(25)

4.2. Setup and Statement of the Cauchy Problem

In the previous section, we obtained the parabolic PDE for the pre-default certainty

equivalent, G(t, x;ϕ), in (25). In this section, we rewrite (25) in a form suitable to applying

the classical parabolic PDE theory, and state the existence result for the PDE in Theorem

26. We are able to prove the Cauchy existence result, Theorem 26, under Assumptions

20, 22, and 21 stated below, which are more general than Assumptions 5 and 6 required

for our main optimal investment result.

The precise assumptions to solve the Cauchy problem are now listed. They are in

place only in Section 4.2 and 4.3. Each of the assumptions is a general version of an afore-

mentioned assumption from Section 2.1, as noted right next to the assumption number.
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For our generalized spacial domain D ⊂ Rn, fix β ∈ (0, 1) and assume

Assumption 15. D = ∪∞m=1Dm where for each m = 1, 2, . . . , Dm is an open connected

subset of Rn, which is bounded and has a C2+β-boundary. Furthermore, D̄m ⊂ Dm+1 for

m = 1, 2, . . . , thus D is also connected but not necessarily bounded.

which clearly includes the case D = Rn as in our main setup in Section 2.1. Thus the

parabolic PDE (25) is solved in the domain

Ω , (0, T )×D.

Regarding b, c, γ, ρ, µ, and σ from Section 2.1, assume they are defined on D and

satisfy:

Assumption 16 (cf. Assumption 1). bi : D → R and cij : D → R are continuously

differentiable for 1 ≤ i, j ≤ n. Furthermore, the n × n-matrix c(x) is invertible for all

x ∈ D. As such, a(x) , c(x)c>(x)/2 is locally elliptic in that for each m, there is a

λm > 0 so that for all ξ ∈ Rn and x ∈ Dm we have Λmξ
>ξ ≥ ξ>a(x)ξ ≥ λmξ

>ξ. (Λm

exists because a is bounded on Dm.)

Assumption 17 (cf. Assumption 2). γ : D → (0,∞) is continuously differentiable.

As such, for all m, infx∈Dm γ(x) > 0.

Assumption 18 (cf. Assumption 3). ρ : D → Rn is continuously differentiable and

for all x ∈ D we have 0 ≤ |ρ(x)| ≤ 1.

Assumption 19 (cf. Assumption 4). µ, σ : D → R are both continuously differential-

ble with σ(x) > 0 for all x ∈ D. As such, for all m, infx∈Dm σ(x) > 0.

To ease notation going forward, we consolidate Assumptions 15 – 19 into one assump-

tion:
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Assumption 20 (cf. Assumption 5). Assumptions 15 – 19 hold.

For the terminal condition, we assume

Assumption 21 (cf. Assumption 6). ϕ : D → R in C2+β
loc , i.e., ϕ has second-order

derivatives which are β-Hölder continuous in Dm for each m. Furthermore, we assume

sup
x∈D
|ϕ(x)| <∞.

We first reverse the time in (25) to change the terminal boundary condition into to an

initial one. As such, we define

u(t, x) = G(T − t, x;ϕ); t ≤ T, x ∈ D, (26)

where ϕ is dropped for simplicity. Using (25), we see that u solves the PDE,

0 = −ut +
(cc>)ij

2
Diju−

α

2

[
(cc>)ijDiuDju− (cijρjDiu)2

]
+
(
bi − µ

σ
cijρj

)
Diu−

σ2

2α
(θ2 + 2θ) +

1

α

(
γ +

µ2

2σ2

)
; in (0, T ]×D,

u(0, x) = ϕ(x); x ∈ D,

(27)

where θ = θ(x, u,Du) (see (24) for the definition of θ(x, z, p), which is now defined in

D × R× Rn).

To conform to the notations in [Lie96], we write (27) in the general form

Pu , −ut + aij(x)Diju+ a(x, u,Du) = 0, (28)
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where we drop the obvious arguments (t, x) for solutions to PDEs and their derivatives

here and in all that follows. Above,

aij(x) =
1

2
(cc>(x))ij , (29)

a(x, z, p) , −α
2

[
(cc>(x))ijpipj − (cij(x)ρj(x)pi)

2
]

+

(
bi(x)− µ(x)

σ(x)
cij(x)ρj(x)

)
pi;

− σ2(x)

2α

(
θ2(x, z, p) + 2θ(x, z, p)

)
+

1

α

(
γ(x) +

µ2(x)

2σ2(x)

)
;

= −α
2
p>a(x)p+ p>b(x)− σ2(x)

2α

(
θ2(x, z, p) + 2θ(x, z, p)

)
+ γ(x), (30)

where

a(x) , c(x)(I − ρρ>(x))c>(x),

b(x) , b(x)− µ(x)

σ(x)
c(x)ρ(x),

γ(x) ,
1

α

(
γ(x) +

µ2(x)

2σ2(x)

)
.

(31)

Note that aij(x), b
i
(x) and γ(x) are all continuously differentiable in D, and so is a(x, z, p)

in D × R× Rn under Assumption 20.

We further assume that a(x, z, p) defined in (30) satisfies:

Assumption 22.

sup
x∈D

a(x, 0, 0) = sup
x∈D

[
−σ

2(x)

2α

(
θ2(x, 0, 0) + 2θ(x, 0, 0)

)
+

1

α

(
γ(x) +

µ2(x)

2σ2(x)

)]
≤ K

for some positive constant K, where

θ(x, 0, 0) = W

[
γ(x)

σ2(x)
exp

(
µ(x)

σ2(x)

)]
by (24).

Note that the above assumption is met under Assumption 5 because both γ and µ2/σ2

are bounded from above in D = Rn. Assumption 22 is the condition that guarantees
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the uniform boundedness of the local solutions. Look at Section 4.3.1 for the detailed

discussion.

The solution to the parabolic PDE (27) is obtained as a limit of a localized version of

the problem in

Ωm , (0, T )×Dm, m = 1, 2, . . . .

For each m, let Γm be the parabolic boundary of Ωm, i.e., the union of the bottom

{(t, x) : t = 0, x ∈ Dm} and the side {(t, x) : 0 ≤ t ≤ T, x ∈ ∂Dm}.

The parabolic distance ρ between (t1, x1) and (t2, x2) in Ω (or more generally in Rn+1)

is defined as

ρ ((t1, x1), (t2, x2)) , max(|t1 − t2|1/2, |x1 − x2|).

If f is a function in a domain Q ⊂ Ω, we denote

[f ]β;Q , sup
(t1,x1)6=(t2,x2)

(ti,xi)∈Q

|f(t1, x1)− f(t2, x2)|
ρβ ((t1, x2), (t2, x2))

.

We also set

|f |0;Q , sup
Q
|f |.

We then introduce the parabolic Hölder space,

Definition 23. H2+β(Q) is the Banach space of functions f that are continuous in Q,

together with all derivatives of the form ft, fx, fxx, and have a finite norm

|f |2+β;Q ,
∑

|α|+2j≤2

sup |Dα
xD

j
t f |0;Q +

∑
|α|+2j=2

[Dα
xD

j
t f ]β;Q +

∑
|α|=1

〈Dα
xf〉1+β;Q,

where

〈Dα
xf〉1+β;Q , sup

t1 6=t2
(ti,x)∈Q

|Dα
xf(t1, x)−Dα

xf(t2, x)|
|t1 − t2|(1+β)/2

.
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Remark 24. This definition coincides with H2+β(Q) in [Lie96] or H2+β,1+β/2(Q) in

[LSU88]. Also, notice that f ∈ H2+β(Q) is uniformly continuous in Q with its corre-

sponding derivatives. Thus we can speak about the values of f and its derivatives on ∂Q

without ambiguity. With regards to Assumption 21, we see that ϕ ∈ H2+β(Ωm) for each

m.

To localize our Cauchy problem, we extensively use mollifiers [Eva10]:

Definition 25. χm : Rn → [0, 1] is the C∞-mollifier supported on Dm such that χm = 1

on Dm−1 and χm, Dxχm, Dxxχm → 0 as x→ ∂Dm.

With all assumptions and definitions provided, we are ready to state our Cauchy

problem. The existence of a solution to this problem is proved in Section 4.3.

Theorem 26 (Cauchy Problem). Under the Assumptions 20, 21, and 22, there exists

u ∈ C1,2([0, T ]×D) that solves 
Pu = 0 in Ω,

u|t=0 = ϕ.

(32)

Moreover, u satisfies u0 ≤ u ≤ u1 in Ω for some constants u0 and u1, and u ∈ H2+β(Ωm)

for each m = 1, 2, . . . .

Remark 27. Because of the way we obtain u in Section 4.3.4 below as a limit of a

converging subsequence in a precompact subset, there is no guarantee of uniqueness for

the solutions in Theorem 26. In fact, through this construction, we do not obtain any

information regarding the behaviors of u and Du as they approach (0, T ) × ∂D. Such

information is crucial in applying the uniqueness results of parabolic PDEs (as we need

the the value of u on the parabolic boundary), and in verifying that u represents a pre-

default certainty equivalent of the investor in our optimal investment problem (as we need

to estimate Du to prove certain local martingales are true martingales). However, once
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the verification is completed, the uniqueness of the solution is guaranteed by the duality

theory results [KS02].

4.3. Existence of the solution to the Cauchy Problem in Ω

Since the spacial domain D is not necessarily bounded in Theorem 26, we cannot

directly cite the classical semi-linear parabolic PDE results (e.g. [Lie96]) which deal with

problems in bounded domains with parabolic boundary conditions provided. Therefore,

we break the proof of Theorem 26 into four steps, Propositions 28 – 31. Each step assumes

the result from the previous step. The idea of the proof is: we construct a local solution in

each bounded domain Ωk in Proposition 28, and, with certain interior boundedness results

from Propositions 29 and 30, we construct the solution with the desired properties in the

whole domain Ω in Proposition 31. Assumptions 20, 21, and 22 prevail throughout these

four propositions.

In this section, C(m) represents a constant that only depends on the values of b, c, µ, σ, γ, ρ,

and ϕ in Dm, and possibly on the geometries of D1, D2, . . . Dm. There is no relation in

the multiple appearances of C(m).

Proposition 28 (Section 4.3.1). For each k ∈ N, there exists u(k) ∈ H2+β(Ωk) solving

Pu(k) = 0 in Ωk, u(k)|t=0 = ϕ in Dk. (33)

Moreover, the solutions are uniformly bounded, i.e., we can pick constants u0 and u1 such

that u0 ≤ u(k) ≤ u1 in Ωk for any k ∈ N.

Proposition 29 (Section 4.3.2). For (u(k))k obtained in Proposition 28 and for each

m ∈ N,

sup
k≥m+1

|Du(k)|0;Ωm ≤ C(m+ 1).
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Proposition 30 (Section 4.3.3). For (u(k))k obtained in Proposition 28 and for each

m ∈ N,

sup
k≥m+2

(
[u(k)]β;Ωm + [Du(k)]β;Ωm

)
≤ C(m+ 2).

Proposition 31 (Section 4.3.4). For (u(k))k obtained in Proposition 28 and for each

m ∈ N,

sup
k≥m+3

|u(k)|2+β;Ωm ≤ C(m+ 3).

Consequently, there exists u ∈ C1,2([0, T ]×D), u0 ≤ u ≤ u1 which satisfies (32).

4.3.1. Proof of Proposition 28. First we prove the following lemma for a(x, z, p)

defined in (30).

Lemma 32. a(x, z, 0) ≥ 0 for z ≤ 0. Thus za(x, z, 0) < 0 for z < 0.

Proof. a(x, z, 0) depends on z only through θ(x, z, 0) by (30). Note also that, since the

product-log function is an increasing function on (0,∞), θ(x, z, 0) is increasing in z by

(24), thus a(x, z, 0) itself is a decreasing function of z. Therefore, to show the lemma, we

only need to prove

a(x, 0, 0) ≥ 0, (34)

where

a(x, 0, 0) = −σ
2(x)

2α

(
θ2(x, 0, 0) + 2θ(x, 0, 0)

)
+
σ2(x)

2α

[(
µ(x)

σ2(x)

)2

+ 2
γ(x)

σ2(x)

]
.

Here, we can use Corollary 58 setting x = γ/σ2 and y = µ/σ2 to show θ2 +2θ ≤ (µ/σ2)2 +

2γ/σ2, thus (34) holds. �

Coming back to the proof of Theorem 28, we first fix k ≥ 2. Even though (33) has no

spatial boundary condition, we need to specify a parabolic boundary condition on Γk to

obtain the solution to (33). In fact, we will construct Φk ∈ H2+β(Ωk) and then take our

parabolic boundary condition as the value of Φk uniquely extended to Γk.
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Φk(t, x) should take the same value as ϕ(x) for x ∈ Dk−1, but it requires a special care

near the spacial boundary. In particular, the behavior of Φk at the “corner” {t = 0}×∂Dk

is crucial because all values of u, ut, ux, and uxx are determined by Φk there.

With this in mind, we set

Φk(t, x) , χk(x)ϕ(x),

and define a new parabolic operator

P (k)u(t, x) , −ut(t, x) + aij(x)Diju(t, x) + χk(x)a (x, u(t, x), Du(t, x)) .

Notice that Φk satisfies the compatibility condition of the first order for the parabolic

operator P (k), i.e.,

P (k)Φk = 0 on {t = 0} × ∂Dk. (35)

We now seek for the existence of the solution to the following parabolic system,
P (k)u = 0 in Ωk,

u|Γk = Φk|Γk .
(36)

Theorem 12.16 in [Lie96]4 gives the existence of the solution to (36). As for the condition

(12.27) within the theorem, it is straightforward to see aijp = aijz = 0 and aijx is bounded on

Ωk. By (30) and Corollary 56 below, we have a = O(|p|2) as |p| → ∞ (see the beginning

of Appendix A for the definition of O(|p|2)). Thus (12.27) is satisfied.

4[Lie96, Theorem 12.16] actually proves that our solution u to (36) is in the class H
(−1−γ)
2+β (Ωk), where

γ ∈ (0, 1) is a constant determined by the regularity of parabolic boundary Γk and the regularity of function

Φk. The class H
(−1−γ)
2+β is defined in Chapter 4 of [Lie96] as the class of functions that are H2+β in the

region strictly away from the parabolic boundary but may blow up near the parabolic boundary.
In our case, since the parabolic boundary Γk is H2+β and Φk ∈ H2+β(Ωk) satisfies the compatibility
condition of the first order, (35), the comment at the end of [Lie96, Theorem 12.14] also applies to

Theorem 12.16, thus we have u(k) ∈ H2+β(Ωk) for the solution of (36). This comment is based on the
additional hypothesis in [Lie96, Theorem 8.2], which can be further traced back to the linear result with
the compatibility condition, [Lie96, Theorem 5.14].
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We also need to check the condition (12.26) within the theorem, which is the condition

for the maximum principle as stated in [Lie96, Theorem 9.5]. Namely, if we can find

constants C1 and C2 such that

z · χk(x)a(x, z, 0) ≤ C1z
2 + C2, (37)

then [Lie96, Theorem 9.5] implies that the solution to (36) satisfies

sup
Ωk

u+ ≤ e(C1+1)T (sup
Γk

u+ + C
1/2
2 ).

Applying the same theorem to the PDE satisfied by v , −u:

−vt + aij(x)Dijv − χk(x)a(x,−v,−Dv) = 0,

we see that the same condition (37) leads to

sup
Ωk

v+ ≤ e(C1+1)T (sup
Γk

v+ + C
1/2
2 ).

Finally, combining the bounds on u+ and v+ yields

sup
Ωk

|u| ≤ e(C1+1)T (sup
Γk

|u|+ C
1/2
2 ) ≤ e(C1+1)T (sup

D
|ϕ|+ C

1/2
2 ). (38)

Coming back to (37), we can evaluate z ·χk(x)a(x, z, 0) as follows. By Lemma 32, (37)

always holds when z < 0. For z > 0, observe

z · χk(x)a(x, z, 0) ≤ za(x, 0, 0) ≤ Kz

where the last inequality follows from Assumption 22. Thus we can indeed choose con-

stants C1 and C2, only dependent on K, such that (37) holds. Therefore the right-hand

side of (38) is a finite constant not depending on k.

Therefore, from [Lie96, Theorem 12.16], there exists a solution u ∈ H2+β(Ωk) for

(36), which satisfies u0 ≤ u ≤ u1 in Ωk, where u0 and u1 do not depend on k. We see that
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the restriction of the solution u to Ωk−1 satisfies (33). Therefore we set u(k−1) , u|Ωk−1

to have

|u(k−1)|2+β;Ωk−1
≤ |u|2+β;Ωk <∞,

i.e., u(k−1) ∈ H2+β(Ωk−1). Thus Proposition 28 is proved.

4.3.2. Proof of Proposition 29. Fix m ≥ 2 and k ≥ m + 1. Since we are only

interested in the gradient strictly away from the “side” (note Dm ⊂⊂ Dk), we can use the

local gradient bound results from [Lie96, Section 11.3], in particular Theorem 11.3 (b).

The Bernstein E function is defined in [Lie96, (8.3)] as

E(x, p) , aij(x)pipj . (39)

From Assumption 16, we have

E(x, p) ≥ λm|p|2; ∀x ∈ Dm, ∀p ∈ Rn.

We also use some differential operators defined in [Lie96, Chapter 11]:

δ(p) = Dz + |p|−2p ·Dx, δ(p) = p ·Dp. (40)

As noted right after [Lie96, (11.4)], we take

aij∗ = aij , fj = 0.

Note also that v should be read |p|2 as defined right after [Lie96, (11.2)].
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Then, for the domain Ωm, the quantities A,B and C defined in (11.7) [Lie96], become

Am(x, z, p) ,
1

E(x, p)

(
|p|2

2λm

∑
i,j

(
δ(p)aij(x)

)2
+ (δ(p)− 1)E(x, p)

)
;

=
1

E(x, p)

(
0 + (p ·Dp − 1)aij(x)pipj

)
;

= 1, (41)

Bm(x, z, p) ,
1

E(x, p)

(
δ(p)E(x, p) + (δ(p)− 1)a(x, z, p)

)
, (42)

Cm(x, z, p) ,
1

E(x, p)

(
|p|2

2λm

∑
i,j

(δ(p)aij(x))2 + δ(p)a(x, z, p)

)
. (43)

The estimation of Bm(x, z, p) and Cm(x, z, p) are done in Lemmas 48 and 49, respec-

tively. From those estimations, we obtain

A∞m , B
∞
m , C

∞
m = lim sup

|p|→∞
sup

Ωm×[u0,u1]
Am, Bm, Cm. (44)

are all finite with

A∞m = 1, C∞m = 0.

For [Lie96, (11.17)], we only need to check (11.17b) since aij∗,p = aij,p = 0 and f = 0.

As for (11.17b), we take θ = 1 and we introduce the following quantity D for the domain

Ωm:

Dm(x, z, p) ,
1

E(x, p)

(
|p|2Λm + |p|(|Ep(x, p)|+ |ap(x, z, p)|)

)
. (45)

The estimation of Dm(x, z, p) is done in Lemma 50. We have

D∞m = lim sup
|p|→∞

sup
Ωm×[u0,u1]

Dm, (46)

which is also finite.

We are now ready to apply [Lie96, Theorem 11.3 (b)] to the domain Ωm. Set r =

dist(Dm−1, ∂Dm) so that, as long as we choose x ∈ Dm−1, we have the cylinder (0, T ) ×
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B(x,R) contained within Ωm. Hence we have, by Theorem 11.3 (b)

sup
Ωm−1

|Du(k)| ≤ C3

(
1 +

oscu

r

)
,

where C3 depends on supDm |Dϕ|, A
(m)
∞ , B

(m)
∞ , C

(m)
∞ , D

(m)
∞ and their limit behaviors in (44)

and (46). Here, oscu is the oscillation of u in Ωm as defined in [Lie96, Section 4.1], which

is in our case bounded by u1 − u0 (see Theorem 28).

Noticing the right-hand side of the above inequality does not depend on k, we have

sup
k≥m
|Du(k)|0;Ωm−1 ≤ C(m),

which is the statement of this theorem after reindexing.

4.3.3. Proof of Proposition 30. Fix m ≥ 2 and k ≥ m + 1. We use [Fri13,

Theorem 4, Section 2, Chapter 7] in Ωm to get the estimation. Instead of applying the

theorem directly to u(k), we apply it to the truncated version of the function u(k) defined

by

v , χm(x)
(
u(k) − ϕ(x)

)
= χm(x)u(k) − Φm(x). (47)

Note that v ∈ H2+β(Ωm) and v = 0 on Γm.

Since u(k) satisfies the PDE

−u(k)
t + aij(x)Diju

(k) = −a(x, u(k), Du(k)),

the PDE satisfied by v becomes

−vt + aij(x)Dijv = f(t, x), (48)
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where

f(t, x) , −χm(x)a(x, u(k), Du(k))

+ aij(x)
(
u(k)Dijχm +DiχmDju

(k) +DjχmDiu
(k)
)
− aij(x)Dij(χmϕ). (49)

Since χm, Dxχm, Dxxχm → 0 as x → ∂Dm by Definition 25, f vanishes at {t =

0} × ∂Dm. Moreover, since

• |χm|0;Ωm + |Dxχm|0;Ωm + |Dxxχm|0;Ωm ≤ C(m) by Definition 25,

• u0 ≤ u(k) ≤ u1 by Proposition 28,

• |Du(k)|0;Ωm ≤ C(m+ 1) by Proposition 29,

• ϕ ∈ H2+β(Ωm) by Assumption 21,

we have

|f |0;Ωm ≤ C(m+ 1). (50)

Therefore, by [Fri13, Theorem 4, Section 2, Chapter 7], we have

[v]β,Ωm + [Dv]β,Ωm ≤ C4|f |0,Ωm , (51)

where C4 = C(m)5. Since u(k) = ϕ+ v in Ωm−1 by (47), we have by triangle inequality,

[u(k)]β,Ωm−1 + [Du(k)]β,Ωm−1 ≤ [ϕ]β,Ωm−1 + [v]β,Ωm−1 + [Dϕ]β,Ωm−1 + [Dv]β,Ωm−1 ;

≤ [ϕ]β,Ωm−1 + [Dϕ]β,Ωm−1 + [v]β,Ωm + [Dv]β,Ωm ;

≤ |ϕ|2+β,Ωm−1 + C4|f |0,Ωm ,

where the first inequality is from the triangle inequality and the last one from (51). Since

the last line is C(m+ 1) by (50), with reindexing, we have proved the proposition.

5For the conditions of the [Fri13, Theorem 4, Section 2, Chapter 7], their H0 is the same as our elliptic
constant λm whereas continuous differentiability of a = cc>/2 and C2+β-boundary of Dm guarantee the
existence of H1 and H2 (see Assumption 15 and 16). The constant C4 only depends on H0, H1, H2, β, and
Ωm.
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4.3.4. Proof of Theorem 31. Application of the well-known linear parabolic PDE

existence result (for example [Lie96, Theorem 5.14]) to (48) with the boundary condition

v|Γm = 0 yields,

|v|2+β;Ωm ≤ C5|f |β,Ωm , C5 (|f |0,Ωm + [f ]β,Ωm) ,

where C5 only depends on |aij |β;Ωm ,Ωm, and β. In the right-most term, |f |0,Ωm is already

estimated in (50). Furthermore, the result of Preposition 30, together with the fact χm, ϕ ∈

H2+β(Ωm), allows us to estimate [f ]β,Ωm through (49) to have

[f ]β,Ωm ≤ C(m+ 2).

Thus we have

|v|2+β;Ωm ≤ C(m+ 2).

Similarly to the argument following (51) in Section 4.3.3, restriction of the domain Ωm

to Ωm−1 gives,

|u|2+β,Ωm−1 ≤ C(m+ 2),

which is the first statement of Theorem 31 after reindexing.

By employing the usual diagonal argument, we can extract from (u(k)) a subsequence

(u(kl)) that converges together with the derivatives u
(kl)
t , u

(kl)
x , u

(kl)
xx at each point of D to

some function u and its corresponding derivatives. It is clear that u does not exceed the

bound [u0, u1] and belongs to H2+β(Ωm) for each m. Thus u is the solution of the Cauchy

problem (32), with its derivatives ut, ux, uxx allowing continuous extensions to [0, T ]×D.

4.4. Optimal Investment Problem

Using the solution to the Cauchy problem from the last section, we construct explicitly

a candidate optimal strategy and a candidate martingale measure in this section, both of

which are already alluded to in Section 2.2. We will then apply the well-developed duality



4.4. OPTIMAL INVESTMENT PROBLEM 39

result, Theorem 34, to those explicit candidates to answer our main optimal investment

problem. Assumptions 5 and 6 are in place.

Remark 33. Assumptions 5 and 6 imply Assumptions 20 and 21, respectively. Moreover,

Assumption 5 implies Assumption 22, the extra condition that guarantees the uniform

boundedness of local solutions in Section 4.3.1. Thus, we already know from Theorem 26

that there exists u ∈ C1,2([0, T ]× Rn) satisfying (32) with u0 ≤ u ≤ u1.

Recall that the pre-default certainty equivalent with the terminal payoff ϕ, G(t, x;ϕ),

is related to the solution to Cauchy problem u in Theorem 26 through (26). As such, we

have G(;ϕ) ∈ C1,2([0, T ]× Rn) which satisfies (21):

Gt +
(cc>)ij

2
DijG−

α

2
(cc>)ijDiGDjG

+ (bi − ασπcijρj)DiG−
α

2
σ2(π)2 + µπ +

γ

α

(
1− eα(G+π)

)
= 0, (52)

where (see (23)),

π(t, x;ϕ) ,
1

α

(
µ(x)

σ2(x)
− α

σ(x)
cij(x)ρj(x)DiG(t, x;ϕ)− θ(x,G(t, x;ϕ), DG(t, x;ϕ))

)
;

t ≤ T, x ∈ Rn. (53)

Let our candidate optimal strategy6 be

πϕt , π(t,Xt;ϕ); t ≤ T, (54)

and our candidate martingale measure Q
ϕ

be

dQ
ϕ

dP
, e−α(W

ϕ
T+ϕ(XT )1τ>T−G(0,x;ϕ)), (55)

although Q
ϕ

defined this way may not be a probability measure at this point.

6Although the candidate optimal strategy πϕ is defined up until T , its value is only relevant to our problem
for t ≤ τ ∧ T .
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Let Pϕ be defined by
dPϕ

dP
,

e−αϕ(XT )1τ>T

E
[
e−αϕ(XT )1τ>T

] . (56)

Observing that Wϕ
, the wealth process driven by the candidate optimal strategy πϕ in

(54), and Q
ϕ

defined in (55) satisfy the first-order conditions of the duality, i.e.,

dQ
ϕ

dPϕ
∝ exp(−αWϕ

T ),

we have the following result.

Theorem 34. Suppose7

(i) Q
ϕ ∈Me,f ,

(ii) (Wϕ
t )t≤T is a true Q

ϕ
-martingale and a Q-supermartingale for all Q ∈Me,f .

Then, Q
ϕ

is the unique MEMM under Pϕ. Moreover, (Wϕ
t )t≤T is a Q-uniformly integrable

Q-martingale for all Q ∈ Me,f . Thus the duality gap is closed and we have the optimal

investment result in Theorem 7.

Proof. See Propositions 3.1 and 3.3 in [KS02]. �

Therefore Theorem 7 is proved once the two conditions in Theorem 34 are verified.

We will postpone it until Section 4.6. The next section lays out preparations for Section

4.6.

4.5. Girsanov Theorem and Related Estimations

Before we proceed, we review the Girsanov-type result in our setting. For the proof

of the next theorem, see Proposition 5.3.1 and the remark following Corollary 5.3.1 in

[BR04].

7The two conditions in Theorem 34 do not seem to involve Pϕ. The actual condition for the finite relative
entropy in (i) is H(Q|Pϕ) <∞ but this is equivalent to H(Q|P ) <∞, because the payoff ϕ is assumed to
be bounded under Assumption 21. Look at the discussion in [DGR+02, Section 2] for details. Therefore,
we do not make distinction between the underlying measure P or Pϕ when we talk about the finiteness of
relative entropies.
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Theorem 35. For any measure Q ∼ P on (Ω,GT ), we have the representation

dQ

dP
= ET

 ∑
0≤j≤n

∫ ·
0
βjt dW

j
t +

∫ ·
0+
κtdMt

 ;

= ET
(∫ ·

0+
κtdMt

)
·
n∏
j=0

ET
(∫ ·

0
βjt dW

j
t

)

where β and κ are G- and F-predictable processes, respectively.

By the Girsanov theorem,

WQ
· = W· −

∫ ·
0
βtdt

is a (G, Q)-Brownian motion, and

MQ
· = H· −

∫ ·∧τ
0

γt(1 + κt)dt

is a (G, Q)-martingale.

From (4) and using Theorem 35, we have a concrete description of the set of equivalent

local-martingale measures Me defined in (5).

Lemma 36. For Q ∼ P , we have

Q ∈Me if and only if

µt + σt

(∑n

j=1
ρjtβ

j
t +

√
1− |ρt|2β0

t

)
− γt(1 + κt) = 0 for t ≤ τ ∧ T , (57)

where the processes β and κ are as defined in Theorem 35.

Proof. Fix Q ∼ P . From (3),

BQ
· , B· −

n∑
j=1

∫ ·
0
ρj(Xt)β

j
t dt−

∫ ·
0

√
1− |ρ(Xt)|2β0

t dt (58)

is a (G, Q)-Brownian motion by Theorem 35.
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Again by Theorem 35, the dynamics (4) become

dSt
St−

= 1t≤τ

[(
µt + σt

(∑n

j=1
ρjtβ

j
t +

√
1− |ρt|2β0

t

)
− γt(1 + κt)

)
dt+ σtdB

Q
t

]
− dMQ

t .

Since stochastic integrals of adapted processes with càglàd paths with respect to local

martingales are local martingales by [Pro03, Theorem 33, Chap.IV], the two stochastic

integrals with respect to BQ and MQ above are (G, Q)-local martingales. Thus S is a

(G, Q)-local martingale if and only if the dt-integration part is a (G, Q)-local martingale.

Since the continuous local martingales with finite variation paths have to be constant (see

[RY13, Proposition (1.2), Chap. IV]), and St− is strictly positive for t ≤ τ ∧ T , we reach

the conclusion. �

In order to apply Lemma 36 to Q
ϕ

defined in (55), we first define a possible density

process (Zt)t≤T for Q
ϕ

by,

Zt = e−α(Wϕ
t −G(0,x;ϕ)) ·

(
Ht + (1−Ht)e

−αG(t,Xt;ϕ)
)

=


exp

[
−α(Wϕ

t −G(0, x;ϕ) +G(t,Xt;ϕ))
]
; t < τ,

exp
[
−α(Wϕ

t −G(0, x;ϕ))
]
; τ ≤ t.

(59)

Note that Z0 = 1 and ZT = dQ
ϕ
/dP hold.

Before computing the differential of Z, first observe the differentials:

d
(
e−αW

ϕ
t

)
= e−αW

ϕ
t−1t≤τ

[
−απϕt (µtdt+ σtdBt) +

α2

2
σ2
t (π

ϕ
t )2dt

]
+
(
e−α(Wϕ

t−−π
ϕ
t ) − e−αW

ϕ
t−
)
dHt,

d
(
e−αG

)
= e−αG

[
− αGtdt− αDiG(bitdt+ cijdW j

t

+
1

2
(cc>)ij(α2DiGDjG− αDijG)dt

]
, (60)

where G,Gt, DiG, and DijG are all evaluated at (t,Xt;ϕ).
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Thus,

dZt = 1t≤τZt−(−α)

[
Gt +DiGb

i
t +

1

2
(cc>)ij(DijG− αDiGDjG) + µtπ

ϕ
t −

α

2
σ2
t (π

ϕ
t )2

− ασtπϕt ρ
j
tDiGc

ij

]
dt+ 1t≤τZt−

(
−απϕt σtdBt − αDiGc

ijdW j
t

)
+ (Zt − Zt−) dHt;

= 1t≤τZt−γt

(
1− eα(G+πϕt )

)
dt+ 1t≤τZt−

(
−απϕt σtdBt − αDiGc

ijdW j
t

)
+ Zt−

(
Zt
Zt−
− 1

)
dHt;

= 1t≤τZt−

(
−απϕt σtdBt − αDiGc

ijdW j
t

)
+ Zt−

(
eα(G+πϕt ) − 1

)
dMt;

= Zt−

[
1t≤τ

(
−απϕt σtρ

j
t − αDiGc

ij
)
dW j

t − 1t≤ταπtσ
√

1− |ρt|2dW 0
t

+

(
σ2
t

γt
θt − 1

)
dMt

]
,

where (52) is used for the second equality, and the relation

eα(G(t,x;ϕ)+π(t,x;ϕ)) =
σ2(x)

γ(x)
θ(x,G(t, x;ϕ), DG(t, x;ϕ)),

derived from (23) and (24), is used for the last equality. The form of dZ shows that Z is

a local martingale under P , again by [Pro03, Theorem 33, Chap.IV]. Furthermore,

Lemma 37. If (Zt)t≤T in (59) is a true martingale under P , then Q
ϕ ∈Me.

Proof. If (Zt)t≤T is a true martingale under P , then Q
ϕ

is indeed a probability measure

equivalent to P . Moreover, by Theorem 35, we see that both

W
j
· ,W

j
· −

∫ ·
0
β
j
tdt, 0 ≤ j ≤ n, (61)

and

M · , H· −
∫ ·∧τ

0
γt(1 + κt)dt,
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are local martingales under Q
ϕ
, where

β
j
t , 1t≤τ (−απϕt σtρ

j
t − αDiGc

ij); 1 ≤ j ≤ n,

β
0
t , −1t≤ταπϕt σt

√
1− |ρt|2,

κt , σ2
t
γt
θt − 1.

(62)

Thus for t ≤ τ ∧ T ,

µt + σt

(∑n

j=1
ρjtβ

j
t +

√
1− |ρt|2β

0
t

)
− γt(1 + κt)

=µt + σt

(
−απϕt σt|ρt|2 − αcijρ

j
tDiG− απϕt σt(1− |ρt|2)

)
− γteα(G+πϕt );

=µt − ασ2
t π

ϕ
t − ασtcijρ

j
tDiG− γteα(G+πϕt );

=0,

where the last equality is from (22). Thus by Lemma 36, we have Q
ϕ ∈Me. �

Lemma 37 assumes that (Zt)t≤T is a P -martingale. There are some known results as to

when an exponential martingale with jumps is a true martingale, e.g., [PS+08]. However,

the result there is not readily applicable because it requires κ ≥ −1 + ε for positive ε,

which we do not have in general.

However, the following lemma shows in our case that the jump component is typically

a true martingale.

Lemma 38. Let (Zκt )t≤T be defined by Zκ0 = 1 and

dZκt = Zκt−κtdMt = Zκt−κt(dHt − γtdt),

where κ is a F-predictable process such that κ > −1 and κγ integrable on [0, T ]. Then

ZκT > 0 and EZκT = 1.
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Proof. Solving the stochastic differential equation for Zκ, we obtain

ZκT =


e−
∫ T
0 κuγudu τ > T,

(1 + κτ )e−
∫ τ
0 κuγudu τ ≤ T.

Thus ZκT is clearly positive.

For the expectation of ZκT :

E [ZκT ] = E
[
e−
∫ T
0 κuγudu1τ>T

]
+ E

[
(1 + κτ )e−

∫ τ
0 κuγudu1τ≤T

]
.

The first term is,

E
[
e−
∫ T
0 κuγudu1τ>T

]
= E

[
E
[
e−
∫ T
0 κuγudu1τ>T

∣∣∣FT ]] ;

= E
[
e−
∫ T
0 κuγuduP (τ > T |FT )

]
;

= E
[
e−
∫ T
0 κuγudue−

∫ T
0 γudu

]
.

For the second term, using [BR04, Proposition 5.1.1 (ii)]8 with a non-negative F-

predictable process Y defined by

Yt = (1 + κt)e
−
∫ t
0 κuγudu,

8In fact, [BR04, Proposition 5.1.1 (ii)] is proved for bounded Y . To show the result holds for non-negative
Y , we first use the proposition [BR04, Proposition 5.1.1 (ii)] for the predictable bounded process Y ∧ n,
then take n→∞ and the monotone convergence theorem proves the claim for non-negative Y .
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we have

E [Yτ1τ≤T ] = E
[∫ T

0
YsdFs

]
;

= E
[∫ T

0
(1 + κs)e

−
∫ s
0 κuγuduγse

−
∫ s
0 γuds

]
;

= E
[∫ T

0
(1 + κs)γse

−
∫ s
0 (1+κu)γududs

]
;

= E
[
1− e−

∫ T
0 (1+κu)γudu

]
.

Hence we have E [ZκT ] = 1. �

To fully prove (Zt)t≤T is a P -martingale and therefore to complete the proof of The-

orem 7, we need the following estimations.

Proposition 39. Under Assumptions 5 and 6, the solution to (32) satisfies

|Du(t, x)| ≤ C1(1 + |x|) for (t, x) ∈ [0, T ]× Rn,

or, similarly, by (26) we have

|DG(t, x;ϕ)| ≤ C1(1 + |x|) for (t, x) ∈ [0, T ]× Rn.

Proof. The proof carefully follows Sections 11.1 and 11.3 of [Lie96], with special atten-

tion to the dependencies on the domain Ωm. See Appendix B.1. �

We introduce functions that are associated with the processes defined in (62):
β
j
(t, x;ϕ) , −απ(t, x;ϕ)σ(x)ρj(x)− αDiG(t, x;ϕ)cij(x); 1 ≤ j ≤ n,

β
0
(t, x;ϕ) , −απ(t, x;ϕ)σ(x)

√
1− |ρ(x)|2,

γ(t, x;ϕ) , σ2(x)θ(x,G(t, x;ϕ), DG(t, x;ϕ)).

(63)

Note the relations,

β
j
t = 1t≤τβ

j
(t,Xt;ϕ); 0 ≤ j ≤ n, (64)
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and

γt , γ(t,Xt;ϕ) (65)

becomes the intensity of the jump process H under Q
ϕ

by Theorem 35.

Lemma 40. Under Assumptions 5 and 6, π(t, x;ϕ), β(t, x;ϕ), and γ(t, x;ϕ) defined in

(53) and (63), satisfy the linear growth condition with respect to |x|, i.e., we have positive

constants, C2, C3, and C4 such that

|π(t, x;ϕ)| ≤ C2(1 + |x|),

|β(t, x;ϕ)| ≤ C3(1 + |x|),

|γ(t, x;ϕ)| ≤ C4(1 + |x|),

for (t, x) ∈ [0, T ]× Rn.

Proof. From Proposition 39, DG grows linearly with |x| under Assumptions 5 and 6.

Note also that under those assumptions, we have γ/σ2, µ/σ2, and cij/σ bounded in Rn.

Thus θ(x,G(t, x), DG(t, x)) grows linearly with |x| by its definition (24) and Corollary 56.

Therefore, it is straightforward to see that π and γ satisfy the linear growth condition

with respect to |x| in Ω by their definitions.

Because π and DG grow linearly with respect to |x|, so does β, by (63). �

Lemma 41. Assume Assumption 1, or more generally, suppose there exists a process X

that has dynamics

dXt = b(ω, t,Xt)dt+ c dWt, X0 = x ∈ Rn,

where c is a constant n×n-invertible matrix and b : Ω× [0, T ]×Rn → Rn is Gt⊗B([0, t])⊗

B(Rn)-measurable for each t and linearly grows with respect to its spacial argument, i.e.,

|b(ω, t, x)| ≤ C(1 + |x|); ∀(ω, t, x) ∈ Ω× [0, T ]× Rn,
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for some positive constant C. Then we have

sup
t≤T

E
[
exp(ε|Xt|2)

]
<∞

for some ε > 0.

Proof. See Appendix B.2. �

Finally we are ready to complete the proof of Theorem 7 in the next section.

4.6. Completion of the Proof of Theorem 7

The proof of Theorem 7 will be completed once we verify the conditions in Theorem

34. We first show condition (i). By Lemma 37, we have to show (Zt)t≤T in (59) is a

P -martingale to say Q
ϕ ∈Me. Furthermore, from Lemma 38, we see that (Et(κdM))t≤T

is a P -martingale. Thus (Zt)t≤T is a P -martingale if

Et

 ∑
0≤j≤n

∫ ·
0
β
j
udW

j
u

 ; 0 ≤ t ≤ T,

is a martingale under the new measure dP κ/dP , ET (κdM).

Using a variant of the Novikov condition (see, for instance, [KS12, Corollary 3.5.14]),

it is sufficient to show that we can pick a positive constant ε such that, for any subinterval

[s, s+ ε] ⊂ [0, T ], we have

EP
κ
e

1
2

∫ s+ε
s |βu|2du <∞.

By (64), we see

EP
κ
e

1
2

∫ s+ε
s |βu|2du ≤ EP

κ
e

1
2

∫ s+ε
s |β(u,Xu;ϕ)|2du.

Notice that moving from P to P κ only changes the distribution of τ but not the

Brownian motion W (see Theorem 35). By the weak uniqueness of X, we have

EP
κ
e

1
2

∫ s+ε
s |β(u,Xu;ϕ)|2du = Ee

1
2

∫ s+ε
s |β(u,Xu;ϕ)|2du.
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Thus we are going to show the finiteness of the right-hand side. By Jensen’s inequality,

we have

e
1
2

∫ s+ε
s |β(u,Xu;ϕ)|2du = e

1
ε

∫ s+ε
s

ε
2
|β(u,Xu;ϕ)|2du;

≤ 1

ε

∫ s+ε

s
e
ε
2
|β(u,Xu;ϕ)|2du.

Thus

Ee
1
2

∫ s+ε
s |β(u,Xu;ϕ)|2du ≤ 1

ε

∫ s+ε

s
Ee

ε
2
|β(u,Xu;ϕ)|2du.

From Lemma 40, we obtain

Ee
ε
2
|β(u,Xu;ϕ)|2 ≤ E exp(εC2

3 |Xu|2 + εC2
3 ).

But the right-hand side is bounded for some choice of ε > 0 by Lemma 41. Thus (Zt)t≤T

is proved to be a martingale and Q
ϕ ∈Me.

To have Q
ϕ ∈Me,f , we further need to show

H(Q
ϕ|P ) = EQ

ϕ

[−α(Wϕ
T + ϕ(XT )1τ>T −G(0, x;ϕ))]

is finite. Since ϕ and G are both bounded, it suffices to show that Wϕ
is a Q

ϕ
-martingale

(which is actually the first half of condition (ii)). Observe that the dynamics of X under

Q
ϕ

becomes

dXt =
(
b(Xt) + cβt

)
dt+ c dW ;

=
(
b(Xt) + 1t≤τ cβ(t,Xt;ϕ)

)
dt+ c dW ;

= b(ω, t,Xt)dt+ c dW, (66)

where we set

b(ω, t, x) , b(x) + 1t≤τ(ω)cβ(t, x;ϕ); (ω, t, x) ∈ Ω× [0, T ]× Rn,
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and W is a Q
ϕ
-Brownian motion defined in (61). Since b ∈ C1

b by Assumption 1 and β

linearly grows by Lemma 40, the drift b in (66) also linearly grows with |x|. Therefore, by

Lemma 41, we have

sup
t≤T

EQ
ϕ [

exp(ε|Xt|2)
]
<∞,

for some ε > 0, and in particular, (Xt)t≤T has uniformly bounded moments of any order

under Q
ϕ
, i.e.,

sup
t≤T

EQ
ϕ

|Xt|n <∞; n = 1, 2, . . . . (67)

Note by Lemma 36 that, under any Q ∈Me, the dynamics of Wϕ
becomes

dWϕ
t = πϕt (1t≤τσtdB

Q
t − dM

Q
t ).

Thus the expectation of the quadratic variation of (Wϕ
t )t≤T under Q

ϕ ∈ Me can be

computed as

EQ
ϕ

[Wϕ
]T ≤ EQ

ϕ
[∫ T

0
σ2
s(π

ϕ
s )2ds+ (πϕτ )2

1τ≤T

]
;

≤ sup
Rn

σ2(x)

∫ T

0
EQ

ϕ

(πϕs )2ds+

∫ T

0
EQ

ϕ

(πϕs )2γse
∫ s
0 γududs;

≤ C2
2 sup

Rn
σ2(x)

∫ T

0
EQ

ϕ

(1 + |Xs|)2ds+ C2
2C4

∫ T

0
EQ

ϕ

(1 + |Xs|)3ds;

<∞,

where the third inequality is by Lemma 40 and the last one by (67). Thus we show that

H(Q
ϕ|P ) <∞, i.e., Q

ϕ ∈Me,f .

For condition (ii) in Theorem 34, we are going to show thatWϕ
is a true Q-martingale

for all Q ∈ Me,f . Indeed, we can estimate the expectation of the quadratic variation of
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(Wϕ
t )t≤T under any Q ∈Me,f as

EQ[Wϕ
]T ≤ EQ

[∫ T

0
σ2
s(π

ϕ
s )2ds+ (πϕτ )2

1τ≤T

]
;

≤ 2C2
2 sup

Rn
σ2(x)

∫ T

0
EQ(1 + |Xs|2)ds+ 2C2

2EQ1τ≤T (1 + |Xτ |2). (68)

For the first term in (68), notice by [DGR+02, Lemma 3.5] that for any positive constant

ε,

EQ|Xs|2 ≤
1

ε

[
H(Q|P ) +

1

e
E exp(ε|Xs|2)

]
. (69)

Above, H(Q|P ) is finite because of our assumption Q ∈ Me,f . For the second term in

(68), again, for any positive constant ε,

EQ1τ≤T |Xτ |2 ≤
1

ε

[
H(Q|P ) +

1

e
E exp(ε|Xτ |21τ≤T )

]
;

≤ 1

ε

[
H(Q|P ) +

1

e
E
(∫ T

0
exp(ε|Xs|2)γse

−
∫ s
0 γududs

)
+

1

e
P (τ > T )

]
;

≤ 1

ε

[
H(Q|P ) +

1

e
sup
Rn

γ(x)

∫ T

0
E exp(ε|Xs|2)ds+

1

e

]
.

Thus the entire EQ[Wϕ
]T in (68) is finite as long as∫ T

0
E exp(ε|Xs|2)ds <∞,

for some ε > 0, but this is again already proved by Lemma 41.

Thus both of the conditions in Theorem 34 are proved, which completes the proof of

Theorem 7.

Remark 42. It is not hard to see that our minimal entropy martingale measure Q
ϕ

satisfies the reverse Hölder inequality under Pϕ defined in [DGR+02]. First, with regards

to Pϕ in (56), let the martingale density process be

Mt , E
[
dPϕ

dP

∣∣∣∣Gt] ; t ≤ T,
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so that (Mt)t≤T is uniformly bounded from above and below by some positive constants

by Assumption 6. We also define the density process of Q
ϕ

with respect to Pϕ by

Z
Q
ϕ|Pϕ

t , EP
ϕ

[
dQ

ϕ

dPϕ

∣∣∣∣∣Gt
]

=
1

Mt
E

[
MT

dQ
ϕ

dPϕ

∣∣∣∣∣Gt
]

=
1

Mt
E [ZT | Gt] =

Zt
Mt

; t ≤ T,

where Z is the density process in (59). Then, for any stopping time σ ≤ T , we have

EP
ϕ

[
Z
Q
ϕ|Pϕ

T

Z
Q
ϕ|Pϕ

σ

log
Z
Q
ϕ|Pϕ

T

Z
Q
ϕ|Pϕ

σ

∣∣∣∣∣Gσ
]

=EQ
ϕ

[
log

Z
Q
ϕ|Pϕ

T

Z
Q
ϕ|Pϕ

σ

∣∣∣∣∣Gσ
]

= EQ
ϕ
[

log
ZT /MT

Zσ/Mσ

∣∣∣∣Gσ] ;

=EQ
ϕ
[
−α

(
Wϕ

T −W
ϕ
σ

)
+ 1T<τG(T,XT ;ϕ)− 1σ<τG(σ,Xσ;ϕ) + log

Mσ

MT

∣∣∣∣Gσ] ;

=EQ
ϕ
[
1T<τG(T,XT ;ϕ)− 1σ<τG(σ,Xσ;ϕ) + log

Mσ

MT

∣∣∣∣Gσ] ,
where the last equality is by the optional sampling theorem applied to the Q

ϕ
-martingale

Wϕ
. The last term is indeed bounded from above by a constant not depending on σ,

because G(;ϕ) is bounded on [0, T ] × Rn and Mσ/MT is bounded by a constant only

depending on ϕ.



CHAPTER 5

Pricing Default Insurance

We introduce an insurance against the default of the stock issuer in the market. A

dollar amount of the insurance requires a continual payment of f per unit time, and pays

back a dollar if the company defaults.

For the holder of π-dollar amount S, it is natural to consider holding π-dollar amount

insurance to dynamically hedge against the default. We consider those two strategies:

• Strategy 1. The investor invests only in the stock S for π-dollar amount, which

will be entirely lost at the time of default, τ , as in our main problem in Section

2.2. Thus the wealth process dynamics (9):

dWπ
t = πt (1t≤τ (µ(Xt)dt+ σ(Xt)dBt)− dHt) ,

and the objective:

maximize EU(Wπ
T ), π ∈ AG.

• Strategy 2. The investor invests in the stock S for π-dollar amount, while taking

the π-dollar amount position in the insurance so that no loss will happen at the

time of default. The investor has to continually pay πf per unit time for the

insurance protection until the default. Thus the wealth process dynamics:

dW̃π
t = πt1t≤τ (µ(Xt)dt+ σ(Xt)dBt)− 1t≤τπtftdt;

= πt1t≤τ (µ̃tdt+ σ(Xt)dBt),

53
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where

µ̃t , µ(Xt)− ft, (70)

and the objective:

maximize EU(W̃π
T ), π ∈ ÃG.

where the precise definition of ÃG is given in Section 5.2.

The goal of this chapter is to find the buyer’s indifference coupon process f such that

the investor is indifferent between Strategy 1 and Strategy 2 at any time before τ ∧T . The

precise result is given in Theorem 44.

Remark 43. The buyer’s indifference coupon process f corresponds to the default in-

tensity of τ in the following sense. Under the risk-neutral pricing scheme, the default

insurance described above can be priced as

lim
∆t→0+

1

∆t
EQ [1t<τ≤t+∆t| Gt] = γQt 1t<τ ,

where γQ is the default intensity of τ under the “risk-neutral measure” Q ∼ P of choice.

5.1. Derivation of the Coupon Process f

In this section, we formally derive the buyer’s indifference coupon process f introduced

above under Assumption 5.

Strategy 1 is the same situation as in our main problem in Section 2.2 with no terminal

payoff ϕ = 0 (thus we drop ϕ in all function arguments in this chapter). Readers should be

reminded from Theorem 7 (more specifically, Theorem 26) that the pre-default certainty

function G(t, x) exists satisfying the PDE (25) with the terminal condition G(T, x) = 0.

For Strategy 2, we follow the same steps as in Section 4.1 to get HJB and the conse-

quent PDE. Namely, the same argument that leads to the HJB equation (20) will produce
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the HJB equation for the pre-default value function ṽ(t, x, y),

ṽt + max
π

[
−γṽ + πµ̃ṽw + biṽxi +

π2

2
σ2ṽww + πσcijρj ṽxi,w

+
(cc>)ij

2
ṽxi,xj − γe−αw

]
= 0, (71)

with the terminal condition ṽ(T, x, w) = −e−αw. Notice that in the exponential function

in the last term of (71), we have w instead of w − π because there is no loss at default.

We assume that ṽ takes the form

ṽ(t, x, w) = −e−αwe−αG̃(t,x),

and substitute it back into (71) to have

G̃t +
(cc>)ij

2
DijG̃−

α

2
(cc>)ijDiG̃DjG̃

+ max
π

[
(bi − ασπcijρj)DiG̃−

α

2
σ2π2 + µ̃π +

γ

α

(
1− eαG̃

)]
= 0, (72)

with the terminal condition G̃(T, x) = 0.

The maximum of the above is attained at

π̃ ,
1

ασ2

(
µ̃− ασcijρjDiG̃

)
. (73)

Thus evaluating (72) at π = π̃ gives,

G̃t+
(cc>)ij

2
DijG̃−

α

2
(cc>)ijDiG̃DjG̃+biDiG̃+

1

2ασ2

(
µ̃− ασcijρjDiG̃

)2
+
γ

α

(
1− eαG̃

)
= 0.

(74)

Because we assume that the investor is indifferent between the two strategies anytime

before the time of default, we impose that

G(t, x) = G̃(t, x); ∀(t, x) ∈ [0, T ]× Rn,
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which is possible when G and G̃ satisfy the same PDE, i.e., (25) and (74) are the same.

Replacing G̃ by G in (74) and equating it with (25), we obtain

biDiG+
1

2ασ2

(
µ̃− ασcijρjDiG

)2
+
γ

α
(1− eαG)

=
α

2
(cijρjDiG)2 + (bi − µ

σ
cijρj)DiG−

σ2

2α
(θ2 + 2θ) +

1

α

(
γ +

µ2

2σ2

)
,

or, (
µ̃− ασcijρjDiG

)2
=
(
µ− ασcijρjDiG

)2
+ 2σ2γeαG − σ4(θ2 + 2θ). (75)

Above recall that θ = θ(x,G,DG) where θ(x, z, p) is defined in (24). The right-hand side

of (75) is non-negative because Corollary 58 with

x =
γ

σ2
eαG, y =

µ

σ2
− α

σ
cijρjDiG

proves the inequality

θ2 + 2θ ≤
[ µ
σ2
− α

σ
cijρjDiG

]2
+ 2

γ

σ2
eαG.

Thus we can solve for µ̃ in (75) to get

µ̃ = ασcijρjDiG±
√

(µ− ασcijρjDiG)2 + 2σ2γeαG − σ4(θ2 + 2θ).

The sign above is undetermined at this point, but if we substitute it back into (73), we

have

π̃ = ± 1

α

√( µ
σ2
− α

σ
cijρjDiG

)2
+ 2

γ

σ2
eαG − (θ2 + 2θ).

In light of the definition of π̃, (73), we choose the positive sign in π̃ (and the corresponding

positive sign in µ̃) to make π̃ non-negative, because we are considering the investor who is

long the stock, seeking to purchase the insurance to protect herself from the default loss.
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Thus, by (70), we obtain the buyer’s indifference coupon process ft = f(t,Xt) where

f(t, x) , µ(x)− ασ(x)cijρj(x)DiG(t, x)

+

√
(µ(x)− ασ(x)cijρj(x)DiG(t, x))2 + 2σ2(x)γ(x)eαG(t,x) − σ4(x)(θ2 + 2θ), (76)

and the optimal investment in Strategy 2, π̃t = π̃(t,Xt), where

π̃(t, x) ,
1

α

√[
µ(x)

σ2(x)
− α

σ(x)
cij(x)ρj(x)DiG(t, x)

]2

+ 2
γ(x)

σ2(x)
eαG(t,x) − (θ2 + 2θ), (77)

where θ is evaluated at (x,G(t, x), DG(t, x)).

5.2. Verification Results for Strategy 2

Now that we obtain the candidate indifference coupon process f , we state and prove

the precise optimal investment result for Strategy 2 in this section. Note that to verify the

optimal investment result for Strategy 1, which is already done in Theorem 7, we require

Assumption 5. It turns out that Assumption 5 is also sufficient to verify the optimal

investment result for Strategy 2. Therefore, we enforce Assumption 5 in this section.

We introduce a fictitious stock process S̃ by

dS̃t

S̃t−
= 1t≤τ (µ̃tdt+ σ(Xt)dBt) ,

and define those classes in a similar way as in Section 2.2:

M̃e ,
{
Q ∼ P on GT : S̃ is a local martingale under Q

}
,

M̃e,f ,
{
Q ∈ M̃e : H(Q|P ) <∞

}
,

ÃG ,
{
π : W̃π is a Q super-martingale for all Q ∈ M̃e,f

}
.

Then we have,
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Theorem 44. Under Assumptions 5, for any t ∈ [0, T ] with initial wealth Wt = W̃t =

w ∈ R, we have

ess sup
π∈AG

E [1τ>tU(Wπ
T )|Gt] = ess sup

π∈ÃG

E
[
1τ>tU(W̃π

T )|Gt
]

= 1τ>tU(w +G(t,Xt)), (78)

where each supremum is attained by the optimal control in AG and in ÃG, respectively,

and G ∈ C1,2([0, T ] × Rn) is a pre-default certainty equivalent for the investor satisfying

the PDE (25) with the terminal condition G(T, x) = 0 for x ∈ Rn. Thus the investor is

indifferent between Strategy 1 and Strategy 2 at any time before τ ∧ T .

Before the proof of Theorem 44, we provide here a couple of auxiliary lemmas.

The concrete description of M̃e similar to Lemma 36 is given by

Lemma 45. For Q ∼ P , we have

Q ∈ M̃e if and only if

µ̃t + σt

(∑n

j=1
ρjtβ

j
t +

√
1− |ρt|2β0

t

)
= 0 for t ≤ τ ∧ T , (79)

where the processes β and κ are as defined in Theorem 35.

Proof. Fix Q ∼ P . Under Q, the dynamics S̃ follows

dS̃t

S̃t−
= 1t≤τ

[(
µ̃t + σt

(∑n

j=1
ρjtβ

j
t +

√
1− |ρt|2β0

t

))
dt+ σtdB

Q
t

]
.

where BQ is a (G, Q)-Brownian motion defined in (58). Thus S̃ is a (G, Q)-local martingale

if and only if the finite variation part vanishes, which is the statement of the lemma. �

For the martingale measure, Q̃, we assume

dQ̃

dP
, exp

(
−α(W̃ π̃

T −G(0, x))
)
,

which satisfies the first-order conditions for the duality.
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As in (59), we assume the density process for Q̃ of the form

Zt = e−α(W̃ π̃
t −G(0,x)) ·

(
Ht + (1−Ht)e

−αG(t,Xt)
)

;

=


exp [−α(W̃ π̃

t −G(0, x) +G(t,Xt))]; t < τ,

exp [−α(W̃ π̃
t −G(0, x))]; τ ≤ t,

whose differential is (see (60)),

dZt = Zt−

[
1t≤τ (−απ̃tσtρjt − αDiGc

ij)dW j
t − 1t≤ταπ̃tσt

√
1− |ρt|2dW 0

t +
(
eαG − 1

)
dMt

]
.

With regards to the above differential, let us also define

β̃jt , 1t≤τ β̃
j(t,Xt);

, 1t≤τ
(
−απ̃(t,Xt)σ(Xt)ρ

j(Xt)− αDiG(t,Xt)c
ij
)

; 1 ≤ j ≤ n,

β̃0
t , 1t≤τ β̃

0(t,Xt);

, −1t≤ταπ̃(t,Xt)σ(Xt)
√

1− |ρ(Xt)|2,

κ̃t , eαG(t,Xt) − 1.

(80)

We provide here linear bound results for π̃ and β̃ similar to Lemma 40.

Lemma 46. Under Assumption 5, π̃(t, x) and β̃(t, x) defined in (77) and (80), respec-

tively, satisfy the linear growth condition with respect to |x|, i.e., we have positive con-

stants, C1, and C2 such that

|π̃(t, x)| ≤ C1(1 + |x|),

|β̃(t, x)| ≤ C2(1 + |x|).

for (t, x) ∈ [0, T ]× Rn.
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Proof. Observe from (77),

0 ≤ π̃(t, x) ≤ 1

α

[∣∣∣∣ µ(x)

σ2(x)
− α

σ(x)
cijρj(x)DiG(t, x)

∣∣∣∣+

√
2
γ(x)

σ2(x)
eαG(t,x)

]
.

Under Assumption 5, G is bounded in Rn by Remark 33, and DG grows linearly with |x|

in Rn by Proposition 39. Note also that under the assumption, we have γ/σ2, µ/σ2, and

cij/σ bounded in Rn, thus π̃ indeed grows linearly with |x|. The linear growth condition

of β̃ is now straightforward from its definition (80). �

Finally we are ready for the proof of Theorem 44.

Proof of Theorem 44. We prove the statement for t = 0 without loss of generality.

Under Assumptions 5 and ϕ ≡ 0, the optimal control problem in the first term of (78) is

already solved in Theorem 7, and in particular, the existence of such G ∈ C1,2([0, T ]×Rn)

is guaranteed. We therefore focus on the optimal control problem for Strategy 2 in the

second term of (78).

We by and large follow Section 4.6.

To show the optimal control problem for Strategy 2, we again use the duality result

to verify (i.e. Theorem 34):

(i) Q̃ ∈ M̃e,f ,

(ii) (W̃ π̃
t )t≤T is a true Q̃-martingale and a Q-supermartingale for all Q ∈ M̃e,f .

For condition (i), observe first that, since the processes β in (62) and β̃ in (80) have the

same form, the proof that (Zt)t≤T is a P -martingale in Section 4.6 carries over here verba-

tim, together with Lemma 46, to show that Q̃ is indeed a probability measure equivalent
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to P . Moreover, we have for t ≤ τ ∧ T ,

µ̃t + σt

(∑n

j=1
ρjt β̃

j
t +

√
1− |ρt|2β̃0

t

)
;

=µ̃t + σt

(
−απ̃tσt|ρt|2 − αcijρjtDiG− απ̃tσt(1− |ρt|2)

)
;

=µ̃t − ασ2
t π̃t − ασtcijρ

j
tDiG;

=0,

where the last equality is by (73). Thus Lemma 45 yields Q̃ ∈ M̃e. To prove Q̃ ∈ M̃e,f ,

we further need to show

H(Q̃|P ) = EQ̃[−α(W̃ π̃
T −G(0, x))]

is finite. Since G is bounded, it suffices to show that W π̃ is a Q̃-martingale (which is

actually the first half of condition (ii)). Observe that the dynamics of X under Q̃ is the

same as the dynamics of X under Q in (66), with β replaced by β̃, which grows linearly

with |x| by Lemma 46. Therefore by Lemma 41 we have

sup
t≤T

EQ̃
[
exp(ε|Xt|2)

]
<∞,

for some ε > 0. In particular, (Xt)t≤T has uniformly bounded moments of any order under

Q̃, i.e.,

sup
t≤T

EQ̃|Xt|n <∞; n = 1, 2, . . . . (81)

Note by Lemma 45 that, under any Q ∈ M̃e, the dynamics of W̃ π̃ becomes

dW̃ π̃
t = π̃t1t≤τσtdB

Q
t .
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Thus the expectation of the quadratic variation of (W̃ π̃)t≤T under Q̃ can be computed as

EQ̃[W̃ π̃]T ≤ EQ̃
[∫ T

0
σ2
s(π̃s)

2ds

]
;

≤ sup
Rn

σ2(x)

∫ T

0
EQ̃(π̃s)

2ds;

≤ C2
1 sup

Rn
σ2(x)

∫ T

0
EQ̃(1 + |Xs|)2ds;

<∞,

where the third inequality is by Lemma 46 and the last one by (81). Thus we show that

H(Q̃|P ) <∞, i.e., Q̃ ∈Me,f .

For condition (ii), we are going to show that W̃ π̃ is a true Q-martingale for all Q ∈

M̃e,f . As in (68), we estimate the expectation of the quadratic variation of (W̃ π̃)t≤T by

EQ[W̃ π̃]T ≤ EQ
[∫ τ∧T

0
σ2
s(π̃s)

2ds

]
;

≤ 2C2
1 sup

Rn
σ2(x)

∫ T

0
EQ(1 + |Xs|2)ds,

which is finite because of (69) and Lemma 41. Thus (ii) is proved. �

5.3. Simple Case

If we consider the constant coefficients case as in Chapter 3, we can rather explicitly

compute the buyer’s indifference coupon rate process (f(t))t≤T as a deterministic function

of time.

Since the certainty equivalent G only depends on t for the simple case, f in (76) reduces

to

f(t) = µ−
√
µ2 + 2σ2γeαG(t) − σ4(θ2(G(t)) + 2θ(G(t)));

= µ−
√
µ2 + σ4

(
2e−

µ

σ2 p(T − t)ep(T−t) − p2(T − t)− 2p(T − t)
)
,
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where in the first line G(t) is defined in (18) and θ(z) in (14), and in the second line we use

the relation (15). Since the ODE for p, (17), does not involve the absolute risk aversion

parameter α, f does not depend on α either.

For example, when µ = .04, σ = .3, γ = .03, and T = 1, (f(t))t≤T looks as in Figure 1.

We can see how the investor estimates the default risk and is willing pay more than γ to

protect against the default in this market.

0.2 0.4 0.6 0.8 1.0
t

0.031370

0.031372

0.031374

0.031376

0.031378

0.031380

f (t)

Figure 1. Graph of (f(t))t≤T when µ = .04, σ = .3, γ = .03, T = 1.

Remark 47. In the long-time-horizon limit, we have

lim
T→∞

f(0) = lim
T→∞

(
µ−

√
µ2 + σ4

(
2e−

µ

σ2 p(T )ep(T ) − p2(T )− 2p(T )
))

= µ−
√
µ2 + σ4

(
2e−

µ

σ2 p+ep+ − p2
+ − 2p+

)

= µ−

√√√√√√√2σ2γ


(
−1 +

√
1 + 2 γ

σ2 + µ2

σ4

)
e−1+

√
1+2 γ

σ2
+µ2

σ4

γ
σ2 e

µ

σ2
− 1

.
For the given parameters above, this is .0317116.





APPENDIX A

Estimations for Proposition 29

Assumptions 20, 21, and 22 are in effect throughout this chapter. Moreover, we assume

the result of Proposition 28, and thus have the uniform bounds of local solutions, u0 and

u1, introduced in Proposition 28. We say f(x, z, p) ∈ O(|p|i) for i = 0, 1, 2, . . . , if

lim sup
|p|→∞

1

|p|i
sup

Ωm×[u0,u1]
|f(x, z, p)| <∞ for all m = 1, 2, . . . .

Before we start, readers should be reminded of (30):

a(x, z, p) = −α
2
p>a(x)p+ p>b(x)− σ2(x)

2α

(
θ2(x, z, p) + 2θ(x, z, p)

)
+ γ(x),

where a, b, and γ are differentiable in D, and θ is in O(|p|1) from Corollary 56 below.

Lemma 48 (Estimation of Bm). Bm(x, z, p) defined in (42) satisfies

lim sup
|p|→∞

sup
Ωm×[u0,u1]

Bm(x, z, p) = C(m) <∞.

Proof. From (42), we have

Bm(x, z, p) =
1

E(x, p)
(δ(p)E(x, p) + (δ(p)− 1)a(x, z, p));

=
1

E(x, p)

(
|p|−2p ·DxE(x, p) + (p ·Dp − 1)a(x, z, p)

)
;

=
1

E(x, p)

(
|p|−2pipjpkDka

ij(x) + (p ·Dp − 1)a(x, z, p)
)
. (82)

Since |p|−2pipjpkDka
ij = O(|p|), the first term in (82) disappears in the limit as |p| → ∞.

We will focus on the second term.

65
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Applying Lemma 54 to θ(x, z, p) defined in (24), with

f(x, z, p) =
γ(x)

σ2(x)
exp

(
µ(x)

σ2(x)
+ αz − α

σ(x)
cij(x)ρj(x)pi

)
, (83)

and varying pi while fixing other arguments, we have

Dpiθ =
θ

1 + θ

Dpif

f
;

= − θ

1 + θ

α

σ
cijρj .

Thus

Dpia = −α
2

[
2(cc>)ijpj − 2(cijρj)

2pi

]
+
(
bi − µ

σ
cijρj

)
− σ2

2α
2(θ + 1)Dpiθ;

= −α
2

[
2(cc>)ijpj − 2(cijρj)

2pi

]
+ b

i
+ σθcijρj . (84)

The second term in (82) is

(p ·Dp − 1)a = −α
2

[
(cc>)ijpipj − (cijρjpi)

2
]

+ σθcijρjpi +
σ2

2α
(θ2 + 2θ)− γ;

= −α
2
p>ap+ σθp>cρ+

σ2

2α
(θ2 + 2θ)− γ.

Thus (p ·Dp − 1)a = O(|p|2) because σ, c, ρ, ā, and γ̄ only depend on x while θ = O(|p|1).

Finally we obtain

lim sup
|p|→∞

sup
Ωm×[u0,u1]

Bm(x, z, p) = C(m) <∞.

�

Lemma 49 (Estimation of Cm). Cm(x, z, p) defined in (43) satisfies

lim sup
|p|→∞

sup
Ωm×[u0,u1]

Cm(x, z, p) = 0.
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Proof. From (43), we have

Cm(x, z, p) =
1

E(x, p)

(
|p|2

2λm

∑
i,j

(δ(p)aij(x))2 + δ(p)a(x, z, p)

)
;

=
1

E(x, p)

(
1

2λm|p|2
∑

i,j

(∑
k
pkDka

ij(x)
)2

+ δ(p)a(x, z, p)

)
.

The first term in the outer parenthesis is O(|p|0). Thus we focus on the second term.

Using Lemma 54 to Dzθ, we have

Dzθ =
αθ

1 + θ
.

Thus

δa =
(
Dz + |p|−2p ·Dx

)
a;

= −σ
2

2α
2(θ + 1)Dzθ + |p|−2pkDka;

= −σ2θ + |p|−2pkDka.

Dka in the last term is computed as

Dka = −α
2
p>(Dka)p+ p>(Dkb)−

1

2α
Dk

(
σ2(θ2 + 2θ)

)
+Dkγ;

= −α
2
p> (Dka) p+ p>

(
Dkb

)
− σ

α
(θ2 + 2θ)Dkσ −

σ2

α
(θ + 1)Dkθ +Dkγ.

Applying Lemma 54 to Dkθ with f defined in (83), we have

Dkθ =
θ

1 + θ

Dkf

f
;

=
θ

1 + θ

[
Dk(γ/σ

2)

γ/σ2
+Dk

( µ
σ2

)
− αpiDk

(
cijρj
σ

)]
.
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Therefore,

Dka = −α
2
p>(Dka)p+ p>

(
Dkb

)
− σ

α
(θ2 + 2θ)Dkσ

− σ2

α
θ

[
Dk(γ/σ

2)

γ/σ2
+Dk

( µ
σ2

)
− αpiDk

(
cijρj
σ

)]
+Dkγ,

which is O(|p|2). This implies δa = O(|p|). Thus

lim sup
|p|→∞

sup
Ωm×[u0,u1]

Cm = 0.

�

Lemma 50 (Estimation of Dm). Dm(x, z, p) defined in (45) satisfies

lim sup
|p|→∞

sup
Ωm×[u0,u1]

Dm(x, z, p) = C(m) <∞.

Proof.

Dm(x, z, p) =
1

E(x, p)

(
|p|2Λm + |p|(|Ep(x, p)|+ |ap(x, z, p)|)

)
;

=
1

E(x, p)

(
|p|2Λm + |p|(|(cc>)ij(x)pj |+ |ap(x, z, p)|)

)
.

From (84), ap is proved to be O(|p|). Thus it is straightforward to see

lim sup
|p|→∞

sup
Ωm×[u0,u1]

Dm(x, z, p) <∞.

�



APPENDIX B

Miscellaneous Proofs

B.1. Proof of Proposition 39

In this proof, we revisit the result [Lie96, Theorem 11.3, (b)] used in Section 4.3.2,

only this time we explicitly show that the gradient grows linearly with respect to |x| in

an unbounded domain Rn. Unfortunately, we cannot just cite [Lie96, Theorem 11.3,

(b)], because the desired result requires a careful evaluation of the constant appearing in

[Lie96, Theorem 11.3, (b)], which is only mentioned there as being dependent on “the

limit behavior” as |p| → ∞ of a couple of quantities, including A(x, z, p), B(x, z, p), and

C(x, z, p) introduced in Section 4.3.2. We instead need to go through the argument leading

to [Lie96, Theorem 11.3, (b)] with more careful estimations of large p limits as in Lemma

51 below.

The main tool in the proof is the maximum principle applied to the PDE satisfied by

|Du|2 where u is the solution to (28). To be more precise, we first establish the linear

PDE (92) below for the squared gradient of ψ0(u), v, where the auxiliary function ψ0 is to

be determined in Lemma 52 below. Since we have to deal with the local gradient estimate

in the unbounded domain, we further need to multiply v by a truncating function η, so

that we can apply the maximum principle to w = ηv in the cylindrical domain of a fixed

radius. The PDE for w turns out to be a little more complex than that for v, requiring

extra estimations before applying the maximum principle.

Let us stress that Assumptions 5 and 6 prevail throughout this section. Thus Remark

33 is valid: we freely speak of C1,2([0, T ]× Rn)-solution u for (32) with u0 ≤ u ≤ u1.

69
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Under Assumption 5, our domain is

Ω = (0, T )×D = (0, T )× Rn,

and we set the localized domains to be

Ωm = (0, T )×Dm = (0, T )×B(0,mR) for m = 1, 2, . . . ,

where R is a fixed positive constant.

The fact that aij is constant under Assumption 5 simplifies most of the quantities

already introduced in Section 4.3.2. For example, the Bernstein E (39) becomes

E(p) = aijpipj .

The quantities A,B, and C defined in (41) – (43) become much simpler, too. For (x, z, p) ∈

Rn × R× Rn, we have

A(p) =
1

E(p)
(δ(p)− 1)E(p);

=
1

E(p)
(p ·Dp − 1)aijpipj ;

= 1,

B(x, z, p) =
1

E(p)
(δ(p)− 1)a(x, z, p),

C(x, z, p) =
1

E(p)
δ(p)a(x, z, p).

(85)

We first establish the PDE for v = |Du|2, where

u(t, x) , ψ0(u(t, x)),

and ψ0 is a strictly increasing function defined on [u0, u1]. Set ψ to be the inverse of ψ0,

defined on the interval [u0, u1] = [ψ0(u0), ψ0(u1)]. We further assume ψ and ψ0 are C3 on
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their domains. Thus

u(t, x) = ψ(u(t, x)),

ut = ψ′(u)ut, Diu = ψ′(u)Diu,

Diju = ψ′(u)Diju+ ψ′′(u)DiuDju,

v = |Du|2 =
|Du|2

(ψ′(u))2
.

(86)

(Here and in all that follows, we drop natural function arguments (t, x) or (x).)

We also define

ω(z) =
ψ′′(z)

(ψ′(z))2
; z ∈ [u0, u1]. (87)

(Whenever z appears in this section, it should be understood to take values in [u0, u1].)

Substituting (86) into (28), we have

0 = −ut + aijDiju+
1

ψ′(u)
(a(x, u,Du) + ω(u)E(Du)), (88)

where we explicitly denoted the function arguments of ψ′, a, ω, and E . Adopting the

notation where the superscript r denotes differentiation with respect to pr, the chain-rule

gives

Dka = ak + azDku+ arDrku,

DkE = ErDrku.

Thus we first differentiate (88) with respect to xk to have1,

0 = −Dkut+a
ijDijku−(a+ωE)

ψ′′

(ψ′)2
Dku+

1

ψ′
(
ak + azDku+ arDrku+ ω′DkuE + ωErDrku

)
.

1This operation requires Du ∈ C1,2, which is more than u ∈ C1,2 that we obtain in Theorem 26. This is
not an issue because we can always rewrite (92) or (96) below in the weak form, so that in the end we can
apply the strong maximum principle for weak subsolution [Lie96, Theorem 6.25]. See the remark that
follows [Lie96, (11.8)] for the explicit weak form.
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Multiply the above equation by Dku and sum on k to have,

0 = −1

2
vt + aijDijkuDku+

1

ψ′
(
arDrkuDku+ ψ′azv + akDku+ ωErDrkuDku

)
+

(
ω′

ψ′
E − ωa− ω2E

)
v. (89)

The PDE above can be transformed into the linear parabolic PDE of v as follows. For the

second term of (89), notice the relation

1

2
aijDijv =

1

2
aijDij(DkuDku) = aijDi(DjkuDku) = aij(DijkuDku+DikuDjku).

Also, since

Drku = Dr(Dku) = Dr(ψ
′Dku) = ψ′′DruDku+ ψ′Drku = ωDruDku+ ψ′Drku,

the third and sixth terms of (89) become

1

ψ′
arDrkuDku =

1

ψ′
ar(ωDruDku+ ψ′Drku)Dku = ωδav +

1

2
arDrv,

1

ψ′
ωErDrkuDku =

1

ψ′
ωEr(ωDruDku+ ψ′Drku)Dku = ω2δEv +

1

2
ωErDrv,

where δ, defined in (40), is evaluated at p = Du. Therefore, using

br , ar(x, u,Du) + ω(u)Er(Du),

(89) becomes

0 = −1

2
vt +

1

2
aijDijv +

1

2
brDrv − aijDikuDjku+

[
ω′

ψ′
E + ω2(δ − 1)E + ω(δ − 1)a+ δa

]
v;

= −1

2
vt +

1

2
aijDijv +

1

2
brDrv − aijDikuDjku+

(
ω′

ψ′
+ ω2 +Bω + C

)
Ev, (90)
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where in the last line, we substituted the relations in (85), and both B and C are evaluated

at (x, u,Du). Finally, noticing from Assumption 1 that

aijDikuDjku ≥ λ
∑
i,j

|Diju|2 ≥ 0, (91)

we have

−vt + aijDijv + brDrv + 2c0Ev ≥ 0, (92)

with

c0(t, x) ,
ω′(u)

ψ′(u)
+ ω2(u) +B(x, u,Du)ω(u) + C(x, u,Du). (93)

Regarding (93), we construct ψ (therefore ψ0 as its inverse) in Lemma 52 such that,

for some ε > 0 and p1 > 0,

c0(t, x) ≤ −ε on {(t, x) ∈ Ω : |Du(t, x)| > p1}. (94)

The estimation so far results in [Lie96, Theorem 11.1], but now we turn to the (spacial)

local bound on gradient, [Lie96, Section 11.3, (b)].

Pick a point x0 in Dm−1 = B(0, (m−1)R) and let Q be a cylinder (0, T )×B(x0, R) so

that Q is contained in Ωm. For the local estimation, we are going to apply the maximum

principle to the PDE for

w(t, x) , η(x)v(t, x),

in Q, where2

η(x) , ζ2(x), ζ(x) ,

(
1− |x− x0|2

R2

)+

. (95)

2The choice of functions η(x) and ζ(x) corresponds to setting θ = 1 defined in [Lie96, Section 11.3].
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Observe

wt = ηvt,

Diw = ηDiv + vDiη,

Dijw = ηDijv +DiηDjv +DjηDiv + vDijη;

= ηDijv +
Diη

η
(Djw − vDjη) +

Djη

η
(Diw − vDiη) + vDijη.

Multiplying (90) by η, we have,

0 = −1

2
wt +

1

2
aijηDijv +

1

2
biηDiv − ηaijDikuDjku+

(
ω′

ψ′
+ ω2 +Bω + C

)
Ew

= −1

2
wt +

1

2
aij
[
Dijw −

Diη

η
(Djw − vDjη)− Djη

η
(Diw − vDiη)− vDijη

]
+

1

2
bi(Diw − vDiη)− ηaijDikuDjku+

(
ω′

ψ′
+ ω2 +Bω + C

)
Ew

= −1

2
wt +

1

2
aijDijw +

1

2
(bi − 2

η
aijDjη)Diw +

(
ω′

ψ′
+ ω2 +Bω + C

)
Ew

+

[
1

η2
aijDiηDjη −

1

2η
aijDijη −

1

2η
biDiη

]
w.

Therefore, using (91), we see that the PDE satisfies by w is similar to that of v, (92), i.e.,

−wt + aijDijw + bi2Diw + 2(c0 +B0ω + C0)Ew ≥ 0, (96)

where

bi2 , b
i − 2

η
aijDjη = ω(u)E i(Du) + ai(x, u,Du)− 2

η
aijDjη,

and

B0 , −
1

E(Du)

Diη

2η
E i(Du),

C0 ,
1

E(Du)

[
1

η2
aijDiηDjη −

1

2η
aijDijη −

1

2η
ai(x, u,Du)Diη

]
.

(97)
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which are defined right before (11.17) in [Lie96]3.

In order to apply the maximum principle to (96), we seek to have bounds on B0 and

C0 that go to 0 as |p| → ∞, or similarly, as w → ∞, so that c0 + B0ω + C0 becomes

negative for w large enough. Note that ψ is already determined in Lemma 52. Thus from

(87), ω is a fixed function on [u0, u1]. In particular, we have by Lemma 53,

c0 +Bω + C0 ≤ 0 on {(t, x) ∈ Ωm : w > C3m
2}, (98)

for some positive constant C3.

Applying the maximum principle to (96) in the region Q, with (98) yields,

sup
Q
w ≤ 4 max(C3m

2, sup
PQ

w) ≤ max(C3m
2,

supB(x0,R) |Dϕ|2

minψ′2
)

where the last inequality is from (106) below. Hence w is bounded by the right-most

quantity in Q, and in particular at (t, x0),

|Du(t, x0)|2

maxψ′2
≤ v(t, x0) = w(t, x0) ≤ max(C3m

2,
supB(x0,R) |Dϕ|2

minψ′2
).

Finally, evaluating this inequality at any point with x0 ∈ Dm−1 gives

sup
Ωm−1

|Du| ≤ maxψ′ ·max(C
1/2
3 m,

supDm |Dϕ|
minψ′

).

Thus, in Ωm−1/Ωm−2, we have

sup
Ωm−1/Ωm−2

|Du|
|x|
≤ maxψ′

(m− 2)R
·max(C

1/2
3 m,

supDm |Dϕ|
minψ′

).

3The definition of C0 in [Lie96, Section 11.3] misses the term 1
2η
aiDiη.

4Suppose w takes the maximum in Q at (t′, x′). We can assume (t′, x′) ∈ Q/PQ and w(t′, x′) > C3m
2,

because otherwise the maximum principle result is trivial. By the strong maximum principle for weak
subsolutions [Lie96, Theorem 6.25], w takes the value w(t′, x′) for on the cylinder (t− l2, t)× B(x, l) for
any l > 0 as long as (t′ − l2, t′) × B(x′, l) ⊂ {(t, x) ∈ Q : w > C3m

2}. However, this is a contradiction
because it means we can pick points on which w takes value w(t′, x′), arbitrarily close to PQ∪{w = C3m

2},
but w is continuous.
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Since the right-hand side is bounded by a constant not depending on m, Proposition 39

is proved.

Below we list the lemmas used in the proof of Proposition 39.

Lemma 51. Under Assumption 5,

B∞ , lim sup
|p|→∞

sup
Ω×[u0,u1]

B, C∞ , lim sup
|p|→∞

sup
Ω×[u0,u1]

C (99)

are both finite with C∞ = 0, and

sup
Ω×[u0,u1]

1

E
(
|p|2Λ + |p||Ep|

)
≤C1 <∞, (100)

sup
m

sup
|p|>mp2

sup
Ωm×[u0,u1]

1

E
|p||ap| ≤C2 <∞, (101)

where, in (101), p2 is some positive constant.

Proof. Estimations in (99) are carried out in a similar manner as (44), where the only

difference is that all the estimations localized to some Ωm are now valid for the entire

domain Ω. As such, Lemma 49, and Lemma 48 prove C∞ = 0, and the finiteness of B∞,

respectively, where each appearance of λm should be replaced by λ during the proofs.

Noting E = aijpipj ≥ λ|p|2, we obtain (100) as a straightforward consequence of the

positive definiteness of the constant matrix aij .

For (101), recall that our ap has the form (84):

Dpia = −α
2

[
2(cc>)ijpj − 2(cijρj)

2pi

]
+
(
bi − µ

σ
cijρj

)
+ σθcijρj .

Under Assumption 5, we see from Corollary 56 below that θ grows linearly with respect

to p in Ω. Thus all the terms in Dpia grow linearly with respect to p in Ω except the term

bi. Because b is in C1
b , we can pick a positive constant b1 such that |b| ≤ b1m in Ωm for

all m ∈ N. Fix any positive constant p2. Then for each m ∈ N, we have for x ∈ Dm and
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|p| > mp2,
1

E
|p||b| ≤ 1

λ|p|
b1m ≤

b1
λp2

,

i.e., bounded by a constant not depending on m. Thus (101) is proved. �

Lemma 52. We can choose a strictly increasing function ψ0 defined on [u0, u1] such that

both ψ0 and its inverse ψ are C3 on their domains. Moreover, we can pick ε > 0 and

p1 > 0 such that (94) holds.

Proof. We follow the argument of Section 11.1 leading to [Lie96, Theorem 11.1].

Let

χ(z) , (log φ(z))′ (102)

with

φ(z) , ψ′(ψ−1(z)). (103)

Note that, with z = ψ(z), straightforward calculus gives

χ(z) =
φ′(z)

φ(z)
=

1

φ(z)

ψ′′(ψ−1(z))

ψ′(ψ−1(z))
=

ψ′′(z)

(ψ′(z))2
= ω(z),

χ′(z) =
(
ω(ψ−1(z))

)′
=
ω′(ψ−1(z))

ψ′(ψ−1(z))
=
ω′(z)

ψ′(z)
.

Thus we can rewrite c0 in (93) as c0(t, x) = χ′(u)+χ2(u)+B(x, u,Du)χ(u)+C(x, u,Du).

We first seek χ(z) that satisfies

χ′(z) + χ2(z) +B∞χ(z) ≤ −2ε; z ∈ [u0, u1],

for some positive ε. As such, we take

χ(z) = exp((2 +B∞)(u0 − z)),
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and ε = χ(u1)/2. Indeed, noticing 0 < χ(u1) ≤ χ(z) ≤ 1 for z ∈ [u0, u1], we have

max
z∈[u0,u1]

(χ′(z) + χ2(z) +B∞χ(z))

= max
z∈[u0,u1]

χ(z)[−(2 +B∞) + χ(z) +B∞];

= max
z∈[u0,u1]

χ(z)[χ(z)− 2];

≤ max
z∈[u0,u1]

−χ(z) ≤ −χ(u1) = 2ε.

By (99), we can take p1 large enough so that

χ′(z) + χ2(z) +B(x, z, p)χ(z) + C(x, z, p) ≤ χ′(z) + χ2(z) +B∞χ(z) + ε;

for all x ∈ Rn, z ∈ [u0, u1], |p| > p1.

Thus we finally obtain

c0(t, x) = χ′(u) + χ2(u) +B(x, u,Du)χ(u) + C(x, u,Du);

≤ χ′(u) + χ2(u) +B∞χ(u) + ε;

≤ −ε,

for all (t, x) ∈ Ω, |Du(t, x)| > p1.

Once we have χ(z), we can integrate it to obtain φ(z) by (102). From (103), we have

ψ′(z) = φ(ψ(z)).

Thus solving this ODE on [u0, u1] gives us ψ(z). Finally we get ψ0 by inverting ψ. �

Lemma 53. In (96), we can take Lm so that

c0 +B0ω + C0 ≤ 0 on {(t, x) ∈ Ωm : w(t, x) > Lm},
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for m = 1, 2, . . . .

Moreover, Lm is quadratic in m, i.e., Lm = C3m
2.

Proof. To evaluate B0 and C0 defined in (97), we first evaluate the terms with η. From

(95), straightforward calculus gives,

Diη = 2ζDiζ

= −2ζ · 2(x− x0)i
R2

,

Dijη = − 4

R2
[(x− x0)iDjζ + ζδij ]

= − 4

R2

[
−2

(x− x0)i(x− x0)j
R2

+ ζδij

]
,

thus the bounds

|Dη| ≤ 4ζ

R
, |Dxxη| ≤

12

R2
, (104)

where |Dxxη| is understood as the operator norm for the n× n−matrix Dxxη.

Furthermore, from the defining relation u(t, x) = ψ(u(t, x)) and 0 ≤ ζ ≤ 1, we have

the inequality

|Du| = ψ′(u)v1/2 ≥ (minψ′)v1/2 = (minψ′)
w1/2

ζ
(105)

≥ (minψ′)w1/2, (106)

where minz∈[u0,u1] ψ
′(z) = minz∈[u0,u1] φ(z) is a fixed positive constant (see (103)).

Combining (104) and (105), we have

|Dη|
η|Du|

≤ 4

minψ′
1

Rw1/2
,
|Dxxη|
η|Du|2

≤ 12

minψ′2
1

R2w
. (107)

Therefore, from (97), (100), and (107), we have in Ω,

|B0| ≤
|Dη||Ep|

2ηE
=

1

2

|Dη|
η|Du|

|Du||Ep|
E

≤ 2C1

minψ′
1

Rw1/2
. (108)
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Similarly, from (97), (100), (101), and (107), we have in Ωm and |Du| > mp2
5,

|C0| ≤
1

E

(
1

η2
Λ|Dη|2 +

1

2η
nΛ|Dxxη|+

1

2η
|ap||Dη|

)
=
|Du|2Λ

E

(
|Dη|
η|Du|

)2

+
n

2

|Du|2Λ

E
|Dxxη|
η|Du|2

+
1

2

|Du||ap|
E

|Dη|
η|Du|

≤ 16C1

minψ′2
1

R2w
+

6nC1

minψ′2
1

R2w
+

2C2

minψ′
1

Rw1/2
. (109)

Thus, by (108) and (109), we can pick a positive constant w0, that only depends on

n,minψ′, C1, C2, R, ε and max |ω|, such that

B0ω + C0 ≤ ε on {(t, x) ∈ Ωm : |Du(t, x)| > mp2, w(t, x) > w0}. (110)

Observing the inequality (106), we combine the results (94) and (110) to have,

c0 +B0ω + C0 ≤ 0 on {(t, x) ∈ Ωm : w > Lm}

where

Lm = max

(
p2

1

minψ′2
,
m2p2

2

minψ′2
, w0

)
,

which is the statement of Lemma 53. �

B.2. Proof of Lemma 41

We follow the idea described in [Pha02, Remark 2.2].

Introducing a process X ′ , c−1X, we see that

dX ′t = c−1b(ω, t,Xt)dt+ dWt = b′(ω, t,X ′t) + dWt,

where we define

b′(ω, t, x) = c−1b(ω, t, cx)

5For the second term in C0, note that aijDijη = tr(aDxxη) ≤ |Dxxη| tr(a) = |Dxxη|(λ1 + λ2 + · · ·+ λn) ≤
|Dxxη|nΛ. where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of the constant matrix a.
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for (t, x) ∈ Ω× [0, T ]× Rn.

It is straightforward to see that b′ also satisfies the linear growth condition with respect

to |x|, i.e.,

|b′(ω, t, x)| ≤ C ′(1 + |x|); ∀(ω, t, x) ∈ Ω× [0, T ]× Rn.

We are going to show

sup
t≤T

E
[
exp(k|X ′t|2)

]
<∞,

for some positive constant k. The statement of Lemma 41 follows immediately because

|X ′|2 = X>(cc>)−1X ≥ |X|2/(2Λ) where Λ is defined in Assumption 1.

Since

|X ′t| ≤ |c−1x|+
∫ t

0
|b′(ω, t,X ′u)|du+ |Wt|

≤ |c−1x|+
∫ t

0
C ′(1 + |X ′u|)du+ |Wt|; 0 ≤ t ≤ T,

by the Gronwall inequality (see [KS12, Problem 2.7]), we have

|X ′t| ≤ C1

(
1 + |Wt|+

∫ t

0
|Wu|du

)
; 0 ≤ t ≤ T,

for some positive constant C1.

Thus for any t ∈ [0, T ],

E
[
exp(k|X ′t|2)

]
≤ E

[
exp

(
9kC2

1

(
1 + |Wt|2 +

(∫ t

0
|Wu|du

)2
))]

≤ E
[
exp

(
9kC2

1

(
1 + |Wt|2 + t

∫ t

0
|Wu|2du

))]
≤ e9kC2

1E
[
e9kC2

1 |Wt|2 1

t

∫ t

0
e9kC2

1 t
2|Wu|2du

]
≤ e9kC2

1

(
Ee18kC2

1 |Wt|2
) 1

2 1

t

∫ t

0

(
Ee18kC2

1 t
2|Wu|2

) 1
2
du, (111)
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where the second and fourth inequalities are by Cauchy-Schwarz and the third by Jensen.

Note that in the last line above, we have bounds

Ee18kC2
1 |Wt|2 = Ee18kC2

1 t|W1|2 ≤ Ee18kC2
1T |W1|2 , (112)

and for 0 ≤ u ≤ t,

Ee18kC2
1 t

2|Wu|2 = Ee18kC2
1 t

2u|W1|2 ≤ Ee18kC2
1T

3|W1|2 . (113)

We can choose k > 0, only depending on C1 and T , that makes the right-most terms of

(112) and (113) finite. For such choice of k, let

C2 , max
(
Ee18kC2

1T |W1|2 ,Ee18kC2
1T

3|W1|2
)
<∞.

Then from (111), we have

E
[
exp(k|X ′t|2)

]
≤ e9kC2

1C2; 0 ≤ t ≤ T.

Thus the lemma is proved.

B.3. Elementary Results

Lemma 54. Suppose f is positive and differentiable at x ∈ R. Then, for y = W (f(x)),

we have

y′(x) =
y

1 + y

f ′(x)

f(x)
.

Proof. By the definition of y, we have

yey = f(x).

Differentiating with respect to x and using the definition of y once again, we obtain

y′(x). �
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Lemma 55. For x > 0, y ∈ R, we have

W (xey) ≤W (x) + y+.

Proof. Since the product-log function is a strictly increasing function, we only have to

show the claim for y > 0. Fix x > 0 and let

f(y) ,W (xey), y > 0.

By Lemma 54, we have

f ′(y) =
f(y)

1 + f(y)
≤ 1, y > 0.

Thus for any y > 0, we see

f(y) ≤ f(0) + y

holds by the mean value theorem. This is exactly the claim of the lamma for y > 0. �

Corollary 56. For θ(x, z, p) defined by (24), we have the following bound (we drop the

function arguments to simplify notations below)

θ ≤ max
( γ
σ2
,
µ

σ2

)
+
(
αz − α

σ
cijρjpi

)+

≤ max
( γ
σ2
,
µ

σ2

)
+ αz+ +

(
−α
σ
cijρjpi

)+
.

Proof. The last inequality follows from the sublinearity of the function (·)+, so we only

need to prove the first inequality.

Using Lemma 55 with

x =
γ

σ2
exp

( µ
σ2

)
,

y = αz − α

σ
cijρjpi,

we obtain

θ ≤W
( γ
σ2

exp
( µ
σ2

))
+
(
αz − α

σ
cijρjpi

)+
.
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Since the product-log function is a strictly increasing function, it is straightforward to

see

W
( γ
σ2

exp
( µ
σ2

))
≤ max

( γ
σ2
,
µ

σ2

)
.

Thus

θ ≤ max
( γ
σ2
,
µ

σ2

)
+
(
αz − α

σ
cijρjpi

)+
.

�

Lemma 57. For x > 0, y ∈ R, we have

xey ≤ (−1 +
√

1 + 2x+ y2) exp
(
−1 +

√
1 + 2x+ y2

)
where the equality holds if and only if x = y.

Proof. Fix y ≥ 0. Let

f(x) = (−1 +
√

1 + 2x+ y2) exp
(
−1 +

√
1 + 2x+ y2

)
− xey.

Then, we see that

f ′(x) = exp
(
−1 +

√
1 + 2x+ y2

)
− ey.

Note that f ′(x) is strictly negative for x < y, strictly positive for x > y, and zero for x = y

because −1 +
√

1 + 2x+ y2 lies strictly between x and y when x 6= y. Since f(y) = 0, we

proved the claim for y ≥ 0.

For y < 0, observe that for any x ≥ 0,

xey ≤ xe−y ≤ (−1 +
√

1 + 2x+ y2) exp
(
−1 +

√
1 + 2x+ y2

)
,

where the second inequality is from the case y ≥ 0. �

Corollary 58. For x > 0, y ∈ R, let θ = W (xey). Then θ2 + 2θ ≤ y2 + 2x where the

equality holds if and only if x = y.
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Proof. Taking the product-log of the inequality in Lemma 57 yields θ ≤ −1+
√

1 + 2x+ y2,

where the equality holds if and only if x = y. By rewriting this inequality, we have the

claim. �
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