
Optimal Scheduling of Refinery

Crude-Oil Operations

A DISSERTATION

Submitted to the Graduate School

in Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

in

Chemical Engineering

by

Sylvain Mouret

Carnegie Mellon University

Pittsburgh, Pennsylvania

December, 2010

Acknowledgments

First of all, I would like to express my most sincere gratitude to my advisor Professor Ignacio

E. Grossmann for his inestimable guidance and support over the course of my Ph.D. He has

managed to create a productive yet friendly environment and proved to be an abundant

source of knowledge for myself. I cannot thank him enough for his confidence in me and his

deep implication in my studies and in my life.

Besides my advisor, I would like to thank my thesis committee members – Professors

Lorenz Biegler, Nikolaos Sahinidis, John Hooker, and Willem-Jan van Hoeve for their time

and valuable comments.

I would like to thank Pierre Pestiaux, my supervisor at Total, whose strong commitment

to the project and never-ending enthusiasm has made this thesis possible.

I would also like to thank Philippe Bonnelle for bringing his experience and his insightful

suggestions into the project as well as other collaborators at SOG and CReG, for their useful

feedback on my work and friendly support. Furthermore, I am grateful to Total Refining &

Marketing for financial support of this project.

I wish to express my thankfulness for all my past and present workmates in the PSE group

for setting a productive mood in the office and a diverting atmosphere out of work. Among

them I would like to specifically mention Rosanna Franco, Gonzalo Guillén Gosálbez, Ri-

cardo Lima, Rodrigo López-Negrete de la Fuente, Mariano Martin, Roger Rocha, Sebastian

Terrazas, and Victor Zavala with whom I share many unforgettable memories.

I would also like to thank my fellow football and tennis teammates, Tarot card players,

French speaking lunchers, barbecue grillers, etc... who made my Pittsburgh experience a

very enjoyable one.

I want to express my gratitude to my family who has always been there when I needed

them, and to my 18-month-old niece Anna for being so cute and joyful.

Acknowledgments ii

Last but not least, I cannot thank enough my beloved fiancée Charlotte for her patience

and for standing by me during the past three and a half years. Her unconditional love is

never to be forgotten.

Acknowledgments iii

Abstract

This thesis deals with the development of mathematical models and algorithms for optimiz-

ing refinery crude-oil operations schedules. The problem can be posed as a mixed-integer

nonlinear program (MINLP), thus combining two major challenges of operations research:

combinatorial search and global optimization.

First, we propose a unified modeling approach for scheduling problems that aims at

bridging the gaps between four different time representations using the general concept of

priority-slots. For each time representation, an MILP formulation is derived and strength-

ened using the maximal cliques and bicliques of the non-overlapping graph. Additionally,

we present three solution methods to obtain global optimal or near-optimal solutions. The

scheduling approach is applied to single-stage and multi-stage batch scheduling problems

as well as a crude-oil operations scheduling problem maximizing the gross margin of the

distilled crude-oils.

In order to solve the crude-oil scheduling MINLP, we introduce a two-step MILP-NLP

procedure. The solution approach benefits from a very tight upper bound provided by the

first stage MILP while the second stage NLP is used to obtain a feasible solution.

Next, we detail the application of the single-operation sequencing time representation

to the crude-oil operations scheduling problem. As this time representation displays many

symmetric solutions, we introduce a symmetry-breaking sequencing rule expressed as a

deterministic finite automaton in order to efficiently restrict the set of feasible solutions.

Furthermore, we propose to integrate constraint programming (CP) techniques to the

branch & cut search to dynamically improve the linear relaxation of a crude-oil operations

scheduling problem minimizing the total logistics costs expressed as a bilinear objective.

CP is used to derived tight McCormick convex envelopes for each node subproblem thus

reducing the optimality gap for the MINLP.

Abstract iv

Finally, the refinery planning and crude-oil scheduling problems are simultaneously solved

using a Lagrangian decomposition procedure based on dualizing the constraint linking crude

distillation feedstocks in each subproblem. A new hybrid dual problem is proposed to update

the Lagrange multipliers, while a simple heuristic strategy is presented in order to obtain

feasible solutions to the full-space MINLP. The approach is successfully applied to a small

case study and a larger refinery problem.

Abstract v

Contents

Acknowledgments ii

Abstract iv

Contents vi

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Single-Stage and Multi-Stage Batch Scheduling 2
1.2 Optimization of Oil Refineries . 5

1.2.1 Refinery Planning . 5
1.2.2 Crude-Oil Operations Scheduling . 8

1.3 Mixed-Integer Optimization Tools . 9
1.3.1 Mixed-Integer Linear Programming 10
1.3.2 Mixed-Integer Nonlinear Programming 12
1.3.3 Constraint Programming . 13
1.3.4 Lagrangian Relaxation . 14
1.3.5 Symmetry-Breaking Approaches . 16

1.4 Overview of Thesis . 16
1.4.1 Chapter 2 . 16
1.4.2 Chapter 3 . 16
1.4.3 Chapter 4 . 17
1.4.4 Chapter 5 . 17
1.4.5 Chapter 6 . 18
1.4.6 Chapter 7 . 18

2 Time Representations and Mathematical Models for Process Scheduling
Problems 19
2.1 Introduction . 19
2.2 Case Study . 21
2.3 Time Representations . 22
2.4 Mathematical Models . 28

2.4.1 Sets and Parameters . 28
2.4.2 Variables . 29
2.4.3 MOS Model . 30

Contents vi

2.4.4 MOS-SST Model . 32
2.4.5 MOS-FST Model . 32
2.4.6 SOS Model . 33

2.5 Strengthened Reformulations . 33
2.5.1 Non-overlapping Graph Properties 33
2.5.2 MOS Model . 34
2.5.3 MOS-SST Model . 36
2.5.4 MOS-FST Model . 37
2.5.5 SOS Model . 38

2.6 Solution Methods . 39
2.6.1 Additive Approach . 39
2.6.2 Multiplicative Approach . 40
2.6.3 Direct Approach . 41

2.7 Single-Stage Batch Scheduling Problem . 42
2.7.1 MOS Model . 44
2.7.2 MOS-SST Model . 51
2.7.3 MOS-FST Model . 52
2.7.4 SOS Model . 53
2.7.5 Models Comparison . 55

2.8 Multi-Stage Batch Scheduling Problem . 57
2.8.1 MOS Model . 59
2.8.2 MOS-SST Model . 62
2.8.3 MOS-FST Model . 63
2.8.4 Models Comparison . 64

2.9 Conclusion . 65

3 Short-Term Scheduling of Crude-Oil Operations 67
3.1 Introduction . 67
3.2 Problem Statement . 68

3.2.1 General Description . 68
3.2.2 Case Study . 70

3.3 Mathematical Models . 72
3.3.1 Sets . 72
3.3.2 Parameters . 74
3.3.3 Variables . 74
3.3.4 Objective Function . 75
3.3.5 General Constraints . 75
3.3.6 Strengthened Constraints . 78
3.3.7 Symmetry-Breaking Constraint for MOS Models 79
3.3.8 Full Models . 80

3.4 Solution Method . 80
3.5 Computational Results . 82

3.5.1 Scheduling Results . 82

Contents vii

3.5.2 Performance of the MOS Model . 85
3.5.3 Performance of the MOS-SST Model 87
3.5.4 Performance of the MOS-FST Model 88
3.5.5 Performance of the MILP-NLP Decomposition Strategy 89

3.6 Conclusion . 90

4 Single-Operation Sequencing Model for Crude-Oil Operations Scheduling 92
4.1 Introduction . 92
4.2 Strengthened Constraints . 92
4.3 Symmetry-Breaking Constraints . 95

4.3.1 Symmetric Sequences of Operations 95
4.3.2 A Sequencing Rule Based on a Regular Language 95
4.3.3 Rule Derivation for COSP1 . 97
4.3.4 Regular Constraint . 99

4.4 Computational Results . 100
4.4.1 Performance of the SOS Model . 101
4.4.2 Effect of the Number of Priority-Slots 102
4.4.3 Remark on the Optimality of the Solution 103
4.4.4 Effect of Symmetry-Breaking Constraints 105

4.5 Comparison of Crude-Oil Scheduling Models 106
4.6 Conclusion . 108

5 Tightening the Linear Relaxation of a Crude-Oil Operations Scheduling
MINLP Using Constraint Programming 109
5.1 Introduction . 109
5.2 MINLP Model . 110
5.3 Reformulation and Linear Relaxation . 113
5.4 McCormick Cuts . 114
5.5 Computational Results . 116
5.6 Conclusion . 118

6 Integration of Refinery Planning and Crude-Oil Scheduling using La-
grangian Decomposition 120
6.1 Introduction . 120
6.2 Problem Statement . 121

6.2.1 Refinery Planning Problem . 121
6.2.2 Crude-Oil Scheduling Problem . 125
6.2.3 Full-Space Problem . 127

6.3 Lagrangian Decomposition Scheme . 127
6.4 Solution of the Dual Problem . 130
6.5 Heuristic Solutions . 134
6.6 Remarks . 136

6.6.1 CDU Feedstocks and Lagrange Multipliers 136

Contents viii

6.6.2 Multi-Period Refinery Planning . 137
6.6.3 CDU Feedstocks Aggregation . 138
6.6.4 Handling Nonlinearities in Crude-Oil Scheduling Model 139
6.6.5 Handling Nonlinearities in the Refinery Planning Model 140
6.6.6 Detailed Implementation . 140

6.7 Numerical Illustration . 142
6.8 Larger Refinery Problem . 148
6.9 Conclusion . 154

7 Conclusion 156
7.1 Time Representations and Mathematical Models 156
7.2 Short-Term Scheduling of Crude-Oil Operations 159
7.3 Single-Operation Sequencing Model for Crude-Oil Operations Scheduling . 160
7.4 Tightening the Linear Relaxation of an MINLP Using CP 161
7.5 Integration of Refinery Planning and Crude-Oil Scheduling 163
7.6 Contributions of the Thesis . 164
7.7 Recommendations for Future Work . 165

8 Bibliography 168

Appendices 177

A On Tightness of Strengthened Constraints 179

B Crude-Oil Operations Scheduling Examples 181

C Mathematical Models for Crude-Oil Operations Scheduling Problems 185
C.1 MOS Model . 185
C.2 MOS-SST Model . 186
C.3 MOS-FST Model . 187
C.4 SOS Model . 188

D Mathematical Model for the Refinery Planning Problem 189

Contents ix

List of Tables

1.1 Optimization techniques used in different MINLP solvers. 12

2.1 Resource requirements for case study. 22
2.2 Time representations nomenclature. 27
2.3 Data for single-stage batch scheduling problems. 43
2.4 Unit cardinality bounds depending on parameter n for SSBSP29. 46
2.5 MOS computational results for single-stage batch scheduling problems. . . . 49
2.6 MOS-SST computational results for single-stage batch scheduling problems. 52
2.7 MOS-FST computational results for single-stage batch scheduling problems. 54
2.8 Data for multi-stage batch scheduling problems. 58
2.9 MOS computational results for multi-stage batch scheduling problems. . . . 61
2.10 MOS-SST computational results for multi-stage batch scheduling problems. 63
2.11 MOS-FST computational results for multi-stage batch scheduling problems. 65

3.1 Data for COSP1. 71
3.2 MOS computational results for crude-oil scheduling problems. 87
3.3 MOS-SST computational results for crude-oil scheduling problems. 88
3.4 MOS-FST computational results for crude-oil scheduling problems. 89
3.5 Performance of different MINLP algorithms for crude-oil scheduling problems. 90

4.1 Maximal cliques and bicliques for COSP2 and COSP3. 93
4.2 Cliques and bicliques selections a, b, and c for COSP2 and COSP3. 94
4.3 List of sequences belonging to regular language L7. 98
4.4 SOS computational results for crude-oil operations scheduling problems. . . 101
4.5 Size and performance of Basic and Extended models on COSP1 (13 slots). . 106
4.6 Size of MOS, MOS-SST, MOS-FST, and SOS models for crude-oil scheduling

problems. 108

5.1 Cost data for crude-oil operations scheduling problems. 113
5.2 Results obtained with BasicRelaxation and ExtendedRelaxation algorithms. 118
5.3 Results obtained with diferrent MINLP algorithms on COSP1 and COSP2. 119

6.1 Crude-oil scheduling data for case study. 126
6.2 Lagrangian iterations statistics (6 priority-slots, NLP=SNOPT). 142
6.3 Lagrangian iterations statistics (7 priority-slots, NLP=SNOPT). 143
6.4 Comparative performance of different MINLP algorithms. 146
6.5 Crude cut prices and specification for larger refinery problem. 150
6.6 Crude-oil scheduling data for larger refinery problem. 151

List of Tables x

6.7 Lagrangian iterations statistics for larger refinery problem (6 priority-slots,
NLP=CONOPT). 152

6.8 Optimal Lagrange multipliers for each crude and each CDU mode. 153
6.9 Comparative performance of several MINLP algorithms for larger refinery

problem (NLP solver: CONOPT). 153
6.10 Blend compositions in the optimal solution of larger refinery problem. . . . 154

B.1 Data for COSP1. 181
B.2 Data for COSP2. 182
B.3 Data for COSP3. 183
B.4 Data for COSP4. 184

List of Tables xi

List of Figures

1.1 A typical multi-stage batch process from Pinto and Grossmann (1995). . . . 3
1.2 A typical oil refining process from Méndez et al. (2006b). 6
1.3 Schematic flow diagram of a typical oil refinery from Wikipedia (2010). . . 7
1.4 Crude-oil scheduling problem 1 from Lee et al. (1996). 9

2.1 Four steps optimization approach. 20
2.2 Non-overlapping matrix and graph for case study. 23
2.3 A unique schedule obtained through different time representations. 24
2.4 Biclique ({v1, v6}; {v4, v5}). 34
2.5 Assignment constraint using consecutive time-points. 37
2.6 Non-overlapping graph with isolated cliques for SSBSP8. 44
2.7 Effect of the minimum priority-slot usage constraint. 50
2.8 Equivalent MOS and SOS assignments for SSBSP12. 55
2.9 Comparison of time representations for single-stage batch scheduling problems. 56
2.10 Partial non-overlapping graph with isolated cliques for MSBSP5. 59
2.11 Comparison of time representations for multi-stage batch scheduling problems. 65

3.1 Example of tank schedule. 70
3.2 Sub-optimal schedule for COSP1 (profit: $6,925,000). 72
3.3 Optimal schedule for COSP1 (profit: $7,975,000). 73
3.4 Refinery crude-oil scheduling system for problem COSP2 and COSP3. . . . 79
3.5 Non-overlapping graph for crude-oil examples 2 and 3. 80
3.6 Two step decomposition strategy. 81
3.7 Optimal schedule for COSP2 (profit: $10,117,000). 83
3.8 Schedule obtained for COSP3 within 2.3% optimality gap (profit: $8,540,000). 84
3.9 Optimal schedule for COSP2 with late vessel arrivals (profit: $9,775,000). . 85
3.10 Optimal schedule for COSP2 with late vessel arrivals and fixed initial deci-

sions (profit: $9,609,000). 86

4.1 Symmetric sequences of operations for COSP1. 96
4.2 Automaton DFA7 recognizing regular language L7. 98
4.3 Automaton recognizing the regular language L. 99
4.4 Performance of the SOS model on crude-oil scheduling problems (MILP

solver: Xpress). 104
4.5 Performance of the Basic and Extended models on COSP1 (6 to 13 slots). . 106
4.6 Comparison of time representations for crude-oil scheduling problems. . . . 107

5.1 Branch & cut algorithm with McCormick cuts. 116

List of Figures xii

6.1 Basic refinery planning system. 122
6.2 Refinery planning case study. 124
6.3 Refinery crude-oil scheduling system for COSP1. 125
6.4 Economic interpretation of the Lagrangian decomposition. 130
6.5 General iterative primal-dual algorithm. 132
6.6 Plots of the feasible space of (P̂K+1

D). 133
6.7 Iterative primal-dual algorithm with heuristic step. 135
6.8 Crude-oil scheduling and multi-period refinery planning integration. 137
6.9 Disaggregated CDU feedstocks synchronization. 138
6.10 Complete algorithm implementation. 141
6.11 Lagrangian iteration objective values (6 priority-slots, NLP=SNOPT). . . . 144
6.12 Lagrangian iteration objective values (7 priority-slots, NLP=SNOPT). . . . 144
6.13 Lagrange multiplier updates (6 priority-slots, NLP=SNOPT). 145
6.14 Lagrange multiplier updates (7 priority-slots, NLP=SNOPT). 145
6.15 Blend compositions in solutions obtained with 6 priority-slots. 147
6.16 Planning model for larger refinery problem. 149
6.17 Refinery crude-oil scheduling system for COSP3. 150
6.18 Lagrangian iteration objective values for larger refinery problem (6 priority-

slots, NLP=CONOPT). 152

B.1 Refinery crude-oil scheduling system for COSP1. 181
B.2 Refinery crude-oil scheduling system for COSP2 and COSP3. 182
B.3 Refinery crude-oil scheduling system for COSP4. 183

D.1 Layered artificial neural network. 190

List of Figures xiii

Chapter 1

Introduction

Optimization in the oil refining industry began with the use of linear programming (LP) to

perform process and economic analysis of industrial plants (see Garvin et al., 1957; Manne,

1958). Many refinery problems are now addressed with algorithms based on mathematical

models: refinery planning, crude-oil operations scheduling, final product blending, crude-oil

transportation, final product shipping, and profitability improvement plans (for instance,

see Pinto et al., 2000). In general, problem-specific techniques are used to solve each model

independently from the others. The goal of this thesis is to develop a general methodology

towards enterprise-wide optimization of oil refineries (Grossmann, 2005). Due to the struc-

tural diversity of the problems to be solved, the challenge is to effectively integrate different

optimization techniques in order to generate near-optimal enterprise-wide solutions. The

industrial applications addressed in this thesis are related to single-stage and multi-stage

batch processes, medium-term planning of refining operations and short-term scheduling of

crude-oil operations. The objectives of the thesis are as follows:

1. Develop a unified modeling approach for solving process scheduling problems

2. Apply the proposed time representations to schedule and optimize batch processes

and crude-oil operations

3. Develop and implement general solution methods to effectively solve such problems

and obtain near-optimal solutions with rigorous optimality estimates

4. Develop a method for integrating mixed-integer linear programming and constraint

programming for improving the linear relaxation of mixed-integer nonlinear programs

5. Apply advanced Lagrangian decomposition techniques to simultaneously solve refinery

planning and crude-oil operations scheduling problems

Chapter 1. Introduction 1

1.1 Single-Stage and Multi-Stage Batch Scheduling

In this chapter, an overview of single-stage and multi-stage batch scheduling problems

is presented followed by a description of the refinery planning and crude-oil scheduling

problems. The different optimization techniques used are then reviewed and we conclude

with an overview of the chapters in the thesis.

1.1 Single-Stage and Multi-Stage Batch Scheduling

The chemical industry has been marked by an increase of product diversification, which

in turn has led to an increase in the complexity of operations of plant facilities. Chemical

companies are now facing the challenge of meeting global demands of multiple products

while increasing plant capacities to achieve economies of scale (Wassick, 2009). Operating

optimally such plants can be non-trivial as decision-makers have to account for demand

deadlines, process constraints, and limited resources. Therefore, the scheduling of chemical

processes has received much attention over the past 20 years. Two major categories of

processes have been outlined and addressed: sequential and network-based processes (see

process classification in Méndez et al., 2006a). The main difference lies in the fact that

network processes may display recycle loops which sequential processes do not.

Recently, several research groups have reviewed the different trends in process scheduling

for general purpose plants. Floudas and Lin (2004) provided an extensive comparison

of discrete-time and continuous-time formulations. In Méndez et al. (2006a), a complete

classification of scheduling approaches is presented in addition to the process classification.

In this thesis, we study single-stage and multi-stage batch scheduling problems. Figure 1.1

depicts a typical multi-stage batch process. A finite number of batches with fixed sizes have

to be processed going through a given set of successive stages. In each stage, a finite set of

parallel units is available. The processing times for each batch and each stage may be unit-

dependent. Stages with limited resources or high processing times are often called bottleneck

stages. Different policies can be used for interstage storage: unlimited intermediate storage

(UIS), finite intermediate storage (FIS), no intermediate storage (NIS), and zero-wait (ZW).

Chapter 1. Introduction 2

1.1 Single-Stage and Multi-Stage Batch Scheduling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

STAGE Reaction Fluidization Standardization Drying Packing

Figure 1.1: A typical multi-stage batch process from Pinto and Grossmann (1995).

Two main scheduling approaches have been developed to solve batch scheduling problems:

precedence-based and slot-based models.

The idea of using disjunctive programming principles (see Balas, 1985) to solve chemical

process scheduling problems was initially introduced by Cerdá et al. (1997) who proposed a

mathematical model for scheduling single-stage multiproduct batch plants. Among others,

Gupta and Karimi (2003); Méndez and Cerdá (2007); Marchetti and Cerdá (2009) have

successively improved and extended precedence-based formulations and applied them to

multistage batch scheduling problems. They consider complex scheduling features such as

sequence-dependent changeovers, unit release times, or discrete resource constraints. The

basic idea is to use binary variables to represent the precedence relations between each pair

of operations. The corresponding models usually involve many big-M constraints, which

may result in poor LP relaxations. However, these formulations lead to models of modest

size which often makes them tractable. In principle, these formulations can be used to

represent any type of scheduling constraints, but global features such as limited inventory

or discrete resource constraints, which may involve more than two operations, are non-trivial

Chapter 1. Introduction 3

1.1 Single-Stage and Multi-Stage Batch Scheduling

and often require additional big-M constraints.

Another scheduling approach consists of using the concept of slots in order to assign

a position for each operation in a sequence. Depending on the formulation used, these

positions are directly or indirectly linked to the timing decisions. These types of formulations

are particularly efficient to represent global scheduling features as its inherent sequencing

representation may involve as many operations as needed.

Ku and Karimi (1988) presented an MILP formulation for multi-stage batch scheduling

problem with finite interstage storage and exactly one unit per stage. Two heuristics are

presented in order to solve the problem faster and compared to the optimal MILP approach.

Pinto and Grossmann (1995) developed a continuous-time slot-based mathematical for-

mulation and considered a batch preordering heuristic to improve the computational re-

quirements. This approach was applied to several examples with unit-dependent processing

times and changeovers.

Hui et al. (2000) addressed the issue of sequence-dependent changeovers using a simi-

lar slot-based MILP model. Later, Gupta and Karimi (2003) improved the mathematical

formulation using fewer variables and constraints to reduce the computational times.

Castro and Grossmann (2005) used the resource-task network representation (RTN) to

model multi-stage batch scheduling problem. They developed and implemented several

scheduling approaches and presented extensive computational results.

Recently, Prasad and Maravelias (2008) solved the integrated batching and scheduling

problem. It consists of simultaneously making the following decisions: batch selection and

sizing, unit assignment and sequencing of batches on each unit.

Finally, it should be noted that models for structures others than multi-stage batch plants

have also been extensively studied using representations as the state-task network (Kondili

et al., 1993) and resource-task network (Pantelides, 1994).

Chapter 1. Introduction 4

1.2 Optimization of Oil Refineries

1.2 Optimization of Oil Refineries

Oil refineries are a key element in the valorization of crude-oils into energy. They consist of

highly flexible plants that can refine crude-oils produced from many locations in the world,

with very different properties, into useful petroleum products: LPG, gasoline and diesel

fuels, kerosene, heating oil, bitumen, etc.

As depicted in Figure 1.2, the refining process can be decomposed into 3 main phases:

crude-oil unloading and preparation for distillation, fractionation and reaction operations,

final product blending and shipping. Based on this spatial decomposition, the following

off-line optimization problems have been addressed in the literature:

1. Refinery planning (see section 1.2.1)

2. Crude-oil operations scheduling (see section 1.2.2)

3. Final product blending operations scheduling with recipe optimization (see Méndez

et al., 2006b)

4. Scheduling of internal refinery product-specific subsystems:

- for LPG, see Pinto and Moro (2000)

- for fuel oils and asphalts, see Joly and Pinto (2003)

- for lube oils and paraffins, see Casas-Liza and Pinto (2005)

Given the diversity and the complexity of the subsystems to be studied, this thesis is focused

on the integration of the first two refinery optimization problems.

1.2.1 Refinery Planning

Refinery operators typically determine their annual and monthly plan by solving the refinery

planning problem. It is based on a steady-state flowsheet optimization of a plant with

multiple heterogenous units (see Fig. 1.3). The objective is to maximize the plant’s net

present value determined by sales revenues minus purchase and operating costs. In addition

to process constraints, the problem also considers crude availabilities as well as product

demands and specifications.

Chapter 1. Introduction 5

1.2 Optimization of Oil Refineries

Figure 1.2: A typical oil refining process from Méndez et al. (2006b).

The refinery planning problem was one of the first industrial applications of linear pro-

gramming (Bodington and Baker, 1990). However, the solution methods have evolved

towards successive linear programming (SLP) in order to better account for the nonlinear

nature of the refining process. In particular, the nonlinearities in the refinery model arise

from pooling equations and advanced process models.

The pooling problem has received much attention in the literature since the 70’s. It usu-

ally consists of optimizing feedstocks purchases, product blending operations and product

sales while taking into account product availabilities, product demands, property specifi-

cations, and pool capacities. Haverly (1978); Hart (1978); Haverly (1980) developed and

experimented the distributive recursion approach, a technique proved to be equivalent to

classical SLP (see Lasdon and Joffe, 1990) in order to solve it.

Several authors have successively addressed the issue of global optimization of pure pool-

ing problems. The techniques used range from generalized Benders decomposition (Floudas

and Aggarwal, 1990), Lagrangian relaxation (Floudas and Visweswaran, 1993; Adhya et al.,

1999), or spatial Branch and Bound (Foulds et al., 1992; Quesada and Grossmann, 1995a;

Audet et al., 2000) to reformulation-linearization techniques (Audet et al., 2000; Meyer and

Floudas, 2006), or piecewise convex relaxations (Meyer and Floudas, 2006; Pham et al.,

Chapter 1. Introduction 6

1.2 Optimization of Oil Refineries

Figure 1.3: Schematic flow diagram of a typical oil refinery from Wikipedia (2010).

2009). Extensive reviews of pooling formulations and solution methods can be found in

Audet et al. (2004); Misener and Floudas (2009).

Some examples of nonlinear refinery planning problems including pooling constraints

and nonlinear process models can be found in Pinto and Moro (2000); Li et al. (2005);

Alhajri et al. (2008). Although commercial solvers such as GRTMPS (Haverly Systems),

PIMS (Aspen Tech), and RPMS (Honeywell Hi-Spec Solutions) implement successive linear

programming algorithms to solve this problem (see Zhang et al., 1985), any standard NLP

Chapter 1. Introduction 7

1.2 Optimization of Oil Refineries

solvers can also be used, although they may not guarantee global optimality of the solution.

A major issue with refinery planning is that most models are single-period models in

which the refinery is assumed to operate in the same state over the whole planning period

(typically 1 month). Therefore, the planning solution is used as a tactical goal for refinery

operators rather than as an operational tool. In particular, crude distillation unit (CDU)

feedstock decisions returned by the refinery planning problem are usually not applicable in

the field due to crude logistics constraints. These are described in the crude-oil operations

scheduling problem.

1.2.2 Crude-Oil Operations Scheduling

The optimal scheduling of crude-oil operations have been studied since the 90’s and has

been shown to lead to multimillion dollar benefits by Kelly and Mann (2003) as it is the

first stage of the oil refining process. It involves crude-oil unloading from crude marine

vessels (at berths or jetties), or from a pipeline to storage tanks, transfers from storage

tanks to charging tanks and atmospheric distillations of crude-oil mixtures from charging

tanks (see Fig. 1.4). The crude is then processed in order to produce basic products which

are then blended into finished products (see section 1.2.1). In this thesis, we assume that

the schedule of the crude supply is given. The production demands are determined by

the long-term refinery planning, either sequentially (chapters 3, 4 and 5) or simultaneously

(chapter 6). The following objectives are considered:

1. Maximization of crude gross margins (chapters 3 and 4)

2. Minimization of total logistics costs (chapter 5)

3. Maximization of total refinery profit as expressed in the planning problem (chapter 6)

Shah (1996) proposed to use mathematical programming techniques to find crude-oil

schedules exploiting opportunities to increase economic benefits. Lee et al. (1996) con-

sidered a crude-oil scheduling problem involving crude unloading at berths, and devel-

oped a discrete-time MINLP model, and solved an MILP relaxation of the model. Later,

Chapter 1. Introduction 8

1.3 Mixed-Integer Optimization Tools

Crude Vessels Storage Tanks Charging Tanks CDU

1

2

3

4

5

6

7

8

Figure 1.4: Crude-oil scheduling problem 1 from Lee et al. (1996).

Wenkay et al. (2002) improved the model and proposed an iterative approach to solve the

MINLP model, taking into account the nonlinear blending constraints.

Pinto et al. (2000), Moro and Pinto (2004), and Reddy et al. (2004) used a global event

formulation to model refinery systems involving crude-oil unloading from pipeline or jetties.

The scheduling horizon is divided into fixed length sub-intervals, which are then divided in

several variable length time-slots.

In parallel, Jia et al. (2003) developed an operation specific event model and applied it

to the problems introduced by Lee et al. (1996) using a linear approximation of storage

costs. A comparison of computational performance between both continuous-time and

discrete-time models was given showing significant decreases in CPU time for the former

model. Also, solutions that are not guaranteed to be globally optimal were obtained using

standard MINLP algorithms.

Recently, Furman et al. (2007) presented a more accurate version of the event-point

formulation, and Karuppiah et al. (2008) later addressed the global optimization of this

model using an outer-approximation algorithm where the MILP master problem is solved

by adding cuts from a Lagrangian decomposition. While rigorous, this method can be

computationally expensive.

1.3 Mixed-Integer Optimization Tools

Scheduling problems are among the most challenging optimization problems, both in terms

of modeling and solution algorithm. Mostly mixed-integer linear programming (MILP,

Chapter 1. Introduction 9

1.3 Mixed-Integer Optimization Tools

see Kallrath, 2002), constraint programming (CP, see Baptiste et al., 2001) and genetic

algorithm (GA, see Mitchell, 1998) techniques have been used to tackle these problems.

CP has proved to be very efficient for solving scheduling problems but it is rarely used to

solve problems arising in the chemical engineering field. One of the reason is that CP is

very efficient at sequencing tasks or jobs that are defined a priori (e.g. job-shop problems

in discrete manufacturing). However, the scheduling of chemical processes usually involves

both defining and sequencing the tasks that should be performed. Defining tasks means

choosing a batch size or a unit operating mode for example. As a consequence, LP based

techniques have been preferred with formulations essentially based on time grids as it easily

allows modeling tank or unit capacity at the end of each time interval (see Floudas and Lin,

2004; Méndez et al., 2006b).

In this thesis, we aim at solving optimization problems involving both continuous and

discrete decisions. Many computational techniques have emerged from the area of mixed-

integer optimization in order to solve problems with different characteristics (linear, non-

linear, convex, non-convex, purely integer, ...), including :

1. mixed-integer linear programming (MILP)

2. mixed-integer nonlinear programming (MINLP)

3. constraint programming (CP)

4. Lagrangian relaxation

In this section, we present brief reviews of these four optimization techniques as well as

symmetry-breaking approaches.

1.3.1 Mixed-Integer Linear Programming

Mixed-integer linear programming is used to model many decision problems from industry

(for example, process scheduling, production planning, resource allocation and supply chain

management). However, solving such combinatorial models is NP-hard (see Nemhauser and

Wolsey, 1999). Therefore, several approaches have been developed and combined in order

Chapter 1. Introduction 10

1.3 Mixed-Integer Optimization Tools

to solve these problems in reasonable times. Two main techniques have emerged: branch-

and-bound (Land and Doig, 1960) and cutting planes (Gomory, 1958). Both are based on

the LP relaxation of the MILP. This relaxation is obtained by considering integer variables

as continuous variables with identical bounds: it can also be called continuous relaxation

or polytope relaxation.

The branch-and-bound technique consists of searching through a tree defined by succes-

sive assignments of integer values to integer variables. At each node of this tree, an LP is

solved in order to obtain a local node optimality bound (e.g. upper bound for maximiza-

tion problems); the global optimality bound is the best bound among all open nodes (i.e.

unprocessed nodes). If the solution of this LP is integral, it provides a global feasibility

bound (e.g. lower bound for maximization problems). The search continues until all nodes

have been processed (0% optimality gap) or until the optimality gap is below a specified

tolerance.

The cutting plane algorithm consists of iteratively solving the LP relaxation and gen-

erating additional constraints (called cutting planes or cuts) that cut off the current LP

solution. The procedure is stopped when the LP solution is integral. Although this can be

achieved in a finite number of steps, in practice a large number of iterations are required.

The branch-and-cut procedure is a combination of the two aforementioned techniques.

The cutting plane algorithm is used to tighten the LP relaxation at each node, thus im-

proving the optimality bound (local and potentially global too). Branching occurs whenever

the optimality bound cannot be significantly improved.

Recent reviews of MILP techniques can be found in Bixby et al. (1999); Johnson et al.

(2000). The best known MILP solvers (CPLEX, Xpress, and Gurobi) all implement the

branch-and-cut procedure and are widely used to solve industrial large-scale mixed-integer

problems.

Chapter 1. Introduction 11

1.3 Mixed-Integer Optimization Tools

Table 1.1: Optimization techniques used in different MINLP solvers.

MINLP solvers DICOPT
SBB and

AlphaECP Bonmin KNITRO
MINLP BB

branch-and-bound x x x
outer-approximation x x
LP/NLP based branch
and bound

x x

extended cutting plane x

1.3.2 Mixed-Integer Nonlinear Programming

A number of industrial applications of mixed-integer optimization include nonlinearities

in the objective function or in the constraints. Except for specific cases (mixed-integer

quadratic programming, mixed-integer quadratically constrained programming or mixed-

integer second-order cone programming), standard MILP techniques cannot be used directly

to solve such problems. Therefore, many optimization techniques have been developed to

solve general MINLPs (for review, see Grossmann, 2002), including:

1. NLP-based branch-and-bound (Leyffer, 2001)

2. outer-approximation (Duran and Grossmann, 1986)

3. LP/NLP based branch and bound (Quesada and Grossmann, 1992)

4. extended cutting plane (Westerlund and Pettersson, 1995)

Table 1.1 summarizes the different techniques used in standard MINLP solvers available in

GAMS.

A challenging MINLP topic is global optimization of non-convex problems, that is MINLPs

with non-convex NLP subproblems. Similarly to MILP optimization, all approaches use a

convex relaxation of the MINLP and rely on a spatial branch-and-bound search. These

global optimization techniques include:

1. branch-and-reduce (Tawarmalani and Sahinidis, 2004)

2. α-BB (Adjiman et al., 2000)

Chapter 1. Introduction 12

1.3 Mixed-Integer Optimization Tools

3. spatial branch-and-bound for bilinear and linear fractional terms (Quesada and Gross-

mann, 1995a)

4. outer-approximation (Kesavan et al., 2004)

The main global MINLP solvers are BARON (Sahinidis, 1996), which implements an ad-

vanced branch-and-reduce algorithm, and LINDOGlobal (Lin and Schrage, 2009), which

also implements a spatial branch-and-bound procedure. The global optimization of large-

scale industrial non-convex MINLP problems is still unachievable in most cases. However,

in some cases, recent developments in this area can be used to generate good heuristic

solutions to such problems and provide tight global optimality estimates for these solutions.

1.3.3 Constraint Programming

Constraint programming is an alternative optimization approach to classical Operations

Research (OR) techniques that is widely used to solve combinatorial problems such as

scheduling (Baptiste et al., 2001), timetabling (Goltz and Matzke, 1998) or vehicle routing

problems (Shaw, 1998). It is based on variable domain filtering algorithms, constraint

propagation techniques and tree search heuristics. A central tool in constraint programming

is the domain store (also called constraint store), which is used to record the domain of

each variable in the model. At each node, the constraint propagation procedure iteratively

calls each constraint domain filtering algorithm and updates the local domain store. If all

variable domains are eventually reduced to singletons, a new solution if found, otherwise

branching is used and a new node is selected. General reviews of constraint programming

techniques can be found in van Hentenryck (1989); Rossi et al. (2006).

Many solvers implements these algorithms including Ilog CP, Choco, Gecode, and Comet

(Michel and van Hentenryck, 2003). Recent developments in the CP community aim at

improving filtering algorithms for global constraints (Régin, 2003; van Hoeve et al., 2009),

integrating OR techniques with CP (Milano and Wallace, 2006; Hooker, 2007; Yunes et al.,

2010), and replacing the traditional domain store by multi-valued decision diagrams (MDD)

Chapter 1. Introduction 13

1.3 Mixed-Integer Optimization Tools

to increase the amount of propagation between constraints (Andersen et al., 2007; Hoda

et al., 2010).

The use of CP to solve optimization problems with continuous decisions, although theoret-

ically achievable, has not yet received much attention and often relies on the discretization

of the domain of the continuous variables. As a consequence, it is not widely used to solve

industrial problems in the chemical industry. However, classical OR techniques can benefit

from CP filtering algorithms and constraint propagation, which can be less computationally

expensive than solving large strengthened LP models.

1.3.4 Lagrangian Relaxation

Lagrangian relaxation is a relaxation technique which aims at solving mathematical models

including complicating or hard constraints. It consists of two major elements: a primal

relaxation and a dual algorithm. The primal relaxation is obtained by transferring the

complicating constraints into the objective function, scaled by a penalty factor, specifically

the Lagrange multiplier. Given a Lagrange multipliers λ ∈ Rm2
+ (m2 being the number of

complicating constraints), this transformation can be described as follows:

(1)


max cTx

s.t. A1x ≤ b1

A2x ≤ b2

⇒ (2)

 max cTx+ λT (b2 −A2x)

s.t. A1x ≤ b1

Problem (2) is a relaxation of (1) as its optimal objective value is always greater than the

optimal objective value of (1).

Given this primal relaxation, the dual algorithm aims at solving the following problem:

(3) min
λ∈Rm2

+

 max cTx+ λT (b2 −A2x)

s.t. A1x ≤ b1

In order to solve this dual problem, the following techniques can be used:

1. subgradient method (Held and Karp, 1971; Fisher, 1981)

2. cutting plane procedure (Cheney and Goldstein, 1959; Kelley, 1960)

Chapter 1. Introduction 14

1.3 Mixed-Integer Optimization Tools

3. boxstep method (Marsten et al., 1975)

4. bundle method (Lemaréchal, 1974)

5. volume algorithm (Barahona and Anbil, 2000)

6. analytic center cutting plane method (Goffin et al., 1992).

As explained in Frangioni (2005), problem (3) is equivalent to the following convexified

version of the original problem:

(4)


max cTx

s.t. conv(A1x ≤ b1)

A2x ≤ b2

Also, the optimal Lagrange multipliers determined by solving problem (3) correspond to the

marginal values of the constraint A2x ≤ b2 in an optimal solution of problem (4). Clearly,

if all variables are continuous (x ∈ Rn), problem (3) is therefore equivalent to problem

(1). However, if some variables are integer, problem (3) yields a relaxation of problem (1).

The difference between their respective optimal values is called a dual gap. In general, the

Lagrangian relaxation is tighter than the LP relaxation, but it is more difficult to obtain.

Although the Lagrangian relaxation technique have been developed for LPs or MILPs, it

can also be used to solve difficult MINLPs (for example, see Neiro and Pinto, 2006).

A key issue in Lagrangian relaxation techniques is the choice of the complicating con-

straints. There is a classic tradeoff between making the relaxed problem (2) easy to solve

and reducing the dual gap. In some cases, the complicating constraints are selected in

order to make the relaxed problem (2) decomposable and therefore much easier to solve.

This technique is called Lagrangian decomposition. The reader may refer to Fisher (1985)

and Guignard (2003) for extensive reviews on Lagrangian relaxation and decomposition

techniques.

Chapter 1. Introduction 15

1.4 Overview of Thesis

1.3.5 Symmetry-Breaking Approaches

The effectiveness of the optimization techniques previously mentioned often suffers from the

presence of multiple symmetric solutions. In simple words, we define symmetric solutions

as feasible solutions that provide identical practical decisions from the modeler’s perspec-

tive. In particular, symmetric solutions have identical objective values. The presence of

symmetries usually leads to an exhaustive enumeration of many feasible solutions which are

not detected as symmetric by the solver. An extensive review of symmetry detection and

symmetry-breaking approaches can be found in Margot (2008). In the context of this thesis,

we focus on problem-specific symmetry detection and static symmetry-breaking constraints.

1.4 Overview of Thesis

1.4.1 Chapter 2

In chapter 2, a unified modeling approach for solving process scheduling problems is pro-

posed. Four different time representations that are based on priority-slots are presented and

compared by deriving the relations between them. For each time representation, a mathe-

matical model is presented and strengthened using the maximum cliques and bicliques of the

non-overlapping graph. We introduce three solution methods that can be used to achieve

global optimality or obtain near-optimal solutions depending on the stopping criterion used.

The proposed approaches are applied to single-stage and multi-stage batch scheduling prob-

lems. Computational results show that the multi-operation sequencing (MOS) time rep-

resentation is superior to the others as it allows efficient symmetry-breaking and requires

fewer priority-slots, thus leading to smaller model sizes.

1.4.2 Chapter 3

In chapter 3, the crude-oil operations scheduling problem is stated and the four time rep-

resentations introduced in chapter 2 are used to derive strengthened MINLP models for

Chapter 1. Introduction 16

1.4 Overview of Thesis

solving this problem. In particular, it is shown how the non-overlapping graph can be used

to generate non-trivial strengthened constraints for a specific example. Computational re-

sults are obtained for all time representations except for single-operation sequencing (SOS).

A two-step MILP-NLP procedure is used to solve the non-convex MINLP models leading

to an optimality gap lower than 4% in all cases.

1.4.3 Chapter 4

In chapter 4, we apply the single-operation sequencing (SOS) time representation introduced

in chapter 2 to the crude-oil scheduling problems presented in chapter 3. The corresponding

MINLP model is based on the representation of a crude-oil schedule by a single sequence of

transfer operations. Therefore, it is possible to reduce the symmetries involved in the prob-

lem using a deterministic finite automaton to represent a symmetry-breaking sequencing

rule. Computational results show the effectiveness of the symmetry-breaking approach. A

final comparison of all time representations applied to the crude-oil scheduling operations

problem is presented showing the superiority of the MOS model.

1.4.4 Chapter 5

Chapter 5 aims at tightening the linear relaxation of a refinery crude-oil operation scheduling

MINLP based on the single-operations sequencing (SOS) time representation. The model

is mostly linear but contains bilinear products of continuous variables in the objective

function (minimization of total logistics costs). It is possible to define a linear relaxation

of the model leading to a weak bound on the objective value of the optimal solution. A

typical method to address this issue is to discretize the continuous space and to use linear

relaxation constraints based on lower and upper bounds of the variables (e.g. McCormick

convex envelopes, see McCormick, 1976) on each subdivision of the continuous space. This

work explores another approach involving constraint programming (CP). The idea is to use

an additional CP model which is used to tighten the bounds of the continuous variables

involved in bilinear terms and then generate cuts based on McCormick convex envelopes.

Chapter 1. Introduction 17

1.4 Overview of Thesis

These cuts are then added to the mixed-integer linear program (MILP) during the search

leading to a tighter linear relaxation of the MINLP. Results show large reductions of the

optimality gap in the two-step MILP-NLP solution method introduced in chapter 3 due to

the tighter linear relaxation obtained.

1.4.5 Chapter 6

In chapter 6, we introduce a new methodology to solve a large-scale mixed-integer nonlinear

program (MINLP) integrating the two major optimization problems appearing in the oil

refining industry: refinery planning and crude-oil operations scheduling. The proposed

approach consists of using Lagrangian decomposition to effectively integrate both problems.

The main advantage of this technique is that each problem can be solved independently.

A new hybrid dual problem is introduced to iteratively update the Lagrange multipliers.

It uses the classical concepts of cutting planes, subgradient, and boxstep. The proposed

approach is compared to a basic sequential approach and to standard MINLP solvers. The

results obtained on a case study and a larger refinery problem show that the Lagrangian

decomposition algorithm is more robust than the other approaches and produces better

solutions in reasonable times.

1.4.6 Chapter 7

Chapter 7 summarizes the major contributions of the thesis. The conclusions are discussed

with suggestions for future work.

This thesis has led to the following papers: Mouret et al. (2008, 2009a,b, 2010a,b)

Chapter 1. Introduction 18

Chapter 2

Time Representations and Mathematical

Models for Process Scheduling Problems

2.1 Introduction

Rigorous optimization of real-world problems are often based on advanced optimization

tools such as mixed-integer linear programming (MILP) or constraint programming (CP,

see Rossi et al., 2006). These tools rely on a mathematical or symbolic representation of

the problem that is applied by an end-user. In some cases, the relationship between the

problem description and its mathematical model is not clear. Therefore an intermediate step

is included in the optimization approach (see Figure 2.1). In this step, the representation

used is detailed and approximations are made. For instance, in the context of scheduling

problems, using a discrete-time formulation is in general a constraining approximation of

the actual problem, and thus, it may lead to a suboptimal solution as discussed in Floudas

and Lin (2004).

Additionally, it is important to note that several mathematical models may be used

to obtain the global optimal solution of the problem, which is the best possible solution

according to a given optimization criterion. For example, many time representations rely

on a specific parameter representing the number of time points (Kondili et al., 1993), time

intervals (Lee et al., 1996), or event points (Ierapetritou and Floudas, 1998). Therefore, the

scheduling problem is represented by an infinite set of mathematical models, one for each

possible value of this parameter (all positive integers). The global optimal schedule is the

best solution among the optimal solution of all these models. In general, it is not possible

Chapter 2. Time Representations and Models for Scheduling Problems 19

2.1 Introduction

Problem Description

Problem Representation

Mathematical Model(s)

Solution Method

Figure 2.1: Four steps optimization approach.

to know a priori the parameter value that will lead to the global optimal solution, although

it is sometimes possible to derive upper and lower bounds for it. The common trade-off is

that global optimality may be guaranteed with a large value of this parameter, which often

results in prohibitive solution times.

Many different time representations have been introduced to solve scheduling problems

(for review see Floudas and Lin, 2004). Experience has shown that, depending on the

characteristics of the problem, some time representations are more suitable than others. In

this thesis, we focus on scheduling problems that rely on:

a) a set of possible operations, or actions, that can be performed once, several times, or

not at all;

b) scheduling decisions that involve both selecting, parametrizing and sequencing the

operations that should be executed;

c) scheduling constraints such as release dates, due dates, bounds on processing times,

non-overlapping constraints, sequence-dependent changeovers, cardinality constraints,

and precedence constraints;

d) additional side constraints that are used to model more complex features such as

limited inventory management or process constraints.

It should be noted that, for instance, the selection of operations may correspond to the

selection of equipment or discrete resources for tasks in a state-task-network (Kondili et al.,

Chapter 2. Time Representations and Models for Scheduling Problems 20

2.2 Case Study

1993) or in a resource-task-network (Pantelides, 1994). In general, operations are defined

by fully disaggregating all possible discrete selections of actions in the scheduling system.

In contrast, parameterization of operations corresponds to continuous decisions such as

batch sizes, transfer volumes, or process operating conditions. The above assumptions do

not cover all kinds of scheduling problems but are an important part of the classification

presented by Méndez et al. (2006a). A unique aspect of this work is that the unifying

framework of the models presented in this chapter allows it to be applied to single-stage

and multi-stage batch scheduling problems as well as to crude-oil operations scheduling

(see chapters 3 and 4).

The main objective of this chapter is to develop a unified modeling approach for scheduling

problems in order to facilitate the evaluation of several time representations, both in terms of

computational time and solution quality. First, a simple scheduling problem is introduced

as an example. Next, we study four different types of time representations, which have

been used in the literature and clarify the relationships between them. Then, basic MILP

models for pure scheduling constraints are presented for each of these time representation.

Using concepts from graph theory (cliques and bicliques), we show how these models can be

generically strengthened based on the structure of the scheduling problem. Three solution

methods are then developed to solve these mathematical formulations. Finally, single-stage

and multi-stage batch scheduling problems are presented and solved using the different

approaches in order to show the effectiveness of the strengthened formulations, and to

provide elements of comparison between the different time representations.

2.2 Case Study

We introduce a small scheduling system that involves 6 different operations v1, . . . , v6 and

3 unary resources r1, r2, r3. A unary resource cannot be shared by two or more processing

operations at a given time. Table 2.1 displays resource requirement for each operation.

For example, operation v4 simultaneously requires resources r1 and r2. In this case and

Chapter 2. Time Representations and Models for Scheduling Problems 21

2.3 Time Representations

Table 2.1: Resource requirements for case study.

Operation v1 v2 v3 v4 v5 v6
Resources r1 r2 r3 r1 ∧ r2 r1 ∧ r3 r2 ∧ r3

in the examples studied in this thesis, unary resource requirements are handled as non-

overlapping constraints between operations. For instance, operations v1 and v4 cannot

overlap as they both use resource r1. Also, operations v5 and v6 cannot overlap as they

both use resource r3. Besides, as a given operation v can be executed several times, any

two separate executions of v may not overlap. Thus, any operation v cannot overlap with

itself. Different linear objectives can be considered: maximization of profit, minimization

of makespan, minimization of assignment costs, minimization of tardiness or earliness.

In order to extract useful information from the structure of the problem, we use a global

representation of all the non-overlapping constraints. The non-overlapping matrix, de-

noted by NO, is such that NOvv′ = 1 if operation v and v′ must not overlap, 0 oth-

erwise. The non-overlapping graph, denoted by GNO = (W,E), is an undirected graph

where the set of vertices W is the set of operations and the set of edges is defined by

E = {{v, v′} s.t. NOvv′ = 1}. Therefore, the non-overlapping matrix is the adjacency ma-

trix of graph GNO. The concept of non-overlapping graph can be viewed as an extension of

the disjunctive graph (Balas, 1969; Adams et al., 1988), which is used to represent disjunc-

tive constraints between operations that have to be executed exactly once. In this thesis,

we consider operations that can be executed once, several times, or not at all. Figure 2.2

shows the non-overlapping matrix and graph for the case study. For clarity, edges that

connect a vertex to itself, called self-loops, are not represented.

2.3 Time Representations

In this section, we study four different time representations and show how they can be

defined using identical concepts. Each representation makes use of a totally ordered set

of priority-slots T = {1, . . . , n}, which are used to assign and order the executions of op-

Chapter 2. Time Representations and Models for Scheduling Problems 22

2.3 Time Representations

v1

v2

v3

v4

v5

v6



1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1



Figure 2.2: Non-overlapping matrix and graph for case study.

erations. The number of priority-slots, denoted by n, has to be postulated a priori. Any

operation may be executed several times by assigning it to multiple priority-slots. We de-

note by A = {(i, v), i ∈ T, v ∈ W} the set of all possible assignments and define a partial

scheduling order on A by:

∀(i1, v1), (i2, v2) ∈ A, (i1, v1) ≺ (i2, v2)⇔ i1 < i2 ∧NOv1v2 = 1

In each time representation, a solution is defined as a subset A′ of A and is represented

by a sequence of operations. Each selected assignment (i, v) correspond to an execution of

operation v with scheduling priority i during time interval [Siv, Eiv]. In each time represen-

tation, the partial scheduling order ≺ implies precedence relations between elements of A′

as follows:

∀(i1, v1), (i2, v2) ∈ A′, (i1, v1) ≺ (i2, v2)⇒ Ei1v1 ≤ Si2v2

It is should be noted that it is not straightforward to select the number of priority-slots.

Indeed, postulating a large number priority-slots increases the chance of obtaining the global

optimal solution, but it also increases the size of the model and the CPU time. The four

time representations are listed below.

a. Multi Operation Sequencing (MOS)

b. Multi Operation Sequencing with Synchronized Start Times (MOS-SST)

c. Multi Operation Sequencing with Fixed Start Times (MOS-FST)

d. Single Operation Sequencing (SOS)

Chapter 2. Time Representations and Models for Scheduling Problems 23

2.3 Time Representations

a. MOS (continuous-time) b. MOS-SST (continuous-time)

1

2

3

1

3

4

2

v3

r3

v2

v4

r1

v1

v6

r2

v5

R
es
ou
rc
es

us
ag
e

O
pe
ra
tio
ns

ex
ec
ut
io
ns

0 5 10

1

3

5

1

4

6

2

v3

r3

v2

v4

r1

v1

v6

r2

v5

R
es
ou
rc
es

us
ag
e

O
pe
ra
tio
ns

ex
ec
ut
io
ns

t1=0 t6=8t2 t3 t4 t5

c. MOS-FST (discrete-time) d. SOS (continuous-time)

1

5

7

1

6

9

4

v3

r3

v2

v4

r1

v1

v6

r2

v5

R
es
ou
rc
es

us
ag
e

O
pe
ra
tio
ns

ex
ec
ut
io
ns

t8t4 t5 t6 t7t1 t2 t3 t9 t10

2

3

6

1

5

7

4

v3

r3

v2

v4

r1

v1

v6

r2

v5

R
es
ou
rc
es

us
ag
e

O
pe
ra
tio
ns

ex
ec
ut
io
ns

0 5 10

Figure 2.3: A unique schedule obtained through different time representations.

Figure 2.3 shows how the same schedule for the case study can be obtained within each

time representations. Each execution of an operation is represented by an horizontal bar

in the upper Gantt chart, while resource usage is represented by horizontal lines in the

lower Gantt chart. The priority-slots are represented by number labels on each operation

execution. In each case, the smallest possible number of priority-slots needed to obtained

the solution has been used. From this figure, it is clear that some time representations

require more priority-slots than others.

In the MOS representation, several operations can be assigned to each priority-slots as

long as they may overlap with each other. For instance, in Figure 2.3(a) operations v1 and v6

Chapter 2. Time Representations and Models for Scheduling Problems 24

2.3 Time Representations

are allowed to overlap and are both assigned to the first priority-slot. However, operations

v1 and v5 cannot overlap and are consequently assigned to different priority-slots: slots 1

and 4 for operation v1, slot 2 for operation v5. If two non-overlapping operations v and v′

are assigned to priority-slots i and j, respectively, such that i < j, then operation v′ must

be executed after operation v (i.e. operation v must start after the end of operation v).

For instance, operation v1 assigned to priority-slot 4 is executed after operation v2 assigned

to priority-slot 2. The solution depicted in Figure 2.3(a) is represented by the sequence

of operations ({1,6}, {2,5}, {3,4}, {1}). We denote MOS(n) a scheduling model using

the MOS time representation with n postulated priority-slots. This time representation

was introduced by Ierapetritou and Floudas (1998) as the event point formulation. Their

mathematical model, although significantly different than the model developed in this thesis,

was used to solve several STN problems. As mentioned by Maravelias and Grossmann

(2003), inventory tracking using event points is quite different than inventory tracking using

time points, which might lead to inconsistent enforcement of storage capacity constraints.

This issue was addressed by Janak et al. (2004) by adding additional storage tasks in the

STN problem, which can lead to a significant increase of model size.

The MOS-SST representation is based on the same features as the MOS representation.

Additionally, all operations assigned to the same priority-slot must have the same start

time. For instance, in Figure 2.3(b), operations v1 and v6 are both assigned to priority-slot

1, and therefore both start at the same time t = 0. Thus, each priority-slot i is associated

to variable time-point ti which is represented by a vertical dotted line in Figure 2.3(b). The

time interval between any two successive time-points is variable. The solution depicted in

Figure 2.3(a) is represented by the sequence of operations ({1,6}, {2}, {5}, {3}, {4}, {1}).

We denote MOS-SST(n) a scheduling model using the MOS-SST time representation

with n postulated priority-slots. This type of representation has been used to solve a wide

variety of problems where time-points are used to track both the start and end events of

each operation (see Zhang and Sargent, 1996; Schilling and Pantelides, 1996; Maravelias

and Grossmann, 2003).

Chapter 2. Time Representations and Models for Scheduling Problems 25

2.3 Time Representations

The MOS-FST representation is based on the same features as the MOS-SST repre-

sentation. Additionally, the time-point associated to each priority-slot is fixed a priori.

Thus, the interval between any two successive time-points is fixed. For instance, the so-

lution depicted in Figure 2.3(c) is obtained using time-points that are uniformly spaced

along the time horizon: t1 = 0, t2 = 1, . . . , t10 = 9. Therefore, operation v5 assigned to

priority-slot 4 starts at t = t4 = 3 while operation v4 assigned to priority-slot 7 starts at

t = t7 = 6. The solution depicted in Figure 2.3(c) is represented by the sequence of op-

erations ({1,6}, ∅, ∅, {5}, {2}, {3}, {4}, ∅, {1}, ∅). We denote MOS-FST(n) a scheduling

model using the MOS-FST time representation with n postulated priority-slots. Discrete-

time formulation for process scheduling problems were initially developed to solve STN and

RTN models where processing times are assumed to be constant (see Kondili et al., 1993;

Pantelides, 1994).

In the SOS representation, at most one operation can be assigned to each priority-

slot. Similarly to the MOS model, if two non-overlapping operations v and v′ are assigned

to priority-slots i and j (i < j), then v′ must be executed after v. It should be noted

that this constraint does not apply to pairs of operations that are allowed to overlap. As

operations v2 and v5 are allowed to overlap, their relative position in time is not affected

by their respective scheduling priority. Therefore, the proposed solution is equivalent to

assigning operations v2 and v5 to priority-slots 4 and 3, respectively. The solution depicted

in Figure 2.3(d) is represented by the sequence of operations (1,6,2,5,3,4,1). We denote

SOS(n) a scheduling model using the SOS time representation with n postulated priority-

slots. This time representation was introduced by Mouret et al. (2009a) to solve the refinery

crude-oil operations scheduling problem.

Table 2.2 summarizes the correspondence between our nomenclature and equivalent nam-

ing conventions used in the literature. From these definitions, it can be inferred that for

a given number of priority-slots n the integer feasible space of MOS(n) is larger than

the integer feasible space of models MOS-SST(n), MOS-FST(n), and SOS(n). Indeed,

the latter models are derived from the MOS model by introducing additional constraints,

Chapter 2. Time Representations and Models for Scheduling Problems 26

2.3 Time Representations

Table 2.2: Time representations nomenclature.

Nomenclature Equivalent names

MOS unit-specific time grid or multiple time grid

MOS-SST global events or common time grid or nonuniform discretization

MOS-FST fixed events or fixed time grid or uniform discretization

SOS first introduced in Mouret et al. (2009a)

which reduce the set of feasible solutions. Furthermore, the integer feasible space of MOS-

SST(n) is larger than the one of MOS-FST(n) and SOS(n). In particular, any solution

for the SOS model is a solution for the MOS-SST model. Indeed, at most one operation

can be assigned to each priority-slot so the synchronization of start times is automatically

satisfied.

These properties can also be interpreted by considering a scheduling solution z. We

denote z ∈ MOS(n) the membership of schedule z to the integer feasible space of model

MOS(n). In other words, z ∈MOS(n) means that solution z satisfies all the constraints

of model MOS(n). We introduce the minimum number of priority-slots needed to ”find”

solution z using each time representation.

nMOS(z) = min
n
{n|z ∈MOS(n)}

nMOS-SST(z) = min
n
{n|z ∈MOS-SST(n)}

nMOS-FST(z) = min
n
{n|z ∈MOS-FST(n)}

nSOS(z) = min
n
{n|z ∈ SOS(n)}

Then, the following inequalities hold: nMOS(z) ≤ nMOS-SST(z) ≤ nMOS-FST(z)

nMOS(z) ≤ nMOS-SST(z) ≤ nSOS(z)

The relation between MOS-SST and MOS-FST time representations was previously de-

rived by Maravelias and Grossmann (2006) in the context of state-task network formulations.

Remark. An important limitation of these time representations is that operations are

considered as a whole for sequencing purpose. More precisely, a scheduling priority is

Chapter 2. Time Representations and Models for Scheduling Problems 27

2.4 Mathematical Models

assigned to operations and not to the start and end events of these operations, which may

be necessary to solve some scheduling problems. For instance, operations that require a

cumulative resource with capacity greater than 1 (e.g. manpower limited to 2 workers) are

allowed to overlap, but only a limited number of these operations may overlap at any given

point in time. The models developed in this thesis do not accommodate these features.

Another case is inventory tracking when simultaneous charging and discharging of tanks

is allowed. It is sufficient to enforce capacity limitations only at the start and end events

of each charging/discharging operations, but in order to do so, a precise sequence of such

events needs to be obtained by the model. Possible extensions of the model to handle these

specific features, such as presented in Janak et al. (2004), will not be discussed in this thesis.

2.4 Mathematical Models

In this section, we present mathematical models for each time representation. They all rely

on the same sets, parameters and variables. Objective functions are not presented here (e.g.

minimize makespan, minimize tardiness, or maximize profit) although they can significantly

impact the solution of the corresponding formulation.

2.4.1 Sets and Parameters

The following sets and parameters are used.

• T = {1, . . . , n} is a totally ordered set of priority-slots (indices i, j, i1, i2).

• W is the set of all operations (indices v, v′, v1, v2).

• H is the scheduling horizon.

• [Sv, Sv] ⊂ [0, H] are bounds on the start time of any execution of operation v.

• [Dv, Dv] ⊂ [0, H] are bounds on the duration of any execution of operation v.

• [Ev, Ev] ⊂ [0, H] are bounds on the end time of any execution of operation v.

• [Nv, Nv] are bounds on the total number of executions of operation v.

• [NW ′ , NW ′] are bounds on the total number of executions of all operations in W ′ ⊂W .

Chapter 2. Time Representations and Models for Scheduling Problems 28

2.4 Mathematical Models

• NOv1v2 is 1 if operations v1 and v2 must not overlap, 0 if they are allowed to overlap.

• TRv1v2 is a sequence-dependent transition time between non-overlapping operations

v1 and v2.

• TRW ′ is a unique set transition time between any pair of non-overlapping operations

in W ′ ⊂W .

• Pv1v2 = 1 denotes a precedence constraint between operations v1 and v2.

• PW1W2 = 1 denotes a precedence constraint between sets of operations W1 and W2.

Remark 1: It should be noted that for operations with fixed processing time, Dv =

Dv = Dv.

Remark 2: A set transition time TRW ′ is defined when ∀v1, v2 ∈ W ′, TRv1,v2 = TRW ′ .

It can be used to represent unit changeover times.

Remark 3: A precedence constraint between operations v1 and v2 states that v1 must

be executed before v2. We assume that precedence constraints are enforced on operations

which are executed exactly once (Nv1 = Nv2 = Nv1 = Nv2 = 1). Similarly, we consider

that a precedence constraint between sets of operations W1 and W2 states that exactly one

operation in each set must be executed (NW1 = NW2 = NW1 = NW2 = 1) and the operation

selected from W1 must be executed before the operation selected from W2.

2.4.2 Variables

The variables used in all models are composed of binary assignment variables, and contin-

uous time variables.

• Assignment variables Ziv ∈ {0, 1} i ∈ T, v ∈W

Ziv = 1 if operation v is assigned to priority-slot i, Ziv = 0 otherwise.

• Time variables Siv ≥ 0, Div ≥ 0, Eiv ≥ 0 i ∈ T, v ∈W

Siv is the start time of operation v if it is assigned to priority-slot i, Siv = 0 otherwise.

Div is the duration of operation v if it is assigned to priority-slot i, Div = 0 otherwise.

Eiv is the end time of operation v if it is assigned to priority-slot i, Eiv = 0 otherwise.

Chapter 2. Time Representations and Models for Scheduling Problems 29

2.4 Mathematical Models

2.4.3 MOS Model

Variable Bound Constraints Bounds on time variables can be expressed using the

following constraints.

Sv · Ziv ≤ Siv ≤ Sv · Ziv i ∈ T, v ∈W (2.1a)

Dv · Ziv ≤ Div ≤ Dv · Ziv i ∈ T, v ∈W (2.1b)

Ev · Ziv ≤ Eiv ≤ Ev · Ziv i ∈ T, v ∈W (2.1c)

Time Constraint Time variables are linked through the following additional constraint.

Eiv = Siv +Div i ∈ T, v ∈W (2.2)

Cardinality constraint The total number of execution of operations in a set W ′ ⊂ W

is restricted by the following constraint. A cardinality constraint on a single operation v

can be enforced by setting W ′ = {v}.

NW ′ ≤
∑
i∈T
v∈W ′

Ziv ≤ NW ′ W ′ ⊂W (2.3)

Assignment Constraint Two non-overlapping operations v1 and v2 such that NOv1v2 =

1 cannot be assigned simultaneously to the same priority-slot.

Ziv1 + Ziv2 ≤ 1 i ∈ T, v1, v2 ∈W,NOv1v2 = 1 (2.4)

Non-overlapping Constraint A non-overlapping constraint between two operations

v1, v2 ∈ W states that they must not be executed simultaneously. This property is en-

forced using the following big-M constraints where the big-M constant is defined as a valid

upper bound of the left hand side of the inequality.

Ei1v1 ≤ Si2v2 +H · (1− Zi2v2) i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (2.5a)

Ei1v2 ≤ Si2v1 +H · (1− Zi2v1) i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (2.5b)

Chapter 2. Time Representations and Models for Scheduling Problems 30

2.4 Mathematical Models

Due to the assignment constraint (2.4) and variable bound constraints (2.1a) and (2.1c),

equations (2.5a) and (2.5b) can be combined in order to form the following tighter surrogate

constraint (see appendix A).

Ei1v1 + Ei1v2

≤ Si2v1 + Si2v2 +H · (1− Zi2v1 − Zi2v2)
i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (2.6)

Non-overlapping Constraint with Transition Times Sequence-dependent transition

times TRv1v2 between operations v1 ∈W and v2 ∈W can be enforced as follows.

Ei1v1 + TRv1v2 · Zi1v1

≤ Si2v2 + (H + TRv1v2) · (1− Zi2v2)
i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (2.7a)

Ei1v2 + TRv2v1 · Zi1v2

≤ Si2v1 + (H + TRv2v1) · (1− Zi2v1)
i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,NOv1v2 = 1 (2.7b)

If the transition time is not sequence-dependent (i.e. TRv1v2 = TRv2v1) then constraints

(2.7) can be combined in order to form the following tighter surrogate constraint.

Ei1v1 + Ei1v2 + TRv1v2 · (Zi1v1 + Zi1v2)

≤ Si2v1 + Si2v2 + (H + TRv1v2) · (1− Zi2v1 − Zi2v2)

i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,

NOv1v2 = 1, TRv1v2 = TRv2v1

(2.8)

Precedence Constraint Consider two operations v1, v2 ∈ W such that Pv1v2 = 1, then

the precedence constraint can be expressed as follows. Note that in each summation, exactly

one term can be non-zero due to the assumed cardinality constraint.

∑
i∈T

Eiv1 ≤
∑
i∈T

Siv2 v1, v2 ∈W,Pv1v2 = 1 (2.9)

Consider two sets of operations W1,W2 ⊂W . If PW1W2 = 1, the previous constraint can be

extended as follows. Note that in each summation, exactly one term can be non-zero due

to the corresponding cardinality constraint (2.3).

∑
i∈T

∑
v1∈W1

Eiv1 ≤
∑
i∈T

∑
v2∈W2

Siv2 W1,W2 ⊂W,PW1W2 = 1 (2.10)

Chapter 2. Time Representations and Models for Scheduling Problems 31

2.4 Mathematical Models

2.4.4 MOS-SST Model

In the MOS-SST model, the start times of all operations assigned to the same priority-slot

i have to be synchronized. Therefore, we introduce positive synchronization time-points

variables ti (i ∈ T). Variables ti correspond to the start time of all operations assigned to

priority-slot i.

ti ∈ [0, H] i ∈ T (2.11)

Time-point Sequence Constraint The following constraint ensures that the variables

ti are ordered in time.

ti−1 ≤ ti i ∈ T \ {1} (2.12)

Synchronization Constraints If operation v is assigned to priority-slot i, it must start

at time ti. Therefore, the following synchronization constraints are used. Note that con-

straint (2.1a) already ensures that Siv = 0 if Ziv = 0.

Siv ≤ ti i ∈ T, v ∈W (2.13a)

Siv ≥ ti −H · (1− Ziv) i ∈ T, v ∈W (2.13b)

2.4.5 MOS-FST Model

In the MOS-FST model, the time-points variables ti of the MOS-SST model are used and

are fixed a priori. They can therefore be considered as parameters. In this thesis, these

time-points are always selected using a uniform time discretization.

ti =
i− 1

n
·H i ∈ T (2.14)

Synchronization Constraint If operation v is assigned to priority-slot i, it must start

at time ti. Therefore, the following synchronization constraints are used.

Siv = ti · Ziv i ∈ T, v ∈W (2.15)

Chapter 2. Time Representations and Models for Scheduling Problems 32

2.5 Strengthened Reformulations

2.4.6 SOS Model

All constraints from the MOS model are still valid for the SOS model. However, a new

assignment constraint is defined.

Assignment Constraint At most one operation has to be assigned to each priority-slot.

∑
v∈W

Ziv ≤ 1 i ∈ T (2.16)

2.5 Strengthened Reformulations

The models presented in section 2.4 may not be effectively solved by MILP solvers. Indeed,

special attention needs to be paid to their LP relaxation. As MILP solvers usually perform

better when the model has a tight LP relaxation, we introduce strengthened formulations

based on the non-overlapping structure of the problem.

2.5.1 Non-overlapping Graph Properties

We recall the definition of a clique and a biclique in the context of the non-overlapping

graph GNO. A clique of GNO is a subset of the set of operations W ′ ⊂ W such that

any two operations in W ′ must not overlap. A maximal clique is a clique that is not a

subset of any other clique. An isolated clique is a clique that has no edges connecting it

to its complement in the graph. For the case study, the non-overlapping graph displayed

in Figure 2.2 contains 9 non-maximal cliques of two vertices, one for each non self-loop

edge (e.g. {v1, v4}). It contains 4 maximal cliques of three vertices {v1, v4, v5}, {v2, v4, v6},

{v3, v5, v6}, {v4, v5, v6}. It contains no clique of larger size and no isolated clique.

We define a biclique of GNO as a pair of sets of operations (W1;W2) ∈W 2 such that for

any pair of operations (v1; v2) ∈ W1 ×W2, {v1, v2} is an edge of GNO. Sets W1 and W2

are not necessarily disjoint. A maximal biclique of GNO is a biclique that is not contained

in any other biclique of GNO. For the case study, the non-overlapping graph displayed

in Figure 2.2 contains 9 non-maximal bicliques of two vertices, one for each non self-loop

Chapter 2. Time Representations and Models for Scheduling Problems 33

2.5 Strengthened Reformulations

v1

v6

v4

v5

Figure 2.4: Biclique ({v1, v6}; {v4, v5}).

edge (e.g. (W1 = {v1};W2 = {v4})). It contains 4 maximal bicliques of three vertices that

can be derived from its maximal cliques ({v1, v4, v5};{v1, v4, v5}), ({v2, v4, v6};{v2, v4, v6}),

({v3, v5, v6};{v3, v5, v6}), and ({v4, v5, v6};{v4, v5, v6}). It also contains 3 maximal bicliques

composed of four vertices ({v1, v6};{v4, v5}), ({v2, v5};{v4, v6}), ({v3, v4};{v5, v6}) and 3

maximal bicliques composed of five vertices ({v4};{v1, v2, v4, v5, v6}), ({v5};{v1, v3, v4, v5, v6}),

({v6};{v2, v3, v4, v5, v6}). Figure 2.4 depicts the subgraph of GNO corresponding to biclique

({v1, v6};{v4, v5}).

Remark 4: Isolated cliques are always maximal as they cannot be extended to larger

cliques.

Remark 5: Using maximal cliques instead of non-maximal cliques generally leads to a

tighter LP relaxation. Constraints based on cliques will therefore be applied to maximal

cliques only. Appendix A shows how applying strengthened constraints to maximal cliques

only generates the tightest and most compact model. The same remark applies to bicliques.

Remark 6: The number of maximal cliques in an undirected graph might be exponential

in the size of the graph. Nevertheless, there are exponential-time algorithms to enumerate

all maximal cliques of a graph and we assume the non-overlapping graph is small enough so

that this task can be performed in reasonable time. The same remark applies to bicliques.

2.5.2 MOS Model

Aggregated Assignment Constraint Let W ′ ⊂ W be a clique of the non-overlapping

graph GNO. Then, at most one operation from W ′ can be assigned to priority-slot i.

Therefore, the following constraint, which is at least as strong as constraint (2.4) as shown

Chapter 2. Time Representations and Models for Scheduling Problems 34

2.5 Strengthened Reformulations

in appendix A, is valid.

∑
v∈W ′

Ziv ≤ 1 i ∈ T,W ′ ∈ clique(GNO) (2.17)

Aggregated Non-overlapping Constraint Given a clique W ′ ⊂ W of the

non-overlapping graph GNO, the following aggregated non-overlapping constraint, which

is at least as strong as constraint (2.6) as shown in appendix A, is valid. Note that only one

term in each summation can be non-zero due to the aggregated assignment constraint (2.17).

∑
v∈W ′

Ei1v ≤
∑
v∈W ′

Si2v +H · (1−
∑
v∈W ′

Zi2v) i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO) (2.18)

Aggregated Non-overlapping Constraint with Intermediate Operations Given

a clique W ′ ⊂ W of the non-overlapping graph GNO, and two priority-slots i1, i2 ∈ T such

that i1 < i2, constraint (2.18) can be further strengthened (see appendix A) by including

the duration of operations assigned to intermediate priority-slots i (i1 < i < i2).∑
v∈W ′

Ei1v +
∑
i∈T

i1<i<i2

∑
v∈W ′

Div

≤
∑
v∈W ′

Si2v +H · (1−
∑
v∈W ′

Zi2v)

i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO) (2.19)

Aggregated Non-overlapping Constraint with Clique Transition Times Given a

clique W ′ ⊂ W of the non-overlapping graph GNO, the clique transition time TRW ′ is the

minimum time delay between any two executions of operations in W ′. If W ′ represents a

set of operations executed in a unit, TRW ′ corresponds to a unit transition time. Clique

transition times can be enforced as follows. Note that the value of the big-M constant is

Chapter 2. Time Representations and Models for Scheduling Problems 35

2.5 Strengthened Reformulations

increased to a new valid upper bound for the left hand side of the inequality: H + TRW ′ .∑
v∈W ′

(Ei1v + TRW ′ · Zi1v)

+
∑
i∈T

i1<i<i2

∑
v∈W ′

(Div + TRW ′ · Ziv)

≤
∑
v∈W ′

Si2v + (H + TRW ′) · (1−
∑
v∈W ′

Zi2v)

i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO) (2.20)

2.5.3 MOS-SST Model

Aggregated Synchronization Constraints Given a clique W ′ ⊂ W of the

non-overlapping graph GNO, the following aggregated synchronization constraints, which

are tighter than constraints (2.13) as shown in appendix A, are valid. Note that in each

summation only one term can be non-zero.

∑
v∈W ′

Siv ≤ ti i ∈ T,W ′ ∈ clique(GNO) (2.21a)

∑
v∈W ′

Siv ≥ ti −H · (1−
∑
v∈W ′

Ziv) i ∈ T,W ′ ∈ clique(GNO) (2.21b)

Tightening Precedence Constraint Consider a precedence constraint between sets of

operations W1 and W2 (PW1W2 = 1). Assume that an operation from W1 is assigned to

priority-slot i1 with associated time-point t1 and that an operation from W2 is assigned

to priority-slot i2 with associated time-point t2. Then, due to the precedence constraint,

we must have t1 < t2. Therefore, a necessary condition for the precedence constraint to

hold true is i1 < i2. The following constraint ensures that this condition is satisfied, and

therefore complements constraint (2.10).

∑
j∈T
j<i

∑
v∈W1

Zjv ≥
∑
j∈T
j≤i

∑
v∈W2

Zjv i ∈ T,W1,W2 ⊂W,PW1W2 = 1 (2.22)

Chapter 2. Time Representations and Models for Scheduling Problems 36

2.5 Strengthened Reformulations

i−
⌈
Dv

H/n

⌉
i

H/n

Dv

Figure 2.5: Assignment constraint using consecutive time-points.

2.5.4 MOS-FST Model

The use of graph theory to strengthen discrete-time scheduling formulations has been stud-

ied by Waterer et al. (2002) who derived facet defining inequalities based on cliques and 5-

holes in a finite graph. This graph can be seen as an extension of the non-overlapping graph

where each node corresponds to an operation and a time interval (with integer bounds).

In this work, we use a basic non-overlapping graph (with no time intervals) which only

generates clique-based constraints because it is not possible to enumerate time intervals

in continuous-time representations. Therefore, the exact same graph is used for all time

representations.

Assignment Constraint using Time-points Consider an operation v ∈W . If the time

interval between two time-points is smaller than the duration of v, then v cannot start at

both time-points (v cannot be assigned to both priority-slots). As illustrated in Figure 2.5,

v cannot be assigned to priority-slots i −
⌈
Dv

H/n

⌉
+ 1 and i simultaneously, as well as any

other priority-slot in between. However, it can be assigned to priority-slots i−
⌈
Dv

H/n

⌉
and i

simultaneously. Note that the lower bound on the duration of v is used to account for the

case of variable processing times. Therefore, the following constraint, which is a stronger

extension of constraint (2.4), is valid.

Ziv +
∑
j∈T

i−δv<j<i

Zjv ≤ 1 i ∈ T, v ∈W, δv =

⌈
Dv

H/n

⌉
(2.23)

Chapter 2. Time Representations and Models for Scheduling Problems 37

2.5 Strengthened Reformulations

Aggregated Assignment Constraint The previous constraint (2.23) can be extended

to cliques of GNO. For fixed processing times, this constraint is equivalent to equation (9)

from Shah et al. (1993).

∑
v∈W ′

Ziv +
∑
j∈T

i−δv<j<i

Zjv

 ≤ 1 i ∈ T,W ′ ∈ clique(W), δv =

⌈
Dv

H/n

⌉
(2.24)

Aggregated Assignment Constraint with Transitions Times The previous con-

straint (2.24) can also be extended to the case of clique transition times.

∑
v∈W ′

Ziv +
∑
j∈T

i−δW ′ (v)<j<i

Zjv

 ≤ 1 i ∈ T,W ′ ∈ clique(W), δW ′(v) =

⌈
Dv + TRW ′

H/n

⌉

(2.25)

2.5.5 SOS Model

Aggregated Non-overlapping Constraint Additional aggregated non-overlapping con-

straints can be generated based on bicliques of the non-overlapping graph for the SOS

model. Given a biclique (W1;W2) of the non-overlapping graph GNO, the following aggre-

gated non-overlapping constraints, which are at least as strong as constraints (2.5) as shown

in appendix A, are valid. Note that in each summation only one term can be non-zero due

to the SOS specific assignment constraint (2.16). Also, note that constraints (2.18) and

(2.26) are not redundant as they are applied to different sets of operations.

∑
v∈W1

Ei1v ≤
∑
v∈W2

Si2v +H · (1−
∑
v∈W2

Zi2v)
i1, i2 ∈ T, i1 < i2,

(W1;W2) ∈ biclique(GNO)
(2.26a)

∑
v∈W2

Ei1v ≤
∑
v∈W1

Si2v +H · (1−
∑
v∈W1

Zi2v)
i1, i2 ∈ T, i1 < i2,

(W1;W2) ∈ biclique(GNO)
(2.26b)

Chapter 2. Time Representations and Models for Scheduling Problems 38

2.6 Solution Methods

2.6 Solution Methods

Determining the minimum number of priority-slots needed to find the optimal schedule is

non-trivial. A commonly used algorithm is to solve several scheduling models, each time

increasing the number of priority-slots. We present two different approaches based on this

idea followed by the more classic direct approach.

2.6.1 Additive Approach

The MOS, MOS-SST and SOS time representations are such that any solution found with

n priority-slots can be found with n + 1 priority-slots: z ∈MOS(n) ⇒ z ∈MOS(n+ 1).

Therefore, the corresponding models can be solved by successively increasing by 1 the

number of priority-slot. The additive approach is described by Algorithm 1. The parameter

n0 is the initial number of priority-slots. To improve efficiency of the branch & bound

algorithm at each iteration, the cutoff parameter is set using the objective value of the best

incumbent found so far. During some iterations, the MILP model may not have any solution

strictly better than the best incumbent. In such cases, it will not return any solution even

though the model may be feasible.

Three stopping criteria are considered. The first one is (∆ ≤ ε) where ε is an absolute

tolerance on the variation of objective value. In general, this criterion does not guarantee

global optimality of the solution even when setting ε to 0. However, it leads to a small

number of iterations. Also, in most of our experiments, this stopping criterion returned

the global optimal solution, which was only proved optimal by using the following stopping

criterion.

The second stopping criterion is (n > n) where n is an upper limit on the number of

priority-slots. In some cases, it is possible to determine an upper limit on the number of

priority-slots needed to find the optimal solution of the scheduling problem. In such cases,

this stopping criterion guarantees global optimality of the solution.

The third stopping criterion is a time limit on the total computational time, which of

Chapter 2. Time Representations and Models for Scheduling Problems 39

2.6 Solution Methods

Algorithm 1: Additive approach.

begin
z∗ ←− ∅ ;
cutoff ←− −∞ ;
n←− n0 ;
repeat

z ←− Maximize(MOS(n), cutoff) ;
∆←− z.objval()− z∗.objval() ;
if ∆ > 0 then

z∗ ←− z ;
cutoff ←− z∗.objval() ;

n←− n+ 1 ;
until stopping condition ;
return z∗ ;

end

course does not guarantee global optimality.

It is important to note that at each iteration, the integer feasible space of MOS(n)

includes scheduling solutions explored during previous iterations. In order to avoid re-

dundant search, we introduce constraint (2.27) that rejects any solution that do not make

use of all priority-slots. By adding this constraint to the MOS(n) model, the property

z ∈MOS(n) ⇒ z ∈MOS(n+ 1) is no longer valid. The same remark holds true for the

MOS-SST(n) and SOS(n) models.

∑
v∈W

Ziv ≥ 1 i ∈ T (2.27)

2.6.2 Multiplicative Approach

The previous approach could be used to solve a scheduling problem using the MOS-FST

time representation. However, a major flaw is that it is not guaranteed that a solution

found with n priority-slots can be found with n + 1 priority-slots. This can be overcome

by multiplying the number of priority-slots be a factor of 2 instead of using an increment.

Indeed, any solution found with n priority-slots can be found with 2n priority-slots: z ∈

MOS-FST(n) ⇒ z ∈ MOS-FST(2n). The multiplicative approach is therefore very

Chapter 2. Time Representations and Models for Scheduling Problems 40

2.6 Solution Methods

Algorithm 2: Multiplicative approach.

begin
z∗ ←− ∅ ;
cutoff ←− −∞ ;
n←− n0 ;
repeat

z ←− Maximize(MOS(n), cutoff) ;
∆←− z.objval()− z∗.objval() ;
if ∆ > 0 then

z∗ ←− z ;
cutoff ←− z∗.objval() ;

n←− 2 · n ;
until stopping condition ;
return z∗ ;

end

similar to the additive approach and is described by Algorithm 2. The stopping criteria

introduced for the additive approach can still be used for the multiplicative approach.

2.6.3 Direct Approach

Although the additive approach can be used to solve SOS models, it might not be very

efficient. Indeed, each time the number of priority-slot is increased by 1, the solver can

only schedule one additional operation. In MOS or MOS-SST models, several additional

operations can be scheduled at each iteration, which leaves much more flexibility to better

improve the objective value. Instead, a direct approach can be used. It consists of choosing

a fixed value for n and solving the MILP model once. In some cases, the total number of

executions of operations is fixed and known in advanced, so it can be used as the number

of priority-slots, guaranteeing global optimality of the solution obtained. It other cases,

a detailed analysis of the scheduling structure of the problem needs to be performed to

effectively define a value for n. Global optimality may not be guaranteed if n is too small,

or if additional constraints are used to improve the search.

Chapter 2. Time Representations and Models for Scheduling Problems 41

2.7 Single-Stage Batch Scheduling Problem

2.7 Single-Stage Batch Scheduling Problem

In this section, we apply the various time representations to model single-stage batch

scheduling problems. We study several instances introduced in Pinto and Grossmann (1995).

The largest instance has 29 orders to be processed before given due dates from time 0 to

time 30. Four units are available to process each single-stage order. Each unit can process

only one order at a time and a minimum unit-specific set-up time is required between any

two orders. Each order can only be processed on a subset of all units with order-and-unit-

specific processing times. Table 2.3 displays all required data. For each order, units that

do not have a corresponding processing time cannot be selected for this order. The ob-

jective is to minimize total earliness which corresponds to maximizing the end times of all

orders. Five instances have been studied with 8, 12, 18, 25, and 29 orders, which we denote

SSBSP8, . . . ,SSBSP29. We introduce the following specific sets.

• O ⊂ {o1, . . . , o29} is the set of orders (O = {o1, . . . , o8} for SSBSP8).

• U = {u1, . . . , u4} is the set of units.

• Uo is the set of units on which order o ∈ O can be processed. For instance, Uo1 =

{u1, u4}.

• Ou is the set of orders that can be processed on unit u ∈ U . For instance, Ou3 =

{o4, o5, o7, o8}.

The set of operations W can then be defined as follows. Exactly one operation is defined

for each order and each unit on which the order can be processed. This reduces the number

of indices from 2 to 1, although the combinatorial size of the problem remains identical.

W = {(o, u) ∈ O × U, u ∈ Uo} = {o1u1, o1u4, o2u1, o2u4, o3u1, o3u4, o4u3, o4u4, . . .}

Figure 2.6 depicts the non-overlapping graph of SSBSP8. It contains 3 isolated cliques each

corresponding to one unit (unit u2 cannot be used in this instance as it is excluded for

all orders, as seen in Table 2.3). The unit-based structure of the non-overlapping isolated

cliques leads to classical strengthened assignment and scheduling constraints that have

Chapter 2. Time Representations and Models for Scheduling Problems 42

2.7 Single-Stage Batch Scheduling Problem

Table 2.3: Data for single-stage batch scheduling problems.

Order Due date (hr)
Unit processing time (hr)
1 2 3 4

1 15 1.538 1.194
2 30 1.500 0.789
3 22 1.607 0.818
4 25 1.564 2.143
5 20 0.736 1.017
6 30 5.263 3.200
7 21 4.865 3.025 3.214
8 26 1.500 1.440
9 30 1.869 2.459
10 29 1.282
11 30 3.750 3.000
12 21 6.796 7.000 5.600
13 30 11.250 6.716
14 25 2.632 1.527
15 24 5.000 2.985
16 30 1.250 0.783
17 30 4.474 3.036
18 30 1.429
19 13 3.130 2.687
20 19 2.424 1.074 1.600
21 30 7.317 3.614
22 20 0.864
23 12 3.624
24 30 2.667 4.000
25 17 5.952 3.448 4.902
26 20 3.824 1.757
27 11 6.410 3.937
28 30 5.500 3.235
29 25 4.286

Set-up times 0.180 0.175 0.000 0.237

already been presented in the literature. Therefore, the mathematical models for batch

scheduling problems do not differ very much from previous works. We will denote Wu =

{v = (o, u), o ∈ Ou}, where u ∈ U , the set of operations executed on unit u ∈ U , Wu is

an isolated clique of GNO. Given an order o ∈ O, exactly one execution of this order must

be performed. Therefore, the set Wo = {v = (o, u), u ∈ Uo} has an associated cardinality

Chapter 2. Time Representations and Models for Scheduling Problems 43

2.7 Single-Stage Batch Scheduling Problem

o1u1

o2u1

o3u1

o6u1

o7u1
o4u3

o5u3 o7u3

o8u3

o1u4

o2u4
o3u4

o4u4

o5u4

o6u4

o7u4
o8u4

Figure 2.6: Non-overlapping graph with isolated cliques for SSBSP8.

constraint of 1, that is NWo = NWo = 1.

2.7.1 MOS Model

The MOS model for the single-stage batch scheduling problem is derived from constraints

(2.1)-(2.3), (2.17), (2.20), and (2.27).

Chapter 2. Time Representations and Models for Scheduling Problems 44

2.7 Single-Stage Batch Scheduling Problem

max
∑
i∈T

∑
v∈W

Eiv

s.t. Div = Dv · Ziv i ∈ T, v ∈W
Eiv ≤ Ev · Ziv i ∈ T, v ∈W
Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wo

Ziv = 1 o ∈ O

∑
v∈Wu

Ziv ≤ 1 i ∈ T, u ∈ U

∑
v∈Wu

(Ei1v + TRWu · Zi1v)

+
∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu · Ziv)

≤
∑
v∈Wu

Si2v + (H + TRWu) · (1−
∑
v∈Wu

Zi2v)

i1, i2 ∈ T, i1 < i2, u ∈ U

∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W
Ziv ∈ {0, 1} i ∈ T, v ∈W

This model can be strengthened in different ways. For each unit, it is possible to derive

the minimum and maximum number of orders that will be processed on it. The maximum

number of orders that can be processed on unit u ∈ U is defined as the number of operations

in the set.

NWu =
∣∣Wu

∣∣ u ∈ U

An improved upper cardinality value for Wu can be obtained by considering the processing

times of operations that might be processed on unit u. Indeed, due to a limited scheduling

horizon, it might not be possible to execute all operations in Wu. Therefore, we use the

following improved definition that solves a one-dimensional knapsack problem where all

operations have a value of 1. A linear algorithm to solve this problem consists of ordering

the operations in Wu with respect to their duration Dv and, starting from the operation

Chapter 2. Time Representations and Models for Scheduling Problems 45

2.7 Single-Stage Batch Scheduling Problem

Table 2.4: Unit cardinality bounds depending on parameter n for SSBSP29.

n u1 u2 u3 u4
8 [8,8] [5,5] [8,8] [8,8]
9 [6,9] [2,5] [6,9] [6,9]
10 [4,9] [2,5] [5,10] [5,10]
11 [2,9] [2,5] [4,11] [4,11]
12 [1,9] [2,5] [3,11] [4,12]
13 [0,9] [2,5] [2,11] [4,13]
14 [0,9] [2,5] [2,11] [4,14]

with the lowest processing time, setting γv to 1 until the knapsack limit H + TRWu is

reached. For the remaining operations, γv is set to 0.

NWu = max

{∑
v∈Wu

γv
∣∣ γv ∈ {0, 1}, ∑

v∈Wu

(Dv + TRWu) · γv ≤ H + TRWu

}
u ∈ U

We denote W 1
u = {v = (o, u) ∈ W,Uo = {u}} the set of operations that can only be

processed on unit u ∈ U . The minimum number of orders that will be processed on unit

u ∈ U can be defined as follows.

NWu =
∣∣W 1

u

∣∣ u ∈ U

However, as the number of orders executed on units different than u ∈ U is limited, NWu

can be increased as follows.

NWu = max


∣∣W 1

u

∣∣, ∣∣O∣∣−∑
u′∈U
u′ 6=u

min{n,NWu′}

 u ∈ U

The values obtained for NWu and NWu in problem SSBSP29 are displayed in Table 2.4 as

an example. Using NWu and NWu , the following cardinality constraint can be derived.

NWu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ NWu u ∈ U (2.28)

Given a unit u ∈ U , Wu is an isolated clique of GNO, so the optimal sequence of operations

from Wu is not affected by operations from W \ Wu. It is therefore possible to reduce

Chapter 2. Time Representations and Models for Scheduling Problems 46

2.7 Single-Stage Batch Scheduling Problem

the set of possible sequences of operations from Wu by assigning these operations to the

first priority-slots only. In other words, an operation Wu can be assigned to priority-slot i

only if an operation from Wu is assigned to priority-slot i − 1. This leads to the following

symmetry-breaking constraint.

∑
v∈Wu

Ziv ≤
∑
v∈Wu

Z(i−1)v i ∈ T, i 6= 1, u ∈ U (2.29)

This idea can be further applied to other constraints in the model. A maximum cardinality

constraint on the set of operations Wu can be enforced by setting to 0 assignment variables

corresponding to the last priority-slots for this set.

∑
v∈Wu

Ziv = 0 i ∈ T, i > NWu , u ∈ U (2.30)

Also, a minimum cardinality constraint on Wu can be enforced by assigning exactly one

operation to the first priority-slots.

∑
v∈Wu

Ziv = 1 i ∈ T, i ≤ NWu , u ∈ U (2.31)

Besides, non-overlapping constraint (2.20) can be tightened for the first priority-slots as

follows.∑
v∈Wu

(Ei1v + TRWu · Zi1v)

+
∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu · Ziv)

≤
∑
v∈Wu

Si2v

i1, i2 ∈ T, i1 < i2 ≤ NWu , u ∈ U (2.32)

The single-stage batch scheduling problems are solved with the MOS model plus con-

straints (2.28)-(2.32). The additive approach is used with the second stopping criterion

(n > maxuNu) which guarantees global optimality of the solution. Indeed, for each unit

u ∈ U , no more than Nu priority-slots are needed to sequence operations on it. The initial

number of priority-slots is set to n0 =
⌈∣∣O∣∣/∣∣{u|Wu 6= ∅}

∣∣⌉ which is the minimum number

Chapter 2. Time Representations and Models for Scheduling Problems 47

2.7 Single-Stage Batch Scheduling Problem

of orders at least one unit has to process. Computational results are given in Table 2.5.

Experiments were run on an Intel Xeon 1.86GHz processor using GAMS/CPLEX 11. For

each iteration, the LP relaxation, MILP solution, number of nodes, CPU time and cumu-

lative CPU time are displayed. The term “no solution” for MILP solution is used when

CPLEX did not find any solution with higher objective value than the cutoff value which

does not mean that no solution exists. For each problem, the global optimal solution is

underlined. The CPU time elapsed until the first stopping criterion (∆ ≤ 0) is satisfied is

also underlined. The results show that the first stopping criterion leads to significant reduc-

tion of CPU times compared to the second. Also, it is interesting to note the problem with

29 orders, although larger, is solved faster than the 25 orders problem. As the scheduling

horizon is fixed to 30 hours, the density of operations is higher with 29 orders. Therefore,

this problem is more constrained and has potentially fewer solutions. The model size is

increased but the branch & bound tree is smaller, thus leading to smaller CPU times. This

is verified by the fact that fewer nodes are explored.

Additionally, we solved problem SSBSP18 using the full MOS models with or without

the minimum priority-slot usage constraint (2.27). The results obtained with the additive

approach are displayed in Figure 2.7. It shows that constraint (2.27) greatly reduces the

search space at each iteration. In particular, using this constraint, the last iterations are

solved in few seconds, whereas CPU times are higher than 100 seconds if it is not used.

We also solved the SSBSP18 instance with exactly 5 priority-slots using the full MOS

model without and with symmetry-breaking constraints, which corresponds to the first iter-

ation of the additive algorithm for this problem. Without symmetry-breaking constraints,

the problem was solved in 115 seconds (124788 nodes) as opposed to less than 2 seconds

(513 nodes) if symmetry-breaking constraints (2.29)-(2.32) are used. This shows why us-

ing symmetry-breaking concepts is crucial to solve scheduling problems as they tend to be

highly degenerate (Kallrath, 2002).

We performed another experiment which consisted of solving the full MOS model by using

the original assignment constraint (2.4) instead of the strengthened assignment constraint

Chapter 2. Time Representations and Models for Scheduling Problems 48

2.7 Single-Stage Batch Scheduling Problem

Table 2.5: MOS computational results for single-stage batch scheduling problems.

Pb n LP MILP Nb of nodes CPU Cumulative CPU

SSBSP8

3 189.000 189.000 3 0.81s 0.81s
4 189.000 no solution 0 0.77s 1.58
5 189.000 no solution 0 0.80s 2.38s
6 189.000 no solution 0 0.76s 3.14s
7 189.000 no solution 0 0.86s 4.00s
8 188.035 no solution 0 0.90s 4.90s

SSBSP12

3 298.517 296.543 0 0.83s 0.83s
4 299.000 297.974 604 1.67s 2.50s
5 299.000 no solution 207 1.38s 3.88s
6 299.000 no solution 198 1.71s 5.59s
7 299.000 no solution 0 1.17s 6.76s
8 299.000 no solution 0 1.02s 7.78s
9 no solution 0.95s 8.73s
10 no solution 1.01s 9.74s
11 no solution 1.09s 10.83s

SSBSP18

5 461.563 450.760 513 1.83s 1.83s
6 463.993 450.982 1952 5.71s 7.54s
7 467.196 451.504 2924 8.37s 15.91s
8 467.966 no solution 4600 16.84s 32.75s
9 467.966 no solution 4600 18.47s 51.22
10 459.877 no solution 0 1.35s 52.57
11 no solution 1.32s 53.89s
12 no solution 1.48s 55.37s
13 no solution 1.72s 57.09s
14 no solution 1.90s 58.99s

SSBSP25

7 593.615 575.929 3444 17.24s 17.24s
8 601.884 579.089 18261 69.90s 87.14s
9 607.713 579.570 55046 189.66s 276.80s
10 609.000 no solution 77800 408.97s 685.77s
11 609.000 no solution 22400 113.60s 799.37s
12 597.717 no solution 0 3.61s 802.98s
13 583.289 no solution 0 2.31s 805.29s
14 no solution 2.54s 807.83s

SSBSP29

8 649.531 628.413 1583 12.97s 12.97s
9 656.403 634.964 10870 56.16s 69.13s
10 662.720 635.104 42249 206.66s 275.79s
11 666.512 no solution 22400 110.83s 386.62s
12 666.552 no solution 3700 32.72s 419.34s
13 668.164 no solution 1800 28.33s 447.67s
14 653.051 no solution 0 4.72s 452.39s

Chapter 2. Time Representations and Models for Scheduling Problems 49

2.7 Single-Stage Batch Scheduling Problem

6 8 10 12 14
Number of priority-slots

1

10

100

1000

10000

CP
U

 ti
m

e
(s

)

MOS w/ minimum priority-slot usage
MOS w/o minimum priority-slot usage

Figure 2.7: Effect of the minimum priority-slot usage constraint.

(2.17). Instance SSBSP18 was solved in 3.43 seconds (587 nodes) instead of 1.83 seconds

(513 nodes) for the strengthened constraint. Thus, this constraint slightly helps to improve

the solution time although CPLEX is able to generate cuts to tighten the LP relaxation

accordingly. However, we also solved the full MOS model replacing the strengthened non-

overlapping constraints (2.20) and (2.32) by the following non-overlapping constraint with

unit-dependent transition time, which is based on constraint (2.8).

Ei1v1 + Ei1v2 + TRWu · (Zi1v1 + Zi1v2)

≤ Si2v1 + Si2v2 + (H + TRWu) · (1− Zi2v1 − Zi2v2)
i1, i2 ∈ T, i1 < i2, u ∈ U, v1, v2 ∈Wu

(2.33)

The model was solved in 3,288 seconds and 1,078,034 nodes (vs 1.83 seconds and 513 nodes)

which proves that CPLEX was not successful at improving the LP relaxation of the model

for this mixed-integer constraint. In general, MILP solvers are very efficient at solving IPs

as they are able to exploit the structure of the model in order generate very tight cuts (such

as clique constraints, Nemhauser and Wolsey, 1999) that can lead to large improvements of

the branch & bound search. However, it is much harder to generate tightening cuts from

constraint (2.33) using the clique structure. Therefore, using strengthened formulations for

mixed-integer constraints is very important as it greatly improves the performance of MILP

solvers.

Chapter 2. Time Representations and Models for Scheduling Problems 50

2.7 Single-Stage Batch Scheduling Problem

2.7.2 MOS-SST Model

The MOS-SST model for the single-stage batch scheduling problem is derived from con-

straints (2.1)-(2.3), (2.12), (2.17), (2.20), (2.21), and (2.27).

max
∑
i∈T

∑
v∈W

Eiv

s.t. Div = Dv · Ziv i ∈ T, v ∈W
Eiv ≤ Ev · Ziv i ∈ T, v ∈W
Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wo

Ziv = 1 o ∈ O

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

∑
v∈Wu

Ziv ≤ 1 i ∈ T, u ∈ U

∑
v∈Wu

(Ei1v + TRWu · Zi1v)

+
∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu · Ziv)

≤
∑
v∈Wu

Si2v + (H + TRWu) · (1−
∑
v∈Wu

Zi2v)

i1, i2 ∈ T, i1 < i2, u ∈ U

ti−1 ≤ ti i ∈ T, i 6= 1∑
v∈Wu

Siv ≤ ti i ∈ T, u ∈ U

∑
v∈Wu

Siv ≥ ti −H · (1−
∑
v∈W ′

Ziv) i ∈ T, u ∈ U

∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W
Ziv ∈ {0, 1} i ∈ T, v ∈W
ti ∈ [0, H] i ∈ T

Due to the use of time-points, the symmetry-breaking constraints developed in section 2.7.1

cannot be applied to the MOS-SST model. Similarly to the MOS model, the additive ap-

proach is used and the initial number of priority-slots is set to

Chapter 2. Time Representations and Models for Scheduling Problems 51

2.7 Single-Stage Batch Scheduling Problem

Table 2.6: MOS-SST computational results for single-stage batch scheduling problems.

Pb n LP MILP Nb of nodes CPU Cumulative CPU

SSBSP8

3 189.000 177.001 1,220 1.47s 1.47s
4 189.000 183.149 6,079 3.48s 4.95s
5 189.000 185.567 16,339 7.44s 12.39s
6 189.000 187.815 8,127 10.96s 23.35s
7 189.000 188.823 25,640 18.38s 41.73s
8 189.000 189.000 649 2.64s 44.37s

SSBSP12

3 297.770 272.902 33 0.86s 0.86s
4 299.000 288.031 24,452 19.76s 20.62s
5 299.000 290.640 195,160 145.87s 166.49s
6 299.000 292.697 507,940 394.78s 561.27s
7 299.000 294.289 815,078 716.90s 1,278.17s

SSBSP18
5 468.000 428.544 256,375 476.74s 476.74s
6 468.000 433.583 360,510 +1,000s +1,476.74s

SSBSP25 7 609.000 538.538 103,912 +1,000s +1,000s

SSBSP29 8 638.975 569.580 140,638 +1,000s +1,000s

n0 =
⌈∣∣O∣∣/∣∣{u|Wu 6= ∅}

∣∣⌉. To solve the problem to global optimality, we use the sec-

ond criterion (n > |O|). However, all instances except the first one are very expensive to

solve, so we used a time limit of 1,000 seconds. Computational results are given in Ta-

ble 2.6. For each problem, the MOS-SST solution obtained with n priority-slots has lower

objective value than the MOS solution obtained with the same number of priority-slots as

stated previously. Overall results show that the MOS-SST time representation is much less

efficient than the MOS time representation.

2.7.3 MOS-FST Model

The MOS-FST model for the single-stage batch scheduling problem is derived from con-

straints (2.1)-(2.3), (2.15), and (2.25). Note that non-overlapping constraint (2.20) is not

included in the model as assignment constraint (2.25) is sufficient to enforce non-overlapping

constraints when processing times are constant (Dv = Dv). Also, constraint (2.27) is not

included in the model as valid schedules containing time periods with no activity would

become infeasible.

Chapter 2. Time Representations and Models for Scheduling Problems 52

2.7 Single-Stage Batch Scheduling Problem

max
∑
i∈T

∑
v∈W

Eiv

s.t. Div = Dv · Ziv i ∈ T, v ∈W
Eiv ≤ Ev · Ziv i ∈ T, v ∈W
Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wo

Ziv = 1 o ∈ O

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

Siv = ti · Ziv i ∈ T, v ∈W

∑
v∈Wu

Ziv +
∑
j∈T

i−δu(v)<j<i

Zjv

 ≤ 1 i ∈ T, u ∈ U, δu(v) =

⌈
Dv + TRu
H/n

⌉

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W
Ziv ∈ {0, 1} i ∈ T, v ∈W

ti =
i− 1

n
·H i ∈ T

Similarly to the MOS-SST model, it is not possible to develop symmetry-breaking con-

straints based on the isolated cliques of GNO for this model. To solve it, the multiplicative

approach is used and the initial number of priority-slots is set to n0 = H
2 = 15. Due to

memory limitations we used the second stopping criterion (n > 1920) which does not guar-

antee global optimality of the solution. Computational results are given in Table 2.7. The

first iterations are always computationally inexpensive and lead to good feasible solutions,

which are improved in the next iterations. Although near-optimal solutions are obtained

quickly, the gap is never entirely closed due to the time discretization. It is also interesting

to note that most problems are solved at the root node.

2.7.4 SOS Model

The SOS time representation has not been studied in the case for batch scheduling prob-

lems as it requires to develop a problem-specific symmetry-breaking sequencing rule (see

Chapter 2. Time Representations and Models for Scheduling Problems 53

2.7 Single-Stage Batch Scheduling Problem

Table 2.7: MOS-FST computational results for single-stage batch scheduling problems.

Pb n LP MILP Nb of nodes CPU Cumulative CPU

SSBSP8

15 182.581 182.581 0 0.80s 0.80s
30 186.013 186.013 0 1.07s 1.87s
60 187.456 187.456 0 1.56s 3.43s
120 188.594 188.594 0 2.77s 6.20s
240 188.719 188.719 0 6.07s 12.27s
480 188.813 188.813 0 16.89s 29.16s
960 188.907 188.907 0 52.92s 82.08s

1,920 188.954 188.954 0 183.32s 265.40s

SSBSP12

15 288.482 288.482 0 1.02s 1.02s
30 292.671 292.671 0 1.43s 2.45s
60 295.466 295.466 0 2.05s 4.50s
120 296.393 296.393 0 3.70s 8.20s
240 297.268 297.268 0 8.83s 17.03s
480 297.675 297.675 0 25.44s 42.47s
960 297.772 297.772 0 80.46s 122.93s

1,920 297.878 297.878 0 282.79s 405.72s

SSBSP18

15 429.377 429.377 0 1.31s 1.31s
30 438.507 438.507 0 1.74s 3.05s
60 445.652 445.182 0 2.67s 5.72s
120 448.808 448.107 0 5.30s 11.02s
240 450.308 449.607 0 14.15s 25.17s
480 451.339 450.782 0 39.90s 65.07s
960 451.652 451.157 0 138.20s 203.27s

1,920 451.800 451.297 0 459.25s 662.52s

SSBSP25

15 537.852 536.490 0 1.39s 1.39s
30 554.266 536.490 0 2.05s 3.44s
60 566.344 566.085 0 3.36s 6.80s
120 573.141 573.091 0 7.07s 13.87s
240 576.435 576.435 0 17.66s 31.53s
480 578.464 578.373 0 50.89s 82.42s
960 578.996 578.904 0 168.31s 250.73s

1,920 579.300 579.185 0 628.46s 879.19s

SSBSP29

15 570.475 567.485 0 1.47s 1.47s
30 597.973 595.846 0 2.18s 3.65s
60 616.779 613.610 8 4.33s 7.98s
120 627.674 625.258 5 10.02s 18.00s
240 631.863 630.988 0 22.60s 40.60s
480 634.336 633.426 0 75.74s 116.34s
960 635.119 634.019 512 389.57s 505.91s

1,920 635.741 no solution 400 +1,000s +1,505.91s

Chapter 2. Time Representations and Models for Scheduling Problems 54

2.7 Single-Stage Batch Scheduling Problem

Priority-slots 1 2 3

Unit 1 a b c

Unit 2 d e f

Unit 3 g h i

Unit 4 j k l

Priority-slots 1 2 3 4 5 6 7 8 9 10 11 12

Unit 1 a b c

Unit 2 d e f

Unit 3 g h i

Unit 4 j k l

MOS Assignment SOS Assignment

Figure 2.8: Equivalent MOS and SOS assignments for SSBSP12.

chapter 4). However, the following comments can be made. If the number of batches to

be processed on each unit is known a priori, the problem reduces to a set of independent

sequencing problem for each unit. This is also true for in the MOS time representation. In

fact, it is possible to break symmetries in the SOS model in order to make it equivalent to

the MOS model as shown in Figure 2.8. In the MOS model, the 3 priority-slots are assigned

in parallel as each priority-slot is assigned to several operations, at most one for each unit.

In the SOS model, the 12 priority-slots are assigned in sequence as each priority-slot can

be assigned to at most one operation (i.e. at most one unit). Consider a sequencing rule

for the SOS model that reserves priority-slots 1, 2, and 3 to unit 1, priority-slots 4, 5,

and 6 to unit 2, and so on. Grey cells in Figure 2.8 are used to represent the assignments

that are forbidden by such a sequencing rule. In this case, there exists a bijective trans-

formation between MOS and SOS assignments as outlined by the lower-case letters. Both

assignments lead to identical precedence relations between assigned operations. A similar

idea can be used when the number of batches to be processed on each unit in not known

a priori. It should be noted that there are no non-trivial bicliques in the non-overlapping

graph GNO. Furthermore, the same comments apply to the multi-stage batch scheduling

problem studied in section 2.8.

2.7.5 Models Comparison

Figure 2.9 shows how the objective value of the best incumbent varies over time. A step

increase of the objective value corresponds to a new solution found during the solution

algorithm. Note that we do not include intermediate solutions found during each branch &

Chapter 2. Time Representations and Models for Scheduling Problems 55

2.7 Single-Stage Batch Scheduling Problem

SSBSP12 SSBSP18

1 10 100 1000
CPU Time (s)

270

275

280

285

290

295

300
O

bj
ec

tiv
e

Va
lu

e

MOS
MOS-SST
MOS-FST
Optimum

1 10 100 1000
CPU Time (s)

430

435

440

445

450

O
bj

ec
tiv

e
Va

lu
e

MOS
MOS-SST
MOS-FST
Optimum

SSBSP25 SSBSP29

1 10 100 1000
CPU Time (s)

555

560

565

570

575

580

O
bj

ec
tiv

e
Va

lu
e

MOS
MOS-FST
Optimum

1 10 100 1000
CPU Time (s)

570

580

590

600

610

620

630

O
bj

ec
tiv

e
Va

lu
e

MOS
MOS-FST
Optimum

Figure 2.9: Comparison of time representations for single-stage batch scheduling problems.

bound search. Empty squares represent the time when the first stopping criterion is satisfied

while plain squares represent the time when the second stopping criterion is satisfied. This

applies only to the MOS model. From this figure, it is clear that the MOS model is superior

to the other models as it finds first feasible solutions very fast, and is able to find optimal

solutions and prove their optimality in reasonable time. The MOS-FST model compares

well in particular for finding first feasible solutions. It also finds near-optimal solutions in

reasonable time although it was slower than the MOS model for the instances that were

considered. Also, it is clear that the MOS-SST representation is not well suited to solve

these problems. For a more extended review of the performance of the different models

available to solve single-stage batch scheduling problems, the reader may refer to Méndez

and Cerdá (2003) and Castro and Grossmann (2006).

Chapter 2. Time Representations and Models for Scheduling Problems 56

2.8 Multi-Stage Batch Scheduling Problem

2.8 Multi-Stage Batch Scheduling Problem

We now extend the previous study to multi-stage batch scheduling problems from Pinto

and Grossmann (1995). The largest instance has 10 orders to be processed sequentially in 5

consecutive stages before identical due dates t = 500 hr. Twenty-five units are available to

process each order. Each unit is associated to one stage and can process only one order at

a time. A minimum unit-specific set-up time is required between any two orders processed

on the unit. Each order can only be processed on a subset of all units with order-and-unit-

specific processing times. Table 2.8 displays all required data. For each order, units that do

not have a corresponding processing time cannot be selected for this order. The objective,

as introduced by Pinto and Grossmann (1995), is to minimize total weighted earliness which

corresponds to maximizing a weighted summation of the end time of all orders in all stages.

The weights are stage dependent and defined as wl = 0.2 · l. Three instances have been

studied with 5, 8 and 10 orders, which we denote MSBSP5, MSBSP8 and MSBSP10. We

introduce the following specific sets.

• O ⊂ {o1, . . . , o10} is the set of orders (O = {o1, . . . , o5} for MSBSP5).

• L = {l1, . . . , l5} is the set of stages

• U = {u1, . . . , u25} is the set of units.

• Uo is the set of units on which order o ∈ O can be processed. For instance, Uo1 =

{u1, . . . , u17, u20, u21, u23, u24}.

• Ou is the set of orders that can be processed on unit u ∈ U . For instance, Ou20 =

{o1, o3, . . . , o9}.

• lu is the stage in which unit u ∈ U can be used. For instance, lu7 = l2

• Ul is the set of units which can be used in stage l ∈ L. For instance, Ul5 =

{u23, u24, u25}

The set of operations can then be defined as follows. Exactly one operation is defined for

each order, each stage and each unit on which the order can be processed. This reduces

the number of indices from 3 to 1, although the combinatorial size of the problem remains

Chapter 2. Time Representations and Models for Scheduling Problems 57

2.8 Multi-Stage Batch Scheduling Problem

Table 2.8: Data for multi-stage batch scheduling problems.

Stage Unit
Transition Order processing time (hr)
Time (hr) 1 2 3 4 5 6 7 8 9 10

1

1 8 18.1 23 18.1 20 17 15 31 12 13 12
2 8 18.1 23 18.1 20 17 14 30 12 7 4
3 8 18.1 23 18.1 20 17 13 34 14 8 23
4 8 18.1 23 18.1 20 17 12 32 15 9 12
5 8 18.1 23 18.1 20 17 18 31
6 8 18.1 23 18.1 20 17 15 16 16 14

2
7 8 14 14 14 11 14 15 31 15 13
8 1 5 5 5 5 5 7 31 16 15 13
9 1 5 5 5 5 5 7 31 15 11 13

3

10 2.5 12 12 24 12 12 13 14 12 13 12
11 2.5 12 12 24 12 12 12 15 13 7 4
12 2.5 12 12 24 12 12 15 16 14 8 23
13 2.5 12 12 24 12 12 17 41 14 9 12
14 2.5 12 12 24 12 12 17 15 14
15 2.5 12 12 24 12 12 18 81 14 16 14
16 2.5 12 12 24 12 12 19 14 15 13
17 2.5 12 12 24 12 12 16 14 15 13
18 2.5 12 16 16 14 11 13
19 2.5 12 13 21 10 12 6

4
20 6 9.5 9.3 7.9 12.5 13.5 12 10 15
21 6 9.5 9.3 7.9 12.5 14 13 9 17 12
22 24 100 14.5 11 8 17 23

5
23 4 24 24 24 24 12 11 22 12
24 4 24 24 24 24 12 11 7 21 22
25 5 48 23 11 7 12

identical.

W = {(o, l, u) ∈ O × L× U, u ∈ Uo ∩ Ul}

= {o1l1u1, . . . , o1l1u6, o1l2u7, . . . , o1l2u9, o1l3u10, . . .}

Figure 2.10 partially depicts the non-overlapping graph of MSBSP5. It contains 25 isolated

cliques each corresponding to one unit. We will denote Wu = {v = (o, l, u), o ∈ Ou, l = lu},

where u ∈ U , the set of operations executed on unit u, Wu is an isolated clique of GNO.

Given an order o ∈ O and a stage l ∈ L, exactly one execution of order o in stage l must be

Chapter 2. Time Representations and Models for Scheduling Problems 58

2.8 Multi-Stage Batch Scheduling Problem

o1l1u1

o2l1u1

o3l1u1

o4l1u1

o5l1u1

o2l3u18

o1l4u20

o3l4u20 o4l4u20

o5l4u20

Figure 2.10: Partial non-overlapping graph with isolated cliques for MSBSP5.

performed. Therefore, the set Wol = {v = (o, l, u), u ∈ Uo∩Ul} has an associated cardinality

constraint of 1, that is NWol
= NWol

= 1. Furthermore, due to the multi-stage feature of

this problem, precedence constraints exist between operations belonging to different stages

of the same order. More precisely, for each order o ∈ O and each stage l ∈ L \ {l1}, sets

Wo(l−1) and Wol must satisfy a precedence constraint PWo(l−1)Wol
= 1.

2.8.1 MOS Model

The MOS model for the multi-stage batch scheduling problem is derived from constraints

(2.1)-(2.3), (2.10), (2.17), (2.20), (2.27), and (2.29)-(2.32).

Chapter 2. Time Representations and Models for Scheduling Problems 59

2.8 Multi-Stage Batch Scheduling Problem

max
∑
i∈T

∑
v∈W

v=(o,l,u)

0.2 · l · Eiv

s.t. Div = Dv · Ziv i ∈ T, v ∈W
Eiv ≤ Ev · Ziv i ∈ T, v ∈W
Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wol

Ziv = 1 o ∈ O, l ∈ L

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

∑
i∈T

∑
v∈Wo(l−1)

Eiv ≤
∑
i∈T

∑
v∈Wol

Siv o ∈ O, l ∈ L, l 6= 1

∑
v∈Wu

Ziv ≤ 1 i ∈ T, u ∈ U

∑
v∈Wu

(Ei1v + TRWu · Zi1v)

+
∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu
· Ziv)

≤
∑

v∈Wu

Si2v + (H + TRWu) · (1−
∑

v∈Wu

Zi2v)

i1, i2 ∈ T, i1 < i2, i2 > NWu , u ∈ U

∑
v∈W

Ziv ≥ 1 i ∈ T∑
v∈Wu

Ziv ≤
∑

v∈Wu

Z(i−1)v i ∈ T, i 6= 1, u ∈ U

∑
v∈Wu

Ziv = 0 i ∈ T, i > NWu , u ∈ U∑
v∈Wu

Ziv = 1 i ∈ T, i ≤ NWu , u ∈ U∑
v∈Wu

(Ei1v + TRWu · Zi1v)

+
∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu
· Ziv)

≤
∑

v∈Wu

Si2v

i1, i2 ∈ T, i1 < i2, i2 ≤ NWu , u ∈ U

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W
Ziv ∈ {0, 1} i ∈ T, v ∈W

Cardinality bounds for units are defined similarly to the single-stage case. The minimum

cardinality bound is obtained by considering the number of orders executed on units different

Chapter 2. Time Representations and Models for Scheduling Problems 60

2.8 Multi-Stage Batch Scheduling Problem

Table 2.9: MOS computational results for multi-stage batch scheduling problems.

Pb n LP MILP Nb of nodes CPU Cumulative CPU

MSBSP5

2 6,827.56 6,827.56 0 0.98s 0.98s
3 6,828.76 6,828.76 58 1.66s 2.64

4 6,996.76 no solution 0 2.26s 4.90s
5 6,996.76 no solution 0 3.23s 8.13s

MSBSP8

3 10,985.61 10,985.16 837 16.70s 16.70s
4 11,364.67 10,986.36 1,149 59.87s 76.57s

5 11,364.67 no solution 500 30.34s 106.91s
6 11,364.67 no solution 2,200 156.14s 263.05s
7 11,364.67 no solution 1,500 243.65s 506.70s
8 11,364.67 no solution 2,200 331.18s 837.88s

MSBSP10 4 13,627.41 13,581.16 34,340 +1,000s +1,000s

than u ∈ U that belong to the same stage lu.

NWu = max

{∑
v∈Wu

γv
∣∣ γv ∈ {0, 1}, ∑

v∈Wu

(Dv + TRWu) · γv ≤ H + TRWu

}
u ∈ U

NWu = max


∣∣W 1

u

∣∣, ∣∣O∣∣− ∑
u′∈U
u′ 6=u
lu′=lu

min{n,NWu′}


u ∈ U

The multi-stage batch scheduling problems are solved using the additive approach with the

second stopping criterion (n > maxuNu) which guarantees global optimality of the solution.

The initial number of priority-slots is set to n0 =
⌈∣∣O∣∣/minl∈L

∣∣{u|u ∈ Ul}∣∣⌉, which is the

minimum number of orders at least one unit has to process in each stage, more precisely

in bottleneck stages. Computational results are given in Table 2.9. Similarly to the single-

stage case, the results show that the first stopping criterion leads to significant reduction

of CPU times compared to the second. The instance with 10 orders cannot be solved to

global optimality although feasible solutions are obtained quickly using 4 priority-slots. The

branch & bound search is stopped after 1,000 seconds with a remaining 0.09% optimality

gap. A 1% optimality gap can be achieved in 219.08 seconds.

Chapter 2. Time Representations and Models for Scheduling Problems 61

2.8 Multi-Stage Batch Scheduling Problem

2.8.2 MOS-SST Model

The MOS-SST model for the multi-stage batch scheduling problem is derived from con-

straints (2.1)-(2.3), (2.10), (2.17), (2.20)-(2.22), and (2.27).

max
∑
i∈T

∑
v∈W

v=(o,l,u)

0.2 · l · Eiv

s.t. Div = Dv · Ziv i ∈ T, v ∈W
Eiv ≤ Ev · Ziv i ∈ T, v ∈W
Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wol

Ziv = 1 o ∈ O, l ∈ L

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

∑
i∈T

∑
v∈Wo(l−1)

Eiv ≤
∑
i∈T

∑
v∈Wol

Siv o ∈ O, l ∈ L, l 6= 1

∑
v∈Wu

Ziv ≤ 1 i ∈ T, u ∈ U

∑
v∈Wu

(Ei1v + TRWu
· Zi1v)

+
∑
i∈T

i1<i<i2

∑
v∈Wu

(Div + TRWu
· Ziv)

≤
∑

v∈Wu

Si2v + (H + TRWu) · (1−
∑

v∈Wu

Zi2v)

i1, i2 ∈ T, i1 < i2, u ∈ U

ti−1 ≤ ti i ∈ T, i 6= 1∑
v∈Wu

Siv ≤ ti i ∈ T, u ∈ U

∑
v∈Wu

Siv ≥ ti −H · (1−
∑
v∈W ′

Ziv) i ∈ T, u ∈ U

∑
j∈T
j<i

∑
v∈Wo(l−1)

Zjv ≥
∑
j∈T
j≤i

∑
v∈Wol

Zjv i ∈ T, o ∈ O, l ∈ L, l 6= 1

∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W
Ziv ∈ {0, 1} i ∈ T, v ∈W
ti ∈ [0, H] i ∈ T

Chapter 2. Time Representations and Models for Scheduling Problems 62

2.8 Multi-Stage Batch Scheduling Problem

Table 2.10: MOS-SST computational results for multi-stage batch scheduling problems.

Pb n LP MILP Nb of nodes CPU Cumulative CPU

MSBSP5
5 no solution 1.45s 1.45s
6 6,617.96 6,161.40 21,915 21.89s 23.34s
7 6,996.76 6,448.62 285,564 +1,000s +1,023.34s

MSBSP8
5 no solution 1.81s 1.81s
6 no solution 2.07s 3.88s
7 11,363.98 99,79.40 21,491 +1,000s +1,003.88s

MSBSP10

5 no solution 2.19s 2.19s
6 no solution 2.37s 4.56s
7 no solution 3.36s 7.92s
8 14,255.76 12,560.20 2,172 +1,000s +1,007.92s

The additive approach is used to solve the model and the initial number of priority-slots is

set to n0 = |L|, the number of stages, as for each order stage processing operations must

start at different dates. No problem instance was solved to global optimality, so we use

a time limit of 1,000 seconds. Computational results are given in Table 2.10. As for the

single-stage case, the MOS-SST time representation is much less efficient than the MOS

time representation. For the instance with 10 orders the MOS-SST model returns a worse

solution than the MOS model in 1,000 seconds (13.31% optimality gap remaining).

2.8.3 MOS-FST Model

The MOS-FST model for the multi-stage batch scheduling problem is derived from con-

straints (2.1)-(2.3), (2.10), (2.15), and (2.25).

Chapter 2. Time Representations and Models for Scheduling Problems 63

2.8 Multi-Stage Batch Scheduling Problem

max
∑
i∈T

∑
v∈W

v=(o,l,u)

0.2 · l · Eiv

s.t. Div = Dv · Ziv i ∈ T, v ∈W
Eiv ≤ Ev · Ziv i ∈ T, v ∈W
Eiv = Siv +Div i ∈ T, v ∈W∑
i∈T

∑
v∈Wo

Ziv = 1 o ∈ O

Nu ≤
∑
i∈T

∑
v∈Wu

Ziv ≤ Nu u ∈ U

∑
i∈T

∑
v∈Wo(l−1)

Eiv ≤
∑
i∈T

∑
v∈Wol

Siv o ∈ O, l ∈ L, l 6= 1

Siv = ti · Ziv i ∈ T, v ∈W

∑
v∈Wu

Ziv +
∑
j∈T

i−δu(v)<j<i

Zjv

 ≤ 1 i ∈ T, u ∈ U, δu(v) =

⌈
Dv + TRu
H/n

⌉

Siv, Div, Eiv ≥ 0 i ∈ T, v ∈W
Ziv ∈ {0, 1} i ∈ T, v ∈W

ti =
i− 1

n
·H i ∈ T

To solve this model, the multiplicative approach is used and the initial number of priority-

slots is set to n0 = H
/

4 = 125. We use a time limit of 1,000s as a stopping criterion.

Computational results are given in Table 2.11. As for the single-stage case, the MOS-FST

time representation quickly finds near-optimal solutions in the first iterations. The instance

with 10 orders was not solved due to memory limitations.

2.8.4 Models Comparison

Figure 2.11 shows how the objective value of the best incumbent varies over time. From this

figure, it is clear that the MOS model is superior to the other models as it finds first feasible

solutions very fast and is able to find optimal solutions in reasonable time. The MOS-FST

model is significantly more expensive than previous single-stage cases as the scheduling

Chapter 2. Time Representations and Models for Scheduling Problems 64

2.9 Conclusion

Table 2.11: MOS-FST computational results for multi-stage batch scheduling problems.

Pb n LP MILP Nb of nodes CPU Cumulative CPU

MSBSP5

125 6,820.61 6,800.60 0 16.84s 16.84s
250 6,826.21 6,819.00 0 39.32s 56.16s
500 6,827.76 6,824.80 499 155.83s 211.99s

1,000 6,828.76 6,828.00 509 619.69s 831.68s
2,000 6,828.76 6,828.10 0 +1,000s +1,831.68s

MSBSP8
125 10,951.49 10,925.80 503 71.54s 71.54s
250 10,965.66 10,956.60 31,692 +1,000s +1,071.54s

MSBSP5 MSBSP8

1 10 100 1000
CPU Time (s)

5800

6000

6200

6400

6600

6800

O
bj

ec
tiv

e
Va

lu
e

MOS
MOS-SST
MOS-FST
Optimum

10 100 1000 10000
CPU Time (s)

10800

10850

10900

10950

11000

O
bj

ec
tiv

e
Va

lu
e

MOS
MOS-FST
Optimum

Figure 2.11: Comparison of time representations for multi-stage batch scheduling problems.

horizon is much longer (500 hours as opposed to 30 hours). Therefore, more priority-slots

need to be postulated which makes the model size grow significantly. Janak et al. (2004),

Castro et al. (2006) and Liu and Karimi (2007) have developed and studied several models

that can be applied to different types of multi-stage batch scheduling problems. Their

computational results show similar trends.

2.9 Conclusion

In this chapter, we have presented four different time representations that in different forms

have been previously introduced to solve process scheduling problems. Using the common

concept of priority-slot, it was shown that it is possible to derive relationship results between

these time representations. Additionally, generic scheduling constraints were presented with

Chapter 2. Time Representations and Models for Scheduling Problems 65

2.9 Conclusion

corresponding strengthened formulations that rely on exploiting the non-overlapping graph

structure of these problems through maximum cliques and bicliques. These formulations

were developed as well as specific solution algorithms for each model. Given the unifying

framework of these models, we were able to apply them to batch scheduling of single and

multi-stage plants.

Intuitively, the representation that requires the fewest number priority-slots is the most

computationally efficient. In practice, the MOS time representation proved to be superior

to the other time representations on the two types of problem tested due to the smaller

number of priority-slots and symmetry-breaking constraints used.

In terms of computational performance, the discrete-time MOS-FST representation is

comparable to the MOS time representation due to the high efficiency of constraint (2.25)

for problems with constant processing times and time horizon of reasonable length.

On the other hand, the MOS-SST time representation performs poorly as it requires many

more priority-slots than the MOS representation but does not improve the LP relaxation

of the MILP model.

Finally, it should be noted that precedence-based formulations (Méndez et al., 2001) are

very good alternatives to priority-slot based representations. These formulations tend to

be limited to the context of batch scheduling problems without inventory tracking (Méndez

et al., 2006a). The corresponding models often have weak LP relaxations as they require a

large proportion of big-M constraints, but they are very compact and therefore easily solved

by current commercial MILP solvers.

Chapter 2. Time Representations and Models for Scheduling Problems 66

Chapter 3

Short-Term Scheduling of Crude-Oil

Operations

3.1 Introduction

The optimal scheduling of crude-oil operations has been studied since the 90’s and has been

shown to lead to multimillion dollar benefits by Kelly and Mann (2003) as it is the first

stage of the oil refining process. It involves crude-oil unloading from crude marine vessels

(at berths or jetties) or from a pipeline to storage tanks, transfers from storage tanks to

charging tanks and atmospheric distillations of crude-oil mixtures from charging tanks.

The crude is then processed in order to produce basic products which are then blended

into gasoline, diesel, and other final products. Assuming that the schedule of crude supply

and production demands are determined by the long-term refinery planning, this chapter

studies the short-term scheduling problem maximizing gross margins of crude-oil mixtures.

Shah (1996) proposed to use mathematical programming techniques to find crude-oil

schedules exploiting opportunities to increase economic benefits. Lee et al. (1996) considered

a crude-oil scheduling problem involving crude unloading at berths, developed a discrete-

time MINLP model, and solved an MILP relaxation of the model. Later, Wenkay et al.

(2002) improved the model and proposed an iterative approach to solve the MINLP model,

taking into account the nonlinear blending constraints. Pinto et al. (2000), Moro and

Pinto (2004), and Reddy et al. (2004) used a global event formulation to model refinery

systems involving crude-oil unloading from pipeline or jetties. The scheduling horizon is

divided into fixed length sub-intervals, which are then divided in several variable length

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 67

3.2 Problem Statement

time-slots. In parallel, Jia et al. (2003) developed an operation-specific event model and

applied it to the problems introduced by Lee et al. (1996) using a linear approximation

of storage costs. A comparison of computational performances between both continuous-

time and discrete-time models was given showing significant decreases in CPU time. Also,

solutions that are not guaranteed to be globally optimal were obtained using standard

MINLP algorithms. Recently, Furman et al. (2007) presented a more accurate version of the

event-point formulation, and Karuppiah et al. (2008) later addressed the global optimization

of this model using an outer-approximation algorithm where the MILP master problem is

solved by a Lagrangean decomposition. While rigorous, this method can be computationally

expensive.

The aim of this chapter is to apply different time representations and mathematical mod-

els to the crude-oil scheduling problem introduced by Lee et al. (1996). First, the problem

definition is given. Next, the MOS, MOS-SST, and MOS-FST models (see chapter 2) are

derived and a simple solution method to solve them is presented. Finally, computational

results are given to show the effectiveness of the proposed model and solution method. As

it requires additional work to break its inherent symmetries, the SOS model will be detailed

in chapter 4.

3.2 Problem Statement

3.2.1 General Description

This work is aimed at solving the four examples of refinery crude-oil operations problems

introduced in Lee et al. (1996), respectively denoted COSP1, . . . ,COSP4. Each crude-oil

operations system is composed of four types of resources: crude marine vessels, storage

tanks, charging tanks and crude distillation units (CDUs). Three types of operations, all

transfers between resources, are allowed: crude-oil unloadings from marine vessels to storage

tanks, transfers between tanks, and transfers from charging tanks to CDUs.

A crude-oil scheduling problem is defined by: (a) a time horizon, (b) arrival time of marine

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 68

3.2 Problem Statement

vessels, (c) capacity limits of tanks, (d) transfer flowrate limitations, (e) initial composition

of vessels and tanks, (f) crude property specifications for distillations, (g) and demands for

each crude blend.

The logistics constraints of the problem are defined as follows.

(i) Only one berth is available at the docking station for vessel unloadings,

(ii) simultaneous inlet and outlet transfers on tanks are forbidden,

(iii) a tank may charge only one CDU at a time,

(iv) a CDU can be charged by only one tank at a time,

(v) and CDUs must be operated continuously throughout the scheduling horizon.

In this chapter, the goal is to determine how many times each operation will be executed,

when it will be performed (start time and duration), and the volume of crude to be trans-

ferred in order to maximize the gross margins of distilled mixed oil. The gross margin of

each crude can be estimated from the sales income of the final products minus its purchase

value and related refining operational costs. Depending on the market value of the different

crudes and final products, the model tries to process the most profitable crudes and to

store the other crudes. As opposed to the work of Lee et al. (1996), sea waiting, unloading,

storage and CDU switching costs are ignored.

As CDU switches between different crude blends are costly, it is considered that the

number of distillation operations is bounded. The bounds on the number of distillation

operations can be set by the user, or for the lower bound, it can be obtained by solving a

model minimizing the number of distillation operations. Typically, the number and type of

marine vessels is determined at the planning level as well as demands in each crude blend.

Due to the logistics constraint (ii), inventory tracking in tanks can be performed by

looking at the sequence of inlet and outlet operations only, and not at the sequence of

start and end events of such operations. Indeed, for each tank, the scheduling solution

can be decomposed into successions of inlet and outlet states during which one or several

operations are performed. Therefore, it is only necessary to enforce capacity limitations

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 69

3.2 Problem Statement

Time

Time

1

2
3

4
4

O
ut
le
t

In
le
t

In
ve
nt
or
y

In
ve
nt
or
y

Priority-slots1 2 43

Figure 3.1: Example of tank schedule.

at the transitions between these states. Figure 3.1 depicts an example of tank schedule

with inlet and outlet states, time-based and priority-slot-based inventory profiles. Each

transfer activity is represented by a horizontal bar labeled with the corresponding priority-

slot. Note that the two inventory profiles do not coincide due to the use of different x-axes.

In particular, in the priority-slot-based profile, it is not possible to distinguish the two

consecutive inventory decreases corresponding to the two operations assigned to priority-

slot 4. Under assumption (ii), it is sufficient to enforce tank capacity limitations just before

transition slots as it corresponds to inventory upper and lower peaks. In practice, they are

enforced just before all priority-slots.

3.2.2 Case Study

Figure 1.4 depicts the refinery configuration for COSP1. The scheduling horizon is composed

of 8 days, and two marine vessels are scheduled to arrive at the beginning of day 1 (t = 0)

and day 5 (t = 4), and contain 1 million bbl of crude-oil A and B, respectively. There is one

CDU which has to process 1 million bbl of each crude-oil mixture, X and Y. The property

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 70

3.2 Problem Statement

Table 3.1: Data for COSP1.
Scheduling horizon 8 days

Vessels Arrival time Composition Amount of crude (Mbbl)

Vessel 1 0 100% A 1,000
Vessel 2 4 100% B 1,000

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 [0, 1,000] 100% A 250
Tank 2 [0, 1,000] 100% B 750

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 (mix X) [0, 1,000] 100% C 500
Tank 2 (mix Y) [0, 1,000] 100% D 500

Crudes Property 1 (sulfur concentration) Gross margin ($/bbl)

Crude A 0.01 9
Crude B 0.06 4
Crude C 0.02 8
Crude D 0.05 5

Crude mixtures Property 1 (sulfur concentration) Demand (Mbbl)

Crude mix X [0.015, 0.025] [1,000, 1,000]
Crude mix Y [0.045, 0.055] [1,000, 1,000]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]

Distillation flowrate [50, 500] Number of distillations 3

that is being tracked is the weight fraction of sulfur, 0.01 for crude A and 0.06 for crude B.

The sulfur concentration of crude mix X and Y should be in the ranges [0.015, 0.025] and

[0.045, 0.055], respectively. The two storage tanks initially contain 250,000 bbl of crude A

and 750,000 bbl of crude B. The two charging tanks initially contain 500,000 bbl of crude

C and D, with sulfur concentrations of 0.02 and 0.05, respectively. Crudes C and D are in

fact blends of crudes A and B that match the sulfur concentration specifications for crude

mix X and Y. The gross margins of crudes A, B, C, and D are 9 $/bbl, 4 $/bbl, 8 $/bbl,

5 $/bbl, respectively. Gross margins for crudes C and D have been calculated from gross

margins of crudes A and B. The data for COSP1 is given in Table 3.1. Flowrate limitations

are expressed in Mbbl/day.

Figure 3.2 depicts the Gantt chart of a sub-optimal solution for COSP1 with a profit

of $6,925,000 that might be obtained by using heuristics. Each task is represented by a

horizontal bar and each row corresponds to a specific operation. Tank inventories are also

displayed, showing that tank capacity limits are satisfied. Figure 3.3 shows in contrast the

Gantt chart of the optimal solution obtained, and proved optimal (i.e. 0% optimality gap),

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 71

3.3 Mathematical Models

Transfer 5

Unloading 1

Transfer 6

Operation

Transfer 4

Unloading 2
Transfer 3

Distillation 7
Distillation 8

876543210

Storage tank 1

Storage tank 2

Charging tank 1

Charging tank 2

Figure 3.2: Sub-optimal schedule for COSP1 (profit: $6,925,000).

with the proposed approach as shown in section 3.5. It corresponds to a profit of $7,975,000,

which represents a 13.2% increase. Clearly, finding such a solution is non-trivial.

3.3 Mathematical Models

In this section, we present three mathematical models based on the MOS, MOS-SST, and

MOS-FST time representations (see chapter 2). They are all based on the same sets,

parameters and variables.

3.3.1 Sets

The following sets will be used in the model.

• T = {1, . . . , n} is the set of priority-slots

• W is the set of all operations: W = WU ∪ WT ∪ WD (W = {1..8} for COSP1,

see Figure 1.4)

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 72

3.3 Mathematical Models

Transfer 5

Unloading 1

Transfer 6

Operation

Transfer 4

Unloading 2
Transfer 3

Distillation 7
Distillation 8

876543210

Storage tank 1

Storage tank 2

Charging tank 1

Charging tank 2

Figure 3.3: Optimal schedule for COSP1 (profit: $7,975,000).

• WU ⊂W is the set of unloading operations (WU = {1, 2} for COSP1)

• WT ⊂W is the set of tank-to-tank transfer operations (WT = {3, 4, 5, 6} for COSP1)

• WD ⊂W is the set of distillation operations (WD = {7, 8} for COSP1)

• R is the set of resources (i.e. tanks, units): R = RV ∪RS ∪RC ∪RD

• RV ⊂ R is the set of vessels

• RS ⊂ R is the set of storage tanks

• RC ⊂ R is the set of charging tanks

• RD ⊂ R is the set of distillation units

• Ir ⊂W is the set of inlet transfer operations on resource r

• Or ⊂W is the set of outlet transfer operations on resource r

• C is the set of products (i.e. crudes)

• K is the set of product properties (e.g. crude sulfur concentration)

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 73

3.3 Mathematical Models

3.3.2 Parameters

The following parameters are given.

• H is the scheduling horizon

• [V t
v , V

t
v] are bounds on the total volume transferred during transfer operation v ; in

all instances, V t
v = 0 for all operations except unloadings for which V t

v = V t
v is the

volume of crude in the marine vessel

• [ND, ND] are the bounds on the number of distillations

• [FRv, FRv] are flowrate limitations for transfer operation v

• Sv is the minimum start time of unloading operation v ∈WU (i.e. arrival time of the

corresponding vessel)

• [xvk, xvk] are the limits of property k of the blended products transferred during

operation v

• xck is the value of the property k of crude c

• [Ltr, L
t
r] are the capacity limits of tank r

• Lt0r is the initial total level in tank r

• L0rc is the initial crude level in tank r for crude c

• [Dr, Dr] are the bounds of the demand on products to be transferred out of the

charging tank r during the scheduling horizon

• Gc is the individual gross margin of crude c

3.3.3 Variables

The variables used in the model are composed of binary assignment variables, and contin-

uous time, operation and resource variables.

• Assignment variables Ziv ∈ {0, 1} i ∈ T, v ∈W

Ziv = 1 if operation v is assigned to priority-slot i, Ziv = 0 otherwise.

• Time variables Siv ≥ 0, Div ≥ 0, Eiv ≥ 0 i ∈ T, v ∈W

Siv is the start time of operation v if it is assigned to priority-slot i, Siv = 0 otherwise.

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 74

3.3 Mathematical Models

Div is the duration of operation v if it is assigned to priority-slot i, Div = 0 otherwise.

Eiv is the end time of operation v if it is assigned to priority-slot i, Eiv = 0 otherwise.

• Operation variables V t
iv ≥ 0 and Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

V t
iv is the total volume of crude transferred during operation v if it is assigned to

priority-slot i, V t
iv = 0 otherwise.

Vivc is the volume of crude c transferred during operation v if it is assigned to priority-

slot i, Vivc = 0 otherwise.

• Resource variables Ltir and Lirc i ∈ T, r ∈ R, c ∈ C

Ltir is the total accumulated level of crude in tank r ∈ RS ∪ RC before the operation

assigned to priority-slot i.

Lirc is the accumulated level of crude c in tank r ∈ RS ∪ RC before the operation

assigned to priority-slot i.

It should be noted that the crude composition of blends in tanks is tracked instead of

their properties. The distillation specifications are later enforced by calculating a posteriori

the properties of the blend in terms of its composition. For instance, in problem COSP1, a

blend composed of 50% of crude A and 50% of crude B has a sulfur concentration of 0.035

which does not meet the specification for crude mix X nor for crude mix Y.

3.3.4 Objective Function

The objective is to maximize the gross margins of the distilled crude blends. Using the

individual gross margins Gc, it is written as follows.

max
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

3.3.5 General Constraints

In this section, we present a set of general constraints which can be used in any of the time

representations studied in chapter 2.

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 75

3.3 Mathematical Models

The following variable bound and time constraints (3.1) are used.

Siv ≥ Sv · Ziv i ∈ T, v ∈WU (3.1a)

Eiv ≤ H · Ziv i ∈ T, v ∈W (3.1b)

Eiv = Siv +Div i ∈ T, v ∈W (3.1c)

The following unloading and distillation cardinality constraints (3.2) are used.

∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV (3.2a)

ND ≤
∑
i∈T

∑
v∈WD

Ziv ≤ ND (3.2b)

The following unloading precedence constraints (3.3) are used to make sure that crude

vessels unload their content according to their respective order of arrival at the refinery.

The notation r1 < r2 denotes that vessel r1 is scheduled to arrive at the refinery before

vessel r2. ∑
i∈T

∑
v∈Or1

Eiv ≤
∑
i∈T

∑
v∈Or2

Siv r1, r2 ∈ RV , r1 < r2 (3.3a)

∑
j∈T
j<i

∑
v∈Or1

Zjv ≥
∑
j∈T
j≤i

∑
v∈Or2

Zjv i ∈ T, r1, r2 ∈ RV , r1 < r2 (3.3b)

The following constraint (3.4) states that each CDU must be operated without inter-

ruption throughout the scheduling horizon. As CDUs perform only one operation at a

time, the continuous operation constraint is defined by equating the sum of the duration of

distillations to the time horizon.

∑
i∈T

∑
v∈Ir

Div = H r ∈ RD (3.4)

The following variable constraints (3.5) are directly derived from the definition of volume

and level variables.

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 76

3.3 Mathematical Models

V t
iv ≤ V t

v · Ziv i ∈ T, v ∈W (3.5a)

V t
iv ≥ V t

v · Ziv i ∈ T, v ∈W (3.5b)

V t
iv =

∑
c∈C

Vivc i ∈ T, v ∈W (3.5c)

Ltir = Lt0r +
∑

j∈T,j<i

∑
v∈Ir

V t
iv −

∑
j∈T,j<i

∑
v∈Or

V t
iv i ∈ T, r ∈ R (3.5d)

Lirc = L0rc +
∑

j∈T,j<i

∑
v∈Ir

Vivc −
∑

j∈T,j<i

∑
v∈Or

Vivc i ∈ T, r ∈ R, c ∈ C (3.5e)

Ltir =
∑
c∈C

Lirc i ∈ T, r ∈ R (3.5f)

The following operation constraints (3.6) include:

1. flowrate limitations that link volume and duration variables

2. property specifications, assuming that the mixing rule is linear

3. composition constraints, which are nonlinear

FRv ·Div ≤ V t
iv ≤ FRv ·Div i ∈ T, v ∈W (3.6a)

xvk · V t
iv ≤

∑
c∈C

xckVivc ≤ xvk · V t
iv i ∈ T, v ∈W,k ∈ K (3.6b)

Vivc · Ltir = Lirc · V t
iv i ∈ T, r ∈ R, v ∈ Or, c ∈ C (3.6c)

It has been shown (Quesada and Grossmann, 1995b) that processes including both mixing

and splitting of streams cannot be expressed as a linear model. Mixing occurs when two

streams are used to fill a tank and is expressed linearly in constraints (3.5d-3.5e). Splitting

occurs when partially discharging a tank, resulting in two parts: the remaining content of

the tank and the transferred products. This constraint is nonlinear. The composition of

the products transferred during a transfer operation must be identical to the composition

of the origin tank. Note that constraint (3.6c) is a bilinear reformulation of the original

constraint (3.7) and is correct even when operation v is not assigned to priority-slot i, as

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 77

3.3 Mathematical Models

then V t
iv = Vivc = 0.

Lirc
Ltir

=
Vivc
V t
iv

i ∈ T, r ∈ R, v ∈ Or, c ∈ C (3.7)

The following resource constraints (3.8) models inventory capacity limitations. As si-

multaneous charging and discharging of tanks is forbidden, these constraints are sufficient.

Ltr ≤ Ltir ≤ Ltr i ∈ T, r ∈ RS ∪RC (3.8a)

0 ≤ Lirc ≤ Ltr i ∈ T, r ∈ RS ∪RC , c ∈ C (3.8b)

Ltr ≤ Lt0r +
∑
i∈T

∑
v∈Ir

V t
iv −

∑
i∈T

∑
v∈Or

V t
iv ≤ Ltr r ∈ RS ∪RC (3.8c)

0 ≤ L0rc +
∑
i∈T

∑
v∈Ir

Vivc −
∑
i∈T

∑
v∈Or

Vivc ≤ Ltr r ∈ RS ∪RC , c ∈ C (3.8d)

The following demand constraints (3.9) defines lower and upper limits, Dr and Dr, on

the total volume of products transferred out of each charging tank r during the scheduling

horizon.

Dr ≤
∑
i∈T

∑
v∈Or

V t
iv ≤ Dr r ∈ RC (3.9)

3.3.6 Strengthened Constraints

Figure 3.4 displays the refinery system for problems COSP2 and COSP3. Each labelled arc

corresponds to a transfer operation. Figure 3.5 displays the corresponding non-overlapping

graph. It contains 4 maximal cliques of 3 operations: {1, 2, 3}, {5, 12, 13}, {7, 12, 13}, and

{9, 12, 13}. In particular, maximal clique {5, 12, 13} is due to non-overlapping constraints

(ii) and (iii) which makes it non trivial to detect. Therefore, a generic maximal clique

finding algorithm allows generating non-trivial strengthened non-overlapping constraints,

which is the main objective of the non-overlapping graph representation.

The maximum cliques of GNO are used to derive the following assignment and scheduling

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 78

3.3 Mathematical Models

Figure 3.4: Refinery crude-oil scheduling system for problem COSP2 and COSP3.

Crude Vessels Storage Tanks Charging Tanks CDUs

1

2

4

5

6

7

11

12

3

8

10

9

13

14

constraints, which are identical to constraints (2.17) and (2.19).∑
v∈W ′

Ziv ≤ 1 i ∈ T,W ′ ∈ clique(GNO) (3.10)

∑
v∈W ′

Ei1v +
∑
i∈T

i1<i<i2

∑
v∈W ′

Div

≤
∑
v∈W ′

Si2v +H · (1−
∑
v∈W ′

Zi2v)

i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO) (3.11)

3.3.7 Symmetry-Breaking Constraint for MOS Models

As mentioned by Kallrath (2002), degeneracies and symmetries often cause scheduling prob-

lems to be difficult to solve. The author suggests that nonlinearities involved in refinery

scheduling problems may reduce these effects. In this work, we consider the concept of

static symmetry-breaking constraints as presented by Margot (2008) in order to break the

symmetries that can be detected in the MOS model. In particular, the following generic

constraint is used. It states that an operation v cannot be assigned to priority-slot i if

no other non-overlapping operation is assigned to priority-slot i − 1. Indeed, in this case

operation v can be assigned to slot i− 1 instead of slot i with no impact on the scheduling

solution.

Ziv ≤
∑
v′∈W

NOvv′=1

Z(i−1)v′ i ∈ T, i > 1, v ∈W (3.12)

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 79

3.4 Solution Method

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 3.5: Non-overlapping graph for crude-oil examples 2 and 3.

This constraint does not make any assumptions on the characteristics of the problem as op-

posed to symmetry-breaking constraint (2.29) which is specific to the case of batch schedul-

ing problems.

3.3.8 Full Models

The full mathematical formulations for each time representation presented in chapter 2 are

described in appendix C. The details for the SOS model are given in chapter 4.

3.4 Solution Method

The non-convex MINLP models described in the previous section can be solved using any

generic MINLP solver such as DICOPT (outer-approximation method) or BARON (global

solver using a spatial branch-and-bound search). The former code may converge to a poor

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 80

3.4 Solution Method

MILP

maximize
objective

s.t.
all constraints

except composition constraints

NLP

maximize
objective

s.t.
all constraints

Fix assignment variables Zi
v

Figure 3.6: Two step decomposition strategy.

sub-optimal solution, while the latter can be prohibitively expensive to use. Therefore, a

simple two-step procedure has been implemented (see Figure 3.6), leading to local optimal

solutions with an estimation of the optimality gap.

In the first step, a linear MILP relaxation of the model obtained after dropping the

nonlinear composition constraint (3.6c) is solved. It should be noted that material balances

are still enforced in this MILP relaxation through constraints (3.5c-3.5f). Furthermore,

the number of priority-slots n is selected at this stage using the additive or multiplicative

approach as described in section 2.6.

The solution returned by the MILP solver may violate the bilinear composition constraint

(3.6c). In this case, the binary variables Ziv are fixed, which means that the sequence of

operations is fixed, and the resulting nonlinear programming (NLP) model is solved using

the solution of the MILP as a starting point. This NLP model contains the same constraints

as in the MILP model plus the nonlinear constraint (3.6c). The solution obtained at this

stage might not be the optimum of the full model, but the optimality gap can be estimated

from the upper bound given by the MILP solution and the lower bound given by the NLP

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 81

3.5 Computational Results

solution.

The NLP model can be solved using either a global NLP solver (e.g. BARON) or a local

NLP solver (e.g. CONOPT). In the former case, the solver will return the global optimum

of the NLP if it is feasible. One could then add integer cuts to the MILP in order to close

the gap between the upper level and the lower level of the decomposition. This method will

return the global optimum of the MINLP. In the latter case, the NLP being non-convex,

several different locally optimal solution may be obtained depending on the starting point.

Thus, there is no proof that the iterative procedure will return the global optimum or even

a feasible solution to the MINLP, unless the NLP returns an objective value identical to the

MILP’s in which case global optimality is proved. As shown in section 3.5, the solutions

obtained at the first iteration are near-optimal so the procedure has been stopped at this

stage.

3.5 Computational Results

All experiments have been performed on an Intel Xeon 1.86GHz processor with GAMS as

modeling language, CPLEX 11 as MILP solver and CONOPT 3 as local NLP solver. The

CPU limit for solving the MILP has been set to 1,000s. The scheduling systems and data

for the four crude-oil operations scheduling problems from Lee et al. (1996) are given in

appendix B.

3.5.1 Scheduling Results

Figures 3.7 and 3.8 depicts the solutions obtained for problems COSP2 and COSP3 using

the proposed approach. The solution for COSP2 is proved optimal while the solution for

COSP3 is found within a 2.3% optimality gap. As there is no incentive to keep inventory

in the charging tanks, their final level is in general close to zero. However, the crude-oil

that arrived late to the refinery is mostly kept in the storage tanks. This leads to higher

transfer activity at the beginning than at the end of the scheduling horizon.

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 82

3.5 Computational Results

Distillation 14
Distillation 13
Distillation 12
Distillation 11
Transfer 10
Transfer 9

Transfer 5

Unloading 1

Transfer 6

Operation

Transfer 4

Unloading 2
Unloading 3

Transfer 7
Transfer 8

Storage tank 1

Storage tank 2

Charging tank 2

Charging tank 3

876543210 9 10

Storage tank 3

Charging tank 1

Figure 3.7: Optimal schedule for COSP2 (profit: $10,117,000).

The main uncertain parameter in refinery crude-oil scheduling problems is the arrival time

of tankers. The expected date of arrival of these marine vessels is known long in advance,

but is also subject to many changes before it actually arrives at the refinery. Figure 3.9

shows the optimal schedule for COSP2 when vessels are scheduled to arrive one day later,

leading to a 3.4% profit decrease (from $10,117,00 to $9,775,000). It should be noted that

the sequence of distillation operations is different in this case, and that there is a higher

transfer activity in the very beginning of the scheduling horizon. However, this schedule

assumes that the late arrival of vessels is known at time t = 0.

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 83

3.5 Computational Results

876543210 9 10 11 12
Distillation 14
Distillation 13
Distillation 12
Distillation 11
Transfer 10
Transfer 9

Transfer 5

Unloading 1

Transfer 6

Operation

Transfer 4

Unloading 2
Unloading 3

Transfer 7
Transfer 8

Storage tank 1

Storage tank 2

Charging tank 2

Charging tank 3

Storage tank 3

Charging tank 1

Figure 3.8: Schedule obtained for COSP3 within 2.3% optimality gap (profit: $8,540,000).

Assuming that the exact arrival dates are known slightly later (t = ε � 1), the initial

decisions are fixed, so that operations 12, 14, 4, and 6 (which start at time t = 0 in the

original solution) are forced to start at time t = 0, but with variable durations. In this

case, the optimal solution is depicted in Figure 3.10. This solution is very similar to the

original optimal solution (Figure 3.7) as most transfers are simply delayed, although the

profit is reduced to $9,609,000. Only transfer operation 10 from t = 8 to t = 8.5 is no

longer used. The fact that the exact arrival of vessels is known only at t = ε leads to a 1.7%

profit decrease (from $9,775,000 to $9,609,000) compared to the case where it is known at

t = 0. This result shows that the initial decisions taken at t = 0 do not lead to a large

under-optimization in case of late vessel arrivals.

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 84

3.5 Computational Results

Distillation 14
Distillation 13
Distillation 12
Distillation 11
Transfer 10
Transfer 9

Transfer 5

Unloading 1

Transfer 6

Operation

Transfer 4

Unloading 2
Unloading 3

Transfer 7
Transfer 8

Storage tank 1

Storage tank 2

Charging tank 2

Charging tank 3

876543210 9 10

Storage tank 3

Charging tank 1

Figure 3.9: Optimal schedule for COSP2 with late vessel arrivals (profit: $9,775,000).

3.5.2 Performance of the MOS Model

The MILP relaxation of the MOS model is solved with the additive approach (see chapter 2)

using the second stop criterion (∆ ≤ 0). The initial number of priority-slots is set to n0 = 1.

Computational results are given in Table 3.2. All instances are solved within 20 seconds

with a few priority-slots. The NLP is modeled using the optimal number of priority-slots

determined at the MILP stage and is always solved in less than one second. The most

difficult instance, that is COSP2, is the one requiring the most priority-slots although it is

not the largest in size. The optimality gap is always small (less than 3%) even though the

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 85

3.5 Computational Results

Distillation 14
Distillation 13
Distillation 12
Distillation 11
Transfer 10
Transfer 9

Transfer 5

Unloading 1

Transfer 6

Operation

Transfer 4

Unloading 2
Unloading 3

Transfer 7
Transfer 8

Storage tank 1

Storage tank 2

Charging tank 2

Charging tank 3

876543210 9 10

Storage tank 3

Charging tank 1

Figure 3.10: Optimal schedule for COSP2 with late vessel arrivals and fixed initial decisions
(profit: $9,609,000).

solution strategy does not necessarily converge to a global optimum. This is explained by

the fact that the composition constraints are always satisfied, even if dropped, under specific

conditions. For each transfer v assigned to priority-slot i, the composition constraint (3.6c)

is satisfied if either of the following conditions holds true.

a) the origin tank contains only one crude before the transfer

b) the origin tank is fully discharged during the transfer

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 86

3.5 Computational Results

Table 3.2: MOS computational results for crude-oil scheduling problems.

Number Cumulative
Pb n LP MILP of nodes CPU CPU NLP Gap

COSP1
1-4 infeas 3.08s 3.08s
5 80.000 79.750 48 1.16s 4.24s 79.750 0%
6 80.000 no solution 0 1.56s 5.80s

COSP2

1-3 infeas 2.22s 2.22s
4 103.000 90.000 0 1.05s 3.27s
5 103.000 96.170 122 2.30s 5.57s
6 103.000 101.175 225 3.64s 9.21s 101.175 0%
7 103.000 no solution 335 8.61s 17.82s

COSP3

1-2 infeas 1.43s 1.43s
3 84.905 82.500 0 0.85s 2.28s
4 100.000 84.500 16 1.26s 3.54s
5 100.000 87.400 63 1.74s 5.28s 85.400 2.3%
6 100.000 no solution 300 3.57s 8.85s

COSP4
1-3 infeas 2.59s 2.59s
4 132.585 132.548 21 1.58s 4.17s 132.548 0%
5 132.585 no solution 0 1.72s 5.89s

These conditions are always met in the optimal solutions of all problems except COSP3.

They do not always hold true in the optimal solution of COSP3, which explains the positive

gap obtained.

3.5.3 Performance of the MOS-SST Model

The MILP relaxation of the MOS-SST model is solved with the additive approach using

the second stop criterion (∆ ≤ 0). The initial number of priority-slots is set to n0 = 1.

Computational results are given in Table 3.3. All instances are solved within 400 seconds

with slightly more priority-slots than for the MOS model. The most difficult instance is still

COSP2. It is interesting to note that the solution obtained for this instance is not actually

globally optimal as its objective value (101.174) is slightly lower than 101.175 (see Table 3.2).

The actual global optimal solution can be obtained with at least 10 priority-slots. It clearly

shows that the second stopping criterion does not guarantee global optimality, although it

is very efficient in practice.

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 87

3.5 Computational Results

Table 3.3: MOS-SST computational results for crude-oil scheduling problems.

Number Cumulative
Pb n LP MILP of nodes CPU CPU

COSP1

1-4 infeas 2.97s 2.97s
5 80.000 79.722 144 1.25s 4.22s
6 80.000 79.750 288 1.94s 6.16s
7 80.000 no solution 968 6.30s 12.46s

COSP2

1-4 infeas 3.30s 3.30s
5 103.000 90.000 327 4.59s 7.89s
6 103.000 97.726 2316 33.51s 41.40s
7 103.000 97.751 4672 70.26s 111.66s
8 103.000 101.174 4545 88.45s 200.11s
9 103.000 no solution 7007 185.29s 385.40s

COSP3

1-3 infeas 2.52s 2.52s
4 100.000 82.500 48 1.43s 3.95s
5 100.000 84.500 333 3.42s 7.37s
6 100.000 87.000 931 14.83s 22.20s
7 100.000 87.400 2101 38.02s 60.22s
8 100.000 no solution 3900 99.03s 159.25s

COSP4
1-5 infeas 24.84s 24.84s
6 132.585 132.548 1293 28.62s 53.46s
7 132.585 no solution 500 20.74s 74.20s

3.5.4 Performance of the MOS-FST Model

The MILP relaxation of the MOS-FST model is solved with the multiplicative approach

using the second stop criterion (∆ ≤ 0). The initial number of priority-slots is set to n0 = 4.

Computational results are given in Table 3.4. Only COSP1 is solved to global optimality

although feasible solutions are obtained quickly. Within the 1,000 second time limit, near-

optimal solutions are obtained for instance COSP3 and COSP4, but the solution obtained

for COSP3 shows a 4.8% gap with the best known solution of the MILP relaxation. The

MOS-FST discrete-time representation is not efficient at solving the crude-oil scheduling

problem. Indeed, as variable processing times are used, constraint (2.24) does not help

strengthening the model. Instead, if one wishes to use a discrete-time approach, it would

be preferable to consider the work of Lee et al. (1996). Indeed, in their formulation, each

operation that is executed over several consecutive time intervals is actually split into several

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 88

3.5 Computational Results

Table 3.4: MOS-FST computational results for crude-oil scheduling problems.

Number Cumulative
Pb n LP MILP of nodes CPU CPU

COSP1
4 80.000 infeas 0 0.87s 0.87s
8 80.000 79.750 74 1.56s 1.56s
16 80.000 no solution 100 15.17s 17.60s

COSP2
4 98.000 infeas 0 0.90s 0.90s
8 103.000 90.000 2114 28.76s 29.66s
16 103.000 96.250 11852 +1,000s +1,029.66s

COSP3

4 84.929 82.500 0 0.93s 0.93s
8 99.120 84.250 22 2.55s 3.48s
16 100.000 87.156 563 29.97s 33.45s
32 100.000 no solution 300 +1,000s +1,033.45s

COSP4
4 132.585 infeas 0 1.20s 1.20s
8 132.585 132.266 574 12.82s 14.02s
16 132.585 132.362 2769 376.84s 390.86s
32 132.585 no solution 0 +1,000s +1,390.86s

smaller operations, one for each time interval.

3.5.5 Performance of the MILP-NLP Decomposition Strategy

Table 3.5 shows the performance of different solution methods on all four problems using

the MOS time representation. MINLP solvers are given as a starting point the solution

of the LP obtained by removing the nonlinear constraints of the model and relaxing the

integrality constraints on binary variables. Furthermore, the MINLPs are solved with the

direct approach using the optimal number of priority-slots. The results show that, while

requiring lower CPU times than other solvers, the solution obtained with the two-step

procedure is optimal for all problems but COSP3 for which it is very close to the best

known solution. The best alternative is to use DICOPT as the iterative outer-approximation

algorithm behaves similarly to the MILP-NLP decomposition. Indeed, during the first

iteration, DICOPT solves an MILP and then solves the NLP obtained after fixing the

binary variables. The main difference comes from the fact that in the first MILP, nonlinear

constraints are linearized at the solution of the initial NLP relaxation instead of being

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 89

3.6 Conclusion

Table 3.5: Performance of different MINLP algorithms for crude-oil scheduling problems.

Solution method Problem Slots Solution CPU time Optimality gap

MILP-NLP decompositiona

COSP1 1-6 79.750 6s 0%
COSP2 1-7 101.175 18s 0%
COSP3 1-6 85.400 9s 2.3%
COSP4 1-5 132.548 6s 0%

DICOPTb

COSP1 5 79.350 11s -
COSP2 6 101.175 9s -
COSP3 5 85.449 8s -
COSP4 4 132.548 8s -

SBBb

COSP1 5 79.350 77s -
COSP2 6 101.175 891s -
COSP3 5 85.449 778s -
COSP4 4 132.548 154s -

AlphaECPb

COSP1 5 79.750 76s -
COSP2 6 101.175 25s -
COSP3 5 82.904 234s -
COSP4 4 132.548 171s -

BARONb

COSP1 5 79.750 69s 0%
COSP2 6 100.896 +1,000s 2.0%
COSP3 5 60.000 +1,000s 40.0%
COSP4 4 132.548 645s 0%

a MILP solved using the additive procedure and NLP solves with optimal number of priority-slots
b MINLP solved with optimal number of priority-slots

dropped. This explains why DICOPT does not find the optimal solution of COSP1. All

the MILPs solved in DICOPT, including the first one, are not relaxations of the non-convex

MINLP.

3.6 Conclusion

In this chapter, the crude-oil scheduling problem has been stated and the corresponding

MOS, MOS-SST, and MOS-FST mathematical formulations have been derived. The uni-

fied modeling approach developed in chapter 2 proved to be very effective as most of the

constraints used in all models are identical. These models have been strengthened using

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 90

3.6 Conclusion

the non-overlapping graph which displays non-trivial cliques. These cliques can be used

to generate tightening constraints that might have not been determined without using this

systematic approach.

As the models contain nonlinear composition constraints, a two-step MILP-NLP decom-

position procedure has been developed in order to solve the MINLP models. The number

of priority-slots and the sequence of operations is determined at the first MILP stage and

a feasible solution is obtained by solving the second-stage NLP. The approach has the ad-

vantage of providing optimal or near-optimal solutions with an estimate of the optimality

gap. It performs better than other solvers both in terms of computational performance and

optimality of the solution. DICOPT is the best alternative for solving the MINLP model

directly.

Chapter 3. Short-Term Scheduling of Crude-Oil Operations 91

Chapter 4

Single-Operation Sequencing Model for

Crude-Oil Operations Scheduling

4.1 Introduction

In this chapter, we develop the SOS model for the crude-oil operations scheduling problems

COSP1, . . . ,COSP4. It is based on the same sets, parameters and variables as the MOS,

MOS-SST, and MOS-FST models derived in chapter 3. The objective function (see sec-

tion 3.3.4) and general constraints (see section 3.3.5) are identical. We first derive strength-

ened assignment and non-overlapping constraints by selecting both cliques and bicliques

from the non-overlapping graph. Next, we introduce symmetry-breaking constraints for the

SOS model that are based on a sequencing rule expressed using a regular language and its

corresponding deterministic finite automaton. Various computational results demonstrat-

ing the impact of such symmetry-breaking techniques and of the number of priority-slots

are presented. Finally, a comparison of all mathematical models for the crude-oil schedul-

ing operations problem is provided. The full SOS mathematical model for the crude-oil

operations scheduling problem is given in appendix C.

4.2 Strengthened Constraints

As mentioned in chapter 2, both cliques and bicliques of GNO can be used to generate non-

overlapping constraints. Table 4.1 displays all maximal cliques and all maximal bicliques

that are not derived from cliques for problems COSP2 and COSP3 (see Fig. 3.5). They

are 15 maximal cliques and 15 maximal bicliques which corresponds to 15 + 2 · 15 = 45

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 92

4.2 Strengthened Constraints

Table 4.1: Maximal cliques and bicliques for COSP2 and COSP3.

Nb of vertices Maximal cliques

2

{1, 4}, {1, 5}, {2, 6},
{2, 7}, {2, 8}, {3, 9},
{3, 10}, {4, 11},
{6, 11}, {8, 14},
{10, 14}, {11, 12},
{13, 14}

3
{1, 2, 3}, {5, 12, 13},
{7, 12, 13}, {9, 12, 13}

Nb of vertices Maximal bicliques

3
({4}; {1, 4, 11}), ({6}; {2, 6, 11}),
({8}; {2, 8, 14}), ({10}; {3, 10, 14})

4
({5}; {1, 5, 12, 13}), ({7}; {2, 7, 12, 13}),
({9}; {3, 9, 12, 13}), ({11}; {4, 6, 11, 12}),
({14}; {8, 10, 13, 14})

5
({1}; {1, 2, 3, 4, 5}), ({3}; {1, 2, 3, 9, 10}),
({5, 7, 9, 12, 13}; {12, 13})

6
({2}; {1, 2, 3, 6, 7, 8}),
({12}; {5, 7, 9, 11, 12, 13}),
({13}; {5, 7, 9, 12, 13, 14})

constraints (4.1) and (4.2) which are identical to the constraints (2.19) and (2.26) developed

in chapter 2.∑
v∈W ′

Ei1v +
∑
i∈T

i1<i<i2

∑
v∈W ′

Div

≤
∑
v∈W ′

Si2v +H · (1−
∑
v∈W ′

Zi2v)

i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO) (4.1)

∑
v∈W1

Ei1v ≤
∑
v∈W2

Si2v +H · (1−
∑
v∈W2

Zi2v)
i1, i2 ∈ T, i1 < i2,

(W1;W2) ∈ biclique(GNO)
(4.2a)

∑
v∈W2

Ei1v ≤
∑
v∈W1

Si2v +H · (1−
∑
v∈W1

Zi2v)
i1, i2 ∈ T, i1 < i2,

(W1;W2) ∈ biclique(GNO)
(4.2b)

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 93

4.2 Strengthened Constraints

Table 4.2: Cliques and bicliques selections a, b, and c for COSP2 and COSP3.

Cst No. Selection a Selection b Selection c

(i) 1 {1, 2, 3} {1, 2, 3} implied by 2, 3, 4

(ii)

2 {1, 4}, {1, 5} ({1}; {4, 5}) ({1}; {1, 2, 3, 4, 5})
3 {2, 6}, {2, 7}, {2, 8} ({2}; {6, 7, 8}) ({2}; {1, 2, 3, 6, 7, 8})
4 {3, 9}, {3, 10} ({3}; {9, 10}) ({3}; {1, 2, 3, 9, 10})
5 {4, 11}, {6, 11} ({4, 6}; {11}) ({4, 6, 11, 12}; {11})
6 {5, 12, 13}, {7, 12, 13}, {9, 12, 13} ({5, 7, 9}; {12, 13}) ({5, 7, 9, 12, 13}; {12, 13})
7 {8, 14}, {10, 14} ({8, 10}; {14}) ({8, 10, 13, 14}; {14})

(iii) 8 implied by 6 {12, 13} implied by 6

(iv)
9 {11, 12} {11, 12} implied by 5
10 {13, 14} {13, 14} implied by 7

There is a clear trade-off between the tightness of the LP relaxation and the size of the

model. Therefore, it is important to carefully select the cliques and bicliques that are used to

enforce non-overlapping constraints. We introduce 3 different selection heuristics. The first

selection strategy, denoted by a, consists of selecting all maximal cliques only, leading to 15

constraints (4.1). The second selection strategy, denoted by b, consists of deriving cliques

and bicliques directly from the non-overlapping constraint definitions. The third selection

strategy, denoted by c, consists of improving selection b by extending it to maximal cliques

and bicliques and removing unnecessary elements from the selection. Table 4.2 displays

selections a, b and c. The first column indicates the descriptive constraint (as introduced

in section 3.2.1) that generates the corresponding cliques or bicliques. For example, non-

overlapping constraint (ii) for the first storage tank is intuitively represented by the clique

({1}; {4, 5}) in selection b but it is extended to the maximal biclique ({1}; {1, 2, 3, 4, 5})

in selection c. Also, non-overlapping constraint (i) is represented by the maximal clique

{1, 2, 3} in selection b, but is removed in selection c as it is implied by bicliques 2, 3, and

4. Therefore, selection b leads to 16 non-overlapping constraints (4 of type (4.1) and 12 of

type (4.2)) while selection c leads to 12 non-overlapping constraints (4.2) only.

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 94

4.3 Symmetry-Breaking Constraints

4.3 Symmetry-Breaking Constraints

In section 3.3.7, a generic symmetry-breaking constraint was proposed in order to reduce

the search space of the MOS model. Here, a problem-specific approach is developed in order

to break the symmetries that arise in the SOS model. The methodology is based on the

discrete representation of an SOS solution as a sequence of operations.

4.3.1 Symmetric Sequences of Operations

It is possible to determine different sequences of operations leading to the same schedule.

For the optimal solution of COSP1 (Figure 3.3), one can show that there are 120 symmetric

sequences of operations, 4 of which are displayed in Figure 4.1. These sequences are obtained

from the optimal one by moving operations in the sequence in such a way that the same

precedence constraints are active. As there are many different optimal discrete solutions, the

branch & bound algorithm will explore many redundant nodes of the search tree. Therefore,

an efficient symmetry-breaking tool is needed to avoid searching irrelevant solutions.

4.3.2 A Sequencing Rule Based on a Regular Language

A sequencing rule is defined in order to select the sequences of operations to be explored.

This rule is expressed as a regular language, which can be recognized by a deterministic finite

automaton (DFA). A regular language is a set of words (sequences of letters) defined from

an alphabet (i.e. the set of operations), the empty word ε, and the operations concatenation

‘·‘ (symbol usually omitted), union ‘+‘, and Kleene star ‘*‘. Given two languages L1 and

L2, these operations are defined by the following formulas.

L1 · L2 = {w = w1 · w2 s.t. w1 ∈ L1 and w2 ∈ L2}

L1 + L2 = {w s.t. w ∈ L1 or w ∈ L2}

L1
∗ = {ε} ∪ L1 ∪ L1 · L1 ∪ L1 · L1 · L1 ∪ . . .

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 95

4.3 Symmetry-Breaking Constraints

(a) Sequence 76-83513-762.

2

3

4

5

6

7

8
9

10
3
2

6
5

1

4

7
8

1

876543210

(b) Sequence 67-83513-762.

1

3

4

5

6

7

8
9

10
3
2

6
5

1

4

7
8

2

876543210

(c) Sequence 76-83135-762.

2

3

4

7

5

6

8
9

10
3
2

6
5

1

4

7
8

1

876543210

(d) Sequence 76-83513-627.

2

3

4

5

6

7

10
8

9
3
2

6
5

1

4

7
8

1

876543210

Figure 4.1: Symmetric sequences of operations for COSP1.

The reader may refer to Hopcroft and Ullman (1979) for a complete definition of regular

languages.

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 96

4.3 Symmetry-Breaking Constraints

4.3.3 Rule Derivation for COSP1

The rule presented in this section has been designed in order to remove as many symmetric

sequences of operations as possible, regardless of its complexity. Notice that there is a

trade-off between the symmetry-breaking capabilities of the sequencing rule (number of

symmetric solutions it eliminates) and its complexity.

In COSP1, two distillation states exist as either distillation 7 or distillation 8 is being ex-

ecuted at any time. Thus, the sequence of operations can be decomposed into subsequences,

each corresponding to one distillation state, as shown in Figure 4.1.

Let L7 (resp. L8) be the regular language describing the possible sequences of operations

during distillation state 7 (resp. distillation state 8). Note that only transfer operations 1,

2, 4 and 6 are allowed to be executed during this state due to non-overlapping constraints.

If no unloading operation is performed, operations 4 and 6 need to be executed at most

once. Thus, in that case, we choose to define the regular language L7 so that a subsequence

corresponding to the distillation state 7 starts with distillation 7 and may follow by at most

one occurrence of transfer operations 4 and 6, in this order.

L7 = {7, 74, 76, 746} = 7(ε+ 4)(ε+ 6)

If unloading operation 1 is allowed to be executed during distillation state 7, then it can

be executed at most once. Also, it might be necessary to perform transfer operation 4 before

and after this unloading. Thus, in that case, we define the regular language L7 as follows.

L7 = 7(ε+ 4)(ε+ 6)(ε+ 1 + 14)

If both unloading operations 1 and 2 are allowed to be executed during distillation state

7, then it might also be necessary to perform transfer operation 6 before and after this

unloading. Also, unloading 1 has to be sequenced before operation 2 due to the prece-

dence constraint between unloading operations (crude-oil vessels have to unload in order of

arrival). Thus, in this general case, we choose to define the regular language L7 as follows.

L7 = 7(ε+ 4)(ε+ 6)(ε+ 1 + 14)(ε+ 2 + 26)

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 97

4.3 Symmetry-Breaking Constraints

Table 4.3: List of sequences belonging to regular language L7.

Length Sequences belonging to L7

1 7

2 71, 72, 74, 76

3 712, 714, 726, 741, 742, 746, 761, 762

4 7126, 7142, 7412, 7414, 7426, 7461, 7462, 7612, 7614, 7626

5 71426, 74126, 74142, 74612, 74614, 74626, 76126, 76142

6 741426, 746126, 746142, 761426

7 7461426

4

6

1

7
2

2

62

1

6
4

2

1

2

Figure 4.2: Automaton DFA7 recognizing regular language L7.

The set of all sequences of operations belonging to the regular language L7 is displayed

in Table 4.3. It can be represented by the DFA depicted in Figure 4.2, noted DFA7. This

DFA reads a sequence starting with operation 7, and then reads the following operation in

the sequence by moving though the corresponding labeled arc. A sequence is accepted if it

can be entirely read by DFA7.

Similarly, the regular language L8, represented by DFA8, is defined as follows.

L8 = 8(ε+ 3)(ε+ 5)(ε+ 1 + 13)(ε+ 2 + 25)

Finally, the regular language L describing an efficient sequencing rule for COSP1 can be

defined using language L7 and L8. Figure 4.3 shows a scheme of the DFA recognizing the

regular language L.

L = (ε+ L7)(L8 · L7)
∗(ε+ L8)

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 98

4.3 Symmetry-Breaking Constraints

7

8

DFA7

DFA8

7 8

Figure 4.3: Automaton recognizing the regular language L.

It should be noted that this symmetry-breaking rule captures all possible schedules and

removes many redundant sequences of operations. In Figure 4.1, schedule (a) is accepted

by the sequencing rule while the other schedules are rejected, and thus not explored during

the search. However, there are some symmetric sequences that remain accepted such as

78132 and 71832. Indeed, in these two sequences belonging to the language L, exchanging

operations 1 and 8 does not change the active precedence constraints.

4.3.4 Regular Constraint

Once the regular language L and its corresponding DFA have been defined, it is possible

to include the sequencing rule using the linear system of equations proposed by Côté et al.

(2007). The equations represent a unit network flow through a directed layered graph

initially introduced by Pesant (2004) for constraint programming.

Let M = (Q,Σ, δ, q1, F), where Q is the set of states (i.e. nodes), Σ is the alphabet,

δ is the transition function, q1 is the initial state, and F is the set of final states, be a

DFA recognizing the regular language L. The idea is to unfold the automaton states on

n + 1 layers (where n is the length of the sequence), the first layer corresponding to the

initial state, the last layer corresponding to the possible final states, and the transition

between layers corresponding to the automaton transitions defined by δ. Then, a sequence

is recognized by the DFA M if and only if there is a flow of unit 1 from the initial state in

the first layer to a final state in the last layer such that the transition taken between any

two adjacent layers i and i+ 1 corresponds to the ith letter of the sequence.

The regular language membership constraint makes use of flow binary variables Sivq,

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 99

4.4 Computational Results

where q ∈ Q. Sivq = 1 if the automaton is in state q when operation v is assigned to

priority-slot i, Sivq = 0 otherwise. The network flow problem is defined with the following

constraints. ∑
q

Sivq = Ziv i ∈ T, v ∈W linking constraint (4.3a)

∑
v

S1vq1 = 1 initial unit flow (4.3b)

∑
v,q′,q=δ(q′,v)

S(i−1)vq′ −
∑
v

Sivq = 0 i ∈ T, i 6= 1, q ∈ Q flow conservation (4.3c)

∑
v,q,δ(q,v)∈F

Snvq = 1 final unit flow (4.3d)

Constraint (4.3a) links the Ziv variable to the Sivq variables (q ∈ Q) ensuring that the

assignment of operation v to priority-slot i is equivalent to a unit flow traversing one of

the corresponding arcs in the network. Constraint (4.3b) sets the flow leaving the network

source node (1, q1) to 1. Constraint (4.3c) ensures that the flow entering network node (i, q)

is equal to the flow leaving it. Constraint (4.3d) sets the flow leaving the network nodes

(n, q) through transitions δ(q, v) ∈ F to 1.

Although O(|T | · |W | · |Q|) new variables and O(|T | · |W |+ |T | · |Q|) new constraints are

added to the model, the search space is substantially reduced as only sequences belonging

to the regular language L are explored. It should be noted that it is not necessary to

declare the variable Sivq as binary. Indeed, if all variables Ziv are fixed, then the sequence

of operations is fixed to v1...vi...vn. As the automaton M is deterministic, there is a unique

sequence of states q1...qi...qnqn+1 (where qn+1 ∈ F) corresponding to the states visited upon

processing the sequence v1...vi...vn. Therefore, the network flow problem stated above has

a unique solution defined by Sivq = 1 if v = vi and q = qi, Sivq = 0 otherwise.

4.4 Computational Results

In this section, we present experimental results obtained on an Intel Xeon 1.86GHz processor

with GAMS as modeling language, CPLEX 11 as MILP solver and CONOPT 3 as local

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 100

4.4 Computational Results

Table 4.4: SOS computational results for crude-oil operations scheduling problems.

Pb n LP MILP Nb of nodes CPU

COSP1a 13 80.000 79.750 18 5.88s
COSP1b 13 80.000 79.750 19 4.45s
COSP1c 13 80.000 79.750 21 4.92s

COSP2a 21 103.000 101.175 36 120.42s
COSP2b 21 103.000 101.175 19 55.57s
COSP2c 21 103.000 101.175 25 60.50s

COSP3a 21 100.000 87.400 28 191.47s
COSP3b 21 100.000 87.400 33 97.70s
COSP3c 21 100.000 87.400 31 64.46s

COSP4a 26 132.585 132.548 16 606.86s
COSP4b 26 132.585 132.548 37 574.95s
COSP4c 26 132.585 132.548 32 308.43s

NLP solver. The DFAs for problems COSP2, COSP3, and COSP4 have been defined in a

similar way as for COSP1, adapted to each refinery configuration.

4.4.1 Performance of the SOS Model

The MILP relaxation (defined in section 3.5.5) of the SOS model is solved using the direct

approach (see section 2.6). The number of priority-slots is set to its maximum value as deter-

mined in section 4.4.2. Computational results are given in Table 4.4 for each clique/biclique

selection heuristic. The behavior of this time representation is quite different than for the

MOS and MOS-SST representations as COSP4 is now the most difficult while COSP2 is

quite easy to solve. Indeed, COSP4 is solved with the largest number of priority-slots as

it is the largest instance in terms of operations and resources, which makes it the hardest

instance. The results obtained for selection a shows that using only maximal cliques is not

the most efficient in the SOS model. It is rather preferable to combine it with bicliques as

in selections b and c. Additionally, it is clear that the selection improvements in selection c

lead to a significant decrease in CPU time for COSP3 and COSP4. This is due to the fact

that non-overlapping constraints are strengthened and the model size is reduced.

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 101

4.4 Computational Results

4.4.2 Effect of the Number of Priority-Slots

It is critical to postulate an appropriate number of priority-slots to be used in the model.

Indeed, a small number of priority-slots may lead to infeasibility, while a large number of

priority-slots may result in an unsolvable model. The strategy used to determine the number

of priority-slots is dependent on the problem. We introduce the concepts of minimum

sequence and minimum schedule.

Definition 1 (minimum sequence). We denote NOv the set of operations that must

not overlap with operation v ∈ W . A minimum sequence s = s1s2 . . . sn is a sequence of

operations that satisfies the following property:

∀i, j ∈ T, i < j, ∀v ∈W, (si = sj = v)⇒ (∃k ∈ T, i < k < j, ∃w ∈ NOv \ {v}, sk = w)

Definition 2 (minimum schedule). A minimum schedule is a feasible schedule that can

be generated by a minimum sequence s.

In other words, a minimum schedule is a schedule such that between any two executions

of an operation v, another non-overlapping operation w ∈ NOv \ {v} is performed between

these two executions. By merging any two executions of an operation v which do not

respect the previous property, it can be shown that any optimal schedule for the crude-oil

scheduling problem can be transformed into a minimum schedule. Therefore, it is sufficient

to explore the space of minimum schedule. The symmetry-breaking rule presented earlier

only accepts minimum sequences.

In the case of the refinery problems introduced by Lee et al. (1996), it can be shown

that the number of operations in a minimum schedule is bounded as long as the number of

distillation operations is bounded. We use the terminology maximum number of operations

to represent the maximum length of a minimum sequence. For example, if COSP1 is

constrained to be solved with a maximum of 3 distillation operations, the maximum number

of operations is 13 as in the sequence 7461483525746. Any sequence of 14 operations is

not minimum, and thus will be rejected by the sequencing rule in combination with the

distillation cardinality constraints. Therefore, it is unnecessary to postulate a number of

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 102

4.4 Computational Results

priority-slots greater than 13, whether the symmetry-breaking rule is used or not. The

maximum number of operations is 21 for COSP2 and COSP3 (with at most 5 distillation

operations), 26 for COSP4 (with at most 7 distillation operations).

Figure 4.4 shows the evolution of the number of nodes explored, the CPU time, the MILP

and NLP solutions objective value ($100,000 unit), and the optimality gap with respect to

the number of priority-slots when solving COSP1 to COSP4. Xpress was used to solve

the MILP relaxation. The grey area represents the gap between MILP and NLP solutions.

For all problems, the computational expense is small when the number of priority-slots is

small, as the size of the problem and the feasible space are small. Also, the computational

expense is small when the number of priority-slots is large (close to its maximum), as the

solver must assign one operation to each priority-slot while satisfying both the cardinality

constraints and the symmetry-breaking rule, thus reducing the size of the feasible space. In

between, the number of nodes explored and the CPU time reach a maximum, although not

at the same number of priority-slots. It can also be observed that the objective value of

the optimal solutions of the MILP relaxation increases with the number of priority-slots as

more flexibility is given to the solver to find feasible solution. The optimality gap tends to

decrease.

4.4.3 Remark on the Optimality of the Solution

When no symmetry-breaking rule is used, the global optimal solution of the SOS model

with maximum number of priority-slots leads to the best possible schedule. Indeed, the

optimal sequence of operations can be extended with unused operations, for which the vol-

ume transferred is set to 0. Thus, it can be obtained even if the user postulated more

priority-slots than needed. However, in general, if a sequencing rule is used, the global

optimal solution might not be obtained with maximum number of priority-slots, but it will

be obtained with a number of slots identical to the number of operations actually performed

in this solution. For example, consider the sequence 71287 and assume it is optimal. In

this case, unloading operations 1 and 2 may each overlap with two consecutive distillations.

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 103

4.4 Computational Results

COSP1 COSP2

6 7 8 9 10 11 12 13
Number of Slots

0

50

100

150

200
 No. of Nodes

 CPU Time

Nu
m

be
r o

f N
od

es

0

1

2

3

4

CP
U

Ti
m

e
(s

)

9 10 11 12 13 14 15 16 17 18 19 20 21
Number of Slots

0

200

400

600

800

1000

1200

Nu
m

be
r o

f N
od

es

0

20

40

60

80

CP
U

Ti
m

e
(s

)

6 7 8 9 10 11 12 13
Number of Slots

78

78.5

79

79.5

80
 MILP

 NLP

 Gap

So
lu

tio
n

0

1

2

3

4

5

O
pt

im
al

ity
 G

ap
 (%

)

9 10 11 12 13 14 15 16 17 18 19 20 21
Number of Slots

94

96

98

100

102

So
lu

tio
n

0

1

2

3

4

5

O
pt

im
al

ity
 G

ap
 (%

)

COSP3 COSP4

9 10 11 12 13 14 15 16 17 18 19 20 21
Number of Slots

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f N
od

es

0

100

200

300

400

CP
U

Ti
m

e
(s

)

13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Slots

0

500

1000

1500

2000

2500

Nu
m

be
r o

f N
od

es

0

50

100

150

200

250

300

CP
U

Ti
m

e
(s

)

9 10 11 12 13 14 15 16 17 18 19 20 21
Number of Slots

75

80

85

90

95

100

So
lu

tio
n

0

1

2

3

4

5

O
pt

im
al

ity
 G

ap
 (%

)

13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Slots

131

132

So
lu

tio
n

0

1

2

3

4

5

O
pt

im
al

ity
 G

ap
 (%

)

Figure 4.4: Performance of the SOS model on crude-oil scheduling problems (MILP solver:
Xpress).

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 104

4.4 Computational Results

However, if the model is solved with 13 slots using the sequencing rule, unloading opera-

tions cannot overlap with two consecutive distillations. Indeed, if unloading 1 is sequenced

after a distillation 7 and before a distillation 8, transfer 4 will necessarily be sequenced

before and after unloading 1, within the current subsequence for distillation state 7 (i.e.

74614 or 7461426). Therefore, due to precedence constraints, unloading 1 is forced to be

executed entirely during distillation 7, and cannot overlap with next or previous distilla-

tions. Nonetheless, in our experiments, the best solutions were always obtained with the

maximum number of priority-slots which tends to justify this choice for the parameter n.

4.4.4 Effect of Symmetry-Breaking Constraints

In this section, we study the effect of the symmetry-breaking rule on solving the MILP

relaxation of the SOS model, which is the first step of the MILP-NLP decomposition pro-

cedure presented in section 3.5.5. Two models will be compared: the basic model that

includes all linear constraints of the MILP except the symmetry-breaking constraints, and

the extended model that includes all linear constraints as well as the symmetry-breaking

constraints.

Consider a single instance of COSP1 (Figure B.1, Table B.1) for which 13 priority-slots

are postulated. As shown in Table 4.5, although the extended model contains many more

new variables and relatively fewer additional constraints than the basic model, the number

of nodes explored is greatly reduced (from more than one million to 63), which leads to very

low CPU time (from more than 3600s to 2s). This is due to the removal of many symmetric

solutions from the search space by using the symmetry-breaking rule. It should be noted

that both models have the same LP relaxation. The optimal solution of the basic model is

found early during the search, but a large amount of time is used to prove its optimality.

Figure 4.5 shows how both models perform on COSP1 when varying the number of

priority-slots from 6 to 13. Clearly, the computational expense needed to solve the basic

model grows exponentially with the number of priority-slots. However, both the number of

nodes and the CPU time remain stable when solving the extended model.

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 105

4.5 Comparison of Crude-Oil Scheduling Models

Table 4.5: Size and performance of Basic and Extended models on COSP1 (13 slots).

Binary CPU
Variables Variables Constraints MILP Nodes Time

Basic 1,392 104 2,515 79.75 +180,000 +3,600s
Extended 2,801 104 2,952 79.75 21 5s

6 7 8 9 10 11 12 13
Number of time-slots

0.1

1

10

100

1000

10000

100000

1x106

1x107

N
um

be
r o

f n
od

es

0.1

1

10

100

1000

10000

C
PU

 T
im

e
(s

)

No. of nodes (Extended)
CPU time (Extended)
No. of nodes (Basic)
CPU time (Basic)

Figure 4.5: Performance of the Basic and Extended models on COSP1 (6 to 13 slots).

4.5 Comparison of Crude-Oil Scheduling Models

In this section, we compare the four time representations applied to the crude-oil operations

scheduling problem in chapter 3 and 4. Figure 4.6 shows how the objective value of the best

incumbent varies over time depending on the time representation used. Results for the SOS

model are presented for clique/biclique selection heuristic c. As for the batch scheduling

problems the MOS model proves to be superior. However, the MOS-SST model behaves

better than the MOS-FST model for these problems due to non-constant processing times.

The SOS model performs better than the MOS-SST model for instance COSP2, worse for

instance COSP4, and similarly for the other instances. From these results, it seems that

the MOS-SST model scales better with the size of the problem than the SOS model as it

requires fewer priority-slots. Finally, in Table 4.6 we present the model sizes of the MILPs

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 106

4.5 Comparison of Crude-Oil Scheduling Models

COSP1 COSP2

1 10 100
CPU Time (s)

79.6

79.65

79.7

79.75

79.8
O

bj
ec

tiv
e

Va
lu

e

MOS
MOS-SST
MOS-FST
SOS
Optimum

1 10 100 1000
CPU Time (s)

80

85

90

95

100

105

O
bj

ec
tiv

e
Va

lu
e

MOS
MOS-SST
MOS-FST
SOS
Optimum

COSP3 COSP4

1 10 100 1000
CPU Time (s)

80

82

84

86

88

O
bj

ec
tiv

e
Va

lu
e

MOS
MOS-SST
MOS-FST
SOS
Optimum

1 10 100 1000
CPU Time (s)

126

128

130

132

134

O
bj

ec
tiv

e
Va

lu
e

MOS
MOS-SST
MOS-FST
SOS
Optimum

Figure 4.6: Comparison of time representations for crude-oil scheduling problems.

corresponding to all time representations using the number of priority-slots leading to the

best solution. It is clear that the MOS time representation leads to the most compact

models which partly explains its efficiency. The MOS-FST time representation is much

larger due to the higher number of priority-slots required. Furthermore, it is interesting

to note that the SOS time representation requires many more continuous variables. These

variables are introduced to represent the network flow used to break symmetries as described

in section 4.3. Overall, it is also interesting to note that all four models provide the same

LP relaxation for each instance. Indeed, the objective function is purely economic and not

directly linked to scheduling issues, as opposed to the previous batch scheduling examples.

In the case of crude-oil operations scheduling, solving the LP relaxation corresponds to

generating a solution that only satisfies overall material balances, distillation demands and

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 107

4.6 Conclusion

Table 4.6: Size of MOS, MOS-SST, MOS-FST, and SOS models for crude-oil scheduling
problems.

Problem Model n Binary Vars Continuous Vars Constraints

COSP1

MOS 5 40 496 1,086
MOS-SST 6 48 601 1,403
MOS-FST 8 64 793 1,804

SOS 13 104 2,801 2,952

COSP2

MOS 6 84 1,303 2,620
MOS-SST 8 112 1,745 3,758
MOS-FST 16 224 3,473 8,051

SOS 21 294 13,084 7,835

COSP3

MOS 5 70 1,211 2,302
MOS-SST 7 98 1,702 3,431
MOS-FST 16 224 3,873 8,439

SOS 21 294 13,609 7,909

COSP4

MOS 4 76 1,489 2,806
MOS-SST 6 114 2,239 4,338
MOS-FST 16 304 5,953 12,269

SOS 26 494 28,445 14,351

specifications, and capacity limits at the end of the scheduling horizon.

4.6 Conclusion

In this chapter, the SOS time representation has been applied to crude-oil scheduling prob-

lems with the objective of maximizing gross margins. The corresponding mathematical

model is strengthened using the non-overlapping graph of the scheduling system. It is

possible to represent a solution schedule as a single sequence of operations that can be re-

stricted with respect to a problem-specific DFA-based symmetry-breaking sequencing rule.

Computational results show that using symmetry-breaking constraints is critical in order

to solve the SOS model in reasonable times. Similarly to the batch scheduling problems

studied in chapter 2, the MOS time representation is the most efficient approach. The SOS

model compares well with the MOS-SST model, while the discrete-time MOS-FST time

representation is clearly not suitable as the problem involves variable processing times.

Chapter 4. Single-Operation Sequencing Model for Crude-Oil Scheduling 108

Chapter 5

Tightening the Linear Relaxation of a

Crude-Oil Operations Scheduling MINLP

Using Constraint Programming

5.1 Introduction

In this chapter, we consider the optimization of the crude-oil operations scheduling problem

with the objective of minimizing the total logistics costs, as studied in Lee et al. (1996).

Logistics costs include sea waiting and unloading costs for marine vessels, storage costs

in tanks, and CDU switching costs. In earlier work, an operation specific event point

continuous-time formulation has been developed (see Jia et al., 2003) and applied to the

problems from Lee et al. (1996) (COSP1, . . . ,COSP4) using a linear approximation of stor-

age costs. However, no proof of optimality or estimate of optimality gap is given with this

approximation. The global optimization of this model was later addressed by Karuppiah

et al. (2008) using an outer-approximation algorithm where the MILP master problem is

solved by a Lagrangian decomposition. While rigorous, this method is still computationally

expensive.

In chapter 3, we presented a solution procedure for solving non-convex crude-oil schedul-

ing MINLPs that returns a suboptimal solution with an estimate of the gap with respect

to the optimal solution. The main contribution of this chapter is to reduce the optimality

gap by tightening the linear relaxation of the MINLP using McCormick convex envelopes

for bilinear products of continuous variables (see McCormick, 1976). This can be done by

using discretization techniques and applying McCormick convex and concave estimators on

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 109

5.2 MINLP Model

each discrete element of the continuous space (see Bergamini et al., 2008; Wicaksono and

Karimi, 2008; Pham et al., 2009). On the other hand, it has been shown how Constraint

Programming (CP) techniques can be effectively integrated with branch & bound proce-

dures for the global optimization of MINLPs (see Sahinidis, 2003). In this chapter, CP is

used during the search to tighten variable bounds and generate new McCormick cuts, thus

effectively tightening the mixed-integer linear program (MILP) relaxation. When applied to

the sequential MILP-NLP approach, this extension of the branch & cut algorithm leads to

reduced optimality gaps and allows finding better suboptimal solutions with lower logistics

cost. The concepts developed in this work can be applied to a generic solver as in the global

MINLP solver BARON, or can be used to effectively solve other optimization problems to

global optimality by exploiting their specific structure.

This chapter is organized as follows. First we present the MINLP mathematical formula-

tion with the nonlinear objective function. The model is then reformulated in order to get

a linear objective function and obtain a simple MILP relaxation using McCormick convex

envelopes. Next, this MILP relaxation is improved by adding tighter McCormick cuts for

some subproblems explored during the branch & cut procedure. Finally, we provide com-

putational results showing the impact of this approach in terms of relaxation tightness and

CPU time.

5.2 MINLP Model

In this section, the SOS time representation is used to derive the MINLP model for the

crude-oil scheduling problem. It differs from the SOS model presented in appendix C by a

different objective function and an additional constraint that defines the sea waiting time

for each crude vessel.

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 110

5.2 MINLP Model

The objective function minimizing total logistics costs can be expressed as follows:

min SWITCHINGCOST
∑
r∈RD

∑
i,v∈Ir

Ziv − 1


+ UNLOADINGCOST

∑
i∈T

∑
v∈WU

Div

+ SEAWAITINGCOST
∑
i∈T

∑
v∈WU

Wiv

+ FIXEDSTORAGECOST

+
∑
i∈T

∑
r1,r2∈R,v∈Or1∩Ir2

(SCr2 − SCr1)

(
H − Siv −

Div

2

)
· Viv

where:

• Wiv is the variable waiting time before unloading v if it is assigned to slot i, Wiv = 0

otherwise

• SWITCHINGCOST is the cost associated with each CDU switch

• UNLOADINGCOST is the unloading cost rate

• SEAWAITINGCOST is the sea waiting cost rate

• FIXEDSTORAGECOST is the total cost for storing the initial refinery inventory

during the horizon H if no crude transfer is performed

• SCr is the storage cost rate in resource r

The last term, which involves bilinearities making the model nonconvex, evaluates the vari-

ation of the total storage cost. For each transfer operation v between resources r1 (storage

cost rate SC1) and r2 (storage cost rate SC2) assigned to priority-slot i, the corresponding

variation of storage cost is calculated as follows:

∆COSTiv = (SCr2 − SCr1)

(∫ t=Siv+Div

t=Siv

Viv
Div
· (t− Siv)dt+

∫ t=H

t=Siv+Div

Vivdt

)
= (SCr2 − SCr1)

(
1

2
Div · Viv + (H − Siv −Div) · Viv

)
= (SCr2 − SCr1)

(
H − Siv −

Div

2

)
· Viv

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 111

5.2 MINLP Model

The variable Wiv is defined by the following constraint:

Wiv = Siv − Sv · Ziv i ∈ T, v ∈WU (5.1)

The full model is written as follows:

min SWITCHINGCOST
∑
r∈RD

∑
i,v∈Ir

Ziv − 1


+ UNLOADINGCOST

∑
i∈T

∑
v∈WU

Div

+ SEAWAITINGCOST
∑
i∈T

∑
v∈WU

Wiv

+ FIXEDSTORAGECOST

+
∑
i∈T

∑
r1,r2∈R,v∈Or1∩Ir2

(SCr2 − SCr1)

(
H − Siv −

Div

2

)
· Viv

s.t. Wiv = Siv − Sv · Ziv i ∈ T, v ∈WU

Constraints (3.1)-(3.6), (3.8)-(3.10), (4.1)-(4.3), and (2.27)

Table 5.1 displays the corresponding cost data for problems COSP1, . . . ,COSP4. The fixed

storage cost is calculated as
∑

r SCr · Lt0r. The additional parameters are given in ap-

pendix B. Note that constraint (3.6) contains the nonlinear composition constraints dis-

cussed in chapter 3. The model is intended to be solved with the MILP-NLP decomposition

procedure introduced in section 3.5.5. In order to obtain near-optimal solutions, it is critical

to derive a tight linear relaxation of the full MINLP. In particular, the objective function

needs to be reformulated as explained in the following section. The nonlinear constraints

(3.6c) are simply dropped in the MILP, as justified by the results obtain in chapter 3 in

terms of optimality gap. However, these constraints are included in the second stage NLP.

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 112

5.3 Reformulation and Linear Relaxation

Table 5.1: Cost data for crude-oil operations scheduling problems.

COSP1 COSP2 COSP3 COSP4

Switching cost 50 50 50 30
Unloading cost 8 8 10 7

Sea waiting cost 5 5 5 5
Storage cost in storage tanks 0.05 0.05 0.04 0.05

Storage cost in charging tanks 0.08 0.08 0.08 0.06
Fixed storage cost 104 158 134.4 273

5.3 Reformulation and Linear Relaxation

It is common to reformulate MINLP problems by introducing new variables to represent

nonlinear terms. The MINLP model can then be rewritten as follows:

min SWITCHINGCOST
∑
r∈RD

∑
i,v∈Ir

Ziv − 1


+ UNLOADINGCOST

∑
i∈T

∑
v ∈WUDiv

+ SEAWAITINGCOST
∑
i∈T

∑
v ∈WUWiv

+ FIXEDSTORAGECOST

+
∑

i,r1,r2,v∈Or1∩Ir2

(SCr2 − SCr1)Xiv

s.t. Xiv = AivViv i ∈ T,w ∈W

Aiv = H − Siv −
Div

2
i ∈ T,w ∈W

Wiv = Siv − Sv · Ziv i ∈ T, v ∈WU

Constraints (3.1)-(3.6), (3.8), (3.10), (4.1)-(4.3), and (2.27)

where variables Xiv are used to represent the bilinear terms Aiv · Viv. Using McCormick

convex envelopes introduced in McCormick (1976), this MINLP can be linearly relaxed by

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 113

5.4 McCormick Cuts

replacing the constraint Xiv = Aiv · Viv by:

Xiv ≥ ALivViv +AivV
L
iv −ALivV L

iv

Xiv ≥ AUivViv +AivV
U
iv −AUivV U

iv

Xiv ≤ ALivViv +AivV
U
iv −ALivV U

iv

Xiv ≤ AUivViv +AivV
L
iv −AUivV L

iv

The terms ALiv, A
U
iv, V

L
iv , and V U

iv represent the lower and upper bounds of variables Aiv and

Viv. It is important to note that the tightness of this linear relaxation strongly depends on

the bounds of the variables Aiv and Viv.

5.4 McCormick Cuts

Once the linear relaxation of the MINLP has been defined, the corresponding MILP can be

solved by a branch & cut algorithm as implemented in the commercial tool CPLEX. This

approach consists of successively solving many subproblems (nodes) of the original MILP

by solving its continuous relaxation and generating new subproblems when needed. User-

defined constraints can also be added to each subproblem during the search using callbacks

(see ILOG Inc., 2007).

A subproblem of the MILP is obtained by fixing some of the discrete variables Ziv to

either 0 or 1. Each of these subproblems correspond to a linear relaxation of the MINLP

subproblem obtained by fixing the same discrete variables to the same values. If the LP

relaxation of an MILP subproblem is integer feasible (i.e. all discrete variables take an

integer value, whether it is fixed or not), it might still not satisfy all MINLP constraints. In

such cases, it is possible to infer stronger McCormick constraints by contracting variables

bounds for the current discrete solution.

We denote p a discrete solution defined by the discrete values taken by the variables Ziv.

The discrete solution p corresponds to a unique sequence of operations (vp1 , . . . , v
p
n). We

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 114

5.4 McCormick Cuts

denote (CP)p the following CP model:

(CP)p


MINLP constraints

Ziv = 1 ∀(i, v), v = vpi

Ziv = 0 ∀(i, v), v 6= vpi

When a discrete solution p is obtained at a given node of the search tree, ILOG CP is used

to perform constraint propagation on the model (CP)p leading to variable bounds
(
ALiv
)p

,(
AUiv
)p

,
(
V L
iv

)p
, and

(
V U
iv

)p
that are possibly tighter than the bounds defined at the root

node (modeling stage). The McCormick constraints derived from these bounds are valid for

the discrete solution p but are not valid for the current node as some variables Ziv might

not have been fixed yet. The NLP subproblem corresponding to the discrete solution p is

in fact a restriction of the NLP subproblem corresponding to the current node. Therefore,

the following modified big-M McCormick constraints are defined to be added to the current

node subproblem:

Xiv ≥
(
ALiv
)p
Viv +Aiv

(
V L
iv

)p − (ALiv)p (V L
iv

)p −M1 · (n−
∑
i

Zivpi)

Xiv ≥
(
AUiv
)p
Viv +Aiv

(
V U
iv

)p − (AUiv)p (V U
iv

)p −M2 · (n−
∑
i

Zivpi)

Xiv ≤
(
ALiv
)p
Viv +Aiv

(
V U
iv

)p − (ALiv)p (V U
iv

)p
+M3 · (n−

∑
i

Zivpi)

Xiv ≤
(
AUiv
)p
Viv +Aiv

(
V L
iv

)p − (AUiv)p (V L
iv

)p
+M4 · (n−

∑
i

Zivpi)

where:

M1 =
(
ALiv
)p
V U
iv +AUiv

(
V L
iv

)p − (ALiv)p (V L
iv

)p
M2 =

(
AUiv
)p
V U
iv +AUiv

(
V U
iv

)p − (AUiv)p (V U
iv

)p
M3 = AUivV

U
iv −

{(
ALiv
)p
V L
iv +ALiv

(
V U
iv

)p − (ALiv)p (V U
iv

)p}
M4 = AUivV

U
iv −

{(
AUiv
)p
V L
iv +ALiv

(
V L
iv

)p − (AUiv)p (V L
iv

)p}
A lazy constraint callback (see ILOG Inc., 2007) has been implemented in order to gen-

erate these local McCormick cuts at each node where an integer feasible solution is found.

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 115

5.5 Computational Results

Solve LP relaxation

Generate new
nodes (branch)

Select next node

Prune node

Generate
McCormick cuts

Infeasible ?
Suboptimal ? YES

NO

Integer
feasible ? YES

NO

Cuts added ?
YES

NO: accept current
solution

Figure 5.1: Branch & cut algorithm with McCormick cuts.

If at least one McCormick cut is violated by the current discrete solution, it is added to the

node subproblem and the LP relaxation is resolved as depicted in Fig. 5.1. This cut gener-

ation procedure can also be executed at nodes where no integer feasible solution is found.

However, in order to reduce the computational expense corresponding to the generation of

variable bounds and cuts, only integer feasible nodes are processed.

5.5 Computational Results

The four problems introduced in Lee et al. (1996) have been solved using two algorithms.

The BasicRelaxation algorithm consists of initially adding McCormick constraints to the

MILP model without generating new cuts during the search. The ExtendedRelaxation al-

gorithm consists of adding McCormick constraints to the MILP and new cuts during the

search, as explained in the previous section. Both approaches have been developed in

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 116

5.5 Computational Results

C++ using CPLEX 11 (MILP) and ILOG CP 6.5 (CP). The NLPs have been solved using

CONOPT 3. Experiments have been run on an Intel Core 2 Duo 2.16GHz processor.

In both basic and extended cases, Table 5.2 gives the solution of the MILP and the NLP,

the corresponding optimality gap, and the total CPU time and the number of nodes explored

during the search. In the ExtendedRelaxation case, the computational time for generating

McCormick cuts using CP is also displayed in column ”CP”, it is already included in the

total CPU time. The computational time for solving NLPs is not reported as it is always

lower than 5s.

The results show that using the approach developed in this paper leads to important

reductions of the optimality gap compared to the BasicRelaxation algorithm (3.48% vs

14.83% average gap). Besides, a better feasible solution (3.3% cost reduction) has been

found for COSP2 using the two-step MILP-NLP procedure. This demonstrates how the

linear relaxation of the MINLP can been tightened by adding McCormick constraints to

the subproblems of the MILP leading to integer feasible solutions. More precisely, at the

node where the optimal MILP solution of COSP1 is found, two rounds of cuts are added.

The first round of cuts leads to an increase of the objective value from 199.1 to 212.4 (6.7%

increase), while the second round increases the objective value to 213.7 (0.6% increase).

This indicates that few rounds of cuts are necessary in this case and that the first round of

cuts is the most important in order to tighten the MILP relaxation.

The optimality gaps obtained in the BasicRelaxation case are much larger than the opti-

mality gaps obtained in chapters 3 and 4. This is due to the fact that the objective function

considered in this previous work is linear, thus leading to a tighter MILP relaxation.

In terms of computational expense, the required CPU time increases by 9.5% for the

ExtendedRelaxation procedure. This is due to the increase of the number of nodes explored

in some cases (COSP2 and COSP3), the increase of the model size for subproblems for which

McCormick constraints have been generated, and the time used for performing constraint

propagation on the CP model (4.7% of total CPU time). This last point can be improved

with a better CP model and a more efficient implementation.

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 117

5.6 Conclusion

Table 5.2: Results obtained with BasicRelaxation and ExtendedRelaxation algorithms.

BasicRelaxation

Pb
MILP

NLP Gap
Solution CPU Nodes

COSP1 199.1 9s 22 222.3 11.7%
COSP2 297.8 215s 55 362.9 21.9%
COSP3 254.6 224s 73 287.6 13.0%
COSP4 331.8 600s 20 374.0 12.7%

ExtendedRelaxation

Pb
MILP

NLP Gap
Solution CPU CP Nodes

COSP1 213.7 11s 1s 20 222.3 4.0%
COSP2 343.1 246s 19s 57 351.2 2.4%
COSP3 269.2 337s 16s 95 287.6 6.8%
COSP4 371.3 554s 18s 19 374.0 0.7%

Table 5.3 shows computational results obtained with different MINLP algorithms on

COSP1. Local optimizers DICOPT, SBB, Bonmin and AlphaECP have been tested as well

as the global solver BARON. DICOPT and SBB did not return the best known solution,

SBB failed to find any feasible solution. However, the corresponding CPU times are similar

to the BasicRelaxation and ExtendedRelaxation procedures. Bonmin-OA found the best-

known solution in reasonable time. AlphaECP and BARON also found the best known

solution, but the former requires one order of magnitude increase in CPU time and does

not give any optimality gap estimate, while the latter requires more than two orders of

magnitude increase in CPU time (optimization is stopped after 1 hour) but has the smallest

optimality gap.

5.6 Conclusion

In this chapter, a new approach for handling bilinear terms in MINLPs has been presented.

It involves using CP bound contraction techniques during the branch & cut search in order

to generate cuts based on McCormick convex envelopes for products of continuous variables.

The procedure has the advantage of using the complementary strengths for CPLEX and

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 118

5.6 Conclusion

Table 5.3: Results obtained with diferrent MINLP algorithms on COSP1 and COSP2.

COSP1 COSP2
Algorithm Solution CPU Gap Solution CPU Gap

BasicRelaxation 222.3 9s 11.7% 362.9 215s 21.9%
ExtendedRelaxation 222.3 11s 4.0% 351.2 246s 2.4%

DICOPT 233.5 14s - 351.2 1235s -
SBB Local infeas. 14s - Local infeas. 697s -

Bonmin-OA 222.3 27s - No solution +3,600s -
AlphaECP 222.3 260s - 358.0 +3,600s -
BARON 222.3 +3,600s 4.1% No solution +3,600s -

ILOG CP to obtain better solutions and reduce the optimality gap. Due to the tight

integration of both tools using the modeling technology ILOG CONCERT, the increase in

solution times remains small. Although the proposed approach has been applied to a crude-

oil scheduling SOS MINLP model, it can also be applied to other time representations, such

as MOS, with no major modifications.

This approach may be improved by extending the interaction between MILP and CP as

in the programming system SCIP (see Achterberg, 2004) or in the integrated solver SIMPL

(see Yunes et al., 2010), although a conceptual difference lies in the fact that CPLEX

is used as the main mixed-integer branch & cut algorithm. Also, MINLP cuts such as

McCormick cuts can be generated not only for integer feasible subproblems, but for other

subproblems, thus pruning additional nodes during the search. Finally, optimality-based

reduction techniques (see Sahinidis, 2003) can be used to add new constraints to the CP

model to remove feasible solutions that are not optimal. As a consequence variable bounds

may be further contracted leading to a tighter MILP relaxation.

Chapter 5. Tightening the Linear Relaxation of an MINLP using CP 119

Chapter 6

Integration of Refinery Planning and

Crude-Oil Scheduling using Lagrangian

Decomposition

6.1 Introduction

Although, integration of planning and scheduling has recently been addressed in the context

of multiproduct continuous and batch production plants (see Erdirik-Dogan and Grossmann,

2008; Maravelias and Sung, 2009), very little work has been done towards the integration of

planning and crude-oil scheduling problems in the context of refineries. This is due to the

fact that in this case, the planning model is not an aggregate scheduling model. Therefore,

the decomposition methods developed for batch and continuous plants are not directly

applicable to refineries. In particular, planning and scheduling correspond to two different

problems solely linked through CDU feedstocks. Therefore, instead of using a hierarchical

decomposition, a spatial Lagrangian decomposition is preferred. The reader may refer to

Fisher (1985) and Guignard (2003) for extensive reviews on Lagrangian relaxation and

decomposition techniques. These approches have been applied to many industrial problems

such as production planning and scheduling integration (see Li and Ierapetritou, 2010) or

multiperiod refinery planning (see Neiro and Pinto, 2006). Thus, it seems natural to apply

Lagrangian decomposition to solve the integrated refinery planning and crude-oil scheduling

problem.

The content of this chapter is organized as follows. First, the planning and scheduling

problems are stated as well as the full-space integrated problem. Next, a Lagrangian decom-

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 120

6.2 Problem Statement

position scheme based on the dualization of CDU feedstock linking constraints is presented

and a new hybrid method is introduced to solve the Lagrangian relaxation. A heuristic

algorithm is then developed to obtain good feasible solutions for the integrated full-space

problem. After some technical and practical remarks, we present numerical illustrations of

the proposed approach on a small case study and a larger refinery problem.

6.2 Problem Statement

6.2.1 Refinery Planning Problem

The refinery planning problem can be regarded as a flowsheet optimization problem with

multiple periods during which the refinery system is assumed to operate in steady-state. Due

to extensive stream mixing, the model for each period is based on a pooling problem that

is extended in order to include process models for each refining unit. The different periods

in the model are connected through many material inventories. In this work, we consider

a single-period planning model based on a pooling problem inspired from the literature

(see for instance Adhya et al., 1999). A basic refinery planning system is represented in

Figure 6.1. A set of crudes i ∈ I are to be mixed in different types of crude-oil blends

j ∈ J (e.g. low-sulfur and high-sulfur blends), each associated to a specific CDU operating

mode. For each mode and each crude, several distillation cuts are obtained with different

yields. These crude cuts are then blended into intermediate pools which are used to prepare

several final products. Therefore, the refinery planning system is composed of the following

elements:

• One input stream for each selected crude i ∈ I and each type of crude blend j ∈ J

• One CDU with fixed yields for each distillation cut

• Set of distillation cuts k ∈ K

• One pool for each type of crude blend j ∈ J and each cut k ∈ K

• One intermediate stream between each pool (j, k) ∈ J × K and each final product

l ∈ L

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 121

6.2 Problem Statement

CDU

∈ [−FR,FR] ·H

Pooljk Prodl

≤ Z lp

xijF

≤ Ci
xijk1 , qijkp1 xjkl2 , qjkp2 xlS , p

l

≤ Dl

Crude
Feed

Distillation
Cuts

Intermediate
Streams

Product
Sales

Figure 6.1: Basic refinery planning system.

• Set of final products l ∈ L

• One sales stream for each final product l ∈ L

• Set of qualities p ∈ P

The yield of crude i ∈ I in distillation cut k ∈ K when processed in crude blend j ∈ J is

assumed to be fixed and is denoted by αijk. In terms of stream qualities, it is assumed that

distillation cuts have fixed qualities while pool qualities are calculated by bilinear quality

balance constraints. A pure flow-based model is used to formulate the pooling problem as

shown below. CDU flowrate limitations are considered independent of the operating mode

and are enforced globally for all crudes processed during the period. The nomenclature

used is as follows:

• Variables:

– xijF is a variable representing the amount of crude i selected for CDU distillation in

blend j

– xijk1 is a variable representing the amount of cut k extracted from crude i in blend j

– xjkl2 is a variable representing the flow of material between pool (j, k) and product l

– qjkp2 is a variable representing the quality p of pool (j, k)

– xlS is a variable representing the amount of final product l sold

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 122

6.2 Problem Statement

• Parameters:

– qijkp1 is the (fixed) quality p of cut k extracted from crude i in blend j

– p is the market value of final products

– Ci is the amount of available crude i

– αijk is the yield of cut k extracted from crude i in blend j

– H is the planning horizon

– [FR,FR] is the bounds on CDU flowrate

– Dl is the maximum demand in product l

– Z lp is the maximum specification for property p of product l

The NLP model is expressed as follows:

max
∑
l∈L

plxlS (sales revenue maximization)

s.t. 0 ≤
∑
j∈J

xijF ≤ C
i i ∈ I (crude availability)

FR ·H ≤
∑
i∈I

∑
j∈J

xijF ≤ FR ·H (CDU flowrate limitations)

xijk1 = αijk · xijF (i, j, k) ∈ I × J ×K (CDU yield calculation)∑
i∈I

xijk1 =
∑
l∈L

xjkl2 (j, k) ∈ J ×K (pool mass balance)

∑
i∈I

qijkp1 xijk1 = qjkp2

∑
l∈L

xjkl2 (j, k, p) ∈ J ×K × P
(pool quality balance)

nonlinear∑
j∈J

∑
k∈K

xjkl2 = xlS l ∈ L (product mass balance)

xlS ≤ Dl l ∈ L (maximum product demand)

∑
j∈J

∑
k∈K

qjkp2 xjkl2 ≤ ZlpxlS (l, p) ∈ L× P
(product quality requirement)

nonlinear

xijF , x
ijk
1 , xjkl2 , xlS ≥ 0, qjkp2 ∈ R

Figure 6.2 displays the pooling structure of a case study with corresponding data for

crudes (A,B), blends (X,Y), distillation cuts (M,N), and final products (P,Q,R, S). Two

different qualities are considered in this case.

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 123

6.2 Problem Statement

CDU

∈ [5, 50] · 8

(X,A)

≤ 250

(X,B)

≤ 150

(Y,A)

≤ 250

(Y,B)

≤ 150

0.6

0.4

0.5

0.5

0.4

0.6

0.3

0.7

(X,M)

(X,N)

(Y,M)

(Y,N)

(0.07, 1.10)

(0.11, 0.40)

(0.08, 1.05)

(0.11, 0.90)

(0.07, 1.10)

(0.12, 0.80)

(0.08, 1.40)

(0.13, 0.90)

P

≤ (0.08, 0.90)

Q

≤ (0.09, 1.00)

R

≤ (0.10, 1.10)

S

≤ (0.13, 1.30)

12

≤ 120

10

≤ 80

9

≤ 90

7

≤ 110

Figure 6.2: Refinery planning case study.

In the remainder of the chapter, we consider the following NLP, which is a simplified

version of the planning model
(
PP
)
.

(
PP
)



max V T
P xS

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

The nomenclature used is as follows:

• VP is the market value of final products

• xF is a set of continuous variables representing CDU feedstock quantities over the

single planning period

• xS is a set of continuous variables representing final products sales

• xI is a set of intermediate continuous variables (e.g. pool quantity and property

variables)

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 124

6.2 Problem Statement

Crude Vessels Storage Tanks Charging Tanks CDU

1

2

3

4

5

6

7

8

Figure 6.3: Refinery crude-oil scheduling system for COSP1.

• fP (xF , xI , xS) ≤ 0 is the set of linear constraints (e.g. material balance constraints)

• gP (xI) ≤ 0 is the set of nonlinear constraints (e.g. quality balance constraints)

6.2.2 Crude-Oil Scheduling Problem

The crude-oil scheduling problem deals with the unloading, transfer and blending operations

executed on crude-oil tankers and crude-oil inventories. The goal is to sequentially prepare

multiple crude blends, which are defined by specific property requirements. Each type of

crude blend corresponds to a specific CDU operating mode. Different objectives have been

studied, namely minimization of logistics costs (see chapter 5 and Lee et al., 1996) or

maximization of profit (see chapters 3 and 4). In this work, the objective is to minimize the

total replacement cost of the crudes that are selected for distillation. The replacement cost

is the cost of replacing the crude once it has been processed. The crude-oil schedule must

satisfy inventory capacity limitations, crude tankers arrival dates as well as the logistics

constraints described in chapter 3. Figure 6.3 shows the refinery system corresponding to

problem 1 introduced in Lee et al. (1996). Table 6.1 displays the dimensionless data for

this example. Besides a different objective function, the example is modified by introducing

a minimum duration of one day for distillation operations. Therefore, due to crude blend

alternative sequencing, at most 4 batches of each crude mix can be processed in 8 days.

The scheduling problem is formulated using the MOS time representation as introduced in

chapter 2 (see appendix C).

In the remainder of the chapter, we consider the following MINLP, which is a simplified

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 125

6.2 Problem Statement

Table 6.1: Crude-oil scheduling data for case study.

Scheduling horizon 8 days

Vessels Arrival time Composition Amount of crude

Vessel 1 0 100% A 100
Vessel 2 4 100% B 100

Storage tanks Capacity Initial composition Initial amount of crude

Tank 1 [0, 100] 100% A 25
Tank 2 [0, 100] 100% B 75

Charging tanks Capacity Initial composition Initial amount of crude

Tank 1 (mix X) [0, 100] 80% A, 20% B 50
Tank 2 (mix Y) [0, 100] 20% A, 80% B 50

Crudes Property 1 (sulfur concentration) Crude unit cost

Crude A 0.01 7
Crude B 0.06 6

Crude mixtures Property 1 (sulfur concentration) Maximum number of batches

Crude blend X [0.015, 0.025] 4
Crude blend Y [0.045, 0.055] 4

Unloading flowrate [0, 50] Transfer flowrate [0, 50]

Distillation flowrate [5, 50] Minimum duration of distillations 1 day

version of the scheduling model
(
PS
)
.

(
PS
)



max −V T
C yF

s.t. fS(yB, yC , yF) ≤ 0

gS(yC) ≤ 0

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

The nomenclature used is as follows:

• VC is the replacement cost of crude-oils (usually based on market value)

• yF is a set of continuous variables representing total CDU feedstock quantities over

the scheduling horizon

• yC is a set of continuous variables representing other continuous decisions (e.g. timing

decisions)

• yB is a set of binary variables representing the sequencing decisions (i.e. variables

Ziv)

• fS(yB, yC , yF) ≤ 0 is the set of linear constraints (e.g. scheduling constraints)

• gS(yC) ≤ 0 is the set of nonlinear stream composition constraints (i.e. constraint (3.6c))

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 126

6.3 Lagrangian Decomposition Scheme

6.2.3 Full-Space Problem

Given the importance of crude selection for refinery optimization, the refinery planning

problem and the crude-oil scheduling problem should ideally be optimized simultaneously.

This can only be done by solving an integrated full-space MINLP problem, denoted (P),

which aims at optimizing all refinery decisions subject to planning, scheduling, and linking

constraints.

(P)



max V T
P xS − V T

C yF

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yB, yC , yF) ≤ 0

gS(yC) ≤ 0

yF − xF = 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

The integrated objective is to maximize profit defined by final product sales revenues minus

crude-oil replacement costs. The linking constraint yF − xF = 0 ensures consistency of

planning and scheduling decisions in terms of CDU feedstock quantities. More precisely, it

ensures that the amounts of crudes selected for distillation are identical in the planning and

scheduling solutions. Also, to be consistent in time, it is considered that the planning and

scheduling horizons have identical lengths.

In the remainder of the chapter, we use the notation v (P) to denote the optimal objective

value for problem
(
P
)
.

6.3 Lagrangian Decomposition Scheme

The full-space problem (P) is a large-scale MINLP, which contains many binary variables

from the crude-oil scheduling problem and many non-convex constraints from the refinery

planning model. Due to convergence issues and the presence of many potential local optima,

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 127

6.3 Lagrangian Decomposition Scheme

standard MINLP solvers for convex optimization, such as AlphaECP, Bonmin, DICOPT,

KNITRO, or SBB, may fail solving the model or may return poor solutions. Global MINLP

solvers, such as BARON, Couenne, or LINDOGLOBAL, are in principle able to solve the

problem but they may require prohibitive computational times. Therefore, a specific solu-

tion strategy needs to be developed to address this problems.

Robertson et al. (2010) proposed a multi-level approach consisting of approximating the

refinery planning model by multiple linear regressions that are then used in the crude-

oil scheduling problem for the minimization of the total logistics and production costs.

The method is applied to a case study comprising two different crudes. Although com-

putationally effective, the use of linear regressions may not be sufficient for the the global

optimization of highly nonlinear refinery planning model.

In this work, we present an integration approach based on Lagrangian decomposition,

which is a special case of Lagrangian relaxation (Guignard, 2003). The idea is to build

a relaxed version of the full-space problem, which is decomposable, and therefore much

easier to solve. In particular, the decomposition procedure is based on the dualization

of the linking constraint yF − xF = 0. The relaxed problem
(
PR(λ)

)
, composed of NLP

and MINLP models, is defined by removing this constraint and penalizing its violations by

adding the term λT (yF − xF) to the objective function. The parameter λ is a Lagrange

multiplier whose value is fixed prior to solving the model and adjusted iteratively.

(
PR(λ)

)



max V T
P xS − λTxF + (λ− VC)T yF

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yB, yC , yF) ≤ 0

gS(yC) ≤ 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

As already mentioned, problem
(
PR(λ)

)
is easier to solve as it can be decomposed into two

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 128

6.3 Lagrangian Decomposition Scheme

subproblems
(
PP (λ)

)
and

(
PS(λ)

)
.

v (PR(λ)) = v (PP (λ)) + v (PS(λ))

The subproblem
(
PP (λ)

)
, an NLP, is a modification of the original refinery planning

problem
(
PP
)

as it consists of assigning crude costs λ to the CDU feedstock variables

xF . For a given crude i, increasing λi will decrease the incentive to select this crude for

distillation processing. On the other hand, decreasing λi will increase the incentive to select

it.

(
PP (λ)

)


max V T
P xS − λTxF

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

The subproblem
(
PS(λ)

)
, an MINLP, is a modification of the original crude-oil scheduling

problem (PS) as it consists of assigning crude values λ to the CDU feedstock variables yF .

For a given crude i, increasing λi will increase the incentive to select this crude for blending

and distillation processing. On the other hand, decreasing λi will decrease the incentive to

select it.

(
PS(λ)

)


max (λ− VC)T yF

s.t. fS(yB, yC , yF) ≤ 0

gS(yC) ≤ 0

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

On the whole, the Lagrange multiplier λ can be seen as a crude purchase cost for the

planning system, and as a crude sales value for the scheduling system. Therefore, the spatial

Lagrange decomposition procedure applied to this problem can be seen as introducing a

crude market between the planning and scheduling systems (see Fig. 6.4). The planning

system acts as a consumer who buys crude from the market, while the scheduling system

acts as a producer who sells it to the market. It is clear that, for fixed prices, both actors

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 129

6.4 Solution of the Dual Problem

Crude
Market

(λ)

Scheduling
System

Planning
System

yF
x
F

yF = xF

Figure 6.4: Economic interpretation of the Lagrangian decomposition.

are independent, which explains why the two corresponding subproblems can be solved in

parallel.

Although computationally convenient, this decomposition procedure does not solve the

original full-space problem. In particular, it is well-known that
(
PR(λ)

)
is a relaxation of

the full-space problem, thus v (PR(λ)) > v (P). However, one can search for a Lagrange

multiplier λ that minimizes v (PR(λ)) in order to get as close as possible to v (P). This

problem is called the dual problem and the function λ 7→ v (PR(λ)) is often called the

Lagrangian function.

(
PD
)

min
λ
v (PR(λ))

Duality theory establishes that v (PD) − v (P) ≥ 0 (see Guignard, 2003). In some cases

(e.g. nonconvex models), we may have v (PD)− v (P) > 0 and this difference is called dual

gap. Our hope is that this dual gap is small enough so that valuable information can be

inferred to generate near-optimal heuristic solutions (see section 6.5).

6.4 Solution of the Dual Problem

Several approaches have been proposed in the literature in order to solve the dual problem

associated with the Lagrangian relaxation. A classical approach is the subgradient method

proposed by Held and Karp (1971) and Held and Karp (1974). Many researchers have used

and improved this technique over the years (see Camerini et al., 1975; Bazaraa and Sherali,

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 130

6.4 Solution of the Dual Problem

1981; Fisher, 1981). This approach is preferred as it usually predicts very good Lagrange

multiplier updates. However, special care must be taken in order to ensure convergence and

it requires a good strategy for defining and updating the subgradient step size. Another

approach that theoretically displays better convergence properties has been introduced by

Cheney and Goldstein (1959) and Kelley (1960). It is often denoted as the cutting plane

method. In practice, this approach usually takes a long time to converge as many iterations

are necessary in order to obtain good Lagrange multiplier updates. A refinement of this

approach is the boxstep method presented in Marsten et al. (1975). It allows obtaining

better updates for the Lagrange multiplier during early iterations while keeping the same

convergence properties. Other refinements of previous approaches include the bundle method

(Lemaréchal, 1974), the volume algorithm (Barahona and Anbil, 2000), and the analytic

center cutting plane method (Goffin et al., 1992).

All the above approaches are based on an iterative solution procedure between the primal

and the dual world. Figure 6.5 gives a schematic description of this algorithm. The first

step consists of initializing the Lagrange multipliers. Problem-specific strategies, often based

on the economic interpretation of λ, exist in order to provide good initial values. Then,

at each iteration the relaxed problem is solved and a primal solution is obtained. If a

stopping criterion is satisfied, the algorithm converges. Otherwise, the Lagrange multipliers

are updated for the next iteration. The definition of the stopping criterion depends on the

approach used and can, in certain cases, ensure convergence to an optimal dual solution λ∗.

In this work, we introduce a new hybrid method to update the Lagrange multipliers. It is

based on the three concepts of cutting planes, subgradient and boxstep. Cutting planes are

valid constraints for the dual problem that are generated at each iteration. They are used to

record valuable dual information to be used during later iterations. A subgradient provides

a descent direction for the dual problem, while a boxstep is defined to allow deviations from

this direction within a specified domain. The combination of these techniques ensures good

convergence properties while providing efficient Lagrange multiplier updates. At iteration

K + 1, the Lagrange multiplier is updated to the solution of the following restricted LP

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 131

6.4 Solution of the Dual Problem

Update λK Dual World

Solve
(
PR(λK)

)
Get xKF and yKF

Primal World
K = 1

Initialize λ1

Converged ?
Return λ∗ and
v (PR(λ∗))

K = K + 1
yes no

Figure 6.5: General iterative primal-dual algorithm.

dual problem with subgradient-based boxstep.

(
P̂K+1
D

)


min η

s.t. η ≥ V T
P x

k
S − V T

C y
k
F + λT (ykF − xkF) ∀k = 1 . . .K (CPk)

λ = λK + α
v(PD)−v(PR(λK))
||yKF −xKF ||

2 (yKF − xKF) + δ (SG+BS)

η ∈ R, λ ∈ R|F |

α ∈]−∞, α], δ ∈ [−δ, δ]|F |

The variables λ and η are classically used in the pure cutting plane approach. The

pure cutting plane restricted LP dual problem
(
PK+1
D

)
consists of minimizing η subject to

constraints (CPk), k = 1 . . .K only:

(
PK+1
D

)


min η

s.t. η ≥ V T
P x

k
S − V T

C y
k
F + λT (ykF − xkF) ∀k = 1 . . .K (CPk)

η ∈ R, λ ∈ R|F |

This problem is always unbounded during early iterations (i.e. v
(
PKD
)

= −∞) so it cannot

be used directly to update the Lagrange multipliers. This issue can be solved by defining a

bounded feasible set for the multipliers based on their interpretation (e.g. lower and upper

bounds). However, in this work, an iteratively updated boxstep based on the subgradient

step is used so that the restricted dual problem
(
P̂K+1
D

)
is bounded.

The subgradient step is classically defined as

λ = λK + α
(
v (PD)− v

(
PR(λK)

))
/
∣∣∣∣yKF − xKF ∣∣∣∣2 (yKF − xKF)

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 132

6.4 Solution of the Dual Problem

λ1

λ2

λK1

λK2

λ1

su
bg
ra
di
en
t
st
ep

λ1

η

λK1

PR(λK1 , λ
K
2)

λ1

CPK−1

CPK

subgradient step

(a) (b)

Figure 6.6: Plots of the feasible space of (P̂K+1
D).

where v (PD) can be estimated using a heuristic solution for (P). However, instead of

heuristically updating the step size, it is optimized using variable α, which is bounded by

the parameter α > 0. Note that α is allowed to take negative values. Variable δ defines a

deviation from the subgradient step. The parameter δ > 0 is the maximum deviation in each

multiplier direction and defines a full-dimensional boxstep. Both subgradient and boxstep

concepts are simultaneously embedded in constraint (SG+BS). Note that the parameters

α and δ can be heuristically updated at each iteration. In practice, our computational

experiments have shown that using fixed values for α and δ is a reasonable choice.

Figure 6.6 displays the feasible space (grey area) of (P̂K+1
D). The projection on the space

of Lagrange multipliers (λ1, λ2) depicts the shape of the subgradient-based boxstep. In the

space of (λ1, η), CPk represents the projection of the cutting plane generated at iteration k.

Note that the feasible space of
(
P̂K+1
D

)
contains

(
λ1 = λK1 , λ2 = λK2 , η = v

(
PR(λK1 , λ

K
2)
))

.

In both plots (a) and (b), λ1 corresponds to a lower bound on multiplier λ1 induced by the

boxstep constraints.

The stopping criterion for this hybrid strategy is identical to the pure cutting plane

method and is based on the Lagrangian gap between the relaxed primal problem and the

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 133

6.5 Heuristic Solutions

restricted dual problem:

v
(
PR(λK)

)
− v

(
PKD
)
≤ ε (6.1)

In the pure cutting plane approach (without constraint (SG+BS)), the optimal value of the

restricted dual problem v
(
PKD
)

iteratively approximates v (PD) from below since it involves

the minimization of a relaxation of v (PD).

v
(
PKD
)
≤ v (PD) ∀K (6.2)

Therefore, the stopping criterion (6.1) ensures convergence to an ε-optimal solution of the

dual problem
(
PD
)

as:

v
(
PR(λK)

)
− v

(
PKD
)
≤ ε⇒ v

(
PR(λK)

)
− v (PD) ≤ ε (6.3)

In the proposed approach, when the pure restricted dual problem
(
PKD
)

becomes bounded,

the stopping criterion (6.1) is used to check convergence while the hybrid restricted dual

problem
(
P̂KD
)

is used to update the Lagrange multipliers. Finite convergence properties

for the pure cutting plane and boxstep methods in the context of mixed-integer linear

programming can be obtained in Frangioni (2005) and Marsten et al. (1975), respectively.

For the rest of the chapter, it is assumed that practical convergence of the proposed hybrid

method can be achieved in the context of integrated refinery planning and scheduling.

6.5 Heuristic Solutions

In this section, a classical adaptation of the primal-dual algorithm is presented in order

to obtain solutions that satisfy all constraints of the full-space problem, including linking

constraints. As explained by Frangioni (2005), the solution of the Lagrangian dual problem

yields primal information that can be used to generate good heuristic solutions for
(
P
)
. In

this chapter, a heuristic step is introduced in the iterative algorithm to produce valid lower

bounds PLB (see Fig. 6.7). This induces a second stopping criterion based on the dual gap:

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 134

6.5 Heuristic Solutions

Update λK Dual World

Solve
(
PR(λK)

)
Get xKF , yKF , and yKB

Primal World
Upper Bound

K = 1
Initialize λ1,
PLB = −∞

Solve Heuristic
Update PLB

Primal World
Lower Bound

Converged ?Return PLB K = K + 1
yes no

Figure 6.7: Iterative primal-dual algorithm with heuristic step.

v
(
PR(λK)

)
− PLB ≤ ε. If either of the two stopping criteria is satisfied, the algorithm

converges and returns PLB.

The heuristic algorithm consists of fixing binary variables yB from the crude-oil scheduling

formulation to their values yKB in the solution of the relaxed problem
(
PR(λK)

)
. As a

consequence, the full-space problem
(
P
)

reduces to a continuous NLP, denoted
(
PH(yKB)

)
,

and can then be effectively solved. If it is feasible and its (local) optimal solution is better

than the previous incumbent, PLB is updated. Otherwise, PLB is left unchanged.

(
PH(yKB)

)



max V T
P xS − V T

C yF

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yKB , yC , yF) ≤ 0

gS(yC) ≤ 0

yF − xF = 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yC ∈ R|C|, yF ∈ R|F |

In this heuristic solution, fixing binary variables yB to yKB corresponds to fixing the

selection and sequencing of operations for the crude-oil scheduling system. Therefore, when

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 135

6.6 Remarks

solving problem
(
PH(yKB)

)
, the nonlinear solver has the opportunity to re-optimize all other

continuous decisions such as quantities, blend recipes, and timing of operations (start time,

duration, and end time). It is crucial to note that the timing of operations can only

be re-optimized if these decisions are handled by continuous variables. For instance, the

discrete-time MOS-FST representation (see chapter 2), uses binary variables to determine

the timing decisions whereas all other representations, denoted by MOS, MOS-SST, and

SOS, use continuous variables instead. This shows a clear advantage, although not intuitive,

of continuous-time scheduling formulations over discrete-time representations. In particular,

the latter might be inefficient in the context of this work as it would decrease the flexibility

of the heuristic algorithm to find good, or at least feasible solutions.

Overall, it is interesting to note that using this approach, the iterative primal-dual algo-

rithm that solves the Lagrangian dual problem acts as a discrete solution generator that

suggests potentially good discrete solutions for the full-space problem. In other words, it

searches the optimal selection and sequencing of operations for the crude-oil scheduling

system. Additionally, it provides an upper bound for the global optimal solution.

6.6 Remarks

6.6.1 CDU Feedstocks and Lagrange Multipliers

The number of Lagrange multipliers highly depends on the CDU feedstock possibilities.

Exactly one multiplier is needed for each feasible combination of crude and type of crude

blend (or corresponding CDU operating mode). In the case study, there are 2 different

crudes which can both be blended in any of the 2 different types of blends, so 4 Lagrange

multipliers are needed to solve the dual problem. Typical large-scale refineries may need 50

and up to 100 Lagrange multipliers.

The optimal value of the Lagrange multipliers correspond to the optimal marginal costs

of the linking constraints for the convexified problem (for more details in the case of MILP

models, see Frangioni, 2005). Therefore, the Lagrange multipliers can be seen as the optimal

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 136

6.6 Remarks

Planning
8 days

X

A

B

Y
A

B

12 days

X

A

B

Y

A

B

Scheduling
8 days

X

A

B

Y
A

B

Figure 6.8: Crude-oil scheduling and multi-period refinery planning integration.

pricing strategy between the crude-oil scheduling system and the refinery planning system.

In other words, the optimal Lagrange multipliers are crude prices for which it is marginally

equivalent to either exchange crudes between the two systems or sell and buy to and from

the crude market (see Fig. 6.4). From this observation, it is natural to use the crude costs

defined in the crude-oil scheduling problem as initialization for the Lagrange multipliers.

For the case study, we use the following initial values:

λ1(X,A) = λ1(Y,A) = 7

λ1(X,B) = λ1(Y,B) = 6

6.6.2 Multi-Period Refinery Planning

In this work, the refinery planning problem is expressed over a single period for which CDU

feedstocks are synchronized with the crude-oil scheduling problem. Even though it is often

computationally critical to increase the time horizon for scheduling problem, this can easily

be done in refinery planning models by introducing additional time periods. Therefore,

one can define 2 or more time periods for the refinery planning model and synchronize

CDU feedstocks for the first period only, as shown in Figure 6.8. In this particular case, the

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 137

6.6 Remarks

Planning
3 days

X

A

B

3 days

Y
A

B

2 days

X
A
B

12 days

X

A

B

Y

A

B

Scheduling
3 days

X

A

B

3 days

Y
A

B

2 days

X
A
B

Figure 6.9: Disaggregated CDU feedstocks synchronization.

refinery planning decisions for the second period, including CDU feedstock decisions xF , are

made without taking into account crude-oil scheduling constraints. This methodology allows

making short-term scheduling decision while considering the long-term economic impacts

of these decisions, which cannot be done with detailed long-term scheduling models due to

their computational complexity.

6.6.3 CDU Feedstocks Aggregation

An important issue with the proposed approach comes from the fact that the CDU feed-

stocks for the linking period are aggregated. In the optimal solution, the crude-oil operations

schedule prepares several batches for each type of crude blends. Then, for each of these blend

types, all the corresponding batches are accumulated and the refinery planning solution de-

termines the processing decisions for the aggregated batch. This approximation may lead to

sub-optimality or even technical infeasibility of the solutions obtained. This problem can

be solved by postulating exactly one period for each batch and synchronizing all the cor-

responding CDU feedstocks. Figure 6.9 depicts the synchronization of disaggregated CDU

batches.

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 138

6.6 Remarks

6.6.4 Handling Nonlinearities in Crude-Oil Scheduling Model

Although, the relaxed problem
(
PR(λ)

)
is decomposable, it is not easy to solve to global

optimality. In particular, two major issues arise. First, the crude-oil scheduling problem(
PS(λ)

)
corresponds to an MINLP due to the presence of nonlinear composition constraints.

In chapter 3, an MILP relaxation is derived by simply dropping these nonlinear constraints.

The solution can then be refined by fixing the binary variables and solving the reduced

NLP, similarly to the heuristic approach presented in section 6.5. Results show that the

solution obtained is close to the global optimum as it tends to satisfy the relaxed nonlin-

ear constraints. Therefore a similar methodology is used in this work. Instead of simply

dualizing the linking constraints, the nonlinear scheduling constraints gS(yC) ≤ 0 are also

relaxed (i.e. dropped). The modified relaxed full-space MINLP problem (NLP + MILP) is

denoted by
(
P̃R(λ)

)
:

(
P̃R(λ)

)



max V T
P xS − λTxF + (λ− VC)T yF

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yB, yC , yF) ≤ 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

The corresponding modified crude-oil scheduling MILP subproblem is denoted by
(
P̃S(λ)

)
:

(
P̃S(λ)

)


max (λ− VC)T yF

s.t. fS(yB, yC , yF) ≤ 0

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

The decomposability property is preserved:

v
(
P̃R(λ)

)
= v (PP (λ)) + v

(
P̃S(λ)

)
Finally, the modified dual problem

(
P̃D
)

can be defined as:(
P̃D
)

min
λ
v
(
P̃R(λ)

)
Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 139

6.6 Remarks

This modified dual problem still provides a valid upper bound for the original full-space

problem
(
P
)
. The following modified heuristic problem

(
P̃H(yKB)

)
is also defined. It is

obtained from the original heuristic problem
(
PH(yKB)

)
by dropping the nonlinear scheduling

constraints. It is used as a first heuristic step to get a good initial point before solving the

original heuristic NLP problem
(
PH(yKB)

)
.

(
P̃H(yKB)

)



max V T
P xS − V T

C yF

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yKB , yC , yF) ≤ 0

yF − xF = 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yC ∈ R|C|, yF ∈ R|F |

6.6.5 Handling Nonlinearities in the Refinery Planning Model

In order to obtain valid upper bounds when solving
(
PR(λ)

)
or
(
P̃R(λ)

)
, the refinery plan-

ning problem
(
PP (λ)

)
has to be solved to global optimality. Although global optimization

of industrial large-scale refinery planning models is still unachievable, the refinery planning

case study presented in section 6.2 is solvable by the global NLP solver BARON in reason-

able time. However, it should be noted that it is critical to provide tight bounds for the

quality variables qjkp2 . In particular, based on the structure of the pooling system, we use

the following bounds:

min
i∈I

qijkp1 ≤ qjkp2 ≤ max
i∈I

qijkp1

6.6.6 Detailed Implementation

Based on previous remarks to handle nonlinearities, the complete heuristic algorithm is

developed as depicted in Figure 6.10. Although global optimality cannot be ensured, the

dual gap can be estimated using the upper bound provided by v
(
P̃R(λ∗)

)
. Local NLP

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 140

6.6 Remarks

Solve
(
PKD
) Dual World

CPLEX

Solve
(
P̂KD
)

Update λK
Dual World
CPLEX

Solve
(
P̃R(λK)

)
Get xKF , yKF , and yKB

Primal World
Upper Bound
BARON+CPLEX

K = 1
Initialize λ1,
PLB = −∞

Solve
(
P̃H(yKB)

) Primal World
CONOPT

Solve
(
PH(yKB)

)
Update PLB

Primal World
Lower Bound
CONOPT

Converged ?Return PLB K = K + 1
yes no


v(P̃R(λK))−PLB

v(P̃R(λK))

?
≤ ε (dual gap)

or
v(P̃R(λK))−v(PK

D)
v(P̃R(λK))

?
≤ ε (Lagrangian gap)

Figure 6.10: Complete algorithm implementation.

solvers, such as CONOPT, are used for the heuristic steps as the solution time is more

critical than global optimality for these problems. The hybrid restricted dual problem(
P̂KD
)

is solved using the best solution of the modified heuristic problems
(
P̃H(yKB)

)
to

estimate the optimal dual solution v (PD). The stopping criterion is based on relative gaps

but can also be expressed in terms of absolute gaps. Converging on the Lagrangian gap

means that no further improvement of the upper bound can be achieved and the current

Lagrange multipliers are optimal.

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 141

6.7 Numerical Illustration

Table 6.2: Lagrangian iterations statistics (6 priority-slots, NLP=SNOPT).

Pure Hybrid Step Modified Modified Original CPU
Dual Dual Size Relaxation Heuristic Heuristic Time

Iteration v
(
PKD
)

v
(
P̂KD

)
αK v

(
P̃R(λK)

)
v
(
P̃H(yKB)

)
v
(
PH(yKB)

)
1 —a —b —b 645.000 400.942 —c 3s
2 —a 389.942 1 689.049 564.000 560.500 9s
3 —a 547.929 1 637.063 592.368 592.368 13s
4 —a 582.790 1 603.377 592.368 592.368 18s
5 —a 591.172 1 609.526 586.191 —c 24s
6 —a 590.629 0.851 598.380 562.881 —c 29s
7 580.717 591.324 -0.617 600.171 586.191 —c 33s
8 592.368 592.785 0.390 594.774 586.191 —c 46s
9 592.369 592.369 1 592.372 592.368 592.368 50s

a unbounded LP
b not available
c locally infeasible NLP

6.7 Numerical Illustration

In this section, several computational results are presented for three approaches: the di-

rect MINLP approach, a basic sequential scheduling-planning procedure and the proposed

Lagrangian decomposition method. Experiments have been performed on an Intel Xeon

1.86GHz processor using GAMS as the modeling and algorithmic language. A 1,000 sec-

onds time limit has been used for each run. The following local NLP solvers have been

used: CONOPT, SNOPT and IPOPT. In our experiments, the convergence tolerance ε is

set to 0.0001, the maximum step size parameter α is set to 1 and the step bound parameter

δ to 0.05.

The number of priority-slots for the crude-oil scheduling model is set to 6 and 7. Ta-

bles 6.2 and 6.3 show iteration statistics for the Lagrangian decomposition method using

SNOPT as the heuristic NLP solver. In particular, the optimal value of each problem solved

is given as well as the optimal step size calculated by the hybrid restrict dual problem and

the cumulative CPU time at the end of each iteration (e.g., for 6 priority-slots, the first

iteration took 3 seconds). Dashes are used when the information is not available (Hybrid

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 142

6.7 Numerical Illustration

Table 6.3: Lagrangian iterations statistics (7 priority-slots, NLP=SNOPT).

Pure Hybrid Step Modified Modified Original CPU
Dual Dual Size Relaxation Heuristic Heuristic Time

Iteration v
(
PKD
)

v
(
P̂KD

)
αK v

(
P̃R(λK)

)
v
(
P̃H(yKB)

)
v
(
PH(yKB)

)
1 — — — 645.000 393.470 — 3s
2 — 381.562 1 751.494 568.077 568.077 10s
3 — 552.076 1 622.785 592.368 — 16s
4 — 574.735 1 614.178 592.368 592.368 22s
5 — 583.166 1 602.218 592.368 592.079 50s
6 — 588.279 1 617.268 592.368 592.079 56s
7 — 592.856 0.911 600.752 592.368 592.368 66s
8 — 592.835 0.517 595.264 592.368 — 81s
9 — 592.288 0.357 595.292 592.368 592.368 95s
10 592.368 592.369 1 592.369 592.368 592.079 101s

Dual and Step Size for the first iteration), when the problem is unbounded (Pure Dual

during the first few iterations), or when it is locally infeasible (Original Heuristic in some

iterations).

In each case, the global optimal solution is found (see underlined entries in the Original

Heuristic column) and proved optimal. It can be noted that in some iterations the step size

variable α is strictly lower than 1, which corresponds to cases where the pure subgradient

multiplier update would violate some cutting planes generated at previous iterations. The

proposed approach automatically overcomes this issue. The increase of CPU time between

6 and 7 priority-slots is mostly explained by the increase in size of the MILP scheduling

model. Figures 6.11 and 6.12 plot the evolution of the objective value of various problems

solved during the Lagrangian iterations.

The optimal value of the Lagrange multipliers is λ∗(X,A) = λ∗(X,B) = λ∗(Y,A) = λ∗(Y,B) = 7.

Figures 6.13 and 6.14 plot the evolution of the Lagrange multipliers during the Lagrangian

iterations. The proposed approach demonstrates its efficiency through stable updates and

fast convergence of the Lagrange multipliers.

A basic sequential procedure is introduced to compare with the Lagrangian decomposition

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 143

6.7 Numerical Illustration

2 4 6 8
300

400

500

600

700

800

Iteration K

O
b

je
ct

iv
e

V
a
lu

e

v
(
PKD
)

v
(
P̂KD

)
v
(
P̃R(λK)

)
v
(
PH(yKB)

)

Figure 6.11: Lagrangian iteration objective values (6 priority-slots, NLP=SNOPT).

2 4 6 8 10
300

400

500

600

700

800

Iteration K

O
b

je
ct

iv
e

V
al

u
e

v
(
PKD
)

v
(
P̂KD

)
v
(
P̃R(λK)

)
v
(
PH(yKB)

)

Figure 6.12: Lagrangian iteration objective values (7 priority-slots, NLP=SNOPT).

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 144

6.7 Numerical Illustration

2 4 6 8

6

6.5

7

7.5

Iteration K

λ
K

(X,A)

(X,B)

(Y,A)

(Y,B)

Figure 6.13: Lagrange multiplier updates (6 priority-slots, NLP=SNOPT).

2 4 6 8 10

6

6.5

7

7.5

Iteration K

λ
K

(X,A)

(X,B)

(Y,A)

(Y,B)

Figure 6.14: Lagrange multiplier updates (7 priority-slots, NLP=SNOPT).

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 145

6.7 Numerical Illustration

Table 6.4: Comparative performance of different MINLP algorithms.

6 priority-slots 7 priority-slots
MINLP Objective CPU Optimality Objective CPU Optimality
Solver Value Time Gap Value Time Gap

Proposed (CONOPT) 592.368 37s 0% 592.368 94s 0%
Proposed (SNOPT) 592.368 50s 0% 592.368 101s 0%
Proposed (IPOPT) 592.368 244s 0% 592.368 833s 0%

Sequential (BARON) 545.000 9s — 545.000 10s —

DICOPT (CONOPT) 545.000 5s — 592.368 7s —
DICOPT (SNOPT) 592.368 429s — 592.368 6s —
DICOPT (IPOPT) 568.077 54s — 592.368 44s —

AlphaECP (CONOPT) 512.324 67s — 545.000 120s —
AlphaECP (SNOPT) 512.324 67s — 545.000 395s —
AlphaECP (IPOPT) 512.324 69s — 545.000 175s —

SBB (CONOPT) 592.368 267s — 592.368 +1,000s —
SBB (SNOPT) — +1,000s — — +1,000s —
SBB (IPOPT) — +1,000s — 493.536 +1,000s —

LINDOGLOBAL 568.077 +1,000s 11.9% 532.857 +1,000s 17.1%
BARON 592.170 +1,000s 7.3% 400.000 +1,000s 37.5%

approach. First, the modified crude-oil scheduling problem
(
P̃S
)

is solved and the binary

variables are fixed to their solution value. Then, the modified and original heuristic problems(
P̃H(y0B)

)
and

(
PH(y0B)

)
are successively solved. This procedure is not computationally

expensive as it requires solving only one MILP, solved with CPLEX, and two NLPs, both

solved with BARON. However, the solution obtained, if any, might not be optimal.

Additionally, the Lagrangian decomposition approach is compared to the direct approach

which consists of solving the full-space problem
(
P
)

with various MINLP solvers. Table 6.4

shows the computational performance of these MINLP algorithms. The sequential approach

quickly provides a feasible solution which is 8.0% lower than the global optimum (545.000

against 592,368). The solvers DICOPT, AlphaECP and SBB cannot guarantee global op-

timality of the solution returned while LINDOGLOBAL and BARON are actual global

MINLP solvers. DICOPT is able to find the global optimal solution in many cases in rea-

sonable CPU times. AlphaECP never finds the global optimum. SBB seems to return the

best solutions when CONOPT is used as NLP solver but it is requires large CPU times.

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 146

6.7 Numerical Illustration

0

50

100

150

200

592.368 568.077 545.000 512.324

Solution objective values

A
m

ou
n
t

of
cr

u
d

e
in

ea
ch

b
le

n
d Crude A

Crude B

0

50

100

150

200

Y
X

Y

X

Y

X
Y

X

Figure 6.15: Blend compositions in solutions obtained with 6 priority-slots.

Neither LINDOGLOBAL or BARON have found the global optimum in the specified time

limit. In comparison to these solvers, the proposed Lagrangian decomposition approach

proves to be very effective for the following reasons:

• it is computationally effective (although DICOPT is faster);

• it always returns the global optimum;

• it is very robust with the choice of NLP solver (although IPOPT is significantly

slower).

Figure 6.15 depicts the composition of each crude blend in four different solutions. Crude

blend X is mostly composed of crude A while crude blend Y is mostly composed of crude

B. If all solutions except the second one (with objective value 568.077) are considered,

one may conclude that blend Y is ”more profitable” than blend X because the objective

value increases when processing larger amounts of blend Y and smaller amounts of blend

X. Additionally, one could say that increasing the amount of distilled crude increases the

overall profit (solution 1 processes 253.034 units of crude, solution 3, 224.49 units of crude,

and solution 4, 212.867 units of crude). Interestingly, the second solution does not follow

these observations. In this solution, the amount of blend X is larger the amount of blend Y .

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 147

6.8 Larger Refinery Problem

Besides, the total amount of crude processed is the largest (276.923 units of crude). This

shows how difficult it is to approximate the economic behavior of refinery operations, even

for such a small case study. Therefore, it is possible that linear approximations of refinery

operations as proposed by Robertson et al. (2010) might not be able to correctly evaluate

the economic value of some feasible solutions.

6.8 Larger Refinery Problem

In this section, the proposed Lagrangian decomposition approach is applied on a larger

refinery example and compared to standard MINLP solvers and the basic sequential proce-

dure presented in section 6.7. The refinery planning problem is based on a crude distillation

simulation model developed by Gueddar and Dua (2010). This crude distillation model is

based on a layered artificial neural network (ANN). This ANN is generated by solving an

MINLP which aims at fitting empirical data for atmospheric distillation of several crudes

(crude assays) while simplifying the calculations. The model obtained is able to predict

cut yields and cut properties from the chosen cut points and properties of the inlet crude.

Figure 6.16 depicts the full nonlinear planning model. Three different types of crude blends

are processed in three different CDU operating modes and five crude cuts are produced:

LPG (liquefied petroleum gas), naphta, kerosene, diesel, and residue. Each discrete CDU

mode is defined by the distillation cut point between diesel and residue fractions: 340, 360,

or 380◦C. The decision variables for each CDU mode are composed of individual crude

flows and distillation cut points between naphta, kerosene and diesel fractions. The three

streams produced for each fraction are then blended into cut pools. The bilinear pooling

constraints discussed in section 6.2 are classically used to calculate the properties of each

cut pool. Table 6.5 shows market prices for each distillation cut and corresponding property

specifications. Crude availability constraints are also included in the model in accordance

with the description of the crude-oil scheduling problem. This refinery planning model is

composed of 1,831 variables and 1,817 constraints. The full mathematical model is detailled

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 148

6.8 Larger Refinery Problem

CDU Mode 1

CDU Mode 2

CDU Mode 3

Crude Blend 1

Crude Blend 2

Crude Blend 3

Distillation cut points:
Naphta/Kerosene ∈ [145, 175]◦C
Kerosene/Diesel ∈ [220, 250]◦C
Diesel/Residue = 340◦C

Naphta/Kerosene ∈ [145, 175]◦C
Kerosene/Diesel ∈ [220, 250]◦C
Diesel/Residue = 360◦C

Naphta/Kerosene ∈ [145, 175]◦C
Kerosene/Diesel ∈ [220, 250]◦C
Diesel/Residue = 380◦C

LPG

Naphta

Kerosene

Diesel

Residue

LPG

Naphta

Kerosene

Diesel

Residue

LPG

Naphta

Kerosene

Diesel

Residue

Pool LPG

Pool Gasoline

Pool Kerosene

Pool Diesel

Pool Residue

Figure 6.16: Planning model for larger refinery problem.

in appendix D.

The crude-oil scheduling problem is based on example 3 from Lee et al. (1996) (see

Figure 6.17) with the parameters described in Table 6.6. It consists of three crude arrivals,

three storage tanks, three charging tanks (one for each type of crude mixture), and two

identical CDUs whose respective scheduled feedstocks are merged when linked to the refinery

planning problem. Seven different crudes are available, and fourteen transfer operations can

be executed to prepare the different crude blends. When 6 priority-slots are used, the crude-

oil scheduling problem is composed of 1,814 variables (84 binary) and 2,338 constraints.

Table 6.7 and Figure 6.18 show the iteration statistics for the Lagrangian decomposition

method using 6 priority-slots for the crude-oil scheduling model. The maximum step size

parameter α is set to 1 and the step bound parameter δ to 0.05. Because we were not

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 149

6.8 Larger Refinery Problem

Table 6.5: Crude cut prices and specification for larger refinery problem.

Crude Cut Price Specifications

LPG 8.5 None

Naphta 8.0

specific gravity ∈ [0.72, 0.775]
motor octane number ≥ 45

research octane number ≥ 45
sulfur weight content ≤ 120ppm

Kerosene 7.0
specific gravity ∈ [0.775, 0.84]

freeze point ≤ −40◦C

Diesel 8.0

specific gravity ∈ [0.82, 0.86]
cetane number ≥ 48
cloud point ≤ 4◦C

sulfur weight content ≤ 2800ppm

Residue 6.5 None

Crude Vessels Storage Tanks Charging Tanks CDUs

1

2

4

5

6

7

11

12

3

8

10

9

13

14

Figure 6.17: Refinery crude-oil scheduling system for COSP3.

able to solve the refinery planning problem to global optimality, we used CONOPT as the

NLP solver. Other local NLP solvers as SNOPT and IPOPT did not perform as well (slow

convergence, poor solutions or local infeasibilities). As the refinery planning problem is not

solved to global optimality, it is not possible to rigorously estimate global optimality for

the solution obtained for the full-space problem. Therefore, the convergence tolerance ε is

set to 0.01 instead of 0.0001 as in the case study. Furthermore, many iterations are needed

to generate enough cutting planes and make the pure restricted dual problem bounded. In

order to achieve convergence after a few iterations, the Lagrangian gap is calculated using

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 150

6.8 Larger Refinery Problem

Table 6.6: Crude-oil scheduling data for larger refinery problem.

Scheduling horizon 12 days

Vessels Arrival time Composition Amount of crude

Vessel 1 0 100% A 500
Vessel 2 4 100% B 500
Vessel 3 8 100% C 500

Storage tanks Capacity Initial composition Initial amount of crude

Tank 1 [0, 1,000] 100% D 200
Tank 2 [0, 1,000] 100% E 200
Tank 3 [0, 1,000] 100% F 200

Charging tanks Capacity Initial composition Initial amount of crude

Tank 1 (mix 1) [0, 1,000] 100% G 300
Tank 2 (mix 2) [0, 1,000] 100% E 500
Tank 3 (mix 3) [0, 1,000] 100% F 300

Crudes Property 1 (sulfur concentration) Crude unit cost

Crude A 0.01 6
Crude B 0.085 6.5
Crude C 0.06 5.5
Crude D 0.02 7.2
Crude E 0.05 6.7
Crude F 0.08 6.2
Crude G 0.03 7.5

Crude mixtures Property 1 (sulfur concentration) Maximum number of batches

Crude mix 1 [0.025, 0.035] 6
Crude mix 2 [0.045, 0.065] 6
Crude mix 3 [0.075, 0.085] 6

Unloading flowrate [0, 50] Transfer flowrate [0, 50]

Distillation flowrate [5, 50] Minimum duration of distillations 1 day

the objective value of the hybrid dual problem, which is always bounded, as follows:

v
(
P̃R(λK)

)
− v

(
P̂KD

)
v
(
P̃R(λK)

) ?
≤ ε

The proposed approach converges on the Lagrangian gap in 15 iterations. The final dual

gap, although it does not represent a valid optimality gap, is 3.8%. 83% of the time is spent

on solving the crude-oil scheduling MILPs. The optimal value of the Lagrange multiplier

is given in Table 6.8. With 7 priority-slots, the decomposition procedure converges in

18 iterations and 4,451 seconds, the increase of CPU time being explained mostly by the

increased number of priority-slots. The solution obtained is slightly lower than the previous

one because the algorithm did not fully converge within tight tolerances.

Table 6.9 presents computational performances of the different approaches. Clearly, the

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 151

6.8 Larger Refinery Problem

Table 6.7: Lagrangian iterations statistics for larger refinery problem (6 priority-slots,
NLP=CONOPT).

Pure Hybrid Step Modified Modified Original CPU
Dual Dual Size Relaxation Heuristic Heuristic Time

Iteration v
(
PKD
)

v
(
P̂KD

)
αK v

(
P̃R(λK)

)
v
(
P̃H(yKB)

)
v
(
PH(yKB)

)
1 — — — 266.226 — — 43s
2 — -2.166 1 417.311 257.943 222.339 102s
3 — 253.546 1 411.657 258.488 245.306 173s
4 — 281.076 0.857 325.906 258.106 — 235s
5 — 260.746 1 288.587 258.104 — 298s
6 — 256.301 1 273.197 258.516 245.467 372s
7 — 256.385 1 271.415 258.027 250.989 459s
8 — 258.091 1 264.974 257.961 233.713 539s
9 — 258.847 0.861 265.149 257.961 233.713 610s
10 — 257.623 1 267.541 257.740 228.230 682s
11 — 259.500 0.868 261.237 257.750 247.971 769s
12 — 259.170 1 261.512 257.750 247.971 850s
13 — 259.126 0.759 264.109 258.027 250.989 913s
14 — 259.121 1 263.708 258.306 — 979s
15 — 259.592 0.774 260.857 258.516 238.763 1,045s

0 2 4 6 8 10 12 14 16

0

100

200

300

400

Iteration K

O
b

je
ct

iv
e

V
al

u
e

v
(
P̂KD

)
v
(
P̃R(λK)

)
v
(
PH(yKB)

)

Figure 6.18: Lagrangian iteration objective values for larger refinery problem (6 priority-
slots, NLP=CONOPT).

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 152

6.8 Larger Refinery Problem

Table 6.8: Optimal Lagrange multipliers for each crude and each CDU mode.

Crude CDU Mode Initial value (=Price) Optimal value

A
1 6.0 6.169
2 6.0 6.207
3 6.0 7.695

B
1 6.5 6.971
2 6.5 6.987
3 6.5 7.026

C
1 5.5 6.062
2 5.5 6.009
3 5.5 6.054

D
1 7.2 7.186
2 7.2 7.262
3 7.2 7.962

E
1 6.7 6.859
2 6.7 6.878
3 6.7 6.898

F
1 6.2 6.340
2 6.2 6.226
3 6.2 6.293

G
1 7.5 6.930
2 7.5 7.360
3 7.5 7.360

Table 6.9: Comparative performance of several MINLP algorithms for larger refinery prob-
lem (NLP solver: CONOPT).

6 priority-slots 7 priority-slots

MINLP Objective CPU Objective CPU
Solver Value Time Value Time

Proposed 250.989 1,045s 250.128 4,451s

Sequential 116.814 46s — 79s

DICOPT — +3,600s — +3,600s

AlphaECP — +3,600s — +3,600s

SBB — +3,600s — +3,600s

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 153

6.9 Conclusion

Table 6.10: Blend compositions in the optimal solution of larger refinery problem.

Crude Blend 1 Blend 2 Blend 3

A 0.164 49.480
B 33.293 16.707
C 50.000
D 0.066 19.792
E 3.500 55.943 2.982
F 50.000
G 9.480

Lagrangian decomposition procedure is much more robust than the other algorithms. Only

the sequential approach was able to deliver a solution with 6 priority-slots, but its objective

value is much lower (50% reduction) than the best known solution. Indeed, the scheduling

solution obtain during the first stage of the sequential procedure does not take into account

the economic impact on the refinery planning problem, which leads to poor decisions. The

standard local MINLP solvers were not able to find a solution within one hour because the

MINLP model is too large: 3,645 variables (84 binary) and 4,177 constraints.

Table 6.10 shows the crude compositions of the optimal solution with objective value

250.989. The two CDUs are mostly operated in mode 2 which corresponds to the average

cut point for diesel and residue cuts.

6.9 Conclusion

In this chapter, a novel approach towards the integration of planning and scheduling has

been developed in the context of oil refining. In particular, a precise crude-oil operations

scheduling model and a coarse refinery planning model were optimized simultaneously using

Lagrangian decomposition. It makes use of Lagrange multipliers as a way to communicate

economic information between the two subsystems. The methodology leads to a classical

primal-dual iterative algorithm to solve the Lagrangian dual problem. The critical multiplier

update step is performed by solving a new hybrid restricted dual problem. This approach

combines the strengths of cutting planes and subgradient steps and does not require to

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 154

6.9 Conclusion

define heuristic updates of parameters during iterations.

Although it is not guaranteed, our results achieved a 0% dual gap for the smaller case

study. It is well-known that augmented Lagrangian techniques (see Li and Ierapetritou,

2010) can ensure closing the dual gap for any instance. However, this would require to solve

the refinery planning subproblem to global optimality, which is not yet achievable in an

industrial context. It is therefore more practical to use standard duality in order to obtain

feasible heuristic solutions for the integrated problem.

The proposed Lagrangian decomposition procedure has been applied to a larger and more

complex refinery problem. The refinery planning problem is based on a crude distillation

simulation model that has been developed by Gueddar and Dua (2010) using an artificial

neural network to fit empirical data. The crude-oil scheduling problem is the third example

of Lee et al. (1996). The results have shown that the proposed approach remains very com-

petitive compared to other MINLP algorithms, namely the two-step MILP-NLP sequential

procedure and standard MINLP solvers.

Chapter 6. Integration of Refinery Planning and Crude-Oil Scheduling 155

Chapter 7

Conclusion

In this thesis we have developed models and solution methods to address the problem of

short-term scheduling of refinery crude-oil operations. In chapter 2, we proposed a unified

modeling approach and solution methods for solving process scheduling problems and ap-

plied it to single-stage and multi-stage batch scheduling problems. In chapter 3, we applied

this approach to the crude-oil operations scheduling problem and introduced a two-step

MILP-NLP procedure to solve the MINLP model. In chapter 4, we developed a symmetry-

breaking approach based on regular languages for the SOS time representation in order to

improve its computational performance. In chapter 5, we integrated CP bound contraction

techniques within CPLEX in order to tighten the linear relaxation of the SOS MINLP model

during the branch & bound search. Finally, in chapter 6 we used a Lagrangian decompo-

sition approach to integrate the refinery planning problem with the crude-oil operations

scheduling problem, and we introduced a new hybrid dual algorithm for determining the

optimal Lagrange multipliers.

7.1 Time Representations and Mathematical Models for Pro-

cess Scheduling Problems

In chapter 2, we presented a unified modeling approach for process scheduling problems

based on four different time representations. All time representations make use of the generic

concepts of priority-slots and operations. We established theoretical relations between these

time representations and showed that the MOS time representation can lead to the most

compact mathematical formulations as it requires fewer priority-slots.

Chapter 7. Conclusion 156

7.1 Time Representations and Mathematical Models

Using common sets of parameters, variables, and constraints, we developed MILP mod-

els for each time representation. These models only differ by a few representation-specific

constraints, namely constraints (2.12)-(2.16). The proposed models were automatically

strengthened using the non-overlapping graph of the scheduling system. Strengthened

constraints (2.17)-(2.21) and (2.23)-(2.26) were obtained using the maximal cliques and

maximal bicliques of the graph.

A typical issue with scheduling problems is to select the number of priority-slots to be

used. This issue can be avoided in specific cases as precedence-based scheduling model

for batch processes with fixed number of batches. In this chapter, we presented generic

solution methods for selecting the number of priority-slots. The performance of the additive

approach has been improved by using cutoffs and the new constraint (2.27), which reduces

the search space at each iteration.

The MOS, MOS-SST and MOS-FST time representations have been applied to single-

stage batch scheduling problems with up to 29 orders processed on 4 parallel units. Using

the available data for unit processing times, we derived tight cardinality bounds for the

number of orders to be processed on each unit. In the case of the MOS mode, we presented

a symmetry-breaking constraint (2.29) that was used with unit cardinality bounds in order

to derive the problem-specific strengthened constraints (2.30)-(2.32). The computational

results show that all instances can be solved to rigorous global optimality in less than

810s, the worst case being the instance with 25 orders. Furthermore, the results showed

that during the additive approach, the MOS model for instance SSBSP18 with 10 priority-

slots was solved in less than 2s with constraint (2.27) while the same iteration takes more

than 100s if it is not used. Similarly, the results showed than the MOS model for instance

SSBSP18 with 5 priority-slots was solved in less than 2s with symmetry-breaking constraints

(2.29)-(2.32), while it takes more than 100s if they are not used. Finally, the results showed

that the strengthened non-overlapping constraint (2.20) can lead to a decrease of CPU times

from 3,288s to less than 2s for the same model. The MOS-SST approach failed to solve

instances with 18, 25 and 29 orders in less than 1,000s. The MOS-FST approach only failed

Chapter 7. Conclusion 157

7.1 Time Representations and Mathematical Models

to solve the instance with 29 orders in less than 1,000s.

Additionally, the MOS, MOS-SST and MOS-FST time representations have been applied

to multi-stage batch problems involving up to 10 orders, 5 stages and 25 units. The MOS

approach was able to solve instances with 5 and 8 orders to global optimality in less than

1,000s and failed on instance MSBSP10. No instance was solved to global optimality with

the MOS-SST and MOS-FST approaches in the given time limit.

The proposed unified modeling approach can be seen an integration of several approaches

studied over the past. The main challenge was to use identical concepts in order to derive

efficiently strengthened mathematical formulations for all time representations that can be

applied to a large variety of problems. The SOS time representation has been introduced in

this work and needs to be further developed in order to efficiently solve scheduling problems.

In chapter 4, we studied the application of this time representation in the context of crude-

oil scheduling problems. The main limitation of the proposed approach is its inability to

handle discrete resource constraints, or inventory transfers at start and/or end times of

process operations. In order to apply this approach to a larger class of problems including

these types of constraints (for example in STN and RTN scheduling problems), the proposed

time representations need to be extended to sequence start and end times of all operations

independently.

On the algorithmic part, the additive approach, although briefly cited in previous papers

(for example, see Maravelias and Grossmann, 2003), has been enhanced with the use of

cutoffs and constraint (2.27). To the best of our knowledge, the proposed multiplicative

approach has not been applied to discrete-time scheduling models in the past. It benefits

from the fact that any solution obtained at a given iteration is feasible for the next iteration,

which justifies objective cutoffs as well as stopping criteria based on objective improvement

tolerances. As the initial number of priority-slots may have a large impact on the global

solution time, this approach can benefit from the work of Maravelias and Papalamprou

(2009) who proposed a strategy for the selection of the length of each time period based on

polyhedral results for the discrete-time MILP.

Chapter 7. Conclusion 158

7.2 Short-Term Scheduling of Crude-Oil Operations

7.2 Short-Term Scheduling of Crude-Oil Operations

In chapter 3, we adapted the MOS, MOS-SST, and MOS-FST models presented in chapter 2

to the crude-oil scheduling problem. We showed how the non-overlapping graph can be used

to derive non-trivial strengthened constraints and we introduced new general symmetry-

breaking constraints for the MOS time representation.

We presented a simple two-step MILP-NLP decomposition procedure that provides an

estimate of optimality gap for the returned solution. The first stage MILP is solved using

the additive approach for MOS and MOS-SST time representations and the multiplicative

approach for the MOS-FST time representation. Since the stopping criterion that is used

(no improvement of the objective value) cannot guarantee global optimality of the solution

returned for the MILP, the upper bound and therefore the estimate of optimality gap are not

rigorous. In practice, the upper bound was always valid except in the case of the MOS-SST

model applied to instance COSP2 (the upper bound found was 101.174 instead of 101.175).

All instances were solved within a 3% optimality gap using the MOS time representation.

An important challenge is to reduce this optimality gap for problems displaying stronger

non-convexities. This issue has been addressed in chapter 5 for minimizing total logistics

costs in the crude-oil operations scheduling problem.

In terms of computational performance, the proposed MINLP procedure behaves gener-

ally better than other MINLP solvers on the crude-oil scheduling problem. The approach

benefits from the fact that it is possible to derive a simple, yet very tight MILP relaxation

of the global MINLP. It is interesting to notice that DICOPT displays very similar results.

Indeed, the first iteration of the outer-approximation algorithm implemented in DICOPT

is very similar to the proposed two-step procedure. The only difference comes from the

fact that in DICOPT, the MILP contains first-order Taylor expansion of the nonlinear con-

straints around the solution of the relaxed MINLP (i.e. the NLP relaxation). However, the

issue of selecting the optimal number of priority-slot was not address while using DICOPT.

The results show that the MILP model was always solved within 20s for the MOS time

Chapter 7. Conclusion 159

7.3 Single-Operation Sequencing Model for Crude-Oil Operations Scheduling

representation and within 400s for the MOS-SST time representation. In the MOS-FST

time representation, only the first instance COSP1 was solved within 1,000s. The poor

performance of this discrete-time formulation is due to fact that constraint (2.24) does not

handle effectively variable processing times. Instead, it is preferable to use the discrete-

time formulation proposed in Lee et al. (1996). This type of discrete-time representation

differs conceptually from the representations proposed in this thesis since one execution of

a given operation may be split into adjacent smaller executions, one per time period. This

type of formulation has many advantages when processing times are variables. However,

it may require additional binary variables to represent the priority-slots corresponding to

the actual start and end times of each operation executions (before splitting). For example,

this is required when the scheduling problem involves cardinality constraints.

The solutions obtained for the problem COSP1 showed that schedule optimization can

lead up to a 13.2% profit increase over manual or heuristic scheduling approaches. The

impact of uncertainty in terms of vessel arrival has been studied in the case of problem

COSP2 showing that a reactive scheduling approach may be sufficient in the case of profit

maximization. The incentive of using advanced strategies for handling uncertainties (e.g.

stochastic programming or robust optimization) has not been precisely evaluated.

7.3 Single-Operation Sequencing Model for Crude-Oil Oper-

ations Scheduling

In chapter 4, we studied the SOS time representation applied to the crude-oil operations

scheduling problem. As the non-overlapping graph can be used to generate many non-

redundant strengthened non-overlapping constraints, we developed three heuristic selection

rules for maximal cliques and bicliques that aim at reducing the number of such constraints.

It was shown that the SOS model may display many symmetric solutions. Therefore, we

developed symmetry-breaking constraints in order to reduce the size of the feasible space

of the MILP. The symmetry-breaking approach is based on a problem-specific sequencing

Chapter 7. Conclusion 160

7.4 Tightening the Linear Relaxation of an MINLP Using CP

rule that needs to be derived by the modeler taking into account the scheduling constraints

involved in the system. We proposed to use regular languages and deterministic finite

automata to represent, store and model this sequencing rule. Additionally, we determined

the maximum number of operations needed to represent any solution for each instance. The

SOS model has been solved using the direct approach and fixing the number of priority-slots

to the maximum number of operations.

The four crude-oil scheduling instances were all solved in less than 310s using the SOS time

representation, showing that it is less efficient than the MOS time representation. This is

mostly due to the large size of the corresponding MILP. On average, the SOS model contains

329% more binary variables, 1188% more continuous variables, and 275% more constraints

than the MOS model. Although global optimality cannot be rigorously achieved with

the proposed approach, the MILP solution returned by the SOS model is always optimal.

Finally, we have shown that the symmetry-breaking sequencing rule reduces the CPU time

for solving problem COSP1 with 13 priority-slots from more than 1 hour to only 2s.

The comparative study showed that the SOS time representation is less promising than

the MOS time representation due to its larger model size. However, sequencing rules can be

used to enforce complex sequencing constraints instead of symmetry-breaking constraints.

In principle, they could also be applied to time representations other than SOS even though

multiple operations may be assigned to each priority-slot.

7.4 Tightening the Linear Relaxation of a Crude-Oil Opera-

tions Scheduling MINLP Using CP

In chapter 5, we developed an integrated MILP / CP algorithm in order to tighten the MILP

relaxation of a crude-oil scheduling problem modeled with the SOS time representation.

The objective function studied corresponds to the minimization of the logistics cost and

involves bilinear terms due to storage costs. As shown in Lee et al. (1996), this objective

function can be artificially linearized using a discrete-time representation. However, it is an

Chapter 7. Conclusion 161

7.4 Tightening the Linear Relaxation of an MINLP Using CP

interesting case study for testing and enhancing the MILP-NLP decomposition approach.

In particular, the optimality gaps obtained with the basic two-step procedure range from

11.7% to 21.9%. Therefore there is a clear incentive to improve the upper bound obtained

at the MILP stage.

The hybrid search algorithm is based on deriving variable bounds for volume and time

variables in order to generate valid McCormick convex envelopes during the search. CPLEX

is used as the main search algorithm, thus benefiting from its advanced branching strategies,

heuristics, cutting planes, and efficient memory management. ILOG CP is used to update

variable bounds at each node and tightening McCormick cuts are generated. The optimality

gap for all instances was reduced to less than 7% for all instances. Additionally, a new

improved solution was obtained for problem COSP2. The comparison with other MINLP

solvers show that this approach outperforms other MINLP algorithms, both in terms of CPU

times and optimality of the solutions returned. As demonstrated in chapter 3, DICOPT is

the best MINLP alternative.

The proposed MILP / CP approach can be applied to any MINLP with bilinear terms,

or in general any MINLP with nonlinear terms that can be linearly relaxed using variable

bounds. The model used for CP constraint propagation is critical in the determination

of tight bounds at each node. In this work, the mathematical formulation has been used

directly as a CP model that proved to be sufficient in the case of the crude-oil operations

scheduling problem. Depending on the structure of the problem, the CP model may have to

be further enhanced. Also, the CP model can be used to perform logic inference in addition

to the classic LP relaxation. Finally, the approach would benefit from spatial branch &

bound techniques in order to further improve the upper bound and potentially select better

sequences of operations for the NLP stage. The work developed in this chapter is closely

related to the solvers SIMPL (see Yunes et al., 2010) and SCIP (for linear problems only,

see Achterberg, 2004).

Chapter 7. Conclusion 162

7.5 Integration of Refinery Planning and Crude-Oil Scheduling

7.5 Integration of Refinery Planning and Crude-Oil Schedul-

ing using Lagrangian Decomposition

In chapter 6, we developed a Lagrangian decomposition approach to integrate refinery plan-

ning with the crude-oil operations scheduling problem modeled with the MOS time repre-

sentation. The two subproblems are linked through a single CDU feedstock synchronization

constraint, which is dualized for the purpose of the Lagrangian relaxation. The approach

benefits from the fact that the full-space MINLP is decomposed into an MILP and an NLP

which can be solved effectively by standard solvers. As the approach is based on relaxing

the full-space MINLP, the crude-oil scheduling MINLP subproblem is naturally replaced

by an MILP relaxation as described in chapters 3, 4 and 5. The Lagrange multipliers are

optimized using a hybrid dual problem composed of cutting planes and a subgradient-based

boxstep. Furthermore, we presented a simple heuristic procedure for obtaining a lower

bound that consists of solving the full-space NLP obtained after fixing the binary variables

to the values of the crude-oil scheduling solution obtained at each iteration.

The computational results show that the approach converges quickly in less than 10

iterations (less than 2 min) with 0% optimality gap for a small-scale example solved with

6 and 7 priority-slots. The heuristic procedure found a feasible solution in 58% of the

iterations although only 4 different solutions were found. The optimal solution was found

in both cases, with any NLP solver for the heuristic, and in reasonable times showing the

robustness of the Lagrangian decomposition approach. Among standard MINLP solvers,

DICOPT was the best alternative although it did not find the optimal solution in all cases.

On a larger example, 15 iterations and 1,045s were needed in order to solve the problem with

6 priority-slots. The main computational challenge is to solve the MILP relaxation of the

crude-oil scheduling problem in shorter CPU times. Furthermore, the estimate of optimality

gap for the best known solution is 3.8%. However, this estimate is not rigorous since the

upper bounds obtained at each iteration are not achieved through global optimization of

the relaxed primal problem.

Chapter 7. Conclusion 163

7.6 Contributions of the Thesis

From a practical point of view, the integration of both subproblems may need to be further

improved in order to be applied to industrial problems. In section 6.6, we outlined several

ideas in order to improve this integration. The first one consists of using a multi-period

refinery planning problem in order to consider long-term economic impacts while optimizing

short-term scheduling solutions, thus avoiding solving computationally expensive long-term

scheduling models. Furthermore, the aggregation of crude-oil feedstock over the scheduling

period may lead to inconsistencies as individual CDU batches are not considered in the

refinery planning problem. This issue should be addressed by using exactly one period per

CDU batch.

7.6 Contributions of the Thesis

The main contributions of the thesis can be summarized as follows.

1. A unified modeling approach for process scheduling problems has been proposed in

chapter 2. The methodology can be applied to a large class of scheduling problems

including single-stage batch scheduling, multi-stage batch scheduling and crude-oil

operations scheduling. It is solely based on the general concepts of priority-slots

and operations, which are used to represent any feasible solution by a sequence of

multiple or single operations. The corresponding MILP models only differ by a few

representation-specific constraints.

2. A new time representation, called single operation sequencing (SOS), has been in-

troduced in chapter 2 and applied to the crude-oil operations scheduling problem in

chapters 4 and 5. As the corresponding MILP model displays many symmetric so-

lutions, we proposed to use a symmetry-breaking sequencing rule represented by a

deterministic finite automaton and included it in the model as a network flow formu-

lation. Sequencing rules can also be used to represent complex sequencing constraints.

3. A global representation of the non-overlapping constraints in the scheduling problem

has been developed in chapter 2. It can be seen as an extension of the disjunc-

Chapter 7. Conclusion 164

7.7 Recommendations for Future Work

tive graph (Balas, 1969) for operations that may be executed several times. The

non-overlapping graph has been used to automatically generate strengthened non-

overlapping constraints using its maximal cliques and maximal bicliques.

4. A general symmetry-breaking constraint for MOS scheduling models has been intro-

duced in section 3.3.7. As it does not make any assumption on the structure of the

scheduling system, it can be applied to any problem.

5. A simple two-step MILP - NLP decomposition procedure has been proposed for solving

crude-oil scheduling MINLPs in chapter 3. It takes advantage of the fact that it is

possible to derive a tight MILP relaxation for the MINLP. After solving the MILP,

the binary variables are fixed and the full-space NLP is solved to obtain a feasible

solution with an estimate of the optimality gap.

6. A general integration approach for refinery planning and crude-oil operations schedul-

ing problems has been proposed in chapter 6. It based on a Lagrangian decomposition

of the full-space MINLP problem. The decomposability property is obtain by dual-

izing the linking constraints, which synchronizes CDU feedstocks decisions in both

subproblems.

7. We developed a new generic hybrid dual algorithm for optimizing the Lagrange multi-

pliers in the context of Lagrangian decomposition. This approach is based on solving

an LP dual problem composed of cutting planes and a subgradient-based boxstep.

Only two parameters have to be set up by the user: the maximum step size and the

maximum deviation from the subgradient step.

7.7 Recommendations for Future Work

1. As mentioned in chapter 2, a major limitation of the proposed time representations is

that operations must be sequenced as a whole. However, in network-based scheduling

problems, reaction operations are often decomposed in 3 phases: reactor charging

(considered as instantaneous), reaction process, reactor discharging (also considered

Chapter 7. Conclusion 165

7.7 Recommendations for Future Work

as instantaneous). In order to track inventory levels, it is necessary to sequence start

and end events, independently. This can be accomplished by extending to proposed

time representations and assigning simultaneously two priority-slots to each operation

execution. Any solution can then be represented by a sequence of start and end events,

corresponding to all transfer events. Additionally, this concept can be used to model

discrete resource constraint as start and end events correspond to allocation and

release events.

2. The additive approach presented in chapter 2 has not been applied to the integrated

refinery planning and crude-oil scheduling problem studied in chapter 6. Therefore,

the automatic selection of the number of priority-slots has not been addressed yet.

The integration approach can be improved by integrating this algorithm to the La-

grangian decomposition procedure. In particular, two different approaches could be

investigated. The first one consists of executing the additive approach at each itera-

tion to solve the crude-oil scheduling problem. The second consists of executing the

additive approach outside of the primal-dual procedure using the optimal Lagrange

multiplier form each iteration as a starting point for the next iteration. Additionally,

cutting planes generated at previous iterations may still be re-used for later iteration,

thus improving the convergence of the entire algorithm.

3. The two-step MILP-NLP decomposition procedure proposed in chapter 2 can be ex-

tended in two different ways. For local optimization, the procedure may iterate by

adding outer-approximation cuts generated from the NLP steps (as in DICOPT). The

first MILP provides an upper bound, while successive iterations may provide addi-

tional feasible solutions, thus improving the lower bound. For global optimization,

the NLP problems may be solved with spatial branch and bound and the procedure

may iterate by adding Benders cuts to the MILP master problem (as in Benders de-

composition). In any case, the algorithm may be adapted to the specific structure of

the crude-oil operations scheduling problem.

4. The MILP relaxation tightening approach developed in chapter 5 has not been applied

Chapter 7. Conclusion 166

7.7 Recommendations for Future Work

towards the integration of refinery planning and crude-oil operations scheduling. The

results have shown that the best solution for the larger refinery example in chapter 6

has been obtained with an optimality gap of 3.8%. This optimality gap can be reduced

by improving the upper bound obtained by the Lagrangian relaxation and therefore

by improving the MILP relaxation of the crude-oil scheduling problem as studied in

chapter 5.

Chapter 7. Conclusion 167

Chapter 8

Bibliography

Achterberg, T., 2004. SCIP - a framework to integrate constraint and mixed integer pro-
gramming - a framework to integrate constraint and mixed integer programming. Tech.
rep., Zuse Institue Berlin.

Adams, J., Balas, E., Zawack, D., 1988. The shifting bottleneck procedure for job shop
scheduling. Management Science 34 (3), 391–401.

Adhya, N., Tawarmalani, M., Sahinidis, N. V., 1999. A Lagrangian approach to the pooling
problem. Industrial and Engineering Chemistry Research 38 (5), 1956–1972.

Adjiman, C. S., Androulakis, I. P., Floudas, C. A., 2000. Global optimization of mixed-
integer nonlinear problems. AIChE Journal 46 (9), 1769–1797.

Alhajri, I., Elkamel, A., Albahri, T., Douglas, P. L., 2008. A nonlinear programming model
for refinery planning and optimisation with rigorous process models and product quality
specifications. International Journal of Oil, Gas and Coal Technology 1 (3), 283–307.

Andersen, H. R., Hadzic, T., Hooker, J. N., Tiedermann, P., 2007. A constraint store
based on multivalued decision diagrams. In: 13th International Conference on Principles
and Practice of Constraint Programming. Vol. 4741 of Lecture Notes in Computer Science.
Springer, pp. 118–132.

Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N., 2004. Pooling prob-
lem: Alternate formulations and solution methods. Management Science 50 (6), 761–776.

Audet, C., Hansen, P., Jaumard, B., Savard, G., 2000. A branch and cut algorithm for
nonconvex quadratically constrained quadratic programming. Mathematical Programming
87 (1), 131–152.

Balas, E., 1969. Machine sequencing via disjunctive graphs: An implicit enumeration
algorithm. Operations Research 17 (6), 941–957.

Balas, E., 1985. Disjunctive programming and a hierarchy of relaxations for discrete opti-
mization problems. SIAM Journal on Algebraic and Discrete Methods 6 (3), 466–486.

Baptiste, P., Le Pape, C., Nuijten, W., 2001. Constraint-based Scheduling: Applying Con-
straint Programming to Scheduling Problems. Vol. 39 of International Series in Operations
Research and Management Science. Kluwer Academic Publishers.

Chapter 8. Bibliography 168

Barahona, F., Anbil, R., 2000. The volume algorithm: producing primal solutions with a
subgradient method. Mathematical Programming 87 (3), 385–399.

Bazaraa, M. S., Sherali, H. D., 1981. On the choice of step size in subgradient optimization.
European Journal of Operational Research 7 (4), 380–388.

Bergamini, M. L., Grossmann, I. E., Scenna, N., Aguire, P., 2008. An improved piece-
wise outer-approximation algorithm for the global optimization of minlp models involving
concave and bilinear terms. Computers and Chemical Engineering 32, 477–493.

Bixby, R. E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R., 1999. MIP: Theory
and practice - closing the gap. In: System Modelling and Optimization. IFIP Conference
Proceedings. pp. 19–50.

Bodington, C. E., Baker, T. E., 1990. A history of mathematical programming in the
petroleum industry. Interfaces 20 (4), 117–127.

Camerini, P. M., Fratta, L., Maffioli, F., 1975. On improving relaxation methods by mod-
ified gradient techniques. Mathematical Programming Studies 3, 26–34.

Casas-Liza, J., Pinto, J. M., 2005. Optimal scheduling of a lube oil and paraffin production
plant. Computers and Chemical Engineering 29 (6), 1329–1344.

Castro, P. M., Grossmann, I. E., 2005. New continuous-time milp model for the short-
term scheduling of multistage batch plants. Industrial and Engineering Chemistry Research
44 (24), 9175–9190.

Castro, P. M., Grossmann, I. E., 2006. An efficient milp model for the short-term scheduling
of single stage batch plants. Computers and Chemical Engineering 30 (6-7), 1003–1018.

Castro, P. M., Grossmann, I. E., Novais, A. Q., 2006. Two new continuous-time models for
the scheduling of multistage batch plants with sequence dependent changeovers. Industrial
and Engineering Chemistry Research 45 (18), 6210–6226.

Cerdá, J., Henning, G. P., Grossmann, I. E., 1997. A mixed-integer linear programming
model for short-term scheduling of single-stage multiproduct batch plants with parallel
lines. Industrial and Engineering Chemistry Research 36 (5), 1695–1707.

Cheney, E. W., Goldstein, A. A., 1959. Newton’s method for convex programming and
Tchebycheff approximation. Numerische Mathematik 1 (1), 253–268.

Côté, M. C., Gendron, B., Rousseau, L. M., 2007. Modeling the regular constraint with
integer programming. In: Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. Vol. 4510 of Lecture Notes in Computer Science.
Springer, pp. 29–43.

Dua, V., 2010. A mixed-integer programming approach for optimal configuration of arti-
ficial neural networks. Chemical Engineering Research and Design 88 (1), 55–60.

Chapter 8. Bibliography 169

Duran, M. A., Grossmann, I. E., 1986. An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Mathematical Programming 36 (3), 307–339.

Erdirik-Dogan, M. E., Grossmann, I. E., 2008. Simultaneous planning and scheduling of
single-stage multi-product continuous plants with parallel lines. Computers and Chemical
Engineering 32 (11), 2664–2683.

Fisher, M. L., 1981. The Lagrangian relaxation method for solving integer programming
problems. Management Science 27 (1), 1–18.

Fisher, M. L., 1985. An application oriented guide to Lagrangian relaxation. Interfaces 15,
10–21.

Floudas, C. A., Aggarwal, A., 1990. A decomposition strategy for global optimum search
in the pooling problem. ORSA Journal on Computing 2 (3), 225–235.

Floudas, C. A., Lin, X., 2004. Continuous-time versus discrete-time approaches for schedul-
ing of chemical processes: A review. Computers and Chemical Engineering 28, 2109–2129.

Floudas, C. A., Visweswaran, V., 1993. A primal-relaxed dual global optimization ap-
proach. Journal of Optimization Theory and Applications 78 (2), 187–225.

Foulds, L. R., Haugland, D., Jörnsten, K., 1992. A bilinear approach to the pooling prob-
lem. Optimization 24 (1 & 2), 165–180.

Frangioni, A., 2005. About Lagrangian methods in integer optimization. Annals of Oper-
ations Research 139 (1), 163–193.

Furman, K. C., Jia, Z., Ierapetritou, M. G., 2007. A robust event-based continuous time
formulation for tank transfer scheduling. Industrial and Engineering Chemistry Research
46 (26), 9126–9136.

Garvin, W. W., Crandall, H. W., John, J. B., Spellman, R. A., 1957. Applications of linear
programming in the oil industry. Management Science 3 (4), 407–430.

Goffin, J. L., Haurie, A., Vial, J. P., 1992. Decomposition and nondifferentiable optimiza-
tion with the projective algorithm. Management Science 38 (2), 284–302.

Goltz, H.-J., Matzke, D., 1998. Practical Aspects of Declarative Languages. Vol. 1551
of Lecture Notes in Computer Science. Springer, Ch. University Timetabling Using Con-
straint Logic Programming, pp. 320–334.

Gomory, R. E., 1958. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society 64 (5), 275–278.

Grossmann, I. E., 2002. Review of nonlinear mixed-integer and disjunctive programming
techniques. Optimization and Engineering 3 (3), 227–252.

Chapter 8. Bibliography 170

Grossmann, I. E., 2005. Enterprise-wide optimization: A new frontier in process systems
engineering. AIChE Journal 51 (7), 1846–1857.

Gueddar, T., Dua, V., 2010. Novel model reduction techniques for refinery-wide energy
optimization. Applied Energy Journal.

Guignard, M., 2003. Lagrangean relaxation. Top 11 (2), 151–228.

Gupta, S., Karimi, I. A., 2003. An improved milp formulation for scheduling multiproduct
multistage batch plants. Industrial and Engineering Chemistry Research 42, 2365–2380.

Hart, W. D., 1978. L.P. behavior - recursion example comments. ACM SIGMAP Bulletin
25, 29–33.

Haverly, C. A., 1978. Studies of the behavior of recursion for the pooling problem. ACM
SIGMAP Bulletin 25, 19–28.

Haverly, C. A., 1980. Recursion model behavior: more studies. ACM SIGMAP Bulletin
28, 39–41.

Held, M., Karp, R. M., 1971. The traveling-salesman problem and minimum spanning
trees: Part ii. Mathematical Programming 1 (1), 6–25.

Held, M., Karp, R. M., 1974. Validation of subgradient optimization. Mathematical Pro-
gramming 6 (1), 62–88.

Hoda, S., van Hoeve, W.-J., Hooker, J. N., 2010. A systematic approach to mdd-based
constraint programming. In: 16th International Conference on Principles and Practice of
Constraint Programming. Lecture Notes in Computer Science. Springer.

Hooker, J. N., 2007. Integrated Methods for Optimization. Springer.

Hopcroft, J. E., Ullman, J. D., 1979. Introduction to Automata Theory, Languages and
Computation. Addison Wesley.

Hui, C., Gupta, A., van der Meulen, H. A. J., 2000. A novel milp formulation for short-term
scheduling of multi-stage multi-product batch plants with sequence-dependent constraints.
Computers and Chemical Engineering 24 (12), 2705–2717.

Ierapetritou, M. G., Floudas, C. A., 1998. Effective continuous-time formulation for short-
term scheduling. 1. Multipurpose batch processes. Industrial and Engineering Chemistry
Research 37 (11), 4341–4359.

ILOG Inc., 2007. ILOG CPLEX 11.0 User’s Manual.

Janak, S. L., Lin, X., Floudas, C. A., 2004. Enhance continuous-time unit-specific event-
based formulation for short-term scheduling of multipurpose batch processes: Resource
consraints and mixed storage policies. Industrial and Engineering Chemistry Research
43 (10), 2516–2533.

Chapter 8. Bibliography 171

Jia, Z., Ierapetritou, M. G., Kelly, J. D., 2003. Refinery short-term scheduling using con-
tinuous time formulation: Crude-oil operations. Industrial and Engineering Chemistry
Research 42 (13), 3085–3097.

Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., 2000. Progress in linear
programming-based algorithms for integer programming: An exposion. INFORMS Journal
on Computing 12 (1), 2–23.

Joly, M., Pinto, J. M., 2003. Mixed-integer programming techniques for the scheduling
of fuel oil and asphalt production. Chemical Engineering Research and Design 81 (4),
427–447.

Kallrath, J., 2002. Planning and scheduling in the process industry. OR Spectrum 24 (3),
219–250.

Karuppiah, R., Furman, K. C., Grossmann, I. E., 2008. Global optimization for scheduling
refinery crude oil operations. Computers and Chemical Engineering 32 (11), 2745–2766.

Kelley, J. E., 1960. The cutting-plane method for solving convex programs. Journal of the
Society for Industrial and Applied Mathematics 8 (4), 703–712.

Kelly, J. D., Mann, J. L., 2003. Crude oil blend scheduling optimization: an application
with multimillion dollar benefits. Hydrocarbon Processing 82 (6), 47–53.

Kesavan, P., Allgor, R. J., Gatzke, E. P., Barton, P. I., 2004. Outer approximation al-
gorithms for separable nonconvex mixed-integer nonlinear programs. Mathematical Pro-
gramming 100 (3), 517–535.

Kondili, E., Pantelides, C. C., Sargent, R. W. H., 1993. A general algorithm for short-term
scheduling of batch operations. I: MILP formulation. Computers and Chemical Engineering
17 (2), 211–227.

Ku, H., Karimi, I. A., 1988. Scheduling in serial multiproduct batch processes with finite
interstage storage: a mixed integer linear program formulation. Industrial and Engineering
Chemistry Research 27, 1840–1848.

Land, A. H., Doig, A. G., 1960. An automatic method of solving discrete programming
problems. Econometrica 28 (3), 497–520.

Lasdon, L., Joffe, B., 1990. The relationship between distributive recursion and succes-
sive linear programming in refining production planning models. In: NPRA Computer
Conference. Seattle, WA.

Lee, H., Pinto, J. M., Grossmann, I. E., Park, S., 1996. Mixed-integer linear programming
model for refinery short-term scheduling of crude oil unloading with inventory manage-
ment. Industrial and Engineering Chemistry Research 35 (5), 1630–1641.

Chapter 8. Bibliography 172

Lemaréchal, C., 1974. An algorithm for minimizing convex functions. In: Proceedings
IFIP’74 Congress. pp. 552–556.

Leyffer, S., 2001. Integrating SQP and branch-and-bound for mixed integer nonlinear
programming. Computational Optimization and Applications 18 (3), 295–309.

Li, W., Hui, C., Li, A., 2005. Integrating cdu, fcc and product blending models into refinery
planning. Computers and Chemical Engineering 29 (9), 2010–2028.

Li, Z., Ierapetritou, M. G., 2010. Production planning and scheduling integration through
augmented Lagrangian optimization. Computers and Chemical Engineering 34 (6), 996–
1006.

Lin, Y., Schrage, L., 2009. The global solver in the lindo api. Optimization Methods and
Software 24 (4-5), 657 – 668.

Liu, Y., Karimi, I. A., 2007. Scheduling multistage, multiproduct batch plants with
nonidentical parallel unitsandunlimitedintermediatestorage. Chemical Engineering Science
62 (6), 1549–1566.

Manne, A. S., 1958. A linear programming model of the U. S. petroleum refining industry.
Econometrica 26 (1), 67–106.

Maravelias, C. T., Grossmann, I. E., 2003. New general continuous-time state-task net-
work formulation for short-term scheduling of multipurpose batch plants. Industrial and
Engineering Chemistry Research 42 (13), 3056–3074.

Maravelias, C. T., Grossmann, I. E., 2006. On the relation of continuous- and discrete-time
state-task network formulations. AIChE Journal 52 (2), 843–849.

Maravelias, C. T., Papalamprou, K., 2009. Polyhedral results for discrete-time production
planning mip formulations for continuous processes. Computers and Chemical Engineering
33 (11), 1890–1904.

Maravelias, C. T., Sung, C., 2009. Integration of production planning and scheduling:
Overview, challenges and opportunities. Computers and Chemical Engineering 33 (12),
1919–1930.

Marchetti, P. A., Cerdá, J., 2009. An approximate mathematical framework for resource-
constrained multistage batch scheduling. Chemical Engineering Science 64, 2733–2748.

Margot, F., 2008. Symmetry in integer linear programming. Tepper Working Paper 2008
E-37.

Marsten, R. E., Hogan, W. W., Blankenship, J. W., 1975. The boxstep method for large-
scale optimization. Operations Research 23 (3), 389–405.

Chapter 8. Bibliography 173

McCormick, G. P., 1976. Computability of global solutions to factorable nonconvex pro-
grams: Part 1 - convex underestimating problems. Mathematical Programming 10, 147–
175.

Méndez, C. A., Cerdá, J., 2003. Dynamic scheduling in multiproduct batch plants. Com-
puters and Chemical Engineering 27 (8-9), 1247–1259.

Méndez, C. A., Cerdá, J., 2007. A precedence-based monolithic approach to lotsizing and
scheduling of multiproduct batch plants. In: 17th European Symposium on Computer
Aided Process Engineering - ESCAPE17. Vol. 24 of Computer Aided Chemical Engineer-
ing. pp. 679–684.

Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., Fahl, M., 2006a. State-
of-the-art review of optimization methods for short-term scheduling of batch processes.
Computers and Chemical Engineering 30, 913–946.

Méndez, C. A., Grossmann, I. E., Harjunkoski, I., Kaboré, P., 2006b. A simultaneous
optimization approach for off-line blending and scheduling of oil-refinery operations. Com-
puters and Chemical Engineering 30, 614–634.

Méndez, C. A., Henning, G. P., Cerdá, J., 2001. An milp continuous-time approach to
short-term scheduling of resource-constrained multistage flowshop batch facilities. Com-
puters and Chemical Engineering 25, 701–711.

Meyer, C. A., Floudas, C. A., 2006. Global optimization of a combinatorially complex
generalized pooling problem. AIChE Journal 52 (3), 1027–1037.

Michel, L., van Hentenryck, P., 2003. Comet in context. In: Principles of computing &
knowledge: Proceedings of the Paris C. Kanellakis Memorial Workshop. Vol. 41 of ACM
International Conference Proceeding Series. pp. 95–107.

Milano, M., Wallace, M., 2006. Integrating operations research in constraint programming.
4OR: A Quarterly Journal of Operations Research 4 (3), 175–219.

Misener, R., Floudas, C. A., 2009. Advances for the pooling problem: Modeling, global
optimization, and computational studies. Applied and Computational Mathematics 8 (1),
3–22.

Mitchell, M., 1998. An Introduction to Genetic Algorithms. The MIT Press.

Moro, L. F. L., Pinto, J. M., 2004. Mixed-integer programming approach for short-term
crude oil scheduling. Industrial and Engineering Chemistry Research 43, 85–94.

Mouret, S., Grossmann, I. E., Pestiaux, P., 2008. Multi-operations time-slots model for
crude-oil operations scheduling. In: 18th European Symposium on Computer Aided Pro-
cess Engineering - ESCAPE18. Vol. 25 of Computer Aided Chemical Engineering. pp.
593–598.

Chapter 8. Bibliography 174

Mouret, S., Grossmann, I. E., Pestiaux, P., 2009a. A novel priority-slot based continuous-
time formulation for crude-oil scheduling problems. Industrial and Engineering Chemistry
Research 48 (18), 8515–8528.

Mouret, S., Grossmann, I. E., Pestiaux, P., 2009b. Tightening the linear relaxation of a
mixed integer nonlinear program using constraint programming. In: Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems.
Vol. 5547 of Lecture Notes in Computer Science. Springer, pp. 208–222.

Mouret, S., Grossmann, I. E., Pestiaux, P., 2010a. Integration of refinery planning and
crude-oil scheduling using Lagrangian decomposition. To be submitted.

Mouret, S., Grossmann, I. E., Pestiaux, P., 2010b. Time representations and mathematical
models for process scheduling problems. Computers and Chemical Engineering.

Neiro, S. M. S., Pinto, J. M., 2006. Lagrangean decomposition applied to multiperiod plan-
ning of petroleum refineries under uncertainty. Latin American Applied Research 36 (4),
213–220.

Nemhauser, G. L., Wolsey, L. A., 1999. Integer and Combinatorial Optimization. Wiley-
Interscience.

Pantelides, C. C., 1994. Unified frameworks for optimal process planning and schedul-
ing. In: Rippin, D., Hale, J., Davis, J. (Eds.), Proceedings of the Second International
Conference on Foundations of Computer-Aided Process Operations. pp. 253–274.

Pesant, G., 2004. A regular language membership constraint for finite sequences of vari-
ables. In: 10th International Conference on Principles and Practice of Constraint Pro-
gramming. Vol. 3258 of Lecture Notes in Computer Science. Springer, pp. 482–495.

Pham, V., Laird, C. D., El-Halwagi, M., 2009. Convex hull discretization approach to the
global optimization of pooling problems. Industrial and Engineering Chemistry Research
48 (4), 1973–1979.

Pinto, J. M., Grossmann, I. E., 1995. A continuous time mixed integer linear programming
model for short term scheduling of multistage batch plants. Industrial and Engineering
Chemistry Research 34 (9), 3037–3051.

Pinto, J. M., Joly, M., Moro, L. F. L., 2000. Planning and scheduling models for refinery
operations. Computers and Chemical Engineering 24, 2259–2276.

Pinto, J. M., Moro, L. F. L., 2000. A planning model for petroleum refineries. Brazilian
Journal of Chemical Engineering 17 (4-7), 575–586.

Prasad, P., Maravelias, C. T., 2008. Batch selection, assignment and sequencing in multi-
stage multi-product processes. Computers and Chemical Engineering 32 (6), 1106–1119.

Chapter 8. Bibliography 175

Quesada, I., Grossmann, I. E., 1992. An lp/nlp based branch and bound algorithm for
minlp optimization. Computers and Chemical Engineering 16, 937–947.

Quesada, I., Grossmann, I. E., 1995a. A global optimization algorithm for linear fractional
and bilinear programs. Journal of Global Optimization 6 (1), 39–76.

Quesada, I., Grossmann, I. E., 1995b. Global optimization of bilinear process networks
with multicomponent flows. Computers and Chemical Engineering 19 (12), 1219–1242.

Reddy, P. C. P., Karimi, I. A., Srinivasan, R., 2004. A new continuous-time formulation
for scheduling crude oil operations. Chemical Engineering Science 59 (6), 1325–1341.

Régin, J.-C., 2003. Global constraints and filtering algorithms. In: Constraints and Integer
Programming Combined. Kluwer, Ch. 1.

Robertson, G., Palazoglu, A., Romagnoli, J. A., 2010. Refinery scheduling of crude oil
unloading, storing, and processing considering production level cost. In: 20th European
Symposium on Computer Aided Process Engineering - ESCAPE20. Vol. 28 of Computer
Aided Chemical Engineering. pp. 1159–1164.

Rossi, F., van Beek, P., Walsh, T. (Eds.), 2006. Handbook of Constraint Programming.
Elsevier.

Sahinidis, N. V., 1996. Baron: A general purpose global optimization software package.
Journal of Global Optimization 8 (2), 201–205.

Sahinidis, N. V., 2003. Global Optimization and Constraint Satisfaction. Vol. 2861 of
Lecture Notes in Computer Science. Springer, Ch. The Branch-and-Reduce Approach, pp.
1–16.

Schilling, G., Pantelides, C. C., 1996. A simple continuous-time process scheduling formu-
lation and a novel solution algorithm. Computers and Chemical Engineering 20 (Suppl. 2),
S1221–S1226.

Shah, N., 1996. Mathematical programming techniques for crude oil scheduling. Computers
and Chemical Engineering 20, 1227–1232.

Shah, N., Pantelides, C. C., Sargent, R. W. H., 1993. A general algorithm for short-
term scheduling of batch operations. 2. Computational issues. Computers and Chemical
Engineering 17 (2), 229–244.

Shaw, P., 1998. Using constraint programming and local search methods to solve ve-
hicle routing problems. In: 4th International Conference on Principles and Practice of
Constraint Programming. Vol. 1520 of Lecture Notes in Computer Science. Springer, pp.
417–431.

Chapter 8. Bibliography 176

Tawarmalani, M., Sahinidis, N. V., 2004. Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study. Mathematical Programming 99 (3),
563–591.

van Hentenryck, P., 1989. Constraint satisfaction in logic programming. The MIT Press.

van Hoeve, W.-J., Pesant, G., Rousseau, L. M., Sabharwal, A., 2009. New filtering algo-
rithms for combinations of among constraints. Constraints 14 (2), 273–292.

Wassick, J. M., 2009. Enterprise-wide optimization in an integrated chemical complex.
Computers and Chemical Engineering 33 (12), 1950–1963.

Waterer, H., Johnson, E. L., Nobili, P., Savelsbergh, M. W. P., 2002. The relation of time
indexed formulations of single machine scheduling problems to the node packing problem.
Mathematical Programming 93 (3), 477–494.

Wenkay, L., Hui, C., Hua, B., Tong, Z., 2002. Scheduling crude oil unloading, storage, and
processing. Industrial and Engineering Chemistry Research 41 (26), 6723–6734.

Westerlund, T., Pettersson, F., 1995. An extended cutting plane method for solving convex
minlp problems. Computers and Chemical Engineering 19 (Suppl. 1), S131–S136.

Wicaksono, D. S., Karimi, I. A., 2008. Piecewise milp under- and overestimators for global
optimization of bilinear programs. AIChE Journal 54 (4), 991–1008.

Wikipedia, 2010. Oil refinery. http://en.wikipedia.org/wiki/Oil_refinery.

Yunes, T., Aron, I. D., Hooker, J. N., 2010. An integrated solver for optimization problems.
Operations Research 58 (2), 342–356.

Zhang, J., Kim, N., Lasdon, L., 1985. An improved successive linear programming algo-
rithm. Management Science 31 (10), 1312–1331.

Zhang, X., Sargent, R. W. H., 1996. The optimal operation of mixed production facilities:
A general formulation and some approaches for the solution. Computers and Chemical
Engineering 20 (6-7), 897–904.

Chapter 8. Bibliography 177

Appendices

178

Appendix A

On Tightness of Strengthened Constraints

We present mathematical results on the tightness of strengthened constraints.

• Constraint (2.17) is at least as tight as constraint (2.4). Indeed, assume constraint

(2.17) is satisfied for W ′ such that v1, v2 ∈W ′:

Ziv1 + Ziv2 ≤
∑
v∈W ′

Ziv ≤ 1

• Constraint (2.6) is at least as tight as constraints (2.5). Indeed, assume constraint

(2.6) is satisfied for v1, v2 ∈W :

Ei1v1 ≤ Ei1v1 + Ei1v2

≤ Si2v1 + Si2v2 +H · (1− Zi2v1 − Zi2v2)

≤ Si2v2 +H · (1− Zi2v2) + Si2v1 −H · Zi2v1

≤ Si2v2 +H · (1− Zi2v2)

• Constraint (2.18) is at least as tight as constraint (2.6). Indeed, assume constraint

(2.18) is satisfied for W ′ such that v1, v2 ∈W ′:

Ei1v1 + Ei1v2 ≤
∑
v∈W ′

Ei1v

≤
∑
v∈W ′

Si2v +H ·

(
1−

∑
v∈W ′

Zi2v

)

≤ Si2v1 + Si2v2 +H · (1− Zi2v1 − Zi2v2) +
∑

v∈W ′\{v1,v2}

(Si2v −H · Zi2v)

≤ Si2v1 + Si2v2 +H · (1− Zi2v1 − Zi2v2)

Appendix A. On Tightness of Strengthened Constraints 179

• Constraint (2.19) is at least as tight as constraint (2.18). Indeed, assume constraint

(2.19) is satisfied for W ′:

∑
v∈W ′

Ei1v ≤
∑
v∈W ′

Ei1v +
∑
i∈T

i1<i<i2

∑
v∈W ′

Div ≤
∑
v∈W ′

Si2v +H · (1−
∑
v∈W ′

Zi2v)

• Constraint (2.21a) is at least as tight as constraint (2.13a). Indeed, assume constraint

(2.21a) is satisfied for W ′ such that v′ ∈W ′:

Siv ≤
∑
v′∈W ′

Siv′ ≤ ti

• Constraint (2.21b) is at least as tight as constraint (2.13b). Indeed, assume constraint

(2.21b) is satisfied for W ′ such that v ∈W ′:

Siv ≥ Siv +
∑

v′∈W ′\{v}

(Siv′ −H · Ziv′)

≥
∑
v′∈W ′

Siv′ −H ·
∑

v′∈W ′\{v}

Ziv′

≥ ti −H · (1−
∑
v′∈W ′

Ziv′)−H ·
∑

v′∈W ′\{v}

Ziv′

≥ ti −H · (1− Ziv)

• Constraint (2.26) is at least as tight as constraint (2.5). Indeed, assume constraint

(2.26) is satisfied for sets of operations W1 and W2 such that v1 ∈W1 and v2 ∈W2:

Ei1v1 ≤
∑
v∈W1

Ei1v

≤
∑
v∈W2

Si2v +H · (1−
∑
v∈W2

Zi2v)

≤ Si2v2 +H · (1− Zi2v2) +
∑

v∈W2\{v2}

(Si2v −H · Zi2v)

≤ Si2v2 +H · (1− Zi2v2)

Appendix A. On Tightness of Strengthened Constraints 180

Appendix B

Crude-Oil Operations Scheduling

Examples

Crude Vessels Storage Tanks Charging Tanks CDU

1

2

3

4

5

6

7

8

Figure B.1: Refinery crude-oil scheduling system for COSP1.

Table B.1: Data for COSP1.
Scheduling horizon 8 days

Vessels Arrival time Composition Amount of crude (Mbbl)

Vessel 1 0 100% A 1,000
Vessel 2 4 100% B 1,000

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 [0, 1,000] 100% A 250
Tank 2 [0, 1,000] 100% B 750

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 (mix X) [0, 1,000] 100% C 500
Tank 2 (mix Y) [0, 1,000] 100% D 500

Crudes Property 1 (sulfur concentration) Gross margin ($/bbl)

Crude A 0.01 9
Crude B 0.06 4
Crude C 0.02 8
Crude D 0.05 5

Crude mixtures Property 1 (sulfur concentration) Demand (Mbbl)

Crude mix X [0.015, 0.025] [1,000, 1,000]
Crude mix Y [0.045, 0.055] [1,000, 1,000]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]

Distillation flowrate [50, 500] Number of distillations 3

Appendix B. Crude-Oil Operations Scheduling Examples 181

Crude Vessels Storage Tanks Charging Tanks CDUs

1

2

4

5

6

7

11

12

3

8

10

9

13

14

Figure B.2: Refinery crude-oil scheduling system for COSP2 and COSP3.

Table B.2: Data for COSP2.
Scheduling horizon 10 days

Vessels Arrival time Composition Amount of crude (Mbbl)

Vessel 1 0 100% A 1,000
Vessel 2 3 100% B 1,000
Vessel 3 6 100% C 1,000

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 [0, 1,000] 100% A 200
Tank 2 [0, 1,000] 100% B 500
Tank 3 [0, 1,000] 100% C 700

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 (mix X) [0, 1,000] 100% D 300
Tank 2 (mix Y) [0, 1,000] 100% E 500
Tank 3 (mix Z) [0, 1,000] 100% F 300

Crudes Property 1 Property 2 Gross margin ($/bbl)

Crude A 0.01 0.04 1
Crude B 0.03 0.02 3
Crude C 0.05 0.01 5
Crude D 0.0167 0.333 1.67
Crude E 0.03 0.23 3
Crude F 0.0433 0.133 4.33

Crude mixtures Property 1 Property 2 Demand (Mbbl)

Crude mix X [0.01, 0.02] [0.03, 0.038] [1,000, 1,000]
Crude mix Y [0.025, 0.035] [0.018, 0.027] [1,000, 1,000]
Crude mix Z [0.04, 0.048] [0.01, 0.018] [1,000, 1,000]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]

Distillation flowrate [50, 500] Number of distillations 5

Appendix B. Crude-Oil Operations Scheduling Examples 182

Table B.3: Data for COSP3.
Scheduling horizon 12 days

Vessels Arrival time Composition Amount of crude (Mbbl)

Vessel 1 0 100% A 500
Vessel 2 4 100% B 500
Vessel 3 8 100% C 500

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 [0, 1,000] 100% D 200
Tank 2 [0, 1,000] 100% E 200
Tank 3 [0, 1,000] 100% F 200

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 (mix X) [0, 1,000] 100% G 300
Tank 2 (mix Y) [0, 1,000] 100% E 500
Tank 3 (mix Z) [0, 1,000] 100% F 300

Crudes Property 1 Gross margin ($/bbl)

Crude A 0.01 1
Crude B 0.085 6
Crude C 0.06 8.5
Crude D 0.02 2
Crude E 0.05 5
Crude F 0.08 8
Crude G 0.03 3

Crude mixtures Property 1 Demand (Mbbl)

Crude mix X [0.025, 0.035] [500, 500]
Crude mix Y [0.045, 0.065] [500, 500]
Crude mix Z [0.075, 0.085] [500, 500]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]

Distillation flowrate [50, 500] Number of distillations 5

Crude Vessels Storage Tanks Charging Tanks CDUs

1

2

5

6

7

14

15

3

8

10

9

16

17

4

12

13

11
18

19

Figure B.3: Refinery crude-oil scheduling system for COSP4.

Appendix B. Crude-Oil Operations Scheduling Examples 183

Table B.4: Data for COSP4.
Scheduling horizon 15 days

Vessels Arrival time Composition Amount of crude (Mbbl)

Vessel 1 0 100% A 600
Vessel 2 5 100% B 600
Vessel 3 10 100% C 600

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 [100, 900] 100% D 600
Tank 2 [100, 1,100] 100% A 100
Tank 3 [100, 1,100] 100% B 500
Tank 4 [100, 1,100] 100% C 400
Tank 5 [100, 900] 100% E 300
Tank 6 [100, 900] 100% E 600

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)

Tank 1 (mix X) [0, 800] 100% F 50
Tank 2 (mix Y) [0, 800] 100% G 300
Tank 3 (mix Z) [0, 800] 100% H 300
Tank 4 (mix W) [0, 800] 100% E 300

Crudes Property 1 Gross margin ($/bbl)

Crude A 0.03 3
Crude B 0.05 5
Crude C 0.065 6.5
Crude D 0.031 3.1
Crude E 0.075 7.5
Crude F 0.0317 3.17
Crude G 0.0483 4.83
Crude H 0.0633 6.33

Crude mixtures Property 1 Demand (Mbbl)

Crude mix X [0.03, 0.035] [600, 600]
Crude mix Y [0.043, 0.05] [600, 600]
Crude mix Z [0.06, 0.065] [600, 600]
Crude mix W [0.071, 0.08] [600, 600]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]

Distillation flowrate [20, 500] Number of distillations 7

Appendix B. Crude-Oil Operations Scheduling Examples 184

Appendix C

Mathematical Models for Crude-Oil

Operations Scheduling Problems

C.1 MOS Model

max
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

s.t. Variable bound and time constraints (3.1)

Cardinality constraints (3.2)

Precedence constraints (3.3)

Continuous distillation constraints (3.4)

Variable constraints (3.5)

Operation constraints (3.6)

Resource constraints (3.8)

Demand constraint (3.9)

Clique-based assignment constraint (3.10)

Clique-based non-overlapping constraint (3.11)

Ziv ≤
∑
v′∈W

NOvv′=1

Z(i−1)v′ i ∈ T, i 6= 1, v ∈W

∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv, V
t
iv, Vivc, L

t
ir, Lirc ≥ 0 i ∈ T, v ∈W, c ∈ C, r ∈ R

Ziv ∈ {0, 1} i ∈ T, v ∈W

Appendix C. Mathematical Models for Crude-Oil Scheduling Problems 185

C.2 MOS-SST Model

C.2 MOS-SST Model

max
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

s.t. Variable bound and time constraints (3.1)

Cardinality constraints (3.2)

Precedence constraints (3.3)

Continuous distillation constraints (3.4)

Variable constraints (3.5)

Operation constraints (3.6)

Resource constraints (3.8)

Demand constraint (3.9)

Clique-based assignment constraint (3.10)

Clique-based non-overlapping constraint (3.11)

ti−1 ≤ ti i ∈ T, i 6= 1∑
v∈W ′

Siv ≤ ti i ∈ T,W ′ ∈ clique(GNO)

∑
v∈W ′

Siv ≥ ti −H · (1−
∑
v∈W ′

Ziv) i ∈ T,W ′ ∈ clique(GNO)

∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv, V
t
iv, Vivc, L

t
ir, Lirc ≥ 0 i ∈ T, v ∈W, c ∈ C, r ∈ R

Ziv ∈ {0, 1} i ∈ T, v ∈W

ti ∈ [0, H] i ∈ T

Appendix C. Mathematical Models for Crude-Oil Scheduling Problems 186

C.3 MOS-FST Model

C.3 MOS-FST Model

max
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

s.t. Variable bound and time constraints (3.1)

Cardinality constraints (3.2)

Precedence constraints (3.3)

Continuous distillation constraints (3.4)

Variable constraints (3.5)

Operation constraints (3.6)

Resource constraints (3.8)

Demand constraint (3.9)

Clique-based assignment constraint (3.10)

Clique-based non-overlapping constraint (3.11)

Siv = ti · Ziv i ∈ T, v ∈W

Siv, Div, Eiv, V
t
iv, Vivc, L

t
ir, Lirc ≥ 0 i ∈ T, v ∈W, c ∈ C, r ∈ R

Ziv ∈ {0, 1} i ∈ T, v ∈W

ti =
i− 1

n
·H i ∈ T

Appendix C. Mathematical Models for Crude-Oil Scheduling Problems 187

C.4 SOS Model

C.4 SOS Model

max
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc

s.t. Variable bound and time constraints (3.1)

Cardinality constraints (3.2)

Precedence constraints (3.3)

Continuous distillation constraints (3.4)

Variable constraints (3.5)

Operation constraints (3.6)

Resource constraints (3.8)

Demand constraint (3.9)

Clique-based assignment constraint (3.10)

Clique-based non-overlapping constraints (4.1)

Biclique-based non-overlapping constraints (4.2)

Symmetry-breaking constraints (4.3)∑
v∈W

Ziv ≥ 1 i ∈ T

Siv, Div, Eiv, V
t
iv, Vivc, L

t
ir, Lirc ≥ 0 i ∈ T, v ∈W, c ∈ C, r ∈ R

Ziv ∈ {0, 1} i ∈ T, v ∈W

Appendix C. Mathematical Models for Crude-Oil Scheduling Problems 188

Appendix D

Mathematical Model for the Refinery

Planning Problem

In this section, the ANN model developed in Gueddar and Dua (2010) for CDU simulations

is presented. It is based on a layered directed graph which represents the model calculations

(see Fig. D.1). Each node in the input/output layers correspond to one input/output

variable. Each node j = 1, . . . , Nn in the intermediate layer l = 1, . . . , Nl corresponds to an

activation variable alj and a transformed variable hlj . The activation variables are calculated

from the transformed variables of the previous layer using an affine expression while the

transformed variables are calculated by applying the hyperbolic tangent to their associated

activation variable. The ANN equations are expressed as follows.

a1j =

Nx∑
i=1

w1
jixi + b1j j = 1, . . . , Nn (D.1)

hlj = tanh alj l = 1, . . . , Nh, j = 1, . . . , Nn (D.2)

alj =

Nn∑
i=1

wljih
l−1
i + blj l = 2, . . . , Nh, j = 1, . . . , Nn (D.3)

uk =

Nn∑
i=1

Wkih
Nh
i +Bk k = 1, . . . , No (D.4)

The model uses the following parameters:

• Nx is the number of inputs

• No is the number of outputs

• Nh is the number of intermediate layers

Appendix D. Mathematical Model for the Refinery Planning Problem 189

x1

x2

x3

x4

u1

u2

Input layer

Intermediate layers

Output layer

Figure D.1: Layered artificial neural network.

• Nn is the number of nodes in each intermediate layer

• wjil , blj ,Wki, Bk are parameters specific to the ANN

Dua (2010) demonstrates how to tune the ANN parameters by minimizing the total pre-

diction error as well as the ANN complexity. This tuning step is performed by solving

a training MINLP. We denote CDUANN(x, u) the set of constraints defining the relation

between the ANN inputs x and outputs u. In particular, the model inputs include crude

properties qipC and CDU cut points τk (k ∈ {naphta, kerosene,diesel}), and the model out-

puts include cut yields αijk and crude cut properties qijkp1 . All crude property inputs are

fixed while CDU cut points are variable. The cut point between diesel and residue cuts can

take three discrete values defining the three CDU operating modes. All the outputs are

variable. The full refinery planning model is expressed as follows.

Appendix D. Mathematical Model for the Refinery Planning Problem 190

max
∑
l∈L

plxlS (sales revenue maximization)

s.t. 0 ≤
∑
j∈J

xijF ≤ C
i i ∈ I (crude availability)

τk ≤ τk ≤ τk k ∈ K (CDU cut point limits)

CDUANN
({
qipC , τ

k
}
,
{
αijk, qijkp1

})
(CDU model)

FR ·H ≤
∑
i∈I

∑
j∈J

xijF ≤ FR ·H (CDU flowrate limitations)

xijk1 = αijk · xijF (i, j, k) ∈ I × J ×K (CDU yield calculation)∑
i∈I

xijk1 =
∑
l∈L

xjkl2 (j, k) ∈ J ×K (pool mass balance)

∑
i∈I

qijkp1 xijk1 = qjkp2

∑
l∈L

xjkl2 (j, k, p) ∈ J ×K × P
(pool quality balance)

nonlinear∑
j∈J

∑
k∈K

xjkl2 = xlS l ∈ L (product mass balance)

xlS ≤ Dl l ∈ L (maximum product demand)

∑
j∈J

∑
k∈K

qjkp2 xjkl2 ≤ ZlpxlS (l, p) ∈ L× P
(product quality requirement)

nonlinear

xijF , x
ijk
1 , xjkl2 , xlS , α

ijk ≥ 0

qijkp1 , qjkp2 , τk ∈ R

Appendix D. Mathematical Model for the Refinery Planning Problem 191

