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Abstract 
Civil infrastructure systems form the backbone of modern civilization, providing the basic 
services that allow society to function. Effective management of these systems requires decision-
making about the allocation of limited resources to maintain and repair infrastructure 
components and to replace failed or obsolete components. Making informed decisions requires 
an understanding of the state of the system; such an understanding can be achieved through a 
computational or conceptual system model combined with information gathered on the system 
via inspections or sensors. Gathering of this information, referred to generally as sensing, should 
be optimized to best support the decision-making and system management processes, in order to 
reduce long-term operational costs and improve infrastructure performance.  

In this work, an approach to optimal sensing in infrastructure systems is developed by combining 
probabilistic graphical models of infrastructure system behavior with the value of information 
(VoI) metric, which quantifies the utility of information gathering efforts (referred to generally 
as sensor placements) in supporting decision-making in uncertain systems. Computational 
methods are presented for the efficient evaluation and optimization of the VoI metric based on 
the probabilistic model structure. Various case studies on the application of this approach to 
managing infrastructure systems are presented, illustrating the flexibility of the basic method as 
well as various special cases for its practical implementation. 

Three main contributions are presented in this work. First, while the computational complexity 
of the VoI metric generally grows exponentially with the number of components, growth can be 
greatly reduced in systems with certain topologies (designated as cumulative topologies). 
Following from this, an efficient approach to VoI computation based on a cumulative topology 
and Gaussian random field model is developed and presented. Second, in systems with non-
cumulative topologies, approximate techniques may be used to evaluate the VoI metric. This 
work presents extensive investigations of such systems and draws some general conclusions 
about the behavior of this metric. Third, this work presents several complete application cases for 
probabilistic modeling techniques and the VoI metric in supporting infrastructure system 
management. Case studies are presented in structural health monitoring, seismic risk mitigation, 
and extreme temperature response in urban areas. Other minor contributions included in this 
work are theoretical and empirical comparisons of the VoI with other sensor placement metrics 
and an extension of the developed sensor placement method to systems that evolve in time. 

Overall, this work illustrates how probabilistic graphical models and the VoI metric can allow 
for efficient sensor placement optimization to support infrastructure system management. Areas 
of future work to expand on the results presented here include the development of approximate, 
heuristic methods to support efficient sensor placement in non-cumulative system topologies, as 
well as further validation of the efficient sensing optimization approaches used in this work.  
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Executive Summary 
The management of civil engineering infrastructures involves allocating limited resources to 
where they are most needed to improve or maintain the functionality of the system in question. 
Decisions about this allocation are made using information about the consequences of failures in 
different components of the system, awareness of the possible actions that can be taken to avoid 
these failures or mitigate their consequences, and knowledge about the current state of the 
system, i.e., the chances of different system components failing in the near future. Knowledge 
about the system state comes from a combination of expert assessments and past experience 
about the behavior of the system or of similar systems, and about the various situations that 
might cause component and system failures. This knowledge is also updated by gathering 
information within the system, e.g., by performing inspections on components to determine their 
state or gathering data on environmental factors that determine the pressures placed on the 
system. This additional collected information helps guide decision-making for management of 
the system, with the overall goal being to reduce the cost of managing the system by selecting 
appropriate maintenance activities to avert potential failures, while avoiding unnecessary 
activities. 

In current practice, the collection of information about a system (when it is performed) is often 
done according to prescribed plans that do not necessarily acquire the most timely and useful 
information about the system, nor use this information in the most effective way. For some 
systems, information is not collected at all, and maintenance is performed according to fixed 
prior plans. Such plans can lead to an inefficient allocation of resources, as some components are 
maintained or replaced while still being in good condition, whereas others that degrade more 
rapidly than anticipated may not be replaced in time to prevent a costly failure. When 
information is collected, this is typically done according to a fixed plan where all components in 
the system are inspected at a certain interval. This places a high demand on the inspectors of the 
system, and in many cases shortages of qualified inspectors lead to these plans not being 
followed, or to inspections being made in a cursory manner. Prioritization of these inspections, 
based on the presumed usefulness of the inspection results in supporting better decision-making, 
is a way in which this burden can be reduced while still acquiring useful and timely information. 
Furthermore, the information collected by inspections is typically used only to update the status 
of the individual component being inspected. In general, this information can be combined with 
knowledge about how components interact and the similarities between them to provide insight 
into the status of the system as a whole. 

The main contributions of this work are to develop and demonstrate methods for prioritizing the 
collection of information to support the management of infrastructure, to alleviate the problems 
discussed above. The proposed methods involve two key elements. First, probabilistic models of 
the system allow for quantification of the uncertainties associated with system management, and 
also for the modeling of similarities within the system, such that information collected in a 
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specific area can be used to update knowledge about the behavior of the system as a whole. The 
general approach to defining these models is discussed in Chapter 2. Second, the value of 
information (VoI) metric is used to prioritize the inspection of the system. The VoI is a measure 
of how much additional information is worth to a decision-maker; it quantifies how much the 
management cost of the system is expected to be reduced by having additional information 
available to support better decision-making. This allows for a quantitative, monetary value to be 
assigned to different sources of information, and therefore for the identification of information 
that has the biggest potential impact in terms of making better decisions to reduce system 
management costs. The cost-effectiveness of alternative sources of information can also be 
assessed by the VoI. This metric is introduced in Chapter 4, where an in-depth analysis of its 
properties and a comparison with other possible metrics for information assessment are provided. 

Unfortunately, VoI can be difficult to evaluate in large systems. This is due to many factors, 
including potentially complicated interactions between the states of various components in how 
they operate as part of the system, as well as interactions between decisions made to manage 
different parts of the system that have synergistic effects on the system as a whole. In this work, 
a key contribution is to identify different types of systems for which the VoI can be more easily 
evaluated. Chapter 3 discusses various types of systems considered, and Chapter 5 provides 
details on how the computation of VoI can be made simpler in these cases. Furthermore, 
Chapter 7 presents special considerations for evaluating VoI in systems that evolve over time, 
where choices must be made about both where and when to gather information. 

The primary advantage of using VoI to prioritize the collection of information is its ability to 
quantify the improvement in decision-making outcomes due to the availability of additional 
information. This allows for informed trade-offs to be made between the costs of acquiring 
information and the benefits this information is likely to bring. This impact will be felt most 
keenly in scenarios where the cost of collecting information is high and the resources for doing 
so are tightly constrained, e.g., where there is a shortage of qualified human inspectors or where 
expensive measurement equipment is required. The contributions presented in this work will 
help system managers realize this benefit by being able to more readily calculate VoI for a 
variety of civil infrastructures. 

A few shortcomings of VoI-based sensing optimization must also be acknowledged. First, in 
situations where information gathering is inexpensive, e.g., where many low-cost sensors can be 
easily deployed to monitor the system, the additional effort needed to optimally allocate these 
measurements throughout the system may not be justified. Furthermore, in situations where the 
underlying performance of the system (including the consequences of failure of components and 
the possible actions that can avoid these failures) are poorly understood, the VoI cannot be 
evaluated in a meaningful way. Finally, in certain situations, efficient methods presented in this 
work to prioritize information collection based on VoI can have poor performance. These 
situations, as well as potential workarounds for some of these shortcomings, are presented briefly 
in Chapter 11. 
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The final major contribution of this work is to present a variety of different application case-
studies to relevant problems in civil and environmental engineering. First, in Chapter 6, 
examples are presented in simplified one-dimensional (representing a beam subjected to loading) 
and two-dimensional (representing a metal surface subjected to corrosion) systems. These 
examples illustrate how the VoI metric conforms well to several intuitive ideas of the relevance 
of information; specifically, the VoI is high when the information is precise and accurate, when 
it is unclear what action(s) will be best to manage the system, and/or when the consequences of 
making an incorrect decision are relatively severe. Three more in-depth case studies in realistic 
system are also provided. In Chapter 8, the monitoring of loading in a building is considered. An 
optimized subset of strain gauges installed on the new Scott Hall building at Carnegie Mellon 
University is identified that best supports management of the structure under potential 
differential settlement of its foundations. Chapter 9 presents an application to seismic risk 
assessment in the San Francisco Bay area. This application involves the collection of information 
after an earthquake in order to make appropriate decisions about the closure of bridges and 
tunnels for safety reasons. An example on the prediction of and response to summer 
temperatures in the city of Pittsburgh is presented in Chapter 10. Here, information from various 
sources, including regional weather forecasts, climate simulations, and local temperature gauges, 
is combined to support decision-making about the issuance of heat advisories to avoid the 
consequences of extreme heat exposure. Together, these examples illustrate the adaptability and 
wide applicability of the methods and metrics for sensor placement developed in this work. 

In summary, this work develops and demonstrates methods for the optimal collection of 
information to support the management of infrastructures. The VoI metric is used to support this, 
and details are provided about how this metric can be computed efficiently in large systems 
under certain assumptions. By directly quantifying the benefits of information in monetary terms, 
this metric allows for better allocation of limited inspection resources throughout systems, as 
opposed to current rigid prescriptive plans for information gathering. In illustrating the 
application of these methods to various problems of interest in civil and environmental 
engineering systems management, it is hoped that the benefits of this approach will be made 
clear, and that appropriate, optimized decisions about information gathering can be made to 
support the management of other infrastructures that are critical to modern society. 
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Symbols and Notation 
This section describes symbolic and notational conventions adopted in this paper. These will 
typically be defined following their first usage in the text.  

Table 0-A summarizes the common usages associated with different styles of notation (i.e., 
upper- or lower-case, bold, and italic styles). Generally, italics are used to denote scalar 
quantities and variables, non-italics to denote functions, and bold characters to denote vectors (if 
lower-case) or matrices (if upper-case). There may in some cases be exceptions to the typical 
cases presented here (for example, the use of an upper-case L to avoid ambiguity between the 
lower-case l and the numeral 1). 

Table 0-A: Font styles and their common meanings. 

 Style Typical Usage Example 
a lower-case, non-bold, non-italic Function of scalar or vector f(𝑎𝑎) 
𝑎𝑎 lower-case, non-bold, italic Scalar quantity 𝑎𝑎 
𝐚𝐚 lower-case, bold, non-italic Vector quantity 𝐚𝐚 = {𝑎𝑎1, … ,𝑎𝑎𝑛𝑛} 
A upper-case, non-bold, non-italic Function of variable or set VoI(𝑌𝑌) 
𝐴𝐴 upper-case, non-bold, italic Name of a variable or set 𝑋𝑋 
𝐀𝐀 upper-case, bold, non-italic Matrix 𝚺𝚺𝑌𝑌 

 

In the following paragraphs, several notational conventions used in this paper will be presented 
and discussed. First, to describe the probability of an event occurring, the notation ℙ(⋅) is 
adopted. For example, the notation ℙ(𝑋𝑋 = 𝑥𝑥) indicates the probability that a random variable 𝑋𝑋 
will take on scalar value 𝑥𝑥. To determine this, the probability distribution for the variable 𝑋𝑋 is 
denoted as p𝑋𝑋; the notation 𝑋𝑋 ~ p𝑋𝑋 indicates that this variable is distributed according to this 
distribution. Where such a distribution has been defined, the probability (or probability density, 
for continuous variables) of variable 𝑋𝑋 taking on value 𝑥𝑥 is equivalently denoted as p𝑋𝑋(𝑥𝑥), i.e., 
the evaluation of the function p𝑋𝑋 at value 𝑥𝑥. The same notational convention holds for vector-
valued variables, i.e., ℙ(𝑋𝑋 = 𝐱𝐱) = p𝑋𝑋(𝐱𝐱).  

Following these definitions, a statistical expectation is denoted as follows: 

 𝔼𝔼𝑋𝑋f(𝑥𝑥) = ∫ f(𝑥𝑥) p𝑋𝑋(𝑥𝑥) d𝑥𝑥𝑥𝑥∈Dom(𝑋𝑋)  (0-1) 

That is, the statistical expectation of function f(𝑥𝑥) with respect to variable 𝑋𝑋 is denoted 𝔼𝔼𝑋𝑋f(𝑥𝑥), 
and is computed as the integral, over all values 𝑥𝑥 in Dom(𝑋𝑋), the domain of variable 𝑋𝑋, of the 
product of function f(𝑥𝑥) evaluated at value 𝑥𝑥 and the probability of this value under the 
distribution for variable 𝑋𝑋, p𝑋𝑋(𝑥𝑥) d𝑥𝑥. 

Finally, an optimization problem is typically denoted as follows: 
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 𝑥𝑥∗ = argmax𝑥𝑥∈Dom(𝑋𝑋) f(𝑥𝑥) (0-2) 

That is, the value of variable 𝑋𝑋 that maximizes function f(𝑥𝑥) is 𝑥𝑥∗. The same formulation is used 
for set functions: 

 𝐴𝐴∗ = argmax𝐴𝐴∈𝒜𝒜 F(𝐴𝐴) (0-3) 

That is, the set 𝐴𝐴 that maximizes the value of set function F(𝐴𝐴) is 𝐴𝐴∗. The notation 𝒜𝒜 refers to 
the powerset (i.e., the collection of feasible sets) from which the set 𝐴𝐴 is to be selected. 

The following pair of tables list capital and lower-case letters in the Latin and Greek alphabets, 
and the definitions that are typically associated with these variables in the paper.  

Table 0-B: Latin alphabet characters and their common meanings. 

𝑎𝑎 action 𝐴𝐴 set of actions 
𝑏𝑏 budget 𝐵𝐵  
𝑐𝑐 capacity 𝐶𝐶 cost 
𝑑𝑑 demand 𝐷𝐷 distance 
𝑒𝑒 natural logarithm base 𝐸𝐸 expectation (prefix) 
𝑓𝑓 random field (scalar or 

vector of values) 
𝐹𝐹 random field (set) 

𝑔𝑔 Limit-state 𝐺𝐺 set of limit-states 
ℎ indexing value 𝐻𝐻 entropy 
𝑖𝑖 indexing value 𝐼𝐼 identity 
𝑗𝑗 indexing value 𝐽𝐽  
𝑘𝑘 covariance function 𝐾𝐾  
𝑙𝑙  𝐿𝐿 loss 
𝑚𝑚 mapping  𝑀𝑀 sensor placement objective 
𝑛𝑛 number (without subscript: 

number of components) 
𝑁𝑁  

𝑜𝑜  𝑂𝑂 order notation 
𝑝𝑝 probability (distribution) 𝑃𝑃 probability (value) 
𝑞𝑞  𝑄𝑄  
𝑟𝑟 measurement noise ratio 𝑅𝑅 regret or risk 
𝑠𝑠 state 𝑆𝑆 set of states 
𝑡𝑡 time 𝑇𝑇 temperature 
𝑢𝑢  𝑈𝑈  
𝑣𝑣 velocity 𝑉𝑉 vulnerability 
𝑤𝑤 model parameter  𝑊𝑊 model parameters (set) 
𝑥𝑥 spatial coordinate 𝑋𝑋 set of spatial coordinates 
𝑦𝑦 observation 𝑌𝑌 set of observations 
𝑧𝑧  𝑍𝑍 weight matrix 
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Table 0-C: Greek alphabet characters and their common meanings. 

𝛼𝛼  Α see A 
𝛽𝛽 reliability index Β see B 
𝛾𝛾 discount factor Γ  
𝛿𝛿 Kronecker delta function Δ change (prefix) 
𝜖𝜖 error Ε see E 
𝜁𝜁  Ζ see Z 
𝜂𝜂  Η see H 
𝜃𝜃  Θ  
𝜄𝜄  Ι see I 
𝜅𝜅  Κ see K 
𝜆𝜆 correlation length Λ recurrence rate 
𝜇𝜇 mean or mean function Μ see M 
𝜈𝜈 unused due to similarity 

with 𝑣𝑣 
Ν see N 

𝜉𝜉  Ξ limit-state function matrix 
𝜊𝜊 see o Ο see O 
𝜋𝜋 ratio of circle 

circumference to diameter 
Π  

𝜌𝜌 correlation Ρ see P 
𝜎𝜎 standard deviation Σ covariance matrix 
𝜏𝜏 set of time steps Τ see T 
𝜐𝜐 unused due to similarity 

with 𝑣𝑣 
Υ unused due to similarity 

with Y 
𝜙𝜙  Φ Gaussian cumulative 

distribution function 
𝜒𝜒  Χ see X 
𝜓𝜓  Ψ  
𝜔𝜔  Ω observation matrix 
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Table 0-D lists several special characters that are used along with their typical definitions. 

Table 0-D: Special characters and their common meanings. 

𝔼𝔼 statistical expectation (with respect to subscripted variable) 
𝕀𝕀 indicator function (value 1 when argument is true, otherwise 0) 
ℙ probability of an event 
𝕊𝕊 system state (function) 
𝕤𝕤 system state (variable) 

  
𝒜𝒜 powerset of possible actions 
𝒢𝒢𝒢𝒢 Gaussian process 
𝒩𝒩 Gaussian distribution 
𝒯𝒯 temporal domain 
𝒳𝒳 spatial domain 
𝒴𝒴 powerset of potential observations 

  
∅ empty set 
∪ set union 
\ set subtraction 
∈ element of a set 

 

Finally, Table 0-E lists common abbreviations used in this work. 

Table 0-E: Common abbreviations. 

ASCE American Society of Civil Engineers 
NWS National Weather Service 
PGA peak ground acceleration 
PGM probabilistic graphical model 

RH relative humidity 
SHM structural health monitoring 

USGS United States Geological Survey 
VoI value of information 

VoPI value of perfect information 
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Chapter 1  

Introduction 

This chapter introduces the work, providing the motivation for optimal sensor placement to 
support infrastructure system monitoring and management. Background information on prior 
work in this area is summarized, providing context for the contributions presented here. Based on 
this background and identified research gaps, one general research question and several specific 
sub-questions are proposed for this work, and significant contributions related to these questions 
are briefly summarized. Finally, the organization of the remainder of the document is discussed. 

1.1. Motivation 
Civil engineering infrastructure systems, such as water supply, wastewater collection, 
transportation, and power distribution systems, are essential to the smooth functioning of modern 
society. These infrastructure systems are made up of numerous components (e.g., transportation 
systems may include bridges, roadways, and/or tunnels) that are interconnected with each other 
and together constitute the system. Infrastructure systems are also interdependent in that the 
proper functioning of components within one system can depend on the operation of another 
system (e.g., pumping stations in a water distribution system depend on electricity from a power 
distribution system). Components of infrastructure systems are subject to both gradual 
degradation over time as well as extreme hazard events (e.g., earthquakes or hurricanes). Gradual 
degradation, hazard events, or a combination of both can cause the failure of individual 
components within these systems and therefore, through the interactions of components within 
and between systems, failures of the infrastructure system as a whole to fulfill its function. Such 
failures result in significant economic and societal impacts, and potentially loss of life (ASCE, 
2013, 2016). To avoid such costly infrastructure system failures, it is necessary for the managers 
of these systems to develop a comprehensive understanding of their behavior, taking their many 
interactions and interdependencies into account, and, making use of this understanding, to decide 
upon appropriate management actions that will reduce the potential risk or impact of system 
failures, subject to constraints on resources.  

This task of understanding and effectively operating modern interdependent infrastructure 
systems is complicated by many factors. The interconnections and relationships between 
components in an infrastructure system are often difficult to define and model in a quantitative 
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way (e.g., Rinaldi et al., 2001; Buldyrev et al., 2010). The loadings and hazards to which 
infrastructure components will be subjected over their lifetimes are uncertain, and this 
uncertainty is only exacerbated by the predicted non-stationarity of future climate, i.e., climate 
change (e.g., Mokrech et al., 2012; Garré and Friis-Hansen, 2013; Špačková and Straub, 2015). 
In addition, the response of components of infrastructures to loadings and hazards are also 
uncertain, due to inherently imperfect knowledge of the as-built conditions of infrastructures and 
of their precise material and mechanical properties. Infrastructure management decision-makers 
must take these many sources of uncertainty into account when developing optimal management 
strategies for infrastructure systems. 

Much research has therefore been devoted both to developing appropriate models of these 
uncertainties (e.g., Faber et al., 2011) and to designing non-destructive sensing and monitoring 
technologies to reduce these uncertainties (e.g., Büyüköztürk et al., 2013). Inspections of 
infrastructure components and, more recently, the development and deployment of structural 
health monitoring (SHM) systems to continuously provide information on the status of 
infrastructure components both seek to reduce the uncertainty in component properties and 
responses, as well as identify true loading conditions (Farrar, 2013). At the same time, modeling 
techniques such as the use of probabilistic graphical models (PGMs) and network-based models 
of interconnected infrastructure systems aim at capturing the relationships between components 
of infrastructure systems, allowing for quantification of both the uncertainties and the 
interdependencies in the behaviors of the system (Koller and Friedman, 2009). Advances in 
computing power have allowed the practical application of these models to infrastructure 
systems of a realistic scope and scale (e.g., Baker et al., 2015; González et al., 2015). 

An open area for future research, and one that motivates this work, is the development of an 
approach that unifies the modeling of civil infrastructure performance with optimal inspection, 
monitoring, and decision-making for managing these systems. Such an approach will allow for 
the simultaneous optimization of infrastructure system monitoring and management, using 
metrics that quantify the utility of these activities to the managing agents of the infrastructure 
and to the general public. This approach will have applications in the design of inspection 
schemes and/or the deployment of SHM networks over infrastructure systems, allowing sensing 
resources to be allocated where they will have the most benefit in terms of providing useful 
information to improve management decision-making to reduce life-cycle system costs. This 
research seeks to develop such an approach, as well as demonstrate its application to a number of 
realistic infrastructure system management problems. 

The following motivating example raises questions about sensor placement that this work will 
attempt to address. Consider that a structure is being subjected to an unknown load that has the 
potential to cause failures to different parts of the structure, with associated consequences. 
Reinforcements can be applied to the structure to guard against failure, at a certain cost. A prior 
model for the unknown loading has been developed that describes what the loads are expected to 
be, and also quantifies the uncertainty in these estimates via a probabilistic model. Sensors are 
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available that can accurately measure the load, but due to their high price, only a single sensor 
can be deployed. The question is: where should this sensor be placed?  

An intuitive response is that the load should be measured where the potential loading is the most 
variable, i.e., where the prior uncertainty in the load is highest. However, it may be the case that 
the structural capacity at this location is very high, such that it can withstand any of the potential 
values the load can take; it is of little use to place the sensor where we are already certain the 
structure is in no danger. What if, conversely, we were to place the sensor where the load was 
highest, or where the structure was weakest? Again, if the load was so high or the capacity so 
low as to guarantee a failure, we would want to apply reinforcements in this area regardless of 
the load measurement. The context of the larger structural management problem is therefore 
important to consider when selecting a sensing plan. 

What if we instead selected an area where the load was close to the capacity, but still fairly 
uncertain, such that we were not sure whether the structure would fail or not? This might be a 
good solution, but if there are multiple areas that fit this criterion, it would be difficult to 
prioritize between them. One approach might be to prioritize the locations where failure has 
greater consequences. However, at a certain point, these consequences could grow so high as to 
be unacceptable, and a choice would be made to reinforce the area regardless of what the loading 
might be. Economic concerns such as the consequences of failures and the costs of intervention 
actions also have a role to play in guiding sensor placement. 

Now, assume that in one region of the structure the load is known to be quite uniform; a 
measurement in any part of this region will determine the load applied to the entire region, and 
therefore allow appropriate actions to be taken throughout. It might therefore be useful to make 
the measurement here, and thereby to effectively increase the amount of information collected 
using a single measurement. However, if the consequences of failure in this region are very low, 
and/or if failures are nearly impossible or virtually certain compared to other parts of the 
structure, this additional information may be of little relevance. The ability to make wide-ranging 
inferences based on collected data has the ability to multiply its usefulness, but is not necessarily 
a guarantee that the resulting information will be worthwhile. 

Finally, imagine it were possible to purchase many sensors for the same price as the one being 
considered, with the consequence that each sensor would have a lower accuracy. Could this 
increase in data quantity offset the decrease in quality? Could multiple sensors be used to 
compensate for a lack of precision, while still measuring different areas? The ability to consider 
the accuracy of collected information, and to trade off different types of potential data collection 
methods, is another important consideration for sensing scheme design. 

The questions raised in this motivating example are typical of the concerns relevant to sensor 
placement in a wide variety of infrastructure systems. This work will present approaches to 
answering these questions, and demonstrate them on a variety of specific examples. In particular, 
Chapter 6 will revisit this motivating example in greater detail, and provide answers to the 
fundamental questions raised here. 
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1.2. Background 
This review begins with a brief overview of the current practice in management of large-scale 
distributed infrastructure systems, which tend to focus on management decision-making at a 
component-level, i.e., by examining individual components in the system, deciding upon optimal 
actions for these components (potentially including inspection actions), and undertaking these 
actions without considering their impacts on the larger system. Newer approaches to real-time 
SHM of infrastructure also tend to have this atomistic view, focusing on assessing individual 
components without translating this information into system-level health assessments or 
prioritizing data collection based on system-level infrastructure management needs. 

To move from such a component-level infrastructure management approach to decision-making 
at the system-level, effective system models and the tools to use them for optimal planning are 
needed. In terms of system models, PGMs and network-based models are outlined here, as they 
are appropriate to the tasks of modeling uncertainties and interdependencies within infrastructure 
systems, as discussed above. Finally, existing tools necessary for the use of such models in 
optimal infrastructure management, including approaches to optimal sensing and applications of 
decision theory within these models, are briefly presented. 

1.2.1. Current Infrastructure Monitoring Practices 
Current practice in the management of large-scale infrastructures is based on historical methods 
of scheduled inspection and maintenance interventions, based on design lifetimes and observed 
degradation rates of components, supplemented by additional inspections to monitor previously 
identified potential problems (e.g., Endrenyi et al., 2001). Such methods are usually 
conservative; inspections are scheduled frequently enough to be able to identify most potential 
problem conditions before they lead to the failure of the inspected component. However, due to 
shortages of funding and/or qualified inspectors, these schedules are not always adhered to, e.g., 
in the case of delayed dam inspections (Dam Safety, 2009). Scheduled inspections are also 
inherently focused at component-level, i.e., are focused on assessing the status of individual 
components of an infrastructure system, without much interest in quantitatively aggregating this 
information to assess the status of the system as a whole. Decision-making for infrastructure 
management is likewise traditionally handled at component-level, with maintenance, repair, or 
replacement actions scheduled for individual components without much consideration for the 
system, except in so far as the available budget for these actions must be allocated between many 
components within the system.  

Potential improvements over these traditional monitoring and maintenance practices are often 
closely related to the way in which information is collected and used to maintain existing 
infrastructure. A strong positive correlation has been found between proactive maintenance 
strategies, based on active collection of information and condition-assessment of components, 
and the performance of these components (Swanson, 2001). These proactive maintenance 
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strategies contrast with more traditional reactive maintenance strategies in which urgent repairs 
are performed in response to component failures. This finding illustrates a benefit to the 
appropriate use of information in supporting infrastructure management in decision-making, and 
is echoed in many other results. For example, the possible extension of bridge service lives using 
continuous condition assessment of existing bridges, such as might be provided using state-of-
the-art SHM systems, has been conservatively estimated to result in a 31% reduction in bridge 
replacement costs in the United States (Inaudi, 2011). A reduction of 57% in wind turbine 
operation and maintenance costs has been estimated for turbines equipped with condition-based 
monitoring equipment, i.e., suites of sensors that assess the condition of various critical turbine 
components (Byon and Ding, 2010). A savings of $24 billion over 50 years has been estimated 
for leak reductions in water distribution pipelines in the UK if instrumented with wireless leak-
detection systems (Morimoto, 2010). A threefold increase in the cost-effectiveness of operation 
and maintenance of railways is also predicted to result from a switch from reactive to proactive 
railway maintenance (Stenström et al., 2016). These findings illustrate the potential value to 
society of new monitoring and maintenance strategies based on timely collection and processing 
of information. 

Both traditional monitoring and maintenance approaches, as well as the proposed information-
based improvements to these approaches discussed above, conduct the management of entire 
systems by focusing on the component-level, i.e., they seek to improve system management by 
improving the management of each component. For example, a common method for proactive 
maintenance is to develop either probabilistic or deterministic degradation models for individual 
components, scheduling inspections or maintenance actions for individual components according 
to these models (Ariaratnam et al., 2001; Kleiner, 2001). In some cases, where the system 
performance is simply an aggregate of component states and component behaviors are 
independent, this method will work well. However, in many civil infrastructure systems, there 
are some components that are objectively more important to the proper functioning of the system 
than others. These might include components with higher replacement or failure costs (e.g., a 
major suspension bridge), higher importance to society (e.g., a power substation serving a 
hospital), or occupying some bottleneck position in the system (e.g., a single pumping station 
serving multiple water mains). In these cases, component-level degradation models, which 
ignore interdependencies between components and the relative importance of components within 
a system, can lead to a sub-optimal allocation of resources. For this reason, a system-level 
approach to infrastructure monitoring and management is needed. 

1.2.2. Structural Health Monitoring 
Structural health monitoring (SHM) is a relatively new approach in infrastructure inspection, 
involving the placement of sensors on or within civil infrastructure components to provide 
continuous data acquisition for physical parameters of relevance to the performance of the 
monitored component, e.g., temperature, strain, or acceleration (Farrar, 2013). Most existing and 
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proposed SHM methods focus on identifying the vibrational modes of structures and inferring 
damage conditions from this information (e.g., Fan and Qiao, 2011). With this goal in mind, 
techniques for optimal placement of these sensors on particular structures have been developed, 
with optimality being measured by the accuracy of identification of modal parameters (e.g., 
Papadimitriou, 2004; Yi et al., 2011; Yi and Li, 2012; Yuen and Kuok, 2015), or in the reduction 
of type I and II errors (i.e., false positives and false negatives, respectively) in the identification 
of structural damage conditions (e.g., Guo et al., 2004; Flynn and Todd, 2010).  

A qualitative guideline for the design of SHMs system along these lines is given by Inaudi 
(2009, 2010), which involves identifying potential risks, uncertainties, and opportunities for 
monitoring, then defining observable quantities related to these, and finally designing a sensor 
network to monitor these quantities, considering project lifetime and available budget. However, 
this approach needs to be further developed into a quantitative framework before it can be widely 
adopted by infrastructure managers. A current hurdle to the widespread application of SHM 
technology and techniques in practice is the lack of substantial quantitative assessments of the 
effectiveness of these systems in terms of reducing life-cycle costs (Inaudi, 2011; Glisic, 2015). 
Furthermore, for managers of systems of infrastructure, charged with maintaining multiple 
structures, there is the question of how to optimally deploy new SHM systems within their 
existing inventories. For many years, budget constraints and institutional inertia will likely delay 
the deployment of SHM technologies, and so there will be a need for managers of large-scale 
systems of infrastructure to allocate their resources for new SHM systems among the many 
components they are tasked with maintaining. 

1.2.3. Infrastructure System Modeling 
In order to move to a system-level approach to infrastructure monitoring and management, 
models of interdependent systems must be developed which can describe the overall functioning 
of these systems and the ways in which their components interact. There are currently several 
approaches to this problem, which can be grouped into four basic categories: economics-based 
input-output models, agent-based models, network theory models, and probabilistic models 
(Satumtira and Dueñas-Osorio, 2010). This overview focuses on the latter two types. The former 
types, while useful in many contexts, have certain shortcomings that make them less suited to the 
direction of system-level management. Input-output models, such as those developed by Min et 
al. (2005), are useful for economic analysis, especially in predicting how disruptions in one 
sector will ripple through the economy to affect other sectors. However, they are less useful for 
modeling the initial causes of these disruptions, which are often due to deterioration or extreme 
events, rather than economic factors. In terms of agent-based models, the computational and 
programming effort necessary to model large infrastructure systems is still prohibitive in many 
cases (Satumtira and Dueñas-Osorio, 2010). 
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1.2.3.1. Probabilistic graphical models for infrastructure 

Probabilistic models are a method for quantifying the inherent uncertainty in parameters of 
physical systems, including infrastructures. By modeling uncertain quantities as random 
variables, the effects of their variability on the overall system can be explicitly captured and 
quantified. PGMs are probabilistic models that represent random variables within a graphical 
visual structure. Such a representation allows the probabilistic relationships between these 
variables to be easily interpreted. This provides benefits, both in terms of computation (as 
algorithms have been developed that exploit the graphical structure of the model to perform 
probabilistic inference efficiently) and in terms of accessibility of the models (as the models are 
easy to interpret visually, they can be constructed by domain experts with limited knowledge of 
the underlying probabilistic theories). Finally, in addition to random quantities, deterministic 
quantities and agent actions, undertaken in accordance with pre-defined strategies, can be 
incorporated into these models, creating so-called “influence diagrams” or “decision graphs” that 
can model the actions of rational agents within a stochastic system. PGMs and influence 
diagrams have thus become an important tool for scientists and engineers seeking to understand 
the behaviors of systems in which certain basic parameters are inherently uncertain and variable. 
A thorough introduction to PGMs and influence diagrams is provided by Koller and Friedman 
(2009). 

Probabilistic models have been applied to the analysis of civil infrastructure. Models of the 
behavior of individual components have been used for reliability analysis, i.e., determining the 
probability that random variables defining the behavior of these components will fall within 
certain defined failure regions of the joint probability space (Ditlevsen and Madsen, 1996). For 
time-varying reliability analysis and for the analysis of systems with multiple components, more 
advanced methods, incorporating hierarchical PGMs, dynamic Bayesian PGMs, influence 
diagrams, and structural reliability methods for component-level analysis have been proposed 
(Straub and Der Kiureghian, 2010a, 2010b). The current state-of-the-art in terms of the modeling 
of infrastructure systems using PGMs is demonstrated by Bensi et al. (2011, 2015). In that work, 
a log-Gaussian PGM for seismic risk applied to a proposed system of distributed transportation 
infrastructure in southern California is presented. This model is then used to guide decision-
making for the management of this system. In addition, Luque and Straub (2016) have recently 
developed a hierarchical dynamic Bayesian system management model. This model captures 
both the system-level causes and consequences of failures, e.g., in an application to a 
deteriorating steel truss in which deterioration rates are correlated between members and the 
capacity of the truss is a function of the number of intact (non-deteriorated) members. Both of 
these recent works employ discretization of continuous variables defining the system (i.e., the 
seismic intensity, or the deterioration level) to improve computational tractability. 

These latest results for the modeling of infrastructure systems with PGMs also highlight one of 
the primary difficulties facing the application of these modeling techniques to large-scale 
infrastructure systems. As the number of components within the system increases, more variables 
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become necessary to describe the system. These variables occupy a higher-dimensional joint 
probability space. As the dimensionality of this space grows, traditional methods of exploring the 
space become less effective. For discrete random variables, the number of possible joint states of 
the variables grows exponentially, and thus an exhaustive search of this joint space quickly 
becomes infeasible (e.g., Lincke, 2002). Even approximate techniques are affected; the number 
of samples required by sampling-based inference algorithms for statistical guarantees on 
algorithm performance grows rapidly with model dimensionality, to the point where these 
algorithms are useless without an inordinate number of random samples (e.g., Bertelè and 
Brioschi, 1972; Koller and Friedman, 2009). This problem falls under the general heading of the 
“curse of dimensionality”, and has been encountered often in high-dimensional data analysis and 
machine learning (Bellman, 1984).  

Methods for lifting this curse are necessary to enable PGM-based infrastructure modeling 
approaches to scale well to larger systems. One the one hand, careful organization of system-
level PGMs to limit the growth of the joint space can allow for increased efficiency in the 
application of inference algorithms, as has been partially explored by Bensi et al. (2013). On the 
other hand, approximate methods, such as the use of lower-dimensional approximations to the 
full joint variable space or simplifying assumptions on the behavior of the system, can be used to 
avoid some of the issues of these high-dimensional systems. 

1.2.3.2. Network models of infrastructure 

Another approach to modeling of interdependent infrastructure is based on graph theory and 
network science. These approaches have a long history of application to a variety of problems, 
including the modeling of civil infrastructure networks, especially transportation and resource 
distribution networks. Techniques from graph theory and combinatorial optimization have been 
applied to solve problems of efficient route planning in transportation networks (Schrijver, 
2013).  

Network science refers to the analysis of graphical networks, and is related to graph theory 
(Newman, 2010). Although many applications of network science are in the social sciences, 
there have been some applications of these techniques to the analysis of infrastructure systems. 
For example, Buldyrev et al. (2010) and Parandehgheibi and Modiano (2013) use network 
models to analyze cascading failures in interdependent energy and telecommunications grids, 
and Dehghani et al. (2014) use network models of transportation networks to assess the 
vulnerabilities of these networks to the failures of links, in terms of the disruption to network 
efficiency and increase in travel times. Propagation of failures through networked infrastructure 
is also discussed by Dueñas-Osorio et al. (2007), who incorporate conditional failure 
probabilities based on geographic proximities into their analysis to investigate how these 
stochastic relationships interact with the network structure to affect cascading failures. An 
example of the state of the art in network disruption analysis (in this case, due to earthquakes) in 
a realistic infrastructure system (the San Francisco bridge and highway transportation network) is 
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provided by Baker et al. (2015). Unfortunately, in such realistically-scaled systems (this example 
considered about 3,000 bridges and 30,000 road links between them), the computational effort 
required is non-trivial; in this example, only 40 potential seismic scenarios were analyzed, 
requiring several weeks of time on a high-performance computer cluster. 

A key idea of network science, the use of centrality metrics to identify “important” elements in 
graphical networks, has also been applied to civil infrastructure. This task has been posed as an 
instance of the “key players problem”, i.e., the identification of elements of the network that will, 
when removed, maximally disrupt the system in some way (Borgatti, 2006). For infrastructure 
systems, these would be the components that, when they fail, most significantly impact the 
ability of the network as a whole to provide critical services to society. From this basic idea of 
what constitutes an “important” component in an infrastructure network, several metrics and 
heuristics have been developed for identifying these components in infrastructure networks (e.g., 
Cadini et al., 2009; Kröger, 2011; Galvan and Agarwal, 2015).  

The current state of the art in the application of network science techniques to civil infrastructure 
focuses on modeling the deterministic, rather than probabilistic, relationships between 
components in these systems. Most models that incorporate uncertainty in component-level 
performance do so under the assumption that component states are independent of one another 
(Gertsbakh and Shpungin, 2011). An example of this assumption is given in the work of Liu and 
Frangopol (2006), who analyze the system-level disruptions caused by component (i.e., bridge) 
failures in a transportation system. They propose a methodology whereby component-level 
deterioration models are combined with a system-level assessment of the consequences of 
component failures, in this case by assessing the user costs of these failures in terms of travel 
time increases due to the disruption of the system. However, the proposed model, while 
addressing the relevance of correlations between the behaviors of different components, ignores 
these correlations for the sake of computational tractability, and instead assumes independent 
component failures. In practice, common stressors such as climate or increased traffic load can 
affect many components in the system together, thereby correlating these components’ states. 
Therefore, while addressing the system-level consequences of component failures, the proposed 
model fails to capture the potential system-level causes of these failures. Additionally, in the 
work of Hu et al. (2015), for bridges subject to natural deterioration, the assumption is made that 
no two bridges will fail simultaneously, and thus bridge failures can be treated as independent 
events. While this assumption is reasonable for the specific case that they investigate, it will not 
hold true in all cases, and may lead to serious under-estimation of the system disruption under 
extreme events (e.g., earthquakes) where multiple simultaneous failures are possible. 
Unfortunately, abandoning these independence assumptions opens these techniques to the same 
“curse of dimensionality” discussed for PGMs.  
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1.2.4. Optimal Sensor Placement 
Models of infrastructure systems, no matter what their form, need calibration or input data so 
that they can provide actionable conclusions about real-world systems. However, the reverse is 
also true, in that these models can be used to guide the optimal collection of data in the real 
world by identifying which uncertain parameters have the most influence on the system, such 
that the reduction of this uncertainty will improve management strategies for the system. This is 
the essence of optimal sensor placement based on pre-posterior analysis, i.e., using a system 
model to guide the optimal collection of information such that, when these data are used along 
with the model, the results will be optimal by the chosen sensor placement objective. 

Optimal sensor placement is generally considered a problem in combinatorial optimization, or 
the selection of some subset of a large potential set, e.g., a small set of sensor placements from a 
large set of potential sensor placements (Cook et al., 1998; Schrijver, 2013). In contrast to 
continuous optimization, in which convexity of the objective often allows for efficient solution 
by convex optimization algorithms, combinatorial optimization is rarely possible in an exact, 
efficient manner. Many heuristics exist, often inspired by natural processes, such as natural 
selection (used by genetic algorithms), cognition (neural networks), crystal formation (simulated 
annealing), and ant colony organization (Colorini et al., 1996). However, for a guaranteed 
optimal solution, an exhaustive search of the solution space is often necessary. Such searches are 
computationally prohibitive for all but the smallest problems (e.g., Currin et al., 1991). 
Therefore, for combinatorial optimization in general and for optimal sensor placement in 
particular, development of efficient near-optimal solution algorithms is a topic of interest. 

Several issues of optimal sensor placement are examined in depth in the seminal work of Krause 
(2008). A basic solution approach to sensor placement optimization that is presented in that work 
relies on submodular sensing metrics. Submodularity is intuitively understood as a diminishing 
returns property, and holds in general for several metrics that might be applied to sensor 
placement (e.g., Clark et al., 2016). For example, measurements from two sensors might provide 
a certain amount of redundant information, and therefore the second sensor placed would give 
less unique information than it would have if operating on its own. In situations where this 
submodularity property holds, the greedy optimization algorithm, which iteratively adds 
elements from the potential set of all possible sensors to the set of selected sensor placements, 
provides provably near-optimal results to combinatorial optimization problems (Nemhauser et 
al., 1978). Making use of this idea, and the fact that certain information-theoretic metrics such as 
entropy and mutual information satisfy the conditions of submodularity, Krause presents several 
approaches to optimal sensor placement. In particular, he focuses on the selection of informative 
variables to observe in PGMs generally, and in Gaussian process models specifically (Krause et 
al., 2008c). These techniques are demonstrated in several infrastructure-relevant applications, 
such as the detection of contamination in a water supply system (Krause et al., 2008a), lighting 
control optimization using sensors for building energy usage reduction (Singhvi et al., 2005), and 
determining temperature and precipitation patterns (Guestrin et al., 2005). These results 
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demonstrate the developed techniques for generating provably near-optimal sensor networks for 
the monitoring of systems modeled with Gaussian process models. Recent work has extended 
these techniques to optimizing sensor placement for detecting areas where values (again modeled 
by Gaussian random fields) may exceed a certain threshold, or optimize a value function over a 
domain (Gotovos et al., 2013; Sui et al., 2015; Vanchinathan et al., 2015). These methods have 
potential applications to the placement of sensors for detecting regions of concern for distributed 
infrastructure subject to spatially varying risks.  

1.2.5. Value of Information 
In terms of the practical application of sensor placement techniques to infrastructure 
management, both in the case of state classification as discussed for SHM systems in Section 
1.2.2 and the conditional entropy metric in Section 1.2.4, considerations relating to the 
economics and management of the system are not accounted for. The importance of such 
considerations in infrastructure management is illustrated by an intuitive thought experiment. 
Consider a system of two structures, for which the resources are only available to inspect one. A 
prior probabilistic performance model of these structures estimates their probabilities of failure at 
50% for one and 1% for the other. Under either the classification error reduction approach or the 
conditional entropy metric, an inspection should be performed for the former structure, since its 
state is the most uncertain, i.e., its state would only be correctly predicted 50% of the time, as 
opposed to 99% of the time for the other component. However, for many practical applications 
in infrastructure, a 50% probability of failure is unacceptably high, because the expected cost of 
component failure would be much higher than the cost of repairing or replacing the component 
to prevent a failure. Therefore, in a practical application, the first component (with a high 
probability of failure) would be replaced immediately, while the second component (with a low 
probability of failure) might be inspected to determine if a replacement activity is truly 
necessary. This example emphasizes the importance of considering potential management 
actions and their respective costs when making decisions about infrastructure inspections. 
Neither the conditional entropy nor misclassification rate metrics take these factors into account, 
and therefore may not be practically applicable to the optimal monitoring of infrastructure. An 
alternative metric that does explicitly account for these factors is the decision-theoretic value of 
information (VoI). 

Decision theory refers to the development of mathematics- and statistics-based approaches to 
rational decision-making under uncertainty. These approaches often take the form of strategies 
that will, by some metric, maximize the long-term expected utility to the decision-maker of their 
chosen actions, given a range of uncertain outcomes. In relation to infrastructure management, 
ideas from decision theory can be used to guide optimal maintenance strategies that will reduce 
the expected life-cycle costs of the infrastructure, taking uncertainties in its performance into 
account. One approach to applying decision-theoretic techniques to the management of 
infrastructure under uncertainty involves incorporating manager actions and user outcomes into 
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system PGMs, creating influence diagrams that can be used to analyze potential management 
strategies. Approaches that model infrastructure systems using PGMs often adopt this approach 
to optimize decision-making for these systems (e.g., Bensi et al., 2011).  

It should be noted that other approaches to decision-making under uncertainty exist which have 
goals besides the maximization of expected utility. These include approaches where the worst-
case performance is to be maximized, or where a certain percentile of the distribution of potential 
outcomes (e.g., the outcome with a 95% probability of exceedance by the utility measure) is to 
be maximized. There are also approaches which seek to optimize performance over the range of 
possible outcomes, although this can be analyzed in a decision theoretic framework by 
considering all outcomes to be equally likely and applying standard expected utility 
maximization (e.g., Lempert and Collins, 2007). Satisficing approaches also exist, which seek to 
find a solution which, while not optimal by the utility measure, satisfies minimum performance 
criteria (Simon, 1959). Still other strategies seek to maximize flexibility as the best approach to 
decision-making under uncertainty in sequential decision-making problems (Rosenhead, 2013). 
These various robust decision-making strategies are typically applied in cases of deep 
uncertainty, where the probability distribution over potential outcomes cannot be defined to the 
decision-maker’s satisfaction. In this work, it is assumed that potential outcomes, their 
consequences, and their probabilities will be known to the decision-maker, and therefore the 
basic expected utility decision-making framework will be adopted (robust approaches are briefly 
revisited in a discussion of sensor placement under model uncertainty in Section 11.3). 

The design of optimal information-collection strategies for infrastructure, such as inspection 
schemes or SHM systems, can be examined from a decision-theoretic perspective. A key metric 
for this analysis is the VoI, defined as the difference in expected costs for managing a system 
without and with collecting certain additional information (Raiffa and Schlaifer, 1961). 
Computation of the VoI is a form of pre-posterior analysis, in that estimation of the VoI is made 
before the information itself is collected, and therefore an expected value of the outcome must be 
taken over the probability distribution for the possible information that might be observed. A 
complete mathematical introduction to VoI is deferred until Chapter 4, with a discussion of the 
computational issues associated with this metric presented in Chapter 5. Here, a more qualitative 
overview of the metric and its application is presented.  

Since its formulation, the VoI concept has been applied to many diverse fields, including 
accounting (e.g., Hilton, 1977) and medicine (e.g., Heckerman et al., 1989; Claxton and Posnett, 
1996). The use of the VoI metric also has clear applications in the assessment and design of 
sensing systems and inspection strategies for infrastructure, due to its potential to quantify the 
utility of information gathering efforts, and therefore help to determine whether such efforts will 
be cost-effective. An important early work in the application of VoI in civil engineering was that 
of Straub (2004), which developed strategies for reliability-based inspection planning of 
deteriorating components, using decision-theoretic concepts to identify the timing of inspections 
that would result in the lowest life-cycle management cost for the component. Already at this 
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stage, the difficulties in optimizing inspections at a system-level were identified; the exact 
application of VoI to system-level inspection scheduling was considered computationally 
prohibitive, and an approximate heuristic approach was adopted based on iterative optimization 
of schedules for individual components (Straub and Faber, 2004, 2006). 

More recent work has expanded on the applications of VoI in civil infrastructure. Assessing the 
long-term VoI provided by SHM systems is discussed by Pozzi and Der Kiureghian (2011a, 
2011b). Applications of the VoI metric to supporting decision-making for geotechnical 
investigations of dikes and levees has also been an area of significant interest (e.g., Qin et al., 
2015; Schweckendiek and Vrouwenvelder, 2015; Thöns et al., 2015). The use of the VoI as a 
heuristic for allocating inspection efforts between components of a system is discussed by 
Memarzadeh and Pozzi (2016). 

Recent computational advances have also made VoI analysis possible in larger problems, but 
many barriers to its application at system-level remain. For example, a sampling-based approach 
to calculating the VoI of inspections on a deteriorating component is outlined by Straub (2014); 
this approach is efficient only for relatively small-scale systems (i.e., single components of an 
infrastructure system), as the sampling approaches presented scale poorly with increasing 
numbers of random variables. Additionally, optimal inspection of infrastructure is examined by 
Goulet et al. (2015a, 2015b); sensing activities and structural interventions for the monitoring 
and maintenance of a pair of similar columns are optimized by cost, subject to meeting a 
required safety level (i.e., a maximum prescribed probability of failure). Again, this approach 
scales poorly with the size of the system, as an exhaustive enumeration of all potential 
management strategies for the pair of columns is required.  

One potential method for addressing the poor scaling performance of VoI-based sensing 
optimization is to adopt an approach similar to that of Krause (2008), where a greedy 
optimization heuristic is used to iteratively add potential observations of the system based on 
maximizing the VoI until a specified “budget” for information collection activities is exhausted. 
Unfortunately, as shown by Krause (2008), VoI is not generally a submodular metric, and 
therefore the same guarantees on solution optimality cannot be made. However, this lack of 
submodularity does not necessarily invalidate the greedy approach to optimization; it may still be 
of interest to pursue this approach, even without rigorous guarantees on optimality, for the sake 
of increased computational efficiency and scalability. Such an approach is therefore adopted in 
this work, and some of its consequences are examined in Section 11.1.  

Recent work has aimed to identify submodular surrogates for the VoI based on the decision 
region determination problem (Chen et al., 2015). In this problem, the space of possible 
hypotheses, i.e., possible discrete states for the system, is divided between decision regions, i.e., 
subsets of the hypothesis space under which a given action is optimal, using the smallest number 
of binary tests which distinguish true and false sets of hypotheses. In that work, an adaptive 
submodular surrogate metric is developed which, while aligning with the goals of the VoI, 
allows for efficient and near-optimal selection of informative measurements. Although 
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promising, the approach as presented is limited by the need to consider discrete system states and 
test outcomes. Furthermore, generalizing the approach to apply to imperfect tests (i.e., noisy 
measurements) involves augmenting the hypothesis space with new hypotheses corresponding to 
different noisy outcomes, which exacerbates the exponential state space growth problem. For 
these reasons, such an approach is not adopted in this work.  

In a recent application to optimal planning of geotechnical investigations, Yoshida (2015) uses a 
Gaussian process model of arsenic concentration in soil, as well as a VoI metric based on the 
relative costs of type-I and type-II errors in classifying the arsenic concentration levels and a 
particle swarm optimization technique, to plan investigations of sites for characterization of soil 
contamination. This approach allows for sensor placements to be optimized in the continuous 
domain of the random field, rather than among a set pre-selected sensor placements on a 
discretized grid spanning the domain. Therefore, some problems of sub-optimal performance of 
the greedy algorithm are avoided, but at an increased computational cost, as the gradients of the 
VoI field at the location of each sensor placement must now be computed, in addition to the VoI 
quantities themselves. Additionally, the particle swarm optimization approach can still find itself 
trapped in local optima, as there is no evidence that the problem of sensor placement 
optimization via the VoI metric is convex.  

In summary, while the VoI metric has applications to assessment and design of monitoring 
systems or inspection schemes for civil infrastructure, its application in large-scale systems (with 
many components with correlated behaviors, for which a variety of potential measurements and 
management actions are possible) is hindered by the computational effort necessary, as 
compared with other sensor metrics (e.g., conditional entropy). Methods for the efficient 
computation and optimization of this metric, either exactly or through incorporating appropriate 
simplifying assumptions in specific systems or problems, are therefore a potentially fruitful area 
of research. 

1.2.6. Summary of Research Gaps 
When examining the body of prior work on infrastructure system monitoring and management, 
several recurring themes are present that suggest gaps in the current research: 

Component-level thinking: decisions on monitoring and management in systems are typically 
made for components without considering the system-level impacts of these decisions. Even 
many proposals for new SHM systems consider “big-data” approaches, i.e., using vast numbers 
of cheaply deployed sensors to monitor every component in a system, rather than “smart-data” 
approaches (Sheth, 2013), i.e., focusing sensing efforts where information will have the most 
benefit for managing the system as a whole. Transitioning from a component-level to a system-
level outlook entails major computational challenges (discussed under the next point), but also 
has potentially large benefits in terms of more efficiently utilizing limited resources. 
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Scaling issues: the analysis of infrastructure systems becomes more difficult as the number of 
components in the system grows. This issue arises as a result of system-level coupling between 
components, which can come in several forms, such as system-level causes (i.e., a common 
influencing factor affecting an entire system at once, such as in the case of an extreme event like 
an earthquake), system-level effects (i.e., the state of a system depending in a complicated way 
on the states of its components, such as in transportation network routing and connectivity), 
system-level information (i.e., when information gathered within a system comes from several of 
its components, such as in cases where spatially averaged data are collected), and system-level 
actions (i.e., management activities affecting more than one component of the system). Recent 
computational improvements have made steps towards alleviating these difficulties, but the 
fundamental challenge of the “curse of dimensionality” remains. 

Value-based sensing: accounting for the economic implications of collected information on 
decision-making, as is accomplished explicitly by VoI, is important to assessing how useful 
information is in supporting infrastructure management. An information-theoretic approach, 
focusing on uncertainty reduction alone, may not capture all of the relevant issues. A more 
thorough investigation of where information-theoretic and decision-theoretic approaches both 
agree and disagree in terms of optimizing sensor placement is therefore important to identify 
situations in which either or both approaches can be applied appropriately. 

1.3. Research Questions 
Within the context of the prior work outlined above, this work examines how existing concepts 
from probability and statistics, i.e., the use of PGMs and influence diagrams to describe decision-
making for uncertain systems, together with concepts for optimal sensor placement and decision 
theory, i.e., the VoI, can be applied to support the management of infrastructure systems. The 
fundamental motivating assumption for this research is that infrastructure monitoring and 
management will be most efficient and effective when both tasks are considered together, i.e., 
when decisions are made optimally based on collected information, and when this information is 
collected optimally to support decision-making. Following from this assumption, the general 
research question to be addressed in this work is: 

How can probabilistic models of infrastructure systems, together with the 
value of information metric, be used to guide the collection of information to 
optimally support the management of these systems? 

The use of the term “optimally” in the research question is meant to reflect concepts of both 
computational and economic efficiency, i.e., any proposed solution should quantify the 
optimality of sensing based on the underlying economics of infrastructure management, and do 
so in a manner that is computationally tractable for the system considered. 

This general research question is addressed throughout this work by way of examinations into 
the following six specific research sub-questions: 
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1. What is an appropriate model for an infrastructure system that can capture 
interdependencies in component performance, observation activities, management 
actions, and their consequences, and thus support the optimization of sensing and 
management together? 

2. Under what assumptions can the VoI be used to support optimal sensor placement for the 
management of infrastructure systems in a computationally efficient manner? 

3. For situations where the VoI cannot be efficiently computed, what alternative or 
approximate techniques might be applied to optimizing sensor placement? 

4. What is the relationship between VoI and other sensor placement metrics, in terms of 
how different factors relevant to infrastructure management applications are accounted 
for, i.e., how is “optimality” in sensing defined by different metrics, with respect to 
infrastructure systems? 

5. Can VoI be efficiently applied to placement and scheduling of sensing in evolving 
systems, and under what assumptions can this efficient application be made? 

6. How can the practical application of the VoI metric for supporting infrastructure system 
monitoring and management be demonstrated? 

1.4. Key Results and Contributions 
This work presents several results that contribute to answering the general research question 
posed above. Several important contributions are tied directly to the specific research sub-
questions: 

1. Chapter 3 describes the PGM and influence diagram framework for infrastructure 
systems adopted in this work. This intuitive, flexible framework is used to describe the 
relationships between infrastructure systems, their constituent components, observations 
of their states and properties, actions taken to manage these systems, and their 
consequences. The general framework is further used to identify systems where the VoI 
metric can be efficiently computed. 

2. Using the probabilistic modeling framework described above, specific cases in which VoI 
computation can be performed efficiently are identified. Based on these cases, an 
efficient computational approach is presented for calculating VoI in systems with a 
specific topology (dubbed the “cumulative” topology) under certain assumptions on the 
system (i.e., that the variables describing system performance are jointly Gaussian, 
observations of these are also Gaussian, component states are binary, and management 
actions have local effects on specific components). This computational approach is 
described in Chapter 5. 

3. Cases in which the assumptions described above are not met by the problem structure are 
also investigated. In Section 5.3, a generally applicable approximate method of VoI 
computation is outlined, along with certain efficient techniques applicable to series and 
parallel system topologies in particular. Furthermore, in Section 5.4, an investigation into 
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the performance of the VoI metric for cases in which the system does not exhibit the 
cumulative topology are investigated numerically for computationally tractable systems, 
and compared with results for corresponding cumulative systems, in an effort to draw 
parallels between these cases that can form the basis of approximate methods. 

4. Theoretical comparisons of the VoI with other sensor placement metrics are provided in 
Section 4.4. Furthermore, several applications of these metrics to example sensor 
placement problems are presented in Chapter 6, where the different characteristics of 
these metrics, in terms of the optimal sensor placements resulting from different metrics 
under different circumstances, are compared.  

5. Chapter 7 presents an extension of the VoI computation and sensor placement 
methodologies discussed previously to evolving systems, i.e., systems where the 
underlying factors influencing the performance of the infrastructure system are time-
dependent. A temporal variant of the cumulative topology assumption is presented and 
applied to support efficient computation of the VoI metric in evolving systems. This 
metric can then be used to support both optimal placement and scheduling of information 
collection in space and time. 

6. Along with many theoretical demonstrations of the application of the VoI metric, three 
larger specific case studies of how the VoI metric can be employed for optimal sensor 
placement to support infrastructure management are presented in this work. In Chapter 8, 
a set of strain gauges installed on the Sherman and Joyce Bowie Scott Hall are used as a 
testbed to demonstrate the application of the optimization techniques developed in this 
work to supporting infrastructure management decision-making for a simulated problem 
of differential settlement between column foundations. In Chapter 9, the problem of 
seismic risk in the San Francisco Bay area is examined, and an optimal scheme for 
monitoring and managing a set of bridge and tunnel infrastructures in the region in the 
aftermath of an earthquake is described. In Chapter 10, the problem of extreme heat risk 
in an urban area is considered, and a probabilistic model of urban temperatures is 
developed and used to support the optimal placement of new weather stations in the city 
of Pittsburgh, Pennsylvania to support heat wave advisory issuance. Together, these case 
studies provide specific demonstrations of how probabilistic models and the VoI metric 
can be used to support the management of diverse infrastructures, ranging from 
individual structures (i.e., the Scott Hall building), to portfolios of physical structures 
(i.e., bridges and tunnels in the San Francisco Bay area), to social infrastructures 
supporting warning issuance and emergency response activities (i.e., heat warning 
issuance for the city of Pittsburgh). 

1.5. Overview of the Document 
This document is organized into 12 chapters, including this introductory chapter. The outline for 
subsequent chapters is as follows: 
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Chapter 2 introduces the general problem of sensor placement optimization for infrastructure 
system management. It introduces the notation for random fields, component and system states, 
management actions and losses, and observations that is used throughout the work. It also 
discusses some general issues for sensing in infrastructure, and describes the greedy approach to 
sensor placement optimization which is adopted in this work.  

Chapter 3 outlines the PGMs and influence diagrams used to model infrastructure systems in this 
work. It presents various system topology effects that are incorporated into the general model, 
and discusses the characteristics of the cumulative system topology in particular. It gives a 
general background on the Gaussian random field modeling approach used throughout the work. 
Finally, it presents the assumptions of binary component state definition and linear observations 
that are used to define states and observations in this work. 

Chapter 4 introduces the VoI metric, providing definitions and important properties of the metric 
which have been identified in previous work. A parametric analysis of the metric for a single-
component system is presented to provide insight into how this metric captures properties of 
interest for infrastructure monitoring efforts. Finally, the metric is compared with other sensor 
placement metrics, such as posterior predictive error and conditional entropy, to illustrate 
equivalences and differences between these. 

Chapter 5 discusses the computational challenges associated with evaluating the VoI metric in 
large systems. A general approximate method for VoI computation is presented. Furthermore, an 
efficient exact method for computation under the assumption of a cumulative system topology is 
presented. A comparative example is analyzed for the VoI in cumulative, series, and parallel 
system topologies, illustrating the behavior of the metric in these different multi-component 
systems. 

Chapter 6 gives comparative examples for sensor placement based on the VoI and other metrics 
in one-dimensional and two-dimensional problems. The effects of system topologies, state 
definitions, possible actions, and alternative metrics are investigated. These examples serve to 
illustrate how the VoI captures relevant features for supporting infrastructure management 
decision-making in various contexts. 

Chapter 7 extends the methodologies developed in this work to problems in a spatio-temporal 
domain, i.e., where random fields vary not only across the system in space, but also over time for 
a finite discretized time horizon. Efficient evaluation of the VoI in such systems is illustrated 
based on the cumulative topology assumption discussed previously. This extension allows for the 
application of this metric to optimal sensor scheduling as well as placement. 

Chapters 8 through 10 illustrate demonstrative applications of the techniques developed in this 
work to specific infrastructure management problems. First, in Chapter 8, a recent project to 
instrument the columns of the Sherman and Joyce Bowie Scott Hall on the Carnegie Mellon 
University campus is used as a demonstrative case for optimal sensor placement to support 
SHM. Next, in Chapter 9, a Poisson process model of seismic risk in the San Francisco Bay area 
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is used to support optimal sensing for post-earthquake management of bridges and tunnels. 
Finally, in Chapter 10, a spatio-temporal Gaussian process model of extreme heat risk is 
developed and calibrated, and used along with the VoI metric to support temperature monitoring 
for optimal heat wave advisory issuance for the city of Pittsburgh.  

Chapter 11 discusses open issues related to the use of the VoI metric to support optimal sensor 
placement for infrastructure management. These include the lack of submodularity of the VoI 
metric, and its impact on the potential performance of the greedy optimization algorithm. Some 
anecdotal results and empirical evaluations of algorithm performance are presented. Other open 
issues include the evaluation and optimization of VoI under model uncertainty and the efficient 
analysis of large-scale systems with non-cumulative topologies via this metric. 

Finally, Chapter 12 summarizes the results of this work, and provides some general conclusions 
about the use of PGMs and VoI to support optimal sensor placement for infrastructure system 
monitoring and management. It also lists several publications in which the primary results 
presented in this work first appeared. 
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Chapter 2  

Problem Statement 

This chapter defines key terms and concepts that form the foundation of this work. These include 
the definition of random fields affecting infrastructure systems, the definition of the states of 
these systems and their components, of observations taken within the system, and of actions 
taken for managing the system and their consequences, all of which are discussed in Section 2.1. 
Furthermore, the general concept of optimal sensor placement within such a system is presented 
in Section 2.2, and the greedy optimization approach which will be used throughout the work is 
introduced in this context. 

Before beginning with mathematical definitions, a brief qualitative introduction to the concepts 
of infrastructure systems and their monitoring and management, as these ideas are understood 
and used in this work, is in order. The term “infrastructure system” is used generally to describe 
any engineered structure or structures that function to provide a basic service for society. 
Examples range from individual buildings, to groups of buildings or structures, to networks of 
many diverse constructs. A transportation system will be used in the following paragraphs as a 
running example to help the reader visualize the concepts discussed.  

Infrastructure systems are made up of components. In a transportation system, these components 
might be bridges, tunnels, and roadways. In this work, the distinction between system and 
component is arbitrary, based on the specific problem or issue to be solved, and no attempt will 
be made to provide a general taxonomy for systems and components. Instead, such distinctions 
will arise naturally from context, and may be fluid between different applications; for example, 
in one context a bridge many be considered a system, with its beams and connections as 
components, and in another the bridge many be the component, with the system made up of 
numerous bridges connected into the transportation network. The one distinction that will be 
adopted generally between components and systems is their spatial extent; the components of 
infrastructure systems are considered to be distributed across a spatial domain, where each 
component occupies a specific point within that domain. However, this is again a contextual 
rather than an absolute distinction, as in reality all components are three-dimensional objects, 
and thus are themselves distributed across space. In context, however, the difference in scale 
between a system and its components often makes it convenient to describe each component as 
being associated with a discrete point within the larger domain of the system. 
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The term “state” is used to refer to the operational condition of an infrastructure component or 
system. For the system, this state refers to its ability to or the degree to which it can fulfill its 
designated societal function. For a transportation system, this state could refer to the connectivity 
between two cities, or to the traffic capacity the network is able to sustain between them. For a 
component, this state refers to its ability to or the degree to which it can fulfill its designated 
function as a part of the system. A bridge’s state within a transportation network might then refer 
to whether or not it is open for traffic, or what traffic loading it can sustain. In this work, it is 
assumed that the state of a system can be described via a deterministic or probabilistic function 
of the states of its components.  

The behaviors of all system components, and therefore the behavior of the system, are uncertain. 
In other words, an agent acting to manage the system has incomplete and/or imperfect 
knowledge of the states of the components and of the various factors that determine these states. 
For example, an agency managing a transportation system does not have complete knowledge of 
the condition states of its bridges, the environmental conditions to which they are subjected, or 
the traffic loadings applied to them. An agent can, however, build a mathematical model of the 
system that takes such uncertainty into account. In Bayesian parlance, this knowledge and 
uncertainty is captured by a prior probabilistic model of the system. This uncertainty can be 
reduced through sensing, which is broadly defined as any activity aimed at reducing uncertainty 
in the system. This can be understood traditionally, as the placement of physical sensor within 
the system to measure variables of interest, or more generally, as the performance of inspections 
or the use of improved modeling techniques to reduce uncertainty. Uncertainty reduction is 
accomplished, in a Bayesian sense, by using the collected information to update the prior 
probabilistic model of the system to a posterior model, reflecting this new information. 
Monitoring of the system is defined as the set of sensing efforts made by the managing agent to 
collect information within the system to reduce his or her uncertainty in its performance. The 
problem of “sensor placement” in this work therefore refers to the choice of what information 
collection efforts to make within the system. 

The managing agent of the system is not a passive observer of the system only, but also has the 
option to actively intervene. For example, a transportation system manager has the option to 
replace damaged bridges, retrofit existing bridges, or restrict access to bridges that may be 
unsafe. The management of the system is defined as the set of active interventions in the system 
taken by the managing agent. Note that this set must include the empty set, or the “do nothing” 
activity, i.e., the active choice by the managing agent not to intervene in the system. The choice 
of what actions to take in managing an uncertain system must be guided by the ultimate goals of 
the agent and of society. In this work, a decision-theoretic or utilitarian outlook is adopted. It is 
assumed that the managing agent has a utility function, i.e., a mapping from the joint space of all 
variables affecting the system and all actions undertaken for its management to a scalar quantity 
ranking this outcome’s desirability with respect to all other possible outcomes. Typically, this 
utility function is assessed in a monetary form and in the inverse, i.e., as a “loss function” that 
quantifies the disutility or cost of an outcome to the managing agent on a monetary scale. This is 
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due to the desire to connect sensing and decision-making to the economic considerations of 
infrastructure management, which is accomplished most conveniently by using such a scale. 
Furthermore, adoption of the pessimistic viewpoint (i.e., seeking to minimize losses rather than 
to maximize gains) is arbitrary, based on the preference of the agent; adopting the optimistic 
viewpoint would be completely equivalent, and it is left to the reader to translate between these 
viewpoints as desired. 

Taking this view of system monitoring and management, the problem of optimal sensor 
placement can be addressed quantitatively. Specific quantification of the problem using the VoI 
metric is deferred until Chapter 4. For now, the problem is described generally as the selection of 
a set of information collection activities that maximizes some objective mapping this set to a 
quantitative assessment of the relative merits of this set with respect to other potential sets. It is 
taken for granted that that sensing quality can be quantified in such a way; again, a justification 
and comparative discussion of different methods of performing this quantification is differed to 
Chapter 4. This chapter will discuss the problem generally, as well as the solution approach 
adopted here.  

The following sections give a more concrete mathematical formulation to the concepts described 
qualitatively above. 

2.1. Basic Definitions 
To begin, 𝒳𝒳 defines the spatial domain over which the system is distributed. This might be a 
one-, two-, or three-dimensional space; furthermore, higher dimensions may be considered in the 
case that components are co-located, such that they might be distinguished. Furthermore, in some 
cases, a non-spatial coordinate system may be used, e.g., if a more abstract system of social 
infrastructure is being modeled, features such as age, sex, education, etc. might be relevant to 
localize the “components” of this system within a social space. However, for the vast majority of 
cases considered in this work, 𝒳𝒳 denotes a standard Euclidian spatial domain. 

For computational purposes, this continuous spatial domain is discretized into a finite set of 𝑛𝑛𝑋𝑋 
locations, collected into the set 𝑋𝑋. This is sometimes used simply to represent the continuous 
space 𝒳𝒳 through a finite number of points on a regular grid. However, it is often the case in this 
work that this discretization corresponds to the locations of the components within the system, as 
only these locations will be of direct relevance to system management. In such cases, the number 
of discrete locations 𝑛𝑛𝑋𝑋 matches the number of system components 𝑛𝑛. It is assumed that these 
locations are known, i.e., the coordinates of each component of the system are fixed quantities 
and the components do not move. 

2.1.1. Random Fields 
The many factors influencing the behavior of the components of the system are described using 
random fields defined over the domain 𝒳𝒳. Denote by 𝐹𝐹 the set of random fields affecting the 
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system, and denote by f(𝐱𝐱) the random field values affecting the system at location 𝐱𝐱 ∈ 𝒳𝒳. In 
general, f(𝐱𝐱) may be multivariate, describing the values of multiple co-located random fields for 
different features of interest in modeling the system. Furthermore, variables may be modeled that 
are not associated with a specific location 𝐱𝐱 ∈ 𝒳𝒳, but apply generally throughout the system; in 
such cases, for consistency, these variables can be associated with an arbitrary “dummy” 
location, or multiple identical copies of the variable may be associated with each 𝐱𝐱 ∈ 𝑋𝑋. 

The vector 𝐟𝐟 denotes the random quantities that affect the system at all of the discretized 
locations 𝑋𝑋. In the case where there are multiple co-located random fields for different quantities, 
the values of all fields are concatenated into this single vector for notational simplicity. 

The potential values of random vector 𝐟𝐟 are described according to its prior probability 
distribution: 

 𝐟𝐟 ~ p𝐹𝐹 (2-1) 

The random variables affecting system performance may in general be continuous or discrete, 
depending on the context. Although their values are unknown, a key assumption for most of this 
work is that these variables are static, i.e., that they take on a fixed (although unknown) quantity 
that does not change. In the context of infrastructure system management, this assumption can be 
viewed in three ways. First, these variables can represent physical properties that are 
deterministic but unobserved, i.e., the consequence of epistemic uncertainty. A specific example 
of this might be the ultimate strength of a beam, which is a fixed quantity but is unknown before 
the beam’s failure. Second, these variables can represent realizations of a random process during 
a specific extreme event, i.e., the consequence of aleatory uncertainty. An example of this might 
be the peak loading on a structure during a hurricane, which may vary from one hurricane to the 
next but is fixed within a given hurricane event. Third, these variables can represent long-term 
averages or trends. For example, while the loading on soil can fluctuate greatly, the average 
loading over time may define the soil consolidation (Das, 2010, chap. 11). In Chapter 7, the 
problem of dynamic systems which evolve over time is considered; in that case, different 
instantiations of each variable in 𝐟𝐟 are considered for different times over the distretized temporal 
domain. Therefore, again, the subset of variables corresponding to each time is static, with past 
and future instantiations of these quantities represented by different variables, rather than the 
same variables change over time.  

2.1.1.1. Model parameters and scenarios 

It is further assumed in this work that any model parameters 𝑊𝑊, i.e., any parameters of the 
probabilistic model defining the prior distribution, are known. For example, in a multivariate 
Gaussian distribution, these parameters refer to the mean vector and covariance matrix of the 
distribution. Equation 2-1 can then be understood as the distribution of 𝐟𝐟 conditional to known 
model parameters 𝐰𝐰: 
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 𝐟𝐟|𝐰𝐰 ~ p𝐹𝐹|𝐰𝐰 (2-2) 

In general, these parameters may be unknown, described instead by prior distribution p𝑊𝑊. In this 
case, the prior distribution for 𝐟𝐟 can be derived using the law of total probability:  

 p𝐹𝐹(𝐟𝐟) = ∫ p𝐹𝐹|𝐰𝐰(𝐟𝐟|𝐰𝐰) p𝑊𝑊(𝐰𝐰) d𝐰𝐰𝐰𝐰∈Dom(𝑊𝑊)  (2-3) 

In Chapter 9, this assumption is investigated further, where parameters 𝐰𝐰 are used to describe the 
earthquake scenario affecting a system in terms of its magnitude and epicenter location. In that 
case, the seismic scenario affecting the system is itself uncertain, and therefore uncertainty in 𝐰𝐰 
is accounted for. However, elsewhere in this work, unless explicitly mentioned, the assumption 
of fixed model parameters, i.e., of a known scenario, is followed. 

2.1.2. Observations 

Sensing activities can be modeled as taking measurements of the underlying random field 𝐹𝐹. A 
set of such observations is denoted 𝑌𝑌, and the distribution of the measured values 𝐲𝐲 of these 
observations conditional to the underlying random field variables 𝐟𝐟 is: 

 𝐲𝐲|𝐟𝐟 ~ p𝑌𝑌|𝐟𝐟 (2-4) 

The prior distribution for these measurements can be defined using the law of total probability: 

 p𝑌𝑌(𝐲𝐲) = ∫ p𝑌𝑌|𝐟𝐟(𝐲𝐲|𝐟𝐟) p𝐹𝐹(𝐟𝐟) d𝐟𝐟𝐟𝐟∈Dom(𝐹𝐹)  (2-5) 

In cases where these measurements are associated with specific points in the domain, y(𝐱𝐱) 
denotes a measurement of f(𝐱𝐱). In general, these measurements may not be associated with 
specific points, e.g., these may be measures of sets or functions of random field values for one or 
many points within the domain. Also, these measurements are generally not precise, i.e., 
y(𝐱𝐱) ≠ f(𝐱𝐱), but may have noise or systematic bias. In any case, the conditional distribution p𝑌𝑌|𝐟𝐟 
defines the relationship between the measurements and the random field quantities. 

2.1.2.1. Bayesian updating 

Through Bayesian inference, measurements 𝐲𝐲 are used to define a posterior distribution for the 
random field variables 𝐟𝐟 conditioned on this observation. This posterior distribution is: 

 𝐟𝐟|𝐲𝐲 ~ p𝐹𝐹|𝐲𝐲 (2-6) 

where this posterior distribution is defined via Bayes’ theorem: 

 p𝐹𝐹|𝐲𝐲(𝐟𝐟|𝐲𝐲) = p𝑌𝑌|𝐟𝐟(𝐲𝐲|𝐟𝐟) p𝐹𝐹(𝐟𝐟) 
p𝑌𝑌(𝐲𝐲)  (2-7) 

  - 24 - 
 



The posterior distribution descibes the updated understanding of the underlying random variables 
affecting the system gained as a result of the information 𝐲𝐲 gathered from the observation set 𝑌𝑌. 
In general, the definition of such a posterior distribution can be difficult, requiring approximate 
techniques such as Markov Chain Monte Carlo (MCMC), which allows samples to be drawn 
from this posterior distribution without an explicit definition of its form (e.g., Au and Beck, 
2001; Koller and Friedman, 2009; Papaioannou et al., 2015). However, in certain special cases a 
so-called “conjugate prior” distribution is used, and the inference can be performed in closed 
form. One such case is the multivariate Gaussian distribution, which is its own conjugate prior. 
In Chapter 3, the use of the Gaussian distribution for modeling infrastructures is discussed. 

2.1.3. States 
The definitions of the states of infrastructure components and systems are presented here, in 
which three different state variable types are presented. Limit-state variables are intermediate 
variables between the random field variables affecting the components and component state 
variables, and system state variables describe how the system as a whole performs. In this 
section only the prior distributions for each of these types of state variables are described. 
However, posterior distributions for these can easily be derived using the relationships between 
these variables and the random field variables presented in this section and the posterior 
distribution for the random field variables described in Equation 2-7. Furthermore, note that the 
relationships between these variables are described probabilistically. However, in Chapter 3 and 
beyond, these relationships are assumed to be deterministic; such deterministic relationships may 
be understood as special cases of the general probabilistic description provided here. 

2.1.3.1. Limit-states 

Limit-state variables are used here, as by, e.g., Ditlevsen and Madsen (1996), to provide an 
intermediate step between the underlying random variables affecting the system and the states of 
the system components. For example, when multiple co-located random fields are affecting the 
same component in different ways, it is often useful to transform these multiple variables into a 
single variable describing the overall effect of these variables on the component. The set of limit-
state variables for the system is denoted 𝐺𝐺, and the distribution for 𝐠𝐠, the vector of variable 
values, conditional to the random field variables 𝐟𝐟, is: 

 𝐠𝐠|𝐟𝐟 ~ p𝐺𝐺|𝐟𝐟 (2-8) 

The prior distribution for 𝐠𝐠 is obtained from the law of total probability: 

 p𝐺𝐺(𝐠𝐠) = ∫ p𝐺𝐺|𝐟𝐟(𝐠𝐠|𝐟𝐟) p𝐹𝐹(𝐟𝐟) d𝐟𝐟𝐟𝐟∈Dom(𝐹𝐹)  (2-9) 

Limit-state variables are primarily used for notational convenience, as they describe the 
influences of multiple factors using a single variable, and allow for easier definition of 
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component states (these often being dependent on a single limit-state variable rather than on 
multiple random field variables). However, the use of limit-state variables is not necessary in all 
cases, and these are then ignored, i.e., a definition of 𝐠𝐠 = 𝐟𝐟 is adopted. 

2.1.3.2. Component states 

The set of component states 𝑆𝑆 describes the behavior of each of the 𝑛𝑛 components of the system. 
Vector 𝐬𝐬 encodes these states, and its distribution conditional to the limit-state variables 𝐠𝐠 is: 

 𝐬𝐬|𝐠𝐠 ~ p𝑆𝑆|𝐠𝐠 (2-10) 

The prior distribution for 𝐬𝐬 can be obtained using the law of total probability: 

 p𝑆𝑆(𝐬𝐬) = ∫ p𝑆𝑆|𝐠𝐠(𝐬𝐬|𝐠𝐠) p𝐺𝐺(𝐠𝐠) d𝐠𝐠𝐠𝐠∈Dom(𝐺𝐺)  (2-11) 

Component state variables describe the level of functionality of each component of a system. 
This level may be descibred by a continuous or discrete variable, e.g., a binary (yes or no) 
indication of functionality, a bridge condition rating (an integer from 0 to 9), or the residual 
capacity in a structural element (a real number). 

In general, multiple state variables may be associated with each component, but in this work one 
variable is assigned to each component, i.e., it is assumed there are 𝑛𝑛 variables in vector 𝐬𝐬. 
Because of this, there may be different ways to interpret the concept of “component” in different 
contexts. Most commonly, components are considered to be separate physical entities that have a 
certain functional behaviour. However, the same physical entity may be divided into several 
different components for the purpose of system analysis, e.g., if the physical entity in question 
has multiple operational or failure modes, or fulfills several purposes within the system. In such 
cases, each of these virtual components is associated with a state, rather than each physical 
component. 

2.1.3.3. System state 

The state of the system defines its functionality with respect to the service the system is designed 
to provide for society. The system state variable 𝕤𝕤 is defined conditional to the component states 
as: 

 𝕤𝕤|𝐬𝐬 ~ p𝕊𝕊|𝐬𝐬 (2-12) 

This variable can be discrete or continuous, as for the components above. The prior distribution 
of the system state is defined using the law of total probability: 

 p𝕊𝕊(𝕤𝕤) = ∫ p𝕊𝕊|𝐬𝐬(𝕤𝕤|𝐬𝐬) p𝑆𝑆(𝐬𝐬) d𝐬𝐬𝐬𝐬∈Dom(𝑆𝑆)  (2-13) 
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The method whereby the component states contribute to the system state can be physical (e.g., a 
network of bridges providing transportation connectivity) or logical (a structure with several 
failure modes, each of which constitutes a virtual component contributing to the state of the 
system). Furthermore, the system state may not be defined as a single variable for all system 
topologies, but rather via the collection of component state variables, i.e., 𝕤𝕤 = 𝐬𝐬 for some 
systems. Such cases will be examined further in Chapter 3. 

2.1.4. Actions 
Actions denote the activities undertaken by an agent managing the system. Based on his or her 
prior knowledge of the system, as well as any information collected to update this prior 
knowledge, the managing agent chooses a set of actions 𝐴𝐴 from a set of potential actions 𝒜𝒜. The 
choice of management actions is encoded into vector 𝐚𝐚. In contrast to the terms introduced 
previously, 𝐚𝐚 is not a random variable. Rather, it is a decision variable, whose value is chosen by 
the managing agent. However, in practice, assuming a rational decision-maker and a known loss 
function, an optimal decision can be defined conditional to a set of measurements or random 
field values. However, the precise manner in which the choice of action is decided is left 
unspecified until Chapter 4. 

Two key assumptions are made in defining actions and their consequences in this work. First, it 
is assumed that actions are non-sequential, i.e., that all actions are decided upon and executed 
simultaneously throughout the system. This connects to the assumption of a static random field 
stated in Section 2.1.1; as there is no temporal distinction between the underlying random 
variables, there is no need for any temporal distinction between management actions. In other 
words, the problem of sequential decision-making, in which the proper order of actions must be 
determined, is not considered for the majority of this paper. An exception is in Chapter 7, where 
this problem is considered under specific assumptions on the structure of the sequential decision-
making problem.  

Second, it is assumed that actions cannot influence the random field values, and therefore the 
states of the components. This may seem counter-intuitive, e.g., “how can a failed component be 
repaired if actions cannot affect the component state?” However, in this work these effects are 
captured by the loss function, as discussed below. This method for describing the effects of 
actions is important to prevent the formation of cycles in the PGM of the system which would 
lead to computational difficulties, as discussed in Chapter 3. 

2.1.5. Losses 
The loss function is a map from the space of random variables affecting the system and the space 
of actions taken for system management to a scalar value that quantifies the desirability of the 
managing outcome to the agent, with a higher value corresponding to a less desirable outcome. 
In its most general form, the loss function is denoted L(𝐟𝐟,𝐚𝐚), a function of random field variables 
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𝐟𝐟 and management actions 𝐚𝐚. In certain contexts, the loss function may also be formulated as 
L(𝐠𝐠,𝐚𝐚), L(𝐬𝐬,𝐚𝐚), or L(𝕤𝕤,𝐚𝐚), a function of limit-state variables 𝐠𝐠, state variables 𝐬𝐬, or system state 
variable 𝕤𝕤 and actions 𝐚𝐚 respectively. These various formulations can be based on the 
relationships outlined in Section 2.1.3. For example: 

 L(𝐠𝐠,𝐚𝐚) = 𝔼𝔼𝐹𝐹|𝐠𝐠L(𝐟𝐟,𝐚𝐚) = ∫ L(𝐟𝐟,𝐚𝐚) p𝐺𝐺|𝐟𝐟(𝐠𝐠|𝐟𝐟) p𝐹𝐹(𝐟𝐟)
p𝐺𝐺(𝐠𝐠)  d𝐟𝐟𝐟𝐟∈Dom(𝐹𝐹)  (2-14) 

and in the reverse direction: 

 L(𝐟𝐟,𝐚𝐚) = 𝔼𝔼𝐺𝐺|𝐟𝐟L(𝐠𝐠,𝐚𝐚) = ∫ L(𝐠𝐠,𝐚𝐚) p𝐺𝐺|𝐟𝐟(𝐠𝐠|𝐟𝐟) d𝐠𝐠𝐠𝐠∈Dom(𝐺𝐺)  (2-15) 

The appropriate formulation of the loss function depends on the decision-making problem 
context, with it being more convenient in some cases to define the loss in terms of 𝕤𝕤, 𝐬𝐬, or 𝐠𝐠 
rather than 𝐟𝐟. Some common loss function formulations for different situations will be discussed 
in Chapter 4. 

The definition of the loss function as depending on both variables and agent actions allows the 
effects of these actions to be captured by the loss function directly. This also allows the costs of 
these actions to the managing agent to be captured by the loss function, i.e., both the cost of 
implementing an action and the result of this action in affecting the performance of the system 
are captured in the loss function. This formulation, however, requires that the outcomes of the 
actions be deterministic. In other words, given an action and the state of the system (described by 
𝕤𝕤, 𝐬𝐬, 𝐠𝐠, or 𝐟𝐟 depending on the loss function), there is a known outcome for the action. In 
principle, actions with uncertain outcomes, e.g., repairs that may or may not succeed, can also be 
modeled in this framework by augmenting the state vector, e.g., instead of “failed” and 
“operational” states, there may be “failed”, “failed, but reparable”, and “irreparably failed” 
states, with the outcome of the “repair” action depending on which of the latter two states holds. 
However, the use of an augmented state in this manner is not investigated in this work.  

2.2. Optimal Sensor Placement 
The problem of optimal sensor placement is formally stated as: 

 𝑌𝑌∗ = argmax𝑌𝑌∈𝒴𝒴 M(𝑌𝑌)   subject to  C(𝑌𝑌) ≤ 𝑏𝑏 (2-16) 

where the optimal set of measurements 𝑌𝑌∗ is selected from the set of all possible measurements 
𝒴𝒴 to maximize the sensor placement objective M(𝑌𝑌) subject to the constraint that the cost of 
obtaining these measures C(𝑌𝑌) is less than or equal to the sensing budget 𝑏𝑏.  

The definition of the sensing objective M(𝑌𝑌) is left unspecified for now. For the majority of this 
work, the VoI metric will be used to define M(𝑌𝑌), as discussed in Chapter 4. However, 
alternative metrics, such as misclassification rate (which is in fact a special case of the VoI 
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metric) and the conditional entropy, will also be employed. For now, only a qualitative 
discussion of the properties of the objective is provided. 

Sensing objective M(𝑌𝑌) is a set function of measurement set 𝑌𝑌 that maps this set to a scalar 
quantity. This quantity is a measure of the quality of the information provided by measurement 
set 𝑌𝑌, where a higher quantity indicates a higher quality of information. Note that it is not a 
function of the measurement outcomes 𝐲𝐲 directly, but only of the measurement scheme 𝑌𝑌. The 
objective should therefore be robust against the prior uncertainty in the outcome of these 
measurements, i.e., it should be defined using a pre-posterior analysis of the potential quality of 
the measurement set across all possible measurement outcomes. Beyond this, the way in which 
the quality of the measures is evaluated is left open, i.e., no specific dependence on 𝐹𝐹, 𝐺𝐺, 𝑆𝑆, 𝐴𝐴, 
etc. is specified.  

Broadly speaking, there are two potential approaches to defining this objective that are examined 
in this work. First, there is the information-focused approach that has as its motivation the idea 
that the ultimate goal of sensing is to reduce uncertainty in the system. Following this approach, 
the sensing objective should be defined in such a way that it measures how the uncertainty in the 
random variables defining the system will be reduced following an observation of 𝑌𝑌. The 
conditional entropy and misclassification rate metrics follow directly from this approach. 
Second, there is the outcome-focused approach, which is motivated by the idea that the goal of 
sensing is ultimately to allow for better decision-making in managing the system, i.e., to reduce 
losses or maximize the utility of the decision-making agent in the uncertain system. This 
approach is the one adopted in this work, and the VoI metric discussed in Chapter 4 follows from 
it. However, these two approaches are not always mutually exclusive, and there are certain 
similarities in how both approaches are used to define sensor placement objectives. These 
similarities are investigated in Section 4.4 for the metrics discussed. 

2.2.1. Optimization Approach 
Obtaining a solution to Equation 2-16 is an exercise in combinatorial optimization. As discussed 
in Section 1.2.4, exact solution of a combinatorial optimization problem is in general intractable. 
For example, let 𝑛𝑛𝒴𝒴 = |𝒴𝒴|, the number of individual candidate measurements in set 𝒴𝒴. The 
number of possible subsets (including the empty set) of 𝒴𝒴 that might be chosen is then 2𝑛𝑛𝒴𝒴 . Due 
to this exponential growth, an exhaustive enumeration and evaluation of all potential candidate 
measurement sets will not be feasible, except for problems where 𝑛𝑛𝒴𝒴 is small (the limit such that 
an exhaustive search can be executed depends on the computational effort and time required to 
test each candidate measurement set). Therefore, an approximate solution approach is needed to 
efficiently solve this combinatorial optimization problem in general. 

The approach adopted in this work is the application of the greedy optimization algorithm. This 
algorithm works to build the putative optimal set of measurements by at each step of the 
algorithm adding the single remaining unselected measurement in 𝒴𝒴 that maximizes the sensing 
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objective when added to the set of measurements already selected in previous steps. Therefore, 
instead of simultaneously selecting all measurements in the proposed set, only one measurement 
at a time is selected and added to the set. This approach requires at most 1

2
𝑛𝑛𝒴𝒴�𝑛𝑛𝒴𝒴 + 1� + 1 

evaluations of the objective function to evaluate potential measurement sets, with fewer 
evaluations needed if the sensing budget is exhausted before all 𝑛𝑛𝒴𝒴 candidates are included in the 
selected set. Algorithm 1 presents pseudo-code for the greedy optimization algorithm as applied 
in this work. This code is adapted from similar algorithms presented by Krause (2008). Note that 
∪ denotes the set union and \ the set subtraction. Although there is in general no guarantee on 
the performance of this algorithm, its simplicity and efficiency recommend it to the task of 
obtaining solutions to Equation 2-16 for large systems. Investigations into the performance of 
this algorithm for the problems investigated in this work are provided throughout, and a 
summary of its performance is given in Section 11.1. 

Algorithm 1: Pseudo-code for the greedy algorithm. 

Input candidate set 𝒴𝒴, objective function M(⋅), cost function C(⋅), constraint 𝑏𝑏 
𝑗𝑗 = 0,  𝒴𝒴0 = ∅ 
for each 𝑌𝑌 ∈ 𝒴𝒴  
 if C(𝑌𝑌) ≤ 𝑏𝑏 then 𝒴𝒴0 = 𝒴𝒴0 ∪ {𝑌𝑌} 
end 
while �𝒴𝒴𝑗𝑗� > 0 
 𝑗𝑗 = 𝑗𝑗 + 1  
 select 𝑌𝑌𝑗𝑗∗  (See Equations 2-17 and 2-18) 
 𝒴𝒴𝑗𝑗 = 𝒴𝒴𝑗𝑗−1\�𝑌𝑌𝑗𝑗∗�  
 for each 𝑌𝑌 ∈ 𝒴𝒴𝑗𝑗  
  if C��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗∗,𝑌𝑌�� > 𝑏𝑏 then 𝒴𝒴𝑗𝑗 = 𝒴𝒴𝑗𝑗\{𝑌𝑌} 
 end   
end    
𝑗𝑗end = 𝑗𝑗  
Output 𝑌𝑌∗ = �𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒

∗ � 
 

Note that the algorithm presented above gives an example of a forward greedy optimization 
algorithm, i.e., the optimal set is built one element at a time by adding elements to an initially 
empty set. It is also possible to adopt a reverse greedy optimization algorithm where, beginning 
with set 𝒴𝒴, elements are removed from this set until an optimized subset is achieved (e.g., 
Papadimitriou, 2004). However, this approach will require more computational effort in typical 
scenarios where 𝑛𝑛𝒴𝒴 is large but the number of sensors in the optimal set is small, as many 
iterations of the algorithm must be performed, each including a large number of observed 
variables, before the set can be trimmed to an appropriate size. Section 7.2.3 provides an 
example of a reverse greedy optimization approach being implemented, and Section 11.1 further 
examines such approaches. 
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In Algorithm 1, the method for selecting the optimal candidate measurement 𝑌𝑌𝑗𝑗∗ at each iteration 
depends on whether sensor placement is being performed in an offline or online manner. 

2.2.1.1. Offline Optimization 

In offline sensor placement, all measurements are chosen simultaneously, such that no 
observations are available before the full measurement set has been chosen. Under this 
placement regime, the next proposed measurement to be added to the optimal set is: 

 𝑌𝑌𝑗𝑗∗ = argmax 𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1
M��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� (2-17) 

That is, the next selected measurement is that which maximizes the sensor placement objective 
when combined with all previously selected measurements. Offline optimization is the most 
common approach considered in this work. As previously mentioned, random field variables are 
presumed to be static. Therefore, their measurements will also be static. Furthermore, it is 
assumed that all management actions are undertaken simultaneously. Therefore the order in 
which measurements are obtained is typically not relevant to the problem application.  

2.2.1.2. Online Optimization 

In the case of online sensor placement, measures are selected sequentially, with observations 
from all previously selected measurements being available to guide the choice of the next 
measurement in the sequence. This is also known as adaptive optimization, sequential 
optimization, or closed-loop optimization of sensor placement. In this case, the next proposed 
measurement to be added to the optimal set is: 

 𝑌𝑌𝑗𝑗∗ = argmax 𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1
M�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� (2-18) 

where M�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� denotes the sensor placement objective evaluated for 𝑌𝑌𝑗𝑗 where previously 
selected measures {𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ } have as their outcomes the observation vector 𝐲𝐲𝑗𝑗−1. In this case, 
because observations of �𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ � are already available, there is no need to take into account 
uncertainty in these previous measurements; only the outcome of 𝑌𝑌𝑗𝑗 is still uncertain. Online 
optimization is therefore more computationally efficient in general; rather than requiring pre-
posterior analysis for all selected measurements, only uncertainty in the most recently selected 
measure must be accounted for. Furthermore, for any given system, an online sensor placement 
will perform the same as or better than an offline sensor placement in terms of the final sensing 
objective value obtained. The reason for this is the inclusion of the additional measurement 
information in guiding the placement. Intuitively, by including this information, a posterior 
model is obtained for the system that more accurately captures its characteristics, and therefore 
the resulting sensor placement guided by this posterior model will be better suited to the system 
than a measurement guided by the prior model. A further discussion of this in the context of the 

  - 31 - 
 



VoI metric is provided in Section 4.1.3. Finally, note it is still assumed that all measurements are 
taken and used to update the probabilistic model before any final management actions are 
implemented, i.e., there is no sequential decision-making. 

Although online sensor placement is not commonly employed in this work, an example using the 
VoI metric is considered in Section 6.2.5. Furthermore, in Chapter 7, for the case of sensor 
placement and scheduling in spatio-temporal systems using the VoI metric, there is an inherent 
sequence to the measurement activities, and therefore online placement is a natural approach.  
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Chapter 3  

Modeling Infrastructure Systems 

In this chapter, the definitions and relationships introduced in Chapter 2 are used to create a 
PGM and influence diagram of an infrastructure system. A general model is introduced in 
Section 3.1, and its key characteristics discussed. In Section 3.2, several special cases of this 
general model that are of interest for this work are presented. Finally, a set of system modeling 
assumptions used throughout this work are introduced in Section 3.3. These are: 

1. Random fields that affect the system can be modeled using a Gaussian process 
framework; equivalently, probabilistic random field model p𝐹𝐹 of Equation 2-1 is a 
multivariate Gaussian distribution. See Section 3.3.1 for details. 

2. Observations of the random field variables can be expressed as linear combinations of 
random field variables and Gaussian measurement noise, i.e., the conditional distribution 
p𝑌𝑌|𝐟𝐟 of Equation 2-4 is also multivariate Gaussian. See Section 3.3.2 for details. 

3. Limit-state variables are described by an affine transformation of the random field 
variables, i.e., p𝐺𝐺|𝐟𝐟 of Equation 2-8 is a deterministic relationship, defining a multivariate 
Gaussian distribution for 𝐠𝐠. See Section 3.3.3 for details. 

4. States variables of each component of the system and of the system as a whole are binary 
random variables, i.e., p𝑆𝑆 of Equation 2-11 is a multivariate Bernoulli distribution and p𝕊𝕊 
of Equation 2-13 is a univariate Bernoulli distribution. See Sections 3.3.4 and 3.3.5 for 
details. 

These assumptions and the corresponding relationships presented in this chapter will be 
commonly used throughout this work; cases in which they are relaxed will be specifically 
indicated by the statement “basic modeling assumptions of Section 3.3 are relaxed in this 
section”. 

3.1. Probabilistic Graphical Modelling Approach 
The conditional probability relationships presented in Section 2.1 can be used to define a generic 
PGM of the variables for random fields, observations, and states. Furthermore, this PGM can be 
expanded into an influence diagram via the inclusion of actions and losses within the model. 
Figure 3-1 presents the generic influence diagram for an infrastructure system and its 
management based on the relationships of Section 2.1. 
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Figure 3-1: Generic influence diagram of an infrastructure system and its management. 

The layout of Figure 3-1 follows a common notational convention for influence diagrams (Koller 
and Friedman, 2009). Circles denote random variables or sets of variables, with shaded circles 
denoting that the values of these variables are observed. Following the discussion of Section 
2.1.1.1, model parameters 𝑊𝑊 are observed, along with measurements 𝑌𝑌. Rhombi denote 
deterministic functions of variables, in this case the loss function L. Squares denote decisions 
whose values are set by an agent within the system; in this case, the action set 𝐴𝐴. Arrows 
between random variables denote the probabilistic dependence structure; e.g., a conditional 
probability distribution for 𝐺𝐺 conditioned on a value of 𝐹𝐹 is represented by an arrow from 𝐹𝐹 to 𝐺𝐺. 
Arrows connecting to deterministic or decision nodes denote functional dependencies, e.g., 
arrows from 𝕊𝕊 and 𝐴𝐴 to L denote that the loss is a function of the actions and the system state. 
Note that this assumes that a loss function of the form L(𝕤𝕤,𝐚𝐚) is being modeled; for other 
formulations of the loss function discussed in Section 2.1.5, intervening variables are removed 
from the model. Figure 3-2 presents a simplified influence diagram in which a loss function of 
the form L(𝐟𝐟,𝐚𝐚) is modeled, which is obtained from the generic model of Figure 3-1 by 
removing nodes 𝐺𝐺, 𝑆𝑆, and 𝕊𝕊 and connecting 𝐹𝐹 directly with L. Finally, the dashed arrow 
connecting 𝑌𝑌 to 𝐴𝐴 does not denote a probabilistic or deterministic relationship, as the agent’s 
choice of action is left free. However, there is a precedence relationship between these, in that 
the outcomes of the observations of 𝑌𝑌 will be used by the agent to help guide his or her choice of 
actions 𝐴𝐴 towards a desireable outcome for the management of the system. 

 

Figure 3-2: Simplified influence diagram, modeling a loss function of the form L(f,a). 

 

𝐹𝐹 𝑊𝑊 

L 𝐴𝐴 𝑌𝑌 

𝐺𝐺 𝑆𝑆 𝕊𝕊 

𝐹𝐹 𝑊𝑊 L 

𝐴𝐴 𝑌𝑌 
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An important fact to note in examining the graphical structure of Figure 3-1 is the lack of cycles 
formed by the directed edges. This property characterizes the PGM as a Bayesian Network. Such 
acyclicity of the influence diagram is essential to ensure tractability for the decision-making 
problem captured in the graphical model (Koller and Friedman, 2009). As alluded to in Section 
2.1.4, this is a key reason why it is assumed that actions cannot influence the random field 𝐹𝐹, as 
this would introduce a cycle connecting the random field, observations, and actions.  

3.2. Infrastructure System Topology 
In this work, infrastructure system topology is understood to encompass the various factors that 
describe how the system is arranged, i.e., how the components interact with one another, and 
how they are monitored and managed as part of the system. This general concept of topology 
encompasses four related concepts. The functional topology of the system describes how the 
various random field variables affect specific components of the system in different ways. This 
topology can be understood as influencing the definitions of p𝐺𝐺|𝐟𝐟 and p𝑆𝑆|𝐠𝐠 from Equations 2-8 
and 2-10. The network topology of the system describes how the system behaves as a result of its 
components’ states. This can be understood as defining p𝕊𝕊|𝐬𝐬 from Equation 2-12. The monitoring 
topology describes how measurements are collected in the system. This influences both the 
definition of p𝑌𝑌|𝐟𝐟 from Equation 2-4 and the set 𝒴𝒴 of possible measurements that may be 
considered in the system. The management topology describes how the system can be managed. 
This identifies both the set 𝒜𝒜 of possible management actions that can be considered, as well as 
influences how the loss function is defined. These concepts of topology are related to each other, 
e.g., network topology has an effect on management topology since the consequences of a 
component failure should be quantified by the loss function in terms of how this failure 
influences the operational state of the system through the network structure. 

The influence diagram of Figure 3-1 represents a generic model, applicable broadly to any type 
of infrastructure system topology that can be described using the definitions and relationships 
presented in Section 2.1. However, based on the specific topology of the system being modeled, 
alternative influence diagrams representing variations on this generic diagram may be better 
suited to the system. Such alternatives are motivated by either a desire to trim unnecessary 
components of the model (such as in Figure 3-2, where nodes that do not influence the loss 
function are removed) or a desire to add additional details that better reflect the system’s 
characteristics. Three specific alternatives are presented in this section, following this latter 
motivation, for three classes of system topologies of interest in this work. 

3.2.1. Independent Systems 
In an independent system, the monitoring and management of all system components are 
undertaken separately. Figure 3-3 presents an influence diagram for this type of system. The 
model uses a template representation; nodes enclosed in the dotted box are repeated for each of 
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the 𝑛𝑛 components of the system. Nodes within this box denote subsets of variables associated 
with each component, e.g., 𝐹𝐹𝑖𝑖 denotes a subset of 𝐹𝐹 that affects the 𝑖𝑖th component of the system.  

 

Figure 3-3: Influence diagram for a system with independent components monitored and 
managed independently. 

In this system, the sets of variables affecting each of the system components are independent, 
conditional to the model parameters 𝑊𝑊. As a result, the states of these components are also 
independent. It is also assumed that the observation set 𝑌𝑌 is divided into subsets, where 𝑌𝑌𝑖𝑖 
denotes a set of observations relating to factors affecting the 𝑖𝑖th component. As these factors are 
independent across components, only measurements in the set 𝑌𝑌𝑖𝑖 are relevant to supporting the 
management of the 𝑖𝑖th component. Furthermore, it is assumed that the set of actions can be 
separated, so that a subset 𝐴𝐴𝑖𝑖 of these actions affects the 𝑖𝑖th component. 

The structure of this influence diagram incorporates several assumptions about the functional 
topology of the system (i.e., independence between variable sets affecting different components), 
the monitoring topology (measurements are made locally for each component, which is a 
consequence of the independence of the random field variables between components), and the 
management topology (separate action sets are considered for each component). The network 
topology, i.e., the definition of the system state in terms of the component states, is left 
unspecified. 

This model is relevant in that it captures the current practice for infrastructure system 
management, as discussed in Chapter 1. Models are typically developed for different system 
components in isolation; this is reflected by the template structure repeated across the system 
components, and the independence of variables affecting the components is a consequence of 
this approach. Monitoring activities and management actions are also typically undertaken at the 
component-level. System-level interactions are in some cases captured through a system network 
model. As this model represents the typical current approach to system modeling, it is not 

𝐹𝐹𝑖𝑖 𝑊𝑊 

L 𝐴𝐴𝑖𝑖 𝑌𝑌𝑖𝑖 

𝐺𝐺𝑖𝑖 𝑆𝑆𝑖𝑖 𝕊𝕊 

𝑖𝑖 = 1, … , 𝑛𝑛 
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investigated further in this work; it is merely presented and discussed here to provide a point of 
reference for the other model structures introduced below. 

3.2.2. Cumulative Systems 

As an alternative to the independent system model, this work will focus heavily on the following 
model, which is denoted as the cumulative system model. An influence diagram of a cumulative 
system is presented in Figure 3-4. In contrast with the independent system model of Figure 3-3, 
in the cumulative system the random field variables, limit-state variables, and observations may 
be dependent across components. Only the component states themselves are independent 
conditional to the limit-state variables. The assumption of separate sets of management actions 
for each component is maintained in the cumulative system. Furthermore, a set of component-
level loss functions are introduced, such that L𝑖𝑖 is a function only of the component state 𝑆𝑆𝑖𝑖 and 
the management action set 𝐴𝐴𝑖𝑖 for the 𝑖𝑖th component. The system-level loss function L is then 
assumed to be the sum of the component-level loss functions, hence the “cumulative” 
nomenclature for this system. 

 

Figure 3-4: Influence diagram for a system with a cumulative topology. 

The key assumption for defining a cumulative system is the decomposability of the loss function. 
For a system to be cumulative, the system-level loss function must decompose across the system 
components as follows: 

 L(𝐬𝐬,𝐚𝐚) = ∑ L𝑖𝑖(𝐬𝐬𝑖𝑖,𝐚𝐚𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (3-1) 

Note that this decomposition can also distinguish between the components of the system; for any 
system-level loss function that is decomposable as in Equation 3-1, the decomposition defines 
the components of the system, with state 𝐬𝐬𝑖𝑖 and actions 𝐚𝐚𝑖𝑖 assigned to the 𝑖𝑖th component, with 
the number of components of the system equal to the number of components into which the loss 
function decomposes. Note that component state and action vectors may be multivariate. 
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Furthermore, note that loss functions of the form L(𝐟𝐟,𝐚𝐚) and L(𝐠𝐠,𝐚𝐚) may also be decomposable, 
e.g., as L(𝐟𝐟,𝐚𝐚) = ∑ L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑛𝑛

𝑖𝑖=1  or L(𝐠𝐠,𝐚𝐚) = ∑ L𝑖𝑖(𝐠𝐠𝑖𝑖,𝐚𝐚𝑖𝑖)𝑛𝑛
𝑖𝑖=1 . Loss functions of the form L(𝕤𝕤,𝐚𝐚) 

are by definition non-decomposable; such a decomposition would imply that 𝕤𝕤 = 𝐬𝐬, i.e., that any 
definition of 𝕤𝕤 as distinct from the vector 𝐬𝐬 is superfluous, and therefore L(𝕤𝕤,𝐚𝐚) would be 
expressed directly as L(𝐬𝐬,𝐚𝐚). Finally, note that decomposability of the loss function does not 
imply marginal independence of the component states, limit-states, or random field variables. 
For instance, in the case of a decomposable loss function L(𝐟𝐟,𝐚𝐚), 𝐟𝐟𝑖𝑖 and 𝐟𝐟𝑗𝑗 may still be dependent 
for 𝑖𝑖 ≠ 𝑗𝑗. 

The cumulative system model incorporates no assumptions on monitoring or functional 
topologies, as limit-states 𝐺𝐺 and measurements 𝑌𝑌 are still defined by joint distributions in the 
PGM. The cumulative system does assume certain network and management topologies, as 
encoded in the decomposable loss function. The cumulative system can be considered as the 
“null” network topology, i.e., the components do not act together to define a system state, other 
than as the vector of all of the component states, as mentioned above. The cumulative system 
topology and the implied decomposability of the loss function have important implications for 
the computational efficiency of sensor placement objective evaluations that are discussed in 
Chapter 5. 

3.2.3. Non-Cumulative Systems 
A non-cumulative system influence diagram is presented in Figure 3-5, to contrast with the 
cumulative system depicted in Figure 3-4. All assumptions of the cumulative system are 
preserved, except for the decomposability of the loss function across components. In other 
words, the system-level loss must be expressed as a function of all component states and 
management actions together. 

 

Figure 3-5: Influence diagram for a system with a non-cumulative topology. 

The non-cumulative system model presented here is used in this work to examine systems in 
which the network topology is such that decomposition of the loss function as in Equation 3-1 is 
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not possible. Two prototypical examples of such systems are those with series or parallel 
network topologies. In a series system, the system as a whole will only function if all of its 
components are functioning, and in a parallel system, the system as a whole will function unless 
all of its components cease to function. In both cases, the consequences of the system state are 
nonlinear in the number of operating components, and therefore the loss function will not 
decompose. These system topologies and their consequences will be examined in further detail 
elsewhere in this work, and the influence diagram of Figure 3-5 will be used to model such 
systems. 

3.3. Gaussian Random Field Infrastructure Model 
This section introduces a set of assumptions on the probabilistic model structure that will be used 
to support much of the remaining work, as outlined at the beginning of this chapter. The key 
assumption introduced here is that the set of random fields 𝐹𝐹 affecting the system can be 
modeled using a Gaussian process modeling framework. The Gaussian process is a 
generalization of the multivariate Gaussian distribution to a continuous domain (Rasmussen and 
Williams, 2006). Specifically, random field 𝐹𝐹 defined over domain 𝒳𝒳 can be described by a 
Gaussian process model if and only if, for any finite subset of locations 𝑋𝑋 ⊆ 𝒳𝒳, the joint 
distribution for the random field values at these coordinates can be described by a multivariate 
Gaussian distribution. The Gaussian process notation for such a random field is: 

 f(𝐱𝐱) ~ 𝒢𝒢𝒢𝒢 �µ(𝐱𝐱), k�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗�� (3-2) 

where this model is parameterized by mean function µ(𝐱𝐱), denoting the mean of the marginal 
Gaussian distribution for f(𝐱𝐱), and covariance function k�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗�, which defines the covariance 
between the random field variables at coordinates 𝐱𝐱𝑖𝑖 and 𝐱𝐱𝑗𝑗. The covariance function is 
decomposable as: 

 k�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = σ(𝐱𝐱𝑖𝑖)σ�𝐱𝐱𝑗𝑗�ρ�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� (3-3) 

where σ(𝐱𝐱𝑖𝑖) is the marginal standard deviation of f(𝐱𝐱𝑖𝑖) and ρ�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� defines the correlation 
coefficient between f(𝐱𝐱𝑖𝑖) and f�𝐱𝐱𝑗𝑗�.  

Gaussian process models have a long record of use for the modeling of spatially distributed 
quantities; historically, the use of such models was known as “kriging” in the field of 
geostatistics (Cressie and Wikle, 2011). Many applications and extensions of the basic Gaussian 
process framework have been employed in various domains. Of particular interest, the optimal 
placement of sensors using Gaussian process models and the conditional entropy (or mutual 
information) metric is investigated by Krause et al. (2008d) and is a primary motivation for the 
application of Gaussian processes in this work. For further information on Gaussian processes, 
the reader is referred to the definitive text of Rasmussen and Williams (2006). 

  - 39 - 
 



For the applications of Gaussian processes presented in this work, several facts should be noted. 
First, in this context, the set of model parameters 𝑊𝑊 denotes both information on the parametric 
forms of µ(𝐱𝐱) and k�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗�, as well as their respective parameters. That is, the assumption that 
the parameter vector 𝐰𝐰 is known is equivalent to an assumption that the forms and parameters of 
the mean and covariance functions defining the random field are known. Second, the case of 
multiple co-located random fields can easily be handled within the Gaussian process framework 
by augmenting the coordinate vector 𝐱𝐱 with an indexing value corresponding to the various co-
located fields. These fields can then be described using a common joint Gaussian distribution, 
e.g., by assuming independence between variables relating to different random fields (where 
such an assumption is appropriate). The values for variables in all fields are then concatenated 
into the common random field vector 𝐟𝐟.  

Finally, note that this framework, although explicitly defining jointly Gaussian random variables, 
can also be used to describe other joint distributions so long as an appropriate transformation can 
be defined between the multivariate Gaussian and the target distribution. For example, a set of 
log-normally distributed random variables can be described by a Gaussian process model by first 
applying the logarithm transformation to these variables, and then defining a Gaussian process 
model for the random field of these variables in the log-space. Such a technique is used in 
Chapter 9, where the seismic risk field affecting a system is naturally modeled by a jointly log-
normal distribution. 

3.3.1. Gaussian Random Fields 
As discussed at the start of the section, the random field variables affecting the system can be 
modeled using a Gaussian process framework. The result is a multivariate Gaussian distribution 
for these variables: 

 𝐟𝐟 ~ 𝒩𝒩(𝛍𝛍𝐹𝐹,𝚺𝚺𝐹𝐹) (3-4) 

where the mean vector 𝛍𝛍𝐹𝐹 = µ(𝑋𝑋) is obtained by evaluating the mean function at every spatial 
coordinate in the set 𝑋𝑋, and the covariance matrix 𝚺𝚺𝐹𝐹 = k(𝑋𝑋,𝑋𝑋) is obtained by evaluating the 
covariance function at all pairs of coordinates in 𝑋𝑋. This serves to define the prior distribution of 
Equation 2-1 under the Gaussian random field assumption. Note that conditioning on model 
parameters as in Equation 2-2 is implicit through the definition of the mean and covariance 
functions. 

3.3.2. Linear Observations 

It is further assumed that observations of random field variables can be described as linear 
combinations of these variables and a measurement noise, as: 

 𝐲𝐲 = 𝛀𝛀𝑌𝑌𝐟𝐟 + 𝛜𝛜 (3-5) 
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where 𝛀𝛀𝑌𝑌 is the measurement matrix, specifying what variables or linear combinations of 
variables in the random field are measured. The size of 𝛀𝛀𝑌𝑌 is 𝑛𝑛𝑌𝑌 by 𝑛𝑛𝑋𝑋, where 𝑛𝑛𝑋𝑋 is the number 
of elements in 𝑋𝑋, i.e., the length of random field vector 𝐟𝐟, and 𝑛𝑛𝑌𝑌 is the number of measurements 
in 𝑌𝑌, i.e., the length of observation vector 𝐲𝐲. The measurement noise vector 𝛜𝛜 is assumed to have 
a multivariate Gaussian distribution as well: 

 𝛜𝛜 ~ 𝓝𝓝(𝛍𝛍𝜖𝜖 ,𝚺𝚺𝜖𝜖) (3-6) 

where the measurement noise has mean 𝛍𝛍𝜖𝜖 and covariance 𝚺𝚺𝜖𝜖. In this context, the assumption of 
zero-mean measurement noise would correspond to a choice of 𝛍𝛍𝜖𝜖 = 𝟎𝟎 (the zero vector), and the 
assumption of uncorrelated or white noise would correspond to the choice of 𝚺𝚺𝜖𝜖 as a diagonal 
matrix. Note however that these assumption are not included here in general; measurements may 
be biased, with correlated noise between different measurements.  

As a linear combination of Gaussian random variables, the vector of observations can itself be 
described by a joint Gaussian distribution. Under the assumptions of this section, the prior 
distribution of Equation 2-5 becomes: 

 𝐲𝐲 ~ 𝒩𝒩(𝛍𝛍𝑌𝑌,𝚺𝚺𝑌𝑌) (3-7) 

where: 

 𝛍𝛍𝑌𝑌 = 𝛀𝛀𝑌𝑌𝛍𝛍𝐹𝐹 + 𝛍𝛍𝜖𝜖 𝚺𝚺𝑌𝑌 = 𝛀𝛀𝑌𝑌𝚺𝚺𝐹𝐹𝛀𝛀𝑌𝑌
T + 𝚺𝚺𝜖𝜖 (3-8) 

An important property of Gaussian distributions, and a primary motivation for their use in this 
work, is the fact that a Gaussian distribution is its own conjugate prior. This allows for a 
posterior Gaussian distribution for 𝐟𝐟 to be obtained from its Gaussian prior and Gaussian 
measurements 𝐲𝐲. In this case, the posterior distribution of Equation 2-6 is: 

 𝐟𝐟|𝐲𝐲 ~ 𝒩𝒩�𝛍𝛍𝐹𝐹|𝐲𝐲,𝚺𝚺𝐹𝐹|𝑌𝑌� (3-9) 

Furthermore, the posterior mean and covariance can be evaluated in closed-form as: 

 𝛍𝛍𝐹𝐹|𝐲𝐲 = 𝛍𝛍𝐹𝐹 + 𝚺𝚺𝐹𝐹𝑌𝑌𝚺𝚺𝑌𝑌−1(𝐲𝐲 − 𝛍𝛍𝑌𝑌) 𝚺𝚺𝐹𝐹|𝑌𝑌 = 𝚺𝚺𝐹𝐹 − 𝚺𝚺𝐹𝐹𝑌𝑌𝚺𝚺𝑌𝑌−1𝚺𝚺𝐹𝐹𝑌𝑌T  (3-10) 

where 𝚺𝚺𝐹𝐹𝑌𝑌 = 𝚺𝚺𝐹𝐹𝛀𝛀𝑌𝑌
T. It should be noted that 𝛍𝛍𝐹𝐹|𝐲𝐲 is an affine function of observation vector 𝐲𝐲, 

while 𝚺𝚺𝐹𝐹|𝑌𝑌 is a function of the set of measurements 𝑌𝑌 only; this has important computational 
implications for sensor placement metrics, as discussed in Chapter 5.  

The measurement formulation of Equation 3-5 can describe a variety of measurement topologies. 
For example, measurements might be local, i.e., of single random field variables. This is 
accomplished by defining 𝛀𝛀𝑌𝑌 such that the row of 𝛀𝛀𝑌𝑌 corresponding with the local measurement 
consists of all zeroes, except for a single one in a position corresponding to the location of the 
variable to be measured in the vector 𝐟𝐟. Measurements can also be global, i.e., linear functions of 
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multiple random field variables across the spatial domain. For example, an average measurement 
of all random field variables can be obtained by setting each entry in the row of 𝛀𝛀𝑌𝑌 
corresponding with this measurement to 1/𝑛𝑛𝑋𝑋.  

Finally, note that the assumption of Gaussian observations is critical to facilitate closed-form 
probabilistic inference as in Equation 3-10. In cases where non-Gaussian variables are first 
transformed to allow for their description as a Gaussian process, observations of these variables, 
when transformed in the same way, must be Gaussian. Such variables will therefore not be 
originally Gaussian. For example, in the case of a log-normal random field, observations should 
be modeled with multiplicative log-normal noise, such that following the logarithm 
transformation this noise will be additive and Gaussian, as in Equation 3-6.  

3.3.3. Affine Limit States 
Limit-state variables are assumed to be defined through affine functions of the random field 
variables: 

 𝐠𝐠 = 𝚵𝚵𝐺𝐺𝐟𝐟 + 𝐠𝐠0 (3-11) 

where 𝚵𝚵𝐺𝐺 is the matrix defining which variables or linear combinations of variables in 𝐟𝐟 
contribute to the limit-state variables, and 𝐠𝐠0 is a vector of constants allowing for 𝐠𝐠 to be 
nonzero even when 𝐟𝐟 is zero. It is assumed that there are 𝑛𝑛 limit-state variables, one 
corresponding to each component of the system, and therefore 𝚵𝚵𝐺𝐺 is a 𝑛𝑛 by 𝑛𝑛𝑋𝑋 matrix. 

As an affine function of a vector with a joint Gaussian distribution, the distribution of 𝐠𝐠 in 
Equation 2-9 is itself a multivariate Gaussian: 

 𝐠𝐠 ~ 𝒩𝒩(𝛍𝛍𝐺𝐺 ,𝚺𝚺𝐺𝐺) (3-12) 

where: 

 𝛍𝛍𝐺𝐺 = 𝚵𝚵𝐺𝐺𝛍𝛍𝐹𝐹 + 𝐠𝐠0 𝚺𝚺𝐺𝐺 = 𝚵𝚵𝐺𝐺𝚺𝚺𝐹𝐹𝚵𝚵𝐺𝐺T (3-13) 

This definition for the limit-states can be used to describe a number of different functional 
topologies for the system. For example, a limit-state might be described in terms of a fixed 
threshold on a single random field variable. In such a case, the corresponding row of 𝚵𝚵𝐺𝐺 would 
have only one non-zero entry corresponding to the location of that random variable in 𝐟𝐟, and the 
threshold on this variable would be included in 𝐠𝐠0. Alternatively, a limit-state might depend on 
the relative values of several different random fields, for example in the case of an uncertain 
demand modeled by one random field and an uncertain capacity to resist this demand modeled 
by another. In this case, positive and negative entries in the row of 𝚵𝚵𝐺𝐺 would be used to compare 
these values, and the corresponding entry in 𝐠𝐠0 would be zero. Chapter 6 includes several 
examples of such alternative limit-state definitions under different problem contexts. One 
example of particular interest in civil engineering is the use of 𝚵𝚵𝐺𝐺 to encode influence lines, 
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which transform the loading profile on a structure (vector 𝐟𝐟) to a set of quantities of interest for 
engineering design, such as moment or shear forces (vector 𝐠𝐠). 

3.3.4. Binary Component States 
In many cases the management of infrastructure systems is concerned with discrete states, 
corresponding to certain functional conditions of the component or system in question. The most 
basic case of this, which will be the primary focus of this work, is the binary state. It is assumed 
that a component can be in either one of two states. These are generally interpreted as an “active” 
or “operational” state, denoted by the number one, and a “passive” or “failed” state, denoted by 
the number zero.  

Let the binary state of the 𝑖𝑖th component be given by: 

 𝑠𝑠𝑖𝑖 = 𝕀𝕀(𝑔𝑔𝑖𝑖 ≥ 0) (3-14) 

where 𝕀𝕀(⋅) is the indicator function, taking on a value of one when its argument is true and zero 
otherwise, and 𝑠𝑠𝑖𝑖 and 𝑔𝑔𝑖𝑖 denote the 𝑖𝑖th entries in 𝐬𝐬 and 𝐠𝐠 respectively. This definition replaces 
the probabilistic relationship of Equation 2-10 with a deterministic one. Note that this state is 
defined based on the corresponding limit-state function being above a threshold, where this 
threhsold is set arbitrarily to zero; any alternate threshold can be captured through appropriate 
definition of 𝚵𝚵𝐺𝐺 and 𝐠𝐠0 in Equation 3-11. 

As each state variable is assumed to be binary, is distribution is Bernoulli: 

 𝑠𝑠𝑖𝑖 ~ Bernoulli�1 − 𝑃𝑃𝑓𝑓,𝑖𝑖� (3-15) 

where 𝑃𝑃𝑓𝑓,𝑖𝑖 is the probability of failure of the 𝑖𝑖th component, i.e., 𝑃𝑃𝑓𝑓,𝑖𝑖 = ℙ(𝑔𝑔𝑖𝑖 < 0). The use of the 
failure probability rather than operational probability to parameterize this distribution is 
arbitrary, and related to the pessimistic outlook that motivated the use of a loss function rather 
than a utility function earlier in this work.  

Note that, since the probability of failure is descibed using a threshold on the Gaussian random 
variable 𝑔𝑔𝑖𝑖, this probability can be expressed as: 

 𝑃𝑃𝑓𝑓,𝑖𝑖 = Φ(−𝛽𝛽𝑖𝑖) (3-16) 

where Φ(⋅) denotes the standard normal cumulative distribution function, and 𝛽𝛽𝑖𝑖 is the reliability 
index of the 𝑖𝑖th component, defined following e.g., Ditlevsen and Madsen (1996) as:  

 𝛽𝛽𝑖𝑖 =
𝜇𝜇𝑔𝑔𝑖𝑖
𝜎𝜎𝑔𝑔𝑖𝑖

 (3-17) 
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where 𝜇𝜇𝑔𝑔𝑖𝑖 is the mean of 𝑔𝑔𝑖𝑖, i.e., the 𝑖𝑖th entry in vector 𝛍𝛍𝐺𝐺 , and 𝜎𝜎𝑔𝑔𝑖𝑖 is the standard deviation of 
𝑔𝑔𝑖𝑖, i.e., the square root of the 𝑖𝑖th entry along the diagonal of 𝚺𝚺𝐺𝐺. The use of the reliability index 
to relate the distribution of 𝐠𝐠 to the failure probabilities of the system components will be 
exploited in Chapter 5. 

3.3.5. Binary System States 
Finally, as with the component states, the system state (where it is defined as separate from the 
component states, i.e., in non-cumulative systems) is assumed to be a binary variable, following 
the same conventions for component states discussed above. The system state is defined as a 
deterministic function of the component states: 

 𝕤𝕤 = 𝕊𝕊(𝐬𝐬) (3-18) 

where the form of the system state function 𝕊𝕊(⋅) is determined by the system’s network 
topology. This replaces the probabilistic relationship of Equation 2-12 with a deterministic one. 

Typically in this work, even in non-cumulative systems, the system state will not be explicitly 
defined. This is a consequence of the fact that, in most problems considered, it is more 
convenient to define the loss function directly as a function of the component states and 
managmenet actions, as in Figure 3-5, than to use the system state for this definition. However, 
in discussing such problems it is often convenient to refer to the system state, even if it is not 
used computationally. For this reason, two specific forms of the system state function of 
Equation 3-18 are given in the following subsections for series and parallel systems, the two non-
cumulative system network topologies examined in detail later in this work. 

3.3.5.1. Series system state 

In a series system, the system as a whole will function (i.e., have state value one) if all of its 
components are functioning. This relationship is captured in the series system’s state function:  

 𝕤𝕤series = ∏ 𝑠𝑠𝑖𝑖𝑛𝑛
𝑖𝑖=1  (3-19) 

3.3.5.2. Parallel system state 

In a parallel system, the system as a whole will function if any one of its components is 
functioning. This relationship is captured in the parallel system’s state function:  

 𝕤𝕤parallel = 1 −∏ (1 − 𝑠𝑠𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (3-20) 
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Chapter 4  

The Value of Information Metric 

This chapter provides a comprehensive background on the VoI metric, which is the primary 
sensor placement metric considered in this work. Section 4.1 defines the metric in the context of 
the infrastructure system management model introduced in Section 2.1, and discusses its use as 
an objective for guiding optimal sensor placement. In Section 4.2, several prototypical loss 
functions used for analyzing the VoI in various system topologies considered throughout the 
remainder of this work are presented. Following from this, Section 4.3 presents a parametric 
analysis of the VoI provided by a measurement in a system with a single component, illustrating 
some key properties of the metric in this simplest case of its application.  

To examine the relationships between VoI and other common sensor placement metrics, Section 
4.4 presents formulations for the prediction error, misclassification rate, and conditional entropy 
metrics within the system modeling context used in this work. The various properties of these 
metrics, compared to those of the VoI metric, are examined here, especially in the case of a 
single-component system. For many of these metrics, an appropriate formulation of the problem 
loss function can be selected such that the metric can be interpreted as a special case of the VoI.  

Finally, Section 4.5 illustrates and discusses the lack of submodularity of the VoI metric in 
general. Recall from Section 1.2.4 that the property of submodularity allows for theoretical 
guarantees on the performance of a greedy algorithm for performing combinatorial optimization. 
Although the VoI is not in general submodular, a greedy approach is still followed in this work 
for optimizing sensor placement based on this metric. This section discusses specific cases where 
submodularity does apply, as well as the potential consequences faced when this property does 
not, and some intuitive safeguards to avoid poor optimization performance. 

4.1. Value of Information 
The VoI metric is a means for supporting the optimal collection of information in the context of 
a decision-making problem. This section defines this metric in the context of the infrastructure 
system modeling framework outlined in Section 2.1. This definition follows the general idea of 
the VoI metric presented by Raiffa and Schlaifer (1961). For the purposes of this definition, the 
basic modeling assumptions of Section 3.3 are relaxed in this section. 
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In managing an infrastructure system, an agent must select the set of actions that he or she will 
implement from among potential management actions 𝒜𝒜, as discussed in Section 2.1.4. This 
decision is guided by the agent’s utility or loss function, as presented in Section 2.1.5. A rational 
decision-maker will choose actions that will minimize the expected value of the loss function 
across possible states of the random variables affecting the system. The minimum value of the 
loss that the agent can expect to incur by choosing such actions is designated the prior expected 
loss: 

 𝔼𝔼L(∅) = min𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹L(𝐟𝐟,𝐚𝐚) (4-1) 

where 𝔼𝔼𝐹𝐹 denotes the statistical expectation with respect to the prior probability distribution of 
the random field variables p𝐹𝐹. That is, without additional information, the decision-maker will 
select a set of actions that will minimize the expected value of the loss function across the prior 
distribution of possible values of the random field variables. 

Note that for alternative formulations of the loss as a function of 𝐠𝐠, 𝐬𝐬, or 𝕤𝕤, this expectation can 
be calculated using the appropriate conditional distributions introducted in Section 2.1. For 
example, for a loss function forumated as L(𝐠𝐠,𝐚𝐚), the relationship of Equation 2-15 can be 
substituted into Equation 4-1. For the sake of generality, the definitions presented in this section 
assume a loss function of the form L(𝐟𝐟,𝐚𝐚). 

The prior expected loss is associated with a set of prior optimal actions that will, in an expected 
sense, lead to this minimum loss value for the decision-making agent. The set of prior optimal 
actions is denoted: 

 𝐚𝐚∗(∅) = argmin𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹L(𝐟𝐟,𝐚𝐚) (4-2) 

If, instead of selecting decisions in the absence of additional information (other than the prior 
random field model for the system), the decision-making agent has access to observations 𝐲𝐲 
obtained for measurement set 𝑌𝑌, he or she should instead choose their actions in order to 
minimize the expected value of the loss under the posterior distribution for the random field 
variables. This value is denoted as the conditional expected loss, i.e., the expected loss 
conditional to an observation 𝐲𝐲 of 𝑌𝑌: 

 𝔼𝔼L(𝐲𝐲) = min𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) (4-3) 

The posterior optimal action choice that leads (in an expected sense) to the conditional expected 
loss is: 

 𝐚𝐚∗(𝐲𝐲) = argmin𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) (4-4) 

While 𝔼𝔼L(𝐲𝐲) denotes the expected loss conditional to observation 𝐲𝐲, this observation is itself a 
random variable. Accounting for this necessitates pre-posterior analysis, i.e., the expectation of 
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the conditional expected loss must be taken across possible outcomes of the measurement 
activities. The result is the posterior expected loss: 

 𝔼𝔼L(𝑌𝑌) = 𝔼𝔼𝑌𝑌𝔼𝔼L(𝐲𝐲) = 𝔼𝔼𝑌𝑌 min𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) (4-5) 

Intuitively, the posterior expected loss is the expected value of the loss function incurred by the 
agent managing the system, considering that he or she will have access to measurements 𝑌𝑌 of the 
random field variables 𝐹𝐹 to help guide the choice of optimal management actions for the system. 

The VoI for measurement set 𝑌𝑌 is defined as the difference of the prior and posterior expected 
losses: 

 VoI(𝑌𝑌) = 𝔼𝔼L(∅) − 𝔼𝔼L(𝑌𝑌) (4-6) 

This expresses the expected savings, in terms of the reduction in the expected loss, resulting 
from an observation of 𝑌𝑌 being available before the management actions are decided.  

4.1.1. Bounds on the Value of Information 

The VoI has several important properties that define its boundaries. First, it is strictly non-
negative. This is a consequence of the “information never hurts” principle; for a rational 
decision-maker, incorporating additional information into the decision-making process can only 
reduce, in an expected sense, the management costs for the system (Hilton, 1977). Therefore, 
zero is the natural lower-bound for VoI(𝑌𝑌). Furthermore, VoI is upper-bounded by the value of 
complete perfect information (VoPI), which is evaluated as VoI(𝐹𝐹). That is, VoPI is achieved 
when the system behavior is known exactly through an observation of all random field variables 
𝐹𝐹 prior to taking actions, i.e., when the system is no longer uncertain. The bounds on VoI(𝑌𝑌) are 
therefore: 

 0 ≤ VoI(𝑌𝑌) ≤ VoI(𝐹𝐹) (4-7) 

Appendix A includes derivations of these bounds for the interested reader. 

4.1.2. Regret-based Formulation 
An alternative but equivalent method for formulating the VoI that is of interest in some 
applications is based on a regret function, rather than a loss function. The regret function 
measures, for any specific system management outcome, how much better the best possible 
outcome in that situation would be. Formally, regret can be defined from the loss function as:  

 R(𝐟𝐟,𝐚𝐚) = L(𝐟𝐟,𝐚𝐚) − L�𝐟𝐟,𝐚𝐚∗(𝐟𝐟)� (4-8) 

where: 
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 𝐚𝐚∗(𝐟𝐟) = argmin𝐚𝐚∈𝒜𝒜 L(𝐟𝐟,𝐚𝐚) (4-9) 

That is, the regret is the difference between the loss and the minimum possible loss suffered 
when choosing the posterior optimal action given knowledge of the random field variables. A 
useful property of this formulation is that the regret is lower-bounded by zero, and takes this 
value if and only if the posterior optimal action is chosen. 

Under the regret formulation, the prior and posterior expected regret are defined similar to 
Equations 4-1 and 4-5 as: 

 𝔼𝔼R(∅) = min𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹R(𝐟𝐟,𝐚𝐚) 𝔼𝔼R(𝑌𝑌) = 𝔼𝔼𝑌𝑌 min𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹|𝐲𝐲R(𝐟𝐟,𝐚𝐚) (4-10) 

The VoI is defined similar to Equation 4-6 as: 

 VoI(𝑌𝑌) = 𝔼𝔼R(∅) − 𝔼𝔼R(𝑌𝑌) (4-11) 

These two formulations of the VoI are equivalent; a proof is provided in Appendix A. The loss-
based formulation will be adhered to in this work, except where otherwise indicated. 

4.1.3. Sensor Placement using Value of Information 

VoI corresponds to the maximum amount one should be willing to pay for obtaining information 
before making a decision. That is, if C(𝑌𝑌) is the cost of measuring 𝑌𝑌, then 𝔼𝔼L(𝑌𝑌) + C(𝑌𝑌) should 
be less than 𝔼𝔼L(∅) for the measurements to be cost-effective. This observation motivates the 
definition of an objective for sensor placement based on the VoI: 

 MVoI(𝑌𝑌) = VoI(𝑌𝑌) − C(𝑌𝑌) (4-12) 

This objective measures the quality of sensor placement set 𝑌𝑌 as the VoI resulting from the 
measurement of 𝑌𝑌 minus the cost (measured in the same scale as the loss function, e.g., a 
monetary scale) of obtaining this measurement. This is also designated the net VoI of 𝑌𝑌. 

The objective of Equation 4-12 can be used directly in the optimization problem of Equation 
2-16. It can also be used directly for greedy optimization of sensor placements in the offline case, 
as in Equation 2-17. For online sensor placement, the conditional objective of Equation 2-18 
using VoI is: 

 MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� = VoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� − C��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� + C��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� (4-13) 

where: 

VoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� = min𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹|𝐲𝐲𝑗𝑗−1L(𝐟𝐟,𝐚𝐚) − 𝔼𝔼𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1 min𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹|�𝐲𝐲𝑗𝑗−1,𝑦𝑦𝑗𝑗�L(𝐟𝐟,𝐚𝐚) (4-14) 

This formulation describes the incremental VoI, i.e., the additional value provided by 
measurement 𝑌𝑌𝑗𝑗 when measurements 𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗  have already been observed. This incremental 
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VoI should be greater than the incremental cost of adding the observation to the set for it to be 
selected by the algorithm.  

Due to the need to only take the expectation over 𝑌𝑌𝑗𝑗 rather than over �𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗� for 
evaluating the outer expectation for the posterior expected loss in computing VoI, online greedy 
optimization is computationally simpler than offline placement. Furthermore, for the same 
system, the objective gain (in terms of reduction in the posterior expected loss) will be higher in 
the online case than in the offline, due to the inclusion of actual collected data about the 
underlying random field when performing the optimization (see Appendix A for details). 
However, note that the greedy algorithm presented here presents a myopic approach to online 
placement, since each selected placement is assumed to be the final placement, and VoI is 
evaluated accordingly, i.e., without considering that this information will also be used to help 
guide the future steps of the online placement algorithm. Such a myopic approach can be 
suboptimal in general (Heckerman et al., 1993). Finally, note that 𝔼𝔼L(∅) is constant with respect 
to 𝑌𝑌, and so in evaluating Equation 4-6 when performing offline sensor placement optimization, 
this term does not impact the optimization objective, and therefore can be ignored to simplify 
computation. 

4.2. Prototypical Loss Functions 
This section introduces the prototypical loss function formulation for infrastructure management 
that is used extensively in this work. This function is based on the assumption of binary 
component states, as in Section 3.3.4, and binary management actions for each component. 
These actions are broadly described as a “repair” action, i.e., an active intervention to correct a 
potential failure of a component, and a “do nothing” action. These actions are denoted by the 
selection of 𝑎𝑎𝑖𝑖 = 1 for the “repair” action and 𝑎𝑎𝑖𝑖 = 0 for the “do nothing” action for the 𝑖𝑖th 
component. The “repair” action is associated with a fixed repair cost, denoted 𝐶𝐶𝑟𝑟, which must be 
paid by the agent to undertake this action. The “do nothing” action is assumed to be free; 
however, the agent must face the potential consequences of suffering a failure of the component 
or system due to the lack of intervention. This consequence is summarized by a failure cost 𝐶𝐶𝑓𝑓, 
which accounts both for the direct consequences in terms of system damage and down-time, as 
well as the indirect costs to society of failing to have the component or system operating as 
expected due to this failure. 

This prototypical management problem represents the simplest decision-making problem of an 
agent: whether or not to take a possible active intervention action, and thus pay a known penalty 
(the repair cost), or take no action, and have the consequence determined by the uncertain 
behavior of the system. The appropriate choice will depend on the relative costs of the outcomes, 
the probability of a component or system failure, and (in the posterior case) the availability of 
appropriate information collected within the system to help support decision-making. Most 
decision-making problems examined in this work will be adapted to this prototypical form. 
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The following sub-sections formulate loss functions based on this prototypical decision-making 
problem in the context of different system topologies, including cumulative and non-cumulative 
(especially series and parallel) systems. 

4.2.1. Cumulative Systems 
In a cumulative system, the prototypical decision-making problem is posed separately for each 
system component. The component-level loss function within the decomposable loss function of 
Equation 3-1 is expressed in the following way for the 𝑖𝑖th component: 

 L𝑖𝑖(𝑠𝑠𝑖𝑖,𝑎𝑎𝑖𝑖) = 𝐶𝐶𝑓𝑓,𝑖𝑖(1 − 𝑠𝑠𝑖𝑖)(1 − 𝑎𝑎𝑖𝑖) + 𝐶𝐶𝑟𝑟,𝑖𝑖𝑎𝑎𝑖𝑖 (4-15) 

where 𝐶𝐶𝑓𝑓,𝑖𝑖 is the cost of the component’s failure, 𝐶𝐶𝑟𝑟,𝑖𝑖 is the cost to repair or replace the 
component, and 𝑠𝑠𝑖𝑖 and 𝑎𝑎𝑖𝑖 are the binary state and action for managing the component, 
respectively. As a direct consequence of the decomposability of the loss function assumed for the 
cumulative system topology, the cost for managing the system is the sum of these component-
level costs, i.e., the consequences of a component failure or the choice to repair or replace a 
component have no effect on the performance of the other system components.  

4.2.2. Non-Cumulative Systems 
In general, for systems without a cumulative topology, consequences of component failures may 
extend to the system as a whole, e.g., through impacts on the system network structure. 
Furthermore, repair costs may not be additive, e.g., the cost of repair per component may be 
reduced when multiple components are repaired due to economies of scale or the fixed cost to 
mobilize repair teams regardless of the number of repairs.  

General loss function forms are presented for two specific non-cumulative system cases. First, in 
the case that a single management action applies to the entire system, the loss function is 
formulated as:  

 L(𝐬𝐬,𝑎𝑎) = 𝐶𝐶𝑓𝑓�1 − 𝕊𝕊(𝐬𝐬)�(1− 𝑎𝑎) + 𝐶𝐶𝑟𝑟𝑎𝑎 (4-16) 

where 𝐶𝐶𝑓𝑓 is the cost of system failure and 𝐶𝐶𝑟𝑟 is the cost of performing the system-level repair 
action, i.e., of selecting 𝑎𝑎 = 1. Note that, for consistency with the formulation of Figure 3-5, the 
system state function of Equation 3-18 is incorporated directly into the loss function. This loss 
function captures situations in which a common action must be chosen for the entire system, 
rather than for each component as in the cumulative system case above. For example, 
evacuation, closure, or quarantine orders are issued for entire regions or systems, rather than 
single components or individuals.  
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Second, it is considered that actions are taken for components separately, as in the cumulative 
system topology, but that the consequences of component failures are assessed at the system-
level. Under this assumption, the loss function is: 

 L(𝐬𝐬,𝐚𝐚) = 𝐶𝐶𝑓𝑓�1 − 𝕊𝕊′(𝐬𝐬,𝐚𝐚)� + ∑ 𝐶𝐶𝑟𝑟,𝑖𝑖𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1  (4-17) 

where 𝐶𝐶𝑓𝑓 is the cost of system failure and 𝕊𝕊′(𝐬𝐬,𝐚𝐚) is the effective state of the system, taking into 
account the possibility that component-level repair actions will reverse a potential system-level 
failure. Two formulations for this effective state in series and parallel systems are shown below. 
Finally, note that it is assumed in this case that the total cost for undertaking management actions 
is the sum of these costs for each component in the system (expressed by the summation term in 
the second part of Equation 4-17). In general, this assumption may not hold, and the repair cost 
may also be a nonlinear function of the component-level actions.  

4.2.2.1. Series systems 

In a series system, motivated by the state function of Equation 3-19, the effective system state 
taking repair actions into account is: 

 𝕊𝕊series′ (𝐬𝐬,𝐚𝐚) = ∏ �1 − (1 − 𝑠𝑠𝑖𝑖)(1− 𝑎𝑎𝑖𝑖)�𝑛𝑛
𝑖𝑖=1  (4-18) 

That is, the system will function if either all components are functioning, or if, for everey non-
functional component, a repair action is selected. 

4.2.2.2. Parallel systems 

In a parallel system, motivated by the state function of Equation 3-20, the effective system state 
taking repair actions into account is: 

 𝕊𝕊parallel′ (𝐬𝐬,𝐚𝐚) = 1 −∏ (1 − 𝑠𝑠𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (1 − 𝑎𝑎𝑖𝑖) (4-19) 

That is, the system will function if at least one component is functioning, or if at least one 
component has been repaired or replaced. 

4.3. Parametric Analysis on a Single-Component System 
Factors such as sensor precision, management costs, and prior component reliability can affect 
the VoI obtained from a measurement on a component in complicated ways. To begin to 
investigate these effects, this section presents a parametric analysis of the VoI in a single-
component system, following the prototypical decision-making problem formulation of Section 
4.2. Note that, for a system with only one component, the topology distinctions mentioned in that 
section do not apply.  
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In this analysis, the state of a single component is affected by a single Gaussian random variable 
𝑓𝑓, modeled as in Equation 3-4 with mean 𝜇𝜇𝑓𝑓 and standard deviation 𝜎𝜎𝑓𝑓. One potential 
observation is considered for this component: a direct observation of 𝑓𝑓 with zero-mean Gaussian 
noise, i.e., 𝑦𝑦 is defined as in Equation 3-5 with 𝛀𝛀𝑌𝑌 = 1, and error 𝛜𝛜 is univariate with mean 0 and 
standard deviation 𝜎𝜎𝜖𝜖. The limit-state variable is defined directly as 𝑔𝑔 = 𝑓𝑓, i.e., 𝚵𝚵𝐺𝐺 = 1 and 
𝐠𝐠0 = 0 in Equation 3-11. The component’s state 𝑠𝑠 is defined as in Equation 3-14. 

A binary decision-making problem is defined for this component, following the prototypical 
problem formulation of Section 4.2. The loss function for this component is given, following the 
form of Equation 4-15, as: 

 𝐿𝐿(𝑠𝑠,𝑎𝑎) = 𝐶𝐶𝑓𝑓(1 − 𝑠𝑠)(1− 𝑎𝑎) + 𝐶𝐶𝑟𝑟𝑎𝑎 (4-20) 

This prototypical component management problem involves the choice between doing nothing, 
with the potential to incur loss 𝐶𝐶𝑓𝑓 if the component fails, and repairing the component at cost 𝐶𝐶𝑟𝑟.  

To illustrate this decision-making problem, Figure 4-1a plots the expected value of the loss 
function for the component versus the probability of failure, computed for the component as in 
Equation 3-16, under the two possible management actions for this component. For the purposes 
of this figure, a failure cost of 𝐶𝐶𝑓𝑓 = $300M and a repair cost of 𝐶𝐶𝑟𝑟 = $50M are assumed. Note 
that the expected loss under the “do nothing” action increases linearly as the probability of 
failure increases: 

 𝔼𝔼𝑆𝑆L(𝑠𝑠,𝑎𝑎 = 0) = 𝐶𝐶𝑓𝑓ℙ(𝑠𝑠 = 0) = 𝐶𝐶𝑓𝑓𝑃𝑃𝑓𝑓 (4-21) 

The expected loss under the repair action is constant at 𝐶𝐶𝑟𝑟. 

With a known prior probability of failure, the prior optimal action would be the choice that 
minimizes the expected loss. The expected loss taking the optimal action is indicated by the solid 
line in Figure 4-1a. Note here that if 𝑃𝑃𝑓𝑓 < 16.67%, the prior optimal choice is to do nothing, 
while if 𝑃𝑃𝑓𝑓 > 16.67%, the prior optimal choice is to repair the component. The value for 𝑃𝑃𝑓𝑓 at 
which the choice of prior optimal action changes, i.e., the value at which the prior expected loss 
of both decisions is equal, is designated the decision point, and is evaluated as: 

 𝑃𝑃∗ = 𝐶𝐶𝑟𝑟
𝐶𝐶𝑓𝑓

 (4-22) 

It is assumed here that 𝑃𝑃∗ ≤ 1; if this were not the case, the choice to do nothing would always 
be optimal, and there would be no need for any further decision-making analysis. Using this 
notation, the prior expected loss for the component, following Equation 4-1 with the loss 
function of Equation 4-20, can be expressed as: 

 𝔼𝔼L(∅) = min𝐚𝐚∈{0,1}�𝐶𝐶𝑓𝑓𝑃𝑃𝑓𝑓(1 − 𝑎𝑎) + 𝐶𝐶𝑓𝑓𝑃𝑃∗𝑎𝑎� = 𝐶𝐶𝑓𝑓 min�𝑃𝑃𝑓𝑓 ,𝑃𝑃∗� (4-23) 
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For the example of Figure 4-1, the component’s prior probability of failure is assumed to be 
𝑃𝑃𝑓𝑓 = 10%, and so the prior optimal action is to do nothing, with a prior expected loss of $30M. 

 

Figure 4-1: a) Example expected loss versus failure probability for management of a single 
component; b) Example expected regret versus failure probability for management of a single 

component; c) Example prior and posterior failure probability distributions for a single 
component. 

Figure 4-1b illustrates the same decision-making problem as Figure 4-1a using the regret instead 
of the loss. Note that the expected regret takes on value 0 at either extreme for 𝑃𝑃𝑓𝑓, i.e., if the 
behavior of the component is known with either 𝑃𝑃𝑓𝑓 = 0% or 𝑃𝑃𝑓𝑓 = 100%, the optimal action can 
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be selected with zero regret. The value of 𝑃𝑃∗ is unchanged by shifting between loss and regret 
formulations.  

Following the Gaussian updating procedure from Equation 3-10, the posterior distribution 
parameters for 𝑓𝑓 conditional to observation 𝑦𝑦 are: 

 𝜇𝜇𝑓𝑓|𝑦𝑦 = 𝜇𝜇𝑓𝑓 +
𝜎𝜎𝑓𝑓
2

𝜎𝜎𝑓𝑓
2+𝜎𝜎𝜖𝜖2

�𝑦𝑦 − 𝜇𝜇𝑓𝑓� = 𝑟𝑟2𝜇𝜇𝑓𝑓+𝑦𝑦
1+𝑟𝑟2

𝜎𝜎𝑓𝑓|𝑦𝑦 = �𝜎𝜎𝑓𝑓2 −
𝜎𝜎𝑓𝑓
4

𝜎𝜎𝑓𝑓
2+𝜎𝜎𝜖𝜖2

= 𝑟𝑟𝜎𝜎𝑓𝑓
√1+𝑟𝑟2

 (4-24) 

where 𝑟𝑟 = 𝜎𝜎𝜖𝜖/𝜎𝜎𝑓𝑓 is the measurement noise ratio, i.e., the ratio of the standard deviation of the 
additive noise to the standard deviation of the value being measured. Note that the observation 𝑦𝑦 
is itself a Gaussian random variable with mean 𝜇𝜇𝑦𝑦 = 𝜇𝜇𝑓𝑓 and standard deviation 𝜎𝜎𝑦𝑦 =

�𝜎𝜎𝑓𝑓2 + 𝜎𝜎𝜖𝜖2 = 𝜎𝜎𝑓𝑓√1 + 𝑟𝑟2. Conditional to this observation, the posterior probability of failure for 

the component is computed, following Equations 3-16 and 3-17, as: 

 𝑃𝑃𝑓𝑓|𝑦𝑦 = Φ�−𝜇𝜇𝑓𝑓|𝑦𝑦

𝜎𝜎𝑓𝑓|𝑦𝑦
� (4-25) 

The conditional expected loss of Equation 4-3, following the form of Equation 4-23, can then be 
expressed as: 

 𝔼𝔼L(𝑦𝑦) = min𝐚𝐚∈{0,1}�𝐶𝐶𝑓𝑓𝑃𝑃𝑓𝑓|𝑦𝑦(1 − 𝑎𝑎) + 𝐶𝐶𝑓𝑓𝑃𝑃∗𝑎𝑎� = 𝐶𝐶𝑓𝑓 min�𝑃𝑃𝑓𝑓|𝑦𝑦,𝑃𝑃∗� (4-26) 

The VoI for this measurement is therefore assessed, following Equations 4-5 and 4-6, as: 

 VoI(𝑌𝑌) = 𝐶𝐶𝑓𝑓�min�𝑃𝑃𝑓𝑓 ,𝑃𝑃∗� − 𝔼𝔼𝑌𝑌 min�𝑃𝑃𝑓𝑓|𝑦𝑦,𝑃𝑃∗�� (4-27) 

Note from Equation 4-24 that 𝜎𝜎𝑓𝑓|𝑦𝑦 is a constant, and that 𝜇𝜇𝑓𝑓|𝑦𝑦 is an affine function of observation 
𝑦𝑦. Since 𝑦𝑦 has a Gaussian distribution, the argument of Equation 4-25 will have a Gaussian 
distribution, and therefore the posterior component failure probability 𝑃𝑃𝑓𝑓|𝑦𝑦 is itself a random 
variable. Due to the nonlinear nature of the Gaussian cumulative distribution function Φ(⋅), the 
distribution of 𝑃𝑃𝑓𝑓|𝑦𝑦 will not be Gaussian.  

Figure 4-1c illustrates possible prior and posterior distributions for the probability of component 
failure for this single component example. The prior distribution in this figure reflects the 
example prior failure probability of 𝑃𝑃𝑓𝑓 = 10% with a Dirac delta distribution at this value. A 
posterior distribution is shown for a measurement 𝑦𝑦 with 𝑟𝑟 = 0.25. This posterior distribution is 
obtained by processing the posterior distribution for 𝑓𝑓 conditional to 𝑦𝑦 through the non-linear 
transformation of Equation 4-25. The result is a bimodal posterior distribution for 𝑃𝑃𝑓𝑓|𝑦𝑦, as shown 
in the figure. Note that, in the extreme case of 𝑟𝑟 = 0 (i.e., where 𝑦𝑦 is a direct observation of 𝑓𝑓), 
this distribution will consist of two point probability masses: a mass of 10% at 𝑃𝑃𝑓𝑓|𝑦𝑦 = 1 and a 
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mass of 90% at 𝑃𝑃𝑓𝑓|𝑦𝑦 = 0, i.e., there is a 10% chance that a failure will occur, and conditioned on 
a measurement of this failure the posterior probability of failure is 100%, while there is a 90% 
chance the component will be operational, and conditional to this measurement the posterior 
probability of failure is 0. 

The fact that VoI is non-negative is clear from Figure 4-1 as a consequence of Jensen’s 
Inequality. For both the loss of Figure 4-1a and the regret of Figure 4-1b, these functions are 
concave with respect to the failure probability. Jensen’s Inequality for concave functions states 
that the expected value of the function over its argument is less than or equal to the function 
evaluated at the argument’s expected value (Jensen, 1906). In this case, the argument is the 
failure probability, and its expected value is the prior failure probability 𝑃𝑃𝑓𝑓. The function 
evaluated at its expected argument value is therefore the prior expected loss 𝔼𝔼L(∅). The 
expectation of the function over its argument is the expected value of the conditional loss 𝔼𝔼L(𝑦𝑦) 
over the distribution of the posterior failure probability 𝑃𝑃𝑓𝑓|𝑦𝑦 , or 𝔼𝔼L(𝑌𝑌). By Jensen’s Inequality, 
the latter quantity is less than or equal to the former, i.e., 𝔼𝔼L(𝑌𝑌) ≤ 𝔼𝔼L(∅), proving the non-
negativity of the VoI in this case. 

From Equation 4-27, it can be determined that VoI in a single-component system is a function of 
four parameters: 

1. The cost of component failure 𝐶𝐶𝑓𝑓 
2. The decision point 𝑃𝑃∗ (as determined from 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑟𝑟 via Equation 4-22) 
3. The prior component probability of failure 𝑃𝑃𝑓𝑓 (as determined from 𝜇𝜇𝑓𝑓 and 𝜎𝜎𝑓𝑓 via 

Equations 3-16 and 3-17) 
4. The measurement noise ratio 𝑟𝑟 (which, together with 𝜇𝜇𝑓𝑓 and 𝜎𝜎𝑓𝑓, defines the posterior 

distribution for 𝑃𝑃𝑓𝑓|𝑦𝑦 via Equations 4-24 and 4-25) 

From the form of Equation 4-27, it is clear that VoI is linear with respect to 𝐶𝐶𝑓𝑓. However, the 
relationship between VoI and the other parameters is less obvious. For this reason, a parametric 
analysis is performed, varying 𝑃𝑃∗, 𝑃𝑃𝑓𝑓, and 𝑟𝑟 and evaluating the resulting VoI for the one-
component system. Figure 4-2 demonstrates these results via two cross-sections of the three-
dimensional parametric analysis space. In the figure, to present a more reasonable scale, 𝑃𝑃𝑓𝑓 is 
represented by the reliability index 𝛽𝛽; these are related (following Equation 3-16) as 𝛽𝛽 =
−Φ−1�𝑃𝑃𝑓𝑓�. Furthermore, 𝑃𝑃∗ is represented by 𝛽𝛽∗; these are related as 𝛽𝛽∗ = −Φ−1(𝑃𝑃∗). 
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Figure 4-2: Parametric analysis results for VoI in a single-component system, with cross-sections 
for a) 𝑟𝑟 = 0; and b) 𝛽𝛽 = 2. 

In Figure 4-2a, the scaled VoI, VoI(𝑌𝑌)/𝐶𝐶𝑓𝑓, is plotted versus 𝛽𝛽 and 𝛽𝛽∗ for a measurement noise 
level of 𝑟𝑟 = 0, i.e., under the assumption of a perfect observation where 𝑦𝑦 = 𝑓𝑓. This represents 
the VoPI for this problem, which can be expressed in closed-form as: 

 VoPI = 𝐶𝐶𝑓𝑓�min�𝑃𝑃𝑓𝑓 ,𝑃𝑃∗� − 𝑃𝑃𝑓𝑓𝑃𝑃∗� (4-28) 

where the expectation over 𝑌𝑌 in Equation 4-27 is handled by noting that, as discussed above, 
𝑃𝑃𝑓𝑓|𝑦𝑦 = 0 with probability 1 − 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑓𝑓|𝑦𝑦 = 1 with probability 𝑃𝑃𝑓𝑓 for a perfect observation. Note 
that Figure 4-2a is symmetric about the point 𝛽𝛽 = 0, 𝛽𝛽∗ = 0. 

In Figure 4-2b, the scaled VoI is plotted versus 𝛽𝛽∗ and 𝑟𝑟 for a fixed 𝛽𝛽 = 2, corresponding to a 
prior failure probability of about 2%. Note that, regardless of the noise level 𝑟𝑟, VoI is maximized 
when 𝛽𝛽∗ = 𝛽𝛽, i.e., when the prior failure probability is at the decision point. This corresponds to 
the point in Figure 4-1b where prior expected regret is maximized. Therefore, in this case, 
additional information has the greatest opportunity to reduce the regret, and therefore the VoI is 
greatest. Also note that measurements with a noise ratio greater than about 1 provide relatively 
little VoI unless 𝛽𝛽 is very close to 𝛽𝛽∗. 

Finally, consider that observation 𝑦𝑦 is not a direct measure of 𝑓𝑓, but rather a measure of another 
random field variable that is correlated with 𝑓𝑓. That is, consider that the component in question 
is located at 𝐱𝐱1, and is affected by 𝑓𝑓1 = f(𝐱𝐱1), and that the measurement 𝑦𝑦 of the random field is 
obtained at 𝐱𝐱2, where k(𝐱𝐱1,𝐱𝐱2) = 𝜎𝜎𝑓𝑓1𝜎𝜎𝑓𝑓2𝜌𝜌12, with noise level 𝑟𝑟2 = 𝜎𝜎𝜖𝜖/𝜎𝜎𝑓𝑓2. Following Equation 
3-10, the posterior standard deviation for 𝑓𝑓1 given 𝑦𝑦 is now: 
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 𝜎𝜎𝑓𝑓1|𝑦𝑦 = �𝜎𝜎𝑓𝑓1
2 −

𝜌𝜌122 𝜎𝜎𝑓𝑓1
2 𝜎𝜎𝑓𝑓2

2

𝜎𝜎𝑓𝑓2
2 +𝜎𝜎𝜖𝜖2

= 𝜎𝜎𝑓𝑓1�
1+𝑟𝑟22−𝜌𝜌122

1+𝑟𝑟22
 (4-29) 

From this relationship, an equivalent noise level �̃�𝑟 is computed such that the reduction in the 
posterior standard deviation of 𝑓𝑓1 due to this indirect observation is the same as if an observation 
with noise level �̃�𝑟 were made on 𝑓𝑓1 directly. Substituting �̃�𝑟 for 𝑟𝑟 in Equation 4-24, setting this 
equal to Equation 4-29, and solving for �̃�𝑟 gives: 

 �̃�𝑟 = �1+𝑟𝑟22−𝜌𝜌122

𝜌𝜌122
  (4-30) 

Note that if the observed random field variable is uncorrelated with 𝑓𝑓1, i.e., if 𝜌𝜌12 = 0, �̃�𝑟 is 
infinite, corresponding to an uninformative measurement. On the other hand, if 𝑓𝑓1 and 𝑓𝑓2 are 
perfectly correlated, i.e., if 𝜌𝜌12 = 1 (or perfectly negatively correlated, with 𝜌𝜌12 = −1), then 
�̃�𝑟 = 𝑟𝑟2, i.e., the noise level is as if the measure were made on 𝑓𝑓1 directly. Using this method, 
indirect observations of the random field variable affecting a component can be treated as 
equivalent direct observations with an appropriately transformed precision. The VoI provided by 
indirect measures can then be evaluated by substituting the equivalent precision �̃�𝑟 for 𝑟𝑟 in Figure 
4-2. 

In summary, this section has investigated the performance of the VoI metric in a system 
consisting of one component, under the basic modeling assumptions stated in Section 3.3 and 
under a prototypical binary decision-making problem as described in Section 4.2. In this case, 
the VoI for a single measurement of the underlying random field can be parameterized by four 
quantities: the cost of component failure, the ratio of repair and failure costs, the prior probability 
of component failure, and the relative precision of the measurement. This illustrates how the VoI 
metric accounts for the economic considerations of the decision-making problem, the prior 
model for the performance of the component, and the quality of the information used in 
supporting decision-making. One important result of this section which will be re-visited in 
Chapter 5 is that a posterior distribution over the probability of failure for a component can be 
defined for binary components, which allows for computation of the posterior expected loss via 
an expectation over the univariate posterior failure probability for that component, rather than 
over a possibly multivariate distribution for 𝑌𝑌 if multiple observations are considered. This result 
is used as the basis for an efficient method for evaluating VoI in cumulative systems in Section 
5.2.2.  

4.4. Relationship to Other Sensor Placement Metrics 
The VoI metric for sensor placement is one of many alternative metrics, as discussed in Section 
1.2.4. However, it shares common properties with several of these metrics, and certain metrics 
can be understood as special cases of the VoI. In this section, the prediction error, 
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misclassification rate, and conditional entropy metrics for sensor placement are introduced in the 
context of infrastructure management and compared to the VoI metric. The basic modeling 
assumptions of Section 3.3 are relaxed in this section in order to provide general definitions of 
the metrics. 

4.4.1. Prediction Error 
Many basic problems in sensing and machine learning can be characterized as problems of 
predicting or estimating an unknown quantity using other known or measurable quantities. In 
infrastructure management, such problems have applications in control scenarios, where 
prediction of continuous quantities is important to determining appropriate control inputs to 
restore a system to a desired operating condition (e.g., Anderson and Moore, 2007). 

For optimal prediction of continuous quantities, an intuitive approach is to measure quantities 
that most reduce the expected prediction error (e.g., Krause et al., 2008b). Prediction error can be 
measured as the absolute difference between the prediction and the true value. However, it is 
often more convenient to use the squared error, or the ℓ2 norm of the error, as this quantity has 
many useful properties, e.g., allowing for computationally efficient solutions for linear 
regression problems (Berger, 1993). Thus, a potential objective for optimizing sensor placement 
is to select measures that will reduce the expected squared prediction error. 

Such a problem can be expressed as a special case of the VoI metric within the infrastructure 
system management context. Let the random field variables 𝐹𝐹 be the quantities that are to be 
predicted, and let the actions 𝐴𝐴 denote the predictions for these quantities. The squared 
prediction error can thus be assessed using a loss function with a quadratic form: 

 Lpred(𝐟𝐟,𝐚𝐚) = (𝐟𝐟 − 𝐚𝐚)T(𝐟𝐟 − 𝐚𝐚) (4-31) 

This loss function quantifies the quality of the prediciton, and can be used directly in the VoI 
formulation of Section 4.1 to provide an objective for sensor placement for minimizing the 
square prediction error.  

Note that this loss function also happens to be in a decomposable form, as in Equation 3-1: 

 Lpred(𝐟𝐟,𝐚𝐚) = ∑ (𝑓𝑓𝑖𝑖 − 𝑎𝑎𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (4-32) 

where the number of components 𝑛𝑛 is the number of random field variables 𝑛𝑛𝑋𝑋 being predicted. 
This loss function therefore defines a cumulative system topology for random field prediction. 

Prediction for transformations of the underlying random field can be addressed in a similar 
manner, using a definition for the loss function based on an approrpatiely defined limit-state 
variable 𝐠𝐠: 

 Lpred(𝐠𝐠,𝐚𝐚) = (𝐠𝐠 − 𝐚𝐚)T(𝐠𝐠 − 𝐚𝐚) (4-33) 
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This formulation is useful in cases where prediction is of interest not for values of the random 
field directly, but for transformations of the field, e.g., regional average values or differences 
between random field quantities.  

Finally, note that in this case the loss function is not measured directly in monetary terms, as in 
the traditional formulation of VoI in Section 4.1. Instead, it is measured directy in terms of the 
squared unit values of the quantities to be predicted. Therefore, when applying the objective of 
Equation 4-12, it may be inapprorpate to directly subtract the sensing cost from the VoI. Rather, 
an equivalence might be established between cost and the prediction error, or cost can be 
removed entirely from Equation 4-12. Another alternative is to use a benefit-cost ratio 
formulation: 

 MB/C(𝑌𝑌) = VoI(𝑌𝑌)
C(𝑌𝑌)  (4-34) 

Such a formulation is not recommended when VoI is expressed in monetary terms directly, since 
it is much more appropriate in that case to subtract costs from benefits. However, when these 
quantities are expressed in incompatible units, as in the case of prediction error, this formulation 
presents a reasonable alternative for trading off benefit and cost in a sensing optimization 
problem. The use of such a benefit-cost ratio is motivated by the work of Krause (2008), where a 
similar formulation is used for greedy optimization of the conditional entropy and mutual 
information metrics, which are also assessed in non-monetary terms. The use of such a ratio can 
avoid a potential sub-optimal approach via greedy optimization of selecting a single high-cost 
measurement which provides moderate benefits instead of selecting multiple low-cost measures 
which each provide little benefit, but when combined can provide a high benefit. The use of such 
a ratio therefore represents both an objective for sensing, in terms of maximizing the benefit-cost 
ratio of the overall measurement set, and an algorithmic tool to avoid greedy selection of a small 
number of high-cost measures which provide lower overall benefit than a larger set of lower-cost 
measures. 

4.4.1.1. Weighted prediction error 

In addition to direct prediction of the underlying random field variables, weighted prediction can 
be considered, where prediction errors are penalized differently for different variables. A reason 
for adopting this approach might be that certain variables, or only a subset of the underlying 
random variables, are of interest. Alternatively, this weighting can be used to establish an 
equivalence between predictions of different quantities measured in different units, or between 
these predictions and a monetary cost, such that VoI resulting from the prediction-based loss 
function can be traded off against cost directly as in Equation 4-12. 

Weighted prediction error can be handled by the following loss function used to define the 
decision-making problem: 
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 Lpred(𝐟𝐟,𝐚𝐚) = (𝐟𝐟 − 𝐚𝐚)T𝐙𝐙T𝐙𝐙(𝐟𝐟 − 𝐚𝐚) (4-35) 

where 𝐙𝐙 is a weight matrix defined appropriately to capture the desired prediction penalties. This 
matrix is multiplied by its transpose to ensure symmetry of the resulting matrix.  

Note that, under the linear relationships between 𝐹𝐹 and 𝐺𝐺 of Section 3.3, this formulation is 
related to that of Equation 4-33, assuming 𝐠𝐠0 = 𝟎𝟎 and 𝐙𝐙 = 𝚵𝚵𝐺𝐺, as: 

(𝐠𝐠 − 𝐚𝐚)T(𝐠𝐠 − 𝐚𝐚) = (𝐟𝐟 − 𝐚𝐚)T𝚵𝚵𝐺𝐺T𝚵𝚵𝐺𝐺(𝐟𝐟 − 𝐚𝐚) + 2𝐟𝐟T𝚵𝚵𝐺𝐺T𝚵𝚵𝐺𝐺𝐚𝐚 − 2𝐟𝐟T𝚵𝚵𝐺𝐺T𝐚𝐚 + 𝐚𝐚T𝐚𝐚 − 𝐚𝐚T𝚵𝚵𝐺𝐺T𝚵𝚵𝐺𝐺𝐚𝐚 (4-36) 

In Section 5.2.1, it is shown that sensor placement based on weighted prediction error using this 
definition of the weight matrix is the same as that for prediction of the limit-state variables. The 
weighted prediction error formulation is used in the context of temperature prediction in Chapter 
10, where the vulnerability of populations to extreme heat is used to define the weighting. 

4.4.2. Misclassification Rate 
When prediction is performed for discrete rather than continuous quantities, the problem is 
commonly described as one of classification. A natural metric to use in this context is the 
misclassification rate, i.e., the probability that the prediction of the discrete state will not be 
correct (e.g., Rasmussen and Williams, 2006). 

This metric can also be formulated as a special case of the VoI, with an appropriate 
misclassification-based loss. If component states 𝑆𝑆 are the variables that are to be correctly 
predicted, this loss function is: 

 LMCR(𝐬𝐬,𝐚𝐚) = ∑ 𝕀𝕀(𝑠𝑠𝑖𝑖 ≠ 𝑎𝑎𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4-37) 

Note that this is an inherently decomposable loss function, as in Equation 3-1, and therefore 
defines a cumulative system topology for the classification problem. Also note that this loss is 
formulated here as the total misclassification rate for all components. It can be expressed as the 
average misclassification rate among components by dividing the loss by 𝑛𝑛; however, as this is 
only scaling the loss function by a constant, it will have no impact on the optimization problem. 

If prediction of the system state as a whole is of direct interest, rather than prediction of 
component states individually, the misclassification loss can be formulated as a function of the 
system state instead: 

 LMCR(𝕤𝕤,𝑎𝑎) = 𝕀𝕀(𝕤𝕤 ≠ 𝑎𝑎) (4-38) 

As with the prediction error, the misclassification rate may not trade off directly with cost, and so 
equivalence between misclassification and cost might be established, or a benefit-cost 
formulation of the objective as in Equation 4-34 may be adopted.  
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Finally, referring back to the binary component of Section 4.3 and the expected loss as a function 
of component failure probability as shown in Figure 4-1a, the misclassification rate can also be 
plotted as a function of failure probability, as shown in Figure 4-3. Note that the 
misclassification rate takes on its peak value of 0.5 at 𝑃𝑃𝑓𝑓 = 50%, where the binary state of the 
component is the most uncertain. Also note the similarity to the expected regret of Figure 4-1b; 
misclassification loss is a special case of the regret in this problem when the cost of a failure is 
set to twice the cost of a repair. 

 

Figure 4-3: Misclassification rate as a function of failure probability for a binary component.  

4.4.3. Conditional Entropy 

Entropy is an information theoretic measure of the uncertainty of a set of random variables 
(Cover and Thomas, 2006). Intuitively, the goal of sensing might be understood as the reduction 
in uncertainty in one set of variables, conditional to measurements of these or other related 
variables (e.g., Currin et al., 1991). In the context of infrastructure systems, the entropy of the 
random field variables affecting the system is denoted H(𝐹𝐹), and is computed as: 

 H(𝐹𝐹) = −𝔼𝔼𝐹𝐹 log�p𝐹𝐹(𝐟𝐟)� (4-39) 

This represents the marginal or prior entropy of 𝐹𝐹, as it is derived from the prior distribution p𝐹𝐹. 
The posterior entropy conditioned on observations of 𝑌𝑌 is denoted as the conditional entropy 
H(𝐹𝐹|𝑌𝑌), computed as: 

 H(𝐹𝐹|𝑌𝑌) = −𝔼𝔼𝑌𝑌𝔼𝔼𝐹𝐹|𝐲𝐲 log �p𝐹𝐹|𝐲𝐲(𝐟𝐟|𝐲𝐲)� (4-40) 

Typically, for problems in which variables take on discrete states, a base of 2 is used in the 
logarithm for defining entropy, whereas in problems with continuous variables, the natural 
logarithm is used. The marginal and conditional entropy of 𝐺𝐺, 𝑆𝑆, or 𝕤𝕤 can also be defined in a 
similar way, and used in cases where reduction in uncertainty for these variables directly is of 
more interest than uncertainty reduction in the underlying random variables 𝐹𝐹. 
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The conditional entropy can be used as an objective for sensor placement as follows: 

 MEnt(𝑌𝑌) = H(𝐹𝐹)−H(𝐹𝐹|𝑌𝑌)
C(𝑌𝑌)  (4-41) 

where the same benefit-cost formulation as Equation 4-34 is used here for the entropy reduction 
(the difference between the marginal and conditional entropies), since entropy is not measured 
directly in monetary terms. Again, this ratio represents an algorithmic approach to avoid greedy 
selection of moderately informative but high-cost sensors instead of cheaper sensors which 
together can provide a greater overall reduction in uncertainty for a lower total cost. However, it 
can also be used as an overall objective, i.e., for selecting measurement sets which are most 
informative relative to their cost. 

Note the similarity between the numerator of this objective and the VoI as in Equation 4-6; both 
terms are expressed as the difference between a fixed prior quantity (𝔼𝔼L(∅) or H(𝐹𝐹)) and a 
posterior quantity that is a set function of 𝑌𝑌 (𝔼𝔼L(𝑌𝑌) or H(𝐹𝐹|𝑌𝑌)). The former quantities can both 
be ignored for purposes of minimization, as they are invariant with respect to the chosen 
measurement set. Furthermore, the differences are both non-negative, due to the non-negativity 
of the VoI and the fact that H(𝐹𝐹) ≥ H(𝐹𝐹|𝑌𝑌) for any 𝑌𝑌. It is also interesting to note the 
similarities in the functional forms of the entropy and the expected loss. For example, comparing 
Equations 4-1 and 4-39, the latter can be seen as a special case of the former with L(𝐟𝐟,𝐚𝐚) =
− log�p𝐹𝐹(𝐟𝐟)�. Comparing Equations 4-5 and 4-40, the same relationship can be seen with the 

substitution L(𝐟𝐟,𝐚𝐚) = − log �p𝐹𝐹|𝐲𝐲(𝐟𝐟|𝐲𝐲)�; however, in this latter case, the dependence on 𝐲𝐲 is not 
captured by the loss function, and so the conditional entropy cannot be completely expressed as a 
special case of the VoI.  

4.4.3.1. Mutual information 

The conditional entropy is used indirectly in the work of Krause (2008) to define the mutual 
information sensing metric that is used for submodular near-optimal sensor placement. Mutual 
information measures the amount of shared uncertainty between two sets of random variables. In 
the context of sensor placement, a useful metric to define is the mutual information between a set 
of selected measurements 𝑌𝑌 and the remaining set of unselected measurements 𝒴𝒴\𝑌𝑌. This mutual 
information is denoted as: 

 MI(𝑌𝑌;𝒴𝒴\𝑌𝑌) = H(𝒴𝒴\𝑌𝑌) − H(𝒴𝒴\𝑌𝑌|𝑌𝑌) = H(𝑌𝑌) − H(𝑌𝑌|𝒴𝒴\𝑌𝑌) (4-42) 

The key idea behind the use of mutual information as a sensing metric in this way is the fact that 
the selected measurements should “cover” the information provided by the set of all possible 
measurements as much as possible, i.e., the amount of uncertainty in 𝒴𝒴\𝑌𝑌 that is not explained 
by 𝑌𝑌 should be minimized. An objective for optimal sensing based on this idea is: 
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 MMI(𝑌𝑌) = MI(𝑌𝑌;𝒴𝒴\𝑌𝑌)
C(𝑌𝑌)  (4-43) 

Again, a benefit-cost formulation is used here to trade off the non-monetized mutual information 
with the sensing cost. Note that this represents an algorithmic approach to avoid suboptimal 
greedy algorithm performance using this metric; both the benefit-cost ratio, depicted above, as 
well as the mutual information directly are used to guide the greedy selection of measurements. 
The final selected measurement sets via both approaches are compared to determine which of the 
two placements is to be selected. The reader is referred to the work of Krause (2008) for further 
details, investigation of the performance of this metric, guarantees on near-optimality of greedily 
obtained solutions in cases where sensing costs are equal or unequal, and extensions of this basic 
concept to many different sensor placement applications. 

4.4.3.2. Gaussian entropy 

The marginal or conditional entropy for a multivariate Gaussian random variable 𝐹𝐹, as in 
Equation 3-4, is computable in closed-form as (Cover and Thomas, 2006): 

 H(𝐹𝐹) = 1
2

ln(det(2𝜋𝜋𝑒𝑒𝚺𝚺𝐹𝐹)) H(𝐹𝐹|𝑌𝑌) = 1
2

ln�det�2𝜋𝜋𝑒𝑒𝚺𝚺𝐹𝐹|𝑌𝑌�� (4-44) 

where ln(⋅) denotes the natural logarithm and det(⋅) the matrix determinant, and where 𝑒𝑒 is the 
natural number. Note that the conditional entropy is not a function of the observation value 𝐲𝐲, 
and therefore taking the expectation over possible outcomes of this observation is not necessary 
for computing the conditional entropy for Gaussian random variables. 

4.4.3.3. Binary state entropy 

Referring back to the binary component of Section 4.3, the entropy of the component state can 
also be expressed as a function of the failure probability. This entropy is shown in Figure 4-4. 
Note that the entropy, as with the misclassification rate in Figure 4-3, takes on its maximum 
value at 𝑃𝑃𝑓𝑓 = 50%, where the binary state of the component is the most uncertain. 

 

Figure 4-4: Entropy as a function of failure probability for a binary component.  
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In this case, the entropy of the component can be expressed as the minimum expected loss using 
a specific definition for the loss function: 

 L(𝑠𝑠, 𝑎𝑎) = 𝑠𝑠(− log(1 − 𝑎𝑎)) + (1 − 𝑠𝑠)(− log(𝑎𝑎)) (4-45) 

where the action is considered to be a continuous quantity 𝑎𝑎 ∈ [0,1]. Each choice from this 
infinite set of possible actions defines an expected loss line (as in Figure 4-1a for the two 
possible actions considered there) which is tangent to the entropy curve of Figure 4-4 at one 
point. The set of all actions therefore defines an upper-bound to the entropy as a function of 
failure probability in a binary component. Note that this same formulation applies both to the 
marginal and conditional entropy. Further note the fact that H(𝑆𝑆) ≥ H(𝑆𝑆|𝑌𝑌) is again a 
consequence of Jensen’s Inequality and the concavity of the entropy as a function of failure 
probability, as was discussed for the expected loss in Section 4.3. 

4.4.3.4. Sum of marginal versus joint entropy 

Building on the idea of the entropy of binary component state variables discussed above, the idea 
of entropy evaluation for multiple components is examined here in more detail. When 
quantifying the uncertainty of a set of variables, there are two potential approaches. First, the 
joint entropy of the set can be quantified, as in Equations 4-39 and 4-40. However, for 
multivariate variables, this becomes more difficult, as the expectations must be evaluated over 
higher-dimensional probability spaces. Second, the entropy of each variable can be computed, 
and summed. The result is the sum of marginal entropies. In general, this is computationally 
simpler, since the expectation need only be evaluated with respect to a single variable for each 
marginal entropy computation. These two approaches are not equivalent; in fact, the sum of 
marginal entropies for a set of variables is greater than or equal to the joint entropy, where this 
equality holds if and only if the variables are mutually independent.  

The sum of the marginal entropies for component state variables 𝑆𝑆 is expressed as:  

  Hmarginal(𝑆𝑆) = ∑ H(𝑆𝑆𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ≥ H(𝑆𝑆) (4-46) 

An objective for sensor placement based on this sum of marginal entropies, following the 
formulation of Equation 4-41, is: 

 MEnt(marginal)(𝑌𝑌) = Hmarginal(𝑆𝑆)−Hmarginal(𝑆𝑆|𝑌𝑌)

C(𝑌𝑌)  (4-47) 

where, as before, the prior entropy Hmarginal(𝑆𝑆) is constant with respect to 𝑌𝑌, and the conditional 
entropy Hmarginal(𝑆𝑆|𝑌𝑌) is computed as in Equation 4-46, substituting H(𝑆𝑆𝑖𝑖|𝑌𝑌) for H(𝑆𝑆𝑖𝑖). Note 
also that, although being defined here with respect to the component states 𝑆𝑆 for consistency with 
the application discussed in Chapter 9, this objective may also be defined using the entropy of 𝐹𝐹, 
𝐺𝐺, or 𝕤𝕤 as appropriate. 
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In the context of sensor placement in large systems, this alternative to the joint entropy has 
several advantages. As mentioned, it is computationally more tractable than the joint entropy 
metric; its decomposability across components as shown in Equation 4-46 is analogous to the 
decomposition of loss in Equation 3-1, and has corresponding implications for the metric’s 
computation, as discussed in Section 5.2. Also, the sum of marginal entropies upper-bounds the 
joint entropy, and so a reduction in this bound will tend to reduce the joint entropy (although this 
may not hold true in all cases). Finally, this formulation captures a relevant feature of uncertainty 
in many problems of interest. For example, consider a system in which an additional component 
is added, whose performance is identical to that of an existing component. This addition does not 
increase the joint entropy of 𝑆𝑆, but does increase the sum of marginal entropies. In terms of 
management of the system, the addition of a component tends to be considered as a source of 
uncertainty, even if its behavior is tied to that of another component. Therefore, the sum of 
marginal entropies may better capture the perceptions and concerns of infrastructure managers.  

4.4.3.5. Qualitative comparison 

The conditional entropy and VoI metrics (including the prediction error and misclassification 
rate as special cases) represent alternative approaches to addressing the problem of optimal 
sensor placement. Conditional entropy is defined directly from the probabilistic model of the 
system to measure uncertainty in its variables, while VoI uses additional input about available 
actions and costs for system management. Thus, when supporting decision-making is the 
ultimate goal of sensing, the VoI metric should be applied, as it will take relevant costs and 
actions for system management into account when prioritizing which uncertainties to reduce 
through sensing, while the conditional entropy will not. Furthermore, since VoI and sensing cost 
are expressed in the same units, they can be compared directly as in Equation 4-12 without the 
need to resort to a benefit-cost formulation, as in Equation 4-41. This allows the objective to 
automatically determine the optimal number of sensors to be used, i.e., sensors should be 
included only when the marginal benefit of adding a sensor to the network is greater than its 
marginal cost. Additionally, the VoI only assigns value to information that can influence the 
actions undertaken by a managing agent. That is, if for every observation 𝐲𝐲 of 𝑌𝑌, the optimal 
posterior action of Equation 4-4 matches the prior action of Equation 4-2, then VoI(𝑌𝑌) will be 
zero (Koller and Friedman, 2009). Thus, only information that can potentially be used to 
improve decision-making is valued. 

Application of the VoI metric to sensor placement depends on an agent defining his or her loss 
(or utility) function for system management. However, some agents may prefer to define their 
loss in terms of uncertainty; in that case, conditional entropy would best capture their true 
objective. There are several practical reasons why an agent might choose to define their objective 
this way. Decision-makers sometimes weigh difficult-to-quantify consequences, where attempts 
to assign monetary values to these may meet with significant social or political disagreements. 
Information from the proposed sensing network may also be needed to support many different 
problems of decision-making for the system, and so selecting a single context in which to define 
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the VoI is not appropriate. Alternatively, the sensing network might be involved in a study of the 
system to accurately characterize its behavior, e.g., to determine appropriate modeling 
parameters 𝑊𝑊 to describe it. For these reasons, infrastructure managers may prefer to apply the 
conditional entropy metric to guide optimal sensing, as it is insensitive to cost considerations and 
has the reduction of posterior uncertainty as its aim.  

Finally, note that these metrics can be viewed as alternative mappings from a conditional 
probability distribution over random field variables 𝐹𝐹 given information 𝑌𝑌 to a quantitative 
measurement of sensor benefit M(𝑌𝑌). For the VoI metric, this mapping is informed by the loss 
function specified by the infrastructure manager, and thus allows uncertainties in different 
variables to be weighted differently based on the different costs and available management 
actions for the system. For the conditional entropy metric, uncertainty is penalized equally across 
all variables, resulting in a measure of system uncertainty that is insensitive to economic or 
management distinctions between components. The specific goals and concerns of the manager 
will determine which of these mappings should be applied in any particular problem. This view 
of the metrics as alternative mappings is extended in Section 5.2.2 to develop a common 
framework for their evaluation under specific assumptions. 

4.5. Non-Submodularity of the Value of Information Metric 
As introduced in Section 1.2.4, the set-functional property of submodularity, which is intuitively 
understood as a diminishing returns property, allows a greedy optimization approach such as that 
presented in Algorithm 1 to be applied to maximize the set function’s value with certain 
statistical guarantees on the near-optimality of the solution. Specifically, applying a greedy 
optimization approach with a submodular objective function guarantees that the value of the 
obtained solution will be within 1 − 1/𝑒𝑒 (about 63%) of the true optimal value that would be 
attained through an exhaustive search of the solution space (Nemhauser et al., 1978). Thus, 
submodularity is an important property for providing guarantees about the obtained solution in 
large combinatorial optimization problems where an exhaustive search is infeasible. This section 
will discuss the submodular characteristics (or lack thereof) of the VoI metric, as well as some of 
the alternative metrics considered in Section 4.4. The basic modeling assumptions of Section 3.3 
are relaxed in this section.  

One of several equivalent definitions of the submodular property is that set function M(⋅) is 
submodular if, for any subsets 𝑌𝑌1 and 𝑌𝑌2 of 𝒴𝒴: 

 M(𝑌𝑌1 ∪ 𝑌𝑌2) − M(𝑌𝑌1) ≤ M(𝑌𝑌2)− M(𝑌𝑌1 ∩ 𝑌𝑌2) (4-48) 

This motivates the understanding of submodularity as a diminishing returns property, since the 
left-hand side, which indicates the additional benefit as measured by the function of adding set 
𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2} to 𝑌𝑌1, is less than or equal to the right-hand side, which indicates the benefit of 
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adding the set to 𝑌𝑌1 ∩ 𝑌𝑌2 only, with 𝑌𝑌1 ∩ 𝑌𝑌2 ⊆ 𝑌𝑌1. In other words, the benefit of adding to a 
smaller set is greater than the benefit of adding to a larger one.  

It is well-known that VoI is not in general a submodular metric. This non-submodularity can be 
demonstrated in an intuitive example, motivated by a variant on a game of Blackjack. Two 
random variables 𝑓𝑓1 and 𝑓𝑓2 can each take on integer values from 1 to 10 inclusive with equal 
probability. The player choses an action 𝑎𝑎, and receives a reward value of 1 (i.e., a loss of −1) if 
the total of 𝑓𝑓1 + 𝑓𝑓2 + 𝑎𝑎 equals 21. Without any additional information, the player’s prior optimal 
action is to select 𝑎𝑎 = 10, yielding an expected reward of 0.1.  

Consider that prior to choosing his or her action, the player has a choice to observe one or both 
of the random variables. Let 𝑦𝑦1 = 𝑓𝑓1 and 𝑦𝑦2 = 𝑓𝑓2. Since the player will always be able to choose 
an action that guarantees them the reward after observing both variables, the expected reward is 
1, and the VoI for observing 𝑦𝑦1 and 𝑦𝑦2 is 0.9. If either 𝑦𝑦1 or 𝑦𝑦2 is observed, the player knows one 
of the variables, and thus has a one-in-ten chance of successfully guessing the other variable (i.e., 
of taking an action that will sum to 21 with the other variables) and of receiving the reward. 
Therefore, the posterior expected loss after observing either 𝑦𝑦1 or 𝑦𝑦2 is 0.1, and so the VoI of 
either observation on its own is 0. Note that the posterior optimal action in this case is dependent 
on the value of the observation, but the posterior expected reward is still the same as in the prior 
case, taking the prior optimal action.  

In this example, the VoI is clearly not submodular, since VoI({𝑦𝑦1}) = VoI({𝑦𝑦2}) = 0 while 
VoI({𝑦𝑦1,𝑦𝑦2}) = 0.9, and (by definition) VoI(∅) = 0. Thus, the marginal benefit of any one 
measurement is 0, but their joint benefit is 0.9; clearly there are increasing returns for the 
additional measure, rather than decreasing ones. 

Nevertheless, there are specific cases where VoI does satisfy the definition for submodularity. 
For the prediction error loss function (as discussed in Section 4.4.1) in Gaussian process models, 
under certain assumptions on the model structure, the VoI is submodular (Das and Kempe, 2008; 
Krause et al., 2008b). Furthermore, in the case of an independent system as in Section 3.2.1 with 
a decomposable loss function as in Equation 3-1, the VoI for these independent measurements is 
submodular (a proof is provided in Appendix B).  

In terms of other sensor placement objectives, the conditional entropy metric is submodular in 
several cases of interest, such as when measurements 𝑌𝑌 are conditionally independent given 
random field variables 𝐹𝐹, or when 𝑌𝑌 describes direct observations of variables in 𝐹𝐹 (see the proof 
in Appendix B). Furthermore, the mutual information between selected and unselected 
measurements, as discussed in Section 4.4.3.1, is always submodular (Krause, 2008). These 
properties can make the conditional entropy and mutual information metrics attractive in 
applications where robust bounds on the quality of the greedily obtained solution are necessary.  

Despite the fact that the VoI metric is not generally submodular, the greedy optimization 
algorithm remains a valid technique for sensor placement using this objective. In fact, even in 
problems with submodular objectives, the guarantees given by this property are often in practice 
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quite loose, with the greedy optimization algorithm providing solutions that are optimal or near-
optimal in many practical cases (Krause, 2008). In other words, even though the greedy 
algorithm may perform arbitrarily poorly when optimizing non-submodular objectives, there are 
many cases in which this will not occur.  

What is indicated for the use of the VoI metric in sensor placement optimization is therefore a 
consciousness of the limitations of greedy optimization. Practically, this can be maintained 
through intuitive “sanity checks” on the performance of the algorithm. For example, using the 
bounds of Equation 4-7, an upper-limit can be established for the VoI of any sensor placement 
scheme. Comparing the value of the greedily optimized scheme to this upper bound can provide 
a heuristic for determining if the resulting placement is “good enough”, by comparing to what 
can be achieved in the limit of complete information, or identifying when the algorithm is 
performing poorly, if the value is too far from this bound. Furthermore, testing the performance 
of the greedy approximation algorithm against that of an exact solution approach in a tractably 
small system can identify any serious problems that might be faced when the approach is scaled 
up. Finally, a basic understanding of the problem can be used to recognize situations that might 
lead the greedy approach to perform poorly, such as when the benefits of additional information 
are clearly increasing rather than diminishing.  

Throughout the remainder of this work, and especially in the case studies presented in Chapter 8, 
Chapter 9, and Chapter 10, applications of problem-specific intuition as well as empirical 
evidence will be used to judge the performance of the greedy optimization approach to VoI 
maximization. Section 7.2.3 also presents a specific example of obviously suboptimal 
performance by the algorithm and an intuitive countermeasure. Furthermore, Section 11.1 
presents further empirical evidence to support the use of the greedy optimization approach for 
maximizing VoI.  
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Chapter 5  

Metric Evaluation and System Topology 

The use of the VoI metric for sensor placement can be computationally demanding in general. 
The source and degree of this complexity is discussed in Section 5.1. This chapter focuses on 
presenting computational approaches for the efficient evaluation of VoI in different cases. In 
particular, when the loss function is decomposable, as in Equation 3-1, the VoI metric can be 
decomposed in an analogous manner, leading to increased computational efficiency. Section 5.2 
discusses this general decomposition, as well as further computational efficiency gains available 
when Gaussian process models for the random fields and binary component state models are 
used, following the assumptions of Section 3.3. Section 5.3 presents a generally applicable 
sampling-based method for VoI evaluation for cases in which the VoI metric is not 
decomposable, and discusses potential issues with this approach, including approximate methods 
for use in series and parallel systems. Finally, Section 5.4 presents a parametric analysis 
comparing the behavior of the VoI in a five-component system with a decomposable loss 
function with its performance in two systems with non-decomposable loss functions, namely a 
parallel and series system with the same number of components. This analysis illustrates some 
interesting characteristics of the VoI metric in these non-decomposable cases, which might be 
exploited to allow for efficient approximate sensor placement heuristics to be developed for 
series systems. 

5.1. Computational Difficulties 
The evaluation of the VoI, as illustrated in Equation 4-5 for the posterior expected loss, requires 
several steps. First, the inner expectation over posterior distribution p𝐹𝐹|𝐲𝐲 of the loss function 
must be computed. This requires that the probability p𝐹𝐹|𝐲𝐲 be evaluated for each combination of 𝐟𝐟 
and 𝐲𝐲, which can be difficult if p𝐹𝐹 is not a conjugate prior of p𝑌𝑌|𝐟𝐟, as discussed in Section 2.1.2.1. 
The expectation must then be evaluated over this posterior. In general, the expectation will not 
have a closed-form expression, so approximate techniques such as sampling-based methods must 
be applied. MCMC methods represent a well-developed class of general techniques for sampling 
from the posterior distribution for the purpose of approximating posterior expectations, and can 
be applied to evaluate these expectations (e.g., Au and Beck, 2001; Papaioannou et al., 2015). 
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Next, the minimum conditional expected loss over all possible actions must be evaluated for 
each potential observation. For actions on a continuous space, this optimization problem may be 
convex (see e.g., Boyd and Vandenberghe, 2004) or non-convex (see e.g., Brandimarte, 2006). 
For discrete actions, this problem is again one of combinatorial optimization, and the only 
guarantee of an optimal solution in all cases is an exhaustive search through all possible actions, 
which is computationally expensive. A greedy search algorithm can again be applied to this 
problem, similar to the approach of Algorithm 1 (except for minimizing over actions, rather than 
maximizing over observation sets). However, as with the sensor placement optimization 
problem, there are in general no guarantees on the optimality of the solution, or even its near-
optimality if the submodularity of the conditional expected loss cannot be established. 

Finally, an outer expectation over potential observations of 𝑌𝑌 is needed. In general, approximate 
methods, e.g., sampling-based methods such as Monte Carlo sampling, can also be applied to 
evaluate this outer expectation, as above for the inner expectation. As all the individual steps of 
posterior expected loss evaluation can be computationally intensive, and several of these are 
repeated in the prior expected loss computation, the overall evaluation of VoI is a challenging 
problem in general. Formally, in terms of computational complexity classes, the problem of 
evaluating VoI in Naïve Bayes models (a relatively simple class of Bayesian Network PGMs 
with a tree structure, known as a polytree) is #P-complete, and the problem of optimizing 
measurements based on VoI is NPPP-hard for polytrees (Krause and Guestrin, 2009). 

To quantify this challenge in a specific case, consider that a system with 𝑛𝑛 binary components is 
to be monitored via a set 𝑌𝑌 of 𝑛𝑛𝑌𝑌 binary observations, and managed with binary management 
action choices, with one choice associated with each component. Therefore, there are 2𝑛𝑛𝑌𝑌  
possible outcomes of the observation set, 2𝑛𝑛 possible joint states for the components, and 2𝑛𝑛 
possible management actions that can be taken across the system. The loss function in this case 
is expressed in the form of L(𝐬𝐬,𝐚𝐚), and is not decomposable in general. Complexity of the VoI 
evaluation can be quantified in terms of the complexity for evaluating the posterior expected 
loss, since this is a necessary step in evaluating the VoI and one that must be repeated for every 
potential measurement set during sensor placement optimization, whereas the prior expected loss 
need only be computed once. Computation of the posterior expected loss requires that, for each 
potential measurement outcome, the posterior probabilities of each possible joint state be 
evaluated, and the expected loss taken across these probabilities and minimized across all 
potential actions.  

The complexity of this process can be quantified using order notation, where for example O(𝑛𝑛2) 
indicates a process whose complexity increases with the square of 𝑛𝑛. The complexity of each 
step of the evaluation of the posterior expected loss can thus be quantified, and the upper limiting 
order of this complexity identified. Note that here, the size of the search space (i.e., the number 
of joint variable states and actions which must be checked) is being quantified. This may not 
correspond exactly to the algorithmic complexity, as implemented algorithms for solving 
particular problems can have lower complexity than the search space size. In particular, this 
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chapter will examine how complexity can be reduced by exploiting the problem structure in 
some specific cases. What is presented now is therefore the worst-case complexity in the most 
general systems, requiring exhaustive search through all possibilities. 

First, the posterior probability distribution p𝑆𝑆|𝐲𝐲 must be evaluated for each combination of 𝐬𝐬 and 
𝐲𝐲, requiring O(2𝑛𝑛2𝑛𝑛𝑌𝑌) evaluations. The loss function must be computed for each combination of 
𝐬𝐬 and 𝐚𝐚, requiring O(2𝑛𝑛2𝑛𝑛) evaluations. Note that these loss values will not change for different 
observations 𝐲𝐲 of 𝑌𝑌, and so may be precomputed and stored, although the storage requirements 
may be prohibitive in larger problems. Evaluation of the conditional expected loss is needed for 
each of 2𝑛𝑛𝑌𝑌 observations and 2𝑛𝑛 actions, each requiring a sum over a product of 2𝑛𝑛 losses and 
state probabilities. Overall, this represents O(2𝑛𝑛𝑌𝑌2𝑛𝑛2𝑛𝑛) operations. Minimization over actions 
must be performed for each of 2𝑛𝑛𝑌𝑌 observations, and requires a minimization over 2𝑛𝑛 action 
choices. Complexity of finding the minimum of an unsorted set is linear (Newman, 2010), and so 
the minimization steps require a total of O(2𝑛𝑛𝑌𝑌2𝑛𝑛) operations. Finally, evaluating the outer 
expectation requires evaluating the observation probability distribution p𝑌𝑌 2𝑛𝑛𝑌𝑌  times and the 
summing over 2𝑛𝑛𝑌𝑌  products, for an overall complexity of O(2𝑛𝑛𝑌𝑌). The bottleneck of this process 
is the evaluation of the inner expectation, with a computational complexity of O(2𝑛𝑛𝑌𝑌4𝑛𝑛).  

For reference, the complexity for computing the posterior conditional entropy H(𝑆𝑆|𝑌𝑌) in this 
problem would be O(2𝑛𝑛𝑌𝑌2𝑛𝑛), i.e., the posterior probabilities of all states and observations would 
need to be evaluated, and the complexity for evaluating the sum of marginal entropies 
Hmarginal(𝑆𝑆|𝑌𝑌) as in Equation 4-46 would be O(𝑛𝑛2𝑛𝑛𝑌𝑌), i.e., the marginal state probability for 
each component would need to be evaluated for every potential observation. 

An additional level of complexity is added by the optimization problem. For exact optimization 
of 𝑌𝑌 from a set 𝒴𝒴, there are 2𝑛𝑛𝒴𝒴  possible sets, as discussed in Section 2.2.1. Thus, exact sensor 
placement optimization using the VoI metric in this problem has complexity O(2𝑛𝑛𝒴𝒴2𝑛𝑛𝑌𝑌4𝑛𝑛), with 
𝑛𝑛𝑌𝑌 ≤ 𝑛𝑛𝒴𝒴. Adopting the greedy heuristic reduces this to O�𝑛𝑛𝒴𝒴22𝑛𝑛𝑌𝑌4𝑛𝑛�. As can be seen, even when 
adopting a greedy optimization approach, the complexity of sensor placement using the VoI 
metric grows exponentially with the number of system components and the number of 
measurements taken. When dealing with continuous rather than discrete variables, the 
complexity of the problem cannot be so easily quantified; however, analogous problems with the 
exponential growth of the solution space dimensionality occur. 

Over the following sections, it is shown that in certain special cases of the system topology and 
choice of the loss function, in particular when the loss function is decomposable across system 
components, this computational complexity can be reduced to be linear in the number of 
components. Additionally, in some cases where the loss function is not decomposable, 
approximate techniques can be used to reduce the computational complexity. Since the choice of 
loss function impacts the computational complexity of VoI evaluation, the selection of an 
appropriate loss function can trade off the need to accurately capture the economic cost of a 
given problem to an infrastructure manager against the computational cost of VoI evaluation. 
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Significant gains in computational efficiency might then motivate a managing agent to use an 
approximate loss function of a simpler problem class (e.g., a decomposable function) to 
substitute for a more accurate but more computationally demanding loss function. Chapter 6 
presents several examples where a computationally efficient loss function serves as a reasonable 
proxy to another, more intensive loss function. 

5.2. Decomposable Loss Functions 
The assumption of a decomposable loss function, or alternatively a cumulative system topology 
as discussed in Section 3.2.2, allows the VoI metric to be decomposed across the components of 
the system, reducing the computational effort associated with its evaluation. This decomposition 
is motivated by concepts in dynamic programming (e.g., Bertelè and Brioschi, 1972). 

To derive this decomposition of the VoI metric, begin by substituting Equation 3-1 into Equation 
4-5: 

 𝔼𝔼L(𝑌𝑌) = 𝔼𝔼𝑌𝑌 min𝐚𝐚∈𝒜𝒜 𝔼𝔼𝐹𝐹|𝐲𝐲 ∑ L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (5-1) 

First, making use of the linearity of the expectation, the expectation of the sum can be written as 
the sum of expectations as follows: 

 𝔼𝔼L(𝑌𝑌) = 𝔼𝔼𝑌𝑌 min𝐚𝐚∈𝒜𝒜 ∑ 𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (5-2) 

where, since each component-level loss function is only a function of the subset 𝐹𝐹𝑖𝑖 of 𝐹𝐹, the 
expected loss over all 𝐹𝐹 is equivalent to an expected loss over each subset.  

Next, note that the component-level loss is a function only of actions 𝐴𝐴𝑖𝑖, rather than of all actions 
𝐴𝐴. Furthermore, the minimum of a summation can be achieved by minimizing each summand 
when these are functions of disjoint action sets. Therefore, the minimum of the total conditional 
expected loss across components is equivalent to the sum of the minimum of the conditional 
expected losses for each component: 

 𝔼𝔼L(𝑌𝑌) = 𝔼𝔼𝑌𝑌 ∑ min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (5-3) 

Finally, again using the linearity of the expectation, the outer expectation can be moved inside 
the summation: 

 𝔼𝔼L(𝑌𝑌) = ∑ 𝔼𝔼𝑌𝑌 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = ∑ 𝔼𝔼L𝑖𝑖(𝑌𝑌)𝑛𝑛

𝑖𝑖=1  (5-4) 

Note that this expectation is still performed over observations of all measures in 𝑌𝑌. If this 
cumulative system were also an independent system, as discussed in Section 3.2.1, this 
expectation could also be expressed as an expectation over 𝑌𝑌𝑖𝑖, since the expected loss for this 
component would be independent of any measurements associated with other components. 
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In the case where the system-level loss function is decomposable, the system-level VoI metric 
can therefore be decomposed across system components as: 

 VoI(𝑌𝑌) = ∑ VoI𝑖𝑖(𝑌𝑌)𝑛𝑛
𝑖𝑖=1  (5-5) 

where: 

 VoI𝑖𝑖(𝑌𝑌) = 𝔼𝔼L𝑖𝑖(∅) − 𝔼𝔼L𝑖𝑖(𝑌𝑌) (5-6) 

Note here that the prior expected loss will decompose in the same way as the posterior, shown in 
Equation 5-4, only without conditioning on 𝑌𝑌. 

In terms of computational complexity, the decomposition of the VoI metric reduces the 
computational cost growth to be linear in the number of components, rather than exponential. 
Revisiting the problem of a system with binary component states, actions, and observations from 
Section 5.1, the computational bottleneck is now the evaluation, for each of 𝑛𝑛 components, of the 
conditional expected loss given each of 2𝑛𝑛𝑌𝑌 observations, 2 component actions, and 2 component 
states, representing O(𝑛𝑛2𝑛𝑛𝑌𝑌) operations. Thus, the growth of complexity is linear in the number 
of components rather than exponential (assuming of course that the number of component states 
and management actions does not grow with the size of the system). 

Other sensor placement objectives benefit from decomposability as well. Recall from Section 
4.4.3.4 that the sum of marginal entropies can be used as a decomposable alternative to the joint 
entropy. Thus, in a problem with binary observations and states, the computational complexity of 
evaluating the sum of marginal entropies is O(𝑛𝑛2𝑛𝑛𝑌𝑌), in contrast to O(2𝑛𝑛2𝑛𝑛𝑌𝑌) for the joint 
entropy.  

Two specific decomposable loss functions that allow for additional computational savings are 
examined in further detail in the following subsections.  

5.2.1. Efficient Evaluation for Gaussian Prediction Error  
In the case of the field prediction error loss function, as discussed in Section 4.4.1, under the 
assumption of a Gaussian random field and observations, as discussed in Section 3.3, the VoI can 
be easily assessed in closed-form. Beginning with Equation 4-32, note that the prediction error 
loss function is decomposable, with 𝑛𝑛 = 𝑛𝑛𝑋𝑋, i.e., the random field variables constitute the 
“components” of this system. Substituting this loss function into the posterior expected loss of 
Equation 5-4 gives: 

 𝔼𝔼Lpred(𝑌𝑌) = ∑ 𝔼𝔼𝑌𝑌 min𝑎𝑎𝑖𝑖 𝔼𝔼𝑓𝑓𝑖𝑖|𝐲𝐲(𝑓𝑓𝑖𝑖 − 𝑎𝑎𝑖𝑖)2
𝑛𝑛𝑋𝑋
𝑖𝑖=1  (5-7) 

where 𝑎𝑎𝑖𝑖 is the continuous estimate of 𝑓𝑓𝑖𝑖. Now note that the estimate that will minimize the 
expected prediction error of the Gaussian random varaible 𝑓𝑓𝑖𝑖 conditional to measuremnet 𝐲𝐲 is the 
posterior mean of 𝑓𝑓𝑖𝑖 conditioned on this measurment: 
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 argmin𝑎𝑎𝑖𝑖 𝔼𝔼𝑓𝑓𝑖𝑖|𝐲𝐲(𝑓𝑓𝑖𝑖 − 𝑎𝑎𝑖𝑖)2 = 𝜇𝜇𝑓𝑓𝑖𝑖|𝐲𝐲 (5-8) 

where this posterior mean value can be computed in closed-form as the 𝑖𝑖th element of posterior 
random field mean vector 𝛍𝛍𝐹𝐹|𝐲𝐲, as in Equation 3-10. Substituting this value into the posterior 
expected loss yields: 

 𝔼𝔼Lpred(𝑌𝑌) = ∑ 𝔼𝔼𝑓𝑓𝑖𝑖,𝑌𝑌�𝑓𝑓𝑖𝑖 − 𝜇𝜇𝑓𝑓𝑖𝑖|𝐲𝐲�
2𝑛𝑛𝑋𝑋

𝑖𝑖=1  (5-9) 

Now, note that the expected squared difference between the random field and its posterior mean 
is the posterior variance of the variable: 

 𝔼𝔼𝑓𝑓𝑖𝑖,𝑌𝑌�𝑓𝑓𝑖𝑖 − 𝜇𝜇𝑓𝑓𝑖𝑖|𝐲𝐲�
2

= 𝜎𝜎𝑓𝑓𝑖𝑖|𝑌𝑌
2  (5-10) 

Substituting this relationship into the posterior expected loss expression yields: 

 𝔼𝔼Lpred(𝑌𝑌) = ∑ 𝜎𝜎𝑓𝑓𝑖𝑖|𝑌𝑌
2𝑛𝑛𝑋𝑋

𝑖𝑖=1 = tr�𝚺𝚺𝐹𝐹|𝑌𝑌� (5-11) 

which can be computed using the matrix trace of posterior covariance matrix 𝚺𝚺𝐹𝐹|𝑌𝑌, obtained in 
closed-form from Equation 3-10. Note that the prior expected loss can likewise be obtained by 
substituting 𝚺𝚺𝐹𝐹 for 𝚺𝚺𝐹𝐹|𝑌𝑌 in this expression. Thus, the VoI for prediction error is evaluated in 
closed-form as: 

  VoI = tr(𝚺𝚺𝐹𝐹) − tr�𝚺𝚺𝐹𝐹|𝑌𝑌� (5-12) 

When the loss is expressed as a function of the limit-state variables 𝐺𝐺 as in Equation 4-33, the 
VoI becomes, following the relationship of Equation 3-13: 

 VoI = tr(𝚺𝚺𝐺𝐺) − tr�𝚺𝚺𝐺𝐺|𝑌𝑌� = tr�𝚵𝚵𝐺𝐺𝚺𝚺𝐹𝐹𝚵𝚵𝐺𝐺T� − tr�𝚵𝚵𝐺𝐺𝚺𝚺𝐹𝐹|𝑌𝑌𝚵𝚵𝐺𝐺T� (5-13) 

Similarly, for the weighted prediction error using the loss function of Equation 4-35, VoI is: 

 VoI = tr(𝐙𝐙𝚺𝚺𝐹𝐹𝐙𝐙T) − tr�𝐙𝐙𝚺𝚺𝐹𝐹|𝑌𝑌𝐙𝐙T� (5-14) 

Note here that for 𝐙𝐙 = 𝚵𝚵𝐺𝐺, the weighted prediction loss function and the loss function based on 
prediction of the limit-state variables will lead to the same VoI, and thus the same optimal sensor 
placements under this objective. This supports the equivalence of these two sensor placement 
approaches, as alluded to in Section 4.4.1.1.  

Furthermore, note that the conditional entropy of random field variables 𝐹𝐹 is also expressible as 
a function of posterior covariance 𝚺𝚺𝐹𝐹|𝑌𝑌, as in Equation 4-44. This means that the VoI metric will 
have the same computational complexity as the conditional entropy metric, in the case of a 
Gaussian random field and the prediction error loss function. This complexity is driven by the 
computation of 𝚺𝚺𝐹𝐹|𝑌𝑌 via Equation 3-10, which is governed by the inversion of the 𝑛𝑛𝑌𝑌 by 𝑛𝑛𝑌𝑌 
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matrix 𝚺𝚺𝑌𝑌, leading to an overall complexity of O(𝑛𝑛𝑌𝑌3) for this step (Rasmussen and Williams, 
2006). In general, 𝑛𝑛𝑌𝑌 is less than 𝑛𝑛𝑋𝑋, as only a subset of the discrete locations are usually 
observed. In terms of the relationship of complexity to 𝑛𝑛𝑋𝑋, this can be expressed in terms of the 
need for matrix addition to evaluate the posterior covariance in Equation 3-10, which is O(𝑛𝑛𝑋𝑋2), 
or the need to evaluate the matrix determinant in Equation 4-44, which is O(𝑛𝑛𝑋𝑋3). In either case, 
the rate of increase is less than the exponential growth exhibited by general VoI evaluation. 

5.2.2. Efficient Evaluation for Binary Components 
In cases where components have binary states, as outlined in Section 3.3.4, and these states are 
functions of underlying Gaussian random variables, the exponential dependence of the 
complexity of VoI evaluation on the number of observations can be reduced. First, using the 
formula for the posterior mean of the random field given a set of observations, as in Equation 
3-10, and the prior distribution of these observations of Equation 3-7, note that the posterior 
mean vector 𝛍𝛍𝐹𝐹|𝐲𝐲 is an affine function of Gaussian random variable 𝐲𝐲, and so is itself a Gaussian 
random variable: 

 𝛍𝛍𝐹𝐹|𝐲𝐲 ~ 𝒩𝒩�𝛍𝛍𝐹𝐹 ,𝚺𝚺𝐹𝐹𝑌𝑌𝚺𝚺𝑌𝑌−1𝚺𝚺𝐹𝐹𝑌𝑌T � (5-15) 

where the covaraiance matrix is derived by noting that �𝚺𝚺𝐹𝐹𝑌𝑌𝚺𝚺𝑌𝑌−1�𝚺𝚺𝑌𝑌�𝚺𝚺𝐹𝐹𝑌𝑌𝚺𝚺𝑌𝑌−1�
T

=
𝚺𝚺𝐹𝐹𝑌𝑌𝚺𝚺𝑌𝑌−1𝚺𝚺𝐹𝐹𝑌𝑌T . Using the relationship between limit-state variables 𝐺𝐺 and random field variables 𝐹𝐹 
of Equation 3-11, the posterior distribution parrameters for 𝐺𝐺 are: 

 𝛍𝛍𝐺𝐺|𝐲𝐲 = 𝚵𝚵𝐺𝐺𝛍𝛍𝐹𝐹|𝐲𝐲 + 𝐠𝐠0 𝚺𝚺𝐺𝐺|𝑌𝑌 = 𝚵𝚵𝐺𝐺𝚺𝚺𝐹𝐹|𝑌𝑌𝚵𝚵𝐺𝐺T (5-16) 

Since 𝛍𝛍𝐺𝐺|𝐲𝐲 is an affine function of Gaussian variable 𝛍𝛍𝐹𝐹|𝐲𝐲, it is also Gaussian with distribution: 

 𝛍𝛍𝐺𝐺|𝐲𝐲 ~ 𝒩𝒩�𝚵𝚵𝐺𝐺𝛍𝛍𝐹𝐹 + 𝐠𝐠0,𝚵𝚵𝐺𝐺𝚺𝚺𝐹𝐹𝑌𝑌𝚺𝚺𝑌𝑌−1𝚺𝚺𝐹𝐹𝑌𝑌T 𝚵𝚵𝐺𝐺T� (5-17) 

where the mean vector derives from Equation 3-11 and the relationship 𝔼𝔼𝑌𝑌𝛍𝛍𝐹𝐹|𝐲𝐲 = 𝛍𝛍𝐹𝐹.  

Recalling the definition of the reliability index from Equation 3-17, the prior or posterior failure 
probability for a binary component can be derived from the parameters of the associated limit-
state variable as: 

 𝑃𝑃𝑓𝑓,𝑖𝑖 = Φ(−𝛽𝛽𝑖𝑖) = Φ�−
𝜇𝜇𝑔𝑔𝑖𝑖
𝜎𝜎𝑔𝑔𝑖𝑖
� 𝑃𝑃𝑓𝑓,𝑖𝑖|𝐲𝐲 = Φ�−𝛽𝛽𝑖𝑖(𝐲𝐲)� = Φ�−

𝜇𝜇𝑔𝑔𝑖𝑖|𝐲𝐲
𝜎𝜎𝑔𝑔𝑖𝑖|𝑌𝑌

� (5-18) 

Motivated by these relationships, the reliability vector 𝛃𝛃 concatenates the reliability indices of all 
binary system components. In the prior case or conditional to observation 𝐲𝐲, this vector is: 

 𝛃𝛃(∅) = diag(𝚺𝚺𝐺𝐺)−
1
2𝛍𝛍𝐺𝐺 𝛃𝛃(𝐲𝐲) = diag�𝚺𝚺𝐺𝐺|𝑌𝑌�

−12𝛍𝛍𝐺𝐺|𝐲𝐲 (5-19) 
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where diag(⋅) denotes the diagonalization of a matrix, i.e., all off-diagonal elements of the 
matrix are set to 0. In the prior case, this reliability vector is a constant, and in the posterior case 
it is a linear function of observation vector 𝐲𝐲 for a given set of measures 𝑌𝑌. Therefore, in the 
posterior case, the reliability index vector can be treated as a Gaussian random vector:  

 𝛃𝛃 ~ 𝒩𝒩�𝛍𝛍β|𝑌𝑌,𝚺𝚺β|𝑌𝑌� (5-20) 

where: 

𝛍𝛍β|𝑌𝑌 = diag�𝚺𝚺𝐺𝐺|𝑌𝑌�
−12𝛍𝛍𝐺𝐺 𝚺𝚺β|𝑌𝑌 = diag�𝚺𝚺𝐺𝐺|𝑌𝑌�

−12𝚵𝚵𝐺𝐺𝚺𝚺𝐹𝐹𝑌𝑌𝚺𝚺𝑌𝑌−1𝚺𝚺𝐹𝐹𝑌𝑌T 𝚵𝚵𝐺𝐺Tdiag�𝚺𝚺𝐺𝐺|𝑌𝑌�
−12 (5-21) 

Note that the conditioning on observation 𝐲𝐲 has been dropped for notational convenience, since 

in the prior case, i.e., if 𝑌𝑌 = ∅, then 𝚺𝚺β|𝑌𝑌 = 𝟎𝟎 and 𝚺𝚺𝐺𝐺|𝑌𝑌 = 𝚺𝚺𝐺𝐺, and so 𝛍𝛍β|∅ = diag(𝚺𝚺𝐺𝐺)−
1
2𝛍𝛍𝐺𝐺 =

𝛃𝛃(∅), a constant. Also note that the distribution parameters of 𝛃𝛃 are functions of the 
measurement set 𝑌𝑌 only, rather than the values 𝐲𝐲 of these measurements.  

Recall from Section 4.3 that, for a single binary component, the minimum expected loss can be 
expressed as a function of component failure probability, as demonstrated in Figure 4-1a. 
Component-level mapping function m𝑖𝑖(⋅) captures this relationship for the 𝑖𝑖th component. For 
instance, in the posterior case, the following relationship holds: 

 𝔼𝔼L𝑖𝑖(𝐲𝐲) = min
𝑎𝑎𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝑆𝑆𝑖𝑖|𝐲𝐲L𝑖𝑖(𝑠𝑠𝑖𝑖,𝑎𝑎𝑖𝑖) = m𝑖𝑖�𝑃𝑃𝑓𝑓,𝑖𝑖|𝐲𝐲� = m𝑖𝑖 �Φ�−𝛽𝛽𝑖𝑖(𝐲𝐲)�� (5-22) 

where, using the component reliability index, this function maps an observation to an expected 
loss, representing an alternative means of computing the component-level conditional expected 
loss of Equation 5-4 in the case of a Gaussian system with binary components. 

The last key step is to note that, conditional to a set of observations 𝑌𝑌, the reliability index for the 
𝑖𝑖th component is distributed according to a univariate Gaussian distribution: 

 𝛽𝛽𝑖𝑖 ~ 𝒩𝒩�𝜇𝜇β𝑖𝑖|𝑌𝑌,𝜎𝜎β𝑖𝑖|𝑌𝑌
2 � (5-23) 

where the parameters of this distribution are the corresponding elements of the mean vector and 
along the diagonal of the covariance matrix given in Equation 5-21. 

Finally, recalling the definition for the posterior expected loss under the decomposability 
assumption of Equation 5-4 and substituting in Equation 5-22 yields: 

 𝔼𝔼L(𝑌𝑌) = ∑ 𝔼𝔼𝑌𝑌m𝑖𝑖�𝑃𝑃𝑓𝑓,𝑖𝑖|𝐲𝐲�𝑛𝑛
𝑖𝑖=1 = ∑ 𝔼𝔼𝛽𝛽𝑖𝑖|𝑌𝑌m𝑖𝑖�Φ(−𝛽𝛽𝑖𝑖)�𝑛𝑛

𝑖𝑖=1  (5-24) 

Note here that the multivariate expectation over 𝑌𝑌 has been transformed into a univariate 
expectation over 𝛽𝛽𝑖𝑖 using the relationships developed in this section. The evaluation of this 
expectation over a lower-dimensional space is computationally simpler. Although the binary 
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complexity quantification of Section 5.1 no longer applies to this case, as Gaussian variables 
have been explicitly assumed, the dependence of complexity is now governed only by the 
complexity of computing the distribution parameters for 𝛽𝛽𝑖𝑖 given 𝑌𝑌, which no longer grows 
exponentially in 𝑛𝑛𝑌𝑌. The univariate expectation over the distribution for 𝛽𝛽𝑖𝑖 in Equation 5-23 can 
be evaluated by any applicable means, e.g., using sampling or numerical integration techniques. 

Other decomposable metrics associated with binary states can be evaluated in an analogous way. 
For example, in the case of component misclassification rates of Section 4.4.2 or the sum of 
marginal component state entropies of Sections 4.4.3.4, similar mappings m𝑖𝑖(⋅) from the 
probability of component failure to the objective value can be defined, as shown in Figure 4-3 
and Figure 4-4. The methods for evaluating misclassification rate and sum of marginal entropy in 
these cases are exactly as illustrated in this section for the VoI. 

5.3. Non-Decomposable Loss Functions 
For arbitrary definitions of the loss function, where the function is not decomposable as in 
Equation 3-1, or where the definition of the system contradicts the assumptions of Section 3.3, 
the techniques described in the previous section will not be applicable. For systems governed by 
discrete random variables, or where continuous random variables can be feasibly replaced with 
discrete approximations, exact evaluation of VoI is possible by enumerating all combinations of 
observation and state variables and actions, and computing the expected losses numerically. 
However, as discussed in Section 5.1 (using the example of binary variables and actions), the 
computational requirements of this approach grow exponentially with the number of variables 
and observations, and so this approach is infeasible for larger systems. 

As a more efficient alternative, sampling-based techniques can be used to approximate the VoI. 
One such technique, based on crude Monte Carlo sampling, is presented in Section 5.3.1. This 
technique is broadly applicable to all cases of VoI computation, including when the basic 
modeling assumptions of Section 3.3 are relaxed. It is employed in this work for evaluating VoI 
in systems with non-decomposable loss functions. For two specific cases, i.e., for systems with 
series or parallel network topologies, approximate techniques for efficiently optimizing the 
choice of posterior management actions are discussed in Section 5.3.2. 

5.3.1. General Metric Evaluation via Sampling 
This section presents a Monte Carlo sampling approach to evaluating the posterior expected loss 
of Equation 4-5. An equivalent method for evaluating the prior expected loss is possible by 
removing any conditioning on observations in the steps outlined in this section. First, to 
approximate the outer expectation of Equation 4-5, one can draw 𝑛𝑛sim simulated observations 
from the distribution over observations p𝑌𝑌 to approximate the expectation as: 

 𝔼𝔼𝑌𝑌𝔼𝔼L(𝐲𝐲) ≈ 1
𝑛𝑛sim 

∑ 𝔼𝔼L�𝐲𝐲(ℎ)�𝑛𝑛sim 
ℎ=1 �𝐲𝐲(ℎ)�

ℎ=1
𝑛𝑛𝑠𝑠𝑖𝑖𝑖𝑖  ~ p𝑌𝑌 (5-25) 
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This approximate approach reduces the complexity of evaluating the expectation, e.g., in the case 
of discrete variables, from an exponential growth in 𝑛𝑛𝑌𝑌 to a linear growth in 𝑛𝑛sim (ignoring 
potential issues related to drawing multivariate samples of 𝐲𝐲).  

To approximately evaluate the inner expectation of Equation 4-3 given simulated observation 
𝐲𝐲(ℎ), one can draw a number 𝑛𝑛sim′  of joint random field variable values from the posterior 
distribution p𝐹𝐹|𝐲𝐲(ℎ), obtaining: 

 𝔼𝔼𝐹𝐹|𝐲𝐲(ℎ)L(𝐟𝐟,𝐚𝐚) ≈ 1
𝑛𝑛sim
′  

∑ L�𝐟𝐟(𝑗𝑗),𝐚𝐚�𝑛𝑛sim
′  

𝑗𝑗=1 �𝐟𝐟(𝑗𝑗)�
𝑗𝑗=1
𝑛𝑛sim
′

 ~ p𝐹𝐹|𝐲𝐲(ℎ)   (5-26) 

This approach reduces the evaluation complexity from exponential growth in 𝑛𝑛𝑋𝑋 to linear growth 
in 𝑛𝑛sim′  (again ignoring potential issues related to drawing samples from the conditional 
distribution).  

Methods for determining appropriate values of 𝑛𝑛sim and 𝑛𝑛sim′  and for quantifying variance, bias, 
and confidence intervals in the VoI approximations resulting from this approach are developed 
by Oakley et al. (2010). Note that those methods have been developed in the context of perfect 
observations, but apply to VoI evaluation generally. Bias in the estimation of the VoI derives 
from the minimization over actions for a finite number of sampled states; although the Monte 
Carlo approximation technique in Equation 5-26 provides an unbiased estimate for 𝔼𝔼𝐹𝐹|𝐲𝐲(ℎ)L(𝐟𝐟,𝐚𝐚), 
minimization over these estimates introduces a bias into the approximation of Equation 5-25, 
potentially resulting in underestimation of the loss, and therefore in overestimation of the VoI 
(Oakley et al., 2010). 

To perform minimization over actions in evaluating Equation 4-3 in discrete problems, an 
exhaustive search through possible actions is generally necessary. As discussed in Section 5.1, 
this can be computationally prohibitive, and so approximate approaches to minimization may be 
applied. One such approach is to perform an exhaustive search over a restricted subset �̃�𝒜 ⊂ 𝒜𝒜 of 
possible management actions. Methods for generating restricted subsets are presented in the 
following subsection for series and parallel systems with binary component states and 
management actions. 

5.3.2. Approximate Techniques for Series and Parallel Systems 
This subsection develops efficient approximate techniques for minimizing over the choice of 
management actions in series and parallel systems. In this subsection, the modeling assumptions 
of Section 3.3 are applied. Furthermore, the prototypical loss function for a non-cumulative 
system described in Section 4.2.2 and formulated in Equation 4-17 is applied. 

In the case of a parallel system, one need only consider two potential actions for managing the 
system: do nothing for every component, or repair the component with the lowest repair cost. 
Since only one component needs to be operational or repaired to avoid the failure cost, there is 
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no need to consider additional actions. Therefore, the number of potential actions that need be 
considered is reduced from 2𝑛𝑛 to 2. Note that this reduced action set must contain the optimal 
action, and so this technique is exact for parallel systems. 

In the case of a series system, under the assumption that the repair costs are equal for all 
components, a reduced set of management actions of size 𝑛𝑛 + 1 can be considered. This is 
motivated by the fact that, in a series system where the binary component states are independent, 
the prior probability of system failure is: 

 ℙ(𝕊𝕊series′ (𝐬𝐬,𝐚𝐚) = 0) = 1 −∏ �1 − 𝑃𝑃𝑓𝑓,𝑖𝑖�𝑖𝑖:𝑎𝑎𝑖𝑖 =0  (5-27) 

where the notation on the product indicates that only components that are not repaired are 
included. Based on this relationship, note that for any set of 𝑛𝑛𝑟𝑟 components to be repaired, the 
prior probability of system failure will be smallest if the 𝑛𝑛𝑟𝑟 components with the highest 
marginal probabilities of failure are selected for repair.  

While this management strategy is optimal when component failures are independent, it can be 
assumed that the same strategy will provide a reasonable approximation to the optimal strategy 
even where failures are non-independent. This assumption thus motivates a heuristic for the 
optimization of management actions for series systems as follows. First, the probabilities of the 
component failures are computed as 𝑃𝑃𝑓𝑓,𝑖𝑖 in the prior case and 𝑃𝑃𝑓𝑓,𝑖𝑖|𝐲𝐲 in the posterior case for the 
𝑖𝑖th component. Components are then ranked according to this failure probability from highest to 
lowest, with 𝑖𝑖(𝑛𝑛𝑟𝑟) denoting the index value of the component with the 𝑛𝑛𝑟𝑟th highest failure 
probability. Potential management actions are then defined, where a(𝑛𝑛𝑟𝑟) indicates the vector of 
management actions such that the 𝑛𝑛𝑟𝑟 components with the highest failure probabilities are 
selected for repair, or: 

 𝐚𝐚(𝑛𝑛𝑟𝑟) = �𝑎𝑎𝑖𝑖(1) = 1, … ,𝑎𝑎𝑖𝑖(𝑛𝑛𝑟𝑟) = 1, 𝑎𝑎𝑖𝑖(𝑛𝑛𝑟𝑟+1) = 0, … ,𝑎𝑎𝑖𝑖(𝑛𝑛) = 0� (5-28) 

The reduced subset �̃�𝒜 of management actions to be considered is then �𝐚𝐚(0), … 𝐚𝐚(𝑛𝑛)�, and thus 
the number of potential joint management actions that must be evaluated when computing VoI is 
reduced from 2𝑛𝑛 to 𝑛𝑛 + 1. Note that the resulting management action set chosen will be only an 
approximation to the true optimal management action set in general.  

The above approach represents a greedy selection process where components are selected for 
repair in a specific sequence (although all repairs are to be implemented simultaneously, as has 
been assumed throughout). It should be noted that in the case of independent components with 
equal repair costs, as in the example which motivated this approach, the problem of identifying 
the components to repair can be characterized as a submodular optimization problem. In this 
case, the log-reliability of the system (where the reliability is one minus the failure probability) is 
the objective to be maximized through repair actions. This objective is non-decreasing, as 
performing repairs does not decrease system reliability. Furthermore, this objective is 
submodular, and in particular it is modular, i.e., the inequality of Equation 4-48 holds in the 
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equality. This can be seen by noting that for a series system with independent components the 
log-reliability is the sum of component log-reliabilities for non-repaired components. Repairing a 
component increases the log-reliability by the same amount regardless of the number of other 
components which have been repaired. For this reason, the greedy selection process and the 
resulting approach described above provides guarantees on near-optimality of the solution when 
component behaviors are independent and when component repairs have the same cost. This 
observation is motivated by the work of Heckerman et al. (1993). 

In the case that component repair costs are unequal, this approximation may perform badly. For 
example, a large number of components might be repaired at a small cost, significantly reducing 
the failure probability for the system, while a single repair performed at great cost for the least 
reliable component may not be able to greatly reduce this failure probability. In such a case, a 
modified greedy approach to choosing management activities can be adopted, e.g., starting with 
the do-nothing alternative for all components and choosing one component at a time to repair 
based on minimizing the resulting expected loss. Note that this greedy selection should be 
continued until all components have been repaired, as it may be the case that this is the optimal 
management action, i.e., after all 𝑛𝑛 + 1 optimal action sets have been chosen (each with a 
different numbers of components repaired) the final expected losses for all action sets should be 
compared to determine the optimal one. Finally, note that the conditional expected cost is 
unlikely to be submodular (intuitively, in a series system, many components may need to be 
repaired before the system begins to operates, and so the effects of each individual repair may be 
negligible) and so a greedy approach may perform arbitrarily badly. 

5.4. Investigations in Five Component Systems 
This section presents a comparative analysis of the VoI metric in multicomponent systems, under 
different topology assumptions. The purpose of this analysis is to identify similarities in VoI 
metric values for systems with cumulative topologies, where the metric is relatively efficient to 
compute, and systems with non-cumulative topologies. These similarities indicate where non-
cumulative systems might be investigated as systems with equivalent cumulative topologies. 
Note that a similar parametric study is presented by Konakli et al. (2015); the results presented 
here are qualitatively similar, and extend the parametric study to a larger system, as well as 
considering multiple component-level actions rather than a single system-level action. 

The systems considered consist of 𝑛𝑛 = 5 components, whose performance is determined by a set 
of 𝑛𝑛𝑋𝑋 = 5 Gaussian random variables, with the following joint distribution: 

 𝐟𝐟 ~ 𝒩𝒩(𝛍𝛍𝐹𝐹,𝚺𝚺𝐹𝐹) 𝛍𝛍𝐹𝐹 = 𝟏𝟏 𝚺𝚺𝐹𝐹 = [(1 − 𝜌𝜌)𝐈𝐈 + 𝜌𝜌𝟏𝟏𝟏𝟏T] (5-29) 

where 𝟏𝟏 denotes a vector of ones of appropriate length (in this case, length five) and 𝐈𝐈 denotes 
the identify matrix of an appropriate size (again five in this case). The correlation coefficient 𝜌𝜌 
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defines the mutual covariance of any pair of these random variables, and is left as a parameter to 
be varied in this study. 

Measurements of this random field of the form of Equation 3-5 are considered. Up to five 
measurements are possible, each corresponding to one of the underlying random variables. 
Depending on the choice 𝑌𝑌 of the subset of these measurements to use, the conditional 
distribution for 𝐲𝐲 is: 

 p𝑌𝑌|𝐟𝐟(𝐲𝐲|𝐟𝐟) =  𝒩𝒩(𝛀𝛀𝑌𝑌𝐟𝐟,𝜎𝜎𝜖𝜖2𝐈𝐈) (5-30) 

where 𝜎𝜎𝜖𝜖2 = 10−10, i.e., a negligibly small measurement error is considered. Matrix 𝛀𝛀𝑌𝑌 is 
defined such that the entry in the 𝑖𝑖th row and the 𝑗𝑗th column is one if the 𝑖𝑖th entry of 𝐲𝐲 
corresponds to a measurement of 𝑗𝑗th entry of 𝐟𝐟, and zero otherwise, capturing a local 
measurement topology. 

Limit-state variables are defined following Equation 3-11 for two different cases of functional 
topology. The first case, termed the absolute case, assumes that the state of each component 
depends directly on the value of its associated random variable. This case is defined by: 

 𝚵𝚵𝐺𝐺 = 𝐈𝐈 (5-31) 

The second case, termed the relative case, assumes that the state of each component is defined by 
the difference between the value of its associated random field variable and the average of these 
variables for all components. This case is defined by:  

 𝚵𝚵𝐺𝐺 = 𝐈𝐈 − 1
𝑛𝑛
𝟏𝟏𝟏𝟏T (5-32) 

In both cases, 𝐠𝐠0 = 0. Component states are defined from the limit-state variables as in Equation 
3-14. While the absolute case corresponds with the more traditional reliability analysis 
framework (e.g., Ditlevsen and Madsen, 1996), the relative case captures certain situations of 
interest, for example that of differential settlements between foundations, where it is the 
difference between individual foundation settlements and the average structural settlement that is 
of interest, rather that the absolute settlement of any one foundation (e.g., Glisic et al., 2005).  

The loss functions used depend on the system’s management and network topologies. Following 
the prototypical examples of Section 4.2, binary actions are considered for each system 
component. For the cumulative system, the loss function of Equation 4-15 is used, with 𝐶𝐶𝑓𝑓,𝑖𝑖 = 1 
for each component and 𝐶𝐶𝑟𝑟,𝑖𝑖 selected such that 𝐶𝐶𝑟𝑟,𝑖𝑖/𝐶𝐶𝑓𝑓,𝑖𝑖 = 𝑃𝑃𝑓𝑓,𝑖𝑖 for each component under the 
different cases for the limit-state variable definition. For the series and parallel systems, Equation 
4-17 is used with effective state functions as in Equations 4-18 or 4-19 respectively. The system-
level failure cost is set to 𝐶𝐶𝑓𝑓 = 5, and the repair costs are the same as for the cumulative system.  
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Figure 5-1: a) Prior expected loss as a function of correlation for various system topologies; b) 
VoI scaled by the prior expected loss as a function of number of measurements for various 

system topologies and correlation coefficients. 

The results of this investigation are shown in Figure 5-1. First, in Figure 5-1a, the prior expected 
loss is evaluated for the three system topologies (cumulative, series, and parallel) and two limit-
state definition cases (absolute and relative), under six settings for the correlation coefficient 𝜌𝜌 
(0, 0.2, 0.4, 0.6, 0.8, and 1). Note that for the absolute cumulative system, the prior expected loss 
is constant with respect to the correlation, since marginal component failure probabilities are not 
affected by 𝜌𝜌. In the relative cumulative system, however, this correlation affects the failure 
probability since higher correlation means that variables for individual components will be closer 
to the mean value of these variables for all components, and therefore failure probabilities are 
smaller under the relative failure definition. At 𝜌𝜌 = 0, these two cases are equivalent. For series 
systems, the prior expected loss decreases as the correlation increases; the reliability of series 
systems is known to increase as their component behaviors become more highly correlated. For 
parallel systems, the opposite holds true in the absolute case, since as correlation increases, more 
components will fail together, making the parallel topology less reliable. In the relative case, 
however, prior expected cost remains low, since as correlation increases individual component 
failure, and therefore system failure, becomes less likely. Note that for all topologies, at 𝜌𝜌 = 1, 
the system’s components all operate or fail together, and the system behaves as a single 
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component, regardless of topology. The prior expected loss is thus the same across topologies for 
𝜌𝜌 = 1. 

Figure 5-1b plots the VoI for measurement sets of different sizes, under each system topology, 
limit-state definition, and correlation level considered. The VoI is scaled by the prior expected 
loss for each system as shown in Figure 5-1a to allow for easier comparison. Note that, as the 
systems are defined, there is no distinction between components; they all have the same marginal 
failure probabilities and management costs, and the random variables affecting each are 
correlated with those of the others to the same degree. Thus, there is no difference between the 
VoI provided by any subset of measurements of the same size in this system. Therefore, 
optimization of sensor placements is unnecessary; only the number of sensors is relevant to VoI.  

In the absolute cumulative system, for fully correlated components (𝜌𝜌 = 1), the maximum VoI is 
obtained from the first sensor placement; since all components perform exactly the same, 
measuring any one component gives full information about the system state. For uncorrelated 
components (𝜌𝜌 = 0), no information is shared between components, and so VoI grows linearly 
with the number of measured components. Between these extremes, the relative value of the first 
measurement compared to subsequent measures increases as the correlation increases. Results 
for the absolute series system are qualitatively similar, although it should be noted that the 
magnitudes of VoI are different due to the different prior expected losses.  

For the absolute parallel system, for fully correlated components, the performance of the scaled 
VoI matches that for other topologies, since all components are in effect acting as one no matter 
the topology. However, in the case of lower correlation, the scaled VoI of multiple 
measurements is higher than in the fully correlated case; this is the only topology exhibiting this 
effect. This is due to the fact that, with multiple measured components, there is a greater chance 
of observing an operational component, and thus not having to take any costly management 
actions. This chance increases as the correlation between the components decreases. These 
results indicate that, regardless of correlation, a single measurement in a parallel system can have 
comparatively large relative benefits compared to single measurements in other system 
topologies. However, it should be noted that the magnitude of the VoI is generally lower in 
parallel systems due to the lower prior expected loss, as shown in Figure 5-1a.  

For the relative limit-state definition case, note that there is never any expected loss or VoI when 
𝜌𝜌 = 1, since there is no possibility for component or system failures. Furthermore, for 𝜌𝜌 = 0, the 
scaled VoI is the same under the absolute and relative limit-state definitions, since for 
independent random variables, these two definitions are equivalent. For other correlation levels, 
VoI is comparatively lower in the relative case than in the absolute case, and decreases with 
increasing correlation across all topologies. A likely reason for this is that the measurement 
information must be used to estimate both the local random field value and the mean of all 
random field values in order to determine the component state. VoI provided by sensors is 
therefore lower, as with few measurements the estimate of the mean may be poor.  

  - 83 - 
 



Several general conclusions can be drawn from these results. Under the relative limit-state 
definition, the low VoI provided by single measurements may be a hindrance to greedy 
optimization; if the first measurements to be selected all have a relatively low or negligible VoI, 
there will be little to distinguish between them, and thus the first selected measurement may lead 
to the selection of an overall suboptimal set. On the other hand, in parallel systems under the 
absolute limit-state definition, the relative VoI of single measurements is very high, which might 
indicate that greedy optimization will perform well. 

Furthermore, the qualitative similarities between the scaled VoI in the cumulative and series 
system topologies suggests that the latter might be approximately analyzed using an appropriate 
equivalent definition for the former. That is, by using the components of the series system to 
virtually construct an equivalent cumulative system, VoI can be more efficiently computed for 
measurements in the cumulative system, using the techniques of Section 5.2.2. Then, using the 
ratio of the prior expected losses in both systems (note that, although still computationally 
intensive to evaluate for a series system, this expected loss need only be computed once), the VoI 
in the cumulative system can be transformed into an approximate VoI for the series system. The 
development of approximate techniques for VoI evaluation in series systems based on this 
approach is left as a topic for future work; a preliminary investigation into the feasibility of such 
an approach is included in Section 11.2. 

Finally, Figure 5-2 presents an empirical investigation of the computation time for VoI 
evaluation. For this analysis, the evaluation of the VoI for a single measurement on any 
component is considered as described in this section. The number of system components is 
varied while maintaining the system topology, and 𝜌𝜌 = 0.5 is used across all system sizes and 
topologies. Computation is performed on a laptop computer with a 2.6 GHz Intel® Core™ i7-
6700 CPU with 32 GB RAM. Code for evaluation is implemented in MATLAB R2016b. In 
Figure 5-2a, the computational time for each evaluation is plotted, with this time being the 
average across ten runs. For comparative purposes, an exhaustive search is also implemented, 
i.e., every combination of joint state and action is considered. Comparing to the dotted line, 
which represents an exponential growth rate of O(8𝑛𝑛), this exhaustive search seems to be taking 
exponentially greater time as the system size increases, although there is some variation in the 
rate of increase. Evaluation in parallel and series systems, although made easier through the 
methods discussed in Section 5.3.2, appears to also be increasing at an exponential rate as well. 
For cumulative systems, however, the computational time is actually decreasing, although this is 
likely an approximation error due to the very small computational times. In Figure 5-2b, the 
analysis of the cumulative topology is extended to larger systems, and the rate of computation 
time increase can be more clearly seen. Below about 100 components, the computation time is 
not very sensitive to the system size. However, above this number, the rate of growth increases, 
being approximately the same as that of the dotted line corresponding to an O(𝑛𝑛3) increase rate. 
Overall, the time to evaluate VoI in a cumulative system with five thousand components is 
roughly the same as the time needed in a non-cumulative system with five components. Of 
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course, these results are dependent upon the implementation of the code, and may not be valid 
beyond the range of system sizes considered. 

 

Figure 5-2: a) Computational time for VoI evaluation versus number of components for several 
system topologies, with dotted line indicating exponential growth rate; b) Extended plot of 
computation time versus number of components for cumulative systems, with dotted line 

indicating cubic growth rate. 
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Chapter 6  

Comparative Examples for Sensor Placement 

In this section, the application of the VoI metric is demonstrated in two example problems, based 
on the motivating example of Section 1.1. First, in Section 6.1, a one-dimensional random field 
problem, inspired by the loading on a structural element such as a beam, is examined. In this 
problem, various topologies for the system’s functionality and management are considered for 
defining the problem’s probabilistic model structure and loss function. Under these definitions, 
the VoI obtained by a single measurement at various locations on the one-dimensional domain is 
computed, and used to optimize the choice for where to locate this single measurement. Note that 
placing this first measurement is the first step in either greedy offline or online sensor placement, 
as discussed in Section 2.2.1. Additionally, results obtained for sensor placement using 
alternative metrics, such as the prediction error and misclassification rate, are presented and 
compared to results of the VoI metric under various topologies.  

Next, in Section 6.2, a two-dimensional random field problem, motivated by a corrosion 
prevention application, is considered. Various system topologies are considered, and the VoI 
under each is used to optimize the location of sensors. In this example, multiple sensor 
placements are considered, to illustrate the application of the greedy offline optimization 
approach. Additionally, the use of the random field prediction error metric is demonstrated for 
this problem, and a comparison between online and offline sensor placement approaches is 
made. Overall, the goal of this chapter is to demonstrate the full procedure for the application of 
the VoI metric for optimal sensor placement on intuitively understandable examples. This serves 
both to illustrate the applicability of the approach, and to provide the reader with additional 
insight into how the VoI metric handles different problems, to facilitate problem-specific 
intuition. 

6.1. One-Dimensional Example in Structural Loading 
The first example application of the VoI metric to optimal sensor placement considers a one-
dimensional structure of length 𝐷𝐷 = 10 meters that must support an uncertain distributed load, 
e.g., a cross-section of a roof under snow loading or of a geotechnical structure under surface 
load. The loading is modeled as a Gaussian random field, i.e., a Gaussian process model in one-
dimension is used to describe the loading f(𝑥𝑥) at location 𝑥𝑥 along the structure, quantified as a 
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linear pressure in units of kN/m. The Gaussian process model is constructed as in Equation 3-2 
with a linearly increasing mean function: 

 µ(𝑥𝑥) = 15 kN
m

+ �0.5 kN
m2� 𝑥𝑥 (6-1) 

and with a covariance function as in Equation 3-3, with a standard deviation function describing 
a linear decrease: 

 σ(𝑥𝑥) = 2.5 kN
m
− �0.2 kN

m2� 𝑥𝑥 (6-2) 

and with a correlation function that uses the common squared exponential correlation form 
(Rasmussen and Williams, 2006): 

 ρ�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = exp �− 1
2
�𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�

T
𝚲𝚲�𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�� (6-3) 

where, in this case, the coordinate vector 𝐱𝐱 has a single element. This correlation structure 
describes an asymptotic decrease of correlation, i.e., movement towards the independence of 
random variables as the distance between these variables increases. The rate of this decrease for 
different dimensions is controlled by the scaling parameter matrix 𝚲𝚲. In this problem, 𝚲𝚲 = 𝐈𝐈𝜆𝜆−2, 
with correlation length scale parameter 𝜆𝜆 = 1/√2 m. 

 

Figure 6-1: Prior one-dimensional Gaussian process loading model, with an example 
instantiation of the loading field. 

The prior model of the random loading field is depicted in Figure 6-1. The prior mean and 95% 
confidence boundaries illustrate the effects of Equations 6-1 and 6-2. Note that, in an expected 
sense, the structure is more heavily loaded towards the right, but this loading is more uncertain 
towards the left. The effect of the correlation structure of Equation 6-3 is illustrated by the 
random instantiation of the field shown in the figure; the smoothness of the field is determined 
by the correlation structure and correlation length, with a longer correlation length leading to a 
smoother field.  
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The domain is discretized into 𝑛𝑛𝑋𝑋 = 100 segments, each of length Δ𝑥𝑥 = 0.1m, to define the set 
of discretized locations 𝑋𝑋, and thus the random loading field vector 𝐟𝐟. A loading gauge is to be 
placed at one of these discretized locations, with position 𝑥𝑥𝑦𝑦 along the structure, and will take a 
noisy measurement of the local loading. This measurement is described as in Equation 3-5 with 
𝛀𝛀𝑌𝑌 being a row vector with 𝑛𝑛𝑋𝑋 entries, all being zero except for a one in the position 
corresponding to the location of 𝑥𝑥𝑦𝑦. The measurement noise is a single random variable with 
zero mean and standard deviation 𝜎𝜎𝜖𝜖 = 0.1kN/m.  

 

Figure 6-2: Posterior one-dimensional Gaussian process loading model, conditional to an 
example observation. 

An example of the updated posterior model for f(𝑥𝑥) conditioned on an observation by this gauge 
at location 𝑥𝑥𝑦𝑦 = 2.5m is given in Figure 6-2. Due to the correlation structure, a measurement at 
one point updates the distribution not just at this point, but at nearby locations as well; this 
results in the posterior confidence bounds for this random field being narrower in the vicinity of 
the measurement. 

The following subsections examine different management problems for the structure resulting 
from this random loading field. The characteristics of these problems determine the limit-state 
variable definitions used, as well as the possible management actions and resulting loss functions 
for the VoI metric. Across these problems, three methods for formulating the loss function are 
considered, corresponding to special cases of the VoI. The first, which is based on estimation of 
the underlying random loading field (or a transformation of this field) follows from the 
prediction error metric as discussed in Section 4.4.1. The second, based on classification of the 
binary component or system states, follows from the misclassification rate metric as discussed in 
Section 4.4.2. The third, based on the maintenance of the system, follows from the prototypical 
management problems discussed in Section 4.2. Specific forms of these loss functions depend on 
the problem being investigated, and are described in more detail below. 

Finally, note that a related problem is investigated by Bednarz et al. (2013a, 2013b), where strain 
gauges installed on a beam are used, along with known relationships between loading, bending 
moment, and strain, to determine the location and magnitude of a point load applied to the beam. 

0 1 2 3 4 5 6 7 8 9 10 5 

10 

15 

20 

25 

𝑥𝑥 [m] 

f(
𝑥𝑥)

 [k
N

/m
] 

  

  
Mean 
95% 
Confidence 
Bounds 
Measurement 
Posterior 

  - 88 - 
 



In that case, no prior loading model is used, and there is no consideration for optimizing strain 
gauge locations. However, many of the same static analysis principles apply to both problems.  

6.1.1. Cumulative System 

It is first assumed that the system has a cumulative topology. Under this assumption, if the 
loading at any point along the structure exceeds threshold 𝑓𝑓max, a failure occurs at that point. For 
example, in a geotechnical structure, collapses may occur if the loading exceeds the soil’s 
bearing capacity locally. The limit-state variables are defined as in Equation 3-11 with 𝚵𝚵𝐺𝐺 = −𝐈𝐈 
and 𝐠𝐠0 = 𝟏𝟏𝑓𝑓max, i.e., these represent the difference between the threshold and the local loading. 
Local states are then defined for each location following Equation 3-14. For estimation of the 
loading field, the loss function of Equation 4-31 is used. For classification of the local states, that 
of Equation 4-37 is used, with a factor of 1/𝑛𝑛 such that the average misclassification across local 
states is represented. For maintenance of the system, the prototypical cumulative system loss 
function of Equation 4-15 is used, with local binary actions corresponding to the choice to 
reinforce the structure at each discrete point to prevent failure. For this problem, 𝐶𝐶𝑓𝑓,𝑖𝑖 = 𝑐𝑐𝑓𝑓Δ𝑥𝑥, and 
𝐶𝐶𝑟𝑟,𝑖𝑖 = 𝑐𝑐𝑟𝑟Δ𝑥𝑥 ∀𝑖𝑖, where 𝑐𝑐𝑓𝑓 = $100 m⁄  and 𝑐𝑐𝑟𝑟 = $10 m⁄  are the cost densities for failure and 
reinforcement respectively. 

Figure 6-3 presents the results of VoI evaluation in this system, plotting the VoI of a 
measurement versus its position 𝑥𝑥𝑦𝑦 in the structure, under the three loss function definitions 
considered. Since, under each loss function, the VoI is measured in a different unit, each VoI is 
normalized by its maximum value under each loss function, to allow comparison of the 
dimensionless scaled VoI across different loss function. These maximum values, corresponding 
to the VoI achieved by the optimal placement in each case, are listed in Table 6-A for reference 
for this and the other problems considered in Sections 6.1.1 through 6.1.3 (Section 6.1.4 is not 
included, since the system management problem considered is somewhat different from the other 
subsections). Also note that Table 6-A lists threshold values 𝑓𝑓max which are different for these 
cases; this is done in order to ensure an interesting management problem in each case, e.g., if the 
same threshold were used in a parallel system as for any of the other systems, the probability of 
system failure would be negligible. 

  

Figure 6-3: VoI metric results for a cumulative system topology. 
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For the objective based on field estimation, the optimal sensor placement location is towards the 
left of the domain, since the prior variance of the loading is highest in this area. Note that, rather 
than being placed to the extreme left side, the sensor is placed more centrally in order to take 
advantage of local correlations to reduce posterior uncertainty to both the left and right of the 
sensor location. For the objective associated with state classification, the placement is to the 
extreme right, since the prior misclassification rate for individual segments is close to its 
maximum of 50% here. A measure at this location will therefore best support appropriate 
classification for these components, and therefore reduce the overall misclassification rate the 
most. For the objective supporting system maintenance, relatively high probabilities of local 
failures to the right of the domain lead to the optimal action being to pre-emptively reinforce 
these sections. To the left of the domain, because of the lower probability of failure, it is better to 
do nothing. In between these extremes, additional information is most helpful in deciding which 
actions to select, and therefore VoI is higher. 

Table 6-A: VoI metric results for the systems of Sections 6.1.1 through 6.1.3.  

VoI(𝑌𝑌∗) = 

Threshold (𝑓𝑓max) 
[kN/m] 

Estimation 
(sum of marginal 

variances) 

Classification 
(misclassification 

rate) 

Maintenance 
(expected loss 

reduction) 
Cumulative 20 65.14 0.4344 10.26 
Global 18 65.14 0.0236 16.51 
Series 21 65.14 0.0251 11.93 
Parallel 14 65.14 0.0977 34.22 
 

6.1.2. Global System 

Next, a global system is examined, where the system as a whole will fail if the total loading on 
the structure exceeds a specified threshold, calculated as 𝐷𝐷𝑓𝑓𝑚𝑚𝑎𝑎𝑥𝑥. Reinforcement of the entire 
structure is required to prevent collapse. To investigate this case, it is interpreted as a trivial 
example of a system with a cumulative topology having only 𝑛𝑛 = 1 component. A single limit-
state variable for the system is defined as in Equation 3-11 with 𝚵𝚵𝐺𝐺 = −𝟏𝟏TΔ𝑥𝑥 and 𝐠𝐠0 = 𝐷𝐷𝑓𝑓max, 
representing the difference between the total loading on the structure and the threshold on this 
total load. A single state variable is defined following Equation 3-14. For estimation of the load, 
the loss function of Equation 4-31 is again used. For classification of the global state, the loss of 
Equation 4-37 is again used, this time for the single state variable. For maintenance of the 
system, the prototypical loss function of Equation 4-15 is again considered for this single 
component, with the cost for a failure now being 𝐶𝐶𝑓𝑓 = 𝑐𝑐𝑓𝑓𝐷𝐷 and the cost for a reinforcement 
action on the entire system being 𝐶𝐶𝑟𝑟 = 𝑐𝑐𝑟𝑟𝐷𝐷.  
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Figure 6-4: VoI metric results for a global system topology. 

Figure 6-4 presents sensor placement results for this system. The placement based on estimation 
is unchanged. For the objectives based on classification and maintenance, the optimal 
measurement locations are the same, and are near that for the random field estimation. This can 
be understood by noting that, for a single component, accurately predicting its state is an 
essential step to choosing the appropriate posterior management action. Furthermore, since the 
state is a function of the total loading, a more accurate prediction of this total will allow for a 
more accurate prediction of the state, and a more accurate prediction of the loading at each 
individual location will lead to a more accurate prediction of the total. Therefore, in this case, the 
objective for random field prediction provides a good proxy for those of state classification and 
optimal management for this single component. This represents a case where a more 
computationally efficient loss function can be substituted for a more complicated function, and 
still give nearly the same results in terms of the optimal placement location. 

6.1.3. Series and Parallel Systems 

Now, series and parallel system topologies are considered, as illustrative examples for non-
cumulative topologies. Specifically, while local failures can occur as in Section 6.1.1, these will, 
in the series case, lead to a failure of the entire system, while in the parallel case, all discrete 
sections of the structure must locally fail for the system to fail. The series case approximates one 
of progressive collapse, where any local structural failure can lead to failure of the entire system; 
for ease of analysis, the exact method of this collapse is ignored, and only its initiation as a single 
local failure is modeled. While the parallel case is not commonly encountered in structural 
systems, it is nevertheless presented for the sake of completeness. Such a topology may occur in 
a non-structural system, e.g., a communication system can be considered operational so long as 
communication is possible by at least one channel.  

Local limit-state variables are defined, as in Section 6.1.1, following Equation 3-11 with 
𝚵𝚵𝐺𝐺 = −𝐈𝐈 and 𝐠𝐠0 = 𝟏𝟏𝑓𝑓max, and local states are again defined following Equation 3-14. For 
estimation, the values of the local loading are again considered the quantities to be predicted, 
following the loss function of Equation 4-31. For classification, the binary state of the system is 
to be predicted, following the loss function of Equation 4-38 with the system state defined by 
Equation 3-19 for the series system and Equation 3-20 for the parallel system. For maintenance 
in the series system, the loss function of Equation 4-17 is considered, with the effective state of 
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Equation 4-18 and with failure cost equal to the global failure cost of 𝐶𝐶𝑓𝑓 = 𝑐𝑐𝑓𝑓𝐷𝐷 and repair costs 
for each component equal to the local repair costs of 𝐶𝐶𝑟𝑟,𝑖𝑖 = 𝑐𝑐𝑟𝑟Δ𝑥𝑥 ∀𝑖𝑖. For maintenance in the 
parallel system, because a single action has the possibility to ensure the operation of the entire 
structure, a single reinforcement action is considered, following the loss function of Equation 
4-16, with the system state of Equation 3-20, and with the same failure cost as the series system 
and a reinforcement cost of 𝐶𝐶𝑟𝑟 = 𝑐𝑐𝑟𝑟𝐷𝐷. 

  

Figure 6-5: VoI metric results for a) series and b) parallel system topologies. 

Figure 6-5 presents sensor placement results for these systems. Note as before that the optimal 
placement for random field estimation remains unchanged. The placement for state classification 
is either to the far left or right, depending on the topology. In the series system, this placement is 
to the extreme right; intuitively, observing a single failure (i.e., observing a load value above the 
local threshold) in a series system will lead to the conclusion that the system has failed, and the 
most likely place to observe such a failure is towards the right. Conversely, in the parallel system 
observing a single operational component ensures that the system is operational, and the most 
likely place to observe such a component is towards the left side. The same reasoning does not 
hold true for the system maintenance, however, as in the series system, the a-priori optimal 
action is to perform the reinforcement activity for most of the structure to prevent a costly system 
failure. To the left side, where local failures are unlikely, an additional measurement provides 
valuable information as to whether or not reinforcement is needed here. In the parallel system, a 
similar optimal sensing position is chosen, for a different reason; here, the loading must exceed 
the threshold everywhere to cause a failure. If this loading is observed to exceed the threshold 
towards the left side, then it is likely it will exceed the threshold everywhere else (since the left 
has the lowest mean and highest variance), and so a reinforcement action is probably needed. 
Otherwise, if a low loading value is observed, no action is necessary. Finally, note that although 
the objective based on estimation provides a reasonable proxy to that based on maintenance in 
both of these systems, this is due to a complicated interaction between the structure of the 
random field and the system topology, which cannot be expected to hold in general.  
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6.1.4. Multiple Limit-State Functions 
In this last one-dimensional example, consider that the structural element in question is a simply 
supported beam. The performance of this beam is governed by three constraints: 

1. The total loading on the beam must not exceed 200kN; 
2. The loading on either support must not exceed 100kN; 
3. The moment at the center of the beam must not exceed 250kNm. 

A system failure cost of 𝐶𝐶𝑓𝑓 = $1M will be incurred if any of these limits are exceeded. For each 
of these conditions, an associated intervention action can be applied to locally strengthen the 
beam or its supports and prevent failure; these are associated with cost 𝐶𝐶𝑟𝑟,1 = $5k to prevent 
failure due to the total load, costs 𝐶𝐶𝑟𝑟,2 = 𝐶𝐶𝑟𝑟,3 = $2.5k to prevent failure due to loadings at the 
left and right supports, and cost 𝐶𝐶𝑟𝑟,4 = $7.5k to prevent failure due to bending in the center.  

This problem statement defines a management decision-making problem for a four-component 
system in series. The components of this system are virtual, corresponding to four different 
failure scenarios for the beam. The occurrence of these scenarios is indicated using four limit-
state quantities, associated with the total beam loading, the left support reaction, the right support 
reaction, and the moment at the center. The limit-state variables are defined following Equation 
3-11, with each row of matrix 𝚵𝚵𝐺𝐺 encoding the (negative) influence line that translates the 
structural loading field to either the total load, left or right reactions, or moment at the center. 
These influence lines are plotted in Figure 6-6, following basic principles of static analysis (e.g., 
Hibbeler, 2009). Threshold values for these engineering quantities of interest are encoded as 
𝐠𝐠0 = {200kN, 100kN, 100kN, 250kNm}. Local states are defined following Equation 3-14, and 
the effective system state considering the maintenance actions is expressed as in Equation 4-18. 

.   

Figure 6-6: Influence lines for structural loading. 

From this problem, VoI is calculated under two different cases, with two different loss functions 
in each case. First, each of the failure conditions is considered separately. This is analogous to 
managing the system considering each failure mode on its own, and determining an optimal 
sensor placement for guiding the system’s management under each loss function (i.e., modeling 
the system as a cumulative rather than a series system). Optimal placements are then determined 
by either considering the loss function of limit-state value estimation for each of the engineering 
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quantities of interest (total load, left reaction, right reaction, and moment at the center), following 
Equation 4-33 for a single limit-state variable, or considering the management of a single-
component system based on this quantity, following Equation 4-15 for a single component. 
Second, the failure conditions are considered together, and the VoI and optimal placement are 
determined following the loss function of Equation 4-33 using the vector of four limit-state 
variables and the loss function of Equation 4-17, considering a series system of the failure 
conditions. 

  

Figure 6-7: VoI metric results considering failure conditions separately, for a) estimating limit-
state variables separately and b) managing the system under each failure condition. 

Figure 6-7 shows the results for VoI and for the resulting sensor placements, indicated by 
vertical lines at the maximum value of VoI for each engineering quantity considered. Figure 6-7a 
shows the VoI for prediction of the limit-state quantities, i.e., for the prediction of the total load, 
left reaction force, right reaction force, or moment at the center (since the thresholds on these 
quantities are known). The effects of the influence lines can be seen here, i.e., the optimal 
measurement for determining the right reaction force is to the right, the optimal for the left 
reaction force is to the left, and the optimal for the center moment is near the center. Note that 
these positions are all somewhat skewed towards the left side, rather than symmetrical about the 
center, and that the placement position for measuring the total load is near the left as well. This is 
due to the effect of the prior uncertainty in the loading field, which is higher towards the left.  

Figure 6-7b shows the VoI of sensor placements for managing the system considering only one 
of the failure conditions at a time. Note that, although the VoI values are different, the optimal 
sensor placement locations are the same as for the limit-state variable prediction in Figure 6-7a. 
This can be understood by noting that the state of each virtual component, and thus the choice of 
optimal action to manage that component, is a function of the limit-state variable associated with 
this component. Thus, a better prediction of this limit-state variable will better predict the state, 
allowing for better choices of posterior management actions, and therefore a higher VoI. 
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Figure 6-8: VoI metric results considering failure conditions together, for a) estimating the limit-
state variables together and b) managing the series system of failure conditions. 

Figure 6-8 shows the VoI and the resulting sensor placements when all the failure conditions for 
the system are considered together, i.e., as a series system of the virtual components associated 
with each failure condition. Figure 6-8a presents results for prediction of the limit-state variables 
following Equation 4-33. Note that the optimal placement location for reducing prediction error 
across all limit-state variables is different from that for reducing errors for any individual limit-
state variable, as in Figure 6-7a. However, there is a relationship between these goals; the curve 
in Figure 6-8a represents using the sum of the curves for prediction VoI of the individual limit-
state variables in Figure 6-7a. This relationship is the result of the decomposability of VoI across 
components in cumulative systems illustrated in Equation 5-5. In this case, the system 
management curve exactly matches the sum of component management curves because the trace 
of the covariance matrix for 𝐺𝐺 is equal to the sum of the variances of each element of 𝐺𝐺. 

Figure 6-8b shows the VoI and associated optimal sensor placement location for managing the 
system considering all failure conditions together, i.e., as a series system of the virtual 
components associated with each failure condition. In this case, the optimal sensor placement 
does not match that of Figure 6-8a, as was the case for the individual limit-states considered 
separately. Moreover, a heuristic approach of adding the individual VoI curves of Figure 6-7b 
(effectively considering the system topology to be cumulative rather than series) does not equal 
the VoI curve for the series system, and the resulting sensor placements also do not agree. 
Nonetheless, in this case the heuristic represents a reasonable approximation; the VoI provided 
by the sensor placement indicated using this heuristic is 98% of the VoI of the true optimal 
sensor placement location. This provides some anecdotal evidence supporting the approximate 
approach discussed at the end of Section 5.4, as the true optimal sensor placement in this series 
system is reasonably approximated by the placement resulting from summing the VoI of the 
measurements for each of component, i.e., by treating it as a cumulative system and using 
Equation 5-5.  
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6.2. Two-Dimensional Example in Corrosion Prevention 
The second example application of VoI to sensor placement is motivated by the study of an 
historic steel mill in Pittsburgh. In this problem, a 20m by 20m section of steel ceiling is 
subjected to corrosion due to water vapor produced as a by-product by machinery operating 
underneath it. For the purpose of this example, corrosion is induced by a sustained high relative 
humidity (RH) under a certain section of the ceiling. Corrosion will eventually lead to ceiling 
leakage, causing damage to the building interior and its contents. The building manager has the 
option to measure long-term average RH using sensors, as well as coat the ceiling to prevent 
corrosion and resulting damage. 

Gaussian process models in two-dimensions are used to model the random field of the long-term 
average RH beneath the ceiling and the capacity of the steel ceiling to resist corrosion. The RH 
field, also termed the demand field or 𝐹𝐹𝑑𝑑, is modelled following Equation 3-2, with a baseline 
mean of 40% RH and a standard deviation of 5% RH throughout the building. An isotropic 
square exponential correlation function, as in Equation 6-3 with correlation length scale 
parameter 𝜆𝜆 = 4m, defines the correlation structure. Furthermore, in addition to the constant 
baseline humidity, internal equipment produces localized plumes of higher humidity. In the 
center of the lower-left quadrant of the building (as viewed from above), equipment produces a 
plume of increased humidity, with average peak of 20% RH above baseline, with standard 
deviation of 5% RH. In the center of the upper-right quadrant, equipment produces a plume with 
a lower average peak (10% RH) but a higher standard deviation (15% RH), corresponding to a 
less certain humidity output from this equipment. The overall demand field f𝑑𝑑(𝐱𝐱) is the sum of 
the baseline field and the fields due to plumes from equipment. Figure 6-9a plots the prior mean 
µ𝑑𝑑(𝐱𝐱) of the demand field, and Figure 6-9b plots its standard deviation σ𝑑𝑑(𝐱𝐱). 

 

Figure 6-9: a) Prior mean of the random demand field; b) Prior standard deviation of the random 
demand field; c) Prior probability of corrosion for each location. 

A simple model for corrosion initiation is used, with corrosion occurring if the long-term average 
RH below a section of ceiling exceeds to the local capacity of the steel to resist corrosion. This 
capacity field 𝐹𝐹𝑐𝑐 is modeled as a Gaussian process, with a mean of 60% RH throughout, based on 
the critical relative humidity for corrosion initiation in steel (Badea et al., 2011). A standard 
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deviation of 5% RH throughout is assumed to account for other variables, such as ambient 
pollution or material defects, which influence the initiation of corrosion. An isotropic square 
exponential correlation function with 𝜆𝜆 = 1m defines the correlation structure for this field.  

For analysis, the ceiling is discretized on a 0.5m square grid, defining 𝑋𝑋 with 𝑛𝑛𝑋𝑋 = 3200 (i.e., 
1600 spatial coordinates each for 2 index coordinates distinguishing the demand and capacity 
fields). The vectors for the random fields are concatenated to define the random field variable 
vector, following Equation 3-4, as: 

 𝐟𝐟 = �𝐟𝐟𝑐𝑐𝐟𝐟𝑑𝑑
�  ~ 𝒩𝒩��

𝛍𝛍𝐹𝐹𝑐𝑐
𝛍𝛍𝐹𝐹𝑒𝑒

� , �
𝚺𝚺𝐹𝐹𝑐𝑐 𝟎𝟎
𝟎𝟎 𝚺𝚺𝐹𝐹𝑒𝑒

�� (6-4) 

where 𝛍𝛍𝐹𝐹𝑐𝑐  and 𝛍𝛍𝐹𝐹𝑒𝑒  are the mean vectors and 𝚺𝚺𝐹𝐹𝑐𝑐  and 𝚺𝚺𝐹𝐹𝑒𝑒  the covariance matrices for the capacity 
and demand fields, respectively, defined using the Gaussian process models for these fields. Note 
that the capacity and demand variables are modeled as being independent. Local limit-states for 
the ceiling are defined following Equation 3-11 with 𝚵𝚵𝐺𝐺 = [𝐈𝐈 −𝐈𝐈] and  
𝐠𝐠0 = 𝟎𝟎, i.e., the limit-state variable at each location is defined as the local capacity variable 
minus the local demand variable. Local states are then defined as in Equation 3-14, with each 
discretized section of the ceiling representing a component of the ceiling system (defining 
𝑛𝑛 = 1600 components), and its state indicating whether or not corrosion will initiate (i.e., 𝑠𝑠𝑖𝑖 = 0 
corresponds to corrosion initiation). Note that, since the demand field represents the long-term 
average RH within the structure, corrosion is assumed to initiate after a certain length of time 
under exposure to an average RH level that exceeds the local steel RH capacity. The prior local 
probabilities of corrosion initiation, i.e., the values of 𝑃𝑃𝑓𝑓 for each of the roof sections, are shown 
in Figure 6-9c. Note that due to both the high average humidity in the lower-left quadrant and the 
high variability of humidity in the upper-right, both areas have relatively high prior probabilities 
of corrosion. Random realizations of the demand and capacity fields, as well as the resulting map 
for corrosion, are shown in Figure 6-10. 

  

Figure 6-10: a) Realization of the demand field; b) Realization of the capacity field; c) 
Realization of the corrosion field (i.e., the component states), with yellow denoting corrosion. 

Corrosion of the ceiling will incur some cost to the manager due to damage within the structure 
resulting from ceiling leakage. This cost is estimated at $100/m2 for most of the building, but in 
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the lower-right quadrant (outlined by a black square in Figure 6-9 and Figure 6-10), due for 
example to the location of sensitive electronics here, there is a higher consequence of $500/m2. 
To avoid these consequences, the manager has the option to apply a coating to the ceiling, at a 
cost of $50/m2, to prevent corrosion.  

To support this decision, the owner has five humidity sensors to place in the building. 
Measurements of the sensors are modeled as in Equation 3-5, with the rows of 𝛀𝛀𝑌𝑌 consisting of 
zeroes, except for a one in one of the latter 1600 locations, corresponding to a local measurement 
of the demand (i.e., the long-term average RH) at that location. Noise 𝛜𝛜 is modeled as zero-mean 
independent noise with a standard deviation of 1% RH. Sensing cost is modeled as C(𝑌𝑌) =
𝕀𝕀(|𝑌𝑌| > 5) with budget 𝑏𝑏 = 0.5, corresponding to a strict limit of 5 sensors, with no cost per 
sensor (except in the case of Section 6.2.2, where linear cost functions are used). Data collected 
by these sensors over a period of time are used to update the long-term average humidity field 
model and identify optimal posterior management actions. It is assumed that there is sufficient 
time between when data are collected and when corrosion initiates for these actions to be taken 
to prevent the corrosion. 

The following subsections examine five different cases for the network or management topology, 
sensor placement objective, and optimization approach. Sections 6.2.1, 6.2.2, and 6.2.3 consider 
a cumulative system, a series system, and a system with a single binary decision problem. 
Sections 6.2.4 and 6.2.5 revisit the cumulative system, with the former employing an alternative 
objective based on random field estimation, and the latter considering online rather than offline 
sensor placement optimization. 

6.2.1. Cumulative System 
First, consider a case where humidity sensors are placed offline to address the problem of 
optimal management of the ceiling when coatings are applied locally, i.e., actions are taken for 
individual sections of the ceiling. Using the prior probability of corrosion, shown in Figure 6-9c, 
the prior expected loss for the 𝑖𝑖th section 𝔼𝔼L𝑖𝑖(∅) is computed for all 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, as shown in 
Figure 6-11a. Note that in the lower-right quadrant, where the cost for corrosion is highest, the 
expected loss is correspondingly higher. Also note that prior expected loss is capped at $50/m2, 
since this is the cost to coat the ceiling to prevent corrosion; for areas where the prior expected 
loss under the “do nothing” action is higher than this threshold, the prior optimal choice is to coat 
this area. The prior optimal action 𝑎𝑎𝑖𝑖∗(∅) is shown in Figure 6-11b for all 𝑖𝑖 ∈ {1, … , 𝑛𝑛}, with 
yellow indicating that an area should be coated, and blue indicating areas where doing nothing is 
the prior optimal maintenance action. 
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Figure 6-11: a) Prior expected loss for the management of the ceiling as a cumulative system; b) 
Prior optimal actions for the management of the ceiling, with yellow corresponding to a choice to 

apply coatings locally to prevent corrosion. 

In this case, with local costs and maintenance actions, the loss function is that of a cumulative 
system, as in Equation 4-15, with appropriate failure (corrosion) and repair (coating) costs for 
each component (i.e., each ceiling section). Sensor placements are optimized via the VoI metric 
using this loss function and the offline greedy optimization algorithm, as discussed in Section 
2.2.1.1. The results are shown in Figure 6-12, indicating the locations of sensors in the domain, 
as well as the order in which these sensors are greedily selected (indicated by numbers adjacent 
to the sensor locations) and the VoI provided by these sensors, using the order in which they 
were selected (e.g., the VoI for two sensors in the right plot indicates the VoI provided by two 
sensors at positions labeled 1 and 2 in the left plot). 

  

Figure 6-12: Placements for five humidity sensors optimized offline by the VoI metric for a 
cumulative system (left) and the VoI provided by these sensors (right). 

Three of the five sensor measurements, including the first that was greedily selected, are located 
in the lower-right quadrant, for which the cost of corrosion is highest. These sensors are 
therefore best able to support the choice of posterior optimal actions to reduce the losses incurred 
in this quadrant. Additionally, the two sensors placed outside this quadrant are located near the 
centers of the humidity plumes produced by equipment within the structure. These measurements 
reduce uncertainty in the intensities of these plumes. The VoI provided by these five sensors is 
$1720, indicating that the expected system management cost is reduced by this amount due to 
data provided by these sensors supporting posterior optimal action selections. 
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6.2.2. Series System 
To demonstrate sensor placement in a series system, consider a case in which any corrosion 
occurring in the lower-right quadrant of the structure will incur a cost of $50k, regardless of the 
extent of corrosion. This reflects a “zero tolerance policy” for corrosion in this quadrant, if for 
example it is assumed that any leaks in this quadrant will damage all the equipment therein. The 
consequences of corrosion anywhere outside this quadrant are negligible. Therefore, the lower-
right quadrant exhibits a series system topology, where corrosion on any segment (or component 
of the system) results in failure of the entire system. The loss function of Equation 4-17 is used 
with the effective state as in Equation 4-18 and appropriate cost factors. The approximate 
methods outlined in Section 5.3 are used to evaluate VoI, which is optimized offline. 

  

Figure 6-13: Placements for five humidity sensors optimized offline by the VoI metric in a series 
system of the lower-right quadrant (left) and the net VoI provided by these sensors using three 

alternative cost functions (right). 

Figure 6-13 gives the optimal sensor placement by the VoI metric in this series system. Note that 
all sensors are placed in the lower-right quadrant, as in this case there is no reason to monitor 
humidity outside of the area that constitutes the system. While the prior optimal action is to coat 
the entire quadrant against possible corrosion, information gathered by the sensors can reduce the 
predicted probability of corrosion for certain sections, allowing these to safely remain uncoated, 
resulting in cost savings. The VoI provided by all sensors is $2330.  

In this example, the VoI metric value or the net benefit of Equation 4-12 is also plotted to the 
right of Figure 6-13, for two alternatives sensor cost functions. At a cost of $300 per sensor, i.e., 
C(𝑌𝑌) = $300|𝑌𝑌| with 𝑏𝑏 = $1500, the optimal set, which maximizes net benefit (shown as the 
dark gray line), includes the first three sensors selected by the greedy algorithm, while for a 
higher cost of $400 per sensor (light gray line), only the first two sensors should be placed to 
provide the highest net benefit. This illustrates how in general VoI can be traded off against 
sensing cost to determine the optimal number of measurements to use to support decision-
making. 
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6.2.3. Global Action 
Rather than taking decisions of whether or not to coat individual sections of the ceiling, in this 
subsection the choice must be made whether or not to coat the entire ceiling. This would 
correspond to a situation where it is impractical to coat only certain sections of the ceiling, or 
where there is a flat fee for coating. The cost to coat the ceiling is 𝐶𝐶𝑟𝑟 = $10k in this case, as 
opposed to ∑ 𝐶𝐶𝑟𝑟,𝑖𝑖

𝑛𝑛
𝑖𝑖=1 = $20k for coating all sections individually. The loss function for this 

management problem is: 

 𝐿𝐿(𝐬𝐬,𝑎𝑎) = (1 − 𝑎𝑎)�∑ 𝐶𝐶𝑓𝑓,𝑖𝑖(1 − 𝑠𝑠𝑖𝑖)𝑛𝑛
𝑖𝑖=1 � + 𝑎𝑎𝐶𝐶𝑟𝑟 (6-5) 

Note that the loss is no longer in a decomposable form. The management topology of the system, 
i.e., the single action choice applying to all components, couples decision-making, preventing 
decomposition. Fortunately, some of the efficient techniques of Section 5.2 for can still be 
applied to this problem. In particular, the conditional expected loss under the choice of 𝑎𝑎 = 0 is 
decomposable, while under the choice of 𝑎𝑎 = 1 the loss is fixed with respect to 𝑆𝑆. Therefore, an 
exhaustive search through the space of joint component states can be avoided. The approximate 
approach of Equation 5-25 is then used to take the expectation over observations. 

  

Figure 6-14: Placements for five humidity sensors optimized offline by the VoI metric 
considering a global management action (left) and the VoI provided by these sensors (right). 

Using the VoI metric and this loss function, sensor placements are optimized offline, with the 
results shown in Figure 6-14. In this case, the prior optimal action is to do nothing, incurring a 
prior expected cost of $6600; collected data will prompt the manager to choose to coat the entire 
ceiling to prevent corrosion if higher-than-expected humidity is observed. The optimal sensor 
placement scheme includes a sensor in the upper-right quadrant, to monitor the region with the 
highest prior uncertainty, and two in the lower-right quadrant, where the consequences of failure 
are highest. Finally, it should be noted that similar arrangements of sensors that were tested in 
this case provided similar VoI, indicating that VoI is not as sensitive to the sensor locations in 
the case of global management decision-making as it is in the other cases investigated here. This 
is likely because the global decision is related to a weighted average of the humidity across the 
domain. 
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6.2.4. Comparison to Random Field Estimation 
As an alternative to optimizing sensor placements using VoI for system management, in this 
example the random field estimation objective of Section 4.4.1 is used. This is defined as a 
special case of the VoI with the loss function of Equation 4-35, with 𝐙𝐙 defined in such a way as 
to apply a weight of one to estimates of the demand field and a weight of zero to estimates of the 
capacity field. Since measurements are available only of the demand, and the demand and 
capacity are independent, this definition only accounts for the prediction error in the demand 
field. The resulting optimized placements using this objective (along with the offline greedy 
algorithm) are indicated in Figure 6-15. 

  

Figure 6-15: Placements for five humidity sensors optimized offline by the random field 
prediction metric (left) and the VoI and posterior random field variance reduction provided by 

these sensors (right). 

As opposed to the sensors placed to optimize management in Figure 6-12, only one sensor is 
placed in the lower-right quadrant, as this objective does not include the economic incentive for 
sensing in this quadrant. Instead, placements are distributed more evenly across the system. Two 
sensors are placed in the upper-right quadrant, where the prior uncertainty in the demand field is 
highest. For comparison purposes, the VoI for these sensor placements is computed under the 
assumption of a cumulative system as in Section 6.2.1 in order to evaluate how sensors placed to 
improve random field estimation also help improve system management. In this example, these 
sensors achieved a VoI of $1520, 88% of that obtained by the placements of Figure 6-12. Placing 
sensors according to the prediction error metric in this case serves as a reasonable approach to 
approximately optimize sensor placements for management decision-making support under the 
less computationally efficient loss function for cumulative system management. 

6.2.5. Comparison to Online Sensor Placement 
Finally, online and offline sensor placement approaches to this problem are compared. In this 
example, it is assumed that observations of the local average humidity are obtained from each 
sensor shortly after it is placed, allowing for online optimization to be performed. The VoI 
formulation for a cumulative system as in Section 6.2.1 is again used, but VoI is optimized 
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following the online greedy approach described in Section 2.2.1.2. To demonstrate this online 
placement, the specific random instantiation of the system shown in Figure 6-10 is used. It 
should be kept in mind that in the online case the sequence of sensor placements depends on 
observations obtained from each previously placed sensor, and so the results of Figure 6-16 
apply only to this instantiation of the random field. 

 

Figure 6-16: Placements for five humidity sensors optimized online by the VoI metric for a 
cumulative system (left) and the reduction in loss due to improved posterior actions (right). 

While the first sensor placement is the same as was selected offline in Figure 6-12, placements 
differ after this due to updating of the prior model. To the right of Figure 6-16, the reduction in 
loss for managing this specific instantiation of the system after each sensor is added to the 
system (with optimal actions taken after measurements are obtained from this and all previously 
placed sensors) is plotted. Note that, while VoI, which represents the expected reduction in 
management costs, is always positive, actual management cost may be higher than the expected 
cost in any specific realization of the system. However, as more sensors are placed, there is a net 
reduction in management cost, and all five sensors provide a reduction of $1140 with respect to 
the cost incurred if no observations had been taken. This is contrasted with a reduction of $540 
that would have been obtained for this instantiation of the system if the offline optimal sensor 
placement scheme indicated in Figure 6-12 were used.  

The adaptivity gap, or the relative benefit of managing the system using online versus offline 
sensing, can be empirically quantified by comparing the performance of both approaches across 
multiple random instantiations of the system. Using 20 different simulations, and performing 
online sensing optimization for each case, cost reductions average to 31% (although this ranges 
from 0% to 100% depending on the specific instantiation). This is greater than the average 
reduction of 26% using the optimal placements selected offline. This demonstrates that, in the 
expected sense, online placements outperform offline ones by a small margin in this problem. A 
general proof that sensor placements selected online perform at least as well in an expected sense 
as those selected offline is provided in Appendix A. However, the degree to which online 
sensing outperforms offline sensing, i.e., the adaptivity gap, will vary on a problem-by-problem 
basis. Under the framework of adaptive submodularity (a generalization of submodularity to 
sequential sensing problems), guarantees on the performance of a greedy online sensor 
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placement approach can be provided (Golovin and Krause, 2011; Chen and Krause, 2013). Note 
that for some metrics, such as the random field estimation metric considered above, there is no 
adaptivity gap, as the value of the sensor placement is not affected by the collected measurement, 
and so there is no additional benefit to online placement (Krause and Guestrin, 2007).  
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Chapter 7  

Extension to Spatio-Temporal Systems 

This chapter presents an extension of the basic sensor placement methodologies discussed 
previously to spatio-temporal systems, i.e., systems in which the random field values vary across 
time as well as space. In principle, these systems can be handled as special cases of the general 
methodology presented previously, i.e., through the expansion of domain 𝑋𝑋 to include a temporal 
dimension, and the appropriate definitions of random field variables in this dimension. However, 
in practice, several issues prevent this formulation from being easily applied. First, by increasing 
the dimensionality of the system into time, the exponential growth problem for the variable state 
space as discussed at the beginning of Chapter 5 is exacerbated. Furthermore, if actions for 
managing the system can be changed over time, this increases the dimensionality of the action 
choice space. Finally, if measurements within the system are associated with specific times, they 
will vary as the system evolves, and so the value of this information, and therefore the optimal 
sensor placements for managing the system, will be time-dependent. In addition, information 
propagation is unidirectional in time, i.e., only measurements taken prior to a given action being 
implemented can be used to help guide the choice of that action. These difficulties make 
sequential sensor placement and decision-making a computationally daunting problem.  

The problem of inspection scheduling and sequential decision-making for system management 
has been investigated previously. For example, Straub has worked to develop efficient methods 
for risk-based inspection planning using optimal component-level strategies, along with 
information-sharing heuristics to extend these plans to system-level (e.g., Straub, 2004; Straub 
and Faber, 2005). Efficient methods for model updating for monitored deteriorating systems with 
multiple components based on hierarchical dynamic Bayesian networks are presented by Luque 
and Straub (2016). In addition, recent work by Memarzadeh has developed efficient methods to 
approximately allocate inspection efforts between components in a multi-component system, 
based on a hierarchical partially-observable Markov decision process model and a virtual-
auction-based inspection allocation heuristic (e.g., Memarzadeh and Pozzi, 2015, 2016; 
Memarzadeh et al., 2016).  

Instead of presenting an approach towards sensor placement and scheduling in spatio-temporal 
systems incorporating one or another of the above frameworks, this chapter instead focuses on 
extending the approaches developed for spatial systems in this work and identifying situations 
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where the VoI metric can be tractably computed, and thus where efficient sensor placement and 
scheduling can be addressed using the approaches developed in previous chapters.  

It is assumed throughout this chapter that time is discretized and that the time horizon for system 
analysis is finite rather than infinite; these assumptions parallel those made for spatial systems, 
where the finite domain 𝒳𝒳 of the system can be represented by a set of discrete coordinates 𝑋𝑋. 
Likewise, for this chapter, the temporal domain 𝒯𝒯 is discretized to a finite set 𝜏𝜏 of 𝑛𝑛𝜏𝜏 time steps, 
such that the full spatio-temporal domain is represented by the set of discretized spatio-temporal 
coordinates 𝑋𝑋 × 𝜏𝜏 = {(𝐱𝐱, 𝑡𝑡): 𝐱𝐱 ∈ 𝑋𝑋, 𝑡𝑡 ∈ 𝜏𝜏}. Section 7.1 presents a formulation for VoI in spatio-
temporal systems, efficient techniques for its computation, and a greedy approach to optimal 
sensor placement and scheduling, while Section 7.2 demonstrates the application of these 
methods in example problems. 

Finally, note that the phrases sensor placement, sensor scheduling, and sensor placement and 
scheduling will have specific meanings in the context of this chapter. Sensor placement here 
refers to the selection of a set of measurements that are repeated for each time step. Intuitively, 
this corresponds to the selection of locations to place sensors, where these will collect data at 
regular intervals over their operational lifetime. Sensor scheduling here refers to the 
identification of times at which to collect a prescribed set of measurements on the system. This 
corresponds to a case where, once a number of sensors are deployed, they are interrogated at 
irregular intervals at the discretion of the managing agent. Sensor placement and scheduling, or 
simultaneous placement and scheduling, refers to the problem of jointly selecting which 
measurements to obtain and when to obtain them over the full spatio-temporal domain. This 
might correspond to a situation in which human or robotic inspectors are to be deployed within a 
system; the times at which they are to be deployed as well as the components they are to inspect 
at these times must both be determined. 

7.1. Formulation of Spatio-Temporal Value of Information 
This section presents the general formulation of the VoI metric and its use for optimal sensor 
placement, scheduling, and placement and scheduling in spatio-temporal systems. The basic 
modeling assumptions of Section 3.3 are relaxed in this section.  

The random field affecting the spatio-temporal system is a function of space and time, defined as 
f(𝐱𝐱, 𝑡𝑡) over the space-time domain, where the temporal coordinate 𝑡𝑡 is now explicitly separated 
from the spatial (or field indexing) coordinate 𝐱𝐱. States, actions, and losses remain substantially 
the same as defined in Section 2.1, but with a somewhat different interpretation. For example, 
state vector 𝐬𝐬 now describes the states of all system components at all discrete times in the time 
domain. While previously this vector may have consisted of 𝑛𝑛 elements, one for each system 
component, in the corresponding spatio-temporal system it consists of 𝑛𝑛𝑛𝑛𝜏𝜏 elements, describing 
the state of each component at each discrete time step. The limit-states and system states are 
likewise expanded to include different instantiations of the variables for each time step. The 
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system management action vector 𝐚𝐚 and action set 𝒜𝒜 may also be extended, e.g., if new actions 
are selected for each time step, or they may remain the same as in the purely spatial system, e.g., 
if the same actions are to be undertaken throughout the management time horizon. The definition 
of the loss function must be accordingly modified as well, to account for the total loss over the 
modeled management life-cycle of the system (perhaps discounted to a present value), taking 
into account all spatio-temporal random field variables or states and management actions over 
this lifetime.  

As discussed in Sections 2.1.4 and 3.1, the assumption that management actions cannot affect the 
random field variables in the spatial system is preserved in the spatio-temporal system model. 
This is again done to ensure the acyclic nature of the PGM. However, in the case of a temporally 
changing system, this assumption is somewhat more difficult to enforce. In general, management 
activities in one time step will affect the behavior of the system in future time steps. In Markov 
process models and dynamic Bayesian networks, the creation of separate instantiations of 
random field variables for each time step ensures the acyclic nature of the model. An alternative 
approach, which is adopted here, it to capture these effects within the loss function. An 
arbitrarily defined loss function L(𝐟𝐟,𝐚𝐚) of all random variables and all management actions can 
theoretically account for any action effects on the evolution of the system, either directly where 
these effects are deterministic, or indirectly through augmentation of vector 𝐟𝐟 where these effects 
are stochastic. In practice, however, the appropriate definition of such a loss function will be 
difficult, and so the approach of using separate variable instantiations at each time step and 
employing a dynamic Bayesian network or Markov process analysis approach will be attractive 
for most practical applications, using methods such as those discussed at the beginning of this 
chapter. This section will instead focus on first presenting a general formulation for the VoI in 
systems where such an approach is not followed, and then examining the specific case of a 
temporally cumulative system, where this approach can be applied easily and efficiently using 
the methods of previous chapters. 

In spatio-temporal systems, VoI is still formulated as in Equation 4-6 as the difference of the 
prior and posterior expected loss. Furthermore, the prior expected loss is still computed as in 
Equation 4-1; it remains the minimum over all choices of management actions over the time 
horizon for system management of the expected value of the loss function across all of the 
spatio-temporal random field variables. Since no new information will be available at any point, 
there is no need to consider decision-making for this system sequentially; an optimal plan can be 
determined at the beginning of the management process and carried out over time.  

In the case of the posterior expected loss of Equation 4-5, the formulation must be modified 
somewhat, as the collection of information and the selection of optimal posterior actions based 
on this information is carried out in sequence. To capture these effects, let the set of 
measurements 𝑌𝑌 be expressible as 𝑌𝑌 = ⋃ 𝑌𝑌(𝑡𝑡)𝑛𝑛𝜏𝜏

𝑡𝑡=1 , with the observation vector 𝐲𝐲 likewise 
expressible as 𝐲𝐲 = �𝐲𝐲(1), … , 𝐲𝐲(𝑛𝑛𝜏𝜏)�. This notation is used to denote the fact that information is 
collected over time, with measurement set 𝑌𝑌(𝑡𝑡) corresponding to measurements made at time 
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index 𝑡𝑡, and observations vector 𝐲𝐲(𝑡𝑡) corresponding to the outcome of these measurements. 
Furthermore, the vector of all measurement information obtained up to and including time index 
𝑡𝑡 is denoted 𝐲𝐲−(𝑡𝑡) = �𝐲𝐲(1), … , 𝐲𝐲(𝑡𝑡)�, concatenating measurement results of 𝑌𝑌−(𝑡𝑡) = 𝑌𝑌(1) ∪ …∪
𝑌𝑌(𝑡𝑡). Note that for this purpose, the nominal information collection time index does not 
necessarily refer to when a measurement is taken, or the time index for the random variables that 
are being measured, but rather to the earliest time index that this information is available to the 
managers of the system to support decision-making. Also note that some of the sets and 
observations associated with certain times may be empty, if no information is to be collected at 
that time according to the inspection plan.  

Similarly, action vector 𝐚𝐚 is expressed as 𝐚𝐚 = �𝐚𝐚(1), … ,𝐚𝐚(𝑛𝑛𝜏𝜏)�, where 𝐚𝐚(𝑡𝑡) refers to a subset of 
actions that are chosen at time index 𝑡𝑡. As with observations, although these actions may take 
effect later than this, 𝑡𝑡 is the time index at which these actions are selected and locked, i.e., they 
are fixed and cannot be changed later. The set of possible actions at time index 𝑡𝑡 is denoted 𝒜𝒜(𝑡𝑡). 
Note also that the action vectors and potential action sets associated with a time index may be 
empty if no action choices are associated with that time step. 

Referencing Equation 4-4, the posterior expected loss of Equation 4-5 can be expressed 
equivalently as: 

 𝔼𝔼L(𝑌𝑌) = 𝔼𝔼𝑌𝑌𝔼𝔼𝐹𝐹|𝐲𝐲L�𝐟𝐟,𝐚𝐚∗(𝐲𝐲)� (7-1) 

This formulation also applies in the spatio-temporal case, where the optimal action set 𝐚𝐚∗ taking 
measurements 𝐲𝐲 into account denotes the actual sequence of optimal actions chosen to manage 
the system over the given time horizon. However, note that the optimal actions are not all 
selected simultaneously; instead, decision-making is made sequentially for each time step, taking 
into account only information gathered up to that time step. Thus, the set of optimal actions is 
expressed as: 

 𝐚𝐚∗(𝐲𝐲) = �𝐚𝐚∗(1)�𝐲𝐲−(1)�,𝐚𝐚∗(2)�𝐲𝐲−(2)�, … , 𝐚𝐚∗(𝑛𝑛𝜏𝜏)�𝐲𝐲−(𝑛𝑛𝜏𝜏)�� (7-2) 

This set of optimal actions is built sequentially over the management time horizon of the system. 
At any time step 𝑡𝑡, an optimal plan is made for the management of the system at that and all 
future time steps, given all information collected up to that time step and considering the optimal 
actions taken in all previous time steps:  

𝐚𝐚∗(𝑡𝑡)�𝐲𝐲−(𝑡𝑡)� =
argmin𝐚𝐚(𝑡𝑡)∈𝒜𝒜(𝑡𝑡) 𝔼𝔼𝑌𝑌(𝑡𝑡+1)|𝐲𝐲−(𝑡𝑡) min𝐚𝐚(𝑡𝑡+1)∈𝒜𝒜(𝑡𝑡+1) ⋯𝔼𝔼𝑌𝑌(𝑒𝑒𝜏𝜏)|𝐲𝐲−(𝑒𝑒𝜏𝜏−1) min𝐚𝐚(𝑒𝑒𝜏𝜏)∈𝒜𝒜(𝑒𝑒𝜏𝜏) 𝔼𝔼𝐹𝐹|𝐲𝐲−(𝑒𝑒𝜏𝜏)L(𝐟𝐟,𝐚𝐚) (7-3) 

where 𝐚𝐚∗(𝑡𝑡) denotes the optimal actions for time step 𝑡𝑡. The sequence of all actions in this 
equation is 𝐚𝐚 = �𝐚𝐚∗−(𝑡𝑡−1),𝐚𝐚(𝑡𝑡), 𝐚𝐚+(𝑡𝑡+1)�, where 𝐚𝐚+(𝑡𝑡+1) denotes actions chosen to manage the 
system from time step 𝑡𝑡 + 1 forward, chosen from potential action set 𝒜𝒜+(𝑡𝑡+1), and 𝐚𝐚∗−(𝑡𝑡−1) =
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�𝐚𝐚∗(1)�𝐲𝐲−(1)�, … ,𝐚𝐚∗(𝑡𝑡−1)�𝐲𝐲−(𝑡𝑡−1)�� denotes the set of optimal actions selected previous to time 
step 𝑡𝑡. The optimized actions corresponding with the current time step 𝐚𝐚∗(𝑡𝑡)�𝐲𝐲−(𝑡𝑡)� is then 
implemented, becoming part of the optimal action set 𝐚𝐚∗−(𝑡𝑡), and the process is repeated for the 
next time step, using the next set of available data 𝐲𝐲−(𝑡𝑡+1). By repeating this process of 
information collection, optimization, and implementation of the next group of optimal actions at 
each time step, the set of implemented optimal management actions 𝐚𝐚∗ conditional to observation 
𝐲𝐲 is built up. The result allows the conditional expected loss 𝔼𝔼L(𝐲𝐲) to be computed. This process 
must then be repeated for different realizations of 𝐲𝐲 such that the expectation over 𝑌𝑌 can be 
computed, as shown in Equation 7-1. 

This sequential decision-making adds an additional level of complexity over that of the 
computation of VoI in static systems as discussed in Chapter 5. This compounds the complexity 
introduced by expanding the number of possible variable states, observations, and actions in 
accordance with the expansion of the system in the temporal dimension (e.g., a transition from 𝑛𝑛 
state variables to 𝑛𝑛𝑛𝑛𝜏𝜏 state variables). For this reason, in a general case, analysis of VoI in this 
manner is infeasible. More efficient approaches, such as those discussed at the beginning of this 
chapter, should be attempted. However, motivated by the spatial decomposability of the loss 
function of Equation 3-1 and the resulting improvement in computational efficiency discussed in 
Section 5.2, the next subsection presents the special case of a temporally decomposable loss 
function, under which spatio-temporal VoI can be efficiently computed.  

7.1.1. Temporally Decomposable Loss Functions 
Assume that the loss function for a spatio-temporal system decomposes as follows: 

 L(𝐬𝐬,𝐚𝐚) = ∑ γ(𝑡𝑡)L(𝑡𝑡)�𝐬𝐬(𝑡𝑡), 𝐚𝐚(𝑡𝑡)�𝑛𝑛𝜏𝜏
𝑡𝑡=1  (7-4) 

where γ(𝑡𝑡) is a discounting factor. Under this assumption, the total loss is equal to the 
discounted sum of losses for managing the system at each time step, where this loss is a function 
only of the state of the system and the actions taken for its management at this time. Note that, as 
in Equation 3-1, the loss function is expressed as a function of state vector 𝐬𝐬(𝑡𝑡) for time index 𝑡𝑡; 
this loss might also be expressed as a function of 𝐟𝐟(𝑡𝑡), 𝐠𝐠(𝑡𝑡), or 𝕤𝕤(𝑡𝑡).  

Following the derivation of Equation 5-4, the posterior expected loss in this case can be 
expressed as: 

𝔼𝔼L(𝑌𝑌) = ∑ γ(𝑡𝑡)𝔼𝔼𝑌𝑌−(𝑡𝑡) min
𝐚𝐚(𝒕𝒕)∈𝒜𝒜(𝑡𝑡)

𝔼𝔼𝑆𝑆(𝑡𝑡)|𝐲𝐲−(𝑡𝑡)L(𝑡𝑡)�𝐬𝐬(𝑡𝑡), 𝐚𝐚(𝑡𝑡)�𝑛𝑛𝜏𝜏
𝑡𝑡=1 = ∑ γ(𝑡𝑡)𝔼𝔼L(𝑡𝑡)�𝑌𝑌−(𝑡𝑡)�𝑛𝑛

𝑖𝑖=1  (7-5) 

Note here that the outer expectation is only performed with respect to 𝑌𝑌−(𝑡𝑡), as only past 
measurements can be used to optimize the choice of action at time step 𝑡𝑡. Also note that the 
minimization is performed with respect to actions 𝐚𝐚(𝑡𝑡), as past and future actions have no effect 
on the loss function for time step 𝑡𝑡. Finally, note that the inner expectation is performed with 
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respect to states 𝐬𝐬(𝑡𝑡) at time index 𝑡𝑡, conditional to previous measures 𝐲𝐲−(𝑡𝑡), as only these states 
affect the temporally local loss function. VoI can therefore be decomposed, similar to Equation 
5-5, as: 

 VoI(𝑌𝑌) = ∑ γ(𝑡𝑡) VoI(𝑡𝑡)�𝑌𝑌−(𝑡𝑡)�𝑛𝑛𝜏𝜏
𝑡𝑡=1  (7-6) 

This temporal decomposition of the VoI is analogous to the spatial decomposition discussed in 
Section 5.2, and provides comparable computational advantages. Note, however, that for any 
time step, the temporally local expected loss may itself be difficult to compute, e.g., due to a 
large number of possible joint states 𝐬𝐬(𝑡𝑡), actions 𝐚𝐚(𝑡𝑡), and prior observations 𝐲𝐲−(𝑡𝑡). 

If, in addition to being temporally decomposable, the loss function is also spatially 
decomposable, then the loss is expressible as a nested sum over time steps and over the system 
components as: 

 L(𝐬𝐬,𝐚𝐚) = ∑ γ(𝑡𝑡)∑ L𝑖𝑖
(𝑡𝑡)�𝐬𝐬𝑖𝑖

(𝑡𝑡), 𝐚𝐚𝑖𝑖
(𝑡𝑡)�𝑛𝑛

𝑖𝑖=1
𝑛𝑛𝜏𝜏
𝑡𝑡=1  (7-7) 

Such a spatio-temporally decomposable loss function allows the temporal decomposition of the 
VoI discussed in this section, as well as its spatial decomposition as in Section 5.2, combining 
the advantages of both approaches. 

It is important to note that temporal decomposability of the loss function in Equation 7-4 implies 
that actions taken at a certain time step do not affect the system in future time steps, e.g., that 
past actions have no effect on the future behavior of the system. While this assumption has 
beneficial computational implications, it will not be generally valid. Appropriate definition of the 
system management problem in an approximate manner, such that the resulting loss function is 
temporally decomposable, may therefore be attractive for reasons of computational efficiency. 

7.1.1.1. Relationship to the Bellman Equation 

For many sequential decision-making problems, especially in Markov decision processes, 
evaluation of VoI is performed by means of the Bellman Equation, a dynamic programming 
approach (Bellman, 1984). This subsection examines the relationship between this approach and 
the discussions of this section relating to the spatio-temporal VoI. For the purposes of this 
subsection, it is assumed that the loss function is temporally decomposable as in Equation 7-4, 
but that the evolution of random field variables 𝐹𝐹 is affected by the choice of management 
actions, i.e., these coupling effects are no longer captured as part of the loss function 
formulation. Choices of actions will now affect the future evolution of the system, coupling the 
optimization of actions between time steps. This is a common assumption in Markov decision 
processes, where, for first-order processes, the state of the system at a time step is a random 
function of its state at the previous time step and the actions taken to manage the system at the 
previous time step. In this subsection, however, no such Markovian assumption is made. 
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Within this sequential decision-making problem, a dynamic programming approach to VoI 
evaluation is adopted. This approach makes use of a value function V(𝑡𝑡)�𝐚𝐚−(𝑡𝑡), 𝐲𝐲−(𝑡𝑡)� of all 
actions and measurements taken up to and including that time (Bellman, 1984). The value 
function is also sometimes known as the “cost to go” function, as it represents the minimum 
expected loss to manage the system from time 𝑡𝑡 forward. This value function is defined 
recursively for a temporally decomposable loss function as (Memarzadeh and Pozzi, 2016): 

V(𝑡𝑡)�𝐚𝐚−(𝑡𝑡), 𝐲𝐲−(𝑡𝑡)� =
𝔼𝔼𝑆𝑆(𝑡𝑡)|𝐚𝐚−(𝑡𝑡),𝐲𝐲−(𝑡𝑡)L(𝑡𝑡)�𝐬𝐬(𝑡𝑡),𝐚𝐚(𝑡𝑡)� + 𝛾𝛾(𝑡𝑡+1)

𝛾𝛾(𝑡𝑡) 𝔼𝔼𝑌𝑌(𝑡𝑡+1)|𝐚𝐚−(𝑡𝑡),𝐲𝐲−(𝑡𝑡)�min𝐚𝐚(𝑡𝑡+1)∈𝒜𝒜(𝑡𝑡+1) V(𝑡𝑡+1)�𝐚𝐚−(𝑡𝑡+1), 𝐲𝐲−(𝑡𝑡+1)��(7-8) 

That is, the value function is the expected loss at the current time step plus the discounted 
expected value (over possible observations at the next time step) of the minimum (across 
management actions taken at the next time step) of the value function at the next time step. 
Following this recursive definition, the posterior expected loss can be evaluated as: 

 𝔼𝔼L(𝑌𝑌) = 𝔼𝔼𝑌𝑌(1) min𝐚𝐚(1)∈𝒜𝒜(1) V(1)�𝐚𝐚−(1), 𝐲𝐲−(1)� (7-9) 

noting that 𝐚𝐚−(1) = 𝐚𝐚(1) and that 𝐲𝐲−(1) = 𝐲𝐲(1). Prior expected losses can be evaluated similarly 
by dropping any conditioning on observations from Equations 7-8 and 7-9. 

Computation of the VoI in this manner is in general computationally demanding for the same 
reasons discussed previously, namely the need to account for all potential sequences of prior 
observations and actions when evaluating the value function. However, under the assumption 
that actions do not affect the evolution of the underlying random field affecting the system, the 
value function can be expressed as: 

V(t)�𝐲𝐲−(𝑡𝑡)� = min𝐚𝐚(𝑡𝑡)∈𝒜𝒜(𝑡𝑡) �𝔼𝔼𝑆𝑆(𝑡𝑡)|𝐲𝐲−(𝑡𝑡)L(𝑡𝑡)�𝐬𝐬(𝑡𝑡),𝐚𝐚(𝑡𝑡)�� + 𝛾𝛾(𝑡𝑡+1)
𝛾𝛾(𝑡𝑡) 𝔼𝔼𝑌𝑌(𝑡𝑡+1)|𝐲𝐲−(𝑡𝑡)V(t+1)�𝐲𝐲−(𝑡𝑡+1)� (7-10) 

where all conditioning of states and observations on past actions has been removed and the 
minimization step has been moved through the iteration, e.g., minimization over 𝐚𝐚(𝑡𝑡) is 
performed as the outermost operation as part of iteration 𝑡𝑡 rather than the minimization over 
𝐚𝐚(𝑡𝑡+1) performed as an inner operation in Equation 7-8. Note that the value function is now 
independent of the sequence of prior actions and that, as in Equation 7-5, the value function can 
be evaluated as the discounted sum of losses for each time step due to the distributive property of 
the expectation. This shows that the formulation of VoI with temporally decomposable loss 
functions discussed above is compatible with a sequential decision process within the Bellman 
Equation framework under the assumption that actions do no effect the evolution of the system 
state. 
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7.1.2. Offline and Online Sensor Placement and Scheduling 
Sensor placement and/or scheduling in spatio-temporal systems can be understood in the context 
of the general optimization objective of Equation 2-16, where the set 𝑌𝑌 describes the complete 
sensing plan in space and time (e.g., where to place sensors, and when to collect measurements 
from these sensors). The problems of sensor placement, scheduling, and simultaneous placement 
and scheduling can then be understood as representing different constraint functions C(𝑌𝑌) on the 
sensing objective. For example, in a sensor placement problem, there would be no additional cost 
associated with selecting a new measurement at a previously selected location but at a different 
time, while there is an additional cost to choosing a new measurement at a previously 
unmeasured location. An optimal solution would therefore include measurements across all time 
steps for a given sensor, because the benefits of doing so, even if they were small, would always 
outweigh the cost. Furthermore, for sensor scheduling, including a measure at the same time as 
other measures will incur no (or negligible) additional cost, while adding a new measurement at 
a time when no other measurements are specified increases cost greatly. Finally, for 
simultaneous placement and scheduling, the cost might for example be linear with respect to the 
number of measurements, regardless of their locations in space or time. For measurements not 
associated with a particular location in space, or measurements that take place across multiple 
time steps, the cost function would have to be defined accordingly. Optimized placement and 
scheduling is a typical problem in the deployment of wireless sensing networks, where 
connectivity issues and power requirements must be considered (e.g., Meliou et al., 2007; Krause 
et al., 2011). 

For optimizing sensing in spatio-temporal systems, offline optimization is occasionally 
considered, for example when sensors are to be installed in a new structure and their 
configuration cannot be easily changed. Approximate offline optimization using the greedy 
algorithm approach can be implemented in spatio-temporal systems following the approach of 
Section 2.2.1.1, with appropriate use of the spatio-temporal VoI metric. However, in general, 
online optimization is a natural approach to take when measuring spatio-temporal systems. 
Furthermore, the unidirectional nature of time imposes a natural sequence on the observations of 
the system. The online optimization approach of Section 2.2.1.2 must therefore be slightly 
modified in the case of spatio-temporal systems.  

The modified approach can be described as a nested optimization problem. At each time step, 
using all information gathered up to that time step, an offline sensor placement approach is 
adopted to optimize the set of measurements obtained for current and future time steps. Then, the 
subset of measurements within this optimal set corresponding to the current time step is 
implemented, providing new measurements to help guide future optimal sensor placements in the 
next time step and onwards. This approach is outlined in Algorithm 2, where the use of the VoI 
metric for sensing is assumed. Note that the inner sensing optimization problem described in this 
algorithm can be solved using the offline optimization approach of Algorithm 1 and Section 
2.2.1.1.  
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Algorithm 2: Pseudo-code for online sensing optimization in spatio-temporal systems. 

Input candidate measurement set 𝒴𝒴, candidate action set 𝒜𝒜, objective function MVoI(⋅), cost 
function C(⋅), constraint 𝑏𝑏 
𝑌𝑌∗−(0) = ∅, 𝐲𝐲−(0) = ∅, 𝒴𝒴+(1) = 𝒴𝒴, 𝒜𝒜+(1) = 𝒜𝒜 , 𝐚𝐚∗−(0) = ∅ 
for 𝑡𝑡 = 1, … ,𝑛𝑛𝜏𝜏 
 𝑌𝑌(𝑡𝑡) ∪ …∪ 𝑌𝑌(𝑛𝑛𝜏𝜏) = argmax𝑌𝑌+(𝑡𝑡)⊆𝒴𝒴+(𝑡𝑡) MVoI�𝑌𝑌+(𝑡𝑡)|𝐲𝐲−(𝑡𝑡−1),𝐚𝐚∗−(𝑡𝑡−1)�  
  subject to C�𝑌𝑌∗−(𝑡𝑡−1) ∪ 𝑌𝑌(𝑡𝑡) ∪ …∪ 𝑌𝑌(𝑛𝑛𝜏𝜏)� ≤ 𝑏𝑏 
 measure 𝑌𝑌(𝑡𝑡) to obtain 𝐲𝐲(𝑡𝑡) 
 𝐲𝐲−(𝑡𝑡) = �𝐲𝐲−(𝑡𝑡−1), 𝐲𝐲(𝑡𝑡)�  
 𝐚𝐚∗(𝑡𝑡)�𝐲𝐲−(𝑡𝑡)� = argmin𝐚𝐚(𝑡𝑡)∈𝒜𝒜(𝑡𝑡) 𝔼𝔼𝑌𝑌(𝑡𝑡+1)|𝐲𝐲−(𝑡𝑡) min𝐚𝐚(𝑡𝑡+1)∈𝒜𝒜(𝑡𝑡+1) ⋯𝔼𝔼𝐹𝐹|𝐲𝐲−(𝑒𝑒𝜏𝜏)L(𝐟𝐟,𝐚𝐚)  

(Eqn. 7-3) 
 𝐚𝐚∗−(𝑡𝑡) = �𝐚𝐚∗−(𝑡𝑡−1),𝐚𝐚∗(𝑡𝑡)�𝐲𝐲−(𝑡𝑡)��  
 𝑌𝑌∗−(𝑡𝑡) =  𝑌𝑌∗−(𝑡𝑡−1) ∪ 𝑌𝑌(𝑡𝑡)  
 𝒴𝒴+(𝑡𝑡+1) = 𝒴𝒴+(𝑡𝑡)\𝒴𝒴(𝑡𝑡)  
 𝒜𝒜+(𝑡𝑡+1) = 𝒜𝒜+(𝑡𝑡)\𝒜𝒜(𝑡𝑡)  
end    
Output 𝑌𝑌∗−(𝑛𝑛𝜏𝜏) 
 

The VoI metric for online optimal sensing used here, similar in form to Equation 4-13, is: 

MVoI�𝑌𝑌+(𝑡𝑡)|𝐲𝐲−(𝑡𝑡−1),𝐚𝐚∗−(𝑡𝑡−1)� = VoI�𝑌𝑌+(𝑡𝑡)|𝐲𝐲−(𝑡𝑡−1),𝐚𝐚∗−(𝑡𝑡−1)� − C�𝑌𝑌∗−(𝑡𝑡−1) ∪ 𝑌𝑌+(𝑡𝑡)� +
C�𝑌𝑌∗−(𝑡𝑡−1)�  (7-11) 

This represents the difference between the VoI of future measurements conditional to the 
outcomes of past measurements and past actions and the additional cost of including future 
measurements. The conditional VoI is: 

VoI�𝑌𝑌+(𝑡𝑡)|𝐲𝐲−(𝑡𝑡−1), 𝐚𝐚∗−(𝑡𝑡−1)� = 𝔼𝔼L�𝐲𝐲−(𝑡𝑡−1), 𝐚𝐚∗−(𝑡𝑡−1)� − 𝔼𝔼L�𝑌𝑌+(𝑡𝑡)|𝐲𝐲−(𝑡𝑡−1),𝐚𝐚∗−(𝑡𝑡−1)� (7-12) 

where: 

𝔼𝔼L�𝐲𝐲−(𝑡𝑡−1), 𝐚𝐚∗−(𝑡𝑡−1)� = min𝐚𝐚+(𝑡𝑡)∈𝒜𝒜+(𝑡𝑡) 𝔼𝔼𝐹𝐹|𝐲𝐲−(𝑡𝑡−1)L�𝐟𝐟, �𝐚𝐚∗−(𝑡𝑡−1),𝐚𝐚+(𝑡𝑡)�� (7-13) 

and: 

𝔼𝔼L�𝑌𝑌+(𝑡𝑡)|𝐲𝐲−(𝑡𝑡−1),𝐚𝐚∗−(𝑡𝑡−1)� = 𝔼𝔼𝑌𝑌+(𝑡𝑡)|𝐲𝐲−(𝑡𝑡−1)𝔼𝔼𝐹𝐹|𝐲𝐲L�𝐟𝐟, �𝐚𝐚∗−(𝑡𝑡−1),𝐚𝐚∗+(𝑡𝑡)(𝐲𝐲)�� (7-14) 

where 𝐚𝐚∗+(𝑡𝑡)(𝐲𝐲) is computed following the sequential approach of Equations 7-2 and 7-3. Note 
that this greedy approach remains myopic, as the benefit of information with respect to the 
possibility of improving future sensor placements is not taken into account. Also note that this 
approach has been formulated generally, i.e., not assuming temporal decomposability of the loss 
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function. Temporal decomposability allows for easier evaluation of the expected losses and 
optimization of actions for each time step. 

7.2. Demonstrative Examples 
This section details the application of the above methodology for optimal sensing in spatio-
temporal systems through three examples. Section 7.2.1 presents an example to binary 
classification in one spatial dimension to demonstrate a trivial application of the method, with 
intuitive outcomes. Section 7.2.2 presents an example in one spatial dimension using a series 
system topology, demonstrating a case where the loss function decomposes only temporally. 
Section 7.2.3 presents an example of a structural management problem to illustrate how the 
method can be applied for infrastructures. 

7.2.1. Classification in an Evolving 1-D Random Field 
This section demonstrates optimal offline spatio-temporal sensor placement and scheduling for 
binary classification of a temporally varying random field in one spatial dimension. A regular 
grid of spatial coordinates, with spacing of 0.2 distance units between grid points, defines the 
discretized spatial domain 𝑋𝑋 of the problem, with 𝑛𝑛𝑋𝑋 = 25. Five time steps, spaced at unit time, 
define the discretized time horizon 𝜏𝜏, with 𝑛𝑛𝜏𝜏 = 5.  

A random field is defined over this spatio-temporal domain by a Gaussian process model in time 
and space. Following the notation of a spatial Gaussian process in Equation 3-2, the spatio-
temporal process is denoted: 

 f(𝐱𝐱, 𝑡𝑡) ~ 𝒢𝒢𝒢𝒢 �µ(𝐱𝐱, 𝑡𝑡), k�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖 , 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗�� (7-15) 

where µ(𝐱𝐱, 𝑡𝑡) is the spatio-temporal mean function and k�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗� is the spatio-temporal 
covariance. A typical assumption, which is made for this section and elsewhere in this work, is 
that the spatio-temporal covariance is separable as the product of spatial and temporal covariance 
functions (Cressie and Wikle, 2011): 

 k�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗� = k𝑋𝑋�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� k𝜏𝜏�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� (7-16) 

In this example, a zero-mean field is assumed, i.e., µ(𝐱𝐱, 𝑡𝑡) = 0. The spatial and temporal 
covariance are separately defined with unit standard deviation throughout the spatio-temporal 
domain and using the square exponential correlation function of Equation 6-3, with the spatial 
correlation length scale being two spatial units and the temporal correlation time scale being two 
temporal units. Measurements are possible at each of the 125 discrete spatio-temporal 
coordinates, with uncorrelated noise between measurements and standard deviation of the noise 
of 0.1. Local limit-states are defined following Equation 3-11 with 𝚵𝚵𝐺𝐺 = 𝐈𝐈 and 𝐠𝐠0 = 𝟎𝟎, and 
𝑛𝑛 = 125 binary states are defined following Equation 3-14 for each space-time coordinate. In 
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this example, the misclassification loss function of Equation 4-37 is used, resulting in a spatio-
temporally decomposable loss function as in Equation 7-7. No discounting is considered, i.e., 
γ(𝑡𝑡) = 1. 

  

Figure 7-1: Optimal placement and scheduling of ten measurements in a one-dimensional system 
for classification. 

Placements and scheduling of ten measurements following offline greedy optimization are 
indicated in Figure 7-1, with empty circles indicating potential measures and filled circles 
indicating selected measures, along with the order of their selection. Note the systematic, 
symmetric approach to sensing. As there is nothing to distinguish one measure from another 
initially, except for the time difference, the first measurement is prescribed for the first time slice 
in the center of the domain, such that this measure can inform decision-making over the spatial 
domain and at later time steps. The second measure is prescribed for the center of the space and 
time domains. Subsequent measures are spaced around these points, both in space and time. Prior 
expected loss for this problem is 62.5, i.e., half of the spatio-temporal locations are expected to 
be misclassified a priori. With these ten measurements (less than a tenth of all possible 
measurements), posterior expected loss is about 45, indicating that nearly two-thirds of the states 
will be correctly predicted a-posteriori. 

7.2.2. Management of a River Water Intake System 

This section presents an example motivated by a water intake system along a river, and 
demonstrates the application of the approaches developed in this chapter to a system whose loss 
function is decomposable in time but not in space. Consider a 10km stretch of a river, along 
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which the water contamination level (measured in ppm of an unspecified contaminant) varies in 
space and time, as water flows down the river. Along this spatial domain, 𝑛𝑛 = 5 water intake 
stations divert river water for municipal use. If the contamination level at any of these stations 
exceeds a threshold of 100ppm, the water supply system will be contaminated, and a cost of 
𝐶𝐶𝑓𝑓 = $10k is incurred for every hour that contaminated water is drawn into an intake. To prevent 
this, a reserve water supply can be substituted for any one of the intakes, at a cost of 𝐶𝐶𝑟𝑟 = $1k 
per hour per intake. 

The contamination level at the five intake locations over a five-hour period (discretized to one-
hour intervals) is modeled as a log-Gaussian random field, such that under the logarithm 
transformation, the field is characterized by a Gaussian process model, as discussed in Section 
3.3. The mean function of the Gaussian process is defined as µ(𝐱𝐱, 𝑡𝑡) = 2.3, corresponding to a 
median contamination level of 10ppm. The covariance function of the Gaussian process is: 

 k�𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝑥𝑥𝑗𝑗 , 𝑡𝑡𝑗𝑗� = 𝜎𝜎2 exp�−
�(𝑥𝑥𝑖𝑖−𝑣𝑣𝑡𝑡𝑖𝑖)−�𝑥𝑥𝑗𝑗−𝑣𝑣𝑡𝑡𝑗𝑗��

2

2𝜆𝜆2
� (7-17) 

with 𝜎𝜎 = 1.3 (corresponding to 50 ppm standard deviation), 𝑣𝑣 = 1 kph, and 𝜆𝜆 = 1 km. This 
function uses a modified version of the square exponential correlation function of Equation 6-3, 
including the effect of water flowing downriver at a constant velocity 𝑣𝑣. Thus, the contaminant 
concentration at a certain location will be strongly correlated with those of nearby locations, but 
also with those of upstream locations at earlier times and of downstream locations at later times. 
Diffusion of the contaminants is ignored in this problem; concentrations only vary as the water 
flows past the intake sites.  

Limit-states and local states are defined as in Equations 3-11 and 3-14, with 𝚵𝚵𝐺𝐺 = −𝐈𝐈 and 
𝐠𝐠0 = 𝟏𝟏log(100ppm). Measurements are considered to be possible at each intake station at each 
hour. For consistency with the log-Gaussian contamination levels, these measurements are 
considered to have multiplicative log-Gaussian noise with median 1 and standard deviation 0.01, 
such that following the logarithm transformation the noise will be zero-mean additive Gaussian 
noise, as in Equation 3-5. For the management of this system, at each time step a prototypical 
loss function for a series system is considered, following Equation 4-17, with costs as outlined 
above. Due to the short time horizon, no discounting is considered, i.e., γ(𝑡𝑡) = 1. 

Figure 7-2 shows the results for optimal offline placement and scheduling of five contamination 
measures, with empty circles indicating potential measures (with the spatial coordinates of these 
being the locations of the intakes with respect to their distance downstream from the first intake), 
filled circles indicating selected measures with the order in which they are greedily selected 
indicated, and the background shading showing how these measures reduce the posterior 
uncertainty in the contamination field. Note that the measurements prescribed at earlier times at 
upstream locations will reduce the uncertainty in contamination levels not only at the location 
and time they are made, but also for downstream locations at later times. The indicated 
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measurement plan provides a VoI of $4k, compared to a VoI for the first greedily selected 
measure of $0.9k, and a VoPI for measuring contamination at all intakes at all times of $7.5k. 
Therefore, the proposed scheme, which provides more than half of the maximum VoI while 
measuring only one fifth of possible locations, provides a reasonable quality solution to this 
spatio-temporal sensing problem for system management. 

  

Figure 7-2: Optimal placement and scheduling of five water contamination samples along a 
10km stretch of river to support water intake system management, plotted above the 

contamination level uncertainty reduction. 

7.2.3. Differential Settlement in a Foundation System 
This example application is motivated by the problem of differential settlement between columns 
of a structure (e.g., Glisic et al., 2005). The total settlements under each of nine columns of a 
structure over a ten-year period are modeled using a Gaussian process. The mean for this process 
is decreasing with time, modeling the average settlement of the columns: 

 µ(𝐱𝐱, 𝑡𝑡) = 0.4m �1 − exp �− 𝑡𝑡−1
5yr
�� (7-18) 

The covariance function for the settlement is separable, as in Equation 7-16, with: 

 k𝑋𝑋�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = 0.2 exp �−
�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�

T�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�
2(50m)2 � + 0.8 𝐱𝐱𝑖𝑖T𝐱𝐱𝑗𝑗

(50m)2 (7-19) 

and: 

 k𝜏𝜏�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� = �0.005m
yr

�
2

 𝑡𝑡𝑖𝑖 𝑡𝑡j exp�−
�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�

2

2(5yr)2� (7-20) 

This covariance structure describes, in space, the weighted average of a square exponential 
correlation function and a linear correlation function, with the linear portion tending to constrain 
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the settlement values to fall on a plane, while the square exponential portion introduces a 
perturbation to these co-planar settlements. In time, variance of the settlements increases with 
time, i.e., the total settlement is less certain farther into the future, and the correlations of 
settlements at different times is square exponential.  

Measurements of each column’s settlement are possible at the end of each year, with 
independent zero-mean noise with a standard deviation of 0.01m. These measurements are 
available to support decision-making beginning with the year after they are collected. 
Differential settlement of the columns is defined with respect to the difference between the 
settlement of each individual column and the average settlement of all columns, with the limit-
states defined as in Equation 3-11 with 𝚵𝚵𝐺𝐺 as in Equation 5-32 and 𝐠𝐠0 = 𝟎𝟎. Note that this leads 
to only 𝑛𝑛 limit-state varialbes for the system, as opposed to 𝑛𝑛(𝑛𝑛 − 1)/2 if the pairwise 
differential settlements between columns were considered. Component states are defined relating 
to whether or not the absolute differential settlement for each column exceeds a threshold of 
0.05m, i.e., for each of 𝑛𝑛 = 9 columns, the state at time 𝑡𝑡 is defined as: 

 𝑠𝑠𝑖𝑖
(𝑡𝑡) = 𝕀𝕀�𝑔𝑔upper ≥ 𝑔𝑔𝑖𝑖

(𝑡𝑡) ≥ 𝑔𝑔lower� (7-21) 

where 𝑔𝑔upper = 0.05m and 𝑔𝑔lower = −0.05m. Note that, although this differs from the binary 
state definition of Equation 3-14, this still defines a binary state for each component, and the 
efficient techniques of Section 5.2.2 can still be applied. In particular, in Equation 5-24, instead 

of substituting (in the case of a spatio-temporal system) 𝑃𝑃𝑓𝑓,𝑖𝑖
(𝑡𝑡) = Φ�−𝛽𝛽𝑖𝑖

(𝑡𝑡)�, the following 
substitution is instead made: 

 𝑃𝑃𝑓𝑓,𝑖𝑖
(𝑡𝑡) = 1 −Φ�𝑔𝑔upper

𝜎𝜎
𝑔𝑔𝑖𝑖

(𝑡𝑡)
− 𝛽𝛽𝑖𝑖

(𝑡𝑡)� + Φ�𝑔𝑔lower
𝜎𝜎
𝑔𝑔𝑖𝑖

(𝑡𝑡)
− 𝛽𝛽𝑖𝑖

(𝑡𝑡)� (7-22) 

Following this definition, the probability of failure will correspond to the state definition of 
Equation 7-21. Note that this expression is still only a function of 𝛽𝛽𝑖𝑖

(𝑡𝑡), and so Equation 5-24 can 

still be evaluated using only a univariate expectation over 𝛽𝛽𝑖𝑖
(𝑡𝑡), where the distribution of 𝛽𝛽𝑖𝑖

(𝑡𝑡) is 
defined for component 𝑖𝑖 at time 𝑡𝑡 following the procedure outlined in Section 5.2.2.  

Management of the system is defined using a spatio-temporally decomposable loss function as in 
Equation 7-7, with the loss for each time step described using the prototypical cumulative system 
loss function of Equation 4-15, with 𝐶𝐶𝑓𝑓,𝑖𝑖 = $100k and 𝐶𝐶𝑟𝑟,𝑖𝑖 = $20k for all columns. That is, if no 
action is taken and the difference of a column’s settlement from the average exceeds the 
threshold, a $100k penalty is incurred for that column in that year, in terms of damage to the 
structure due to the uneven settlement that must be remedied. If excessive settlements are 
expected, the managing agent has the option of taking preventative actions at a cost of $20k per 
column per year, which will prevent damages due to differential settlement. A discounting factor 
of 10% per year is considered, i.e.: 
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 γ(t) = 0.9(𝑡𝑡−1) (7-23) 

Figure 7-3a plots the spatial locations of the nine columns. Figure 7-3b shows the results of 
offline optimal sensor placement and scheduling for measuring settlement of these columns. This 
scheme focuses on the corner columns (1, 3, 7, and 9), measuring these continuously after the 
third year. Temporally, later measures are prioritized, as failures are more likely then due to the 
higher variance. However, no measurements are made in the tenth year, as the outcomes of these 
measures will be available too late to support decision-making. This scheme, with 37 measures, 
maximizes the net VoI, as shown in Figure 7-3c which illustrates the trends in VoI and net VoI 
(assuming a cost of $1k per measure, discounted to present value using the same discount rate as 
the loss) provided by greedily selected schemes with increasing numbers of measurements. Note 
that the increase in VoI obtained with each additional sensor is diminishing as more sensors are 
added. 

  

Figure 7-3: a) Layout of columns subjected to settlement; b) Optimal offline sensing scheme for 
this system, with measures denoted by x’s; c) VoI for the scheme, with respect to the number of 
sensors greedily selected, with the optimal set indicated by the peak of the net VoI; d) Example 

settlement of column 1, with the prior 95% confidence interval (gray area), actual settlement 
(grey line), and settlement predicted by the optimal measurement scheme (dotted line). 

The performance of online and offline sensing optimization are also compared for this problem. 
To evaluate online optimization, a specific instantiation of the settlement profile over time is 
used, as shown for column one in Figure 7-3d. Without any measurements, implementing the 
prior optimal management actions, a loss of $462k would be incurred by the managing agent 
following this particular realization of the settlement profile. With the offline optimal sensing 
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scheme of Figure 7-3b implemented, predicted settlements and management actions are altered 
based on collected data, reducing the loss to $276k. Following an online sensor placement and 
scheduling approach, where the optimal sensing plan is re-evaluated following the collection of 
settlement data in each year, the resulting loss is also $276k. However, the optimal online 
sensing scheme achieves the same loss reduction using 10 fewer measurements than the offline 
scheme. 

Comparing across 20 different cases of online sensor placement, corresponding to 20 random 
instantiations of the system, in all cases the online optimal scheme consists of fewer measures 
than the offline optimal scheme, and in 15 cases the losses incurred by the managing agent are 
reduced as well. The adaptivity gap for this problem, i.e., the reduction in management losses 
and sensing costs for online sensing compared to offline sensing, ranges between 2% and 86% in 
these cases, with an average of 15%.  

Finally, note that the sensing scheme is also sensitive to the type of data being collected. 
Consider an alternative formulation of this problem in which the measurements of settlement 
under each column have an unknown Gaussian bias. This bias can be modeled by introducing 
correlations between measurements taken on the same column at different times into the 
covariance matrix 𝚺𝚺𝜖𝜖 of the measurement noise in Equation 3-6. In this example, an unknown 
systematic bias term with a Gaussian distribution with a mean of 0 and a standard deviation of 
0.1m was introduced for the measurements associated with each column.  

To eliminate such a bias, earlier measurements of settlement can be made when the settlement is 
known (from the prior model) to be low, such that this bias might be eliminated from later 
measurements. However, in this case the greedy optimization approach for selecting 
measurements performs relatively poorly. As shown in Figure 7-4a, the algorithm tends to 
cluster measures on relatively few columns. This is due to the fact that the first measure selected 
for a column has relatively little value due to the measurement bias. However, with this measure 
selected, the algorithm’s next step is to select a measure for the same column at the first time 
step, so as to correct for this bias. Following this, the bias for all measures associated with this 
column can be removed, and so the value of these measures is higher, leading the algorithm to 
select all measures on this column before moving to another column and repeating the procedure. 
The ultimate consequence of the myopic greedy approach in this case is a sub-optimal set of 
sensor placements and schedules. This shortcoming in the greedy approach derives from the lack 
of submodularity in the VoI for this problem; the value of a pair of measures on a column (one at 
the first time step, and one later on) is higher than the sum of the values of each measure 
individually. 

As discussed in Section 2.2.1, the standard greedy optimization approach employed throughout 
this work represents a forward greedy optimization approach, in which the optimal sensor set is 
built by iteratively adding measures to an empty set. However, in this case, a reverse greedy 
optimization approach, in which the full measurement set 𝒴𝒴 is iteratively pruned to remove 
elements, can outperform the forward greedy optimization approach. As shown in Figure 7-4a, 
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the set with the same number of sensors selected by the reverse approach allocates these sensors 
evenly across the corner columns of the structure. The reason for this is intuitive: by beginning 
with the complete set of measurements, the value provided by earlier measures in correcting the 
bias of later measures is captured, and these measures are preserved through the optimization 
process to retain this value. In Figure 7-4b, the net VoI provided by forward and reverse greedy 
optimization schemes is compared. For the case of 18 sensors, as shown in Figure 7-4a, the 
reverse approach outperforms the forward by 15%. Note, however, that the reverse greedy 
approach does not dominate the forward approach for all sensing set sizes in this case; both 
approaches remain suboptimal overall. 

  

Figure 7-4: a) Comparison of forward greedy optimized (o) and reverse greedy optimized (x) 
sensor placement and scheduling schemes in the case of unknown measurement offsets; b) 

Comparison of the net VoI provided by sets of various seized optimized via forward and reverse 
greedy approaches; the vertical dotted line indicates the schemes depicted in (a). 

The above discussion serves as a cautionary example of when the efficient but myopic forward 
greedy optimization approach leads to an overall suboptimal result for sensor placement and 
scheduling. As discussed, the forward approach is generally preferred for reasons of 
computational simplicity; beginning with an empty set and adding measures to arrive at an 
optimal set of a relatively small size is simpler than beginning with this full set of possible 
measures and iteratively removing many elements. In this particular case, however, the reverse 
greedy approach might be preferable, as it outperforms the forward approach, especially for 
relatively small numbers of sensors. The reason for the poor performance of the forward greedy 
approach can be readily understood in this example, and the benefits of the reverse approach 
likewise appreciated. However, in more complicated problems, such an intuitive understanding 
of the shortcomings of the optimization approach may be difficult. Furthermore, the reverse 
greedy optimization approach may not always represent a feasible or beneficial alternative. 
Further comparisons of these two greedy approaches are made in Section 11.1.  
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Chapter 8  

Structural Health Monitoring of Scott Hall 

This chapter demonstrates the application of the methodologies of optimal sensor placement 
developed over the previous chapters to a problem of SHM system design. The subject of this 
application is the Sherman and Joyce Bowie Scott Hall (or simply Scott Hall), a building on the 
campus of Carnegie Mellon University in Pittsburgh, Pennsylvania. Several major structural 
columns of this building were instrumented with fiber-optic strain gauges during the building’s 
construction, and data collected from these sensors are used to demonstrate the methodology for 
optimal sensor placement using VoI. 

It should be noted that this chapter presents an example of the optimization of sensor placements 
that makes use of data that are collected by sensors that are already in place at the time of the 
analysis. Therefore, this case study presents a “what-if” scenario, examining how these sensor 
placements might have been optimized if the probabilistic model of the structure developed from 
the collected data had been available prior to the placement of sensors. In principle, this 
probabilistic model might have been developed using computational models of the structural 
system, i.e., finite-element models. However, due to constraints of the project timetable and 
building construction, and lack of access to the design models for the Scott Hall building, no 
such analysis was conducted. Instead, this chapter can be interpreted either as an example of the 
application of the sensor placement methodologies discussed in this work to a structural system 
using a probabilistic model obtained from a “black box” source, or as an approach to the design 
of a more permanent sensing system using data collected by a cheaper but less durable 
exploratory sensing network. Finally, this caveat demonstrates one of the important practical 
barriers to sensor placement optimization, i.e., that the investment in time and collection of 
modeling information necessary to perform pre-posterior analysis may not be justified in some 
contexts, and that placements are instead often guided by engineering judgement as a “back of 
the envelope” suboptimal alternative. 

8.1. Overview of Scott Hall and its Instrumentation 
The Sherman and Joyce Bowie Scott Hall building began construction in the spring of 2012, and 
construction was completed by the spring of 2016, with the building officially opening on April 
30, 2016. The building has about one hundred thousand square feet of floor space, and includes 
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classrooms and offices, collaborative spaces, a café, laboratories, and a ten thousand square foot 
cleanroom facility. Upon its completion, the building became the campus center for 
nanotechnology, biotechnology, and energy research.  

The building itself consists of two structures; the “courtyard” component, containing the 
cleanroom and café, extends underground beneath the existing courtyard area between Wean, 
Hammerschlag, and Porter Halls. The second structure, which is of greater relevance to this 
chapter, is the “north wing”, consisting of a concrete masonry structure supporting a four-story 
above-ground steel frame structure. This wing is constructed north of Hammerschlag Hall and 
west of Wean Hall, and part of the steel-frame structure extends out over a hillside, where it is 
supported by 12 circular steel columns, splaying out from 4 foundation pedestals. Figure 8-1 
shows a computer rendering of the north wing structure, in which the tubular steel columns can 
be seen supporting the portion of the structure that is cantilevered over the hillside.  

 

Figure 8-1: Computer rendering of Scott Hall’s North Wing structure, between the existing Wean 
Hall (left) and Hammerschlag Hall (right). Image from http://www.cmu.edu/cdfd/scott-hall/.  

Onto these 12 columns, 25 fiber-optic strain gauges were installed during the fall and winter of 
2014. These fiber-optic strain gauges are produced by Micron Optics, Inc., and measure uniaxial 
strain along the direction of the fiber. An image of one of these strain gauges is shown in Figure 
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8-2a. These sensors operate on the fiber Bragg grating principle (Micron Optics, 2012). During 
the manufacture of the fiber optic strand, variations in the refractive index are introduced into the 
strand at regular intervals, forming the grating. Based on the spacing of these variations, a certain 
wavelength of light is more strongly reflected within the strand. As the strand is deformed, the 
spacing of these variations changes, and so the wavelength of the most strongly reflected light 
changes. A laser interrogator unit (shown in Figure 8-2b) sends pulses of light down a strand of 
fiber optic cable, and records the intensity of the light reflected at various wavelengths. By 
identifying peaks in the spectrum of the reflected light, the spacing of the variations in the strand 
can be computed, and this spacing can be compared to the original spacing of the grating to 
compute the relative strain in the strand. By using gratings with sufficiently different initial 
spacing, several gratings can be connected in series along a common strand, allowing for a single 
fiber-optic cable to support multiple sensors. The strain gauges used for this project (Micron 
Optics model os3155) also contain a second “free” grating, which is allowed to deform 
independently of the strain in the sensor (and therefore in the column to which the sensor is 
attached) to perform temperature compensation. 

  

Figure 8-2: Micron Optics fiber-optic strain gauge (a) and interrogation unit (b). Images from 
www.micronoptics.com.  

These sensors are attached via spot-welding to twelve circular steel columns supporting the 
cantilevered portion of the Scott Hall structure. Sensors are attached to the column ten feet above 
the point at which the columns are attached to their foundations via a pin connection, as shown in 
Figure 8-3. To either side of the sensor attachment location, metal tabs are welded to allow for 
the attachment of protective brackets. On all but one column, two sensors are attached to 
opposite sides of the steel column; this configuration allows for the assessment of axial strain in 
the column, as well as bending in the plane of the sensors. On one column (designated TC-E), 
three sensors are attached at 120º intervals around the column circumference; this configuration 
allows for assessment of the axial column strain as well as bending in two perpendicular 
directions.  

a) b) 
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Figure 8-3: Diagram of strain gauge installation on structural columns. 

Sensors were installed on the columns during November 2014. Images of the installed sensors 
are shown in Figure 8-4. Immediately following their installation, the sensors were covered with 
waterproof protective putty, which is visible as the green material in Figure 8-4b. Fiber-optic 
cables from each sensor were connected to those of neighboring sensors on the column, and to 
longer cables to reach down to the base of each column. Shortly after installation, the sensors 
were connected to the interrogation unit for testing, and to obtain a baseline strain measurement 
for the installed sensors, against which subsequent strain readings could be compared to detect 
changes in column strain.  
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Figure 8-4: Photographs of installed sensors on column TC-E from the northwest (a) and 
southwest (b).  

Once all sensors had been installed, a temporary configuration was established to collect data 
from the sensors during the construction of the structure. Due to the need to keep construction 
areas clear, this configuration was disassembled intermittently and re-assembled when possible. 
A diagram of the final sensor configuration, indicting how sensors are connected to each other 
and to the interrogation unit (I.U.) is shown in Figure 8-5. During the construction period, the 
temporary configuration also followed this scheme, except that the two sensors on column TC-M 
were not connected, due to insufficient fiber optic cable being available to join these sensors into 
the network. Therefore, during the construction period, only data from 23 sensors on eleven 
columns were collected. 

Strain measurements from these sensors were collected during the construction period at a 
frequency of 1 Hz over two extended periods; from November 26 to November 30 (for a total of 
about 5 days of data) and from December 8 to December 15 (about 7 days). It is these two 
datasets that are used in the remainder of this chapter to model the column strains and to validate 
the proposed methodology for optimal sensor placement. 

a) b) 
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Figure 8-5: Diagram of sensors, columns, and fiber optic cable configuration. 

8.2. Probabilistic Strain Field Modeling 
Using data collected by sensors during construction, a probabilistic model of the strain field in 
the columns is created. Rather than modeling the strains themselves, the linear strain rates in the 
columns for one-hour periods are modeled as Gaussian random variables. This is done to support 
a decision-making problem concerning the relative rate of strain in the columns, and the result of 
these rates on the deformation of the building deck. During the construction phase, such 
differential strains occur as new dead loads are added unevenly to different parts of the structure. 
In a finished structure, such trends might indicate differential settlement of the foundations; 
columns supported by a settling foundation would experience decreasing strain relative to those 
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supported by other foundations. Therefore, the problem of addressing differential strain and 
loading is relevant both during and following the construction phase.  

The underlying random field variables 𝐟𝐟 are defined as the strain rate 𝐟𝐟𝜃𝜃 (in micro-strain per 
hour) and starting strain 𝐟𝐟𝜙𝜙 (in micro-strain) for all columns for any one-hour period, assuming 
that column strains follow a linear trend during this period. These variables are described by a 
joint Gaussian distribution: 

 𝐟𝐟 = �
𝐟𝐟𝜃𝜃
𝐟𝐟𝜙𝜙
�  ~ 𝒩𝒩��

𝛍𝛍𝜃𝜃
𝛍𝛍𝜙𝜙� , �

𝚺𝚺𝜃𝜃 𝟎𝟎
𝟎𝟎 𝚺𝚺𝜙𝜙

�� (8-1) 

The parameters of this distribution are obtained by analyzing the strain data collected during the 
first five-day data collection period. These data are divided into one-hour segments, the strain 
rates and initial strains for each column during each hour are computed, and these are used to 
identify the mean vectors and covariance matrices for these variables, assuming a Gaussian 
distribution. Also note that it is assumed that the strain rates and starting strains are independent.  

The strain measurements collected by a given subset of the 23 strain sensors for which data were 
collected during construction are used to update the column strain rate model. That is, for a given 
hour of time, the data collected by sensors during this hour are used to define a posterior 
distribution over the column strain rates and initial strain values. Measurements are defined as in 
Equation 3-5, with each row of 𝛀𝛀𝑌𝑌 encoding the timestamp of the corresponding measurement in 
an appropriate position (such that it will multiply with the correct entry of 𝐟𝐟𝜃𝜃) and having a one 
in an appropriate position (such that it will multiply with the correct entry of 𝐟𝐟𝜙𝜙). Measurement 
noise is assumed to be independent between different sensors and at different times, and the 
noise level is set for each sensor based on the difference of strain measurements from the 
assumed linear trend strain model. In this way, the measurement vector 𝐲𝐲 concatenates the data 
collected by the selected subset of 23 sensors over any one-hour period. Representative 
measurements 𝐲𝐲 are obtained by dividing the second seven-day data collection period into one-
hour segments and using the measurements of the selected sensors during each of these segments 
as a sample of 𝐲𝐲, for use in the sampling-based evaluation of the expectation as in Equation 5-25. 

Limit-state variables are defined following Equation 3-11, and describe relative displacement 
between pairs of representative locations on the structural deck. Each row of 𝚵𝚵𝐺𝐺 encodes the 
relationship between the column strains and the relative vertical displacement between a pair of 
representative deck locations. Three representative locations are considered at the south, center, 
and north ends of the structural deck, and therefore three relative displacements between pairs of 
locations are considered, i.e., the limit-state variables define 𝑛𝑛 = 3 relative displacement rates 
between these representative deck locations. These relationships are determined from a simple 
linear-elastic finite element model of the building, which includes the eleven measured steel 
columns and the deck supported by them.  
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Component states in this model correspond to whether or not the differential displacement rates 
of the representative structural deck locations are within a specified bound (arbitrarily designated 
as 4 mm/hr for this problem). State variables are therefore defined as in Equation 7-21, with 
appropriate upper- and lower-bounds for each limit-state variable (i.e., for each differential 
displacement rate). The state of the system is then defined using a series system of the 
components, i.e., if the differential displacement rate of any two representative points exceeds its 
threshold then a failure is assumed to occur. 

Figure 8-6 shows an example of the prior and posterior distributions for one of the limit-state 
variables in this model, the differential displacement between two representative structural deck 
locations. The prior distribution is centered about zero, and there is about a 2% prior probability 
of this rate exceeding its bounds for any given hour. However, using a sample of the collected 
data, this distribution is updated to a posterior with a mean of 7 mm/hr, well above the 
threshold. While the true trend is about 8 mm/hr, the posterior model correctly predicts that the 
probability of differential loading causing a differential displacement of the structure is close to 
100%. The data used for this example were collected during a time interval when concrete was 
being poured in one area of the structure; therefore a differential loading was in fact occurring at 
this time, resulting in the observed differential displacement trend.  

 

Figure 8-6: Example of sensor data updating the prior distribution over relative displacement 
trends for a time interval to a posterior distribution. The true trend for the time interval computed 

from the data is indicated for reference. 

A decision-making problem is defined based on this differential displacement model. The agent 
managing the structure has the option to halt construction, and thereby prevent differential 
loading, at a cost of $1M. Alternatively, if construction is not halted and differential 
displacement above the specified limit is experienced, a failure cost of $10M is incurred. The 
loss function of Equation 4-16 is therefore used in this problem, with costs as stated. Note that 
these values are merely representative numbers used to define the decision-making problem for 
this example; no such costs were incurred during the construction of Scott Hall. 
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8.3. Sensor Placement Results 
First, to address the optimal placement of sensors, the management problem is considered to be 
purely spatial. That is, the decision-making problem for a representative hour-long period is 
considered and used to define the VoI metric to guide the selection of a subset of the 23 sensors 
active during construction that would have been optimal to support the given decision-making 
problem. This treatment is consistent with the assumption that, at each hour, an independent 
sample of 𝐟𝐟 is realized from its prior distribution, data are gathered, and a management decision 
is made. Sensor placements can be optimized to support decision-making during any typical 
hour-long period. In this way, a spatio-temporal system (the actual structure, whose strains vary 
both in space between columns and through time as construction proceeds) is treated as a purely 
spatial system, and sensor placement is performed for any representative time step. The results 
when the system is treated as spatio-temporal are discussed in Section 8.4.  

  
Figure 8-7: Optimized sensor placements (left) and associated VoI (right). 

Figure 8-7 shows the results of optimal sensor placement using the VoI metric based on the 
decision-making problem outlined above. To the left, the locations of the optimal sensors and the 
columns to which they are attached are indicated, along with the order in which the sensors are 
greedily selected. To the right, the VoI provided by these greedily selected sets are indicated, as 
well as the net VoI assuming a cost of $1k per sensor. Under this cost, the optimal set consists of 
5 sensors on tubular columns L, H, J, K, and D. This set consists of one column associated with 
each of the three common foundations. Furthermore, the sensors selected for the optimal set tend 
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to be on columns that are most sensitive to differential strain trends, as determined from the 
linear-elastic finite-element model. For example, the first and second sensors selected are on 
columns TC-L and TC-H, whose strains are the most sensitive to the displacements of their 
respective foundations (as they are the most nearly vertical of the columns associated with these 
foundations). However, the measures collected by these sensors are also correlated with those 
obtained by sensors on other columns as well. It is therefore a tradeoff between sensitivity and 
shared information that leads to the optimal sensor configuration by this objective. 

8.4. Sensor Placement and Scheduling Results 
Next, this problem is treated from a spatio-temporal perspective, as in Chapter 7. A spatio-
temporal multivariate Gaussian model is developed for 𝐟𝐟, where the strain rate and initial strain 
for each hour over a 24 hour period are associated with a separate temporal instantiation of the 
variables, with correlation between the variables of different time steps, as observed in the five-
day data collection period. Strain measures of the columns are again obtained for one-hour 
periods. In this case, the choice of sensor placements corresponds to the selection of a subset of 
the 23 active sensors to monitor, while that of sensor scheduling corresponds to selecting which 
hour of the day to collect measures. Decision-making for each hour-long time step is defined as 
before, but with costs reduced to $10k per hour and $1k per hour for failure and intervention, 
respectively. Over the 24-hour period, the total cost is assumed to be the sum of costs in each 
hour, defining a temporally decomposable loss function as in Equation 7-4. Note that due to the 
series topology, the loss does not decompose spatially. No discounting is considered, i.e., 
γ(𝑡𝑡) = 1. Decision-making is performed using only information gathered up to and including the 
previous hour, i.e., data collected during a given hour cannot support the decision-making in that 
hour.  

 

Figure 8-8: Results for sensor placement (a), scheduling (b), and placement and scheduling (c). 

For this spatio-temporal decision-making problem, three sensing schemes are optimized for a 
typical day: an optimal placement, optimal schedule, and optimal placement and schedule. 
Results for each of these are shown in Figure 8-8. In Figure 8-8a, the optimal placement scheme, 
indicating which columns should be monitored throughout the day, is obtained by constructing 
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the sensing cost function such that measurements by a previously unselected sensor have a 
positive cost ($1k, as before), but measurements by previously selected sensors at a different 
time of day have no additional cost. It should be noted that this optimal placement exactly 
matches that of Figure 8-7, with columns D, L, K, J, and H being monitored. This is to be 
expected, since this scheme was optimized for any typical one-hour period, and therefore it is 
optimal for any specific time step in this spatio-temporal case.  

Figure 8-8b depicts the optimal sensing schedule, i.e., the times during the 24-hour period when 
it is best to collect measures from all sensors. In this case, the sensing cost function is 
constructed such that the selection of a measure at a different time from previously selected 
measures has a positive cost, but the selection of a new measure at the same time has no 
additional cost. Here, some measurements are taken earlier in the cycle so that data will be 
available to guide later decision-making. Also, these measures correspond to the times of day 
(late morning and early afternoon) when construction activity is most intense, and therefore the 
probability of differential loading is highest (note that the 24 hours of the planning time period 
do not correspond to the hours of the day, but instead to the time after the start of the cycle, 
which is at noon).  

Figure 8-8c depicts the optimal sensor placement and scheduling scheme. This scheme was 
optimized using a cost function that puts a price on each new measure, regardless of whether 
previous measures on columns or other measures at the same time have been made. Here, 
prescribed measurements switch between columns as time passes, adjusting for changes in 
loading and strain patterns over time. Note that, as in the optimal placement, columns L and H 
tend to be frequently monitored, while as in the optimal schedule, measures are clustered at the 
beginning and end of the cycle, corresponding to the times of greatest on-site activity. 

The VoI of the sensor scheduling scheme is $1.6k, that of the placement scheme is $2.8k, and 
that of the optimal placement and scheduling is highest at $3.2k. While all schemes prescribe 
roughly the same number of sensor measurements, the optimal sensor placement and scheduling 
is the most flexible (as the cost structure does not incentivize the inclusion of all measures of a 
particular sensor or at a particular time), and therefore can provide greater benefits in terms of 
reduced management costs (as measured by VoI) while using a comparable number of measures. 
Note that the VoI for the optimal placement differs from that of Section 8.3, due to the different 
cost structure.  

Finally, note that the schemes prescribed here are obtained using a probabilistic model that is 
trained from only a five-day-long data record, i.e., the training period only includes five samples 
of the daily strain cycle. These results may therefore be biased by this small training set, focusing 
on appropriately responding to loading anomalies that occurred during this period, rather than 
providing a more generally optimal scheme. This is a concern for all situations where models 
must be trained using limited data. 
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Chapter 9  

Seismic Risk in the San Francisco Bay Area 

This chapter presents an application of the optimal sensor placement methodology to the 
monitoring of seismic risk, supporting the management of an infrastructure system of bridges 
and tunnels in the San Francisco Bay area. The hazards associated with earthquakes, in terms of 
the spatial distribution of ground motion resulting from events with known epicenter locations 
and magnitudes, are well-studied phenomena, both in general and for the San Francisco Bay area 
in particular. Existing probabilistic models, including Poisson process models for earthquake 
recurrence (e.g., Anagnos and Kiremidjian, 1988) and ground motion attenuation equations (e.g., 
Douglas, 2011), are therefore used here to define the spatial distribution of the demand placed on 
an infrastructure system due to a seismic event. Furthermore, the response of infrastructure 
components to these ground motions have been extensively studied, and probabilistic models for 
this response, such as fragility curves commonly used for seismic damage estimation (e.g., 
Hazus-MH, 2013), are used to define probabilistic models for the capacities of infrastructure 
components to resist seismic demand. Based on these models, and a decision-making problem 
concerning the closure of bridges and tunnels in the aftermath of a seismic event, an optimal 
arrangement of sensors for supporting system management is proposed. These sensors include 
both demand measurements, i.e., seismic monitoring at the locations of infrastructure 
components to better determine the demands placed on these, and capacity measurements, i.e., 
improved assessments of the components in question (e.g., through more regular and thorough 
inspections or the installation of SHM systems) to better determine their capacity with respect to 
seismic loadings. 

This example is meant to illustrate the application of the sensor placement methodologies 
discussed on a larger scale, dealing with multiple separate structural systems as components 
distributed across several kilometers within the spatial domain. Furthermore, rather than using a 
full spatio-temporal model of the system as in Chapter 7, a purely spatial problem is considered, 
with the temporal effects of seismic risk being easily treated within the context of the Poisson 
process earthquake recurrence model and some basic assumptions on the decision-making 
problem, as will be discussed in Section 9.1.1. Additionally, in Section 9.2.1 a VoI density 
analysis is presented, which provides additional insight into how particular seismic events, based 
on their magnitude and epicenter locations, contribute to the value of the optimal sensor 
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configuration. These insights can lead to future efforts to more efficiently sample scenarios for 
the estimation of VoI via Monte-Carlo methods.  

It should be noted that this example is presented for illustrative purposes only. Although the 
system considered and its constituent components are based on real-life infrastructures, and 
applicable seismic hazard and structural response models have been used, the results are not 
intended as a practical recommendation for the management of these infrastructures. The 
decision-making problem discussed here, including the costs of management options and the 
costs of sensing efforts, does not necessarily reflect the true actions and costs associated with the 
management of these infrastructures. Furthermore, network effects, i.e., the interdependent 
effects of the closures of components of the transportation system on the capabilities of the 
system as a whole, are ignored in this problem to allow for efficient VoI computation using the 
decomposable loss assumption, as discussed in Section 5.2. For these reasons, a more complete 
and focused analysis should be performed before any of these recommendations can be applied 
to support management of infrastructures in the San Francisco Bay area. 

9.1. Seismic Risk Model 
This section outlines the probabilistic model used to describe seismic risk in the San Francisco 
Bay area and the responses of structures, as well as the monitoring of these variables and the 
decision-making problem defined for this system. The basic characteristics of the seismic risk are 
defined using model parameter and scenario variables 𝑊𝑊, as introduced in Section 2.1.1.1. A 
seismic scenario, i.e., a specific earthquake event, is parameterized (for the purposes of this 
application) by its magnitude, denoted 𝑤𝑤𝑚𝑚 (a scalar quantity), and epicenter location, denoted 𝐰𝐰𝑒𝑒 
(a vector of coordinates). Earthquakes affecting multiple faults and/or those with distributed 
epicenters are not considered. Both of these are treated as random variables defining the 
scenario, i.e., 𝐰𝐰 = {𝑤𝑤𝑚𝑚,𝐰𝐰𝑒𝑒}. The prior distribution p𝑊𝑊 over these scenario parameters is a 
homogeneous Poisson process model, based on the model outlined by Anagnos and Kiremidjian 
(1988) and using information for the San Francisco Bay area as provided by Field et al. (2009). 
First, this model assumes independence between the magnitude and epicenter variables, i.e., 
p𝑊𝑊(𝐰𝐰) = p𝑊𝑊𝑖𝑖(𝑤𝑤𝑚𝑚)p𝑊𝑊𝑒𝑒(𝐰𝐰𝑒𝑒). The distribution over the epicenter locations p𝑊𝑊𝑒𝑒 is defined using 
a uniform distribution over locations along the main fault lines in the San Francisco Bay area, 
weighted by the relative probabilities of earthquakes originating from each fault, as in Field et al. 
(2009). The distribution over magnitudes p𝑊𝑊𝑖𝑖 is defined using the recurrence rates of 
earthquakes of different magnitudes. That is, an earthquake with magnitude 𝑤𝑤𝑚𝑚 or greater will 
occur in the regional at an annual rate Λ(𝑤𝑤𝑚𝑚). For this example, a lower bound of 𝑤𝑤𝑚𝑚 = 3 and 
an upper bound of 𝑤𝑤𝑚𝑚 = 8.4 are used, following Field et al. (2009). These recurrence rates can 
be used to define a truncated exponential distribution for the probability of an earthquake having 
a specific magnitude within this range, following the Gutenberg-Richter law (Gutenberg and 
Richter, 1954). Finally, as discussed in Section 2.1.1.1, these parameters are assumed to be 
known to any decision-maker without the need to infer them through sensing. Practically, this 

 - 134 - 
 



assumption is reasonable, as earthquake information is determined with high accuracy in the 
aftermath of an event by existing monitoring systems operated by the USGS, and this 
information would then be available to the decision-makers.  

Conditional to the earthquake magnitude and epicenter location, the impact of this event on 
infrastructure is defined following Equation 2-2. This impact is quantified through two sets of 
random variables: the demands placed on the components of the system by the seismic event, 
denoted as 𝐝𝐝, and the capacities of these components with respect to this demand, denoted as 𝐜𝐜. 
Demands are defined in terms of the peak ground acceleration at the component locations, using 
ground motion attenuation equations developed by Boore and Atkinson, as presented by Douglas 
(2011). In this model, ground accelerations are log-normal random variables whose parameters 
are functions of the distance to the epicenter location and the earthquake’s magnitude, as well as 
region-specific soil properties. However, as discussed in Section 3.3, under the logarithm 
transformation these accelerations can be described using a multivariate Gaussian distribution. 
Correlations between demands at different locations are assumed to be given by an isotropic 
squared-exponential covariance function, as in Equation 6-3, with a length scale parameter of 
𝜆𝜆 = 10 km. Similar models for correlation of earthquake acceleration are used by, e.g., Bensi et 
al. (2015). Although more advanced models for spectral acceleration correlations exist (e.g., 
Loth and Baker, 2013), this simplified model is applied for illustrative purposes. Seismic 
capacities are also modeled as log-normal random variables, using the log-normal fragility 
curves defined for various types of infrastructure components in the Hazus-MH software (2013). 
Correlations between capacity variables for different components are assumed to be higher for 
components with a similar overall typology, i.e., components that share similar structural 
characteristics, materials, or designs. Recent work has begun to investigate these capacity 
correlations for reinforced concrete structures under seismic risk using dynamic structural 
models (Zelaschi et al., 2017). This work provides support for the idea that bridge capacities are 
correlated between components of a similar typology, although identifying an appropriate model 
for this correlation is still an open area of research. Therefore, in this example, values of the 
correlation coefficients between various component types are set using engineering judgement, 
with the constraint that the resulting covariance matrix is positive semi-definite. These assumed 
correlation coefficients are listed in Appendix C for reference.  

In all, 𝑛𝑛 = 27 components are considered in this example, corresponding to major bridges and 
tunnels in the San Francisco Bay area (these are listed in Appendix C for reference). As 
discussed, the random field variables consist of the log-capacity and log-demand variables, and 
so the vector of these variables is: 

 𝐟𝐟 = �log(𝐜𝐜)
log(𝐝𝐝)�  ~ 𝒩𝒩��

𝛍𝛍𝑐𝑐
𝛍𝛍𝑑𝑑|𝐰𝐰

� , �
𝚺𝚺𝑐𝑐 𝟎𝟎
𝟎𝟎 𝚺𝚺𝑑𝑑|𝐰𝐰

�� (9-1) 

Note that the mean and covariance of the log-demand variables are functions of the seismic 
scenario parameters, while those for the log-capacity are not. Limit-state variables are defined 
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for each component following Equation 3-11, with 𝚵𝚵𝐺𝐺 = [𝐈𝐈 −𝐈𝐈] and 𝐠𝐠0 = 𝟎𝟎, i.e., the limit-state 
variables are the differences between the log-capacity and log-demand for that component. 
Likewise, component failures are considered to occur whenever demand exceeds capacity, with 
binary state variables being defined for each component as in Equation 3-14. Note that a failure 
state for a component refers not necessarily to an immediate structural collapse (which might be 
readily observed without the need for sensors) but to severe damage to critical elements of the 
structure, which would lead to such a collapse if the structure were kept in service. That is, a 
“failure” refers in this case to the structural integrity of a bridge or tunnel being severely 
compromised, but in a way that is not readily apparent to casual observation.  

Measurements of the capacities of each component and/or the ground accelerations at their 
locations are assumed to be possible, with measurements of the log-transformed quantities 
defined as in Equation 3-5. That is, measurements are assumed to have multiplicative log-normal 
noise (with median value 1 and coefficient of variation 0.2, independent between measurements) 
such that the transformed measurement noise is additive and Gaussian (with zero mean). 
Potential measurements are also assigned a cost, consisting of the installation and ongoing 
monitoring and maintenance costs for the sensors in question. It is assumed that measurements of 
a component’s capacity, which might correspond to frequent in-depth inspections or the 
deployment of an SHM system, have a higher cost of $46M over the lifetime of the sensors 
(which represents a recurring annual cost discounted to present value at a 5% rate) than 
measurements of the demand, which are estimated at $23M over the lifetime of the sensors. A 
fixed sensing budget of 𝑏𝑏 = $200M is used to constrain the optimization of Equation 2-16. 

To define a decision-making problem for the management of this system, it is assumed that 
binary decisions must be made for each component in the aftermath of an earthquake as to 
whether or not to close each bridge or tunnel to traffic. The option to close the 𝑖𝑖th component 
incurs a certain closure or response cost 𝐶𝐶𝑟𝑟,𝑖𝑖 for the managing agent, corresponding to the service 
level reduction for the transportation system, losses in toll revenues, etc., until appropriate full-
scale inspections and repair efforts can be implemented on the structure. These values are 
roughly estimated for each component considered, with values listed in Appendix C. Note that 
network effects of the service disruption are not considered. If a component is not closed, no cost 
will be incurred unless the earthquake compromised the component’s integrity, in which case a 
high failure cost 𝐶𝐶𝑓𝑓,𝑖𝑖 is incurred for the 𝑖𝑖th component (costs are again listed in Appendix C). 
This problem defines a component-level loss as in Equation 4-15, and therefore a system-level 
loss that is decomposable across components as in Equation 3-1, allowing for efficient evaluation 
of the VoI as discussed in Section 5.2. 

9.1.1. Value of Information in Poisson Processes 
Earthquakes represent extreme events that recur at uncertain intervals. Although seismic risk is 
present at all times (and is assumed to be stationary in time for this example), earthquakes 
themselves are discrete events, which recur at uncertain time intervals. Furthermore, each event 
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is different, with a different earthquake epicenter and magnitude defining a different demand 
field, as discussed previously. Therefore, rather than optimizing sensor placements for a specific 
event, it is necessary to optimize these placements under uncertainty in the parameters of the 
event. Furthermore, rather than computing the VoI of sensor placements for supporting the 
response to any single earthquake event, this metric should be computed taking into account that 
these events will recur over time. Fortunately, rather than needing to resort to a full spatio-
temporal model of the risk and system response as in Chapter 7, the properties of the Poisson 
process model adopted here allows VoI to be computed for this recurring seismic risk in a 
straightforward manner. 

First, to optimize sensor placement under uncertainty in the parameters (i.e., magnitude and 
epicenter) of the scenario that will occur, the VoI for a representative or typical event should be 
evaluated as the expected value of the VoI computed under a specific event parameterized by 𝐰𝐰, 
denoted VoI(𝑌𝑌|𝐰𝐰), across possible values for 𝐰𝐰 described by the prior distribution p𝑊𝑊. That is, 
the VoI provided by measurement scheme 𝑌𝑌 for a typical event is: 

 VoI𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛𝑡𝑡(𝑌𝑌) = 𝔼𝔼𝑊𝑊VoI(𝑌𝑌|𝐰𝐰) (9-2) 

This represents one approach to defining a VoI metric that is robust under uncertainty in 𝑊𝑊. An 
alternative approach is to define the VoI using a worst-case scenario, i.e., to replace the 
expecation over 𝑊𝑊 with a minimization. However, it may be the case that, for each proposed 
sensor placement scheme, a scenario exists where there is no VoI for that scheme, and therefore 
no scheme could optimize this objective. For this reason, the expected value formulation shown 
above is adopted, and a minimization-based alternative formulation is not investigated. 

In practice, the expectation of Equation 9-2 is approximated by drawing a number 𝑛𝑛𝑠𝑠𝑖𝑖𝑚𝑚′′  of 
samples of the parameters from prior distribution p𝑊𝑊 and estimating the VoI of a proposed 
sensing scheme 𝑌𝑌 using these samples as:  

 VoI𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛𝑡𝑡(𝑌𝑌) ≈ 1
𝑛𝑛𝑠𝑠𝑖𝑖𝑖𝑖
′′  

∑ VoI�𝑌𝑌|𝐰𝐰(𝑗𝑗)�𝑛𝑛𝑠𝑠𝑖𝑖𝑖𝑖
′′  

𝑗𝑗=1 �𝐰𝐰(𝑗𝑗)�
𝑗𝑗=1
𝑛𝑛𝑠𝑠𝑖𝑖𝑖𝑖
′′

 ~ p𝑊𝑊 (9-3) 

where 𝑛𝑛𝑠𝑠𝑖𝑖𝑚𝑚′′ = 1000 in this example. This number of samples represents a trade-off between 
stability of the approximation and computational speed. The corresponding coefficient of 
variation in the estimates of the VoI was empirically determined to be about 5%. The variance of 
this approximation can have an impact on the optimal sensor placement scheme selected since, if 
this variance is high with respect to the VoI, it will no longer be clear which sensor placement 
scheme is optimal. However, since the same set of scenario samples is used to compute the VoI 
for each proposed sensor placement scheme, this impact is minimal. 

Second, in order to account for the recurrance of the risk event, the single event VoI above must 
be transformed into a discounted cumulative VoI for the measurement scheme over the lifetime 
of the system. Under the Poisson process model assumptions used here, this can be done by 
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using a simple multiplying factor, following Takahashi et al. (2004) and Pozzi and Der 
Kiureghian (2011a): 

 VoI𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐𝑑𝑑𝑑𝑑𝑛𝑛𝑡𝑡𝑒𝑒𝑑𝑑 𝑐𝑐𝑑𝑑𝑚𝑚𝑑𝑑𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑣𝑣𝑒𝑒(𝑌𝑌) = Λ𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
1−𝛾𝛾𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎

VoI𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛𝑡𝑡(𝑌𝑌) (9-4) 

where Λ𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑𝑎𝑎𝑐𝑐 is the basic Poisson process rate (in this case, Λ𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑𝑎𝑎𝑐𝑐 = Λ(3), i.e., the annual 
recurrance rate of earthquakes magnitude 3 and greater) and 𝛾𝛾𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑𝑎𝑎𝑐𝑐 is the annual discounting 
factor used to evaluate the present value of future costs (in this case, a 5% rate is used, i.e., 
𝛾𝛾𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑𝑎𝑎𝑐𝑐 = 0.95). This formulation can be understood by noting that, in an expected sense, the 
VoI for a single event is realized whenever an event occurs, and therefore the expected VoI per 
year is the product of this single event VoI and the expected number of events per year. This 
discounted cumulative VoI is the benefit that is traded off against the lifetime sensing cost (again 
discounted to its present value) in determining the optimal sensor set, as in Eqution 4-12. 

The formulation of Equation 9-4 relies on several assumptions on the nature of the seismic risk 
and the decision-making conducted to manage the system in response to this risk. First, this 
formulation assumes an infinite time horizon, although this might be used to reasonably 
approximate the VoI for finite horizons, especially if the discount rate for future events is 
relatively high. Second, this assumes that the system is unchanging over time, i.e., that the same 
probabilistic model will describe each event and the responses of the components, the same 
sensors are in place for monitoring the system, and the same management actions will be 
available with the same costs. In practice, the configuration of an infrastructure system, the risks 
to which it is subjected, and the ways in which it is monitored and managed will change over 
time. Furthermore, if components are damaged in one event, they may be repaired to different 
standards or entirely replaced before the next event, changing the characteristics of the system. 
However, with an appropriate discount rate, benefits accrued in the near-future when the system 
and its management remain roughly the same can be emphasized. Third, in a related point, 
independence between successive events is assumed. However, in practice, phenomena such as 
aftershocks or the possibility of multi-fault ruptures alter the probabilistic character of the risk in 
the aftermath of an earthquake. Furthermore, since the same components are subjected to 
successive events, their responses will be coupled. Although the assumption of complete 
independence between subsequent events is questionable, the benefits in terms of simple 
evaluation of life-cycle VoI of a monitoring scheme are assumed to be sufficient to justify this 
approximation, and are therefore employed in this example application. 

9.2. Application to San Francisco Bay Area 
Based on the infrastructure system and decision-making problem described above, optimal 
sensor placement is performed. In addition to evaluating the VoI metric for this problem, the 
conditional entropy metric, using the sum of marginal component state variable entropies as in 
Section 4.4.3.4, is used. This is done in order to provide a point of comparison for the placements 
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via the VoI metric, and also to compare the performance of these alternative metrics in this 
problem. 

 

Figure 9-1: Proposed sensor placements based on the conditional entropy metric. Background 
image from www.maps.google.com. 

Figure 9-1 shows the measurements selected by greedy optimization using the conditional 
entropy metric, which are listed for reference in Table 9-A, based on their order of selection. Six 
monitoring systems are placed (two for measuring capacity and four for measuring demand) 
before the allocated budget is exhausted. All demand measurements are in the upper San 
Francisco Bay area, where the concentration of infrastructure components considered is highest. 
This allows these demand measurements to reduce the posterior uncertainty in the demand for 
many of these nearby components, and therefore reduce posterior uncertainty in their states. 
Capacity measurements are prescribed for one bridge (the western span of the Oakland Bay 
Bridge, a steel suspension bridge) and one tunnel (the Northbrae Tunnel, a cut-and-cover tunnel). 
The capacities of these components are correlated with those of many other similar bridges (most 
bridges considered are steel) and tunnels (most tunnels considered are cut-and-cover), and so 
measurements of these components’ capacities will contribute to reducing the posterior 
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uncertainties in the capacity variables of many components, and therefore in reducing the 
uncertainties in their states. Qualitatively, this is consistent with the conditional entropy metric’s 
general goal of reducing uncertainty. 

Table 9-A: Sensor placements by the conditional entropy metric, in order of greedy selection. 

 Component Name Measure 
1 Golden Gate Bridge Demand 
2 Northbrae Tunnel Capacity 
3 Northbrae Tunnel Demand 
4 Park Street Bridge Demand 
5 San Francisco Oakland Bay Bridge (West Span) Capacity 
6 San Francisco Oakland Bay Bridge (West Span) Demand 

 

 

Figure 9-2: Proposed sensor placements based on the VoI metric. Background image from 
www.maps.google.com. 

Figure 9-2 illustrates the sensor placements obtained after optimization using the VoI metric, 
with the selected measurements listed in Table 9-B. Here, five measurements are recommended, 
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two to measure capacity and three to measure demand. Rather that meeting the budgetary 
constraint, no additional sensors are placed because, beyond this point, the benefits of adding 
sensors (as measured by the VoI metric) are less than the costs of the sensors.  

Demand measurements are again concentrated in the upper San Francisco Bay area, but fewer 
measurements are indicated. Capacity measurements are again proposed for one bridge (the 
Golden Gate Bridge) and one tunnel (the Caldecott tunnel, a multi-bore highway tunnel). These 
components are again similar to many other components in the system, but represent more 
valuable components, with higher failure costs than comparable components selected under the 
conditional entropy metric. This is the result of the inclusion of the economic factors of 
component management through the decision-making problem, as captured by the VoI metric.  

Table 9-B: Sensor placements by the VoI metric, in order of greedy selection. 

 Component Name Measure 
1 Caldecott Tunnel Capacity 
2 Caldecott Tunnel Demand 
3 Golden Gate Bridge Capacity 
4 San Francisco Oakland Bay Bridge (West Span) Demand 
5 Colden Gate Bridge Demand 

 

 

Figure 9-3: Net VoI versus number of sensors for sensing schemes optimized via the conditional 
entropy and VoI metrics, and for an example of random sensor placement. 

As a quantitative comparison of these metrics, Figure 9-3 indicates the net VoI versus number of 
sensors for different measurement schemes, optimized greedily using the VoI or conditional 
entropy metrics, or using measurements selected at random. The scheme optimized by the VoI 
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metric clearly dominates schemes selected by other metrics. However, sensor placements 
selected using the conditional entropy metric outperform random selections, indicating that this 
metric might be used as a proxy for VoI in this case. Also note that, for random sensor 
placements, the net benefit of the sensing schemes is negative here, indicating that an 
uninformed approach to sensor placement for managing this system is inappropriate. 

9.2.1. Value of Information Density 

As a further investigation of the behavior of the VoI metric in this problem, the density of VoI 
across scenario parameters (i.e., earthquake magnitudes and epicenter locations) is evaluated for 
the proposed monitoring scheme of Figure 9-2. This density indicates which of these scenarios 
contribute most to the overall VoI of the scheme. A potential application of this investigation is 
to guide an alternative importance-sampling approach to the approximation of Equation 9-2. 

Beginning with the formulation of Equation 9-2, and noting that the scenario parameter 
distribution p𝑊𝑊 factorizes as the product of the distribution over magnitudes p𝑊𝑊𝑖𝑖 and the 
distribution over epicenter locations p𝑊𝑊𝑒𝑒, the expectation over scenario parameters can be treated 
in two parts. The discounted cumulative VoI of Equation 9-4 can therefore be expressed as: 

 VoI𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐𝑑𝑑𝑑𝑑𝑛𝑛𝑡𝑡𝑒𝑒𝑑𝑑 𝑐𝑐𝑑𝑑𝑚𝑚𝑑𝑑𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑣𝑣𝑒𝑒(𝑌𝑌) = �
∫ Ψ𝑌𝑌(𝑤𝑤𝑚𝑚) d𝑤𝑤𝑚𝑚𝑊𝑊𝑖𝑖

∫ Θ𝑌𝑌(𝐰𝐰𝑒𝑒) d𝐰𝐰𝑒𝑒𝑊𝑊𝑒𝑒

 (9-5) 

where the density of the discounted cumulative VoI with respect to earthquake magnitude, 
averaging over epicenter locations, is: 

 Ψ𝑌𝑌(𝑤𝑤𝑚𝑚) = Λ𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
𝛾𝛾𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎

 p𝑊𝑊𝑖𝑖(𝑤𝑤𝑚𝑚) 𝔼𝔼𝑊𝑊𝑒𝑒VoI(𝑌𝑌|𝐰𝐰)  (9-6) 

and the density of the discounted cumulative VoI with respect to epicenter location, averaging 
over magnitude, is: 

 Θ𝑌𝑌(𝐰𝐰𝑒𝑒) = Λ𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
𝛾𝛾𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎

 p𝑊𝑊𝑒𝑒(𝐰𝐰𝑒𝑒) 𝔼𝔼𝑊𝑊𝑖𝑖VoI(𝑌𝑌|𝐰𝐰) (9-7) 

Figure 9-4 plots the discounted cumulative VoI density with respect to earthquake magnitudes, 
both for the optimal sensor placement scheme depicted in Figure 9-2 as well as for a set 
consisting of all 54 possible measurements considered in this problem (representing the VoPI). 
Also depicted is the probability distribution over the earthquake magnitudes.  
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Figure 9-4: Density of the discounted cumulative VoI over earthquake magnitude for the 
proposed scheme of Figure 9-2 (blue), and for all possible sensors (black). The probability 

density function for earthquake magnitudes is also presented for reference. 

Note that the density of the discounted cumulative VoI is low for both high-magnitude and low-
magnitude events, with density peaking for moderate magnitudes. This can be understood both in 
terms of the destructive power of these earthquakes and their relative frequencies. Low-
magnitude scenarios are common but are less damaging, so probabilities of component failure 
are low, making optimal management decision-making straightforward. VoI is therefore low in 
these scenarios, since additional information has little effect on the decision-making. For high-
magnitude earthquakes, destructive power is high, and so the optimal management actions are 
again straightforward, i.e., to close down bridges and tunnels. VoI density is therefore low again, 
both because of this and because these events are relatively rare. In between these extremes, 
these effects balance out, with moderately common, moderately damaging events having less 
certain management decisions. Discounted cumulative VoI density is therefore highest between 
approximately magnitudes 6.5 and 7. Finally, note that taking the integrals under the curves of 
these figures shows that the optimal monitoring scheme achieves more than half of the VoPI 
while using less than a tenth of the potential measurements.  

Examining the density of the discounted cumulative VoI with respect to epicenter locations, as 
shown in Figure 9-5 (plotting this density per kilometer along the region’s fault lines), epicenter 
locations nearer to the center of the region contribute more heavily to the VoI of the optimal 
sensor network. There are several possible explanations of this result, including the clustering of 
both infrastructure components and sensors in this area. Also, the fault line with the highest 
density also has the highest probability for earthquake occurrence. All of these factors likely 
contribute to the high discounted cumulative VoI density along this fault.  
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Figure 9-5: Density of the discounted cumulative VoI over earthquake epicenter locations for the 
proposed scheme of Figure 9-2. Note that the color scale is logarithmic. Background image from 

www.maps.google.com. 

Finally, note that these results for discounted cumulative VoI density presented here refer only to 
the sensor network configuration presented in Figure 9-2. It is possible that different sensor 
network configurations will exhibit different VoI density distributions. The densities for the 
conditional entropy metric may appear different as well. Also note that these are densities for the 
VoI, not the expected loss due to these earthquakes. Scenarios which cause the highest loss to the 
system may not necessarily correspond to those with the highest VoI, since the latter measures 
the reduction in expected loss, not its magnitude. 
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Chapter 10  

Urban Heat Risk Prediction and Response 

This chapter discusses the application of the sensor placement methodology to the problem of 
temperature prediction in urban areas, to support decision-making on heat advisory issuance. 
Extreme high temperatures cause numerous direct (e.g., heat exhaustion, heatstroke) and indirect 
impacts (e.g., increased energy consumption) on human populations. These impacts are 
especially severe in urban areas, where a combination of higher temperatures due to the urban 
heat island effect and higher vulnerability due to urban demographics leads to a higher overall 
risk from extreme temperatures. To mitigate this risk, municipalities and their residents have 
several options, such as the issuance of targeted heat advisories and investments in green 
infrastructure and/or albedo reduction to reduce temperatures. To guide these mitigation 
activities, a comprehensive model of urban temperatures, supported by information for model 
improvement and updating, is necessary. For this reason, the sensor placement methodology 
developed here is applied to this problem. Further background information on heat risk in urban 
areas, urban microclimates, temperature prediction, and the options for mitigating extreme heat 
risk is provided in Section 10.1. 

In this chapter, the random field being studied is the temperature (specifically, the surface 
temperature) in an urban area. As a first step, a spatio-temporal Gaussian probabilistic random 
field model is developed for this temperature. The characteristics and development of this model 
are presented in Section 10.2. Using this model, sensor placement is performed using the VoI 
metric, along with other metrics for comparative purposes. Various types of sensing activities are 
considered, from more traditional “point measurements” of temperature, e.g., thermometer 
readings, to pseudo-measurements of field components obtained from temperature forecasts and 
other sources. To define a decision-making problem in this context, a model for heat advisory 
issuance is developed that defines the components, states, actions, and losses considered in this 
problem. Details of observation activities and sensor placement metrics as applied in this 
problem are presented in Section 10.3. 

In Section 10.4, the random field temperature model and various metrics are used to determine 
sensor placements for urban temperature monitoring. To illustrate this, a case study application is 
presented for Pittsburgh, Pennsylvania. Various observation types and prediction lead times are 
investigated, and the effects of these factors on the VoI provided by measurements are 
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investigated. Furthermore, the comparative performances of various metrics are investigated, 
illustrating how uncertainty reduction is modeled under these metrics.  

As with Chapter 9, this chapter provides an illustrative development of a sensor placement 
optimization problem, handled under the methodology presented in this work. It begins with the 
development and calibration of a probabilistic model for the underlying random quantities 
affecting system performance. It then introduces a decision-making problem for the management 
of this system, i.e., a problem of heat-advisory issuance for avoiding the negative impacts of 
extreme heat. Finally, taking this model and decision-making problem, it illustrates the 
application of various sensor placement metrics, including VoI, to addressing temperature 
measurement for the representative urban area of Pittsburgh. The specific modeling assumptions 
adopted in this chapter do not necessarily reflect the priorities or objectives of relevant decision-
makers and stakeholders, and therefore the results presented here should not be interpreted as a 
prescription for heat risk monitoring or mitigation in this city.  

Results presented in this chapter were developed under the auspices of the Surface Heat 
Assessment for Developed Environments (SHADE) project. This work was funded in part by the 
Dowd Fellowship from the College of Engineering at Carnegie Mellon University. The author 
would like to thank Philip and Marsha Dowd for their financial support and encouragement. This 
project was also partially supported by the Metro21 Initiative at Carnegie Mellon University. The 
goal of this initiative is to research, develop, and deploy novel solutions to 21st-century problems 
facing metropolitan areas. 

10.1. Background on Urban Heat Risk and Response 
Recent extreme heat waves across North America, Europe, and Australia, and their adverse 
health impacts (Andrews, 1994; Kalkstein and Greene, 1997; Geerts and Linacre, 1999; Davis et 
al., 2003; Robine et al., 2008; Berko et al., 2014; Wells and Klima, 2016) have prompted many 
cities to focus their attention on adaptation, hazard mitigation, and emergency response plans for 
high temperatures (Menne and Matthies, 2009; Parson and Jameson, 2012; New York City Panel 
on Climate Change, 2013; Sustainable DC, 2013; Rhoades et al., 2014). During development and 
implementation of these plans, assessments of current and future temperature risks to the urban 
population can be helpful.  

Average near-surface air temperatures (at 2m above ground level) in the Northeast U.S. are 
expected to increase between 2 and 5°C by 2100 (Melillo et al., 2014). Furthermore, in what is 
known as the urban heat island (UHI) effect, urban air temperatures are on average 1 to 3°C 
warmer than their rural surroundings during daytime (Oke, 1997; Sailor, 2002; US EPA, 2012), 
and up to 12°C warmer at night (Oke, 1997). The UHI effect interacts synergistically with heat 
waves to produce extreme heat stresses in urban areas that exceed the simple sum of the two 
effects (Li and Bou-Zeid, 2013). To understand and forecast the associated risks, physical 
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models of urban microclimates have been developed and embedded in larger scale weather and 
climate models.  

One such model is the Princeton Urban Canopy Model (PUCM) (Wang et al., 2013), developed 
as an extension of the National Center for Atmospheric Research’s WRF-ARW (Weather 
Research and Forecasting – Advanced Research WRF) model (Skamarock et al., 2005). The 
PUCM extension incorporates fine resolution representations of urban surface heterogeneity and 
hydrology, significantly improving the urban temperature forecasting over WRF’s default urban 
canopy model (Li and Bou-Zeid, 2014); the combined model is denoted WRF-PUCM. However, 
such deterministic models are computationally intensive, making them difficult to use for short-
term predictions of urban temperatures, where they must be re-run as updated global 
meteorological information is obtained and under a variety of initial conditions to reflect a range 
of uncertainty (Worley et al., 2011; Lin-Jiong et al., 2012; Sper de Almeida and Bauer, 2012). 
While deterministic models can express uncertainty implicitly through variation of the model 
inputs among multiple runs, probabilistic modeling explicitly represents this uncertainty; for this 
reason, a Gaussian process probabilistic model of temperatures is developed for this application. 
For further background on Gaussian processes, the reader is referred to Section 3.3, as well as to 
Rasmussen and Williams (2006). This spatio-temporal probabilistic temperature model, outlined 
in Section 10.2, is used to quantify the hazard posed by extreme heat in an urban area. 

It is well established that increasing temperatures exacerbate both heat-related and air-quality-
related illnesses and deaths (e.g., Clougherty and Kubzansky, 2009), so in addition to modeling 
the temperature hazard, it is important to understand how interactions between hazard, exposure, 
and vulnerability to high temperature create risk. These interactions are typically quantified as a 
product of terms relating to the hazard posed by the risk factor, and the vulnerability and 
exposure of the population (e.g., Crichton, 1999). This approach has been used in the literature to 
define extreme heat risk using various metrics for hazard, vulnerability, and exposure (e.g., 
Grower et al., 2011; Buscail et al., 2012; Aubrecht and Özceylan, 2013). In cases where 
exposure is combined with vulnerability, this combined metric is multiplied with the hazard 
metric to quantify risk. 

Vulnerability indicates a population’s sensitivity to extreme heat, and is usually quantified in 
terms of mortality (e.g., Doyon et al., 2008). The relative risk of mortality due to extreme heat 
begins to increase at approximately 27°C (e.g., Curriero et al., 2002). There is typically a 
positive correlation between temperature and non-accidental hospital admissions (e.g., Hondula 
and Barnett, 2014), indicating an increase in both mortality and morbidity with higher 
temperatures. Many factors impacting vulnerability have been identified in the literature, e.g., 
age, socio-economic status, and whether individuals live alone (e.g., Brunner, 2001; Hajat et al., 
2006; Bosello et al., 2007; Stafoggia et al., 2008; Rosenthal et al., 2014). Additional literature 
has used factor analysis to identify which factors contribute most to the variability of the set of 
all factors within a vulnerability index (e.g., Reid et al., 2009; Harlan et al., 2012; Aubrecht and 
Özceylan, 2013; Bradford et al., 2015).  

 - 147 - 
 



Exposure of populations to extreme heat is difficult to quantify, both due to the movement of 
people throughout the day and to factors such as access to air conditioning, which are sometimes 
considered as influencing exposure (Grower et al., 2011). Because of this, previous work has 
used population thresholds as a proxy for exposure, defining a binary exposure category (e.g., 
Buscail et al., 2012) or has analyzed exposure and vulnerability as a combined metric (e.g., 
Aubrecht and Özceylan, 2013).  

Vulnerability of the population to extreme heat is not a function of the weather and, while 
exposure might be altered during extreme heat waves (e.g., the population prefers to remain 
indoors), it is also not strongly dependent on meteorological conditions. On the other hand, the 
hazard component of the risk is a direct function of urban temperatures and fluctuates 
significantly in space and over time. Therefore, risk forecasting to trigger heat advisories and 
mitigation plans requires accurate predictive hazard models or indicators. Extreme heat hazard 
has been assessed in a variety of ways, including using the average near-surface air temperature 
(e.g., Grower et al., 2011), the surface temperature at a specific time during a heat wave obtained 
from satellite data (e.g., Buscail et al., 2012; Harlan et al., 2012), or the total number of heat 
wave days in a given year (e.g., Aubrecht and Özceylan, 2013). In this chapter, fine resolution 
simulations of historical extreme heat events are used to develop a probabilistic surrogate 
Gaussian process model of spatio-temporal heat hazard in an urban area, as discussed above. 
This model captures the properties of the UHI effect and quantifies the variability in surface 
temperatures around the prior model prediction. Using such a model, various hazard statistics 
(e.g., average temperatures, 95th percentile temperatures, expected frequency of exceeding a 
certain threshold) might be extracted. However, the complete probabilistic model provides a full 
characterization of the heat hazard; extracting statistics from this model would mean that only a 
portion of the model information is being used to characterize the hazard. 

The practical aim of the work presented in this chapter is to support the various strategies 
available to urban decision-makers to mitigate the risks posed by extreme heat events. These 
include short-term response strategies, such as the issuance of heat advisories warning people to 
remain in cooler areas (e.g., Grower et al., 2011) or the opening of public buildings as cooling 
centers where individuals may seek shelter, thereby reducing exposure to extreme heat (e.g., 
Kisner et al., 2012). Long-term mitigation strategies are also possible, including the use of cool 
or green roofs (Li et al., 2014) or other green infrastructures (US EPA, 2012) to reduce the 
intensity of the UHI effect, thereby reducing the extreme heat hazard of future events. Various 
risk mitigation and response strategies have been proposed for urban areas in the United States 
and abroad (Menne and Matthies, 2009; Parson and Jameson, 2012; New York City Panel on 
Climate Change, 2013; Sustainable DC, 2013; Rhoades et al., 2014). Actions responding to 
extreme heat risk have intrinsic costs (relating to societal disruption and increased energy 
consumption) and benefits (reduced mortality and morbidity due to heat exposure). These actions 
can also have varying effectiveness, e.g., lack of public awareness of what to do in response to 
heat advisories can limit their effectiveness (Wells and Klima, 2016). For these reasons, the VoI 
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metric is applied in this chapter to address the problem of temperature monitoring to support heat 
risk mitigation decision-making in urban areas. 

10.2. Probabilistic Temperature Modeling 
This section describes the definition, calibration, and validation of a spatio-temporal Gaussian 
random field model for urban temperatures, as well as what measurements for model updating 
are considered, and how these measures are processed. For model validation, two case-study 
cities are investigated: New York City, New York, and Pittsburgh, Pennsylvania. 

10.2.1. Definition 
The random temperature field is first decomposed into three elements. Each element constitutes a 
separate random field, and each is described using a Gaussian process random field model. 
Section 10.2.1.1 provides a description (using standard meteorological notation) of the 
temperature decomposition. Sections 10.2.1.2 through 10.2.1.4 discuss the specific models 
developed for the global average, cyclic pattern, and residual elements of the temperature 
respectively. In Section 10.2.1.5, these models are combined into the overall Gaussian process 
temperature model. 

10.2.1.1. Temperature decomposition 

Given a location 𝐱𝐱 and a time 𝑡𝑡, let the spatio-temporal field of surface temperature over a 
specified domain (in degrees Celsius) be denoted by T(𝐱𝐱, 𝑡𝑡). This temperature field is 
decomposed as: 

 T(𝐱𝐱, 𝑡𝑡) = T0(𝑡𝑡) + T′(𝐱𝐱, 𝑡𝑡) (10-1) 

where T0(𝑡𝑡) is the mean surface temperature over the domain (i.e., over all 𝐱𝐱 ∈ 𝑋𝑋, for each time 
𝑡𝑡 ∈ 𝜏𝜏) and T′(𝐱𝐱, 𝑡𝑡) is the perturbation from this value (note that the expected value of this 
perturbation over 𝐱𝐱 is zero at each time 𝑡𝑡). Given this formulation, T0(𝑡𝑡) can be interpreted as the 
average temperature over a modeled region of interest, e.g., the average city-wide temperature as 
a function of time.  

The perturbation is further decomposed as: 

 T′(𝐱𝐱, 𝑡𝑡) = T1(𝐱𝐱, 𝑡𝑡) + T′′(𝐱𝐱, 𝑡𝑡) (10-2) 

where T1(𝐱𝐱, 𝑡𝑡) is the spatially and temporally varying temperature pattern at location 𝐱𝐱 and at 
time 𝑡𝑡. This pattern is defined to be cyclic, recurring at a fixed time interval Δ𝑡𝑡, i.e., T1(𝐱𝐱, 𝑡𝑡 +
𝑞𝑞Δ𝑡𝑡) = T1(𝐱𝐱, 𝑡𝑡) for any integer 𝑞𝑞. A cycle length of Δ𝑡𝑡 = 24 hours is used, capturing a daily 
cyclic component of the spatial distribution of the temperature perturbation. In the context of 
urban temperatures, these distributions capture the UHI effect as it varies across space and 
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throughout the day. Depending on the application, additional terms may be added to include 
other cyclic temperature patterns, e.g., seasonal patterns. Finally, T′′(𝐱𝐱, 𝑡𝑡) is the temperature 
residual, which captures the variability in the temperature that is not described by either T0(𝑡𝑡) or 
T1(𝐱𝐱, 𝑡𝑡). The origins of T′′(𝐱𝐱, 𝑡𝑡) are stochastic and can be traced to various physical processes 
such as anthropogenic heat emissions (from cars or heating/cooling systems) or the influence of 
wind patterns and clouds on surface temperatures. 

Combining Equations 10-1 and 10-2 above yields the full temperature decomposition: 

 T(𝐱𝐱, 𝑡𝑡) = T0(𝑡𝑡) + T1(𝐱𝐱, 𝑡𝑡) + T′′(𝐱𝐱, 𝑡𝑡) (10-3) 

10.2.1.2. Global mean temperature 

The global mean of the temperature T0(𝑡𝑡) for the region at time 𝑡𝑡 is modeled as: 

 T0(𝑡𝑡) ~ 𝒢𝒢𝒢𝒢 �𝜇𝜇𝑇𝑇0 , k𝑇𝑇0�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗�� (10-4) 

where 𝜇𝜇𝑇𝑇0 denotes the expected mean temperature in the region over time and k𝑇𝑇0�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� models 
the temporal covariance in these temperatures. The average 𝜇𝜇𝑇𝑇0 is estimated from summertime 
temperature records simulated by the WRF-PUCM model as training data for a region (as 
discussed in Section 10.2.3.2). This value will in fact vary seasonally and over longer time 
horizons due to climate change. However, as this model is used for predictions over periods of 
several hours, variation in this term is assumed to be negligible. 

A covariance function with a combined exponential and periodic correlation structure is used to 
model the daily cyclic variations in global temperatures. This function is: 

 k𝑇𝑇0�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� = 𝜎𝜎𝑇𝑇0
2 �𝛼𝛼𝑇𝑇0 exp �−

�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�
𝜆𝜆𝑇𝑇0

� + �1 − 𝛼𝛼𝑇𝑇0� cos �2𝜋𝜋
�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�
Δ𝑡𝑡

�� (10-5) 

This function models the decay in correlation between the average temperatures at two times (𝑡𝑡𝑖𝑖 
and 𝑡𝑡𝑗𝑗) as the absolute difference between these times, �𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗�, increases. It also models the 
periodic correlation, with a period of Δ𝑡𝑡 = 24 hr, capturing the day/night temperature cycle. The 
parameter 𝜆𝜆𝑇𝑇0 is the correlation timescale, 𝜎𝜎𝑇𝑇0 is the marginal standard deviation of the average 
temperature, and 𝛼𝛼𝑇𝑇0 is a weighting coefficient between the two parts of the covariance function 
(i.e., if 𝛼𝛼𝑇𝑇0 = 1, the correlation function is purely exponential, while if 𝛼𝛼𝑇𝑇0 = 0, it is purely 
periodic). The evaluation of these parameters from high-resolution dynamic simulations is 
described in Section 10.2.3.2. 
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10.2.1.3. Cyclic temperature pattern 

The cyclic temperature pattern captures the systematic differences in temperature between 
different parts of a region and the global average temperature at different times of the day. This 
pattern is modeled as a spatio-temporal Gaussian process: 

 T1(𝐱𝐱, 𝑡𝑡) ~ 𝒢𝒢𝒢𝒢 �0, k𝑇𝑇1�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗�� (10-6) 

The expected value of this pattern in space and time is assumed to be zero. There will in fact be 
areas that are systematically above or below the average temperature, e.g., due to the UHI effect 
of the spatial variation of the properties of the urban fabric. However, assuming a prior mean of 
zero allows these patterns to be learned from training data, and thus captured in the posterior 
mean field of the cyclic temperature pattern. 

The covariance function is further assumed to be separable into a spatial and a temporal 
covariance: 

 k𝑇𝑇1�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖 , 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗� = 𝜎𝜎𝑇𝑇1
2 k𝑇𝑇1,𝑋𝑋�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗�k𝑇𝑇1,𝜏𝜏�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� (10-7) 

The parameter 𝜎𝜎𝑇𝑇1
2  describes the variance of the cyclic pattern. The (normalized) spatial 

covariance is: 

 k𝑇𝑇1,𝑋𝑋�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = 𝛼𝛼𝑇𝑇1,𝑋𝑋 exp �−
�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�
𝜆𝜆𝑇𝑇1,𝑋𝑋,1

� + �1 − 𝛼𝛼𝑇𝑇1,𝑋𝑋� exp �−
�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�
𝜆𝜆𝑇𝑇1,𝑋𝑋,2

� (10-8) 

This represents the weighted average of two exponential correlation functions with different 
length parameters 𝜆𝜆𝑇𝑇1,𝑋𝑋,1 and 𝜆𝜆𝑇𝑇1,𝑋𝑋,2, with weighting coefficient 𝛼𝛼𝑇𝑇1,𝑋𝑋. This mixture of two 
functions was found to perform the best in capturing the empirical correlation structure, as 
described in Section 10.2.3.3, with the fewest parameters. 

The (normalized) temporal covariance is: 

 k𝑇𝑇1,𝜏𝜏�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� = �1 − 𝛼𝛼𝑇𝑇1,𝜏𝜏� exp�−
�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�cyl
𝜆𝜆𝑇𝑇1,𝜏𝜏

� + 𝛼𝛼𝑇𝑇1,𝜏𝜏 (10-9) 

where �𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗�cyl denotes the cyclic time duration between 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑗𝑗: 

 �𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗�cyl = min��𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗� mod Δ𝑡𝑡,Δ𝑡𝑡 − �𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗� mod Δ𝑡𝑡� (10-10) 

where Δ𝑡𝑡 = 24 hr to describe a daily cycle. For example, the cyclic time between 8PM and 4AM 
is 8 hr. The temporal covariance therefore reflects an exponential correlation applied to a 
transformation of the temporal domain to give the covariance a cyclic property. The use of this 
cyclic exponential model, rather than a sinusoidal model as in Equation 10-5, better matches the 
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empirical correlation structure of the cyclic temperature patterns, as discussed in Section 
10.2.3.3. 

Note that the model for temporal covariance of these patterns does not include a continuous 
decay, as does the model for T0. This encodes the assumption that these cyclic patterns are 
stationary over time for each part of the day. This assumption allows historical simulation data to 
be used for assessing the spatial distribution of temperatures for future model predictions. 
Changes in land cover, including the deployment of cool or green roofs on buildings, alter the 
UHI pattern of a region, but they can be modeled by fine resolution simulations (Li et al., 2014). 
Therefore, periodic re-calibration of these the cyclic patterns should be conducted to reflect 
changes in land usage and capture the impacts of these changes on the UHI. Alternatively, by 
training these patterns indirectly using a dense network of temperature measurements over the 
region of interest along with the full probabilistic temperature model of Section 10.2.1.5, the 
patterns can be periodically re-calibrated as new data are obtained. 

10.2.1.4. Residual temperature 

The residual temperature field captures all temperature phenomena not included in the global 
average and cyclic pattern models above. This includes the effects of factors such as solar 
irradiation, soil moisture, wind, and cloud cover on surface temperature. The influence of these 
factors is deterministically modeled by WRF-PUCM, at a relatively high computational cost. In 
the probabilistic model, however, the effects of these factors are treated as sources of 
randomness in the temperature field about its expected value at a particular space-time 
coordinate, and this randomness is captured in the residual temperature term T′′(𝐱𝐱, 𝑡𝑡). This term 
is modeled as a Gaussian process: 

 T′′(𝐱𝐱, 𝑡𝑡) ~ 𝒢𝒢𝒢𝒢 �0, k𝑇𝑇′′�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗�� (10-11) 

The mean over space and time of this residual is zero by definition, since any recurring pattern in 
the residual T′(𝐱𝐱, 𝑡𝑡) has been included in the T1(𝐱𝐱, 𝑡𝑡) term. The covariance is again assumed to 
be separable between space and time: 

 k𝑇𝑇′′�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗� = σ𝑇𝑇′′(𝐱𝐱𝑖𝑖)σ𝑇𝑇′′�𝐱𝐱𝑗𝑗�k𝑇𝑇′′,X�𝐱𝐱𝑖𝑖,𝐱𝐱𝑗𝑗�k𝑇𝑇′′,τ�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� (10-12) 

The variance of the residual is modeled as a function of its spatial coordinate, i.e., σ𝑇𝑇′′(𝐱𝐱) 
denotes the standard deviation of the residual field at location 𝐱𝐱. The spatial covariance function 
is the (normalized) exponential covariance: 

 k𝑇𝑇′′,X�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = exp �−
�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�
𝜆𝜆𝑇𝑇′′,𝑋𝑋

� (10-13) 

The temporal covariance function is the weighted average of two exponential functions: 
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 k𝑇𝑇′′,τ�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� = 𝛼𝛼𝑇𝑇′′,τ exp �−
�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�
𝜆𝜆𝑇𝑇′′,τ,1

� + �1 − 𝛼𝛼𝑇𝑇′′,τ� exp �−
�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�
𝜆𝜆𝑇𝑇′′,τ,2

� (10-14) 

This mixture model best captures the empirical correlation of the residual temperature field, as 
discussed in Section 10.2.3.4. 

10.2.1.5. Gaussian process temperature model 

Assuming that the models of the temperature elements described above are mutually 
independent, they can be combined to define a prior Gaussian process model of the temperature 
field as: 

 T(𝐱𝐱, 𝑡𝑡) ~ 𝒢𝒢𝒢𝒢 �𝜇𝜇𝑇𝑇0 , k𝑇𝑇0�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� + k𝑇𝑇1�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗� + k𝑇𝑇′′�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖 , 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗�� (10-15) 

This model allows the definition, for a finite set of locations 𝑋𝑋 and finite time duration 𝜏𝜏, of a 
prior multivariate Gaussian distribution for 𝐓𝐓, the vector of temperatures at of all pairs {𝐱𝐱, 𝑡𝑡} of 
space and time coordinates in sets 𝑋𝑋 and 𝜏𝜏. This distribution is: 

 𝐓𝐓 ~ 𝒩𝒩(𝛍𝛍𝑇𝑇 ,𝚺𝚺𝑇𝑇)  (10-16) 

where 𝛍𝛍𝑇𝑇 is the mean vector and 𝚺𝚺𝑇𝑇 is the covariance matrix. 

10.2.2. Measurements 

Given any observation 𝐲𝐲 of this temperature field (or any of its parts, such as the global mean 
temperature), the prior model of Section 10.2.1.5 can be updated to a posterior model. Three 
types of observations are considered for model updating: measurements of the average 
temperature in the modeling region (obtained as pseudo-measurements from temperature 
forecasts), assessments of the cyclic temperature patterns (obtained by processing simulation 
data on the historical urban microclimate), and local temperature measurements (based on field 
observations). Combining data from these various sources into a single observation vector 𝐲𝐲, the 
prior temperature field model can be updated to a posterior model, and the resulting temperature 
prediction accuracy can be improved. 

10.2.2.1. Global mean temperature measurements 

The Gaussian process model for the global average temperature discussed in Section 10.2.1.2 can 
be used for prediction of future average temperatures based on past data or on future forecasts 
from other sources. Such data are considered to be observations of the global average of 
temperatures in a region, i.e.: 

 y𝑇𝑇0(𝑡𝑡) = 1
𝑛𝑛𝑋𝑋
∑ T(𝐱𝐱, 𝑡𝑡) +𝐱𝐱∈X ϵ𝑇𝑇0(𝑡𝑡) (10-17) 
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Errors in these measurements are denoted ϵ𝑇𝑇0(𝑡𝑡), and are in general modeled as Gaussian 
random variables. Here it is assumed that this error is negligible, i.e., ϵ𝑇𝑇0(𝑡𝑡) = 0 ∀ 𝑡𝑡 ∈ 𝜏𝜏, since 
the average temperatures used for this model are computed from simulated temperature data (as 
discussed in Section 10.2.3.1). However, it should be noted that the use of different simulation 
domain definitions and/or spatial resolutions between the mean temperature observations and the 
Gaussian process model can lead to a systematic bias of these measurements of the global 
average. Such bias can be accounted for in the Gaussian process framework, i.e., by defining the 
joint distribution for ϵ𝑇𝑇0(𝑡𝑡) with correlated noise between measurements at different times.  

Observations of the mean temperature might be physical measurements, obtained by averaging 
many local observations over the region, or pseudo-observations, obtained from coarse 
resolution weather or climate models where the average temperature over the entire region is the 
output of a single cell in the model. In this way, different types of data can be integrated to 
update model predictions. Note that a vector of global mean temperature measurements at a 
finite set of times 𝐲𝐲𝑇𝑇0 can be expressed in the form of Equation 3-5, i.e., that these observations 
are a linear combination of the discretized temperature field 𝐓𝐓 (through appropriate definition of 
𝛀𝛀𝑌𝑌) and vector of observation errors 𝛜𝛜𝑇𝑇0.  

For the application purposes described in this chapter, regional forecasts of the average 
temperature obtained from coarse resolution weather simulations for the region in question are 
processed as pseudo-observations of the global mean, as in Equation 10-17. For example, 
forecasts by the National Weather Service (NWS) made using coarse resolution WRF models 
can be incorporated as pseudo-observations. The result is an updated posterior model for the 
global average temperature with much less variance than the prior model, assuming low error in 
these coarse resolution model predictions. Models of the cyclic temperature patterns and 
residuals are then used to perform statistical downscaling from these coarse resolution 
predictions to improve fine resolution forecasting. 

10.2.2.2. Cyclic temperature pattern measurements 

In determining cyclic temperature patterns, available fine resolution data from historical events 
can provide pseudo-observations for updating the prior model. Such observations are of the 
form: 

 y𝑇𝑇1�𝐱𝐱, 𝑡𝑡cyl� = 1
𝑛𝑛cyl

∑ �T(𝐱𝐱, 𝑡𝑡) − y𝑇𝑇0(𝑡𝑡)�𝑡𝑡∈𝜏𝜏cyl + ϵ𝑇𝑇1�𝐱𝐱, 𝑡𝑡cyl� (10-18) 

where 𝜏𝜏cyl = �𝑡𝑡1, … , 𝑡𝑡𝑛𝑛cyl� is the set of 𝑛𝑛cyl time steps in the data set at the same time of day, 

such that 𝑡𝑡 mod Δ𝑡𝑡 =  𝑡𝑡cyl ∀ 𝑡𝑡 ∈ 𝜏𝜏cyl. That is, these pseudo-observations represent the average 
difference between the temperature field and the global average temperature (measured as in 
Equation 10-17) at a certain time during the diurnal cycle. Again, the error in these 
measurements, ϵ𝑇𝑇1�𝐱𝐱, 𝑡𝑡𝑐𝑐𝑦𝑦𝑐𝑐�, is assumed to be negligible, i.e., ϵ𝑇𝑇1�𝐱𝐱, 𝑡𝑡cyl� = 0 ∀ 𝐱𝐱 ∈ 𝑋𝑋, 𝑡𝑡cyl ∈ 𝜏𝜏cyl. 

 - 154 - 
 



Errors in these measurements resulting from insufficient data or lack of recent simulation results 
can be accounted for with appropriate definition of Gaussian error ϵ𝑇𝑇1�𝐱𝐱, 𝑡𝑡cycle� in these pattern 
measurements. Note again these measurements can be expressed in the form of Equation 3-5 
with an appropriate definition for 𝛀𝛀𝑌𝑌. By conditioning this cyclic pattern on fine resolution 
temperature simulation data, information about the land characteristics of the region and their 
effect on the spatial distribution of temperature is captured by the posterior probabilistic model.  

10.2.2.3. Local temperature measurements 

Direct observations of the local temperature at location 𝐱𝐱 and time 𝑡𝑡 are modeled as: 

 y𝑇𝑇(𝐱𝐱, 𝑡𝑡) = T(𝐱𝐱, 𝑡𝑡) + ϵ𝑇𝑇(𝐱𝐱, 𝑡𝑡) ϵ𝑇𝑇(𝐱𝐱, 𝑡𝑡) ~ 𝒢𝒢𝒢𝒢 �µϵ(𝐱𝐱, 𝑡𝑡), kϵ�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗�� (10-19) 

That is, the measurement is the true local temperature at the time of the measurement, corrupted 
by a measurement error. This error can itself be defined with a Gaussian process model. In this 
chapter, a white-noise model is used, with zero-mean independent measurement error, i.e., 
µϵ(𝐱𝐱, 𝑡𝑡) = 0 and kϵ�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖 , 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑗𝑗𝜎𝜎ϵ2 for any measurement, where 𝛿𝛿𝑖𝑖𝑗𝑗 is the Kronecker delta. 
Note that these measurements are also expressible in the form of Equation 3-5.  

10.2.3. Calibration 

The computational complexity of fine resolution physical models of urban microclimates 
generally precludes their use for fast short-term temperature forecasting. Instead, the outputs of 
these models are used here to train a spatio-temporal probabilistic model, which allows the use of 
relatively fast probabilistic inference methods for temperature prediction, using the 
measurements considered in Section 10.2.2. This section describes the generation of training data 
from fine resolution models for New York City, NY and Pittsburgh, PA, USA and the use of 
these data in calibrating the parameters of the Gaussian process models discussed in Section 
10.2.1. 

In this section, a least-squares curve-fitting approach is used to match the empirical covariance 
derived from statistical analysis of the training data to the parametric forms for the covariance 
functions. Typically, calibration of model parameters is performed using maximum likelihood 
estimation, where the likelihood is computed over the training data set using the Gaussian 
process model with the proposed parameters (Rasmussen and Williams, 2006). However, in the 
application discussed here, calibration of the parameters via this method is computationally 
prohibitive due to the number of parameters involved and for the size of the training data sets 
(including more than 4 million samples each). Furthermore, rather than jointly calibrating all 
parameters, the parameters of each part of the full Gaussian process model are trained separately, 
and these trained models are combined to create the full model, as discussed in Section 10.2.1.5. 
Again, this is done to reduce the computational complexity of the calibration process. In 
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principle, any appropriate method for Gaussian process model calibration can be applied to this 
problem, and these may yield slightly different calibration results than those presented here. 

10.2.3.1. Training data simulation using WRF-PUCM 

To calibrate a probabilistic random field for temperatures, it is first necessary to obtain 
representative spatio-temporal temperature data for the region of interest. Training data 
simulated from the WRF-ARW model with the PUCM extension are used for this purpose. The 
simulations use the North American Land-use Category Dataset (NLCD) 2006 to determine the 
land use type and the surface properties. The boundary conditions that drive the simulations in 
the largest computational domain, as well as the initial conditions, are obtained from the North 
American Regional Reanalysis data at 6 hr intervals. This largest computational domain has a 
horizontal resolution of 9 km, and two additional domains with resolutions of 3 and 1 km are 
embedded therein to refine the grid over the target city. This grid refinement uses only one-way 
coupling: the larger domain provides the boundary conditions to drive the subsequent finer one, 
but the smaller domain does not provide feedback to the coarser one. All domains use 60 vertical 
grid levels, which are centered on either New York City, NY, or Pittsburgh, PA, for each of the 
regions in question.  

The WRF model defaults to the following physical parameterization schemes: (i) the rapid 
radiative transfer model scheme for longwave radiation (Mlawer et al., 1997); (ii) the Dudhia 
scheme (Dudhia, 1989) for shortwave radiation; (iii) the 2D Smagorinsky scheme for horizontal 
diffusion; (iv) the mosaic Noah land surface model for non-urban surfaces; and (v) the 
Mellor−Yamada−Janjic planetary boundary layer scheme (Mellor and Yamada, 1974) along with 
the modified Zilitinkevich relationship for thermal roughness length parameterization (Chen and 
Zhang, 2009). Cumulus parameterization schemes are not used in the simulations since they are 
not needed with the fine resolutions adopted here, as the convective scales are dynamically 
resolved.  

The default single layer urban canopy model (SL-UCM) inside WRF is replaced by the Princeton 
Urban Canopy Model (Wang et al., 2013). The PUCM, akin to SL-UCM, is based on the energy 
exchange framework developed by Kusaka et al. (2001). However, each facet (e.g., wall, roof, or 
road) in the PUCM can be further subdivided into multiple sub-facets. For example, the user can 
specify fractions of white/black/green roofs, brick/concrete walls, and concrete/asphalt/vegetated 
grounds. The multiple sub-facets can be modeled with distinct physical and thermal properties. 
Another important improvement in PUCM is the adoption of more realistic representations for 
hydrological processes, including in-canyon vegetated soils and water storage capacity for 
impervious materials. The PUCM coupled to WRF has been previously tested and produced 
results that better capture the UHI effect compared to the default UCM (Li and Bou-Zeid, 2014). 
The accurate fine-scale representation provided by this model allows the correlation scales of the 
trained Gaussian process model to better reflect the true scale of variation of urban temperatures. 

Apart from replacing the default UCM, the WRF simulations also use a mosaic-based approach 
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(Li and Bou-Zeid, 2014) to compute the surface fluxes as opposed to the dominant category 
method commonly used in the default WRF-ARW model. In the mosaic-based approach, instead 
of fixing a single land use category at each grid point as the dominant category in that grid cell, 
the fluxes from the most common 𝑛𝑛types number (𝑛𝑛types can be varied from 1 to 15 and added as 
an input in the namelist file of WRF) of land use types in that grid cell are solved and then 
fractionally summed to compute the fluxes into the atmosphere. The mosaic approach is 
pertinent for urban modeling as the land use type in most urban areas, even at 1 km grid spacing, 
is highly varied and there might not necessarily be a dominant land type category. In NLCD 
2006, urban areas fall under three categories: low intensity (50% built cover), medium intensity 
(90% built cover) and high intensity (95% built cover). For example, the land use type for a grid 
cell inside the borough of Manhattan is as follows: 39% high intensity urban, 22% medium 
intensity urban, 20% low intensity urban, 10% green cover and 9% water. In the default 
approach, WRF would assume most tiles are high intensity urban. In the mosaic-based approach, 
WRF will solve for all five land use categories and will fractionally add the computed fluxes. 
While the default approach is appropriate for regional scale modeling (36 km - 10 km), the 
mosaic approach is more suited at much finer resolutions focusing on cities where the variability 
length scale of the surface is sharply reduced. The mosaic approach also improves the 
representation of fluxes from various land use categories without the need to further increase the 
model resolution, thereby cutting the computational cost. These modifications have been 
thoroughly tested and validated by Ramamurthy et al. (2015). Again, this fine resolution is 
important to allow the calibrated Gaussian process temperature model to accurately reflect the 
true length-scale of urban temperature variability. 

Using this deterministic temperature model, simulations were conducted of summertime 
temperatures in both New York City and Pittsburgh to obtain data to calibrate and to validate the 
Gaussian process temperature model. A pair of simulations was conducted for each city, one for 
a shorter duration to provide data used to calibrate the Gaussian process model parameters, and 
the other to provide data for model validation, as discussed in Section 10.2.4. Table 10-A 
summarizes the simulation areas, spatial grid scales, start and end dates, durations, and temporal 
resolutions of the simulations. Note that where the calibration and validation periods overlap, the 
same simulation results are obtained.  
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Table 10-A: WRF-PUCM simulation settings. 

Setting  Value (New York) Value (Pittsburgh) 
simulation area [km] 159×159 198×201 

spatial grid spacing [km] 1 1 
calibration period start date  July 15, 2006 June 15, 2012 
calibration period end date  July 21, 2006 June 21, 2012 
calibration period duration [days] 7 7 

calibration period temporal grid spacing [hr] 1 0.5 
validation period start date  July 15, 2006 June 15, 2012 
validation period end date  August 9, 2006 July 13, 2012 
validation period duration [days] 25 29 

validation period temporal grid spacing [hr] 0.5 0.5 
 

Figure 10-1 shows the simulated regions around New York City and Pittsburgh for reference. 
Most major distinctions between rural (green), urban (grey), and water (blue) areas are visible in 
these satellite images. 

 

Figure 10-1: Satellite imagery of the simulation regions for New York City (a) and Pittsburgh 
(b). Satellite images from www.maps.google.com. 

10.2.3.2. Global mean temperature 

Figure 10-2 presents a comparison of the covariance model for the global mean temperature 
T0(𝑡𝑡) from Equation 10-5, calibrated from data simulated for New York City, and the observed 
temporal covariance pattern in the calibration data. The strong cyclic pattern in the correlation 
structure reflects the daily temperature cycle of the data. 
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Figure 10-2: Comparison between the empirically observed temporal correlation of the global 
mean temperature, as computed from simulated temperature data for New York City (dotted 

line), and the calibrated covariance function of Equation 10-5 (solid line). 

For reference, Table 10-B lists the parameters of this calibrated model for New York City and 
for Pittsburgh. Note that the average temperatures 𝜇𝜇𝑇𝑇0 are calibrated for these cities based on 
simulated training data only, i.e., that these represent the average temperatures for these cities 
during a week of July or June, respectively, rather than year-round average temperatures.  

Table 10-B: Calibrated parameters of the Gaussian process model for the global mean 
temperature. 

Parameter Value (New York) Value (Pittsburgh) 
𝜇𝜇𝑇𝑇0  [℃] 31.5 24.5 
𝜎𝜎𝑇𝑇0  [℃] 5.97 6.66 
𝛼𝛼𝑇𝑇0  [ - ] 0.31 0.34 
𝜆𝜆𝑇𝑇0  [hr] 23.7 23.3 

 

Figure 10-3 presents an example of average temperature prediction making use of this model and 
global average temperature data for the simulated temperature record in New York City. Note 
that confidence in the forecast decreases as the prediction lead time increases. However, the daily 
periodicity of the temperature patterns is preserved, due to the cyclic correlation structure. 
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Figure 10-3: Temperature predictions using a Gaussian process model for the global mean 
temperature. The average temperatures before 6/22 are used as training data, and the resulting 
95% confidence bounds on the predictions of future temperatures are shown as the grey area, 

along with the actual temperature record (black line). 

10.2.3.3. Cyclic temperature pattern 

Figure 10-4 compares calibrated covariance functions for the cyclic temperature pattern in space 
from Equation 10-8 and in time from Equation 10-9 to the empirical covariance observed in 
simulated temperature data from New York City, NY. Note that the empirical covariance is 
obtained after removing the global mean temperature T0(𝑡𝑡) from the data. 

 

Figure 10-4: Comparison between the empirically observed spatial (a) and temporal (b) 
correlations of the cyclic temperature pattern, as computed from simulated temperatures for New 

York City (dotted line), and the calibrated covariance functions of Equations 10-8 and 10-9 
(solid line). 
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For reference, Table 10-C lists the parameters of this calibrated model for New York City and 
for Pittsburgh. Note that, although the length-scale parameters 𝜆𝜆𝑇𝑇1,𝑋𝑋,1 and 𝜆𝜆𝑇𝑇1,𝑋𝑋,2 differ by an 
order of magnitude for New York, they are nearly the same for Pittsburgh. This indicates that a 
correlation model with a single decay term (rather than the two decay terms of Equation 10-8) 
would probably be adequate to model the spatial correlation structure for the cyclic temperature 
pattern in Pittsburgh. However, the model of Equation 10-8 is still used here for consistency. 

Table 10-C: Calibrated parameters of the covariance function for the cyclic temperature pattern. 

Parameter  Value (New York) Value (Pittsburgh) 
𝜎𝜎𝑇𝑇1  [℃] 0.44 0.58 

𝛼𝛼𝑇𝑇1,𝑋𝑋  [ - ] 0.8 0.7 
𝜆𝜆𝑇𝑇1,𝑋𝑋,1  [km] 7.0 7.9 
𝜆𝜆𝑇𝑇1,𝑋𝑋,2  [km]  0.5  7.8 
𝛼𝛼𝑇𝑇1,𝜏𝜏  [ - ] −0.3 −1.5 
𝜆𝜆𝑇𝑇1,𝜏𝜏  [hr] 2.8 10.3 

 

 

Figure 10-5: Posterior mean of the cyclic temperature patterns for New York City at local 
midnight (a) and noon (b), conditioned on measurements of these patterns, as in Equation 10-18, 

obtained from the training data set. 

Figure 10-5 shows the trained cyclic patterns in the statistical model, i.e., the posterior mean 
field of the cyclic temperature pattern conditioned on training data, for New York City at local 
midnight and noon. Note that the UHI effect pattern for surface temperatures is more pronounced 
during the day than at night, which is as expected (Oke, 1997). Also note that these patterns are 
not considered to be part of the calibrated model; rather, these represent the mean field of the 
posterior Gaussian process model, conditioned on measurements y𝑇𝑇1 of the WRF-simulated data 
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during the calibration period. As such, these patterns are only considered to be “known” to the 
model if measurements y𝑇𝑇1 are available, as discussed in Section 10.2.4. Otherwise, these 
patterns must be learned from other data sources, i.e., from the local measures y𝑇𝑇 of Equation 
10-19. 

10.2.3.4. Residual temperature 

Figure 10-6 compares the empirical correlations of the residual temperature field for New York 
City and the fitted correlation models. Note that the empirical correlations are obtained after 
removing T0 and T1 from the data. In this case, the observed negative correlation at long distance 
is likely due to the limited domain of the simulation; as the residuals average to zero over space, 
if the residual is above zero in one area, it must be below zero in another. This effect is not 
captured by the form chosen for the covariance function, since it is likely only an outcome of the 
size of the simulation domain. 

 

Figure 10-6: Comparisons between the empirical spatial (a) and temporal (b) correlations in the 
residual temperature fields for New York City, NY (dotted line), compared to the trained 

covariance functions of Equations 10-13 and 10-14 (solid line). 

Calibrated model parameters for both New York City and Pittsburgh are listed in Table 10-D. 

Table 10-D: Calibrated parameters of the covariance function for the residual temperature field. 

Parameter Value (New York) Value (Pittsburgh) 
𝜆𝜆𝑇𝑇′′,𝑋𝑋  [km] 7.25 7.16 
𝛼𝛼𝑇𝑇′′,τ  [ - ] 0.64 0.55 
𝜆𝜆𝑇𝑇′′,τ,1  [hr] 0.6  0.45 
𝜆𝜆𝑇𝑇′′,τ,2  [hr] 9.5 4.1 
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The standard deviation of the residual field is also calibrated from the training data as the mean 
standard error: 

 𝜎𝜎𝑇𝑇′′(𝐱𝐱) = �Var�T(𝐱𝐱, 𝑡𝑡) − y𝑇𝑇0(𝑡𝑡) − y𝑇𝑇1(𝐱𝐱, 𝑡𝑡)� (10-20) 

That is, the standard deviation at location 𝐱𝐱 is estimated as the mean standard error of the sample 
residual temperatures T(𝐱𝐱, 𝑡𝑡) − y𝑇𝑇0(𝑡𝑡) − y𝑇𝑇1(𝐱𝐱, 𝑡𝑡) over the time duration of the training 
simulation data. Note that for this calibration step, local measurement errors ϵ𝑇𝑇(𝐱𝐱, 𝑡𝑡) are ignored 
as they are assumed to be negligible compared to the variance in T′′. 

Figure 10-7a shows the resulting standard deviation field calibrated from training data for New 
York City. Note that the highest variability in temperature occurs to the northwest of the city, in 
the area of Orange County, New York (the green area to the upper left of Figure 10-7a). This 
area is more mountainous than others in the region considered, which may contribute to this 
variability. Coastal areas of New Jersey, Long Island, and Connecticut also appear to have more 
variable temperatures, as compared with the suburban areas surrounding the city. 

 

Figure 10-7: Spatial standard deviation in the residual temperature field for the region of New 
York City, NY (a) and Pittsburgh, PA (b). 

Figure 10-7b shows the spatial distribution of the standard deviation in the residual temperature 
for the region around Pittsburgh. Again, this deviation is higher in the Appalachian Mountains to 
the southeast (the ridges to the lower right of Figure 10-1b) and to the northwest in the vicinity of 
Youngstown, PA (the urban area to the upper left of Figure 10-1b). 
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10.2.4. Validation 
In this section, an assessment is made of the performance of the Gaussian process model for 
temperature prediction. It is assumed that the data simulated by WRF-PUCM for New York City 
and Pittsburgh during the validation period represent the true surface temperature field for those 
areas. The Gaussian process temperature models calibrated using the training data are tested on 
their predictive performance during the validation period (excluding any overlap with the 
training period) for each city. Model testing is performed under four representative use cases for 
the model, as discussed below. 

Case 1: Local temperature measurements y𝑇𝑇(𝐱𝐱, 𝑡𝑡), as in Equation 10-19, are used to update the 
prior model that resulted from the calibration process. For this purpose, a random subset of the 
discrete locations in the region is selected to represent the locations of simulated weather 
stations, i.e., locations where temperature measurements are obtained and used to update the 
model. These temperature measurements are extracted from the WRF-PUCM simulation results 
during the validation period for the selected simulated weather station locations. A small error of 
𝜎𝜎ϵ = 0.02℃ is assumed for these measures, i.e., the local measures are assumed to be very 
accurate. Data collected at all of these stations prior to the current time constitute the 
measurement set 𝑌𝑌, and from this information the posterior temperature prediction 𝐓𝐓|𝐲𝐲 is 
obtained. Unless otherwise indicated, the random subset of locations selected to serve as 
simulated weather stations represents 5% of the discrete locations of the modeled domain, 
corresponding to an average coverage density of one station per 20 km2. Note that, under this 
case, the full training data set simulated by WRF-PUCM is only used to calibrate the model 
parameters; after calibration is complete, only a subset of this data corresponding to the 
simulated weather stations is used to condition the posterior Gaussian process model. 

Case 2: In addition to the local measurements from case 1, global average measurements y𝑇𝑇0(𝑡𝑡), 
as in Equation 10-17, are available for past and future times. Negligible error is assumed in these 
global measurements. This case corresponds with the availability of an accurate deterministic 
predictive model for temperature, e.g., a coarse resolution WRF model for the region operated by 
the NWS, which provides input into the probabilistic model. This global average temperature 
data, together with the local measurements, constitute the measurement set 𝑌𝑌, and from this 
information the posterior temperature prediction 𝐓𝐓|𝐲𝐲 is obtained.  

Case 3: This case includes global average measurements for both past and future, as in case 2, 
but does not include the local measurements of case 1. Instead, measurements of the cyclic 
temperature patterns from the training period are included as observations y𝑇𝑇1(𝐱𝐱, 𝑡𝑡), as in 
Equation 10-18. Negligible error is assumed for these pattern measurements. This case 
corresponds to a scenario where prior runs of a fine resolution model are used to calibrate the 
cyclic temperature patterns for the region, and are combined with real-time runs of a coarse 
resolution predictive weather model that provides the city-wide average temperature. 

Case 4: This is the same as case 3, but also includes the local measurements of case 1. 
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Besides these use cases, two baseline cases are also considered that do not make use of the 
Gaussian process framework. These baselines are provided as examples of methods for 
temperature prediction that do not make use of the statistical properties of the surface 
temperature field as encoded in the Gaussian process model. These baselines are: 

Baseline 1: The global mean temperature T0(𝑡𝑡) at each time is used as an estimate of the 
temperature at each location. This is the same as the use of global average measurements y𝑇𝑇0(𝑡𝑡) 
for both past and future times, since negligible error is assumed in these forecasts. This is 
analogous to current weather forecasting methods where predictions are made for a large spatial 
region and applied for every location within the region. 

Baseline 2: The temperature at any location is assumed to be the temperature measured by the 
nearest weather station. The weather stations in this baseline are the same simulated weather 
stations introduced in case 1. This corresponds to real-life prediction practices in which current 
temperature readings at the nearest weather station are used as a predicted temperature for the 
surrounding area and for the near future. In other words, this baseline case makes use of the same 
input information as test case 1, but does not use the Gaussian model to process this information. 

Table 10-E summarizes these cases and baselines according to what inputs are provided to the 
Gaussian process model in the test cases or what data are used for the baseline cases. The test 
cases listed here are assumed to represent realistic use cases of the model under varying levels of 
information availability, ranging from an “information-poor” scenario with a few local weather 
stations to an “information-rich” scenario with fine resolution training data, accurate forecasts of 
the global average temperature from a coarse resolution model, and data from local weather 
stations. For the baseline cases, two representative scenarios are also considered, corresponding 
to the use of forecasts from a coarse resolution weather model or to measurements from the 
nearest weather station. These are considered to be typical, intuitive methods for temperature 
prediction in urban areas. 

Table 10-E: Test cases for model validation. 

Case y𝑇𝑇0(𝑡𝑡) 

(accurate forecast) 

y𝑇𝑇1(𝐱𝐱, 𝑡𝑡) 

(fine resolution training data) 

y𝑇𝑇(𝐱𝐱, 𝑡𝑡) 

(local measurements) 

1   √ 
2 √  √ 
3 √ √  
4 √ √ √ 

BL-1 √   
BL-2   √ 

 

 - 165 - 
 



10.2.4.1. New York City 

Validation is conducted on a reduced domain of the full model, a 30 by 30 km area around 
Manhattan Island, in order to reduce the computational cost for updating the posterior model for 
the entire domain (a joint Gaussian distribution over more than 25 thousand variables at each 
time step) to a more manageable size (nearly 1 thousand variables at each time step). For all 
cases, 5 days of past local measurement data are used to condition the posterior model, i.e., 5 
days of past data are used for the local measurements y𝑇𝑇(𝐱𝐱, 𝑡𝑡), while measures y𝑇𝑇1(𝐱𝐱, 𝑡𝑡) are 
derived from the training data set only (as the cyclic patterns are assumed not to change over 
time), and measures y𝑇𝑇0(𝑡𝑡) are only needed for the prediction time, since these represent accurate 
forecasts from an external source. This allows the amount of data considered to be reduced, and 
improves the efficiency of the model updating. Truncation of data records is an intuitive solution 
to reducing the computational complexity of the updating problem in this application, since more 
recent temperature measurements will largely “override” these older measurements during the 
updating process. For comparison, while the deterministic WRF-PUCM model takes about 12 
hours to generate one week of simulated temperatures (at the spatial and temporal resolutions 
listed in Table 10-A), the calibrated probabilistic model can be run in two minutes (in Case 3) to 
two hours (in Case 4) to obtain posterior distributions for a week’s worth of temperature fields. 

 

Figure 10-8: Comparison of the temperature record from WRF (black line) for a location on 
Manhattan Island with the 95% confidence interval (grey area) of the posterior model for one-

hour-ahead prediction under use case 4. 

As an example of the output of the model, Figure 10-8 compares the WRF-simulated (actual) 
temperature record at a location on Manhattan Island for a representative day during the 
validation period with the 95% confidence interval of the posterior model at that location. The 
model is updated as described in use case 4, with the nearest local measurement station being 
4 km away. One-hour-ahead predictions are shown in this figure (i.e., the posterior model is 
updated using local measurements taken prior to one hour before the time at which temperature 
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is to be predicted). This demonstrates how the model can provide probabilistic temperature 
estimates for specific locations ahead of time, which quantify the uncertainty in the prediction. 

The predictive performance of the calibrated model is evaluated on the validation data set. 
Prediction is performed using the calibrated prior model, together with a certain set of 
temperature observations, as per the use case, to obtain a posterior model for future temperatures. 
The posterior mean field of the Gaussian process is then used as the temperature field prediction. 
Predictive accuracy is assessed based on the average root mean square error (RMSE) between 
the model’s temperature predictions and the simulated temperature values in the validation data 
across the domain being modeled. The validation data set is divided into 10 subsets, prediction is 
performed under each case for each subset, and the RMSE is averaged across these repetitions. 
Figure 10-9 indicates the results of this assessment. Table 10-F provides a summary of the 
predictive performance of the model for certain lead times. 

 

Figure 10-9: Predictive performance of the probabilistic model for New York City, NY, under 
various use cases. For comparison, the performances of two baseline prediction cases are also 

provided. 

In terms of the test cases, predictive performance improves between cases 1, 2, 3, and 4, as more 
information is included for updating the model, as is expected. For the base cases, performance is 
comparable in the short-term, with zero-lead-time performance of the second baseline slightly 
exceeding that of the first. However, performance of the second baseline is much poorer than 
other models as the forecasting horizon increases and the most recent measures become 
increasingly out-of-date. The first test case, using the same input information as the second 
baseline, performs fairly well in the short-term, but performance also declines with increasing 
forecasting horizon as this information becomes out-of-date. Performance improves slightly at 
about 24 hours prediction lead time, due to cyclic correlation in the global average and 
temperature patterns. For case 2, accurate forecasts of the global average temperature improve 
long-term performance greatly. In the short-term, performance of the second test case exceeds 
that of the first baseline, due to the inclusion of local measurement data. However, as time 
progresses and these local data become outdated, performance of the second test case is 
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comparable to that of the first baseline. The third and fourth cases, due to the inclusion of 
training data for spatial temperature patterns, outperform the first baseline, with the fourth case 
outperforming the third in the short-term due to incorporation of the local data.  

For comparison, the RMSE of the WRF-PUCM model with respect to measurements at NWS 
stations in the simulation domain has been approximated as 2°C for near-surface air temperatures 
(Ramamurthy et al., 2015). The performance of the posterior model compares favorably with this 
value across all cases and lead times considered here. Note that, although the fitting between the 
probabilistic model and the simulated dataset is closer than that between the dataset and 
measured real-world temperatures (indicating potential overfitting of the model to the data), the 
probabilistic approach can be applied generally to other deterministic models and to other 
temperature data sets. As more accurate deterministic modeling methods and data from dense 
urban temperature monitoring networks become available, a probabilistic model calibrated using 
this information should be able to provide comparable predictive performance. Since even a 1ºC 
difference in surface temperatures can result in a 4.5% change in heat mortality risk (Anderson 
and Bell, 2011), accurate prediction of these temperatures, such as provided by the calibrated 
Gaussian process model conditioned on local temperature measurements, allows for a better 
understanding of the impacts of extreme heat on urban residents.  

Table 10-F: Comparative results for New York City, listing RMSE for different model cases and 
prediction lead times. 

Method RMSE [°C] of Lead Time [hr] 
 0 1 6 24 

Case 1 0.66 0.72 1.02 2.17 
Case 2 0.66 0.64 0.74 0.90 
Case 3 0.42 0.38 0.51 0.42 
Case 4 0.23 0.27 0.46 0.41 

Baseline 1 0.94 0.89 0.84 0.91 
Baseline 2 0.90 0.99 4.49 2.18 

 

The predictive performance of the model is also assessed from a probabilistic standpoint. For this 
purpose, a representative subset of the prediction errors discussed above are plotted in a quantile-
quantile plot in Figure 10-10, comparing their distribution against a Gaussian distribution. 
Ideally, if the temperature was perfectly described by a Gaussian distribution, these errors would 
lie along a straight line. This figure indicates that the errors have a nearly Gaussian distribution 
for about two standard deviations above and below the mean, covering the middle 95% of the 
data under all use cases. However, as the true temperature field is non-Gaussian, the tails of the 
distributions do not exactly match. In fact, Figure 10-10 indicates that the Gaussian model tends 
to over-predict positive errors and under-predict negative ones, i.e., the model predicts a wider 
distribution for temperatures than is actually observed. This phenomenon is more severe under 
use cases 3 and 4 than under cases 1 or 2. For instance, for extremely high temperatures under 
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use case 4, events with an exceedance probability in the data of 10−5 will be predicted by the 
model to have an exceedance probability of 10−3. This shortcoming of the model can be 
addressed using a nonlinear transformation function between the Gaussian process model and the 
surface temperature. However, for the purposes of this work, this approach is not adopted, and 
the resulting inaccuracies are taken as an acceptable source of error in the presented results. 

 

Figure 10-10: Quantile-quantile plot of 1,000 empirical residuals of the probabilistic model for 
New York City, NY, under each use case. The 95% confidence interval of the Gaussian 

distribution is indicated between the vertical dashed lines. The grey dashed line indicates the 
ideal normal distribution. 

Finally, Figure 10-11 reports the performance of the posterior model, under use case 4 and for no 
prediction lead time, using various percentages (0%, 2%, 5%, 10%, 20%, 50%, and 100%) of 
discrete locations as simulated weather stations providing input for model updating. Intuitively, 
increasing the available data improves the model predictions, although the marginal benefit of 
adding data is higher when the total amount of data is lower, as indicated by the positive 
curvature of the left part of the graph. With 100% of locations being sampled, the prediction 
accuracy is limited only by the noise of these measurements, ϵ𝑇𝑇(𝐱𝐱, 𝑡𝑡), in this case assumed to be 
0.02℃. 
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Figure 10-11: Results for posterior model performance under use case 4 with different levels of 
data (as measured by % Samples, or the fraction of discrete locations at which data are collected 

for updating the model) for New York City, NY. 

10.2.4.2. Pittsburgh 

An evaluation of the performance of the calibrated model on the validation set is also conducted 
for Pittsburgh. Analysis is restricted to the city proper, an area of 122 square kilometers within 
the simulation region. Table 10-G reports results of the validation, which are mostly qualitatively 
similar to results for New York City. Interestingly, model performance in case 1 for zero lead 
time slightly exceeds its performance in case 4, and in the second baseline case also, 
performance is comparable to the model in case 4. This is likely the result of the relatively small 
size of the region under consideration in the model; measures at only a small number of locations 
within the city serve as an adequate representation of the temperature field, even without the 
application of the Gaussian Process model. However, the utility of this model is clearer for 
greater lead times, as the performance of the model improves with increasing data for nonzero 
lead times and these models show improved performance over comparable baseline cases, as 
previously noted for the example of New York City.  
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Table 10-G: Comparative results in Pittsburgh, listing RMSE for different model cases and 
prediction lead times. 

Method RMSE [°C] of Lead Time [hr] 
 0 1 6 24 

Case 1 0.25 0.78 2.07 3.51 
Case 2 0.38 0.73 1.29 1.12 
Case 3 0.60 0.57 0.50 0.42 
Case 4 0.27 0.43 0.51 0.42 

Baseline 1 1.54 1.46 1.10 1.73 
Baseline 2 0.27 1.39 6.71 3.41 

 

Finally, a demonstration is provided of how the proposed methodology can account for the UHI 
effect. Simulated temperatures from the validation data set at a representative location in 
downtown Pittsburgh are compared to the temperatures at the location of the nearest NWS 
station to Pittsburgh, located at Pittsburgh International Airport (PIT), about 20 km distant from 
the downtown area. In this comparison, the simulated temperature data at the location of PIT, as 
would be measured by the weather station, are used as an estimate of the temperature in the 
downtown area. This is an example of the second baseline case, with only a single measurement 
location. Alternatively, these data can be fed into the Gaussian process temperature model 
according to use case 4 (again with only the single local measurement location at PIT) to obtain a 
posterior prediction for temperature at the representative downtown location. One-hour-ahead 
predictions are considered, with the baseline case using the most recent measure of temperature 
at PIT as the one-hour-ahead prediction. Figure 10-12a indicates the results of this comparison 
for a representative day during the validation period. 

The downtown temperature tends to be higher than that measured at the airport outside the city 
due to the UHI effect (although other factors such as elevation differences may contribute to the 
difference too). The measurements taken at PIT underestimate the downtown temperature by 
1.5°C on average during the validation period. The RMSE for the prediction is 2.3°C; note that 
this is the prediction error for a specific point, rather than an average over the region as in Table 
10-G. By contrast, the posterior mean of the Gaussian process model under use case 4 with local 
measurements taken at PIT overestimates the downtown temperature at the representative 
location by only 0.1°C on average during the validation period, with a RMSE of 0.7°C. This 
demonstrates how the Gaussian process model can be used to account for systematic temperature 
differences in an urban area due to the UHI effect, using limited local measurement data together 
with prior fine resolution simulation data for the region in question as well as accurate regional 
temperature forecasts. 
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Figure 10-12: Comparison of actual temperature in downtown Pittsburgh from the simulated 
temperature data of the validation period on the date indicated (solid line) with the measurement 

of the nearest weather station (dotted line) and the 95% confidence interval of the posterior 
prediction of the Gaussian process temperature model (grey area) for one-hour-ahead prediction 

under case 4 with local data from the single weather station (a) and using these local 
measurement data as well as prior measures of the cyclic pattern obtained from training data (b). 

Furthermore, the performance of the model is assessed for predicting the local temperature at a 
representative location without accurate regional forecasting, i.e., only using temperature 
measurements taken at PIT and samples of the cyclic temperature pattern obtained from the 
training data. Note that this does not correspond to one of the cases listed in Table 10-E, but 
rather is a demonstrative case combining local measurement data y𝑇𝑇(𝐱𝐱, 𝑡𝑡) obtained at a single 
point with prior measures of the temperature pattern y𝑇𝑇1(𝐱𝐱, 𝑡𝑡). The performance of the model for 
one-hour-ahead prediction is again compared with that of the second baseline case using the 
same local measurement data. Results for the representative day are indicated in Figure 10-12b. 
The PIT measures still underestimate downtown temperatures by 1.5°C on average, with a 
RMSE of 2.3°C, while the posterior model overestimates temperatures by 0.2°C, with a RMSE 
of 1.6°C. This demonstrates how the modeling framework (using the same locally measured 
temperature data together with prior fine resolution simulations of the urban temperature pattern) 
can account for systematic differences in temperature such as those due to the UHI effect to 
reduce prediction bias with respect to the local measurement data alone. 

10.3. Temperature Monitoring 
Using the probabilistic model for urban temperatures developed in Section 10.2, temperature 
monitoring can be performed using the metrics for sensor placement discussed previously in this 
work. In Section 10.3.1, the probabilistic temperature model is combined with a model for urban 
temperature vulnerability to characterize urban heat risk probabilistically. In Section 10.3.2, 
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specific formulations for the conditional entropy, weighted prediction error, and VoI metrics in 
the context of urban temperature prediction and decision-making are presented.  

10.3.1. Risk Formulation 

In this chapter, risk is quantified as the product of a factor relating to the hazard source (in this 
case, the urban temperature, as described by the probabilistic model developed in Section 10.2) 
and a factor relating to the vulnerability and exposure of the urban population to this hazard. 
Heat vulnerability is quantified via a heat vulnerability index developed by Bradford et al. (2015) 
for the city of Pittsburgh. This index was created after analyzing 13 socio-economic metrics, 
such as age, income, and education, which are identified in the literature as contributing to heat-
related vulnerability, and conducting a factor analysis to group these metrics into factors that 
explain at least 70% of the variance in all metrics (after removing metrics that failed a 
multicollinearity test). The vulnerability index was then created by binning these factors into 6 
increments for each census block of the city, and averaging across all factors. The result is an 
index for each census block between 1 and 6, with 6 corresponding to a higher vulnerability 
(with the factors being on average 2 or more standard deviations above the mean) and 1 to a 
lower vulnerability (factors 2 or more standard deviations below the mean). The results of this 
study are translated into a vulnerability index field, V(𝐱𝐱), for the city of Pittsburgh. This is done 
by taking the area-weighted averages of vulnerability indices for census blocks within the area 
associated with spatial coordinate 𝐱𝐱 (a one-square-kilometer box around the coordinate) and 
assigning this weighted average as the vulnerability V(𝐱𝐱) for that location. For reference, this 
vulnerability field is depicted in Figure 10-13. This vulnerability is assumed to be constant with 
respect to time; variations in population distributions throughout the day are not considered in 
this vulnerability index. 

Exposure is not considered separately from vulnerability in this work. In principle, a spatio-
temporal model of urban population movements might be created to describe the varying 
distribution of people in a city throughout the day, and potentially how this is altered by extreme 
temperatures. However, no such models were identified in the literature, and the development of 
a separate model is beyond the scope of this work. Furthermore, the vulnerability index used 
here already considers exposure-related factors such as access to air conditioning and to green 
spaces. Therefore, exposure is considered as a binary value that is either present or absent, 
following the approach of Grower et al. (2011), and it is assumed that all areas except those 
dominated by water have populations exposed to extreme heat. 
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Figure 10-13: Vulnerability index map for Pittsburgh, PA. 

Combining the hazard value, i.e., the spatio-temporal surface temperature T(𝐱𝐱, 𝑡𝑡), with the 
spatial vulnerability index V(𝐱𝐱) defines a spatio-temporal risk: 

 R(𝐱𝐱, 𝑡𝑡) = T(𝐱𝐱, 𝑡𝑡) V(𝐱𝐱) (10-21) 

As the product of a Gaussian process with a deterministic scaling field, the spatio-temporal risk 
is itself described by a Gaussian process model. 

The probabilistic character of this model allows for other commonly used heat risk indices to be 
derived from it. For example, previous studies (e.g., Buscail et al., 2012; Harlan et al., 2012) 
have developed heat risk indices based on temperatures observed via satellite at a specific time 
during a heat wave event. Such information can be integrated into the Gaussian process 
framework to define a posterior risk metric conditioned on satellite temperature data. 
Alternatively, Aubrecht and Özceylan (2013) define a risk metric using the number of heat wave 
days (i.e., days with peak temperatures exceeding a given threshold) in a given year as a hazard 
measure. Such a metric can be obtained from the probabilistic heat risk model above, e.g., by 
conducting a Monte Carlo simulation from the probabilistic temperature model and counting the 
number of days the threshold is exceeded. Furthermore, risk based on more complex thermal 
comfort indices (e.g., Höppe, 1999) can also be evaluated. 
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To illustrate how the probabilistic model described above can be used to generate a heat risk 
index map (such as those of previous work on heat risk quantification), an example is presented 
below. For this example, risk is defined based on the 95th percentile temperature at the hottest 
time of the day for a given location. Denote by T95%(𝐱𝐱, 𝑡𝑡) the 95th percentile temperature at 
location 𝐱𝐱 and time 𝑡𝑡, predicted by the probabilistic temperature model, and take the maximum 
of these temperatures over a typical 24 hour period as the hazard measure. Note that this is only 
one method for describing the hazard, and is used here for illustrative purposes only. Finally, to 
allow comparison between this hazard measure and the vulnerability index, these maximum 95th 
percentile temperatures are binned into 6 increments based on the range of these values across 
the city. This is denoted by bin[⋅], which describes a mapping from the continuous temperature 
values to an integer between 1 and 6 (this is the same binning function used to develop the 
vulnerability index, as described above). Following this transformation, the hazard and 
vulnerability measures are both indices ranging from 1 to 6, and can be directly multiplied to 
define a risk metric: 

 R95%(𝐱𝐱) = bin�max𝑡𝑡∈[0,24] T95%(𝐱𝐱, 𝑡𝑡)� V(𝐱𝐱) (10-22) 

The model T(𝐱𝐱, 𝑡𝑡) used to define these percentiles is calibrated for the region of Pittsburgh and 
conditioned on measurements y𝑇𝑇1(𝐱𝐱, 𝑡𝑡) obtained from the training data set. The resulting risk 
index map is shown in Figure 10-14, with the risk metric normalized to vary between 0 and 1. 
High-risk areas are mostly located to the center of the region, i.e., the downtown Pittsburgh area, 
as well as to the north, both to the northeast and northwest. While the southwest of Pittsburgh 
has comparable vulnerability other areas, as shown in Figure 10-13, lower extreme temperatures 
here lead to lower risk indices in this area. 

Many heat risk index mappings, such as that of Equation 10-22 involve non-linear functions of 
the temperature field, and so are no longer Gaussian. Therefore, it may be difficult to analyze 
these mappings directly in order to determine the utility of sensor placements in reducing 
uncertainty or in supporting risk mitigation actions. Furthermore, the use of such static mappings 
ignores the changing nature of the hazard and risk over time, as well as over space, the effects of 
which are lost when only a single arbitrarily-selected feature (e.g., the 95th percentile 
temperature) of the full spatio-temporal hazard model is used. For these reasons, the following 
sections apply sensor placement metrics directly to the underlying Gaussian temperature or risk 
fields (as in Equation 10-21). The weighted prediction error metric, discussed in Section 
10.3.2.2, is in fact a metric measuring uncertainty in this risk field. Sensor placements resulting 
from these various objectives are compared to the risk field using the index of Equation 10-22 in 
Section 10.4.1.4.  
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Figure 10-14: An example risk index based on 95th percentile peak daily temperature in 
Pittsburgh, PA, and the vulnerability map of Figure 10-13. This index is normalized between 0 

and 1. 

10.3.2. Sensing Metrics Considered 

Many factors should be considered when selecting locations to measure temperatures in an urban 
area. The uncertainty in the temperature field, the vulnerability of people in different areas to 
extreme heat, and the available actions (and their consequences) that will be undertaken in 
response to the gathered information are all contributing factors to the temperature sensing 
problem. An understanding of the spatially distributed risk, such as might be gained from Figure 
10-14, is not necessarily sufficient. For example, monitoring temperatures where heat risk is high 
is an intuitive solution, but may neglect areas where additional information could reduce risk 
uncertainty; conversely, focusing on areas of high risk uncertainty but low expected value is also 
inefficient. In this section, three metrics for sensor placement applied to the problem of urban 
temperature monitoring are described: a conditional-entropy-based objective, an objective based 
on a weighted average predictive performance of the temperature model, and a VoI-based 
objective. Each objective corresponds to a particular viewpoint on what information is important 
to temperature monitoring. Under the conditional entropy metric, because the contribution of 
vulnerability to the risk is already known, reduction of uncertainty in the temperature field is the 
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goal of sensing. Under the weighted prediction error metric, because risk is proportional to the 
product of temperature and vulnerability, uncertainty in this product is to be reduced. VoI uses a 
hazard-based decision problem with utility of decision outcomes proportional to vulnerability to 
identify which additional information might best support risk response decision-making. 

10.3.2.1. Conditional entropy of the temperature field 

The conditional entropy of the random temperature field is used to define one objective for 
sensor placement: 

 MEnt(𝑌𝑌) = H(𝑇𝑇) − H(𝑇𝑇|𝑌𝑌) (10-23) 

where H(𝑇𝑇|𝑌𝑌) denotes the posterior entropy of the temperature field 𝑇𝑇 conditioned on 
measurement set 𝑌𝑌. This entropy can be evaluated for the prior and posterior Gaussian 
temperature fields as in Equation 4-44. Note that, rather than the cost-benefit formulation of 
Equation 4-41, a cost-neutral approach is used here, i.e., the cost of measurements is not 
considered. This objective is optimized using the general optimization objective of Equation 
2-16, together with the greedy solution approach of Section 2.2.1. 

10.3.2.2. Weighted prediction error of the temperature field 

A weighted prediction error metric, such as described in Section 4.4.1.1, is also used. Prediction 
error is measured by the sum of square differences between the actual temperature and predicted 
temperature at a specific time and location. Furthermore, these prediction errors are weighted by 
the local vulnerability index; the weight matrix 𝐙𝐙 of Equation 4-35 is defined using the 
vulnerability field V(𝐱𝐱), with vulnerability being constant over time. In this way, prediction 
errors in vulnerable areas are penalized more heavily by the metric, with penalties proportional 
to the product of the local vulnerability and the posterior variance in temperature. Under this 
choice of weighting, the weighted prediction error metric provides a measure of the uncertainty 
in the risk field R(𝐱𝐱, 𝑡𝑡) of Equation 10-21.  

For defining an objective based on this weighted prediction error loss function, sensing costs are 
again ignored, as with conditional entropy above. The resulting sensor placement objective is: 

 MErr(𝑌𝑌) = 𝔼𝔼Lpred(∅) − 𝔼𝔼Lpred(𝑌𝑌) (10-24) 

This objective is computed following the approach outlined in Section 5.2.1 and is greedily 
optimized following Section 2.2.1. 

10.3.2.3. Value of information for heat wave advisory issuance 

To define the VoI metric, the vulnerability index is used to define a loss function for a decision-
making problem motivated by heat advisory issuance. Consider that a cost C𝑓𝑓(𝐱𝐱) is incurred in 
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an area if the temperature exceeds a certain threshold 𝑇𝑇𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡. This cost captures the consequences 
of the area’s population being exposed to extreme temperatures. The city government has the 
option of issuing an advisory for this area at this time, i.e., by choosing a(𝐱𝐱, 𝑡𝑡) ∈ {0,1}, where a 
choice of “1” corresponds with the issuance of a heat advisory, and a choice of “0” corresponds 
with no warnings being issued. By choosing to issue a warning, people in the region will be 
encouraged to seek shelter, and the consequences of exposure will be avoided. There is also a 
cost for issuing this advisory, C𝑟𝑟(𝐱𝐱), which quantifies the effort necessary to issue the warning 
and the loss of productivity in the area where the advisory is issued due to restrictions on outdoor 
activity.  

This decision-making problem defines a spatio-temporally decomposable loss function as in 
Equation 7-7 for the discretized temperature field. The local spatio-temporal loss is expressed 
following the prototypical loss function of Equation 4-15 as: 

 L𝑖𝑖
(𝑡𝑡)�𝐬𝐬𝑖𝑖

(𝑡𝑡),𝐚𝐚𝑖𝑖
(𝑡𝑡)� = C𝑓𝑓(𝐱𝐱𝑖𝑖)�1− 𝐬𝐬𝑖𝑖

(𝑡𝑡)��1 − 𝐚𝐚𝑖𝑖
(𝑡𝑡)� + C𝑟𝑟(𝐱𝐱𝑖𝑖)𝐚𝐚𝑖𝑖

(𝑡𝑡) (10-25) 

where 𝐚𝐚𝑖𝑖
(𝑡𝑡) = a(𝐱𝐱𝑖𝑖, 𝑡𝑡) and 𝐬𝐬𝑖𝑖

(𝑡𝑡) is defined following Equation 3-14, with the limit-state function 
defined following Equation 3-11 with 

 𝐠𝐠𝑖𝑖
(𝑡𝑡) = 𝑇𝑇𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡 − T(𝐱𝐱𝑖𝑖, 𝑡𝑡) (10-26) 

That is, the state is defined by whether or not the local temperature exceeds the given threshold 
at a given time. Because of the relatively short time horizon of the problem, no discounting is 
assumed; instead a factor of γ(𝑡𝑡) = 1

𝑛𝑛𝜏𝜏
 is used. The VoI metric defined following this loss 

function represents the average hourly reduction in expected loss in this heat advisory issuance 
decision-making problem over the domain of the city. In this case, sensing costs are considered, 
and the VoI objective is defined as in Equation 4-12. 

Ideally, both C𝑓𝑓(𝐱𝐱) and C𝑟𝑟(𝐱𝐱) can be quantified in common units, e.g., by converting mortality, 
morbidity, and productivity loss to common monetary quantities using accepted practices. 
However, such a quantification is beyond the scope of this work. As discussed by Bradford et al. 
(2015), the heat vulnerability index is not a measure of the consequences of a heat wave event. It 
is, rather, one input to a utility function (or loss function) for decision-making in response to 
extreme temperatures. The relationship between the societal factors captured in this index and 
the impacts of extreme temperatures, e.g., in terms of hospitalizations due to heat stress, remains 
unclear and is an open area of research (e.g., Aubrecht and Özceylan, 2013; Hondula and 
Barnett, 2014; Bradford et al., 2015). Instead, it is assumed for illustrative purposes that 
consequences are equal to the vulnerability index of an area, and so C𝑓𝑓(𝐱𝐱) = V(𝐱𝐱). Using this 
same vulnerability scale (ranging from 1 to 6), the consequence of issuing a heat advisory is 
arbitrarily chosen as C𝑟𝑟(𝐱𝐱) = 3 ∀ 𝐱𝐱 ∈ 𝑋𝑋. Under these assumptions, for some areas of the city 
with low vulnerability, the consequence of being exposed to extreme heat (for this example, 
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extreme heat is defined by the limit 𝑇𝑇𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡 = 30℃) is lower than the consequence of issuing an 
advisory, and so it will never be beneficial to issue a heat advisory. However, for more at-risk 
areas, it may be of interest to issue an advisory to avoid higher consequences of extreme heat 
exposure.  

10.4. Sensor Placement Results 
Sensor placement is conducted using the trained model for urban temperatures in Pittsburgh, as 
developed in Section 10.2, under the three objectives discussed in Section 10.3. In Section 
10.4.1, it is assumed that (i) accurate predictions of the average temperature y𝑇𝑇0(𝑡𝑡) over the 
region, (ii) prior assessments of the cyclic temperature pattern y𝑇𝑇1(𝐱𝐱, 𝑡𝑡) obtained from fine 
resolution simulations, and (iii) local temperature measurements y𝑇𝑇(𝐱𝐱, 𝑡𝑡) whose locations are 
being optimized are available and used to update the prior spatio-temporal probabilistic model. 
This corresponds with use case 4 of Table 10-E. This is potentially the most realistic use case for 
the model and its application to improving temperature field prediction because accurate regional 
temperature forecasts are commonly available from coarse resolution weather simulations (e.g., 
as provided by the NWS) and historical simulations of urban temperature patterns can be used to 
obtain measurements of the cyclic temperature patterns (e.g., as generated by WRF-PUCM). In 
Section 10.4.2, assumptions (i) and (ii) above are dropped. This corresponds to use case 1 of 
Table 10-E, and to a problem of sensor placement in data-poor situations, e.g., where estimates 
of regional temperatures and simulation results of historical temperature patterns are unavailable. 

Only potential measurements at grid points within the city are considered. The set of all possible 
measurement locations, denoted 𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐, consists of 122 sensors, one for each grid point. It is 
further assumed that once placed, a sensor will continuously gather temperature data over time at 
a negligible additional cost. Thus the problem of simultaneous sensor placement and scheduling 
is simplified to sensor placement only for the local temperature measures within the domain. 
Simultaneous placement and scheduling can also be accomplished, as discussed in Chapter 7, at 
the cost of a linear increase in computational complexity of the greedy algorithm as the time 
horizon for sensor scheduling increases. 

10.4.1. With Global Mean and Cyclic Pattern Measures 

The following subsections present results for sensor placement of local temperature measures 
under the assumption that measures of the global average temperature and the cyclic temperature 
patterns will be available as well (i.e., under case 4 of Table 10-E). 

10.4.1.1. Conditional entropy of the temperature field 

First, sensor placements are optimized for the reduction of conditional entropy of the posterior 
temperature field over the city of Pittsburgh. Only the joint entropy of the temperature field 
within the city is used to evaluate the conditional entropy metric. The results indicated in Figure 
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10-15 plot the locations of 9 greedily optimized temperature measurements throughout the city, 
together with the posterior standard deviation of the residual temperature field conditioned on 
these measurements. Here, sensor locations are distributed throughout the city to reduce overall 
uncertainty in temperature values.  

 

Figure 10-15: Optimized measurement locations for Pittsburgh, PA, supporting the reduction of 
conditional entropy of the temperature field. Sensing locations are indicated by x’s, while the 
background indicates the posterior standard deviation of the temperature field conditional to 
these measurements. Numbers next to the sensing locations indicate the order the placements 

were selected by the greedy optimization algorithm. The city’s outline is also indicated. 

Note that the conditional entropy decreases as more sensors are considered, and therefore the set 
𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐 would minimize the conditional entropy. However, the use of this set is assumed to be 
impractical (due to the high cost of installing so many sensors), and instead a subset of these 
locations is selected. The number of sensors to include in this set is chosen such that the sets 
optimized under each objective considered in this section have the same number of sensors, 
allowing for more direct comparison between them. The conditional entropy metric value, i.e., 
the reduction in conditional entropy as more sensors are added to the selected set, is nearly linear 
in the number of sensors, as shown in Figure 10-16. This is a consequence of the definition of the 
conditional entropy metric for multivariate Gaussian distributions as the log-determinant of the 
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posterior covariance matrix 𝚺𝚺𝑇𝑇|𝑌𝑌. This metric is thus a logarithmic function of the probabilistic 
volume spanned by the distribution, quantified via the determinant of the posterior covariance 
matrix. As sensors are placed, this posterior covariance matrix is compressed along one 
dimension corresponding to the variable that is being measured. For independent variables, this 
entropy reduction would therefore be linear with respect to the number of sensors. Correlations 
within 𝚺𝚺𝑇𝑇 account for the slight difference from linearity observed in Figure 10-16. This near-
linearity is a general property of the conditional entropy metric applied to two-dimensional 
Gaussian processes. The number of sensors indicated in Figure 10-15 corresponds to the number 
beyond which the additional benefit provided by the next sensor is less than a given percentage 
of that provided by the first sensor selected. Because of the nearly linear rate of reduction, a high 
percentage of the initial value of 82% is chosen to identify the number of sensors to include in 
the set as 9, the same number selected as the optimum number by the VoI metric in Section 
10.4.1.3. 

 

Figure 10-16: Reduction in entropy resulting from the sensor placements through greedy 
optimization (solid line). The line with slope corresponding to 82% of the reduction of the first 

sensor is also plotted (dashed line), and the point at which this line is tangent to the entropy 
reduction curve identifies the optimal number of sensors (in this case 9). 

10.4.1.2. Weighted prediction error of the temperature field 

Next, sensors are optimized based on the residual prediction error weighted by the local 
vulnerability to extreme temperatures. The results are indicated in Figure 10-17, plotting the 
locations of 9 greedily optimized sensor placements in the city that reduce the overall weighted 
prediction error. Because of weighting by the vulnerability index, the resulting sensing scheme is 
slightly different from that indicated in Figure 10-15, although one sensor placement is common 
to both. Here, sensor placements generally correspond with areas where temperature variability 
and vulnerability are both relatively high.  
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Figure 10-17: Optimized measurement locations for Pittsburgh, PA, supporting the reduction of 
prediction error of the temperature field weighted by the vulnerability field. Sensing locations are 

indicated by x’s, while the background indicates the posterior weighted prediction error 
conditional to these measurements. Numbers next to the sensing locations indicate the order the 

placements were selected by the greedy optimization algorithm. The city’s outline is also 
indicated. 

Again, since adding additional sensors will always decrease prediction error, a subset of 𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐 
with the same number of sensors as selected under other objectives is used instead. Weighted 
prediction error gain shows a strong diminishing return property in Figure 10-18, i.e., the slope 
of the gain decreases as the number of sensors increases. For this reason, a low percentage of the 
initial value of 6% is chosen to identify the number of sensors to include in the set as 9. Note that 
this strong diminishing return property contrasts with the weak property exhibited in Figure 
10-16. Again, this is due to differences in the definition of the conditional entropy and weighted 
prediction error metrics, especially the use of the trace instead of the determinant, as well as the 
logarithmic scaling applied when defining the conditional entropy metric. 
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Figure 10-18: Gain in weighted prediction error resulting from the sensor placements through 
greedy optimization (solid line). The line with slope corresponding to 6% of the gain of the first 

sensor is also plotted (dashed line), and the point at which this line is tangent to the weighted 
prediction error gain curve identifies the optimal number of sensors (in this case 9). 

10.4.1.3. Value of information for heat wave advisory issuance 

Finally, sensor placements are optimized to support the issuance of heat advisories, using the VoI 
metric based on the decision-making problem outlined in Section 10.3.2.3. The results of this 
optimization are indicated in Figure 10-19. In this case, a cost for sensing of 0.025 per location 
(in the same units as C𝑓𝑓(𝐱𝐱) and C𝑟𝑟(𝐱𝐱)) is assumed, representing about 1% of the cost of issuing a 
heat advisory for that location. Using this cost, the optimal number of sensors is evaluated to be 
9. This set is indicated in Figure 10-19, superimposed upon the expected regret (i.e., the 
difference between the VoI provided by all possible sensors and the value provided by only the 
selected set of sensors) for a particular date and time, spatially distributed over the city. The VoI 
and regret are assessed by using the temperature data generated via a numerical weather model 
for this problem up to this date and time as measurements collected by sensors at the indicated 
locations and using these data to update the posterior predicted temperature field at this time. 
Using this updated prediction, an appropriate set of actions for the issuance of heat advisories is 
chosen. The resulting loss is calculated using the generated temperature field data, and the VoI is 
calculated for this date and time. The regret is then computed from the VoI. The resulting plot 
indicates how information collected at just a few locations within the city (less than one tenth of 
possible measurement locations) allows the predicted temperature field to be updated throughout 
the area, and for these updated predictions to be used to improve decision-making to reduce 
losses. 
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Figure 10-19: Optimized measurement locations for Pittsburgh, PA, supporting decision-making 
for heat advisory issuance via the VoI metric. Sensing locations are indicated by x’s, while the 
background indicates the expected regret corresponding with the indicated sensor placements, 
distributed over space, for June 27, 2012 at 1630 hours. Numbers next to the sensing locations 

indicate the order the placements were selected by the greedy optimization algorithm. The city’s 
outline is also indicated. 

For the VoI objective, VoI(𝑌𝑌) − C(𝑌𝑌) is plotted directly in Figure 10-20, and the peak location 
of this curve is chosen as the optimal number of sensors, in this case 9. Note that, for the chosen 
value of the cost per sensor (0.025), any number of sensors between 2 and 14 would provide 
roughly the same net VoI; therefore, the optimal number of sensors is quite sensitive to the 
sensing cost in this case. For example, for a cost per sensor of 0.03, the optimal number of 
sensors is 4. However, the total VoI remains strictly increasing with the number of sensors (as 
shown in Figure 10-20 with cost of 0 per sensor). 
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Figure 10-20: VoI resulting from the sensor placements through greedy optimization. Note that 
the net VoI is maximized when |𝑌𝑌| = 9 for a cost of 0.025 per sensor; this is the optimal number 

of sensors indicated in Figure 10-19. The net VoI under other costs are also shown. 

10.4.1.4. Comparison of sensor placements under various metrics 

Table 10-H compares the performance of the selected sensor sets under the three objectives 
considered, i.e., the set 𝑌𝑌𝑇𝑇,𝐸𝐸𝑛𝑛𝑡𝑡

∗  optimized under the conditional entropy metric depicted in Figure 
10-15, the set 𝑌𝑌𝑇𝑇,𝐸𝐸𝑟𝑟𝑟𝑟 

∗  optimized under the weighted prediction error metric depicted in Figure 
10-17, and the set 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉 

∗  optimized under the VoI metric depicted in Figure 10-19. Performances 
are listed as percentages of the objective value provided by measuring 𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐; a higher percentage 
corresponds to a better sensor placement. Note that sets 𝑌𝑌𝑇𝑇,𝐸𝐸𝑛𝑛𝑡𝑡

∗ , 𝑌𝑌𝑇𝑇,𝐸𝐸𝑟𝑟𝑟𝑟 
∗ , and 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉 

∗  all contain 
about 7% of the sensors of 𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐. Also note that, as these sensor sets are optimized under the 
assumption that average temperature predictions 𝑌𝑌𝑇𝑇0 and cyclic pattern measurements 𝑌𝑌𝑇𝑇1 are also 
available, these measurements are included when evaluating the objective. Finally, note that 
MVoI(𝑌𝑌) does not include sensing cost in Table 10-H, to allow for easier comparison between the 
objectives. 

Table 10-H: Comparative results for sensor placement metrics. 

 Percent of Objective Value for 𝑌𝑌 = 𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐 
Sensor Set 𝑌𝑌 MEnt(𝑌𝑌)  MErr(𝑌𝑌) MVoI(𝑌𝑌) 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝐸𝐸𝑛𝑛𝑡𝑡
∗  11.3% 68% 23% 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝐸𝐸𝑟𝑟𝑟𝑟
∗  10.8% 72% 35% 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉
∗  9.7% 57% 42% 

 

As expected, the set optimized under each objective is the best set when evaluated by that 
objective. Comparing across objectives, the conditional entropy metric does not vary greatly 
between sets, with the set including 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉

∗  performing only slightly worse than the set optimized 
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under this metric. By contrast, under the VoI metric, the set including 𝑌𝑌𝑇𝑇,𝐸𝐸𝑛𝑛𝑡𝑡
∗  achieves just over 

half the objective value of that including 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉
∗ . The set including 𝑌𝑌𝑇𝑇,𝐸𝐸𝑟𝑟𝑟𝑟

∗  always performs either 
best or second-best, while the set including 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉

∗  performs worst except under the VoI metric. 
This suggests that the weighted prediction error may be a good proxy for the other objectives for 
performing optimization, but that the VoI metric tends to select sensor placements that may not 
be those favored by the other objectives. 

Comparing sensor placements qualitatively, placements selected under the conditional entropy 
metric seem to be evenly dispersed across the region, as well as along its perimeter. Placements 
selected under the weighted predication error metric are similarly distributed, but with fewer 
measurements along the perimeter. Placements selected under the VoI metric are concentrated in 
the downtown area, as well as south and southeast of there. Comparing these results with the risk 
index map of Figure 10-14, there is no clear indication that high-risk or low-risk areas are 
particularly focused on by any metric. For example, while the VoI metric places some measures 
in the high-risk downtown area, similarly high-risk areas to the north are ignored, while many 
sensors are allocated to more moderate-risk areas in the south. 

This comparison supports the assertion that heat risk alone is not sufficient to identify areas of 
interest for temperature monitoring. Some combination of the temperature pattern, prior 
uncertainty, and vulnerability should be considered. Of the objectives applied here, the VoI takes 
all of these factors into account through a decision-making problem whose outcomes are defined 
based on a temperature threshold and whose consequences are defined based on vulnerability. 
The conditional entropy metric does not take local vulnerability into account, and the weighted 
prediction error metric does not consider that areas with uncertain but relatively low risk are of 
less interest for monitoring. Therefore, the VoI metric should be preferred for this problem, as it 
accounts for relevant decision-making factors that the other metrics do not. However, these other 
objectives may still be of use in cases where the decision-making problem to be supported is not 
well-defined or when the goal of the sensing effort is to reduce temperature uncertainty or 
prediction errors only, without consideration for heat response decision-making implications. 

For temperature monitoring in the city of Pittsburgh, this case study suggests two alternative 
approaches. First, sensing efforts can be distributed across the city; this will best support accurate 
prediction of temperature throughout, even when factoring in differing vulnerabilities between 
neighborhoods. Second, monitoring efforts can be focused in central and southern Pittsburgh, as 
these will best support heat wave advisory issuance under the current decision-making model. 
These approaches are based on the assumption that information about the city-wide average 
temperature as well as prior simulations to establish the UHI pattern are available as well; this 
assumption is relaxed in the following section. 

It should be noted, however, that this model may not accurately reflect the priorities of city 
government and/or the NWS. First, the loss function is modeled based on the vulnerability index 
developed for the city, which does not necessarily capture the true costs (e.g., monetary impacts 
and hospitalizations) related to extreme temperature exposure and heat advisory issuance. For 
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example, the homeless population, which is not generally included in census information and 
therefore not accounted for by the vulnerability index, will likely be very susceptible to extreme 
heat, and therefore have a great impact on the heat-related loss function in practice. Second, 
assumptions about the spatial extent of the area of interest (i.e., the city of Pittsburgh) affect the 
sensor placement, both in terms of defining the boundaries of the domain and the average 
temperature considered. In particular, if the region of monitoring interest and the region for 
which average temperatures are provided by the NWS differ, there will be a systematic 
difference between these averages that must be corrected for. Third, although it is assumed here 
that all sensor costs are the same, different costs are possible in practice, both due to the 
precision of various sensor options and the difficulties of installing sensors in different areas. 
Greedy placement of sensors with varying costs can also lead to potential suboptimal outcomes 
via the conditional entropy or weighted prediction error metrics, as discussed in Section 4.4. 
Finally, although the developed model does seem to adequately represent the temperatures for 
the city of Pittsburgh, it has only been tested on a set of summer temperatures generated for a 
single summer, and therefore may not generalize to the temperature distributions for other years. 
This is especially true if the UHI pattern for the city has undergone a significant change due to 
major differences in the urban composition. Furthermore, the fact that the most extreme 
temperatures are not well accounted for by the probabilistic model may influence the 
performance of sensors under certain atypical summer heat wave scenarios, although this does 
not appear to be the case given current information about the model performance. 

10.4.2. Without Global Mean and Cyclic Pattern Measures 
Sensor placement is also performed under the assumption of an information-scarce scenario. The 
following subsections present results for sensor placement of local temperature measures under 
the assumption that measures of the global average temperature and the cyclic temperature 
patterns will not be available (i.e., under use case 1 of Table 10-E). Comparisons are made 
between these results and those of the previous section, to identify how sensing configurations 
are affected by this lack of additional information. 

10.4.2.1. Conditional entropy of the temperature field 

First, sensor placements are optimized based on the conditional entropy metric. The positions of 
nine greedily optimized measurements are compared in Figure 10-21. Measurements optimized 
under the assumption that predictions of future average temperatures and data on cyclic 
temperature patterns would also be available, as presented in Figure 10-15, are denoted as 
𝑌𝑌𝑇𝑇,𝐸𝐸𝑛𝑛𝑡𝑡,𝐴𝐴
∗ , while those optimized without the availability of this additional information are denoted 

as 𝑌𝑌𝑇𝑇,𝐸𝐸𝑛𝑛𝑡𝑡,𝐵𝐵
∗ .  
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Figure 10-21: Comparison between optimized sensor locations under the conditional entropy 
metric, with (A) and without (B) global mean and cyclic pattern data available. 

Four of nine optimized measurement locations are common between these two sets. For the 
remaining measurements, those from 𝑌𝑌𝑇𝑇,𝐸𝐸𝑛𝑛𝑡𝑡,𝐵𝐵

∗  tend to be more widely spaced, i.e., closer to the 
perimeter of the spatial domain than those from 𝑌𝑌𝑇𝑇,𝐸𝐸𝑛𝑛𝑡𝑡,𝐴𝐴

∗ . This may be a consequence of the fact 
that correlation distances are slightly shorter for the residual temperature field alone than for the 
combined residual and cyclic temperature fields.  

10.4.2.2. Weighted prediction error of the temperature field 

Next, measurements are optimized based on the weighted prediction error metric. A comparison 
is presented in Figure 10-22 between the set of local measurements optimized under the 
assumption of additional information as in Figure 10-17, denoted 𝑌𝑌𝑇𝑇,𝐸𝐸𝑟𝑟𝑟𝑟,𝐴𝐴

∗ , and that optimized 
without such additional information, denoted 𝑌𝑌𝑇𝑇,𝐸𝐸𝑟𝑟𝑟𝑟,𝐵𝐵

∗ . Here, only one measurement location is 
common to the two sets. However, qualitatively, the placement patterns are similar, with many 
measures from one set nearby to their counterparts in the other.  
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Figure 10-22: Comparison between optimized sensor locations under the weighted prediction 
error metric, with (A) and without (B) global mean and cyclic pattern data available. 

10.4.2.3. Value of information for heat wave advisory issuance 

Finally, sensor placements are optimized under the VoI metric, with the sets optimized with 
(𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴

∗ ) and without (𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵
∗ ) the assumption of additional information compared in Figure 

10-23. In this case, there are no measurements in common between these two sets. Measures in 
𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴
∗  tend to be more clustered in the center and south of the city, while those in 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵

∗  tend 
to be more evenly distributed, with measures to the northwest and northeast as well. This is 
probably a consequence of the need to “learn” the cyclic spatial temperature patterns from the 
data with more widely dispersed sensors in the latter case, whereas data on these patterns are 
provided as an input when optimizing 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴

∗ . 
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Figure 10-23: Comparison between optimized sensor locations under the VoI metric, with (A) 
and without (B) global mean and cyclic pattern data available. 

For further comparison, the VoI of various sets of measurements are computed and compared in 
Table 10-I. Note that in Table 10-H VoI values are presented as a percentage of the VoPI 
considering that additional measurements were also available, i.e., with MVoI�𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐� 
corresponding to 100% and MVoI�𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1� corresponding to 0%. In Table 10-I, however, 
MVoI(∅) corresponds to 0%. 

Interestingly, an accurate prediction of the regional average temperature alone provides 82% of 
the VoPI, indicating that even this information is quite valuable by itself in supporting decision-
making. This is useful since such regional-averaged temperatures are easily obtainable from 
regular weather forecasts. A prior assessment of the cyclic temperature pattern provides no value 
by itself, but when combined with the regional average temperature provides 95% of the VoPI. 
These cyclic temperature patterns, unlike regional-averaged temperatures, require fine-scale 
modeling for that particular city, and so are more difficult to obtain. 
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Table 10-I: Comparative results for VoI of various measurement sets. 

𝑌𝑌 MVoI(𝑌𝑌) MVoI(𝑌𝑌)/MVoI�𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐� 
𝑌𝑌𝑇𝑇0 21.31 82% 
𝑌𝑌𝑇𝑇1 0.00 0% 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 24.67 95% 
𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴
∗  25.02 96% 

𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵
∗  25.03 96% 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴
∗  25.06 96% 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵
∗  25.04 96% 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴
∗  25.27 97% 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵
∗  25.13 96% 

𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝐴𝐴𝑐𝑐𝑐𝑐 26.10 100% 
 

As expected, 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵
∗  slightly outperforms 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴

∗  in the absence of additional information on the 
regional average temperature and cyclic temperature pattern. Note that the set of local 
measurements 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴

∗  can still be used by itself, even though it is optimized under the 
assumption that additional information from 𝑌𝑌𝑇𝑇0 and 𝑌𝑌𝑇𝑇1would also be available. Because 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴

∗  
is not being used as intended in this case, its performance is suboptimal; however, the set 
𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴

∗  outperforms 𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵
∗  when the additional information from 𝑌𝑌𝑇𝑇0 

and 𝑌𝑌𝑇𝑇1 are available. This is likely because some information gathered as part of 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵
∗  

becomes redundant when measures 𝑌𝑌𝑇𝑇0 and 𝑌𝑌𝑇𝑇1 are also available. Note, however, that the VoI 
provided by both measurement sets is nearly the same; this suggests that the VoI metric is not 
very sensitive to the placements of local sensors under the assumptions made here in defining the 
heat advisory decision-making problem for the city of Pittsburgh. 

It should also be noted that both 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴
∗  and 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵

∗  provide 96% of the VoPI, even without 𝑌𝑌𝑇𝑇0 
and 𝑌𝑌𝑇𝑇1. When these additional measures are added, VoI only increases slightly (up to 97% of the 
VoPI). This shows that, on the one hand, the prior model updated with only local information 
can account for cyclic temperature patterns and regional temperature trends without direct 
measurements of these. On the other hand, the direct measurements (i.e., 𝑌𝑌𝑇𝑇0 and 𝑌𝑌𝑇𝑇1) together 
provide 95% of the VoPI, without any local temperature measures. These results demonstrate 
that the value provided by local measurements alone is comparable to that provided by an 
accurate predictive model of the regional temperature combined with a prior fine resolution 
analysis of the region. This information can be of interest to decision-makers by identifying that 
these two different temperature modeling activities (i.e., conducting simulations to train local 
temperature patterns or using sensors to determine these patterns) can have a similar benefit, and 
therefore only one of these activities need be pursued. 
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10.4.2.4. Effect of prediction lead times on value of information 

Finally, an investigation is made into the effect of prediction lead times on VoI. In the previous 
sections, VoI is assessed for same-time temperature prediction and warning issuance. That is, 
decisions about heat advisory issuance are made using information collected up to and including 
the time of the advisory. If decisions are instead made ahead of time, using a certain lead time, 
predictions will be less accurate, and therefore provide a lower VoI. Figure 10-24 displays results 
for how the VoI is affected by the prediction lead time, up to 48 hours. Values are shown for two 
measurement sets; the optimal set without additional information, 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵

∗ , and the optimal set 
including additional information, 𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪ 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴

∗ . Here, 𝑌𝑌𝑇𝑇0 represents a forecast for the 
future average temperature, the standard error of which is assumed to increase linearly with the 
lead time, such that for 12 hours ahead, the standard deviation of ϵ𝑇𝑇0 in Equation 10-17 is 1℃. 

 

Figure 10-24: VoI versus prediction lead time for two measurement sets. 

As expected, VoI tends to decrease with prediction lead time. For measurement set 𝑌𝑌𝑇𝑇0 ∪ 𝑌𝑌𝑇𝑇1 ∪
𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐴𝐴
∗ , this decrease is gradual, as relatively accurate predictions of the regional average 

temperature are available to the model, even up to two days ahead. However, without this future 
forecasting information provided by 𝑌𝑌𝑇𝑇0, the VoI for measurement set 𝑌𝑌𝑇𝑇,𝑉𝑉𝑑𝑑𝑉𝑉,𝐵𝐵

∗  decreases more 
rapidly with time, dropping below half its initial value at 2 hours ahead, and is about a fifth of its 
initial value at one day ahead. Interestingly, while there is a high degree of correlation between 
temperature values at 24 hour intervals, due to cyclic temperature patterns and the daily 
temperature cycle throughout the region, the VoI does not increase at 24 hours prediction lead 
time. This is likely because of the temperature variance due to the residual, which exhibits very 
low correlation at time differences greater than about 12 hours. These results indicate how 
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important accurate regional temperature predictions can be to ahead-of-time decision-making, as 
the value provided by local temperature measurements alone decays rather quickly with time. 
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Chapter 11  

Open Issues and Future Work 

There remain several key open issues relating to the results presented in this work. First, 
although throughout this work a greedy optimization approach has been used to minimize the 
computational issues arising from combinatorial optimization, there remain no guarantees that 
such an approach will result in optimal or near-optimal sensor placements under objectives such 
as the VoI. Furthermore, the efficient evaluation of the VoI metric in systems where the loss 
function is non-decomposable, e.g., series or parallel systems, remains a computational 
challenge. Finally, issues of sensor placement in problems where the underlying random field 
structure is unknown or poorly defined have not been addressed here, and alternative approaches 
to robust optimization and learning in uncertain systems will need to be applied in such 
problems. However, may opportunities also exist for applying the developed methods for sensor 
placement in civil engineering, infrastructure system management, and beyond. 

11.1. Performance of the Greedy Optimization Approach 
As discussed in Section 2.2.1, the greedy optimization approach represents a simple and efficient 
approximate approach to addressing issues of combinatorial optimization that arise from optimal 
sensor placement problems. However, this approach does not guarantee an optimal result, and 
conditions on the near-optimality of results are only provided under certain sensor placement 
objectives (e.g., conditional entropy). In light of this, the use of such an approach as the basis for 
the sensor placement results presented throughout this work may appear to be inappropriate and 
to undermine the validity of the presented results. In addressing this concern, a major open issue 
(and subject for future work) is assessing the performance of the greedy optimization approach 
and identifying and implementing alternative approaches to combinatorial optimization that can 
avoid the shortcomings or pitfalls of the greedy algorithm. 

As a first step in this direction, this section will present several numerical examples in which 
greedily selected sensor placements using the VoI metric are compared to exact placements (i.e., 
placements optimized through an exhaustive search of the solution space) for tractably small 
example problems with randomized parameters. In these numerical examples, various parameters 
defining a system are simulated according to the methods of Table 11-A to define a randomized 
system. Note that the loss function governing the system is assumed to be decomposable, and is 
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defined according to the prototypical loss function of Equation 4-15. Further note that the 
definition of 𝚺𝚺𝐹𝐹 and 𝚺𝚺𝜖𝜖 as outlined in the table are designed to ensure the generation of a 
randomized but symmetrical and positive semi-definite matrix. Simulated systems are considered 
as having five components, i.e., 𝑛𝑛 = 𝑛𝑛𝑋𝑋 = 5. Five potential measurements are also considered. 

Table 11-A: Randomized system generation method settings. 

Parameter Equation Generation Method 
𝛍𝛍𝐹𝐹 3-4 𝜇𝜇𝑓𝑓𝑖𝑖  ~ 𝒩𝒩(1, 1) ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑋𝑋}  

𝚺𝚺𝐹𝐹 3-4 𝚺𝚺𝐹𝐹 = diag(𝛔𝛔𝐹𝐹) 𝐊𝐊 𝐊𝐊T diag(𝛔𝛔𝐹𝐹)
diag(𝐊𝐊 𝐊𝐊T)   

where log�𝜎𝜎𝑓𝑓𝑖𝑖�  ~ 𝒩𝒩(0, 0.5) ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑋𝑋}  

and 𝐊𝐊𝑖𝑖,𝑗𝑗  ~ 𝒩𝒩(0, 1) ∀ 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑋𝑋}  

𝛀𝛀𝑌𝑌 3-5 𝛀𝛀𝑌𝑌𝑖𝑖,𝑗𝑗  ~ 𝒩𝒩(0, 1)  ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑌𝑌}, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑋𝑋} 

𝛍𝛍𝜖𝜖 3-6 𝛍𝛍𝜖𝜖 = 𝟎𝟎  

𝚺𝚺𝜖𝜖 3-6 𝚺𝚺𝜖𝜖 = diag(𝛔𝛔𝜖𝜖) 𝐊𝐊 𝐊𝐊T diag(𝛔𝛔𝜖𝜖)
diag(𝐊𝐊 𝐊𝐊T)   

where log�𝜎𝜎𝜖𝜖𝑖𝑖�  ~ 𝒩𝒩(−1, 0.5) ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑌𝑌}  

and 𝐊𝐊𝑖𝑖,𝑗𝑗  ~ 𝒩𝒩(0, 1) ∀ 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑌𝑌} 

𝚵𝚵𝐺𝐺 3-11 𝚵𝚵𝐺𝐺𝑖𝑖,𝑗𝑗  ~ 𝒩𝒩(0, 1)  ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑋𝑋} 

𝐠𝐠0 3-11 𝐠𝐠0 = 𝟎𝟎  

𝐶𝐶𝑓𝑓,𝑖𝑖 4-15 𝐶𝐶𝑓𝑓,𝑖𝑖 ~ 𝒩𝒩(100, 50) ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛}  

𝐶𝐶𝑟𝑟,𝑖𝑖 4-15 𝐶𝐶𝑟𝑟,𝑖𝑖 ~ 𝒩𝒩(50, 50) ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛}  

 

For each simulated system, sensor placement is carried out using the VoI metric under both the 
greedy optimization algorithm and under an exhaustive search algorithm through all 31 possible 
non-empty sensor placement sets for the systems. The VoI obtained for greedily and exactly 
optimized sets containing the same numbers of sensors within each system are compared. 

The results of this comparison are presented in Figure 11-1, which plots the VoI provided by 
greedily and exactly optimized sets of the same size. All points lie on or below the identity line, 
as greedy optimization will always perform as well as or worse than exact optimization. Most 
points lie on or near the identity line, indicating that in the cases investigated, the greedy 
algorithm typically performs as well as or nearly as well as an exact, exhaustive approach to 
sensor placement. In 76% of cases, both algorithms generate sets with the same VoI (although 
these sets may not necessarily be the same, their performance is comparable). On average, 
greedily optimized sets provide 98% of the VoI of exhaustively optimized sets of the same size. 
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Across these 100 simulated systems, in the worst case, the greedily optimized sensor set achieves 
45% of the VoI of the exhaustively optimized set.  

 

Figure 11-1: Comparative plot of the VoI provided by greedily and exactly optimized 
measurement sets of the same size across 100 simulated systems. The identity line (dashed) is 

plotted for reference.  

An empirical cumulative distribution function for the ratios between the VoI provided by 
greedily and exactly optimized sensor sets of the same size across the 100 simulated systems 
examined is provided in Figure 11-2. This distribution indicates that, across the cases 
investigated, the greedy algorithm has a high probability of performing nearly as well as an 
exhaustive search approach (e.g., there is less than a 3% chance of the greedy optimization 
algorithm generating a set yielding less than 90% of the VoI that might be achieved through an 
exhaustive search). Finally, note that these results do not signify any general guarantee on the 
performance of the greedy algorithm, as they only reflect results for systems generated according 
to the methods outlined in Table 11-A. However, as these methods allow for the generation of a 
wide variety of different systems (with the notable restriction that the loss function remains of 
the prototypical decomposable form), it may be reasonable to expect similar results when 
applying greedy optimization approaches in systems with decomposable loss functions, which 
covers the majority of cases examined in this work. Therefore, it is expected that the majority of 
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the results presented here that are obtained through greedy optimization represent reasonable 
approximations of the true optimal sets for the systems in question. 

 

Figure 11-2: Empirical cumulative distribution function for the ratio of the VoI of optimal 
measurement sets of the same size obtained by greedy and exact optimization. Note the scale of 

the horizontal axis and discontinuity at 1. 

As another investigation into the performance of the greedy optimization algorithm, a 
comparison of forward and reverse greedy optimization approaches is also undertaken. Recall 
from Section 2.2.1 that the greedy approach used throughout this work has been the forward 
greedy approach, in which the optimal sensor set is iteratively built, beginning with an empty set. 
Conversely, a reverse greedy optimization approach begins with the set 𝒴𝒴 of all possible 
measures and prunes away measures one at a time to arrive at an optimal set. In Section 7.2.3, an 
example was presented in which the reverse greedy optimization approach represented an 
improvement over the forward greedy approach in a specific problem case.  

Unfortunately, this result will not hold true in general, i.e., the reverse greedy optimization 
algorithm does not always outperform the forward greedy optimization algorithm. This is 
verified in a number of numerical simulations, following the same approach outlined above, in 
which forward and reverse greedy optimization algorithms are compared across a number of 
randomized systems. The results of this comparison are presented in Figure 11-3. 
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Figure 11-3: Comparative plot of the VoI provided by forward and reverse greedily optimized 
measurement sets of the same size across 100 simulated systems. The identity line (dashed) is 

plotted for reference. 

As illustrated in Figure 11-3, forward and reverse greedy optimization typically result in selected 
sensor sets with roughly the same VoI. However, in some cases, either forward or reverse greedy 
optimization will result in a set with a higher VoI. Across 100 simulated systems investigated, in 
24% of cases forward optimization performed better, in 23% of cases reverse optimization 
performed better, and in the remaining 53% of cases both approaches performed the same. For 
the two most extreme cases, forward optimization outperformed reverse optimization by 85% (in 
terms of the difference in VoI of the sets resulting from both approaches, divided by the larger of 
the two values), and reverse optimization outperformed forward optimization by 55%. However, 
as can be seen in the figure, for the majority of cases the two approaches do not differ greatly in 
terms of the VoI of the optimized set, i.e., in 86% of cases one approach outperforms the other 
by less than 5%. Again, it should be noted that these results are conditional to the random system 
generation scheme outlined in Table 11-A, and may not apply generally in all situations. 

The reason for the use of a forward rather than a reverse greedy optimization approach as the 
default for this work is due to its computational simplicity. In the majority of cases investigated, 
the set of all possible measurements is much greater than the set of optimal measurements, i.e., 
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|𝒴𝒴| ≫ |𝑌𝑌∗|. Therefore, by beginning with the empty set and building towards the optimal set, 
fewer iterations are required by the forward greedy approach than the reverse.  

Various heuristic approaches can also be employed to attempt to avoid suboptimal performance 
of the forward greedy optimization algorithm in specific applications. One proposed approach is 
presented in Algorithm 3 below. The motivation for this approach is that, when the rate of 
increase in the objective value as sensors are greedily selected drops below a certain threshold, 
the algorithm may find itself in a suboptimal solution path, i.e., it is selecting individual 
measurements that provide small benefits, while there exist other sets of measurements that when 
taken together would provide a much larger benefit. Such a case is illustrated in the example of 
Section 7.2.3, where the forward greedy approach fails to identify pairs of measurements (one 
measure to correct for bias and one measure to support decision-making) that would provide high 
value and instead selects individual low-value measures. The proposed algorithm seeks to 
identify when low-benefit measures are being selected and switch to an alternative or secondary 
sensor-placement objective that differs from the first and has the potential to “break out” from 
the suboptimal path being followed by the greedy algorithm. For example, the primary objective 
might be based on VoI to select informative measures for decision-making, while the secondary 
objective might be based on mutual information or entropy, in order to select measures that differ 
greatly from previously selected measures. 

Algorithm 3: Pseudo-code for proposed greedy algorithm with alternative heuristic. 

Input candidate set 𝒴𝒴, primary objective M(⋅), secondary objective M′(⋅), gain threshold Δ𝑀𝑀, 
cost function C(⋅), constraint 𝑏𝑏 
𝑗𝑗 = 0,  𝒴𝒴0 = ∅ 
for each 𝑌𝑌 ∈ 𝒴𝒴  
 if C(𝑌𝑌) ≤ 𝑏𝑏 then 𝒴𝒴0 = 𝒴𝒴0 ∪ {𝑌𝑌} 
end 
while �𝒴𝒴𝑗𝑗� > 0 
 𝑗𝑗 = 𝑗𝑗 + 1  
 select 𝑌𝑌𝑗𝑗∗ using M(⋅) (See Equations 2-17 and 2-18) 
 if M��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗∗�� − M��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� < Δ𝑀𝑀 
  select 𝑌𝑌𝑗𝑗∗ using M′(⋅) 
 end 
 𝒴𝒴𝑗𝑗 = 𝒴𝒴𝑗𝑗−1\�𝑌𝑌𝑗𝑗∗�  
 for each 𝑌𝑌 ∈ 𝒴𝒴𝑗𝑗  
  if C��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗∗,𝑌𝑌�� > 𝑏𝑏 then 𝒴𝒴𝑗𝑗 = 𝒴𝒴𝑗𝑗\{𝑌𝑌} 
 end   
end    
𝑗𝑗end = 𝑗𝑗  
Output 𝑌𝑌∗ = �𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒

∗ � 
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To demonstrate the application of this proposed approach, a simple problem is examined. 
Consider two components whose states evolve over ten discrete time steps independently of each 
other, according to a Gaussian process model with mean function µ(𝐱𝐱, 𝑡𝑡) = 0 and covariance 
function: 

 k�𝐱𝐱𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑗𝑗 , 𝑡𝑡𝑗𝑗� = 𝜎𝜎(𝑡𝑡𝑖𝑖) 𝜎𝜎�𝑡𝑡𝑗𝑗�  exp�−
�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�

2

2(5)2  � 𝕀𝕀�𝐱𝐱𝑖𝑖 = 𝐱𝐱𝑗𝑗� (11-1) 

with 𝜎𝜎(𝑡𝑡) = 0.5 − 0.5 exp(−𝑡𝑡), modeling independent evolution of these random variables over 
time domain 𝜏𝜏 = {0, … ,9}. If these state variables exceed a certain threshold, a loss is incurred 
unless an appropriate corrective action is undertaken. That is, the limit-state variables are defined 
as in Equation 3-11 with 𝚵𝚵𝐺𝐺 = 𝐈𝐈 and 𝐠𝐠0 = 𝟎𝟎, states are defined as in Equation 7-21 with 
𝑔𝑔upper = 0.5 and 𝑔𝑔lower = −0.5, and the loss function is spatio-temporally decomposable as in 
Equation 7-7 with γ(𝑡𝑡) = 1 and with the prototypical local loss functions of Equation 4-15, with 
𝐶𝐶𝑓𝑓 = 100 and 𝐶𝐶𝑟𝑟 = 20. Measurements are possible of the random variable associated with either 
component at any time step. These measures are very noisy (𝜎𝜎𝜖𝜖 = 100) but exhibit full 
correlation of the measurement noise on the same component; this models precise but biased 
measurements for either component. The measurement cost function is C(𝑌𝑌) = 20|𝑌𝑌|. 

For this example, forward greedy sensor selection is performed following Algorithm 3 with the 
primary VoI-based objective of Equation 4-12 and the secondary entropy-based objective of 
Equation 4-41. To determine when to employ the secondary objective, in this example Δ𝑀𝑀 = 0, 
such that whenever the net additional VoI of the proposed measurement is negative, i.e., the VoI 
gain from adding the measure is less than the increase in cost, the secondary objective will be 
used instead to select the next measurement. It should be noted that this next measure will then 
also lead to a decrease in net VoI, because the optimal next measure by the VoI metric would 
lead to such a decrease, and therefore any other measure would also lead to the same or a greater 
decrease. However, in the long-term, the purpose of this heuristic is to select measurements that 
can later be combined with others to yield a relatively high total net VoI. 

Figure 11-4a plots the order in which measures are selected in this example problem via forward 
and reverse greedy approaches, as well as the proposed heuristic-based approach discussed 
above. Note that the forward approach, due to the biased measurements, falls into a suboptimal 
approach of monitoring one component while ignoring the other until all measurements for this 
first component have been exhausted. The reverse approach largely avoids this, dividing 
measures evenly between components until eventually abandoning one component to focus on 
the other, at which point its performance matches that of the forward approach. The heuristic 
approach follows that of the forward until after the fifth measure is selected. At this point, the 
gains resulting from adding additional measures fall below the specified threshold, and the next 
measure is instead chosen by the conditional entropy metric. This leads to a new measure on the 
second component, which is most different from those selected previously. Moving forward via 
the greedy approach, new measures are selected for this second component, quickly bringing the 
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VoI up to the results obtained by the reverse approach, which performs well in this problem. 
Therefore, it can be seen in this example that the proposed heuristic approach has the potential to 
avoid suboptimal performance of the forward greedy optimization algorithm under certain 
conditions, in particular where biased measures must be corrected for. Investigations into the 
general performance of this proposed approach, including the selection of appropriate secondary 
objectives under different problem cases and making sure that the secondary objectives properly 
account for differing measurement costs, remains an area for future work. 

 

Figure 11-4: Order in which measures are to be included via forward, reverse, and proposed 
heuristic-based greedy optimization approaches (a) and the VoI of the resulting sets (b). 

As noted in Section 1.2.4, there exist a number of alternative approaches to combinatorial 
optimization, mostly based on heuristics. Any one of these approaches might be applied to 
optimize the placement of sensors based on the VoI metric. Unfortunately, none of these 
alternative approaches can provide guarantees on solution optimality either. As observed in 
Section 7.2.3, expert judgement and knowledge of the underlying problem are often critical to 
recognizing, understanding, and avoiding potential difficulties with approximate methods such as 
the greedy optimization approach. It may therefore never be fully possible to remove human 
decision-making from the optimal sensor placement process, nor should complete automation of 
this process necessarily be the goal for research. In the end, techniques such as those developed 
by Mascarenas et al. (2014) whereby computer-based data collection and processing are 
combined with human sensory and instinctual responses might be the best approach to 
optimizing sensing for infrastructure system management. For example, a sensor placement 
optimization “game” might be created (similar to protein bonding games used in biochemistry) 
in which the VoI metric is used to “score” sensor placements, but human intuition and problem-
solving skills are exploited by allowing the player to propose various sensing schemes based on 
their judgement and knowledge of the system being monitored. The opportunity for effective 
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human-computer symbiosis to solve complex problems has been identified in many contexts 
(Sankar, 2012), and the optimization of sensing for infrastructure management may be another 
example of such a problem. 

11.2. Efficient Metric Evaluation in Non-Cumulative 
Systems 

Another major open issue is the efficient evaluation of the VoI metric in large general systems 
where the cumulative assumption is not valid. As discussed in Section 5.3, in general, evaluation 
of VoI in large systems is computationally prohibitive, requiring either exhaustive enumeration 
of system state and management actions or the adoption of approximate techniques that may or 
may not give sufficiently accurate estimates of VoI. Therefore, the extension of the techniques 
developed in this work to large systems (with hundreds or thousands of components) in which 
the system-level loss function is non-decomposable represents a major challenge and obstacle to 
their implementation. Unfortunately, no simple, generally applicable solutions to this problem 
were found over the course of this research. Development of such solutions remains an open 
topic and an area of future research.  

In Section 5.4, a heuristic approach to sensor placement in series systems was proposed based on 
the definition of an equivalent cumulative system. A brief numerical simulation study is 
conducted to assess the feasibility for this approximate approach. Following the system 
randomization scheme outlined in Table 11-A, ten systems are simulated. In this case, a series 
system is defined following the system state definition of Equation 4-18. System failure costs are 
drawn from a normal distribution with mean 100 and standard deviation 10. After computing the 
VoI for each potential sensor placement in the series system, the system is converted to an 
equivalent cumulative system. The loss function of Equation 4-15 is again used, and component 
failure costs are set equal to the system failure cost for the series system divided by the number 
of components. All other system parameters are kept the same. VoI is then evaluated for each 
potential sensor placement in this proposed equivalent cumulative system, and finally scaled by 
the ratio of the prior expected loss in both systems. Figure 11-5 plots the VoI computed for each 
sensor set under these two system definitions. 

The results indicated in Figure 11-5 can be grouped into three general categories. In the first, 
indicated in the figure by the blue points, VoI computed for sensor sets in both systems are 
roughly similar. Deviations from equality can potentially be explained by the relatively low 
number of simulations used to approximate the VoI in the series system (𝑛𝑛𝑠𝑠𝑖𝑖𝑚𝑚 = 1000), such 
that computations could be completed within a reasonable timeframe. In the second category, 
indicated by black dots, VoI provided by measurements in the series system is negligible, while 
VoI in the cumulative system is not. In these cases it is possible that, due to the randomized 
costs, in the series system the optimal set of actions is always the same regardless of 
measurement outcomes, while in the cumulative system this is not the case. Finally, in the third 
category, VoI provided by sensors in both systems seem to follow a roughly linear relationship 
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(again, accounting for approximation inaccuracies due to the number of samples used). However, 
this is a different linear relationship from the one predicted in Section 5.4, which was used to set 
up the series-cumulative system equivalence. In general, these results indicate that, while the 
approximate method suggested in Section 5.4 can be applicable in some cases, it is not valid in 
others. One possible reason for this is the relationship between component failure probabilities 
and management costs. When converting to an equivalent cumulative system, component failure 
costs are introduced. Relationships between component failure costs, repair costs, and 
probabilities of failure are thereby introduced which affect the VoI of measurements on each 
component, as discussed in Section 4.3. Because these relationships did not exist in the series 
system, introducing them can affect the calculated VoI in the equivalent cumulative system, 
making it different from that of the series system. Further work will be needed to establish an 
appropriate equivalence between parameters in series and cumulative systems such that the 
approximate method suggested in Section 5.4 can be effectively implemented in general. 

 

Figure 11-5: Comparative plot of the VoI provided by sets of measurements in series systems 
and in systems with equivalent cumulative topologies. Results are divided into three groups: sets 
where the series and equivalent cumulative systems yield similar VoI values (blue), sets where 

negligible value is provided by sensors in the series system (black), and sets where the VoI 
obtained in both systems follow an unknown relationship (red). The identity line (dashed) is 

plotted for reference. 
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Different system types can also be investigated as well. As an extension of the results presented 
in Section 5.4, simple series-parallel and parallel-series systems (i.e., systems with multiple 
series sub-systems in parallel with each other, or with multiple parallel sub-systems in series) can 
be investigated. It may be possible to investigate these sub-systems using the simplified methods 
discussed above, and then combine results from different subsystems to evaluate VoI in the 
overall system. By analyzing more topologically complicated systems in terms of series and 
parallel sub-systems, it may be possible to approximately analyze a wide variety of different 
systems using the simplified methods alluded to in this section. 

11.3. Uncertainty in Probabilistic Model Definitions 
Finally, optimizing inspection plans for systems whose performance (i.e., the static or dynamic 
relationships that govern their behavior) is uncertain remains an open issue. In Section 2.1.1.1, 
these properties are grouped together as model parameters 𝑊𝑊, which might be uncertain, i.e., 
distributed according to a prior probability distribution. This would represent a hierarchical 
infrastructure system model, where random field variables 𝐹𝐹 are governed by probabilistic 
models whose parameters 𝑊𝑊 are themselves random.  

A problem of this type is investigated in Chapter 9, where the magnitude and epicenter locations 
of earthquakes constituted the set of parameters 𝑊𝑊. Prior distributions for these parameters are 
assumed (i.e., a homogeneous Poisson process earthquake occurrence model was adopted) and 
samples are drawn for these parameters. VoI is then evaluated using a system model 
parameterized by each of these samples and averaging across all samples. It remains to be seen 
whether this is an appropriate method of accounting for model uncertainty; the resulting sensor 
placement may not be robust, i.e., it may perform arbitrarily poorly under some parameter 
settings. Furthermore, for this problem, it is assumed that the parameters, while random, are 
observable, i.e., that the parameter values are known to the infrastructure managing agent for 
each realization of an earthquake event. The alternative case, in which these parameters would 
need to be inferred from collected data, was not investigated.  

In general, and especially in situations where sensor placement is performed online, gathered 
information has the potential to be useful in updating the prior distributions of the model 
parameters, i.e., in reducing uncertainties in the underlying model as well as in the system itself. 
Measurement choices must therefore be made that trade off the need to conduct exploration, i.e., 
learning of the uncertain model parameters, and the need for exploitation, i.e., collecting 
information to support better decision-making about the system. This problem is explored in 
Gaussian processes using the conditional entropy and mutual information metric by Krause and 
Guestrin (2007). Furthermore, the Planning and Learning in Uncertain Systems, or PLUS, 
approach has been developed by Memarzadeh et al. (2015) and applied to problems of sequential 
inspection and management in systems whose dynamics are governed by uncertain models. 
Although developed in the context of Markov deterioration models for systems with discrete 
states, it is likely that similar approaches can be identified and adapted for use in supporting 
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optimal sensor placement for the management of infrastructure systems with uncertain model 
parameters. 

Finally, various techniques for robust optimization can be employed in cases of deep uncertainty 
about the underlying model describing the system. In contrast to approaches that seek to 
simultaneously learn about the system and support decision-making, these approaches seek only 
to identify actions or sensor placements that will provide suitable value across a range of 
possible models for the system. In certain cases, the time or resources to perform simultaneous 
learning and decision-making may not be available, and sensors must be placed without 
considering their impact on learning. There are several approaches that might be employed for 
robust sensing, including placements that maximize the minimum VoI across a range of 
alternative system models, placements that satisfy some minimum (potentially VoI-based) 
criteria across all considered models, or placements that allow for the greatest amount of 
flexibility in sequential sensing and decision-making problems (e.g., Lempert and Collins, 2007). 
Sensor placements that are robust against uncertainty about the true model for the system will 
tend to give better performance than placements that are optimized under a particular but 
incorrect assumption about the underlying probabilistic model. 

11.4. Additional Application Cases 
Future work should also expand the application case studies considered in order to demonstrate 
the general applicability of VoI-based sensing optimization. Among the most directly applicable 
systems for consideration consist of multiple similar components spread out over a spatial 
domain, for which the overall state of the system can be related to the aggregate states of 
components. Many systems of interest in civil engineering applications can be categorized in this 
manner, and several other systems might be simplified to such a system by making certain 
assumptions. 

Several systems relevant to renewable energy, such as wind turbine farms or solar collection 
centers, represent areas in which the methods developed here might be readily applicable. First, 
as the overall functionality of the system in terms of generated power can be considered as the 
sum of the power generated by each individual component, the cumulative system topology 
assumption is natural for these systems. Second, as these systems consist of a large number of 
highly similar components distributed over a spatial domain, the use of probabilistic models to 
perform inference, making use of strong correlations in the performance of similar and/or nearby 
components, has great potential implications for performing inference from component-level 
inspection data to system-level knowledge. As these systems become more prevalent, replacing 
aging energy infrastructure, the need for optimized inspection and maintenance planning for 
these systems will grow. Furthermore, the benefits of optimized inspection in terms of overall 
cost reduction can make these newer systems more competitive in an economic sense, thereby 
accelerating their introduction and the replacement of non-renewable by renewable energy 
sources. 
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For the management of structural systems, as discussed in Chapter 8, the main outstanding 
concern to be addressed in future work is the incorporation of numerous loading conditions and 
failure modes into a consistent framework for optimizing sensor placement. In accounting for 
different loading scenarios, e.g., wind loads, snow loads, or earthquake loads, a formulation such 
as that of Section 9.1.1 might be used, with different distributions over loads defined for each 
scenario, and sensor placements optimized across all considered scenarios. Alternatively, a 
common model might be developed to probabilistically characterize structural loadings across all 
scenarios. Development of such a model would be a complicated endeavor. However, such a 
model has the potential benefit of assigning correlations between loadings from different 
scenarios, such that the possibilities of simultaneous extreme loadings due to different scenarios 
can be accounted for. In terms of system failure modes, the system as a whole can often be 
modeled as a series arrangement of the failure modes, in that if any one mode occurs, the 
structure as a whole will fail. This complicates system analysis, preventing a cumulative 
assumption to be made across the failure modes. However, in structures where there is one 
predominant mode, or where different portions of the structure operate independently and with 
different failure criteria, a cumulative assumption might be a reasonable approximation for the 
analysis of the system. 

In terms of managing systems of infrastructures, some systems of interest, including 
transportation, water supply, and power supply systems, have network structures that strongly 
influence the performance of the system as a whole. Therefore, typically, the cumulative 
assumption is not directly applicable, as system-level effects tend to couple decision-making 
about component management across the system. However, in some cases, reasonable 
simplifications can be made that allow for approximate analysis of the system under a 
cumulative topology assumption. For example, in the case of failures resulting from deterioration 
of components, the event of multiple components simultaneously failing may be extremely 
unlikely. Therefore, by quantifying failure costs in terms of single component failures only and 
ignoring system-level effects that can cause the failure of multiple components to have very 
different costs from the sum of the individual component failure costs, a cumulative assumption 
might still be reasonably applied to the system. A deeper investigation of such systems and the 
applicability of this type of assumption is needed to support basing decision-making on it, but 
intuition suggests there are situations in which such an assumption might lead to nearly correct 
approximations of measurement VoI. 

Finally, in terms of environmental engineering issues such as response to or remediation of 
contamination or adaptation to changing climate conditions, cumulative assumptions are often 
reasonable. For example, decisions about contamination are often based on local concentrations, 
and the overall effectiveness of a remediation effort might be reasonably interpreted as a 
(possibly weighted) sum of its effectiveness in several discrete areas. In terms of climate 
adaptation, the fact that local decisions will have little influence on the overall evolution of the 
climate system allows assumptions such as those presented in Chapter 7 to be applied, thus 
allowing for more efficient evaluation of the VoI in evolving systems subjected to uncertain 
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future climate stresses. However, for some applications, the Gaussian process assumption of the 
underlying variables may be suspect. While in the application of Chapter 10, the Gaussian 
assumption was reasonable across a wide range of possible temperatures, for other atmospheric 
factors such as pollutant and particulate matter concentrations, variations of several orders of 
magnitude and/or multimodal distributions based on different prevailing weather patterns or 
pollutant source activities may be possible. Such distributions are poorly represented by 
Gaussian models. More complicated models may need to be used, or non-linear transformations 
of the variable space may be made to allow for Gaussian process models to describe the 
transformed variables. More complicated correlation models, e.g. between various atmospheric 
pollutants based on their chemical interactions, may also be needed. 
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Chapter 12  

Conclusions 

This final chapter will recapitulate the major contributions of this work, and summarize the 
general conclusions that have been drawn.  

Beginning in Chapter 1, background material related to infrastructure modeling and monitoring 
in general was presented, and several major research gaps were identified. First, the lack of a 
system-level perspective for infrastructure modeling and monitoring can lead to the sub-optimal 
collection and processing of data on system functioning, in turn leading to sub-optimal decision-
making and allocation of resources. Second, the main reason for this lack of a system-level 
perspective is the computational difficulties associated with scaling approaches to optimal 
monitoring and management to large systems. Third, there is a general disconnection between 
management decision-making and monitoring, such that the benefits of information are not 
typically assessed in terms of how this information will improve decision-making by reducing 
costs and/or increasing the functionality of the system. In light of these gaps in theory and 
practice, the primary goal of this work was articulated as the integration of probabilistic 
modeling and VoI-based optimal sensor placement approaches to efficiently support 
infrastructure management decision-making. 

Towards this goal, Chapter 2 set forth the fundamental structure of the optimal sensor placement 
problem by defining probabilistic models for infrastructure system behavior, information 
collection, and management decision-making in general terms. The objective of optimal sensor 
placement was defined, and the greedy optimization algorithm, used for efficient combinatorial 
optimization throughout this work, was introduced. Chapter 3 expanded on this basic structure to 
further define the system behavior, monitoring, and management model in terms of a PGM. 
Several alternative PGM and influence diagram structures, corresponding to various fundamental 
assumptions on system behavior and management, were introduced. Notably, the 
computationally important cumulative system topology was formalized here. Finally, a specific 
formulation of the problem based on a Gaussian random field model was presented, which 
represents a flexible and computationally efficient method for system modeling that is used 
throughout this work. 

The VoI metric for sensor placement was introduced in Chapter 4, and the mathematical 
underpinnings and key properties of this metric were identified. Through a parametric 
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investigation of the metric in a single-component system, the basic properties of the metric were 
outlined, namely its dependence on sensor precision, component reliability, and the relative costs 
of decision-making outcomes. One obstacle to the efficient application of the VoI metric, namely 
its lack of submodularity, was also identified. Finally, the metric was compared with several 
alternative metrics for sensor placement, including those based on uncertainty quantification 
(i.e., conditional entropy) and outcome prediction (i.e., prediction error and misclassification 
rate). Following this introduction, Chapter 5 focused on the computational difficulties associated 
with the evaluation of VoI in general, and presented an efficient approach to VoI evaluation in 
the special case of the cumulative system topology. More generally applicable but approximate 
methods were also presented for the evaluation of VoI in other systems, together with 
approximate methods applicable specifically in series and parallel system topologies.  

Chapter 6 provided the first complete examples of the application of Gaussian random field 
models and the VoI metric to support optimal sensor placement. Examples were presented for 
systems distributed across one- and two-dimensional spatial domains under various assumptions 
on the system topology. Comparisons were also drawn between the VoI metric and the 
alternative sensor placement objectives presented in Chapter 4; situations in which these 
objectives lead to similar or different sensor placement results were identified and discussed. 

The basic methodology developed up to this point was extended, in Chapter 7, to spatio-temporal 
systems whose underlying random features vary in both space and time. Computationally 
efficient methods for VoI evaluation in such systems, based on the application of the cumulative 
topology assumption in the temporal domain, were presented. These methods were used to guide 
optimal sensor placement and scheduling to support long-term infrastructure monitoring and 
management in several example problems. One situation in particular, in which the structure of 
the problem led to clearly suboptimal performance by the greedy optimization algorithm, was 
identified and commented on.  

The following three chapters were devoted to presenting practical examples of the application of 
probabilistic models and the VoI metric to supporting sensor placement and infrastructure system 
management. In Chapter 8, these methods were applied to a problem of SHM, using the case 
study of the newly constructed and instrumented Scott Hall building on the CMU campus. In this 
chapter, information collected by a number of fiber optic strain gauges on the columns of the 
structure was used to calibrate a probabilistic model of structural behavior and to optimize the 
selection of a subset of these gauges to support decision-making for a particular potential 
structural problem. In Chapter 9, a probabilistic model for earthquake occurrence and ground 
motions in the San Francisco Bay area was used to guide the allocation of SHM activities among 
multiple components (i.e., bridges and tunnels) in a large transportation infrastructure system to 
support post-earthquake emergency decision-making. This chapter also demonstrated a case in 
which the random field parameters of the seismic risk were themselves variable and presented an 
investigation of the density of VoI across these parameters. Finally, Chapter 10 outlined the 
development and calibration of a probabilistic model for urban temperatures based on high-
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resolution numerical microclimate simulations. This model was then used to optimize the 
location of temperature sensors to support heat wave advisory issuance in the city of Pittsburgh 
based on the VoI metric. Various investigations and comparisons of sensor placement 
performance using different metrics and under various assumptions on the availability of 
additional information were also presented.  

The main body of this work concluded in Chapter 11 by summarizing the major open issues 
related to optimal sensor placement using the VoI metric, as well as areas for future work in 
addressing these issues. These issues include verification of the applicability of the greedy 
optimization approach to the non-submodular VoI metric, where preliminary simulation results 
indicated that this algorithm may provide near-optimal results across a wide variety of potential 
systems. However, in certain specific cases, such as when measurements are biased, this 
algorithm can exhibit very poor performance. An instance of this was illustrated, and a proposed 
alternative optimization approach, involving an entropy-based heuristic, was outlined. Other 
open issues included the scaling of VoI evaluation methods in non-cumulative system 
topologies, as well as the applicability of optimal sensing methods in systems with uncertain 
parameters. Finally, some possible infrastructures to consider for future work were presented. 

Several general, qualitative conclusions can be drawn from the results presented throughout this 
work. First, applying the various methods presented here, the VoI metric can be used to 
efficiently optimize the placement of sensors to support management of distributed infrastructure 
systems, under certain assumptions on the problems structure. Three of these assumptions 
featured throughout this work are that (i) the performance of the system can be appropriately 
modeled via a set of jointly Gaussian random variables, (ii) observations taken of the system can 
be modeled as measurements of linear combinations of these variables, i.e., as variables which 
themselves share a joint Gaussian distribution, and (iii) the system-level loss function can be 
expressed as a linear combination of component-level loss functions (with an appropriate 
definition of the components) such that the loss function is decomposable. The first two 
assumptions allow for efficient closed-form Bayesian updating of the system model based on 
observations, and the third allows for efficient computation of the VoI metric itself. As has been 
demonstrated in this work, there are a wide variety of situations in which these assumptions are 
valid, and therefore in which the VoI metric can be used efficiently and effectively for sensor 
placement optimization. 

There will, however, always be exceptional cases in which these assumptions are not applicable. 
For instance, in the probabilistic temperature field model of Chapter 10, Figure 10-10 indicates 
that the Gaussian model calibrated for temperature does not accurately reflect the true tail 
distributions for high and low temperatures. Therefore, in this case, the Gaussian random field 
model, although a reasonable approximation of the true temperature distribution, does not 
accurately capture the extreme value distribution of the temperature field. In such a case, VoI-
based analysis may over- or under-estimate the utility of certain measurements, resulting in a 
sub-optimal sensor arrangement. Although the impact of this was not considered to be critical for 
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the applications discussed in Chapter 10, it is nonetheless a concern for the general applicability 
of the methods presented here. The adoption of appropriate transformations for the underlying 
Gaussian model, e.g., the use of a log-Gaussian model as in Chapter 9, is one potential approach 
to overcoming this particular deficiency in practice.  

Efficient application of the VoI metric where the loss function is non-decomposable is an 
additional area for concern, as discussed in Section 11.2. There are several reasons why this 
assumption might be violated in practice. First, the state of the system may depend in a nonlinear 
fashion on the states of the components; the classic example, as has been investigated in this 
work, is that of the series or parallel system topology. Second, actions may have non-local 
effects; e.g., a single action may affect multiple components or, due to the system topology, an 
action can affect the overall performance of the system, such as a bridge closure reducing overall 
traffic capacity in a system. Third, actions may have non-local costs; e.g., there may be 
economies of scale associated with applying the same action to multiple components, or there 
may be constraints on how many common actions may be taken such that the cost of performing 
more than this number of a specific action type throughout a system is prohibitive. All these 
factors can serve to couple decision-making between system components, and therefore lead the 
loss function to be non-decomposable. Although there is likely no general and efficient solution 
for the computational problems presented by non-decomposable loss functions, purely due to the 
mathematical realities of these problems, various approximate techniques and heuristic methods, 
such as have been discussed in Sections 5.3 and 11.2, may allow for efficient application of the 
VoI metric with reasonable expectations of performance in general systems. Additionally, in 
some cases it may be possible to approximate the true non-decomposable loss function 
governing a system with an alternative decomposable loss function that can roughly capture the 
cost structure of the problem in a manner that is more amenable to analysis. 

Special mention must also be made of the issues associated with spatio-temporal systems, i.e., 
systems that change over time as well as are distributed across space. As discussed in Chapter 7, 
from a theoretical standpoint, analysis of a spatio-temporal system is no different from analysis 
of a purely spatial system, in that time can be treated as another dimension to the problem. 
Although this increase of dimensionality leads to a corresponding increase in problem 
complexity due to the proliferation of system variables and management actions, there is no 
inherent difficulty associated with the temporal dimension in and of itself. The only caveat to this 
statement relates to the unidirectional propagation of information in time, i.e., that decisions 
must be made taking into account only information collected prior to the decision-making time. 
As with spatial systems, decomposition of the loss function in time can lead to more efficient 
computability of the VoI metric. In cases where temporal locality does not apply, i.e., where 
actions can affect the evolution of the system, an alternative efficient approach such as a 
POMDP framework is needed to avoid the exponential growth in problem complexity inherent 
with this problem dimensionality increase. Further issues associated with spatio-temporal 
information gathering, such as the distinction of online and offline sensor placement and the 
discounting of value for future decision-making, have also been addressed in this work; overall, 
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accounting for these issues within the general framework presented in this work is relatively 
straightforward.  

From a qualitative perspective, the applicability of the VoI metric to support infrastructure 
monitoring is clear. Of the various metrics discussed in this work, the VoI alone takes into 
account the factors of sensor accuracy, prior system knowledge, available management actions, 
and relative costs or utilities of various outcomes to identify what information will be of the most 
use in supporting optimal decision-making for system management. Furthermore, the VoI can be 
directly traded off against sensing cost, as both can be assessed in comparable monetary or 
utilitarian terms, and so an optimal number of measurements can be selected to maximize the net 
VoI; for other objectives, a cost-benefit formulation must be adopted to trade off sensing costs 
with benefits measured in non-monetary terms. Given a well-formulated probabilistic system 
model and a complete understanding of the loss function governing system management, the VoI 
metric is, by its definition, the best objective for guiding sensing to support the management of 
uncertain systems. However, practically, there are a number of obstacles to its widespread usage. 
The computational barriers discussed previously constitute one obstacle, which may be 
overcome using the methods discussed in this work wherever applicable. Another obstacle is in 
the definition of the loss function itself. In some cases, losses may not be clearly understood, or 
multiple decision objectives may be involved that cannot necessarily be converted easily to a 
common measure of utility. In these cases, the use of the VoI metric may be suspect due to a lack 
of fundamental understanding or agreement on the definition of the problem. In such cases, 
alternative metrics such as the conditional entropy or prediction error metrics may be preferable, 
as they are agnostic to the decision-making problem structure.  

Finally, as discussed in Section 11.1, there are potential shortcomings to the use of the greedy 
optimization algorithm for any non-submodular metric, including the VoI. In many cases, such 
as in the example of Section 7.2.3, severe shortcomings of the algorithm can be readily identified 
though an understanding of the problem structure, e.g., knowing if and where combinations of 
measurements can have emergent properties that make them more useful than simple aggregation 
would suggest. Throughout this work, the greedy approach has been used for the optimization of 
sensor placements based on the VoI metric, and wherever the optimality of these placements are 
assessed (either through comparison with an exactly optimized sensor placement, with randomly 
selected sensors, or with the VoPI) the greedily optimized placement has represented a 
reasonable approximation to the true optimal or best possible solution. Based on this empirical 
evidence, this work posits that the use of the greedy optimization algorithm can be justified to 
support optimal sensor placement for infrastructure system management using the VoI metric. 
Further empirical investigations following the preliminary results of Section 11.1 or theoretical 
results as presented in Appendix B may provide additional support for this claim in the future. 

In summary, sensor placement for infrastructure management is best supported by the VoI 
metric, which implicitly accounts for problem uncertainty and potential outcomes to determine 
the utility of measurements in supporting decision-making. This metric can be efficiently 
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evaluated in large systems under certain assumptions on the problem structure. Where these 
assumptions do not apply, approximate methods may be utilized. This work presents many 
examples of the application of the VoI metric, together with probabilistic models of uncertain 
systems and a forward greedy measurement selection algorithm, in which optimized sets of 
sensor locations and/or inspections can be efficiently selected to support the management of a 
distributed system. Other metrics have also been investigated for comparative purposes, and to 
serve as alternatives in cases where the underlying problem structure is too ill-defined to allow 
for computation of the VoI metric. Overall, this work has presented a simple, scalable, efficient 
method for optimal sensor placement to support infrastructure system management based on 
system-level PGMs and the VoI metric. 

12.1. Related Publications 
This section lists the publications related to this work, and what major contributions are 
discussed in each publication. 

Preliminary investigations evaluating the conditional entropy metric in multi-component systems 
are presented by Malings et al. (2013). This paper identifies some general issues relating to the 
use of the conditional entropy metric in supporting optimal monitoring of infrastructure systems. 
Although not directly relevant to this work, these results help to motivate the discussion of 
Section 1.2.5 regarding the shortcomings of other sensing metrics.  

The formulation of the VoI metric using a decomposable loss function, as in Equation 3-1, was 
first presented by Malings and Pozzi (2014a). Also first published in that paper were the 
application of the VoI metric to the problem of seismic risk monitoring, as discussed in Chapter 
9, the efficient computational techniques of Section 5.2.2, and a preliminary formulation of the 
seismic risk model of Section 9.1. These preliminary results were expanded by Malings and 
Pozzi (2014b) to consider continuous fault lines, as in Section 9.2 (whereas previously a set of 
discrete epicenter locations was considered) and to present an analysis of the VoI density for the 
seismic risk problem. A further extension and summarization of this work was presented by 
Malings and Pozzi (2016a); this provided a complete summary of the previously published work 
on seismic risk analysis and optimal sensing using VoI, as presented in Chapter 9, including a 
previously omitted formulation for the evaluation of VoI for a Poisson process and under 
earthquake scenario uncertainty. Furthermore, this paper presented a qualitative comparison 
between the VoI and conditional entropy metrics, which forms a portion of Section 4.4. Finally, 
a parametric analysis of the VoI in multicomponent cumulative systems, with an application to 
seismic risk, was presented by Malings and Pozzi (2015). Although the results of this analysis 
are not directly included in this work, these did help to motivate some of the discussions 
included in Chapter 9. 

An analysis of the complexity of VoI computation, as discussed in Section 5.1, was first 
presented by Malings and Pozzi (2016b). Other significant contributions of that work included 
comparisons between the VoI, prediction, and misclassification metrics, as presented in Section 
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4.4, a parametric analysis of the VoI for a single component, as presented in Section 4.3, 
efficient computational techniques for special cases of cumulative system topologies, as 
presented in Section 5.2.1, general approximate computational techniques for VoI evaluation, as 
presented in Section 5.3, and comparative analyses between various metrics in one- and two-
dimensional problems, as presented in Chapter 6. An analysis of the performance of the VoI 
metric in multicomponent non-cumulative series and parallel systems was first presented by 
(Malings and Pozzi, 2016c), along with the example presented in Section 5.4. 

The extension of the VoI metric and optimal sensor placement approaches to spatio-temporal 
systems as discussed in Chapter 7 was first presented by Malings and Pozzi (2016d). This 
publication included the formulation of VoI in spatio-temporal systems as in Section 7.1, the use 
of temporally decomposable loss functions to efficiently evaluate VoI for these systems 
(analogous to the use of decomposable loss functions in purely spatial problems, as discussed in 
previous works) and the demonstrative examples presented in Sections 7.2.1 and 7.2.3 (the 
example of Section 7.2.2 was taken from an earlier unpublished version of this paper).  

The fiber optic sensing system installed for the monitoring of the Scott Hall building, as 
discussed in Chapter 8, as well as the optimal sensor placement example based on data collected 
by these sensors, as in Section 8.3, were first discussed by Malings et al. (2015). Follow-on 
results from this project, particularly the optimal sensor placement and scheduling results 
presented in Section 8.4, were presented by Malings and Pozzi (2016e). 

The results of the SHADE (surface heat assessment for developed environments) project, as 
summarized in Chapter 10, were presented in several publications. The probabilistic urban 
temperature model outlined and validated in Section 10.2 was introduced by Malings et al. 
(2017a). This model was used for optimal allocation of temperature monitoring efforts, as 
discussed in Sections 10.3 and 10.4, by Malings et al. (2017b). A further analysis of optimal 
sensing for urban temperatures, under various alternative assumptions on the prediction lead-
time and availability of information, as in Section 10.4.2, was presented by Malings et al. (2016). 
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Appendix A: Value of Information Bounds 
and Relationships 
This appendix presents derivations supporting the assertions in Section 4.1 concerning the upper 
and lower bounds on VoI, as well as the equivalence of the regret-based and loss-based 
formulations for the VoI and the relative performance of online and offline optimization 
approaches for the VoI metric. The basic modeling assumptions of Section 3.3 are relaxed in this 
appendix. 

A.1. Lower Bound for the Value of Information 
This section derives a lower-bound for the VoI. This derivation is adapted from the work of 
Hilton (1977). Begin by noting that the following expression holds true for all 𝐲𝐲 ∈ Dom(𝑌𝑌): 

min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) ≤ 𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) 

This is a consequence of the definition of the minimization, i.e., the minimum over 𝐚𝐚 of 
𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚), a function of 𝐲𝐲 alone, is by definition a lower bound for 𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚), which is a 
function of 𝐚𝐚 and 𝐲𝐲. Since this relationship holds for all 𝐲𝐲 ∈ Dom(𝑌𝑌), it will hold under the 
expectation over all 𝐲𝐲 as well. Taking the expectation of both sides with respect to 𝑌𝑌 yields: 

𝔼𝔼𝑌𝑌 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) ≤ 𝔼𝔼𝑌𝑌𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) 

Note that the left-hand side is the definition of the posterior expected loss from Equation 4-5. On 
the right-hand side, the expectations can be replaced with a joint expectation over 𝐹𝐹 and 𝑌𝑌: 

𝔼𝔼L(𝑌𝑌) ≤ 𝔼𝔼𝐹𝐹,𝑌𝑌L(𝐟𝐟,𝐚𝐚) 

Since L(𝐟𝐟,𝐚𝐚) is not a function of 𝐲𝐲, this joint expectation is equivalent to an expectation over 𝐹𝐹 
only. Taking the minimum of both sides with respect to 𝐴𝐴 preserves with inequality, since it must 
hold over all 𝐚𝐚 ∈ 𝒜𝒜: 

min
𝐚𝐚∈𝒜𝒜

𝔼𝔼L(𝑌𝑌) ≤ min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹L(𝐟𝐟,𝐚𝐚) 

On the left-hand side, 𝔼𝔼L(𝑌𝑌) is not a function of 𝐚𝐚, so it can be replaced with simply 𝔼𝔼L(𝑌𝑌). The 
right-hand side is the definition for the prior expected loss from Equation 4-1:  

𝔼𝔼L(𝑌𝑌) ≤ 𝔼𝔼L(∅) 

Subtracting 𝔼𝔼L(𝑌𝑌) from both sides proves the bound: 
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0 ≤ 𝔼𝔼L(∅) − 𝔼𝔼L(𝑌𝑌) = VoI(𝑌𝑌) 

A.2. Upper Bound for the Value of Information  
The following proof makes use of Jensen’s Inequality for concave functions. Concavity and 
Jensen’s Inequality are common concepts in mathematics and statistics, discussed by, e.g., 
Casella and Berger (2002, pp. 189–190).  

The first step towards proving an upper-bound for VoI is to prove the concavity of the 
minimization function. Concavity can be proved by showing that the following expression holds 
true for any 𝛼𝛼 ∈ [0,1]: 

min
𝐚𝐚∈𝒜𝒜

[𝛼𝛼L(𝐟𝐟1,𝐚𝐚) + (1 − 𝛼𝛼)L(𝐟𝐟2,𝐚𝐚)] ≥ 𝛼𝛼min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟1,𝐚𝐚) + (1 − 𝛼𝛼) min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟2,𝐚𝐚) 

Let 𝐚𝐚1∗  be the action set that minimizes L(𝐟𝐟1,𝐚𝐚), 𝐚𝐚2∗  be the action set that minimizes L(𝐟𝐟2,𝐚𝐚), and 
𝐚𝐚sum∗  be the action set that minimizes the sum 𝛼𝛼L(𝐟𝐟1,𝐚𝐚) + (1 − 𝛼𝛼)L(𝐟𝐟2,𝐚𝐚). By definition of the 
minimum: 

L(𝐟𝐟1,𝐚𝐚sum∗ ) ≥ L(𝐟𝐟1,𝐚𝐚1∗) 

and: 

L(𝐟𝐟2,𝐚𝐚sum∗ ) ≥ L(𝐟𝐟2,𝐚𝐚2∗) 

Multiplying these two inequalities by positive constants (𝛼𝛼 and 1 − 𝛼𝛼, respectively) preserves 
the inequality, as does adding them together: 

𝛼𝛼L(𝐟𝐟1,𝐚𝐚sum∗ ) + (1 − 𝛼𝛼)L(𝐟𝐟2,𝐚𝐚sum∗ ) ≥ 𝛼𝛼L(𝐟𝐟1,𝐚𝐚1∗  ) + (1 − 𝛼𝛼)L(𝐟𝐟2,𝐚𝐚2∗  ) 

The left-hand side of the inequality can be expressed as: 

𝛼𝛼L(𝐟𝐟1,𝐚𝐚sum∗ ) + (1 − 𝛼𝛼)L(𝐟𝐟2,𝐚𝐚sum∗ ) = min
𝐚𝐚∈𝒜𝒜

[𝛼𝛼L(𝐟𝐟1,𝐚𝐚) + (1 − 𝛼𝛼)L(𝐟𝐟2,𝐚𝐚)] 

while the right-hand side can be expressed as: 

𝛼𝛼L(𝐟𝐟1,𝐚𝐚1∗  ) + (1 − 𝛼𝛼)L(𝐟𝐟2,𝐚𝐚2∗  ) = 𝛼𝛼min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟1,𝐚𝐚) + (1 − 𝛼𝛼) min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟2,𝐚𝐚) 

This is the original inequality, proving the concavity of the minimization function. 

Concavity for the minimization function means Jensen’s Inequality for concave functions will 
hold true for the minimization, i.e., that the minimum of the expected value of the loss function 
over 𝐹𝐹 is greater than or equal to the expectation over 𝐹𝐹 of the minimum loss: 

min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹L(𝐟𝐟,𝐚𝐚) ≥ 𝔼𝔼𝐹𝐹 min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟,𝐚𝐚) 
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This inequality will hold even if the expectation is conditioned on another variable 𝑌𝑌 (of which 
the loss is not a function): 

min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) ≥ 𝔼𝔼𝐹𝐹|𝐲𝐲 min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟,𝐚𝐚) 

As this inequality holds in general for any 𝐲𝐲 ∈ Dom(𝑌𝑌), it will hold after the expectation over 𝑌𝑌 
as well: 

𝔼𝔼𝑌𝑌 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) ≥ 𝔼𝔼𝑌𝑌𝔼𝔼𝐹𝐹|𝐲𝐲 min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟,𝐚𝐚) 

For the expression on the right-hand side, the two expectations can be combined into an 
expectation over 𝐹𝐹 and 𝑌𝑌 using the chain rule: 

𝔼𝔼𝑌𝑌 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) ≥ 𝔼𝔼𝐹𝐹,𝑌𝑌 min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟,𝐚𝐚) 

Furthermore, since min𝐚𝐚∈𝒜𝒜 L(𝐟𝐟,𝐚𝐚) is not a function of 𝐲𝐲, the joint expectation can be replaced 
with an expectation over 𝐹𝐹 only: 

𝔼𝔼𝑌𝑌 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) ≥ 𝔼𝔼𝐹𝐹 min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟,𝐚𝐚) 

Finally, noting that 𝔼𝔼𝐹𝐹|𝐟𝐟L(𝐟𝐟,𝐚𝐚) is equivalent to L(𝐟𝐟,𝐚𝐚) (taking the expectation of a function over 
a fixed quantity is equivalent to substituting in that quantity to the function) gives: 

𝔼𝔼𝑌𝑌 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) ≥ 𝔼𝔼𝐹𝐹 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐟𝐟L(𝐟𝐟,𝐚𝐚) 

Both sides of the inequality now have the form of Equation 4-5, where the left-hand side is the 
posterior expected loss given an observation of 𝑌𝑌 and the right-hand side is the posterior 
expected loss given an observation of 𝐹𝐹: 

𝔼𝔼L(𝑌𝑌) ≥ 𝔼𝔼L(𝐹𝐹) 

Multiplying both sides by −1 reverses the inequality, while adding 𝔼𝔼L(∅) to both sides 
preserves it: 

𝔼𝔼L(∅) − 𝔼𝔼L(𝑌𝑌) ≤ 𝔼𝔼L(∅)− 𝔼𝔼L(𝐹𝐹) 

This gives the upper-bound for VoI(𝑌𝑌): 

VoI(𝑌𝑌) ≤ VoI(𝐹𝐹) 
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A.3. Regret-based and Loss-based Formulation Equivalence 
This section provides a proof for the equivalence of the loss-based and regret-based formulations 
of VoI in Equations 4-6 and 4-11. Substituting the definition of regret from Equation 4-8 into the 
prior expected regret formula of Equation 4-10 yields: 

𝔼𝔼R(∅) = min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹�L(𝐟𝐟,𝐚𝐚) − L�𝐟𝐟,𝐚𝐚∗(𝐟𝐟)�� 

Using the linearity of the expectation, as well as the fact that the second half of the expression in 
brackets is not a function of 𝐚𝐚, the prior expected regret can be expressed as: 

𝔼𝔼R(∅) = min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹L(𝐟𝐟,𝐚𝐚) − 𝔼𝔼𝐹𝐹 �min
𝐚𝐚∈𝒜𝒜

L(𝐟𝐟,𝐚𝐚)� 

where the definition of 𝐚𝐚∗(𝐟𝐟) from Equation 4-9 is substituted into the second half of the 
expression. Because the expectation over 𝐹𝐹 conditioned on 𝐟𝐟 of L(𝐟𝐟,𝐚𝐚) is equivalent to L(𝐟𝐟,𝐚𝐚) 
directly (taking the expectation of a function over a fixed quantity is equivalent to substituting in 
that quantity to the function), the prior expected regret is expressed equivalently as: 

𝔼𝔼R(∅) = min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹L(𝐟𝐟,𝐚𝐚) − 𝔼𝔼𝐹𝐹 �min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐟𝐟 L(𝐟𝐟,𝐚𝐚)� = 𝔼𝔼L(∅) − 𝔼𝔼L(𝐹𝐹) = VoI(𝐹𝐹) 

Note therefore that the prior expected regret is equivalent to the value of complete perfect 
information VoI(𝐹𝐹) on the random field. 

Similarly, for the posterior expected regret of Equation 4-10: 

𝔼𝔼R(𝑌𝑌) = 𝔼𝔼𝑌𝑌 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲L(𝐟𝐟,𝐚𝐚) − 𝔼𝔼𝑌𝑌𝔼𝔼𝐹𝐹|𝐲𝐲 �min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐟𝐟 L(𝐟𝐟,𝐚𝐚)� = 𝔼𝔼L(𝑌𝑌) − 𝔼𝔼L(𝐹𝐹) 

Therefore, the value of information definitions in Equations 4-6 and 4-11 are equivalent: 

𝔼𝔼L(∅) − 𝔼𝔼L(𝑌𝑌) = �𝔼𝔼L(∅) − 𝔼𝔼L(𝐹𝐹)� − �𝔼𝔼L(𝑌𝑌) − 𝔼𝔼L(𝐹𝐹)� = 𝔼𝔼R(∅) − 𝔼𝔼R(𝑌𝑌) 

A.4. Greedy Online versus Offline Sensor Placement 
This section demonstrates that greedy online sensor placement using the VoI metric will 
outperform greedy offline sensor placement. As a preliminary step, the following relationship is 
proven: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ �MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� = MVoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� − MVoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� 

That is, the expected value of the VoI metric for online optimization in Equation 4-13 over 
potential observations for previously placed measurements is equal to the difference of the 
values of the offline sensor placement objective of Equation 4-12 with and without the next 
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measurement 𝑌𝑌𝑗𝑗. To show that this relationship holds, first substitute in the definition of Equation 
4-13 in the left-hand side and Equation 4-12 in the right-hand side: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ ��VoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� − C��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� + C��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ���

= VoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� − C��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� − VoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ��
+ C��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� 

Note that the cost functions are constant with respect to the values of the measurements, and so 
they cancel each other on both sides: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ ��VoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1�� = VoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� − VoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� 

Substituting the definition of VoI from Equation 4-6 in the right-hand side: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ ��VoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1�� = 𝔼𝔼L(∅) − 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� − 𝔼𝔼L(∅) + 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� 

where the prior expected losses cancel each other out. Substituting the definition from Equation 
4-14 on the left-hand side: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ � �min

𝐚𝐚∈𝒜𝒜
𝔼𝔼𝐹𝐹|𝐲𝐲𝑗𝑗−1L(𝐟𝐟,𝐚𝐚) − 𝔼𝔼𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1 min

𝐚𝐚∈𝒜𝒜
𝔼𝔼𝐹𝐹|�𝐲𝐲𝑗𝑗−1,𝑦𝑦𝑗𝑗�L(𝐟𝐟,𝐚𝐚)�

= 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� − 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� 

Using the linearity of the expectation, this can be applied to the two terms on the left-hand side 
separately. For the second term on the left-hand side, the chain rule is used to replace 
𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1

∗ �𝔼𝔼𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1 with 𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ ,𝑌𝑌𝑗𝑗�

.  

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ � min

𝐚𝐚∈𝒜𝒜
𝔼𝔼𝐹𝐹|𝐲𝐲𝑗𝑗−1L(𝐟𝐟,𝐚𝐚) − 𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1

∗ ,𝑌𝑌𝑗𝑗�
min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|�𝐲𝐲𝑗𝑗−1,𝑦𝑦𝑗𝑗�L(𝐟𝐟,𝐚𝐚)

= 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� − 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� 

The two terms on the left-hand side are now the definitions of the posterior expected loss from 
Equation 4-5 for sets �𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ � and �𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗� respectively. Substituting these 
definitions shows that both sides are equal, proving the relationship: 

𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� − 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� = 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� − 𝔼𝔼L��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� ∎ 

Using this relationship, the relative performance of greedy online and offline sensor placement is 
investigated. First, by definition of the maximum, the following relationship holds true for all 
𝑌𝑌𝑗𝑗 ∈ 𝒴𝒴𝑗𝑗−1 and for all potential values of 𝐲𝐲𝑗𝑗−1:  
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max
𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1

MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� ≥ MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� 

Since this holds true for any value of 𝐲𝐲𝑗𝑗−1, taking the expectation over possible values preserves 
the inequality: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ � max

𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1
MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� ≥ 𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1

∗ �MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1�  

Substituting the relationship shown at the beginning of this section into the right-hand side 
yields: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ � max

𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1
MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� ≥ MVoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� − MVoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� 

As this relationship holds for any choice of 𝑌𝑌𝑗𝑗 ∈ 𝒴𝒴𝑗𝑗−1, it will hold for the 𝑌𝑌𝑗𝑗 that maximizes the 
right-hand side: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ � max

𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1
MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� ≥ max

𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1
�MVoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� − MVoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ��� 

Since the second term on the right-hand side is not a function of 𝑌𝑌𝑗𝑗, it can be removed from the 
maximization: 

𝔼𝔼�𝑌𝑌1∗,…,𝑌𝑌𝑗𝑗−1
∗ � max

𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1
MVoI�𝑌𝑌𝑗𝑗|𝐲𝐲𝑗𝑗−1� ≥ max

𝑌𝑌𝑗𝑗∈𝒴𝒴𝑗𝑗−1
MVoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ ,𝑌𝑌𝑗𝑗�� − MVoI��𝑌𝑌1∗, … ,𝑌𝑌𝑗𝑗−1∗ �� 

Note that the left-hand side is the expected value, over potential observations of previous 
measurements, of the optimal value of the online greedy optimization objective of Equation 
2-18, which is the incremental benefit in terms of net VoI of adding the next greedily selected 
sensor to the set. The right-hand side is the difference of the optimal value of the offline greedy 
optimization objective of Equation 2-17 and the offline objective value for previously selected 
measurements. In other words, the left-hand side is the expected gain in terms of the VoI metric 
for the next greedily selected online measurement, and the right-hand side is the expected gain 
for the next greedily selected offline measurement. This relationship shows that, in an expected 
sense, the net VoI gain from greedy online sensor placement exceeds that from greedy offline 
sensor placement.  
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Appendix B: Submodularity Investigation 
Submodularity is a set-functional property, intuitively understood as a diminishing returns 
property. One of several alternative means of proving the property is to show that, for set 
function M(⋅), the following inequality holds for 𝑌𝑌1,𝑌𝑌2 ⊆ 𝒴𝒴 (Nemhauser et al., 1978): 

M(𝑌𝑌1) + M(𝑌𝑌2) ≥ M(𝑌𝑌1 ∪ 𝑌𝑌2) + M(𝑌𝑌1 ∩ 𝑌𝑌2) 

In this appendix, the submodular properties (or lack thereof) of the conditional entropy and VoI 
metrics are investigated. The basic modeling assumptions of Section 3.3 are relaxed in this 
appendix, except where otherwise indicated for specific applications. Furthermore, in this 
section, sensing costs are ignored in the definitions of sensing objectives. This is done for 
simplicity of the resulting investigations, such that the properties of these cost functions need not 
be accounted for. Note that, through an arbitrary definition of a cost function, any objective 
might be forced to be submodular or otherwise. 

B.1. Conditional Entropy 
Substituting the reduction in entropy objective of Equation 4-41 (ignoring costs) into the 
inequality gives: 

[H(𝐹𝐹) − H(𝐹𝐹|𝑌𝑌1)] + [H(𝐹𝐹) − H(𝐹𝐹|𝑌𝑌2)] ≥ [H(𝐹𝐹) − H(𝐹𝐹|𝑌𝑌1 ∪ 𝑌𝑌2)] + [H(𝐹𝐹) − H(𝐹𝐹|𝑌𝑌1 ∩ 𝑌𝑌2)] 

H(𝐹𝐹|𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝐹𝐹|𝑌𝑌1 ∪ 𝑌𝑌2) ≥ H(𝐹𝐹|𝑌𝑌1) + H(𝐹𝐹|𝑌𝑌2) 

Using the relationship of the conditional and joint entropy, e.g., as H(𝐹𝐹|𝑌𝑌1) = H(𝐹𝐹 ∪ 𝑌𝑌1) −
H(𝑌𝑌1), gives: 

H(𝐹𝐹 ∪ {𝑌𝑌1 ∩ 𝑌𝑌2}) − H(𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝐹𝐹 ∪ 𝑌𝑌1 ∪ 𝑌𝑌2) − H(𝑌𝑌1 ∪ 𝑌𝑌2)
≥ H(𝐹𝐹 ∪ 𝑌𝑌1) − H(𝑌𝑌1) + H(𝐹𝐹 ∪ 𝑌𝑌2) − H(𝑌𝑌2) 

and again using this relationship as H(𝑌𝑌1 ∪ 𝑌𝑌2) = H(𝑌𝑌2|𝑌𝑌1) + 𝐻𝐻(𝑌𝑌1) gives: 

H(𝐹𝐹 ∪ {𝑌𝑌1 ∩ 𝑌𝑌2}) − H(𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝐹𝐹 ∪ 𝑌𝑌1 ∪ 𝑌𝑌2) − H(𝑌𝑌2|𝑌𝑌1) − 𝐻𝐻(𝑌𝑌1)
≥ H(𝐹𝐹 ∪ 𝑌𝑌1) − H(𝑌𝑌1) + H(𝐹𝐹 ∪ 𝑌𝑌2) − H(𝑌𝑌2) 

which simplifies to: 

H(𝐹𝐹 ∪ {𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝐹𝐹 ∪ 𝑌𝑌1 ∪ 𝑌𝑌2) + H(𝑌𝑌2)
≥ H(𝐹𝐹 ∪ 𝑌𝑌1) + H(𝐹𝐹 ∪ 𝑌𝑌2) + H(𝑌𝑌2|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

It can be shown that this inequality holds in several specific cases. For example, in a trivial case, 
assume that 𝐹𝐹, 𝑌𝑌1, and 𝑌𝑌2 are independent. The inequality then becomes: 
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2H(𝐹𝐹) + H(𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝑌𝑌1) + 2H(𝑌𝑌2) ≥ 2H(𝐹𝐹) + H(𝑌𝑌1) + 2H(𝑌𝑌2) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

Both sides are equal, so the inequality holds as equality, proving submodularity for independent 
measurements. However, as this means the measurements are uninformative about the random 
field, this fact is of little use for supporting optimal sensor placement. 

In a more interesting case, assume that 𝑌𝑌1 and 𝑌𝑌2 are subsets of 𝐹𝐹. Therefore the inequality 
becomes: 

2H(𝐹𝐹) + H(𝑌𝑌2) ≥ 2H(𝐹𝐹) + H(𝑌𝑌2|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

H(𝑌𝑌2) ≥ H(𝑌𝑌2|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

Note that H(𝑌𝑌2) can be expressed as H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝑌𝑌1 ∩ 𝑌𝑌2). Therefore the 
inequality becomes: 

H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) ≥ H(𝑌𝑌2|𝑌𝑌1) 

Also note that H(𝑌𝑌2|𝑌𝑌1) = H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∪ {𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝑌𝑌1 ∩ 𝑌𝑌2|𝑌𝑌1) = H(𝑌𝑌2\{𝑌𝑌1 ∩
𝑌𝑌2}|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2|𝑌𝑌1) = H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1) since H(𝑌𝑌1 ∩ 𝑌𝑌2|𝑌𝑌1) = 0. This changes the 
inequality to: 

H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) ≥ H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1) 

Since 𝑌𝑌1 ∩ 𝑌𝑌2 ⊆ 𝑌𝑌1, the inequality holds, as conditioning on a larger set of variables always 
reduces (or does not increase) the entropy. Thus, the property of submodularity holds when 
observations 𝑌𝑌 are direct measurements of random variables in 𝐹𝐹. 

More generally, assume that non-overlapping subsets of measurements are conditionally 
independent given 𝐹𝐹. First, using the relationship between the joint entropy and conditional 
entropy allows the inequality to be expressed as: 

H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) + H(𝐹𝐹) + H(𝑌𝑌1 ∪ 𝑌𝑌2|𝐹𝐹) + H(𝐹𝐹) + H(𝑌𝑌2)
≥ H(𝑌𝑌1|𝐹𝐹) + H(𝐹𝐹) + H(𝑌𝑌2|𝐹𝐹) + H(𝐹𝐹) + H(𝑌𝑌2|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

which simplifies to: 

H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌1 ∪ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌2) ≥ H(𝑌𝑌1|𝐹𝐹) + H(𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌2|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

Due to the assumption of independence between non-overlapping subsets, H(𝑌𝑌1 ∪ 𝑌𝑌2|𝐹𝐹) =
H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹), and so: 

H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌2)
≥ H(𝑌𝑌1|𝐹𝐹) + H(𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌2|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 
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Note that H(𝑌𝑌1|𝐹𝐹) = H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) and H(𝑌𝑌2|𝐹𝐹) = H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) +
H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) under this assumption as well, and so: 

2H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌2)
≥ 2H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝐹𝐹) + H(𝑌𝑌2|𝑌𝑌1)
+ H(𝑌𝑌1 ∩ 𝑌𝑌2) 

which simplifies to: 

H(𝑌𝑌2) ≥ H(𝑌𝑌2|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

As shown above, this inequality holds true in general. Therefore, submodularity holds when 
measurements are independent conditional to the random field values. This represents the case 
where observations 𝑌𝑌 of 𝐹𝐹 have uncorrelated error.  

As promising as these observations are, there are situations where the conditional entropy metric 
is not submodular. Consider, in contrast to the assumption above, that distinct sets of 
measurements are marginally independent, but conditionally dependent given the random field 
values. Start with the following inequality, derived from the above representation using the 
relationship between joint and conditional entropy: 

H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌1 ∪ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌2) ≥ H(𝑌𝑌1|𝐹𝐹) + H(𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌2|𝑌𝑌1) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

Marginal independence between the observation sets indicates that H(𝑌𝑌2|𝑌𝑌1) = H(𝑌𝑌2), and so the 
inequality becomes: 

H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌1 ∪ 𝑌𝑌2|𝐹𝐹) ≥ H(𝑌𝑌1|𝐹𝐹) + H(𝑌𝑌2|𝐹𝐹) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

Note, however, that in general: 

H(𝑌𝑌1 ∩ 𝑌𝑌2|𝐹𝐹) ≤ H(𝑌𝑌1 ∩ 𝑌𝑌2) 

Furthermore, given that the observations are conditionally dependent given 𝐹𝐹: 

H(𝑌𝑌1 ∪ 𝑌𝑌2|𝐹𝐹) < H(𝑌𝑌1|𝐹𝐹) + H(𝑌𝑌2|𝐹𝐹) 

Combining these two relationships, it is clear that the inequality related to submodularity above 
cannot hold. Therefore, the conditional entropy metric is not submodular under this case.  

As a demonstrative counterexample, consider single discrete random variable 𝐹𝐹 that takes value 
0 with probability of 25%, value 1 with probability 50%, and value 2 with probability 25%. 
Measurements 𝑌𝑌1 and 𝑌𝑌2 are independent Bernoulli variables, taking value 1 with 50% 
probability and value 0 with 50% probability. These can be understood as observations of 𝐹𝐹 by 
assuming that 𝑌𝑌1 + 𝑌𝑌2 = 𝐹𝐹. Therefore, although marginally independent, these observations are 
conditionally dependent given the value of 𝐹𝐹. Using the Shannon entropy, the lack of 
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submodularity can be verified. Noting that H({𝑌𝑌1}) = H({𝑌𝑌2}) = 1, H({𝐹𝐹,𝑌𝑌1,𝑌𝑌2}) = 2, 
H({𝐹𝐹}) = 1.5, H({𝑌𝑌1,𝑌𝑌2}|{𝐹𝐹}) = 0.5, and H({𝐹𝐹,𝑌𝑌1}) = H({𝐹𝐹,𝑌𝑌2}) = 2: 

H({𝐹𝐹}) + H({𝐹𝐹,𝑌𝑌1,𝑌𝑌2}) + H({𝑌𝑌2}) = 4.5 

H({𝐹𝐹,𝑌𝑌1}) + 𝐻𝐻({𝐹𝐹,𝑌𝑌2}) + H({𝑌𝑌2}|{𝑌𝑌1}) = 5 

which contradicts the submodularity inequality. 

The use of a sum of marginal entropies formulation will have the same general submodularity 
properties as the joint entropy, since the inequalities must hold for each of the marginal entropies 
to ensure that they will hold for the sum.  

B.2. Mutual Information 
Mutual information between observed and unobserved measurements is in general submodular, 
as shown by Krause (2008). Using the mutual information, as defined in Equation 4-42, the 
submodularity inequality is expressed as: 

[H(𝒴𝒴\𝑌𝑌1) − H(𝒴𝒴\𝑌𝑌1|𝑌𝑌1)] + [H(𝒴𝒴\𝑌𝑌2) − H(𝒴𝒴\𝑌𝑌2|𝑌𝑌2)]
≥ [H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) − H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}|{𝑌𝑌1 ∪ 𝑌𝑌2})]
+ [H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) − H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}|{𝑌𝑌1 ∩ 𝑌𝑌2})] 

which rearranges to: 

H(𝒴𝒴\𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2) + H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}|{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}|{𝑌𝑌1 ∩ 𝑌𝑌2})
≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝒴𝒴\𝑌𝑌1|𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2|𝑌𝑌2) 

Using the relationship of conditional and joint entropy, e.g., that H(𝒴𝒴\𝑌𝑌1|𝑌𝑌1) = H({𝒴𝒴\𝑌𝑌1} ∪
𝑌𝑌1) − H(𝑌𝑌1) = H(𝒴𝒴) − H(𝑌𝑌1), the inequality is expressible as: 

H(𝒴𝒴\𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2) + H(𝒴𝒴)− H(𝑌𝑌1 ∪ 𝑌𝑌2) + H(𝒴𝒴) − H(𝑌𝑌1 ∩ 𝑌𝑌2)
≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝒴𝒴) − H(𝑌𝑌1) + H(𝒴𝒴) − H(𝑌𝑌2) 

which simplifies to: 

H(𝒴𝒴\𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2) + H(𝑌𝑌1) + H(𝑌𝑌2)
≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝑌𝑌1 ∪ 𝑌𝑌2) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 

Using the definition of the joint entropy, e.g., H(𝑌𝑌1) = H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝑌𝑌1 ∩ 𝑌𝑌2) 
and H(𝑌𝑌1 ∪ 𝑌𝑌2) = H(𝑌𝑌1 ∪ 𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝑌𝑌1 ∩ 𝑌𝑌2), this can be expressed as: 
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H(𝒴𝒴\𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) + 2H(𝑌𝑌1 ∩ 𝑌𝑌2)
≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝑌𝑌1 ∪ 𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2)
+ 2H(𝑌𝑌1 ∩ 𝑌𝑌2) 

which simplifies to: 

H(𝒴𝒴\𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2)
≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝑌𝑌1 ∪ 𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) 

And using this definition again to express H(𝑌𝑌1 ∪ 𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) as H(𝑌𝑌1\{𝑌𝑌1 ∩
𝑌𝑌2}|{𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}} ∪ {𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) = H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌2) +
H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2): 

H(𝒴𝒴\𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2)
≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌2)
+ H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) 

which simplifies to: 

H(𝒴𝒴\𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2)
≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) + H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌2) 

Note that, in general, H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌1 ∩ 𝑌𝑌2) ≥ H(𝑌𝑌1\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝑌𝑌2) since 𝑌𝑌1 ∩ 𝑌𝑌2 ⊆ 𝑌𝑌2. 
Therefore we can subtract the respective terms from both sides and preserve the inequality: 

H(𝒴𝒴\𝑌𝑌1) + H(𝒴𝒴\𝑌𝑌2) ≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) 

Expanding H(𝒴𝒴\𝑌𝑌1) and H(𝒴𝒴\{𝑌𝑌1 ∩ 𝑌𝑌2}) using the definition for joint entropy: 

H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝒴𝒴\𝑌𝑌2)
≥ H(𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) + H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝒴𝒴\𝑌𝑌2) + H(𝒴𝒴\𝑌𝑌2) 

and canceling: 

H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2}) ≥ H(𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}|𝒴𝒴\𝑌𝑌2) 

This inequality holds in general since 𝒴𝒴\{𝑌𝑌1 ∪ 𝑌𝑌2} ⊆ 𝒴𝒴\𝑌𝑌2. 

B.3. Value of Information 
Using the VoI metric, the submodularity inequality is: 
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VoI(𝑌𝑌1) + VoI(𝑌𝑌2) ≥ VoI(𝑌𝑌1 ∪ 𝑌𝑌2) + VoI(𝑌𝑌1 ∩ 𝑌𝑌2) 

Substituting the definition of the VoI from Equation 4-6 and simplifying: 

𝔼𝔼L(𝑌𝑌1) + 𝔼𝔼L(𝑌𝑌2) ≤ 𝔼𝔼L(𝑌𝑌1 ∪ 𝑌𝑌2) + 𝔼𝔼L(𝑌𝑌1 ∩ 𝑌𝑌2) 

This inequality does not hold in general, except in certain special cases. For example, consider 
that the measurement sets are redundant, i.e., that 𝔼𝔼L(𝑌𝑌1 ∪ 𝑌𝑌2) = 𝔼𝔼L(𝑌𝑌1) = 𝔼𝔼L(𝑌𝑌2). In that case, 
the inequality simplifies to: 

𝔼𝔼L(𝑌𝑌1) ≤ 𝔼𝔼L(𝑌𝑌1 ∩ 𝑌𝑌2) 

which holds as a consequence of the “information never hurts” principle. However, as this must 
hold true for any measurement sets, including the empty set, this would imply that 𝔼𝔼L(𝑌𝑌) =
𝔼𝔼L(∅) for any 𝑌𝑌 ∈ 𝒴𝒴, and thus all measurements would have to have no value.  

As a more interesting special case, consider an independent system as in Figure 3-3, where 
random variables affecting each component, and therefore measurements of these, are 
independent. Furthermore, consider that this system has a decomposable loss function as in 
Equation 3-1. First, the submodularity inequality can be expressed following the definition of the 
expected loss as in Equations 4-1 and 4-5 as: 

𝔼𝔼𝑌𝑌1 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲1L(𝐟𝐟,𝐚𝐚) + 𝔼𝔼𝑌𝑌2 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲2L(𝐟𝐟,𝐚𝐚)
≤ 𝔼𝔼𝑌𝑌1∪𝑌𝑌2 min

𝐚𝐚∈𝒜𝒜
𝔼𝔼𝐹𝐹|𝐲𝐲1,𝐲𝐲2L(𝐟𝐟,𝐚𝐚) + 𝔼𝔼𝑌𝑌1∩𝑌𝑌2 min

𝐚𝐚∈𝒜𝒜
𝔼𝔼𝐹𝐹|𝐲𝐲1,2L(𝐟𝐟,𝐚𝐚) 

where 𝐲𝐲1,2 denotes the measures of 𝑌𝑌1 ∩ 𝑌𝑌2. Substituting in the decomposable loss function: 

𝔼𝔼𝑌𝑌1 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲1� L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
+ 𝔼𝔼𝑌𝑌2 min

𝐚𝐚∈𝒜𝒜
𝔼𝔼𝐹𝐹|𝐲𝐲2� L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

≤ 𝔼𝔼𝑌𝑌1∪𝑌𝑌2 min
𝐚𝐚∈𝒜𝒜

𝔼𝔼𝐹𝐹|𝐲𝐲1,𝐲𝐲2� L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
+ 𝔼𝔼𝑌𝑌1∩𝑌𝑌2 min

𝐚𝐚∈𝒜𝒜
𝔼𝔼𝐹𝐹|𝐲𝐲1,2� L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

Using the relationship of Equation 5-4: 

� 𝔼𝔼𝑌𝑌1 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
+ � 𝔼𝔼𝑌𝑌2 min

𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖
𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

≤� 𝔼𝔼𝑌𝑌1∪𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
+ � 𝔼𝔼𝑌𝑌1∩𝑌𝑌2 min

𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖
𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

Now, to account for independence of the measurements across components, introduce the 
notation that ⟦𝑌𝑌⟧ refers to the set of component indices such that measurements in the set 𝑌𝑌 
relate to these components. Note that for 𝑖𝑖 ∉ ⟦𝑌𝑌⟧ the random variables affecting the component 
are independent of the measures in 𝑌𝑌, and therefore: 
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𝔼𝔼𝑌𝑌 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖) = min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖) 

Using this notation, the summations in the inequality are split across measurement sets as:  

� 𝔼𝔼𝑌𝑌1 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1⟧

+ � min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑖𝑖∈⟦𝒴𝒴\𝑌𝑌1⟧

+ � 𝔼𝔼𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌2⟧

+ � min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑖𝑖∈⟦𝒴𝒴\𝑌𝑌2⟧

≤� 𝔼𝔼𝑌𝑌1∪𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1∪𝑌𝑌2⟧

+ � min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑖𝑖∈⟦𝒴𝒴\𝑌𝑌1∪𝑌𝑌2⟧

+ � 𝔼𝔼𝑌𝑌1∩𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1∩𝑌𝑌2⟧

+ � min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)𝑖𝑖∈⟦𝒴𝒴\𝑌𝑌1∩𝑌𝑌2⟧
 

Noting that both the left-hand and right-hand sides have the same number of instances of prior 
expected loss terms, these can be canceled:  

� 𝔼𝔼𝑌𝑌1 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1⟧

+ � 𝔼𝔼𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌2⟧

≤ � 𝔼𝔼𝑌𝑌1∪𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1∪𝑌𝑌2⟧

+ � 𝔼𝔼𝑌𝑌1∩𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1∩𝑌𝑌2⟧

 

The summation can be split, e.g., between 𝑖𝑖 ∈ ⟦𝑌𝑌2\{𝑌𝑌1 ∩ 𝑌𝑌2}⟧ and 𝑖𝑖 ∈ ⟦𝑌𝑌1 ∩ 𝑌𝑌2⟧, such that: 

� 𝔼𝔼𝑌𝑌1 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1⟧

+ � 𝔼𝔼𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌2\{𝑌𝑌1∩𝑌𝑌2}⟧

+ � 𝔼𝔼𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1∩𝑌𝑌2⟧

≤� 𝔼𝔼𝑌𝑌1∪𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1⟧

+ � 𝔼𝔼𝑌𝑌1∪𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌2\{𝑌𝑌1∩𝑌𝑌2}⟧

+ � 𝔼𝔼𝑌𝑌1∩𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1∩𝑌𝑌2⟧

 

Finally, noting that for 𝑖𝑖 ∈ ⟦𝑌𝑌1⟧, conditioning on 𝑌𝑌2 has no effect, and vice-versa for 𝑖𝑖 ∈ ⟦𝑌𝑌2⟧, 
this can be expressed as: 
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� 𝔼𝔼𝑌𝑌1 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1⟧

+ � 𝔼𝔼𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌2\{𝑌𝑌1∩𝑌𝑌2}⟧

+ � 𝔼𝔼𝑌𝑌1∩𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1∩𝑌𝑌2⟧

≤� 𝔼𝔼𝑌𝑌1 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1⟧

+ � 𝔼𝔼𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌2\{𝑌𝑌1∩𝑌𝑌2}⟧

+ � 𝔼𝔼𝑌𝑌1∩𝑌𝑌2 min
𝐚𝐚𝑖𝑖∈𝒜𝒜𝑖𝑖

𝔼𝔼𝐹𝐹𝑖𝑖|𝐲𝐲1,2L𝑖𝑖(𝐟𝐟𝑖𝑖,𝐚𝐚𝑖𝑖)
𝑖𝑖∈⟦𝑌𝑌1∩𝑌𝑌2⟧

 

where, both sides being equal, the inequality holds, and therefore so does the submodularity of 
VoI in this particular case. 

Another case of interest is that of the VoI defined for Gaussian prediction error. Using the 
relationship of Equation 5-11, the submodularity inequality is: 

tr�𝚺𝚺𝐹𝐹|𝑌𝑌1� + tr�𝚺𝚺𝐹𝐹|𝑌𝑌2� ≤ tr�𝚺𝚺𝐹𝐹|𝑌𝑌1∪𝑌𝑌2� + tr�𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2� 

Using the conditional covariance formula of Equation 3-10, and noting that this conditioning can 
be performed sequentially for different sets of observations, the inequality becomes: 

tr�𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2 − 𝚺𝚺1� + tr�𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2 − 𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2𝚺𝚺2𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2�
≤ tr �𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2 − 𝚺𝚺1 − �𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2 − 𝚺𝚺1�𝚺𝚺2�𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2 − 𝚺𝚺1�� + tr�𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2� 

where: 

𝚺𝚺1 = 𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2𝛀𝛀𝑌𝑌1\{𝑌𝑌1∩𝑌𝑌2}
T 𝚺𝚺𝑌𝑌1\{𝑌𝑌1∩𝑌𝑌2}

−1𝛀𝛀𝑌𝑌1\{𝑌𝑌1∩𝑌𝑌2}𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2  

and: 

𝚺𝚺2 = 𝛀𝛀𝑌𝑌2\{𝑌𝑌1∩𝑌𝑌2}
T 𝚺𝚺𝑌𝑌2\{𝑌𝑌1∩𝑌𝑌2}

−1𝛀𝛀𝑌𝑌2\{𝑌𝑌1∩𝑌𝑌2} 

The inequality then simplifies to: 

tr(𝚺𝚺1𝚺𝚺2𝚺𝚺1) ≤ 2tr�𝚺𝚺1𝚺𝚺2𝚺𝚺𝐹𝐹|𝑌𝑌1∩𝑌𝑌2� 

When this inequality holds, the VoI metric for Gaussian prediction error will be submodular. The 
reader is referred to Das and Kempe (2008) for additional details, where it is shown that this 
metric is submodular in the absence of “suppressor variables”, or observations that are 
independent of the random field until another observation is made.  
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Appendix C: Parameters for San Francisco 
Bay Area Example 

Table C-A: List of infrastructure components. 

Component Name Relative 
Coordinates 

[km]* 

Component Type Failure 
Cost 

Closure 
Cost 

Golden Gate Bridge (0,0) Steel Suspension $1200M $100M 
San Francisco Oakland 
Bay Bridge (East Span) 

(13,0) Concrete Viaduct $200M $150M 

San Francisco Oakland 
Bay Bridge (Middle Span) 

(11,0) New Steel Suspension $1500M $100M 

San Francisco Oakland 
Bay Bridge (West Span) 

(9,-2) Steel Suspension $1100M $100M 

Richmond-San Rafael 
Bridge (East Span) 

(3,13) Steel Cantilever $250M $300M 

Richmond-San Rafael 
Bridge (West Span) 

(1,14) Steel Cantilever $250M $300M 

San Mateo-Hayward 
Bridge (East Span) 

(24,-24) Steel Trestle $300M $150M 

San Mateo-Hayward 
Bridge (West Span) 

(19,-26) Steel Girder $400M $150M 

Dumbarton Bridge (31,-35) Concrete Girder $200M $100M 
Carquinez Bridge (East 
Span) 

(22,27) Steel Cantilever $300M $150M 

Carquinez Bridge (West 
Span) 

(22,27) New Steel Suspension $250M $100M 

Benicia-Martinez Bridge 
(East Span) 

(32,25) Concrete Segmental $300M $50M 

Benicia-Martinez Bridge 
(West Span) 

(32,25) Steel Truss $200M $100M 

Antioch Bridge (64,22) Steel Girder $200M $100M 
Fruitvale Bridge (20,-4) Steel Truss Drawbridge $10M $5M 
Park Street Bridge (21,-5) Steel Cantilever 

Drawbridge 
$15M $5M 

High Street Bridge (22,-6) Steel Cantilever 
Drawbridge 

$15M $5M 

Bay Farm Island Bridge (21,-8) Steel Truss Drawbridge $10M $5M 
Caldecott Tunnel (23,6) Bored Tunnel $1600M $400M 
Yerba Buena Island Tunnel (10,-1) Bored Tunnel $10M $1M 
Macarthur Tunnel (0,-2) Bored Tunnel $50M $5M 
Waldo Grade Tunnel (-1,3) Bored Tunnel $25M $5M 
Tom Lantos Tunnel (-4,-26) Bored Tunnel $500M $100M 
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Broadway Tunnel (6,-3) Cut-and-Cover Tunnel $5M $1M 
Stockton Street Tunnel (6,-4) Cut-and-Cover Tunnel $5M $1M 
Posey and Webster Street 
Tubes 

(16,-3) Cut-and-Cover Tunnel $5M $1M 

Northbrae Tunnel (20,5) Cut-and-Cover Tunnel $5M $1M 
*Relative locations indicate distance east and north from mid-span of the Golden Gate Bridge 
at (37.820°N, 122.480°W). 
 

Table C-B: List of component capacity parameters. Based on models from HAZUS (2013). 

Component Type Median 
[g] 

Coefficient of 
Variation 

Steel Suspension 0.7 0.6 
Concrete Viaduct 1.1 0.6 
New Steel Suspension 1.1 0.6 
Steel Cantilever 0.75 0.6 
Steel Trestle 0.6 0.6 
Steel Girder 1.1 0.6 
Concrete Girder 1.3 0.6 
Concrete Segmental 1.1 0.6 
Steel Truss 0.75 0.6 
Steel Truss Drawbridge 1.0 0.6 
Steel Cantilever Drawbridge 1.0 0.6 
Bored Tunnel 0.8 0.6 
Cut-and-Cover Tunnel 0.7 0.6 
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Table C-C: List of component capacity correlations. 

correlation coefficients 
between capacity variables 
for different infrastructure 
component types 
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Steel Suspension 0.9 0 0.8 0.2 0.2 0.2 0 0 0.1 0.1 0.1 0 0 
Concrete Viaduct 0 0.9 0 0 0 0 0.6 0.6 0 0 0 0 0 
New Steel Suspension 0.8 0 0.9 0 0 0 0 0 0 0 0 0 0 
Steel Cantilever 0.2 0 0 0.9 0.6 0.6 0 0 0.2 0.1 0.2 0 0 
Steel Trestle 0.2 0 0 0.6 0.9 0.7 0 0 0.2 0.1 0.1 0 0 
Steel Girder 0.2 0 0 0.6 0.7 0.9 0.2 0 0.2 0.1 0.1 0 0 
Concrete Girder 0 0.6 0 0 0 0.2 0.9 0.8 0 0 0 0 0 
Concrete Segmental 0 0.6 0 0 0 0 0.8 0.9 0 0 0 0 0 
Steel Truss 0.1 0 0 0.2 0.2 0.2 0 0 0.9 0.7 0.4 0 0 
Steel Truss Drawbridge 0.1 0 0 0.1 0.1 0.1 0 0 0.7 0.9 0.8 0 0 
Steel Cantilever Drawbridge 0.1 0 0 0.2 0.1 0.1 0 0 0.4 0.8 0.9 0 0 
Bored Tunnel 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 
Cut-and-Cover Tunnel 0 0 0 0 0 0 0 0 0 0 0 0.3 0.7 
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