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Abstract

This thesis focuses on the optimization of an important natural resource, water, in chemical
processes and shale gas production.

In the chemical industry, many unit operations require intensive use of water for pro-
cesses such as synthesis, cleaning, cooling cycle, and steam production. The wastewater
stream contains pollutants such as total dissolved solids (TDS) and organics that need to
be removed prior to discharge into natural water bodies. With the increasingly stringent
environmental regulations, freshwater and wastewater reuse allocation has become a major
topic in process synthesis.

Chapter 2 presents an approach to perform simultaneous optimization of heat and water
integration for a process flowsheet. As opposed to the sequential integration approach
where heat and water integration are performed for flowsheets with fixed operating condi-
tions, the simultaneous optimization method allows for variable stream qualities to account
for potential trade-offs among raw material, investment cost, and utility and water con-
sumption. Since detailed heat-exchange network and water network designs are generally
formulated as nonconvex mixed-integer nonlinear programming and nonconvex nonlin-
ear programming models, respectively, reducing complexities for these two networks is
of utmost priority. We have developed a novel linear programming targeting model for
minimizing freshwater consumption of multi-contaminants systems. This water targeting
model, which is either exact or else predicts upper bounds, is incorporated along with
the available heat targeting model into flowsheet optimization process to achieve the best
operating conditions through the proposed simultaneous framework.
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The conventional water network synthesis approach greatly simplifies wastewater treat-
ment units by using fixed recoveries, creating a gap for their applicability to industrial
processes. Chapter 3 describes a unifying approach combining various technologies ca-
pable of removing contaminants through the use of more realistic models. Unit-specific
short-cut models are developed in place of the fixed contaminant removal model to de-
scribe contaminant mass transfer in reverse osmosis, ion exchange, sedimentation, ultra-
filtration, activated sludge, and trickling filter. In addition, uncertainty in mass load of con-
taminant is considered to account for the range of operating conditions. Furthermore, the
superstructure is modified to accommodate realistic potential structures. We also present
a modified Lagrangean-based decomposition algorithm in order to effectively solve the
resulting nonconvex mixed-integer nonlinear programming problem.

Management of water use in the rapidly developing shale gas industry has become a ma-
jor challenge in recent years. Unlike most chemical processes that operate at steady-state
conditions, hydraulic fracturing requires a large volume of water in a short period of time.
In addition, there is a cost associated with each of the four key aspects, source water ac-
quisition, wastewater production, reuse and recycle, and subsequent transportation, stor-
age, and disposal. In chapter 4, water use life cycle is optimized for wellpads through
a discrete-time two-stage stochastic mixed-integer linear programming model under un-
certain availability of water. The objective is to minimize expected operating cost while
accounting for the revenue from gas production.

As the number of producing wells increase, desalination options are evaluated since pro-
duced water management becomes an important economic driver. In chapter 5, we expand
the operational model in chapter 4 to optimize capital investment decisions in water use for
shale gas production. The goal is to determine the location and capacity of impoundment,
the type of piping, treatment facility locations and removal capability, freshwater sources,
as well as the frac schedule. In addition, we examine in several scenarios the impact of
limiting truck hauling and increasing flowback volume on the solution.

Case studies in both Marcellus and Utica shale are presented to illustrate the application
of the proposed formulations.
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Chapter 1

Introduction

With increasing costs, diminishing quality of supplies, and stricter environmental efflu-
ent standards set forth by the Environmental Protection Agency (EPA), water is becoming
an important commodity. The focus of this dissertation is to optimize water use in both
process industries and shale gas development. We introduce in section 1.1 the general
strategies for performing flowsheet optimization with heat and water integration. The rel-
evant background and procedures for water use optimization within the process flowsheets
is described in section 1.2. Then section 1.3 motivates a systematic approach to manag-
ing water use at shale gas wellpads. Section 1.4 describes different types of mathematical
programming models that represent these problems and optimization approaches to solve
them. Finally, section 1.5 outlines this thesis.

1.1 Strategies for flowsheet optimization with heat and
water integration

The primary water uses in process industries are process water, cooling water, and boiler
feed water, with each use being emphasized by different industries. For example, the
chemicals, petroleum refining, and metal sectors primarily use water for cooling, while

1
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paper and pulp and food processing mostly use water for process use. In a study by
Carbon Disclosure Projects of 137 companies with total assets over $16 trillion, it has
been reported that water has risen high on the corporate agenda6. Eighty nine percent
of responding companies have developed specific water policies, strategies, and plans.
Specifically, in the chemical sector, all ten companies surveyed recognize that there is a
high growth potential for processes and products that support more efficient water use and
water recycling. Thus, despite its relative low cost in most of the U.S., water reuse has
received significant attention by the academic community.

In addition to water, energy is another important resource for the process industry. Sys-
tematic schemes for the reduction of energy use is a mature field where complex problems
are analyzed and solved (e.g. pinch analysis7,8, mathematical programming9,10). Sys-
tematic methods for optimal WN synthesis with the objective of minimizing freshwater
consumption can also be broadly categorized into pinch analysis11,12,13 and superstructure-
based methods14,15,16,17. Thorough reviews of insight-based methods are covered in Foo18,
whereas mathematical optimization techniques can be found in Bagajewicz19, and more
recent advancements are reviewed by Jeżowski20.

Generally, the reduction of the consumption of heating utility can lead to the reduction of
freshwater, and vice versa21. This coupling of the two process synthesis areas underlines
the importance of performing simultaneous optimization, which solves the synthesis prob-
lem directly and accounts for complex trade-offs among raw materials, investment cost,
and energy consumption, enabling the simultaneous approach to provide lower cost solu-
tions with efficient use of energy and water22. Simultaneous process flowsheets and heat
integration has been demonstrated to provide better solution.23.

The traditional procedure for large process synthesis designs relies on a sequential ap-
proach, which divides the problem into subproblems and solves them separately in their
natural sequence. In the context of this work, the process flowsheet is optimized first,
which determines operating conditions with the assumption that all of the heating, cool-
ing, and water requirements will be satisfied by purchased utilities. Then, the resulting
operating conditions and stream states are passed on to the heat-exchange network (HEN)
synthesis24,25, followed by the synthesis of the water network (WN)18,19,20. The subprob-

1.1. STRATEGIES FOR FLOWSHEET OPTIMIZATION WITH HEAT AND WATER
INTEGRATION
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lems are more attractive to solve since they are smaller in size. However, dividing a prob-
lem into subsystems forces important decision variables (e.g. temperature, flowrate) to be
fixed, and since these parameters can have major impact on the cost of heat integration,
the sequential approach may lead to suboptimal solutions.

Analogous to HEN pinch method, a pinch method for WN (consisting of water-using
process units and/or wastewater treatment units) with a single contaminant has also been
developed11. However, whereas in heat integration a single quality, heat, is transferred,
typical water integration involves the transfer of not only one but of multiple contami-
nants, which cannot be accounted for with water pinch analysis. Alternatively, a mathe-
matical programming approach can be formulated by globally optimizing nonconvex NLP
or MINLP problems based on superstructure optimization for handling multiple contam-
inants. Despite these efforts, a linear formulation for multicontaminants WN that can be
easily embedded in simultaneous optimization has not yet been reported in the literature.

Flowsheet optimization problems can vary in difficulty depending on the level of model
complexity (i.e. from shortcut models to fully nonlinear rigorous models26). These prob-
lems usually take the form of nonconvex mixed-integer nonlinear programming (MINLP)
models, where the nonconvexities arise from the concave cost terms in the objective func-
tion and the nonlinear equations describing the material and heat balances and design
equations. In addition, formulations of HEN and WN synthesis are primarily characterized
by MINLP problems and nonlinear programming (NLP) problems, respectively. Thus, the
full simultaneous optimization of flowsheets, heat exchange networks, and water networks
is very difficult and may incur expensive computational cost.

To overcome this drawback, a targeting approach, which determines ahead of detailed
design the main design features (e.g. heating utility for HEN, freshwater consumption
for WN), can be taken to simplify the simultaneous optimization problem. Although this
approach neglects the investment costs of the HEN and WN, it can still capture the ma-
jor trade-offs while keeping the problem dimensionality to a manageable size. Duran
and Grossmann27 have developed a targeting approach for HENS based on a set of linear
and nonlinear constraints. The method can determine for variable stream heat capacity
flowrates, inlet and outlet temperatures, the minimum heating and cooling utilities re-

1.1. STRATEGIES FOR FLOWSHEET OPTIMIZATION WITH HEAT AND WATER
INTEGRATION
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Figure 1.1: Water network superstructure.

quired without having to solve the detailed MINLP formulation for HENS. Due to the
small size and linear nature of the model for fixed process stream conditions, this target-
ing formulation can be embedded much more easily than a detailed HEN superstructure
within a process flowsheet optimization formulation. This work focuses on developing a
strategy to perform simultaneous optimization using targeting formulations to minimize
the computational requirement due to the integrated HEN and WN.

1.2 Process water network optimization

A mathematical programming approach can be formulated by globally optimizing noncon-
vex NLP or MINLP problems based on superstructure optimization for handling multiple
contaminants. In a typical WN superstructure, water is supplied to water-using process
units, and then wastewater streams generated from these processes are treated in various
treatment units. Generally speaking, the standard formulation for a WN design problem
consists of the following information. The process units in the water network are usually
characterized by concentration limits of the entering stream and mass load of contaminants
released from the unit, whereas the treatment units are characterized by fixed recoveries
(i.e. Cout

j = βtjC
in
j , where βtj is the recovery of contaminant j in treatment unit t; Cin

j

and Cout
j are contaminant concentration levels at the inlet and the outlet of t).

This comprehensive superstructure (shown in Figure 1.1) considers systematic alternatives

1.2. PROCESS WATER NETWORK OPTIMIZATION 4
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for water reuse, recycle, and recycle-reuse to minimize freshwater consumption, or more
generally, total network cost subject to a specified discharge limit16,28. Variations of this
superstructure have been considered in previous works for grassroot designs, namely, con-
sidering either only water-using process units29, focusing only on wastewater treatment
units30, or on both14,15,31,16,28. In addition, retrofit of industrial water systems has also been
considered32. Many studies have been performed to integrate wastewater treatment sys-
tems in industrial plants using both insight-based and optimization approaches33,34. These
models greatly simplify the water network design, but create a gap for their applicability
to industrial processes since more accurate treatment models should be considered in the
optimization of these water networks.

The majority of the works related to WN optimization in the literature assume that the
network operates at a nominal steady state. However, since conditions for a given process
may change during the course of the operation, Karuppiah and Grossmann35 presented a
multiscenario nonconvex MINLP model that is a deterministic equivalent of a two-stage
stochastic programming model with recourse. For each of the best, worst, and nominal
scenarios, the uncertain parameters such as treatment unit removal ratios and mass load of
contaminant in the process units can take on a different set of values.

In order to understand the different types of individual treatment units, it is useful to first
consider the treatment procedures of a centralized wastewater treatment plants36. In a typi-
cal plant, oil and grease are removed in the pretreatment stage. Primary treatment involves
the use of physical and chemical operations to remove suspended particles. The next step
is secondary treatment, where microorganisms are required to stabilize waste components.
Finally, tertiary treatment further removes nitrogen, phosphorus, heavy metals, and bacte-
ria.

Different types of contaminants present in the system are removed by considering the Best
Available Techniques (BAT)37. These provide the industrial standards for discharge of the
major pollutant groups and recommendations for their treatment as listed in Table 1.1. De-
tailed models have been developed for some of these specific treatment technologies such
as reverse osmosis (RO), which has been a major topic of interest as desalination capacity
around the world has been growing steadily in response to water shortage problems. El-
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Table 1.1: Best available techniques (BAT).

Suspended
Solids
(TSS)

Heavy
Metals
(HM)

Inorganic
Salt
(TDS)

Organic Un-
suitable for
Bio. Treat
(ORG)

Organic
Suitable for
Bio. Treat
(BOD)

Sedimentation X X
Flotation X X
Filtration X X
Ultrafiltration X
Precipitation X
Ion Exchange X X
Reverse Osmosis X X X
Evaporation X X
Oxidation X
Adsorption X
Anaerobic Treatment X
Aerobic Treatment X

Halwagi38 presented an MINLP formulation using a state space representation for optimal
RO system synthesis. Lu et al39 addressed the optimal cost design of RO desalination sys-
tem including membrane module cleaning and replacing using an MINLP model. Saif et
al40 designed a reverse osmosis network for the desalination application. Khor et al41 ad-
dressed the synthesis of a water regeneration network using nonlinear mechanistic models
and applied it to a single-stage reverse osmosis network. Karuppiah et al42 use detailed
modeling of spiral wound membrane in a superstructure-based optimization framework to
perform RO-based water treatment network synthesis. A two-stage stochastic program-
ming formulation is adopted to incorporate the uncertainty associated with membrane per-
formance.

1.3 Water management in shale gas production

A dramatic change in the energy industry in the United States within the past decade
is due to the emergence of large-scale shale gas production. With the advancement in
directional drilling and hydraulic fracturing, shale gas is predicted to provide 46% of the
United States natural gas supply by 203543. The number of wells drilled in Pennsylvania
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alone has increased from 112 prior to 2008 to a total of 7281 by the end of 201344. One
of the advantages of shale gas wells is that multiple wells can be drilled from a single
wellpad, and this configuration limits environmental footprint and impact on the surface
in comparison to having individual vertical wells with one well per pad.

This development has tremendous impact on promoting efficient water management strate-
gies. Unlike the process industries where water cost is low, water use makes up approx-
imately 10% of the overall shale gas drilling and completion costs. In addition, whereas
process plants are generally built along freshwater sources, shale plays such as the Eagle
Ford and Barnett shale are not necessarily located in water-rich regions. Even though the
Marcellus Shale Play overlies a water-rich region, water availability is not guaranteed year-
round. Another important difference from the process industry is that a large volume of
water is required in a short-period of time during stimulation. On average, about 19,000-
26,000 m3 of water is used to complete each well. Since each wellpad allows multiple
wells to be drilled, and each wellpad could contain tens of wellpads, billions of gallons of
water must be sourced in a well field development area. Approximately 5000 trucks are
required to haul water for the wellpad. Despite the large requirement for water, the water
use per unit energy generated is lower compared to other conventional and unconventional
energy sources as shown in Figure 1.245. Furthermore, if shale gas is used to generate
electricity in a combined-cycle power plant, the quantity of water consumed per unit of
energy generated could be 80% less than that required by a conventional pulverized coal
power plant.

Development of a wellpad involves site preparation, drilling, completion, and production
as can be seen on the timeline shown in Figure 1.3, and water use is associated with
each step of the drilling and production process. As indicated in the figure, water is first
acquired over several months for a given well where it is used for stimulation. Over the
next few weeks water from the well returns as flowback water and then as produced water
over the lifetime of the well. Specifically, 90% of water used in shale gas production is for
hydraulic fracturing, while the remaining is necessary during the drilling process. Each
well is injected under high-pressure using a fluid consisting of water, sand, and chemicals
to fracture the gas-holding subsurface rock formation. The horizontal portion of the well
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Figure 1.2: Water consumption per unit of energy generation comparison.
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Figure 1.3: Wellpad development timeline.

is fractured, or stimulated, in a number of stages as shown in Figure 1.4. Each stage
requires a fixed volume of water, which is acquired from freshwater sources and stored in
freshwater impoundments. Then sand (8.96%) and chemical additives (0.44%) are added
to the water to form the frac fluid46. Stage 1, which is located near the end of the well,
is stimulated first, then the stage is temporarily plugged to prevent flowback from stage
1. This is followed by stage 2, and the process is repeated along the full length of the
horizontal portion of the well until the last stage is completed.

2 

Stage 1 Stage 2 Stage 3 Stage M 

Figure 1.4: Horizontal well hydraulic fracturing stages.

Once all the stages are completed, the well plugs are drilled through and gas production
begins. There is an initial period when water returns to the surface, which is referred to as
flowback. This is followed by the well’s production period of 20 to 40 years, during which
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Figure 1.5: Overall picture of water use in shale gas4.

time there is a small amount of produced water that returns to the surface along with the
gas produced. By regulations, wastewater cannot be stored in freshwater impoundments,
but rather the stream is stored in frac tanks or specially constructed impoundments since
flowback and produced water contain various contaminants. The stream can be treated
in order to partially remove the impurities for recycling and reuse it at the next well.
The cycle of water use in shale gas development is shown in Figure 1.5). A wastewater
production forecast for the Marcellus play suggests that Pennsylvania wells will generate
over 15 million m3 per year by 202547.

The need for water treatment has increased significantly due to several factors. First,
the performance of frac fluid has improved and become more tolerant of contaminants in
the water, thereby encouraging more wastewater reuse. The disposal option of injecting
wastewater in deep wells is not necessarily available in the Marcellus, since the geology
of Pennsylvania is not conducive to injection wells. As a result, operators in the Marcellus
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have to truck wastewater to Ohio for disposal, which drives up the cost. The Utica wells
have more access to disposal wells. However, the regulatory constraints could potentially
become more stringent due to its association with geological activities in the region. In
addition, as the number of producing wells grows at each shale play, the total volume of
produced water will quickly become substantial despite the low individual flowrate from
each well.

One major limitation in wastewater handling is the high salt concentration. Among the
alternative technologies, multistage flash distillation (MSF) and reverse osmosis are the
most prevalent desalination processes48. Although the cost of desalination processes have
become more competitive over the past decades as a result of technological advances, it is
not yet widely used in shale gas applications. These restrictions in shale play development
pose considerable logistic challenges that demand sophisticated management and logisti-
cal strategies. Since shale gas production has been a relatively recent development, there
are very few publications related to its water management issues.

1.4 Mathematical programming

Since in this thesis we apply mathematical programming techniques, we briefly describe
the model types and solvers that are used to optimize the problems. The general formula-
tion can be described as follows:

min. z = f(x, y)

s.t. h(x, y) = 0

g(x, y) ≤ 0

x ∈ X
y ∈ {0, 1}

(1.1)

where the objective function z is minimized subject to equality constraints h and inequality
constraints g, x are continuous variables and y are binary variables.

In this work, the objective is typically to minimize cost and flow or maximize revenue.
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The equality constraints represent physical operation model or mass balances in the prob-
lem, whereas the inequality constraints represent bounds and limitations. The continuous
variables are used to represent flow, temperature, concentration which could take on a
range of values, whereas the binary variables describe discrete decisions such as selecting
equipment or performing a task in a given time intervals.

The formulation reduces to a linear programming (LP) formulation when the objective
function and the constraints are linear and all variables are continuous. If the objective or
any of the constraints is nonlinear, the formulation is categorized as nonlinear program-
ming (NLP). Finally, mixed-integer linear programming (MILP) or MINLP formulations
arise when the binary variables are present.

MILP problems are typically solved with branch and bound algorithms49. Both LP and
MILP formulations can be solved efficiently with solvers such as CPLEX and GUROBI.
NLPs are typically solved through Newton’s method, which makes them sensitive to ini-
tialization50. CONOPT51, IPOPT52, SNOPT, and KNITRO are examples of the solvers
used to solve NLP problems in this thesis. For nonconvex NLPs, global optimization
solvers such as BARON53, ANTIGONE, SCIP, are required to guarantee global optimality.
For the MINLP model, decomposition algorithms are usually adapted where each iteration
alternates between a MILP master problem and NLP subproblems for convergence. These
algorithms include SBB, Generalized Benders Decomposition54, Outer Approximation55,
and Extended Cutting Plane56. DICOPT is used to solve convex MINLP problems, while
BARON53 is used to solve the nonconvex MINLP problems to global optimality in this
work.

1.5 Thesis outline

This thesis deals with water use for both process industries (chapters 2 and 3) and uncon-
ventional natural gas industry (chapters 3 and 4).

1.5. THESIS OUTLINE 12



CHAPTER 1. INTRODUCTION

1.5.1 Chapter 2 - Water targeting model

In chapter 2, we develop a targeting model for multi-contaminant WN with only water-
using process units based on the superstructure proposed by Karuppiah and Grossmann16

and its extension by Ahmetović and Grossmann28. The proposed LP formulation predicts
the freshwater consumption target for the set of water-using process units, which can be
easily incorporated in a simultaneous flowsheet, heat-exchange network, and water net-
work optimization strategy. Since the proposed model is linear, significant computational
savings can be achieved in comparison to nonlinear models, which are the typical formu-
lations for multi-contaminant WNs. The simultaneous approach that allows for energy
and water integration for the optimization of process flowsheets is presented and applied
to two process design problems (methanol synthesis and bioethanol production).

In addition, we extend the model to address non-isothermal WN synthesis. So far, the re-
ported works use NLP/MINLP formulations for HEN and WN synthesis to determine the
optimal structure of a heat-integrated WN. Specifically, each inlet and outlet stream to the
water-using process unit is also a stream in the HEN with its starting and ending tempera-
tures. The LP targeting formulation can then complement the heat targeting formulation27

to determine the minimum heating, cooling, as well as freshwater consumptions in heat-
integrated WNs. This is discussed in detail and is illustrated with examples.

1.5.2 Chapter 3 - Nonlinear models for water regeneration

Chapter 3 focuses on the modeling of nonlinear wastewater treatment options with short-
cut models in order to address the synthesis of integrated water networks. For a standard
multi-contaminant WN superstructure with both water-using process units and wastewater
treatment units, we make the following improvements. First, unit-specific shortcut models
are developed in place of the fixed contaminant removal model to describe contaminant
mass transfer in wastewater treatment units. Shortcut wastewater treatment cost functions
are also incorporated into the model. By using shortcut models instead of simplified mod-
els for treatment units in the synthesis of WNs, we are able to gain a more accurate and
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realistic water network designs. In addition, uncertainty in mass load of contaminants is
considered to account for the range of operating conditions that can be achieved in process
units as described by Karuppiah and Grossmann35. This model then ensures that the final
design solution is feasible and optimal over the set of all scenarios. This representation
can effectively capture the wide range of operating conditions without overly complicat-
ing the formulation. Furthermore, the superstructure is modified to accommodate multiple
treatment technologies for the removal of each contaminant to reflect realistic potential
structures.

Since the resulting formulation is a nonconvex MINLP problem, it is computationally
difficult to solve to global optimality. In order to solve the problem efficiently, we take
advantage of the multiscenario representation and present a modified Lagrangean-based
decomposition algorithm.

1.5.3 Chapter 4 - Operational model for shale gas water management

Since shale gas production has experienced rapid expansion relatively recently, there has
been virtually no prior work that uses rigorous mathematical optimization approach to
handle water management issues for shale plays. In chapter 4, we optimize water use life
cycle for wellpads through a discrete-time two-stage stochastic MILP model under uncer-
tain availability of water. The objective is to minimize expected transportation, treatment,
storage, and disposal cost while accounting for the revenue from gas production. Assum-
ing freshwater sources, river withdrawal data, location of wellpads and treatment facilities
as given, the goal is to determine an optimal fracturing schedule in coordination with wa-
ter transportation, and its treatment and reuse. The proposed models consider a long time
horizon and multiple scenarios from historical data. The scheduling problem is formulated
through a discrete-time model using as a basis the state-task network (STN) representation
for batch scheduling57. As will be demonstrated in the chapter, the formulation is efficient
in handling the large number of binary variables in the formulation.
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1.5.4 Chapter 5 - Investment model for shale gas water management

Chapter 5 builds upon the representation in chapter 4 and emphasizes investment deci-
sions in the process. In addition to optimizing the frac schedule, maximizing revenue,
and minimizing the operating cost, the goal is also to minimize freshwater source setup
cost, impoundment capital cost, piping setup cots, and annualized centralized wastewa-
ter treatment facility (CWT) capital cost. In order to avoid heavy road use and negative
environmental impact from hauling freshwater using trucks, this problem determines the
optimal freshwater sources and piping connections to acquire freshwater for the given
set of wellpads. In addition, despite increasing demands, desalination plants are not yet
widely available for treating produced water due to its relatively high cost. We investigate
wastewater desalination removal options that cater to the flowback and produced water
characteristics of the Shale play region. A case study from the Utica shale is presented to
illustrate the model.

1.5.5 Chapter 6 - Conclusion

Finally, chapter 6 summarizes the main findings of the thesis and lists its novel contribu-
tions. We also discuss additional future work directions that are worth investigating. This
thesis had led to the following journal articles:

1. Yang, L.; Grossmann, I.E. Water Targeting Models for Simultaneous Flowsheet Op-
timization. Industrial & Engineering Chemistry Research. 2013. 52 (9), 3209-3224.

2. Yang, L.; Salcedo-Diaz, R.; Grossmann, I.E. Water Network Optimization with
Wastewater Regeneration Models. Industrial & Engineering Chemistry Research.

Just Accepted Manuscript.

3. Yang, L.; Manno, J.; Grossmann, I.E. Optimization Models for Shale Gas Water
Management. AIChE Journal. 2014. 60 (10), 34903501.

4. Yang, L.; Manno, J.; Mauter, M.; Dilmore, R.; Grossmann, I.E. Investment Opti-
mization Model for Freshwater Acquisition and Wastewater Handling in Shale Gas
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Production. In preparation.
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Chapter 2

Water Targeting Model for Water-Using
Process Units

2.1 Introduction

In this chapter, a novel LP targeting model is first developed for the WN with only water-
using process units based on the superstructure proposed by Karuppiah and Grossmann16

and its extension by Ahmetović and Grossmann28. As will be shown, the proposed LP for-
mulation predicts the exact freshwater consumption target under a specific assumption, and
otherwise it predicts a tight upper bound for a set of water-using process units with multi-
contaminants. This is discussed in detail and is illustrated with examples. In addition,
this chapter will extend the LP targeting formulation to nonisothermal water networks.
The LP formulation is expanded to isothermal WN that includes both water-using process
units and wastewater treatment units. Finally, the simultaneous approach that allows for
energy and water integration for the optimization of process flowsheets is presented and
applied to two process design problems (methanol synthesis and bioethanol production).
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Figure 2.1: Simultaneous optimization framework.

2.2 Outline of proposed simultaneous optimization strat-
egy

The proposed solution procedure for the simultaneous method involves two steps as seen
in 2.1. The first step is to simultaneously optimize the economics of the flowsheet as well
as the cost of HEN and WN targets subject to process constraints. The first step then fixes
the operating conditions of the flowsheet. The second step is to determine the detailed
HEN and WN structures and corresponding capital and utility costs using the fixed heat
capacity flowrate, inlet and outlet temperatures, and water-using process unit flowrates.
Note that the targets determined from step one are only used to estimate the heating and
cooling costs, as well as the cost of the freshwater. The targets are not used in the synthesis
of the network structures in the second step. This is done in order to allow readjustment of
utility and water consumption so as to establish the proper trade-offs with the capital costs
of the HEN and WN which are ignored in step one.
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The formulation of the simultaneous optimization problem in step one is as follows,

min. φ = F (x, u, v) + cHQH + cCQC + cfwFW

s.t. h(x, u, v) = 0

gP (x, u, v) ≤ 0

gHEN(u,QH , QC) ≤ 0

gWN(v, FW ) ≤ 0

x ∈ X, u ∈ U, v ∈ V

(2.1)

where F (x, u, v) and h(x, u, v) are equations for the objective function and constraints of
the flowsheet in terms of the variables x, u, v, where the u variables are involved in heat
integration constraints, the variables v in the water integration constraints,x are the vari-
ables to model the cost of the process, QH and QC are the heating and cooling loads, and
FW is the freshwater consumption. The extension of (2.1) to multiple heating and cooling
utilities is trivial but not presented here for the sake of simplicity in the presentation.

Assuming non-isothermal process streams, the set of heat integration constraints gHEN in
(2.1) are given by (2.2)27.

QH ≥
∑
js∈CS

fcjs[max{0, toutjs − (T p −∆Tm)} −max{0, tinjs − (T p −∆Tm)}]

−
∑
is∈HS

FCis[max{0, T inis − T p} −max{0, T outis − T p}] (2.2a)

QC =QH +
∑
is∈HS

FCis(T
in
is − T outis )−

∑
js∈CS

fcjs(t
out
js − tinjs) (2.2b)

T p = T inis ∀p = is ∈ HS
T p = (tinjs + ∆Tm) ∀p = js ∈ CS

where QH , QC are the heating and cooling loads, FCis and fcjs are the heat capacity
flowrates of the hot and cold streams, is ∈ HS, js ∈ CS, T inis , T injs are the inlet temper-
atures, T outis , T outjs are the outlet temperatures of the hot and cold streams, and T p is the
pinch temperature, and ∆Tm is the HRAT.
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The constraints in (2.2) are linear when temperature and heat capacity flowrates are fixed,
and as a result, the max operators are calculated a priori. For the case where temperatures
are variables such as is the case in step one of the simultaneous optimization in 2.1, the
max functions become non-differentiable functions. To circumvent this problem, they are
approximated with the smooth approximation by58,

max{0, f(x)} =

√
f(x)2 + ε2

2
+
f(x)

2
(2.3)

where ε is a small parameter (typically ε ≈ 0.001).

In this paper the formulation for gWN will be presented first for the case of only process
units, and second for the case when treatment units are also included. In addition, the prob-
lem of non-isothermal water networks is addressed for the former case. Various aspects
of the simultaneous optimization framework in 2.1 are illustrated through two relevant
examples - a methanol synthesis process that reflects the advantage of the simultaneous
approach through improvement in the economic objective function, and a second exam-
ple in bioethanol production whose result indicates the computational advantage of the
proposed formulation, even though its result reduces to the sequential approach result.

2.3 Water targeting for WN with process units only

For the case of WN with only a single contaminant, Bagajewicz and Savelski59 proved that
the contaminant concentration at the outlet of each water-using process unit reaches its
upper bound in optimal solutions. The linear mathematical formulation that follows from
this result is presented in19, and is shown in Appendix A. Most WN problems, however,
involve multiple contaminants which will be addressed below.
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Figure 2.2: WN superstructure for water-using PUs.

2.3.1 NLP model for WN

We consider a typical WN problem with the information provided as follows. Given is
a set of water-using process units PU (e.g. extraction, absorption) with water flowrates
P p ∀p ∈ PU , maximum allowable inlet contaminant concentrationsCk,max

j ∀p ∈ PU, k ∈
pin, and maximum outlet allowable contaminant concentrations Ci,max

j ∀p ∈ PU, i ∈
pout for those units. For simplicity, we assume that water is neither consumed nor pro-
duced in the water-using process units, i.e. P p

in = P p
out = P p ∀p ∈ PU . As seen in 2.2,

each of the water-using process units is connected to other units through a mixer and a
splitter, and local recycle is allowed for each unit as described in Ahmetović and Gross-
mann28. We assume a given freshwater source without contaminants, although we can
easily extend the formulation to accommodate a set of freshwater sources with different
levels of contaminants. Also, the following assumptions are made: (a) the processes are
isothermal, and (b) the loads of contaminants j in unit p ∈ PU , Lpj , are known. The rele-
vant formulation for minimizing freshwater consumption of the integrated water network
superstructure is given by the formulation (NLP-1)16.
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min. FW

s.t. FW =
∑

k∈SUin

F k

F k =
∑
i∈min

F i ∀m ∈MU, k ∈ mout

F kCk
j =

∑
i∈min

F iCi
j ∀j,∀m ∈MU, k ∈ mout

F k =
∑
i∈sout

F i ∀s ∈ SU, k ∈ sin

Ci
j = Ck

j ∀j,∀s ∈ SU, i ∈ sout, k ∈ sin
P pCk

j + Lpj = P pCi
j ∀j,∀p ∈ PU, k ∈ pin, i ∈ pout

F k,min ≤ F k ≤ F k,max ∀k
Ck,min
j ≤ Ck

j ≤ Ck,max
j ∀j,∀k

(NLP-1)

where F i and F k are water flowrates, and Ci
j and Ck

j are concentration of contaminant j in
stream i and k, respectively. The constraints consist of a set of contaminant mass balances
in the mixer unit (MU ), splitter units (SU ), process units (PU ), and treatment units (TU ).
The subscripts in, out, refer to the inlet and outlet streams of each of these units. Note
that unlike water network design formulations, the aim here is to determine the minimum
freshwater supply rate.

2.3.2 Lower bound: McCormick relaxation

The challenge with minimizing freshwater consumption in problem (NLP-1) is that there
are bilinear terms (flowrate times concentration), which may lead to local optima or nu-
merical singularities. The constraint that involves bilinear terms is the contaminant mass
flowrate balance at the mixers,

F kCk
j =

∑
i∈min

F iCi
j ∀j,∀m ∈MU, k ∈ mout (2.4)

In order to circumvent the complexity of simultaneously optimizing the process flowsheet
and the nonconvex NLP for the WN, we can determine a lower bound for the freshwa-
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ter target by replacing (2.4) with the McCormick convex envelopes60. The following LP
model (LP-0) then predicts a lower bound for the minimum freshwater consumption re-
quired for the set of water-using process units.

min. FW

s.t. FW =
∑

k∈SUin

F k

F k =
∑
i∈min

F i ∀m ∈MU, k ∈ mout

fkj =
∑
i∈min

f ij ∀j,∀m ∈MU, k ∈ mout

F k =
∑
i∈sout

F i ∀s ∈ SU, k ∈ sin

Ci
j = Ck

j ∀j,∀s ∈ SU, i ∈ sout, k ∈ sin
fkj =

∑
i∈sout

f ij ∀j,∀s ∈ SU, k ∈ sin

fkj = P pCk
j ∀j,∀p ∈ PU, k ∈ pin

f ij = P pCi
j ∀j,∀p ∈ PU, i ∈ pout

f ij ≥ F i,minCi
j + Ci,min

j F i − F i,minCi,min
j

f ij ≥ F i,maxCi
j + Ci,max

j F i − F i,maxCi,max
j

f ij ≤ F i,minCi
j + Ci,max

j F i − F i,minCi,max
j

f ij ≤ F i,maxCi
j + Ci,min

j F i − F i,maxCi,min
j

 ∀j,∀m ∈MU,∀i ∈ min ∪mout

F k,min ≤ F k ≤ F k,max ∀k
Ck,min
j ≤ Ck

j ≤ Ck,max
j ∀j,∀k

(LP-0)

2.3.3 A novel LP target model

Since the model (LP-0) may predict targets that are relatively weak lower bounds, we
propose in this section a novel linear water targeting formulation that provides exact targets
under some assumptions. Otherwise it predicts tight upper bounds.
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Using as a basis the model (NLP-1) for WN, we apply the maximum driving force princi-
ple proposed by Wang and Smith11 and necessary optimality conditions proven by Savelski
and Bagajewicz61. Both indicate that at least one contaminant reaches its upper bound at
the inlet of a process unit, that is,

Ck
j = Ck,max

j for some j,∀p ∈ PU, k ∈ pin (2.5)

Next, we can determine the direction of relaxation for the nonlinear constraint (2.4) by
applying the Karush–Kuhn–Tucker (KKT). The following dual multipliers are assigned to
each of the constraints containing Ck

j ∀p ∈ PU, k ∈ pin.

(λkj ) F kCk
j =

∑
i∈min

F iCi
j ∀j,∀m ∈MU, k ∈ mout (2.6a)

(νkj ) P pCk
j + Lpj = P pCi

j ∀j,∀p ∈ PU, ∀k ∈ pin, i ∈ pout (2.6b)
(µkj ) Ck

j ≤ Ck,max
j ∀j,∀k ∈ sout ∪mout (2.6c)

Since (2.6c) is an inequality, the multipliers µkj are non-negative. Constraint (2.6b) can
easily be shown to relax as a ≤ inequality, and therefore νkj are also non-negative. The
multipliers λkj in (2.6a) are in principle unrestricted in sign but analysis of the KKT con-
ditions reveals their sign. The stationary condition of the Lagrange function with respect
to Ck

j is as follows,
∂L
∂Ck

j

= λkjF
k + µkj + νkj P

p = 0 (2.7)

We can see that in order to satisfy dual feasibility, since νkj ≥ 0 and µkj ≥ 0, P p > 0, this
implies that λkj ≤ 0. Therefore, (2.6a) relaxes as follows,

F kCk
j ≥

∑
i∈min

F iCi
j ∀j,∀m ∈MU, k ∈ mout (2.8)

If we make the assumption that when one contaminant j reaches its concentration upper
bounds at a given unit m ∈ MU , it also reaches the upper bound at all other process
units from which reuse streams have non-zero flowrate, we obtain the following linear
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inequality,
F kCk,max

j ≥
∑
i∈min

F iCi,max
j ∀j,∀m ∈MU, k ∈ mout (2.9)

From (2.4), the active inequality is active for contaminant j. Therefore, we can replace
the bilinear constraint (2.4) in model (NLP-1) to arrive at the following LP formulation
(LP-1).

min. FW

s.t. FW =
∑

k∈SUin

F k

F k =
∑
i∈min

F i ∀m ∈MU, k ∈ mout

F kCk,max
j ≥

∑
i∈min

F iCi,max
j ∀j,∀m ∈MU, k ∈ mout

F k =
∑
i∈sout

F i ∀s ∈ SU, k ∈ sin

Ci
j = Ck

j ∀j,∀s ∈ SU,∀i ∈ sout, k ∈ sin
P pCk

j + Lpj = P pCi
j ∀j,∀p ∈ PU, ∀k ∈ pin, i ∈ pout

F k,min ≤ F k ≤ F k,max ∀k
Ck,min
j ≤ Ck

j ≤ Ck,max
j ∀j,∀k

(LP-1)

The following proposition holds for (LP-1):

Proposition The minimum freshwater consumption predicted by the LP model in (LP-1) is

the same as the global minimum predicted by the NLP model (NLP-1) under the condition

that at least one contaminant reaches its concentration upper bounds as well as at all

other process units from which reuse streams have non-zero flowrate.

The proof trivially follows from the derivation. The LP formulation (LP-1) can then be
used to determine the freshwater flowrate target for a given set of water-using processes.
The assumption in the above proposition is a sufficient condition for the proposition to
hold. In the case where the assumption is not satisfied, the LP will yield an upper bound for
the freshwater target. This follows from the fact that the inequality in (2.9) is a restriction
of the inequality in (2.8). The upper bound from (LP-1) is nonetheless useful in the first
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Table 2.1: Additional problems using LP targeting formulation.

Problem |PU | |j| NLP-1 LP-0 LP-1
1 2 2 40 40 40
2 5 3 40 40 40
3 3 3 105.6 105.6 105.6
4 3 3 101 98.64 101
5 5 3 84.28 84.28 84.28
6 3 3 82.85 82.85 82.85
7 3 3 101.35 82.86 101.81
8 3 3 78.18 78.18 79.22
9 5 3 84.29 84.29 84.29
10 5 3 232.1 225.1 233.2

stage of the simultaneous optimization scheme in 2.1, since the overestimation is small as
will be shown with the numerical results. It should also be noted that the quality of this
upper bound can be evaluated by the lower bound predicted from (LP-0). In the event of a
large gap between the two bounds, we could partition the feasible region through the use
of piecewise McCormick relaxation to decrease the size of the gap16.

Numerical results

The results from the LP targeting formulation (LP-1) are compared against the results
from NLP formulation (NLP-1) and from the lower bound McCormick (LP-0) in the ten
examples shown in 2.1, which have been reported in previous work16,11,12. As can be seen,
(LP-1) provides exact targets for 7 problems (1-6,9), whereas the formulation predicts
tight upper bounds (within 0.5-1.5%) for the NLP in the 3 other problems. Note that the
model (LP-0) yields valid lower bounds that are also exact in 7 problems(1,2,3,5,6,8,9).
However, in problems 4,7, and 10 the results predict- lower bounds for the NLP with 2.3,
18.2, and 3.0% gaps, respectively. Although the results indicate that model (LP-0) could
also be used as a reasonable target, model (LP-1) generally predicts more accurate targets.
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Table 2.2: Example 1 from Wang and Smith.

PU, p P p (ton/h) j Lpj (kg/h) Cpin,max
j

(ppm)
Cpout,max
j

(ppm)
Hydrocarbon 0.675 0 15

Distillation 45 H2S 18 0 400
Salt 1.575 0 35
Hydrocarbon 3.4 20 120

HDS 34 H2S 414.8 300 12500
Salt 4.59 45 180
Hydrocarbon 5.6 120 220

Desalter 56 H2S 1.4 20 45
Salt 520.8 200 9500

Table 2.3: Closeup on Mixer Unit 3.

from SUin from SU1 from SU3 to Desalter
Cj F Cj F Cj F Avg Ck

j Cmax
j F

HC 0 15 100 3 120
H2S

∗ 0 52.1 400 2.7 25 1.2 20 20 56
Salt∗ 0 35 9500 200 200

Example 1

We illustrate the application of the LP model in (LP-1) with a multi-contaminants example
taken from Wang and Smith11 with data given in 2.2. This problem, which corresponds to
the third entry in 2.1, has 3 PUs and 3 contaminants. The configuration with no recycle
and reuse requires 135 ton/hr of freshwater.

The NLP network model in (NLP-1) involves 90 variable and 81 constraints, and was glob-
ally optimized with BARON 9.3, requiring 0.09s. The solution yields a network requiring
105.6 ton/hr of freshwater that is to be supplied to the set of process units as shown in
2.3. The LP targeting formulation in (LP-1), which has the same problem size as (NLP-1),
is solved with CPLEX 12 requiring 0.06s and yields the same amount of freshwater as
one of the NLP formulation, 105.6 ton/hr. An examination of the result from the targeting
formulation shows that indeed, each mixer placed prior to process unit has at least one
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Figure 2.3: Network with minimum freshwater consumption.

contaminant reaching its maximum concentration. 2.3 shows a close-up on Mixer Unit 3
for the desalter, note that both H2S and salt are at their limiting concentrations (indicated
with asterisks), while the average concentration of HC at the inlet of the mixer is below
the limit at the outlet of the mixer.

2.3.4 Non-isothermal water network targeting

In the previous section, we have assumed that the water network is isothermal. However,
this may not be the case since the process units may operate at different temperatures.
This means that different temperature values may be assigned to the streams in the super-
structure of 2.2, giving rise to the possibility of heat recovery among the streams within
the water network. Consequently, simultaneous optimization of heat integration within a
water network should also be considered. Studies in this area are rather limited, with the
more recent developments including works by Bogataj and Bagajewicz62, Dong et al63,
Savulescu and Smith61, Leewongtanawit and Kim64, and Kim et al65. Previous works
have dealt with approaches for simultaneous integration where HEN and WN superstruc-
tures are combined into a single MINLP formulation. If the purpose is to perform the
simultaneous optimization of a flowsheet with the HEN and nonisothermal WN, we can
predict the utility and freshwater targets, circumventing in this way the MINLP formula-
tion of the nonisothermal WN by using the water and heat targeting formulations given by
(NLP-1) and (2.2). In this case, the streams that participate in heat integration are the ones
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Figure 2.4: Nonisothermal WN.
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Figure 2.5: Non-isothermal WN targeting diagram.

that connect splitters and mixers. The placement for potential heaters and coolers for a two
PU non-isothermal WN structure is shown in 2.4. As indicated in the figure, based on the
supply and target temperatures, we specify each stream in the nonisothermal WN as either
a hot stream or cold stream with constant heat capacity in heat integration. By considering
the integration of targeting models as shown in 2.5, the resulting LP formulation (LP-2)
consists of the objective function in (2.1), the heat targeting formulation (2.2) developed
by Duran and Grossmann27 as well as the LP water targeting formulation (LP-1).
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min. φ = cHQH + cCQC + cfwFW

s.t. QH ≥
∑
js∈CS

fcjs[max{0, toutjs − (T p − δTm)} −max{0, tinjs − (T p − δTm)}]

−
∑
is∈HS

FCis[max 0, T inis − T p −max{0, T outis − T p}]

QC = QH +
∑
is∈HS

FCis(T
in
is − T outis )−

∑
js∈CS

fcjs(t
out
js − T injs )

T p = T ini ∀p = i ∈ HS
T p = (tinj + ∆Tm) ∀p = j ∈ CS
FW = F k k ∈ SUin
F k =

∑
i∈min

F i ∀m ∈MU, k ∈ mout

F kCk,max
j ≥

∑
i∈min

F iCi,max
j ∀j,∀m ∈MU, k ∈ mout

F k =
∑
i∈sout

F i ∀s ∈ SU, k ∈ sin

Ci
j = Ck

j ∀j,∀s ∈ SU,∀i ∈ sout, k ∈ sin
P pCi

j + Lpj = P pCk
j ∀j,∀p ∈ PU,∀i ∈ pin, k ∈ pout

(LP-2)

Example 2

An example from Bogataj and Bagajewicz62, proposed originally by Savulescu and Smith66,
is presented to illustrate the application of (LP-2). The superstructure is shown in 2.6. In
this example, there are 4 water-using process units operating at the indicated temperatures.
The system involves a single contaminant, with the data given in 2.4 and 2.5.

The original objective of this example is to minimize the annualized water network and
heat-exchange network cost. 2.7 shows the optimal network structure obtained by Bogataj
and Bagajewicz. The minimum heating utility is 3767 kW, there is no cooling utility
required, and freshwater is supplied at a rate of 324 ton/hour. Employing the LP targeting
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Figure 2.6: Example 2 superstructure.

Table 2.4: Data for heat-integrated WN example.

Parameter
CHU($/(kWa)) 260 T INHU (°C) 126
CCU($/(kWa)) 150 TOUTHU (°C) 126
CFW ($/t) 2.5 T INCU (°C) 15
HRAT(°C) 10 TOUTCU (°C) 20

model (LP-2) to minimize the utility and freshwater costs for non-isothermal WN leads
to the same solution as the MINLP optimization for the heating and cooling utility and
freshwater consumption (3767 kW, 0 kW and 324 ton/hr). The reported problem size
of the MINLP for HEN and WN superstructures in Bogataj and Bagajewicz62 has 749
continuous variables and 115 binary variables, the number of constraints was unspecified.
This problem took 2.64 s on a 3.2 GHz PC machine with 1 GB RAM using DICOPT with

Table 2.5: Heat-integrated network example from Bogataj and Bagajewicz.

PU, p Lp(kg/h) Cpin,max
j (ppm) Cpout,max

j (ppm) Tp (°C)
P1 7.2 0 100 40
P2 18.0 50 100 100
P3 108.0 50 800 75
P4 14.4 400 800 50
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Figure 2.7: Heat-integrated water network obtained by Bogataj.

CPLEX as the MIP solver and SNOPT as the NLP solver. In comparison, the targeting
formulation (LP-2) reduces to 206 continuous variables and 229 constraints, requiring
0.104 s to solve on a Intel 2.4 GHz PC machine with 4 GB memory. We should note that
with DICOPT there is no guarantee of global optimality. Had the authors used BARON,
the CPU time required would have been much higher.

Example 3

An industrial case study from64 is also used to illustrate the heat-integrated water network
targeting model(LP-2). The network is the largest we have considered so far and consists
of 10 water-using operation units, 2 freshwater sources, and 4 contaminants (data is pre-
sented in 2.6 and 2.7). The plant is assumed to operate 8600 h/year, all water streams
are assumed to have heat capacity of 4.2 kJ/(kg °C), and the minimum approach temper-
ature (∆Tmin) is 10 °C. The authors of64 determined the HEN and WN structure with the
objective of minimizing total annualized cost of heat-exchangers, piping, and utilities.
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Table 2.6: Data for heat-integrated WN example 3.

PU, p Contaminant j Cpin,max
j (ppm) Cpout,max

j (ppm) P p(t/h) Tp (°C)
P1 A 200 25000 24.87 70

B 500 20000
C 100 28500
D 1500 230000

P2 A 350 8000 40.98 60
B 3000 9000
C 500 24080
D 400 3000

P3 A 200 3500 39.2 90
B 500 2500
C 100 1500
D 1500 1500

P4 A 350 15000 4.0 80
B 450 5000
C 150 700
D 500 1500

P5 A 800 2000 3.92 70
B 650 7000
C 450 9000
D 300 10000

P6 A 3000 12000 137.5 100
B 2000 10000
C 100 8000
D 0 200

P7 A 450 2000 290.96 40
B 0 3000
C 250 1000
D 650 12000

P8 A 100 3450 23.81 80
B 250 4000
C 200 700
D 550 7000

P9 A 150 1000 65.44 50
B 450 1000
C 3000 4000
D 100 100

P10 A 0 100 4 60
B 0 100
C 0 100
D 0 100
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Table 2.7: Water sources for heat-integrated WN example 3.

Water sources s Contaminant j Cs
j (ppm) Tp (°C) Cost ($/ton)

WS1 A 0 20 0.5
B 0
C 0
D 0

WS2 A 10 30 0.1
B 10
C 10
D 10

We have used model(LP-2) described earlier in this section to minimize the utility con-
sumption of this network. The results are shown in Table 2.8, where the solution taken
from literature is compared against that of the LP targeting formulation. “McCormick”
indicates the case where heat targeting formulation (2.2) is combined with the WN for-
mulation (LP-0) using the McCormick constraints. “NLP-2” represents the combination
of the heat targeting formulation (2.2) and the formulation (NLP-1) for WN with only
process units. This NLP is guaranteed to predict exact targets. Finally, “LP-2” is the LP
model presented in this section. As can be seen in the table, the result reported in64 incurs
the highest utility cost, since its original objective include both capital cost and utility cost.
As described in the previous section, McCormick provides a lower bound for freshwater
flowrate, and LP-2 predicts an upper bound for the minimum freshwater consumption.
Even though the targeting model does not predict the interconnections of the units, it is
able to predict each of the utility consumption to within 5% of the NLP solution. Specif-
ically, water source 1 is predicted exactly, water source 2 is over-estimated by 7.2%, and
the heating and cooling utilities are overestimated by 1.9% and 7.2% (due to the higher
water target predicted). However, note that the total cost is only overestimated by 1%.

The authors in64 used CPLEX as the MILP solver and CONOPT2 as the NLP solver in
their special purpose algorithm. The problem requires 12 min with an AMD 1.24 GHz
PC to solve using their solution procedure, and the problem size was not reported. In
comparison, the LP targeting formulation took 0.203 s to solve on a Intel 2.4 GHz PC
machine with 4 GB memory.
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Table 2.8: Result comparison: heat-integrated WN example 3.

Literature McCormick NLP-2 LP-2
Cost (1000 $/yr) 2,931 2,797 2,878 2,908
Water flowrate source 1 (t/hr) 432.46 418.71 432.46 432.46
Water flowrate source 2 (t/hr) 178.86 157.07 158.35 169.74
Heating Utility ($/yr) 7,132 6,717 6,893 7,026
Cooling Utility ($/yr) 2,087 1,832 1,847 1,980

2.4 Extension for treatment units

2.4.1 Motivating example

Consider the model (LP-1) with the addition of one wastewater treatment unit in example
1. The treatment unit is assumed to remove 99.9% of contaminant B.

The simplest option to extend the LP model in (LP-1) is to consider the following equa-
tions,

F k = F i ∀t ∈ TU, ∀∈ tout, k ∈ tin
Ci
j = βtjC

k
j ∀j,∀t ∈ TU, ∀i ∈ tout, k ∈ tin

(2.10)

where βtj is the recovery of contaminant j in treatment unit t. Recall from section 2.3.3, the
upper bounds for contaminant concentrations in stream F k, k ∈ pout, p ∈ PU are given.

In this case, the LP targeting formulation consisting of equations (LP-1) and (2.10) pro-
vides the same result as the NLP network formulation, 55.47 ton/hr. However, it is not
generally the case that the addition of wastewater treatment units still allows (LP-1) to
provide the exact freshwater consumption as explained below. The reason is that treat-
ment units are defined by percent removal of contaminants βtj , and consequently, the upper
bounds for contaminant concentrations in stream F k, t ∈ TU, k ∈ tin are not given. Since
each treatment unit has multiple inlets (at the corresponding MU), we can only obtain an
approximate upper bound for contaminant concentrations, maxCi,max

j ,∀s ∈ SU, i ∈ sout.
Exact upper bounds of contaminant concentration are provided for process units, which
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Figure 2.8: Stagewise superstructure for WN with wastewater treatment.

allow the simplifications in section 2.3.3. Since (LP-1) with the constraints in (2.10) can-
not guarantee the exact target for water networks with treatment units, we next introduce
a model that is based on a different network superstructure.

2.4.2 Addition of wastewater treatment unit

Yee and Grossmann9 presented a stage-wise structure for the case of heat integration.
Compared to other superstructures reported, the advantage of the stage-wise superstructure
is that the constraints can be kept in linear form by relying on the isothermal assumption
for stream mixing. This quality of a stage-wise structure has motivated us to explore the
modelling of multi-contaminant water networks with wastewater treatment units. In the
method to be described below, we take advantage of the stage-wise structure to approxi-
mate the freshwater target for a WN.

In a targeting formulation, it is not essential to employ a realistic network structure since
the purpose is not to determine the precise stream connectivities, but it is rather to predict
a performance target. In this superstructure, as shown in 2.8, it is assumed that the outlet
stream from each process unit is treated through all the treatment units in a predefined
sequence, where the number of stages is equal to the number of treatment units available
in the system. Specifically, there is no mixer place at the inlet of the treatment units

The stream connectivity involving any process unit remains unchanged from the network
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superstructure approach, since the formulation is already linear as shown in section 2.3.3.
On the other hand, the structure of the treatment units requires exploiting a special prop-
erty in order to achieve linearity. It is observed that since the removal ratio, βtj , for each
treatment unit is fixed, a tight upper bound for contaminant concentration at the outlet of
the treatment unit can be calculated a priori. The complete formulation for this stage-wise
structure is given by the following LP,

min. FW

s.t. FW = F k k ∈ SUin
F k =

∑
i∈min

F i ∀m ∈MU, k ∈ mout

F kCk,max
j ≥

∑
i∈min

F iCi,max
j ∀j,∀m ∈MU, k ∈ mout

F k =
∑
i∈sout

F i ∀s ∈ SUp, k ∈ sin

Ci
j = Ck

j ∀j,∀s ∈ SUp,∀i ∈ sout, k ∈ sin
F k =

∑
i∈sout

F i ∀s ∈ SUp,e, k ∈ sin, e ∈ ST

Ci
j = Ck

j ∀j,∀s ∈ SUp,e,∀i ∈ sout, k ∈ sin, e ∈ ST
P pCi

j + Lpj = P pCk
j ∀j,∀p ∈ PU, ∀i ∈ pin, k ∈ pout

F k = F i ∀t ∈ TUp,e,∀∈ tout, k ∈ tin
Ci
j = βtjC

k
j ∀j,∀t ∈ TUp,e,∀i ∈ tout, k ∈ tin, e ∈ ST

Ci
j ≤ βtjC

k,max
j ∀j,∀t ∈ TUp,e, ∀s ∈ SUp,e, i ∈ sout, k ∈ sin, e ∈ ST

Ck
j ≤ Ck,max

j ∀j,∀s ∈ SUp, k ∈ sin, e ∈ ST
F k,min ≤ F k ≤ F k,max ∀k
Ck,min
j ≤ Ck

j ≤ Ck,max
j ∀j,∀k

(LP-3)

where SUp is the set of splitters at the outlet of the process units p, SUp,e is the set of
splitters at the outlet of the treatment unit t ∈ TU following each process unit p ∈ PU at
stage e ∈ ST , |TU | = |ST |.

It should be noted that (LP-3) will not necessarily predict upper bounds because the stage-
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Table 2.10: Stage-wise superstructure result comparison.

Problem Units Superstructure
|PU | |TU | |j| NLP-3 LP-4 LP-3

1 2 2 2 40 40 40
2 2 2 2 79 79 79
3 3 2 3 49.34 42 44.09
4 3 2 3 25.7 0 21.01
5 3 3 3 14.15 0 14.82
6 3 3 3 59.17 48.55 48.55
7 3 3 3 45.8 45.8 45.8
8 5 3 3 36.2 33.6 36.92
9 5 3 3 60 0 60
10 5 3 3 40 40 40

wise superstructure does not include the mixer mass balances in the network superstruc-
ture. We demonstrate the application of this superstructure for targeting minimum fresh-
water assumption by considering ten problems. For comparison with model (LP-3), we
consider the original NLP network superstructure formulation16 consisting of the model
(NLP-1) and the equations (2.10), which will be referred to as “NLP-3”. In addition,
“LP-4” corresponds to the LP relaxation of “NLP-3” using McCormick inequalities.

NLP-3 was solved to global optimality with BARON 9.3, whereas the LP’s are solved
with CPLEX 12.3. Even though this superstructure will not always predict the exact target
for freshwater flowrate supplied to the total water network, some improvements have been
noted. As can be seen from 2.10, the stagewise structure predicted the exact target in 4
out of the 10 problems. In the 6 remaining ones the upper bounds are overestimated in
the range of 2.0% to 18.2% of the actual targets. In contrast, the McCormick relaxation
of the NLP network superstructure formulation predicts a significantly lower bound with a
gap ranging between 0 and 100%. Note that in problems 4,5,9, the McCormick relaxation
predicts zero freshwater flowrates, while (LP-3) predicts significantly better estimates.
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2.5 Simultaneous optimization

2.5.1 Procedure

As was indicated in section 2.2, the simultaneous flowsheet, heat, and water optimization
problem can be stated as follows. Given is a flowsheet with fixed structure, the process
streams that need to be heated or cooled are identified for heat integration, water-using pro-
cess units are specified with their maximum inlet and outlet concentrations, and percent of
contaminant removal is provided for wastewater treatment units in water integration. The
problem is then to simultaneously optimize the flowsheet with heat and water integration
as given in model (2.1), using (2.2) for heat integration targets, and (LP-1) or (LP-3) for
the WN target. The detailed HEN and WN structures are synthesized using superstructure-
based methods9,16 in a second step without incorporating the targets.

2.5.2 Examples

The proposed procedure has been applied to two process flowsheet optimization problems.
For heat integration, we used cost values found in the original example in the literature21,27.
For the case of the methanol plant, we only considered process units for the water target.
In the case of the bioethanol process, we included the treatment units, where we estimated
the presence of various contaminants and upper contaminant concentration tolerated by
process unit as shown in 2.11.

Methanol synthesis

We consider the methanol flowsheet example taken from Duran and Grossmann27 and
Turkay and Grossmann67 shown in 2.9. This problem requires 90% pure methanol to be
produced at a flowrate of 1300 kmol/day. Syngas (65% H2, 30% CO, and 5% CH4) is the
feed which is compressed in a two-stage compression with interstage cooling. The feed
is combined with the recycle stream and preheated before entering the methanol reactor,
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Table 2.11: Utility data.

Cin,max
j (ppm) TSS TDS ORG

Boiler Loop 2 100 10
Cooling Cycle 10 500 10
βtj TSS TDS ORG
Settling Tank 0.05 1 1
Reverse Osmosis 1 0.1 1
Anaerobic Tank 1 1 0.01

where the exothermic reaction occurs and steam is raised. The pressure of the stream
leaving the reactor is reduced and the stream is cooled down before entering the flash
unit, which then separates the product stream from the recycle stream. Part of the vapor
stream from the flash is purged and sold as byproduct. In order to incorporate the effect
of water integration, the cooling tower cycle and the steam system are also embedded
in this process. Water requirements in those units are make-up water and blowdown.
The conventional values for maximum contaminant concentration present in the utility
cycles are taken from the literature21 and shown in 2.11. Also, no wastewater treatment is
considered for this case.

The WN is assumed to be isothermal, which means that the WN itself will not be heat-
integrated in the simultaneous step, where the heat and water targeting equations are added.
The NLP for the flowsheet optimization has 161 constraints and 163 continuous variables,
while the NLP for the simultaneous method, which includes the equations in (2.1) with
(LP-1) as gWN has 237 equations and 244 continuous variables. The problems are first
optimized using CONOPT 3 to provide an initial local optimum, then they are furthered
optimized using BARON 9.3 to ensure a global optimal solution. The solution time was
5575 CPU s for the simultaneous case and 4332 CPU s for the sequential optimization.

The major design parameters and the optimal profit for both methods are shown in 2.12.
The important observation here is that the sequential approach uses the expansion valve
to cool the stream, thus saving cooling utility before the stream needs to be cooled even
further entering the flash. However, the lower pressure from the expansion led to a less
effective separation of product from the recycle stream in the flash unit. Consequently, the
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Figure 2.9: Methanol synthesis process flowsheet.

sequential solution has a lower overall conversion (68% vs 88%), and it requires a much
higher compression power(6.59 vs 1.84 kW) in the recycle compressor. In contrast, in
the simultaneous approach, heating and cooling are integrated with significantly different
operating conditions (higher pressure, 2.6 MPa vs 1.3 MPa, in the flash unit and lower
compression ratio, 1.03 vs 1.26, in the recycle compressor). Furthermore, note that the si-
multaneous approach requires no heating and 20% less consumption of freshwater (29.25
kg/s vs 36.43 kg/s), although it requires more cooling water. Overall, the resulting flow-
sheet from the simultaneous optimization improves the profit from 62.7MM$ to 73.4MM$
per year, a 17% increase.

Applying the second step, the resulting WN is shown in 2.10a and HEN is shown in 2.10b,
in which the total cost, investment and utilities were optimized. It is interesting to note
that in this example, the freshwater consumption of 29.25 kg/s predicted by the targeting
formulation (LP-1) is exact. In the optimal HEN design, the utilities required (no heating
utility and 72.67× 109 kJ/yr cooling utility) coincide with the minimum targets predicted
in step one of the simultaneous optimization procedure. Also, in the WN design the con-
sumption of freshwater was 29.25 kg/s, the same as predicted by the target. In comparison,
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Table 2.12: Result comparison for methanol synthesis example.

SEQUENTIAL SIMULTANEOUS
Profit (1000 $/yr) 62,695 73,416

Investment Cost (1000 $) 1891 1174
Operating costs and parameters

Electricity (kW) 6.59 1.84
Freshwater (kg/s) 36.43 29.25
Heating utility (109 kJ/yr) 0.293 0
Cooling utility (109 kJ/yr) 67.33 72.67
Steam generation (109 kJ/yr) 2448 1965

Flowrate (106 kmol/yr)
Feedstock 48.04 37.13
Product 10.89 10.89
Byproduct 9.95 4.41
Overall conversion 0.68 0.88
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Figure 2.10: Methanol synthesis simultaneous optimization: (a) WN (b) HEN.
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Figure 2.11: Methanol synthesis sequential optimization: (a) WN (b) HEN.

the resulting WN and HEN for the sequential optimization approach are shown in 2.11a
and 2.11b. The major difference between the results is that the simultaneous approach
yields a solution that does not have any heating requirement, therefore, the boiler loop that
is present in WN from sequential optimization is not needed for the WN from simulta-
neous optimization, hence both HEN and WN designs are influenced. It is worth noting
that not until the price of water increases by ten fold does the methanol flowsheet take on
different operating conditions under the simultaneous approach.

Bioethanol production from corn

A second example shown in 2.12 involves optimizing a corn-based bioethanol plant taken
from Karuppiah et al21. Corn is processed through a series of process units - washing,
cooking, fermentation, solid separation, and liquid separation - to produce 61.3 MMgal
ethanol per year. The authors in the original example determined the flows and operating
conditions in the flowsheet such that production cost for a fixed ethanol production rate
is minimized through a sequential optimization approach. In this chapter, we make im-
provements upon the initial design by performing simultaneous heat and water integration
on the optimally configured network. In addition, multieffect columns are modeled and
embedded in the flowsheet using short-cut equations to further reduce energy consump-
tion. This example assumes fixed raw material consumption and production rates. Thus,
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Figure 2.12: Bioethanol production process flowsheet.

the objective function is to minimize heating utility, cooling utility, and freshwater cost.

In case 1 we solved a modified version of the original example (NLP formulation), then we
solved for its subsequent heat integration (MINLP) and water integration (NLP). In case 2,
we replaced the single beer column and rectifying column by two multieffect distillation
columns, and performed sequential heat and water integration. Finally, in case 3, we
performed simultaneous integration (with multieffect columns) using model (2.1) with the
constraints in (LP-3) for gWN .

In this example, in addition to the water-using or water-producing process units, cooling
loop and boiler cycle are taken into account for completeness. The empirical correlations
for the two cycles are taken from Ahmetović et al68. The contaminants taken into consid-
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Table 2.13: Formulation size comparison for bioethanol production.

Base Case Case 1 Case 2 Case 3
CPU(s) 387 387 470 563
# eqns 2,232 2,232 3,213 5,221
# cont var 2,921 2,921 3,914 5,392

Table 2.14: Result comparison for bioethanol production.

Base Case Case 1 Case 2 Case 3
Cost (MM$/yr) 14.91 11.77 8.57 8.57
Cooling water use (kg/s) 2895.6 1998.3 1127.3 1124.8
freshwater use (kg/s) 40.8 127.6 90.0 90.0
Steam use (kg/s) 35.1 28.3 21.3 21.3

eration are total suspended solids(TSS), total dissolved solids (TDS), and organics (ORG),
treated by settling tank, reverse osmosis, and anaerobic tank, respectively.

The problem was implemented using GAMS 23.769 and solved on an Intel 2.4 GHz ma-
chine with 4 GB memory. CPLEX 12 was used for solving the LP and MILP subproblems;
CONOPT 3 was used to solve the NLP subproblems; finally, both DICOPT and BARON
were employed to solve the MINLP problems. The problem size and solution time are
shown in 2.13. The total CPU time indicated for the simultaneous approach includes the
solution time of the simultaneous flowsheet and targeting formulation only. The solution
time for the subsequent HEN and WN problem are not included in the total solution time.

As we can see from the results in Table 2.14, the addition of multieffect columns con-
tributes to 36% savings in energy consumption. However, there is no improvement in the
solution quality under the simultaneous approach. This can be attributed to two reasons:
first, the yield for this process is fixed; second, unlike the methanol synthesis example, this
example does not involve recycle streams. Furthermore, the acyclic nature of the flowsheet
does not lend itself to improved integration with the simultaneous optimization. However,
comparing the problem size and solution time of these approaches, we can see that even
though the simultaneous formulation is larger in size compared to the sequential approach,
the solution time for both approaches are similar. This is largely due to the small size of
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Figure 2.13: Bioethanol production simultaneous optimization: (a) WN (b) HEN.

the targeting formulations. Thus, our result indicates that the addition of heat targeting and
water targeting formulations does not contribute significantly to the computational burden
of flowsheet optimization, and that such an approach should be considered when energy
usage and water usage are of primary concern in a process where possible trade-offs are in
place. In this example, the freshwater consumption predicted by the targeting formulation
(LP-1) in step 1 of the simultaneous optimization procedure is 15% greater than the actual
target (103.4 kg/s vs 90.0 kg/s). In terms of cost, however, the impact is only of the order
of 0.24%.

By applying the second step and solving the corresponding NLP and MINLP synthesis
models, the water network for case 2 and case 3 is shown in 2.13a while the HEN is
shown in 2.13b. The freshwater consumption is 90.0 kg/s (same as the actual target),
and the optimal HEN design consumes the same level of hot and cold utilities as the
minimum targets (1124.8 kg/s cooling water and 21.3 kg/s steam) predicted in step 1 of
the simultaneous optimization strategy.
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2.6 Discussion

Based on the examples presented, we have shown the advantage of performing simultane-
ous process flowsheet, heat, and water integration. Using the water targeting formulations
developed in this chapter allows trade-offs to take place among the flowsheet, heat recov-
ery, and freshwater use. Due to the linear nature of the formulations (LP-1 and LP-3 for
isothermal networks) for fixed flows, they do not add much to the computational complex-
ity of the flowsheet. Two points regarding this approach are discussed below.

First, the success of performing simultaneous optimization strategy greatly depends on the
structure of the flowsheet. As shown in the methanol example, the simultaneous approach
takes advantage of the recycle structure and relatively low conversion per pass, which
allows for a higher overall conversion, and thus, less raw material consumption. The
trade-off is that since the conversion per pass is low, this increases the flows in the recycle
stream. However, the increased utility consumption due to the increased recycle stream
can be mitigated by energy and water integration within the flowsheet. Thus, it is shown
that the operating conditions should be chosen given the possibilities for heat and water
integration. Furthermore, the impact of the simultaneous optimization will be larger if the
process exhibits low conversion per pass22. In contrast, the bioethanol example has an
acyclic structure and fairly few degrees of freedom. This prevents major economic trade-
offs among capital cost, raw material consumption, and energy and water consumption be
established. As a result, the simultaneous optimization approach has low potential in these
systems.

The second point is that the synthesis of the WN is independent of the freshwater target
predicted in step one of the simultaneous approach. As indicated in section 2.2, the target
determined in the first step is not used as a constraint in WN synthesis, even though this
could be done if the target was exact and if the user was only interested in the structure
that requires minimum freshwater consumption. It is actually better to allow the read-
justment of freshwater consumption in the second step since capital costs are included in
the synthesis models. Thus, there are no feasibility issues when performing simultaneous
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optimization using the water targeting formulations presented in this chapter, even if the
exact target is not guaranteed as is the use of models (LP-1), (LP-2), and (LP-3). Finally,
since the price of water is low (1 - 2.5 $/ton), the target predicted in step one does not
contribute greatly to the total cost of the process flowsheet.

2.7 Conclusion

Simultaneous optimization accounts for complex trade-offs among raw materials, invest-
ment cost, and energy consumption in a process flowsheet, which leads to lower cost so-
lutions with efficient use of energy and water. We have proposed a solution methodology
for simultaneous optimization of process flowsheet, HEN, and WN. As part of the solution
procedure, simplified targeting formulation that can predict the minimum freshwater con-
sumption is required. To this end, several LP formulations for freshwater targeting have
been developed, which are the main contribution of this work. The formulation (LP-1)
for multi-contaminants WN problems with only water-using process units has been shown
to be exact under a certain assumption, and the formulation yields a tight upper bound in
cases where the assumption does not hold true. This formulation is also combined with
heat targeting model to determine the minimum utility and water requirement for non-
isothermal WN. In addition, the LP targeting model has been extended to (LP-3) to include
wastewater treatment units through the use of the stage-wise superstructure, although in
this case exact target are not obtained. We then applied these targeting formulations to two
examples using simultaneous optimization strategy and demonstrated the effectiveness of
the simultaneous approach in improving both the quality and computational effort of the
solution.
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Chapter 3

Wastewater Regeneration Models for
Water Network Optimization

3.1 Introduction

In contrast to chapter 2, the objective of this chapter is to more accurately predict the
performance of the treatment units and gain a more thorough understanding of the trade-
offs between the removal efficiency and the cost of the treatment units (reverse osmosis,
ion exchange, sedimentation, ultrafiltration, activated sludge, and trickling filter), as well
as their impact on the WN design. This work combines various technologies capable of
removing the three major types of contaminants, namely, TDS, TSS, and ORG, through
the use realistic treatment unit models. A number of features are considered in order to
achieve this goal and they are described below.

First, unit-specific short-cut models based on the literature are developed to replace the
fixed recovery model to more accurately describe contaminant mass transfer in wastewater
treatment units. Even though short-cut models have been used in the context of wastewa-
ter treatment optimization problem, they usually pertain to specific treatment technologies.
For example, Saif et al40 designed a reverse osmosis network for desalination processes.
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In contrast, in this work we consider multiple types of treatment units for general pro-
cesses. To this end, appropriate modeling equations that can satisfactorily predict unit
performance with reasonable computational complexity are presented.

Short-cut wastewater treatment cost functions (operating cost and investment cost) in the
form of nonlinear functions are incorporated into the model. The conventional network
cost function usually consists of a linear operating cost term and a concave capital cost
term. The use of a more complex objective in this more rigorous model enables the design
of WNs that allow for trade-offs that better meet the need of their respective decision
criteria.

In addition, since conditions for a given process may change during the course of the
operation, we account for the uncertain parameters through the use of a three-scenario
model. This method was demonstrated by Karuppiah and Grossmann35, where the authors
present a multiscenario nonconvex MINLP model that is a deterministic equivalent of a
two-stage stochastic programming model with recourse. For each of the best, worst, and
nominal scenarios, the uncertain parameters can take on a different set of values. This
model then ensures that the final design solution is feasible and optimal over the set of all
three scenarios. This representation can effectively capture the wide range of operating
conditions without overly complicating the formulation.

Furthermore, the topology of the superstructure is modified to accommodate realistic po-
tential structures. Faria and Bagajewicz70 explored the impact various topologies among
the subsystems has on freshwater consumption of the overall water network. Different
types of contaminants present in the system are removed by considering the Best Avail-
able Techniques (BAT)37. These provide industrial standards for discharge of the major
pollutant groups and recommendations for their treatment as listed in Table 1.1. Since
there are multiple treatment technologies for the removal of each type of pollutants, the
modified superstructure (Figure 3.1) allows for the selection of a subset of BAT treatment
technology through the use of disjunctions in the generalized disjunctive programming
(GDP) formulation16.

The resulting multiscenario GDP formulation associated with the WN synthesis problem
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Figure 3.1: Superstructure with multiple treatment unit options.

is computationally expensive to solve to global optimality. Various methods have been
proposed to address the issue of bilinear terms (products of flowrates and contaminant
concentrations) and concave cost functions in the standard water network synthesis prob-
lems71,28,16. The short-cut models presented in this chapter introduce additional nonlinear
and nonconvex terms. To overcome the difficulty, we first reformulate the GDP problem
into a nonconvex MINLP problem. We then present a modified Lagrangean-based de-
composition algorithm in order to solve the resulting MINLP problem effectively. The
formulation and the effectiveness of the algorithm are then illustrated through applications
in metal finishing and petroleum refining industries.

3.2 Problem statement

3.2.1 Problem description

In this manuscript we consider an integrated multi-contaminant WN with a given set of
process units (PU , e.g. scrubber, cooling tower), a set of treatment units (TU , e.g. re-
verse osmosis, sedimentation), freshwater sources (e.g. lake, municipal treatment plant,
water from process separations), and wastewater discharge sinks (e.g. river, centralized
wastewater treatment plant, cooling tower). These units are interconnected using mixer
units (MU ) and splitter units (SU ) to form the superstructure, and are shown in Figure
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1.1. Freshwater sources that vary in maximum flowrate and pollutant levels are supplied
to one or more of the process units. Once the streams are treated, they are recycled to the
process untis or sent to wastewater discharge sinks that must satisfy limits on either the
pollutant discharge concentration or on the discharge flowrate.

Each process unit has a fixed water flowrate requirement, upper limits on the inlet concen-
tration level, and mass load of contaminants released into the water stream. The mass load
of contaminant is the uncertain parameter that can take a range of values during process
operation. We define its upper bound as the worst case scenario, its lower bound as the best
case scenario, and the average as the nominal scenario. In comparison to a single steady
state scenario design, the proposed model is defined over the three scenarios n ∈ N that
account for the uncertainties in the loads by introducing flexibility to the network design.
This network flexibility can be achieved by increasing pipe capacity, piping connections,
or treatment unit capacity and removal efficiency.

The standard wastewater treatment units considered in this work include the following:
sedimentation, ultrafiltration, ion exchange, reverse osmosis, activated sludge, and trick-
ling filter. By substituting the simplified models with short-cut models more accurate
design can be obtained. The goal is to select a subset of technologies that best fit the
treatment applications of the receiving wastewater streams.

3.2.2 General model

The general problem formulation (GDP-1) is an extension of earlier works by Karuppiah
and Grossmann and Ahmetović and Grossmann16,35,28. The main difference here is that
the fixed recovery treatment units are replaced by short-cut models presented in section

3.2. PROBLEM STATEMENT 53



CHAPTER 3. WASTEWATER REGENERATION MODELS FOR WATER
NETWORK OPTIMIZATION

3.4. The model (GDP-1) based on the superstructure in Figure (1.1) is as follows:

min. Costtotal = AR
∑
t∈TU

ICTU
t + AR[

∑
i∈Pipe

(CPipe
i yi + ICPipe

i (F̂i)
δ]

s.t. Fkn =
∑
i∈min

Fin ∀m ∈MU, k ∈ mout, ∀n ∈ N

FknCkjn =
∑
i∈min

FinCijn ∀j,∀m ∈MU, k ∈ mout,∀n ∈ N

Fkn =
∑
i∈sout

Fin ∀s ∈ SU, k ∈ sin,∀n ∈ N

Cijn = Ckjn ∀j,∀s ∈ SU, i ∈ sout, k ∈ sin,∀n ∈ N
Fkn = Fin = P PU

p ∀p ∈ PU, i ∈ pin, k ∈ pout,∀n ∈ N
P PU
p Ckjn + Lpjn × 103 = P PU

p Cijn ∀j,∀p ∈ PU, k ∈ pin, i ∈ pout,∀n ∈ N

∨
r=1,...,RTt


Yrt

hn(drt, Fin, Cijn) = 0
gn(drt, Fin, Cijn) ≤ 0
ICTU

t = f1(drt)
OCTU

tn = f2(drt, Fin, Cijn)

∀j,∀t ∈ TU, i ∈ tin ∪ tout,∀n ∈ N
Yrt ∈ {True, False}

F̂i ≥ Fin ∀i,∀n ∈ N
yi ∈ {0, 1} ∀i
FMIN
i yi ≤ F̂i ≤ FMAX

i yi ∀i
FMIN
i ≤ Fin ≤ FMAX

i ∀i,∀n ∈ N
CMIN
ij ≤ Cijn ≤ CMAX

ij ∀j,∀i, ∀n ∈ N
(GDP-1)

where yi are binary variables to indicate existence of piping connection i; Fin and Fkn
are flowrates (t/h) of any stream i and k in the superstructure respectively, in scenario n;
F̂i is the maximum flowrate capacity of pipe i, Cijn and Ckjn are concentrations (ppm)
of contaminant j, P PU

p are the process unit water flowrates, Lpjn are the mass load of
contaminant j in unit p in scenario n (kg/h). In the disjunctive formulation, Yrt indicates
if technology r is chosen for unit t, drt is the design variable associated with r and t. The
constraints consist of a set of contaminant mass balances in the mixer units, splitter units,
process units, and treatment units(hn(·), gn(·)). Note that for the set of splitters SU , there
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is a subset of initial splitters SUw for which Fw
kn = FWw

n , w ∈ W , where W is set of
freshwater sources.

3.2.3 Objective function

The objective function of the problem is to minimize the total cost of the network (Costtotal).
It consists of the annualized investment cost and the expected operating cost. The invest-
ment cost is scenario independent and is given by the sum of treatment unit capital costs
(ICTU

t ) and pipe investment costs (the second term in the objective function). CPipe
i are

the fixed charge cost coefficients ($) associated with pipe existence, and ICPipe
i are the

investment cost coefficients of pipes, and δ is the associated cost exponent. The expected
operating cost of the network represents the operating cost for the selected a network de-
sign over all three scenarios, each with a given probability pn. The term includes freshwa-
ter cost, pumping cost, and treatment unit operating cost. OCFW,w are the cost coefficients
of freshwater sources ($/t), OCPipe is the pumping cost coefficient ($/t), and OCTU

tn is the
treatment unit operating cost. H is the operating hours in a year (hr/year), and AR is the
annualized factor for investment cost (year−1).

Treatment unit cost equations are greatly simplified in previous works on WN optimiza-
tion. Specifically, the treatment unit capital costs are usually modeled as a concave func-
tion of the inlet flow, and the operating cost as a linear function of the inlet flowrate as
shown in Equation 3.1.

ICt = CICt(Fi)
α

OCt = COCtFi
(3.1)

where CICt and COCt are cost coefficients for investment cost and operating cost, re-
spectively. In this work, we incorporate treatment unit cost correlations that are function
of design variables such as area or volume of the unit to reduce the gap between the true to-
tal cost of the network and the objective obtained from the simplified optimization model.
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3.3 Illustrative example

In order to demonstrate the advantage of performing multi-scenario optimization, we
present an illustrative example with two process unit/two sets of treatment units (two op-
tions each)/two contaminants system with data given in Table 3.1. We solve the example
using the worst case scenario model (i) and the three-scenario model (iii). The worst case
scenario model optimizes over scenario (n1) only. To obtain an accurate comparison be-
tween the two solutions, we solve an additional three-scenario model (ii) subject to piping
connectivity and flowrate capacity bound obtained from the worst case scenario model (i).

Table 3.1: Illustrative example data.

(a) Process units

Flowrate (ton/h) Discharge Load (kg/h) Cmax
in (ppm)

n1 n2 n3
A B A B A B A B

PU1 40 1.1 1.7 1 1.5 0.8 1.3 0 0
PU2 50 2 2 1.7 1.8 1.5 1.6 50 50

(b) Treatment units

Options Removal Ratio (%) IC($) CO($/ton)
n1 n2 n3

A B A B A B

TU1 OP1 90 0 95 0 99 0 16800 1
OP2 80 0 90 0 98 0 4800 0.5

TU2 OP1 0 80 0 90 0 95 12600 0.0067
OP2 0 90 0 95 0 99 36000 0.067

The resulting network costs are presented in Table 3.2, where it can be seen that the worst
case design (i) operating in the 3 scenarios (ii) is $22,820 more expensive than the design
that was optimized for the 3 scenarios (iii). As shown in Figure 3.2, both cases (i) and (iii)
select Option 2 for TU1 and Option 1 for TU2. The difference lies in the number of piping
connections ––8 removable pipes in the superstructure are determined by model (i) vs 12
removable pipes in model (iii). A removable pipe is a piping connection between a mixer
unit and a splitter unit. As a result, case (iii) allows for additional flexibility. Specifically,
it allows for the bypass stream (PU1, discharge mixer unit) in the best scenario (n3). The
bypass stream is not selected in the worst-scenario model. Thus, the flow is redirected to
PU2 and treatment units, increasing the treatment cost.

The example was solved with BARON53 and the computational statistics are presented in
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Table 3.2: Illustrative example optimization results.

(i) Worst case (ii) Comparison with three-scenario (iii) Three-scenario
# of removable pipes 8 8 12
Annualized IC ($/yr) 39,426.50 39,430.60 39,821.43
Operating cost ($/yr) 634,742.00 526,398.20 503,187.22
Total cost ($/yr) 674,161.40 565,828.80 543,008.65

PU 2 

PU 1 

Freshwater Discharge 

A OP1 

A OP2 

B OP1 

B OP2 

(a)

PU 2 

PU 1 

Freshwater Discharge 

A OP1 

A OP2 

B OP1 

B OP2 

(b)

Figure 3.2: Illustrative example result: (a) Worst case scenario (b) Three-scenario.

Table 3.3. The large CPU time required in the three scenario case clearly indicates that a
suitable decomposition scheme is required for these problems.

Table 3.3: Computational statistics for illustrative example.

(i) Worst case (iii) Three-scenario
# of constraints 229 575
# of continuous vars 161 431
# of integer vars 24 24
CPU time (s) 25 1800∗

Optimality gap (%) 4.98 15.6
∗Time limit

3.4 Wastewater treatment unit short-cut models

The purpose of this section is to describe a set of common treatment units mentioned previ-
ously, and to consider their performance as well as important design considerations. Treat-
ment unit models with various levels of detail have been reported in literature. The models
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reported here aim to describe each unit adequately while minimizing computational com-
plexity. To the knowledge of the authors these models have not been incorporated into
WN superstructure optimization. A list that summarizes the unit-specific variable names
is presented in nomenclature.

For the sake of clarity, in this section we denote treatment unit inlet flowrate by Q0

(m3/day), outlet flowrate by Q (m3/day), inlet contaminant concentration by Sj0 (ppm),
treated outlet contaminant concentration by Sj (ppm), contaminant j removal ratio byRcj ,
and flow recovery ratio by Rr. The recovery Rr is assumed to be 1 for sedimentation, ion
exchange, and trickling filter. They are related as follows.,

Q = RrQ0

Sj = (1−Rcj)Sj0
(3.2)

3.4.1 Reverse osmosis

Reverse osmosis is a pressure-driven membrane treatment process mainly used in seawa-
ter and brackish desalination applications. A high-pressure feed stream flows across the
surface of a semi-permeable material. Due to a pressure differential between the feed and
permeate sides of the membrane, a portion of the feed stream passes through the mem-
brane. The permeate stream exits at nearly atmospheric pressure, while the concentrate
remains at nearly the feed pressure. The salt rejection coefficient (RcTDS) limits the mem-
brane performance and its value is fixed for a specific membrane. The value of the recovery
ratio (Rr) usually lies between 0.5 and 0.9. A scheme of the RO process is shown in Figure
3.3.

The performance of the system depends mainly on two parameters in the RO process
design, they are the transmembrane pressure ∆P and the membrane area Amemb. The
selected type of membrane element is the spiral bound FILMTEC BW30-400 (DOW) that
offers high flow and rejection. The membrane properties are specified by the manufacturer
and they are shown in Table 3.4.
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Figure 3.3: Reverse osmosis diagram.

Mass transfer in RO involves a diffusive mechanism such that separation efficiency is
dependent on influent solute concentration, pressure, and water flowrate. The permeate
flowrate across the membrane is determined by the osmotic pressure law (3.3),

Q = AmembNkm(∆P −∆π) (3.3)

The transmembrane pressure (∆P ) is calculated as in (3.4)72,

∆P = Pf − Pp −
∆Pdrop

2
(3.4)

where Pf is the feed stream pressure, Pp is the permeate stream pressure.

Assuming the feed stream is a dilute solution of salts, the osmotic pressure π can be ap-
proximated by the Van’t Hoff equation in (3.5),

∆π =
φRT

M
(STDS0 − STDS) (3.5)

It is also assumed that the concentration polarization is negligible so that the concentration
at the membrane surface is considered to the be equal to the concentration at the inlet of
the RO treatment (Cf).
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Table 3.4: Characteristics of the FILMTEC™BW30-400 membrane element.

Parameter Symbol Unit Value
Membrane rejection coefficient Rc 0.98
Membrane water permeability km t/(day m2 Pa) 6.48 ×10−7

Membrane area A m2 37
Gas constant R kJ/(kmol K) 8.31
Max pressure drop in vessel ∆Pdrop bar 3.4
Number of ions in solution φ 2
Molar mass of the dissolved solids M g/mol 58.44

3.4.2 Ion exchange

Ion exchange (IX) is a reversible reaction in which a charged ion in solution is exchanged
for a similarly charged ion electrostatically attached to an immobile solid particle. In
practice the raw water is commonly passed through a bed of resin. When the bed becomes
saturated with the exchanged ion, it is shut down and regenerated by passing a concentrated
solution of the presaturant ion back through the bed. The saturation of the resin is shown
in the breakthrough curve (Figure 3.4a). At the break point, the effluent concentration
exceeds the design criteria and the column needs to be regenerated. Figure 3.4b shows a
scheme of a typical IX column configuration.

(a) (b)

Figure 3.4: Ion exchange unit (a) breakthrough curve, (b) ion exchange column configu-
ration (i) loading cycle (ii) regeneration cycle5.

For the complete removal of ions the water stream must pass through cationic and anionic
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resins in series or through a unique column containing a mixture of both. The performance
of the system depends on many parameters such as the operating capacity (q), the service
flow rate (SFR) or the surface loading rate (SLR), which determines the pressure drop
in the resin. BV is the volume of water treated per volume of resin, and it relates the
concentration gradient with the capacity of the resin bed,

BV = 1000
q

STDS − STDS0

(XIXMWca + (1−X)MWan) (3.6)

where XIX is the mass fraction in inlet water of ion to be removed, MWca is the molar
mass of the cation, and MWan is the molar mass of the anion.

SFR is determined from the following equation, and the typical SFR ranges from 8 to 40
bed volume per hour (BV/h).

SFR =
BV

CT
(3.7)

where CT is the contact time.

The process design variables can be modeled with the equations in (3.8),

VIX =
Q0

SFR
(3.8a)

Vww =
q

S0 − S
(3.8b)

AIX =
Q0

SLR
(3.8c)

where VIX is the resin volume, Vww is the volume of wastewater treated, and AIX is the
resin cross-sectional area.

Some design considerations for determining model parameters are as follows36. The pres-
sure drop in the bed should be kept in the range of 35-70 kPa, with a maximum value of
135 kPa. This results in a maximum SLR of 880 m/day, depending on the resin. Regard-
ing the operating parameters, SFR should be kept in the range of 8 to 40 BV/h to ensure
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Figure 3.5: Horizontal flow sedimentation diagram.

an adequate contact time and to avoid an early breakthrough.

3.4.3 Sedimentation

Sedimentation is used as a preliminary step to reduce TSS level in wastewater streams.
Typically, 50 to 70% of TSS and 25 to 40% of BOD can be removed using primary sedi-
mentation tanks36. The standard sedimentation tanks are of circular or rectangular design,
whose selection is determined by a number of factors. Figure 3.5 is a schematic drawing
of a horizontal flow tank.

The efficiency of sedimentation tanks is affected by a number of factors including eddy
currents formed by the inertia of the incoming fluid, thermal convection currents, and
density currents caused by cold or warm water along the bottom of the tank and warm
water flowing across the top of the tank.

Typical removal performance (Rcj) of a rectangular tank can be modeled by a hyperbolic
function (3.9) of the detention time (t) and contaminant (j)73.

Rcj = 1− t

aj + bjt
(3.9)

where a, b are empirical constants presented in Table 3.5.
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Table 3.5: Typical values for the empirical constants at 20 °C.

Contaminant a b
BOD 0.018 0.020
TSS 0.0075 0.014

The design of the rectangular tank can be calculated by the following equations,

ASE = Q/ORSE

DSE = tQ/ASE

NC =
ASE
LW

(3.10)

whereORSE is the overflow rate,ASE is the area,DSE is the depth, andNC is the number
of clarifiers required.

3.4.4 Ultrafiltration

Ultrafiltration (UF) is a pressure driven membrane filtration process. The feed stream is
a suspension, or two-phase system, in which the dispersed solid phase to be separated
may include sediment, algae, bacteria, protozoa, viruses, or colloids. The primary goal of
membrane filtration is to produce a product stream (water) from which the targeted solids
have been almost completely removed. The predominant removal mechanism in UF is size
exclusion so the process can theoretically achieve perfect exclusion of particles regardless
of operational parameters such as influent concentration and pressure. UF membranes
cover a wide range of molecular weight cut-offs (MWCOs) and pore sizes. Operational
pressures range from 70 to 700 kPa, depending on the application36.

The UF process shares some common features with the RO process. The material balances
must be satisfied and the feed and permeate concentration are related through the rejection
coefficient (3.2). The recovery ratio is assumed to lie between 0.5 and 0.9. Pure water
transport across a clean porous membrane is directly proportional to the transmembrane
pressure (∆P ). The number of units (N ) required is based on the permeate flowrate (Q)
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Table 3.6: Characteristics of a typical UF membrane.

Parameter Symbol Unit Value
Membrane water permeability km t/(day m2 Pa) 1.3704 × 10−5

Active area of membrane element A m2 33
Max pressure drop in vessel ∆P bar 0.4-1.5

as shown in equation (3.11),

Q = N∆PkMAmemb (3.11)

Fouling of the membrane may occur during the filtration, which implies an additional re-
sistance to the water flux through the membrane. For the sake of simplicity, we do not
consider membrane fouling in the mathematical model. Typical UF membrane character-
istics5 are shown in Table 3.6.

3.4.5 Activated sludge

Activated sludge (AS) is an aerobic slurry commonly used in wastewater treatment for the
removal of soluble organic matters. Microorganisms in the wastewater convert organic
matter to biomass and other components in the complete-mix suspended growth reactor.
Once the stream exits the reactor, the suspended solids (sludge) are partially removed in a
clarifier, while the rest is recycled to the reactor. The removed sludge then goes through a
series of sludge treatment to be discharged to the environment. This process is shown in
Figure 3.6a.

An important parameter that determines the system performance is the solid retention
time (SRT ), which is used to characterize the average time the activated-sludge solids
remain in the system73. The effluent soluble substrate concentrations in (3.12), S, is only
a function of the SRT and kinetic coefficients, and is neither a function of the influent
soluble substrate concentration nor the sizes of the reactor. However, the size of the reactor
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Figure 3.6: Organics removal units schematics, (a) Activated sludge, (b) Two-stage trick-
ling filter.

needs to scale with SRT in order to avoid system upsets.

S =
Ks[1 + (kd)SRT ]

SRT (Y k − kd)− 1
(3.12)

where Ks,kd,Y ,k, and fd are kinetic parameters and their values are given in Table 3.7.
The process can be modeled with the equations in (3.13),

XAS = (
SRT

τ
)[

Y (S0 − S)

1 + (kd)SRT
]

XT = (
SRT

τ
)[

Y (S0 − S)

1 + (kd)SRT
] + (fd)(kd)XSRT +

(X0,i)SRT

τ

PXT ,V SS =
XTV

SRT
PX,bio = PXT ,V SS −QX0,i

(3.13)

where XAS is the biomass concentration in the aeration tank,XT is MLVSS concentration,
X0,i is the influent nbVSS concentration, Px,bio is biomass wasted, and PXT ,V SS is total
sludge wasted daily.

In general, the operating cost of the AS is higher than the cost of other secondary treatment
processes primarily because of the need to supply molecular oxygen using mechanical
aerator, which can be energy-intensive. The oxygen consumption (RoAS) is given by the
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Table 3.7: AS kinetic parameters.

Symbol Unit Value
Ks g COD/m3 10
kd g VSS/(g VSS day) 0.1
Y g VSS/g COD 0.4
k g VSS/(g VSS day) 12.5
fd g VSS/g VSS 0.15

following correlation:

RoAS = Q(S0 − S)− 1.42Px,bio (3.14)

The sizing of the unit is modeled as follows,

VAS = τQ

AclAS =
QXT

SLR

(3.15)

where VAS is the reactor volume, τ is the residence time, and AclAS is the clarifier area.

3.4.6 Trickling filter

Trickling filter (TF) is a circular packed bed of media covered with a biological film of
microorganisms, which operates using attached-growth process. Liquid wastewater is dis-
tributed over the top of the unit by a rotary distributor. Oxygen diffuses into the media, and
treatment of the wastewater stream is accomplished by the biofilm in the filter. Organic
removal rate is related to the available surface area and contact time of the wastewater with
the surface36.

A two-stage trickling filter system is the most typical process used that improves the per-
formance of the unit. The second stage provides additional contact between the organics
and the microorganisms on the filter media. The two stages could have different media as
shown in Figure 3.6b. The organic removal ratio (RcORG) can be related to the removal
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efficiency of stage one (E1) and stage two (E2) as follows,

RcORG × 100 = E1 + E2(1−
E1

100
) (3.16)

The empirical design equations for BOD removal were developed for rock trickling filters
based on the performance at 34 plants at military installations treating domestic wastew-
ater5. For a single-stage filter or the first stage of a two-stage rock filter, the efficiency at
20◦C is,

E1 =
100

(1 + 0.4432
√

W1

V F
)

W1 = QS0
1kg

1000g

(3.17)

where W1 is BOD loading applied to the first-stage filter. For the purpose of this work, we
ignore the effect of wastewater temperature on the BOD removal efficiency.

The recirculation factor F represents the average number of passes of the raw wastewater
BOD through the filter. The 0.1 factor accounts for the empirical correlation of the de-
creasing biodegradability with increasing number of passes(36). The recycle ratio Rrcy is
typically between 0 and 2.

F =
1 +Rrcy

(1 + 0.1Rrcy)2
(3.18)

The second stage efficiency is given as follows:

E2 =
100

(1 + 0.4432
1−E1/100

√
W2

V F
)

W2 = (1− E1)W1

(3.19)

where W2 is BOD loading applied to the second-stage filter.

As with all aerobic treatment operations, an adequate supply of air is crucial to provide
efficient treatment of the wastewater stream. The formulation (3.20) has been developed by
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Dow Chemical to estimate oxygen consumption (RoTF ) for trickling filter applications73,

RoTF = 20(0.8e−9LB + 1.2e−0.17LB)

LB = QS0/VTF
(3.20)

where LB is BOD loading to filter.

Important design variables include the volume of the filter media and the area of the clari-
fier. The depth, DTF , of each filter is typically within 3 - 11.4 m. Other design parameters
include,

OR = −0.0556D2
TF + 0.7056DTF − 0.7889

ATF = Q/ORTF

VTF = ATF

AclTF = Q/19.92

(3.21)

where ORTF is overflow rate, AclTF is the clarifier area, and ATF , DTF , VTF are area,
depth, and volume of the filter media, respectively.

3.4.7 Economics of treatment units

The cost correlations for standard wastewater treatment units can be found in several
sources74,75. In addition, we have derived cost equations as functions of unit sizes us-
ing the software Superpro Designer76 through curve fitting. Superpro features end-of-pipe
treatment process units for pollution prevention studies.

The investment cost terms ICt are functions of equipment sizing such as area and vol-
ume, whereas operating cost OCt include unit throughput, electricity (ce,$0.0981/kWh),
material replacement, oxygen consumption(cO2,$0.02/kg) and waste disposal cost (cd,
$0.0001/kg). Nt represent the number of units required to achieve the separation. The
equations for the various units are presented below, and their corresponding cost coeffi-
cients, ct, and cost exponents, αt, for the various units are collectively presented in Table
3.8. H is the number of working hours in a year.
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Table 3.8: Typical cost correlation values.

c1 c2 c3 c4 c5 c6 α1 α2

Reverse Osmosis 121.35 7802.6 830
Ion Exchange 8400.7 1e-13 -2e-7 0.1517 39162 0.3474
Sedimentation 8483.8 1.69 11376 0.6
Ultrafiltration 138.9 303.47 400
Activated Sludge 241.17 8485.9 4.58 36295 3.32 5842 0.6416 0.6
Trickling Filter -2.4234 1731.6 69391 8485.9 3.3445 43678 0.6

Reverse osmosis The capital cost is a function of the membrane area, ARO, and the op-
erating cost consists of membrane replacement cost, pumping electricity cost, and
disposal cost. LTm is the membrane element lifetime (5 years), ηp is the pump ef-
ficiency (0.8), and ρRO is the feed density (1000 kg/m3). The operating cost of the
RO unit is high due to the energy consumption of the high pressure pump.

ICRO = (cRO1 ARO + cRO2 )NRO

OCRO =
cRO3 NRO

LTm
+
ceH∆PFin
ηpρRO

+ cTDSd HFwRO
(3.22)

Ion exchange The capital cost is a function of the resin volume, VIX , needed for the treat-
ment. The operating cost includes the regenerating cycle (chemicals, brine disposal),
which is a polynomial function of the throughput.

ICIX = cIX1 (VIX)α
IX
1

OCIX = cIX2 (Fin)3 − cIX3 F 2
in + cIX4 Fin + cIX5

(3.23)

Sedimentation The capital cost is a function of the area, ASE , and the operating cost is a
function of throughput and the number of rectangular clarifiers NCSE .

ICSE = cSE1 A
αSE
1
SE

OCSE = NCSE(
cSE2 Fin
ORSE

+ cSE3 )
(3.24)

Ultrafiltration The capital cost mainly depends on the membrane area, AUF , needed for
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the separation. The operating cost include membrane replacement cost, electricity
cost, and disposal cost. Since the transmembrane pressure in UF is not so high as in
RO, the operational cost is less dependent of the electricity consumption.

ICUF = (cUF1 AUF + cUF2 )NUF

OCUF =
cUF3 NUF

LTm
+
ceH∆PFin
ηpρUF

+ cTSSd HFwUF
(3.25)

Activated sludge The capital cost is a function of aeration basin volume VAS and clarifier
area AclAS . The operating cost has three terms: maintenance cost as a function of
throughput, oxygen consumption, and sludge disposal cost.

ICAS = cAS1 (VAS)α
AS
1 + cAS2 (AclAS)α

AS
2

OCAS = (cAS3 Fin + cAS4 + cAS5 Fin + c6) + cASO2RoAS + cORGd PXT ,V SS

(3.26)

Trickling filter The capital cost is a function of filter area ATF and clarifier area AclTF .
Similar to the activated sludge, the operating cost has three terms: maintenance cost
as a function of throughput, oxygen consumption, and sludge disposal cost.

ICTF = 2(cTF1 A2
TF + cTF2 ATF + cTF3 ) + cTF4 Acl

αTF
1

TF

OCTF = (cTF5 Fin + cTF6 ) + cTFO2RoTF (Cin − Cout)Fin + cORGd (Cin − Cout)Fin
(3.27)

As can be seen from these equations, the correlations (3.22)–(3.27) include bilinear and
concave terms that are nonlinear and nonconvex. The cost model gains in accuracy despite
the computational complexities compared to the simple equations in (3.1). To see this
difference more clearly, we can compare the performance of activated sludge and trickling
filter for the removal of organic contaminants shown in Figure 3.7. The investment cost
as a function of inlet concentration for activated sludge under fixed operating parameters
is shown in Figure 3.7a. It is clear that there is a significant increase in investment cost
(9.89%) over the range of concentration considered. Figure 3.7b shows that trickling filter
removal efficiency is also a function of inlet concentration when the recycle ratio is fixed
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(a) (b) (c)

Figure 3.7: Organic treatment unit shortcut model comparison.

to 0.2. Finally, in Figure 3.7c we compare the operating costs of activated sludge and
trickling filter as functions of flowrate only. The figure shows that there exists a crossover
point between the two curves, which indicates that it is incorrect to estimate the operating
cost as a linear function of the flowrate. As a result, the simplified model, which is only
dependent on the flowrate across the treatment unit, may lead to suboptimal, and possibly
to solutions with the incorrect selection of treatment technology.

3.5 Computational strategies

3.5.1 Strategy for global optimal solution

The resulting multi-scenario GDP problem (GDP-s) is given by the model in (GDP-1),
where hn(·) and gn(·) are replaced by the short-cut equations in (3.2)-(3.21), and f1(·) and
f2(·) are defined by the cost equations (3.22)-(3.27). Due to the presence of nonconvex-
ities, sub-optimal solutions may be obtained if local solvers are used. Finding efficiently
the global optimal solution in the proposed multi-scenario model would allow to solve the
more accurate short-cut formulation.

The multi-scenario model (GDP-s) gives rise to a block diagonal structure, in which the
design variables (drt) are complicating variables in that they need to be accounted for in
all scenarios. By defining the copy variables dmrt, F̂

n
i , yni , for each scenario, the problem
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can be reformulated as one with complicating constraints as shown in equation (3.28).

dnrt = dn+1
rt ∀t ∈ TU, r = 1, ..., RTt, ∀n ∈ N, n < |N |

F̂ n
i = F̂ n+1

i ∀i, ∀n ∈ N, n < |N |
yni = yn+1

i ∀i, ∀n ∈ N, n < |N |
(3.28)

This allows the application of the Lagrangean decomposition algorithm77.

The proposed algorithm shown in Figure 3.8 involves an outer problem and an inner prob-
lem. The outer problem determines a global lower bound from a special relaxation prob-
lem (RP ) and fixes the selection of treatment unit options. The inner problem is then
constructed for a fixed set of treatment unit technologies. The inner loop is solved with
the Lagrangean decomposition algorithm and iterates between a lower bounding problem
(SP1)-(SPN ) and an upper bounding problem (P ′′). Since the predicted lower bounds are
rigorous but exhibit dual gaps in the inner problem, global optimality can only be guar-
anteed within the predicted global upper and lower bounds after a maximum number of
iterations.

3.5.2 Subproblem descriptions

Problem (P ) is a nonconvex MINLP that results from applying the hull reformulation78 to
(GDP-s). The MINLP relaxation problem (RP ) is obtained by replacing all the noncon-
vex terms present in (P ) with linear or convex underestimators so as to yield a valid lower
bound. See Appendix B for a summary of relevant nonconvex terms and their convex es-
timators. Problem (SPn) are MINLPs obtained by decomposing (P ) into |N | scenarios
using Lagrangean decomposition to obtain subproblems(SP1)-(SP|N |). The complicating
design variables drt, F n

i , ICTU
t are replaced by their copy variables dnrt, F̂

n
i , ICTU

tn , respec-
tively, as in constraints (3.28). The linking constraints (3.28) are dualized and transferred
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Figure 3.8: Decomposition scheme.

to the objective function as shown in equation (3.29).

min. zn = pnAR[
∑
t∈TU

ICTU
tn +

∑
i∈Pipe

(CPipe
i yni + ICPipe

i (F̂ n
i )δ)]

+HpnOC
FWFWn +Hpn

∑
i∈Pipe

OCPipeFin + pnOC
TU
tn

+
∑
i

(λfin − λ
f
i(n−1))F̂

n
i +

∑
i

(λyin − λ
y
i(n−1))y

n
i

+
∑
i

(λdrtn − λdrt(n−1))dnrt +
∑
t∈TU

(λICtn − λICt(n−1))ICTU
tn

n = 1, ..., |N |

(3.29)

Problem (P–s) can help to improve the solution quality of the upper bounding problem
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(P ′). (P–s) is an NLP that represents the simplified multi-scenario model. It applies ef-
fective contaminant removal ratios βntj and flow recovery ratios Rrnt from the subproblems
(SPn), where Fout = RrtFin. Problem (P ′) is the NLP upper bounding problem in the
inner iteration resulted from fixing all the integer variables in the original problem (P ). In
problem (Lam) the Lagrangean multipliers are updated using a hybrid algorithm based on
the combination of cutting-plane and subgradient strategies described in Oliveira et al79.

3.5.3 Algorithm

The steps of the proposed algorithm are as follows:

0. Initialization Determine bounds on variables drt and F̂i based on the numerical data
provided in each water network. Set all multipliers λfin,λyin, and λdrtn to zero. Set
outer iteration count m = 1, inner iteration count k = 0.

1. Global Upper Bound Fix all binary variables yi to 1, and solve the MINLP problem
(P ) in terms of the binary variables Yrt for the treatment units using non-global
MINLP solvers such as DICOPT or a global solver such as BARON and LIN-
DOGlobal with a large optimality gap (e.g. 70%). If the time limit is exceeded,
fix the binary variable Yrt to 1 for a subset of treatment technologies and solve prob-
lem (P ) again.

2. Global Lower Bound Solve the MINLP problem (RP ) to determine the global lower
bound. Once the solution is obtained, fix the binary variables, Yrt, for the inner
problem.

3. Inner Problem Set k = 1.

i. Solve the MINLP (SPn) for each scenario n ∈ N to global optimality for the
fixed treatment selection. Three potential situations could result from this step.
First, if all the subproblems are feasible and are solved to ε1-tolerance within
time limit, then we obtain for the selected treatment units a lower bound so-
lution ZLLB by taking the sum of the subproblems’ objective values z∗n. If
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the problem is not solved within ε1-tolerance in the specified time limit, then
we convexify the subproblem as in problem (RP ) to form (rSPn), which can
then be solved using a non-global MINLP solver. The third situation arises
when any of the sub-problems is found to be infeasible, in which case the set
of treatment selection is eliminated.

ii.(optional) Solve (P–s) to local optimality.

iii. The binary variables yi in subproblem (P ′) are fixed to zero if the flowrate ca-
pacity, F̂i, for a given pipe i takes a value of zero in (P–s). Solve the upper
bounding problem (P ′) to local optimality. Update ZLUB.

iv. Check for convergence of the inner problem. If ZLUB < ZGUB, then update
ZGUB = ZLUB. If (ZLUB − ZLLB)/ZLUB < ε2 or if ZLLB > ZGUB, end
inner loop.

v. Update the Lagrangean multipliers in (Lam). k = k + 1 as described in79.

4. Convergence Check global convergence criteria (ZGUB − ZGLB)/ZGUB < ε, if the
algorithm does not meet the ε-convergence criterion, add an integer cut (3.30) to
(RP ) to eliminate the current set of Yrt. Reset all multipliers to 0. m = m+ 1.∑

(r,t)∈Bm

(1− Yrt)+
∑

(r,t)∈Nm

Yrt ≥ 1 ∀m = 1, ...,M

Bm
rt = {(r, t)|Y m

rt = 1} Nm
rt = {(r, t)|Y m

rt = 0}
(3.30)

3.6 Numerical examples

Three water network examples are provided to demonstrate the formulation and decom-
position algorithm. Problem (GDP-1) was automatically reformulated as an MINLP using
GAMS/EMP (Extended Mathematical Programming)80, which is a modeling framework
for automated mathematical reformulation. The MINLP models are formulated using
GAMS 24.0 and solved on an Intel Core i7 2.93 GHz machine with 4.00 GB memory.
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CPLEX was used for the MILP problems, and DICOPT81, LINDOGlobal82 and BARON
11.153 are used to solve the MINLP problems. Note that while DICOPT is a non-global
solver, LINDOGlobal and BARON are global optimization solvers.

3.6.1 Example 1: illustrative example with short-cut treatment unit
models

In this example, we consider the problem structure presented in the illustrative example in
section 3.3. The process unit data are the same, but we now incorporate short-cut models
of treatment units for TSS and TDS removal. TU1 involves as choices reverse osmosis and
ion exchange for the removal of TDS, and TU2 involves sedimentation and ultrafiltration
for the removal of TSS. The superstructure is shown in Figure 3.9.

Process Unit 2 

Process Unit 1 

Freshwater Discharge 

Reverse osmosis 

Ion exchange 

Sedimentation 

Ultrafiltration 

Figure 3.9: Example 1 network superstructure.

The full problem and the decomposition algorithm subproblems’ model statistics are shown
in Table 3.9. The full MINLP, which is obtained with the hull reformulation (GDP-s)83

problem is solved using BARON to arrive at the solution of $434,164.59 in 2,132 CPUs
with a 5% optimality gap. Then the problem is solved using the decomposition algorithm
to global optimality. The first step is to obtain a good initial solution from problem (P ).
This is accomplished by using LINDOGlobal terminating the search as soon as a feasible
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Table 3.9: Example 1 subproblem model statistics.

Subproblem Formulation Type UB/LB Solution Type # Binary Vars # Cont Vars # Constraints # Non-convex Terms
(P ) MINLP UB Global 24 465 610 198
(SPn) MINLP LB Global 20 203 206 86
(P − s) NLP - Local - 373 547 144
(P ′′) NLP UB Local - 435 430 198

solution is found. The global upper bound $462,712.88 is obtained in 93 CPUs. The con-
vex MILP relaxation (RP ) provided a global lower bound of $352,346.66. Ion exchange
is chosen to remove TDS and ultrafiltration to remove TSS. For these choices the MINLP
subproblems (SPn) is each solved with BARON with a 5% optimality tolerance. They
each yield an objective value of $146,711.84, $142,964.20, and $142,619.09. Summing
the values from the three scenarios yields a lower bound of $432,295,12. We then solve
the NLP optional step (P–s) to reach a solution of $381,083.40, a lower bound for this
configuration. The objective value of this problem is not crucial to the algorithm since the
treatment units are simplified, instead, we use this step to obtain stream connectivities for
the NLP problem (P ′) with that fixed configuration to obtain an upper bound. The NLP
problem (P ′) yields a solution of $433,173.72 (shown in Figure 3.10a), which is a new
upper bound. Since the lower bound ($352,346.66) lies below this upper bound, we add
an integer cut to the convex MILP relaxation (RP ). Since this problem is infeasible within
the updated global upper bound, the search is terminated in a total of 471 CPUs. Thus, the
decomposition algorithm is able to reduce the computational effort by almost a factor of
five (471 CPUs vs. 2,132 CPUs).

In order to demonstrate the advantage of using short-cut models, we can compare its op-
timal solution with the result from the simplified model. To make the comparison on the
same basis, the first step is to optimize the WN with simplified model, then in the second
step, the WN with short-cut model is optimized with fixed network structure from step
one. The optimized WN structure obtained using simplified models is shown in Figure
3.10b. As can be seen, the main difference is that the treatment unit chosen for TDS re-
moval is reverse osmosis for the simplified model WN and ion exchange for the short-cut
model WN. There are also two piping connections that are different in the result, namely,
from PU1 to TU1 and from TU1 to PU2. The cost of the network increased from $430,157
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Figure 3.10: Example 1(a) short-cut model optimal solution (b) simplified model optimal
solution.

for configuration in Figure 3.10a to $440,884 for configuration in Figure 3.10b. Note that
the problem is optimized to within 1% optimality gap instead of 5% in order to ensure
the validity of the comparison. Hence the short-cut WN has a cost of $430,157 instead of
$433,174 as presented in the detailed decomposition algorithm steps where a 5% tolerance
was used.

Furthermore, the recoveries have a direct impact on treatment cost in practice. Thus,
the purpose of using short-cut models is to calculate the wastewater treatment recover-
ies through optimization, whereas simplified models assume that they are fixed. Both
specified recoveries in the simplified models and the calculated recoveries in the short-cut
models are presented in Table 3.10. Column S1 represents the removal ratios specified
in the simplified WN; S2 shows the calculated recoveries from optimizing short-cut WN
with the fixed configuration in Figure 3.10b; and S3 represents the recoveries from directly
optimizing short-cut WN. From the table, we can see that the removal ratio upper bounds
are reached (90% for IX and 99% for UF) or nearly reached (99% for RO) for the selected
units, which is due to the specification for the water discharge (10 ppm TDS and 20 ppm
TSS).
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Table 3.10: Example 1 recovery comparison.

Treatment Unit n1 n2 n3
S1 S2 S3 S1 S2 S3 S1 S2 S3

TDS Removal RO 80 98 - 90 98 - 99 98 -
IX 70 - 90 80 - 90 90 - 90

TSS Removal SE 50 - - 60 - - 70 - -
UF 70 99 99 85 99 99 99 99 99

Table 3.11: Example 2 metal finishing data.

Stream Flowrate (ton/h) Concentration (ppm)
TSS HM TDS BOD

n1 n2 n3 n1 n2 n3 n1 n2 n3 n1 n2 n3
Metal Containing 5.25 195 150 105 96.59 74.3 52.01 2405 1850 1295 78 60 42
Oily 5.084 546 420 294 0 0 0 3250 2500 1750 260 200 140
General Waters 3.96 39 30 21 14.3 11 7.7 1690 1300 910 58.5 45 31.5
Dye Containing 3.3 136.5 105 73.5 6.5 5 3.5 6890 5300 3710 1950 1500 1050
Discharge Limit 120 30 300 80

3.6.2 Example 2: metal finishing industry wastewater treatment

The next example comes from a metal finishing industry located in Turkey30. Steel wheel
production, tractor production, engine assembly shop, and spring production are the four
main production lines that are involved. Each process results in a wastewater stream
with various levels of TSS, heavy metal (HM), TDS, and BOD. The worst, nominal, and
best scenario concentration values are given in Table 3.11. This example considers only
wastewater treatment network (no PU included) whose superstructure is shown in Figure
3.11. We apply the short-cut treatment models for the removal of TSS, TDS, and BOD.
For HM removal we assume fixed recoveries. Note that TDS has the highest average con-
centration among the four groups of contaminant, thus it gives rise to the most difficult
removal. On the contrary, HM is the easiest contaminant to remove.

The corresponding MINLP using the hull reformulation83 has 1,229 equations, 47 discrete
variables, and 961 continuous variables. Solving (P ) directly does not yield a feasible
solution using standard solvers such as DICOPT, KNITRO, or SBB. To facilitate compu-
tation, we fix all yi to 1 (i.e. all piping connections exist) and Yrt to 1 for ultrafiltration,
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Figure 3.11: Example 2 metal finishing wastewater treatment network superstructure.
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reverse osmosis, activated sludge, and microfiltration. With these fixed values, we can
obtain a global upper bound with an objective value of $304,405 in 27.6 CPUs using LIN-
DOGlobal with a 70% optimality tolerance. Problem (RP ) is solved subsequently and a
global lower bound with an objective value of $98,790 is obtained in 12.6 CPUs. The lower
bound solution fixes ultrafiltration, ion exchange, activated sludge, and microfiltration as
the technology selections for the inner iteration. In the operating range of this example,
ion exchange has a higher capital cost and a worse removal performance. However, its
operating cost is lower than that of the reverse osmosis. In addition, both technologies
are capable of meeting the discharge limit. Thus, it is possible that the selections from
the lower bound outperform the initial technologies chosen for (P ). For the new choices
the MINLP subproblems (SPn) is each solved with BARON with a 10% optimality tol-
erance. They yield an objective value of $131,690, $52,954, and $46,226. Summing the
values from the three scenarios yields a lower bound of $230,870. We then solve the NLP
optional step (P–s) to obtain the stream connectivities. Based on the configuration, the
NLP problem (P ′) yields an upper bound of $234,820. With the integer cut to eliminate
the current configuration, the subsequent outer problem (RP ) is found to be infeasible;
thus, we have reached the global optimum. The entire algorithm requires 2,308.5 CPUs,
where 1,608.0 CPUs is used to solve the lower bounding problem. In comparison, the
original problem (P ) cannot be solved to optimality in the resource limit (7200 CPUs)
with LINDOGlobal and BARON.

The resulting configuration is shown in Figure 3.12. Note that the recovery ratio in the
ion exchange unit is chosen to be the lower bound 0.5, which implies that it is cheaper
to dispose rather than to treat the stream. Also, since the HM concentration in all the
wastewater streams are lower than the discharge limit, no HM removal is required.

3.6.3 Example 3: petroleum refinery water use

We consider a modified refinery case study as the final example15,84 and the units involved
are shown in Figure 3.13. The primary water sources are freshwater and purified water. In
addition, crude oil often carries emulsified water, and can be considered as a third process
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Figure 3.12: Example 2 metal finishing water network configuration.

water source. Two sinks are considered for discharge, a centralized wastewater treatment
facility on site and the nearby river. Five water-using process units are considered in
this study. They are desalination, column condensation, steam generation, cooling water,
and general consumption. The water quality and flowrate requirement of these processes
are summarized in Table 3.12. The third water source, crude oil train, has a maximum
flowrate of 15 ton/h, and the wastewater treatment plant can accept a maximum of 360
ton/h of wastewater. Reverse osmosis and ion exchange remove salt from the streams, and
trickling filter and activated sludge are used to remove organic content of the streams.

The resulting MINLP has 1,768 equations, 1,331 continuous variables, and 85 binary vari-
ables. Note that the problem size is larger than that of Example 2. However, solving
the problem directly using LINDOGlobal yields an optimal solution of $1,906,264 with
5% optimality gap in 209 CPU s. The reason that the problem can be solved effectively
without the decomposition algorithm can be seen in the resulting network configuration
as shown in Figure 3.14. Trickling filter is chosen to remove ORG, and the highest re-
moval ratio, RORG

c = 90%, is selected. The consumption of freshwater is 360.5 t/h, and
the consumption of purified water is 47.5 t/h, which is a 734.5 t/h reduction had reusing
and recycling not been performed. First, the wastewater streams are reused and recycled
within the network instead of being discharged to the wastewater sinks. Also, no salt-
removal unit is selected in this configuration, which is due to the high TDS tolerance level
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Figure 3.13: Example 3 refinery process water system superstructure.

Table 3.12: Example 3 petroleum refinery data.

(a) Process units

Flowrate (ton/h) Loss (ton/h) Discharge Load (kg/h) Cmax
in (ppm)

n1 n2 n3
TDS ORG TDS ORG TDS ORG TDS ORG

Boiler 25 18 3.5 1.21 2.07 1.10 0.64 0.99 10 1
Condensate 22.5 0 4.28 146.23 3.94 125.55 3.6 104.87 10 1
Cooling tower 1000 405 615 219 310.9 110 6.8 1 2500 220
General consumption 10 0 9.5 70 8.29 61.1 7.08 52.19 300 50
Desalter 85 0 153 544 136.07 510.31 119.14 476.63 200 100

(b) Concentration limit (ppm)

Sources Discharge sinks
Fresh water Purified water Crude oil train River Wastewater treatment plant

TDS 50 10 135 50 364
ORG 15 0 45 200 759
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Figure 3.14: Example 3 optimal network configuration for the refinery water system.

at the inlet stream of the cooling tower, as well as the high rate of evaporation loss in the
cooling tower. The cooling tower then reuses most of its outlet stream, leading to a cooling
loop that is more efficient than a once-through design.

3.7 Conclusion

By considering the use of short-cut models for treatment units that remove TDS, TSS,
and organics, we are able to exploit the trade-offs between treatment cost and removal
efficiency of the units. The model (GDP-1) is developed to accommodate the modifications
in the architecture and formulation of the treatment units. In order to solve the resulting
formulation to global optimality, we have presented a Lagrangean-based decomposition
algorithm that is tailored to the water network problem. Several examples are presented to
demonstrate the effectiveness of the algorithm in improving the quality and computation
effort of the solution.
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Nomenclature

Reverse osmosis
∆Pdrop Pressure drop along the membrane channel, Pa
∆π Osmotic pressure difference across the membrane, Pa
Pf Pressure at the feed side of the membrane, Pa
Pp Pressure at the permeate side of the membrane, Pa
N Number of membranes
Ion exchange
XIX Mass fraction in inlet water of ion wanted to be removed
q Operating capacity of the resin, eq/Lresin
MWca Molar mass of cation, kg/kmol
MWan Molar mass of anion, kg/kmol
SLR Surface loading rate, m/h
SFR ervice flow rate, m3water/(m3resinh)

BV Volume of water treated per volume of resin, Lwater/Lresin
CT Contact time, h
VIX Resin volume, m3

Vww Volume of waste water treated
AIX Resin cross-sectional area, m2

Ultrafiltration
kM membrane resistance coefficient
µ dynamic viscosity of water
∆P Transmembrane pressure
Amemb Membrane area
Sedimentation
t Nominal detention time, h
ORSE Overflow rate, m3/m2day

ASE Area of the filter media, m2
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NC Volume of the filter media, m2

DSE Depth, m
Activated sludge
SRT Solid retention time, day
XAS Biomass concentration in the aeration tank, g/m3

τ Residence time, day
XT MLVSS concentration, g/m3

X0,i Influent nbVSS concentration, g/m3

Px,bio Biomass wasted, g/day
PXT ,V SS Total sludge wasted daily, g/day
RoAS Oxygen consumption, g/day
VAS Aerator volume, m3

AclAS Clarifier area, m2

Trickling filter
Rrcy Recirculation ratio
F Recirculation factor
W1 BOD loading applied to the first-stage filter, kg/d
W2 BOD loading applied to the second-stage filter, kg/d
E1 Fraction of BOD removal for first stage
E2 Fraction of BOD removal for second stage
LB BOD loading to filter, kg BOD/m3d

RoTF Oxygen consumption, kg O2/kg BOD applied

ORTF Overflow rate, m/hr
ATF Area of the filter media, m2

DTF Depth, m
VTF volume of filter media, m3

AclTF Clarifier area, m2
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Chapter 4

Operational Model for Shale Gas Water
Management

4.1 Introduction

In this chapter we develop a model that optimizes water-use life cycle for wellpads through
a MILP discrete-time representation. The objective is to minimize the cost of transporta-
tion, treatment, storage, and disposal while also accounting for the revenue of gas produc-
tion within the specified time horizon. This time horizon must be at least one year to cap-
ture the seasonal availability of water. Assuming that freshwater sources, river withdrawal
data, location of wellpads and treatment facilities are given, the goal is to determine an
optimal fracturing schedule and recycling ratio. Since this is a difficult problem to model
and solve, we intend to consider as a first step freshwater acquisition.

The chapter is organized as follows. The freshwater handling section accounts for the
trade-off between water availability and freshwater transportation cost, as well as environ-
mental implications of transportation. We next address in the wastewater handling section
the problem that considers the entire economic optimization, including water treatment,
storage, disposal, and income from gas production. In each section, relevant background
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is introduced first, followed by a general problem statement, its optimization formulation,
and an example to illustrate the application of the optimization model. We focus on ap-
plications in the Marcellus shale play although the proposed models can be used in other
shale gas formations.

4.2 Freshwater handling

4.2.1 Background

The conventional sources for water used in hydraulic fracturing includes surface water,
ground water, treated wastewater, and cooling water. The most common one is surface
water such as lakes or rivers, which typically costs about $1.76-3.52/m3 in the state of
Pennsylvania. On the other hand, some operators are exploring the possibility of using
acid mine drainage (AMD) which is present in large volume in the Marcellus region. In
addition, natural gas liquid (NGL) is also being used by some as frac fluid. The issues
commonly faced by water acquisition include seasonal variation in water availability, per-
mitting complexity, and access near the drilling site. In Pennsylvania, the Susquehanna
River Basin Commission (SRBC) has incorporated minimum ”stream pass-by flows” into
water withdrawal permits. This rule is meant to ensure that enough water remains flowing
downstream.

Freshwater is transported to the wellpad by truck or by pipeline (Figure 4.1). Transporta-
tion costs are often the primary economic driver influencing water management decisions.
Approximately 4,000-6,500 one-way truck trips are required for the completion of a typi-
cal wellpad. While trucks allow for a more flexible operation, it causes burden to the local
community in terms of noise and road damage. The operators are responsible for main-
taining both paved and unpaved roads through ”bonding”. In addition, all operators that
share a portion of the road are responsible for damage caused by the heavy trucking traffic.
Thus, the combination of expensive trucking cost and the costs associated with road deteri-
oration encourages operators to use pipelines that are more economical by drawing water
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from nearby sources. However, many are temporary pipe networks given the relatively
short duration of the fracturing process of the wells.

Figure 4.1: Water transportation through temporary piping.

Once water is transported to the wellpad, frac fluid is prepared. Note that chemical addi-
tives make up approximately 0.5% of this fluid47. Frac fluid quality is the key driver for
water requirement because contaminants can interfere with its performance. For example,
sulfates cause scaling and the presence of TSS can decrease biocide effectiveness and plug
wells. In addition, water compatibility with the different types of frac fluid designs gov-
erns treatment requirements. The different fluid designs include slickwater, linear gel, and
crosslink gel. As a result, operators need to exercise proper caution when preparing the
frac fluid. Yet the exact criterion for fluid composition is not well-defined. Many opera-
tors use a ”copy-and-paste” approach to determine the treatment requirement for the frac
fluid. This lack of exact criteria is partially due to the unclear correlation between frac
fluid composition and operational issues.

4.2.2 Problem I

Motivated by the logistics of water distribution shown in Figure 1.5, the first specific prob-
lem that we address is as follows. We assume we are given a number of freshwater sources,
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freshwater withdrawal data, location of wellpads, and location of treatment facilities for
removing suspended solids. Also, given is the total number of frac stages for each well-
pad, date restrictions for hydraulic fracturing, and the number of frac crews available. The
goal is to determine the fracturing schedule of the wellpads, the rate that each wellpad is
stimulated, as well as the starting date for the frac holiday. The frac holiday is a flexible
period of time when the frac crew take time off, usually due to low water availability. The
objective is to minimize the expected trucking and pumping cost of the water required to
complete all the wellpads. The scenarios considered for the uncertain availability of water
are the years of historical stream data for which equal probability is assigned to each of
them.

The main opportunity for optimization is the trade-off between the cost of trucks and
pipelines for freshwater transportation, while accounting for water availability in the wa-
ter sources. There are two types of freshwater sources under consideration. The first one,
an ”uninterruptible” source, is a large body of water (e.g. large river or lake) that provides
water year-round. However, the source is usually located remotely so that trucking is re-
quired for transporting freshwater from the source to the wellpads. Alternatively, there are
interruptible water sources (e.g. small river or creek) that can be piped to the wellpads,
but with an uncertain water supply throughout the year. Typically, the interruptible water
source is dry in the summer to early fall, and its withdrawal is only allowed when a mini-
mum flowrate requirement has been met. Historical flowrate data (shown in Figure 4.285)
can be used to estimate water availability and guide decision-making for the fracturing
schedules. Specifically, if the water source flowrate is above the withdrawal criterion, then
the operators are allowed to pump water from the source to their impoundment; otherwise,
pumping is not allowed. There are two options on how to use these historical data to ac-
count for uncertainty in the water supply. The first option is to determine for each day of
the year the mean value of the water flowrate over the number of years, R. Alternatively,
we can treat data from each calendar year as a scenario, each with equal probability, 1/R,
and formulate the problem as a two-stage stochastic programming problem86. The first
stage decisions determine the dates to fracture each wellpad and number of stages to stim-
ulate per day, and the second stage decisions determine the amount of water for pumping
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Problem 1: freshwater acquisition 

Figure 4.2: River discharge statistics.

and trucking from the water sources to their respective impoundments on each day. In this
chapter, we consider the second approach.

The scheduling problem can be formulated through a discrete-time model using as a basis
the state-task network (STN) representation for batch scheduling57. The STN representa-
tion consists of three major elements: states, tasks, and equipment. Similar to STN-based
batch processing models, the processing tasks in the context of this work correspond to the
fracturing of the wells on each wellpad. These tasks require the assignment of frac crews
and then drilling equipment to the wellpads as shown in the superstructure in Figure 4.3.
The states correspond to the water sources and impoundments that feed into the wellpads.
The flowback water is not shown in Figure 4.3 since we do not consider water treatment
and reuse as will be done later in problem II.

The assumptions made in the formulation of the model are as follows:

1. Each of the interruptible sources is connected through piping to an impoundment
that serves as a buffer tank for the storage of freshwater. The combination of an
interruptible source and its impoundment is defined by t.

2. Each wellpad is connected to exactly one of the impoundments through piping.
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Figure 4.3: Problem I superstructure.

3. The pumps can only operate from the impoundment at the maximum rate, or they
do not pump at all.

4. The wells in each wellpad are aggregated (i.e. each well has a fixed number of
stages, and the wellpad is characterized by the total number of stages of the wells
on the pad). All wells on the same wellpad are completed before the frac crew is
transferred to another wellpad.

5. A fixed percentage of freshwater is supplied for frac fluid from the uninterruptible
and interruptible sources.

6. Only existing water pipelines are considered.

7. Since the distance between the uninterruptible source and the wellpads is signif-
icantly further than the distance among wellpads, trucking cost is assumed to be
volume-dependent only.

8. A fixed time horizon consisting of days d as time intervals is considered.
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4.2.3 Optimization model I

Problem I can be formulated as a two-stage multi-period MILP model under uncertain
availability of interruptible water that includes the following elements: allocation con-
straints, material balances, date restrictions, and an objective function. The main decision
variables are as follows. ydjsc is a stage-one binary variable that indicates the starting date d
for stimulating wellpad s with frac crew j. P d

rt is a stage-two continuous variable indicat-
ing volume pumped from the interruptible source to the corresponding impoundment on
day d use as scenario historical water flowrate value in year r. Dd

rt, the water requirement
deficit, is the volume supplied by truck hauling instead of pumping.

Allocation constraints. Constraint (4.1) specifies that each wellpad s has to be fractured
exactly once at a given date d, for a number of stages to frac per day c, and by crew j.∑

c

∑
d

∑
j

ydjsc = 1 ∀s (4.1)

Constraint (4.2) represents a backward aggregation constraint from the STN model87 that
ensures there is no overlap between different wellpad operations for each frac crew j,

∑
s

∑
c

d∑
d′=d−fDsc−CT s′

s +1

yd
′j
sc ≤ 1 ∀d,∀j (4.2)

where Dsc represents the duration of the hydraulic fracturing, CT s′s represents the transi-
tion time required to move the frac crew from wellpad s to wellpad s′.

Material balances. The freshwater use is modeled with the following mass balances. The
volume of water used for each stage, dyfwsc , is fixed. However, the fracturing rate for each
wellpad, indicated by the index c, is determined by the optimization problem. This rate is
limited between 2 to 4 stages per day. Constraint (4.3) determines the daily freshwater use
for each wellpad. All but the last day require the same volume of water dyfwsc since the rate
is fixed. The volume of water required on the last day dsfwsc , is determined by the stages
left for completion as shown in Figure 4.4.
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Figure 4.4: Daily freshwater requirement for a given wellpad.

dafw,ds =
∑
c

∑
j

(
d∑

d′=d−fDsc+2

dyfwsc y
d′j
sc +

∑
d′=d−fDsc+1

dsfwsc y
d′j
sc ) ∀d,∀s (4.3)

Constraint (4.4) describes the total daily freshwater use from each impoundment tofw,dt ,
given the piping connections TPst between the impoundments t and the wellpads s.

tofw,dt =
∑
s∈TPst

dafw,ds ∀d,∀t (4.4)

The daily impoundment level V d
rt for a given scenario year r is tracked by the following

mass balance (4.5).

V d
rt = V d−1

rt + P d
rt − to

fw,d
t +Dd

rt ∀d,∀r,∀t (4.5)

where the volume on a given day, V d
rt, is determined by: i) the volume in the previous day,

ii) plus water pumped from the interruptible source, iii) minus total freshwater used from
the impoundment, iv) and plus water transported by trucks.

Date restrictions. The dates for fracturing each wellpad are limited by several factors. For
example, stimulation cannot start until two weeks after drilling is completed due to the
time needed to remove the rig and to prepare the well for completions. Since temporary
water pipelines have to be connected between the impoundments and the wellpads, stim-
ulation cannot begin until the pipelines are secured. In addition, gas pipelines have to be
installed before the frac is completed. These can be enforced by setting the binary variable
ydjsc to zero for the durations of restricted time period.
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In addition, constraint (4.6) ensures that a target number of stages T is completed by a
given date E within the time horizon, and where fDsc is the time it take to fracture a
wellpad s with c stages. The total number of stages for a given wellpad s is denoted by
sgTs. ∑

s

sgTs
∑
c

∑
j

E−fDsc∑
d=1

ydjsc ≥ T (4.6)

A frac holiday of length hD can be incorporated in the model by constraints (4.7) and (4.8).
(4.7) is a big-M constraint that disallows operation during the holiday period. Constraint
(4.8) indicates that only one frac holiday is allowed.

∑
c

∑
j

∑
s

d+hD∑
d′=d

yd
′j
sc ≤ |s|(1− zd) ∀d (4.7)

|d|−hD∑
d

zd = 1 (4.8)

where zd indicates the starting date for the frac holiday.

In addition, each wellpad s has to be completed before the end of the time horizon. In
constraint (4.9), we ensure that a wellpad cannot start stimulating after fDsc days prior to
the last day of the time horizon.∑

c

∑
j

∑
d>|d|−fDsc

ydjsc = 0 ∀s (4.9)

Objective. Finally, the objective function (4.10) minimizes the expected transportation
cost from trucking and pumping, which is defined for the scenarios given by the R years
of historical data.

Expected cost =
∑
s

OCtruck,fw
s

∑
d

∑
r

∑
t∈TPst

Dd
rt

R
+
∑
s

OCpump,fw
s

∑
d

∑
r

∑
t∈TPst

P d
rt

R

(4.10)
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The MILP model given by Eqs. (4.3) – (4.10), defines then the formulation for the fresh-
water acquisition problem I. It is a two-stage programming problem where the stage-one
decisions correspond to the variables ydjsc, z

d, dafw,ds , and tofw,dt , while the stage-two deci-
sions for each scenario r correspond to P d

rt, V
d
rt and Dd

rt.

4.2.4 Example 1

We consider an example with 14 wellpads, 540 days discretized at one day per time period,
one uninterruptible freshwater source, two interruptible sources connected to impound-
ments, and one frac crew. The data are given in Tables 4.1 and 4.2. Historical data for the
two interruptible sources are given over a total of 30 years. They are not shown here for
space limitations but they can be found in USGS Water-Quality Daily Data85.

Table 4.1: Example 1 wellpad data.

A B C D E F G H I J K L M N
Match with takepoints, TPst t2 t1 t1 t1 t1 t2 t2 t2 t2 t2 t2 t1 t1 t2
Earliest frac day 1 1 1 1 1 39 1 273 273 273 396 379 379 1
Latest frac day 540 540 540 540 540 540 540 462 462 462 472 540 540 540
# of stages, sgTs 57 61 54 55 64 26 97 88 86 76 63 100 100 87

Table 4.2: Example 1 parameters and cost coefficients.

Parameter Symbol Value
Crew transition time (day) CT s

′
s 5

Volume of frac fluid used per stage (m3) 950
Freshwater used (%) 85
Max pumping rate of t1 (m3) 8176
Max pumping rate of t2 (m3) 2725
Frac holiday (day) hD 50
Freshwater pumping cost ($/m3) OCpump,fw

s 15.93
Freshwater trucking cost ($/m3) OCtruck,fw

s 29.35

The two-stage MILP model, which consists of 540 time periods and is defined over 30 sce-
narios, has 19,552 binary variables, 151,201 continuous variables, and 42,149 constraints.
The model is solved using GAMS 24.0/CPLEX 12.5 on an Intel 2.93 GHz Core i7 CPU
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Table 4.3: Example 1 solution comparison.

Heuristic schedule MILP schedule
Frac holiday (days) 90 171
Trucking cost ($) 5,886,743 568,827
Water trucked (1,000 m3) 267.3 25.7
Pumping cost ($) 9,905,219 12,792,088
Water pumped (1,000 m3) 829.0 1,070.5
Total cost ($) 15,791,963 13,360,915

machine with 4GB of memory. The model was solved to a 2.8% optimality gap in 351
CPUs.

The result is compared against a heuristic schedule shown in Table 4.3. The heuristic
schedule considers all 30 years of historical water withdrawal data on a daily basis. The
total expected cost is reduced by $2.4 million (from $15,791,963 to $13,360,915). Note
that the total amount water consumed in both schedules is the same, 1.1 million m3. How-
ever, the trucking cost is reduced from $5.9 million to $569,000, which is one order of
magnitude improvement. This is an important result since it means that instead of requir-
ing approximately 14,010 one-way truck trips, the 14 wellpads can be fractured using only
1,350 truck trips, representing only 2.4% of the overall water requirement. This also means
that the CO2 emissions from trucking are reduced from 630 metric tons down to 60 metric
tons. Thus, both cost and environmental benefits can be achieved through more efficient
use of the water available in the interruptible sources. The reason behind the improvement
can be explained through a comparison between the optimized schedule against the heuris-
tic schedule of the 14 wellpads as shown in Figures 4.5 and 4.6. As can be seen in Figure
4.5, the schedules are quite different as they involve different sequences and number of
stages. For example, wellpad H requires 2 stages per day in the heuristic schedule, while
the optimal MILP schedule involves 4 stages per day, and therefore it is completed in half
the time. In Figure 4.6, the average daily impoundment storage levels between the heuris-
tic schedule and the optimized schedule are compared. Note that the curve representing
the optimized schedule generally lies on top of the heuristic curve, which indicates that
the optimized schedule manages to obtain higher water availability from the interruptible
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Figure 4.5: Example 1 fracturing schedule from (a) heuristic method (b) MILP model.Water usage in hydraulic fracturing  
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Figure 4.6: Daily impoundment volume comparison.

sources. As a result, less trucking is required, the infrastructure investments are better
utilized, and savings in transportation cost can be achieved.

In addition, the choice of transportation affects the rate at which the wellpads are stimu-
lated. Figure 4.7 shows the daily truck use for the two schedules. Clearly the heuristic
schedule requires significantly more trucking. Wellpad H is fractured in early fall when
there is less water available in the impoundment since a large volume is required to be
trucked to H at the beginning of the period. Due to the higher cost of trucking, the heuristic
schedule chooses to fracture H at the slowest rate possible (2 stages per day). In contrast,
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Figure 4.7: Daily truck use comparison.

the optimized schedule fractures H at 4 stages per day since it can be stimulated at a later
date when there is more water in the impoundment, so fewer truck trips are required for
this specific wellpad.

It is interesting to note that if we solve the MILP model governed by Eqs. (4.3) – (4.10)
as a deterministic model using the mean values for the historical flowrate data, this yields
a smaller MILP problem with 9,776 binary variables, 57,241 continuous variables, and
10,829 constraints. The problem was solved to optimality in only 18.5 CPUs. However,
when we fix the stage-one decisions of deterministic solution, and solve the stochastic
programming model over the 30 scenarios, we obtain an expected cost of $15,796,516,
which in fact is worse than the heuristic solution and significantly higher than the expected
cost of $13,360,915. Therefore, the value of the stochastic solution86 in this example is
$2,435,601.
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4.3 Wastewater handling

4.3.1 Background

In the next section of the paper we extend the MILP model for Problem I so as to account
for treatment and reuse of the water. Once the frac fluid is injected into the wellbore,
approximately 60-90% of the water used in fracturing does not return to the surface since
it is trapped within the formation4. In the first few weeks there is flowback water, which is
characterized by high volumetric flowrate and relatively low TDS concentration as shown
in Figure 4.8. Flowback water includes contaminants such as TDS, total suspended solids
(TSS), organics, and metals47. The longer the frac fluid remains below ground, the more
pollutants the fluid absorbs. For example, Marcellus is a highly desiccated formation due
to high capillary binding. As a result, only 10 – 15% of the injected fluid will return as
flowback water within the first two weeks. Water that returns to the surface after the initial
stage is produced water, which consists of a combination of injected frac fluid as well as the
water that exists in the formation. Produced water is removed from the gas at the wellpad
before the gas is delivered into the gas pipeline. In general, produced water has high
salinity (>120,000 ppm) and low flowrate. Whereas the Marcellus and Utica formations
produce less than 0.1 L per m3 of produced water, the Barnett shale play produces 0.3 -
0.8 L per m3. In addition, there is also high variability among the wellpads in terms of the
composition of the flowback water. The contaminant levels that are generally of interest
are TDS, TSS, calcium, and sulfate.

Following hydraulic fracturing, treated wastewater can be mixed with freshwater for the
next operation. The contaminants are removed through a combination of mechanical,
chemical, and thermal treatment processes. Typically filtration or electric coagulation is
performed to remove TSS, bacteria, and heavy metal present in the flowback water. These
recycling options are cheap at around less than $25/m3. In comparison, it is more costly
to reduce the TDS level, which can be accomplished through reverse osmosis, distillation,
evaporation, and crystallization, all of which incur high cost that lies in the $80-120/m3

range. One way to increase the energy efficiency of TDS removal is through a Mechanical
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Figure 4.8: Example flowback volume vs. TDS profile3.

Vapor Recompression (MVR) unit88. High purity of water is, however, not required for
hydraulic fracturing. As a result, salt removal is uncommon among shale gas operations.
In order to perform the treatments, there are mobile units and recycling facilities. A mobile
treatment unit can be located on a wellpad, whereas a recycling facility is typically further
away but has a higher capacity. The mobile treatment unit is highly desirable and takes
only 2-3 days to set up. However, the time that is required to obtain the permit for the unit
could be very long.

Another major step in water use for shale play involves storage of both freshwater and
wastewater. Freshwater is typically stored in open impoundments, while wastewater is
heavily regulated and typically stored in frac tanks3. Each barrel of flowback and pro-
duced water is tracked. Even after extensive treatment, the flowback water is prohibited
from being discharged without extensive permitting. Figure 4.9 shows a wellpad with both
an impoundment and frac tanks. When a well is ready to be stimulated, streams from both
storage containers and impoundment are mixed together and pumped down the wellbore.
Freshwater impoundment costs approximately $3.86/m3 for the lifetime of the impound-
ment. In comparison, frac tanks cost $0.59-1.00/m3/day.

Finally, if needed, disposal of wastewater can be performed using Type II disposal wells.
The US Environmental Protection Agency (EPA) implements the Underground Injection
Control (UIC) and sets the standards for Class II wells. Most of the underground injec-
tion wells in the Marcellus are located in eastern Ohio, and there are only eight permitted
disposal wells in Pennsylvania in 200889. The reasons for the difference are: a) Pennsyl-
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Figure 4.9: Wellpad impoundment and frac tank aerial view.

vania does not have state level control for permitting Class II wells; and b) the geology
in Pennsylvania is not conducive to constructing injection wells. Since Pennsylvania’s
disposal wells have limited capacity, most Marcellus wastewater is disposed via trucking
to West Virginia or Ohio. This is a very expensive option, especially for operations in
north-eastern PA that require both wastewater disposal ($100/m3) and transportation to
Ohio. A high wastewater recycle rate is achieved in the Marcellus, partially due to the
cost-prohibitive nature of disposal. However, when the natural gas price drops, most gas
operators have no choice but to stop stimulating wells, and transport the flowback water to
disposal wells.

4.3.2 Problem statement II

In problem statement I only freshwater consumption was considered. However, strategies
for reuse, recycle, storage, and disposal options can offer opportunities for reducing overall
water management cost. In order to address both water quality and quantity issues, we
develop a more comprehensive model by considering the handling of flowback wastewater,
as well as the revenue from gas production, which was not considered in problem I.
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In addition to the information given for Problem I, we assume that wellpad decline curves
(Figure 4.10) are given by Arps decline curve90, which indicate the production profile of
the wellpad over time.

Discrete-time scheduling model  
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Figure 4.10: Well production decline curve.

The decline curve is described by the following equation,

P (t) =
P0

(1 + bDt)1/b
(4.11)

where P0 is the initial production level, b and D are adjustable parameters.

There are also a number of frac tanks on the wellpad. The location and capacity of treat-
ment facilities is also given, as well as their capability of removing the contaminants. As
in problem I, we assume that the availability of interruptible sources of water is uncertain,
and modeled with R scenarios from historical data. Finally, we assume that the price of
natural gas is given as a function of time (see Figure 4.11). The goal is then to determine
the fracturing schedule as well as the logistics for water acquisition, flowback reuse and
treatment. The objective is to maximize the profit given by the income of gas produc-
tion, minus the expected cost of transportation, treatment, storage, and disposal. We have
seen in Problem I that the optimized schedule spans a similar time horizon as the heuristic
schedule. However, for Problem II the sooner the wellpads are completed, the sooner they
can start producing gas, thereby potentially increasing the income, and hence the profit.
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Figure 4.11: Natural gas price profile averaged over the years 2009, 2010, and 2012.

In order to model this problem, we rely on the superstructure representation shown in
Figure4.12 to account for the alternatives of interest. In addition to the freshwater acqui-
sition structure from Problem I, we have additional treatment units for removing TSS in
the flowback water, a set of frac tanks at each wellpad to store incoming wastewater, and
finally, the unused flowback water a given wellpad can dispose. In terms of the STN, the
treatment facilities represent additional tasks, while the treated wastewater corresponds to
additional states. The major assumptions for Problem II are as follows:

1. Freshwater trucking cost is only volume-dependent.

2. Wastewater trucking cost is volume and distance-dependent to allow for recycling
among geographically proximate wellpads.

3. The wells on each wellpad are aggregated.

4. Arps decline curve is used to estimate gas production profile.

5. A fixed percentage of total water used in fracturing must be freshwater.

6. Only the first two weeks of flowback water can be treated and recycled.

7. There are existing temporary wastewater piping connections between a selected set
of wellpads and treatment facilities.
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Example 1: daily truck use comparison 
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Figure 4.12: Problem 2 superstructure.
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4.3.3 Optimization model II

In addition to constraints (4.3) – (4.9), we consider for the two-stage programming model
the following additional constraints (4.12) – (4.18) to account for flowback water.

Material balances. Constraint (4.12) is similar to constraint (4.3), and it denotes the daily
recycled water needed, which is treated as a stage-one variable. dywwsc and dswwsc are pa-
rameters that indicate the daily requirement of water to fracture each wellpad.

daww,ds =
∑
c

∑
j

(
d∑

d′=d−fDsc+2

dywwsc y
d′j
sc +

∑
d′=d−fDsc+1

dswwsc y
d′j
sc ) (4.12)

The mass balance for the frac tanks on a given wellpad is represented by (4.13). The
volume on a given day, V ww,d

s , which is also a a stage-one variable, is given by: i) volume
from the previous time period, ii) plus flow from treatment facilities to the wellpad fwt,dsq ,
iii) minus consumption for stimulating the wellpad daww,ds , and iv) plus the fresh make-up
water Dfw,d

s .

V ww,d
s = V ww,d−1

s +
∑
q

fwt,dsq − daww,ds +Dfw,d
s ∀s,∀d (4.13)

Constraints (4.14) and (4.15) determine the flowback water produced from each well af-
ter completing all the stages for a given wellpad. Constraint (4.14) determines the flow-
back profile up to two weeks after completion from the parameter F fbw,d

s , while constraint
(4.15) determines the flowback water that can either be sent to a treatment facility f tw,dsq or
disposed fdis,ds . Note that all these variables are stage-one variables.

dafbw,ds =
∑
j

∑
s∈TPs,t

|d′|∑
d′=d−d′′−fDsc

∑
d′′

F fbw,d′

s yd
′′j
sc ∀s,∀d (4.14)

dafbw,ds =
∑
q

f tw,dsq + fdis,ds ∀s,∀d (4.15)
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The treatment facility wastewater storage level V trt,d
q , also a stage-one variable, is deter-

mined by equation (4.16). The daily level connects the following terms: i) storage level
of the previous day, ii) plus water transported from the wellpads to the treatment facility
f tw,dsq , and iii) minus water transported to wellpads from the treatment facility fwt,dsq .

V trt,d
q = V trt,d−1

q +
∑
s

f tw,dsq −
∑
s′

fwt,ds′q ∀q,∀d (4.16)

Constraint (4.17) specifies the storage capacity CAPq at the treatment facilities.∑
s

fwt,dsq ≤ CAPq ∀q,∀d (4.17)

Objective. Finally, equation (4.18) represents the objective function of problem II, the ex-
pected net profit. It has the following terms: i) expected freshwater transportation cost, ii)
flowback water treatment and disposal cost, iii) trucking cost of freshwater to compensate
for recycled water deficit, iv) trucking and pumping cost to treatment facility, v)storage of
flowback water, and vi)revenue from gas production.

Expected profit = −
∑
s

OCpump,fw
s

∑
d

∑
r

∑
t∈TPst

P d
rt

R
+
∑
s

OCtruck,fw
s

∑
d

∑
r

∑
t∈TPst

Dd
rt

R

−
∑
s

∑
d

∑
q

OCtrt
q fwt,dsq +

∑
s

∑
d

OCdisfdis,ds

−
∑
s

∑
d

OCtruck,fw
s daww,ds

−
∑
s

∑
d

∑
q

OCtruck,ww
s Ds(1− ytsq)(fwt,dsq + f tw,dsq )

−
∑
s

∑
d

∑
q

OCpump,ww
s Dsyt

s
q(f

wt,d
sq + f tw,dsq )

−
∑
s

∑
d

∑
q

OCst,ww(V trt,d
q + V ww,d

sq )

+
∑
s

∑
d

∑
c

∑
j

P d+fDsc
s ydjsc

(4.18)
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4.3.4 Example 2

We expand on example 1 which has 14 wellpads, 540 days, 2 impoundments. We allow
for the addition of a second crew, with which the crews can be assigned to no more than
2 wellpads. In addition, there are two wastewater treatment facilities, one of which uses
electric coagulation and the other one uses filtration. The difference between the two
treatment facilities lies in the location, the treatment and storage capacity, as well as the
cost of treatment. Data of the problem are given in Table 4.4. For each of the wellpads,
we assume its flowback curve and decline curve are given to model the wastewater and
natural gas production levels as indicated in Figure 4.13. Note that wellpads L and M
are the highest producing wellpads, followed by wellpads C and D. In this example, we
assume a cost profile of natural gas that is based on the average of the years 2009, 2011,
and 2012 as shown in Figure4.11. Finally, we also assume historical data over 30 years to
define the scenarios for the uncertain interruptible water sources.
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Figure 4.13: Example 2 (a) flowback profile and (b) production profile.

The two-stage stochastic MILP model for this example consists of 540 time periods and
has 19,552 binary variables, 220,321 continuous variables, and 90,750 constraints. The
MILP was solved in 3,006 CPUs with an optimality gap of 3.9% using CPLEX 12.5.

The result of using the MILP formulation for problem II is shown in Table 4.5, in which
the expected profit for the MILP schedule is about 19% higher than the one of the heuristic

4.3. WASTEWATER HANDLING 108



CHAPTER 4. OPERATIONAL MODEL FOR SHALE GAS WATER MANAGEMENT

Table 4.4: Example 2 parameters and cost coefficients.

Parameter Symbol Value
Capacity of treatment facility (m3) CAPq q1 = 480 q2 = 1,200
Treatment cost ($/m3) OCtrt

q q1 = 25.16 q2 = 12.58
Disposal cost ($/m3) OCdis 134.18
Storage cost ($/m3/day) OCst,ww 0.59
Wastewater pumping cost ($/km/m3) OCpump,ww

s 0.28
Wastewater trucking cost ($/km/m3) OCtruck,ww

s 0.15

schedule ($214.15 million vs. $ 180.27 million). There are reductions in both expected
freshwater trucking cost and disposal cost, which are important cost factors in the com-
pletion process. As a result, the total cost is reduced from $25.02 million to $23.41 mil-
lion. Furthermore, the revenue from gas production is increased from $205.29 million to
$237.56 million, a 15.7% increase.

Table 4.5: Example 2 solution comparison.

Heuristic schedule MILP schedule
Transportation Freshwater pumping 9.91 10.79

Freshwater trucking 9.19 7.22
Wastewater 0.27 0.37

Treatment 0.64 0.7
Disposal 4.93 4.23
Storage 0.08 0.1
Total cost ($1,000,000) 25.02 23.41
Revenue ($1,000,000) Gas production 205.29 237.56
Profit ($1,000,000) 180.27 214.15

Due to the efficient reuse of flowback water, a saving of 15,860 m3 of freshwater can
be achieved out of the total volume required for all 14 wellpads (1.29 million m3). The
saving comes from the reduction of freshwater used to make up for the deficit in recycled
water. Since the use of recycled water is assumed to be capped at 15% of the total volume
required to frac the well, the freshwater saving achievable is relatively small. Nonetheless,
the saving in freshwater also implies that less disposal of flowback water is required.

The schedule comparison for fracturing the wellpads is shown in Figure 4.14. There are
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three observations worth noting from the resulting schedule. First, unlike the heuristic
schedule, there is no break between the first group of wellpads, namely, C,D,G,E,N,A,B,
and F. This tightness in schedule improves the recycling efficiency of the flowback water.
The second note is that wellpads L and M are stimulated in parallel in the winter when the
gas price is high, leading to higher revenue. Finally, most of the wellpads are completed
sooner in the optimized schedule, and this front-loading scheme allows for a higher overall
production level to be achieved within the time horizon under consideration.

Assumptions 

C M 

A B D E F G H I J K L N 

(a) 

(b) 

A B C D E F G H I J K L M N 

Figure 4.14: Example 2 fracturing schedule from (a) heuristic method (b) MILP model.

4.4 Conclusion

In this chapter, two-stage programming MILP scheduling formulations have been pro-
posed for shale plays water management. The goal in Problem I is to balance the trade-off
between water acquisition from uninterruptible sources that are available throughout the
year but require more expensive truck transportation, versus acquisition from interruptible
sources that can be transported with pipelines at lower costs but are not available through-
out the year. An effective STN-based model has been developed for this problem. This
model has been extended to handle a combination of disposal options with alternatives
for recycling and reuse of flowback water, while accounting for the income from the sales
of natural gas. Using two test cases from operations in the Marcellus shale development,
we have shown that the these models yield cost reduction, revenue enhancement, reduced
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freshwater consumption, as well as reduced CO2 emissions from transportation. Finally,
it should be noted that the models proposed in this work can be coupled with investment
models for shale gas supply chain such as the MINLP model proposed by Cafaro and
Grossmann91.

Nomenclature

Sets
s, s′ Wellpads
t An interruptible source and its corresponding impoundment
r Historical river flowrate data year
d, d′, d′′ Time interval
c Stages per day fractured scenarios
j Frac crew
q Wastewater treatment facility
TPst Match between wellpad s and source t
Superscripts
fw Freshwater
ww Waste water
fbw Flowback water
truck Trucking
pump Pumping
trt Treatment
dis Disposal
st Storage
wt From treatment facility to wellpad
tw From wellpad to treatment facility
Parameters
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OCpump,fw
s Freshwater pumping cost, $/m3

OCtruck,fw
s Freshwater trucking cost, $/m3

fDsc Days takes to frac the wellpad, day
dyfwsc Volume required to frac all but the last day, m3

dsfwsc Volume required to frac the last day, m3

CT s
′

s Crew transition time between wellpads, day
sgTs Total number of stages at each wellpad
eT A date to finish a certain number of stages
T Target number of stages to be completed
hD Length of frac holiday, day
dywwsc Daily wastewater required for all but the last day, m3

dswwsc Daily wastewater required for the last day, m3

F fbw,d
s Flowback water production, m3

CAPq Capacity of treatment facility q, m3

OCtrt
q Treatment facility cost, $/m3

OCdis Disposal cost, $/m3

OCst,ww Storage cost, $/m3

OCtruck,ww
s Wastewater trucking cost, $/m3/km

OCpump,ww
s Wastewater pumping cost, $/m3/km

Dsq Distance between wellpad s to treatment facility q
P d
s Production$
ytsq Wastewater piping connection between wellpads and treatment facilities
P0 Initial production, m3

b Decline exponent, 0 ≤ b ≤ 1

D Initial decline rate parameter
Binary variables
ydjsc Defines the beginning of stimulating each wellpad
zd Defines the beginning of a a frac holiday
Continuous variables
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Dd
rt Deficit in impoundment, m3

dafw,ds Freshwater decifit at a wellpad, m3

tofw,dt Total freshwater required to frac from an impoundment, m3

V d
rt Volume of the impoundment, m3

V trt,d
q Volume of the wastewater in treatment facility, m3

V ww,d
sq Volume of the wastewater in frac tank, m3

P d
rt Pumping rate, m3

daww,ds Daily wastewater required, m3

dafbw,ds Daily flowback water produced, m3

f tw,dsq Flowrate from wellpad s to a treatment facility q, m3

fwt,dsq Flowrate from a treatment facility q to a wellpad s, m3

fdis,ds Disposal flowrate, m3
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Chapter 5

Investment optimization model for
freshwater acquisition and wastewater
handling in shale gas production

5.1 Introduction

The need for infrastructure development arises due to the rapid growth rate in shale gas
development. Whereas chapter 4 deals mainly with short-term operations and temporary
solutions, the model in this chapter incorporates more permanent trends towards better
practice in the long term. Buried water pipelines, for example, can be setup while the
gas pipelines are buried to incur less environmental footprint in comparison to overland
pipelines and trucks. In addition, constructing centralizing wastewater storage and desali-
nation plant can allow operators to benefit from economies of scale, thereby providing
strong incentives for produced water reuse both within and outside the shale gas industry.

The proposed optimization model builds on the MILP model in the previous chapter92 for
the optimal water management given water sources and treatment facilities for a set of
wellpads. It should also be noted that Gao and You93 have addressed a problem similar
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to this chapter except that in their case they assumed a fixed schedule for the fracturing,
which has a major impact in the revenue.

Chapter 5 is organized as follows. First, we discuss several practical options for desalina-
tion processes. We next introduce the general problem statement, its assumptions, and the
mathematical formulation. Finally, we provide an example in the Utica shale play to illus-
trate the application of the model and present several scenarios that evaluate the sensitivity
of various aspect of the model.

5.2 Treatment facility

5.2.1 Overview

Flowback water is generated in the first few weeks following well stimulation, although
the quantity and quality vary from site to site and from play to play, the general trend
of increased salt concentration and decreased flow is predominant. Long-term produced
water, which could be up to 70% of the total wastewater generated during the lifetime
of a well, has a salinity level that could reach as high as 360,000 ppm94. It is estimated
that while water acquisition cost will increase by 20% from 2013 to 2022, wastewater
treatment cost will increase by 60%, a significant part of which will come from treating
the streams to discharge standard. To meet the current and anticipated challenges from
these wastewater streams, there are several schemes that can be adopted for wastewater
reuse or disposal.

The flowback water profile provides an opportunity for reusing the initial flowback and
blending it with freshwater to be used at the next well. Depending on the presence of
other constituents in the stream, the next period of flowback can go through primary treat-
ment options including de-oiling and straining for the removal of suspended solids, oil
and grease, bacteria, and divalent ions to prepare the stream for reuse95. As contaminant
concentration increases, intermediate strategies such as disinfection (to remove microbes),
organics removal, and softening (to remove divalent metal cations which cause scaling) are
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Table 5.1: Specifications of desalination technologies.1,2

Technology Max TDS Concentration (ppm) @ Max Recovery (%)
Reverse osmosis 35,000 @ 50
Forward osmosis 70,000 @ 60
Membrane distillation 300,000 @ 60-95
Mechanical vapor recompression 200,000 @ 50

adopted to treat the stream to reuse standard. This option can be done either onsite through
a mobile treatment unit or at a centralized wastewater treatment facility (CWT). The high
salinity streams require a level of high integrity in the equipment (added cost) to avoid
damaging the environment through spills and leaks. In addition, a major concern is man-
aging the large quantity of produced water once the gas field is saturated with producing
wells and the wastewater cannot be internally reused by the operator. Thus, demineral-
ization through more advanced options for additional reuse or discharge to surface water
(<500 ppm TDS in the state of Pennsylvania) is considered, although conventional ther-
mal processes are unsuitable due to the prohibitive capital cost, large installation footprint,
and significant energy requirement94.

5.2.2 Desalination methods

Desalination technologies can be categorized as thermal and membrane processes. The
primary challenge is the variability in TDS concentration over the lifetime of the well,
which constrains the selection of appropriate treatment technologies. Since produced wa-
ter management is mainly an economic decision, installation cost, energy cost, and sec-
ondary waste management cost are of primary concern. We present several desalination
technologies that are suitable for use under the incentive of treating produced water. The
feed water TDS level criterion for each technology is specified in Table 5.1. As can be
seen, reverse osmosis can typically operate with low salinity level, forward osmosis can
be adopted for medium TDS range, and finally, distillation (with or without crystallizer
for the concentrated stream) is required to handle waste streams with up to 300,000 ppm
of TDS95.
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Reverse osmosis. Reverse osmosis (RO) is a mature technology and has been widely used
in seawater desalination. The membrane permeability in RO allows it to effectively reject
monovalent ions and low molecular weight organic compounds94. In addition, the process
is highly modular and scalable. However, it is used to a much lesser extent in shale gas
wastewater treatment since RO units are only able to process low-salinity influent water not
exceeding 35,000 ppm of TDS with about 50% recovery level. Further recovery becomes
limiting due to the high hydraulic pressure required to overcome the osmotic pressure of
high-salinity produced water stream can exceed the allowable pressure of the equipment
tolerance96.

Forward osmosis. An intermediate range option for desalination is forward osmosis (FO),
which is a technology that can avoid some of the drawbacks of pressure-driven mem-
brane processes. A semi-permeable membrane is used to separate the feed from a concen-
trated draw solution. The osmotic pressure difference across the membrane allows water
to diffuse from the feed to the more concentrated draw solution such as thermolytic salts,
therefore rejecting TDS as well as suspended solids in the process. The main difference
between FO and RO is the driving force for separation. Whereas RO applies hydraulic
pressure to overcome osmotic pressure, FO relies on the osmotic pressure differential be-
tween the feed and the draw solution that has a higher osmotic pressure to drive the flux.
As a result, an additional step is necessary to regenerate the draw solution. FO can be used
as a standalone process, or as a pretreatment for RO or distillation. The advantage of FO
is that it can operate at relatively low pressure and temperature, which reduces the energy
consumption. Unlike RO, FO is not limited by the high-pressure tolerance and is suitable
for treating wastewater with less than 70,000 ppm TDS97.

Membrane distillation. Membrane distillation (MD) is a thermally-driven process that
uses hydrophobic membranes to separate a warm aqueous feed with up to 300,000 ppm of
TDS from a cool permeate. The temperature difference across the membrane serves as the
driving force for the water transfer. As a result, the flux in MD is not very sensitive to the
feed salinity. Another advantage of MD is that low-grade heat such as waste heat in power
plant can be used as heat source. Compared to pressure-driven membrane processes, MD
uses membranes with larger pores without an applied hydraulic pressure, leading to a lower
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propensity for fouling1. However, pre-treatment is still important since contaminants such
as organics and dissolved gas could still reduce the efficacy of the membranes by exerting
partial pressures. In order to reduce secondary waste stream, an integration of MD with
a crystallization unit could convert the raw brine to high quality water and salt crystals as
products at a higher capital cost96.

Mechanical vapor recompression. The most widely demonstrated approach, in terms of
reliability in demineralization of shale gas wastewater, is the mechanical vapor recompres-
sion process (MVR), which uses electrical energy to supply thermal energy. This process
has been commercially applied to shale gas water management, mainly in the Barnett shale
by Aqua-Pure Ventures88. The system includes heating the brine to evaporate the water,
which is placed under partial vacuum by a compressor, allowing the water vapor to flow
through a heat-exchanger, which recovers heat for the feed stream3. By using a compres-
sor for evaporation instead of traditional heat source, energy savings can be achieved in
this energy-intensive process. The unit is less susceptible to fouling and requires less pre-
treatment than membrane processes. It can also handle wastewater streams up to 200,000
ppm limited by salt solubility88. The recovered distillate is of high quality and can meet
the surface water discharge standard in Pennsylvania, or reused as process water in other
industrial applications. The concentrated brine can be crystallized and converted to salt
cakes or disposed through Class II wells. While the operating and capital costs are lower
compared to conventional thermal processes, the energy requirement is relatively high
compared to membrane processes1. However, corrosion and scaling can occur and incur
high operating and maintenance costs94. Since the Marcellus play has relatively high TDS
concentration in comparison with other shale plays, MVR is a feasible desalination option
for the region.

5.3 Problem statement

The proposed model extends chapter 492, which dealt only with operations, to include
capital investment decisions. Specifically, the objective is to minimize the overall cost
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including capital cost of impoundment, piping, and treatment facility, as well as operat-
ing cost including freshwater, pumping, and treatment. We assume that we are given the
potential freshwater source locations and withdrawal data, potential impoundment loca-
tions, wellpad locations and total number of stages, and treatment units capability and
locations. The goal is to determine the location and capacity of impoundment, the type
of piping, treatment facility desalination technology, as well as the frac schedule, and the
water sources to obtain freshwater.

The scheduling part of the problem is formulated through a discrete-time MILP model
using as a basis the State-Task Network (STN) representation for batch scheduling57. The
STN representation consists of three major elements: states, tasks, and equipment. Similar
to STN-based batch processing models, the processing tasks in the context of this work
correspond to the fracturing of the wells on each wellpad. The states correspond to the
water sources and impoundments that feed into the wellpads. The investment decisions are
superimposed on the scheduling model. The problem is optimized over a long planning
horizon, which increases the computational difficulty for solving the MILP model.

The wellpads are divided into multiple areas. The potential water piping connections are
highly dependent on the geology of the land. Since the wellpads in each area are close
in proximity, pipelines can be placed in between wellpads. Through the extensive use of
pipelines, the advantage is that trucking freshwater can be greatly reduced or even avoided
altogether, which improves the procedure both economically and environmentally.

Frac fluid is blended using freshwater and wastewater. Since the various contaminants
in the wastewater stream could interfere with frac fluid performance, operators fix the
wastewater to freshwater ratio in the blending process to maintain the efficacy of the fluid.
Since the purpose is to reuse the stream, this approach does not require wastewater streams
to be treated to freshwater discharge standard, thereby avoiding extensive and costly treat-
ment procedures. In this problem, we assume that the frac fluid criterion is specified by its
TDS concentration level, which requires recycle and reuse of wastewater streams to meet
the concentration target.

Freshwater can be obtained from rivers as well as ponds. The availability of water at the
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takepoint of the river affects the volume that the operator can withdraw from the river.
In the problem formulation, we assume that all the freshwater sources are interruptible
(i.e. small rivers or creeks close to the wellpads), which means that water can only be
withdrawn from the sources if the flowrate in the source is above a threshold. Alternatively,
the ponds can serve either as a storage unit or a source. Freshwater sources supply water
to the wellpads through either an overland or buried pipelines. Overland pipelines can
be rented and leave less environmental footprint. Buried pipelines, however, are mostly
owned by the operator and are usually placed at the same time as burying the gas pipelines.
Practical issues involve tree clearing, pipe freezing. Impoundments can provide additional
storage capacity.

After completion, streams of flowback can go through basic treatment onsite and then re-
cycled at the next wellpad. It can also be trucked to CWT, where the streams are treated to
discharge standard to be recycled at the next completion pad or discharged. Since salinity
level restricts the type of technology that can be used to treat the feed water, we consider
several TDS removal options in the CWT. Depending on the desalination process, a con-
centrated wastewater stream is generated and trucked to disposal wells. The final option
is that the flowback and produced stream can be trucked directly to disposal wells. The
choice among these options is highly dependent on the flowback characteristics and han-
dling costs. The locations and potential interconnections of the water sources, wellpads,
and impoundments for the corresponding water supply chain are shown in Figure 5.1.

Overview 

1 

Well pad  

River – withdrawal 

Pond – withdrawal and store 

Impoundment location 

Potential freshwater pipe 

Figure 5.1: Main elements in water supply chain for shale gas production.
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The assumptions made in the formulation of the model are as follows:

1. Each well can only be fractured at least two weeks after the well is drilled, and the
drilling schedule is fixed.

2. The wells in each wellpad are aggregated so that the wells are all stimulated before
the frac crew is transferred to another wellpad. Each wellpad has a fixed number of
stages that are available for completion during the time period of interest.

3. Freshwater sources connected to pipelines are interruptible sources and their avail-
ability is given by the average historical flowrate data.

4. Each pipeline segment has enough capacity to transfer freshwater used at the well-
pads in each time period.

5. The sales value of gas production is known a priori.

6. Flowback volume and composition are known.

7. Frac tanks can only be placed on the completion pad.

8. Onsite treatment process provides adequate removal of most contaminants other
than TDS for recycle.

9. CWT has pretreatment capability prior to desalination.

10. The treatment technologies considered can desalinate the water stream to discharge
standard.

11. The cost of the desalination plant is annualized over the time horizon and is shared
among a number of operators.

5.4 Problem formulation

The problem can be formulated as a MINLP model with the following constraint types:
allocation constraints, material balances, logic constraints, and an objective function. The
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main decision variables are several 0-1 variables that are associated with various capital
investment options. Additionally, yskt is a binary variable that indicates the starting date t
for wellpad s stimulation at rate k.

5.4.1 Constraints

Allocation constraints. Constraint (5.1) specifies that each wellpad s has to be fractured
exactly once at a given date t, and for a rate to frac per week k.∑

k

∑
t

yskt = 1 ∀s (5.1)

Constraint (5.2) represents a backward aggregation constraint from the STN model87 that
ensures there is no overlap between different wellpad operations,

∑
s

∑
k

t∑
t′=t−SFLsk−STC+1

yskt′ ≤ 1 ∀t (5.2)

where SFLsk represents the duration of the hydraulic fracturing for the wellpad s stimu-
lated at the rate of k stages per time period, STC represents the transition time required
to move the frac crew from wellpad s to the next wellpad.

Water use at wellpads. Frac fluid at each wellpad can be supplied by a combination of
freshwater and wastewater. The total weekly water requirement to frac a wellpad s is
represented by constraint (5.3), where fst is a continuous variable that defines the time
profile of water use at each wellpad. SDWs is the constant indicating water requirement
for wellpad s during each time period. Water requirement for the remaining stages that are
stimulated during the final time period is represented by the parameter SLWs.

fst =
∑
k

(
t∑

t′=t−SFLsk+2

SDWsyskt′ +
∑

t′=t−SFLsk+1

SLWsyskt′) ∀s, ∀t (5.3)

Both freshwater and wastewater can be used in frac fluid and is represented by constraint
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3 

Wellpad s 

River o Pond q 

Impoundment p 

Figure 5.2: Flow directions for wellpads, impoundments, rivers, and ponds.

(5.4), where fFWst indicates the freshwater use and fWW
st is the wastewater used at the

wellpad.
fst = fFWst + fWW

st ∀s,∀t (5.4)

The freshwater mass balance at each wellpad is described by the mass balance in (5.5).
The continuous variable fPIuu′ct represents the flow using pipeline of type c from location u
to u′. The set u represent locations of all wellpads, river sources, pond sources, and im-
poundments, which are given by the indices s, o, q, and p, respectively. The nomenclature
for flow directions at each location type is indicated in Figure 5.2.∑

u∈DPus

∑
c

fPIusct = fFWst +
∑

u′∈DPsu′

∑
c

fPIsu′ct ∀s,∀t (5.5)

Freshwater source constraints. Constraint (5.6) describes the mass balance for river take-
points, where fRIot is a continuous variable that represents the withdrawal rate from river
source o. The utilization of source o is then restricted by the binary variable yFWo to a
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flowrate upper bound of Fmax,RI
ot in constraint (5.7).

∑
u∈DPuo

∑
c

fPIuoct + fRIot =
∑

u′∈DPou′

∑
c

fPIou′ct ∀o,∀t (5.6)

fRIot ≤ yFWo Fmax,RI
ot ∀o, ∀t (5.7)

Similarly, freshwater can also be obtained from ponds. In addition to withdrawal of fresh-
water, ponds can serve as storage vessels. The volume of pond q on week t is given by the
continuous variable vPDqt , and withdrawal of freshwater from the pond at time t is given by
fPDqt . The weekly mass balance is described by constraint (5.8).∑

u∈DPuq

∑
c

fPIuqct + vPDqt−1 + fPDqt = vPDqt +
∑

u′∈DPqu′

∑
c

fPIqu′ct ∀q,∀t (5.8)

Constraint (5.9) establishes the use of pond q and withdrawal from the source is limited by
water availability in the pond through constraint (5.10). Through the binary variable yPDq ,
the volume and withdrawal are zero if the pond is not used, otherwise, these variables are
bounded by the maximum capacity CP PD and maximum withdrawal F PD

qt from the pond,
respectively.

vPDqt ≤ yPDq CP PD ∀q,∀t (5.9)

fPDqt ≤ yPDq F PD
qt ∀q,∀t (5.10)

Additional freshwater storage can be fulfilled by impoundments, which can be either con-
structed by the operator or rented. vIPpt is the continuous variable indicating the volume of
water in impoundment p. The mass balances are given by the following constraint (5.11).∑

u∈DPup

∑
c

fPIupct + vIPpt−1 = vIPpt +
∑

u′∈DPpu′

∑
c

fPIpu′ct ∀q,∀t (5.11)
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Impoundment capacity lIPp and water volume vIPpt are bounded by the maximumCPmax,IP
p

and minimum CPmin,IP
p capacity in constraints (5.12) and (5.13). yIPp and yIIPpt indicate

the use of impoundment p.

CPmin,IP
p yIPp ≤ lIPp ≤ CPmax,IP

p yIPp ∀p (5.12)

vIPpt ≤ CPmax,IP
p yIIPpt ∀p,∀t (5.13)

The volume of water in the impoundment is restricted by the capacity of the impoundment
as in constraint (5.14), and constraint (5.15) relates the two binary variables yIPp and yIIPpt
to indicate the use of each impoundment.

vIPpt ≤ lIPp ∀p, ∀t (5.14)

yIPp ≥ yIIPpt ∀p, ∀t (5.15)

Wastewater handling constraints. The superstructure for flowback handling is shown in
Figure 5.3.

In constraint (5.16) and (5.17), fFBst and cFBst are continuous variables that indicate flow-
back flowrate and concentration of each wellpad during time t, which define the profiles
over the horizon depending on the frac schedule. SF FB

st and SCFB
st are parameters that

indicate flowback flowrate and TDS concentration.

fFBst =
∑
k

∑
t′′

∑
t′∈t−t′−SFLsk+1

SF FB
st′′ yskt′ ∀s,∀t (5.16)

cFBst =
∑
k

∑
t′′

∑
t′∈t−t′−SFLsk+1

SCFB
st′′ yskt′ ∀s,∀t (5.17)

The flowback stream from wellpad, fFBst , can be treated onsite, trucked to CWT for de-
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Figure 5.3: Wastewater flows.

salination and discharge, or disposed directly as described in constraint (5.18), and their
flowrates are denoted by fFB,OTst , fFB,CTst , and fFB,DPst .

fFBst = fFB,OTst + fFB,CTst + fFB,DPst ∀s, ∀t (5.18)

fOTst is a continuous variable representing the combined flowback streams from producing
wells that is being treated onsite and recycled to wellpad s. fCTt is the flow trucked to CWT
for desalination. The desalination unit is assumed to have gone through pretreatment and
the additional cost is incorporated. fDPt is the flowrate that is trucked to disposal wells.

For the first option, basic onsite treatment, the total mass and TDS balance are represented
by constraint (5.19) and (5.20). cOTt is the TDS concentration of the flowback water trans-

5.4. PROBLEM FORMULATION 126



CHAPTER 5. INVESTMENT OPTIMIZATION MODEL FOR FRESHWATER
ACQUISITION AND WASTEWATER HANDLING IN SHALE GAS PRODUCTION

ported to basic treatment. ∑
s

fOTst =
∑
s′

fFB,OTs′t ∀t (5.19)

∑
s

fOTst c
OT
t =

∑
s′

fFB,OTs′t cFBs′t ∀t (5.20)

The second option is desalination at CWT. A wastewater tank (assuming constant mixing)
with volume vCTt is used to temporarily store the flowback streams. The mass balance
for the tank is expressed in constraint (5.21). The TDS concentration of the combined
flowback stream is denoted by cCTt and the balance of TDS is represented by constraint
(5.22). ∑

s

fFB,CTst + vCTt−1 = fCTt + vCTt ∀t (5.21)

∑
s

fFB,CTst cFBst + vCTt−1c
CT
t−1 = (fCTt + vCTt )cCTt ∀t (5.22)

Several treatment options can be used for TDS reduction in CWT such as reverse osmosis
and thermal distillation. The choice of each technology is represented by the binary vari-
able yCTw , the throughput of each technology is indicated by the continuous variable fSCTwt .
Constraint (5.23) allows the problem to choose at most one technology for TDS removal,
and constraint (5.24) is the mass balance for flow through the desalination unit.∑

w

yCTw ≤ 1 (5.23)

∑
w

fSCTwt = fCTt ∀t (5.24)

The flowrate through each technology in CWT is bounded as in constraint (5.25), In ad-
dition, each technology is limited to treating feedwater with TDS concentrations given by
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parameter CUCT
w , as is expressed in constraint (5.26).

fSCTwt ≤ Fmax,CT
wt yCTw ∀w,∀t (5.25)

cCTt ≤
∑
w

CUCT
w yCTw ∀t (5.26)

A fraction of the desalinated water stream becomes a concentrated waste stream and needs
to be disposed, thus the recycle stream from desalination depends on the parameter ηw, the
recycle ratio. ∑

w

ηwfS
CT
wt ≥

∑
s

fRCT
st ∀t (5.27)

Disposal at an injection well is the final option being considered.

fDPt =
∑
s

fFB,DPst ∀t (5.28)

fRCT
st represents the stream that is recycled to the wellpad s after desalination. Wastewater

used at each site is through recycling of the treated water as follows,

fRCT
st + fOTst = fWW

st ∀s,∀t (5.29)

The TDS balance at wellpad s is represented by constraint (5.30). The stream that is treated
onsite does not change in TDS concentration since we assume that the onsite treatment
does not have desalination capability. The stream of frac fluid from blending recycled
wastewater and freshwater on wellpad s has to meet the frac fluid TDS standard CF .

CDfRCT
st + cOTt fOTst ≤ CFfst ∀s,∀t (5.30)

On the completion pad, the capacity of frac tank at wellpad s is bounded by the maximum
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wastewater flowrate used at the wellpad as in constraint (5.31).

lSTst ≥ fWW
st ∀s,∀t (5.31)

fTCTw is a continuous variable indicating the throughput of the desalination plant.

fTCTw ≥ fSCTwt ∀w,∀t (5.32)

Pipeline constraints. yPIuu′c are binary variables that indicate the existence of a pipeline of
type c between u and u′. Constraint (5.33) ensures that both flow directions are allowed in
any pipe in the structure.

yPIuu′c = yPIu′uc ∀uu′ ∈ DPuu′ ,∀c (5.33)

Constraint (5.34) indicates that only one type of pipeline, buried or overland, can be chosen
for each segment. ∑

c

yPIuu′c ≤ 1 ∀uu′ ∈ DPuu′ (5.34)

In addition, pipeline flow capacities are bounded above by UF and below by LF .

LFyPIuu′c ≤ fPIuu′ct ≤ UFyPIuu′c ∀uu′ ∈ DPuu′ , ∀t (5.35)

5.4.2 Objective

The objective of the problem involves the sum of the following costs: 1) freshwater cost;
2) impoundment cost; 3) freshwater pipeline cost; 4) frac tank cost; 5) treatment cost; 6)
disposal cost; 7) onsite treatment cost; and 8) CWT treatment cost.

Freshwater cost COST FW include set-up cost and withdrawal cost from rivers and ponds.
In constraint (5.36), ICFW

u is the set-up cost of source, and OCFW
u is the withdrawal cost
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coefficient.
CostFW =

∑
o

ICFW
o yRIo +

∑
o

∑
t

OCFW
o fRIot

+
∑
q

ICFW
q yPDq +OCFW

q

∑
q

∑
t

fPDqt
(5.36)

Impoundments can be either constructed by the operator or rented, and the cost term
CostIP includes both the construction and rental cost. ICBIP

p in constraint (5.37) is
the base cost factor of the impoundment, whereas ICIIPp is the incremental cost based on
volume of the impoundment, and OCIP

p is the operating cost of the impoundment.

CostIP =
∑
p

(ICBIP
p yIPp + ICIIPp lIPp +OCIP

p

∑
t

yIIPpt ) (5.37)

Pipeline cost CostPI is made up of installation cost and pumping cost as follows,

CostPI =
∑
c

∑
u

∑
u′∈DPuu′

(ICPI
c UDIuu′y

PI
uu′c+

∑
t

(OCPI
c UDIuu′y

PI
uu′tc+OCPUf

PI
uu′ct))

(5.38)
where ICPI

c is the pipeline installation cost, OCPI
c is the rental cost of the pipeline, and

OCPU is the pumping cost.

Since frac tanks are typically rented, the only coefficient associated with frac tank cost
CostWW,ST is the rental cost OCWW,ST .

CostWW,ST =
∑
s

∑
t

OCWW,ST lSTst (5.39)

Disposal cost CostDS includes trucking cost from wellpad to disposal well and disposal
cost. OCWW,TR is the coefficient of trucking cost, UDS is the distance to disposal site,
and OCDSWW is the disposal cost.

CostDS = (OCWW,TRUDS +OCDSWW )
∑
t

fDPt (5.40)

Onsite treatment cost CostOT including onsite treatment cost, OCWW,OT is the cost coef-
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ficient for treatment.
CostOT = OCWW,OT

∑
s

∑
t

fOTst (5.41)

The last term is CWT treatment cost CostCT , which has several components, desalination
capital and operating cost, wastewater hauling cost, concentrated stream disposal cost, and
desalinated water discharge cost. AR is the annuity factor, ICWW,CT

w and OCWW,CT
w are

the capital and operating cost of desalination using treatment process w, OCDCWW is
discharge cost for desalinated water, and UDC is the distance to CWT.

CostCT =
∑
w

1

AR
ICWW,CT

w fTCTw +
∑
w

∑
t

OCWW,CT
w fSCTwt +

∑
t

UDCfCTt

+OCDCWW
∑
t

(
∑
w

ηwfS
CT
wt +

∑
s

fRCT
st )

+OCDSWW
∑
w

∑
t

(1− ηw)fSCTwt +OCWW,TRUDS
∑
w

∑
t

(1− ηw)fSCTwt

(5.42)
The profit from gas revenue can be represented by (5.43), where Pst is the parameter
representing revenue from production for each wellpad during time period t.

Revenue =
∑
s

∑
t

∑
k

Ps,t+SFLsk
yskt (5.43)

Combining terms (5.36) - (5.43), we have the objective function (5.43), which defines the
total profit,

max. Profit =Revenue− (CostFW + CostIP

+ CostPI + CostWW,ST + CostDS + CostOT + CostCT )
(5.44)

5.4.3 MILP approximation

The formulation with constraints (5.1)-(5.35) corresponds to an MINLP due to the bilin-
ear terms of flowrate multiplied by concentration in constraints (5.20),(5.22) and (5.30).
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In order to eliminate nonlinearities, we discretize concentration variables that are part of
the bilinear terms. While it is an approximation, it still allows for enough resolution to
distinguish the ability to recycle the stream and the selection of discrete desalination tech-
nology choice. Thus, we discretize the concentration terms cFBst and disaggregate the flow
fFBst as follows,

cFBst =
∑

r CIrz
FB
str ∀s,∀t∑

r z
FB
str = 1 ∀s,∀t

fFBst =
∑

r f̂
FB
str ∀s,∀t

f̂FBstr ≤ FmaxzFBstr ∀s,∀t, ∀r

 (5.45)

where zFBstr are the binary variables selecting the concentration value CIr and f̂FBstr are
the disaggregated variables for fFBst . Similarly, the other bilinear terms are approximated
in the same fashion. Note we included zero for ensuring that the inequality in (5.26) is
satisfied when the technology w is not chosen.

The objective in (5.44), along with the linearized constraints (5.45) and (5.1)-(5.35), form
the MILP model for the water source location and treatment management problem.

5.5 Case study in Utica shale

5.5.1 Optimization model

We consider a case study in the Utica shale play with 14 wellpads as shown in Figure 5.4
with production curve shown in Figure 5.5. Each wellpad becomes available at different
time as indicated in the figure. They are geographically distributed in two clusters in a
given county. There are 5 interruptible river sources, 4 ponds, and 2 impoundments serv-
ing the wellpads in the two areas. The time horizon is 3 years and it is discretized into 156
weekly time steps. Three completion rates, 20, 30, and 40 stages per week, are possible.
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Table 5.2: Case study wellpad data.

Wellpad s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14
# of stages 120 120 210 140 140 210 434 492 280 175 280 175 70 350
Earliest frac time (week) 1 6 19 19 71 71 20 11 19 19 19 71 71 71

The slowest stimulation rate is usually selected during periods of low water availability.
The flowback flowrate and TDS level profile are given in Figure 5.6. Choice of two types
of pipelines, overland and buried, are incorporated in the model. The buried pipelines are
more capital intensive, whereas the overland pipelines cannot be used in the winter due
to the possibility of freezing pipelines. Furthermore, three desalination technologies are
considered for TDS removal, including membrane distillation, mechanical vapor recom-
pression, and mechanical vapor recompression with crystallizer.
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Figure 5.4: Layout of Utica case study.
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Figure 5.5: Total gas production curve of each wellpad.

Table 5.3: Case study cost coefficient data.3,2

Cost coefficient Unit Value
ICBIP

p $ 360,000
ICIIPp $/MG 28,000
ICWW,CT

w $ million 9 – 15
ICFW

u $ 50,000 – 100,000
ICPI

c $/mi 325,000
OCIP

p $/week 10,500
OCFW

u $/1,000 gallon 0 – 7.5
OCWW,TR $/bbl/mi 0.053
OCWW,ST $/bbl/week 0.56
OCWW,OT $/bbl 3
OCWW,CT

w $/bbl 5–10
OCDCWW $/bbl 0.5
OCDSWW $/bbl 12
OCPI

c $/mi/week 5,500
OCPU $/week 35,000
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Figure 5.6: Flowback (a) flowrate profile and (b) TDS concentration.
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The MILP model consists of 111,399 constraints, 104,188 continuous variables, and 19,954
binary variables. The model is solved using GAMS 24.2/CPLEX 12.6 on an Intel 2.93
GHz Core i7 CPU machine with 4 GB of memory to a 0.1% optimality gap in approxi-
mately 7 hours.

The optimized frac schedule leads to a profit of $1,034,110,429, with $1,115,618,566 in
natural gas revenue. Water-related cost totals $81,508,137, which is around 7% of the total
revenue. All river sources, all four ponds, and one impoundment are included in the config-
uration. All pipelines are buried since we specified in the problem that overland pipelines
cannot be used between the months of December to February. In addition, mechanical
vapor recompression is selected as the preferred method for TDS removal in CWT. In the
optimal solution, there is no recycle of treated water from the desalination plant to the
completion pad. Instead, the desalinated stream is discharged to the environment.

We present several scenarios below that provide variations to the optimal solution in order
to gain some insights into the nature of this problem.

5.5.2 Scenario description

Scenario 1: Heuristic schedule.
First, the allocation constraints (5.1) and (5.2) are computationally demanding to solve.
Scenario 1 optimizes the problem by fixing a heuristic schedule.

Scenario 2: No desalination unit.
Currently, most shale gas operators do not desalinate wastewater streams due to high cost
of mobile unit and the lack of centralized treatment facility. However, there is a number
of environmental concerns associated with deep-well injections. Thus in Scenario 2 we
assume that a centralized desalination plant can be constructed to serve around 50 wellpads
in the proximity (ten miles radius). This problem investigates the economic viability of
constructing a desalination plant and the distribution of flowback water if desalination is
not an option.

Scenario 3: Allow trucking.
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The model in this work considers only freshwater transported through pipelines since truck
hauling has negative impact including road damages, traffic accidents, and environmental
concerns. As a result, operators are encouraged to draw freshwater from nearby sources.
We can modify the model to allow for trucking from an uninterruptible source (i.e. large
water body with guaranteed water availability year-round) and examine its effect on the
optimal solution.

We introduce the continuous variable fTRst to represent the volume of freshwater trucked
to each wellpad s during time period t, and modify the constraint (5.4) to obtain constraint
(5.46).

fst = fFWst + fWW
st + fTRst ∀s,∀t (5.46)

The following term is also added to the objective function indicating the trucking cost and
the setup cost for the uninterruptible freshwater source from where the truck hauls water,

(OCTR +OCFW )
∑
st

fTRst + ICFWyTR (5.47)

whereOCTR is the trucking cost, yTR is a binary variable indicating the use of trucking for
freshwater acquisition, OCFW is the withdrawal cost, and ICFW is the perennial source
set-up cost. In addition, we assume an additional 10% “bonding” cost for truck use which
the operators have to account for to cover road damage.

Scenario 4: Higher flowback volume
In the Marcellus and Utica shale plays, flowback rate is relatively low compared other
shale plays, where flowback rate may be as high as 25%. We double the flowback rate in
the model (see Figure 5.6a) to analyze the distribution of wastewater as a result of higher
flowback rate.
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5.5.3 Results and discussion

The computational statistics and objective value from all four scenarios are presented in
Tables 5.4 and 5.5, respectively. Both revenue from natural gas sales and water-related
costs are considered in the profit maximization under the time horizon of the problem.
Note from Table 5.5 that for these 14 wellpads, water-related cost makes up 7% (in the
optimal case) to 11% (in scenario 2 where desalination is not considered) of the revenue
from gas production, which is quite significant. As can be seen, the heuristic schedule
yields the lowest profit during the 3-year period.

Table 5.4: Computational statistics.

Optimal 1: Heuristic 2: No desalination 3: Freshwater trucking 4: Double flowback volume
# of binary var 19,954 16,831 16,830 16,831 16,830
# of continuous var 111,399 111,399 111,399 113,583 111,399
# of constraints 104,188 104,188 104,188 106,373 104,188

Besides the scenario with heuristic schedule, all other cases converged to the same optimal
frac schedule since the high revenue achieved from this schedule is an order of magnitude
higher than the cost, thus it is unlikely that a different schedule with lower revenue will
yield a low enough cost to compensate for the change in revenue. Both the optimal sched-
ule and heuristic schedule are shown in Figure 5.7. In the optimal solution, all wellpads
are stimulated under the fastest completion rate, whereas in the heuristic schedule, most
wellpads are stimulated at a slower pace.

In the model, we assumed that the desalination facility could be shared by other operators
that have around 200 wells to be completed during the same time period. It is interesting

Table 5.5: Summary of objective values.

Optimal 1: Heuristic 2: No desalination 3: Freshwater trucking 4: Double flowback volume
Revenue 1,115,618,566 985,551,244 1,115,618,566 1,115,618,566 1,115,618,566
Cost Freshwater-related 57,942,917 58,502,626 60,538,657 52,988,194 53,813,066

Capital 10,210,311 9,558,868 10,814,192 7,372,340 10,210,311
Operating 47,732,606 48,943,758 49,724,466 45,615,853 43,602,755

Wastewater-related 23,565,220 26,404,160 63,313,136 23,278,137 44,467,328
Capital 3,912,326 3,600,535 0 3,598,665 5,109,462

Operating 19,652,894 22,803,625 63,313,136 19,679,472 39,357,867
Total cost 81,508,137 84,906,786 123,851,793 76,266,331 98,280,395

Profit 1,034,110,429 900,644,458 991,766,773 1,039,352,235 1,017,338,171
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Figure 5.7: Comparison between the optimal and heuristic schedule.

to note that the cost of Scenario 2 (no desalination) is 52% higher than that of the optimal
case, considering that desalination is not a standard practice in the Utica. Scenario 4
assumes that the flowback rate doubles in comparison to the flowback rate in the optimal
case. The total water-related cost increases by 21%, which is expected since wastewater
handling cost increases significantly. However, the pumping cost in Scenario 4 is actually
lower compared to the optimal case, $38.9 million to $41.8 million, since Scenario 4 takes
advantage of recycling the high flowback rate.

Freshwater-related costs for the various scenarios are summarized in Figure 5.8. The opti-
mal solution, heuristic solution, and Scenario 2 solution have similar freshwater pumping
costs at around $42.8-44.7 million. In addition, Scenario 3 takes advantage of flexibility
in truck use. Out of the 1073.8 MG of water used to frac the 14 wellpads, 349.4 MG is
freshwater supplied through truck hauling. By allowing trucking, the uninterruptible wa-
ter source for trucking is set up with four interruptible river sources, whereas the optimal
scenario requires all five river sources to be set-up. This allows for more robust freshwater
supply during periods of low water availability in the interruptible sources, leading to the
highest profit, ($ 1,039 million). As a result, whereas the optimal scenario requires the
construction of a 10 MG impoundment, Scenario 3 does not invest in this impoundment.
Figure 5.9 shows the total water availability from the sources chosen in the optimized so-
lution for each of the two areas as well as the cumulative trucking use in the two areas. As
can be seen from the figure, there is a correlation between period of low water availability
and increases in truck use. Overall, the cost for allowing freshwater truck hauling is lower
than the optimal solution without the trucking option ($81.5 vs 76.3 million). However,
if freezing is not issue in a shale play region, overland pipeline can offer an even less
expensive option.
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Figure 5.8: Freshwater cost comparison for all scenarios.

Wastewater cost distribution for the four scenarios is presented in Figure 5.10. For the
optimal solution, the total cost for desalination (annualized capital cost, operating cost,
sludge disposal, discharge cost, and trucking cost from desalination plant to disposal well)
is $20.8 million for 66.1 MG of flowback water, whereas onsite treatment costs $2.5 mil-
lion for a total throughput of 35.2 MG. All the scenarios (other than scenario 2) select
mechanical vapor recompression as the choice for desalination. Note that other than Sce-
nario 2 where desalination is not an option, none of the other scenarios use direct disposal
through Class II injection well. This is mainly due to the relative distance between the
centralized desalination plant and the disposal well with respect to the wellpads ( 13 mi vs
30 mi) for this specific example.

In the problem formulation, we determine the volume of flowback water to recycle for
frac fluid by using an upper bound for the concentration (50,000 ppm of TDS), whereas
operators use a percentage value (15% of flowback water) to limit recycle. The percent-
age limit is a convenient measure to evaluate. However, the physical limitation of TDS
presence in frac fluid is determined by the concentration. The advantage of the current
approach can be seen in the result from the optimal scenario as shown in Figure 5.11. The
figure on the left indicates the overall frac fluid composition for each wellpad. Wellpad
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Figure 5.9: Scenario 3 freshwater availability and trucking use.
Wastewater cost distribution 

8 

Figure 5.10: Wastewater cost comparison for all scenarios.

1 uses only freshwater since it is the first one to be stimulated. All the wellpads use less
than 15% of recycled water. However, if we examine the second figure, which represents
the composition over time for wellpad 3, we can see that both in week 1 and week 7, the
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recycled water flowrate makes up about 20% of frac fluid. The first week of recycled water
mainly comes from the initial flowback of wellpad 8, which has low TDS concentration.
The last week of recycled water comes from desalinated wastewater, since the later period
of flowback has high TDS concentration.
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Figure 5.11: Frac fluid composition in the optimal scenario for (a) all wellpads averaged
over time and (b) wellpad 3.

Note that the total freshwater-related cost is significantly higher than wastewater handling
cost. One reason for this is that only less than three years (time horizon of the example) of
produced water is considered in this example. However, operators expect around 10 bbl of
produced water per month for each well for the lifetime of the well. This small stream of
high salinity produced water requires proper handling and can incur a high cost.

5.6 Conclusion

An MILP formulation has been proposed for capital investment decisions related to fresh-
water sources, storage, and flowback treatment facility for managing water in shale gas
development. We have presented a case study with 14 wellpads, 9 freshwater sources, and
3 desalination technologies from Utica shale analyzing water-related costs under a number
of scenarios. From the results, the importance of simultaneously optimizing completion
schedule with water acquisition, transportation, storage, and treatment has been demon-
strated. Also, it has been shown that desalination can be cost-effective for operators in
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the Utica if collaboration could be established. Although transporting freshwater through
truck is relatively expensive and environmentally unfriendly, allowing truck hauling, in
addition to pipeline transportation, can still provide enough flexibility to guarantee fresh-
water supply so that less freshwater sources need to be set-up for pipeline transportation
and less capital investment is required for impoundment construction. Finally, we have
shown that for regions with high flowback rate, the wastewater handling cost does in-
crease as expected. However, with proper recycling schemes, the flowback water can be
blended for frac fluid use and reduce freshwater supply cost.

Nomenclature

Sets
t, t′, t′′ Time interval
k Stages per day fractured scenarios
u, u′ All locations
su, s

′
u Wellpads

ou Freshwater source river
qu Freshwater source pond
pu Impoundment
c Pipeline type
r Concentration discretization intervals
DPu,u′ Potential pipeline
Superscripts
FW Freshwater
FB Flowback water
WW Wastewater
IP Impoundment
PD Pond
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RI River
PI Pipeline
TR Truck
ST Frac tank storage
OT Onsite treatment
CT CWT
DP Disposal
max Upper bound
min Lower bound
Parameters
F PD
qt Water flowrate available for withdrawal
Fmax,RI
ot maximum withdrawal rate from river, MG
Fmax,CT
wt Maximum CWT capacity, MG
SF FB

st Flowback/produced water flowrate per time period t, MG
SCFB

st Flowback/produced water concentration in time period t, ppm
SFTst Remaining flowback/produced water in the next 20 years, MG
STC Crew transition period, week
STFk Frac rate, stage/week
SFLsk Frac weeks of each wellpad
SDWs Freshwater use at each wellpad in each period, MG
SLWs Freshwater use at each wellpad in the last period, MG
AR Annualized factor for investment on treatment units
Pst Revenue from gas production at each wellpad, $
UDIuu′ Distance between u and u’, mi
UDC Distance to desalination facility, mi
UDS Distance to disposal, mi
UF Maximum pipe capacity, MG
LF Minimum Pipe capacity, MG
ICBIP

p Base investment cost for impoundment, $

5.6. CONCLUSION 144



CHAPTER 5. INVESTMENT OPTIMIZATION MODEL FOR FRESHWATER
ACQUISITION AND WASTEWATER HANDLING IN SHALE GAS PRODUCTION

ICIIPp Incremental investment cost for impoundment, $/MG
ICWW,CT

w Investment cost for desalination technology, $
ICFW

u Freshwater source set-up cost, $
ICPI

c Capital cost of pipelines, $/mi
OCIP

p Operating cost for impoundment, $/week
OCFW

u Freshwater cost from source u, $/MG
OCWW,TR Wastewater trucking cost, $/bbl/mi
OCWW,ST Wastewater frac tank storage cost, $/bbl/week
OCWW,OT Wastewater onsite treatment cost, $/bbl
OCWW,CT

w CWT treatment cost, $/bbl
OCDCWW Desalinated water discharge cost, $/bbl
OCDSWW Disposal cost, $/bbl
OCPI

c Operating cost of pipelines, $/mi/week
OCPU Pumping cost, $/week
CF Concentration upper bound in frac fluid, ppm
CD TDS discharge concentration tolerance, ppm
CUCT

w Concentration upper bound in desalination unit inlet, ppm
ηw Desalination recovery
CP PD Upper bound capacity of pond, MG
CP IP,max

p Upper bound capacity of impoundment, MG
CP IP,min

p Lower bound capacity of impoundment, MG
Binary variables
yskt Defines the beginning of stimulating each wellpad
yPIuu′c Defines existence of piping connections
yRIo River o is set up
yPDq Pond o is set up
yIPp Impoundment p is set up
yIIPpt Impoundment p is used
yCTw Indicates the technology for desalination
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Continuous variables
fPDqt Pond withdrawal from precipitation, MG
fRIot River allowed withdrawal, MG
fPIuu′ct Freshwater flow from one location to the next, MG
fst Total water use at each wellpad per time period, MG
fFWst Freshwater supplied through pipe and used at each wellpad, MG
fWW
st Wastewater use at each wellpad, MG
fTRst Freshwater transported to each wellpad through trucking, MG
fFBst Wastewater flowback at each wellpad, MG
fOTst Onsite treatment throughput, MG
fCTt Total wastewater processed through desalination, MG
fSCTwt Wastewater processed through desalination unit w, MG
fRCT

st Desalinated wastewater recycled to the completion pad, MG
fDPt Wastewater disposed, MG
fFB,OTst Flowback water to be transported to basic treatment, MG
fFB,CTst Flowback water to be desalinated, MG
fFB,DPst Flowback water to be disposed at an injection well, MG
fTCTw Desalination plant throughput, MG
cFBst Wellpad flowback TDS concentration, ppm
cOTt TDS concentration of flowback transported to basic treatment, ppm
cCTt TDS concentration of the feedwater stream to desalination, ppm
vIPpt Volume of impoundment, MG
vPDqt Volume of pond, MG
vCTt CWT wastewater storage tank, MG
lIPp Capacity of impoundment, MG
lSTst Capacity of wastewater tanks, MG
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Chapter 6

Conclusion

This work has focused on the reduction of water-related costs in both chemical processes
and unconventional natural gas development. The first part (chapters 2 and 3) involves
the application of process models with water-using units as well as wastewater treatment
processes. The second half (chapters 4 and 5) deals with water management strategies in
Shale plays, where water use volume and cost become more significant than most conven-
tional applications. Options for reducing freshwater consumption can be achieved through
reuse, recycle, and regeneration. The objective is to systematically optimize for both con-
ventional and novel applications in a superstructure-based design. In this final chapter, we
first summarize the four major chapters of the thesis, then list the main contributions of
this work, followed by a discussion of the recommendations for future work.

6.1 Summary of thesis

6.1.1 Water targeting model for water-using process units

Chapter 2 presents an approach to perform simultaneous optimization of heat and water
integration for a process flowsheet. Simultaneous optimization allows for complex trade-
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offs among raw materials, investment cost, and energy and water consumption in a process
flowsheet, which leads to lower cost solutions with efficient use of energy and water. We
have proposed a solution methodology where a simplified targeting formulation that can
predict the minimum freshwater consumption is required. NLP formulations are typically
used to describe a superstructure-based multi-contaminant WN. The nonlinearity is mainly
due to the bilinear term of flow multiplied by concentration in the mixer units. To this
end, an LP formulation for freshwater targeting based on a WN superstructure has been
developed. The formulation for multi-contaminant WN problems with only water-using
process units has been shown to be exact under a certain assumption, and it yields a tight
upper bound in cases where the assumption does not hold true. We then apply this target-
ing formulation to two examples, methanol and bioethanol processes, using simultaneous
optimization strategy, and demonstrate the effectiveness of the simultaneous approach in
improving both the quality and computational effort of the solution. In the methanol syn-
thesis example, the simultaneous optimization approach enables an improvement in the
profit from 62.7MM$ to 73.4MM$ per year, a 17% increase. This formulation is also
combined with the heat targeting model by Duran and Grossmann27 to determine the min-
imum utility and water requirement for heat-integrated WNs. An example from Bogataj
and Bagajewicz62 with four water-using process units operating at different temperatures
is used to compare the targeting formulation and the detailed MINLP network synthesis
model. The detailed model from literature is an MINLP with 749 continuous variables
and 115 binary variables, while the targeting formulation (NLP) contains only 206 con-
tinuous variables and no binary variables. The solutions from both methods identify the
same heating, cooling, and freshwater consumption.

6.1.2 Wastewater regeneration models for water network optimiza-
tion

Chapter 3 describes an approach combining various technologies capable of removing all
the major types of contaminants through the use of more realistic models. The follow-
ing improvements are made over the typical superstructure-based water network models.
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First, since the most common model for treatment units is relating the inlet and outlet
concentrations of each contaminant by a removal ratio, we have developed unit-specific
short-cut models in place of the fixed contaminant removal model to describe contami-
nant mass transfer in wastewater treatment units. We have developed short-cut models
for reverse osmosis, activated sludge, etc. Short-cut wastewater treatment cost functions
are also incorporated into the model. By considering the use of short-cut models, we are
able to exploit the trade-offs between treatment cost and removal efficiency of the units.
In addition, uncertainty in mass load of contaminant is considered through multiple sce-
narios (e.g. best, average, and worst) to account for the range of operating conditions.
In the illustrative example, the total network cost for optimizing for the worst scenario
is $565,828.80, whereas the cost is $543,008.65 for optimizing over all three scenarios.
In addition, the Furthermore, the superstructure is modified to accommodate realistic po-
tential structures. We have also presented a modified Lagrangean-based decomposition
algorithm in order to solve the resulting nonconvex MINLP problem efficiently. The ef-
fectiveness of the algorithm is demonstrated in Example 1, which has two water-using PUs
and two sets of wastewater treatment technologies. The resulting choice of treatment tech-
nology is different (ion exchange vs. reverse osmosis) from the simplified model used in
the illustrative example. The decomposition algorithm is able to reduce the computational
effort by almost a factor of five.

6.1.3 Operational model for shale gas water management

Compared to the process industries, the quality and quantity of freshwater supply is even
more significant for shale gas operators. In addition, flowback water management presents
a major challenge to the industry. In collaboration with Carrizo Oil & Gas, we have pro-
posed a two-stage programming MILP scheduling formulation to address the various con-
cerns regarding water usage. The goal in Problem I is to balance the trade-off between wa-
ter acquisition from uninterruptible sources (e.g. large rivers) that are available throughout
the year but require more expensive truck transportation, versus acquisition from interrupt-
ible sources (e.g. creeks) that can be transported with pipelines at lower costs but are not
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available throughout the year. An effective STN-based model has been developed for this
problem, and we have applied this model to Carrizo’s operation in the Marcellus play in
Example 1 with data provided by the operator. The optimized stimulation schedule leads to
an order magnitude reduction in freshwater trucking cost ($5.9 million to $569,000) com-
pared to a heuristic schedule proposed by the operator. As a result, only 2.4% of the total
freshwater required for frac fluid is supplied by truck hauling, while the rest is transported
through pipelines. This model has been extended to handle a combination of disposal op-
tions with alternatives for recycling and reuse of flowback water, while accounting for the
income from the sales of natural gas (Example 2). The inclusion of the sales revenue leads
to a more aggressive stimulation schedule that increases the revenue from 181.43 MM$ to
237.56 MM$. Although the trucking cost does not experience a significant reduction as
seen in Example 1, the overall cost is still reduced from 25.02 to 23.41 MM$.

6.1.4 Investment optimization model for freshwater acquisition and
wastewater handling in shale gas production

With the rapid increase in shale gas production, wastewater management becomes a ma-
jor issue. As a result, operators need to start making long-term investment decisions to
handle flowback and produced water efficiently. In chapter 5, we focus on making in-
vestment decisions, including freshwater source setup cost, piping setup cost, freshwater
impoundment setup cost, and annualized desalination plant, in order to determine an over-
all cost-saving strategy. The goal is to determine the optimal freshwater sources for the
given set of wellpads based on their respective location, availability, and cost. Treatment
facility capacity and removal options that cater to the flowback and produced water char-
acteristics of the region are optimized in addition to the frac schedule. We have presented
a case study and several scenarios from the Utica shale to illustrate the model. First, by si-
multaneously optimizing frac schedule and costs as opposed to optimizing the cost model
with fixed frac schedule, a 14.8% improvement in profit can be achieved. Also, we have
found that desalinating flowback water not only allows for a higher recycle ratio of the
wastewater, but also cost reduction in freshwater supply. Freshwater trucking is allowed
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in a third scenario, the result of which indicates that trucking improves the economic and
robustness of the operation since freshwater supply in the region is highly intermittent.
Finally, we analyzed the effect that increased flowback water flowrate has on the overall
cost. Even though treating the flowback becomes more expensive, there is a reduction in
freshwater supply cost due to a higher recycle rate, which leads to an overall cost increase
by 21%.

6.2 Research contribution

1. An LP formulation has been developed for targeting minimum freshwater consump-
tion for a set of water-using process units with multiple contaminants.

2. The LP targeting method has been used for simultaneous flowsheet optimization
with heat and water integration, thereby avoiding the use of detailed NLP or MINLP
models for water network synthesis. Since the formulation is linear, it does not con-
tribute significantly to the computational difficulty of the simultaneous optimization
of flowsheet formulation.

3. The water targeting formulation has been simultaneously optimized with heat tar-
geting formulation to determine the minimum utilities required for heat-integrated
water networks. The problem has smaller size and requires less computational effort
compared to solving the detailed HEN and WN superstructures.

4. Wastewater treatment design models based on short-cut models have been devel-
oped for several technologies (reverse osmosis, ion exchange, sedimentation, ultra-
filtration, activated sludge, and trickling filter) to improve the accuracy of WN with
wastewater treatment units. The model can determine the optimal trade-off between
treatment unit removal efficiency and capital and operation cost.

5. A Lagrangean decomposition algorithm has been developed to synthesize the water
networks with short-cut models under multiple scenarios.

6. A novel MILP model has been proposed to determine the schedule for fracturing a
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set of wellpads as well as the acquisition of water from uninterruptible or interrupt-
ible sources with both pipelines and trucks.

7. The proposed MILP model has been applied to real shale gas operation in the Mar-
cellus play, yielding significant cost reductions and revenue enhancement in com-
parison to heuristic schedule developed by shale gas operators.

8. The MILP model has been expanded to incorporate investment decisions in fresh-
water acquisition, wastewater treatment, storage, and transportation. The model can
cater to regional differences, and it has been applied to shale gas operation in the
Utica shale.

6.3 Future research directions

6.3.1 Process water network

Predicting contaminant loads. The water-using process units in the water network are
characterized by maximum concentration limits on the inlet streams as well as the mass
load of contaminants released from the unit into the water stream. Typical water use such
as vessel cleaning or solvent extraction emphasizes the mass load of contaminants to be re-
moved, and the water loss or gain is assumed to be negligible18. Another type of processes
such as cooling water cycle concerns more with water flowrate in the process. The need
for retrofitting water networks arises from capacity increase, product quality change, and
environmental regulations98. Methods assuming constant load of contaminants are more
appropriate for retrofit, since the specific performance data can be measured in the plant.
However, for grass-root design models are required to predict contaminant loads32,20. In
chapter 3, we have used a three-scenario model to account for the uncertainty of the pro-
cessing conditions during the course of the operations. However, a more fundamental
approach for modeling contaminants would be desirable. One extension of this work is to
predict contaminants loads based on the characteristics of actual process unit operations.
By developing more rigorous process models, one can better estimate the mass load and
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contaminant concentration in the water streams.

6.3.2 Shale gas water management

Long-term wastewater handling. Long term produced water needs to be handled effi-
ciently. Currently, once an operator stops stimulating or completes all the wells in a re-
gion, the wastewater produced thereafter is typically disposed. Sharing of flowback and
produced water among operators is prohibited due to regulatory restrictions. In addition,
unlike conventional facilities that typically operate at steady state, shale gas flowback wa-
ter exhibit a decaying profile with fluctuations in the impurity concentration level. As a
next step, one could investigate the cost savings assuming it is possible to transfer liability
of wastewater to encourage more collaboration. In addition, more detailed models should
be developed since the choice of desalination technologies suitable for treating high-TDS
water (e.g. forward osmosis, mechanical vapor compression, and membrane distillation1)
is mainly an economic decision.

Wellpad drilling logistics. Another consideration is that drilling decisions could be opti-
mized with water use logistics99. The operators need to decide the number of wells to drill
at each wellpad during each time period. The length of each well and the spacing between
two wells have significant impact on the well’s productivity. An increase in the length of
the well leads to a higher gas production. However, drilling at such a distance from the
wellbore becomes much more difficult, thus increasing the drilling cost significantly. Al-
ternatively, the operators could set up another wellpad in close proximity to the previous
pad, and it is possible to have the two wells at the different wellpads to crossover. Since the
volume of water used is determined by the number of stages drilled at each wellpad, and
the type of frac fluid used at each pad is mainly dependent on the geological formation,
the drilling schedule could have significant impact on the water management strategies
adapted at each site.

Uncertainty. Freshwater availability is highly seasonal and the fluctuation can affect the
frac schedule. We have included the uncertainty associated with freshwater availability
of interruptible sources in the operation model for shale plays. Other fluctuating factors
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that could affect the optimization result are gas production profile and flowback water
flowrate profile. Typically, at each wellpad, operators would drill a test well to determine
the productivity of its nearby wells. As more wells are drilled in close proximity, one
can better estimate the composition and production profile of the wells in each wellpad.
The next step could take this uncertainty into consideration and formulate a stochastic
programming problem to better estimate the expected profit related to the wellpads86.

Environmental risk measures. One of the major issues in shale gas operations is the
potential adverse impact on the environment, namely wastewater disposal, waste transport
emission, and water source pollution. Developing criteria for estimating environmental
risks from shale gas development then becomes an important consideration100,101.

The bi-criterion optimization approach both maximizes net present value (NPV ) and min-
imizes environmental impact (ENV ) as seen in model (6.1).

max. NPV = f1(x, y)

min. ENV = f2(x, y)

s.t. g(x, y) ≤ 0

x ∈ X, y ∈ {0, 1}

(6.1)

The bi-criterion approach can be solved using the ε-constrained method, which relies on
obtaining a series of Pareto-optimal solutions. The environmental objective (ENV ) is set
as an inequality constraint where ENV ≤ ε, and the problem is solved for different values
of ε.

The environmental model itself can be evaluated through Life Cycle Analysis (LCA). LCA
is a method to assess environmental impacts associated with a product or process over all
the stages. This is achieved by expanding the boundaries to include the upstream (its
primary resources) and downstream (final disposal) activities related to the main process
itself. Indicators such as ReCiPe102 and Eco-indicator 99103 can also aid in developing
optimal water management strategies. A synergy can be created between the reduction of
capital and operation cost and the reduction in environmental disturbances. A major chal-
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lenge, however, is that data in these LCA systems is either highly uncertain or unavailable
for shale gas (e.g. methane emissions)104. Therefore, prediction of emissions in shale gas
operations is also an important future research direction.
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Appendix A

LP Targeting Model for Single
Contaminant System

This appendix makes a comparison of the superstructure and formulation of two models
for predicting freshwater target in the context of single-contaminant WN. Even though the
solutions of two models lead to different optimal WN structures, the freshwater targets
obtained are the same for each water-using process unit.

The original LP formulation,

min.
∑
j

FWw
j

s.t. FWw
j +

∑
i

Fi,j −
∑
k

Fj,k − Fj,out = 0 ∀j ∈ N, i ∈ Pj, k ∈ Rj

Fw
h −

Lh
Cmax
h,out

= 0 ∀h ∈ H∑
i

Fi,j(C
max
i,out − Cmax

j,in )− Fw
j C

max
j,in ≤ 0 ∀j ∈ H, i ∈ Pj∑

i

Fi,j(C
max
i,out − Cmax

j,out)− Fw
j C

max
j,out + Lj = 0 ∀j ∈ H, i ∈ Pj

(A.1)

was developed by Bagajewicz19 is designed for the single-contaminant Water-Allocation
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Figure A.1: Schematic representation of a water network.

Planning (WAP) problem. A.159 illustrates the alignment of different types of water-using
process units. The sets H represents head process is a water-user that utilizes only fresh
water; I is the set of intermediate water user processes that receive streams from other units
and feeds water streams to other units; finally, T is the set of terminal processes that receive
streams from other processes, and they discharge their outlet water streams to treatment.
The set of interconnections among the process units are shown in A.1 and A.219.

The freshwater minimization in the work by Savelski and Bagajewicz59, which we will re-
fer to as “Model 1”, assumes a mass-transfer model, which applies to water-using process
units that have fixed loads of contaminant to be removed. The units are also characterized
by their maximum inlet and outlet concentrations for the contaminant. Savelski and Baga-
jewicz proved that the outlet stream of a process unit reaches its contaminant concentration
upper bound for a network solution that consumes minimum freshwater flowrate. Thus,
this condition of optimality fixes the outlet concentration for a process unit to its upper
bound. The flowrate through a process unit can be varied with the process inlet concentra-
tion. On the other hand, the model (NLP-1) used in chapter 2, which we will refer to as
“Model 2”, assumes fixed demand of water flowrate through a process unit in addition to
fixed load of contaminant. This condition was used in16, and in essence, it fixes the inlet
and outlet concentration difference. It can be shown that even though the two models pro-
vide different optimal WN connectivities and flowrates, they provide equivalent freshwater
targets.

We can compare the two models by considering the ten-processes problem in19 (whose
data is omitted here). Model 1 predicts a minimum freshwater usage of 165.94 ton/hr.
By applying (NLP-1) to this problem and restricting process stream connectivities and
flowrates based on the result obtained in Model 1, we also obtain a minimum freshwater
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BagaWN/BagaPU 

Figure A.2: Precursor and receivers of a process.

consumption of 165.94 ton/hr (this target can also be obtained by (LP-1)).

A closer look at the solutions shows that two cases arise from the two models - the pro-
cess units could either have different flowrates (thus different inlet concentrations) or the
same flowrate (the inlet concentration reaches its upper bound). The former case can be
observed in Model 1, where two of the process units use only freshwater to satisfy con-
taminant removal demands. Therefore, their inlet concentrations are zero, even though
the maximum inlet concentration for those units are greater than zero. In Model 2, how-
ever, the same two process units allow their inlet streams to reach upper bounds, thus
the flowrates through those units are higher than predicted in Model 1. This difference
between the two models is reconciled by the local recycle stream allowed in Model 2 as
shown in A.3. In the second case where the two models predict the same water flowrate
through a process unit, the resulting structure demands for reuse streams from other pro-
cess units, with or without freshwater consumption to that given process units. This is
shown in A.4.

Note that in Model 1, only one direction is allowed for reuse based on the concentration
monotonicity proved by Savelski and Bagajewicz59. However, Model 2 contains more
structural possibilities that could be useful, especially when dealing with multiple con-
taminants. In that sense, Model 1 can be regarded as a restricted form of Model 2 as
shown in A.6. For this case, taking into account Proposition 1, the model (NLP-1) reduces
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PU2 
FW = 32 ton/h 

Cin = 0 ppm 

Cin < Cin
max 

F = 32 ton/h 

L = 2.88 kg/h 

Cout = 90 ppm 

Cout = Cout
max 

 

(a)

PU2 

FW = 32 ton/h 

C = 0 ppm 

F = 12.3 ton/h 

F = 44.3 ton/h 

L = 2.88 kg/h 

Cin
max = 25 ppm 

Cin = Cin
max 

Cout
max = 90 ppm 

Cout = Cout
max 

(b)

Figure A.3: PU2 stream parameters and variables obtained in (a) Model 1 and (b) Model
2.

PU3 

FW = 15.72 ton/h 

C = 0 ppm F = 22.86 ton/h 

L = 4.0 kg/h 

Cin
max = 25 ppm 

Cin = Cin
max  

Cout
max = 90 ppm 

Cout
 = Cout

max  

FPU1 = 7.14  ton/h 

C = 80 ppm FPU7 = 4.03 ton/h 

FPU10 = 18.83 ton/h 

Figure A.4: PU3 stream parameters and variables obtained in Model 1 and Model 2.

PU1 

PU2  

Figure A.5: Excluded structural connectivity in Model 1.
SingleSuper 

Freshwater Discharge 

PU1     

PU3 

PU2     

PU4     

Figure A.6: Representation of Model 1 using Model 2 superstructure.
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for the case of a single contaminant to the following LP, where all the concentrations reach
their maximum concentrations, and the only variables are the flowrates, F k and F i.

min. FW

s.t. FW =
∑

k∈SUin

F k

F k =
∑
i∈min

F i ∀m ∈MU, k ∈ mout

F kCk,max =
∑
i∈min

F iCi,max ∀m ∈MU, k ∈ mout

F k =
∑
i∈sout

F i ∀s ∈ SU, k ∈ sin

P pCk,max + Lp = P pCi,max ∀p ∈ PU, ∀k ∈ pin, i ∈ pout
F k,min ≤ F k ≤ F k,max ∀k

(LP-s)

Model (LP-s), which is for single contaminant, can be shown (we omit the detailed deriva-
tion) to provide the same freshwater consumption as the LP in (A.1).
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Convex Envelopes

• Bilinear terms60: FC → f

f ≥ FminC + CminF − FminCmin

f ≥ FmaxC + CmaxF − FmaxCmax

f ≤ FminC + CmaxF − FminCmax

f ≤ FmaxC + CminF − FmaxCmin

 (B.1)

• Concave term: Fα → Θ

Θ ≥ (Fmin)α + (
(Fmax)α − (Fmin)α

Fmax − Fmin
)(F − Fmin) (B.2)

•
√
V → Vnew (From trickling filter formulation (3.17) and (3.19))

V 2
new − V ≤ 0 (B.3)
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