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Abstract

In this thesis we develop a non convex non-linear programming problem that

determines the minimum run time of a rapid, gel-free DNA separation tech-

nique called micelle end-labeled free solution electrophoresis (ELFSE). Micelle

ELFSE is typically performed in capillary electrophoresis where the capillary

length, electric field strength, and micelle drag tag size are the primary tuning

variables. Using optimization, we demonstrate that capillary electrophoresis

can be used to separate up to 600 bases in under 50 minutes. A significant

improvement in performance is then shown to be achievable by using parallel

capillaries which can separate up to 600 bases in under 5 minutes. Even more

improvement is shown to be possible by using alternative separation modes,

such as using an EOF counter-flow which enables 600 bases to be separated

in under 4.5 minutes using a single capillary, and microfluidics utilizing snap-

shot detection to yield 600 bases in under 3.5 minutes. Long DNA, above

5000 bases, is particularly challenging to separate quickly. Using Brownian

dynamics simulations we show the viability of integrating two DNA separa-

tion techniques: end-labeled DNA electrophoresis and entropic trapping. We

present simulation results that demonstrate improved performance of the in-

tegrated device over entropic trapping alone. Brownian dynamics simulations

are very computationally expensive, often taking over 24 hours per data point.

We present an acceleration technique called projective integration which may

be useful for simulations with a large amount of integration steps. We show

that, using a model built from linear regression, periodic extrapolations can

be used to decrease computational time. Finally we present the stability of

the multi-component distillation column. We demonstrate, through the use of

thermodynamics, that the distillation column is asymptotically stable when

using pressure, temperature, and level control on the reboiler and condenser.
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Chapter 1

Introduction

Transport and separation problems described by non-linear systems can often

be difficult to model by simple closed form equations. This makes the further

analysis, such as of optimization and stability analysis, difficult to perform.

Despite this difficulty, significant benefits can be derived by application of these

systems level analysis techniques. Global optimization, for instance, has been

used with success in applications including water treatment [1], protein folding

[2], pooling and blending [3], robust process control [4], and the prediction of

phase and chemical equilibrium [5] just to name a few with more details found

in a review by [6].

The algebraic models that describe the many different transport processes

vary significantly in complexity and structure. Given a general non-convex,

non-linear programming (NLP) problem, the task of rigorously and reliably

finding the global minimum is a challenging problem. Non-convex functions

may have multiple local minima. Rigorous methods for solving these prob-

lems to global optimality rely on spatial branch and bound techniques to

manually search the feasible region of the problem [7–9]. A spatial branch

and bound algorithm is designed to reduce the gap between the upper bound,
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the smallest of the known local solutions, and the lower bound, the solution to

a convex relaxation of the original problem. The efficiency of state-of-the-art

global solvers αBB [7], BARON [8, 10], LindoGLOBAL [11], etc. is realized

by utilizing tight convex relaxations for known functional forms such as bi-

linears, xy, [12, 13], linear fractionals, x/y, [14, 15] and concave univariates

such as a square root function,
√
x, [16]. Symbolic reformulation [16] and

reformulation-linearization techniques for polynomial terms [17], for instance,

can also be used to restructure the original problem to further ensure a tight

convex relaxation. With these principles in mind, global optimization becomes

tractable for many applications.

The analysis of system dynamics and stability can also lead to significant

improvements in several transport and separation processes. Some of these

applications include the control of distillation columns [18–20], enhanced oil

recovery [21–23], and the control of colloidal and Brownian particles [24–26].

While the dynamics and stability properties of linear systems have, for the

most part, been well characterized [27], non-linear systems remain difficult to

analyze. Non-linear dynamical system analysis often makes use of Lyapunov

stability theory, dissipativity, or passivity to show if a system is stable [28],

although the use of these techniques hinges on the ability to satisfy specific

inequalities that are difficult to guarantee.

The work in this thesis began with the systems level analysis of a re-

cently developed micelle end-labeled DNA separation technique designed for

rapid length based separation of DNA [29, 30]. Length based separation is

an important step in many DNA analysis techniques such as short-tandem

repeat analysis [31, 32], mutation detection for cancer diagnosis [33–35] and

sequencing [36–38]. Typically length based DNA separation is completed us-

ing gel electrophoresis, but gels are inherently slow due in part to the large
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amount of friction they impart onto the DNA. A Gel-free alternative called

end-labeled free-solution electrophoresis (ELFSE) [39, 40] (also referred to as

free-solution conjugate electrophoresis (FSCE) [35, 38]) is much faster, resolv-

ing DNA lengths up to 265 bases in 30 minutes, with single-base resolution.

These methods require that a highly monodisperse drag-tag be attached to

the end of the DNAs in the sample. A variation of this technique is micelle-

ELFSE electrophoresis [29, 30], which instead uses ensembles of transiently

end-attached surfactant micelles as drag-tags. Here, stochastic variations in

micelle size provide a highly uniform drag, despite a polydispersity of micelle

size in the overall sample. Micelle-ELFSE allows the size of the drag-tag to

be chosen simply by using buffers with a desired micelle size, without further

chemical modification. This presents an opportunity to decrease run times by

performing separations of longer DNA using larger drag-tags, and those for

shorter DNA using shorter drag-tags. Another design trade-off is presented by

the choice of electric field and capillary length. Use of high electric fields will

give fast run times, but will cause excessive band broadening due to insufficient

micelle size-sampling.

We demonstrate how to formulate a conventionally detected capillary elec-

trophoresis DNA separation problem as a non-convex NLP in chapter 2. In

conventionally detected capillary electrophoresis, the primary design variables

for micelle-ELFSE are the capillary length, the applied voltage, and the size

of the micelle. The optimization reveals that DNA up to 600 bases can be

resolved in under 50 minutes. Resolving DNA of this length requires a large

drag tag. It is therefore beneficial to use parallel capillaries to split the sep-

aration task. The non-convex NLP is easily reposed for parallel capillaries

allowing us to identify what micelle drag tags to use in which capillaries. The

optimization shows that using parallel capillaries can reduce the run time to
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less than 5 minutes for separating 600 bases of DNA.

In chapter 3 we investigate the viability of alternative detection modes

that may be used to speed up the micelle-ELFSE DNA separation method. In

conventionally detected capillary electrophoresis, the elution order for DNA is

from long to short. Short DNA, which is tagged with a large micelle, will take

significantly longer to migrate to the detector. We therefore propose using a

counter-flow to reverse the elution order of the DNA lengths. Optimization

of the counter-flow enables up to 600 bases of DNA to be separated in under

4.5 minutes using a single capillary. Snap-shot detection is another method

that can be used to speed up the micelle ELFSE DNA separation. Snap-shot

detection observes every DNA length in the separation channel at some instant

in time. Snap-shot detection, however, typically requires the use a motorized

stage to allow scanning of the separation channel. This limits the overall area

over which the separation can take place, requiring the use of microfluidic

devices with turns to be able to fit long channel lengths into small areas.

We show that a non-convex NLP can lead to the optimal design of either a

serpentine or a spiral to separate 600 bases of DNA in under 3.5 minutes.

Long DNA can be particularly difficult to separate according to length.

Once the DNA length becomes long enough it undergoes bias reptation in a

gel and the length based mobility of DNA is lost [41, 42]. Pulsed field gel elec-

trophoresis can be used to separate long DNA although it can take up to 24

hours [43–46]. Modern separation techniques employ microfabricated obsta-

cle course, such as entropic traps [47–49], nanofilter arrays [50–52], nanopits

[53, 54], and nanopost arrays [55–58], can separate long DNA on the order

of minutes. While microfabricated devices are capable of dramatic speed up

in long DNA separation, they are difficult to tune. Brownian dynamics sim-

ulations can by employed to offer some insights in the design process [58–62]
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although the computational times can often exceed 24 hours which precludes

the use of direct optimization.

In chapter 4 we use Brownian dynamics simulations to show how end-

labeled DNA separation can be integrate in to entropic trap devices to im-

prove the separation performance. Entropic traps and end-labeled DNA elec-

trophoresis are compatible separation methods as DNA elutes long to short

in both methods. We demonstrate that the resolution of this novel integrated

separation techniques is significantly improved with the increasing size of the

drag tag. The physical reason for why such an improvement is observed is

elucidate through the use of a scaling analysis. We propose that the drag tag

effects the diffusivity of the DNA such that short DNA diffuses at significantly

longer time scales over long DNA.

Design on novel DNA separation methods using Brownian dynamics sim-

ulations is a slow process due to the large number of states, integration steps,

and realizations required to get good estimates of the statistical distribution

of the results. Unfortunately it is also often difficult to derive closed form

algebraic models for these novel separation methods, such that optimization

cannot be easily applied. It may then be useful to utilize an acceleration

technique such that the simulations can be more rapidly executed. One such

acceleration technique is equation-free projective integration [63–65]. After

some work with equation-free projective integration it was clear that it is not

the ideal technique to accelerate Brownian dynamics simulations. Along the

way, however, we discovered some general improvements to the projective in-

tegration method.

In chapter 5 we purpose a novel projective integration technique that breaks

with the equation-free method. Projective integration uses a two coupled in-

tegration methods to rapidly integrate a problem with both fast and slow
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dynamics. First a detailed inner-integrator is used to damp out any slow

dynamics. Next the outer-integrator is used to extrapolate out over a long

horizon. The inner-integrator is then restarted and the process continues un-

til the desired integration is completed. The standard, equations-free method

makes the extrapolation using a model derived using finite-difference calcula-

tions. With this method it is difficult to account for the interaction between

states and estimate error propagation. In our proposed method, we use linear

regression to build a model which can then be used in the outer-integration

step. An error bound can be derived from the model which allows for the

adaptive update of the projection horizon. We demonstrate that our proposed

projective integration technique works well for small ordinary differential equa-

tions, but does not significantly accelerate large differential equations. This

likely stems from the reduced predictive accuracy for models that found from

under-determined linear regression, which is typically required when the num-

ber of states is large. Projective integration works particularly well for stable

(or contracting) non-linear systems.

Analysis of stability of non-linear systems is important for design of con-

trol systems. In chapter 6 we demonstrate the use of thermodynamics to

show stability of the multi-component distillation column. We make us of

an availability function [66] to build a Lyapunov function. The Lyapunov

function reveals explicitly what controls are required for asymptotic stability.

Although previous work has demonstrated stability of binary system [19, 20],

we believe this is the first time a general stability analysis has been successful

for the multi-component system.
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Chapter 2

Micelle End-labeled DNA

Separation using Conventional

Detection Modes

In this chapter we discuss the optimal length based separation of micelle end-

labeled DNA in single and parallel capillaries. Single and parallel capillary

electrophoresis systems are readily available from vendors such as Beckman-

Coulter and ABI. In order to achieve minimum run time we treat the capillary

lengths, applied electric field strength, and micelles size as design variables.

We select these three parameters because they are easy to change by the user

and their impact is significant on the quality and run time of the separation.

An important implication associated with choosing the micelle size as a design

variable is that the micelle sizes must be previously characterized from a known

surfactant type, mixture, and concentration. Specifically, we make no attempt

to find the identify the appropriate surfactants to use to achieve minimum run

time separations.

We begin this chapter with a general discussion of minimum run time DNA
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separations. We then focus on the micelle end-labeled DNA separation prob-

lem. The optimization reveals general run conditions to yield fast DNA sepa-

rations, such as using the shortest capillaries and maximum voltage available.

The optimization allows for quick prototyping of different run configurations

such a parallel capillaries. We show that the run time of the separation can

be significant reduced by using parallel capillaries in the optimal configura-

tion. Other configurations for rapid DNA separation by micelle end-labeled

electrophoresis will be discussed in the next chapter.

2.1 General DNA Separation Problem

Length based separation of DNA is successful when the DNA length of interest

is resolved from the other lengths. A typical apparatus for completing this

task is a capillary electrophoresis system with a diagram shown in figure 2.1.

In capillary electrophoresis charge molecules separate over some distance lD

driven by an electric potential difference Vapp. The charged molecules separate

as they migrate at different rates down the capillary at rate dictated by their

electrophoretic mobility

u = µE (2.1)

where u is the analyte velocity, µ is the electrophoretic mobility and E is the

applied electric field given by

E =
Vapp
lC

(2.2)

where Vapp is the applied voltage and lC is the total length of the capillary.

Molecules with naturally differing electrophoretic mobilities µ can be sepa-

rated in free-solution capillary electrophoresis without the addition of a sepa-
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Figure 2.1: Schematic of a capillary electrophoresis system. DNA is separated
and detected after a distance lD away from injection with throughput con-
trolled by the applied electric field E which is the applied voltage Vapp over
the total capillary length lC .

ration matrix. Many interesting molecules such as DNA, however, have elec-

trophoretic mobilities µ that scale independently of length [67]. The length

independent scaling can be broken with the addition of separation matrix to

the capillary. Gel electrophoresis is commonly used to separate DNA but

recent advances in end-labeled free-solution electrophoresis has identified an

alternatives means of breaking the length independent scaling of the elec-

trophoretic mobility [38–40]. The addition of a uncharged drag tag to DNA

acts as a molecular parachute and has the advantage of significant speed-up

over typical gel electrophoresis runs.

Separation of DNA using capillary electrophoresis is a semi-batch process,

i.e. DNA is first injected as one plug, then the electric field is applied and the

analytes migrate down the capillary and separate according to their differing

mobilities µ and create separate concentration bands. When the concentration

bands are detected they are observed as Gaussians with some full-width at

half-maximum wi and mean migration time ti. The width of the Gaussian
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signal is the result of various disturbances on the velocity of each analyte i.

The quality of a length based separation is quantified by the resolution factor

for each analyte Ri. The resolution between two bands is the ratio of the

Gaussians’ broadness to their spacing

Ri =
wi+1 + wi
2 |ti+1 − ti|

(2.3)

where wi is the full width at half-maximum of the Gaussian, and ti is the mean

migration time for the analyte i. For a Gaussian profile, the full width at half-

maximum is described in terms of its variance, σ2
i , such that wi = 2

√
2 ln(2)σ2

i .

When the resolution factor in Eq. (2.3) is less than 1.5 then two concentration

bands are considered resolved from each other.

2 4 6 8 10 12 14
0

0.5

1

1.5

|
ti+1

|
ti

wi+1 wi

time (min)

si
gn

al

Figure 2.2: Two resolved Gaussians

The run conditions such as Vapp, lC and properties of the separation ma-

trix, such as gel concentration, directly determine both the run time and the

resolution for each analyte i. The separation is complete when all analytes i

are resolved. The optimal run conditions for length-based separations using

capillary electrophoresis can be found by solving the optimization problem Eq.

10



(2.4)

min
z

trun(z) = max
i∈I
{ti(z)}

s.t. Ri(z) ≤ 1.5, ∀i ∈ I

Ri(z) =
wi+1(z) + wi(z)

2 |ti+1(z)− ti(z)|

wi(z) = 2
√

2 ln(2)σ2
i (z)

σ2
i (z) = si(z)

ti(z) = hi(z)

g(z) ≤ 0

z ∈ Rn

(2.4)

where si : Rn → R is the model for the variance generation during the separa-

tion, hi : Rn → R is the model for the migration time and g : Rn → Rm, m < n

are the constraints on the system and the states z. The run time is the longest

migration time of all the analytes, trun = maxi∈I{ti} which is typically known

to correspond to either the smallest or largest analyte depending on the sepa-

ration method.

The models in the optimization problem Eq. (2.4) define two important

features of the DNA separation problem: ti the migration time and σ2
i the

variance generated for each analyte i. Both of these functions dependent of

the separation mode used. In the next section, we will discuss some of the

sources of variance that occur during capillary electrophoresis.

2.2 Minimum run time DNA separation using

micelle ELFSE

The optimization framework developed in the previous section can be utilized

to find the optimal run conditions for micelle end-labeled free-solution elec-
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trophoresis (ELFSE). Micelle ELFSE is a rapid DNA separation method that

is an attractive alternative to gel electrophoresis, since gels can be slow and

difficult to use. The optimization model in Eq. (2.4) requires definition of

migration time ti and the variance σ2
i for each analyte i. In this section we

discuss the micelle ELFSE model in detail and how it fits into our optimization

framework.

In free-solution, DNA undergoes electrophoresis at a rate independent of

its length. End-labeled free-solution electrophoresis (ELFSE) is a length based

separation method that applies additional hydrodynamic friction to each DNA

length through an end-attached drag tag which breaks the length independent

scaling of DNA electrophoresis. From Eq. (2.1), the electrophoretic mobility

dictates the velocity for each DNA length L. The electrophoretic mobility of

the DNA drag-tag complex is given by

µ = µ0

(
L

L+ α

)
(2.5)

where µ0 is the free-solution mobility of DNA, L is the length of DNA in terms

of bases and α is the size of the drag tag in units of the number of DNA bases

with equivalent hydrodynamic drag [39, 68]. The migration time for each DNA

length L is then given by using Eq. (2.1) and Eq. (2.5) so that

t =
lD
µ0E

(
1 +

α

L

)
(2.6)

where lD is the length to the detector and E is the applied electric field

strength. The migration time is function of capillary length lD, applied voltage

Vapp and the “drag tag size” α which define the state variables z = [lD, Vapp, α]T

for this specific problem and the free-solution mobility µ0 is taken to be a con-

stant parameter, µ0 = 2.4× 10−4 cm2/V·s, [69] for some implicit temperature,
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salt concentration and salt type [70] not defined in the model.

Modeling the migration time alone does not give a complete description

of the separation process; we must also define a model for the variance gen-

erated during the separation. The physics behind many velocity disturbances

are modeled as random walks that are statistically independent from each

other [71–73]. As independent random walks, the variance generated from

each disturbance can be summed to yield the total variance σ2 =
∑
σ2
source.

These variance sources are most naturally modeled as disturbances observed

in space, so that we denote the variance as σ2
x. For ELFSE using capillary elec-

trophoresis, the significant sources of variance are diffusion, wall adsorption,

and Joule heating resulting in the total spatial variance [38–40]

σ2
x = σ2

diff + σ2
wall + σ2

JH (2.7)

injection, drag tag polydispersity and other small effects are neglected. It is

important to note that the concentration bands are observed at a fixed position

lD away from injection and propagate in time as they pass the “finish-line”

detector. The spatial variance is therefore observed as temporal variance under

the transformation

σ2
t =

(
∂t

∂x

)2

σ2
x =

σ2
x

u2
. (2.8)

The variance defined in the optimization problem Eq. (2.4) is, in fact, the

total temporal variance for each analyte i, σ2
i = σ2

t,i.

Diffusion variance σ2
diff follows from thermal agitations causing stochastic

motion in each DNA molecule of length L and is modeled by

σ2
diff = 2Dt (2.9)
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where D is the diffusion coefficient of the DNA of length L [71] and t is the

migration time given by Eq. (2.6). The diffusion coefficients can be typi-

cally found in the literature, measured experimentally, or, if the analyte is a

polymer, the diffusion coefficient can be estimated from well known scaling re-

lations [67, 74, 75]. The scaling D = D1/
√
L+ α works well for single-stranded

DNA with D1 = 4.43× 10−6 cm2/s [76].

Wall adsorption contributes to the variance as DNA molecules randomly

adsorb to the capillary wall, cease migration, and eventually desorb and con-

tinue migration. Wall adsorption can typically be quatified as

σ2
wall = WulD (2.10)

where W is a capillary specific parameter [72] that is some measure of the

equilibrium between adsorption and desorption. The parameter W has been

measured experimentally to be 16.7 µs using BigDye(TM) in an ABI 310.

Although the W parameter will vary with capillary treatment and dye termi-

nator, we will assume it is consistent for the different capillary configurations

we consider in this chapter.

Joule heating occurs when the applied electric field warms the capillary

buffer. This effect causes a parabolic temperature profile between the capil-

lary core, where the temperature is maximum, and the capillary wall which

typically interfaces with coolant. The temperature causes a viscosity gradi-

ent which ultimately results in a parabolic velocity profile for the DNA which

results in variance generation referred to as Taylor-Aris dispersion [77–82]

σ2
JH =

JµE5lD
D

(2.11)

where J is salt specific parameter which scales as J ∼ d6c with capillary inner
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diameter dc. For a standard salt buffer of 1x TBE in a 50 µm inner diameter

capillary, the parameter J was measured to be 2.72×10−12 cm2/kV4.

Equipped with the models for migration time and variance generation for

each DNA length we can formulate the optimization problem to find the drag

tag size α, the capillary length to the detector lD, and the applied voltage Vapp

that yield the minimum run time for resolving DNA from lengths L0 = 26

bases to the length of read L which is varied from 30, 40, . . . , 600 to show the

trade offs between read frame size and run time. The optimization problem
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Eq. (2.4) can now be restated as

min trun =
lD
µ0E

(
1 +

α

L0

)
s.t. RL ≤ 1.5

RL =
2
√

2 ln(2)σ2
t

|∂t/∂L|∣∣∣∣ ∂t∂L
∣∣∣∣ =

lD
µ0E

α

L2

E = Vapp/lC

lC = lD + δl

σ2
t =

σ2
x

(µE)2

σ2
x = σ2

diff + σ2
wall + σ2

JH

σ2
diff = 2Dt

D =
D1√
L+ α

σ2
wall = WµElD

σ2
JH =

JµE5lD
D

t =
lD
µE

µ = µ0

(
L

L+ α

)
0 ≤ α ≤ αmax

lmin ≤ lD ≤ lmax

0 ≤ Vapp ≤ Vmax.

(2.12)

The NLP (2.12) is written using a few assumptions and simplifications to

the problem Eq. (2.4) developed above. First of all, the run time is known

a priori to correspond to the migration time of the shortest DNA length,

trun = tL0 , since the smallest DNA length, L0, has the least amount of charge
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available to electrophoreses against the drag tag and consequently migrates

the slowest. The resolution constraint is also simplified as it can be shown

that RL0 ≤ RL0+1 ≤ . . . ≤ RL. Furthermore the full width at half-maximum

wL is assumed to be equivalent to the full width of the next DNA length

wL ≈ wL+1 and the difference in migration time is calculated using a deriva-

tive |tL+1 − tL| ≈ |∂t/∂L| which introduces negligible error for large L [39].

Under these simplifications, only two DNA lengths need to be considered in

the optimization problem: the length of read L which is the longest DNA

length to be resolved during the separation and the shortest DNA length in

the separation L0 which sets the run time. The shortest DNA length in the

separation is typically between 18 and 26 bases [39, 40, 69], for this work we

use L0 = 26. The DNA physical properties µ0, D1, the system property δl and

the micelle physical property B′ are taken as constant parameters.

The optimization problem Eq. (2.12) can be re-written using some alge-

braic manipulation to reveal the structure of the optimization problem shown

in Eq. (2.13)

min trun =
p1αlD
E

+
p2lD
E

s.t. p3sx (L+ α)2 L2 ≤ l2Dα
2

sx = sdiff + swall + sJH

sdiffE = p4lD

√
L+ α

L

swall (L+ α) = p5LElD

sJH
√
L+ α = p6LE

5lD

Vapp = (lD + p7)E

0 ≤ α ≤ αmax

lmin ≤ lD ≤ lmax

0 ≤ Vapp ≤ Vmax

(2.13)
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where sx = σ2
x and L is the length of read specified by the user. The parameter

groupings pj are fixed numbers given by p1 = µ−10 L−10 , p2 = µ−10 , p3 = 2.464,

p4 = 2D1µ
−1
0 , p5 = Wµ0, p6 = Jµ0/D1, and p7 = δl where we use parameter

values µ0 = 0.24 cm2/kV·s, D1 = 4.43 × 10−6 cm2/s, the parameter δl is

equipment specific and is typically δl = 10 cm, and W is taken to be 16.7 µs.

The optimization problem Eq. (2.13) is a non-convex NLP problem. Non-

convex problems may have multiple local minima. The global optimization

code BARON [8] uses spatial branch and bound and symbolic reformulation

to efficiently find the global minimum. For this work, we use BARON version

9.0.6 supplied in GAMS version 23.6.2.

Special care must be taken when choosing the units and scaling used for the

problem. Large differences in variable values can result in poorly conditioned

numerics that lead to an infeasible optimization problem. Also BARON works

by making variable substitutions until functional forms that have known con-

vex relaxations can be identified. Reformulating the problem to Eq. (2.13)

simplifies the task for BARON which helps accelerate convergence to the global

optimum.

2.3 Parallel capillaries

Certain capillary electrophoresis systems, such as the Applied Biosystems

Prism 310 Genetic Analyzer and the Applied Biosystems Prism 3130xl, are

designed to separate analytes with a capillary array. Capillary arrays are use-

ful for parallel separations under the same applied voltage and capillary length

with differing separation mediums (e.g. different sized micelles). Given the

original optimization problem Eq. (2.13), it is straightforward to reformu-

late this problem to allow for a capillary array by copying the constraints for
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each capillary. The applied voltage and capillary length is the same for each

capillary when a capillary array is used, but the drag tag size α in each capil-

lary can be different. Each capillary must resolve part of the read frame and

the optimization problem must therefore include a DNA length Lj which is

split between two capillaries with one capillary resolving between the shortest

length Lj−1 and the split length Lj and the other capillary resolves from the

split length Lj up to the next split length Lj+1. The specified length of read

L is defined as LN , where N is the total number of capillaries used and the

specified shortest length of interest is set as L0.

min trun = max
i
{ti}

s.t. ti =
lD
µ0E

(
1 +

αi
Li−1

)
, i = 1, . . . , N(

constraints from NLP (2.13) for capillary i

)

Lj−1 ≤ Lj ≤ Lj+1 j = 1, 2, . . . , N − 1

(2.14)

The objective function trun = max {ti} is discontinuous and non-differentiable,

however the optimization problem is reformulated to an equivalent NLP Eq.

(2.15)

min η

s.t. ti ≤ η, i = 1, . . . , N

ti =
lD
µ0E

(
1 +

αi
Li−1

)
(

constraints from NLP (2.13) for capillary i

)

Lj−1 ≤ Lj ≤ Lj+1, j = 1, 2, . . . , N − 1

(2.15)

which is non-convex and solved to global optimality using BARON. The split
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length Lj is treated as a design variable in the optimization problem. The

total set of design variables are z = [α1, · · · , αN , L1, · · · , LN−1, Vapp, lD, η]T for

N parallel capillaries. The length of read LN and the shortest DNA length of

interest L0 are specified by the user.

2.4 Optimization results and discussion

The optimization problem is set to find the conditions that resolve all the DNA

lengths of interest in minimum time. The optimal conditions must therefore

carefully balance the trade off between large variance generation and peak

spacing. Fig 2.3 shows the variance generated in a single capillary with equip-

ment specifications consistent with an ABI 3130xl (lD = 22 cm, δl = 10 cm,

Vmax = 20 kV). The variance is shown to decrease for increasing length of

read. Small DNA are easy to separate using even a smaller drag tag, there-

fore resolution can be attained by letting the variance be quite large. This

follows physically as small DNA has a much larger diffusion coefficient lead-

ing to greater diffusion. The small DNA is separated with a small drag tag

which results in greater velocity than the long DNA which requires a larger

DNA tag. Variance generated by wall adsorption is shown to decrease with

increasing length of read owning to the long DNA large micelle complex having

small velocity. Joule heating is negligible for nearly every length of read, con-

tributing to less than 5% to the total variance. Joule heating is very sensitive

to electric field, however, and it can be expected to increase steeply if higher

electric fields were accessible.

Large drag tags are required to resolve long DNA. The optimal drag tag

size can be seen to be increasing with increasing length of read in Fig 2.4(a)

and 2.4(b) regardless of the instrument used (The ABI 310 has specifications
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Figure 2.3: Variance sources as a function of length of read in single capillary
in an ABI 3130xl. Diffusion (—) is shown to dominate over wall adsorption
(– –) and Joule heating (– · –).

lD = 30.5 cm, δl = 10 cm, Vmax = 15 kV). Large drag tags lead to low

velocity for the primer (26 bases long) which must pass the detector before

the separation is considered complete. Parallel capillaries, therefore, lead to

significant reduction in run time as shown in Fig 2.5(a) and 2.5(b) as the

optimal drag tag can be selected to separate different groupings of the DNA

lengths of interest.

Fig 2.6 shows that benefit derived from using parallel capillaries drops of

steeply with increasing capillary number. There is not much benefit in going

beyond three parallel capillaries.
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Figure 2.4: Optimal drag tag sizes as a function of length of read in an ABI
310 (left) and in an ABI 3130xl (right) for (—) single capillary, (– –) double
capillaries, and (– · –) triple capillaries. The optimal drag tag size is shown for
each capillary. The optimal drag tag size for the first capillary in a parallel
array overlaps with that of a single capillary.
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Figure 2.5: Minimum run time as a function of length of read in an ABI
310 (left) and in an ABI 3130xl (right) for (—) single capillary, (– –) double
capillaries, and (– · –) triple capillaries.
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Figure 2.6: Optimal run time for a length of read of 600 bases shown as
function of the number of capillaries in a parallel array. The ABI 3130xl offers
a maximum of 16 capillaries.

2.5 Summary

In this chapter we showed the optimization of micelle end-labeled free solution

electrophoresis in single and parallel capillaries. Parallel capillaries are shown

to reduce the run time of the DNA separation by as much as 91%, with 89%

reduction in run time realized with just three parallel capillaries. Diffusion is

shown to be the greatest contribution to the variance and the total variance is

shown to decrease for increasing length of read. The fastest run conditions are

generally found by using the maximum voltage and shortest capillary length

available.

Nomenclature

D diffusivity

D1 scaling coefficient for DNA diffusivity

dc capillary inner diameter

E applied electric field strength
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J Joule heating coefficient

L DNA length in number of bases

L0 shortest DNA length of interest

lC total capillary length

lD capillary length to detector

g constraints on capillary electrophoresis system

hi model for elution time of DNA

pj fixed parameters in optimization

Ri resolution between DNA length i and i+ 1

si model for variance generation of DNA length i

ti elution time of DNA length i

u electrophoretic velocity

Vapp applied voltage

W wall adsorption coefficient

wi full width at half-maximum of DNA length i

z design variables for capillary electrophoresis system

α size of the drag tag in units of DNA bases

δl difference between lC and lD

µ electrophoretic mobility

µ0 free solution electrophoretic mobility

σ2
diff diffusion variance

σ2
JH Joule heating variance

σ2
wall wall adsorption variance

σ2
i variance of DNA length i
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σ2
t total temporal variance

σ2
x total spatial variance

25



Chapter 3

Micelle End-labeled DNA

Separation using Alternate

Detection Modes

In conventional micelle end-labeled free solution electrophoresis, electro-osmotic

flow is suppressed and a finish-line detector is used to observe long DNA mi-

grate first with short DNA to eventually follow. This detection mode is con-

sidered conventional as it is readily available through the use of commercial

capillary electrophoresis devices. The conventional detection mode is ideal

for gel electrophoresis which is the current standard method for DNA sepa-

ration. This detection mode is not necessarily ideal, however, for end-labeled

free solution electrophoresis.

In end-labeled free solution electrophoresis long DNA migrates the fastest

and is also the most difficult to resolve. Once the long DNA is resolved,

every other DNA length in the capillary is also resolved, but the separation

is not complete until the short DNA passes the detector. The short DNA

moves very slowly when it has a micelle attached. For end-labeled free solution
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electrophoresis it is thus advantageous to detect all the DNA lengths of interest

as soon as the length of read becomes resolved.

In this chapter we will see two practical methods for imaging the long

DNA as soon as it becomes resolved. The first method makes use of a partially

suppressed electro-osmotic flow (EOF) to reverse the elution order of the DNA

lengths. The second method discussed in this chapter uses snap-shot detection

in a microfluidic device to detect all the DNA lengths of interest the instant

they become resolved.

3.1 Controlled EOF counter-flow

McCormick and Slater [76] presented a theoretical study on how to use an

electro-osmotic flow (EOF) to reverse the elution order of the separation. Long

DNA, bearing more charge than short DNA, can better fight an EOF counter-

flow and will stay in the capillary longer giving it more time to separate. Short

DNA, which is easily separated, elutes out of the capillary quickly. Unfortu-

nately using an EOF counter-flow opens the possibility of having DNA either

eluting too quickly (under separated) or not eluting at all when EOF balances

with electrophoresis. McCormick and Slater showed that a range of EOF

counter-flows will significantly extend the read frame of ELFSE separations.

This read frame extension comes at the expense of run time, however which

requires some consideration to examine the tradeoff.

The negative charge laden glass capillary wall is balanced by positive

counter-ions within the double layer while the bulk is electro-neutral. When

an electric field is applied the positive counter-ions will slip toward the cathode

pulling the bulk fluid in an electro-osmotic flow. DNA is negatively charged

and will undergo electrophoresis in the opposite direction. The net electroki-
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Figure 3.1: Diagram of an EOF active micelle ELFSE separation. EP labels
electrophoresis and EOF labels electro-osmotic flow.

netic mobility of the drag-tag DNA complex is

µ = µEOF − µ0

(
L

L+ α

)
(3.1)

where µEOF is the electro-osmotic mobility, µ0 is the free solution electrophoretic

mobility of DNA, L is the number of DNA bases, and α is the size of drag tag.

The elution time is then calculated by t = lD/µE or

t =
lD
E

(
L+ α

µEOF (L+ α)− µ0L

)
(3.2)

where lD is the capillary length to the detector, E is the applied electric field

strength, and µEOF is the EOF mobility. If EOF mobility is greater than

the free solution electrophoretic mobility of DNA (µEOF > µ0) then EOF

dominates and DNA will elute from shortest to longest as short DNA bears

little charge to fight against EOF and is pushed out of the capillary first. This

is commonly the situation when working with bare-silica capillaries which have

typical EOF mobilities of µbare = 3.6 × 10−4 cm2/V·s compared to a typical

free solution DNA mobility of 2.4×10−4 cm2/V·s. Unfortunately bare-silica

capillaries impose such a large EOF that the DNA is poorly separated when

it elutes passed the detector. The separation of DNA lengths in CE is given
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by the temporal spacing

∣∣∣∣ ∂t∂L
∣∣∣∣ =

lD
E

αµ0

(µEOF (L+ α)− µ0L)2
(3.3)

which is a strong function of the drag tag size and EOF. The proper choice of

EOF mobility and drag tag size will yield infinite separation for DNA length

L but the elution time will also go to infinity as this particular DNA length

has zero net mobility. Using EOF, the temporal spacing can be optimized

to suit the separation of long DNA. The increased DNA separation comes at

the expense of long (possibly infinite) elution times, however and the tradeoff

must be considered carefully.

Temporal spacing alone is not sufficient to quantify the quality of the sepa-

ration. In CE, DNA is injected into the capillary as a square plug which, over

the course of the separation, evolves to a Gaussian profile due to diffusion and

other velocity perturbing effects such as wall adsorption and drag tag polydis-

persity. If the Gaussians are broad compared to the spacing then the profiles

will be poorly resolved as indicated by the resolution factor, RL

RL =

√
8 ln(2)σ2

t

|∂t/∂L|
(3.4)

where σ2
t is the variance of the Gaussian profile so that the resolution factor is

the ratio of the full-width at half maximum of the Gaussian to the temporal

spacing. If RL ≤ 1.5 then the separation method produces single base reso-

lution. The temporal variance is related to the spatial variance through the

velocity

σ2
t =

σ2
x

(µE)2
(3.5)

where µ is given by Eq. (3.1). As seen in chapter 2 significant contributions to
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the variance are given by diffusion, wall adsorption, and Joule heating [38, 39]

σ2
x = 2Dt+WµElD +

JµE5lD
D

(3.6)

where D is the DNA diffusivity, which scales with DNA length according to

D = D1/
√
L+ α, with D1 = 4.43 × 10−6 cm2/s, W is the wall adsorption

parameter with W = 16.7 µs, and J is the Joule heating parameter with

J = 2.72× 10−12 cm2/kV4.

Now that we have defined the variance generation and the peak spacing

above, we can identify the optimal EOF mobility, drag tag size, capillary
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length, and electric field strength by solving the NLP

min trun =
lD
µ0E

(
1 +

α

L

)
s.t. RL ≤ 1.5

RL =
2
√

2 ln(2)σ2
t

|∂t/∂L|∣∣∣∣ ∂t∂L
∣∣∣∣ =

lD
E

αµ0

(µEOF (L+ α)− µ0L)2

E = Vapp/lC

lC = lD + δl

σ2
t =

σ2
x

(µE)2

σ2
x = 2Dt+WµElD +

JµE5lD
D

D =
D1√
L+ α

t =
lD
µE

µ = µEOF − µ0

(
L

L+ α

)
µ ≥ 0

0 ≤ µEOF ≤ µbare

0 ≤ α ≤ αmax

lmin ≤ lD ≤ lmax

0 ≤ Vapp ≤ Vmax

(3.7)

This optimization problem is similar to the one presented in Eq. (2.12).

One key differences is that the run time is set by the length of read as the

constraint µ ≥ 0 ensures EOF dominates the flow throughout the design space

which leads to a reversal of the elution order of the DNA. The optimiza-

tion problem can also be reformulated for the electrophoresis dominant case

31



by replacing µ → −µ and E → −E indicating that the net mobility now

causes DNA to move in the opposite direction but still heads to the detector

as the polarity of the electric field is flipped. Optimization shows that the

electrophoresis dominant case should be run completely EOF suppressed and

is therefore identical to the conventional method discussed above.

In the results section, we will see that partially suppressed EOF active

capillaries can be used to significantly speed up the DNA separation. Partial

suppression of EOF can be difficult to control, however. We will also see that

the optimal EOF mobility strongly depends on the free solution electrophoretic

mobility of DNA µ0 which may vary between experiments. We take the bare-

silica EOF mobility to be µbare = 3.6× 10−4 cm2/V·s.

3.2 EOF-ELFSE Optimization results

The minimum run times of the partially suppressed EOF active ELFSE DNA

separation is shown in fig 3.2. The optimization shows that a single partially

EOF suppressed capillary in an ABI 3130xl can separate 600 bases in 4.35

minutes, which is two seconds faster than using 16 parallel capillaries in the

EOF suppressed case reported in fig 2.6. Fig 3.3 shows the optimal EOF

mobility and the optimal run time for a length of read of 600 bases is a strong

function of the free solution electrophoretic mobility of DNA.
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Figure 3.2: Optimal run time for partially EOF suppressed capillaries ( —)
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Figure 3.3: Sensitivity of optimal EOF mobility and optimal run time to
free solution mobility for 600 bases of length of read. The typical value is
µ0 = 2.4× 10−4 cm2/V· s. The arrows point each curve to their y-axis.
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3.3 Snap-shot detection

In this section, we will discuss the modeling and optimization framework for us-

ing snap-shot detection mode in micelle end-labeled free solution electrophore-

sis DNA separations. Snap-shot detection is the instantaneous imaging of the

entire separation channel. Snap-shot detection is capable of imaging the entire

DNA separation the moment the length of read is resolved. Snap-shot detec-

tion is not without its own challenges however. Instantaneous imaging of an

entire separation channel (typically between 5 and 20 cm) can be performed

using a microfluidic device on a motorized stage. Microfluidic devices are typ-

ically between 3 cm × 3 cm up to 10 cm × 10 cm. Turns are often required in

order to fit a sufficiently long channels on to the microfluidic device. Figure

3.4 shows the serpentine and spiral configurations which are commonly used

to fit long separation channels on a small chip area. Pfeiffer et al. [83] showed

that a non-linear programming problem can be posed to find the smallest mi-

crofluidic device to complete a generic separation using electrophoresis. In

this section we show how to formulate an optimization problem that is used

to design a microfluidic device for minimum run time DNA separations using

micelle ELFSE under the snap-shot detection mode.

When using snap-shot detection, there is no benefit in reversing the elution

order of the DNA by using an EOF counter flow. DNA will migrate the

fastest with EOF full suppressed. Hence, the electrophoretic mobility, µ, of

the micelle-DNA complex is

µ = µ0
L

L+ α
(3.8)

where µ0 is the free-solution mobility of DNA, L is the length of DNA in

bases, and α is the size of the micelle in units of uncharged DNA bases that
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Figure 3.4: (A) Microfluidic spiral, (B) microfluidic serpentine. The different
configurations are composed of either straight sections or semi-circular turn
sections which are indicated by dashed line.

have the equivalent drag of the micelle. With snap-shot detection the DNA

molecules are observed as they migrate down the separation channel. As the

DNA molecules migrate down the separation channel, they separate into dif-

ferent concentration profiles that are Gaussian in shape, when averaged across

the cross-section of the separation channel, as shown in Figure 3.5. The con-
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Figure 3.5: Band broadening in snap-shot detection.

centration profiles are resolved from each other when the average full-width

at half-maximum, wL, is less than 1.5 times the spacing between maximums,

∆xL,

RL =
wL + wL+1

2∆xL
≤ 1.5 (3.9)

where RL is the resolution factor. The spacing between Gaussians is given by

∆xL ≈
∂x

∂L
= µ0Et

α

(L+ α)2
(3.10)
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where t is the time at which the Gaussians are detected. With snap-shot

detection, the full-width at half-maximum is a measure of the Gaussians width

as it evolves in space

wL = 2
√

2 ln(2)σ2
x (3.11)

where σ2
x is the spatial variance for DNA of length L.

The convection-diffusion equation can be used to model the effect of the

microfluidic device topology on the concentration profiles as the DNA lengths

migrate through the microfluidic device

∂cL
∂t

+ u·∇cL = D∇2cL (3.12)

where cL is the concentration profile of DNA of length L, D is the diffusivity,

and u is the electrophoretic velocity vector. The convection-diffusion equa-

tion (3.12) can be solved analytically, using a few simplifying assumptions, to

reveal the model for the variance generation σ2
x as the concentration profile

propagates down the microfluidic channel [84–86].

The primary simplification to the convection diffusion equation (3.12) deals

with the velocity of the DNA in a curved microfluidic channel. In a straight

channel, the velocity is constant. In a microfluidic turns, the DNA velocity

varies across the interior of the channel. This is because the outside channel

has a longer contour length than the inside channel which also results in an

electric field gradient. Defining the x coordinate to be along the axial direction

of the microfluidic channel and the y coordinate to be pointing to the interior

of the microfluidic channel (see figure 3.6), the velocity is given by u = u(y)ex

where ex is the unit vector pointing in the axial direction [84–86].

The convection-diffusion equation (3.12) is two-dimensional in (x, y) and is

solved analytically to determine σ2
x as a function of the microfluidic structure
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[85, 86],

σ2
x = σ2

0 + 2Dt+
∑
i∈I

σ2
skew,i +

∑
j∈J

σ2
turn,j + σ2

other (3.13)

where σ2
0 is the initial variance of the injected Gaussian profile, 2Dt is the

variance caused by diffusion over the migration time t, DNA diffusivity scales

as D = D1/
√
L+ α where D1 is constant [76], σ2

skew,i is the variance caused by

a skewed concentration profile as it enters section i, I is the set of all sections

in the microfluidic device, σ2
turn,j is the variance caused by the concentration

profile migrating through each turn, J is the set of all turn sections in the

microfluidic device, and σ2
other is any other source of variance not modeled by

the convection-diffusion equation. Here a section is defined as either a straight

channel or a semi-circular turn. A spiral consists only of semi-circular turn

sections while a serpentine

→ 

→ 
(1) 

(2) (3) 

(4) 

l1 l2 = π r2 

l3 
l4 = π r4 

l5 

→
 

x 
y 

x 
y → 

y 
x (5) 

Figure 3.6: Concentration profiles are broadened by turns. The variance of the
concentration profile is increased during each turn and quantified by σ2

turn,j.
The initial concentration profile is unskewed. After the first turn the concen-
tration profile becomes skewed and diffusion is enhanced by the concentration
gradient which results in variance generation σ2

skew,3. The second turn is com-
plementary which subtracts some variance σ2

skew,4. The index of each section
i is specified at the section exit.

Figure 3.6 shows the variance generated by turns in a microfluidic device.

After a turn, the concentration band becomes skewed. The skewed concentra-

tion band causes the variance to increase as the concentration gradient cause

diffusion to be exacerbated. The variance increase due to concentration profile
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skew is

σ2
skew,i =

∞∑
n=1,3,5,...

S(i)
n Γ(i)

n (3.14)

where Γ
(i)
n = ± 8µEw2

c

riD(nπ)4

(
1− e−(nπ)2Dti/w2

c

)
, µ is the mobility given by Eq. (3.8),

E is the applied electric field, wc is the channel width, ri is the radius of the

center-line of the turn, D is the diffusivity, ti is the time it takes to get through

the turn or straight section i, i.e. ti = li/ (µE) where li is length of the turn

or straight channel. The term S
(i)
n indicates the concentration band skewness

as it enters section i.

S(i)
n =


S
(i−1)
n e−(nπ)

2Dti/w
2
c , (i− 1) ∈ K

S
(i−1)
n e−(nπ)

2Dti/w
2
c + Γ

(i−1)
n , (i− 1) ∈ J

(3.15)

where K is the set of straight sections, J is the set of turn sections, and the

initial concentration profile is assumed to be unskewed, S
(1)
n = 0. The sign

on the terms σ2
skew,i and Γ

(i)
n is indicated by the orientation of the turns with

respect to the y-axis. If the center of the turn is pointing away from the

positive y-direction then the sign on σ2
skew,i and Γ

(i)
n is positive, if the center

of the turn is pointing toward the positive y-direction then the sign on σ2
skew,i

and Γ
(i)
n is negative. In figure 3.6 the sign of σ2

skew,i and Γ
(i)
n on the right turn

is positive and the sign on the left turn is negative. The sign changes with

each successive turn which indicates how the complementary turns can be used

in a serpentine to mitigate against large variance development. The sign on

σ2
skew,i and Γ

(i)
n is always positive for a straight channel (after a turn) and a

spiral. The spiral configuration does not allow for complementary turns and

instead uses large turn radii to mitigate against large variance development.

As the turn radius tends to large values, the turn can be well approximated as

a straight channel as variance generation due to the race track effect becomes
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negligible.

Turns in microfluidic devices introduce variance into the concentration pro-

file due to the non-uniform velocity across the width of the channel. This

variance generation is quantified by

σ2
turn,j =

(
8µEw3

c

rjD

)2 ∞∑
n=1,3,5,...

Φn(tj)

(nπ)8
(3.16)

where Φn(tj) = −1 + e−(nπ)
2Dtj/w

2
c + (nπ)2Dtj/w

2
c .

The term σ2
other in Eq. (3.13) refers to any other sources of variance not

modeled by the convection-diffusion equation (3.12). As presented above, the

other significant sources of variance are wall adsorption and Joule heating

rendering the complete variance

σ2
x = σ2

0 + 2Dt+
∑
i∈I

σ2
skew,i +

∑
j∈J

σ2
turn,j +WµElD +

JµE5lD
D

. (3.17)

The run time for micelle ELFSE in a microfluidic device is set by the instant

the longest DNA length of interest (the length of read) is resolved. At that

instant, the entire microfluidic device is scanned by the snap-shot detection

and every DNA length is detected. The minimum snap-shot run time can be
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found by solving the following non-convex optimization problem

min trun =
lD
µ0E

(
1 +

α

L

)
s.t. Eq. (3.8) – Eq. (3.11),

Eq. (3.14) – Eq. (3.17)

D = D1/
√
L+ α

E = Vapp/lD

lD =
∑
i∈I

li

0 ≤ α ≤ αmax

0 ≤ Vapp ≤ Vmax

g(li, rj) ≤ Xmax

h(rj) ≤ Ymax

c(li, rj) ≤ 0

(3.18)

where L is the length of read. The constraints g, h, and c are geometric

constraints that ensures that the microfluidic device fits the specified area and

ensures that all the sections are contiguous, g(li, rj) = h(rj) = 2rj, ∀j ∈ J for a

spiral or g(li, ri) = li+ri+1+ri−1, ∀i ∈ I and h(rj) =
∑

j∈J 2rj for a serpentine,

Xmax and Ymax is the maximum length allowed for the horizontal and vertical

side of the microfluidic device, respectively. A serpentine is assumed to have

straight channels aligned in the horizontal direction. In addition, spirals have

the constraint c(li, rj) = δr − (rj−1 − rj) , ∀j ∈ J , which prevents the turns

from overlapping. For serpentines the constraint c(li, rj) = li − li−1, ∀i ∈ I

guarantees connectivity between the turns and each straight channel.

The parameters are specified to match DNA in a micelle solution, i.e. µ0 =

2.4 × 10−4 cm2/V·s, D1 = 4.43 × 10−6 cm2/s, αmax = 502 and W = 16.7µs.
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The maximum dimensions of the device are set at Xmax = Ymax = 10 cm.

The minimum gap between turns in a spiral δr is set at 0.1 cm, which allows

for practical fabrication of the device [87]. The maximum applied voltage is

Vmax = 20 kV.

3.4 Snap-shot detection optimization results

and discussion

The minimum run times of the snap-shot detection modes are shown in fig 3.7.

For convenience we also show the results from chapter 2 for single and parallel

capillaries in an ABI 3130xl, and the EOF-ELFSE results from the previous

section.
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Figure 3.7: Optimal run time for (1) single capillary, (2) two parallel capillaries,
(3) three parallel capillaries, (4) partially suppressed EOF counter-flow, (5)
spiral microfluidic device, and (6) serpentine microfluidic.

From the optimization results, it is clear that snap-shot detection imple-

mented using microfluidics offers significant speed up over partially EOF sup-

pressed capillaries and parallel capillaries operating in the conventional de-

tection mode. The optimal microfluidic structure for a length of read of 600
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bases is the serpentine composed of five sections (or two turns). Fig 3.8 shows

the minimum run time for achieving a length of read of 600 bases in both a

serpentine and a spiral. For serpentines the run time decreases as the number

of sections increases although the total channel length is identical for serpen-

tines with more than five sections. This requires tighter turn radii which can

be mitigated by design of the complementary turns. For spirals the run time

increases with increasing number of sections. The design constraints are such

that the spiral must increase the channel length every time an additional turn

is used even though the increased channel length comes at the expense of run

time.
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Figure 3.8: Optimal run time for a length of read of 600 bases as a function of
the number of sections in a microfluidic serpentine (—•—) and a microfluidic
spiral (– – � – –).
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3.5 Summary

In this chapter we showed that alternate detection modes, such as a controlled

EOF counter-flow and snap-shot detection can be used to significantly reduce

the run time for micelle end-labeled free solution electrophoresis DNA separa-

tions. Microfluidic serpentines are shown to be the optimal configuration for

micelle ELFSE which can separate 600 bases in 2.76 min using five sections.

Spirals can be used to resolve a length of read of 600 bases in 3.50 min using

two turn section. The partially EOF suppressed capillary is the slowest of the

these alternate modes, resolving 600 bases in 4.35 min in an ABI 3130xl.

Nomenclature

c geometry constraint for microfluidic device

cL concentration profile of DNA length L

D diffusivity

D1 scaling coefficient for DNA diffusivity

E applied electric field strength

g geometry constraint for microfluidic device

h geometry constraint for microfluidic device

J Joule heating coefficient

L DNA length in number of bases

L0 shortest DNA length of interest

lC total capillary or channel length

lD capillary or channel length to detector

li channel length of mircofluidic section i
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RL resolution between DNA length L and L+ 1

rj turn radius in microfluidic turn j

S(i)
n skew coefficient in microfluidic section i

t elution time of DNA length L

u electrophoretic velocity

Vapp applied voltage

W wall adsorption coefficient

wL full-width at half-maximum of Gaussian signal for DNA length L

wc channel width in microfluidic device

α size of the drag tag in units of DNA bases

Γ(i)
n skew generated between microfluidic section i and i+ 1

∆xL spacing between Gaussians

δl difference between lC and lD

µ net electrokinetic mobility

µ0 free solution electrophoretic mobility

µbare electro-osmotic mobility of a bare-silica capillary

µEOF electro-osmotic mobility

Φn turn variance factor

σ2
other variance not modeled by convection-diffusion equation

σ2
skew,i skew variance for microfluidic section i

σ2
t total temporal variance

σ2
turn,j turn variance for turn j

σ2
x total spatial variance
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Chapter 4

Micelle End-labeled DNA

Separation using Entropic

Trapping

In the previous chapters we have discussed micelle end-labeled free solution

electrophoresis (ELFSE) as a method for rapid DNA separation. The read

frames previously reported ranged from 30 to 600 bases, which is well within

the range to be useful for short-tandem repeat analysis, a common forensic

analysis [31, 32]. However, separation of long DNA (above 5000 bases) is im-

portant for many other DNA analysis techniques including DNA fingerprinting

and miRNA detection. Separation of long DNA using micelle ELFSE is diffi-

cult without the use of extremely large micelle drag tags. Unfortunately large

micelles introduce additional complications such as causing DNA sieving [88].

Pulse Field Gel Electrophoresis (PFGE) was the first techniques to push

DNA separation into the long DNA regime [89]. Long DNA migrates through

gel in a length intensive process called biased reptation [41]. Before DNA can

undergo steady-state biased reptation it must first orient itself along the elec-
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tric field direction. Switching field direction compels the DNA to reorient itself

yielding a length dependent delay time before steady state biased reputation

can be re-established. The process continues for around 12 to 24 hours to sep-

arate DNA up to the 700 kilobasepair (kbp) range [89]. Optimization of the

field strengths and oscillation frequency can speed-up the separation mode to

reported separations of DNA lengths 0.1 to 10.0 kbp in 30 minutes [90], 0.125

to 23.1 kbp in 9 minutes [91], 8.3 to 48.5 kbp in 45 minutes [45], and 48.5 kbp

to 1 Mbp in 3 hours [45].

At the dawn of the 21st century, innovations in microfabrication techniques

created the possibility for rapid separation of long DNA. Microfabricated post

arrays, for instance, can separate λ-DNA and T4 DNA, 48.5 kbp and 166

kbp respectively, in under 30 seconds [57]. The difference in length between

λ-DNA and T4 DNA is substantial. For smaller gaps in DNA length post

arrays are not quite as fast, for instance post arrays separate from 2.3 kbp to

23 kbp with 2 kbp resolution in 11.4 minutes [57]. A comparable technique for

rapid separation of long DNA in a microfabricated obstacle course is entropic

trapping which can separate from 5 kbp to 30 kbp with 5 kbp resolution in 15

minutes [49].

An interesting feature of entropic trapping is that long DNA elutes first

through the separation channel. Scaling analysis [49, 92, 93], Monte Carlo

simulations [94, 95] and Brownian dynamics simulations [96–98] were employed

to show that the primary mechanism behind long DNA eluting first is that

long DNA has a greater probability than short DNA of encountering the high

electric field within the slit of the entropic trap. Short DNA will stay within

the deep well until Brownian motion causes it to encounter the slit. Each

DNA length must overcome an entropic penalty to travel through the slit

which is primarily a function of the stiffness of the DNA and the radius of

46



Figure 4.1: Electric field in an entropic trap. The pitch L, the height of the
slit hs, and the height of the deep well hd are labeled.

gyration of the DNA relative to the height of the slit. Improving the separation

performance of entropic trapping is difficult. The primary tuning parameters

are the height of the slit, the height of the deep well, and the applied electric

field [49].

In this chapter we introduce the use of a drag tag as an additional tuning

parameter which may significantly improve separation performance. Without

the trap, the DNA will undergo end-labeled free solution electrophoresis which

was the focus of previous chapters. With the trap, the DNA will undergo a

combination of end labeled electrophoresis and entropic trapping that we will

here after refer to as end-labeled entropic trapping electrophoresis (ELETE).

We employ Brownian dynamics simulations to test the performance increase of

ELETE over entropic trapping alone. We use Brownian dynamics simulations

due to its success at modeling DNA stretching in flow [60, 99, 100], DNA

dynamics in a post array [61, 101–103], DNA in confinement [104–109], and

DNA in entropic traps and nanopits [54, 96–98].

In the next section we will outline the Brownian dynamics simulations

used in this work. In the results section we will see that the drag tag not
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only separates DNA in the deep wells but also improves the entropic trapping

phenomena itself leading to increased separation performance. We end with

some discussion on the physical mechanism for the improved performance.

4.1 Brownian dynamics simulations

Brownian dynamics simulations are course grained stochastic simulations that

approximate a polymer by a series of bead-springs (or bead-rods). Newton’s

second law of motion is enforced at each bead i such that

FD
i + FE

i + FB
i + F S

i + FEV
i = m

d2ri
dt2
≈ 0 (4.1)

where FD
i is the drag force on bead i, FE

i is the electrophoretic force, FB
i is

the Brownian motion force, F S
i is the spring force between beads, FEV

i is the

excluded volume force, m is the mass of bead i, and ri is the position vector of

bead i, i.e. ri = [xi, yi, zi]
T . These course grain simulations are useful at length

and time scales that render then left hand side of Eq. (4.1) to be significantly

larger than the mass times acceleration [110], it is therefore taken to be zero

to reduce the order of the differential equations.

The drag force is modeled as Stoke’s flow over a spherical bead such that

FD
i = −ξi

dri
dt

(4.2)

where ξi is the drag coefficient for bead i. The drag coefficient ξ is identical for

each bead except for the first bead which is tagged with a drag tag taking on

drag coefficient ξ1 = ξ (1 + α). In this work we take the drag coefficient ξ to be

constant which neglects hydrodynamic interactions. The diffusion coefficient

is known, however, to change significantly during confinement [104, 109, 111].
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This phenomena cannot be captured with the proposed simulation.

The bead-spring is driven by an electrophoretic force FE
i = ξiµiEi with

electrophoretic mobility µi and electric field at the bead coordinates Ei =

E(ri). The electric field for an entropic trap is found by solving Laplace’s

equation, ∂2φ/∂x2 + ∂2φ/∂y2 = 0, over the interior of the entropic trap shown

in fig 4.1, with homogeneous Neumann boundary conditions on the walls, and

Dirichlet boundary conditions φ(0, y) = 1 and φ(1, y) = 0 using the MATLAB

PDE toolbox. The electric field is then calculated as E = −∇φ and converted

to units consistent with the simulation.

The Brownian motion of each bead follows from solvent molecules randomly

bombarding the bead due to thermal agitations. The random fluctuations are

isotropic and dissipated by drag over some infinitesimally small time dt so that

E
[
FB
i (t)

]
= 0

E
[
FB
i (t)FB

i (t+ dt)T
]

= 2kTξiδ(dt)I

(4.3)

where E is the expectation operator, k is the Boltzmann constant, T is the

temperature, δ(·) is the Dirac-delta function, and I is the idem factor [112].

Eq. 4.3 is more conveniently written as

FB
i dt =

√
2kTξi dwi (4.4)

where dwi is a Wiener process with zero mean and variance dt. Eq. (4.1)

therefore renders the stochastic differential equations (SDE) for each bead i

dri =

(
µiEi +

1

ξi

(
F S
i + FEV

i

))
dt+

√
2kT

ξi
dwi. (4.5)

It is convenient at this point to non-dimensionalize the SDE with length, time
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and force dimensions

ldim = ls, tdim =
ξl2s
kT

, Fdim =
kT

ls
(4.6)

respectively, where ls is the length of the spring (the maximum length be-

tween beads), ξ is the drag coefficient per bead that does not have a drag tag

attached, yielding the dimensionless stochastic differential equations

dr̃1 =
(
Pe ũ1 + F̃ S

1 + F̃EV
1

) dt̃

1 + α
+

√
2

1 + α
dw̃1

dr̃i =
(
Pe ũi + F̃ S

i + F̃EV
i

)
dt̃+

√
2 dw̃i, i = 2 . . . Nb

(4.7)

where Pe = µ0E0lsξ/kT is the bead Peclet number, E0 is the applied field

strength, ũi = Ei/E0, and tildes denote a dimensionless quantity. The first

bead models DNA tagged with a drag tag of size α in units of equivalent

number of beads of uncharged DNA. For comparison to experimental data we

choose the parameter, ls = 206 nm, which, when compared to the length per

basepair of fluorescently stained DNA lb = 0.45 nm, models 5000 basepairs

(5 kbp) of DNA using 12 beads. We take the drag coefficient per bead to be

ξ/kT = 5.11×10−2 s/µm2 which is consistent with a diffusion coefficient ofD =

kT/ξNb = 1.63 µm2/s for 5 kbp (untagged) DNA with Nb = 12 beads. The

free solution mobility of DNA is taken to be µ0 = 2.4× 10−4 cm2/V·s yielding

an effective charge per bead of ξµ0 = 31.5 e at room temperature (T = 298 K)

where e is the charge of an electron. The first bead, which models DNA tagged

with a drag tag, has an identical effective charge of ξ(1 + α)µ0/(1 + α). The

effective charge per bead models the screened charge of DNA which is well

below the native charge of at least 600 e per bead. Here after we will present

only dimensionless quantities and drop the tildes for the sake of brevity.

The stochastic differential equations Eq. (4.7) models a polymer as a num-
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ber of beads connected by springs. The spring force accounts for entropic

penalty for deforming the polymer. The spring force is proportional to the

stiffness of the polymer which is measured by the persistence length lp. The

Marko Siggia spring force law closely matches force extension curves for dou-

ble stranded DNA [113, 114]. The spring force law is valid for a segment of

DNA composed of at least 20 persistence lengths (∼1 µm, or 3120 bp) [115].

Theoretical improvements by Underhill and Doyle [115] allow the updated

spring force law to be valid for a segment of DNA composed of approximately

4 persistence lengths (∼0.2 µm, or 624 bp). The spring force is

F S
i = fi

ri+1 − ri
‖ri+1 − ri‖

− fi−1
ri − ri−1
‖ri − ri−1‖

(4.8)

where the magnitude of the force caused by stretching bead i from i+ 1 is

fi =
λqi

(1− q2i )
2 −

7qi
1− q2i

+ Csqi +Dsqi
(
1− q2i

)
(4.9)

where λ = ls/lp, qi = ‖ri+1 − ri‖ is the distance between beads and coefficients

Cs = 3λ/32− 3/4− 6/λ

Ds =
0.4063λ3 + 0.8172λ2 − 14.79λ

λ2 − 4.225λ+ 4.87
.

(4.10)

In this work we take lp = 53.1 nm, which yields λ = 3.88. It is important

to note that the spring is finitely extensible so that the maximum distance

between beads is qi = 1. Furthermore, there is no spring force when the

springs are completely compressed and the beads are free to overlap without

an additional force term.

The excluded volume force term in Eq. (4.7) prevents the beads from
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overlapping and is modeled as the force resulting from a soft Gaussian potential

FEV
i = −

Nb∑
j=1

9vEV

2

(
3

4
√
π

)3

λ9/2 exp

(
−9

4
λ ‖rj − ri‖2

)
(rj − ri) (4.11)

where vEV is a tuning parameter used to match the bead spring radius of

gyration to match experimental data [116]. In this work we take vEV = 0.01625

in dimensionless units (vEV l3s = 1.3×10−4 µm3) which yields the correct radius

of gyration for λ-DNA modeled by 111 beads with ls = 200 nm [109]. A soft

potential favors numerical stability over strict model accuracy.

A hard potential is often used to model the excluded volume force caused by

a bead penetrating a wall. Unfortunately hard potentials can introduce numer-

ical instabilities. Heyes and Melrose [103, 117] developed a numerically stable

approximation which projects any penetrated beads the minimum distance to

the surface of the wall. This approximation is computationally efficient and

has shown success at modeling DNA in confinement or DNA interacting with

obstacles [101, 103, 109].

The stochastic differential equations (4.7), with (4.8) – (4.11) are inte-

grated using adaptive semi-implicit Euler’s method [103, 118] with details in

Appendix A. The stochastic simulation is repeated with 100 times and the

first two statistical moments of the distribution are calculated.

4.2 Results and discussion

In this section we present the results from the Brownian dynamics simulations.

The Brownian dynamic simulations yield the x(t), y(t), z(t) coordinates of each

of the beads as a function of time as they elutes through the simulated entropic

trap. In this work the simulations are run for fixed number of integration steps.

The elution time is recorded when the center of mass of the bead spring passes
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the pitch length L the final time. The bead spring will continue to elute

through multiple entropic traps during the simulation and each elution time

per trap is recorded. The simulation is repeated 100 times and the mean of

the elution time t for each trap and standard deviation from the first trap σ

is used to calculate the resolution per trap

Rtrap =
√

2 ln(2)
σs + σl
〈ts〉 − 〈tl〉

(4.12)

where the subscripts s and l denote short DNA and long DNA, respectively

and 〈·〉 denotes the mean. Fig 4.2(a) shows the resolution per trap for a bead

spring composed of 12 beads and another composed of 23 beads. When the

simulation results are dimensionalized, these bead springs model 5 and 10 kbp

DNA with a drag tag of size α in units of equivalent length of DNA. In fig

4.2(a) we can see the resolution improving significantly as the size of the drag

tag increases. The DNA lengths are under-resolved after eluting through a

single trap (Rtrap > 1.5). If each trap is statistically independent of the other

than the total variance is given by σtot = σ
√
nt and the total elution time is

given by ttot = 〈t〉nt, where nt is the number of traps, such that the total

resolution is given by Rtot = Rtrap/
√
nt [49]. The number of traps required to

achieve resolution Rtot = 1.5 is shown in fig 4.2(b).

A physical mechanism for this improved performance can be elucidated by

measuring the mobility from the simulation using

µ =
L

〈t〉E
(4.13)

where, L is the pitch and E0 is the applied electric field strength. The mobility

measurements are shown in fig. 4.3(a). A closed form model for the mobility

of end-labeled entropic trapping electrophoresis can be derived by extending
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Figure 4.2: (a) Resolution between 5 and 10 kbp DNA as a function drag tag
size. (b) The number of traps necessary for a resolution factor of 1.5. The
entropic trap is simulated with an applied electric field of 47 V/cm, pitch of 4
µm, well depth of 1.8 µm, and slit depth of 100 nm.

a mobility model for entropic trapping. The mobility of DNA in an entropic

trap is modeled as

µ

µ∞
=

τtravel
τtravel + τtrap

(4.14)

where τtravel is the trap free DNA travel time, τtrap is the trapping time and

µ∞ is the trap free mobility of DNA [47, 49, 93, 94, 97]. The travel time is

calculated by accounting for the electric field difference in the deep well and

the slit, such that

Ed =
2hs

hs + hd
E0 =

2

1 + γ
E0

Es =
2hd

hs + hd
E0 =

2γ

1 + γ
E0

(4.15)

where hd is the height of the deep well, hs is the height of the slit, E0 is the

applied field strength, and γ = hd/hs. The travel time then follows

τtravel =
L/2

µ∞Ed
+

L/2

µ∞Es
=

L

4µ∞E0

(1 + γ)2

γ
(4.16)

where the length of slit and the deep well is equivalent. The trap free mobility
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is the end-labeled electrophoretic mobility given by

µ∞ = µ0
N

N + α
(4.17)

where µ0 is the free solution mobility of DNA, N is the number of DNA

basepairs, and α is the size of the drag tag in units of equivalent DNA bases.

The end-labeled entropic trapping electrophoretic mobility is then

µ

µ0

=
1(

1 +
α

N

)
+ τtrap

(
4µ0E0

L

γ

(1 + γ)2

) . (4.18)

Eq. (4.18) can be rearranged to calculate the trapping time τtrap which is

shown in fig 4.3(b). The trapping time follows an Arrhenius like expression

for a polymer in a Kramer escape problem [49, 92, 93, 119, 120]

τtrap = τ0 exp

(
∆U

kT

)
(4.19)

where ∆U is the activation energy for DNA to escape the deep well into

the slit, kT is the termal energy, and τ0 is the pre-exponential factor. The

activation energy scales with the inverse electric field strength in the slit, so

that ∆U ∼ E−1s and does no have any dependence on DNA size or drag.

The pre-exponential factor τ0 contains all the size relevant data. Sebastian

and Paul [92], used a scaling analysis to show that DNA enters the slit by

herniating, so that the pre-expontial factor scales as τ0 ∼ ξbN
−1E

−1/2
0 , where

ξb is the drag coefficient per base. When a drag tag is attached to the DNA,

the average drag per base is ξb = ξ(N + α)/N where ξ is the drag coefficient

of DNA without a drag tag attached. The pre-exponential factor thus scales
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as

τ0 ∼
(

1 +
α

N

) ξ

N
√
E0

. (4.20)

In fig 4.3(b) it can be seen that the trapping time is linear in the drag tag size

α and solid line represents a fit of the form

τtrap =
β0

N
√
E0

(
1 +

α

N

)
exp

(
β1

EskT

)
= θ0 + θ1α (4.21)

where θ0 and θ1 are fitting parameters related to field strength E0 and the DNA

length N . According to the scaling analysis, the fitting parameters are related

by θ0 = θ1N . Least squares regression of Eq. (4.21) shown in fig 4.3(b) for 5

kbp yields parameters θ0 = 0.7756 and θ1N = 0.6810 where as 10 kbp yields

θ0 = 0.3928 and θ1N = 0.6776. There is some discrepancy between the results

shown here and what the scaling analysis predicts. This likely stems from the

effect of excluded volume and the finite extensibility of the bead-springs which

was not included in the analysis by Sebastian and Paul [92].
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Figure 4.3: (a) Mobility and (b) trapping time of tagged DNA in an entropic
trap. The solid lines are fits using Eq. (4.18) with Eq. (4.21).

The physical explanation of why the trapping time depends on the drag

tag size is that the drag tag effects the diffusivity D of DNA, which mani-
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fested itself above as ξb = ξ(N+α)/N , or equivalently D = D0/(N+α), using

Einstein’s relation DξbN = kT . This effects the frequency at which DNA can

attempt to escape the deep well into the slit in a length dependent manner.

This phenomena is the primary reason DNA can be separated according to

length using an entropic trap to begin with. The addition of the drag tag ex-

acerbates this phenomena where long DNA is not significantly effected by the

drag tag and attempts to escape the deep well at about the same frequency

as untagged DNA. The diffusion coefficient of short DNA, however, is signif-

icantly reduced by the addition of a drag tag leading to a lower frequency of

attempted escape. The above scaling arguments are valid in the freely-draining

limit (Rouse scaling) which is consistent with the simulations we performed

[74]. Unfortunately, DNA diffusivity obeys Zimm scaling D ∼ N−0.6 in a

good solvent due to hydrodynamic interactions [75]. This would call into the

question even the scaling of our simulations results. However DNA in con-

finement does obey Rouse scaling [104–109, 111], although it is unclear what

scaling the diffusion coefficient will obey as the DNA is in transition from the

deep well to the slit. Interestingly Zhang, et al. [54] showed that including

hydrodynamic interactions in a Brownian dynamics simulation of a nanopit

device, which separates DNA using a similar trapping phenomena to entropic

trapping, produces nearly identical scaling compared to a freely draining sim-

ulation of the trapping time with respect to DNA length, although there is

strong quantitative disagreement between the predicted trapping times.

Indeed our freely draining Brownian dynamics simulations are only capable

of reproducing the correct scaling from experimental data. Fig 4.4 shows

the electrophoretic mobility as function of DNA length measured from both

our Brownian dynamics simulations and the experimental results published

by Han and Craighead [49]. Several assumptions must be made to compare
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the entropic trap simulations of a single trap to experimental data of more

3700 traps. The key assumption is that the experimental data can be non-

dimensionalized using the same units as the simulation shown in Eq. (4.6).

These parameters will likely vary with each experiment. Another assumption

is that the variance in elution time scales linearly with the number of traps

nt, so that σ2
tot = σ2

t nt and that the total elution time after nt traps is ttot =

tnt. We can then relate the variance in elution time to the variance in the

electrophoretic mobility by,

σ2
µ =

(
∂µ

∂ttot

)2

σ2
tot =

(µ
t

)2 σ2
t

nt
(4.22)

where ∂µ/∂ttot = µ/ttot using µ = L/ttotE, so that we can show the error bars

in fig 4.4.
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Figure 4.4: Comparison of mobility scaling from Brownian dynamics simula-
tions (�) to experimental data from ref [49] (◦). The entropic trap has a pitch
of 4 µm, well depth of 1.8 µm, and slit depth of 100 nm and run with an applied
field strength of 120 V/cm. The error bars are estimated from the variance
in the elution time for each DNA length. Error bars for the data from the
Brownian dynamics simulations are nearly the size of the markers. The solid
lines are linear regressions. The data from the Brownian dynamics simulations
are shifted vertically by an arbitrary constant to compare the slopes.

End-labeled entropic trapping electrophoresis (ELETE) is the combination
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of two separation techniques. We shown above adding drag tags renders a

significant improvement over entropic trapping alone. The question remains

as to whether ELETE is an improvement over ELFSE alone. In fig 4.5 we

show the mobility difference between a pair of DNA lengths as function of slit

height. When the slit height is the same as the deep well, hs = hd = 1.8 µm, we

recover end-labeled free solution electrophoresis (ELFSE). From fig 4.5 we do

indeed see an improvement for ELETE over ELFSE alone. The optimum slit

height for maximizing mobility difference appears to be around 150 – 250 nm

for separating 5, 10, and 15 kbp DNA with 5 kbp resolution. Interestingly the

optimum separation mode for separating above 15 kbp appears to be ELFSE

alone. This indicates that ELFSE out performs ELETE for long DNA for the

system parameters we investigated here.
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Figure 4.5: Mobility difference of tagged DNA (α = 500 kbp) as function of
slit height. At hs = 1.8 µm DNA is separated under end-labeled free solution
electrophoresis. The mobility differences are shown for different DNA length
pairs as indicated.

4.3 Summary

In this chapter we demonstrated the viability of a novel DNA separation tech-

nique that uses a hybrid of end-labeled free solution electrophoresis (ELFSE)
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and entropic trapping to separate long DNA. The end-labeled entropic trap-

ping electrophoresis separation technique is shown, through the use of Brow-

nian dynamics simulations, to outperform both ELFSE and entropic trapping

for separating DNA between 5 and 15 kbp. The physical mechanism behind

this increased performance was due to an increased bias of long DNA to at-

tempt to escape the deep well at greater frequency over short DNA. Our results

have good scaling agreement with published experimental data and we expect

quantitative agreement to be possible by including hydrodynamic interactions

into the simulation. We expect, however, that the rational for why end-labeled

entropic trapping out performs entropic trapping to remain unchanged.

Nomenclature

D diffusion coefficient

E0 applied electric field strength

Ed electric field strength in deep well

Es electric field strength in slit

FB
i Brownian motion force on bead i

FD
i drag force on bead i

FE
i electrophoretic force on bead i

FEV
i excluded volume force on bead i

F S
i spring force on bead i

Fdim force dimension in simulation

fi magnitude of spring force caused by stretching bead i from i+ 1

hd deep well height in entropic trap
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hs slight height in entropic trap

I idem factor

k Boltzmann constant

L pitch length of entropic trap

ldim length dimension in simulation

lp persistence length of double stranded DNA

ls length of spring

m mass of DNA

N number of DNA basepairs

Nb number of beads

nt total number of traps

Pe Peclet number

qi distance between bead i and i+ 1

Rtrap resolution per entropic trap

ri position vector of bead i

T temperature

t time

tdim time dimension in simulation

〈tl〉 mean elution time for long DNA length

〈ts〉 mean elution time for short DNA length

ttot total elution time

ũi dimensionless electric (vector) field at position of bead i

vEV excluded volume factor

x abscissa
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y ordinate

z applicate

α size of the drag tag in units of DNA bases

β0, β1 fitting parameters

γ ratio of deep well height to slit height

∆U activation energy

δ Dirac-delta function

θ0, θ1 fitting parameters

λ ratio of spring length to persistence length

µ∞ trap free DNA mobility

µi electrophoretic mobility of bead i

σ2
µ variance in mobility

σ2
t temporal variance per trap

σ2
tot total temporal variance

σl standard deviation of a long DNA length

σs standard deviation of a short DNA length

τtrap trapping time scale

τtravel travel time scale

τ0 pre-exponential factor

φ potential difference in entropic trap

ξi drag coefficient for bead i
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Chapter 5

Approximate Dynamics from

Long Simulations using

Projective Integration

Large systems of non-linear differential equations are typically very computa-

tionally expensive to solve. This expense often precludes further analysis such

as optimization or control studies. Stiff differential equations are particularly

expensive to solve as they typically demand the use of implicit integration

methods for numerical stability. Stiffness arises when the differential equa-

tions describe both fast and slow dynamics and frequently occur in chemical

process systems due to chemical reactor kinetics and recycle streams [121, 122].

Proper exploitation of multiple time-scales in process systems has led to effi-

cient control strategies, such as adaptive control, that stems from the use of

reduced-order models [123].

Projective integration is a computationally efficient method for solving dif-

ferential equations with both fast and slow dynamics. Projective integration

works by utilizing two coupled integration methods with very different integra-
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tion time steps. An inner integration is performed at small time steps to damp

out fast dynamics. After a few inner integration steps an extrapolation is made

over a large number of time steps which serves as the outer integration over

the slow dynamics. This process is then repeated until the desired integration

is completed [65]. Projective integration can be a particularly efficient method

to integrate stiff differential equations because it avoids costly implicit integra-

tion methods [63]. Efficient integration of stiff differential equations represents

just one example of the accelerating power of this method. Additional exam-

ples include accelerating stochastic simulation of nematic liquid crystals [124],

accelerating kinetic Monte Carlo simulations of adsorption onto a metal sub-

strate [125], and projective integration over space and time for accelerating

the integration of partial differential equation [64].

Projective integration normally uses an equations-free approach that allows

for cheap computations. The equations-free approach, however, is difficult to

extend to yield better estimates of the interaction between states and error

propagation. In this chapter we propose a projective integration scheme that

uses an affine model1 to make more accurate extrapolations for the outer in-

tegration. By applying this additional structure, important properties such

as prediction error can be estimated and the projection horizon can be ad-

justed to balance the tradeoff between acceleration and accuracy. Related

work in adaptive control has led to a number of stable and robust algorithms

for extended-horizon adaptive control [126, 127]. In the following sections we

outline the algorithm for adaptive projective integration and show three test

problems for ordinary, stochastic and partial differential equations involving

both fast and slow dynamics that can be exploited for computational speed-up

using projective integration.

1An affine function has the form y = Ax + b where A is a matrix and b is a vector.
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5.1 Adaptive projective integration

This section describes the algorithm for adaptive projective integration. The

system to be integrated contains both fast and slow dynamics represented by

dx

dt
= g1(x, t) +

1

ε
g2(x, t) (5.1)

where x ∈ Rn and ε is a small number which indicates that the first term in the

differential equation describes slow dynamics and the second term describes

fast dynamics.

Projective integration uses a detailed inner integration to damp out the

fast dynamics and then uses an outer integration to extrapolate over a long

time horizon [63]. One such inner integration is explicit Euler’s method with

an integration time step, δt, at least as small as ε

xk+1 = xk + δt g1(xk, tk) +
δt

ε
g2(xk, tk) (5.2)

which can be more simply written as xk+1 = f(xk) if we assume the system

is autonomous. Because the integration time step, δt, is required to be small

for numerical stability, integrating xk+1 = f(xk) to a long time horizon can

be prohibitively expensive depending on the size and structure of f(x). Typ-

ically projective integration then makes use of a linear model, identified by

finite-difference, to extrapolate forward N steps [63]. After stepping the in-

ner integration forward h+ 1 steps to damp out the fast dynamics, the outer

integration is performed using

xk+h+1+N = xk+h+1 +Nδt sk+h+1 (5.3)

where sk+h+1 = (xk+h+1−xk+h)/δt is an approximation of the rate of change of
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x. This projective integration technique computes extrapolations very cheaply

and does so in an “equations-free” manner [64]. In many case, however, the

equation-free method is difficult implement for accurate projection whens the

number of states is large. This is because the equations-free extrapolation

method does not model any interactions between states within the same time

step which typically do have strong interactions with each other.

We propose a method for projective integration, which can better capture

the interaction between states, by fitting an affine function to the simulation

data such that an accurate extrapolation can be made. This affine approxi-

mation of the system f(x) takes on the form

yk+1 = Ayk + a+ wk (5.4)

where A is a constant matrix where the entries are found by the method of

least-squares, a is a vector also fit using least-squares, and wk = f(xk) −

(Ayk + a) is the projection error. A projection N steps into the future can be

made using

yk+N = ANyk +
N−1∑
i=0

Ai (a+ wk+N−1−i) (5.5)

where the projection errors wk+1, wk+2, . . . , wk+N−1 are expensive to calculate.

For the sake of computational efficiency, we assume that the projection error

is time-invariant so that w = wk ≈ wk+1 ≈ · · · ≈ wk+N−1. Using the identity

for a geometric series we arrive at

yk+N = ANyk + (I − A)−1
(
I − AN

)
(a+ w) (5.6)

where the term (I − A)−1
(
I − AN

)
w is the estimate of the error xk+N−yk+N .

Eq. (5.6) serves as the outer integration in the projective integration
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method. Once the projection yk+N is made using Eq. (5.6) the inner integra-

tion is restarted taking xk+N = yk+N . Because the system f is approximated

by the affine function (5.4) in order to make the long time horizon projec-

tions, the projections introduce some additional integration error beyond the

discretization error associated with Euler’s method.

Before we summarize the projective integration method in an algorithm we

will first outline theorem 5.1 which is used to determine the projection horizon

as a function of the user specified error tolerance.

Theorem 5.1 Let κw be the user specified error tolerance and λmax = maxi{|λi|}

where λi is an eigenvalue of the matrix A in Eq. (5.4). When λmax ≥ 1, the

projection horizon N is bounded by

N ≤ log (κλmax − κ+ 1)

log (λmax)
(5.7)

so that the outer integration horizon N causes the projection error estimate

(I − A)−1
(
I − AN

)
w to be bounded by the error tolerance κw.

Proof. A bound on the projection horizon N can be derived several ways.

For simplicity we use the eigenvalue problem

(I − A)−1
(
I − AN

)
w = κw (5.8)

where κ is an eigenvalue of the matrix (I − A)−1
(
I − AN

)
. Let λ be an

eigenvalue of the matrix A so that Av = λv. By induction we also have

ANv = λNv. Now we pre-multiply Eq. (5.8) by (I −A) and distribute so that

w − ANw = κ (w − Aw) . (5.9)

Recalling that the matrix (I − A)−1
(
I − AN

)
is equivalent to

∑N−1
i=0 Ai it then
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follows that (I − A)−1
(
I − AN

)
and A share eigenvectors due to the Spectral

Mapping Theorem so that

w − λNw = κ (w − λw) (5.10)

which can be arranged to

N =
log (1− κ (1− λ))

log (λ)
. (5.11)

The largest eigenvalue of A yields the smallest projection horizon N resulting

condition (5.7). If |λ| ≤ 1 then the matrix A is stable so that

(I − A)−1
(
I − AN

)
w → (I − A)−1w

as N →∞ which may be below the user specified error tolerance κw. Because

of such cases we only check condition Eq. (5.7) if max |λ| ≥ 1 �.

The proposed algorithm for adaptive projective integration is as follows:

1. Starting at xk, integrate h steps forward using the inner integrator,

xk+1 = f(xk), to generate data xk, xk+1, . . . , xk+h+1.

2. Let φ = [xk, . . . , xk+h] and Ψ = [xk+1, . . . , xk+h+1]. Append a row vec-

tor of ones, 1, to the matrix φ so that Φ = [φ; 1] where a semi-colon

denotes a new row in the matrix. Fit the affine model yk+1 = Ayk + a0

using least-squares so that Θ = ΨΦ+ where Φ+ is the pseudoinverse of

Φ, found efficiently using a QR factorization, and Θ = [A, a].
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3. Diagonalize A and calculate N∗ =
⌊
log(γmax)
log(λmax)

⌋
where b·c is the floor op-

erator, γmax = κλmax − κ + 1, and λmax = max{|λi|} is the largest

modulus of the eigenvalues of A. If λmax > 1 set the projection hori-

zon to N = min{N spec, N∗}, where N spec is the user specified projection

horizon, otherwise λmax ≤ 1 and set N = N spec.

4. Project forward N steps using yk+1 = Ayk + a. If the eigenvalues are all

unique, then we project forward efficiently using yk+N = PDNP−1yk +

PMP−1a, where DN = diag
{
λNi
}

, M = diag
{

(1− λNi )/(1− λi)
}

and

P is a matrix whose columns are the eigenvectors of A, set xk+h+1+N =

yk+h+1+N . When the projection is complete reset the index k ← k+ h+

N + 1 and go to step 1.

The emphasis of this approach is fast and cheap computations to accelerate

long simulations. In certain cases it may be advantageous to replace the matrix

A in step 2 with a strictly diagonal matrix B so that the cost of diagonalization

can be avoided. This introduces a tradeoff with accuracy, however, as the diag-

onal matrix B contains less information than the full least-squares solution A

and the projection yk+h+1+N is correspondingly less accurate. Ultimately using

a strictly diagonal matrix B will require smaller projection horizons N which

can lead to increased CPU time yet again. Another approach is to omit step 3

in the algorithm completely. This approach requires some experimentation to

identify a projection horizon N spec that appropriately balances accuracy and

acceleration of the simulation.
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5.2 Applications in ordinary and stochastic dif-

ferential equations

In this section we outline two useful examples to illustrate the algorithm for

adaptive projective integration. The first example problem is a Brusselator

with rapidly replenished source. This non-linear system describes an oscillating

chemical reaction [63]. The following differential equations for the Brusselator

with a rapidly replenishing source are

dx1
dt

=
p1 − x1
p2

− x1x2

dx2
dt

= p3 − (x1 + 1)x2 + x22x3

dx3
dt

= x1x2 − x22x3

(5.12)

where the terms x1 and p3 represent the concentration of the reagents and the

terms x2 and x3 represent the concentration of the products. The chemical

reaction takes place in a large reservoir of reagents leading to the concentration,

p3, to be constant. The second reagent is rapidly replenished to its set point p1

with a time scale p2. The system has an unstable stationary point at x1 = p1,

x2 = p3 and x3 = p1/p3 and all other points lead to a stable limit cycle. The

terms p1, p2 and p3 are constant parameters with values p1 = 3, p2 = 10−4, and

p3 = 1. The initial conditions are x1(0) = p1, x2(0) = p3 + 0.1, and x3(0) =

p1/p3 + 0.1. The system of differential of equations is stiff and is integrated

using explicit Euler’s method to tk = 10 with a time step δt = p2 = 10−4.

The results from explicit Euler’s method are used as the standard to compare

against the results from Adaptive Projective Integration.

Results are shown in figure 5.1 for different error factors κ = 103 and

κ = 106. In step 1 of the algorithm the full simulation is integrated forward
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4 steps. The affine model is then fit and the projection horizon is specified

according to the error factor. When the affine model yk+h+1 = Ayk+h + a

is stable the projection horizon is N spec = 10240 otherwise the projection

horizon is bounded by Eq. (5.7). In figure 5.1 we see that adaptive projective

integration with an error factor κ = 103 leads to good agreement with data

produced using Euler’s method alone with correlation coefficients r2 = 0.79,

0.81, and 0.79 for the states x1, x2, and x3, respectively. When the error

factor is set to κ = 106 the error increases substantially and the correlation

coefficients drop to r2 = 0.01, 0.02, and 0.01. Regardless of the large error

introduced during the adaptive projective integration, we can see that the

integration recovers quickly to the correct trajectory so that the error in the

states at tk = 10 is commensurate to when κ = 103. In this example the stable

limit cycle helps to correct any over projections that occur. The CPU times for

adaptive projective integration with κ = 103 and κ = 106 are 0.049 s and 0.016

s compared to 0.835 s using Euler’s method alone. These computations were

performed in MATLAB(R) using a desktop PC equipped with an Intel(R) i7

2.93 GHz quad-core processor ran in serial.

As the emphasis is on efficient computations, the algorithm for adaptive

projective integration may be modified to better suit these needs. One ap-

proach is to omit step 3 of the algorithm which adjusts the projection horizon

according to the user specified error factor κ and the eigenvalues of the fit

matrix A. By omitting this step, the diagonalization of A is avoided but the

projection horizon cannot be corrected. The user must typically specify a

smaller projection horizon so that the projective integration algorithm does

not introduce too much error. The integration results from using projective

integration with an integration horizon N spec = 2560 are nearly indistinguish-

able from the results generated by Euler’s method with correlation coefficients
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Figure 5.1: Brusselator example results. Euler’s method is compared to the
results from adaptive projective integration. The lines (——), (− • −), and
(· ·H · ·) corresponds to Euler’s method, projective integration with error factor
κ = 103, and projective integration with error factor κ = 106, respectively.
The specified projection horizon is N spec = 10240 for both cases.

r2 = 0.999, 0.996 and 0.999 for states x1, x2, and x3, respectively. As the pro-

jection horizon is increased to N spec = 10240 the correlation coefficients drop

to r2 = 0.010, 0.026, and 0.013. The CPU times for projective integration with

a fixed horizon are 0.006 s and 0.002 s using N spec = 2560 and N spec = 10240,

respectively, compared to 0.835 s using Euler’s method alone. Projective inte-

gration also outperforms commercial integrators designed for stiff differential

equations such as ode23s in MATLAB(R) which requires 0.02 s of CPU time

to integrate Eq. (5.12) to the default accuracy.

Another useful example simulates DNA migrating through a microfabri-

cated obstacle course under the action of electrophoresis. Here DNA is rep-

resented by Nb beads connected by springs. A momentum balance yields the

stochastic differential equation

dr =
(
F elec(r) + FEV (r) + F s(r)

)
dt+

√
2 dw (5.13)

where r = [x1, y1, z1, x2, y2, z2, . . .]
T is a vector containing the (x, y, z) coordi-
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Figure 5.2: A bead-spring model in an obstacle course

nates of each bead, F elec(r) provides the force applied by the electric field in

the obstacle course, FEV (r) is the excluded volume term that prevents the

beads from overlapping, F s(r) is the spring force term that keeps the beads

connected, and dw is a Wiener process represented by Gaussian white noise

with zero mean and variance dt which accounts for Brownian motion.

The look up table for F elec(r) is generated by solving Laplace’s equation

∂2V/∂x2 + ∂2V/∂y2 = 0 over the interior of the obstacle course, shown in

figure 5.2, with homogeneous Neumann boundary conditions on the walls and

Dirichlet boundary conditions of V (0, y) = Vapp and V (1, y) = 0. Laplace’s

equation is solved using the MATLAB PDE toolbox. The force can the be

calculated using F elec(r) = −∇V and converted to units consistent with the

simulations. The magnitude of the spring force term is given by

fi =
λqi

(1− q2i )
2 −

7qi
(1− q2i )

+ Csqi +Dsqi
(
1− q2i

)
(5.14)

where qi = ‖ri+1 − ri‖ is the distance between bead i+1 and bead i, λ is a unit

fixing constant, Cs and Ds are constants, and the total spring force for each

bead i is calculated by F s
i (r) = fi (ri+1 − ri) /qi − fi−1 (ri − ri−1) /qi−1 [115].

The excluded volume term in Eq. (5.13) prevents the beads from overlapping
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and is given by

FEV
i = −

∑
j

9vEV

2

(
3

4
√
π

)3

exp

(
−9

4
λ ‖rj − ri‖2

)
(rj − ri) (5.15)

where vEV is constant parameter that specifies the strength of the repulsion

between beads [128].

The stochastic differential equation (5.13) has 3Nb equations. These are

solved Ne multiple times using a semi-implicit Euler’s method [118] with Nt

integration steps to yield estimates of the first two moments of r. In our

example we use Nb = 12, Nt = 5×105, and Ne = 100 with an integration time

step δt = 5 × 10−4. The simulation requires 70.14 minutes of wall-clock time

to complete the simulation using a desktop PC equipped with an Intel(R) i7

2.93 GHz quad-core processor ran in parallel using MATLAB(R).

The simulation of DNA electrophoresis in an obstacle course generates the

(x, y, z) coordinates for each bead as they evolve through time. The size of

the DNA as is moves through the obstacle course is indicated by the radius of

gyration,

R2
g =

1

Nb

Nb∑
i=1

〈
(ri − rcm)2

〉
(5.16)

where rcm is the center of mass of the DNA and the brackets 〈·〉 indicate an

ensemble average over the Ne simulation realizations. The radius of gyration

from the simulation is shown in figure 5.3. We apply the version of our adap-

tive projective integration method which fits a strictly diagonal matrix B for

outer-integration model yk+1 = Byk + b0 where yk = 〈r(tk)〉. The projection

horizon is set at N spec = 5000 and step 3 of the algorithm adaptive projective

integration algorithm is omitted. The results from figure 5.3 show that projec-

tive integration results in overshooting the actual trajectory of the simulation,

but the stability and dissipative properties of the simulation quickly correct
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Figure 5.3: Radius of gyration of DNA as it migrates through the obstacle
course. Integration results of Eq. (5.13) using semi-implicit Euler’s method
(—) are compared against adaptive projective integration (−−).

the overshoot and bring the results from the different integration techniques

into qualitative agreement with each other. In general, quantitative agreement

from stochastic simulations cannot be achieved without using a large number

of realizations. The wall-clock time using adaptive projective integration is

57.48 minutes which is only a small decrease over the full simulation time of

70.14 minutes.

5.3 Applications to oil reservoir simulations

Oil reservoir simulations present a particularly interesting application for pro-

jective integration. Typical oil reservoir simulations, such as ECLIPSE by

Schlumberger, solve systems of partial differential equations to determine the

flow rates of oil, water, and gas out of the reservoir. The partial differential

equations are discretized in space using finite volume method which results in

a large system of ordinary differential equations which are integrated to de-

scribe the time evolution of the states. The simulations are computationally

expensive due to the large number of grid blocks used to yield a high fidelity
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simulation of the oil reservoir. Furthermore, it is not a straightforward process

to implement many simulation acceleration techniques, such as reduced-order

modeling, since most simulations are closed commercial software packages.

Projective integration, however, is well suited for use with commercial soft-

ware packages as the inner integrations can be performed by the commercial

simulator and the outer integration can be performed by the user.

To test projective integration we use a simulation of a two dimensional

square, with thin constant depth, oil reservoir with production wells in the four

corners and water injection in the center which is similar to case considered

previously in the literature [129]. The model is described in detail in Appendix

B and can be summarized as implicit ODEs

fo

(
P, Sw,

dP

dt
,
dSw
dt

)
= 0

fw

(
P, Sw,

dP

dt
,
dSw
dt

)
= 0

(5.17)

where P ∈ RNbk
+ and Sw ∈ RNbk

[0,1] are vectors containing the pressure and

saturation of water (volume fraction) at each grid block, fo(·) ∈ RNbk and

fw(·) ∈ RNbk where Nbk is the total number of blocks. In the example shown

here we use a 21× 21 grid for a total of Nbk = 441 grid blocks, or 882 states.

The model is a good candidate for potential speed up from using projective in-

tegration due to its exhibiting both fast dynamics in the pressure field and slow

dynamics in the saturation field. In fact this property is commonly exploited

when integrating the oil reservoir model using the popular IMPES (implicit

pressure, explicit saturation) method.

Many commercial solvers utilize an adaptive time step to make the time

integration more computationally efficient. We use an adaptive time step

algorithm similar to the one used in simsim (simple simulator) developed by
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δtk+1 = δtk
∆Starget

w

‖Skw − Sk−1w ‖∞
(5.18)

where δtk is the integration time step used in the kth integration step and

∆Starget
w = 0.2 is the target change in saturation per time step. The time

step is initialized at δt1 = 30 days. The non-linear equations that follow from

time integration of Eq. (5.17) are solved using Newton’s method. If Newton’s

method cannot satisfy the error tolerance fTf ≤ 10−4, where fT = [fT
o , f

T
w ]

from Eq. (5.17), fails to descend, or encounters a singular Jacobian matrix

during one of the integration steps, then we shrink δt by 75%, i.e. δt→ 0.25 δt,

and re-attempt Newton’s method for a maximum of ten times per integration

step. The next time step increases according to Eq. (5.18) to a maximum of

δtmax = 30 days.

The projective integration algorithm we developed above assumes a dis-

crete time formalism. Since the integration time step δtk changes with each

integration, it is more convenient to use a continuous time representation of

the model. To build a simple model that can be cheaply projected, we build

a matrix of approximate time derivatives of uT = [P T , ST
w], so that

u̇k =
uk+1 − uk
tk+1 − tk

+O(δtk) (5.19)

where u̇k denotes the time derivative at time step k. An affine model u̇ = Bu+b

can then be found using least squares as described above. The algorithm

proceeds as previously discussed after a discrete time model uk+1 = Auk + a

is recovered by using the implicit Euler’s method such that A = (I −B δtn)−1

and a = Ab δtn where δtn is the last time step used before the model fit.

The results for integrating Eq. (5.17) using implicit Euler’s method and
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projective integration are shown in fig. 5.4. For these results, implicit Euler’s

method uses 75 integration steps where as projective integration uses 15 steps

of implicit Euler’s method then project forward 3 time steps using an affine

model uk+1 = Auk + a and repeats the process a total of four 4 times.
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Figure 5.4: Oil reservoir simulation showing the oil field status after 1.55 years
of production. The simulation integrates two PDEs in space using finite vol-
ume method and time integration is performed using implicit Euler’s method
(5.4(a) and 5.4(b)) or projective integration (5.4(c) and 5.4(d)).

The results in fig 5.4 show that projective integration produces consistent

results to the full simulation although some error is introduced. The errors de-

crease when the inner integrator is used. This property follows from the highly

dissipative nature of oil reservoirs. The dissipation causes most perturbations

to be reduced as the system returns to a fast-attracting manifold [64].
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Simulations that require solving partial differential equations are an at-

tractive example for projective integration as it is straightforward to scale up

the problem size by refining the discretization. The CPU time scaling for the

oil reservoir simulation is shown in fig. 5.5. Here we see that projective inte-

gration scales almost identically to implicit Euler’s method, which calls into

question its utility as an fast integration scheme. It does, however, result in a

0.7 min to 1.9 minute reduction in CPU time over implicit Euler’s method for

this problem.
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Figure 5.5: CPU time scaling for integrating the oil reservoir simulation using
implicit Euler’s method (—) and projective integration (– –).

Projective integration does not render a significant improvement over Eu-

ler’s method for the oil reservoir simulation. This is perhaps not surprising

when considering the projective integration is performed by extrapolating a

linear regression model. In order for the model to be unique there must be more

data than states which in our case implies that we need to run the simulation

long enough to yield the sufficient quantity of data. Running the simulation

for a long time is precisely what we are trying to avoid, however, which leads us

to the situation where we must utilize models derived from under-determined

linear regression. Since the problem is under-determined the solution to the

linear regression is non-unique. There are several methods available to regu-
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larize the linear regression, such as ridge regression and the LASSO, so that

model predictions can be improved [130]. In this work, we found that solving

the under-determined linear regression by application of QR factorization gave

sufficient performance. Although the model predictions may be improved by

regularization, the QR factorization method is very cheap to perform. Fur-

thermore when the linear regression is under-determined, properties of the

QR factorization are such that the matrices produced are sparse [131], which

also allows for very cheap extrapolations of the linear regression model. The

LASSO may otherwise be useful in this context as it also renders a sparse

model but with improved model prediction properties. The LASSO requires

solving a quadratic program, however, which likely nullifies any performance

improvements due to the increased computational cost.

Improved model prediction may also be possible by parametrization of

the pressure and saturation fields so that the number of states is reduced.

We attempted two parametrization techniques: the discrete cosine transform,

which has had success in parameterizing pressure and saturation fields for use

in oil reservoir simulations [132, 133], and using a quadratic basis function

to parametrize the saturation field while leaving the pressure at a full state

description. Unfortunately, neither method resulted in appreciable improved

performance, although other parametrization techniques may yield better re-

sults.

5.4 Summary

Adaptive projective integration is a method for computationally inexpensive

integration of differential equations. In the algorithm, the differential equa-

tion is integrated forward for a small number a steps which generates data
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that is used to construct an affine model. The linear model is used to project

forward a large number of steps. Based on the eigenvalues of the linear model

the projection horizon can be adjusted to help avoid large errors during the

integration. We used the Brusselator problem as an example to highlight the

different features of our approach. We found that using projective integration

with a fixed projective horizon yields the best tradeoff between computational

speed up and accuracy giving nearly an identical answer to Euler’s method

but with two orders of magnitude speed up in CPU time for the Brusselator

problem. Less impressive speed up is observed using the stochastic simula-

tion of DNA and the oil reservoir simulation. Modifications to the proposed

method may provide better speed-up. However, the simple ideas motivated by

adaptive control theory tested here do not yield sufficient speed-up to merit

the application of projective integration for the problems considered here.

Nomenclature

A constant matrix

a constant vector

Cs, Ds spring coefficients

dw wiener process

F elec electrophoretic force

FEV excluded volume force

F s spring force

h number of steps of inner integration

N projective integration
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N∗ projection horizon specified by error control

N spec user specified projection horizon

Nb number of beads

Nbk number of blocks

Ne number of realizations of stochastic simulation

Nt number of time steps

P pressure

pj fixed parameters

qi distance between bead i and i+ 1

r vector of positions

Rg radius of gyration

Sw saturation of water

t time

v eigenvector

V potential difference

vEV excluded volume factor

wk projection for step k

x state vector

y approximation of state vector

δt integration time step

ε some small parameter

Θ matrix of parameters found by linear regression

κ user specified error factor

λ eigenvalue, unit fixing constant
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φ, Φ, Ψ data matrices used for linear regression
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Chapter 6

Stability of the

multi-component distillation

column

The distillation column is one of the primary unit operations for separations

in the chemical and petroleum industries. Because of their significance, the

literature for theory and practice of distillation columns is vast and mature.

Despite the plethora of available theory, however, a general stability analysis

of the multi-component distillation column has yet to be made.

Acrivos and Amundson [134] were the first to show that a distillation col-

umn modeled by constant molar overflow, and constant vapor-liquid equi-

librium relations are asymptotically stable. Unfortunately, few columns can

be accurately modeled by constant vapor-liquid equilibrium relations, which

limits the scope of this work. Rosenbrock [19, 20] used Lyapunov’s second

method to show asymptotic stability of a binary distillation column modeled

using constant molar overflow and Murphey efficiencies. Unfortunately, Rosen-

brock’s analysis is difficult to apply in the multi-component case. Doherty and
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Perkins [135] developed a stability analysis for the multi-component distilla-

tion column modeled by constant molar overflow. It was later revealed that

this analysis suffers a fatal flaw that cannot be easily rectified [136]. Rouchon

and Creff [137] developed a stability analysis based on thermodynamics for the

multi-component flash, but this analysis is difficult to extend to multi-stage

distillation columns. Aggarwal and Ydstie [136] used contraction analysis and

thermodynamics to show stability of the multi-component distillation column,

but the analysis makes a few restrictive modeling assumptions that may be

difficult to satisfy in practice.

In this chapter, we present an analysis for the multi-component distillation

column that utilizes the thermodynamics availability function, first employed

by Alonso and Ydstie [66], to show asymptotic stability of the distillation

column using pressure, temperature, and level controllers on the reboiler and

condenser. For this analysis, we model the multi-component distillation col-

umn as a stack of independent mass exchange units. This allows us to develop

a Lyapunov function for each individual mass exchange unit, such that the

overall Lyapunov function for the distributed system can be devised [138].

6.1 Modeling of the multi-component distilla-

tion column

The multi-component distillation column is governed by mass and energy bal-

ance such that

dNi

dt
= Vi−1yi−1 + Li+1xi+1 − Viyi − Lixi + Fiz

f
i

dUi
dt

= Vi−1h
v
i−1 + Li+1h

l
i+1 − Vihvi − Lihli + Fih

f
i +Qi

(6.1)
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where Ni = [Ni,1, · · · , Ni,nc ]
T is molar hold-ups of each component on tray

i, Vi and Li are the vapor and liquid molar flow rates out of tray i, yi =

[yi,1, · · · , yi,nc ]
T and xi = [xi,1, · · · , xi,nc ]

T are mole fractions of each component

of tray i, Fi is the feed rate to tray i, zfi = [zfi,1, · · · , z
f
i,nc

]T is the mole fraction

of each component in the feed, nc is the total number of components, Ui is the

internal energy of the mixture on tray i, hvi and hli is the molar enthalpy of

the vapor and liquid part of the mixture on tray i, hfi is the molar enthalpy of

feed, and Qi is the external heat flow rate into tray i. The only trays with any

external heat flow are the reboiler Q1 = QR and the condenser Qn = −QC .

The model for the distillation column is complete by modeling each tray

as an equilibrium stage such that

wvi = wli (6.2)

where wi = [1/T, P/T,−µ1/T, · · · ,−µnc/T ]T are the potentials of the vapor

in tray i.

6.2 Availability of the mass exchange unit

In this section, we outline the availabilty function we use to show stability

of the multi-component distillation column. The thermodynamic definition of

the potentials is derived directly from the entropy such that

w =
∂S

∂z
(6.3)

or equivalently, dS = wTdz, where z = [U, V,N1, · · · , Nnc ]
T are conserved in-

ventories, T is the temperature, P is the pressure, µk is the chemical potential

of component k, U is the internal energy, V is the volume, Nk is the number of
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moles of component k, and nc is the total number of components. The poten-

tials are commonly referred to as intensive variables, i.e. they are independent

of the size of the system. Thus the potentials are homogeneous degree zero

w(λz) = w(z). The Gibbs-Duhem equation dwTz = 0 directly follows [139].

This allows the entropy to be expressed in compact form

S = wTz. (6.4)

The entropy is maximized when a system has reached thermodynamic equi-

librium, such that entropy is a concave function. Because of the concavity of

entropy, we can use it to build a candidate Lyapunov function. Unfortunately

the entropy does not possess the desired boundedness properties need for the

analysis. We, therefore, define the availability

A(w∗, z) = (w∗)Tz − S(z) (6.5)

where w∗ is a fixed reference potential. The availability measures the dis-

122

124

Spinodal
Spinodal

120

122

J/
K

]

Spinodal
Metastable 
Liquid ∂2S<0

116

118

E
nt

ro
py

 [

Metastable

114

116E

Two‐phase region

Metastable 
Vapor ∂2S<0

0 0.005 0.01
112

Volume [m3]Liquid Volume Vapor Volume

Two phase region

Liquid Volume Vapor Volume

Figure 6.1: Availability of propane using the Van der Waals equation of state.
Reprinted from Lin 2009 [140]

tance between the entropy S(z) = wTz and a supporting hyperplane, such

that the availability is non-negative. The availability is used here due to its
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favorable boundedness qualities [66]. The availability is zero when w∗ = w

which is where the supporting hyperplane is tangent to the entropy curve.

With sufficient controls, the availability can be used to form a candidate Lya-

punov function which can be used to show stability of a dynamical system. A

Lyapunov function must be strictly positive and decreasing with time to show

asymptotic stability of a system. The rate of change of the availability is given

by

dA

dt
= − (w − w∗)T dz

dt
− dw

dt

T

z

which is simplified considerably using the Gibbs-Duhem equation dwTz = 0 or

dA

dt
= −∆wT

d∆z

dt
(6.6)

where ∆w = w − w∗, ∆z = z − z∗ and we have held the equilibrium state z∗

fixed such that dz∗/dt = 0. The availability is then a useful quantity for a

stability analysis as the sign of the dA/dt is something that can be checked in

a straightforward manner. We will next see an example of how the availability

can be used to show stability of a multi-component distillation column.

The model of the distillation column is a system of differential algebraic

equations (DAE) of index two [141]. Lyapunov stability theory does not di-

rectly apply to DAEs, however, the model can be reformulated to a system of

ordinary differential equations by appropriate differentiation of the algebraic

equations [137, 142]. The reformulation shows that if the inventories z are

stable, then the potentials w are coerced into stability. It is therefore useful to

consider the differential equations that model each phase as an independent

mass exchange unit. The mass exchange unit is models the mass and energy
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Figure 6.2: A mass exchange unit

balance of each liquid or vapor phase in each tray, such that

dU

dt
= finhin − fouthout + rhr +Q+ q − Pφ

dV

dt
= φ

dN

dt
= finxin − foutxout + r

(6.7)

where fin is the molar flow rate into the mass exchange unit, r is the molar

exchange rate between phases, q is external heat flow transferred between

phases, and φ is the exchange of fluid volume between phases. Because the

mass exchange unit models each independent phase, no equilibrium equations

are considered.

The stability analysis developed in the previous section can now be directly

employed. Starting with the availability A(w∗, z) = −∆wTz, the rate of change

is given by Eq. (6.6), and combined with Eq. (6.7) to give

dA

dt
=−∆

(
1

T

)
∆(finhin − fouthout + rhr +Q+ q − Pφ)

−∆

(
P

T

)
∆φ

+ ∆
(µ
T

)
∆(finxin − foutxout + r) .

(6.8)

Eq. (6.8) can be expressed in a more useful form for the stability analysis (see
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Appendix C for derivation)

dA

dt
=fin(Ã+ Ã∗)in +

(
1

TT ∗

)
in

∆Pin∆(Tfv)in −∆XT∆J

− fout(Ã+ Ã∗)out −
(

1

TT ∗

)
out

∆Pout∆(Tfv)out

−∆

(
1

T

)
∆Q

−
(

1

TT ∗

)
∆P∆(Tφ)−∆

(
1

T

)
∆q −∆

(
1

T

)
∆(rhr) + ∆

(µ
T

)T

∆r

(6.9)

where the first line denotes availability flow and dissipation in the mass ex-

change unit, the second line denotes availability flow out, the third line denotes

availability flow due to external heat input, and the final line denotes avail-

ability flow that is exchanged between phases. Eq. (6.9) is written in compact

form using

XT =

(
1

Tout
− 1

Tin
,−
(µ
T

)T
out

+
(µ
T

)T
in

)
JT =

(
fh, fxT

)
in

and the intrinsic availability

Ã =(w∗ − w)T z̃ = −∆

(
1

T

)
u−∆

(
P

T

)
v + ∆

(µ
T

)T
x

Ã∗ =(w − w∗)T z̃∗ = ∆

(
1

T

)
u∗ + ∆

(
P

T

)
v∗ −∆

(µ
T

)T
x∗

where z̃ = (u, v, x1, · · ·xnc)
T , where u is the molar internal energy, v is the

molar volume, and xk is the mole fraction of component k.
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6.3 A Lyapunov function for the multi-component

distillation column

A candidate Lyapunov function for the distillation column can now be con-

structed directly from the stacking of mass exchange units. The candidate

(a) (b)

Figure 6.3: Schematic of distillation column and equivalent stack of mass
exchange units. Each tray is modeled as an equilibrium stage numbered from
bottom to top.

Lyapunov function is

W (z, z∗) = Atot(w
∗, z) +

ε0
2

n∑
i=1

(N tot
i −N

tot,∗
i )2 (6.10)

where N tot
i is the total molar hold up on each tray i and Atot(w

∗, z) is the total

availability which is the sum of availabilities from each mass exchange unit

used to construct a distillation column [138]. The availability measures the

distance between the entropy curve and the supporting tangent hyperplane.

The availability is zero at the point where the hyperplane is tangent where

w∗ = w. The inclusion of the molar hold up term in the candidate Lyapunov

function ensures that

W (z, z∗) > 0, ∀z 6= z∗

W (z∗, z∗) = 0.

(6.11)
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If the rate of change of the Lyapunov function candidate is uniformly nega-

tive then asymptotic stability of the distillation column then follows [28]. The

rate of change of the Lyapunov function candidate is

dW

dt
=
dAtot
dt

+ ε0

n∑
i=1

(N tot
i −N

tot,∗
i )

dN tot
i

dt
(6.12)

where the rate of change of the total availability for the multi-component

distillation column is given by

dAtot
dt

=− L1(Ã
l
1 + Ãl,∗1 )−D(Ãln + Ãl,∗n )− Vn(Ãvn + Ãv,∗n )

− ∆P1∆(T1L1v
l
1)

T1T ∗1
− ∆Pn∆(TnVnv

v
n + TnDv

l
n)

TnT ∗n

−∆

(
1

T1

)
∆QR + ∆

(
1

Tn

)
∆QC

− (∆XT∆J)tot

(6.13)

where the equilibrium exchange rates between vapor and liquid mass exchange

units are equivalent in opposite directions, i.e. rvi = −rli, hvr,i = −hlr,i, qvi = −qli,

and φvi = −φli, and therefore cancel. For simplicity we have assumed that there

are no deviations in the feed such that Fi = F ∗i . It is important to note that

Ã∗i ≥ 0 such that the availability flows obeys the inequalities

L1(Ã
l
1 + Ãl,∗1 ) ≥ L1Ã

l
1

D(Ãln + Ãl,∗n ) ≥ DÃln

Vn(Ãvn + Ãv,∗n ) ≥ VnÃ
v
n

where by addition we also get

L1(Ã
l
1 + Ãl,∗1 ) +D(Ãln + Ãl,∗n ) + Vn(Ãvn + Ãv,∗n ) ≥ L1Ã

l
1 +DÃln + VnÃ

v
n
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such that

L1Ã
l
1 +DÃln + VnÃ

v
n =

L1

N l
1

N l
1Ã

l
1 +

D

N l
n

Nn
1 Ã

l
n +

Vn
N v
n

N v
nÃ

v
n

≥ ε1Φ(w∗, z)

(6.14)

with

ε1 = min

{
L1

N l
1

,
D

N l
n

,
Vn
N v
n

}
and

Φ(w∗, z) = Al1(w
∗, z) + Aln(w∗, z) + Avn(w∗, z)

where Φ(w∗, z) > 0, ∀w∗ 6= w and Φ(w∗, z) = 0, w∗ = w. We can now state

explicitly what controls will render the distillation column to be asymptotically

stable.

Theorem 6.1 The distillation column model by the dynamical system (6.1)

with equilibrium conditions (6.2) has a steady state which is asymptotically

stable using the feedback controls

∆(TL1v
l
1) = K1∆P1 reboiler pressure control

∆QR = −K2∆T1 reboiler temperature control

L2 − L1 − V1 = −K3∆N
tot
1 rebolier liquid level control

∆(TnVnv
v
n + TnDv

l
n) = K4∆Pn condenser pressure control

∆QC = K5∆Tn condenser temperature control

Vn−1 − Vn − Ln −D = −K6∆N
tot
n condenser liquid level control

(6.15)

where the controller gains are positive Kj > 0 and the hydrodynamics of the

internal trays of the column introduce negligible deviation from steady-state of

the internal volumetric flow rates and internal pressures.

Proof. Beginning with the Lyapunov function candidate W (z, z∗) given
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in Eq. (6.10) and the rate of change given by Eq. (6.12), with Eq. (6.13), we

can see that application of the temperature controller for the reboiler given by

∆QR = −K2∆T1 = K2T1T
∗
1 ∆

(
1

T1

)

and similarly for the condenser

∆QC = K5∆Tn = −K5TnT
∗
n∆

(
1

Tn

)

along with the pressure controllers and inequality (6.14) renders the availability

rate of change

dAtot
dt
≤− ε1Φ(w∗, z)−K1

∆P 2
1

T1T ∗1
−K4

∆P 2
n

TnT ∗n

−K2T1T
∗
1 ∆

(
1

T1

)2

−K5TnT
∗
n∆

(
1

Tn

)2

− (∆XT∆J)tot

(6.16)

where the dissipation terms (∆XT∆J)tot ≥ 0 following the derivation in Ap-

pendix D. The remaining terms in the Lyapunov function candidate rate of

change (6.12) deal with molar hold up. By inventory balance we note that for

an internal tray in the distillation column without feed we have

dN tot
i

dt
= Vi−1 + Li+1 − Vi − Li (6.17)

so that for the condenser and rebolier we set dN tot
i /dt = −K∆N tot

i , while

the internal trays in the column are assumed to operate at steady state such

that dN tot
i /dt = 0, i = 2, . . . n − 1. Thus the rate of change of the Lyapunov
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function is

dW

dt
≤− ε1Φ(w∗, z)−K1

∆P 2
1

T1T ∗1
−K2T1T

∗
1 ∆

(
1

T1

)2

−K3ε0(∆N
tot
1 )2 −K4

∆P 2
n

TnT ∗n

−K5TnT
∗
n∆

(
1

Tn

)2

−K6ε0(∆N
tot
n )2

− (∆XT∆J)tot

(6.18)

where the sum terms of the right-hand-side are negative definite and asymp-

totic stability directly follows. �

There are two critical assumptions used to show the stability of the muli-

component distillation column, specifically that the feed does not have any

deviation from steady-state and that the hydrodynamics of the internal trays

introduce negligible deviation from steady state of the volumetric flow rates

and the pressure. These assumptions make clear our objective with this sta-

bility analysis: while it is likely apparent to practicing process engineers that

standard controllers have good disturbance rejection qualities such that dis-

turbances in the feed can be rejected out of the process after a long enough

time scale and that the design of internal trays (typically sieve trays with

weirs) provide good hydrodynamic stability, the proper pairing of controlled

variables to manipulated variables which results in a stable multi-component

distillation column is not obvious. For instance, the heat duty in the con-

denser is commonly manipulated to control a mole fraction specification in

the distillate, rather than the temperature as we show in our analysis. Unfor-

tunately controlling a mole fraction by manipulating the heat duty can lead

to input multiplicity where an identical mole fraction can be attained at dif-

ferent temperatures [143, 144]. Our analysis shows directly, for the first time,

what controls lead to asymptotic stability for the multi-component distillation
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column.

In addition, we attempted to extend the work of Aggarwal and Ydstie by

using contraction analysis to show stability [136]. The analysis proved very

limited. Details can be found in Appendix E.

6.4 Summary

In this chapter we showed how the second law of thermodynamics can be

used to analyze contraction and stability of non-linear systems. We showed

that contraction of non-linear systems may be found using a candidate Lya-

punov function constructed using the Hessian of the entropy, however the third

derivatives of the entropy are needed which are only known in specific cases

in which the entropy function is known in closed form. Stability analysis us-

ing the second law proves more fruitful. We used this stability analysis to

show that the multi-component distillation column is stable provided proper

controls are used and that the hydrodynamics of the internal trays introduce

negligible deviation from steady-state.

Nomenclature

A availability

Ãli molar availability of the liquid mixture on tray i

Ãvi molar availability of the vapor mixture on tray i

D distillate molar flow rate

f molar flow rate in mass exchange unit

Fi feed molar flow rate into tray i
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hfi molar enthaply of feed going into tray i

hli molar enthaply of liquid mixture on tray i

hvi molar enthaply of vapor mixture on tray i

J fluxes

Kj controller gain

Li liquid molar flow rate from tray i to i+ 1

Ni vector containing the number of moles of each component on tray i

Nk number of moles of component k

P pressure

q external heat flow transferred between phases

QC heat flow rate into condenser

Qi heat flow rate into tray i

QR heat flow rate into reboiler

r molar exchange rate between phases

S entropy

T temperature

U internal energy

V volume

Vi vapor molar flow rate from tray i to i+ 1

W Lyapunov function

wi driving potentials of tray i

X driving forces

xi vector containing liquid mole fractions of each component on tray i

yi vector containing vapor mole fractions of each component on tray i
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z inventories

z∗ set point in inventories

zfi vector containing mole fractions of each component in feed

∆z deviation from set point

µk chemical potential of species k

φ exchange of fluid volume between phases
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Chapter 7

Conclusion and Suggestions for

Future Work

In this work we demonstrated how to analyze key non-linear transport and

separation problems with the use of optimization, dynamics and stability anal-

ysis. This work began by showing how a general length based DNA separation

problem can be posed as a non-convex non-linear programming problem. By

using this formalism we were able to optimize the micelle end-labeled DNA

separation technique modeled as using conventional capillary electrophoresis.

In chapter 2 we identified that 600 bases could be resolved in under 50 min-

utes using a single capillary. Significant reductions in run time were identified

when the optimization problem was reformulated for parallel capillaries. The

optimal division of the separation task results in resolving 600 bases of DNA

in under 5 minutes. Even more improvements were observed by using alter-

nate detection modes. By reformulating the optimization problem, in chapter

3 to account for counter-flows and the use of snap-shot detection in conjunc-

tion with a microfluidic device, it was shown that 600 bases of DNA can be

resolved in under 4.5 minutes using a controlled counter-flow and under 3.5
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minutes using snap-shot detection. In chapter 4 we used Brownian dynamics

simulations to show how end-labeled DNA electrophoresis can be integrated

in to the entropic trapping DNA separation technique. The simulations pre-

dict significant improvements in the resolution capability of entropic trapping.

Furthermore we demonstrate, through the use of a scaling analysis, that the

difference in the diffusion coefficients of long and short DNA is increased by

the addition of a drag tag, which results in improved separation performance.

In chapter 5 we proposed a novel integration technique that makes use of linear

regression to periodically extrapolate the simulation into the future such that

computational time can be saved. In chapter 6 we used thermodynamics to

show stability of a distillation column. We show that pressure, temperature,

and level controllers on the condenser and reboiler will lead to asymptotic

stability assuming that the trays operate at steady state.

7.1 Future work

1. Experimental validation of optimization results for micelle end-

labeled free solution electrophoresis

The future work for micelle ELFSE should focus on the experimental val-

idation of the optimization results. At the time of this writing, only the

single capillary conventional capillary electrophoresis has been verified

by other workers in the lab. The other methods proposed in this thesis

are currently in progress of being validated. Some feedback between the

optimization and the experiments will likely be required although we do

not expect significant changes to the formalism and results presented in

this work.

2. Optimal surfactant buffer design
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One of the key design variables is the size of the micelle drag tag. Al-

though the optimization can inform the user of the optimal drag tag

size, it cannot give any indication of how to achieve that size. This step

is currently done in the lab by testing multiple surfactant concentra-

tions. There is significant potential here use optimization to design large

micelles that have low time average polydispersity. Recent advances in

molecular design [145, 146] make this a reasonable endeavor although it

is still difficult to design mixed micelle systems appropriately [147].

3. Validation of end-labeled DNA electrophoresis in an entropic

trap

Our Brownian dynamics simulations of entropic trapping compare well

with the scaling observed from published experimental results. We ex-

pect improved agreement if hydrodynamic interactions are included in

the simulation. Hydrodynamic interactions make an already expensive

simulation significantly more expensive. It will therefore likely be more

beneficial to attempt to experimentally validate the improved perfor-

mance we predict with simulations.

4. Utilize techniques of reduced order modeling with projective

integration

The prediction accuracy of models derived by linear regression may, in

some cases, be improved by the use of techniques such as partial-least

squares, principle component analysis, and the LASSO, to name a few.

This may be difficult to implement as the focus is on efficient model

building and extrapolation. Perhaps the most difficult aspect of using

reduced order modeling with projective integration is that the user has

to be able to restart a detailed simulation after an extrapolation by a
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reduced order model. This can be done using an observer algorithm

although this increased computational cost will likely undo any benefit

derived from using projective integration.

5. Include detailed hydrodynamic model of internal trays in sta-

bility proof of the multi-component distillation column

In our stability analysis of the multi-component distillation we assumed

no deviations from steady state for the internal trays. The stability proof

we utilize in this work uses thermodynamics to indicate if the dynamics

system will be asymptotically stable. A fairly detailed description of the

transport phenomena will likely be required for the stability proof to

work.
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Appendix A

Numerical Methods for

Brownian Dynamics Simulations

Stochastic differential equations (SDE) can be difficult to work with numeri-

cally. SDE model quantities that vary randomly overtime and are, therefore,

not classically differentiable. Unlike classical calculus which is one unified

theory, Stochastic calculus currently enjoys two prevailing theories, Itō and

Stratonovich, which interpret the SDE differently. While Itō calculus has prop-

erties that make it useful for mathematical analysis and some physical models,

Stratonovich calculus utilizes the same integration rules as deterministic cal-

culus and is generally better suited for modeling physics [112, 148]. For the

Brownian dynamics simulations we use the Euler-Maruyama method, which

integrates the SDE numerically in the sense of Itō. A straightforward conver-

sion exists between Itō and Stratonovich calculus [112]. The Euler-Maruyama

method has accuracy of weak order 1 and strong order 1/2 so that the statis-

tical moments of the true solution to the SDE and the numerical solution are

within O(δt) difference of each other, but the trajectories themselves are only

within O(δt1/2) of each other where δt is the integration step width. In this
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work, we are primarily interested in the statistical moments of the solution of

the SDE, so Euler-Maruyama is an adaquate solution method.

The Euler-Maruyama method for SDE (4.7) yields the stochastic difference

equation

rk+1
i = rki +

(
Pe uki + F S,k

i + FEV,k
i

)
δt+

√
2δt nki (A.1)

where rki = ri(t
k) =

[
xi(t

k), yi(t
k), zi(t

k)
]T

, Pe is the Peclet number, uki =

u(rki ) is the unit vector field pointing in the direction of the velocity field at

bead i, F S,k
i = F S(rki−1, r

k
i , r

k
i+1) is the dimensionless spring force acting on

bead i, FEV,k
i = FEV

(
rk1 , r

k
2 , . . . , r

k
Nb

)
is the dimensionless excluded volume

force, and nki is a random number drawn from a normal distribution with zero

mean and unit variance. Eq. (A.1) uses explicit Euler’s method which will

produce accurate integrations when the difference equation is stable which

holds for relatively small integration steps. For most problems of interest, the

difference equation must be stepped out to long horizons which introduces

significant computational burden for small integration step widths.

Unfortunately large integration step widths cause numerical instabilities.

As the distance between beads approaches maximum extension the spring force

law (4.9) becomes extremely large so that differential equation become stiff.

Numerical instability caused by stiffness can be removed by using an implicit

integration method. Here we employ a semi-implicit Euler’s method

rk+1
i = rki +

(
Pe uki + F S,k+1

i + FEV,k
i

)
δt+

√
2δt nki (A.2)

where the spring force term is evaluated at the next time step F S,k+1
i =

F S(rk+1
i−1 , r

k+1
i , rk+1

i+1 ). The semi-implicit method is only used when the explicit

method (A.1) causes over-extension, which is referred to as the “adaptive”

integration method [101, 103].
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The semi-implicit integration results in a series of non-linear equations in

rk+1
i for all i. The equations are solved using the predictor-corrector method

developed by Somasi, et al. which has favorable computational efficiency over

Newton’s method [118]. The predictor-correct method uses a two stage cor-

rector to evaluate the spring force F S,k+1
i since it requires two adjacent dis-

placement vectors to compute.

Step 1. In the predictor stage the candidate solution rpi for the next time

step is computed using Eq. (A.1). If the candidate solution does not introduce

any over-stretching, i.e.
∥∥rpi+1 − r

p
i

∥∥ ≤ 1, i = 1 . . . Nb − 1 then the candidate

solution is accepted, rk+1
i ← rpi , and the integration continues. Otherwise,

over-stretching has occurred and the solution must be rectified in the next two

corrector stages.

Step 2. In the first corrector stage, Eq. (A.2) is re-written in terms of

displacement vectors Qc
i = rci+1 − rci , such that

Qc
i + 2f ci

Qc
i

qci
δt = Qk

i +

(
Pe
(
uki+1 − uki

)
+ f ci−1

Qc
i

qci
+ fpi+1

Qp
i

qpi
+ FEV,k

i+1 − F
EV,k
i

)
δt

+
√

2δt
(
nki+1 − nki

)
(A.3)

where qci = ‖Qc
i‖ is the distance between adjacent beads. The equation is

solved sequentially through i = 1 . . . Nb − 1 so that the right hand side is

known at each iteration i. To solve Eq. (A.3), the left hand side is expanded

out using the spring force law Eq. (4.9) yielding a seventh order polynomial

in the distance qci

a7 (qci )
7 + a5 (qci )

5 −Ri (q
c
i )

4 + a3 (qci )
3 + 2Ri (q

c
i )

2 + a1q
c
i −Ri = 0 (A.4)

where Ri is the magnitude of the right hand side of Eq. (A.3) and the poly-
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nomial coefficients are given by

a1 = 1 + 2δtλ− 14δt+ 2δtCs + 2δtDs

a3 = −2 + 14δt− 4δtCs − 6δtDs

a5 = 1 + 2δtCs + 6δtDs

a7 = −2δtDs

(A.5)

where λ is the number of persistence lengths per spring and the spring force

law coefficients Cs and Ds are given by Eq. (4.10). The polynomial (A.4) is

guaranteed to have a root between zero and unity which correctly bounds the

extension of the beads. Once qci is found by solving Eq. (A.4) the vector Qc
i

can be found using Eq. (A.3).

Step 3. In the second corrector stage, we find the candidate solution Qk+1

using the magnitude of the spring force law f ci+1 from the first corrector stage,

such that

Qk+1
i + 2fk+1

i

Qk+1
i

qk+1
i

δt = Qk
i +

(
Pe
(
uki+1 − uki

)
+ fk+1

i−1
Qk+1
i

qk+1
i

+ f ci+1

Qc
i

qci

)
δt

+
(
FEV,k
i+1 − F

EV,k
i

)
δt+

√
2δt
(
nki+1 − nki

)
(A.6)

As with the previous corrector step, Eq. (A.6) can be re-written as a polyno-

mial in qk+1
i =

∥∥Qk+1
i

∥∥ and solved to yield the next update. If the residual is

greater than the tolerance, i.e.
∑Nb−1

i=1

(
qk+1
i − qci

)2 ≥ η2 where η = 10−6, then

we replace the corrector value with the current candidate, Qc
i ← Qk+1

i , and

repeated step 3 until convergence. Once the algorithm has converged, the next

time step for the position rk+1
i can be found using Eq. (A.2) and calculate

F S,k+1
i using the terms found during the final corrector stage.

106



Appendix B

Oil Reservoir Model

Here we present the model for a two-dimensional, oil-water reservoir of con-

stant height hz [22, 149–151]. Conversation of mass in a reservoir containing

a compressible fluid obeys

∂

∂t
(ρmφSm) +∇ · (ρmvm) = qm (B.1)

where ρm is the density of fluid m, φ is the porosity of the reservoir, Sm is the

saturation (volume fraction) of fluid m, vm is the fluid velocity, and qm is the

production or injection of fluid m. The velocity of a fluid in porous media is

given by Darcy’s law

vm = −k
m

ηm
K∇Pm (B.2)

where km is the relative permeability , ηm is the fluid viscosity, K is the

absolute permeability of the reservoir, and Pm the pressure of fluid m. In this

work we take the capillary pressure to be zero such that Pw = P o = P .

The permeability is a measure of the ease of migration of a fluid through

the porous rock in the reservoir. If the reservoir is already occupied by another

fluid then the ease of migration is lowered be a factor km. In this work we
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model the relative permeability of a oil-water system by the Corey model [152]

ko =ko,0(1− S)n1

kw =kw,0Sn2

(B.3)

where ko,0 and kw,0 are the relative permeability references for oil and water,

respectively, n1 and n2 are Corey exponents, and

S =
Sw − Sw,c

1− So,r − Sw,c
(B.4)

where Sw is the saturation of water, Sw,c is the connate water saturation, So,r

is the residual oil saturation. The fraction S is projected to S ∈ [0, 1] so that

ko ∈ [0, ko,0] and kw ∈ [0, kw,0].

At high pressure, both the fluid and the rock are compressible. We model

the compressibility of oil, water, and the rock using compressibility factors

co =
1

ρo
∂ρo

∂P
, cw =

1

ρw
∂ρw

∂P
, cr =

1

φ

∂φ

∂P
(B.5)

where we take the compressibility factors to be constant. Integration of the

compressibility factors yields exponential functions for the density of oil, water,

and the porosity. A first order Taylor expansion yields a good approximation

and takes on the form

ρm = ρm,0
[
1 + cm(P − P 0)

]
, φ = φ0

[
1 + cr(P − P 0)

]
(B.6)

where ρm,0 is the reference density at P 0.

The equations (B.1) – (B.4), (B.6) yield two partial differential equations

in P and Sw (or So = 1 − Sw). The PDEs are non-linear and are discretized
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in space using a block centered finite volume method to yield the ODEs [149]

d

dt

(
φSm

Bm

)
i,j

Vb =Tm
i+ 1

2
,j

(Pi+1,j − Pi,j) + Tm
i− 1

2
,j

(Pi−1,j − Pi,j)

+ Tm
i,j+ 1

2
(Pi,j+1 − Pi,j) + Tm

i,j− 1
2

(Pi,j−1 − Pi,j) +Qm
i,j

(B.7)

where Bm = ρm,0/ρm is the formation volume factor, Vb = ∆x∆y hz is the

volume of the block, and Pi,j indicates the pressure at the center of block (i, j).

The transmissibility determines the flow rate from one block to another and

is calculated at the block edge (i+ 1
2
, j) by

Tm
i+ 1

2
,j

=
km
i+ 1

2
,j

ηm
i+ 1

2
,j
Bm
i+ 1

2
,j

Ki+ 1
2
,j

∆x
(B.8)

where ηm
i+ 1

2
,j

= (ηmi,j + ηmi+1,j)/2 and Bm
i+ 1

2
,j

= (Bm
i,j + Bm

i+1,j)/2 is the viscosity

and the block formation factor of the fluid at the block edge, respectively. The

absolute permeability at the block edge is calculated using a harmonic mean

due to its resistor like character such that

Ki+ 1
2
,j =

2
1

Ki,j

+
1

Ki+1,j

. (B.9)

The relative permeability is calculated using an upstreaming weighting so that

shock formation is consistent with analytical models [151, 153]

km
i+ 1

2
,j

=


kmi,j if Pi,j ≥ Pi+1,j

kmi+1,j if Pi,j < Pi+1,j

. (B.10)

The source and sink term Qm
i,j accounts for the injection and production of the

fluid m. In this work we either set Qm
i,j to a constant flow rate or we set a

constant downhole well pressure Pwell and employ the Peaceman model [154]
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to calculate the flow rate

Qm
i,j =

kmi,j
Bm
i,jη

m
i,j

Ki,jJwell (Pi,j − Pwell) (B.11)

where Jwell = 2πhwell/ ln(req/rwell) is a constant well production term with

height and radius of the well hwell and rwell, respectively, and equivalent radius

of the block given by

req = 0.14
√

∆x2 + ∆y2. (B.12)
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Appendix C

Availability of the Mass

Exchange Unit

Starting from Eq. (6.9) the expression for the rate of change of the availability

is re-arranging in terms of flow and dissipation.

Using the definition for the specific molar enthalpy

h = u+ Pv

where u is the molar internal energy, P is the pressure, and v is the molar

volume, we get using the ∆-notation

∆(fh) = f(u+ Pv)− f ∗(u∗ + (Pv)∗)

Hence

∆

(
1

T

)
∆(fh) = ∆

(
1

T

)
f(u+ Pv)−∆

(
1

T

)
f ∗(u∗ + (Pv)∗) (C.1)
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Now we expand the work term in equation (C.1). First we note that

∆

(
1

T

)
Pv −∆

(
P

T

)
v =

(
1

T
− 1

T ∗

)
Pv −

(
P

T
− P ∗

T ∗

)
v

=− ∆P

T ∗
v

Hence

∆

(
1

T

)
Pv = ∆

(
P

T

)
v − ∆P

T ∗
v (C.2)

Similarly we get

∆

(
1

T

)
(Pv)∗ = ∆

(
P

T

)
v∗ − ∆P

T
v∗ (C.3)

By substituting equations (C.2) and (C.3) into equation (C.1) we have

∆

(
1

T

)
∆(fh) =f

[
∆

(
1

T

)
u+ ∆

(
P

T

)
v − ∆P

T ∗
v

]
− f ∗

[
∆

(
1

T

)
u∗ + ∆

(
P

T

)
v∗ − ∆P

T
v∗
]

=f

[
∆

(
1

T

)
u+ ∆

(
P

T

)
v

]
− f ∗

[
∆

(
1

T

)
u∗ + ∆

(
P

T

)
v∗
]
− 1

TT ∗
∆P∆(Tfv)

Hence

∆

(
1

T

)
∆(fh) = ∆

(
1

T

)
∆(fu) + ∆

(
P

T

)
∆(fv)− 1

TT ∗
∆P∆(Tfv) (C.4)

This equation will be used to simplify the first two terms on the right hand

side of equation (6.6). But, before doing the substitutions, we develop a few

more identities. For the feed we have

∆

(
1

T

)
∆(fh)in = ∆

(
1

T

)
in

∆(fh)in +

[
∆

(
1

T

)
−∆

(
1

T

)
in

]
∆(fh)in
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Hence from equation (C.4)

∆

(
1

T

)
∆(fh)in =

(
∆

(
1

T

)
∆(fu) + ∆

(
P

T

)
∆(fv)− 1

TT ∗
∆P∆(Tfv)

)
in

+

[
∆

(
1

T

)
−∆

(
1

T

)
in

]
∆(fh)in

We can also combine the work terms associated with the change of volume

in equation (6.6) by noting that

∆

(
1

T

)
∆(Pφ)−∆

(
P

T

)
∆φ =

(
1

T
− 1

T ∗

)
(Pφ− (Pφ)∗)−

(
P

T
− P ∗

T ∗

)
(φ− φ∗)

=− Pφ

T ∗
+
P ∗φ

T ∗
− (Pφ)∗

T
+
Pφ∗

T

=− ∆Pφ

T ∗
+

∆Pφ∗

T

Hence

∆

(
1

T

)
∆(Pφ)−∆

(
P

T

)
∆φ = − 1

TT ∗
∆P∆(Tφ) (C.5)

The identities displayed in equations (C.4) – (C.5) are now used to re-

arrange equation (6.6) so that it has a more useful form. First we get the

expression

dA

dt
=−

(
∆

(
1

T

)
∆(fu) + ∆

(
P

T

)
(fv)− 1

TT ∗
∆P∆(Tfv)

)
in

−
(

∆

(
1

T

)
−∆

(
1

Tin

))
∆(fh)in

+

(
∆

(
1

T

)
∆(fu) + ∆

(
P

T

)
∆(fv)− 1

TT ∗
∆P∆(TFv)

)
out

−∆

(
1

T

)
∆(rhr)−∆

(
1

T

)
(∆Q+ ∆q)− 1

TT ∗
∆P∆(Tφ)

+

(
∆
(µ
T

)T
∆(fx)

)
in

+
(

∆
(µ
T

)
−∆

(µ
T

)
in

)T
∆(fx)in

−
(

∆
(µ
T

)T
∆(fx)

)
out

+ ∆
(µ
T

)T
∆r
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By re-arranging the terms we get the more transparent expression

dA

dt
= −

(
∆

(
1

T

)
∆(fu) + ∆

(
P

T

)
(fv)−∆

(µ
T

)T
∆(fx)

)
in

+
(

∆
(µ
T

)
−∆

(µ
T

)
in

)T
∆(fx)in −

(
∆

(
1

T

)
−∆

(
1

T

)
in

)
∆(fh)in

+

(
1

TT ∗
∆P∆(Tfv)

)
in

−
(

1

TT ∗
∆P∆(Tfv)

)
out

+

(
∆

(
1

T

)
∆(fu) + ∆

(
P

T

)
∆(fv)−∆

(µ
T

)T
∆(fx)

)
out

−∆

(
1

T

)
∆(rhr) + ∆

(µ
T

)T
∆r −∆

(
1

T

)
(∆Q+ ∆q)− 1

TT ∗
∆P∆(Tφ)

This expression simplifies considerable once we define vectors of thermody-

namic driving forces and flows so that

XT =

(
1

T
− 1

Tin
,−µ

T

T

+
(µ
T

)T
in

)
JT =

(
fh, fxT

)
and the intrinsic availability

Ã = (w∗ − w)T z̃ = −∆

(
1

T

)
u−∆

(
P

T

)
v + ∆

(µ
T

)T
x

Ã∗ = (w − w∗)T z̃∗ = ∆

(
1

T

)
u∗ + ∆

(
P

T

)
v∗ −∆

(µ
T

)T
x∗

where z̃ = (u, v, x1, · · ·xnc)
T , where u is the molar internal energy, v is the

molar volume, and xk is the mole fraction of component k. The rate of change
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of the availability is then given by

dA

dt
=fin

(
Ã+ Ã∗

)
in

+

(
1

TT ∗

)
in

∆Pin∆(Tfv)in −∆XT∆J

− fout
(
Ã+ Ã∗

)
out
−
(

1

TT ∗

)
out

∆Pout∆(Tfv)out

−∆

(
1

T

)
∆Q−

(
1

TT ∗

)
∆P∆(Tφ)

−∆

(
1

T

)
∆q −∆

(
1

T

)
∆(rhr) + ∆

(µ
T

)T

∆r
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Appendix D

Dissipation in a distillation

column

Here we determine the sign of the dissipation term in the distillation column.

We begin with the function

E = (w2 − w1)
Tj1 (D.1)

where wT = [1/T, P/T,−µ1/T, · · · ,−µnc/T ] is are the potential variables and

jT = [fu, fv, fx1, · · · , fxnc ] are the fluxes, where f is a molar flow rate. The

entropy flux wT
1 j1 is concave and homogeneous degree one such that E is

convex and also homogeneous degree one. We now define a driving force

χ =
∂E

∂j1
= w2 − w1 (D.2)

which follows since Euler’s theorem ensures

∂w1

∂j1
= 0
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for w1 which is homogenous degree zero. We then get

∂χ

∂j1
= R =

∂2E

∂j21
≥ 0

Hence Rdf1 = dχ so that

(χ− χ∗)T (j1 − j∗1) ≥ 0 (D.3)

and, similarly, we get

(χ− χ∗)T (j2 − j∗2) ≤ 0. (D.4)

Recalling that χ = w2 − w1 where wT = [1/T, P/T,−µ1/T, · · · ,−µnc/T ] and

jT = [fu, fv, fx1, · · · , fxnc ] we can express inequility (D.3) in the more useful

form(
∆

(
1

T

)
2

−∆

(
1

T

)
1

)
∆(fu)1 +

(
∆

(
P

T

)
2

−∆

(
P

T

)
1

)
∆(fv)1

−
(

∆
(µ
T

)
2
−∆

(µ
T

)
1

)T

∆(fx)1 ≥ 0

(D.5)

The dissipation term in the mass exchange unit is of the form

∆XT∆J =

(
∆

(
1

T

)
out

−∆

(
1

T

)
in

)
∆(fh)in

−
(

∆
(µ
T

)
out
−∆

(µ
T

)
in

)T

∆(fx)in

(D.6)

In order to utilize inequalities (D.3) and (D.4) in Eq. (D.6), we must first

rearrange some terms. We recall from Appendix C Eq. (C.4)

∆

(
1

T

)
∆(fh) = ∆

(
1

T

)
∆(fu) + ∆

(
P

T

)
∆(fv)− ∆P∆(Tfv)

TT ∗
. (C.4)
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Using Eq. (C.4) in (D.6) yields

∆XT∆J =∆

(
1

T

)
out

∆(fu)in + ∆

(
P

T

)
out

∆(fv)in −
∆Pin∆(Toutfinvin)

ToutT ∗out

−∆

(
1

T

)
in

∆(fu)in −∆

(
P

T

)
in

∆(fv)in +
∆Pin∆(Tinfinvin)

TinT ∗in

−
(

∆
(µ
T

)
out
−∆

(µ
T

)
in

)T

∆(fx)in

and with some more rearranging we get

∆XT∆J =

(
∆

(
1

T

)
out

−∆

(
1

T

)
in

)
∆(fu)in

+

(
∆

(
P

T

)
out

−∆

(
P

T

)
in

)
∆(fv)in

−
(

∆
(µ
T

)
out
−∆

(µ
T

)
in

)T

∆(fx)in

− ∆Pin∆(Toutfinvin)

ToutT ∗out
+

∆Pin∆(Tinfinvin)

TinT ∗in

(D.7)

for which inequality (D.5) directly applies. The dissipation in a mass exchange

unit is thus positive ∆XT∆J ≥ 0 provided the pressure deviations from steady

state are negligible.

In this work the distillation column is modeled as a stack of mass exchange

units. The stack of mass exchange units have a slightly more complicated

dissipation term. For convenience we consider here the two stage distillation

column which is composed of a reboiler and a condenser. The dissipation term

for the two stage column is

∆XT

1 ∆J l1 + ∆XT

2 ∆Jv2 =

(
∆

(
1

T

)
1

−∆

(
1

T

)
2

)
∆(L2h

l
2)

+

(
∆

(
1

T

)
2

−∆

(
1

T

)
1

)
∆(V1h

v
1)−

(
∆
(µ
T

)
1
−∆

(µ
T

)
2

)T

∆(L2x2)

−
(

∆
(µ
T

)
2
−∆

(µ
T

)
1

)T

∆(V1y1)

(D.8)

where L2 is the liquid molar flow rate from the condenser to the reboiler and
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V1 is the vapor molar flow rate from the reboiler to the condenser. We again

utilize Eq. (C.4) such that

∆XT

1 ∆J l1 + ∆XT

2 ∆Jv2 = −
(

∆

(
1

T2

)
−∆

(
1

T1

))
∆(L2u

l
2)

−
(

∆

(
P2

T2

)
−∆

(
P2

T1

))
∆(L2v

l
2) +

(
∆

(
1

T2

)
−∆

(
1

T1

))
∆(V1u

v
1)

+

(
∆

(
P1

T2

)
−∆

(
P1

T1

))
∆(V1v

v
1) +

∆P2∆(T2L2v
l
2)

T2T ∗2

− ∆P2∆(T1L2v
l
2)

T1T ∗1
+

∆P1∆(T1V1v
v
1)

T1T ∗1
− ∆P1∆(T2V1v

v
1)

T1T ∗1
.

(D.9)

We can see from the expression above that there are cross terms introduced

by the stacking of mass exchange units. We thus add by zero to find

∆

(
P2

T2

)
−∆

(
P2

T1

)
=

(
∆

(
P2

T2

)
−∆

(
P1

T1

))
+

(
∆

(
P1

T1

)
−∆

(
P2

T1

))
=

(
∆

(
P2

T2

)
−∆

(
P1

T1

))
−∆

(
P2 − P1

T1

)
(D.10)

such that, with some rearranging, we get

∆XT

1 ∆J l1 + ∆XT

2 ∆Jv2 =

(
∆

(
1

T2

)
−∆

(
1

T1

))(
∆(V1u

v
1)−∆(L2u

l
2)
)

+

(
∆

(
P2

T2

)
−∆

(
P1

T1

))(
∆(V1v

v
1)−∆(L2v

l
2)
)

−
(

∆

(
µ2

T2

)
−∆

(
µ1

T1

))T

(∆(V1y1)−∆(L2x2))

+
∆P2∆(T2L2v

l
2)

T2T ∗2
− ∆P2∆(T1L2v

l
2)

T1T ∗1
+

∆P1∆(T1V1v
v
1)

T1T ∗1
− ∆P1∆(T2V1v

v
1)

T1T ∗1

+ ∆

(
P2 − P1

T1

)
∆(L2v

l
2)−∆

(
P2 − P1

T2

)
∆(V1v

v
1).

(D.11)

Again we see the net dissipation of the two stage distillation column is pos-

itive using inequality (D.3) and (D.4) provided the pressures do not deviate
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significantly from steady-state. For the n stage column we get

(∆XT∆J)tot =
n−1∑
i=1

{(
∆

(
1

T

)
i+1

−∆

(
1

T

)
i

)(
∆(Viu

v
i )−∆(Li+1u

l
i+1)
)

+

(
∆

(
P

T

)
i+1

−∆

(
P

T

)
i

)(
∆(Viv

v
i )−∆(Li+1v

l
i+1)
)

−
(

∆
(µ
T

)
i+1
−∆

(µ
T

)
i

)
(∆(Viyi)−∆(Li+1xi+1))

+
∆Pi+1∆(Ti+1Li+1v

l
i+1)

Ti+1T ∗i+1

−
∆Pi+1∆(TiLi+1v

l
i+1)

TiT ∗i
+

∆Pi∆(TiViv
v
i )

TiT ∗i

− ∆Pi∆(Ti+1Viv
v
i )

TiT ∗i
+ ∆

(
Pi+1 − Pi

Ti

)
∆(Li+1v

l
i+1)− ∆

(
Pi+1 − Pi
Ti+1

)
∆(Viv

v
i )

}
.

(D.12)

where the pressure in the internal trays are assumed to not deviate from steady-

state such that

(∆XT∆J)tot =
n−1∑
i=1

{(
∆

(
1

T

)
i+1

−∆

(
1

T

)
i

)(
∆(Viu

v
i )−∆(Li+1u

l
i+1)
)

+

(
∆

(
P

T

)
i+1

−∆

(
P

T

)
i

)(
∆(Viv

v
i )−∆(Li+1v

l
i+1)
)

−
(

∆
(µ
T

)
i+1
−∆

(µ
T

)
i

)
(∆(Viyi)−∆(Li+1xi+1))

}
≥ 0

(D.13)

using inequality (D.3) and (D.4) for each tray.
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Appendix E

Contraction Analysis for

Process Systems

In this appendix we discuss how the second law of thermodynamics can be

utilized to show contraction of non-linear systems. We begin the chapter with

contraction analysis which is a method used to show when a dynamical system

evolves to a universal trajectory regardless of initial conditions. Properties of

the entropy function, specifically that it is concave and homogeneous degree

one, lead to contraction conditions that are useful in some cases. We later

restrict our view to stability of non-linear systems and show, for an example,

that the steady states of distillation columns are stable due to the physical

implications of the second law of thermodynamics.

Contraction analysis is a method to determine if different trajectories of a

dynamical system will converge together over time. Several researchers have

utilized contraction in a non-linear system to analyze stability and design

control systems [155–158]. Contraction may also be useful to exploit when

using approximation methods such as projective integration. If a dynamical

system is strongly contracting then the error introduced by an approximation
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will decrease to zero with time.

In contraction analysis, the trajectories are considered differentially close to

each such that variational calculus can be deployed. For a general dynamical

system given by

ż = f(z, t), z(0) = z0 (E.1)

where z ∈ Rn is a vector of the states and t is time, the first variation δz is

a measure of displacement between the nearest trajectories corresponding to

the system (E.1) with different initial condition. The dynamical system (E.1)

is said to be contracting if δz → 0 as t → ∞. The rate of change of the first

t

z

�δz

Figure E.1: A contracting dynamical system.

variation δz is calculated by

δż =
∂f

∂z
δz (E.2)

which is related to the first-order Taylor expansion of the rate of change of the

displacement. We now define some metric of the distance between trajectories,

such that

W = δzTMδz > 0 (E.3)

where M(z, t) is a (symmetric) positive definite matrix and W = 0 if and only
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if δz = 0. The rate of change of the function W is then given by

Ẇ = δzT

(
∂f

∂z

T

M +M
∂f

∂z
+ Ṁ

)
δz. (E.4)

The contraction condition due to Lohmiller and Slotine [156] then follows.

Given a dynamical system (E.1) for any trajectory, which start in a ball of

constant radius according to the metric M(z, t), if the function W is uniformly

decreasing with time within the ball then

(
∂f

∂z

T

M +M
∂f

∂z
+ Ṁ

)
≤ −εM (E.5)

where ε is a strictly positive scalar and the dynamical system (E.1) will expo-

nentially converge to a single trajectory. Furthermore, Lohmiller and Slotine

[156] made use of a converse theorem to show that this condition is neces-

sary and sufficient for exponential convergence of all trajectories in the ball

measured by δzTMδz.

The complications in this analysis arises with identification of matrixM(z, t)

which must simultaneously satisfy conditions (E.3) and (E.5). The identity

matrix has been shown to be useful in a few cases [156–158], but its use weak-

ens the convergence conditions to be only sufficient. Another option is to use

the thermodynamic entropy of the dynamical system as proposed by Aggarwal

and Ydstie [136].

We express the entropy in the form

S = wTz (E.6)
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where w is vector of potentials and z is a vector of inventories such that

w =

[
1

T
,
P

T
,−µ1

T
, · · · ,−µnc

T

]T

z = [U, V,N1, · · · , Nnc ]
T

(E.7)

where T is the temperature, P is the pressure, µk is the chemical potential

of component k, U is the internal energy, V is the volume, Nk is the number

of moles of component k, and nc is the total number of components. The

important properties of the entropy that we would like to exploit include that

it is homogenous degree one and concave in z [138]. The homogeneous degree

one property, for instance, yields the Gibbs-Duhem equation [139]

dwTz = 0 (E.8)

which allows us to define the potentials directly from the entropy, i.e. dS =

wTdz or

w =
∂S

∂z
. (E.9)

The first variation of the potentials is then given by

δw =
∂w

∂z
δz (E.10)

where ∂w/∂z = ∂2S/∂z2 is the Hessian of the entropy. It then follows that

the quantity

Ψ = −δwTδz = −δzT
∂2S

∂z2
δz (E.11)

is non-negative. Although entropy in concave, its concavity is imparted by

a concave hull over states that are physically inaccessible, which causes the

Hessian to be negative semi-definite [136]. We can therefore use Ψ in a con-
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traction analysis provided there are sufficient controls to meet the properties

detailed above.

The homogeneous degree one property of the entropy can also be exploited

in the analysis. The potential variables are homogeneous degree zero w(λz) =

w(z) which follows since they are calculated using the gradient of the entropy

which is homogeneous degree one. The potentials w(z) are known as intrinsic

variables and are independent of the size of the system. For a homogeneous

degree zero function we have the property

∂w(λz)

∂(λz)
= λ−1

∂w(z)

∂z
. (E.12)

It then follows that

δw(λz, λδz) =
∂w(λz)

∂(λz)
λδz =

∂w(z)

∂z
δz (E.13)

such that δw is homogeneous degree zero in z and δz. Euler’s theorem of

homogeneous functions can then be used to show

∂δw

∂z
z +

∂δw

∂δz
δz = 0. (E.14)

Recalling the definition of δw from Eq. (E.10) we then get

∂

∂z

(
∂w

∂z
δz

)
z +

∂w

∂z
δz = 0 (E.15)

where differentiation of ∂w/∂z with respect to z results in a rank 3 tensor. To

avoid introducing tensor notation, we define the matrices

P =
∂

∂z

(
∂w

∂z
δz

)
, Q =

∂w

∂z
(E.16)
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where P (z, δz) and Q(z).

We then differentiate Eq. (E.15) with respect to time to show

Ṗ z + Pf(z, t) + Q̇δz +Q
∂f

∂z
δz = 0 (E.17)

using Eq. (E.1) and Eq. (E.2). We now pre-multiply by δzT to find the

relation

δzT Ṗ z + δzTPf(z, t) + δzT Q̇δz + δzTQ
∂f

∂z
δz = 0. (E.18)

The inner products produce scalars which are symmetric such that

1

2
δzT (Ṗ+Ṗ T )z +

1

2
δzT (P + P T )f(z, t)

+ δzT Q̇δz +
1

2
δzT

(
Q
∂f

∂z
+
∂f

∂z

T

Q

)
δz = 0.

(E.19)

At this point we can see how the entropy can be used in a contraction analysis.

A contracting system obeys the necessary and sufficient conditions outlined in

Eq. (E.3) – (E.5). In some cases it may be possible to infer the necessary signs

of the matrices from Eq. (E.19). However, in order to do so, the sign of the

third derivatives of the entropy with respect to the states z are needed such

that the sign of the matrix P can be inferred. This would typically require

the entropy function to be known in closed form. The relation shown above

is derived in a similar manner as the Gibbs-Duhem equation from classical

thermodynamics [139].
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