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Abstract

In this thesis, | present a model of multidomain evolutiothv@ssociated algorithms and software
for phylogenetic analysis of multidomain families, as wasdlapplications of this novel methodol-
ogy to case-studies and the human genome.

Phylogenetic analysis is of central importance to undedsitey the origins and evolution of life on
earth. In biomedical research, molecular phylogenetissgnaved an essential tool for practical
applications. Current molecular phylogenetic methodshateequipped, however, to model many
of the unique characteristics ofultidomainfamilies. Genes that encode this large and important
class of proteins are characterized by a mosaic of sequeagménts that encode structural or
functional modules, calledomains Multidomain families evolve vi@lomain shufflinga process
that includes insertion, internal duplication, and deletof domains. This versatile evolutionary
mechanism played a transformative role in major evolutiptransitions, including the emergence
of multicellular animals and the vertebrate immune system.

Multidomain families are ill-suited to current methods fadrylogeny reconstruction due to their
mosaic composition. Different regions of the same proteay mave different evolutionary his-
tories. Moreover, a protein may contain domains that alsmoim otherwise unrelated proteins.
These attributes pose substantial obstacles for phyldigemethods that require a multiple se-
guence alignment as input. In addition, current methodsatantorporate a model of domain
shuffling and hence, cannot infer the events that occurréteihistory of the family. | address this
problem by treating a multidomain family as a set of co-ewajvdomains, each with its own his-
tory. If the family is evolving by vertical descent from a @anved set of ancestral domains, then all
constituent domains will have the same phylogenetic histdisagreement between domain tree
topologies is evidence that the family evolved through psses other than speciation and gene
duplication. My algorithms exploit this information to m@tstruct the history of domain shuffling
in the family, as well as the timing of these events and thesinal domain composition. | have
implemented these algorithms in software that outputs thst parsimonious history of events for
each domain family. The software also reconstructs a coitggfasnily history, including duplica-
tions, insertions and losses of all constituent domainsaaiegstral domain composition.

My approach is capable of more detailed and accurate recotisns than the widely usetbmain
architecturemodel, which ignores sequence variation between domaiarinss. In contrast, my
approach is based on an explicit model of events and capgaopgence variation between domain
instances. | demonstrate the utility of this method throogée studies of notch-related proteins,
protein tyrosine kinases, and membrane-associated qiarkihases. | further present a large-
scale analysis of domain shuffling processes through casgueof all pairs of domain families
that co-occur in a protein in the human genome. These arsalisggest thafl) a remarkably
greater amount of domain shuffling may have occurred thaviqusly thought and2) that it is
not uncommon for the same domain architecture to arise niname once through independent
events. This stands in contrast to earlier reports thatergewnt evolution of domain architecture
is rare and suggests that incorporating sequence variatewolutionary analyses of multidomain
families is a crucial requirement for accurate inference.
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Chapter 1

Introduction

Molecular phylogenetics is of central importance to unterding the origins and evolution of

life on earth. Phylogenetic analysis has also become amtigsechnique in life science re-

search in the 21st century, not only for answering evolaigrguestions, but for a broad range
of functional applications as well. In molecular evolutigmylogenetics is the foundation for in-

vestigating the patterns and processes of sequence ewvplidentifying signatures of selection,

and constructing substitution models. Molecular phylaies has proved invaluable for practical
applications [1, 2], such as molecular epidemiology [3célcer progression [5, 6], bioremedia-
tion [7,8], forensics [9-13], tracking rapidly evolvinguses [14,15], and circumventing pesticide
and drug resistance [16, 17].

Phylogeny reconstruction also has proven invaluable feiiritiestigation of many important sub-
jects such as function annotation, drug target select&timating species evolution, and correlat-
ing events with new functions. In model organism studies|dionary trees delineate the degree
of functional conservation across species, serving as @egui planning experiments. In drug
design, phylogenetic analysis provides evidence of foneti shifts or multiple functional roles,
information that is crucial in assessing the suitabilitydofig targets [1]. Phylogenetic analysis
is also an increasing source of inferential power in biainfatic applications, such as homology
based functional annotation [18-20] and predicting fuordily active residues from correlated
substitutions [21].

Substantial progress has been made in understanding thiien@nd function of gene families as
a result of 30 years of innovation in phylogenetic algorigh@4—26]. For single-domain families,
1



CHAPTER 1. INTRODUCTION

SH3 @ Pkinase_Tyr

Figure 1.1:Three-dimensional structure of the multidomain tyrosiieake protein, CSK, with the SH3

domain shown in yellow, SH2 in red, and tyrosine kinase donragreen. (Structure image generated with
the Protein Workshop software [22] from PDB entt FMK > [23].) A schematic of the linear sequence
of domains in the amino acid sequence encoding this steictighown below with the same color scheme.

phylogeny reconstruction is well-studied, and good athans and tools are available. However,
current molecular phylogenetic theory is not equipped talehonany of the unique characteris-
tics of multidomaingene families. Genes that encode this large and importass @f proteins
are characterized by a mosaic of sequence fragments thadestructural or functional modules,
calleddomaing(see Fig. 1.1). Multidomain families evolve vitomain shufflingFig. 1.2), a pro-
cess that includes insertion, internal duplication, anéta® of domains. Multidomain families
can, and often do, contain proteins with different domaimposition. Moreover, a protein may
contain domains that also occur in otherwise unrelateceprst As a result, different regions of
the same protein may have different evolutionary histoj2ds-31]. Yet, standard phylogenetic
methods typically rely on the implicit assumption that tinéire sequence has the same evolution-
ary history. As a result, if a family contains varied architges, it is not, in general, possible to
construct a multiple sequence alignment (MSA) that cagtateof the domains represented in
family members. Also, domain shuffling events, inherentlyizontal processes, are not included
in these models. Thus, even if the family can be aligned,g¢hbenstruction process will not infer
2



the shuffling events that occurred in the history of the fgmil
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Figure 1.2: (a) Evolution of a hypothetical multidomain gene family in thgenomic context. Hatched
bars represent the chromosome; cream rectangles repgeses, and colored boxes represent domé)s.
Schematic of the multidomain family in (a) evolving by gengplication and domain shuffling. Horizontal
lines are genes; circles, boxes and triangles are domaiokd &rows represent gene evolution; dotted
arrows represent domain insertions. Note that insertedadwmrcan originate inside or outside the gene

family. Note that geng, does not appear on the chromosome in (a).

Phylogenetic methods for analyzing multidomain gene feasiare urgently needed because of
their prevalence and functional importance. The percentdgeukaryotic proteins with two or
more domains is 40% according to conservative estimatgs 3% expansion in size and com-
plexity of multidomain families is closely linked to the dution of cell signaling and cell adhe-
sion. These families are also implicated in tissue reppop#osis, inflammation response, antigen
recognition, and innate immunity [33—35]. Recent studiagehalso established strong links be-
tween multidomain proteins and mutations associated vaiticer [36—39].

The goal of my thesisis to meet this need by developing phylogenetic methodsdonsruct
the evolutionary history of a multidomain family. Here | pemt a novel methodology to infer
the specific domain shuffling events in a multidomain famaky,well as the domain architectures
of ancestral proteins. This methodology builds on the laoaslel of family evolution where a
gene family is defined as the descendants of an ancestrahoboonal locus. Consistent with
this model, | define a multidomain reconciliation framewankwhich the domain superfamilies
represented in a multidomain gene family are modeled avalviag entities. In this framework,

atree is constructed for each domain superfamily, and tiness are combined, using phylogenetic
3



CHAPTER 1. INTRODUCTION

reconciliation, to obtain a composite history of the gemaifa

My methodology stands in contrast to prior, non-phylogenapproaches investigating multi-
domain evolution. First, this novel reconciliation framew models multidomain evolution on
multiple levels of biological organization: species, ggngomains, and sequence. Second, by
taking trees for all domain superfamilies as input, my apphocaptures sequence variation within
each domain family. Moreover, it is sufficiently informagito enable inference of the origin of an
inserted domain. Third, the reconciliation framework utgs a more detailed, explicit model of
the events that mediate domain shuffling, rather than jusiadio gain and domain loss.

This methodology will allow evolutionary biologists to iestigate processes of domain shuffling,
bench biologists to identify functional orthologs for damsmand multidomain genes, and cell
biologists studying a specific multidomain family to complent experimental results with a phy-
logenetic analysis. The increased sensitivity associatgdmy method has the potential to yield
very different conclusions about domain shuffling proceskan those obtained using models that
make more simplifying assumptions and take advantage efitdsrmation. Published articles
that use the phylogeny of a single constituent domain tcesst the evolution of an entire multi-
domain gene family are increasingly common. Since it isaiffito assess how often a tree based
on a single domain accurately represents the history ot aivmains in the family, it is possible
that many published accounts of multidomain family evalntare misleading. Using my meth-
ods, it is possible to assess the extent to which all domairisa family have the same history.
Further, many analyses of multidomain evolution are basethe assumption that proteins with
the same domain architecture evolved by vertical descemh Biethods cannot infer replacement
of one instance with another, different instance from theesdomain superfamily. By ignoring
replacements that modify the protein but not the domainitcture, current methods may fail to
recognize evidence of substantial changes in ligand spiggiir protein sub-cellular localization.
In contrast, because it uses information about the sequahioglividual domain instances, my
approach is capable of recognizing changes in a proteinalderhain replacement.

Roadmap to this thesis. ~ To set my methodology in the context of prior work, in Chaget
will review current knowledge in the relevant areas of etioluand computational biology. In
Chapter 3, | review the locus model of gene family evolutiod @rior work on reconciliation of
co-evolving entities. | then present my novel approach teriimg the history of a multidomain
gene family. In Chapter 4, | present four novel algorithmsealize this approach, all of which
have been implemented in theoNUNG software. These algorithms includgt) Reconciliation
4



of a binary embedded tree with a non-binary reference treage¢oduplication, heuristic loss, and
incomplete lineage sorting even() Reconciliation of a binary embedded tree with a binary ref-
erence tree to infer horizontal transfer, duplication, sd events{3) Reconciliation (combining
(1) and (2)) of a binary embedded tree with a non-binary egfee tree to infer horizontal transfer,
duplication, heuristic loss, and incomplete lineage sgrévents; an@4) An algorithm to infer
the composite history of events and ancestral states ineserefe tree from a set of reconciled
embedded trees. The next chapters present my applicatibes# algorithms to various data sets
in order to demonstrate the applicability and power of myrapph and associated algorithms.
In Chapter 5, | present my evolutionary analysis of thred-gteidied multidomain families from
the literature: the protein tyrosine kinases [27], the Natelated genes [28], and the membrane-
associated guanylate kinases [30]. A discussion of thdtsesam these analyses, and how they
demonstrate the power of my approach over previous workvisl Then, in Chapter 6, | present
the results of a high-throughput analysis of domain shuffimthe human genome. This analysis
demonstrates the types of genomic-scale information twatbe inferred with my approach, as
well as the applicability of my algorithms to large-scaladsés. Finally, in Chapter 7, | discuss
the strengths of my approach, including its power to infemdm shuffling events, and propose
several promising directions for future research.






Chapter 2

Evolution of genes, domains and multidomain

gene families

In this chapter, | review current methods for phylogeny restnuction. | also summarize methods
for modeling domains, as well as some of the current domaabdaes. This chapter also includes
a discussion on the molecular mechanisms behind domaiflisgund a survey of previous work
on the evolution of multidomain proteins and gene families.

2.1. Phylogeny reconstruction

Phylogenetic reconstruction is the process of reconstigi@volutionary histories of genes and
species. Phylogenetic (or evolutionary) treeere commonly used to describe the evolutionary
history of sites, genes, genomes, and species. In genscaissions of phylogenetics, the generic
termtaxonis used to describe the entities on the nodes of an evolutidree (i.e., sequences in a
gene tree or species in a species tree). A species phylogenyKig. 2.1a) is a tree representing a
hypothesis concerning the evolutionary history of a groilgpecies. Leaves represent modern day
species. Internal nodes represent speciation eventsharsgécies associated with these nodes are
the common ancestral species. Species trees may be caadtinocn one or many gene sequences;
from other types of molecular features, such as intron ot or from morphological, behavioral,
or physiological characters. Regardless of the type of da&al, the goal is to reconstruct the
history of populations of organisms, not the history of sames. A key concern when using
7



CHAPTER 2. EVOLUTION OF GENES, DOMAINS AND MULTIDOMAIN GENEFAMILIES

sequence datato reconstruct species trees is to ensutfeetsatjuence information used accurately
reflects the history of the species. For example, unrecedniene duplications or lateral gene
transfers can result in incorrect species trees. The probledetermining species phylogenies
continues to be an active area of research and debate [4Blislthesis, | assume the species tree
is known and focus on the evolution of multidomain families.

A gene tree (e.g., Fig. 2.1b) represents the evolution ofre dgamily. A gene familyis a set of
homologougenes, genes derived from a common ancestor by vertica¢ategkl]. New family
members arise via gene duplication, lateral gene tranafet,speciation. A pair of genes that
resulted from a speciation event are referred torésologs while a pair of genes that result from

a gene duplication are referred to paralogs Leaves in the gene tree represent contemporary
sequences, which may be drawn from organisms in one or in thareone species. Bifurcations
represent large-scale evolutionary events, such as sjpecigene duplication, lateral gene transfer,
or incomplete lineage sorting. Internal nodes represergsiral sequences.

Bird Mouse - 2B g2 M
@ (0)

Figure 2.1:Definition of species and gene tre€a) A binary species tregb) A hypothetical binary gene
tree with genes sampled from species in (a).

The first step in reconstructing a gene family tree is to il gene family members in the
species of interest and obtain a sequence for each familyb@ensecond, these sequences are
transformed into an abstract representation from whichHqg®netic relationships can be con-
structed. This abstraction can be represented as eithexatbadata or pairwise distances between
taxa. Parsimony and probabilistic methods operate on cterdata, and distance-based methods
use pairwise distances. A character is an attribute thatadeon two or more states. Binary
character has two states, typically referring to the preséh) or absence (0) of the character (e.g.,
“has wings” or presence of an intron). rAultistatecharacter has three or more states (e.g., A, C,
G, T). These can also have numeric values (e.g., the numbeandibular hairs). Each taxon is
described in terms of its particular character states, amatonal change is modeled as a change
8



2.1. PHYLOGENY RECONSTRUCTION

Comparison of Phylogenetic Reconstruction Methods

Characteristic MaxPar Prob Dist
Data Type Character Character Distance
Topology Yes Yes Yes
Branch Lengths Number of Changes Probability Distance
Ancestral states Yes Most probable state No
Dominant evolutionary force Selection Neutral Neutral
Multiple substitutions No Yes Yes

Table 2.1:Summary of differences and similarities among the threeonmagthods for phylogeny recon-
struction. MaxPar — maximum parsimony; Prob — probabilistind Dist — distance.

in character state. For sequence data, this transformiatigpically achieved by constructing an
MSA. Each column of the MSA is treated as a character. In g ca change in state corresponds
to a substitution of one nucleotide or amino acid for anots&metimes sequence features, such
as introns or small deletions, are treated as binary charatdtes; e.g., the character associated
with a particular intron position would be in state 1 if thggence has the intron state and state O
if it does not. Finally, the evolutionary tree is reconstadcfrom the MSA by searching the space
of all possible trees, seeking the tree that best explam&tBA with respect to a given model of
mutational change [24]. In the case of unrooted treesk fmyntemporary taxa, there agg%

different trees to consider; for rooted trees, thereagi%‘é% topologies. Many heuristics have been
developed to infer a tree without considering every toppidgwever, these methods are often not
guaranteed to find the optimal tree. The resulting tree ispmtiesis for the evolutionary history
of the gene family and will provide some or all of the followiimformation, depending on the
method used:

— Tree topology (or branching pattern),

— Branch lengths,

— Specific mutations that occurred on each branch, and

— Ancestral sequences.

Current models in molecular phylogenetics [24] fall intoeth categories: maximum parsimony,
probabilistic, and distance-based methods. In genemthiiee methods differ in both the evolu-
tionary model and the optimality criterion. | will briefly stuss each of these here (see Table 2.1
for a summary).
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2.1.1. Parsimony

The primary assumption of parsimony methods is that mutati@cur rarely and therefore the tree
that requires the fewest mutations, or character stategesamo explain the data is the preferred
evolutionary hypothesis [42]. In the small parsimony penb) the topology of the tree and the
character states for leaf taxa are given. The goal is to erfeestral character states of ancestral
taxa (internal nodes in the tree) and the minimum (or mininaast) set of events required for
this topology. Calculating the minimum number of changasafdixed topology is simple and
can be determined using Fitch’s Algorithm [43]. In the snpatsimony problem, the topology
of the tree and the character states for leaf taxa are giviea.gdal is to infer ancestral character
states of ancestral taxa (internal nodes in the tree) andnthenum (or minimum cost) set of
events required for this topology. Additional criteria da@mimposed to model particular types of
mutational processes. For example, Camin-Sokal parsimmugels irreversible mutations, such
as small DNA deletions, by imposing the additional reswitthat each character may only change
from state 1 to O once in the tree. Dollo parsimony, desigoedefatures that are hard to gain, but
easy to lose, such as introns, allows each character uatinshhanges from 1 to O, but only one
change from O to 1.

The goal of the large parsimony problem, given the charatéées of a set of extant taxa, is to find
the tree topology that minimizes the cost of the events redub explain the observed character
states. The large parsimony problem is NP-complete: antesaation requires enumeration
and scoring of all possible tree topologies. If the set ohtaxsufficiently large, the problem
can be tackled heuristically by sampling the space of trpeltmies using a tree rearrangement
strategy, such as nearest neighbor interchange or subtwea@ and regrafting. Note that the
small parsimony problem is a subproblem of the large pamsjnproblem, since solution of the
small parsimony problem is required to score each enuntetiage.

2.1.2. Probabilistic methods

Under the maximum likelihood framework, given charactetadaand a model of evolutioM,
the optimalT is defined to be the tree that maximizes the likelihood of nhisg the data given the
modelP[D|T, M| [24, 44, 45]. Like maximum parsimony, phylogeny recondinrcby maximum
likelihood estimation is also NP-complete and an exacttswiuequires enumeration of all tree
topologies. In the maximum likelihood formulation, thedlkhood, rather than the event cost, is
10



2.1. PHYLOGENY RECONSTRUCTION

used to score each candidate tree.

Given the assumption that all positions (columns) in the M&Alve independentlR[D|T,M] =

i P[Di|T,M], whereD; is columni in the MSA. The Bayesian framework provides a related prob-
abilistic approach and defines the optimal tree to be thathvmaximizes the posterior probability
of the tree, given the data and the modIT |D,M| = %. The probability distribu-
tion over all possible trees can be estimated using Markaincdklonte Carlo (MCMC) methods.

These samples can then be used to estimate probabilitizsineg the true tree.

Typically, the model of evolution is a parametrized Markowdel describing the probability of all
possible state changes for each character. Thus, it maaééschanges according to a model of
sequence substitution. Depending on complexity, modelsahble to capture the following prop-
erties [24, 46, and works cited thereirfl) the propensity of different types of character changes
along a tree (the substitution rat€®) a background base or residue distribution (the propensity
of each character to appear), either for the entire sequanaedifferent sites(3) different rates

at different sites (e.qg., different substitution ratesha N-terminus and the C-terminus, or, most
descriptive, different substitution rates at each positiothe sequence) and) branch lengths
for a given tree topology. To calculate the likelihood of &egi tree in which the topology and
branch lengths are specified, all sites in the MSA and all doatlons of internal nodes must be
considered. However, branch lengths are usually not peavathd must be inferred. For a given
topology, there is no analytical method to calculate thénagitbranch lengths. Rather, lengths are
determined numerically by following the likelihood cunegd maximum.

More realistic models of substitution have more parametdnes and are thus able to capture
more information; less complex models capture less inftiona For example, a very simple
model of sequence substitution for sites in a DNA sequendagland Cantor [47]) assumes that
all nucleotide substitutions are equally likely, the backgd base distribution is 25% for each
nucleotide, and that each position of the sequence hasie sgbstitution rate. This model has a
single parameter, the substitution rateVarious models represent various compromises between
complexity, accuracy, and the necessity to make additionaing assumptions. As the number of
parameters in the model increases, so does computatianglexity. The amount of data needed
to obtain an accurate estimate of the parameter valuesaseseas well. In addition, different
models of evolution may result in different reconstructiesults.

In the cases where different models result in grossly diffeinferences, model selection is a
crucial initial step in phylogeny reconstruction. Varicgtatistical measures, such as likelihood
11
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ratio tests and information criteria, have been appliecetect the best model of evolution from
a set of models [48, and works cited therein]. Under the ilkeald ratio test, the relative merit
of two models is assessed using the quarlti®T = 2(I1 — lg), wherel; is the maximum log-
likelihood under modell, and the first model is the more complex of the two. A large @il RT
implies that the more complex model significantly improvesinference and should thus be used;
otherwise, the less complex model is favored, since anaseran complexity does not significantly
improve results. Information criteria, on the other hangyvples a way to compare all models
simultaneously. In this case, the log-likeliholodnder each model is penalized by the number of
its parameters, and, in some cases, the sample siz€he two widely used criteria are the Akaike
Information Criterion AIC = —2I + 2k) and Bayesian Information CriterioBIC = —2| +klogn),
both of which represent the loss of information by using @&gimodel. The smaller the value, the
better the fit. These three approaches are all well-studiddchgailable in software packages for
model selection [48-50].

2.1.3. Distance methods

In addition to the use of character data, a tree can be infersengobservedlistances between
all pairs of taxa. In the context of molecular evolutioris derived from the aligned sequences in
the MSA (e.g. 0 j is defined to be the number of mutations that occurred betwaed]). A tree
with branch lengths implies a distandg between leaveisandj. For each pair of input taxizand

j» di j is the sum of the branch lengths conneciiragd j.

called anadditivematrix. The four-point condition provides a simple test ddlgivity: for every
four taxai, j, k andl,

0i,j +0k) < Maxoj k+0j,,0i| +0j k),
0i k+0j < Max0j j + Ok, 0i | +0j k),

0i7|+Oj7k§ma)<(0i7j+0k7|,0i7k+0j7|). (2.1)

If there is no error, then observed distances should beiagl@dihd the unrooted tree that fits such
distances can be found in polynomial time using the Neiglboring [51] algorithm. However, in
practice, the observed distances are not additive, dueritmugasources of error, such as multiple
12
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substitutions per site. While the total number of substng separating two sequences cannot be
observed directly, except in very closely related sequertean be (partially) estimated from the
number of observed mismatches using the evolutionary readied above in the discussion of
probabilistic methods.

In general, the problem of fitting pairwise distances to @ tiseover determined and no exact
solution exists. If the observed matrix is not additive, tigimal tree is defined to be the tree,
with branch lengths that minimizes the discrepancy betweenree distancet and the observed
distance® according to some metric. Common metrics include leastregu§s_, Z'J‘:iﬂ(oi,j -

di j)?), the Fitch-Margoliash criterions{$_; le(:i+1 (0";27(1")2) and the minimum evolution crite-
rion (the sum of all branch lengths, as determined by |legis&i®s).

2.1.4. Rooting trees

The phylogeny reconstruction methods surveyed above will mfer an unrooted tree. If se-
guences obey a molecular clock, distances from the rootteiewill be the same for all leaves.
A distance matrix with this property is calledtrametric. A test for ultrametricity is provided by

the three-point condition, which states that for everyetexai, j, andk,

0,j < max(0j k,0j k),
0 k < max0j j,0j k),

0jk < Maxo; j,0jk)- (2.2)

In this case, the rooted tree can be inferred from the distamatrix in polynomial time using the
Unweighted Pair Group Method with Arithmetic Mean (UPGMAgQa@rithm. However, for many
datasets, the molecular clock hypothesis does not hold URE@MA may result in a tree with
incorrect topology and/or branch lengths. A second apgraamolecular phylogenetics is to use
an outgroup species (e.g., an ursine sequence for a setusrsmgp from canids) or sequence from
a more distantly related gene family member (e.g., a myogkdquence for hemoglobin data set).
In this case, the root of the tree is placed on the branchrgadithe outgroup. A third approach,
described later in Sec. 3, attempts to place the root su¢hittbanumber of events (duplication,
loss, etc.) are minimized.

13
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2.2. Domain superfamilies

The observation that genes are composed of distinct modaleirst introduced in the 1970’s [52,
53]. These modules are now commonly referred to as domaikndainis a sequence fragment
that acts as an independent module and is found in multiplaesee contexts. Domains have
been defined variously as structural units, i.e., sequahegsvill fold into a well defined, three-
dimensional shape independent of the surrounding amirt segjuence; functional units, i.e.,
sequence fragments that encode a particular function; tevadutionary” units, sequence frag-
ments that are found in multiple sequence contexts. In masgs; all three definitions apply. |
use the term “domain” as an abstraction of a particular siratfold or functional motif and the
term domain superfamilyo refer to the set of all amino acid sequences that encodeltmaain.

A specific member of the domain superfamily is calledbanain instance

There are generally three steps to characterize a domaimerest: discovery, modeling, and
recognition. Many of the first recognized domains, such aslghdomain in 1973 [52, 54, 55]
and the Rossmann domain in 1974 [56], were discovered throegpgnition of structures or se-
guences that occurred in otherwise unrelated proteins dncdhvwhad shared similar functions.
Today, systematia@b initio approaches to domain discovery are employed [57-59]. Swth-m
ods for domain discovery on the sequence level are posstokeuse the large amount of available
sequence data makes it possible to recognize conservestnzattutomatically. These methods
use sequence information with inferred tertiary strucfotding, integrating protein folding sim-
ulations and unsupervised machine learning techniquesindormation about domain sequence
properties to predict the likelihood of domain boundariesequence data.

Several domain databases have been constructed in thexicohpeojects to obtain a comprehen-
sive characterization of the protein domain universe [60{6ummarized in Table 2.2). These
databases store and organize models for each domain supgriaatabases differ in their objec-
tives, the definition of domain used, modeling methods, anelther the procedure is automated or
curated. When modeling the sequence composition of a domhaifirst step is to build a multiple
sequence alignment (MSA) based on an all known instancégbtibmain. It is often valuable to
express this information in a compact, yet informativepforThe simplest of these forms is the
consensus sequenf@s], where each residue of the model sequence is the moshoamesidue
at that position of the MSA. Theosition-specific scoring matr(PSSM), or profile, represents the
diversity in the MSA as a 20-row matrix that provides the litkeod of each amino acid at every
position in the domain. While PSSMs provide more informatilban consensus sequences, they
14



2.3. MULTIDOMAIN GENE FAMILIES

do not easily capture gaps or insertions. The praidielen Markov mod€HMM) [69] does model
this information through incorporation of transition pediilities between states — the conditional
probability of the residue at a certain position dependserptevious residue.

Once a model is constructed, it can be used to search seqdetat®ses to find other instances
of that domain, which are then used to refine the model. Theatloiwontent of a full-length
amino acid sequence can be determined by comparing thersagteeall models in one of these
databases [60, 63—67] of probabilistic domain models. Wp&ally results in a sequence anno-
tated with starting position, ending position, and namelentifier of each domain identified.

2.3. Multidomain gene families

Multidomain gene families are gene families that encoddemme with two or more domains.
These families can, and often do, contain proteins withedadomain architectures. Annotating
whole genome sequences with domain databases has reviealedtént of genes that encode
multidomain proteins: estimates of the percentage of pretthat have two or more domains
range from 27% in prokaryotes and 40% in metazoans [32] to 4@%% in prokaryotes to 60%
— 80% in eukaryotes [80].

Multidomain gene families are of particular evolutionanddunctional importance. Multidomain
families played a transformative role in key evolutionargniitions. They expanded preferen-
tially coincident with the emergence of multicellularity animals. A number of anecdotal stud-
ies [35, 81, etc.] have proposed that many metazoan fanaitese through a pattern of gene du-
plication followed by domain insertion, yielding the progrs of major subfamilies in various
families involved in cell-cell signaling and cellular adien. These subfamilies then expanded
through further gene duplication. Additional expansioamcided with chordate and early verte-
brate evolution [33, 35, 81].

Gene modularity is a powerful mechanism for the evolutiorfurfctional variation or interac-
tion specificity within a gene family that performs a core ewllar function. Many multidomain
families are associated with fundamental molecular fumgtisuch as cell signaling and cell ad-
hesion. As a consequence of their functional repertoirdfidmmain families have important
health implications, especially for apoptosis, tissuemation and repair, wound healing, im-
mune response, blood-related functions, and the vereeheatous system [33—35]. Recent high-
throughput screens have established strong links betweéidomain proteins and mutations as-
15
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Popular Domain Databases

Database Type Curated Model Notes
Pfam [61, 62]
Pfam-A sequence yes HMMsUses structure information, when available, to ensure

correspondence to only one structural domain, improveltgeraent
and better define domain boundaries. Focuses on divergaraids.

Pfam-B sequence no HMMsAIl other domains which are not in Pfam-A, clustered autooadiy.

SMART [70,71] sequence yes HMMsinitial models are based on sequence clustering. Usedateuc

PSSMs information when available. Only consists of informatiandomains

and repeats with intra- or extracellular signaling funesio

CDD [72,73] sequence yes HMMsiIntegration of Pfam and SMART domains with links to proteims
Entrez. Hierarchical classification is loosely tied to spec
evolution. Structure information is used for correctionemh
available. Highly curated.

PRINTS [74] sequence yes PSSM€reates an unweighted PSSM-based fingerprint (highly coede
motif) for every domain and uses this for classification.
SCOP/SUPERFAMILY [65] structure vyes HMMsWidely used reference for hierarchical classification anacsural

information when curating sequence databases. Does niatiicon
any domains without a solved structure.

CATH/GENE3D [75, 76] structure some HMMsHighly automated, but uses hand curation for determinatfon
difficult domain boundaries and remote folds.

COGs [77,78] sequence yes MSA Classification is based on proposed orthologs.

InterPrd' [66, 79] both yes Various Integrates information from many domain databases inetudi
PROSITE, PRINTS, Pfam, ProDom, SMART, SCOP, CATH,
TigrFams, PANTHER, and PIRSF.

Table 2.2:Summary of differences among some of the many databasdatdgdior domain identification and classification. Typeersfto
whether the database is structure or sequence based; Crefdes to whether or not the database is hand-curated.

aNote that the InterPro database is not a standard domaitifidation and classification database. Rather, it atterigptmify the information provided
from numerous other databases.
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sociated with cancer [36—38]. For example, more than hathefmembers of the multidomain
Kinase family, the largest gene family, have known rolesrie or more cancer processes [39].
In addition, the recent literature provides ample evidesicthe need for phylogenetic methods
for multidomain families, as illustrated by the recent ®epiber, 2010 issue @cience Signaling
devoted to multidomain evolution.

2.4. Molecular mechanisms

Studies of domain and exon shuffling on the genomic levelaletieat modular proteins arise
through various genetic “accidents,” in which aberrationthe cell’s replication machinery result
in duplications, deletions, and rearrangements of DNA. derstanding of these processes is
rapidly increasing due to two kinds of studies. A small, brdvging number of studies describe
cases where evidence of the particular domain shuffling av@sim that occurred is still discernible
in the flanking DNA of genes that arose very recently [33, &B8}1In addition, evidence is avail-
able from laboratory studies investigating microbial enin in controlled environments such as
chemostats or in cells engineered to have high mutatios (269, 110].

These studies reveal the primary mechanisms that mediae dgplication and domain shuf-
fling: segmental duplication, non-allelic homologous mbiation (NAHR), retrotransposition,
non-homologous end joining (NHEJ), exonization of noniaogdsequence, transposon-mediated
insertion, and read-through errors [33,82-108]. Manyistidf young genes report novel archi-
tectures that arose through a combination of events intudi gene duplication and a domain
acquisition; one copy of the duplicated gene remains urgdgdrand can continue to perform
the pre-duplication function, freeing the copy that acedia new domain from purifying selec-
tive pressure. Unequal crossing over, typically mediate®lBHR, can increase or decrease the
number of internal domain repeats. This process can alstecnew domain combinations when a
fragment containing several genes is copied, if the breakpare in the middle of the gene. In this
case, a new gene can arise that contains the 5’ end of thentestipted) gene in the fragment and
the 3’ end of the first gene in the copied fragment. Transpwosion the other hand, is mediated by
transposable elements (TEs) and allows for the integratiorew elements into an existing gene.
Some TEs facilitate exon shuffling by copying a fragment ofAD&hd integrating that fragment
in another region of the genome. Other TES, referred to astrahsposons, can reverse transcribe
and integrate themselves in new genomic regions. This cauitri@ the integration of a whole
gene, or only a gene fragment. Many gene duplications oitrigty result in pseudogenes as the
17
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inserted gene must recruit new regulatory sequence to lotidmal [95]; however, there are cases
where retrogenes acquired a regulatory sequence and aess&g [85, 108]. The introduction of
a start and/or stop codon within an exon can eliminate a doimatruncating the coding region.

Read-through transcription errors, arising from eitherrtiutation or deletion of a translation stop
codon, can result in the fusion of two adjacent genes, crgatisingle, multidomain gene [83].

Early recognition of the existence of sequence fragmerdsding the same modules in otherwise
unrelated genes arose in the context of the discovery afnstf53,111], leading to the hypothesis
that the existence of introns increases mutational piasénd facilitates domain insertions by

increasing the probability that the new insertion will flaitween domains and not disrupt existing
structure [94, 112, 113]. This idea is supported by an oleskoorrelation between exon and
domain boundaries [94,112].

The role of introns in domain shuffling was elaborated furtivéh the concept ofntron phase
the relative position of an intron between codons in theirgpffame. An intron can interrupt
a coding sequence between codons, i.e., between the thitelotide of one codon and the first
nucleotide of the next (phase 0); between the first and secodeotide of a codon (phase 1); or
between the second and third nucleotide (phase 2). Anasbgaxon phases are defined by the
flanking intron phase. A phasg exon is one with an upstream intron in phased a downstream
intron in phasgl. Symmetric exons are those in phage Insertion of a non-symmetric exon or
sequence fragment disrupts intron phase. Such disruptidhsesult in frameshift mutations in
downstream exons and are more likely to be deleterious 115}, Insertions are more likely to
lead to functional proteins if (a) the inserted fragmentisisetric and (b) the fragment phase is
compatible with the phase of the intron where it is inserted, (the insertion i$-i symmetric and

is inserted into a phasentron) [94,113].

Domain shuffling as a process is more likely to be succestkinkserted domains tend to have

the same symmetric phase, and if introns in candidate nomitédn proteins tend to have phases
compatible with those domains. Genomic studies have fouatdpthase O introns occur more often
than expected, that most genes have a higher number of syim@é€t exons than expected [83],

and that there is a significant excess of symmetrical phased@mains (i.e., domains whose N-

terminal exon phase starts with 0 and C-terminal exon phads with 0 so that insertion into a

phase 0 intron is not disrupted) [94].
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2.5. Previous research on multidomain evolution

Studies of genomic sequence can give us detailed undenstpoidmechanisms by which a par-
ticular multidomain protein evolved. However, such anafysre labor intensive, not suited to
automation, and only possible in cases involving eventesent that the evidence is still visible.

As previously mentioned, standard phylogenetic methoda@amodel multidomain gene fami-
lies; thus, little work has been carried out on multidomédiglpgenetics. However, the availability
of domain databases, combined with comprehensive setst@ipisequences for large collections
of genomes spanning the tree of life, have leveraged a wavewfinvestigations on patterns
and processes of multidomain evolution using other contjmual approaches. These methods
have attempted to extract evolutionary information withlowilding a tree, or by using only par-
tial phylogenetic information. Domain architecture stitis have been used to gain insight into
(1) the nature and variety of domain combinations and co-oeaggs [116—-124](2) how the
domain repertoire varies across genealogical lineageduaational groups [32, 123, 125, 126];
(3) plasticity in domain order [127, 128{4) the relative rates of different types of domain shuf-
fling events [127,129-132, 132-137§) inference of ancestral architectures [96, 130, 134, 138—
144]; (6) whether domain architecture formation is driven by neugkadlution or natural selec-
tion [116,117,145-151]7) the propensity foconvergent evolutionf domain architectures (i.e.,
the formation of the same architecture more than once tirowtgpendent events) [139,142,152];
and(8) the extent of a domainjgromiscuity(i.e., the propensity of a domain to co-occur with many
other domains) [153—-155].

2.5.1. Abstract models

First | review the abstract models that have been used i thigslies, and then summarize their
findings.

Domain architecture models

A commonly used abstract representation of domain congetitedomain architecturewhere

each multidomain sequence is treated as a set or sequentakens” (e.g. domain names or

database IDs) representing the domain composition fronNth® C-terminus [118]. This ab-
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straction has been used to achieve the computational efficigecessary for genome-scale analy-
ses [96,154,156,157, and work cited therein]. In this fraor&, all instances of the same domain
are indistinguishable. Sequence comparison is used odigtezmine domain content. Thereafter,
sequence variation between domain instances is ignored. abbktract description of the states
in the domain architecture model is very similar to the axstdescription of genetic sequences
— sequences are represented as a string of tokens from theotide or amino acid alphabet;
multidomain proteins are represented as a string of tokemns & much larger alphabet of domain
superfamilies. The term “domain architectures” is alsaliuseefer to the “bag of domains” model,
in which the sequence is treated simply as the set of repesedomains. In this model sequence
information, domain order, and sometimes the number ofesxopf each domain, are ignored. A
disadvantage of this approach is the possibility of errars th misannotation (i.e., reporting no
domain when a domain exists, or reporting an incorrect dortiaj. However, work by Weiner
et al. [127] reports that misannotations account for onlynalsfraction of all putative domains
losses.

Event models

The set of molecular mechanisms by which protein architestahange over time are typically
treated as a small number of abstract events that modify toanehitectures. Different studies
have used different event models and, unfortunately, ibtsuncommon for two different studies
to use the same words to describe different events. Evengisodn include any of the following:

domain merging, fusion, fission, insertion, deletion/ldesth, duplication/gain/birth and innova-
tion.

Domain architectures as character data

Many studies treat abstract domain architectures as a féroharacter data, as defined in the
phylogenetic framework (pg. 8), although the connectiatwken character data and the domain
architecture model is frequently not acknowledged. In thaglel, the set of characters is equated
with the set of domains in the protein universe. The domairtextt of a protein can be treated

as binary character data, where 1 indicates presence andidates absence, or as multistate
character data, where presence is represented by a positiveer indicating the number of times

the domain appears in the protein. A variant of this apprdachses on domain co-occurrence:

for a given reference domain, the character state vectoesepts the set of domains that co-
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occur with that reference domain. In a third variant, thextase species (or genomes) and domain
architectures are treated as characters. For a given getiuerstate of the character corresponding
to a given domain architecture is non-zero if that architecthas been observed in that genome.
Transforming multidomain proteins into character datavedl the space of multidomain proteins
to be examined by comparing domain architectures. The cteratate formulation has been
applied to investigate various questions about multidoneablution, often by adapting aspects
of the phylogenetic framework, although full realizatidmaultidomain phylogeny reconstruction
based on character states has not been achieved.

Two variants of the small parsimony problem have been cens@ The first uses the species tree
as the fixed topology. Algorithms analogous to Sankoff'dthm have been proposed to infer
the set of domain architectures present in ancestral spanikthe events responsible for changes
in the domain architecture complement over time. If the donaachitectures are transformed
into presence/absence vectors (i.e., a vector indicatimgthver each domain is present or absent
in the protein), then the events included are either gasefiion or loss/deletion. This approach
has been used to investigate the propensity and spatiashdvarious types of domain shuffling
events (e.g., whether insertion is more common than dupica@r the prevalence of insertions
that occur at various locations in the architecture) [129-1142]. In investigations of the relative
frequency of gene fusion and fission, syntenic informaticay rbe incorporated in the analysis
as well. This method has also been used to study domain dtédéf and convergent evolution
of domain architectures [142]. A second variant focuses ltanges in domain co-occurrence
over time. In this case, the phylogeny is reconstructed fsequences of domain instances of a
single superfamily using standard methods [139]. Thiscséetereference domain is used as the
fixed topology. Characters represent co-occurring dom&ifieen using a domain tree, constructed
from only one domain, it is important to realize that the tlescribes only the evolutionary history
of that single domain. Trees derived from other domainsatbale different branching patterns
(e.g., the trees in Fig. 3.5) [27-31].

Algorithm 2.1

Input: T the phylogeny to be decorated with architectures, setDA={DA} a set of
domain architectures with presence at |eaves of T indicated.

decorateTree( T, setDA)
1r=root(T)
2 passl(r)
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3 pass2( r )

passl( v)
4 if isLeaf ( v ) do
5 for each da € setDA

6 if isPresent( v, da) do

7 label (v, da) = ‘‘present’’
8 el se do

9 | abel ( v, da) = '‘absent’’
10 return

11

12 el se do

13 passl( left(v) )

14 passl( right(v) )

15 for each da e setDA

16 if (label (left(v), da) == *‘present’’ && label (right(v), da) == ‘‘present’’ ) do
17 label (v, da) = ‘‘present’’

18 else if (label (left(v), da) == ‘‘absent’’ &&

19 | abel (right(v), da) == ‘‘absent’’ ) do

20 label ( v, da) = '‘absent’’

21 el se do

22 | abel ( v, da) = ‘"unknown’’

23 return

pass2( v )

24 if isRoot( v ) do
25 for each da ¢ setDA

26 if (label (v, da) == ‘‘unknown’’ ) do

27 label (v, da) = ‘‘present’’

28

29 el se do

30 for each da e setDA

31 if (label (v, da) == ‘‘unknown’’ ) do

32 | abel ( v, da) = label ( parent(v), da)

33 if (label (v, da) == ‘‘present’’ && |abel (parent(v), da) == '‘absent’’ ) do
34 event( v, da) = ‘‘gain’

35 else if (label (v, da) == ‘‘absent’’ && |abel (parent(v), da) == '‘present’’ ) do
36 event (v, da) = '‘loss"’

37 el se do

38 event (v, da) = '‘none"’

39
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40 if lisLeaf( v ) do
41 passl( left(v) )
42 passl( right(v) )
43 return

Annotation of the fixed tree occurs in two passes (see Alg. hthe first pass, leaves and internal
nodes are annotated with the presence/absence of domaitearares or domains. Leaves are
assigned the leaf taxon’s content. In the case of a spee@esttris content is the set of domain
architectures observed in that species; with a domaintineeis the set of domains that co-occur
with that domain instance. The ancestral content for iratlemodev is inferred by minimizing the
number of gains and losses of content betweand its children. Calculating the minimum number
of changes for a fixed tree topology is simple and can be dé&tedhusing a process similar to
Fitch’s and Sankoff’s algorithms [43]. Moving from the lemto the root of the tree in postorder,
content at internal node in the species (domain) tree is inferred as follows: if arhaecture
(or domain) is observed in both children waflabel that architecture (domain) as “presentvin

If the architecture (domain) is in neither child, label thathitecture (domain) as “absent” vn
Otherwise, label the architecture (domain) as “unknowspnce/absencen

A second pass from the root to the leaves, in preorder, resnbveunknown labels by assigning
content inv the same label as its parent. If the root has an architeaforagin) with an unknown
label, the architecture (domain) is assigned as “pressiatté that labeling unknown content at the
root as present is arbitrary, and this content could alsdogerd in this node — there is just not
enough information to determine. In addition, gains anddssn content are easily calculated in
this pass. If an architecture (domain) is “presentVibut not in the parent of, then a “gain” of
that architecture (domain) is inferred. Otherwise, if theh#tecture (domain) is “absent” mand
“present” in the parent of, then a “loss” is inferred. When using the species tree, aitiadal
layer of event modeling may be included. In this case, fohegained architecture, the new
architecture is inferred to be gained by a minimum numbenpailtinations and/or rearrangements
of existing architectures. This can be inferred with a sengynamic programming algorithm
(see [140]).

Examples of this algorithm for the family in Fig. 1.2 usinglva species tree and a domain tree can

be seenin Figs 2.2 and 2.3, respectively. In Fig. 2.2, thelepéree is decorated with the observed

domain architectures. Specigss labeled with the architectures gf andgy, while specied is

labeled withgs. In the first pass, the internal node, representing and¢egtegiesR, has all three

architectures labeled with “unknown” presence/absenté¢hd second pass, the architectures are
23



CHAPTER 2. EVOLUTION OF GENES, DOMAINS AND MULTIDOMAIN GENEFAMILIES

COrmm
RA -0
rom
S T
g, g,
‘ree- T
g 2 -

Figure 2.2:The history of the multidomain family in Fig. 1.2 inferreding domain gain-loss parsimony
on the species tree.

all labeled as present since the internal node is the roats,the two architectures containing red
domains are lost along the edgeTtaand the architecture with two purple domains is lost along
the edge t&. In Fig. 2.3a the tree would result from phylogeny recorgtam of the blue domain
sequences. This tree was then annotated with ancestrékatahes based on domain presence and
absence. In the first pass, the leaves are labeled with thiéeatuires from which the blue domain
was sampled. For internal node, the blue domain and one red domain are labeled as present.
The other red domain and the purple domain are labeled asoumknAt internal nodey; 23, the
blue domain and one purple domain are labeled as presentharmhe red domain (present in
g12) and the one purple domain are labeled as unknown, and tlee i@th domain is absent. In
the second pass, all domains labeled unknown on the roossignad a present label, g3 has

the blue, one red, and two purple domains labeled presente §io is then labeled with the blue
and red domains originally labeled present in the first paks.unknown red domain is labeled as
absent and the purple domain as present to match the domaesraot. This annotation implies
that a red domain was lost along the edgg4oa purple domain was lost on the edgeyig, a red
domain was gained and a purple domain lost along the edgg tnd no events occurred leading
to go. Note that we could also assign unknown domains at the roabsent. In this case, we
would infer the annotations seen in Fig. 2.3b, which impéiehfferent set of events on the edges
to gz andgi2: gain of a purple domain along the edgegtoand the gain of a red domain along the

edge tagso.

One attraction of the domain architecture model is that Hstract description of the multidomain
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Figure 2.3:The history of the multidomain family in Fig. 1.2 inferreding domain gain-loss parsimony
on the tree for the blue domaifa) Ambiguously defined domains at the root are inferred to bseprie(b)
Ambiguously defined domains at the root are inferred to beratbs

protein is very similar to the abstract description of amaead sequences. This analogy suggests
that multidomain phylogeny reconstruction can be carrigidby adapting the standard molecular
phylogenetic framework to the multidomain realm. Transfrg domain architectures into char-
acter data allows us to use phylogenetic methods based oactéradata. Thus, a multidomain
tree can be constructed either by calculating the pairnd#edestance between architecture [134]
or by employing a parsimony model [138, 143], as describéaleSuch trees can then be used to
infer ancestral architectures (as above) and infer events.

The domain distance between two sequences is the numbemafia®that differ between the two
architectures [134]. This measure is equivalent tagttie distancewhich is the minimum number
of events required to convert one architecture to anothgr, (gain, duplication, loss). Once all
pairwise edit distances are calculated, the resultingudcst matrix can be used to build trees (i.e.,
using Neighbor-Joining methods).

In the parsimony context, the domain architecture is repriesl by the presence/absence vector. In
this model, state changes correspond to gaining (0 or losing (1— 0) a domain. No distinction

is made between various events that could result in gain (®gain insertion versus gene fusion).
Once architectures are transformed, standard parsimotiong as discussed in Sec. 2.1 can be
used to construct a tree.

A limitation of these methods is that after domains are idiedt, they do not take the sequence
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information of domains into account, which may contradiatts inferences. For example, no
matter how great the sequence divergence between two gétiesir domain architectures are
the same, they will have a distance of zero. Moreover, theyalgrovide information about the
evolution of the multidomain family as a whole and providdéyancoarse resolution of events.

Domain presence/absence networks

Another common approach to evolutionary analysis of donaaghitectures is to represent the
protein universe as a domain network or graghs (V,E) [117,121-123,132,136,137, 143, 146,
147,149,151,158]. Each domain in the network is represgdntea nodes € V in this network. A
pair of nodesx andy, is connected by an undirected edge E if there is at least one protein in
the genome that contains both an instance of domaind an instance of domayn The number
of edges incident on a nodeis called the degree of. Note that the degree of nodein this
network is equivalent to the propensity of domains to codoatith other domains in the same
protein. Variations on the domain graph include using de@e@dges to indicate domain order or
providing edge weights, indicating the number of times twndins appear together in a domain
architecture. Similarly, an architecture network hasgirs represented by domain architecture as
the nodes, and nodes are connected if the two architectiuaes a8 domain.

For a global approach, every domain instance or proteingrgmnome(s) of interest are used to
construct the graph. These networks provide informatioa giobal scale, such as the behavior
and connectivity of a domain superfamily as a whole. Suchicaahes have been used to identify
power law behavior (discussed later). In a local approacly, the domain instances and proteins
in a specified multidomain family are used to construct thevagk. This approach provides in-
formation on domain and architecture behavior in a specititidomain family. Behaviors of dif-
ferent multidomain families can then be compared. This@ggn has also been used to determine
whether a Dollo parsimony tree can be constructed for thengmultidomain family [143, 151].

Birth-death models

Birth-death (and innovation) models (BD(I)Ms) are prolhabic models used to understand the
evolution of the size of a domain superfamily [117, 145-146B]. BD(I)Ms have been used for
modeling a number of biological properties, including plagions dynamics, genome evolution,
distribution of paralogous gene family sizes [117, 126 ]148d protein-protein interaction net-
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works [160,161]. In the context of multidomain evolutiometevents considered are birth (gaining
a new copy of a domain from an existing domain, through doroagene duplication), death (loss
of a previously existent domain), and, in some models, iation (introduction of a new domain
superfamily through the gain of a new domain fold).

v R )\'1 R )\'n-l R )\'n R n+l R )\'NI R
0 1 ) n n+l ) N
l"l1 l"l2 l.ln l"ln+1 l"tn+2 l"lN
(a)
MI %2 %n %n+1 %nJrZ %N
%0 R )\'1 R )\'nl R )\'n R )\'n+l R )\'Nl R
0 1 . n. n+l ) N
H] HZ Hn Hrﬁr] Hn+2 HN

(b)

Figure 2.4:Schematics ofa) a typical birth-death model ar{8) birth-death and gain model, with material
transitioning between neighboring states. The probghilita transition to the right is a function af, or
(An+Kp) in () and (b), respectively. For both (a) and (b), the prdiglof a transition to the left is a
function ofp,. The parameterk,, K,,, andy, are rates of birth, gain, and death, respectively. (Adajted
Novozhilov et al. [148].)

The BD(I)M is a stochastic, Markov process (see Fig 2.4a)hictvtransitions are only allowed
between neighboring states. We say that the system is iarstahen the genome contaims
instances of the domain of interest. An increase is a tianditom staten ton+ 1 and is termed
birth; similarly, a decrease is a transition from stat® n— 1 and is termed a death. The size of
the family at timet is described by random variab¥t), such that

Pi{X(t) = n[X(to) = mo, X (t1) = My, ..., X(tk) = m] = PriX(t) = n[X(to) = mp] Vi <to <t. (2.3)

The probability that the family increases from siz® n+ 1 during intervalt,t + At) is a function
of ApAt, whereA,, is the birth rate. The corresponding probability that thaifg decreases from
sizenton—1 during (t,t + At) depends oqnAt, wherey, is the death rate. When tlte novo
innovation event is included, the emergence of a new famitih ane member (i.e., a transition
from state O to state 1) is also modeled. In the full BD(I)Mtstprobabilitiespn(t) = PriX(t) = n|
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can then be described by the equations:

dpgt(t) = —AoPo(t) + papa(t) (2.4)
dpgt(w = An-1Pn-1(t) — (An+ Hn)Pn(t) + kot 2Pnra(t), 1< N < N. (2.5)

Note that this model does not take gene family organizatitm account and focuses only on the
size of the domain superfamily.

A substantial number of studies [117,145-148] have ussdafproach to infer the parameters that
best fit real and simulated data. These studies have typmadicluded that domain evolution may
be a largely stochastic process with natural selectiomigaonly a minimal influence on domain
superfamilies in extant genomes [117,145-148].

Unlike the previously described methods, this approacmesaf the most challenging due to its
computational complexity and the large amount of data reguiHowever, it has the advantage of
being able to simultaneously learn information about momstand insertions/deletions and is the
only model that is able to infer event rates.

2.5.2.  Summary of findings from previous work

The abstract models discussed above have been used toeanalgage of genomes with multi-
domain proteins. These studies have provided a good baderstanding of the multidomain
universe, including insights into domain architecturegrais across lineages and relative rates of
common events. They have also been used to examine wheth&aomain evolution is under se-
lection, or whether domains evolve neutrally. Here | hightisome of the important observations
and findings that have helped elucidate multidomain evaruti

Domain architecture patterns

The simplest information that these studies provided wasargption of the multidomain universe
through statistics about domain superfamilies and donraimtactures.

Work on domain combinations primarily focused on the donpeiim (or triplet), two (respectively
three) domains that are found adjacent to one another inatme protein. The domain combi-
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nations observed represent a very small fraction of passibmain combinations [112,118, 125,
162, 163]. In addition, multidomain architectures consgstentirely of new domains are rare,

while single-domain architectures are usually the reduti@emergence of a new domain, not the
fission of a multidomain architecture [130].

Many pairs contain domains from different families [32] — illwefer to these asnosaic pairs
Mosaic pairs specific to a particular lineage were assumdx toovel; that is, to have arisen in
that lineage. Since the majority of mosaic pairs (rangingif66% in Eukarya to 90% in Archaea)
are comprised of superfamilies common to all lineages, Inuaies are likely the result of common
superfamilies combining in novel ways rather than the comton of families specific to that
branch [162]. Adjacent domains that appear in two or moréndisdomain architectures are
referred to asupra-domaing118, 119]. In an analysis of two and three domain combimatio
approximately one fourth of all the observed combinationalify as supra-domains [118, 119].
Statistically, over-represented supra-domains weretiitlsoh and found to exhibit a bias toward
eukaryotes.

When the N- to C-terminal orientation of domain was congdemore than 90% of mosaic pairs
were seen in only one orientation [125, 128,162, 164]. Exation of other domains that part-
ner with supra-domains also showed that domain order isrgiydixed [118, 119] (however,
see Kummerfeld and Teichmann [136]). Promiscuous domam®laserved more frequently at
the C-terminus [131]. Circular permutations are sets of @onarchitectures with conserved do-
main content and order, when the N- and C-termini of the &&chire are treated as though they
were connected (i.e., the architecture is circular). Famgxe, the architecturBCAis a circu-
lar permutation of the architectuf@AB. Circular permutations are thought to evolve by either
(a) independent insertions and deletions of domains, wkiofore common, or (b) duplication of
the whole architecture, followed by domain loss at the tarfii27]. When circular permutations
in domain order are considered to be conserved, the freguendomain conservation is even
greater [127].

Comparative studies across species lineages [32,1221223126, 130, 145, 147] have revealed
patterns that are lineage-specific or common to all lineadésltidomain evolution in each of
the major species lineages (plants, animals, fungi, pyakas) has characteristic properties that
distinguish it from processes of domain shuffling in otheefiges. A core set of domains is
found in all lineages, but many domains are lineage specifiee set of most promiscuous do-
mains in prokaryotes, eukaryotes and archaea differslgrédultidomain families in multicel-
lular organisms are larger (in the number of domains) ane mawre complex and varied archi-
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tectures [35,81,130,165-168]. This is particularly troerhetazoans, and especially vertebrates,
with plants running a close second. Multidomain compleildtgubstantially lower in prokaryotes
and even lower in Archaea. Even when domain superfamilee$oamd across different lineages,
they often participate in different architectures [128]addition, these lineage specific expansions
are associated with specific families or biological proessécluding neural and developmental
functions [35, 81,166-169]. A number of promiscuous doma@inmetazoa are involved in sig-
nalling [32,121,123,125,162].

In addition, these studies have revealed information ath@utelative propensity of events, includ-
ing the following observations. Fusion events are more comthan fission [129,130, 132] by a
factor of 4 [129] to 5.6 [130]. A fusion event results in twastiinct genes joining into one gene,
while a fission results in a single gene splitting into twatidit genes. Identification of a gene
in one genome that is piece-wise homologous to more than ene m a second genome sug-
gests that the first gene may have arisen through gene fuks@h [It has also been observed that
indels (domain insertions and/or deletions) were the mesjuent elementary event in bacteria
genomes [131, 133]. Indels are more common than internatitems, tend to involve insertion
or loss of a single domain at at time, and occur more frequertihe C and N-termini than in the
middle of the architecture [130,131,133,134,165].

Tandem domain repeats may result from the duplication ofrtiwein one domain at a time. Only
a small fraction of the proteome contains tandem repeats (fultiple copies of the same domain
adjacent in the architecture), and only a small percenthgi®main superfamilies participate in
repeats [125, 162]. The fraction of proteins with repeatauigh higher in eukaryotes, especially
vertebrates, than in prokaryotes [170]. Multicellular amgsms are more likely to have longer
repeats than unicellular organisms [125, 162]. The presefhrepeated, adjacent domains is often
thought to indicate domain duplication [32,170]. Analysésandem repeats, based on sequence
similarity suggest that repeats often expand through nialeduplication of several domains at
once [170,171]. A possible explanation for this is offergddcent studies of folding stability and
dynamics [80, and work cited therein] that show that tandgpeats of highly similar, homologous
domains pose a greater risk of misfolding and aggregatiamget al. [172] further report that in
titin, which contains many tandem copies of Ig and Fn3 dosyaadjacent Fn3 domains are more
dissimilar than more distant copies.
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Relative importance of neutral evolution and selection in t he formation of new architectures

Domains that have been observed to occur in many differatejor contexts are referred to as
promiscuou$153] or versatile[125]. Measures proposed for quantifying promiscuity unld the
number of other domains that co-occur with it in at least aimégin (NCO) [125,153]; the number
of other domains found adjacent to it in at least one prot&iN)([120]; the number of different
architectures in which itis found (NA) [32,173]; the numioétocal architectures (domain triples)
in whichitis found (NTR) [32]; the weighted bigram frequgnandex (WBI) [155] and the domain
versatility index (DVI) [174].

These are all static measures, based on domain architetatistics. They cannot distinguish be-
tween proliferation by shuffling and proliferation by gengptication, yet this distinction is very
important in the phylogenetic context. A domain could benpiszuous either because itnsobile
(i.e., frequently inserted into novel architectures) ocdaese it is arattractor for insertions (i.e.,
insertions into the neighborhood of this domain tend to bectgely advantageous). For example,
in Fig. 1.2, the blue domain is an attractor; the pink and [gudomains are mobile. Yet promis-
cuity is frequently assumed to be synonymous with mobilldpwever, this hypothesis has not
been tested. Note that the measures of promiscuity citedeaten overestimate the mobility of
a domain if the domain is, in fact, an attractor. These meascan also underestimate mobility:
if domain A is observed next to domaiB, it is not possible to know whether one insertion oc-
curred, or repeated insertions and deletions occurredeVeldp phylogenetic models of domain
shuffling, it is necessary to be able to make the distinctetmvben attractor domains and mobile
domains. For example, according to simple measures, Kisaspromiscuous domain. However,
the evidence in the literature suggests that it is an atiranbdt a mobile domain. It is substan-
tially longer than typical promiscuous domains and doeshawve 0-0 phase [32]. In addition,
phylogenomic analysis indicates that the Kinase familylvea by duplication of an ancestral,
single-domain Kinase, followed by insertion of differendains into the resulting paralogs, and a
second round of duplication [35, 81]. This suggests thakihase domain proliferated primarily
by gene duplication. In contrast, SH3 and PDZ domains hawéasi promiscuity scores (except
with WBI or DVI) as Kinase. Yet these domaiase thought to be mobile: they have short, phase
0-0 sequences, do not appear in the single domain contekgramot thought to have evolved as
progenitors of gene families [154, 174].

Apic and colleagues [125] argue that domains common toredbiges in the tree of life correspond
to the largest proportion of domains and that their widesgighylogenetic distribution suggests
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that these domains are ancient, which is consistent withdehwad random duplication. However,
the same argument does not explain the distribution of dogramiscuity, since the most promis-
cuous domains are clearly not oldest [121]. To the conttheyre is little overlap between the sets
of most promiscuous domains in prokaryotes, eukaryotesesithea.

A number of studies have observed that domain promiscutyl[31,122,125,162,175] (at least
approximately [150]) and domain superfamily sizes [14%]1Zan be described by a power law.
A power law is a mathematical model in which the the probgbof observing characteristic
follows the formf(x) = c-x~™, wherec andmare constants. In double-log plofgx) is a straight
line with slope—m. This indicates that a small number of domain or gene famdie very large
or very promiscuous, while most families are small and stati

This observation has led to much speculation regardingidonitain evolution. Many scientists
found this observation intriguing in light of a 1999 paperBgrabasi and Alberts [176] that pro-
posed a simple procedure, callpteferential attachmenthat generates random graphs with a
degree distribution that follows a power law. In terms ofgdraheory, preferential attachment
theorizes that the probability of adding a new connectioa twde is simply a function of node
size. In other words, nodes have high connectivity simplyalose the node is bigger. In terms of
domains, this implies that a domain has more, differentngast simply because there are more
instances of that domain and a greater chance for anotheaiddmbe inserted next to it (or for
it to insert next to a different domain). This observatiorswaerpreted as evidence that evidence
that domain evolution may, in fact, be neutral [116,117]145

This influenced the implementation of Birth-Death modete(pg. 26) and other simulations of
multidomain evolution context, which provided further @ence for neutral evolution [116, 117,
145-147,149]. In these analyses, the evolution of the datiain protein universe is simulated
under one of two hypothese$§l) domain shuffling events are random, or stochastic, prosesse
(i.e., the growth of domain superfamilies and the formatdmovel architectures is a neutral
evolutionary process) ar{f@) domain shuffling events are under selection. The alterngdetheses
were evaluated by comparing global features (e.g., degstebdtion, clustering coefficient) of
the simulated network with the same features in real-woelivorks. The generative model that
yields the best agreement between the network featuresi@dmred the best hypothesis for the
evolutionary processes that drive multidomain evolutionce a model has been selected, domain
shuffling rates are inferred by selecting model paramebatshaximize the similarity between the
simulated and real-world networks. Studies implementirghsnodels suggest that while domain
shuffling has many characteristics of a preferential atteatt process (i.e., neutral evolution) [117,
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145-147], the promiscuity distribution generated with adeloof selection is a better fit for the
data [116]. This suggests that domain combinations have stochastic properties, but are under
selection.

Qian et al. [145] simulated an evolutionary model in whicteath time step, a fold instance is
selected uniformly at random and duplicated, or a novelifldtroduced with an innovation rate
r. They showed that they were able to select parameters thated in equivalent size distributions
for simulated and real fold families. Koonin and colleag{k7, 146, 147] extended the Birth-
Death model to include deletion as well as duplication anmbwation. In this case, the gain
or loss of a domain is simply based on the size of the domaierfupily. They selected the

model that best simulated real data in terms of the expormenot the power law distribution

and the time required to obtain duplication rates similathimse predicted from data by Lynch
and Conery [177]. Based on these analyses, they drew théustmtthat multidomain evolution

could simply be the result of neutral evolution and large donsuperfamilies participating in

more events, simply because of their size.

In a related approach, Vogel and colleagues [116] used pdraned generative models to simulate
a domain network and test the hypothesis that particularaitoeombinations observed in nature
are the outcome of selection. In the model of selection, aailmmombination arises through a
single fusion event and then proliferates via gene duptinathe simulator does not permit the
same pair of domains to fuse twice. In the null model, all donzachitectures are formed by
domain insertion at a randomly selected location. Becaus@tomiscuity distribution generated
by the model of selection is a better fit for the data, Vogelle{ld 6] conclude that domain
combinations are under selection and, more specificaly,al instances of a given combination
are descended from a single ancestral architecture. T$u#t mso suggests that gene duplication
is a more common occurrence than domain insertion. Przgtgthl. [143] also simulated random,
scale-free graphs using preferential attachment. Cosgadf the domain graphs of multidomain
superfamilies with simulated domain graphs of the sameasizkedensity, showed that these have
very different the topological properties. Based on theselts, they reject preferential attachment
as a mechanism for multidomain protein evolution.

Further evidence that multidomain evolution is under seadas been provided by studies inves-

tigating the hypothesis that the convergent evolution ohdm architectures is rare [116, 136,139,

142,143]. Two studies using quite different approachet) based on simple domain architecture

models, concluded that almost all instances of a given dommamnbination are descended from

a single ancestral architecture [116, 142]. However, tsalte of more recent studies based on
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more complex models, suggest that the propensity for cgewerevolution of architectures may
be more common than first supposed [139, 143], especiallywheearchitecture contains highly
promiscuous domains. Several recent studies of specifitdamiain protein families have com-
mented on instances where convergent evolution of domalhtactures is the most compelling
explanation for similar architectures in distantly rethgpecies (e.g. [178,179]). The frequency of
convergent evolution is an urgent question because mamnyftimatics analyses are based on the
implicit assumption that identical domain architecturasstrbe related through vertical descent.
This assumption, if false, could lead to incorrect conduasiin both evolutionary analyses and in
practical applications, such as homology-based functiediption.

Tree parsimony methods (described on pg. 21), in partiduése been used to estimate the amount
convergent evolution [140,142]. Gough [142] superimpaf@dain architectures on a species tree
and looked for cases where the same architecture appedsgamtdand distant subtrees, indicat-
ing that the same architecture arose in different specresigfn independent events. Less than 4%
of the architectures that Gough observed exhibited coeveergyolution. Most of these cases cor-
respond to independent instances of internal, tandemahign. In a complementary approach,
Forslund and colleagues [139] constructed trees for iddafi domain superfamilies, decorated
each leaf with the domain architecture in which this domastance appears, and then applied
a standard parsimony analysis to infer domain architestareinternal nodes. If the majority of
trees for domains in an architecture agreed on verticalesesr convergent evolution, the archi-
tecture was inferred to have arisen in such a manner. Otbeywo conclusion was made for that
architecture. They argue that convergent evolution is momnemon than previously thought, with
approximately 12% of all architectures exhibiting conesrgevolution.

Przytycka et al. [143] also tested this hypothesis by priogpsvo formal parsimony models of
domain shuffling and relating these to local topologicalemies of the domain graph (described
on pg. 26). These models are formal encodings of two hypethahe same domain pair forms
only once in evolutionary history and domain architectuyoeee formed, persist through evolution.
By inspecting local graph structures, the method detersnivigether it is possible to construct a
parsimony tree that satisfies both conditions. Note thatfabethat it is possible to construct
a most parsimonious tree does not guarantee that the enolotithe superfamily was, in fact,
parsimonious. However, if no tree exists that is consistgttt the hypotheseand consistent with
the domain graph for a particular domain superfamily, it gaarantee that convergent evolution
played a role in the history of the superfamily. Thus, a nggaiutcome is more informative than
a positive one. Przytycka et al. [143] applied this appraach genome scale data set of domain
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superfamilies and observed that the most promiscuous dosugierfamilies did not satisfy the
criteria, including Trypsin, EGF, IG, and SH3.

2.6. Summary and critique of previous methods

The benefits of these methods employing the domain archreecbhodels include computational
and conceptual tractability. While these approaches haweiged a wealth of information on
how the protein universe has formed, they are incompletausecthey suffer from a number of
limitations. Most of these methods are based on underlyssgraptions that are mostly untested
and often lead to “self-fulfilling prophesies.”

First is the assumption that all instances of the same doaraiindistinguishable and therefore
sequence variation is ignored. However, in fact there isiclamable sequence variation within
domain superfamilies. A second assumption is that muliyiservations of the same domain
architecture are the result of vertical descent and foonatif the same architecture through in-
dependent paths (i.e., convergent evolution) is extremagly. Even when the architectures are
identical, different domains in the architecture couldédahfferent histories [27-31] and would
not be observed from architecture information alone. Thlisrnative, and possibly contradictory,
information is not considered, which can lead to underesion of events and inaccurate histories
(see Figs. 2.2 and 2.3 for an example). More recent studiesused models that incorporate ad-
ditional information (e.g., phylogenetic structure ofiwvidual families [139], domain order [136],
local topology [143]) and reached different conclusion®lifinary evidence suggests that a more
detailed model will lead to more complete, if not fundamént@ifferent, conclusions [151].

A third, problematic assumption is that graphs with powev @istributed degree distributions
arose by preferential attachment. This is not true for athsgraphs. Hence, one should be
wary about drawing evolutionary conclusions from degresrihiution alone. In general, it is
important to ensure that graph features used to comparendiditaa model are, in fact, suitable
for distinguishing between alternate models [180]. Moexpwther distributions (Generalized
Pareto, Yule Distribution) can masquerade as a power lgvectaly when the data available is
limited [150]. In addition, most studies using generativedels to test evolutionary hypotheses
have not emphasized the importance of determining whetledieitures used to compare models
actually have discriminative power. And while many of thegpmony-based methods include
species and/or gene family classification in the model, thdiss based on Birth-Death Models
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and domain graphs have not incorporated phylogenomic dereions.

Finally, many studies recognize the change in the form ofalargain and loss, but do not include
an explicit model of events. For sequences that evolve bgtgution, changes in character state
closely reflect mutation events. In contrast, althoughestéitanges are caused by duplication,
insertion, and loss, it is not possible to determine fromdta#e changes which events occurred
because multiple combinations of events could result irséime changes in character state. Most
of the methods surveyed here do not incorporate a formal hodeégents and often do not provide
information about the particular insertions, deletions] aearrangements of domains that gave
rise to observed domain architectures. In addition, thasd#ies provide a very coarse resolution
of events, especially with the phylogenomic analyses.
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Chapter 3

Models of multidomain evolution

Ideally, reconstruction of the evolutionary history of angdamily includes:

the relationship between taxa, generally representedras,a

ancestral states (i.e., ancestral sequences),
the history of events (i.e., substitutions, gene dupboat etc.),

a partial temporal ordering on those events.

Methods and technology to reconstruct the history of secethat evolved by vertical descent are
well-developed. Family reconstruction is of central imtporce to understanding the origins and
evolution of life on earth. Tree reconstruction providesmost accurate way to identify orthologs.
Phylogenetic context and ortholog identification provigsential information used in function
annotation, where sequences of unknown function are atetbb@sed on related sequences with
experimentally determined function. The use of phylogeried ortholog identification, rather
than pairwise sequence comparison, is also essential éotifging potential drug targets. In
addition, evolutionary trees provide a common mathemiaftiaenework for describing evolution
at various levels of biological organization. Comparisdrirees across multiple levels makes it
possible to relate genetic innovations on the sequencé tiey#ysiological innovations on the
cellular and organismal levels.

Current technology can infer changes in family copy numier,(gene duplication, loss, and
transfer) through the comparison of a gene tree with a spdee. However, there is no for-
mal methodology for modeling or inferring changes on anrmediate scale, such as insertion,
duplication, and deletion of domains or sequence fragments
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Thegoal of my thesisis to develop, implement and test methods to support phyletieanalysis
of multidomain families (e.g., Fig. 3.6), based on the redgtion of trees. Formally stated,
given:

a multidomain gene family,

a reference tree,

a sequence phylogeny for each domain represented inrthiy,fand

R I\

an abstract set of events (i.e., domain insertion, dodelation/duplication,
gene duplication, etc) and model of evolution,

my methods will infer
1. the events that occurred in the evolution of the multidiorfemily,
2. ancestral domain architectures, and
3. areference tree annotated with domain shuffling everttsiaoestral archi-
tectures, representing the evolution of the multidomainifiaas a whole.

Before | describe my results, | first introduce the model oftrdamain evolution upon which my
approach is based and review the evidence that supportstiisl.

3.1. Locus model of multidomain gene family evolution

Under theclassical model of gene family evolutiagene families evolve in a process of vertical
descent from a common ancestor, through gene duplicateme pss, lateral gene transfer (LGT),
and co-divergence with host speciation [41,43,181]. Sopgmysed on these large scale processes,
individual sequences evolve by point mutation. This preagsevolution by vertical descent from

a common ancestor is modeled by a tree. However, once donganimation is considered, se-
guences can arise where the constituent parts are derv@achdro different parent sequences.

| propose a phylogenetic framework based on the locus médslproposed in [151, 173, 182],
that defines evolutionary vertical descent for multidonfamilies in a way that is consistent with
traditional models of homology. These families evolve tlg the events abovend through
domain shufflingdefined as domain insertion, loss, and internal duplioatiere an insertion is
defined as the acquisition of a new sequence fragment (thbilgi@omain) by an existing gene.
This can occur through insertion of sequence fragmentdletgene or by recruitment of adjacent
exons. Formation of a new gene architecture by domain laasdsconsistent with this model. In
thislocus model of multidomain gene family evolutiargene family, whether it has one or more
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domains, is defined as the set of genes descended from a coloncusnn the genome (see, for
example, Fig. 1.2a). This model of multidomain gene famii® well-defined for families that

evolve through domain shuffling and is consistent with ttessical single-domain model. Thus,
it provides a natural framework for extending current plggoetic methodology to multidomain
sequences.

The restriction of domain acquisition by an existing genargatees that the ancestral locus is
always well-defined, even when new domains are acquireddgytion. Therefore, we can define
a family as a set of sequences that share a common ancestrsl For example, Fig. 1.2a shows a
hypothetical multidomain gene family evolving in a chroromel context. The family originates
as an ancestral gemgoz with a single domain. After a speciation event, the ortholeggene in
each species evolves independently, with the copies uathgrgomain insertion, domain duplica-
tion, domain loss, and gene duplication. The resulting igoantains geneg; andg in speciesS
andgs in speciedl, all of which evolved from the common ancestral loayisg, in specieRR. The
purple domains iz share homology witlyy and the red domains ig. andg, share homology
with gx. However,gy andgy are not members of the gene family because they are not dksten
from locusgi23. The history of this family’s evolution by vertical desceain be modeled as a tree,
as seen in Fig. 1.2b. This gene family tree describes theigonlof the locus by vertical descent,
augmented by “transfer edges” representing insertiong. 36 shows the history of the locus
as a tree in brown, augmented with horizontal insertion e&své@ashed arrows) and annotations
regarding various other events.

Formally, in the context of the locus model, the history of altdomain family is defined as a
directed, acyclic graphl = (V,Ey, E;), whereV is the set of nodes (i.e, with extant loci as leaf
nodes and ancestral loci as internal nodeg)s the set of tree edges indicating evolution by verti-
cal descent, anH; is the set of transfer edges. When only tree edges are coadjde= (V,Ey)
is a tree representing the history of the locus, in whichewerde (gene locus) i (except the
root) has exactly one parent node and every node (excepedlved) has exactly two children.
Branch points indicate formation of a new locus by gene dafibn or by speciation. An edge
e= (v,w) in E; indicates that a sub-sequence of nedeas duplicated and inserted into Anno-
tating the multidomain family history with lateral evenEs, reflecting domain insertions, results
in a multidomain family tree with a reticulated (networke) history (similar to a species trees
with transfers), as shown in the augmented tree in Fig. &hah node has zero or more incom-
ing transfer edges. Note that genes can include sub-seegigvith different histories descended
from different “donor” sequences. However, in the conteéxthe locus model, | distinguish be-
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tween locus donors (represented by parental nodes andatedri®y tree edges) and other donors
(connected by transfer edges). This is different from amdgoation graph, in which a node may
have two incoming tree edges both of which contribute egudh this case, recombination is
represented by a network as shown in Fig. 3.1b [183]

Tree augmented with lateral events Reticulated Network
A A

(a) (b)

Figure 3.1: Differing views for taxa evolving with horizontal event§a) A species tree shown with a
horizontal transfer event fro to C is a tree augmented with transfer edgéls) A species tree with a
hybridization ofB andD contributing toC is a network and is not tree-like. Figure adapted from Hugen e
al. [183].

The locus model is applicable to a broad range of multidorfairilies (see Song et al. [151] for

a discussion of this evidence). While there are familie$ ¢lwanot fit this model, in particular,
those that families that originated fronda novoassembly of unrelated domains, such families are
rare [96, 129, 134, 140].

| propose to model the evolution of multidomain familiestthave evolutionary histories that are

consistent with locus model, as a set of co-evolving emstitrehere a multidomain protein is rep-

resented as a co-evolving set or sequenadoofiain sequencesiven a tree for each constituent

domain, | propose algorithms to construct an augmenteddoutitain tree, inferring transfer edges,

domain duplications and losses, and ancestral domainmontlis framework uses a two phase
approach to multidomain phylogeny reconstruction. In phlgsthe amino acid sequence of each
domain instance that occurs in the multidomain family ig&stied. For each domain family rep-

resented, a domain tree is constructed from the sequenicgsaiandard molecular phylogenetic

techniques. In phase 2, domain shuffling events are inféayasbmparing each domain tree with
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trees representing higher levels of organization. For @tenfig. 3.6 shows the reconstructed
history for the multidomain family in Fig. 1.2a inferred tugh the comparison (embedding) of
domain trees with a gene family tree (Fig. 3.2a) and a spé@egFig. 3.2b).

2

%
o

55

Domain trees
embedded in
________ gene tree

2

Embedded
domain trees
in embedded
gene tree

5255

R

o=
55

55

L3

558

oo

0
Qe

0o

3
&
%

3

&

3
%,

/ *
¢
. _________ £ )

o

X
3
o>

0%
09

%
oo
QS

X5
o9

o
35S

H - H
S 5 s ~ o %5 o o g,
(@) (b)

Figure 3.2:The evolutionary history of the hypothetical multidomaamfily in Fig. 1.2. This figure shows
co-evolution on three different levels of organizationeas evolution, gene family evolution and domain
shuffling. Evolution on a fourth level of organization, netide substitution, is implied but not shown
explicitly. (a). Domain trees embedded in the gene family tree, showingvblet@n of the domains in the
context of genes. Domain trees are represented by thindob@®d according to the domain they represent.
The gene tree is the “fat” cream colored tr¢b) The evolutionary progression of the genes encoding the

family, with embedded domain trees, is shown in the contékth@ phylogeny of the species that contains
them. The species tree is the “fat” hatched filled tree.

This framework builds on a general model of historical aggmns between co-evolving entities
that has also been applied to biogeography, symbiont-bladtonships, and co-evolution between
genes and species [184-186]. In each case, an entity at\welefebiological organization (the
embedded taxgrevolves in the context of an entity at a different level aflbgical organization
(the reference taxon Using this representation, multidomain phylogeny retarction can be
carried out by adapting a different, well-established atgmic framework, calledeconciliation

In the next section, | describe the history of reconciliatamd review the details of this framework
in the gene tree/species tree context.
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3.2. Gene tree-species tree reconciliation

Reconciliatiof187] is the process of comparing trees representing twaldenf biological organi-
zation to infer the co-evolutionary history of the treegelies on the observation that discordance
between trees is evidence of evolutionary events other ¢bativergence. Key features of this
framework include(1) an explicit model of the events that determine associatimi®een the
embedded and reference tax2) inference of historical associations between ancestxal fram
known associations between leaf taxd) inference of historical events from comparison of the
reference and embedded phylogenies; @)dnference of a reference phylogeny via comparison
with several embedded phylogenies. In the multidomainexdntomains correspond to residents.
The role of reference may be adopted by species, genes,ardimains.

Reconciliation approaches have been adapted in a numbéfeskdt contexts, namely relation-
ships between gene trees and species trees, between hibgtrasites, and between species and
geographical areas [188, and work cited therein], dematnsty the generality of this framework.
For each specific context, there is a different instantiatibreferencetaxon (e.g., the species or
host) ancembeddedaxon (e.g., gene or parasite). Here | review reconcilmitiderms of the gene
and species trees context.

Discordance between a gene tree and a species tree is evitetgenes diverged through pro-
cesses other than speciation. These events include geheatiop and loss, lateral gene transfer
(LGT), and incomplete lineage sorting (ILS). Gene duplaatloss, and transfer events are all
events that change the number of copies of a gene in a gengoeeifi€ally, transfer events in-
volve the duplication of a gene in one genome, followed bdigplacement into another genome.
Incomplete lineage sorting, on the other hand, is discarelfietween a gene and species tree due
to allelic variation alone (see Fig. 3.3). Unlike duplicetj loss and transfer events, it does not
change the number of gene copies in the genome.

Reconciliation encompasses two related problesasnt inferencandtree estimationin the event
inference problem, both gene and species trees are knowen @irooted gene, a rooted species
trees, a mapping from leaves in the gene tree to the speoi@svihich each gene was sampled,
and an evolutionary model, the goal of tbeent inferenc@roblem is to(1) infer the association
between ancestral genes and ancestral specie$2anide set of events that best explains this
association (illustrated in Fig. 3.4). Formally, the evarierence problem is stated as follows:
Formally stated, given:
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Figure 3.3:Evolution of a single genetic locus in the context of a popata Each row represents a gen-
eration of individuals in the population at a specific pomtime. The the three possible binary resolutions
are shown in Fig. 4.3

Reconciliation: Event Inference
Input:

1. an evolutionary model including
a. a set of evolutionary events,
b. an optimization criterion,

2. abinary, rooted species phylogeny,

3. abinary, rooted gene tree, and

4. amapping of contemporary genes (leaves of the gene tré®) species from

which they are sampled (leaves of the species tree).

Output:
1. an extended mapping of ancestral genes to ancestrakspeuiicating the
species in which each ancestral gene was present and
2. the gene tree augmented with the set of events that bestirexthe incon-
gruence between the gene and species trees according t@tthezation
criterion.

If the species tree is not known, event inference can be wssale theestimation problemi.e.,

to infer the species tree. In this case, we are given a sebtédayene trees and a mapping from

each leaf in the gene tree to the species from which the gessavapled. The goal is to infer the

best species tree given these trees by searching the spalt@adsible trees with leaves equal to
43



CHAPTER 3. MODELS OF MULTIDOMAIN EVOLUTION

B

i

gl_W g1_F g2 B g2_M
Worm Fly Bird Mouse
(b)
Figure 3.4:LCA reconciliation. (a) The gene tree from Fig. 2.1 reconciled with the species {it&eThe

gene tree embedded in the species tree. The black squareaténduplications, and dotted lines indicate
losses.

the mapping of contemporary genes. Formally, given

Reconciliation: Tree Estimation
Input:
1. an evolutionary model of events and an optimization Gadte
2. aset of binary, rooted gene trees, and
3. a mapping of contemporary genes (leaves of all the geas)tte the species
from which they are sampled (leaves of the species tree tofegéd).

Output:
1. the species tree that is the best, according to the ogiioizcriterion.

This is achieved by scoring each candidate species treel lomsthe event inference reconcilia-
tion with each gene tree ifilg, }. Under event parsimony model, the best species tree is define
as the tree that results in the minimal cost for the sum of Weats inferred through event infer-
ence. The tree estimation problem under the reduced dtiphebss parsimony model is NP-
complete [189]. However, many efficient methods have beepgsed in the literature [190-197].
For the remainder of this section, | focus on the event imfeggoroblem.

Event inference in reconciliation refers to a family of plerbs, with each specific instance defined
by the event model and the optimization criterion used. &iirst proposed by Goodman and
colleagues [187], and formalized by Page [198], recort@lieof gene and species trees has been
the target of a great deal of theoretical and algorithmickW@B9, 198—-205], and a number of
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software packages for this problem are available [184,208}- Prior theoretical work on the
event inference problem, under the parsimony criteriosymmarized in Table 3.1.

Most reconciliation algorithms have focused on an evensip®ony criterion: given a set of events,
with a cost associated with each event, the solution is tleetlost minimizes the total cost of the
events required to explain the discordance between tré&ds 198, 214]. Speciation is assigned
a zero cost, and duplication, loss, and/or transfer argmagipositive costs. Incomplete lineage
sorting may be assigned either a zero cost or a positive Costs are often assigned arbitrarily. A
more principled approach is to select costs that maximizstdtistical power of the method, where
statistical significance is estimated by comparing the ob#fte optimal solution with the distri-
bution of costs obtained by reconciling randomized treeteuan appropriate null model [188].
In addition to the parsimony approach, probabilistic apphes have been proposed [215-223].
In this case, the optimal reconciliation is the one that mméz@s the probability of the inferred
events, given the observed gene tree, leaf mapping, evelitlraad event rates. These methods
are appropriate for data sets in which duplication and losshautral, stochastic processes. Full
Bayesian inference (including trees and rates) is comiputaty intensive and requires sufficient
data to learn rates.

Most theoretical work on event inference has also focusealsabset of the event set. Some algo-
rithms infer explicit event histories. That is, they detearenwhether a given node in the gene tree
is a speciation, duplication, transfer, or incompletedige sorting and reconstruct the most parsi-
monious loss histories by inferring the species in whichldlss occurred and placing these losses
on edges of the gene tree. However, a number of algorithnyscatdulate thenumberof events,
but not their location in the gene tree or species tree. Bppinaaches have their advantages. For
example, simply counting events is a good approach for semnation, but for in-depth studies of
individual gene families, more information is required amdexplicit event history is preferred.

The most general model includes all four events: duplicatmss, transfer, and incomplete lineage
sorting. Until now (see Alg. 4.3), no work has included suntegent model. However, there has
been a great deal of work with other reduced-event modelg mbst common of the reduced

models is the two event (duplication and loss) model, witmyngroups ignore losses because of
the false assumption that losses are unimportant [1841887199, 201, 203, 204, 206—208, 224—
226]. One unusual approach by Chauve and colleagues [22]/ha& focused on an event model
inferring only loss events.

More recently, event models that include lateral gene fear{tGT) have been proposed. In the
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past, transfer was ignored partly because incorporatamgfers dramatically increases the compu-
tational complexity and partly because of the widespredidfiibat it does not occur in eukaryotes,
despite considerable evidence to the contrary, at leagtnredineages. In the simplest case, the
event model includes only transfers [214,229-233]. Tofighl.§234, 235] were the first group to
consider an event model consisting of both duplication asasfer, together. This method did not
minimize losses and only inferred counts, not the expliogre history. While Gorecki [236] has
published a paper on inferring duplication, transfer, as$] it has since been acknowledged that
their approach includes an error and may not infer a mositrparsous reconciliation. Later in
this thesis, | discuss my own work on event inference with aehoncluding duplication, transfer,
and loss that does infer an explicit event history.

Since the probability of incomplete lineage sorting desesaas time between speciation events
increases [237-241], ignoring incomplete lineage soréiaga cause of discordance is justified
if the branch lengths in the species tree are sufficientlg.lom the above reduced event mod-
els, the assumption is made that the species tree is bindrtharbranches are significantly long
enough that incomplete lineage sorting is improbable. Wihenspecies tree is non-binary, or
branches are short, incomplete lineage sorting is a signifiphenomenon that cannot be ig-
nored [242]. Historically, a reduced event model with omigamplete lineage sorting has been
well-studied [239, 243-249, for example]. Very recentlyyuanber of papers have focused on a
two event model, inferring incomplete lineage sorting aylrtdization events [250, 251]. In prior
work [252], we presented an algorithm for the reduced evesdehincluding gene duplication,
loss, and incomplete lineage sorting.

When event models do not consider transfers, the eventasimproblem has a unique solution
and can be solved in polynomial time. In contrast, even thetmeduced models containing
transfer events are known to be NP-hard [231-234, 253, 2Bd]when including duplication and
transfer events, the inference problem is NP-complete][234

3.2.1. Notation and mathematical framework of binary recon ciliation

The basic algorithmic structure and challenges of recaticih are captured by reconciliation of
gene and species trees under the duplication-loss pargimodel. To provide a foundation for
the description of my results in subsequent chapters, évethat algorithm here. The trees shown
in Fig. 3.4 will be used throughout to exemplify notation.ttae figures, the labe)_s denotes a
gene that is sampled from specges
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Comparison of Reconciliation Algorithms and Programs
Method/architect

Events
Duplication Loss LGT ILS

[187]; [184, 198, 206]; [20]; [199]; p ’
[203]; [204]; [189]; [224]; and [225]
[207,208, 226] .

[227,228] v

[214]; [229]; [230, 231]; [232];
and [233, with genomic rearrangements]

[239, 243, 244]; [245]; [246, 247];
[248]; and [249]

[234,235]

[236]

Stolzer, discussed here

[209F; [255]

Vernot et al. [252]

[250]; [251] v

Lai and Stolzer, discussed here v v

NENEN

NENENENEN
SSENENEN

SSENENEN

(\

Table 3.1:The various reconciliation approaches and packages ddfintlte event model employed.

Let T, = (V;, Ei) be arooted tree, whekg is the set of nodes i, andE; is the set of edged.(T))
is the leaf set off; andL(v;) refers to the leaf set of a subtree rooted;at V;. The root node of
Ti is denoted ap; = root(T;). C(vi) andp(v;) refer to the children and parent af respectively.
If vi is binary,r(v;) andl(v;) denote the right and left children of. For example, in Fig. 2.1b,
p(y) = x, andC(y) = {g1.A,gl B}, wherel(y) = gl A andr(y) = g1 B. A non-binary node in a
tree is referred to as@olytomy A monophyletigroup is a set of nodes consisting of a node and all
of its descendants (i.e., a subtree of negelenotedl,; for example, in Fig. 2.1&y,C,D} forms
a monophyletic group. The expressigrn>; v; indicates that for; € Vi, eitheru; isv;, or u; lies on
the path fromv; to root(T;). We say thaty; is theancestorof v;; analogouslyy; is thedescendant
of ui. If ui #i vi andu; % vi, uj andy; are said to béncomparable In Fig. 2.1b,pg = root(Tg) = X
andy >g gl A. | follow the computer science convention, in which the risoat the top of the
tree, the leaves are at the bottom, gtd) is abovey;.

The basic tenet of reconciliation is that, if the gene trealiverges with the species tree, then

each pair of parent and child nodes in the gene tree shouldereapair of parent and child nodes

in the species tree. In the absence of duplication or lossinimediate parent of a nodp(vg),

will map to an immediate parent & (V) in the species host tree. Failure of this assumption is
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evidence of incongruence, and indicates that events dthardo-divergence have occurred. Rec-
onciliation algorithms identifying nodes where this prdges violated by comparing the parent
and child nodes in the gene tree and the corresponding pamdrithild nodes in the species tree.
If M(p(ve)) # p(M(vg)), the algorithm infers the minimum number of duplicationsl dosses
required to explain the discordance. The minimum cost sevets that explains these ancestral
associations is also completely specified and easily atledl[207]. Thus, the reconciliation of
the gene tree and species tree is completed with a two-stpgt: (1) infer the mappingVi(-)
betweerVg anVs and(2) use that mapping to test whether parent and child nodesrdisagd to
infer events if they do not. Formally, the event inferencelgbem for duplication-loss parsimony
is stated as follows:

Reconciliation with Duplication-Loss Parsimony
Input:
1. Ts: a binary, rooted species tree,
2. Tg: a binary, rooted gene tree, and
3. 0=M:L(Tg) — L(Ts): the mapping of contemporary genés$Jgs), to the
species from which they are samplédTs). M(vg) = vs indicates that gene
VG € Vg was sampled from specigs € Vs.

Output:
1. M: Vg — Vs the mapping of ancestral gen¥,\ L(Tg) to ancestral species,
Vs such thatM(vg) = vs indicates that ancestral geme was present in an-
cestral speciegs, and
2. Tg augmented with duplication and speciation events assigriégand loss
events assigned teg.

LCA Mapping. Let Tg be a binary gene tree afid be a binary species tree such that the genes
in L(Tg) were sampled from the specieslifils); we denote the species from which gegewas
sampled, ag. The mappingM : Vg — Vs is constructed from each nodg € Vg to a target node
Vs € Vs. A mappingM(vg) = vs implies that gene/c was sampled from species, and we say
thatvs is the label ofvg. If vg is a leaf nodeM(vg) = 0(Vg) is the species from which sequence
vg was sampled. I¥g is an internal nodayi(vg) is the least common ancest&QA) of the target
nodes of its children:

M(va) = LCAM(I(v)), M(r (vg))). (3.1)
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For the three event modeM(-) is completely determined by the mapping between leaf taxa
and is easily calculated with a greedy algorithm. In our ex@nM(gl A) = A, since it is a
leaf; M(x) = LCA(M(y),M(z)) = LCA(a,y) = a. From this mapping both gene duplications and
gene losses can be inferred. We refer to this algorithm fmutating duplications and losses as
LCA reconciliationin order to distinguish it from the new reconciliation algboms proposed for
multidomain evolution and for non-binary reference trees.

Gene Duplications.  An inferred duplication atg implies that the duplication occurred between
p(M(vg)) andM(vg). The two resulting copies were present in spebdiésg), and for at least
one childcg of M(vg) (if M(vg) ¢ L(Ts)), each copy persisted in at least one leaf (not necessarily
the same leaf) of the subtree ®f rooted atcg. If M(vg) € L(Ts), then both copies persisted in
M(vg). Thus, a duplication is inferred at nodg if and only if the children ofig map to the same
lineage inTs; that is, there is some le&g € L(Ts) such that both(M(vg)) andr(M(vg)) are on

the path fronvsto root(Ts). This condition is truéff

M(vg) = M(I(vG)) V M(Vg) = M(r (vg)). (3.2)

By convention, duplications are assigned to nodésinAssigning a duplication to node; € Vg

not only specifies its location ifig, but also its location ifs, via the mappind(-). Every node

in Tg that is not designated a duplication node is a speciatioe.nbid). 3.4b shows a duplication

at nodex € Tg, prior to the species divergencecat A descendant df(x) persisted in specieB,
while a descendant af(x) persisted in specieS andD; thus, both copies are represented in at
least one leaf of the subtree rooted3atThe gene tree embedded in the species tree in Fig. 3.4b
shows both copies of the gene on the etlwd). Although only one copy of the family survived

in each species, discordance between the species tree.if.Eggand the gene tree in Fig. 2.1b
provides sufficient evidence to infer a duplicatiorxaBecause botlk and one of its childrenyj

both map tax, Eqg. 3.2 correctly identifies the duplicatian

Gene Losses. Losses can also be reconstructed from the mappih@). In this case, the
speciesys, in which the loss occurred must be inferred explicitly. yesng a loss invs to edge
(p(ve),Ve) € Eg indicates thatg was present in both (p(vg)) andM(vg), and was lost on the
path fromvg to vs, wherevg is a species on the path fromM(vg) to M(p(vg)) (i.e., M(vg) <s
Vs <sM(p(vg))). For eache= (p(vg),Vvs), the comparison oM (p(vg)) andM(vg) determines
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CHAPTER 3. MODELS OF MULTIDOMAIN EVOLUTION

the losses assignedeolf p(vg) is a speciation node, and no loss occurred, Mép(vg)) must be
the parent oM (vg) in the species tree. Otherwise, we inflepti{M (vg)) — deptiM(p(vg))) — 1
losses on edge If p(vg) is a duplication node and no losses occurred, th@g) andvg map to
the same node ifis. Otherwise, the number of inferred lossedépti{M (vg)) —deptiM(p(vg)))

— similar to speciation losses, but accounting [i¥vs) andvg mapping to the same node. The
species associated with the losses inferre@ en(p(vg),Vs) are determined by walking up the
species tree fronM(vg) to M(p(vg)). For each ancestral nodg € Vs betweenM(vg) and
M(p(vg)), a loss is inferred in(vs) or r(vs), whichever is not represented on the path fregn
to p(vg) in the gene tree. Both speciation and duplication loss titag arise in Fig. 3.4a. For
example, consider the losses in Fig. 3.4a. Sinéea duplication nodeM(z) =y # M(x) = a
indicatesdepthy) — depti{a) = 2 losses occurred betwegmandz. These losses occurredAmand

B. Also, sincep(gl B) =y is a speciation node, bt (y) = a is not the parent oM (gl B) =B

in Ts, losses are inferred in speci€sandD. Note that these two losses can be explained more
parsimoniously by the loss of a single ancestral gene intbesdral speciey,

3.3. Multidomain reconciliation

| propose a methodology for inferring the evolutionary digtof a multidomain family by inte-
grating trees for each constituent domain, using a redatioih framework analogous to the gene
tree/species tree reconciliation, summarized above. grbisess exploits the fact that discordance
between a domain tree and a reference tree is evidence ¢hddmhain diverged through processes
other than co-divergence with the reference taxon. Thesmepses include domain shuffling, gene
duplication, gene loss, transfer, and incomplete lineagnsg).

Based on studies of molecular mechanisms (Sec. 2.4), | defee of fourabstract domain shuf-
fling eventghat capture the various underlying mechanisms discuss8da. 2.4. These are rep-
resented in Fig. 1.21) Domain insertiomefers to any event that results in the acquisition of a new
sequence fragment (the “mobile” domain) &y existing genewhether that acquisition was me-
diated by NAHR, retrotransposition, duplicative transpos, or NHEJ. Note that in this model, a
fusion between genes A and B is treated as an insertion of idgrfram B into gene A(2) Do-
main losscan arise through unequal crossing over or disruption afisgl signals converting an
exon into an intron(3) Internal domain duplicatiooften arise through unequal crossing over, but
can also result from retro- or duplicative transpositiowoldtion of the domain is also influenced
by events on other levels of biological organizatiqd) Co-divergenceefers to events that are
50



3.3. MULTIDOMAIN RECONCILIATION
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Figure 3.5:Domain trees for the multidomain family in Fig. 1.2 compatedhe tree for the gene family
locus to infer domain shuffling. Domain trees are coloredoetiog to the domain they represent. The
red circle domain and purple rectangle domain trees ardlforstéances of the domain superfamily. Those
domain instances present in the multidomain family arereolaarker than the other instances. The tree for
the gene family locus is brown. Contemporary domain archites are shown in the bubble.

driven by the genome locus; i.e., a new instance of a geneatbat because of a speciation of
gene duplication.

Any level of biological organization that co-evolves wittetdomain of interest can be used as the
reference: another domain that co-occurs in the proteexgisp, or the multidomain gene family
(as seen in Fig. 3.2b). The realization of my approach reguatgorithms for domain tree recon-
ciliation with event models appropriate for domain shugflialgorithms to infer ancestral domain
architectures, and the software implementation of thegaridthms (see Fig. 3.7). Specifically:

— If the reference tree represents the history of a co-oegudomain or of

the locus, then the events included in the model gdg: co-divergence
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CHAPTER 3. MODELS OF MULTIDOMAIN EVOLUTION

due to speciation, gene duplication, transfers, or incetegineage sorting;
(2) domain duplication{3) domain insertion; an(4) domain loss events.

— Ifthe reference tree is a species tree, the events inclrged) co-divergence,
which must be due to speciatiorf8) duplication, which may be the result of
gene or domain duplication or domain insertiovithin the species(3) lat-
eral events, which may be due to either transfers or crossiep domain
insertions;(4) losses, which may be due to either gene or domain loss; and
(5) incomplete lineage sorting.

Without considering all three levels of biological orgaatinn, information will be lost and, in
some cases, incorrect histories could be inferred. Whesno#iing a domain tree with a species
tree alone, it is not possible to distinguish between ger@ichtions, domain duplications and
intraspecies transfers. Nor is it possible to distinguistwieen gene losses and domain deletions.
Similarly, when the reference tree is a domain tree, it ispussible to determine whether a co-
divergence was due to a speciation or gene duplication. a\hé reconciliation algorithm alone
cannot distinguish between co-divergence events, if tiegerce tree represents the multidomain
family, it can be reconciled with the corresponding spetries, in advance. This reconciled refer-
ence tree can then used to determine which type of event ke tw-divergence and also whether
any gene losses have occurred. Solutions to these subprebémn still provide useful information.

In this framework, the event inference problem is as follows

Multidomain Reconciliation
Input:

1. abinary, rooted reference trég

2. binary, rooted domain treef, for every instance of domain superfamidy
in the family, and

3. amappingM : L(Tp,) — L(Tr) VD; of contemporary domains to contempo-
rary reference taxa, whetd(vp) = vgr if domainvp is in reference taxon
VR.

Output:
1. a set of minimum-cost reconciled domain trggswvhere a reconciled tree is
an augmentedp, in which:
a. every ancestral domain node is labeled with the extendgd m
pingM : Vp, — VR, whereM(vp) = VR if the ancestral domain
d was a constituent of reference taxag
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b. every node is determined to be a domain or gene dupligation
lateral transfer event, domain insertion, or speciatiowl; a

c. gene losses and domain deletions are assigned to branches
and

2. a composite reference trég, representing the history of the family and an-
notated with:

a. inferred ancestral domain content on nodes;

b. on branches, the set of (partially ordered) domain shgffli
events that explains the incongruence betwggrandTg, Vi.
Lateral events augment the tree by adding a directed edge be-
tween branches.

Domain trees are constructed from sequences of domaimeesaising standard molecular phy-
logenetics. An example of the output is shown in Fig. 5.9ccéstral domain architectures are not
inferred by the reconciliation, but can be determined fromreconciled trees.

g123
[ P—

Insertion of Ig | | Codivergence
(speciation)

Codivergence
(gene duplication)

g, / 9,
{00~

‘O om O mm

Figure 3.6:The history of the multidomain gene family in Fig. 1.2 antethwith the domain shuffling
events that would be inferred using my multidomain recdatdn technique. Note that this hypothesis

matches the true history of the family.

Depending on the reference tree employed, the applicafighi® approach varies. When the
species tree is the reference, we can establish the cohegahssociations between ancestral
species and ancestral domain combinations. This providesmation about domain content in

ancestral species. Because we can directly reconcile @duihin superfamily tree representiait)
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CHAPTER 3. MODELS OF MULTIDOMAIN EVOLUTION

instances of the domain in the species of interest (not luste instances in a given multidomain
family) with a species tree, we can obtain information altbetvolatility of the domain family
and how volatility changes across lineages.

Domain tree-species tree reconciliation. Domain tree-gene tree reconciliation.
Events: Events:
+ Co-divergence (speciation), + Co-divergence (gene duplication,
+ Duplication (gene or domain, or LGT, ILS, or speciation),
in-species domain insertion), » Domain duplication,
« Interspecies transfers (LGT or * Domain insertions,
cross-species insertions), » Domain loss.
* Loss (gene or domain ),
* ILS.

Input: DT, GT

Input: DT, ST Output: Reconciled DT

Output: Reconciled DT

¥ Species tree Gene tree
Gene tree-species tree reconciliation.
Events:

: gz?l(:acﬂjoprlli’cation LA G, S

’ Output: Reconciled GT

« LGT,

- Gene loss,

< ILS

Figure 3.7:Diagram showing the different roles of the reference tred the events that can be inferred
with each instantiation. Top of the triangle: the domaie tteottom right: the multidomain gene family tree;
and bottom left: the species tree. Reconciling the domaim Wwith the gene tree is discussed in the green
section. Reconciliation of a gene tree with a species trdes@issed in the blue section. Reconciliation of
the domain tree with the species tree is discussed in thewadtion.

There are two applications of reconciliation using a dontggr as reference: reconciliation with
any domain in the family and reconciliation with a primaryntin. Using an arbitrary, co-
occurring domain as the reference provides informatiorugitioe promiscuity of one domain
relative to another. This problem differs from the otherlj}eons considered in here in that we
are considering the co-evolution of two entities at the séawel of biological organization, in
contrast to an embedded taxon evolving in a reference takhis situation is analogous to two
parasites evolving within the same host, as opposed to @if@-evolving within a host. By
comparing two entities co-evolving at the same level, weingar the number of co-divergences,
insertions, duplications, and deletions of domain doniirrelativeto domainD,. This type of
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analysis allows analysis of all instances of two domainstheoccur, not just those that co-occur
in the same multidomain family.

In some cases, we can take advantage of biological infoom#tiidentify aprimary domairof the
family, and then use the tree from that domain as the referedany multidomain families arise
from a progenitor gene [35,81,168], which undergoes gepéaition, followed by domain inser-
tion, resulting in the progenitors of subfamilies with difént domain architectures (e.g., Fig 1.2).
These subfamilies then further expand through additionplidations. For families that follow
this pattern, the evolutionary history of themary domair in the progenitor sequence is congru-
ent with the history of the locus. For such families, the agded domain tree(s) can be treated as
a proxy for the history of the locus. This is the most inforivethoice for the reference tree.

Anecdotal evidence suggests that the Kinase, Kinesin, Myasid ADAM families follow this
pattern. For example, several lines of evidence suggesthib&inase domain is the “primary” do-
main for the protein tyrosine kinase family: All kinase danssshare an origin [256,257]. Roughly
40% of kinases are single-domain proteins [258] and thesergrimarily in more ancient kinase
subfamilies. This is consistent with the hypothesis thagle-domain kinases represent the an-
cestral state and that multidomain kinases arose throwgghtion of mobile domains into existing
kinases. Moreover, kinase domains have characteristitstiggest they are not particularly mo-
bile. Mobile domains tend to be small, and have 0-0 intronspH&2], yet neither is true of the
kinase domain. | propose the following set of criteria, lohsa characteristics of known “pri-
mary” domains, for determining whether there exists in thdtislomain family a domain that
evolves only through vertical descent. These criteriauidel
1. Evidence of vertical descent based on conserved synteny.
2. All instances of the domain are thought to share an origin.
3. Appearance of the domain only in one family (with some etioas).
4. There is only one copy of the domain in each architecturtheffamily,
which suggests that a single-domain protein was the aatesite. | allow
some exceptions here. For example, the kinase domain, ef@egrimary
domain, sometimes was locally duplicated. Often, one cdplygis domain
was later inactivated.
5. Conserved spatial features, such as a unique linker seguatron/exon
structure, local architectures, etc.

3Note that we are not asserting that this domain is respanfibthe primary function of the family, although this
is often the case.
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6. Appearance of the domain in single-domain families in enancient lin-
eages, suggesting that a single-domain protein was thestaalcstate. In
contrast, promiscuous domains, which are not “primaryglsaappear in
single domain proteins.

7. Absence of traits characteristic of mobile domains, agh

— short amino acid sequences or
— 0-0 intron phase.

If there is more than one domain in the multidomain familyttfits these criteria, an additional
constraint, that the set of primary domains should have eng trees, is imposed.

The prevalence of this pattern of evolution suggests thatlies with primary domains are not

uncommon. However, there are cases where there is no “prii@main. Either no single domain

tracks the history of the locus or there may not be sufficiemdence to determine whether a
domain evolved by vertical descent or not. In this case, #meegamily tree can be estimated
from the trees of all domains found in the family. Domain treeonciliation can be treated as the
estimation problem, in which the gene tree that minimizesdbst of domain shuffling events is
sought. See Ma et al. [189, and works cited therein] for tketa the tree estimation problem with
reconciliation.

In this work, | focus only on multidomain families with a prary domain; gene family tree esti-
mation from domain trees is an important problem for futuceky

| have developed algorithms to satisfy the needs discussedunder the event-parsimony crite-
rion, including: reconciliation with the events duplicati loss, incomplete lineage sorting; rec-
onciliation for the three-event model with duplicatiorarisfer, and loss; reconciliation with all
four events (duplication, loss, transfer, and incomplgtedge sorting); and an algorithm to infer
the composite history of the reference tree from all rededctlomain trees. In addition, these
algorithms have been implemented in the reconciliatiomgm, Notung [213, 252].
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Chapter 4

Implementations of methods to infer domain
shuffling events

In order to realize the co-evolutionary model of multidomavolution that | proposed in Sec. 3.3,
| have developed a number of different algorithms.

1. Areconciliation algorithm for duplication, heuristizds, and incomplete lineage sort-
ing, given a binaryembeddedree (the tree to be reconciled with the reference; i.e.,
the domain tree) and a non-binary reference tree [252]. Bitaild of this algorithm
have been published in the paper by Vernot, Stolzer, Goodarah Durand [252].
This algorithm was implemented indYUNG by Ben Vernot.

2. A reconciliation algorithm for horizontal transfer, digation, and loss, given binary
embedded and reference trees. | have implemented thigtalgoffor one optimal
solution) into NDTUNG with a graphical user interface (GUI) update.

3. A reconciliation algorithm for duplication, heuristiads, incomplete lineage sorting,
and transfer given a binary embedded tree and a non-binfenenee tree. This algo-
rithm is based on algorithms (1) and (3) that | developedast heen implemented in
NOTUNG by Han Lai.

4. An algorithm to infer ancestral states of the referenee &ind assign events to the ref-
erence tree given a set of reconciled embedded trees. Goistaim was implemented
in NOTUNG by Ravi Chinoy, under my direction.
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Notung. These algorithms have been implemented IDTNNG. NOTUNG is a robust, general
purpose software tool, developed in the Durand Lab, thatiges a unified framework for incor-
porating information about duplication and loss into plgdoetic tasks [252, 259, 260].dYUNG
provides a graphical interface for exploratory analysgs@oommand line interface for automated,
high-throughput processing. It is widely used for a var@tgnalyses [261-273].

._..g-l
r:1D; s,
r:1L; p:1T; e,
:1D;
@ ..sgs

Figure 4.1:The history of the multidomain gene family in Fig. 1.2 infedrwith multidomain reconcilia-
tion, as seen in Fig. 3.6, but inferred and drawn autométiagaN OTUNG.

The implementation of these algorithms required major gkarto data structures, the inference
engine, and display. In addition, substantial changes weeeed to accommodate reference trees
representing composite multidomain histories. IoTWNG, which performs gene tree-species tree
reconciliation, the reference (species) tree is a passitrtgy@vhich is not modified in the course
of the analysis. Inferring a composite history for the refere family requires data structures that
allow communication between reference and embedded tasewell as bookkeeping for real-
time updates between the individual domain trees and tlezamte tree. This also required an
interaction panel with the reference tree view that allomes wser to perform actions that invoke
inference calculations and/or modify its appearance.

The GUI (shown in Fig. 4.2) has been modified to display hariabevents and domain content.
It presents the composite tree with panels that allow thetosateract with the reference tree and
to root both reference and domain trees by event parsimaegepts the reconciled domain trees
with duplications, transfers and losses; presents cortgoefierence trees with ancestral domain
content and a summary of the events associated with eachim@eg r: 1L; p: 1T). The algorithm
infers a partial ordering on the inferred domain shufflingreg. The partial order of these events
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is not currently presented visually, but is stored in therinél data structures and included in the
output of the command line interface.
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Figure 4.2:Screen captures of ®BruNG showing my implementations of multidomain reconciliatiaiR
gorithms.(a) The tree for the red domain in Fig. 1.2 reconciled with the fi@ the gene family locugb)
The composite history of the gene family showing domainfingfevents by reconciling the blue, red, and
purple domains in Fig. 1.2 with the gene family tree.

With my developed algorithms, DruUNG can now root a tree based on duplication, loss, and in-
sertion parsimony. Under the assumption that gene dugicdbss, and insertion are rare events,
the rooted, binary tree that requires the fewest eventsptaexthe data is the best resolution of
uncertainty. NDTUNG uses this parsimony principle to root an unrooted tree byimaing the
event cost. In order for this implementation to run efficigntnemoization of the reconciliation
algorithm for rooting has been implemented. Incompletedoe sorting (ILS) can be included in
the cost, but this event type is often assigned zero cost.

4.1. Duplication-loss-incomplete lineage sorting algori thm

In order to reconcile the domain and/or the multidomain farmee with the species tree, we wish

to be able to identify incongruence due to incomplete limesgyting in addition to duplication and

loss. The probability of incomplete lineage sorting insesmas time between speciation events

decreases [237—241]. Thus, when the species tree is hanyglincontains short branches, incom-

plete lineage sorting is a significant phenomenon that damaagnored [242]. | have developed
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an algorithm, Alg. 4.1 that reconciles a rooted, binary etideel tre€lg with a rooted non-binary
species treds to infer the duplication, loss, and incomplete lineageisgrévents in the history
of the embedded family [252]. This is accomplished by magpiades in the embedded tree to
setsof nodes in the reference tree. My novel set mapping appralavs us to test efficiently
whether a discordance at a given node is a duplication ompéete lineage sorting event. The
maximum size of the set mapping to any nod@&gris O(ks), whereks is the maximum outdegree
in Ts(i.e., the size of the largest non-binary node). Using trapping, incomplete lineage sorting,
duplication, and heuristic loss events are inferre®{iVg| - (ks+ hs)), wherehs is the height of
Ts.

All binary trees withk leaves are equally compatible with a non-binary node (pomy) in the
species tree witlk children [237] (see Fig. 4.3). Therefore, we can treat a tpohy s as a
set of hypotheses, or binary resolutions. For each polytanayVs, let H(v;) be the set of all
possible binary trees, rooted @4t whose leaves are the childrengf Formally, given thek-
tomy vi € Vs, let H(vi) = {Tij|L(Tij) = C(v)}, whereT;;j is a binary tree such that the leaves
of Tj; are the children of;. In addition, letH*(Ts) be the set of all possible binary trees ob-
tained by replacing each polytonw € Vs with each tre€li; € H(vi). In other wordsH*(Ts) is
the set of all possible binary resolutions Bf (see Fig. 4.3, for example). Tfs is binary, then
H*(Ts) = {Ts}. The number of trees ikl*(Ts) is [yyevs/H(Vi)|, where[H(vi)| = %
andk; = |C(v;)|, the polytomy size or number of children @f[274]. For example, if node;

is the trichotomya in Fig. 4.4a, therH (a) = {(A, (B,B)), (B, (A,B)), (B, (A,B))}, andH*(Ts) =
{(A,(B,(C,D))),(B,(A,(C,D))),((C,D),(A,B))}. When reconciling the embedded trége with
everyT € H*(Ts), if vg € Ve is a duplication in every reconciliation, then a duplicatiousthave
occurred atg. If at least one, but not all reconciliations indicate a deation atv, then an in-
complete lineage sorting evemay have occurred. Under the parsimony principle, we will infer
such a node to be an incomplete lineage sorting event. Nittatdor the trees in Fig. 4.4, every
T’ € H* would infer a duplication node at nogehowever, this is not the case for noxleThere-
fore, nodey is a duplication. On the other hand, nodie an incomplete lineage sorting event since
there is a binary resolution iH*(Ts), namely(A, (B, (C,D))), that does not infer a duplication.
However,H*(Ts) grows superexponentially with the size of polytomiesTi therefore a more
efficient method of identifying duplication and incompléiteeage sorting events is needed. The
LCA mapping used in standard reconciliation (Eq. 3.1) issudficient because it cannot distin-
guish between incomplete lineage sorting and duplicasee for example, Fig. 4.4d, where LCA
would incorrectly infer a duplication atsinceM (x) = M(r(x))).
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Figure 4.3:If branches in the species tree are sufficiently short the. pranch between the ancestorof
andB and the ancestor &, B, andC), incomplete lineage sorting is possible. These trees shevgene
family evolving within the context of the species and popialas. Gene trees are also shown as stick trees
outside the species tree. Because the population has fiffierert alleles (colored dots) present at titpe

the alleles could sort randomly acro&sB, andC, resulting in incomplete lineage sorting where the gene
and species tree disagree, as in (b) and (c).
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X N ={A, B, B}
M(y)=a
y N(y) = {8, B}
N(y) = {B, B}
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N(z) ={B, B}
N(z) ={B, B}
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(d) (e)

Figure 4.4: (a) A species tree with a polytomy at. (b) A hypothetical gene tree sampled from the
species in (a).(c) The gene tree from (b), which has been reconciled using th& &lGorithm. (d) The
hypothetical gene tree embedded in species t{e¢.The gene tree labeled with th‘Ade(-) mapping and
showing duplications and losses; nodes inferred to be ILS. Black squares indicate duplicatiobssses
are represented by dotted lines.

| have developed a novel mapping(Eq. 4.1), that can be calculated efficiently and can cdgrect
distinguish between duplication and incomplete lineaggrapevents. A straightforward approach
would be to map each nodeg, in the embedded tree withll nodes (both leaves and internal
nodes) in the species tree in which the embedded node wanpréssing this mapping, a required
duplication is inferred atg if the intersection of the sets of its children is non-emftye size of
the sets mapping the nodes in the embedded tree grows witleiblet of the tree and can contain
as many a®(|Vs|) elements. HoweveN takes advantage of the observation that it is sufficient to
store only those children &fl (p(vg)) in which descendants @t must have been present. In this
caseN : Vg \root(Tg) — V¢ is defined to be

S {M(ve)}, if M('p(ve) ) € L(Ts),
N(ve) = . 4.1)
{hlhe C(M(p(ve))) AT ue € L(ve) >h>sM(ug), otherwise
whereVy is the powerset ofis, excluding the empty set. With this mapping, nogec Vg is a
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duplicationiff
N(r(ve)) NN(I (ve)) # 0. (4.2)

The size ofN at any given node is bounded by the size of the largest polytonis, yet is
sufficiently informative to identify and distinguish betareincomplete lineage sorting and dupli-
cationt. Fig. 4.4e shows the mappindy-). It correctly infers a duplication at sinceN(l(y)) N
N(r(y)) = {B,B}n{B} = {B} # 0. It also correctly identifies incomplete lineage sortingatie

x, sinceN(I(x)) "N(r(x)) = {A} N { B, B} = 0.

For a given binary, embedded tree and binary species tregs th exactly one most parsimo-
nious loss history, with each loss unambiguously assignehé edge ifg, and associated with
one node inTs. In this case, it is possible to determine the set of losssg@ad to an edge
e= (Vg, p(ve)) by comparingM (vg ) andM(p(vg)), without considering losses on any other edge
of the gene tree. The total number of losses in the most parsaus history can be determined
by inferring losses on each edge independently and summiggadl edges. In contrast, whég

is non-binary, a reconciliation may have more than one égpatsimonious loss history because
losses within a species polytomy ambiguous These losses may be assigned to one of several
edges in the embedded tree. In addition, in embedded faniiligshich two or more losses oc-
curred, interactions between losses that can be assigrtbd same edge of the embedded tree
must be considered. Two factors contribute to the intevastbetween losses. First, losses that
occurred in sibling species and that are assigned to the sdgeeinTg may be replaced by a sin-
gle loss in a common ancestor, decreasing the total losg.c8ewond, interaction of ambiguous
losses with duplications in the embedded tree affects tta¢ hamber of losses inferred. Pushing
a loss below a duplication generally increases the numblkerssés; however, if these duplicated
losses can be combined with other losses below the dupglicatimay, in fact, decrease the total
number of losses.

While reconciliation does not provide enough informatiorfully resolve the temporal order of
these losses relative to other events, it is able to idettigyset ofpermissible edgefor a given
loss. The particular edge within the permissible set to Whitoss is assigned determines whether
or not it can be combined with other losses and, hence, thertomber of losses inferred. There
are two criteria that dictate where losses can be combinde. fifst criterion follows from the
standard binary case: losses forming a monophyletic claglegre a subtreg, rooted at/s € Vs)

are inferred as a loss in the ancestral root of the clade ifh.@g). The second criterion focuses
on polytomy “siblings”: losses that correspond to leavesuditrees whose roots are the children

see Vernot et al. [252] for proofs
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of a polytomy (i.e., losses ard(Tys )} for {vg} C C(vs), wherevs € Vs is a polytomy) can be
combined into a single loss mapped to the set of childrenibes lost (i.e.{vs }). Thisis possible
because of the observation that there is some sufftee T’ € H*(Ts) such that the losses form
a monophyletic clade, allowing us to infer a single Iossoiat(T\;S).

Rather than consider all possible loss placements anddosiinations, | have developed a heuris-
tic to efficiently identify the fewest losses. An exact sintwith complexityO( |V |ks2%s) has
been proposed by the Durand Lab and is discussed in Vernbt[bd]. My heuristic has com-
plexity O(|Vg| - (ks+ hs)), and although not guaranteed to return an optimal histogs dery well
in practice. In a dataset containing 1174 trees, the hauf@mind the optimal solution in more
than 99% of the cases studied [252]. The heuristic uses aygstmtegy that makes loss assign-
ment decisions at each edge, without considering intenagtivith losses inferred on other edges.
The strategy is to minimize duplicated losses by assigraet @mbiguous loss to the permissible
edge closest to the root. This guarantees that the loss @tilb@ unnecessarily assigned below a
duplication node, leading to the inference of two lossestgiad of one. Losses assigned to an edge
e= (Vg, p(vg)) can occur in any of three sets of species:

— C(M(vg)): The set of all children o (vg).

— N(vg): The set of children of (p(vg)) that contain a descendant\g.

— N(vg): The set of children oM (vg) that contain a descendant\gf.

N(vg) is a set variable | have developed to infer losses efficieNtiyVg — VS+ is defined to be
M (Ve , if M VE) €L(Ts),
N(VE){{ (ve)) (e)eums). o

{hlhe C(M(ve)) AT ug € L(vg) >h>sM(ug), otherwise.

| define three tests, corresponding to the above sets, tmtiagelosses along edge-= (ve, p(Ve)),
in Ee.

Test 1 — Skipped Speciesif M(veg) # M(p(ve)) and p(M(vg)) # M(p(ve)), traverse the path
from M(ve) to M(p(ve)) in Ts, inferring a loss diverging from each intermediate species
along this path (lines 29-31 in Alg. 4.1).

The procedure to infer these skipped losses is carried othterlimb procedure and is

analogous to that used in LCA reconciliation (described orn4®). This test is applied to

all edges inTg, whether associated with a binary node or polytomydnif a node and its

parent map to different nodesTg, we expect those nodes to correspond to child and parent
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nodes in the species tree. Otherwise, genes in the intexyspecies must have been lost.

Test 2 — Duplication: If p(vg) is a required duplication, then losses are inferred in tleeigg in
N(p(ve))\ N(vg) ate (lines 18-21 in Alg. 4.1).

This test is applied to all edges whepévg) is a duplication, whether associated with a
binary node or polytomy ifs. Note that ifM(p(vg)) is binary andM(p(ve)) = M(vg),
thenN(p(ve)) = N(vg) and no losses are inferred. Thus, this test reduces to thdtins
LCA reconciliation for binary nodes ifis. WhenM(p(vg)) is polytomy, losses may occur
even wherM (p(vg)) = M(vg), in contrast to binary reconciliation.

Test 3 — Polytomy: If M(vg) is a polytomy andM(p(vg)) # M(ve), then losses are inferred in
the species iI(M(ve)) \ N(ve) ate (lines 22-24 in Alg. 4.1).

This test is only applied whep(vg) is a speciation node and(vg) is a polytomy. It
verifies that each child d¥1(vg) contains a descendant wf. If not, one or more losses
must be inferred.

After all losses are assigned, those losses that satisgpim@priate criteria (described above) are
combined.

The algorithm to construct the mapping and infer dupliagatioss, and incomplete lineage sorting
is shown in Alg 4.1N(-), N(-), andM(-) are calculated by a postorder traversalef During this
traversal, the algorithm performs each of the three logs tlsscribed above to identify loss nodes.
Because the tree is traversed in postorder, the permissilgle closest to the root is reached first,
allowing the heuristic to assign the loss to the desired edtf®ut explicitly determining the set
of permissible edges for each loss. To ensureft{atis composed only of children &fl (p(ve)),
a climbing step is executed to replace the set of nod&Kvg) with the child ofM(p(ve)) which
is ancestral to them. Tha i b procedure preven11§| from growing larger thaiks and assigns
Polytomy and Skipped species losses. For any given pathdgoenl(Tg) to pg = root(Tg), we
will climb in total from M(ug) to M(pg). Thus thetotal cost of calls taclimbis O(|Vg| - hs). For
internal nodesN(vg) is initialized toN(I(vg)) UN(r(vg)), each bounded in size by Using a
suitable data structure, this step can be achieved(log(ks)) time per node. Using fast LCA
queriesM(+) can be calculated i®(|Vg|) time for the entire tree [275]. If the intersection of the
setsN(I(vg)) andN(r(vg)) are non-empty, a duplication is inferred; incomplete lgeaorting
is inferred if the node is not a duplication, but is a dupii@atunder standard LCA reconciliation
(Eq. 3.2). Testing for a duplication and assigning dupiaatosses take®(ks) per node, while
the test for incomplete lineage sorting is constant timenpelle. Thus, the total complexity for this
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algorithm isO(|Vg| - (ks+ hs)).

Algorithm 4.1

I nput: Te=(Ve, Eg);, Ts=(Vs, Es); o, the M() of L(Tp) — L(TR)

reconcileDLl (Tg, Ts, 0 )
1 for each vg € Tg in postorder do
2 if (ve € L(Tg) ) then

3 /'l Leaf node case

4 M( ve ) « o vg )

5 N(ve ) < { M(ve) }

6 N(ve ) + { M(ve) }

7 else do// Internal node case

8 M(ve ) « LCA( M(I (ve)). M(r(ve)) )
9 calculatebDuplication( ve )

10 if (ve # DUP ) then

11 if ( M(ve) == M(I (vg)) || M(vg) == M(r(vg)) ) then
12 event ( vg ) « ILS

13 return

cal cul at eDuplication( vg )
14 |/ Update N( - ) for children by clinbing

15 N( I (vg) ) « clinb( I (vg), Ve )

16 N( r(vg) ) < clinb( r(ve), ve )

17 N(Vve ) « N(I(vg) ) UN(r(v))

18 if ( N(I(vg)) N N(r(vg)) # 0) then

19 event ( vg ) < DUP

20 Il duplication losses for left child

21 add N(ve ) \ N( I (ve) ) to losses( | (vg))
22 Il duplication losses for right child

23 add N(ve ) \ N( r(ve) ) to losses( r(vg) )

cli nb( Uge, VE )

24 /] general polytony |osses

25 if ( M(ug) ¢ L(Ts) && M(ug) # M(ve) ) then
26 add C( M(ug) ) \ N( ug ) to losses( ug )
27 select x fromN( ug ) at random

28 if (x == A(VE) [| p(X) == M(vg) ) then

29 return N( ug )

30 while ( p(x) # M(vg) ) do
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31 Il skipped | osses

32 if ( p(x) # M(ug) ) then

33 add siblings( x ) to |osses( ug )
34 Il clinb

35 x=p(x)

36 return { x}

4.1.1. Empirical testing

| tested this algorithm on several data sets, using theoremiplemented in NTUNG 2.5.

First, | confirmed that this algorithm performs identicatityL CA reconciliation when applied to
a benchmark of 15 well-studied, binary trees [276—279]hwib incomplete lineage sorting and
verified that the results were the same as those generatdt byirtary version of BTUNG, as
well as those of the original authors.

Second, | compared the results of my reconciliation algord to those from LCA reconciliation
for gene families in three species groups with known polyesmAnolis [280], Neoaved281]
and Auklets [282]. Species trees were transcribed dirdigily the source articles. | constructed
gene trees for two gene families Neoavegcytochrome-b and globin), three families in Auklets
(cytochrome-b, cytochrome oxidase 1 and NADH-6), and on@lyain Anolis (NADH-2). Se-
guences were downloaded from NCBI [283], and multiple saqaalignments were constructed
with T-Coffee [284]. Phylogeny reconstruction was perfethusing the PHYLIP package from
Felsenstein (v. 3.6.1) and bootstrapped using the incl&E&QBOOT program. Branches with
weak bootstrap suppor&(60%) in the globin tree fronlNeoavesvere rearranged using models
presented in [260].

Table 4.1 shows the number of leavésif each tree, the size of the maximum polytorky) (in
each species tree, the number of duplications obtained #yreConciliation (B), the number of
required duplications predicted by our algorithm (R), amel optimal number of losses. For each
of these gene families, the exact and heuristic loss algostreported the same number of losses.
Only one gene family, the globins, had more than one optiosa &ssignment. As predicted, LCA
reconciliation substantially overestimates requiredlidagons.

In Vernot et al. [252], we also present an analysis on compdreuristic and exact loss inference
for all full trees in TreeFam 3.0 [285]. This analysis fouatt(1) the heuristic loss inference
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Empirical results for testing the duplication, loss, inconplete lineage sorting algorithm
Gene family Tree  Dupl.s Losses
| ks B R

Neoaveg282] 12 10

cytochromeB 9 - 4 0 0
globin 17 - 7 4 7
Auklets [281] 5 4 - - -
cox1 5 - 1 0 0
cytochromeB 5 - 2 O 0
NADH-6 5 - 20 0
Anolis[280] 50 6 - - -
NADH-2 50 - 13 7 17

Table 4.1:Comparison of duplications inferred byd¥unG 2.5 and LCA reconciliation.

inferred the minimal number of duplications "99% of the tjimra@d (2) when the heuristic was
not minimal, it was not very bad: the worst loss overcountiras of 4 losses in a tree with 249
losses. In addition, running time was measured for thisséat@howing that large-scale analyses
are possible with this algorithm and software. Reconciitig 174 trees in TreeFam took only 48
minutes (on a 3.2ghz OptiPlex GX620 computer) when usingnéugistic losses.

4.2. Duplication-transfer-loss algorithm

In order to capture domain insertions, an algorithm thas@®rs horizontal events, as well vertical
events is required. Reconciliation with transfer (i.esgrtion or horizontal events), which | employ
for multidomain reconstruction, is more difficult than otlevent models. First, for any model
involving insertion, the event inference problem is NPehagcause insertions must obey temporal
constraints [232, 233, 235]. Second, even when temporat@nts are not violated, in a model
with horizontal events, taxa in the embedded tree can jungpstant locations in the reference
tree. As a result, to determine the optimal mapping/p) for each ancestral node i € \p,

all possible reference node mappings must be consideredidition, all possible child mappings
must be examined. Third, each node branchinggrcould be the result of co-divergence with
the reference taxa, or duplication or insertion of the demaihus, each of these three events
must also be considered at each node. These propertieeiavoidditional level of complexity,
as there may be multiple optimal mappings betwégrandVg, multiple optimal sets of events,
and multiple optimal child-pair mappings for each mapping. Astenario that can be explained
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by a transfer can also be explained by a combination of dagpbios and losses. At each node in
Vp, the algorithm must iterate over all possible species nau®g, all possible events, and all
possible species nodes for each child to determine the wlMgvp) and the event history that
minimizes the total event cost. None of the simpler modgtdaer both the space of mappings and
the space of events. Although heuristics for inferenceaofdfer events alone have been proposed,
few algorithms consider the complete duplication-loss¥$fer event model.

My reconciliation algorithm, Alg. 4.2 explores the spacer@ppings and events to infer the most
parsimonious history of domain duplication, loss, andiitise events. This algorithm:

— simultaneously calculates the minimal total cost of dzgilons, losses, and horizontal
events required to explain the discordance between trees.

— infers the history, not just the number of events, indigatvhere in the tree each event
occurred. (i.e., associating duplications, insertionsl, lasses with specific nodes and
edges in the domain and reference trees).

This is achieved in three passes.

In the first pass, a dynamic program traverses the tree degthwisiting each node in the domain
tree in post order. At each node, entries in minimal-coshesad traceback tables are calculated
(cal cul at eTabl e) for all possible mappings to nodes in the reference trégaaisible combi-
nations of children node mappings, and for each node eypet-to-divergence, duplication, and
insertion. Losses are calculated with each of these them@®vThe cost table, and the traceback
table are two dimensional tables of sizem (n = |Vp| andm = |Vg|, with rows representing the
nodes inTp and columns representing nodesin Each entryg(vp, Vr), stores the minimum cost

of reconciling subtre&,, with Tr and mappingp to Vg € Vr. Each entry in the traceback table is

a triple {EVENT, M(I(vp)), M(r(vp))} representing the event and associated mappings of the left
and right children ofp, | (vp) andr (vp) respectively, that resulted in this optimal reconciliatio

Calculations for the cost table are based on a pair of remuesjuations. If nodey is a leaf node,
vp € L(Tp), then the only possible mapping is the reference taxon frdmthwit was sampled,
o(vp), which is of no cost. Otherwise, the enttivp, vR) is calculated as the minimum cost of
the mapping of/p to vg and assigning a duplication, insertion, or co-divergenametovp. The
recursion equations for the dynamic program are as foll@BS]
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If vb € L(Tp) andvr € L(TR), then

0 if v =0 (Vp),
c(Vp,VR) :{ R ) (Vo) (4.4)
00 otherwise.
Else,vp € Vb \ L(Tp) and
¢(Vp,VR) = min{co v(Vp,VR), Cop(VD,VR), Cins(VD,VR)}, (4.5)

whereCQODI V is a co-divergencdUP is a duplication, andINS is an insertion.

For each value ofp andvg, the cost of a duplication, an insertion, or a co-divergesitog, is
determined, and the minimum of these is assigned¥g,Vvg). If two or more of these events
incur a minimum cost, one is selected at random. In order limutzde cpvent (Vp, VR), We must
consider all the possible mappings of the childrengthat are consistent with the event at node
vp. To be consistent with a co-divergence event, the childferyanust map to a node i (VR)»
the subtree rooted &fvr) and a node ifl; ), the subtree rooted afvg), respectively. If the
children ofvp are mapped to the roots of these subtrees (i.d(vg andr(vr)), then no losses
are incurred; otherwise, losses must be inferred. In ceptthe mapping of the children op

is consistent with a duplication event if both children arepped to the same node of one child
mapping is comparable to the other. If both children mapgothen there is no evidence of
loss. Losses are inferred if one or both children are mappetbdes inT; () or in Tj,). The
number of losses inferred follows from the equations fos iosstandard reconciliation (on pg. 49)
A mapping is consistent with an insertion event when onedatiilvp is mapped to a node ifi,
(possiblyvg, itself), and the other child is mapped to a node that is inzanable to/g). Formally,
these equations are:

minv(w){c(l (Vp),X) +1osson v(l (Vp), X)
+¢(r(vp),Y) +lossan v(r (Vp),y):
xincomparable ty, andlca(x,y) =vr }  if v € VR\ L(TR),
00 otherwise,

cop(VD,VR) = 6+vr8(i;1){c(l(vD),x)+Iossyp(l(vD),x)+c(r(vD),y)

Coni v(VD,VR) =

+10ssp(r(Vp),Y): X <RVR,Y <R VR},
Cins(VD,VR) = t+vrpin){c(l(vD),x)+c(r(vD),y): X <r Vg andy incomparable tag.}
X7y

(4.6)
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whered is the cost of a duplicatior) is the cost of a loss, armdis the cost of an insertion. To
determine the optimal event and left and right child mapgitogstore in the traceback tabtethe
arguments that provide the minimums for the cost table aredt

To complete these tables, we must loop through all nodesiddmain tree, and for each domain
node, we must loop through all nodes in the reference treaddiition, for each domain-reference
pair, we must also consider all possible reference mapgorgbe children of the domain. Thus,
the time complexity to determine the optimal mapping of ooméin-reference pair iI©(m?) —

for each mapping of the left child (oh possible mappings), consider every mapping of the right
child (also of sizam). Together, examining every domain-reference pain{ possible pairs), the
time complexity to fill these tables ®(n-m?). We can reduce the complexity by a factomafto
O(n-n?), if we take advantage of the observation that the optimal @fachildren mappings can
de determined by each child individually (see Alg. 4.2)heastthen consider every possible pair of
child mappings. The recursion equation in Eq. 4.6 becomes:

Cconi v(VD,VR) = rg)i(n{c(l(vD),x)}-l-losm v(l(vb),X)
+min{c(r(vo),y)} +10s%xorv(r(¥p),y):
xincomparable tg, Ica(x,y) = Vg, VR € VR \ L(TR),
cor(VD,VR) = O+ rr\})i(n{c(l(vD),x) +lossup(l(Wp),X): X <r VR}
+ fgLn{C(f(VD),Y) +1ossup(r(v),y): Y <R VR},
cns(Vp,VR) = T+rgLn{c(l(vD),x): X <R VR}+n\}i/n{c(r(vD),y): y incomparable tar}.
(4.7)

Once the entire tree has been traversed, the minimal cagigols selected.

The second pass traverses the domain tree to generate datarajptimal reconciliation from these
cost and traceback tables. First, the optimal reconaliedit the rootpp = root(Tp) is selected:

M(pp) = argvggivg{C(pD,vm (4.8)

The event at this node and the children mappings can therchba@ from the traceback table,

{eventpp), M(l(pp)), M(r(pp))} = t(pPp,M(PD))- (4.9)

This process is continued, until all nodesTip are mapped to nodes @k and are assigned a
co-divergence, duplication, and insertion event. Thessds can be determined. This process is
71



CHAPTER 4. IMPLEMENTATIONS OF METHODS TO INFER DOMAIN SHURENG EVENTS

similar to thecl i mb function in Alg. 4.1. One loss is assigned to the edge abodews € \Vp
for each “skipped” node fronM(vp) to M(p(vp)), and forM(p(vp)) if vp is a duplication and

M(vp) # M(p(vb)).

If we only care about a single optimal reconciliation (i.@.tandom reconciliation from the set
of all possible, optimal reconciliations), we simply haweefind the best mapping at the root of
Tp, and traverse the domain tree, pulling data from the tragtebad cost tables. In this case,
the traceback complexity is ju€(n+ m) — finding the minimum cost mapping at the root is
O(m) and traversing the domain tree@n). However, if we would like to revievall optimal
reconciliations (as in Alg. 4.2), there is an increase in plaxity. In this case, we must keep track
of all solution paths in the traceback table (i.e., by hawntyies in the cost and traceback tables
be alist of solutions). Each optimal scenario (the mapping and aatsuatevents) are stored in the
tables; if a scenario generates a better cost, all previousdsinformation is cleared and the new
scenario is stored. This allows us to keep track and genaitaiptimal scenarios. The traceback is
still initiated with finding the optimal mapping of the roethich is stillO(m). When traversingp,

we must consider every optimal mapping and event; howelvir piossible that many mappings
produce an optimal solution. Also, a mapping may be optimgh wultiple children mapping
pairs. Thus, the time complexity for the tracebacli® - m®) — n to traverse the tree and at each
node consider all optimal mappin@gm) and all optimal children pair mappin@(n?).

The third pass checks the candidate reconciliation foratiohs of temporal constraints that can
arise if insertions create a cycle. In particular, an evéstbhy has a cycle if it includes a transfer
from taxonx to an ancestor of taxojpanda transfer from taxowl to an ancestor of taxax This

is not permitted as it would require that both tixagxisted beforey and thaty existed before,
which is impossible. If a cycle is detected, it is repairegicl€ checking runs in polynomial time:
O(n+n?). However, the problem of repairing a cycle, if one is deteceNP-complete [232,233,
235]. My work on domain shuffling in the human genome (see 8gperformed 3400 domain
reconciliations, of which only 6 contained a cycle, suggdsat cycles are rare.

Algorithm 4.2
Input: Tp= (Wb, Ep); Tr=(VR, Er); 0, the M(:) of L(Tp) — L(Tr)

reconcil eDTL( Tp, Tr, O )
1 initializeTables() [l1nitializes the cost and traceback tables.
2 for each vp € Vp in postorder do
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3 calculateTable( vp )

4 bestRoot = argmingeve{ ¢(Pp, VR) }
5 traceback( pp, bestRoot )

6 return

initializeTables()
7 Il Each table is 2-Dwith Vp as rows and Vg as col unms.
8 for each v € \p do

9 for each vg € Vg do

10 c( Vp, VR ) < o [/ total event cost for subtree rooted at vp and |abeled vgr.
11

12 /] This table is not required; however, if this information is stored,

13 /'l the traceback function does not need to reconpute it.

14 Il Each entry is a set: {best event, best left child map, best right child map}
15 /1 Default is: { co-divergence, enpty, enpty }.

16 t(vp, VR ) <« { CODIV, 0, 0}

17 return

cal cul ateTabl e( vp )
18 if (vp € L(Tp) ) then // Leaf case

19 /1 Can only map to reference taxon fromwhich it was sanpled or an ancestor,
20 /'l indicating a co-divergence with |osses.

21 VR < 0( VW )

22 c(vp, VR ) « 0

23 for each vy € ancestor( vg ) do

24 total Loss < A * ( height(vr) — height(vr) — 1)
25 c( vo, Vg ) « totalLoss

26 else do

27 for each vg € Vg in postorder do

28 calcCost( vg, CODIV )// Co-divergence

29 calcCost( vg, DUP ) [/ Duplication

30 calcCost( vg, INS ) [/ Insertion

31 return

cal cCost ( vg, event )

32 if (event == CODIV ) then

33 Il In a co-divergence, one child is labeled as a right descendant, and the other
34 Il child is labeled as a |eft descendant.

35 /1 Cannot be a |eaf |abel because it has no children.

36 if (vr € L(Tr) ) then

37 return
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38 el se do

39 chil dLabel Left = descendants( | (vg) )

40 chi | dLabel Ri ght = descendants( r(vg) )

41 else if ( event == DUP ) then

42 Il Either child can be labeled with the node or any of its descendants.

43 chil dLabel Left = descendants( vg )
44 chi | dLabel Ri ght = chil dLabel Left
45 el se do Il Insertion case

46 [l Wth an insertion, one child nust be |abeled with the node and the other child
47 /'l 1abel ed sonething inconparable (neither ancestor or descendant)

48 Il Label can't be root because it has no inconparabl e nodes

49 if (v == pr ) then

50 return

51 el se do

52 chil dLabel Left = inconparable( vg )

53 chil dLabel Ri ght = descendants( vgr )

54

55 for each vLr € childLabel Left do
56 for each vRs € childLabel Right do

57 m nAl | ZC(VD, VR)

58 [l1nitialize costs for this node

59 total Loss = 0; suml = oo; sun? = oo

60 if (event == CODIV ) then

61 Il Only costly events are |osses

62 totalLoss = A * ( 2 x height (vg) — height (vLr) — height (VRr) — 2 )
63 Il totalLoss = A * ( height (vg) — height(vlg) — 1 +

64 1 hei ght (vr) — height (VRR) — 1)

65 Il Check both children for both |abels

66 suml = ¢( | (vp), vlr ) + ¢( r(wp), VRr ) + total Loss

67 sun2 = ¢( r(vp), VLr ) + ¢( I (vp), VRR ) + total Loss

68 else if (event == DUP ) then

69 Il Event cost is fromloss and duplication

70 total Loss = A = ( 2 x height(vg) — height (vLgr) — height (VRR) )

71 /1 Don't need to swap, since vLr and vRg are pulled fromidentical sets.
72 sunl = ¢( | (vp), VLr ) + ¢( r(vp), VRR ) + totalLoss + &

73 el se do

74 Il Only cost is frominsertion. Mst parsinonious to infer direct insertion
75 [l fromdonor, vLg to recipient, VRg, with no |osses

76 suml = ¢( I (wp), VLr ) + c(r(vp), VRR ) + 1

77 sum2 = ¢( r(wp), Vlr ) + c( I (w), VRR ) + 1

78
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79 if (suml < mnAl )

80 mnA |l = sunl

81 c( Vo, VR ) « sunl

82 t( vo, v ) « { event, vlg, VRR }
83 if (sum2 < mnAl )

84 mnAl = sun?

85 c( vp, VR ) « sun?

86 t( vo, v ) « { event, VRg, VLr }
87

88 return

traceback( vp, vr )

89 { event, bestlLeftLabel, bestRi ghtLabel } =t( vp, VR )
90 if (vp ¢ L(Tp) ) then

91 traceback( | (vp), bestLeftLabel )

92 traceback( r(vp), bestRightLabel )

93 M( VD ) <~ VR

94 event( vp ) < event

95

9 if (v == pp ) then
97 return reconciled Tp
98 else do

99 return

Algorithm 4.2 (a)

cal cCost ( vg, event )

54 for each vLr € childLabel Left do
55 mnLeftLeft = co; minRightLeft = oo

56 [llnitialize costs for this node.

57 total Loss = 0O; costlLeftlLeft = oo; costRightLeft = o
58 if (event == CODIV ) then

59 /] Only costly events are |osses

60 total Loss = A x ( height (vg) — height(vLg) — 1)
61 costLeftLeft = c( I (wp), VLr ) + total Loss

62 costRightLeft = c( r(vp), vl ) + total Loss

63 else if (event == DUP ) then

64 /1 Bvent cost is fromloss and duplication.

65 total Loss = A x ( height (vg) — height (vLg) )
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66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

/] Don't need to swap, since vLr and vRg are pulled fromidentical sets.
costLeftLeft =c( I (wp), vLr ) + totalLoss + &
el se do
[l Only cost is frominsertion. Mst parsinonious to infer direct insertion
/1 fromdonor, vLg, to recipient, VRg, wth no |osses.
costLeftLeft = c( I (wp), VLR ) + T
costRightLeft =c( r(w), VLr ) + T
if (costLeftLeft < minLeftLeft ) then
m nLeftLeft = costLeftLeft
| eft Label Left = vlLgr
if (costRightLeft < minRightLeft ) then
m nRi ght Left = costRi ght Left
rightLabel Left = vLgr

for each vRr € childLabel Right do

mnLeft Right = co; ninRightR ght = o
[l1nitialize costs for this node.
total Loss = 0; costLeftRight = c; costRightRight = o
if (event == CODIV ) then
total Loss = A x ( height (vr) — height(vRr) — 1)
costRightRight = c¢( r(wp), VRR ) + totalLoss
costLeftRight = ¢( I (vp), VRR ) + total Loss
else if (event == DUP ) then
total Loss = A x ( height (vr) — height (VRR) )
/1 Don't add dup cost, because added to node with viLg | abel
costRightRight = c¢( r(wp), VRR ) + totalLoss
el se do
/1 Don't add ins cost, because added to node with vLg | abel
costRightRight = c( r(vwp), VRR )
costLeftRight = c( | (wp), VRR )
if (costRightRight < ninRightRight )then
m nRi ght R ght = cost Ri ght Ri ght
rightLabel Right = VvRR
if (costLeftRight < minLeftRight ) then
mnLeft Ri ght = costLeftRi ght
| eft Label R ght = VRR

103 suml = minLeftLeft + mnRi ghtRi ght
104 sun?2 = minRightLeft + mnLeftRight
105 i f ( sunml < sun? && sunml < c(vp,vgr) ) then

106
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107 t( vo, v ) < { event, leftLabelLeft, rightLabel Right }
108 el se if ( sum2 < c(wp,vr) ) do

109 c( Vo, VR ) « sun?

110 t( vp, v ) « { event, leftLabel Right, rightlLabelLeft }
111

112 return

Algorithm 4.2 (b)
reconcil eDTL( Tp, Tr, O )
1initializeTables() [llnitializes the cost and traceback tables.

4 { bestRoot } = argmingevg{ ¢( Pp, VR ) }
5 for each vg € { bestRoot } do

6 traceback( pp, VR )

7 return

cal cCost ( vg, event )

78 if (suml < mnAl ) then

79 mnAl = sunl

80 c( Vo, VR ) « sunl

81 clear t( vp, VR )

82 if (suml == mnAll ) then

83 add { event, vlgr, VRR } to t( vp, VR )
84 if (sum < mnAl ) then

85 mnAl = sun?

86 c( vp, VR ) ¢« sun?

87 clear t( vp, VR )

88 if (sun2 == mnAl )

89 add { event, VR, Vlr } to t( vp, VR )
90

91 return

traceback( vp, vr )
92 for each { event, bestLeftlLabel, bestRightLabel } € t( vp, vg ) do

93 if (vo ¢ L(Tp) ) then
94 traceback( | (vp), bestLeftLabel )
95 traceback( r(vp), bestRightLabel )

96 M( Vp ) + VR
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97 event ( vp ) «+ event

98

99 if (v ==pp)then
100 return reconciled Tp
101 el se do

102 return

4.3. Duplication-transfer-loss-incomplete lineage sort ing algo-

rithm

We now have a reconciliation algorithm to compare a binarpesded tree with a non-binary
reference tree in order to infer duplication, heuristicslognd incomplete lineage sorting and a
reconciliation algorithm to compare a binary embedded witle a binary reference tree in order
to infer horizontal transfer, duplication, and loss. Butawh we would like to compare a binary
embedded tree with @on-binaryreference tree to infer all four types of events: dupliaatiori-
zontal transfer, loss, and incomplete lineage sorting?éraee no solutions to this problem in the
literature, but such a reconciliation algorithm is needémreconciling gene families or domain
superfamilies in species where gene transfer events anthplete lineage sorting are not uncom-
mon. To satisfy this need, a third reconciliation algoritivas developed in a collaboration with
Han Lai. This algorithm builds on the two algorithms above particular, novel set mappindé
andN in Alg. 4.1 and the dynamic programming approach and sedrttreaeconciliation space
in Alg. 4.2 were combined to create the dynamic programmiggrahm, Alg. 4.3 that infers the
optimal set of duplication, transfer, heuristic loss, amcbimplete lineage sorting events given a
binary embedded tree and non-binary reference tree.

The basic structure of this algorithm is similar to that igA#.2, with some exceptions. We
now consider co-divergence, duplication, and incomplieteglge sorting events together because
of their intrinsic dependence upon one another. When cerisigl these events (referred to as
NOTI NS in the algorithm), the set mappindé and N, defined in Egs. 4.1 and 4.3, are used to
distinguish between co-divergence, incomplete lineagengp and duplication. It is important to
note thatN andN for nodevg rely on theN andN of vg’s children and on the node to which

Ve is mapped. Because the dynamic program considers all p@ssdppings of a node and its
children, we must keep track of tHé andN sets for each of these mappings as well. This is
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accomplished by defining two new tablél, andtN, such thatN(vg, vr) andtN(vg, vr) contain,
respectiverN(VE) andN(vg) for the optimal reconciliation ofy. with ve mapped torg.

In this new algorithm, th&l’s of the node’s children are calculated using anb function, similar

to the one in Alg. 4.1. This function climbs from the mappirgttee child node (e.g.yLg) to

the mapping of the parent node, in order to infer the number of polytomy and skipped species
losses. It also defines the childrenvgfin which descendants of the embedded child node (e.qg.,
|(ve)) must have been present. TNeof v is then calculated as the union of the childiés,
similarly to Alg. 4.1. As defined in Eq. 4.2, the event at nagavas a duplication iN(I(vg)) N
N(r(ve)) # O for the current nodes and mappings under consideratione, Elsgr equalsvlg

or VRg, the event atg is incomplete lineage sorting (congruentNiive) equal toM(l(vg)) or
M(r(ve)) in Alg. 4.1). Otherwise, the event & was a co-divergence. If the reconciliation of
Ty With ve mapped tos is optimal,N(I (vg)), N(r(ve)), andN(vg) are stored inN(I (vg), VLR),
tN(r(ve),VRg), andtN(vg,Vg), respectively. During tracebacki(ve) and N(vp) are retrieved
from thetN andtN tables just a#(vg) and the everft) are retrieved from the traceback table

Algorithm 4.3

Input: Te=(Ve, Ee); Tr=(Vr, Er); 0, the M(-) of L(TE) — L(TR)

reconci |l eDTLI ( Tg, Tr, 0 )

1 initializeTables( ) [l1nitializes the cost and traceback tables.
2 for each vg € VE in postorder do

3 calculateTable( ve )

4 bestRoot = argmingeve{ C(Pe, VR) }

5 traceback( pg, bestRoot )

6 return

initializeTables()
7 /] Each table is 2-Dwith Ve as rows and Vg as col umms.
8 for each vg € Vg do

9 for each vg € Vg do

10 c( Ve, VR ) « o [/ total event cost for subtree rooted at vg and |abeled vgr.
11

12 /1 Tables for keeping track of the children that were visited. Essential for
13 /1 distinguishing between duplications and inconplete |ineage sorting events

14 /] Default is the enpty set.

15 tN( Ve, VR ) « 0
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16 tN( vg, v ) « O

17

18 [l This table is not required; however, if this information is stored,

19 /'l the traceback function does not need to reconpute it.

20 Il Each entry is a set: {best event, best left child map, best right child nmap}
21 I/ Default is: { co-divergence, enpty, enpty }.

22 t(ve, v ) « { CODV, 0, 0}

23 return

cal cul ateTabl e( vg )
24 if (vg € L(Tg) ) then // Leaf case

25 /1 Can only map to reference taxon fromwhich it was sanpled or an ancestor,
26 /'l indicating a co-divergence with |osses.

27 VR + o( Ve )

28 c(ve, VR )+ O

29 tN(ve, VR ) < { Vg }
30 tN(VE, VR)<—{VR}

31 for each vy € ancestor( vg ) do

32 total Loss = A x ( height (vr) — height(vg) — 1)
33 c( Vg, Vg ) « total Loss

34 tN( Ve, VR ) < C( V)

35 tN( ve, VR ) « C( \/R )

36 else do

37 for each vg € Vg in postorder do

38 cal cCost ( vg, NOTINS ) // Co-divergence, |Inconplete |ineage sorting or
39 /1 Duplication

40 calcCost( vg, INS ) // Insertion

41 return

cal cCost ( vgr, type )
42 if (type == NOTINS ) then

43 Il For co-divergence, ILS, or duplication, children of ve are mapped to children

44 [l of vg or vgitself.

45 Il If the children mappings are on the same path, then there is a duplication.

46 Il Else, if if vgis a polytony and at |east one descendent of vg was al ready mapped
47 Il to another child of vg, there was ILS

48 Il CQtherwise, there was a co-divergence.

49 chil dLabel Left = descendants( vg )

50 chi | dLabel Ri ght = chil dLabel Left

51 else do /'l Insertion case

52 Il Wth an insertion, one child nust be |abeled with the node and the other child
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Il 1abel ed sonething inconparable (neither ancestor or descendant).
Il Label can't be root because it has no inconparabl e nodes.

if (vr == pr ) then
return

el se do
chil dLabel Left = inconparable( vg )
chil dLabel Ri ght = descendants( vgr )

for each vLr € childLabel Left do
for each vRg € childLabel Right do
mnAll =c( ve, VR )
[Ilnitialize costs for this node.
total Loss = 0; sunl = oo; sunm = oo
if (event == NOTINS ) t hen
{ N1, lossLl } = clinb( I (vg), VLr, VR )

{ Nre, lossRl } = clinb( r(ve), VRr, VR )

N1 = NLl U NRl
total Lossl = A x ( lossLl + lossRL )
i f (NLlﬁNm;«éﬂ))then
eventl = DUP
/1 Duplication |osses
if (N1 Ny ) then
total Lossl += A
if (N1 # Ngre ) then
total Lossl += A
suml = & + total Lossl
el se do
suml = total Lossl
if (v ==VLr || vr == VR ) then
eventl = ILS
el se do
eventl = CODIV

Nro, 10ssR2 } = clinb( r(ve), VL, VR )
Ni2, lossL2 } = clinb( | (ve), VRr, VR )
2 = N\Lz U N\Rz

total Loss2 = A x ( lossL2 + lossR2 )

if (Ni2n Nr # 0) then

event2 = DUP

/] Duplication |osses

if (N2 # N ) then
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94 total Loss2 += A

95 if (N2 # Nr ) then

96 total Loss2 += A

97 sun?2 = & + total Loss2

98 el se do

99 sun = total Lossl

100 if (v ==VLr || vr == VR ) then
101 event2 = ILS

102 el se do

103 event2 = CODIV

104

105 suml += c( I (vg), VLr ) + c( r(ve), VR )
106 sum2 += c( r(ve), vlr ) + c( I (ve), VRR
107

108 el se do

109 eventl = INS; event2 = INS

110 Il Inferring insertion fromdonor, vlLg to recipient, VRs
111 { N1, lossLl } = clinb( I (vg), VLr, VR )
112 { Nre, lossRl } = clinb( r(ve), VRr, VR )
113 suml = ¢( I (vg), Vlr ) + c( r(ve), VRR ) + T + A * ( lossL1l + lossRL )
114 N1 = N1 U Nro

115

116 { N2, lossL2 } = clinb( | (vg), VR VR )
117 { Nr, lossR2 } = climb( r(ve), VLr, VR )
118 sum2 = ¢( r(vg), vlr ) + ¢c( I(vg), VRR ) + T + A % ( lossL2 + lossR2 )
119 N2 = N2 U Nrp

120

121 if (suml < mnAl )

122 mnAl = sunl

123 c( Ve, VR ) « sunl

124 t(ve, vR ) « { eventl, vlg VRR }

125 tN( | (ve), VLr ) « Ni1

126 tN( r(ve), VRr ) + Nm

127 tN( Vg, VR ) « N1

128 if (sum < minAl )

129 mnAl = sun?

130 c( Ve, VR ) « sun?

131 t(ve, vR ) « { event2, vRg, Vlr }

132 tN( I (vg), VRr ) « N2

133 tN( r(vg), Vlr ) + Ngo

134 tN( ve, VR ) « N2
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135
136 return

traceback( ve, wr )

137 { event, bestLeftlLabel, bestRightLabel } = t( vg, Vr )
138 if (ve ¢ L(Tg) ) then

139 traceback( | (vg), bestlLeftLabel )
140 traceback( r(vg), bestRi ghtLabel )
141 M( ve ) < WR

142 N( Ve ) < tN( vge, WR)

143 N( Ve ) + tN( Ve, VR )

144 event ( vg ) « event

145

146 if ( ve == pg ) then

147 return reconciled Tg

148 el se do

149 return

cli nb( VE, VR, UR )

150 losses = 0

151 // general polytony |osses

152 if ((vr ¢ L(TR) && VR # UR) && (C(VR) # tN(vg,vr)) ) then
153 | osses++

154 sel ect x froth( VE, VR ) at random
155 if ( x == ur || p(X) == ur ) then
156 return tN( vg, VR )

157 while ( p(x) # ur ) do

158 Il skipped | osses

159 if ( p(x) # vg ) then

160 | osses++

161 Il clinmb

162 x=p(x)

163 return { x, losses }

4.4. Algorithm to infer composite history of reference tree

Given a multidomain family tree and a set of reconciled domeges, | developed an algorithm
(Alg. 4.4) to construct a composite reference tree histatly eomplete ancestral architectures and
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inferred events from all domains. There is no prior work addimg this problem, because it does
not arise in other instantiations of the co-evolutionapniework, such as gene tree-species tree
reconciliation. In those problems, only the history of émbeddedree is of interest.

My algorithm constructs this history by transferring infaation from each reconciled domain tree
to the appropriate branch in the reference tree. Detergithia ancestral architectures is simply
a matter of copying ancestral states from domain to host tké@wvever, there are challenging
guestions regarding the transfer of events and how to preseh information to the user. The
transfer of events is more complex because multiple eveaysra associated with a single branch
and the order of events is partially constrained by the sirecmf the domain trees. Only events
affecting instances of the same lineage in the domain tfeeteklative timing. Instances that are
unrelated on that branch in the reference tree have no ingoactlative timing. For example, in
Fig. 3.2, the events in thg3 lineage include a duplication and transfeg®of domainp. In the

g3 lineage, there is the insertion frogB of p and the loss of andomain. We know that ig3 the
duplication ofp must have occurred before the insertion, because it indaive of the resulting
paralogs. However, ig2 it is not possible to determine whether the loss otcurred before or
after the insertion. Therefore, transferring events framein to host tree requires determining
the (partial) temporal order of the events associated veitih énost tree branch.

Algorithm 4.4

[nput: Tr=(Vr, Er); setDT={ Tp,=(Vp,, Ep,) }, the set of all domain trees (for each
domain Dj) reconciled with Tg.
Losses have been added; for such nodes, the event is LOSS.

annot at eRef erence( Tg, setDT )
1 for each Tp, € setDT do
2 for each vp, € Vp, do

3 VR = M( vp, ) // Get the mapping of the node

4 Il Get the event at this node and add to Iist of events at napped reference node
5 add event (vp;) to events( vg, Dj )

6 if ( event(vp,) == LOSS ) then

7 add vp, to losses( vr, Dj )

8 el se do

9 if (vp € L(Tp;) || event(vp,) == CODIV ) then

10 /1 Domain Dj was present in vg and not a node effecting copy nunber.

11 Il Counting such nodes will overcount domains.

12 add vp, to architecture( vg, Dj )
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

if ( event(vp,) == DUP ) then
add { vp;, C(vp,) } to duplications( vg, Dj )
else if (event(vp) == INS ) then
donor = wRr
if (M(Il(vp) ) # Vvr) ) then
/1 For an insertion, one child of vp, nust have the same mapping as vp,
/1 (descendant of the donor). The other child is the result of the
/1 insertion (the mapping of that child is the recipient of the insertion).
recipient = M | (vp,) )
add { vp,, |(vp,), recipient } to insertions( vg, Dj )
el se do
recipient = M r(vp,) )
add { vp,, r(vp,), recipient } to insertions( vg, Dj )
e = (donor, recipient)
if (e¢ Er) then
add eto Egr
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Chapter 5

Case-studies: Histories of multidomain fam-
llies from the literature inferred using the co-

evolutionary framework

Several studies in the literature [27-30, 139] have useganison of domain trees to gain insight
into the history of domain shuffling using informal approastbased on visual inspection of the
trees. However, inference by visual inspection is erronprand too difficult for large data sets —
even small trees can lead to very complicated scenariosf(geexample, the MaGuK family in
Fig. 5.7). In contrast, using my algorithms and softwares thpe of analysis can be carried out
consistently and on a much larger scale. In order to dematestine utility and effectiveness of
the work presented in Chapter 4, | selected and analyzeddad gete multidomain families with
diverse domain architectures discussed in the literaRife28, 30]: the protein tyrosine kinases,
the Notch-related genes, and the membrane-associatedategkinases (MAGUKS). The original
studies compared domain trees, through visual insped¢ti@ain insight into the history of domain
shuffling events. In this section, | present these famities results from my analyses, and discuss
the impact of using my novel co-evolutionary approach.

Tree construction.  Trees in these studies were either transcribed from theafitee or recon-
structed from sequences. When necessary, | reconstruegsiusing the following procedure:

1. Initial multiple alignments were constructed using th€dffee program [286].
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2. I further edited these multiple alignments manually gsgeneDoc [287], considering
information from the literature such as conserved and fanat positions.

3. Domain trees were constructed using the Neighbor Jo[Bitigprogram in Phylip [288].
4. Phylip’s Segboot program was used to generate 100 baptsplicates for each tree.

5. Reference trees were generally rooted using an outgemuesce or information from
the literature, as described below. Domain trees were daaséng the rooting parsi-
mony approach in NTUNG, described on pg. 59.

5.1. Notch-related proteins

The Notch family consists of transmembrane receptor prstiat mediate cell-cell interactions
and signalling that are important during development inane# [28, 289, and work cited therein].
Family members are characterized by a series of EGFL repaaist of three LNG domains,
a transmembrane domain, and a series of six cdc10/AnkynirkAomains. The co-evolution
of domains in this multidomain family was first investigat@dphylogenetic context by Maine
et al. [28], who constructed trees for the extracellular-seguence of the family and the LNG
and Ank domains in eight metazoan species. Their phylogemége constructed by first aligning
sequences using ClustalV [290] and then building trees Rliylip [288]. They then compared the
trees for the repeated LNG and Ank domains with the tree ®ettiracellular sequence. Because
the trees were fairly consistent, they concluded that tkestnal family contained the same domain
architecture with three LNG domains and six Ank domains. fagranalysis, | transcribed these
trees and analyzed them with my methods ioTNNG (Fig. 5.1). Non-binary nodes and weakly
supported edges were resolved using event parsimonyiruNG. My results suggest a similar
conclusion to those made by Maine et al. However, while thestiare largely consistent with one
another, Maine fails to comment on some of the observed tsagement. My analysis not only
locates this disagreement, but infers the possible donhaiffli®ig events(1) the first Ank domain

in rat Notchl, xenopus Xotch, human TAN1, and mouse Notclkltlz result of an ancestral
domain duplication and reciprocal loss¢®) the second LNG domain in mouse MotchA is the
result of a domain insertion from the second LNG domain in seddotchB; and3) the first LNG

in mouse Motchl is the result of a domain insertion from th& NG in mouse MotchA. The
extracellular sequences, which were treated as the rekiiarthe paper and my analysis, were
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also reconciled with the species tree, indicating a numbanoestral and lineage-specific gene
duplications that were also noted in the paper.

5.2. Protein tyrosine kinases

Protein tyrosine kinases (PTKs) phosphorylate proteingrdnysferring a phosphate group from
ATP to a tyrosine residue in the protein. They are involvethemy important cellular processes,
including cell signaling, cell growth, cell differentiati, metabolism, cell-cell adhesion, cell motil-
ity, and cell death. PTKs are generally divided, both fummily and evolutionary, into two
classes: transmembrane receptor-linked PTKs and cytopiasn-receptor PTKs [291]. Fig. 5.2
shows the family tree, as represented by the kinase domainbuath the cytoplasmic and receptor
classes. | built this tree from the sequences of all kinaseaiias in humans. The kinase domain
is thought to be a primary domain (as defined on pg. 55), aftls tised as the reference tree to
represent the evolution of the multidomain PTK family.

As seen in Fig. 5.2, many members of the cytoplasmic clastatothe SH3 and SH2 domains,
often as a pair. The phyletic distribution of these domaunggests several alternate hypothe-
ses for the origins of these domain architectures. Was lieisdésult of a single insertion of the
domain pair, followed by losses of the pair in some descetsdamd losses of the SH3 domain
in others and by a duplication of SH2 in others? Or were thar@ansertion of the pair in the
Tec/Abl/Src/Frk/Csk/Fes ancestor with loss of SH3 in Fesnaertion of SH3 in Ack, and an in-
sertion with duplication of SH2 in Syk? According to the domgain-loss approach (see pg 21),
shown in Fig. 5.3, based only on domain architectures, the-SH2 pair were gained at the an-
cestor of the Fes, Csk, Frk, Src, Tec, and Abl subfamiliegeamsgisted in all domain architectures,
with the exception of the loss of SH3 in the Fes subfamily. ddifion, two SH2 domains were
gained in the Syk subfamily and one SH3 domain was gainederAttk subfamily. However,
this approach does not consider the sequence evolutior &3 and SH2 domains, which may
contradict this inference.

Nars et al. [27] originally analyzed this family, seeking #inswers to these questions. They built

trees for the SH3, SH2, and kinase domains were aligned tisgngileup program in GCG [292],

and domain trees were constructed using maximum parsinmahg iPAUP* program [293]. Trees

were rooted using outgroup sequences. After a visual itipeto compare the trees, the authors

concluded that since the domain trees were consisteng tiemains co-evolved. | transcribed the
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Figure 5.1: Trees from Maine et al. [28]a) Species tree for the eight species. Abbreviations: ce
- Caenorhabditis elegansxl - Xenopus laevisgg - Gallus gallus hs - human lomo sapiens mm -
Mus musculusrr - Rattus rattus dm - Drosophila melanogasterand Ic -Lucilia cuprina (blowfly). (b)
Tree for the Notch extracellular sequences, reconcilet thié species tree in (ajc) Tree for the six re-
peated Ank domains in the sampled Notch genes reconcilddthétextracellular sequence tree in (@)
Tree for the three LNG domains in the Notch gene family rededavith the extracellular sequence tree in

(0).
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Figure 5.2: Tree for the PTK gene family, built from the sequence of theake domains. Subfamilies
are collapsed to leaf nodes, and representative domaineithies for each subfamily are shown. Trans-
membrane receptor PTKs have a transmembrane domain, deamteblack rectangle in the architectures.
Transmembrane PTKs with an I-set domain are denoted withakeded names; those with an I-set domain
have a purple colored name. Cytoplasmic PTKs are denotédié colored names. (Domain architectures
were adapted from Robinson et al. [291]).

trees from this paper and used my new algorithms @TOING to analyze these domains system-
atically. Because the trees had a number of non-binary nddesesd NOTUNG to resolve these
nodes using event parsimony. My analysis (seen in Fig. ®=Agally agrees with the assessment
of Nars et al. However, my analysis proposes three domaifflisigtevents that were not presented
in the paper. In particulafl) that the domains co-evolved from the insertion of SH3-SHhe
Tec/Abl/Src/Frk/Csk/Fes ancestor, not the ancestor p{2)lthat the SH2 pair in the Syk subfam-
ily (KSyk and Zap70) was the result of a domain insertionda#d by a domain duplication; and
(3) that the SH3 in the Ack subfamily (PTK6 and SrmS) was the ted domain insertion. Nars
et al. failed to comment on how the two SH2 domains arose indByke observation that the Syk
and Ack families are separate from the other SH3-SH2 coimigaiamilies, which would require a
number of losses to explain an insertion in the ancestod &HB-SH2 containing families.
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Figure 5.3:History of the gain and losses of SH2, SH3, and I-set domairise PTKs using the domain
gain-loss approach with the kinase tree, representingigery of the gene family.

| further analyzed this family by examining the evolutiopdnistory of the immunoglobulin I-
set domains. As can be noticed from Fig. 5.2, many memberbheofdceptor sub-class con-
tain repeated I-set domains. | sought to determine whettesetdomains, like SH2 and SHS3,
were the result of a single ancestral insertion, or whetddrt@nal domain shuffling occurred.
The domain gain-loss approach (Fig. 5.3) infers an andegéiia of two I-set domains in the
AxI/Tie/PDGFR/VEGFR/FGFR ancestor followed by two lossethe Met/Ryk subfamily ances-
tor and one loss in each of the Ret/VEGFR/FGFR ancestraasuilyf and the Ret subfamily. In
addition, there were independent gains of four I-set domainPTK7 and one I-set domain in
NTRK3 (Trk).

Using my method in MTUNG to compare the Ig I-set domain tree to the kinase referemee tr
revealed some interesting insights (see Figs. 5.5 and B8}, the I-set domains in PTK7 appear
to be the result of an ancestral insertion followed by loagblatations, rather than inheritance
of an ancestral PTK with multiple I-set domains. In this mecibation, one I-set domain was
present in the ancestor of all growth factor receptors (TERGFRs, VGFRs and FGFRs) and
the Axl (MERTK, UFO, and TYRO3), Met (MET and RON), and Ryk $aimilies. This domain
was subsequently lost in the Met/Ryk ancestor and dupticaependently in the growth factor
receptors and the Axl subfamily. Both copies of the domathé&AxI subfamily were lost in UFO.
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Figure 5.4:Trees constructed by Nars et al. [27]. All trees were rootedding an outgroup sequende)
The kinase domain tree. Gray leaf nodes represent those gatheut an SH2 or SH3 domain. Other leaves
are colored according to subfamily memberslii. Tree for the SH2 domains in all PTKs, reconciled with
the kinase tree in (ajc) Tree for the SH3 domains in all PTKs, reconciled with the ke&ee in (a).

Also, one copy of the duplicated domain in the growth factaeptors was lost in CSF1R, Kit, FIt3,
VGFR1, RET, TIE2, and the ancestor of VGFR2 and VGFR1. Thelfiset domain in VGFR3
was further duplicated. There were also a number of moresogmbrary domain insertions. The
second I-set in CSF1R was the result of a domain insertiom fao0 ancestral I-set in the Axl
subfamily. The second I-set in VGFR1 resulted from a domageition from the I-set domain
in NTRK3, which, in turn, was the result of a domain insertfoom the first I-set in PTK7. The
second I-set in FGFR2 was the result of a domain insertian tiee I-set in FGFR1. Finally, the
I-set domain in UFO was the result of an insertion from the fiset in PTK7.

Fig. 5.6 shows a schematic of this reconstruction of theohjysbf the I-set and kinase domains
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Figure 5.5: Trees | constructed for the PTKs. Gray leaf nodes repredmsetgenes without an I-set
domain. Other leaves are colored according to subfamily beeship. (a) Tree for the kinase domain,
treated as reference. This tree was rooted using informéatoon the literature.(b) The tree for all I-set
domains in PTKs, reconciled with the kinase domain in (ajsTitee was rooted using event parsimony

s
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in the context of the gene family history. This reconstraictshows that analyzing both domain
architecture and sequence information (as representdteliyetes) may imply much more domain
shuffling activity than inferred from architecture alon@. the latter case, a number of the more
recent insertions in my reconstruction would not be inférren addition, the prediction that the
second I-set domain in the Axl subfamily is not orthologauthie second I-set domain in the other
growth factors, would not be possible. For this case withighleset domain, by adding sequence
information and my new method, the history of this family ien@understandable.

5.3. Membrane-associated Guanylate Kinases (MaGuKs)

As observed in the history of I-set domains in the PTKs, nbtl@main repeats are the result of
a single ancestral domain duplication. Rather, similatgpas of tandem arrays of I-set domains
arose independently several times during evolution. Thesgented the question of whether this
observation is unique to the Ig domain or to the PTK family.s&en in Fig. 5.7, many members
of the membrane-associated guanylate kinase (MaGuKs)f&iare the same number of PDZs in
atandem array (e.g., the three PDZs in all members of the MIU&(1-4) and Zo subfamilies). It
was, thus, also of interest to investigate whether the Pp£ats were inherited from an ancestral
gene, or whether there was more domain shuffling activithis family.

Until recently, the MaGuKs were thought to be uniquely metaz[30, 294], but have since been
shown to exist in the premetazoan lineages of the pr@iégisaspora owczarzak295] and the
choanoflagellatévlonosiga brevicollig296]. The members of the MaGuK family act as scaf-
folding proteins in various types of intercellular junctg exhibiting a broad range of specific
functions within this general category. They are involvedriany cell-cell communication and
signal transduction functions (see, for example [297, aorkwited therein]). The MaGuKs orig-
inally evolved from catalytically active guanylate kinasehich are responsible for transferring a
phosphate group from ATP to a guanosine monophosphate (&dkue. Since this divergence,
however, they have lost the GMP binding and phosphorylategrabilities [297]. All MaGuKs
contain a single guanylate kinase (GuK) domain, one or mox2 @mains, and either an SH3
domain or WW motifs, both domains associated with protewtgin interactions. MaGuKs ex-
hibit considerable diversity in domain content, includingth variation in the number of PDZ
copies and the presence of additional, auxiliary domains.

MaGuK architectures are characterized by a common pattiéhrvariations typical of many multi-
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(b)

Figure 5.6:Schematic history of the gene family showing domain shufféments in the history of the I-set
domain.(a) The schematic developed by inspection of the reconcilext demain tree(b) The schematic

as inferred and drawn automatically iroNUNG.
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Figure 5.7:The MaGuK gene family as represented by the tree for the Guiailn Leaves are decorated
with domain architectures.

domain families. What forces drive this interplay betweemmonality and variation? Were these
architectures the result of an ancestral domain archite¢hat persisted, like the SH3-SH2-PTK
architectures in protein tyrosine kinases, or was more dostauffling involved in the formation
of this family, as with the I-set domains in PTKs?

The co-evolutionary history of these domains was first itigased by te Velthuis, et al. [30],
who built trees for individual domains and compared themoulgh inspection. Their trees were
constructed by aligning sequences in ClustalX [298] and th&lding Bayesian trees with Mr-
Bayes [44] and maximum likelihood trees with PhyML [299]. eThuthors concluded that the
PDZ-SH3-GuK architecture evolved only once; their conidas contained no inferences of any
domain insertions beyond the ancestral ones. They did ih&rthe proliferation of PDZs in the
MAGI subfamily was due to domain duplication in that subfgn@nd that the proliferation of
PDZs in the DLG and ZO subfamilies was the result of domairidatons in their common an-
cestor. However, the trees they constructed and evaluatkdled many non-binary nodes. Thus,
much information was lost, as these nodes provide no infoom@n history, and their analysis
was basically the domain gain-loss approach based on thet@eK In order to further investi-
gate this family and its evolutionary history, | built trefes the GuK, SH3, and PDZ domains in
human and compared them usin@™NG to infer the domain shuffling events. Sequences for
all GuK, SH3, and PDZ domain instances in human MaGuKs wetairodd from [30]. The GuK
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tree was rooted using the functional GuK domain as an oupgf®d]. The roots of the SH3 and
PDZ trees were inferred using event parsimony withiNNG. For this family, the GuK domain
was treated as the reference. Several lines of evidencesupp use of the GuK domain tree as a
proxy for the locus history. First, it is thought that the asital MaGuK protein had a GuK domain
(and possibly other domains as well), which was inheriteddsyical descent by all contemporary
MaGuKs. The varied MaGuK architectures subsequently atoseigh insertion, deletion, and
duplication in the descendants of this progenitor. Thisiaggion is supported by the observation
that the GuK domain only appears in a restricted set of achites, compared with the other,
more promiscuous, domains in the family. Further, the pigtetic distribution of functional
GuK domains is broader than the catalytically inactive Gaggesting that the progenitor GuK
resulted from an ancestral GuK domain through a single eatnéoss-of-function event [30, 297].
Additional evidence derives from near perfect phylogensingruence between the SH3 and GuK
domains as discussed below.

Applying the domain gain-loss approach (see Fig. 5.8) ssigglat the ancestral MaGuK had a
single SH3, which was lost in the MAGI subfamily, and a sing[@Z. In addition, it would infer
that PDZs expanded by two domains in the the common ancefstioe AGI/DLG/Z0O/Carma/
CACNB subfamilies and again by three domains in the ancedttire MAGI subfamily and by
one domain in DLG5. These PDZs would have then evolved thraggtical descent, without
further shuffling, with the exception of the Carma/CACNB estor, which lost two PDZs and the
CACNB subfamily, which lost the third PDZ. Note, howeverathhis inference process ignores
sequence variation in the SH3 and PDZ domains.

Using my method to compare the SH3 and GuK trees revealedftindahe most part, they have
similar histories, as shown in Fig. 5.9. My analysis sugg#sit it is likely that the ancestor of all
MaGuKs had a single SH3 domain, which was lost in the MAGI el@dAGI 1-3). In addition,

in contrast to the analyses of te Velthuis et al., my analgise suggests that the contemporary
SH3 domain in the Carma subfamily (Carma 1-3) may be thetrealdomain insertion from the
ancestor of the ZO subfamily (ZO 1-3 and DLG5) and loss of theeatral SH3 domain, rather
than a result of vertical descent.

The comparison of the GuK tree with the tree for PDZ, Fig. al8p reveals that more domain
shuffling may have occurred in the history of this family thmeviously assumed. Reconciliation
reveals repeated internal domain duplications, lossesrasertions between genes, suggesting
recent domain swapping between the ZO, DLG, and Carma silldamMy analysis suggests
that the ancestor of all MaGuKs had a single PDZ domain; tbimaln evolved through vertical
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Figure 5.8:History of the(a) SH3 andb) PDZ domains in MaGuK as inferred using the domain gain-loss
approach. Clades that have the same domain architectutke tmaves have been collapsed to a single node
(i.e., MAGI 1-3).

descent to form the present copy of PDZ in all members of the Bade (Mpp 1-7 and Cask).
This ancestral domain was duplicated twice more in the docesall MaGuKs except the Mpp's.
In the MAGI subfamily, one of these copies was lost, whiletaeo was duplicated another four
times, resulting in the multiple repeats seen in the MAGI.iffedent domain duplication occurred
in the ancestor of DLGs, ZOs, Carma’s, and CACNBs (CACNBZ1fd)owed by differential
losses. As with the analysis of the I-set domains in PTKsteroporary domain insertions were
also observed: the second PDZ in DLGS is the result of a domnagertion from Carmag3; the
fourth PDZ in DLGS5 is the result of a domain insertion from thed PDZ in the ZO subfamily;
and the PDZ in Carmal is the result of a domain insertion frioathird PDZ in DLG5.

Fig. 5.10 shows a schematic, based on tleer NG output, conveying the combined histories of
the PDZ, SH3, and GuK domains. This figure reveals that martfieinferences based on the
domain gain-loss approach are not supported by the sequetag1) the common ancestor of
the DLG, ZO, Carma, and CACNB subfamilies had four, not thRieZ domains(2) a cassette
of three PDZs was not transmitted to the DLGs and ZOs by \&@rtiescent - rather, a series of
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Figure 5.9:Trees | constructed for the MaGuK gene family. Leaves areredl according to subfamily
membership(a) Tree for the GuK domain, treated as reference. This tree @@ed using active guanylate
kinase domains from outside the famif}a) The tree for all SH3 domains in MaGuKs, reconciled with the
GuK domain in (a).(c) The tree for all PDZ domains in MaGuKs, reconciled with the<Glomain in (a).
Trees in (b) and (c) were rooted using event parsimony

duplications, losses and insertions gave rise to the samaidaarchitecture in all the subfamily
members; and3) PDZs in the same position in the architecture of differemteageare not more
closely related to each other than to other PDZs. This sugdleat analyses based on domain
architectures alone may underestimate the extent of doshaiffling and convergent evolution of
domain architectures that is occurring and underscoregine of methods that include sequence
comparison. It further suggests that estimates of domaifilsty rates using such methods may
give very different results than from previous studies drat hew genomic analyses using these
approaches are imperative.

100



5.4. EVENT COST PARAMETER SELECTION

IHOAR
MPP/Cask

e T famt

MAGI

- — DLG 5
1 ke
i (GYmN
,
L mem

Carma1

Carma2

Carma3

i

OZ4X

@
—'4@? I'31LL(;35

PDZ.1 ;
®-7

® ®.Carma2

PDZAT.4L;
‘——Xjﬂ;(ﬁarmm

L e&e.r...3

PDZAL: N

PDZ:2D:

ve,

PDZ:1L;
eeede,

SH3:1L; PDZ:4D,1L,;
pppB¢_———— — — — — —————— e8BB0e,,;

888, \ppCask

(b)

Figure 5.10:Schematic history of the gene family showing domain shugféwents in the history of the
GuK, SH3, and PDZ domains. Monophyletic clades with no esamre collapsed to a single leaf node)
The schematic developed by inspection of the reconciledaitoinees.(b) The schematic as inferred and

drawn automatically in BTUNG.
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5.4. Event cost parameter selection

In the methods described here, a linear combination of thaxeu of duplications, insertions, and
losses is used to score candidate event histories by thalr eighted event cost, referred to
as theDTL-score(i.e., DTL-Score= & numyyp + T+ NUMpg + A NuMggg. Different event
cost parameters could result in different optimal evertbhiss. For example, when the combined
cost of one duplication and one loss is less than the cost ofsamtion §+ A < 1), the optimal
history for the family in Fig. 1.2a is a duplication of the reiccle domain followed by a loss (as in
Fig. 3.6). This solution has a DTL-score®# A . However, ift > 8+ A, the optimal event history
for the same trees is an insertion of domiirfrom g, into g;, resulting in a DTL-score of.

How should cost parameters be selected in order to obtaimtst accurate inference? For case
studies, evidence such as synteny, LTR repeats, transpusgnation sites, and intron loss can be
used to guide selection among several candidate eventib&t&or large scale analyses, maximum
likelihood estimation can be used to estimate parametes ff@arsimony model if the probability
of an event on a given branch is small [24]. For example, reté@sbe estimated by modeling
domain shuffling as a birth death process, as in my Masteg&dlwork [300] or similar to Karev
et al. [147,159]. Rates can then be converted into eventpaysimeters by taking the negative
natural log of the rate (i.e= Inr; for rater; of eventi) [24].

In all the above analyses, parameter values were seleatbdlsat the duplication cost was more
than the loss cost, and the insertion cagtwas more than a loss plus a duplication (heg &
andd+ A < 1). Here, | demonstrate that for in-depth studies, the spaedt reconciliations can
be explored empirically, and that optimal solutions foffelént parameter functions correspond
to contiguous, distinct regions of the cost-parameter esp&or this study, | reconciled the SH3
and PDZ domain trees with the GuK domain tree using varioygichtion, insertion, and loss
parameter values between 1 and 100. Specifically, | cakuliidte DTL-score for all parameter
value triples(,T,A) € F3, whereF = (1,5,10,15...100).

For the SH3 reconciliation, there were only three differgptimal solutions, summarized in Ta-
ble 5.1. Inthe space of all parameter values, shown in Fld., Shese three different reconciliations
occupy distinct regions that overlap only at the boundaridste that in order to display the pa-
rameter space in two dimensions, the indeandy variables are defined as the ratpd\ and
0/A, respectively. Based on the number of events associatedhetdifferent reconciliations, the
following inequalities define the borders of the regionshie parameter space, corresponding to
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5.4. EVENT COST PARAMETER SELECTION

All reconciliations of SH3 in MaGuK
Reconciliation|| Duplications Insertions LossesRegion equation

) 0 1 2 | A<T<03+2\
) 1 0 ] S+2N <1
3) 0 3 0 T<A

Table 5.1:Summary of the three different reconciliations possibleeteling on the parameter values used.
Each region, seen in Fig. 5.11 is defined by the number ofrdiffeevents. The final column provides the
boundary equations, in terms of duplication cgnhsertion costy, and loss cosk, defining which solution
will be reached depending on parameter values.

the distribution of reconciliations.

Reconciliation (1) T+2A <3t T+2A <4\ +0d
A<T T<2A+0d
CALZSTS2A+9d (5.1)

Reconciliation (2) &+4A<T1+2\ 0+4A <3t

1 4
2\ < “d+ =A<
0+2A <1 36+3 <1

S.04+20 <1 since %6 < 6 and g)\ <2\ (5.2)

Reconciliation (3) B<2A0+1 qt<4\+0

4 1
<A <A+ =
T< T_3 —|—36
. 4 1
L T<A since A < 5)‘+§5 (5.3)

With the reconciliation of the PDZ and GuK trees, there wesnynmore (16) different optimal
solutions, as described in Table 5.2. As with SH3, the dffieroptimal reconciliations all oc-
cupied distinct regions only overlapping at the boundaniethese regions. Equations for these
boundaries can similarly be defined in terms of parametens. partition of the parameter space
and the associated reconciliations can be pre-computeen, The reconciliation for any choice
of parameter values can be retrieved from this pre-compag&doy determining which region is
associated with those parameter values.

The number of optimal event histories depends on the sizeedf¢ées and the extent of topological
incongruence As these results show, for small problem micsts there are only a few optimal
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Graph of different reconciliation solutions
by duplication/loss cost and insertion/loss cost

Graph of different reconciliation solutions
by duplication/loss cost and insertion/loss cost
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Figure 5.11:Parameter analysis of the SH3 domain tree reconciled wétiGthk domain tree, as shown in

the parameter space &fA andt/A. Points represent a single reconciliation under one spegifarameter
triplet {3, T,A}. Colors represent the inferred number of events as showreifegend (a) Reconciliations

for all examined parameter tripletgb) The plot in (a) zoomed in to show detai{c) The data from (a)

plotted according to a log on both axes.
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5.4. EVENT COST PARAMETER SELECTION

All reconciliations of PDZ in MaGuK

Reconciliation|| Duplications Insertions Losses Region
21<9d
Q) 0 20 0 <A
2\ <21 <5A
(2) 0 18 2 21<5
©) 0 16 7 BA<2T<8
30 <61 <40+ 2\
4) 4 8 7 B\ < 21
20+A <31 <3d
(%) 6 S 8 20+ 6A < 51
(©) 11 0 20 25+ 9\ < 2
7) 9 2 11 | 2514\ <21 < 25+ O\
O+A<T<O+2A
(8) 8 3 9 2\ <1
5N < 3t
(9) 7 4 8 25+ 6\ < 5t
A<O<T<O+A
A<T<O<2t
(10) 4 10 2 5T < 254 6A
A<O<T<O+A
0<2t<4%
(11) 4 12 0 3T< 5+ 2\
T<A
0<1<2d
(12) 5 9 2 | 2544\ <61<65+3\
51 < 20+ 6A
3N <3t <5A
(13) ! ! 3 | 65131 < 61< 25+ 8\
0+4A <31 <6A
(14) 8 4 7 5< A
20<T<A
(15) ! 8 2 0+2\ <3t
(16) 6 11 0 65 < 31 < 5+ 2\

Table 5.2:Summary of the 16 different reconciliations possible dejim on the parameter values used.
Each region, seen in Fig. 5.12 is defined by the number ofrdifteevents. The final column provides the
boundary equations, in terms of duplication cayghsertion costt, and loss cosk, defining which solution
will be reached depending on the parameters.
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Figure 5.12:Parameter analysis of the PDZ domain tree reconciled witl@ihK domain tree, as shown in
the parameter space &fA andt/A. Points represent a single reconciliation under one speqgifarameter
triplet {3, T,A}. Colors represent the inferred number of events as showreifegend (a) Reconciliations
for all examined parameter tripletgb) The plot in (a) zoomed in to show detai(c) The data from (a)
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5.5. SIGNIFICANCE OF RESULTS

histories. Further, each history corresponds to a contiguegion of the parameter space that
overlaps with other regions only at well-defined, limitedibdaries. Thus, for in-depth analyses of
multi-domain families, all optimal solutions for differeparameter-space regions can be explored.

5.5. Significance of results

The studies and results provided here have demonstratethigomethods and associated software
can be used to infer the history of domain shuffling events wfudtidomain family. In addition,

| have demonstrated that the analysis of such families wsiinge from only a single domain and
inferring ancestral states based on the domain gain-lgsagh alone may underestimate the
amount of shuffling. In particular, a number of recent stadliave investigated patterns of domain
shuffling using such approaches based on domain archiéeghome. The sequences of individual
instances of a particular domain were not compared. Theoeutif these studies [134, 140, 142]
concluded that a specific domain architecture usually avoseonce in an ancient ancestor was in-
herited by vertical descent by all members of the family. ldegr, my analyses that take sequence
information to account using tree reconstruction and reitiation, shown in Figs. 5.6 and 5.10,
suggest that, for the studied families, the conclusion$he$é¢ architecture-based studies do not
hold.

Major insights can already be observed from a thorough sufithe families presented here. First,
it appears that cassettes containing the same number ofrloo@es may have evolved indepen-
dently in different family members. For example, the thr&ZRassettes in the Zo1-3 clade were
the result of ancestral domain duplication, domain losd, lanal domain duplication. Similarly,
while the SH3 domain in most MaGuK subfamilies was inheritedn an ancestral instance by
vertical descent, The single SH3 in the Carma subfamilylte$tom replacement of the ances-
tral SH3 domain by a lateral insertion from the ancestral E@equence information were not
taken into account, the above inferences would be missezlibedhe conserved domain content
would be thought to result from a single set of ancestral esyamder the gain-loss parsimony
assumption. My work, based on tree comparison, indicatgsnluich more duplication, loss, and
insertion occurred than a parsimony analysis of domainitactiores alone would suggest. Of
particular note, including sequence evolution can sugd@sitain insertions not visible to domain
architecture methods. In addition, when considering onthigéectures, domains in the same po-
sition in different genes would appear to be recent homgolbg®ever, my work shows this may
not be the case always. For example, the second I-set domBGBFR3 and FGFR4 in the PTKs
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are not closely related to the second I-set domain in FGF&Begr, they are recent homologs to
thethird I-set domain in FGFR2. An analysis through inspection, hagevould suggest that all
domain copies in position 1 are recent homologs, and so on.

Note that we often see a domain insertion with domain lossltieg in the replacement of the
domain in one architecture with a domain from another agchitre. One hypothesis for this ob-
servation, alternative to domain shuffling, is the occureeof gene conversion. Domains that have
undergone gene conversion will appear to be more closetyaeithan they actually are. A num-
ber of studies have investigated the propensity for gengersion among duplicategenesas a
function of properties such as sequence similarity andagabximity [301-310]. However, | am
unaware of a systematic evaluation of gene conversion amemgins, although specific instances
have been reported [311, for example]. My methods could bd tsidentify possible candidates
of gene conversion, which could then be further analyzedgusiore detailed information about
the gene (i.e., with other methods of gene conversion detecuch as [312-314] or [311]).

All these results are exciting because my approach has teefmd to overturn prior results based
on the domain gain-loss approach, such as inferred relates of domain shuffling and the cur-
rently held assumption that convergent evolution of theesarohitectures is rare [139, 142]. If the
gain-loss approach underestimated the number of eveetspiteviously inferred relative rates of
events are likely inaccurate. In addition, it appears thatdame architectures, especially when
including repeated domains, may have evolved more than. ohbes suggests that my method
has the potential to yield much greater insight into the gsscof domain shuffling than current
methods by explicitly inferring domain shuffling eventsatigh phylogenetic methods, rather than
considering static properties.
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Chapter 6

Co-evolution of co-occurring domains in the

human genome

In order to demonstrate the utility of my methods, | carried an analysis of all pairs of com-
parable domain superfamilies in the human genome. Domaifflisly activity between pairs of
co-occurring domains can be assessed by reconciling #gegective domain trees. Pair-wise do-
main tree reconciliation provides information about thiatree shuffling propensity of various
domain superfamilies and does not require family predistior gene family tree inference.

The computational pipeline for this study is summarizedigsF6.2a and 6.2b. Amino acid se-
guences for all genes in the human genome were obtained frerRdnther 7.0 database [315]
(http: // www. pat her db. or g). Domain architectures and domain boundaries for inssobeach
domain superfamily were identified by scanning the genoexgiences with the set of identifying
HMMs from the Pfam database [61, 62, 316]. Each domain icst@éreferenced by(l) its do-
main superfamily identifier(2) the identifier for the gene in which it occurred; af3J the domain
position in that gene (i.e., a numbiemdicating the domain was théh domain in the domain
architecture). For example, Mp@2DZ3 identifies the PDZ domain as the third domain in the ar-
chitecture of protein Mpp2. Of the roughly 20,000 genes enithman genome, 15,733 had at least
one PFAM domain identified. Of these, 6,562 (just over 40%}ained at least two domains, rep-
resenting more than 2,300 different domain architectufésse architectures range in size from
two domain instances to 330 domain instances (see Fig..6Tah)e 6.1 describes the 11 largest
architectures in terms of the number of domain instancdsdamtchitecture.
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Longest Multidomain Architectures in Human

Protein name Uniprot ID Length
Titin Q8wWz42 330

Nebulin P20929 145

Low-density lipoprotein receptor-related protein 2 P9816 75

Low-density lipoprotein receptor-related protein 1B~ QR¥Z 74
Prolow-density lipoprotein receptor-related protein 1 7Q&4 73

Obscurin Q5VST9 62
Hemicentin-1 Q96RW7 59
Mucin-16 Q8WXI7 55
Fibrillin-1 P35555 52
Fibrillin-2 P35556 52
Fibrillin-3 Q75N90 52

Table 6.1:The 11 longest domain architectures, in number of domaiamees, of multidomain proteins
in human.
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Figure 6.1:(a) The distribution of architecture lengths for all multidomaroteins in the human genome.
(b) Distribution of the sizes of domain superfamilies, by thenler of domain instances identified in the
human genome. In both histograms, the final column represgininstances greater than 25. A list of the
longest architectures and largest families can be foundloteB 6.1 and 6.2, respectively.
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Largest Domain Superfamilies in Human

Domain Superfamily Pfam name PfamID Size
Zinc finger, C2H2 type zf-C2H2 PF00096 6,111
Ankyrin repeat Ank PF00023 1,308
WDA40, G-beta repeat WD40 PF0O0400 959
Leucine-rich repeat LRR PFO0560 844
Fibronectin type Ill fn3 PF0O0041 705
7 transmembrane receptor (rhodopsin family) Am PFO0001 670
Cadherin Cadherin  PF00028 619
Collagen triple helix Collagen PF01391 584
Immunoglobulin I-set I-set PFO7679 541
EGF-like EGF PFO0008 463
Immunoglobulin ig PF00047 420
Tetratricopeptide TPR PF00515 405
Protein kinase Pkinase = PF00069 378
Calcium-binding EGF EGECA  PF07645 344
RNA recognition motif RRM1 PFO00076 319
Sushi Sushi PFO0084 317
Kruppel associated box KRAB PF01352 311
Kelch motif Kelchl PF01344 296
Spectrin repeat Spectrin  PF00435 290
Pleckstrin homology PH PF0O0169 273

Table 6.2:The 20 largest domain superfamilies in human, as defineddwndmber of domain instances
identified in the human genome.

Once the entire genome was scanned and domain boundariesdsatified, the amino acid se-
guence of every domain instance was extracted from the gerdata. In this dataset, there were
3,891 different domain superfamilies ranging in size frame mstance to over 6,000 instances. The
distribution of superfamily sizes, by the number of domaistance found in the human genome
can be seen in Fig. 6.1b. The largest families are shown ile TaB

These files were then processed following the tree congtrupipeline, shown in Fig. 6.2a. MSAs
were built for all domain superfamilies with three or morpnesentatives in the data set using the
MAFFT program [317]. Each alignment was then trimmed to reenmoorly aligned and uninfor-
mative columns using the TrimAl program [318]. The trimme&Mwas then used to reconstruct
a domain tree for each superfamily using the Neighbor-agifiistance-based) method provided
in the Phylip package [288] and bootstrapped 100 times.

Once trees for each superfamily were constructed, recaticit was performed following the
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Figure 6.2:(a) Tree Construction Pipeline. First, domains are identifiechfthe amino acid sequences and
the domain model database, providing domain architecamdslomain instance boundaries, which are used
to extract domain sequences. A multiple sequence alignimamgnstructed for each domain superfamily
and then trimmed to remove poorly aligned regions. Finallgomain tree is constructed for each domain
superfamily. (b) Reconciliation Pipeline. Domain architectures are aredyto produce a list of all co-
occurring domain pairs. Reconcilable domain pairs aretified, and the trees corresponding to these pairs
are then reconciled in 8iTUNG, providing data on domain shuffling events.
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pipeline in Fig. 6.2b. | used the identified domain architees to compile a list of co-occurring
domain pairs. Trees for all comparable domain pairs were theonciled. Given a candidate
reference domaibr and a candidate embedded doma Dr andDg arecomparabléf

1. Dr andDg co-occur in a protein more than once,

2. Dr appears exactly once in each protein in which they co-occur.

Recall that the reconciliation algorithm takes as input@ted reference tree, a rooted embedded
tree and a mapping between the leaves. In this case, the mgaispéstablished by protein co-
occurrence. Each embedded domain instance is mapped tefédrenrce domain instance with
which it co-occurs. The requirement thag occur only once in each protein ensures that this
mapping is unique and unambiguous. Note that given a corblgapair of domainsp; andDo,
each of which occurs only once in every protein in which theyoccur (a one-to-one pair), either
member of the pair can take the role of the reference domairthi$ case, the corresponding
domain trees are reconciled twice, once Witk = D1 and once wittDr = D». If one member

of the pair appears more than once in one or more proteins (g-twaone pair), then the pair
can only be reconciled in one direction. dbth domains appear more than once in a protein (a
many-to-many pair), then the pair is not comparable andaamnreconciled at all. For example,
in Fig. 6.3a the blue domain co-occurs with the red domam iandg,. Because the blue domain
only appears once in each protein, the blue domdbdgiand the red domain Bg, as in Fig. 6.3b.

In this case, the domains are many-to-one and a mappingilg established. However, we can
not treat the red domain &y, with the blue domain aBg. As seen in Fig. 6.3lg1_b maps to
bothg;_r1 andg;_r2, and the mapping of the parentgf b cannot be determined.

Once all comparable pairs were identified and the referendeeenbedded roles assigned, these
pairs were reconciled usingd¥uUNG’s command-line functionality with the duplication, inten,
and loss algorithm. Of the 4,097 different co-occurring®a?,914 domain pairs were reconciled
(see Table 6.3). Of the 1893 comparisons in one directi@®7linferred at least one event. This
indicates that 606, or roughly 68%, of reconcilable domaiirgco-evolved by vertical descent
with no additional shuffling once the initial pair was formedhus, more than half of compa-
rable pairs either formed a pair at least twice in evolutigriastory or sustained a duplication.
Fig. 6.4 shows the distribution of the number of duplicatan insertions events inferred in a
reconciliation. Most reconciliations contained only a fevents, implying that most domain pairs
evolve largely through co-divergence. Some pairs, howabaw a high amount of domain shuf-
fling, such as the reconciliations of Nebulin with SHIJ143 duplications and 6 insertions) and
Cadherin with Cadheri2 (5 duplications and 137 insertions).
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Figure 6.3:Explanation ofx-to-y mapping, based on the example family in Fig. {&.Domain architec-
ture of the blue and red domain-containing protei(t®. A many-to-one mapping of the leaves of the red
domain tree to leaves of the blue domain tree, because mameotie leaf in the red tree is mapped to the
same leaf in the blue treéc) A one-to-many mapping of the leaves of the blue domain tréeatees of the
red domain tree, there exists a leaf in the blue tree that goethto more than one leaf in the red tree. Thus,
when reconciling the red and blue domains, only the blue docan act as the reference.

Summary of Domain Pairs in Human.

Reconciliations

Pairs of distinct domains NA
Only one leaf in both trees 0
Many-to-many 0
Many-to-one 872
One-to-one 2042
Total 2,914

Table 6.3:The number of different co-occurring pairs of domains in llkenan genome, broken down by
their x-to-y relationships.
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CHAPTER 6. CO-EVOLUTION OF CO-OCCURRING DOMAINS IN THE HUMA GENOME

Of the reconciliations resulting in at least one event, 5@Btained only duplications and losses
and 862 contained only insertions and losses; the remat6bg-ontained both duplications and
insertions. These numbers suggest that most reconailgasice dominated by either duplication or
insertion, but not both. Fig. 6.5 explores this possibilitsther. As seen in the figure, duplications
and insertions do seem to be negatively correlated — relemhgairs that have many duplications,
tend to have few insertions, and vice versa. Spearman’s ganklation test [319] reveals that
duplications and insertions are slightly, negatively etated, with a significant p-value. Overall,
as suggested by this figure, the number of domains that wpleated by duplication is greater
than the number replicated by insertions (the ratio of daplons to insertions is 1.23). Note
that my methods do not consider events involving more thadmmain at a time —eompound
events While the total number of events may be overestimated ifgaund events are common,
the number of domainaffected by duplication or insertion are still the same. §hbese results
suggest that the effect of domain duplication is more comthan domain insertion.

In addition to investigating trends in inferred events pagonciliation, | also analyzed the total
number of events inferred per domain superfamily. When éxiag events on a per superfam-
ily basis, we can further break this down into superfamidesng as the embedded or reference
domain. For each domain superfamib, the total number of events is calculated twice: first, by
summing the events for all reconciliations in whibh= Dg and second, by summing the events
for all reconciliations in which th® = Dgr. Out of the 1611 superfamilies with more than two
children, there are 914 different embedded domain supdiéaml10 of which only act as a em-
bedded domain; and 897 reference superfamilies, 93 of vdrihact as a reference domain. The
remaining 804 superfamilies can play both roles.

When the aggregate behavior of domain superfamilies isiderexd, most families do not partic-
ipate in a large number of domain shuffling events, as seeigs B.6 and 6.7. However, some
superfamilies appear to be more mobile than others. Thessfamilies are presented in Table 6.4.

As seen in Figs. 6.8 and 6.9, when the number of events pelyfamd considered, the number
of insertions versus duplications per superfamily is weahlit significantly, positively correlated.

It is interesting to note the difference in trends when commggevents per reconciliation with
events per family. This indicates that while a domain pamndtetoeither duplicate or insert on

a per reconciliation basis, superfamilies as a whole do eeinsto continue that trend. Rather,
superfamilies will participate in both types of events, a@na family is involved with a number
of insertions it is also likely to be involved in a number ofptigations. This also suggests that
some superfamilies are generally active (i.e., partieipatboth types of events) and others are
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CHAPTER 6. CO-EVOLUTION OF CO-OCCURRING DOMAINS IN THE HUMA GENOME

Qutlier domains
Embedded domain Reference domain Duplications Inserti@gplication+ insertions

LRR_1 82 58 140
TSP.1 82 62 144
I-set 152 2 154
Spectrin 165 9 174
LamininEGF 90 85 175
Nebulin 172 6 178
EGF 167 71 238
Cadherin 49 202 251
Ank 274 41 315
NODP 61 37 98
Laminin-N 48 57 105
Cadherin2 5 138 143
SH31 152 10 162

Table 6.4: Domain superfamilies with a high number of duplication andhsertion events when sum-
marized over the embedded and reference. Events are towaedll reconciliations in which the domain
participates.

more static. This correlation effect is slightly stronger feference than embedded superfamilies.
One possible reason for this is that there is a maximum nuwf@rents that can be inferred on
an embedded tree, but there is no such limit for the refereeee This is discussed further in the

upcoming paragraphs.

| also considered how the size of the embedded and refereze® influences the number of in-
ferred events. Larger trees could allow for more shufflincgose there are more domain instances
and more chances to diverge. That is exactly what is obsenveis. 6.10 and 6.11. The num-
ber of events inferred during a reconciliation is signifitarhighly correlated with the size of
the embedded tree, and significantly, but not as highlyetated with the size of the reference
tree. This intuitively makes sense. Domain shuffling cowddbntributing to the growth of larger
domain superfamilies, in addition to gene duplication. §harger families are more likely to
have been involved in domain shuffling events. Note that thgimal number of event$\g, that
can be inferred given the size of the embedded tree. Becaataddes in the embedded tree do
not represent any event, the maximum number of nodes thateassigned an event is limited
by the number of internal nodes. Thus, the maximal numbeupfichtions and insertions in the
embedded tree iBg = (‘V—ZE| —1). While the number of events in some reconciliations reaches
Ne through a combination of duplications and insertions (bid1a), it is interesting that several
achieveNg with only duplication events (Fig. 6.10a), but only a fewaledlg with insertion events
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Near-Maximal Number of Events

Embedded domain Reference domain Duplications Insertiovs| |Vg|
ig RhoGEF 17 0 35 1
Ank FYVE 20 0 41 1
PPAK Pkinase 23 0 47 1
Ank MutS.V 24 0 49 1
TSP1 F5F8.typeC 24 0 49 1
RNA_pol Rpb1R RNA _pol_Rpb12 25 0 51 1
RNA_pol Rpb1R RNA_pol Rpb13 25 0 51 1
RNA_pol Rpb1R RNA_pol.Rpb1l1 25 0 51 1
RNA _pol.Rpb1R RNA pol. Rpb15 25 0 51 1
RNA _pol Rpb1R RNA pol.Rpbl14 25 0 51 1
fn3 LamininN 27 0 55 1
LSPR Cu-oxidass 28 0 57 1
Ldl_recepta NHL 29 0 59 1
Ldl_recepta EGE2 29 0 59 1
Ldl_receptb NHL 31 0 63 1
Ldl_receptb EGF2 31 0 63 1
Nebulin SH31 143 6 321 5
Sushi Pentaxin 31 0 63 1
CheC PDZz 32 0 65 1
I-set 1Q 36 0 73 1
I-set G2F 42 0 85 1

Table 6.5:Reconciliation pairs that meet or nearly meet the maximumlyer of events on a tree, based

on tree size. Events are for the specified reconciliation.

only (Fig. 6.10c). The reconciliations that readp through duplications plus insertions are also
the domains that meet, or nearly meet, the maximum throughadtions alone (see Table 6.5).
One explanation for this phenomenon is the presence of gertes human genome that contain
long strings of domain repeats, which likely evolved througpeated domain duplication, and a
lack of genes which evolved domains solely through domasaritons.

In contrast to the embedded tree, the reference tree maynmangethan one event associated with
any node. The red lines in Figs. 6.10b, d and 6.11b reprelsemétonciliations that have as many
events as nodes in the reference tree. Points above thisdireemore events than nodes in the
reference tree, indicating that some nodes in the refereeeeustbe associated with more than

one event. Points below this line indicate reconciliatish®re nodes in the reference treaynot

be associated with more than one event. Note that there argeadumber of reconciliations that

fall above this line.
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Number of duplications, per reconciliation,
as a function of the size of the reference tree

Number of duplications, per reconciliation,
as a function of the size of the embedded tree
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Figure 6.10:Comparing the number of inferred events in a reconciliatiith the size of the treedy;| par-
ticipating in the reconciliation. Each dot represents glsimeconciliation.(a) The number of duplications
and theVg are significantly, but not strongly, correlate¢b) In contrast, the number of duplications and
|Vr have a weak, negative correlation that is significéitinsertions are more correlated than duplications
with [Ve|. (d) Insertions are also positively (rather than negativelyyelated with|Vr|. Spearman’s rank
correlation,r, between duplications or insertions aM] is shown with its p-value. The red solid lines in
(@) and (c) represent number of evest®.5x [Ve| — 1, while the red solid lines in (b) and (d) represent
number of events- |Vg|.
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Number of dups plus ins, per reconciliation, Number of dups plus ins, per reconciliation,
as a function of the size of the embedded tree as a function of the size of the reference tree
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Figure 6.11:Comparing the number of inferred events in a reconciliatidgth |\V;|. Each dot represents a
single reconciliation(a) The number of duplications and insertions are highly, agdigcantly, correlated
with [Vg|. (b) In contrast, the duplications plus insertions, are lessshill significantly, correlated with
I[Vr|. Spearman’s rank correlation, between duplications plus insertions and tree size is shaith its
p-value. The red solid line in (a) represents number of ever.5« |Vg| — 1, while the black solid line
represents the least squares best fit of a line: number ofseve®d 284 |Ve|. The red solid line in (b)
represents number of events\Vg|.

| also considered the correlation between the number ofredeevents and the promiscuity of a
domain, quantified by the number of other superfamilies wititch the domain co-occurs. Do-
main promiscuity is often assumed to also be a measure of aid@fimobility.” In general, the
thought is that a domain has more partners because it hasrsssted into more contexts. How-
ever, because models currently in use do not capture dymaoperties, little evidence is available
to refute or support this assumption. Fig. 6.12 shows sgalités of the number of co-occurrences
with distinct domains as a function of the number of domasentions. If promiscuity arises from
increased mobility, we would expect co-occurrences toeiase with insertions. While this gen-
eral trend is seen, with a statistically significant, pesittorrelation, Fig. 6.12 shows that some
domains co-occur with many other domains, yet have expegttrelatively few insertions while
others are involved in many insertions, yet have relatifely partners (see also Table 6.6 for an
example of these domains). These are potential attraatbifendomains and are good candidates
for a detailed study for evidence of mobility (or lack thef)eevhich is beyond the scope of this
thesis.
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CHAPTER 6. CO-EVOLUTION OF CO-OCCURRING DOMAINS IN THE HUMA GENOME

Domains with Poor Correlation between Partners and Insertons
Embedded domain Reference domain Number partners Duphesat Insertions

Cadherin 7 49 202
Neur.chanmemb 1 0 12
ConnexinCCC 1 0 11
Connexin 1 0 11
FG-GAP 4 5 42
Laminin.EGF 14 90 85
EGF 20 167 71
TSP.1 18 82 62
LRR_1 21 82 58
AT _hook 11 15 1
I-set 20 152 2
dsrm 9 10 1
RasGEEN 8 0 1
SAM_2 8 1 1
PH 43 11 18
efhand 25 17 5
RhoGEEN 19 2 3
Cadherin2 2 5 138
CadherinC 2 4 41
Reprolysin 4 10 53
NeurchanLBD 1 0 12
Integrinalpha 2 1 24
LaminincN 7 48 57
Bromodomain 14 5 1
efhand 14 16 1
I-set 9 5 1
zf-CXXC 9 5 1
RhoGEF 21 56 3
PH 38 26 10
Pkinase 36 51 20
SH31 31 152 10

Table 6.6:Domain superfamilies with the weakest correlation betwgemiscuity (number of different
partners) and the number of inferred events, includingeeithany partners and few events, or few partners
but many events. Events are totaled over all reconciliationwhich the domain participates as either the
embedded or reference tree.
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Figure 6.12:Comparing the number of different superfamilies with whactiomain co-occurs to the num-
ber of inferred events all reconciliations. Each dot repnésthe summarized data for a domain superfamily.
The number of insertions summed over all reconciliationsafdomain acting ag) the embedded angh)

the reference are positively correlated, with a high-lesfesignificance. Spearman’s rank correlation,
between insertions and the number of partners is shown tgith-value. The solid black lines represent

y=X

This analysis also provides evidence for twavergent evolutioof domain architectures. In the
scatter plot in Fig. 6.12, the domains with the most insadibave relatively few partners, sug-
gesting that domains are repeatedly inserted adjacent teatime partners. This could be evidence
that certain domain architectures are particularly achgadus and suggests that these are the most
mobile domains, but not the most promiscuous domains. Tdgemvation also speaks to the ques-
tion: is it unusual for the same domain architecture to arisee than once through independent

events? The presence of domains with high insertion to covoence ratios suggests that same
domain pairs must arise more than once. Otherwise, we woyddat to see (at least) as many
partners as insertions (as represented by the black ling ifigures). Roughly 20% of domain

superfamilies in this study have more insertions than pastn
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6.0.1. Significance of results

Through this high-throughput analysis, | have demonddrtte utility of the algorithms described
in Chapter 4 for genome-scale analyses. All 2,914 tree pagrs reconciled in NTUNG in only

3 hours, 1 minute, and 28.33 seconds, on a 3.2ghz OptiPleXxGX¥émputer. In addition, | have
presented results describing general patterns of domaifflis in the human genome. First,
more than half of comparable domain pairs participated mestype of domain shuffling event.
Second, domain proliferation via duplication events isegally more common~ 1.25 times)
than proliferation by insertion. In addition, events do notur with equal frequency across all
families, and some families are more “mobile” than otherdird, comparison of the number
of inferred events with tree size and the number of co-ogogrdomains sheds further light on
domain mobility and the convergent evolution of domain asdtures. First, larger trees, and thus
larger families, are involved in more domain shuffling, whimay have contributed to the larger
size of these families. In addition, while there is a positoorrelation between the number of
partners for a domain and the number of events in which thatadiois involved, there are still a
number of superfamilies that do not fit this generalizatiBoth domains with many partners but
few events, and domains with few partners involved in mamneywere observed. This provides
indirect evidence that mobility is not synonymous with prscnity (as measured by number of
partners). However, it is not possible to determine frommypige domain tree comparisons which
of the two domains was inserted. Similarly, these resuligest that the same domain pairs form
more than once and that convergent evolution of the sameidgraat may be more common than
previously thought.
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Chapter 7

Discussion

Over the past thirty years, molecular phylogenetics hasginto a well-established and essential
field in the life sciences and is invaluable for many appiaa. Although there is an abundance of
research on phylogenetic methods for single-domain genegnt approaches are not appropriate
for the analysis of multidomain genes. When researchettsréicognized that some genes are
a mosaic of sequence fragments [52, 53], the consensus aiathdse types of genes were rare
exceptions. However, with the advent of whole genome serjngnthe extent of such genes has
become readily apparent: the percentage of genes with twwooe domains has been estimated
to range from 27% of all genes in prokaryotes and 40% in met@$32] to as much as 60%
in prokaryotes and 80% in eukaryotes [80]. Gene familiesaioing multidomain members not
only evolve via sequence substitution and gene duplicatramsfer, and loss, but also through
domain shuffling, a process in which individual domains amplidated, deleted, and inserted
into new contexts. Because multidomain families can comgisnultiple domain superfamilies
that also occur in otherwise unrelated gene families, iffedomain superfamilies in the same
multidomain family may have different evolutionary hises [27—-31]. Yet, standard phylogenetic
methods do not recognize this possibility and will not irdemain shuffling events.

Ironically, these gene families that elude current phyfege approach are of particular evolution-
ary and functional importance. They played transformatoles in key evolutionary transitions,
including the emergence of multicellularity in animals asftbrdate and early vertebrate evolu-
tion [33, 35, 81]. Many multidomain families are associateth fundamental molecular functions
such as cell signaling and cell adhesion.
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CHAPTER 7. DISCUSSION

7.1. Summary of results

In this thesis, | have presented my work @¢h) the development of a model of co-evolution of do-
mains with the locus of the gene famil) the design of algorithms to realize this modgl) the
implementation of these algorithms into software capabie-depth and/or high-throughput anal-
yses;(4) a detailed empirical analysis of a set of multidomain fagsilirom the literature, demon-
strating the power of my approach; aff) a study of domain shuffling in the human genome,
providing information on genome-level patterns of domdinffling and demonstrating the suit-
ability of my approach for genomic-scale studies.

In Chapter 3, | discussed the classical single-domain midé@dl] of gene family evolution and
the locus model of multidomain gene family evolution [15H. multidomain family is the set
of genes descended from a common locus in the genome. Undemddel, a tree structure
is an appropriate representation of multidomain familysletion; domain shuffling events are
annotations on this tree. | developed a model of the evalugfanultidomain families, in which
a multidomain protein is represented as a co-evolving seequence of domains. The domain
shuffling events and ancestral domain architectures inigterly of the family can all be inferred
by comparing trees representing these co-evolving domdirisrther developed this model in
the context of reconciliation to define the abstract domhirffing events consistent with known
molecular mechanisms for shuffling.

My integrated model of multidomain family evolution comges the evolutionary history of each
constituent domain (including the sequence mutation theg gise to it), the evolutionary history
of the locus as a whole, the domain shuffling events that gagd¢a the domain architectures, and
the ancestral domain architectures. The use of a comprebef@mal framework to investigate
co-evolutionary relationships in a multidomain contex isovel and dramatic departure from pre-
vious approaches. While several studies have focused oe aspect of these co-evolutionary re-
lationships (domain-species evolution [129,138,140,32Q] or domain-domain evolution [139]),
an explicit and comprehensive formal framework that mottedsco-evolution of domains, genes,
and species has not been proposed.

To realize this model, | developed four algorithms (preséii Chapter 4) to infer the evolutionary
history of a multidomain family:

1. Areconciliation algorithm for duplication, heuristizds, and incomplete lineage sort-
ing, given a binary embedded tree and a non-binary refereeee The details of this
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algorithm have been published ihe Journal of Computational Biolod®252] and
implemented in the NTUNG package by Ben Vernot.

2. A reconciliation algorithm for horizontal transfer, digation, and loss, given binary
embedded and reference trees. | implemented this algomtiNDTUNG and extended
the GUI to handle aspects specific to multidomain evolution.

3. A reconciliation algorithm for duplication, heuristiads, incomplete lineage sorting,
and transfer given a binary embedded tree and a non-binfenenee tree. This algo-
rithm is based on algorithms (1) and (3) that | developedast heen implemented in
NOTUNG by Han Lai, under my supervision.

4. An algorithm to infer ancestral states of the referenee &ind assign events to the ref-
erence tree, given a set of reconciled embedded trees. [fbrghm was implemented
in NOTUNG by a Master’s student, Ravi Chinoy, under my supervision.

| used my algorithms in BTUNG to apply my novel approach to two data sets: a set of multidloma
families discussed in the literature and the set of all doshai the human genome.

A few studies have considered domain trees in a reconoitfidtamework. These studies used an
ad hog informal version of this approach to explore the differimgtories of various domains in
the same multidomain family [27—-30]. In this body of worksagreement between domain trees
is inferred by inspection, and taken as general evidencemiath shuffling, although the specific
domain shuffling events are not inferred. Inference by Visugpection is error prone and not
feasible for large data sets. A limitation of this work isttha models, algorithms, or software to
infer multidomain gene family trees or domain shuffling egdrave been proposed, until now. My
algorithms and software will allow researchers to perfoimglpgenetic analysis of such families
consistently and on a much larger scale. A great advantatiedfee comparison method is that
it incorporates both sequence and domain architecturenvation. Moreover, unlike the domain
architecture model, this representation makes it possitienly to infer domain shuffling events,

but also to infer which specific domain in one gene was dugdittand then inserted into a different
gene.

In Chapter 5, | selected three multidomain families from literature (the protein tyrosine ki-
nases [27], the Notch-related genes [28], and the memlarss@ciated guanylate kinases [30]) to
demonstrate how my work can be used to study the evolutiomabffamilies. Over the last decade,
a body of work based on domain architecture parsimony hablested several hypotheses about
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the processes of multidomain evolution that are often@aat accepted theory. However, | have
demonstrated that the domain gain-loss, based on aralréepairsimony alone, may underesti-
mate the extent of domain shuffling. In particular, my apphois able to infer domain insertions
that may not be apparent to domain architecture parsimorifiods. As a result, my approach
has the potential to overturn prior results based on donraimtacture parsimony, such as rates
of domain shuffling events and the assertion that convermgesitition of the same architectures
is rare [142]. My novel methodology, which captures both domarchitecture and sequence in-
formation, provides a platform upon which to test whetheraerminformative model will lead to
different conclusions. Specifically, in my empirical arsdg, | repeatedly observed that the same
assemblage of domains may have evolved independentlyipteuitnes. As a result, domains in
the same position in paralogous genes may not be close hgmals previously assumed. These
results suggest that my new method has the potential togeavideeper, more detailed glimpse
into the area of multidomain evolution.

In Chapter 6, | describe the application of the developedods and software to all pairs of com-
parable domain superfamilies in the human genome. Thiysawkaled a number of interesting
observations about the pattern of domain shuffling in hum&ysecifically, there was evidence
of domain shuffling in more than half of all comparable domgaairs, indicating that the pair ei-
ther formed at least twice in their evolutionary history mcluded a domain duplication. Also of
note was the observation that domain duplications are In28stmore common than insertions.
Summarizing results over all instances of a particular dorpeovided further insights into the
behavior of domain superfamilies as a whole: A co-occurgag of domains tends to proliferate
eitherby duplication or by insertion. In contrast, families as aokewill participate in both types
of events, and if a family is involved with a number of insenis it is also likely to be involved in
a number of duplications.

Comparing the inferred number of domain shuffling eventh wibperties of domain superfamilies
indicated two interesting correlations. First, the numifezvents inferred during a reconciliation
is significantly and highly correlated with the size of theledded tree, which is representative
of the size of the domain family. This suggests that largenilias are larger because they were
involved in more domain shuffling with gene duplication. @ft&was the observation that a few
domain pairs reach the maximal number of events that carféeed from tree discordance given
the size of the embedded tree. These are mostly the resudinefsgthat contain long strings of
domain repeats, which likely evolved through repeated domaplication. In addition, a num-
ber have reference trees containing nodes associated withtinan one event. This observation,
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plus the distribution of events per reconciliation, indésathat there is gradientof “mobility”

in which some superfamilies are much more mobile than oth&hss was further investigated
by the comparison of the number of different co-occurringmexs of a domain, a widely used
measure of promiscuity, with the amount of shuffling in whiblat domain was involved. While
this comparison revealed a correlation between these tantijies, there were noted exceptions.
Some domains co-occur with many other domains, yet haveiexped relatively few insertions
while others are involved in many insertions, yet have iadat few partners. This indicates that
there may be a distinction between mobility and co-occueemlthough these definitions were
previously assumed to be synonymous (see [154]). The presdrmlomains with high insertion to
co-occurrence ratios also suggests that domains are eglheatiserted adjacent to the same part-
ners and is possible evidence that convergent evolutionmiadh architectures is not infrequent.

Limitations.  While the method presented here has an advantage overpsgvppoposed meth-
ods for analyzing the evolution of multidomain proteinseréh are still some limitations. First,
while my method does take sequence information from domabaesaccount, through the con-
struction of domain trees, this does not cover the full saqeef every genetinker sequences
the sequence between domains, are not included. Thus tioeyhi$ some parts of the gene are
ignored. However, this omission may not pose a significaoblem. Domain boundaries tend to
coincide with exon boundaries [102,112,321]. Also, dommaiorrespond to sequences that have
a fold and/or function found in many contexts. As a resuleytare more likely to be shuffled
than arbitrary fragments lacking these characteristiexo8d, this method assumes that all do-
main instances in the multidomain family have been acclyratenotated; yet this assumption is
not necessarily valid, as false negative errors are notranean [322]. While the effect of domain
misannotation on event inference has not been largelyesiyiVeiner et al. [127], in their study on
domain losses, reports that misannotations accountechipasmall fraction of false positive do-
main loss predictions. In addition, with increasing amguwitgenomic and structural data, as well
as improved computational techniques and continued manwation, the number of false nega-
tive domain misannotations will continue to decline [3ZBfird, the reconciliation of multidomain
families is based on an event parsimony approach, and daéschade a probabilistic model of
uncertainty, etc. Several problems remain for future wétarsimony approaches are well-suited
to data sets in which events are rare, due to selective peed2obabilistic models would comple-
ment the parsimony framework presented here. Bayesianagipes [147,159,215,219,300, 323],
which assume homogeneous rates, are appropriate for data sehich duplication and loss are
neutral, stochastic processes. A probabilistic framevpodvides a natural setting for incorporat-
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ing sequence data directly into the reconciliation procAsssuch, a complete phylogenetic toolkit
should include both approaches. However a probabilistidehloas the disadvantage that it is both
computationally intensive and that it requires enough tiataarn parameters, which may not be
possible with domain sequences since they are very shamtllfias discussed in Sec. 5.5, in-
ferred domain insertion with domain loss events may be theltref gene conversion on a domain
level, rather than domain shuffling events. The hypothesig&ne conversion can be ruled out
by screening members of multidomain gene families for gemeersion in a pre-processing step,
such as with the OrgConv [312] or GeneConv [313, 314] sofwaklternatively, my work may
prove to be a useful approach for detecting gene conversion.

7.2. Future work

The novel approach to the phylogenetic analysis of multigiorproteins, presented in this thesis,
represents a major step towards furthering our undersigrafimultidomain evolution. It further
suggests a number of open research directions, includitigfwither algorithmic development of
this work and the application of these methods to other adssesd to answer specific evolutionary
guestions.

7.2.1. Future directions for algorithmic development

| have developed and implemented reconciliation algorsiion inferring events and composing
evolutionary histories of multidomain gene families. Mgués suggest several important direc-
tions for further developmeni(l) identification of possible compound even(®) identification

of insertions originating outside the gene fami(ig) improved identification and avoidance of
temporal inconsistencie$4) parameter selection; ar{él) development of algorithms for the tree
inference problem. Many of these are unique challengesdihaiot arise in other reconciliation

frameworks.

Compound events. My event model, like all reconciliation approaches, asssithat each event
modifies one entity (i.e., domain or gene) at a time. Howeveés, possible that a fragment en-
coding two or more domains could be the target of a singlefiimse duplication, or deletion — a
compound eventf such compound events do, in fact, occur, the reconmliawvill overestimate
134



7.2. FUTURE WORK

the amount of shuffling that takes place. Current evidenggessts that domain insertions and
losses tend to involve a single domain (rather than a setrofdtts) [130,131,133,134], but it has
been observed that tandem repeats can expand througheindeipiication of several domains at
once [170, 324, 325]. Current methods to identify compouwrehts are limited to tandem repeats
involving the same number of domain instances from the samead superfamily in each dupli-
cation. Compound insertions have not been considered.l@ewent of improved methods for the
detection of compound events would be beneficial to this.figfzecifically, domain tree structure
and reconciliations could be exploited to identify compoenents.

The origin of insertions. The ability to infer the source of insertions is a particidtrength

of our approach. My algorithms, likall reconciliation algorithms that include horizontal events
such as insertion, are based on the assumption that insedrdransfers originatgithin the gene
family. A promising approach to infer insertions that ongie from outside a given multidomain
family is to consider all instances of the domain superfanmlthe genomes of interest. Recon-
ciliation methods for full domain superfamilies trees, ndat trees constructed from the domain
instance in the given multidomain family, could provide duson for inferring external domain
insertions in such cases.

Temporal constraints and cycles. To be biologically relevant, inferred insertions must obey
temporal constraints; insertions can only occur betwee@teroporaneous taxa. However, because
the relative timing of nodes in different lineages in theerehce tree is, in general, unknown,
the algorithms presented here only identify temporal Viofes that create cycles. If reference
tree nodes are partitioned into sets of contemporaneoas éapeconciliation algorithm could be
developed that only considers insertions that occur withénsame set [326]. An improved rec-
onciliation technique that incorporates species inforomatould be developed along these lines,
by exploiting divergence time estimates available fromeogources; e.g., the fossil record. If the
reference tree is a gene tree, prior reconciliation withexss tree could be used to transfer time
estimates from the species tree to the reference gene tdes,noa the mappings.

Selecting event costs.  Different values for event cost parameters may result fieidint optimal
event histories. As | demonstrated in Sec. 5.4, the set tdrdiit solutions and the region in pa-
rameter space that they occupy can be determined by santipdipgrameter space and reconciling
with these samples. The development of a methodology tesytcally enumerate all possible
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histories and sample the space of reconciliations would gesat benefit to genomic-scale studies
where sampling the parameter space is not feasible.

In addition, further genomic-scale analyses using a maxirikelihood approach could provide
estimates for domain shuffling event rates. These ratesxgressed in terms of the number of
events that occur per unit of time. These rates could therobeected into event costs — those
events with higher rates should be assigned lower costsibedhey occur more often. While a
simple inversion of rates would seem appropriate, it is mtigtically consistent. Statistical anal-
yses of parsimony methods have revealed that the apprepaia-to-cost function is the negative
natural log of the rate (i.e= Inr; for rater; of eventi) [24].

7.2.2. Future directions for biological analysis

The goal of my thesis was to develop methods to help bridggapebetween the large amount
of available multidomain protein data and our lack of efftjesufficiently detailed methods to

analyze this data. The models, algorithms, and softwaredldped to meet this goal promise to
provide the research community with tools to analyze a waagye of multidomain gene families,

which could not be studied with standard phylogenetic m#ghdvly methodology can also be

used to investigate and evaluate phylogenetic hypothé&3pen scientific questions that can be
investigated, with my methods:

1. Do different types of domains (e.g., domains associatddadhesion versus signal-
ing) have different shuffling propensities?

2. Does shuffling occur more frequently within or betweentrdolmain gene families?

3. Are shuffling rates lineage specific, and, if so, how muchatian is observed in
domain shuffling rates across species lineages?

4. How do inferred species-specific and family-specificyatempare to gain and loss
rates reported in previous studies of gene and domain #1272, 300, 327, 328]?

5. How often do domain insertions cross species boundaries?
6. Has the mobility of a given domain changed over time?

7. How does the emergence of new domains or new architeatoreslate with major
evolutionary transitions, such as multicellularity, oe #amergence of metazoans, ver-
tebrates, and primates?
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The origin of inserted domains. Almost nothing is known about thegigins of inserted domains
because prior studies were based on models in which dom&temices are indistinguishable. Un-
der such a model, all members of the domain family are equialyy donors. In order to infer
the most likely source of a domain insertion, it is necessagonsider variation within a domain
family. My algorithm infers the donor and the recipient gefi@ach insertion, making it possible
to investigate the extent to which domain shuffling occurthimia gene family, between distinct
gene families, and to what extent domain shuffling is coei@ivithin in species boundaries.

Differences across lineages. Is multidomain evolution a universal process with similahbv-
ior in all lineages, or does the interplay between gene daptin, domain shuffling and sequence
evolution differ between lineages? Since at this point idathain evolution has been studied in
much greater detail in bacteria and animals than in plardgamyi, it is difficult to know to what
extent results from those studies can be generalized. Iti@ddnany studies have been carried
out on the complete set of whole genome data available atrtteedf that study, which typically
include hundreds of bacterial genomes and only a handfullanryotic genomes. Possible lineage
specific differences would likely be obscured by this diggan numbers and the use of combined
analyses. Moreover, it has been observed that the increasgglexity of multidomain families in
metazoans coincided with the advent of multicellular atgmk is an intriguing question whether
the same patterns of gene duplication and domain inseti@nprompted the evolution of meta-
zoan signal transduction families also dominate in othregdges.

Domain promiscuity. A domain may be promiscuous because it is mobile (i.e., #agy in-
serted into new contexts) or because it is an attractor ifagertions into the neighborhood of this
domain tend to be selectively advantageous). NumerousuresaBave been proposed for quanti-
fying domain promiscuity [32,120,121,123,155,173,128]3each of which are based on domain
architecture statistics, not on a explicit model of domdinffling events. These measures repre-
sent the domain content in contemporary proteins withonsic®ring events that gave rise to that
domain content. Measures based on domain architecturstisgtnay not give a good estimate
of mobility, and thus may include domains that are attragtbut not mobile. My methodology
can be used to estimate domain mobility and compare theiseatss with previous measures of
promiscuity, as reported in Chapter 6. Two important qoestithis can help answer are: What
is the relationship between family-specific shuffling rategerred using an explicit, event-based
model, and traditional measures of promiscuity? Can evemtats distinguish between actively
mobile domains and attractors, and is such a dichotomy apjpte?
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Convergent evolution.  Several studies have considem@@hvergent evolution of domain archi-
tecturesthat is, the propensity for the same architecture to ariserthan once through indepen-
dent events. Convergent evolution is generally thoughttuorarely [116, 139], although more
recent evidence is less clear [139, 143]. The assumptisindrihese studies is that a domain
combination that is selectively advantageous, once forisadlikely to separate. Thus, identical
domain architectures in contemporary proteins are asstortaelrelated through vertical descent.
However, prior studies were based on methods that do natékpiodel events and have treated
all domain instances as indistinguishable. These modellsl @bscure evidence of repeated for-
mation of the same domain combinations. Several recentestd specific multidomain protein
families have commented on instances where convergeniteémolof domain architectures is the
most compelling explanation for similar architectures istahtly related species [178,179]. As
shown, my methodology is capable of recognizing identicaeoy similar architectures that arose
through independent events. Thus, it provides an excefietorm to investigate whether an
approach that captures sequence similarity between damstamces uncovers evidence that the
same domain architecture forms more than once.
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