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Abstract

In this thesis, I present a model of multidomain evolution with associated algorithms and software
for phylogenetic analysis of multidomain families, as wellas applications of this novel methodol-
ogy to case-studies and the human genome.

Phylogenetic analysis is of central importance to understanding the origins and evolution of life on
earth. In biomedical research, molecular phylogenetics has proved an essential tool for practical
applications. Current molecular phylogenetic methods arenot equipped, however, to model many
of the unique characteristics ofmultidomainfamilies. Genes that encode this large and important
class of proteins are characterized by a mosaic of sequence fragments that encode structural or
functional modules, calleddomains. Multidomain families evolve viadomain shuffling, a process
that includes insertion, internal duplication, and deletion of domains. This versatile evolutionary
mechanism played a transformative role in major evolutionary transitions, including the emergence
of multicellular animals and the vertebrate immune system.

Multidomain families are ill-suited to current methods forphylogeny reconstruction due to their
mosaic composition. Different regions of the same protein may have different evolutionary his-
tories. Moreover, a protein may contain domains that also occur in otherwise unrelated proteins.
These attributes pose substantial obstacles for phylogenetic methods that require a multiple se-
quence alignment as input. In addition, current methods do not incorporate a model of domain
shuffling and hence, cannot infer the events that occurred inthe history of the family. I address this
problem by treating a multidomain family as a set of co-evolving domains, each with its own his-
tory. If the family is evolving by vertical descent from a conserved set of ancestral domains, then all
constituent domains will have the same phylogenetic history. Disagreement between domain tree
topologies is evidence that the family evolved through processes other than speciation and gene
duplication. My algorithms exploit this information to reconstruct the history of domain shuffling
in the family, as well as the timing of these events and the ancestral domain composition. I have
implemented these algorithms in software that outputs the most parsimonious history of events for
each domain family. The software also reconstructs a composite family history, including duplica-
tions, insertions and losses of all constituent domains andancestral domain composition.

My approach is capable of more detailed and accurate reconstructions than the widely useddomain
architecturemodel, which ignores sequence variation between domain instances. In contrast, my
approach is based on an explicit model of events and capturessequence variation between domain
instances. I demonstrate the utility of this method throughcase studies of notch-related proteins,
protein tyrosine kinases, and membrane-associated guanylate kinases. I further present a large-
scale analysis of domain shuffling processes through comparison of all pairs of domain families
that co-occur in a protein in the human genome. These analyses suggest that(1) a remarkably
greater amount of domain shuffling may have occurred than previously thought and(2) that it is
not uncommon for the same domain architecture to arise more than once through independent
events. This stands in contrast to earlier reports that convergent evolution of domain architecture
is rare and suggests that incorporating sequence variationin evolutionary analyses of multidomain
families is a crucial requirement for accurate inference.
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Chapter 1

Introduction

Molecular phylogenetics is of central importance to understanding the origins and evolution of

life on earth. Phylogenetic analysis has also become an essential technique in life science re-

search in the 21st century, not only for answering evolutionary questions, but for a broad range

of functional applications as well. In molecular evolution, phylogenetics is the foundation for in-

vestigating the patterns and processes of sequence evolution, identifying signatures of selection,

and constructing substitution models. Molecular phylogenetics has proved invaluable for practical

applications [1, 2], such as molecular epidemiology [3, 4],cancer progression [5, 6], bioremedia-

tion [7,8], forensics [9–13], tracking rapidly evolving viruses [14,15], and circumventing pesticide

and drug resistance [16,17].

Phylogeny reconstruction also has proven invaluable for the investigation of many important sub-

jects such as function annotation, drug target selection, estimating species evolution, and correlat-

ing events with new functions. In model organism studies, evolutionary trees delineate the degree

of functional conservation across species, serving as a guide in planning experiments. In drug

design, phylogenetic analysis provides evidence of functional shifts or multiple functional roles,

information that is crucial in assessing the suitability ofdrug targets [1]. Phylogenetic analysis

is also an increasing source of inferential power in bioinformatic applications, such as homology

based functional annotation [18–20] and predicting functionally active residues from correlated

substitutions [21].

Substantial progress has been made in understanding the evolution and function of gene families as

a result of 30 years of innovation in phylogenetic algorithms [24–26]. For single-domain families,
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CHAPTER 1. INTRODUCTION

Figure 1.1:Three-dimensional structure of the multidomain tyrosine kinase protein, CSK, with the SH3
domain shown in yellow, SH2 in red, and tyrosine kinase domain in green. (Structure image generated with
the Protein Workshop software [22] from PDB entry<1FMK > [23].) A schematic of the linear sequence
of domains in the amino acid sequence encoding this structure is shown below with the same color scheme.

phylogeny reconstruction is well-studied, and good algorithms and tools are available. However,

current molecular phylogenetic theory is not equipped to model many of the unique characteris-

tics of multidomaingene families. Genes that encode this large and important class of proteins

are characterized by a mosaic of sequence fragments that encode structural or functional modules,

calleddomains(see Fig. 1.1). Multidomain families evolve viadomain shuffling(Fig. 1.2), a pro-

cess that includes insertion, internal duplication, and deletion of domains. Multidomain families

can, and often do, contain proteins with different domain composition. Moreover, a protein may

contain domains that also occur in otherwise unrelated proteins. As a result, different regions of

the same protein may have different evolutionary histories[27–31]. Yet, standard phylogenetic

methods typically rely on the implicit assumption that the entire sequence has the same evolution-

ary history. As a result, if a family contains varied architectures, it is not, in general, possible to

construct a multiple sequence alignment (MSA) that captures all of the domains represented in

family members. Also, domain shuffling events, inherently horizontal processes, are not included

in these models. Thus, even if the family can be aligned, the reconstruction process will not infer

2



the shuffling events that occurred in the history of the family.
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Figure 1.2: (a) Evolution of a hypothetical multidomain gene family in their genomic context. Hatched
bars represent the chromosome; cream rectangles representgenes, and colored boxes represent domains.(b)
Schematic of the multidomain family in (a) evolving by gene duplication and domain shuffling. Horizontal
lines are genes; circles, boxes and triangles are domains. Solid arrows represent gene evolution; dotted
arrows represent domain insertions. Note that inserted domains can originate inside or outside the gene
family. Note that genegz does not appear on the chromosome in (a).

Phylogenetic methods for analyzing multidomain gene families are urgently needed because of

their prevalence and functional importance. The percentage of eukaryotic proteins with two or

more domains is 40% according to conservative estimates [32]. The expansion in size and com-

plexity of multidomain families is closely linked to the evolution of cell signaling and cell adhe-

sion. These families are also implicated in tissue repair, apoptosis, inflammation response, antigen

recognition, and innate immunity [33–35]. Recent studies have also established strong links be-

tween multidomain proteins and mutations associated with cancer [36–39].

The goal of my thesisis to meet this need by developing phylogenetic methods to reconstruct

the evolutionary history of a multidomain family. Here I present a novel methodology to infer

the specific domain shuffling events in a multidomain family,as well as the domain architectures

of ancestral proteins. This methodology builds on the locusmodel of family evolution where a

gene family is defined as the descendants of an ancestral chromosomal locus. Consistent with

this model, I define a multidomain reconciliation frameworkin which the domain superfamilies

represented in a multidomain gene family are modeled as co-evolving entities. In this framework,

a tree is constructed for each domain superfamily, and thosetrees are combined, using phylogenetic

3



CHAPTER 1. INTRODUCTION

reconciliation, to obtain a composite history of the gene family.

My methodology stands in contrast to prior, non-phylogenetic approaches investigating multi-

domain evolution. First, this novel reconciliation framework models multidomain evolution on

multiple levels of biological organization: species, genes, domains, and sequence. Second, by

taking trees for all domain superfamilies as input, my approach captures sequence variation within

each domain family. Moreover, it is sufficiently informative to enable inference of the origin of an

inserted domain. Third, the reconciliation framework includes a more detailed, explicit model of

the events that mediate domain shuffling, rather than just domain gain and domain loss.

This methodology will allow evolutionary biologists to investigate processes of domain shuffling,

bench biologists to identify functional orthologs for domains and multidomain genes, and cell

biologists studying a specific multidomain family to complement experimental results with a phy-

logenetic analysis. The increased sensitivity associatedwith my method has the potential to yield

very different conclusions about domain shuffling processes than those obtained using models that

make more simplifying assumptions and take advantage of less information. Published articles

that use the phylogeny of a single constituent domain to represent the evolution of an entire multi-

domain gene family are increasingly common. Since it is difficult to assess how often a tree based

on a single domain accurately represents the history of other domains in the family, it is possible

that many published accounts of multidomain family evolution are misleading. Using my meth-

ods, it is possible to assess the extent to which all domains in the family have the same history.

Further, many analyses of multidomain evolution are based on the assumption that proteins with

the same domain architecture evolved by vertical descent. Such methods cannot infer replacement

of one instance with another, different instance from the same domain superfamily. By ignoring

replacements that modify the protein but not the domain architecture, current methods may fail to

recognize evidence of substantial changes in ligand specificity or protein sub-cellular localization.

In contrast, because it uses information about the sequenceof individual domain instances, my

approach is capable of recognizing changes in a protein due to domain replacement.

Roadmap to this thesis. To set my methodology in the context of prior work, in Chapter2, I

will review current knowledge in the relevant areas of evolution and computational biology. In

Chapter 3, I review the locus model of gene family evolution and prior work on reconciliation of

co-evolving entities. I then present my novel approach to inferring the history of a multidomain

gene family. In Chapter 4, I present four novel algorithms torealize this approach, all of which

have been implemented in the NOTUNG software. These algorithms include:(1) Reconciliation

4



of a binary embedded tree with a non-binary reference tree toinfer duplication, heuristic loss, and

incomplete lineage sorting events;(2) Reconciliation of a binary embedded tree with a binary ref-

erence tree to infer horizontal transfer, duplication, andloss events;(3) Reconciliation (combining

(1) and (2)) of a binary embedded tree with a non-binary reference tree to infer horizontal transfer,

duplication, heuristic loss, and incomplete lineage sorting events; and(4) An algorithm to infer

the composite history of events and ancestral states in a reference tree from a set of reconciled

embedded trees. The next chapters present my application ofthese algorithms to various data sets

in order to demonstrate the applicability and power of my approach and associated algorithms.

In Chapter 5, I present my evolutionary analysis of three well-studied multidomain families from

the literature: the protein tyrosine kinases [27], the Notch-related genes [28], and the membrane-

associated guanylate kinases [30]. A discussion of the results from these analyses, and how they

demonstrate the power of my approach over previous work, follows. Then, in Chapter 6, I present

the results of a high-throughput analysis of domain shuffling in the human genome. This analysis

demonstrates the types of genomic-scale information that can be inferred with my approach, as

well as the applicability of my algorithms to large-scale studies. Finally, in Chapter 7, I discuss

the strengths of my approach, including its power to infer domain shuffling events, and propose

several promising directions for future research.
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Chapter 2

Evolution of genes, domains and multidomain

gene families

In this chapter, I review current methods for phylogeny reconstruction. I also summarize methods

for modeling domains, as well as some of the current domain databases. This chapter also includes

a discussion on the molecular mechanisms behind domain shuffling and a survey of previous work

on the evolution of multidomain proteins and gene families.

2.1. Phylogeny reconstruction

Phylogenetic reconstruction is the process of reconstructing evolutionary histories of genes and

species. Phylogenetic (or evolutionary) treesare commonly used to describe the evolutionary

history of sites, genes, genomes, and species. In general discussions of phylogenetics, the generic

termtaxonis used to describe the entities on the nodes of an evolutionary tree (i.e., sequences in a

gene tree or species in a species tree). A species phylogeny (e.g., Fig. 2.1a) is a tree representing a

hypothesis concerning the evolutionary history of a group of species. Leaves represent modern day

species. Internal nodes represent speciation events, and the species associated with these nodes are

the common ancestral species. Species trees may be constructed from one or many gene sequences;

from other types of molecular features, such as intron positions; or from morphological, behavioral,

or physiological characters. Regardless of the type of dataused, the goal is to reconstruct the

history of populations of organisms, not the history of sequences. A key concern when using

7



CHAPTER 2. EVOLUTION OF GENES, DOMAINS AND MULTIDOMAIN GENEFAMILIES

sequence data to reconstruct species trees is to ensure thatthe sequence information used accurately

reflects the history of the species. For example, unrecognized gene duplications or lateral gene

transfers can result in incorrect species trees. The problem of determining species phylogenies

continues to be an active area of research and debate [40]. Inthis thesis, I assume the species tree

is known and focus on the evolution of multidomain families.

A gene tree (e.g., Fig. 2.1b) represents the evolution of a gene family. A gene familyis a set of

homologousgenes, genes derived from a common ancestor by vertical descent [41]. New family

members arise via gene duplication, lateral gene transfer,and speciation. A pair of genes that

resulted from a speciation event are referred to asorthologs, while a pair of genes that result from

a gene duplication are referred to asparalogs. Leaves in the gene tree represent contemporary

sequences, which may be drawn from organisms in one or in morethan one species. Bifurcations

represent large-scale evolutionary events, such as speciation, gene duplication, lateral gene transfer,

or incomplete lineage sorting. Internal nodes represent ancestral sequences.

α

β

γ

Fly

Worm

Bird Mouse

T
S

(a)

x

g1_W g1_F

g2_B g2_M

z

y
T
G

(b)

Figure 2.1:Definition of species and gene trees.(a) A binary species tree.(b) A hypothetical binary gene
tree with genes sampled from species in (a).

The first step in reconstructing a gene family tree is to identify all gene family members in the

species of interest and obtain a sequence for each family member. Second, these sequences are

transformed into an abstract representation from which phylogenetic relationships can be con-

structed. This abstraction can be represented as either character data or pairwise distances between

taxa. Parsimony and probabilistic methods operate on character data, and distance-based methods

use pairwise distances. A character is an attribute that cantake on two or more states. Abinary

character has two states, typically referring to the presence (1) or absence (0) of the character (e.g.,

“has wings” or presence of an intron). Amultistatecharacter has three or more states (e.g., A, C,

G, T). These can also have numeric values (e.g., the number ofmandibular hairs). Each taxon is

described in terms of its particular character states, and mutational change is modeled as a change
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2.1. PHYLOGENY RECONSTRUCTION

Comparison of Phylogenetic Reconstruction Methods
Characteristic MaxPar Prob Dist

Data Type Character Character Distance
Topology Yes Yes Yes
Branch Lengths Number of Changes Probability Distance
Ancestral states Yes Most probable state No
Dominant evolutionary force Selection Neutral Neutral
Multiple substitutions No Yes Yes

Table 2.1:Summary of differences and similarities among the three major methods for phylogeny recon-
struction. MaxPar – maximum parsimony; Prob – probabilistic; and Dist – distance.

in character state. For sequence data, this transformationis typically achieved by constructing an

MSA. Each column of the MSA is treated as a character. In this case, a change in state corresponds

to a substitution of one nucleotide or amino acid for another. Sometimes sequence features, such

as introns or small deletions, are treated as binary character states; e.g., the character associated

with a particular intron position would be in state 1 if the sequence has the intron state and state 0

if it does not. Finally, the evolutionary tree is reconstructed from the MSA by searching the space

of all possible trees, seeking the tree that best explains the MSA with respect to a given model of

mutational change [24]. In the case of unrooted trees, fork contemporary taxa, there are(2k5)!
2k3(k3)!

different trees to consider; for rooted trees, there are(2k3)!
2k2(k2)!

topologies. Many heuristics have been

developed to infer a tree without considering every topology; however, these methods are often not

guaranteed to find the optimal tree. The resulting tree is a hypothesis for the evolutionary history

of the gene family and will provide some or all of the following information, depending on the

method used:

– Tree topology (or branching pattern),

– Branch lengths,

– Specific mutations that occurred on each branch, and

– Ancestral sequences.

Current models in molecular phylogenetics [24] fall into three categories: maximum parsimony,

probabilistic, and distance-based methods. In general, the three methods differ in both the evolu-

tionary model and the optimality criterion. I will briefly discuss each of these here (see Table 2.1

for a summary).
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CHAPTER 2. EVOLUTION OF GENES, DOMAINS AND MULTIDOMAIN GENEFAMILIES

2.1.1. Parsimony

The primary assumption of parsimony methods is that mutations occur rarely and therefore the tree

that requires the fewest mutations, or character state changes, to explain the data is the preferred

evolutionary hypothesis [42]. In the small parsimony problem, the topology of the tree and the

character states for leaf taxa are given. The goal is to inferancestral character states of ancestral

taxa (internal nodes in the tree) and the minimum (or minimumcost) set of events required for

this topology. Calculating the minimum number of changes for a fixed topology is simple and

can be determined using Fitch’s Algorithm [43]. In the smallparsimony problem, the topology

of the tree and the character states for leaf taxa are given. The goal is to infer ancestral character

states of ancestral taxa (internal nodes in the tree) and theminimum (or minimum cost) set of

events required for this topology. Additional criteria canbe imposed to model particular types of

mutational processes. For example, Camin-Sokal parsimonymodels irreversible mutations, such

as small DNA deletions, by imposing the additional restriction that each character may only change

from state 1 to 0 once in the tree. Dollo parsimony, designed for features that are hard to gain, but

easy to lose, such as introns, allows each character unlimited changes from 1 to 0, but only one

change from 0 to 1.

The goal of the large parsimony problem, given the characterstates of a set of extant taxa, is to find

the tree topology that minimizes the cost of the events required to explain the observed character

states. The large parsimony problem is NP-complete: an exact solution requires enumeration

and scoring of all possible tree topologies. If the set of taxa is sufficiently large, the problem

can be tackled heuristically by sampling the space of tree topologies using a tree rearrangement

strategy, such as nearest neighbor interchange or subtree pruning and regrafting. Note that the

small parsimony problem is a subproblem of the large parsimony problem, since solution of the

small parsimony problem is required to score each enumerated tree.

2.1.2. Probabilistic methods

Under the maximum likelihood framework, given character data D and a model of evolutionM,

the optimalT is defined to be the tree that maximizes the likelihood of observing the data given the

modelP[D|T,M] [24, 44, 45]. Like maximum parsimony, phylogeny reconstruction by maximum

likelihood estimation is also NP-complete and an exact solution requires enumeration of all tree

topologies. In the maximum likelihood formulation, the likelihood, rather than the event cost, is
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2.1. PHYLOGENY RECONSTRUCTION

used to score each candidate tree.

Given the assumption that all positions (columns) in the MSAevolve independently,P[D|T,M] =

∏i P[Di|T,M], whereDi is columni in the MSA. The Bayesian framework provides a related prob-

abilistic approach and defines the optimal tree to be that which maximizes the posterior probability

of the tree, given the data and the model,P[T|D,M] =
P[D,M|T]∗P[T]

∑T P[D,M|T]∗P[T] . The probability distribu-

tion over all possible trees can be estimated using Markov chain Monte Carlo (MCMC) methods.

These samples can then be used to estimate probabilities regarding the true tree.

Typically, the model of evolution is a parametrized Markov model describing the probability of all

possible state changes for each character. Thus, it models state changes according to a model of

sequence substitution. Depending on complexity, models are able to capture the following prop-

erties [24, 46, and works cited therein]:(1) the propensity of different types of character changes

along a tree (the substitution rate);(2) a background base or residue distribution (the propensity

of each character to appear), either for the entire sequenceor at different sites;(3) different rates

at different sites (e.g., different substitution rates at the N-terminus and the C-terminus, or, most

descriptive, different substitution rates at each position in the sequence) and(4) branch lengths

for a given tree topology. To calculate the likelihood of a given tree in which the topology and

branch lengths are specified, all sites in the MSA and all combinations of internal nodes must be

considered. However, branch lengths are usually not provided and must be inferred. For a given

topology, there is no analytical method to calculate the optimal branch lengths. Rather, lengths are

determined numerically by following the likelihood curve to a maximum.

More realistic models of substitution have more parameter values and are thus able to capture

more information; less complex models capture less information. For example, a very simple

model of sequence substitution for sites in a DNA sequence (Jukes and Cantor [47]) assumes that

all nucleotide substitutions are equally likely, the background base distribution is 25% for each

nucleotide, and that each position of the sequence has the same substitution rate. This model has a

single parameter, the substitution rateα. Various models represent various compromises between

complexity, accuracy, and the necessity to make additionallimiting assumptions. As the number of

parameters in the model increases, so does computational complexity. The amount of data needed

to obtain an accurate estimate of the parameter values increases as well. In addition, different

models of evolution may result in different reconstructionresults.

In the cases where different models result in grossly different inferences, model selection is a

crucial initial step in phylogeny reconstruction. Variousstatistical measures, such as likelihood
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CHAPTER 2. EVOLUTION OF GENES, DOMAINS AND MULTIDOMAIN GENEFAMILIES

ratio tests and information criteria, have been applied to select the best model of evolution from

a set of models [48, and works cited therein]. Under the likelihood ratio test, the relative merit

of two models is assessed using the quantityLRT = 2(l1− l0), where l i is the maximum log-

likelihood under modeli, and the first model is the more complex of the two. A large value ofLRT

implies that the more complex model significantly improves the inference and should thus be used;

otherwise, the less complex model is favored, since an increase in complexity does not significantly

improve results. Information criteria, on the other hand, provides a way to compare all models

simultaneously. In this case, the log-likelihoodl under each model is penalized by the number of

its parameters,k, and, in some cases, the sample sizen. The two widely used criteria are the Akaike

Information Criterion (AIC=−2l +2k) and Bayesian Information Criterion (BIC=−2l +k logn),

both of which represent the loss of information by using a given model. The smaller the value, the

better the fit. These three approaches are all well-studied and available in software packages for

model selection [48–50].

2.1.3. Distance methods

In addition to the use of character data, a tree can be inferred usingobserveddistances between

all pairs of taxa. In the context of molecular evolution,o is derived from the aligned sequences in

the MSA (e.g.,oi, j is defined to be the number of mutations that occurred betweeni and j). A tree

with branch lengths implies a distancedi, j between leavesi and j. For each pair of input taxai and

j, di, j is the sum of the branch lengths connectingi and j.

If there exists an unrooted tree that exactly fits the distances ino (i.e., di, j = oi, j ∀ i, j), theno is

called anadditivematrix. The four-point condition provides a simple test of additivity: for every

four taxai, j, k andl ,

oi, j +ok,l ≤max(oi,k+o j ,l ,oi,l +o j ,k),

oi,k+o j ,l ≤max(oi, j +ok,l ,oi,l +o j ,k),

oi,l +o j ,k≤max(oi, j +ok,l ,oi,k+o j ,l ). (2.1)

If there is no error, then observed distances should be additive and the unrooted tree that fits such

distances can be found in polynomial time using the NeighborJoining [51] algorithm. However, in

practice, the observed distances are not additive, due to various sources of error, such as multiple
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substitutions per site. While the total number of substitutions separating two sequences cannot be

observed directly, except in very closely related sequences, it can be (partially) estimated from the

number of observed mismatches using the evolutionary models cited above in the discussion of

probabilistic methods.

In general, the problem of fitting pairwise distances to a tree is over determined and no exact

solution exists. If the observed matrix is not additive, theoptimal tree is defined to be the tree,

with branch lengths that minimizes the discrepancy betweenthe tree distancesd and the observed

distanceso according to some metric. Common metrics include least squares (∑k
i=1 ∑k

j=i+1(oi, j −

di, j)
2), the Fitch-Margoliash criterion (∑k

i=1 ∑k
j=i+1

(oi, j−di, j )
2

o2
i, j

), and the minimum evolution crite-

rion (the sum of all branch lengths, as determined by least-squares).

2.1.4. Rooting trees

The phylogeny reconstruction methods surveyed above will only infer an unrooted tree. If se-

quences obey a molecular clock, distances from the root to leaves will be the same for all leaves.

A distance matrix with this property is calledultrametric. A test for ultrametricity is provided by

the three-point condition, which states that for every three taxai, j, andk,

oi, j ≤max(oi,k,o j ,k),

oi,k≤max(oi, j ,o j ,k),

o j ,k≤max(oi, j ,oi,k). (2.2)

In this case, the rooted tree can be inferred from the distance matrix in polynomial time using the

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm. However, for many

datasets, the molecular clock hypothesis does not hold, andUPGMA may result in a tree with

incorrect topology and/or branch lengths. A second approach in molecular phylogenetics is to use

an outgroup species (e.g., an ursine sequence for a set of sequences from canids) or sequence from

a more distantly related gene family member (e.g., a myoglobin sequence for hemoglobin data set).

In this case, the root of the tree is placed on the branch leading to the outgroup. A third approach,

described later in Sec. 3, attempts to place the root such that the number of events (duplication,

loss, etc.) are minimized.
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CHAPTER 2. EVOLUTION OF GENES, DOMAINS AND MULTIDOMAIN GENEFAMILIES

2.2. Domain superfamilies

The observation that genes are composed of distinct moduleswas first introduced in the 1970’s [52,

53]. These modules are now commonly referred to as domains. Adomainis a sequence fragment

that acts as an independent module and is found in multiple sequence contexts. Domains have

been defined variously as structural units, i.e., sequencesthat will fold into a well defined, three-

dimensional shape independent of the surrounding amino acid sequence; functional units, i.e.,

sequence fragments that encode a particular function; or as“evolutionary” units, sequence frag-

ments that are found in multiple sequence contexts. In many cases, all three definitions apply. I

use the term “domain” as an abstraction of a particular structural fold or functional motif and the

termdomain superfamilyto refer to the set of all amino acid sequences that encode that domain.

A specific member of the domain superfamily is called adomain instance.

There are generally three steps to characterize a domain of interest: discovery, modeling, and

recognition. Many of the first recognized domains, such as the Ig domain in 1973 [52, 54, 55]

and the Rossmann domain in 1974 [56], were discovered through recognition of structures or se-

quences that occurred in otherwise unrelated proteins and which had shared similar functions.

Today, systematic,ab initio approaches to domain discovery are employed [57–59]. Such meth-

ods for domain discovery on the sequence level are possible because the large amount of available

sequence data makes it possible to recognize conserved patterns automatically. These methods

use sequence information with inferred tertiary structurefolding, integrating protein folding sim-

ulations and unsupervised machine learning techniques, and information about domain sequence

properties to predict the likelihood of domain boundaries in sequence data.

Several domain databases have been constructed in the context of projects to obtain a comprehen-

sive characterization of the protein domain universe [60–67] (summarized in Table 2.2). These

databases store and organize models for each domain superfamily. Databases differ in their objec-

tives, the definition of domain used, modeling methods, and whether the procedure is automated or

curated. When modeling the sequence composition of a domain, the first step is to build a multiple

sequence alignment (MSA) based on an all known instances of that domain. It is often valuable to

express this information in a compact, yet informative, form. The simplest of these forms is the

consensus sequence[68], where each residue of the model sequence is the most common residue

at that position of the MSA. Theposition-specific scoring matrix(PSSM), or profile, represents the

diversity in the MSA as a 20-row matrix that provides the likelihood of each amino acid at every

position in the domain. While PSSMs provide more information than consensus sequences, they
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2.3. MULTIDOMAIN GENE FAMILIES

do not easily capture gaps or insertions. The profilehidden Markov model(HMM) [69] does model

this information through incorporation of transition probabilities between states – the conditional

probability of the residue at a certain position depends on the previous residue.

Once a model is constructed, it can be used to search sequencedatabases to find other instances

of that domain, which are then used to refine the model. The domain content of a full-length

amino acid sequence can be determined by comparing the sequence to all models in one of these

databases [60, 63–67] of probabilistic domain models. Thistypically results in a sequence anno-

tated with starting position, ending position, and name or identifier of each domain identified.

2.3. Multidomain gene families

Multidomain gene families are gene families that encode proteins with two or more domains.

These families can, and often do, contain proteins with varied domain architectures. Annotating

whole genome sequences with domain databases has revealed the extent of genes that encode

multidomain proteins: estimates of the percentage of proteins that have two or more domains

range from 27% in prokaryotes and 40% in metazoans [32] to 40%– 60% in prokaryotes to 60%

– 80% in eukaryotes [80].

Multidomain gene families are of particular evolutionary and functional importance. Multidomain

families played a transformative role in key evolutionary transitions. They expanded preferen-

tially coincident with the emergence of multicellularity in animals. A number of anecdotal stud-

ies [35, 81, etc.] have proposed that many metazoan familiesarose through a pattern of gene du-

plication followed by domain insertion, yielding the progenitors of major subfamilies in various

families involved in cell-cell signaling and cellular adhesion. These subfamilies then expanded

through further gene duplication. Additional expansions coincided with chordate and early verte-

brate evolution [33,35,81].

Gene modularity is a powerful mechanism for the evolution offunctional variation or interac-

tion specificity within a gene family that performs a core molecular function. Many multidomain

families are associated with fundamental molecular functions such as cell signaling and cell ad-

hesion. As a consequence of their functional repertoire, multidomain families have important

health implications, especially for apoptosis, tissue formation and repair, wound healing, im-

mune response, blood-related functions, and the vertebrate nervous system [33–35]. Recent high-

throughput screens have established strong links between multidomain proteins and mutations as-

15



C
H

A
P

T
E

R
2

.
E

V
O

L
U

T
IO

N
O

F
G

E
N

E
S

,D
O

M
A

IN
S

A
N

D
M

U
LT

ID
O

M
A

IN
G

E
N

EF
A

M
IL

IE
S

Popular Domain Databases
Database Type Curated Model Notes
Pfam [61,62]
Pfam-A sequence yes HMMsUses structure information, when available, to ensure

correspondence to only one structural domain, improve the alignment
and better define domain boundaries. Focuses on divergent domains.

Pfam-B sequence no HMMsAll other domains which are not in Pfam-A, clustered automatically.
SMART [70,71] sequence yes HMMsInitial models are based on sequence clustering. Uses structure

PSSMs information when available. Only consists of information on domains
and repeats with intra- or extracellular signaling functions.

CDD [72,73] sequence yes HMMsIntegration of Pfam and SMART domains with links to proteinsin
Entrez. Hierarchical classification is loosely tied to species
evolution. Structure information is used for correction when
available. Highly curated.

PRINTS [74] sequence yes PSSMsCreates an unweighted PSSM-based fingerprint (highly conserved
motif) for every domain and uses this for classification.

SCOP/SUPERFAMILY [65] structure yes HMMsWidely used reference for hierarchical classification and structural
information when curating sequence databases. Does not contain
any domains without a solved structure.

CATH/GENE3D [75,76] structure some HMMsHighly automated, but uses hand curation for determinationof
difficult domain boundaries and remote folds.

COGs [77,78] sequence yes MSAClassification is based on proposed orthologs.
InterProa [66,79] both yes Various Integrates information from many domain databases including

PROSITE, PRINTS, Pfam, ProDom, SMART, SCOP, CATH,
TigrFams, PANTHER, and PIRSF.

Table 2.2:Summary of differences among some of the many databases available for domain identification and classification. Type refers to
whether the database is structure or sequence based; Curated refers to whether or not the database is hand-curated.

aNote that the InterPro database is not a standard domain identification and classification database. Rather, it attemptsto unify the information provided
from numerous other databases.

1
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2.4. MOLECULAR MECHANISMS

sociated with cancer [36–38]. For example, more than half ofthe members of the multidomain

Kinase family, the largest gene family, have known roles in one or more cancer processes [39].

In addition, the recent literature provides ample evidenceof the need for phylogenetic methods

for multidomain families, as illustrated by the recent September, 2010 issue ofScience Signaling

devoted to multidomain evolution.

2.4. Molecular mechanisms

Studies of domain and exon shuffling on the genomic level reveal that modular proteins arise

through various genetic “accidents,” in which aberrationsin the cell’s replication machinery result

in duplications, deletions, and rearrangements of DNA. Ourunderstanding of these processes is

rapidly increasing due to two kinds of studies. A small, but growing number of studies describe

cases where evidence of the particular domain shuffling mechanism that occurred is still discernible

in the flanking DNA of genes that arose very recently [33,82–108]. In addition, evidence is avail-

able from laboratory studies investigating microbial evolution in controlled environments such as

chemostats or in cells engineered to have high mutation rates [109,110].

These studies reveal the primary mechanisms that mediate gene duplication and domain shuf-

fling: segmental duplication, non-allelic homologous recombination (NAHR), retrotransposition,

non-homologous end joining (NHEJ), exonization of non-coding sequence, transposon-mediated

insertion, and read-through errors [33, 82–108]. Many studies of young genes report novel archi-

tectures that arose through a combination of events including a gene duplication and a domain

acquisition; one copy of the duplicated gene remains unchanged and can continue to perform

the pre-duplication function, freeing the copy that acquired a new domain from purifying selec-

tive pressure. Unequal crossing over, typically mediated by NAHR, can increase or decrease the

number of internal domain repeats. This process can also create new domain combinations when a

fragment containing several genes is copied, if the breakpoints are in the middle of the gene. In this

case, a new gene can arise that contains the 5’ end of the last (interrupted) gene in the fragment and

the 3’ end of the first gene in the copied fragment. Transposition, on the other hand, is mediated by

transposable elements (TEs) and allows for the integrationof new elements into an existing gene.

Some TEs facilitate exon shuffling by copying a fragment of DNA and integrating that fragment

in another region of the genome. Other TEs, referred to as retrotransposons, can reverse transcribe

and integrate themselves in new genomic regions. This can result in the integration of a whole

gene, or only a gene fragment. Many gene duplications of thisvariety result in pseudogenes as the
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CHAPTER 2. EVOLUTION OF GENES, DOMAINS AND MULTIDOMAIN GENEFAMILIES

inserted gene must recruit new regulatory sequence to be functional [95]; however, there are cases

where retrogenes acquired a regulatory sequence and are expressed [85, 108]. The introduction of

a start and/or stop codon within an exon can eliminate a domain by truncating the coding region.

Read-through transcription errors, arising from either the mutation or deletion of a translation stop

codon, can result in the fusion of two adjacent genes, creating a single, multidomain gene [83].

Early recognition of the existence of sequence fragments encoding the same modules in otherwise

unrelated genes arose in the context of the discovery of introns [53,111], leading to the hypothesis

that the existence of introns increases mutational plasticity and facilitates domain insertions by

increasing the probability that the new insertion will fallbetween domains and not disrupt existing

structure [94, 112, 113]. This idea is supported by an observed correlation between exon and

domain boundaries [94,112].

The role of introns in domain shuffling was elaborated further with the concept ofintron phase,

the relative position of an intron between codons in the reading frame. An intron can interrupt

a coding sequence between codons, i.e., between the third nucleotide of one codon and the first

nucleotide of the next (phase 0); between the first and secondnucleotide of a codon (phase 1); or

between the second and third nucleotide (phase 2). Analogously, exon phases are defined by the

flanking intron phase. A phasei- j exon is one with an upstream intron in phasei and a downstream

intron in phasej. Symmetric exons are those in phasei-i. Insertion of a non-symmetric exon or

sequence fragment disrupts intron phase. Such disruptionswill result in frameshift mutations in

downstream exons and are more likely to be deleterious [114,115]. Insertions are more likely to

lead to functional proteins if (a) the inserted fragment is symmetric and (b) the fragment phase is

compatible with the phase of the intron where it is inserted (i.e., the insertion isi-i symmetric and

is inserted into a phasei intron) [94,113].

Domain shuffling as a process is more likely to be successful if inserted domains tend to have

the same symmetric phase, and if introns in candidate multidomain proteins tend to have phases

compatible with those domains. Genomic studies have found that phase 0 introns occur more often

than expected, that most genes have a higher number of symmetric 0-0 exons than expected [83],

and that there is a significant excess of symmetrical phase 0-0 domains (i.e., domains whose N-

terminal exon phase starts with 0 and C-terminal exon phase ends with 0 so that insertion into a

phase 0 intron is not disrupted) [94].
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2.5. Previous research on multidomain evolution

Studies of genomic sequence can give us detailed understanding of mechanisms by which a par-

ticular multidomain protein evolved. However, such analyses are labor intensive, not suited to

automation, and only possible in cases involving events so recent that the evidence is still visible.

As previously mentioned, standard phylogenetic methods cannot model multidomain gene fami-

lies; thus, little work has been carried out on multidomain phylogenetics. However, the availability

of domain databases, combined with comprehensive sets of protein sequences for large collections

of genomes spanning the tree of life, have leveraged a wave ofnew investigations on patterns

and processes of multidomain evolution using other computational approaches. These methods

have attempted to extract evolutionary information without building a tree, or by using only par-

tial phylogenetic information. Domain architecture statistics have been used to gain insight into

(1) the nature and variety of domain combinations and co-occurrences [116–124];(2) how the

domain repertoire varies across genealogical lineages andfunctional groups [32, 123, 125, 126];

(3) plasticity in domain order [127, 128];(4) the relative rates of different types of domain shuf-

fling events [127, 129–132, 132–137];(5) inference of ancestral architectures [96, 130, 134, 138–

144]; (6) whether domain architecture formation is driven by neutralevolution or natural selec-

tion [116,117,145–151];(7) the propensity forconvergent evolutionof domain architectures (i.e.,

the formation of the same architecture more than once through independent events) [139,142,152];

and(8) the extent of a domain’spromiscuity(i.e., the propensity of a domain to co-occur with many

other domains) [153–155].

2.5.1. Abstract models

First I review the abstract models that have been used in these studies, and then summarize their

findings.

Domain architecture models

A commonly used abstract representation of domain content is thedomain architecture, where

each multidomain sequence is treated as a set or sequence of “tokens” (e.g. domain names or

database IDs) representing the domain composition from theN- to C-terminus [118]. This ab-
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straction has been used to achieve the computational efficiency necessary for genome-scale analy-

ses [96,154,156,157, and work cited therein]. In this framework, all instances of the same domain

are indistinguishable. Sequence comparison is used only todetermine domain content. Thereafter,

sequence variation between domain instances is ignored. The abstract description of the states

in the domain architecture model is very similar to the abstract description of genetic sequences

— sequences are represented as a string of tokens from the nucleotide or amino acid alphabet;

multidomain proteins are represented as a string of tokens from a much larger alphabet of domain

superfamilies. The term “domain architectures” is also used to refer to the “bag of domains” model,

in which the sequence is treated simply as the set of represented domains. In this model sequence

information, domain order, and sometimes the number of copies of each domain, are ignored. A

disadvantage of this approach is the possibility of errors due to misannotation (i.e., reporting no

domain when a domain exists, or reporting an incorrect domain ID). However, work by Weiner

et al. [127] reports that misannotations account for only a small fraction of all putative domains

losses.

Event models

The set of molecular mechanisms by which protein architectures change over time are typically

treated as a small number of abstract events that modify domain architectures. Different studies

have used different event models and, unfortunately, it is not uncommon for two different studies

to use the same words to describe different events. Event models can include any of the following:

domain merging, fusion, fission, insertion, deletion/loss/death, duplication/gain/birth and innova-

tion.

Domain architectures as character data

Many studies treat abstract domain architectures as a form of character data, as defined in the

phylogenetic framework (pg. 8), although the connection between character data and the domain

architecture model is frequently not acknowledged. In thismodel, the set of characters is equated

with the set of domains in the protein universe. The domain content of a protein can be treated

as binary character data, where 1 indicates presence and 0 indicates absence, or as multistate

character data, where presence is represented by a positivenumber indicating the number of times

the domain appears in the protein. A variant of this approachfocuses on domain co-occurrence:

for a given reference domain, the character state vector represents the set of domains that co-
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occur with that reference domain. In a third variant, the taxa are species (or genomes) and domain

architectures are treated as characters. For a given genome, the state of the character corresponding

to a given domain architecture is non-zero if that architecture has been observed in that genome.

Transforming multidomain proteins into character data allows the space of multidomain proteins

to be examined by comparing domain architectures. The character state formulation has been

applied to investigate various questions about multidomain evolution, often by adapting aspects

of the phylogenetic framework, although full realization of multidomain phylogeny reconstruction

based on character states has not been achieved.

Two variants of the small parsimony problem have been considered. The first uses the species tree

as the fixed topology. Algorithms analogous to Sankoff’s algorithm have been proposed to infer

the set of domain architectures present in ancestral species and the events responsible for changes

in the domain architecture complement over time. If the domain architectures are transformed

into presence/absence vectors (i.e., a vector indicating whether each domain is present or absent

in the protein), then the events included are either gain/insertion or loss/deletion. This approach

has been used to investigate the propensity and spatial biases of various types of domain shuffling

events (e.g., whether insertion is more common than duplication or the prevalence of insertions

that occur at various locations in the architecture) [129, 140–142]. In investigations of the relative

frequency of gene fusion and fission, syntenic information may be incorporated in the analysis

as well. This method has also been used to study domain order [129] and convergent evolution

of domain architectures [142]. A second variant focuses on changes in domain co-occurrence

over time. In this case, the phylogeny is reconstructed fromsequences of domain instances of a

single superfamily using standard methods [139]. This selected reference domain is used as the

fixed topology. Characters represent co-occurring domains. When using a domain tree, constructed

from only one domain, it is important to realize that the treedescribes only the evolutionary history

of that single domain. Trees derived from other domains could have different branching patterns

(e.g., the trees in Fig. 3.5) [27–31].

Algorithm 2.1

Input: T the phylogeny to be decorated with architectures, setDA= {DA} a set of

domain architectures with presence at leaves of T indicated.

decorateTree( T, setDA )

1 r = root( T )

2 pass1( r )
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3 pass2( r )

pass1( v )

4 if isLeaf( v ) do

5 for each da ∈ setDA

6 if isPresent( v, da ) do

7 label( v, da ) = ‘‘present’’

8 else do

9 label( v, da ) = ‘‘absent’’

10 return

11

12 else do

13 pass1( left(v) )

14 pass1( right(v) )

15 for each da ∈ setDA

16 if ( label(left(v), da) == ‘‘present’’ && label(right(v), da) == ‘‘present’’ ) do

17 label( v, da ) = ‘‘present’’

18 else if ( label(left(v), da) == ‘‘absent’’ &&

19 label(right(v), da) == ‘‘absent’’ ) do

20 label( v, da ) = ‘‘absent’’

21 else do

22 label( v, da ) = ‘‘unknown’’

23 return

pass2( v )

24 if isRoot( v ) do

25 for each da ∈ setDA

26 if ( label(v, da) == ‘‘unknown’’ ) do

27 label( v, da ) = ‘‘present’’

28

29 else do

30 for each da ∈ setDA

31 if ( label(v , da) == ‘‘unknown’’ ) do

32 label( v, da ) = label( parent(v), da )

33 if ( label(v, da) == ‘‘present’’ && label(parent(v), da) == ‘‘absent’’ ) do

34 event( v, da ) = ‘‘gain’’

35 else if ( label(v, da) == ‘‘absent’’ && label(parent(v), da) == ‘‘present’’ ) do

36 event( v, da ) = ‘‘loss’’

37 else do

38 event( v, da ) = ‘‘none’’

39
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40 if !isLeaf( v ) do

41 pass1( left(v) )

42 pass1( right(v) )

43 return

Annotation of the fixed tree occurs in two passes (see Alg. 2.1). In the first pass, leaves and internal

nodes are annotated with the presence/absence of domain architectures or domains. Leaves are

assigned the leaf taxon’s content. In the case of a species tree, this content is the set of domain

architectures observed in that species; with a domain tree,this is the set of domains that co-occur

with that domain instance. The ancestral content for internal nodev is inferred by minimizing the

number of gains and losses of content betweenv and its children. Calculating the minimum number

of changes for a fixed tree topology is simple and can be determined using a process similar to

Fitch’s and Sankoff’s algorithms [43]. Moving from the leaves to the root of the tree in postorder,

content at internal nodev in the species (domain) tree is inferred as follows: if an architecture

(or domain) is observed in both children ofv, label that architecture (domain) as “present” inv.

If the architecture (domain) is in neither child, label thatarchitecture (domain) as “absent” inv.

Otherwise, label the architecture (domain) as “unknown” presence/absence inv.

A second pass from the root to the leaves, in preorder, removes the unknown labels by assigning

content inv the same label as its parent. If the root has an architecture (domain) with an unknown

label, the architecture (domain) is assigned as “present.”Note that labeling unknown content at the

root as present is arbitrary, and this content could also be absent in this node — there is just not

enough information to determine. In addition, gains and losses in content are easily calculated in

this pass. If an architecture (domain) is “present” inv but not in the parent ofv, then a “gain” of

that architecture (domain) is inferred. Otherwise, if the architecture (domain) is “absent” inv and

“present” in the parent ofv, then a “loss” is inferred. When using the species tree, an additional

layer of event modeling may be included. In this case, for each gained architecture, the new

architecture is inferred to be gained by a minimum number of combinations and/or rearrangements

of existing architectures. This can be inferred with a simple dynamic programming algorithm

(see [140]).

Examples of this algorithm for the family in Fig. 1.2 using both a species tree and a domain tree can

be seen in Figs 2.2 and 2.3, respectively. In Fig. 2.2, the species tree is decorated with the observed

domain architectures. SpeciesS is labeled with the architectures ofg1 andg2, while speciesT is

labeled withg3. In the first pass, the internal node, representing ancestral speciesR, has all three

architectures labeled with “unknown” presence/absence. In the second pass, the architectures are
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Figure 2.2:The history of the multidomain family in Fig. 1.2 inferred using domain gain-loss parsimony
on the species tree.

all labeled as present since the internal node is the root. Thus, the two architectures containing red

domains are lost along the edge toT and the architecture with two purple domains is lost along

the edge toS. In Fig. 2.3a the tree would result from phylogeny reconstruction of the blue domain

sequences. This tree was then annotated with ancestral architectures based on domain presence and

absence. In the first pass, the leaves are labeled with the architectures from which the blue domain

was sampled. For internal nodeg12 the blue domain and one red domain are labeled as present.

The other red domain and the purple domain are labeled as unknown. At internal nodeg123, the

blue domain and one purple domain are labeled as present, andthe one red domain (present in

g12) and the one purple domain are labeled as unknown, and the other red domain is absent. In

the second pass, all domains labeled unknown on the root are assigned a present label, sog123 has

the blue, one red, and two purple domains labeled present. Nodeg12 is then labeled with the blue

and red domains originally labeled present in the first pass.The unknown red domain is labeled as

absent and the purple domain as present to match the domains at the root. This annotation implies

that a red domain was lost along the edge tog3, a purple domain was lost on the edge tog12, a red

domain was gained and a purple domain lost along the edge tog1, and no events occurred leading

to g2. Note that we could also assign unknown domains at the root asabsent. In this case, we

would infer the annotations seen in Fig. 2.3b, which impliesa different set of events on the edges

to g3 andg12: gain of a purple domain along the edge tog3 and the gain of a red domain along the

edge tog12.

One attraction of the domain architecture model is that the abstract description of the multidomain
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Figure 2.3:The history of the multidomain family in Fig. 1.2 inferred using domain gain-loss parsimony
on the tree for the blue domain.(a) Ambiguously defined domains at the root are inferred to be present.(b)
Ambiguously defined domains at the root are inferred to be absent.

protein is very similar to the abstract description of aminoacid sequences. This analogy suggests

that multidomain phylogeny reconstruction can be carried out by adapting the standard molecular

phylogenetic framework to the multidomain realm. Transforming domain architectures into char-

acter data allows us to use phylogenetic methods based on character data. Thus, a multidomain

tree can be constructed either by calculating the pairwise edit distance between architecture [134]

or by employing a parsimony model [138,143], as described below. Such trees can then be used to

infer ancestral architectures (as above) and infer events.

The domain distance between two sequences is the number of domains that differ between the two

architectures [134]. This measure is equivalent to theedit distance, which is the minimum number

of events required to convert one architecture to another (e.g., gain, duplication, loss). Once all

pairwise edit distances are calculated, the resulting distance matrix can be used to build trees (i.e.,

using Neighbor-Joining methods).

In the parsimony context, the domain architecture is represented by the presence/absence vector. In

this model, state changes correspond to gaining (0→ 1) or losing (1→ 0) a domain. No distinction

is made between various events that could result in gain (e.g., domain insertion versus gene fusion).

Once architectures are transformed, standard parsimony methods, as discussed in Sec. 2.1 can be

used to construct a tree.

A limitation of these methods is that after domains are identified, they do not take the sequence
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information of domains into account, which may contradict such inferences. For example, no

matter how great the sequence divergence between two genes,if their domain architectures are

the same, they will have a distance of zero. Moreover, they donot provide information about the

evolution of the multidomain family as a whole and provide only a coarse resolution of events.

Domain presence/absence networks

Another common approach to evolutionary analysis of domainarchitectures is to represent the

protein universe as a domain network or graph,G= (V,E) [117,121–123,132,136,137,143,146,

147,149,151,158]. Each domain in the network is represented by a nodev∈V in this network. A

pair of nodes,x andy, is connected by an undirected edgee∈ E if there is at least one protein in

the genome that contains both an instance of domainx and an instance of domainy. The number

of edges incident on a nodev is called the degree ofv. Note that the degree of nodev in this

network is equivalent to the propensity of domains to co-occur with other domains in the same

protein. Variations on the domain graph include using directed edges to indicate domain order or

providing edge weights, indicating the number of times two domains appear together in a domain

architecture. Similarly, an architecture network has proteins represented by domain architecture as

the nodes, and nodes are connected if the two architectures share a domain.

For a global approach, every domain instance or protein in the genome(s) of interest are used to

construct the graph. These networks provide information ona global scale, such as the behavior

and connectivity of a domain superfamily as a whole. Such approaches have been used to identify

power law behavior (discussed later). In a local approach, only the domain instances and proteins

in a specified multidomain family are used to construct the network. This approach provides in-

formation on domain and architecture behavior in a specific multidomain family. Behaviors of dif-

ferent multidomain families can then be compared. This approach has also been used to determine

whether a Dollo parsimony tree can be constructed for the given multidomain family [143,151].

Birth-death models

Birth-death (and innovation) models (BD(I)Ms) are probabilistic models used to understand the

evolution of the size of a domain superfamily [117, 145–147,159]. BD(I)Ms have been used for

modeling a number of biological properties, including populations dynamics, genome evolution,

distribution of paralogous gene family sizes [117, 126, 145], and protein-protein interaction net-

26



2.5. PREVIOUS RESEARCH ON MULTIDOMAIN EVOLUTION

works [160,161]. In the context of multidomain evolution, the events considered are birth (gaining

a new copy of a domain from an existing domain, through domainor gene duplication), death (loss

of a previously existent domain), and, in some models, innovation (introduction of a new domain

superfamily through the gain of a new domain fold).
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Figure 2.4:Schematics of(a) a typical birth-death model and(b) birth-death and gain model, with material
transitioning between neighboring states. The probability of a transition to the right is a function ofλn or
(λn + κn) in (a) and (b), respectively. For both (a) and (b), the probability of a transition to the left is a
function ofµn. The parametersλn, κn, andµn are rates of birth, gain, and death, respectively. (Adaptedfrom
Novozhilov et al. [148].)

The BD(I)M is a stochastic, Markov process (see Fig 2.4a) in which transitions are only allowed

between neighboring states. We say that the system is in state n when the genome containsn

instances of the domain of interest. An increase is a transition from staten to n+1 and is termed

birth; similarly, a decrease is a transition from staten to n−1 and is termed a death. The size of

the family at timet is described by random variableX(t), such that

Pr[X(t)= n|X(t0) =m0,X(t1) =m1, ...,X(tk) =mk] =Pr[X(t)= n|X(t0) =m0] ∀ ti ≤ t0< t. (2.3)

The probability that the family increases from sizen to n+1 during interval(t, t+∆t) is a function

of λn∆t, whereλn is the birth rate. The corresponding probability that the family decreases from

sizen to n−1 during(t, t +∆t) depends onµn∆t, whereµn is the death rate. When thede novo

innovation event is included, the emergence of a new family with one member (i.e., a transition

from state 0 to state 1) is also modeled. In the full BD(I)M, state probabilities,pn(t)=Pr[X(t)= n]
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can then be described by the equations:

dp0(t)
dt

=−λ0p0(t)+µ1p1(t) (2.4)

dpn(t)
dt

= λn−1pn−1(t)− (λn+µn)pn(t)+µn+1pn+1(t),1≤ n≤ N. (2.5)

Note that this model does not take gene family organization into account and focuses only on the

size of the domain superfamily.

A substantial number of studies [117,145–148] have used this approach to infer the parameters that

best fit real and simulated data. These studies have typically concluded that domain evolution may

be a largely stochastic process with natural selection having only a minimal influence on domain

superfamilies in extant genomes [117,145–148].

Unlike the previously described methods, this approach is one of the most challenging due to its

computational complexity and the large amount of data required. However, it has the advantage of

being able to simultaneously learn information about mutations and insertions/deletions and is the

only model that is able to infer event rates.

2.5.2. Summary of findings from previous work

The abstract models discussed above have been used to analyze a range of genomes with multi-

domain proteins. These studies have provided a good basic understanding of the multidomain

universe, including insights into domain architecture patterns across lineages and relative rates of

common events. They have also been used to examine whether multidomain evolution is under se-

lection, or whether domains evolve neutrally. Here I highlight some of the important observations

and findings that have helped elucidate multidomain evolution.

Domain architecture patterns

The simplest information that these studies provided was a description of the multidomain universe

through statistics about domain superfamilies and domain architectures.

Work on domain combinations primarily focused on the domainpair (or triplet), two (respectively

three) domains that are found adjacent to one another in the same protein. The domain combi-
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nations observed represent a very small fraction of possible domain combinations [112, 118, 125,

162, 163]. In addition, multidomain architectures consisting entirely of new domains are rare,

while single-domain architectures are usually the result of the emergence of a new domain, not the

fission of a multidomain architecture [130].

Many pairs contain domains from different families [32] – I will refer to these asmosaic pairs.

Mosaic pairs specific to a particular lineage were assumed tobe novel; that is, to have arisen in

that lineage. Since the majority of mosaic pairs (ranging from 66% in Eukarya to 90% in Archaea)

are comprised of superfamilies common to all lineages, novel pairs are likely the result of common

superfamilies combining in novel ways rather than the combination of families specific to that

branch [162]. Adjacent domains that appear in two or more distinct domain architectures are

referred to assupra-domains[118, 119]. In an analysis of two and three domain combinations,

approximately one fourth of all the observed combinations qualify as supra-domains [118, 119].

Statistically, over-represented supra-domains were identified and found to exhibit a bias toward

eukaryotes.

When the N- to C-terminal orientation of domain was considered, more than 90% of mosaic pairs

were seen in only one orientation [125, 128, 162, 164]. Examination of other domains that part-

ner with supra-domains also showed that domain order is generally fixed [118, 119] (however,

see Kummerfeld and Teichmann [136]). Promiscuous domains are observed more frequently at

the C-terminus [131]. Circular permutations are sets of domain architectures with conserved do-

main content and order, when the N- and C-termini of the architecture are treated as though they

were connected (i.e., the architecture is circular). For example, the architectureBCA is a circu-

lar permutation of the architectureCAB. Circular permutations are thought to evolve by either

(a) independent insertions and deletions of domains, whichis more common, or (b) duplication of

the whole architecture, followed by domain loss at the termini [127]. When circular permutations

in domain order are considered to be conserved, the frequency of domain conservation is even

greater [127].

Comparative studies across species lineages [32, 122, 123,125, 126, 130, 145, 147] have revealed

patterns that are lineage-specific or common to all lineages. Multidomain evolution in each of

the major species lineages (plants, animals, fungi, prokaryotes) has characteristic properties that

distinguish it from processes of domain shuffling in other lineages. A core set of domains is

found in all lineages, but many domains are lineage specific.The set of most promiscuous do-

mains in prokaryotes, eukaryotes and archaea differs greatly. Multidomain families in multicel-

lular organisms are larger (in the number of domains) and have more complex and varied archi-
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tectures [35,81,130,165–168]. This is particularly true for metazoans, and especially vertebrates,

with plants running a close second. Multidomain complexityis substantially lower in prokaryotes

and even lower in Archaea. Even when domain superfamilies are found across different lineages,

they often participate in different architectures [123]. In addition, these lineage specific expansions

are associated with specific families or biological processes, including neural and developmental

functions [35, 81, 166–169]. A number of promiscuous domains in metazoa are involved in sig-

nalling [32,121,123,125,162].

In addition, these studies have revealed information aboutthe relative propensity of events, includ-

ing the following observations. Fusion events are more common than fission [129, 130, 132] by a

factor of 4 [129] to 5.6 [130]. A fusion event results in two distinct genes joining into one gene,

while a fission results in a single gene splitting into two distinct genes. Identification of a gene

in one genome that is piece-wise homologous to more than one gene in a second genome sug-

gests that the first gene may have arisen through gene fusion [132]. It has also been observed that

indels (domain insertions and/or deletions) were the most frequent elementary event in bacteria

genomes [131, 133]. Indels are more common than internal repetitions, tend to involve insertion

or loss of a single domain at at time, and occur more frequently at the C and N-termini than in the

middle of the architecture [130,131,133,134,165].

Tandem domain repeats may result from the duplication of more than one domain at a time. Only

a small fraction of the proteome contains tandem repeats (i.e., multiple copies of the same domain

adjacent in the architecture), and only a small percentage of domain superfamilies participate in

repeats [125, 162]. The fraction of proteins with repeats ismuch higher in eukaryotes, especially

vertebrates, than in prokaryotes [170]. Multicellular organisms are more likely to have longer

repeats than unicellular organisms [125,162]. The presence of repeated, adjacent domains is often

thought to indicate domain duplication [32, 170]. Analysesof tandem repeats, based on sequence

similarity suggest that repeats often expand through internal duplication of several domains at

once [170,171]. A possible explanation for this is offered by recent studies of folding stability and

dynamics [80, and work cited therein] that show that tandem repeats of highly similar, homologous

domains pose a greater risk of misfolding and aggregation. Wright et al. [172] further report that in

titin, which contains many tandem copies of Ig and Fn3 domains, adjacent Fn3 domains are more

dissimilar than more distant copies.
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Relative importance of neutral evolution and selection in t he formation of new architectures

Domains that have been observed to occur in many different protein contexts are referred to as

promiscuous[153] or versatile[125]. Measures proposed for quantifying promiscuity include the

number of other domains that co-occur with it in at least one protein (NCO) [125,153]; the number

of other domains found adjacent to it in at least one protein (NN) [120]; the number of different

architectures in which it is found (NA) [32,173]; the numberof local architectures (domain triples)

in which it is found (NTR) [32]; the weighted bigram frequency index (WBI) [155] and the domain

versatility index (DVI) [174].

These are all static measures, based on domain architecturestatistics. They cannot distinguish be-

tween proliferation by shuffling and proliferation by gene duplication, yet this distinction is very

important in the phylogenetic context. A domain could be promiscuous either because it ismobile

(i.e., frequently inserted into novel architectures) or because it is anattractor for insertions (i.e.,

insertions into the neighborhood of this domain tend to be selectively advantageous). For example,

in Fig. 1.2, the blue domain is an attractor; the pink and purple domains are mobile. Yet promis-

cuity is frequently assumed to be synonymous with mobility.However, this hypothesis has not

been tested. Note that the measures of promiscuity cited above can overestimate the mobility of

a domain if the domain is, in fact, an attractor. These measures can also underestimate mobility:

if domain A is observed next to domainB, it is not possible to know whether one insertion oc-

curred, or repeated insertions and deletions occurred. To develop phylogenetic models of domain

shuffling, it is necessary to be able to make the distinction between attractor domains and mobile

domains. For example, according to simple measures, Kinaseis a promiscuous domain. However,

the evidence in the literature suggests that it is an attractor, not a mobile domain. It is substan-

tially longer than typical promiscuous domains and does nothave 0-0 phase [32]. In addition,

phylogenomic analysis indicates that the Kinase family evolved by duplication of an ancestral,

single-domain Kinase, followed by insertion of different domains into the resulting paralogs, and a

second round of duplication [35, 81]. This suggests that theKinase domain proliferated primarily

by gene duplication. In contrast, SH3 and PDZ domains have similar promiscuity scores (except

with WBI or DVI) as Kinase. Yet these domainsare thought to be mobile: they have short, phase

0-0 sequences, do not appear in the single domain context, and are not thought to have evolved as

progenitors of gene families [154,174].

Apic and colleagues [125] argue that domains common to all lineages in the tree of life correspond

to the largest proportion of domains and that their widespread phylogenetic distribution suggests
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that these domains are ancient, which is consistent with a model of random duplication. However,

the same argument does not explain the distribution of domain promiscuity, since the most promis-

cuous domains are clearly not oldest [121]. To the contrary,there is little overlap between the sets

of most promiscuous domains in prokaryotes, eukaryotes andarchaea.

A number of studies have observed that domain promiscuity [32, 121, 122, 125, 162, 175] (at least

approximately [150]) and domain superfamily sizes [145, 175], can be described by a power law.

A power law is a mathematical model in which the the probability of observing characteristicx

follows the form f (x) = c·x−m, wherec andmare constants. In double-log plots,f (x) is a straight

line with slope−m. This indicates that a small number of domain or gene families are very large

or very promiscuous, while most families are small and static.

This observation has led to much speculation regarding multidomain evolution. Many scientists

found this observation intriguing in light of a 1999 paper byBarabasi and Alberts [176] that pro-

posed a simple procedure, calledpreferential attachment, that generates random graphs with a

degree distribution that follows a power law. In terms of graph theory, preferential attachment

theorizes that the probability of adding a new connection toa node is simply a function of node

size. In other words, nodes have high connectivity simply because the node is bigger. In terms of

domains, this implies that a domain has more, different partners, simply because there are more

instances of that domain and a greater chance for another domain to be inserted next to it (or for

it to insert next to a different domain). This observation was interpreted as evidence that evidence

that domain evolution may, in fact, be neutral [116,117,145]

This influenced the implementation of Birth-Death models (see pg. 26) and other simulations of

multidomain evolution context, which provided further evidence for neutral evolution [116, 117,

145–147, 149]. In these analyses, the evolution of the multidomain protein universe is simulated

under one of two hypotheses:(1) domain shuffling events are random, or stochastic, processes

(i.e., the growth of domain superfamilies and the formationof novel architectures is a neutral

evolutionary process) and(2) domain shuffling events are under selection. The alternate hypotheses

were evaluated by comparing global features (e.g., degree distribution, clustering coefficient) of

the simulated network with the same features in real-world networks. The generative model that

yields the best agreement between the network features is considered the best hypothesis for the

evolutionary processes that drive multidomain evolution.Once a model has been selected, domain

shuffling rates are inferred by selecting model parameters that maximize the similarity between the

simulated and real-world networks. Studies implementing such models suggest that while domain

shuffling has many characteristics of a preferential attachment process (i.e., neutral evolution) [117,
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145–147], the promiscuity distribution generated with a model of selection is a better fit for the

data [116]. This suggests that domain combinations have some stochastic properties, but are under

selection.

Qian et al. [145] simulated an evolutionary model in which ateach time step, a fold instance is

selected uniformly at random and duplicated, or a novel foldis introduced with an innovation rate

r. They showed that they were able to select parameters that resulted in equivalent size distributions

for simulated and real fold families. Koonin and colleagues[117, 146, 147] extended the Birth-

Death model to include deletion as well as duplication and innovation. In this case, the gain

or loss of a domain is simply based on the size of the domain superfamily. They selected the

model that best simulated real data in terms of the exponent the of the power law distribution

and the time required to obtain duplication rates similar tothose predicted from data by Lynch

and Conery [177]. Based on these analyses, they drew the conclusion that multidomain evolution

could simply be the result of neutral evolution and large domain superfamilies participating in

more events, simply because of their size.

In a related approach, Vogel and colleagues [116] used parametrized generative models to simulate

a domain network and test the hypothesis that particular domain combinations observed in nature

are the outcome of selection. In the model of selection, a domain combination arises through a

single fusion event and then proliferates via gene duplication; the simulator does not permit the

same pair of domains to fuse twice. In the null model, all domain architectures are formed by

domain insertion at a randomly selected location. Because the promiscuity distribution generated

by the model of selection is a better fit for the data, Vogel et al. [116] conclude that domain

combinations are under selection and, more specifically, that all instances of a given combination

are descended from a single ancestral architecture. This result also suggests that gene duplication

is a more common occurrence than domain insertion. Przytycka et al. [143] also simulated random,

scale-free graphs using preferential attachment. Comparison of the domain graphs of multidomain

superfamilies with simulated domain graphs of the same sizeand density, showed that these have

very different the topological properties. Based on these results, they reject preferential attachment

as a mechanism for multidomain protein evolution.

Further evidence that multidomain evolution is under selection has been provided by studies inves-

tigating the hypothesis that the convergent evolution of domain architectures is rare [116,136,139,

142,143]. Two studies using quite different approaches, both based on simple domain architecture

models, concluded that almost all instances of a given domain combination are descended from

a single ancestral architecture [116, 142]. However, the results of more recent studies based on
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more complex models, suggest that the propensity for convergent evolution of architectures may

be more common than first supposed [139, 143], especially when the architecture contains highly

promiscuous domains. Several recent studies of specific multidomain protein families have com-

mented on instances where convergent evolution of domain architectures is the most compelling

explanation for similar architectures in distantly related species (e.g. [178,179]). The frequency of

convergent evolution is an urgent question because many bioinformatics analyses are based on the

implicit assumption that identical domain architectures must be related through vertical descent.

This assumption, if false, could lead to incorrect conclusions in both evolutionary analyses and in

practical applications, such as homology-based function prediction.

Tree parsimony methods (described on pg. 21), in particular, have been used to estimate the amount

convergent evolution [140,142]. Gough [142] superimposeddomain architectures on a species tree

and looked for cases where the same architecture appears in disjoint and distant subtrees, indicat-

ing that the same architecture arose in different species through independent events. Less than 4%

of the architectures that Gough observed exhibited convergent evolution. Most of these cases cor-

respond to independent instances of internal, tandem duplication. In a complementary approach,

Forslund and colleagues [139] constructed trees for individual domain superfamilies, decorated

each leaf with the domain architecture in which this domain instance appears, and then applied

a standard parsimony analysis to infer domain architectures on internal nodes. If the majority of

trees for domains in an architecture agreed on vertical descent or convergent evolution, the archi-

tecture was inferred to have arisen in such a manner. Otherwise, no conclusion was made for that

architecture. They argue that convergent evolution is morecommon than previously thought, with

approximately 12% of all architectures exhibiting convergent evolution.

Przytycka et al. [143] also tested this hypothesis by proposing two formal parsimony models of

domain shuffling and relating these to local topological properties of the domain graph (described

on pg. 26). These models are formal encodings of two hypotheses: the same domain pair forms

only once in evolutionary history and domain architectures, once formed, persist through evolution.

By inspecting local graph structures, the method determines whether it is possible to construct a

parsimony tree that satisfies both conditions. Note that thefact that it is possible to construct

a most parsimonious tree does not guarantee that the evolution of the superfamily was, in fact,

parsimonious. However, if no tree exists that is consistentwith the hypothesesandconsistent with

the domain graph for a particular domain superfamily, it canguarantee that convergent evolution

played a role in the history of the superfamily. Thus, a negative outcome is more informative than

a positive one. Przytycka et al. [143] applied this approachto a genome scale data set of domain
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superfamilies and observed that the most promiscuous domain superfamilies did not satisfy the

criteria, including Trypsin, EGF, IG, and SH3.

2.6. Summary and critique of previous methods

The benefits of these methods employing the domain architecture models include computational

and conceptual tractability. While these approaches have provided a wealth of information on

how the protein universe has formed, they are incomplete because they suffer from a number of

limitations. Most of these methods are based on underlying assumptions that are mostly untested

and often lead to “self-fulfilling prophesies.”

First is the assumption that all instances of the same domainare indistinguishable and therefore

sequence variation is ignored. However, in fact there is considerable sequence variation within

domain superfamilies. A second assumption is that multipleobservations of the same domain

architecture are the result of vertical descent and formation of the same architecture through in-

dependent paths (i.e., convergent evolution) is extremelyrare. Even when the architectures are

identical, different domains in the architecture could have different histories [27–31] and would

not be observed from architecture information alone. Thus,alternative, and possibly contradictory,

information is not considered, which can lead to underestimation of events and inaccurate histories

(see Figs. 2.2 and 2.3 for an example). More recent studies have used models that incorporate ad-

ditional information (e.g., phylogenetic structure of individual families [139], domain order [136],

local topology [143]) and reached different conclusions. Preliminary evidence suggests that a more

detailed model will lead to more complete, if not fundamentally different, conclusions [151].

A third, problematic assumption is that graphs with power law distributed degree distributions

arose by preferential attachment. This is not true for all such graphs. Hence, one should be

wary about drawing evolutionary conclusions from degree distribution alone. In general, it is

important to ensure that graph features used to compare datawith a model are, in fact, suitable

for distinguishing between alternate models [180]. Moreover, other distributions (Generalized

Pareto, Yule Distribution) can masquerade as a power law, especially when the data available is

limited [150]. In addition, most studies using generative models to test evolutionary hypotheses

have not emphasized the importance of determining whether the features used to compare models

actually have discriminative power. And while many of the parsimony-based methods include

species and/or gene family classification in the model, the studies based on Birth-Death Models
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and domain graphs have not incorporated phylogenomic considerations.

Finally, many studies recognize the change in the form of domain gain and loss, but do not include

an explicit model of events. For sequences that evolve by substitution, changes in character state

closely reflect mutation events. In contrast, although state changes are caused by duplication,

insertion, and loss, it is not possible to determine from thestate changes which events occurred

because multiple combinations of events could result in thesame changes in character state. Most

of the methods surveyed here do not incorporate a formal model of events and often do not provide

information about the particular insertions, deletions, and rearrangements of domains that gave

rise to observed domain architectures. In addition, these studies provide a very coarse resolution

of events, especially with the phylogenomic analyses.
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Chapter 3

Models of multidomain evolution

Ideally, reconstruction of the evolutionary history of a gene family includes:

– the relationship between taxa, generally represented as atree,

– ancestral states (i.e., ancestral sequences),

– the history of events (i.e., substitutions, gene duplications, etc.),

– a partial temporal ordering on those events.

Methods and technology to reconstruct the history of sequences that evolved by vertical descent are

well-developed. Family reconstruction is of central importance to understanding the origins and

evolution of life on earth. Tree reconstruction provides the most accurate way to identify orthologs.

Phylogenetic context and ortholog identification provide essential information used in function

annotation, where sequences of unknown function are annotated based on related sequences with

experimentally determined function. The use of phylogenies and ortholog identification, rather

than pairwise sequence comparison, is also essential for identifying potential drug targets. In

addition, evolutionary trees provide a common mathematical framework for describing evolution

at various levels of biological organization. Comparison of trees across multiple levels makes it

possible to relate genetic innovations on the sequence level to physiological innovations on the

cellular and organismal levels.

Current technology can infer changes in family copy number (i.e., gene duplication, loss, and

transfer) through the comparison of a gene tree with a species tree. However, there is no for-

mal methodology for modeling or inferring changes on an intermediate scale, such as insertion,

duplication, and deletion of domains or sequence fragments.
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Thegoal of my thesisis to develop, implement and test methods to support phylogenetic analysis

of multidomain families (e.g., Fig. 3.6), based on the reconciliation of trees. Formally stated,

given:

1. a multidomain gene family,

2. a reference tree,

3. a sequence phylogeny for each domain represented in the family, and

4. an abstract set of events (i.e., domain insertion, domaindeletion/duplication,

gene duplication, etc) and model of evolution,

my methods will infer

1. the events that occurred in the evolution of the multidomain family,

2. ancestral domain architectures, and

3. a reference tree annotated with domain shuffling events and ancestral archi-

tectures, representing the evolution of the multidomain family as a whole.

Before I describe my results, I first introduce the model of multidomain evolution upon which my

approach is based and review the evidence that supports thismodel.

3.1. Locus model of multidomain gene family evolution

Under theclassical model of gene family evolution, gene families evolve in a process of vertical

descent from a common ancestor, through gene duplication, gene loss, lateral gene transfer (LGT),

and co-divergence with host speciation [41,43,181]. Superimposed on these large scale processes,

individual sequences evolve by point mutation. This process of evolution by vertical descent from

a common ancestor is modeled by a tree. However, once domain organization is considered, se-

quences can arise where the constituent parts are derived from two different parent sequences.

I propose a phylogenetic framework based on the locus model,first proposed in [151, 173, 182],

that defines evolutionary vertical descent for multidomainfamilies in a way that is consistent with

traditional models of homology. These families evolve through the events aboveand through

domain shuffling, defined as domain insertion, loss, and internal duplication, where an insertion is

defined as the acquisition of a new sequence fragment (the “mobile” domain) by an existing gene.

This can occur through insertion of sequence fragments intothe gene or by recruitment of adjacent

exons. Formation of a new gene architecture by domain loss isalso consistent with this model. In

this locus model of multidomain gene family evolution, a gene family, whether it has one or more
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domains, is defined as the set of genes descended from a commonlocus in the genome (see, for

example, Fig. 1.2a). This model of multidomain gene families is well-defined for families that

evolve through domain shuffling and is consistent with the classical single-domain model. Thus,

it provides a natural framework for extending current phylogenetic methodology to multidomain

sequences.

The restriction of domain acquisition by an existing gene guarantees that the ancestral locus is

always well-defined, even when new domains are acquired by insertion. Therefore, we can define

a family as a set of sequences that share a common ancestral locus. For example, Fig. 1.2a shows a

hypothetical multidomain gene family evolving in a chromosomal context. The family originates

as an ancestral geneg123 with a single domain. After a speciation event, the orthologous gene in

each species evolves independently, with the copies undergoing domain insertion, domain duplica-

tion, domain loss, and gene duplication. The resulting family contains genesg1 andg2 in speciesS

andg3 in speciesT, all of which evolved from the common ancestral locus,g123, in speciesR. The

purple domains ing3 share homology withgy and the red domains ing1 andg2 share homology

with gx. However,gy andgx are not members of the gene family because they are not descended

from locusg123. The history of this family’s evolution by vertical descentcan be modeled as a tree,

as seen in Fig. 1.2b. This gene family tree describes the evolution of the locus by vertical descent,

augmented by “transfer edges” representing insertions. Fig. 3.6 shows the history of the locus

as a tree in brown, augmented with horizontal insertion events (dashed arrows) and annotations

regarding various other events.

Formally, in the context of the locus model, the history of a multidomain family is defined as a

directed, acyclic graph,T = (V,Ev,Et), whereV is the set of nodes (i.e, with extant loci as leaf

nodes and ancestral loci as internal nodes),Ev is the set of tree edges indicating evolution by verti-

cal descent, andEt is the set of transfer edges. When only tree edges are considered,T = (V,EV)

is a tree representing the history of the locus, in which every node (gene locus) inV (except the

root) has exactly one parent node and every node (except the leaves) has exactly two children.

Branch points indicate formation of a new locus by gene duplication or by speciation. An edge

e= (v,w) in Et indicates that a sub-sequence of nodev was duplicated and inserted intow. Anno-

tating the multidomain family history with lateral events,Et , reflecting domain insertions, results

in a multidomain family tree with a reticulated (network-like) history (similar to a species trees

with transfers), as shown in the augmented tree in Fig. 3.1a.Each node has zero or more incom-

ing transfer edges. Note that genes can include sub-sequences with different histories descended

from different “donor” sequences. However, in the context of the locus model, I distinguish be-
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tween locus donors (represented by parental nodes and connected by tree edges) and other donors

(connected by transfer edges). This is different from a recombination graph, in which a node may

have two incoming tree edges both of which contribute equally. In this case, recombination is

represented by a network as shown in Fig. 3.1b [183]

A

B

C

D

E

Tree augmented with lateral events

(a)

A

B

C

D

E

Reticulated Network

(b)

Figure 3.1: Differing views for taxa evolving with horizontal events.(a) A species tree shown with a
horizontal transfer event fromD to C is a tree augmented with transfer edges.(b) A species tree with a
hybridization ofB andD contributing toC is a network and is not tree-like. Figure adapted from Husen et
al. [183].

The locus model is applicable to a broad range of multidomainfamilies (see Song et al. [151] for

a discussion of this evidence). While there are families that do not fit this model, in particular,

those that families that originated from ade novoassembly of unrelated domains, such families are

rare [96,129,134,140].

I propose to model the evolution of multidomain families that have evolutionary histories that are

consistent with locus model, as a set of co-evolving entities, where a multidomain protein is rep-

resented as a co-evolving set or sequence ofdomain sequences. Given a tree for each constituent

domain, I propose algorithms to construct an augmented multidomain tree, inferring transfer edges,

domain duplications and losses, and ancestral domain content. This framework uses a two phase

approach to multidomain phylogeny reconstruction. In phase 1, the amino acid sequence of each

domain instance that occurs in the multidomain family is extracted. For each domain family rep-

resented, a domain tree is constructed from the sequences using standard molecular phylogenetic

techniques. In phase 2, domain shuffling events are inferredby comparing each domain tree with
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trees representing higher levels of organization. For example, Fig. 3.6 shows the reconstructed

history for the multidomain family in Fig. 1.2a inferred through the comparison (embedding) of

domain trees with a gene family tree (Fig. 3.2a) and a speciestree (Fig. 3.2b).
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Figure 3.2:The evolutionary history of the hypothetical multidomain family in Fig. 1.2. This figure shows
co-evolution on three different levels of organization: species evolution, gene family evolution and domain
shuffling. Evolution on a fourth level of organization, nucleotide substitution, is implied but not shown
explicitly. (a). Domain trees embedded in the gene family tree, showing the evolution of the domains in the
context of genes. Domain trees are represented by thin treescolored according to the domain they represent.
The gene tree is the “fat” cream colored tree.(b) The evolutionary progression of the genes encoding the
family, with embedded domain trees, is shown in the context of the phylogeny of the species that contains
them. The species tree is the “fat” hatched filled tree.

This framework builds on a general model of historical associations between co-evolving entities

that has also been applied to biogeography, symbiont-host relationships, and co-evolution between

genes and species [184–186]. In each case, an entity at one level of biological organization (the

embedded taxon) evolves in the context of an entity at a different level of biological organization

(the reference taxon). Using this representation, multidomain phylogeny reconstruction can be

carried out by adapting a different, well-established algorithmic framework, calledreconciliation.

In the next section, I describe the history of reconciliation and review the details of this framework

in the gene tree/species tree context.
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3.2. Gene tree-species tree reconciliation

Reconciliation[187] is the process of comparing trees representing two levels of biological organi-

zation to infer the co-evolutionary history of the trees. Itrelies on the observation that discordance

between trees is evidence of evolutionary events other thanco-divergence. Key features of this

framework include(1) an explicit model of the events that determine associationsbetween the

embedded and reference taxa;(2) inference of historical associations between ancestral taxa from

known associations between leaf taxa;(3) inference of historical events from comparison of the

reference and embedded phylogenies; and(4) inference of a reference phylogeny via comparison

with several embedded phylogenies. In the multidomain context, domains correspond to residents.

The role of reference may be adopted by species, genes, or other domains.

Reconciliation approaches have been adapted in a number of different contexts, namely relation-

ships between gene trees and species trees, between hosts and parasites, and between species and

geographical areas [188, and work cited therein], demonstrating the generality of this framework.

For each specific context, there is a different instantiation of referencetaxon (e.g., the species or

host) andembeddedtaxon (e.g., gene or parasite). Here I review reconciliation in terms of the gene

and species trees context.

Discordance between a gene tree and a species tree is evidence that genes diverged through pro-

cesses other than speciation. These events include gene duplication and loss, lateral gene transfer

(LGT), and incomplete lineage sorting (ILS). Gene duplication, loss, and transfer events are all

events that change the number of copies of a gene in a genome. Specifically, transfer events in-

volve the duplication of a gene in one genome, followed by itsdisplacement into another genome.

Incomplete lineage sorting, on the other hand, is discordance between a gene and species tree due

to allelic variation alone (see Fig. 3.3). Unlike duplication, loss and transfer events, it does not

change the number of gene copies in the genome.

Reconciliation encompasses two related problems:event inferenceandtree estimation. In the event

inference problem, both gene and species trees are known. Given a rooted gene, a rooted species

trees, a mapping from leaves in the gene tree to the species from which each gene was sampled,

and an evolutionary model, the goal of theevent inferenceproblem is to(1) infer the association

between ancestral genes and ancestral species and(2) the set of events that best explains this

association (illustrated in Fig. 3.4). Formally, the eventinference problem is stated as follows:

Formally stated, given:

42



3.2. GENE TREE-SPECIES TREE RECONCILIATION
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Figure 3.3:Evolution of a single genetic locus in the context of a population. Each row represents a gen-
eration of individuals in the population at a specific point in time. The the three possible binary resolutions
are shown in Fig. 4.3

Reconciliation: Event Inference

Input:

1. an evolutionary model including

a. a set of evolutionary events,

b. an optimization criterion,

2. a binary, rooted species phylogeny,

3. a binary, rooted gene tree, and

4. a mapping of contemporary genes (leaves of the gene tree) to the species from

which they are sampled (leaves of the species tree).

Output:

1. an extended mapping of ancestral genes to ancestral species, indicating the

species in which each ancestral gene was present and

2. the gene tree augmented with the set of events that best explains the incon-

gruence between the gene and species trees according to the optimization

criterion.

If the species tree is not known, event inference can be used to solve theestimation problem, i.e.,

to infer the species tree. In this case, we are given a set of rooted gene trees and a mapping from

each leaf in the gene tree to the species from which the gene was sampled. The goal is to infer the

best species tree given these trees by searching the space ofall possible trees with leaves equal to
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Figure 3.4:LCA reconciliation. (a) The gene tree from Fig. 2.1 reconciled with the species tree.(b) The
gene tree embedded in the species tree. The black squares indicate duplications, and dotted lines indicate
losses.

the mapping of contemporary genes. Formally, given

Reconciliation: Tree Estimation

Input:

1. an evolutionary model of events and an optimization criterion,

2. a set of binary, rooted gene trees, and

3. a mapping of contemporary genes (leaves of all the gene trees) to the species

from which they are sampled (leaves of the species tree to be inferred).

Output:

1. the species tree that is the best, according to the optimization criterion.

This is achieved by scoring each candidate species tree based on the event inference reconcilia-

tion with each gene tree in{TGi}. Under event parsimony model, the best species tree is defined

as the tree that results in the minimal cost for the sum of the events inferred through event infer-

ence. The tree estimation problem under the reduced duplication-loss parsimony model is NP-

complete [189]. However, many efficient methods have been proposed in the literature [190–197].

For the remainder of this section, I focus on the event inference problem.

Event inference in reconciliation refers to a family of problems, with each specific instance defined

by the event model and the optimization criterion used. Since first proposed by Goodman and

colleagues [187], and formalized by Page [198], reconciliation of gene and species trees has been

the target of a great deal of theoretical and algorithmic work [189, 198–205], and a number of
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software packages for this problem are available [184, 206–213]. Prior theoretical work on the

event inference problem, under the parsimony criterion, issummarized in Table 3.1.

Most reconciliation algorithms have focused on an event-parsimony criterion: given a set of events,

with a cost associated with each event, the solution is the one that minimizes the total cost of the

events required to explain the discordance between trees [187, 198, 214]. Speciation is assigned

a zero cost, and duplication, loss, and/or transfer are assigned positive costs. Incomplete lineage

sorting may be assigned either a zero cost or a positive cost.Costs are often assigned arbitrarily. A

more principled approach is to select costs that maximize the statistical power of the method, where

statistical significance is estimated by comparing the costof the optimal solution with the distri-

bution of costs obtained by reconciling randomized trees under an appropriate null model [188].

In addition to the parsimony approach, probabilistic approaches have been proposed [215–223].

In this case, the optimal reconciliation is the one that maximizes the probability of the inferred

events, given the observed gene tree, leaf mapping, event model and event rates. These methods

are appropriate for data sets in which duplication and loss are neutral, stochastic processes. Full

Bayesian inference (including trees and rates) is computationally intensive and requires sufficient

data to learn rates.

Most theoretical work on event inference has also focused ona subset of the event set. Some algo-

rithms infer explicit event histories. That is, they determine whether a given node in the gene tree

is a speciation, duplication, transfer, or incomplete lineage sorting and reconstruct the most parsi-

monious loss histories by inferring the species in which theloss occurred and placing these losses

on edges of the gene tree. However, a number of algorithms only calculate thenumberof events,

but not their location in the gene tree or species tree. Both approaches have their advantages. For

example, simply counting events is a good approach for tree estimation, but for in-depth studies of

individual gene families, more information is required andan explicit event history is preferred.

The most general model includes all four events: duplication, loss, transfer, and incomplete lineage

sorting. Until now (see Alg. 4.3), no work has included such an event model. However, there has

been a great deal of work with other reduced-event models. The most common of the reduced

models is the two event (duplication and loss) model, with many groups ignore losses because of

the false assumption that losses are unimportant [184, 187,189, 199, 201, 203, 204, 206–208, 224–

226]. One unusual approach by Chauve and colleagues [227, 228] has focused on an event model

inferring only loss events.

More recently, event models that include lateral gene transfer (LGT) have been proposed. In the
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past, transfer was ignored partly because incorporating transfers dramatically increases the compu-

tational complexity and partly because of the widespread belief that it does not occur in eukaryotes,

despite considerable evidence to the contrary, at least in some lineages. In the simplest case, the

event model includes only transfers [214,229–233]. Tofigh et al. [234,235] were the first group to

consider an event model consisting of both duplication and transfer, together. This method did not

minimize losses and only inferred counts, not the explicit event history. While Gorecki [236] has

published a paper on inferring duplication, transfer, and loss, it has since been acknowledged that

their approach includes an error and may not infer a most parsimonious reconciliation. Later in

this thesis, I discuss my own work on event inference with a model including duplication, transfer,

and loss that does infer an explicit event history.

Since the probability of incomplete lineage sorting decreases as time between speciation events

increases [237–241], ignoring incomplete lineage sortingas a cause of discordance is justified

if the branch lengths in the species tree are sufficiently long. In the above reduced event mod-

els, the assumption is made that the species tree is binary and the branches are significantly long

enough that incomplete lineage sorting is improbable. Whenthe species tree is non-binary, or

branches are short, incomplete lineage sorting is a significant phenomenon that cannot be ig-

nored [242]. Historically, a reduced event model with only incomplete lineage sorting has been

well-studied [239, 243–249, for example]. Very recently, anumber of papers have focused on a

two event model, inferring incomplete lineage sorting and hybridization events [250,251]. In prior

work [252], we presented an algorithm for the reduced event model including gene duplication,

loss, and incomplete lineage sorting.

When event models do not consider transfers, the event estimation problem has a unique solution

and can be solved in polynomial time. In contrast, even the most reduced models containing

transfer events are known to be NP-hard [231–234,253,254],and when including duplication and

transfer events, the inference problem is NP-complete [234].

3.2.1. Notation and mathematical framework of binary recon ciliation

The basic algorithmic structure and challenges of reconciliation are captured by reconciliation of

gene and species trees under the duplication-loss parsimony model. To provide a foundation for

the description of my results in subsequent chapters, I review that algorithm here. The trees shown

in Fig. 3.4 will be used throughout to exemplify notation. Intree figures, the labelg s denotes a

gene that is sampled from speciess.
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Comparison of Reconciliation Algorithms and Programs

Method/architect
Events

Duplication Loss LGT ILS

[187]; [184,198,206]; [201]; [199];
X X

[203]; [204]; [189]; [224]; and [225]
[207,208,226] X

[227,228]
X

X

[214]; [229]; [230,231]; [232];
X

and [233, with genomic rearrangements]
[239,243,244]; [245]; [246,247];

X
[248]; and [249]

[234,235] X X

[236]1 X X X

Stolzer, discussed here X X X

[209]2; [255] X X X

Vernot et al. [252] X X X

[250]; [251] X X

Lai and Stolzer, discussed here X X X X

Table 3.1:The various reconciliation approaches and packages definedby the event model employed.

Let Ti = (Vi,Ei) be a rooted tree, whereVi is the set of nodes inTi , andEi is the set of edges.L(Ti)

is the leaf set ofTi andL(vi) refers to the leaf set of a subtree rooted atvi ∈Vi. The root node of

Ti is denoted asρi = root(Ti). C(vi) andp(vi) refer to the children and parent ofvi , respectively.

If vi is binary,r(vi) and l(vi) denote the right and left children ofvi . For example, in Fig. 2.1b,

p(y) = x, andC(y) = {g1 A,g1 B}, wherel(y) = g1 A andr(y) = g1 B. A non-binary node in a

tree is referred to as apolytomy. A monophyleticgroup is a set of nodes consisting of a node and all

of its descendants (i.e., a subtree of nodevi , denotedTvi ; for example, in Fig. 2.1a,{γ,C,D} forms

a monophyletic group. The expressionui ≥i vi indicates that forui ∈Vi , eitherui is vi , or ui lies on

the path fromvi to root(Ti). We say thatui is theancestorof vi ; analogously,vi is thedescendant

of ui . If ui �i vi andui �i vi , ui andvi are said to beincomparable. In Fig. 2.1b,ρG = root(TG) = x

andy≥G g1 A. I follow the computer science convention, in which the rootis at the top of the

tree, the leaves are at the bottom, andp(vi) is abovevi .

The basic tenet of reconciliation is that, if the gene tree co-diverges with the species tree, then

each pair of parent and child nodes in the gene tree should mapto a pair of parent and child nodes

in the species tree. In the absence of duplication or loss, the immediate parent of a node,p(vG),

will map to an immediate parent ofM(vG) in the species host tree. Failure of this assumption is
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CHAPTER 3. MODELS OF MULTIDOMAIN EVOLUTION

evidence of incongruence, and indicates that events other than co-divergence have occurred. Rec-

onciliation algorithms identifying nodes where this property is violated by comparing the parent

and child nodes in the gene tree and the corresponding parentand child nodes in the species tree.

If M(p(vG)) 6= p(M(vG)), the algorithm infers the minimum number of duplications and losses

required to explain the discordance. The minimum cost set ofevents that explains these ancestral

associations is also completely specified and easily calculated [207]. Thus, the reconciliation of

the gene tree and species tree is completed with a two-step strategy: (1) infer the mappingM(·)

betweenVG anVS and(2) use that mapping to test whether parent and child nodes disagree and to

infer events if they do not. Formally, the event inference problem for duplication-loss parsimony

is stated as follows:

Reconciliation with Duplication-Loss Parsimony

Input:

1. TS: a binary, rooted species tree,

2. TG: a binary, rooted gene tree, and

3. σ = M : L(TG)→ L(TS): the mapping of contemporary genes,L(TG), to the

species from which they are sampled,L(TS). M(vG) = vS indicates that gene

vG ∈VG was sampled from speciesvS∈VS.

Output:

1. M : VG→VS: the mapping of ancestral genes,VG\L(TG) to ancestral species,

VS such thatM(vG) = vS indicates that ancestral genevG was present in an-

cestral speciesvS, and

2. TG augmented with duplication and speciation events assignedtoVG and loss

events assigned toEG.

LCA Mapping. Let TG be a binary gene tree andTS be a binary species tree such that the genes

in L(TG) were sampled from the species inL(TS); we denote the species from which genevG was

sampled, asσ. The mappingM : VG→VS is constructed from each nodevG ∈VG to a target node

vS∈ VS. A mappingM(vG) = vS implies that genevG was sampled from speciesvS, and we say

thatvS is the label ofvG. If vG is a leaf node,M(vG) = σ(vG) is the species from which sequence

vG was sampled. IfvG is an internal node,M(vG) is the least common ancestor (LCA) of the target

nodes of its children:

M(vG) = LCA(M(l(vG)),M(r(vG))). (3.1)
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3.2. GENE TREE-SPECIES TREE RECONCILIATION

For the three event model,M(·) is completely determined by the mapping between leaf taxa

and is easily calculated with a greedy algorithm. In our example, M(g1 A) = A, since it is a

leaf; M(x) = LCA(M(y),M(z)) = LCA(α,γ) = α. From this mapping both gene duplications and

gene losses can be inferred. We refer to this algorithm for calculating duplications and losses as

LCA reconciliationin order to distinguish it from the new reconciliation algorithms proposed for

multidomain evolution and for non-binary reference trees.

Gene Duplications. An inferred duplication atvG implies that the duplication occurred between

p(M(vG)) andM(vG). The two resulting copies were present in speciesM(vG), and for at least

one childcG of M(vG) (if M(vG) /∈ L(TS)), each copy persisted in at least one leaf (not necessarily

the same leaf) of the subtree ofTS rooted atcG. If M(vG) ∈ L(TS), then both copies persisted in

M(vG). Thus, a duplication is inferred at nodevG if and only if the children ofvG map to the same

lineage inTS; that is, there is some leafvS∈ L(TS) such that bothl(M(vG)) andr(M(vG)) are on

the path fromvS to root(TS). This condition is trueiff

M(vG) = M(l(vG))∨M(vG) = M(r(vG)). (3.2)

By convention, duplications are assigned to nodes inVG. Assigning a duplication to nodevG ∈VG

not only specifies its location inTG, but also its location inTS, via the mappingM(·). Every node

in TG that is not designated a duplication node is a speciation node. Fig. 3.4b shows a duplication

at nodex∈ TG, prior to the species divergence atα. A descendant ofl(x) persisted in speciesB,

while a descendant ofr(x) persisted in speciesC andD; thus, both copies are represented in at

least one leaf of the subtree rooted atβ. The gene tree embedded in the species tree in Fig. 3.4b

shows both copies of the gene on the edge(α,β). Although only one copy of the family survived

in each species, discordance between the species tree in Fig. 2.1a and the gene tree in Fig. 2.1b

provides sufficient evidence to infer a duplication atx. Because bothx and one of its children (y)

both map toα, Eq. 3.2 correctly identifies the duplicationx.

Gene Losses. Losses can also be reconstructed from the mapping,M(·). In this case, the

species,vS, in which the loss occurred must be inferred explicitly. Assigning a loss invS to edge

(p(vG),vG) ∈ EG indicates thatvG was present in bothM(p(vG)) andM(vG), and was lost on the

path fromv′S to vS, wherev′S is a species on the path fromM(vG) to M(p(vG)) (i.e., M(vG) <S

v′S≤S M(p(vG))). For eache= (p(vG),vG), the comparison ofM(p(vG)) andM(vG) determines
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CHAPTER 3. MODELS OF MULTIDOMAIN EVOLUTION

the losses assigned toe. If p(vG) is a speciation node, and no loss occurred, thenM(p(vG)) must be

the parent ofM(vG) in the species tree. Otherwise, we inferdepth(M(vG))−depth(M(p(vG)))−1

losses on edgee. If p(vG) is a duplication node and no losses occurred, thenp(vG) andvG map to

the same node inTS. Otherwise, the number of inferred losses isdepth(M(vG))−depth(M(p(vG)))

— similar to speciation losses, but accounting forp(vG) andvG mapping to the same node. The

species associated with the losses inferred one= (p(vG),vG) are determined by walking up the

species tree fromM(vG) to M(p(vG)). For each ancestral nodevS ∈ VS betweenM(vG) and

M(p(vG)), a loss is inferred inl(vS) or r(vS), whichever is not represented on the path fromvG

to p(vG) in the gene tree. Both speciation and duplication loss situations arise in Fig. 3.4a. For

example, consider the losses in Fig. 3.4a. Sincex is a duplication node,M(z) = γ 6= M(x) = α
indicatesdepth(γ)−depth(α) = 2 losses occurred betweenx andz. These losses occurred inA and

B. Also, sincep(g1 B) = y is a speciation node, butM(y) = α is not the parent ofM(g1 B) = B

in TS, losses are inferred in speciesC andD. Note that these two losses can be explained more

parsimoniously by the loss of a single ancestral gene in the ancestral species,γ.

3.3. Multidomain reconciliation

I propose a methodology for inferring the evolutionary history of a multidomain family by inte-

grating trees for each constituent domain, using a reconciliation framework analogous to the gene

tree/species tree reconciliation, summarized above. Thisprocess exploits the fact that discordance

between a domain tree and a reference tree is evidence that the domain diverged through processes

other than co-divergence with the reference taxon. These processes include domain shuffling, gene

duplication, gene loss, transfer, and incomplete lineage sorting.

Based on studies of molecular mechanisms (Sec. 2.4), I definea set of fourabstract domain shuf-

fling eventsthat capture the various underlying mechanisms discussed in Sec. 2.4. These are rep-

resented in Fig. 1.2(1) Domain insertionrefers to any event that results in the acquisition of a new

sequence fragment (the “mobile” domain) byan existing gene, whether that acquisition was me-

diated by NAHR, retrotransposition, duplicative transposition, or NHEJ. Note that in this model, a

fusion between genes A and B is treated as an insertion of domains from B into gene A.(2) Do-

main losscan arise through unequal crossing over or disruption of splicing signals converting an

exon into an intron.(3) Internal domain duplicationoften arise through unequal crossing over, but

can also result from retro- or duplicative transposition. Evolution of the domain is also influenced

by events on other levels of biological organization.(4) Co-divergencerefers to events that are

50



3.3. MULTIDOMAIN RECONCILIATION

b r1g
1

 r2

g
2

 
b pr

g
3

 
b p2

g
1
_b g

2
_b g

3
_b

g
2
_p g

3
_p1

g
1
_r2 g

1
_r1 g

2
_r

b
b

b

r1
r2

r3

p1

p2

p1

g
3
_p2

p

r

D
D

Figure 3.5:Domain trees for the multidomain family in Fig. 1.2 comparedto the tree for the gene family
locus to infer domain shuffling. Domain trees are colored according to the domain they represent. The
red circle domain and purple rectangle domain trees are for all instances of the domain superfamily. Those
domain instances present in the multidomain family are colored darker than the other instances. The tree for
the gene family locus is brown. Contemporary domain architectures are shown in the bubble.

driven by the genome locus; i.e., a new instance of a gene thatarose because of a speciation of

gene duplication.

Any level of biological organization that co-evolves with the domain of interest can be used as the

reference: another domain that co-occurs in the protein, species, or the multidomain gene family

(as seen in Fig. 3.2b). The realization of my approach requires algorithms for domain tree recon-

ciliation with event models appropriate for domain shuffling, algorithms to infer ancestral domain

architectures, and the software implementation of these algorithms (see Fig. 3.7). Specifically:

– If the reference tree represents the history of a co-occurring domain or of

the locus, then the events included in the model are:(1) co-divergence
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CHAPTER 3. MODELS OF MULTIDOMAIN EVOLUTION

due to speciation, gene duplication, transfers, or incomplete lineage sorting;

(2) domain duplication;(3) domain insertion; and(4) domain loss events.

– If the reference tree is a species tree, the events includedare:(1)co-divergence,

which must be due to speciations;(2)duplication, which may be the result of

gene or domain duplication or domain insertionswithin the species;(3) lat-

eral events, which may be due to either transfers or cross-species domain

insertions;(4) losses, which may be due to either gene or domain loss; and

(5) incomplete lineage sorting.

Without considering all three levels of biological organization, information will be lost and, in

some cases, incorrect histories could be inferred. When reconciling a domain tree with a species

tree alone, it is not possible to distinguish between gene duplications, domain duplications and

intraspecies transfers. Nor is it possible to distinguish between gene losses and domain deletions.

Similarly, when the reference tree is a domain tree, it is notpossible to determine whether a co-

divergence was due to a speciation or gene duplication. While the reconciliation algorithm alone

cannot distinguish between co-divergence events, if the reference tree represents the multidomain

family, it can be reconciled with the corresponding speciestree, in advance. This reconciled refer-

ence tree can then used to determine which type of event led tothe co-divergence and also whether

any gene losses have occurred. Solutions to these subproblems can still provide useful information.

In this framework, the event inference problem is as follows:

Multidomain Reconciliation

Input:

1. a binary, rooted reference treeTR,

2. binary, rooted domain trees,TDi for every instance of domain superfamilyDi

in the family, and

3. a mappingM : L(TDi )→ L(TR) ∀Di of contemporary domains to contempo-

rary reference taxa, whereM(vD) = vR if domain vD is in reference taxon

vR.

Output:

1. a set of minimum-cost reconciled domain trees∀i, where a reconciled tree is

an augmentedTDi in which:

a. every ancestral domain node is labeled with the extended map-

pingM : VDi →VR, whereM(vD) = vR if the ancestral domain

d was a constituent of reference taxonvR;
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b. every node is determined to be a domain or gene duplication,

lateral transfer event, domain insertion, or speciation; and

c. gene losses and domain deletions are assigned to branches,

and

2. a composite reference treeTR, representing the history of the family and an-

notated with:

a. inferred ancestral domain content on nodes;

b. on branches, the set of (partially ordered) domain shuffling

events that explains the incongruence betweenTDi andTR, ∀i.

Lateral events augment the tree by adding a directed edge be-

tween branches.

Domain trees are constructed from sequences of domain instances using standard molecular phy-

logenetics. An example of the output is shown in Fig. 5.9c. Ancestral domain architectures are not

inferred by the reconciliation, but can be determined from the reconciled trees.

Duplication of Ig

Codivergence
(gene duplication)

Codivergence
(speciation)

Insertion of Ig

Insertion of Fn3

g
12

 

Loss of Ig

Insertion of Fn3

g
123

 

g
2

 g
1

 g
3

 

Duplication of Fn3

Figure 3.6:The history of the multidomain gene family in Fig. 1.2 annotated with the domain shuffling
events that would be inferred using my multidomain reconciliation technique. Note that this hypothesis
matches the true history of the family.

Depending on the reference tree employed, the application of this approach varies. When the

species tree is the reference, we can establish the co-evolving associations between ancestral

species and ancestral domain combinations. This provides information about domain content in

ancestral species. Because we can directly reconcile a fulldomain superfamily tree representingall
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instances of the domain in the species of interest (not just those instances in a given multidomain

family) with a species tree, we can obtain information aboutthe volatility of the domain family

and how volatility changes across lineages.

Domain tree-species tree reconciliation.

Events: 

• Co-divergence (speciation),
• Duplication (gene or domain, or   

in-species domain insertion), 
• Interspecies transfers (LGT or               

cross-species insertions), 
• Loss (gene or domain ), 
• ILS.

Input: DT, ST

Output: Reconciled DT

Domain tree-gene tree reconciliation.

Events: 

• Co-divergence (gene duplication, 
LGT, ILS, or speciation),

• Domain duplication,
• Domain insertions,

• Domain loss. 

Input: DT, GT

Output: Reconciled DT

Gene tree-species tree reconciliation.

Events: 

• Speciation, 
• Gene duplication, 
• LGT, 
• Gene loss, 
• ILS

Input: GT, ST

Output: Reconciled GT

Species tree Gene tree

Domain
tree

Figure 3.7:Diagram showing the different roles of the reference tree and the events that can be inferred
with each instantiation. Top of the triangle: the domain tree; bottom right: the multidomain gene family tree;
and bottom left: the species tree. Reconciling the domain tree with the gene tree is discussed in the green
section. Reconciliation of a gene tree with a species tree isdiscussed in the blue section. Reconciliation of
the domain tree with the species tree is discussed in the white section.

There are two applications of reconciliation using a domaintree as reference: reconciliation with

any domain in the family and reconciliation with a primary domain. Using an arbitrary, co-

occurring domain as the reference provides information about the promiscuity of one domain

relative to another. This problem differs from the other problems considered in here in that we

are considering the co-evolution of two entities at the samelevel of biological organization, in

contrast to an embedded taxon evolving in a reference taxon.This situation is analogous to two

parasites evolving within the same host, as opposed to a parasite co-evolving within a host. By

comparing two entities co-evolving at the same level, we caninfer the number of co-divergences,

insertions, duplications, and deletions of domain domainD1 relative to domainD2. This type of
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analysis allows analysis of all instances of two domains that co-occur, not just those that co-occur

in the same multidomain family.

In some cases, we can take advantage of biological information to identify aprimary domainof the

family, and then use the tree from that domain as the reference. Many multidomain families arise

from a progenitor gene [35,81,168], which undergoes gene duplication, followed by domain inser-

tion, resulting in the progenitors of subfamilies with different domain architectures (e.g., Fig 1.2).

These subfamilies then further expand through additional duplications. For families that follow

this pattern, the evolutionary history of theprimary domain3 in the progenitor sequence is congru-

ent with the history of the locus. For such families, the associated domain tree(s) can be treated as

a proxy for the history of the locus. This is the most informative choice for the reference tree.

Anecdotal evidence suggests that the Kinase, Kinesin, Myosin, and ADAM families follow this

pattern. For example, several lines of evidence suggest that the kinase domain is the “primary” do-

main for the protein tyrosine kinase family: All kinase domains share an origin [256,257]. Roughly

40% of kinases are single-domain proteins [258] and these occur primarily in more ancient kinase

subfamilies. This is consistent with the hypothesis that single-domain kinases represent the an-

cestral state and that multidomain kinases arose through insertion of mobile domains into existing

kinases. Moreover, kinase domains have characteristics that suggest they are not particularly mo-

bile. Mobile domains tend to be small, and have 0-0 intron phase [32], yet neither is true of the

kinase domain. I propose the following set of criteria, based on characteristics of known “pri-

mary” domains, for determining whether there exists in the multidomain family a domain that

evolves only through vertical descent. These criteria include:

1. Evidence of vertical descent based on conserved synteny.

2. All instances of the domain are thought to share an origin.

3. Appearance of the domain only in one family (with some exceptions).

4. There is only one copy of the domain in each architecture ofthe family,

which suggests that a single-domain protein was the ancestral state. I allow

some exceptions here. For example, the kinase domain, a predicted primary

domain, sometimes was locally duplicated. Often, one copy of this domain

was later inactivated.

5. Conserved spatial features, such as a unique linker sequence, intron/exon

structure, local architectures, etc.

3Note that we are not asserting that this domain is responsible for the primary function of the family, although this
is often the case.
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6. Appearance of the domain in single-domain families in more ancient lin-

eages, suggesting that a single-domain protein was the ancestral state. In

contrast, promiscuous domains, which are not “primary,” rarely appear in

single domain proteins.

7. Absence of traits characteristic of mobile domains, suchas

– short amino acid sequences or

– 0-0 intron phase.

If there is more than one domain in the multidomain family that fits these criteria, an additional

constraint, that the set of primary domains should have congruent trees, is imposed.

The prevalence of this pattern of evolution suggests that families with primary domains are not

uncommon. However, there are cases where there is no “primary” domain. Either no single domain

tracks the history of the locus or there may not be sufficient evidence to determine whether a

domain evolved by vertical descent or not. In this case, the gene family tree can be estimated

from the trees of all domains found in the family. Domain treereconciliation can be treated as the

estimation problem, in which the gene tree that minimizes the cost of domain shuffling events is

sought. See Ma et al. [189, and works cited therein] for details on the tree estimation problem with

reconciliation.

In this work, I focus only on multidomain families with a primary domain; gene family tree esti-

mation from domain trees is an important problem for future work.

I have developed algorithms to satisfy the needs discussed here under the event-parsimony crite-

rion, including: reconciliation with the events duplication, loss, incomplete lineage sorting; rec-

onciliation for the three-event model with duplication, transfer, and loss; reconciliation with all

four events (duplication, loss, transfer, and incomplete lineage sorting); and an algorithm to infer

the composite history of the reference tree from all reconciled domain trees. In addition, these

algorithms have been implemented in the reconciliation program, Notung [213,252].
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Chapter 4

Implementations of methods to infer domain

shuffling events

In order to realize the co-evolutionary model of multidomain evolution that I proposed in Sec. 3.3,

I have developed a number of different algorithms.

1. A reconciliation algorithm for duplication, heuristic loss, and incomplete lineage sort-

ing, given a binary,embeddedtree (the tree to be reconciled with the reference; i.e.,

the domain tree) and a non-binary reference tree [252]. The details of this algorithm

have been published in the paper by Vernot, Stolzer, Goodman, and Durand [252].

This algorithm was implemented in NOTUNG by Ben Vernot.

2. A reconciliation algorithm for horizontal transfer, duplication, and loss, given binary

embedded and reference trees. I have implemented this algorithm (for one optimal

solution) into NOTUNG with a graphical user interface (GUI) update.

3. A reconciliation algorithm for duplication, heuristic loss, incomplete lineage sorting,

and transfer given a binary embedded tree and a non-binary reference tree. This algo-

rithm is based on algorithms (1) and (3) that I developed. It has been implemented in

NOTUNG by Han Lai.

4. An algorithm to infer ancestral states of the reference tree and assign events to the ref-

erence tree given a set of reconciled embedded trees. This algorithm was implemented

in NOTUNG by Ravi Chinoy, under my direction.

57



CHAPTER 4. IMPLEMENTATIONS OF METHODS TO INFER DOMAIN SHUFFLING EVENTS

Notung. These algorithms have been implemented in NOTUNG. NOTUNG is a robust, general

purpose software tool, developed in the Durand Lab, that provides a unified framework for incor-

porating information about duplication and loss into phylogenetic tasks [252, 259, 260]. NOTUNG

provides a graphical interface for exploratory analysis and a command line interface for automated,

high-throughput processing. It is widely used for a varietyof analyses [261–273].

Figure 4.1:The history of the multidomain gene family in Fig. 1.2 inferred with multidomain reconcilia-
tion, as seen in Fig. 3.6, but inferred and drawn automatically in NOTUNG.

The implementation of these algorithms required major changes to data structures, the inference

engine, and display. In addition, substantial changes wereneeded to accommodate reference trees

representing composite multidomain histories. In NOTUNG, which performs gene tree-species tree

reconciliation, the reference (species) tree is a passive entity which is not modified in the course

of the analysis. Inferring a composite history for the reference family requires data structures that

allow communication between reference and embedded trees,as well as bookkeeping for real-

time updates between the individual domain trees and the reference tree. This also required an

interaction panel with the reference tree view that allows the user to perform actions that invoke

inference calculations and/or modify its appearance.

The GUI (shown in Fig. 4.2) has been modified to display horizontal events and domain content.

It presents the composite tree with panels that allow the user to interact with the reference tree and

to root both reference and domain trees by event parsimony; presents the reconciled domain trees

with duplications, transfers and losses; presents composite reference trees with ancestral domain

content and a summary of the events associated with each domain (e.g. r: 1L; p: 1T). The algorithm

infers a partial ordering on the inferred domain shuffling events. The partial order of these events
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is not currently presented visually, but is stored in the internal data structures and included in the

output of the command line interface.

(a) (b)

Figure 4.2:Screen captures of NOTUNG showing my implementations of multidomain reconciliational-
gorithms.(a) The tree for the red domain in Fig. 1.2 reconciled with the tree for the gene family locus.(b)
The composite history of the gene family showing domain shuffling events by reconciling the blue, red, and
purple domains in Fig. 1.2 with the gene family tree.

With my developed algorithms, NOTUNG can now root a tree based on duplication, loss, and in-

sertion parsimony. Under the assumption that gene duplication, loss, and insertion are rare events,

the rooted, binary tree that requires the fewest events to explain the data is the best resolution of

uncertainty. NOTUNG uses this parsimony principle to root an unrooted tree by minimizing the

event cost. In order for this implementation to run efficiently, memoization of the reconciliation

algorithm for rooting has been implemented. Incomplete lineage sorting (ILS) can be included in

the cost, but this event type is often assigned zero cost.

4.1. Duplication-loss-incomplete lineage sorting algori thm

In order to reconcile the domain and/or the multidomain family tree with the species tree, we wish

to be able to identify incongruence due to incomplete lineage sorting in addition to duplication and

loss. The probability of incomplete lineage sorting increases as time between speciation events

decreases [237–241]. Thus, when the species tree is non-binary or contains short branches, incom-

plete lineage sorting is a significant phenomenon that cannot be ignored [242]. I have developed
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an algorithm, Alg. 4.1 that reconciles a rooted, binary embedded treeTE with a rooted non-binary

species treeTS to infer the duplication, loss, and incomplete lineage sorting events in the history

of the embedded family [252]. This is accomplished by mapping nodes in the embedded tree to

setsof nodes in the reference tree. My novel set mapping approachallows us to test efficiently

whether a discordance at a given node is a duplication or incomplete lineage sorting event. The

maximum size of the set mapping to any node inTE is O(kS), wherekS is the maximum outdegree

in TS (i.e., the size of the largest non-binary node). Using this mapping, incomplete lineage sorting,

duplication, and heuristic loss events are inferred inO(|VE| · (kS+hS)), wherehS is the height of

TS.

All binary trees withk leaves are equally compatible with a non-binary node (polytomy) in the

species tree withk children [237] (see Fig. 4.3). Therefore, we can treat a polytomy s as a

set of hypotheses, or binary resolutions. For each polytomyvi ∈ VS, let H(vi) be the set of all

possible binary trees, rooted atvi , whose leaves are the children ofvi . Formally, given thek-

tomy vi ∈ VS, let H(vi) = {Ti j |L(Ti j ) = C(vi)}, whereTi j is a binary tree such that the leaves

of Ti j are the children ofvi . In addition, letH∗(TS) be the set of all possible binary trees ob-

tained by replacing each polytomyvi ∈VS with each treeTi j ∈ H(vi). In other words,H∗(TS) is

the set of all possible binary resolutions ofTS (see Fig. 4.3, for example). IfTS is binary, then

H∗(TS) = {TS}. The number of trees inH∗(TS) is ∏∀vi∈VS
|H(vi)|, where|H(vi)| =

(2ki−3)!
2ki−2(ki−2)!

andki = |C(vi)|, the polytomy size or number of children ofvi [274]. For example, if nodevi

is the trichotomyα in Fig. 4.4a, thenH(α) = {(A,(B,β)),(B,(A,β)),(β,(A,B))}, andH∗(TS) =

{(A,(B,(C,D))),(B,(A,(C,D))),((C,D),(A,B))}. When reconciling the embedded treeTE with

everyT ∈ H∗(TS), if vE ∈VE is a duplication in every reconciliation, then a duplication musthave

occurred atvE. If at least one, but not all reconciliations indicate a duplication atv, then an in-

complete lineage sorting eventmayhave occurred. Under the parsimony principle, we will infer

such a node to be an incomplete lineage sorting event. Noticethat for the trees in Fig. 4.4, every

T ′ ∈ H∗ would infer a duplication node at nodey; however, this is not the case for nodex. There-

fore, nodey is a duplication. On the other hand, nodex is an incomplete lineage sorting event since

there is a binary resolution inH∗(TS), namely(A,(B,(C,D))), that does not infer a duplication.

However,H∗(TS) grows superexponentially with the size of polytomies inTS; therefore a more

efficient method of identifying duplication and incompletelineage sorting events is needed. The

LCA mapping used in standard reconciliation (Eq. 3.1) is notsufficient because it cannot distin-

guish between incomplete lineage sorting and duplication (see for example, Fig. 4.4d, where LCA

would incorrectly infer a duplication atx sinceM(x) = M(r(x))).
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Figure 4.3:If branches in the species tree are sufficiently short (i.e.,the branch between the ancestor ofA
andB and the ancestor ofA, B, andC), incomplete lineage sorting is possible. These trees showthe gene
family evolving within the context of the species and populations. Gene trees are also shown as stick trees
outside the species tree. Because the population has three different alleles (colored dots) present at timet2,
the alleles could sort randomly acrossA, B, andC, resulting in incomplete lineage sorting where the gene
and species tree disagree, as in (b) and (c).
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Figure 4.4: (a) A species tree with a polytomy atα. (b) A hypothetical gene tree sampled from the
species in (a).(c) The gene tree from (b), which has been reconciled using the LCA algorithm. (d) The
hypothetical gene tree embedded in species tree.(e) The gene tree labeled with thêN(·) mapping and
showing duplications and losses; nodex is inferred to be ILS. Black squares indicate duplications.Losses
are represented by dotted lines.

I have developed a novel mapping,N̂ (Eq. 4.1), that can be calculated efficiently and can correctly

distinguish between duplication and incomplete lineage sorting events. A straightforward approach

would be to map each node,vE, in the embedded tree withall nodes (both leaves and internal

nodes) in the species tree in which the embedded node was present. Using this mapping, a required

duplication is inferred atvE if the intersection of the sets of its children is non-empty.The size of

the sets mapping the nodes in the embedded tree grows with theheight of the tree and can contain

as many asO(|VS|) elements. However,̂N takes advantage of the observation that it is sufficient to

store only those children ofM(p(vE)) in which descendants ofvE must have been present. In this

case,̂N : VE\root(TE)→V+
S is defined to be

N̂(vE) =




{M(vE)}, if M( p(vE) ) ∈ L( TS ),

{h|h∈C(M(p(vE)))∧∃ uE ∈ L(vE) ∋ h≥S M(uE), otherwise
(4.1)

whereV+
S is the powerset ofVS, excluding the empty set. With this mapping, nodevE ∈ VE is a
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duplicationiff

N̂(r(vE))∩ N̂(l(vE)) 6= /0. (4.2)

The size ofN̂ at any given node is bounded by the size of the largest polytomy in TS, yet is

sufficiently informative to identify and distinguish between incomplete lineage sorting and dupli-

cation1. Fig. 4.4e shows the mappinĝN(·). It correctly infers a duplication aty sinceN̂(l(y))∩

N̂(r(y)) = {B,β}∩{β}= {β} 6= /0. It also correctly identifies incomplete lineage sorting atnode

x, sinceN̂(l(x))∩ N̂(r(x)) = {A}∩{ B,β}= /0.

For a given binary, embedded tree and binary species tree, there is exactly one most parsimo-

nious loss history, with each loss unambiguously assigned to one edge inTE, and associated with

one node inTS. In this case, it is possible to determine the set of losses assigned to an edge

e= (vE, p(vE)) by comparingM(vE) andM(p(vE)), without considering losses on any other edge

of the gene tree. The total number of losses in the most parsimonious history can be determined

by inferring losses on each edge independently and summing over all edges. In contrast, whenTS

is non-binary, a reconciliation may have more than one equally parsimonious loss history because

losses within a species polytomy areambiguous. These losses may be assigned to one of several

edges in the embedded tree. In addition, in embedded families in which two or more losses oc-

curred, interactions between losses that can be assigned tothe same edge of the embedded tree

must be considered. Two factors contribute to the interactions between losses. First, losses that

occurred in sibling species and that are assigned to the sameedge inTE may be replaced by a sin-

gle loss in a common ancestor, decreasing the total loss count. Second, interaction of ambiguous

losses with duplications in the embedded tree affects the total number of losses inferred. Pushing

a loss below a duplication generally increases the number oflosses; however, if these duplicated

losses can be combined with other losses below the duplication, it may, in fact, decrease the total

number of losses.

While reconciliation does not provide enough information to fully resolve the temporal order of

these losses relative to other events, it is able to identifythe set ofpermissible edgesfor a given

loss. The particular edge within the permissible set to which a loss is assigned determines whether

or not it can be combined with other losses and, hence, the total number of losses inferred. There

are two criteria that dictate where losses can be combined. The first criterion follows from the

standard binary case: losses forming a monophyletic clade (i.e., are a subtreeTvS rooted atvS∈VS)

are inferred as a loss in the ancestral root of the clade (i.e., in vS). The second criterion focuses

on polytomy “siblings”: losses that correspond to leaves ofsubtrees whose roots are the children

1see Vernot et al. [252] for proofs
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of a polytomy (i.e., losses are{L(TvSi
)} for {vSi} ⊂ C(vS), wherevS∈ VS is a polytomy) can be

combined into a single loss mapped to the set of children thatwere lost (i.e.,{vSi}). This is possible

because of the observation that there is some subtreeT ′vS
in T ′ ∈ H∗(TS) such that the losses form

a monophyletic clade, allowing us to infer a single loss inroot(T′vS
).

Rather than consider all possible loss placements and loss combinations, I have developed a heuris-

tic to efficiently identify the fewest losses. An exact solution with complexityO(|VE|kS22kS) has

been proposed by the Durand Lab and is discussed in Vernot et al. [252]. My heuristic has com-

plexity O(|VE| ·(kS+hS)), and although not guaranteed to return an optimal history, does very well

in practice. In a dataset containing 1174 trees, the heuristic found the optimal solution in more

than 99% of the cases studied [252]. The heuristic uses a greedy strategy that makes loss assign-

ment decisions at each edge, without considering interactions with losses inferred on other edges.

The strategy is to minimize duplicated losses by assigning each ambiguous loss to the permissible

edge closest to the root. This guarantees that the loss will not be unnecessarily assigned below a

duplication node, leading to the inference of two losses, instead of one. Losses assigned to an edge

e= (vE, p(vE)) can occur in any of three sets of species:

– C(M(vE)): The set of all children ofM(vE).

– N̂(vE): The set of children ofM(p(vE)) that contain a descendant ofvE.

– N(vE): The set of children ofM(vE) that contain a descendant ofvE.

N(vE) is a set variable I have developed to infer losses efficiently. N : VE→V+
S is defined to be

N(vE) =




{M(vE)}, if M( vE ) ∈ L( TS ),

{h|h∈C(M(vE))∧∃ uE ∈ L(vE) ∋ h≥S M(uE), otherwise.
(4.3)

I define three tests, corresponding to the above sets, to determine losses along edgee= (vE, p(vE)),

in EE.

Test 1 – Skipped Species:If M(vE) 6= M(p(vE)) and p(M(vE)) 6= M(p(vE)), traverse the path

from M(vE) to M(p(vE)) in TS, inferring a loss diverging from each intermediate species

along this path (lines 29-31 in Alg. 4.1).

The procedure to infer these skipped losses is carried out inthe climb procedure and is

analogous to that used in LCA reconciliation (described on pg. 49). This test is applied to

all edges inTE, whether associated with a binary node or polytomy inTS. If a node and its

parent map to different nodes inTS, we expect those nodes to correspond to child and parent
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nodes in the species tree. Otherwise, genes in the intervening species must have been lost.

Test 2 – Duplication: If p(vE) is a required duplication, then losses are inferred in the species in

N(p(vE))\ N̂(vE) at e (lines 18-21 in Alg. 4.1).

This test is applied to all edges wherep(vE) is a duplication, whether associated with a

binary node or polytomy inTS. Note that ifM(p(vE)) is binary andM(p(vE)) = M(vE),

thenN(p(vE)) = N̂(vE) and no losses are inferred. Thus, this test reduces to that used in

LCA reconciliation for binary nodes inTS. WhenM(p(vE)) is polytomy, losses may occur

even whenM(p(vE)) = M(vE), in contrast to binary reconciliation.

Test 3 – Polytomy: If M(vE) is a polytomy andM(p(vE)) 6= M(vE), then losses are inferred in

the species inC(M(vE))\N(vE) at e (lines 22-24 in Alg. 4.1).

This test is only applied whenp(vE) is a speciation node andM(vE) is a polytomy. It

verifies that each child ofM(vE) contains a descendant ofvE. If not, one or more losses

must be inferred.

After all losses are assigned, those losses that satisfy theappropriate criteria (described above) are

combined.

The algorithm to construct the mapping and infer duplication, loss, and incomplete lineage sorting

is shown in Alg 4.1.N̂(·), N(·), andM(·) are calculated by a postorder traversal ofTE. During this

traversal, the algorithm performs each of the three loss tests described above to identify loss nodes.

Because the tree is traversed in postorder, the permissibleedge closest to the root is reached first,

allowing the heuristic to assign the loss to the desired edgewithout explicitly determining the set

of permissible edges for each loss. To ensure thatN̂(·) is composed only of children ofM(p(vE)),

a climbing step is executed to replace the set of nodes inN̂(vE) with the child ofM(p(vE)) which

is ancestral to them. Theclimb procedure prevents|N̂| from growing larger thankS and assigns

Polytomy and Skipped species losses. For any given path fromuE ∈ L(TE) to ρE = root(TE), we

will climb in total from M(uE) to M(ρE). Thus thetotal cost of calls toclimb is O(|VE| ·hS). For

internal nodes,N(vE) is initialized toN̂(l(vE))∪ N̂(r(vE)), each bounded in size bykS. Using a

suitable data structure, this step can be achieved inO(log(kS)) time per node. Using fast LCA

queries,M(·) can be calculated inO(|VE|) time for the entire tree [275]. If the intersection of the

setsN̂(l(vE)) and N̂(r(vE)) are non-empty, a duplication is inferred; incomplete lineage sorting

is inferred if the node is not a duplication, but is a duplication under standard LCA reconciliation

(Eq. 3.2). Testing for a duplication and assigning duplication losses takesO(kS) per node, while

the test for incomplete lineage sorting is constant time pernode. Thus, the total complexity for this
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algorithm isO(|VE| · (kS+hS)).

Algorithm 4.1

Input: TE = (VE, EE); TS= (VS, ES); σ, the M(·) of L(TD) → L(TR)

reconcileDLI( TE, TS, σ )

1 for each vE ∈ TE in postorder do

2 if ( vE ∈ L(TE) ) then

3 // Leaf node case

4 M( vE ) ← σ( vE )

5 N( vE ) ← { M(vE) }

6 N̂( vE ) ← { M(vE) }

7 else do // Internal node case

8 M( vE ) ← LCA( M(l(vE)), M( r(vE)) )

9 calculateDuplication( vE )

10 if ( vE 6= DUP ) then

11 if ( M(vE) == M(l(vE)) || M(vE) == M(r(vE)) ) then

12 event( vE ) ← ILS

13 return

calculateDuplication( vE )

14 // Update N̂( · ) for children by climbing

15 N̂( l(vE) ) ← climb( l(vE), vE )

16 N̂( r(vE) ) ← climb( r(vE), vE )

17 N( vE ) ← N̂( l(vE) ) ∪ N̂( r(vE) )

18 if ( N̂(l(vE)) ∩ N̂(r(vE)) 6= /0 ) then

19 event( vE ) ← DUP

20 // duplication losses for left child

21 add N( vE ) \ N̂( l(vE) ) to losses( l(vE) )

22 // duplication losses for right child

23 add N( vE ) \ N̂( r(vE) ) to losses( r(vE) )

climb( uE, vE )

24 // general polytomy losses

25 if ( M(uE) /∈ L(TS) && M(uE) 6= M(vE) ) then

26 add C( M(uE) ) \ N( uE ) to losses( uE )

27 select x from N̂( uE ) at random

28 if ( x == M(vE) || p(x) == M(vE) ) then

29 return N̂( uE )

30 while ( p(x) 6= M(vE) ) do
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31 // skipped losses

32 if ( p(x) 6= M(uE) ) then

33 add siblings( x ) to losses( uE )

34 // climb

35 x = p( x )

36 return { x }

4.1.1. Empirical testing

I tested this algorithm on several data sets, using the version implemented in NOTUNG 2.5.

First, I confirmed that this algorithm performs identicallyto LCA reconciliation when applied to

a benchmark of 15 well-studied, binary trees [276–279], with no incomplete lineage sorting and

verified that the results were the same as those generated by the binary version of NOTUNG, as

well as those of the original authors.

Second, I compared the results of my reconciliation algorithms to those from LCA reconciliation

for gene families in three species groups with known polytomies: Anolis [280], Neoaves[281]

and Auklets [282]. Species trees were transcribed directlyfrom the source articles. I constructed

gene trees for two gene families inNeoaves(cytochrome-b and globin), three families in Auklets

(cytochrome-b, cytochrome oxidase 1 and NADH-6), and one family in Anolis (NADH-2). Se-

quences were downloaded from NCBI [283], and multiple sequence alignments were constructed

with T-Coffee [284]. Phylogeny reconstruction was performed using the PHYLIP package from

Felsenstein (v. 3.6.1) and bootstrapped using the includedSEQBOOT program. Branches with

weak bootstrap support (< 60%) in the globin tree fromNeoaveswere rearranged using models

presented in [260].

Table 4.1 shows the number of leaves (l ) in each tree, the size of the maximum polytomy (kS) in

each species tree, the number of duplications obtained by LCA reconciliation (B), the number of

required duplications predicted by our algorithm (R), and the optimal number of losses. For each

of these gene families, the exact and heuristic loss algorithms reported the same number of losses.

Only one gene family, the globins, had more than one optimal loss assignment. As predicted, LCA

reconciliation substantially overestimates required duplications.

In Vernot et al. [252], we also present an analysis on comparing heuristic and exact loss inference

for all full trees in TreeFam 3.0 [285]. This analysis found that (1) the heuristic loss inference
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Empirical results for testing the duplication, loss, incomplete lineage sorting algorithm
Gene family Tree Dupl.s Losses

l kS B R

Neoaves[282] 12 10 - - -
cytochrome B 9 - 4 0 0
globin 17 - 7 4 7

Auklets [281] 5 4 - - -
cox1 5 - 1 0 0
cytochrome B 5 - 2 0 0
NADH-6 5 - 2 0 0

Anolis[280] 50 6 - - -
NADH-2 50 - 13 7 17

Table 4.1:Comparison of duplications inferred by NOTUNG 2.5 and LCA reconciliation.

inferred the minimal number of duplications ˜99% of the time; and (2) when the heuristic was

not minimal, it was not very bad: the worst loss overcountingwas of 4 losses in a tree with 249

losses. In addition, running time was measured for this dataset, showing that large-scale analyses

are possible with this algorithm and software. Reconcilingall 1174 trees in TreeFam took only 48

minutes (on a 3.2ghz OptiPlex GX620 computer) when using theheuristic losses.

4.2. Duplication-transfer-loss algorithm

In order to capture domain insertions, an algorithm that considers horizontal events, as well vertical

events is required. Reconciliation with transfer (i.e., insertion or horizontal events), which I employ

for multidomain reconstruction, is more difficult than other event models. First, for any model

involving insertion, the event inference problem is NP-hard because insertions must obey temporal

constraints [232, 233, 235]. Second, even when temporal constraints are not violated, in a model

with horizontal events, taxa in the embedded tree can jump todistant locations in the reference

tree. As a result, to determine the optimal mappingM(vD) for each ancestral node invD ∈ VD,

all possible reference node mappings must be considered. Inaddition, all possible child mappings

must be examined. Third, each node branching inTD could be the result of co-divergence with

the reference taxa, or duplication or insertion of the domain. Thus, each of these three events

must also be considered at each node. These properties invoke an additional level of complexity,

as there may be multiple optimal mappings betweenVD andVR, multiple optimal sets of events,

and multiple optimal child-pair mappings for each mapping. Anyscenario that can be explained
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by a transfer can also be explained by a combination of duplications and losses. At each node in

VD, the algorithm must iterate over all possible species nodesin VR, all possible events, and all

possible species nodes for each child to determine the valueof M(vD) and the event history that

minimizes the total event cost. None of the simpler models explore both the space of mappings and

the space of events. Although heuristics for inference of transfer events alone have been proposed,

few algorithms consider the complete duplication-loss-transfer event model.

My reconciliation algorithm, Alg. 4.2 explores the space ofmappings and events to infer the most

parsimonious history of domain duplication, loss, and insertion events. This algorithm:

– simultaneously calculates the minimal total cost of duplications, losses, and horizontal

events required to explain the discordance between trees.

– infers the history, not just the number of events, indicating where in the tree each event

occurred. (i.e., associating duplications, insertions, and losses with specific nodes and

edges in the domain and reference trees).

This is achieved in three passes.

In the first pass, a dynamic program traverses the tree depth-first, visiting each node in the domain

tree in post order. At each node, entries in minimal-cost event and traceback tables are calculated

(calculateTable) for all possible mappings to nodes in the reference tree, all possible combi-

nations of children node mappings, and for each node event-type: co-divergence, duplication, and

insertion. Losses are calculated with each of these three events. The cost table,c, and the traceback

table are two dimensional tables of sizen ·m (n = |VD| andm= |VR|, with rows representing the

nodes inTD and columns representing nodes inTR. Each entry,c(vD,vR), stores the minimum cost

of reconciling subtreeTvD with TR and mappingvD to vR∈VR. Each entry in the traceback table is

a triple{EVENT, M(l(vD)), M(r(vD))} representing the event and associated mappings of the left

and right children ofvD, l(vD) andr(vD) respectively, that resulted in this optimal reconciliation.

Calculations for the cost table are based on a pair of recursion equations. If nodevD is a leaf node,

vD ∈ L(TD), then the only possible mapping is the reference taxon from which it was sampled,

σ(vD), which is of no cost. Otherwise, the entryc(vD,vR) is calculated as the minimum cost of

the mapping ofvD to vR and assigning a duplication, insertion, or co-divergence event tovD. The

recursion equations for the dynamic program are as follows [235]:
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If vD ∈ L(TD) andvR∈ L(TR), then

c(vD,vR) =

{
0 if vR = σ(vD),

∞ otherwise.
(4.4)

Else,vD ∈VD \L(TD) and

c(vD,vR) = min{cCODIV(vD,vR), cDUP(vD,vR), cINS(vD,vR)}, (4.5)

whereCODIV is a co-divergence,DUP is a duplication, andINS is an insertion.

For each value ofvD andvR, the cost of a duplication, an insertion, or a co-divergenceat vD is

determined, and the minimum of these is assigned toc(vD,vR). If two or more of these events

incur a minimum cost, one is selected at random. In order to calculatecEVENT(vD,vR), we must

consider all the possible mappings of the children ofvD that are consistent with the event at node

vD. To be consistent with a co-divergence event, the children of vD must map to a node inTl(vR),

the subtree rooted atl(vR) and a node inTr(vR), the subtree rooted atr(vR), respectively. If the

children ofvD are mapped to the roots of these subtrees (i.e., tol(vR) andr(vR)), then no losses

are incurred; otherwise, losses must be inferred. In contrast, the mapping of the children ofvD

is consistent with a duplication event if both children are mapped to the same node of one child

mapping is comparable to the other. If both children map tovR, then there is no evidence of

loss. Losses are inferred if one or both children are mapped to nodes inTr(vR) or in Tl(vR). The

number of losses inferred follows from the equations for loss in standard reconciliation (on pg. 49)

A mapping is consistent with an insertion event when one child of vD is mapped to a node inTvR

(possiblyvR, itself), and the other child is mapped to a node that is incomparable tovR). Formally,

these equations are:

cCODIV(vD,vR) =





min∀(x,y){c(l(vD),x)+ lossCODIV(l(vD),x)

+c(r(vD),y)+ lossCODIV(r(vD),y) :

x incomparable toy, andlca(x,y) = vR } if vR∈VR\L(TR),

∞ otherwise,

cDUP(vD,vR) = δ+ min
∀(x,y)
{c(l(vD),x)+ lossDUP(l(vD),x)+c(r(vD),y)

+ lossDUP(r(vD),y) : x≤R vR,y≤R vR},

cINS(vD,vR) = τ+ min
∀(x,y)
{c(l(vD),x)+c(r(vD),y) : x≤R vR andy incomparable tovR.}

(4.6)
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whereδ is the cost of a duplication,λ is the cost of a loss, andτ is the cost of an insertion. To

determine the optimal event and left and right child mappings to store in the traceback table,t, the

arguments that provide the minimums for the cost table are stored.

To complete these tables, we must loop through all nodes in the domain tree, and for each domain

node, we must loop through all nodes in the reference tree. Inaddition, for each domain-reference

pair, we must also consider all possible reference mappingsfor the children of the domain. Thus,

the time complexity to determine the optimal mapping of one domain-reference pair isO(m2) —

for each mapping of the left child (ofm possible mappings), consider every mapping of the right

child (also of sizem). Together, examining every domain-reference pair (n ·m possible pairs), the

time complexity to fill these tables isO(n ·m3). We can reduce the complexity by a factor ofm, to

O(n ·m2), if we take advantage of the observation that the optimal pair of children mappings can

de determined by each child individually (see Alg. 4.2), rather then consider every possible pair of

child mappings. The recursion equation in Eq. 4.6 becomes:

cCODIV(vD,vR) = min
∀x
{c(l(vD),x)}+ lossCODIV(l(vD),x)

+min
∀y
{c(r(vD),y)}+ lossCODIV(r(vD),y) :

x incomparable toy, lca(x,y) = vR, vR∈VR\L(TR),

cDUP(vD,vR) = δ+min
∀x
{c(l(vD),x)+ lossDUP(l(vD),x) : x≤R vR}

+min
∀y
{c(r(vD),y)+ lossDUP(r(vD),y) : y≤R vR},

cINS(vD,vR) = τ+min
∀x
{c(l(vD),x) : x≤R vR}+min

∀y
{c(r(vD),y) : y incomparable tovR}.

(4.7)

Once the entire tree has been traversed, the minimal cost solution is selected.

The second pass traverses the domain tree to generate a candidate optimal reconciliation from these

cost and traceback tables. First, the optimal reconciliation at the root,ρD = root(TD) is selected:

M(ρD) = arg min
vR∈VR

{c(ρD,vR)}. (4.8)

The event at this node and the children mappings can then be recalled from the traceback table,

{event(ρD), M(l(ρD)), M(r(ρD))}= t(ρD,M(ρD)). (4.9)

This process is continued, until all nodes inTD are mapped to nodes ofTR and are assigned a

co-divergence, duplication, and insertion event. Then, losses can be determined. This process is
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similar to theclimb function in Alg. 4.1. One loss is assigned to the edge above node vD ∈ VD

for each “skipped” node fromM(vD) to M(p(vD)), and forM(p(vD)) if vD is a duplication and

M(vD) 6= M(p(vD)).

If we only care about a single optimal reconciliation (i.e.,a random reconciliation from the set

of all possible, optimal reconciliations), we simply have to find the best mapping at the root of

TD, and traverse the domain tree, pulling data from the traceback and cost tables. In this case,

the traceback complexity is justO(n+m) — finding the minimum cost mapping at the root is

O(m) and traversing the domain tree isO(n). However, if we would like to reviewall optimal

reconciliations (as in Alg. 4.2), there is an increase in complexity. In this case, we must keep track

of all solution paths in the traceback table (i.e., by havingentries in the cost and traceback tables

be alist of solutions). Each optimal scenario (the mapping and associated events) are stored in the

tables; if a scenario generates a better cost, all previous stored information is cleared and the new

scenario is stored. This allows us to keep track and generateall optimal scenarios. The traceback is

still initiated with finding the optimal mapping of the root,which is stillO(m). When traversingTD,

we must consider every optimal mapping and event; however, it is possible that many mappings

produce an optimal solution. Also, a mapping may be optimal with multiple children mapping

pairs. Thus, the time complexity for the traceback isO(n ·m3) — n to traverse the tree and at each

node consider all optimal mappingsO(m) and all optimal children pair mappingsO(m2).

The third pass checks the candidate reconciliation for violations of temporal constraints that can

arise if insertions create a cycle. In particular, an event history has a cycle if it includes a transfer

from taxonx to an ancestor of taxony anda transfer from taxony to an ancestor of taxonx. This

is not permitted as it would require that both thatx existed beforey and thaty existed beforex,

which is impossible. If a cycle is detected, it is repaired. Cycle checking runs in polynomial time:

O(n+m2). However, the problem of repairing a cycle, if one is detected, is NP-complete [232,233,

235]. My work on domain shuffling in the human genome (see Sec.6) performed 3400 domain

reconciliations, of which only 6 contained a cycle, suggests that cycles are rare.

Algorithm 4.2

Input: TD = (VD, ED); TR = (VR, ER); σ, the M(·) of L(TD) → L(TR)

reconcileDTL( TD, TR, σ )

1 initializeTables() //Initializes the cost and traceback tables.

2 for each vD ∈ VD in postorder do
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3 calculateTable( vD )

4 bestRoot = argminvR∈VR{ c(ρD, vR) }

5 traceback( ρD, bestRoot )

6 return

initializeTables()

7 // Each table is 2-D with VD as rows and VR as columns.

8 for each vD ∈ VD do

9 for each vR ∈ VR do

10 c( vD, vR ) ← ∞ // total event cost for subtree rooted at vD and labeled vR.

11

12 // This table is not required; however, if this information is stored,

13 // the traceback function does not need to recompute it.

14 // Each entry is a set: {best event, best left child map, best right child map}

15 // Default is: { co-divergence, empty, empty }.

16 t( vD, vR ) ← { CODIV, /0, /0 }
17 return

calculateTable( vD )

18 if ( vD ∈ L(TD) ) then // Leaf case

19 // Can only map to reference taxon from which it was sampled or an ancestor,

20 // indicating a co-divergence with losses.

21 vR ← σ( vD )

22 c( vD, vR ) ← 0

23 for each v′R ∈ ancestor( vR ) do

24 totalLoss ← λ ∗ ( height(vR) − height(vR) − 1 )

25 c( vD, v′R ) ← totalLoss

26 else do

27 for each vR ∈ VR in postorder do

28 calcCost( vR, CODIV ) // Co-divergence

29 calcCost( vR, DUP ) // Duplication

30 calcCost( vR, INS ) // Insertion

31 return

calcCost( vR, event )

32 if ( event == CODIV ) then

33 // In a co-divergence, one child is labeled as a right descendant, and the other

34 // child is labeled as a left descendant.

35 // Cannot be a leaf label because it has no children.

36 if ( vR ∈ L(TR) ) then

37 return
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38 else do

39 childLabelLeft = descendants( l(vR) )

40 childLabelRight = descendants( r(vR) )

41 else if ( event == DUP ) then

42 // Either child can be labeled with the node or any of its descendants.

43 childLabelLeft = descendants( vR )

44 childLabelRight = childLabelLeft

45 else do // Insertion case

46 // With an insertion, one child must be labeled with the node and the other child

47 // labeled something incomparable (neither ancestor or descendant).

48 // Label can’t be root because it has no incomparable nodes.

49 if ( vR == ρR ) then

50 return

51 else do

52 childLabelLeft = incomparable( vR )

53 childLabelRight = descendants( vR )

54

55 for each vLR ∈ childLabelLeft do

56 for each vRR ∈ childLabelRight do

57 minAll = c( vD, vR )

58 //Initialize costs for this node.

59 totalLoss = 0; sum1 = ∞; sum2 = ∞
60 if ( event == CODIV ) then

61 // Only costly events are losses

62 totalLoss = λ ∗ ( 2 ∗ height(vR) − height(vLR) − height(vRR) − 2 )

63 // totalLoss = λ ∗ ( height(vR) − height(vLR) − 1 +

64 // height(vR) − height(vRR) − 1 )

65 // Check both children for both labels

66 sum1 = c( l(vD), vLR ) + c( r(vD), vRR ) + totalLoss

67 sum2 = c( r(vD), vLR ) + c( l(vD), vRR ) + totalLoss

68 else if ( event == DUP ) then

69 // Event cost is from loss and duplication.

70 totalLoss = λ ∗ ( 2 ∗ height(vR) − height(vLR) − height(vRR) )

71 // Don’t need to swap, since vLR and vRR are pulled from identical sets.

72 sum1 = c( l(vD), vLR ) + c( r(vD), vRR ) + totalLoss + δ
73 else do

74 // Only cost is from insertion. Most parsimonious to infer direct insertion

75 // from donor, vLR to recipient, vRR, with no losses.

76 sum1 = c( l(vD), vLR ) + c( r(vD), vRR ) + τ
77 sum2 = c( r(vD), vLR ) + c( l(vD), vRR ) + τ
78

74



4.2. DUPLICATION-TRANSFER-LOSS ALGORITHM

79 if ( sum1 ≤ minAll )

80 minAll = sum1

81 c( vD, vR ) ← sum1

82 t( vD, vR ) ← { event, vLR, vRR }

83 if ( sum2 ≤ minAll )

84 minAll = sum2

85 c( vD, vR ) ← sum2

86 t( vD, vR ) ← { event, vRR, vLR }

87

88 return

traceback( vD, vR )

89 { event, bestLeftLabel, bestRightLabel } = t( vD, vR )

90 if ( vD /∈ L(TD) ) then

91 traceback( l(vD), bestLeftLabel )

92 traceback( r(vD), bestRightLabel )

93 M( vD ) ← vR

94 event( vD ) ← event

95

96 if ( vD == ρD ) then

97 return reconciled TD

98 else do

99 return

Algorithm 4.2 (a)

calcCost( vR, event )
...

54 for each vLR ∈ childLabelLeft do

55 minLeftLeft = ∞; minRightLeft = ∞
56 //Initialize costs for this node.

57 totalLoss = 0; costLeftLeft = ∞; costRightLeft = ∞
58 if ( event == CODIV ) then

59 // Only costly events are losses

60 totalLoss = λ ∗ ( height(vR) − height(vLR) − 1 )

61 costLeftLeft = c( l(vD), vLR ) + totalLoss

62 costRightLeft = c( r(vD), vLR ) + totalLoss

63 else if ( event == DUP ) then

64 // Event cost is from loss and duplication.

65 totalLoss = λ ∗ ( height(vR) − height(vLR) )
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66 // Don’t need to swap, since vLR and vRR are pulled from identical sets.

67 costLeftLeft = c( l(vD), vLR ) + totalLoss + δ
68 else do

69 // Only cost is from insertion. Most parsimonious to infer direct insertion

70 // from donor, vLR, to recipient, vRR, with no losses.

71 costLeftLeft = c( l(vD), vLR ) + τ
72 costRightLeft = c( r(vD), vLR ) + τ
73 if ( costLeftLeft ≤ minLeftLeft ) then

74 minLeftLeft = costLeftLeft

75 leftLabelLeft = vLR

76 if ( costRightLeft ≤ minRightLeft ) then

77 minRightLeft = costRightLeft

78 rightLabelLeft = vLR

79

80 for each vRR ∈ childLabelRight do

81 minLeftRight = ∞; minRightRight = ∞
82 //Initialize costs for this node.

83 totalLoss = 0; costLeftRight = ∞; costRightRight = ∞
84 if ( event == CODIV ) then

85 totalLoss = λ ∗ ( height(vR) − height(vRR) − 1 )

86 costRightRight = c( r(vD), vRR ) + totalLoss

87 costLeftRight = c( l(vD), vRR ) + totalLoss

88 else if ( event == DUP ) then

89 totalLoss = λ ∗ ( height(vR) − height(vRR) )

90 // Don’t add dup cost, because added to node with vLR label

91 costRightRight = c( r(vD), vRR ) + totalLoss

92 else do

93 // Don’t add ins cost, because added to node with vLR label

94 costRightRight = c( r(vD), vRR )

95 costLeftRight = c( l(vD), vRR )

96 if ( costRightRight ≤ minRightRight ) then

97 minRightRight = costRightRight

98 rightLabelRight = vRR

99 if ( costLeftRight ≤ minLeftRight ) then

100 minLeftRight = costLeftRight

101 leftLabelRight = vRR

102

103 sum1 = minLeftLeft + minRightRight

104 sum2 = minRightLeft + minLeftRight

105 if ( sum1 < sum2 && sum1 < c(vD,vR) ) then

106 c( vD, vR ) ← sum1
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107 t( vD, vR ) ← { event, leftLabelLeft, rightLabelRight }

108 else if ( sum2 < c(vD,vR) ) do

109 c( vD, vR ) ← sum2

110 t( vD, vR ) ← { event, leftLabelRight, rightLabelLeft }

111

112 return

Algorithm 4.2 (b)
reconcileDTL( TD, TR, σ )

1 initializeTables() //Initializes the cost and traceback tables.
...

4 { bestRoot } = argminvR∈VR{ c( ρD, vR ) }

5 for each vR ∈ { bestRoot } do

6 traceback( ρD, vR )

7 return
...

calcCost( vR, event )
...

78 if ( sum1 < minAll ) then

79 minAll = sum1

80 c( vD, vR ) ← sum1

81 clear t( vD, vR )

82 if ( sum1 == minAll ) then

83 add { event, vLR, vRR } to t( vD, vR )

84 if ( sum2 < minAll ) then

85 minAll = sum2

86 c( vD, vR ) ← sum2

87 clear t( vD, vR )

88 if ( sum2 == minAll )

89 add { event, vRR, vLR } to t( vD, vR )

90

91 return

traceback( vD, vR )

92 for each { event, bestLeftLabel, bestRightLabel } ∈ t( vD, vR ) do

93 if ( vD /∈ L(TD) ) then

94 traceback( l(vD), bestLeftLabel )

95 traceback( r(vD), bestRightLabel )

96 M( vD ) ← vR
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97 event( vD ) ← event

98

99 if ( vD == ρD ) then

100 return reconciled TD

101 else do

102 return

4.3. Duplication-transfer-loss-incomplete lineage sort ing algo-

rithm

We now have a reconciliation algorithm to compare a binary embedded tree with a non-binary

reference tree in order to infer duplication, heuristic loss, and incomplete lineage sorting and a

reconciliation algorithm to compare a binary embedded treewith a binary reference tree in order

to infer horizontal transfer, duplication, and loss. But what if we would like to compare a binary

embedded tree with anon-binaryreference tree to infer all four types of events: duplication, hori-

zontal transfer, loss, and incomplete lineage sorting? There are no solutions to this problem in the

literature, but such a reconciliation algorithm is needed when reconciling gene families or domain

superfamilies in species where gene transfer events and incomplete lineage sorting are not uncom-

mon. To satisfy this need, a third reconciliation algorithmwas developed in a collaboration with

Han Lai. This algorithm builds on the two algorithms above. In particular, novel set mappingsN

andN̂ in Alg. 4.1 and the dynamic programming approach and search of the reconciliation space

in Alg. 4.2 were combined to create the dynamic programming algorithm, Alg. 4.3 that infers the

optimal set of duplication, transfer, heuristic loss, and incomplete lineage sorting events given a

binary embedded tree and non-binary reference tree.

The basic structure of this algorithm is similar to that in Alg. 4.2, with some exceptions. We

now consider co-divergence, duplication, and incomplete lineage sorting events together because

of their intrinsic dependence upon one another. When considering these events (referred to as

NOTINS in the algorithm), the set mappingŝN andN, defined in Eqs. 4.1 and 4.3, are used to

distinguish between co-divergence, incomplete lineage sorting, and duplication. It is important to

note thatN̂ andN for nodevE rely on theN̂ andN of vE’s children and on the nodevR to which

vE is mapped. Because the dynamic program considers all possible mappings of a node and its

children, we must keep track of thêN andN sets for each of these mappings as well. This is
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accomplished by defining two new tables,tN̂ andtN, such thattN̂(vE,vR) andtN(vE,vR) contain,

respectively,̂N(vE) andN(vE) for the optimal reconciliation ofTvE with vE mapped tovR.

In this new algorithm, thêN’s of the node’s children are calculated using aclimb function, similar

to the one in Alg. 4.1. This function climbs from the mapping of the child node (e.g.,vLR) to

the mapping of the parent node,vR, in order to infer the number of polytomy and skipped species

losses. It also defines the children ofvR in which descendants of the embedded child node (e.g.,

l(vE)) must have been present. TheN of vE is then calculated as the union of the childrenN̂’s,

similarly to Alg. 4.1. As defined in Eq. 4.2, the event at nodevE was a duplication if̂N(l(vE))∩

N̂(r(vE)) 6= /0 for the current nodes and mappings under consideration. Else, if vR equalsvLR

or vRR, the event atvE is incomplete lineage sorting (congruent toM(vE) equal toM(l(vE)) or

M(r(vE)) in Alg. 4.1). Otherwise, the event atvE was a co-divergence. If the reconciliation of

TvE with vE mapped tovR is optimal,N̂(l(vE)), N̂(r(vE)), andN(vE) are stored intN̂(l(vE),vLR),

tN̂(r(vE),vRR), and tN(vE,vR), respectively. During traceback,N(vE) and N̂(vD) are retrieved

from thetN andtN̂ tables just asM(vE) and the event(vE) are retrieved from the traceback tablet.

Algorithm 4.3

Input: TE = (VE, EE); TR = (VR, ER); σ, the M(·) of L(TE) → L(TR)

reconcileDTLI( TE, TR, σ )

1 initializeTables( ) //Initializes the cost and traceback tables.

2 for each vE ∈ VE in postorder do

3 calculateTable( vE )

4 bestRoot = argminvR∈VR{ c(ρE, vR) }

5 traceback( ρE, bestRoot )

6 return

initializeTables( )

7 // Each table is 2-D with VE as rows and VR as columns.

8 for each vE ∈ VE do

9 for each vR ∈ VR do

10 c( vE, vR ) ← ∞ // total event cost for subtree rooted at vE and labeled vR.

11

12 // Tables for keeping track of the children that were visited. Essential for

13 // distinguishing between duplications and incomplete lineage sorting events

14 // Default is the empty set.

15 tN̂( vE, vR ) ← /0
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16 tN( vE, vR ) ← /0
17

18 // This table is not required; however, if this information is stored,

19 // the traceback function does not need to recompute it.

20 // Each entry is a set: {best event, best left child map, best right child map}

21 // Default is: { co-divergence, empty, empty }.

22 t( vE, vR ) ← { CODIV, /0, /0 }
23 return

calculateTable( vE )

24 if ( vE ∈ L(TE) ) then // Leaf case

25 // Can only map to reference taxon from which it was sampled or an ancestor,

26 // indicating a co-divergence with losses.

27 vR ← σ( vE )

28 c( vE, vR ) ← 0

29 tN̂( vE, vR ) ← { vR }

30 tN( vE, vR ) ← { vR }

31 for each v′R ∈ ancestor( vR ) do

32 totalLoss = λ ∗ ( height(vR) − height(vR) − 1 )

33 c( vE, v′R ) ← totalLoss

34 tN̂( vE, vR ) ← C( v′R )

35 tN( vE, vR ) ← C( v′R )

36 else do

37 for each vR ∈ VR in postorder do

38 calcCost( vR, NOTINS ) // Co-divergence, Incomplete lineage sorting or

39 // Duplication

40 calcCost( vR, INS ) // Insertion

41 return

calcCost( vR, type )

42 if ( type == NOTINS ) then

43 // For co-divergence, ILS, or duplication, children of vE are mapped to children

44 // of vR or vR itself.

45 // If the children mappings are on the same path, then there is a duplication.

46 // Else, if if vR is a polytomy and at least one descendent of vE was already mapped

47 // to another child of vR, there was ILS

48 // Otherwise, there was a co-divergence.

49 childLabelLeft = descendants( vR )

50 childLabelRight = childLabelLeft

51 else do // Insertion case

52 // With an insertion, one child must be labeled with the node and the other child
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53 // labeled something incomparable (neither ancestor or descendant).

54 // Label can’t be root because it has no incomparable nodes.

55 if ( vR == ρR ) then

56 return

57 else do

58 childLabelLeft = incomparable( vR )

59 childLabelRight = descendants( vR )

60

61 for each vLR ∈ childLabelLeft do

62 for each vRR ∈ childLabelRight do

63 minAll = c( vE, vR )

64 //Initialize costs for this node.

65 totalLoss = 0; sum1 = ∞; sum2 = ∞
66 if ( event == NOTINS ) then

67 { N̂L1, lossL1 } = climb( l(vE), vLR, vR )

68 { N̂R1, lossR1 } = climb( r(vE), vRR, vR )

69 N1 = N̂L1 ∪ N̂R1

70 totalLoss1 = λ ∗ ( lossL1 + lossR1 )

71 if ( N̂L1 ∩ N̂R1 6= /0 ) then

72 event1 = DUP

73 // Duplication losses

74 if ( N1 6= N̂L1 ) then

75 totalLoss1 += λ
76 if ( N1 6= N̂R1 ) then

77 totalLoss1 += λ
78 sum1 = δ + totalLoss1

79 else do

80 sum1 = totalLoss1

81 if ( vR == vLR || vR == vRR ) then

82 event1 = ILS

83 else do

84 event1 = CODIV

85

86 { N̂R2, lossR2 } = climb( r(vE), vLR, vR )

87 { N̂L2, lossL2 } = climb( l(vE), vRR, vR )

88 N2 = N̂L2 ∪ N̂R2

89 totalLoss2 = λ ∗ ( lossL2 + lossR2 )

90 if ( N̂L2 ∩ N̂R2 6= /0 ) then

91 event2 = DUP

92 // Duplication losses

93 if ( N2 6= N̂L2 ) then
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94 totalLoss2 += λ
95 if ( N2 6= N̂R2 ) then

96 totalLoss2 += λ
97 sum2 = δ + totalLoss2

98 else do

99 sum2 = totalLoss1

100 if ( vR == vLR || vR == vRR ) then

101 event2 = ILS

102 else do

103 event2 = CODIV

104

105 sum1 += c( l(vE), vLR ) + c( r(vE), vRR )

106 sum2 += c( r(vE), vLR ) + c( l(vE), vRR )

107

108 else do

109 event1 = INS; event2 = INS

110 // Inferring insertion from donor, vLR to recipient, vRR.

111 { N̂L1, lossL1 } = climb( l(vE), vLR, vR )

112 { N̂R1, lossR1 } = climb( r(vE), vRR, vR )

113 sum1 = c( l(vE), vLR ) + c( r(vE), vRR ) + τ + λ ∗ ( lossL1 + lossR1 )

114 N1 = N̂L1 ∪ N̂R1

115

116 { N̂L2, lossL2 } = climb( l(vE), vRR, vR )

117 { N̂R2, lossR2 } = climb( r(vE), vLR, vR )

118 sum2 = c( r(vE), vLR ) + c( l(vE), vRR ) + τ + λ ∗ ( lossL2 + lossR2 )

119 N2 = N̂L2 ∪ N̂R2

120

121 if ( sum1 ≤ minAll )

122 minAll = sum1

123 c( vE, vR ) ← sum1

124 t( vE, vR ) ← { event1, vLR, vRR }

125 tN̂( l(vE), vLR ) ← N̂L1

126 tN̂( r(vE), vRR ) ← N̂R1

127 tN( vE, vR ) ← N1

128 if ( sum2 ≤ minAll )

129 minAll = sum2

130 c( vE, vR ) ← sum2

131 t( vE, vR ) ← { event2, vRR, vLR }

132 tN̂( l(vE), vRR ) ← N̂L2

133 tN̂( r(vE), vLR ) ← N̂R2

134 tN( vE, vR ) ← N2
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135

136 return

traceback( vE, vR )

137 { event, bestLeftLabel, bestRightLabel } = t( vE, vR )

138 if ( vE /∈ L(TE) ) then

139 traceback( l(vE), bestLeftLabel )

140 traceback( r(vE), bestRightLabel )

141 M( vE ) ← vR

142 N( vE ) ← tN( vE, vR )

143 N̂( vE ) ← tN̂( vE, vR )

144 event( vE ) ← event

145

146 if ( vE == ρE ) then

147 return reconciled TE

148 else do

149 return

climb( vE, vR, uR )

150 losses = 0

151 // general polytomy losses

152 if ( (vR /∈ L(TR) && vR 6= uR) && (C(vR) 6= tN(vE,vR)) ) then

153 losses++

154 select x from tN̂( vE, vR ) at random

155 if ( x == uR || p(x) == uR ) then

156 return tN̂( vE, vR )

157 while ( p(x) 6= uR ) do

158 // skipped losses

159 if ( p(x) 6= vR ) then

160 losses++

161 // climb

162 x = p( x )

163 return { x, losses }

4.4. Algorithm to infer composite history of reference tree

Given a multidomain family tree and a set of reconciled domain trees, I developed an algorithm

(Alg. 4.4) to construct a composite reference tree history with complete ancestral architectures and
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inferred events from all domains. There is no prior work addressing this problem, because it does

not arise in other instantiations of the co-evolutionary framework, such as gene tree-species tree

reconciliation. In those problems, only the history of theembeddedtree is of interest.

My algorithm constructs this history by transferring information from each reconciled domain tree

to the appropriate branch in the reference tree. Determining the ancestral architectures is simply

a matter of copying ancestral states from domain to host tree. However, there are challenging

questions regarding the transfer of events and how to present such information to the user. The

transfer of events is more complex because multiple events may be associated with a single branch

and the order of events is partially constrained by the structure of the domain trees. Only events

affecting instances of the same lineage in the domain tree effect relative timing. Instances that are

unrelated on that branch in the reference tree have no impacton relative timing. For example, in

Fig. 3.2, the events in theg3 lineage include a duplication and transfer tog2 of domainp. In the

g3 lineage, there is the insertion fromg3 of p and the loss of anr domain. We know that ing3 the

duplication ofp must have occurred before the insertion, because it involved one of the resulting

paralogs. However, ing2 it is not possible to determine whether the loss ofr occurred before or

after the insertion. Therefore, transferring events from domain to host tree requires determining

the (partial) temporal order of the events associated with each host tree branch.

Algorithm 4.4

Input: TR = (VR, ER); setDT= { TDi = (VDi, EDi ) }, the set of all domain trees (for each

domain Di) reconciled with TR.

Losses have been added; for such nodes, the event is LOSS.

annotateReference( TR, setDT )

1 for each TDi ∈ setDT do

2 for each vDi ∈ VDi do

3 vR = M( vDi ) // Get the mapping of the node

4 // Get the event at this node and add to list of events at mapped reference node

5 add event(vDi ) to events( vR, Di )

6 if ( event(vDi ) == LOSS ) then

7 add vDi to losses( vR, Di )

8 else do

9 if ( vDi ∈ L(TDi ) || event(vDi ) == CODIV ) then

10 // Domain Di was present in vR and not a node effecting copy number.

11 // Counting such nodes will overcount domains.

12 add vDi to architecture( vR, Di )
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13 if ( event(vDi ) == DUP ) then

14 add { vDi, C(vDi ) } to duplications( vR, Di )

15 else if ( event(vDi ) == INS ) then

16 donor = vR

17 if ( M( l(vDi ) ) 6= vR ) ) then

18 // For an insertion, one child of vDi must have the same mapping as vDi

19 // (descendant of the donor). The other child is the result of the

20 // insertion (the mapping of that child is the recipient of the insertion).

21 recipient = M( l(vDi ) )

22 add { vDi, l(vDi ), recipient } to insertions( vR, Di )

23 else do

24 recipient = M( r(vDi ) )

25 add { vDi, r(vDi ), recipient } to insertions( vR, Di )

26 e = (donor, recipient)

27 if ( e /∈ ER) then

28 add e to ER
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Chapter 5

Case-studies: Histories of multidomain fam-

ilies from the literature inferred using the co-

evolutionary framework

Several studies in the literature [27–30,139] have used comparison of domain trees to gain insight

into the history of domain shuffling using informal approaches based on visual inspection of the

trees. However, inference by visual inspection is error prone and too difficult for large data sets —

even small trees can lead to very complicated scenarios (see, for example, the MaGuK family in

Fig. 5.7). In contrast, using my algorithms and software, this type of analysis can be carried out

consistently and on a much larger scale. In order to demonstrate the utility and effectiveness of

the work presented in Chapter 4, I selected and analyzed a setof three multidomain families with

diverse domain architectures discussed in the literature [27, 28, 30]: the protein tyrosine kinases,

the Notch-related genes, and the membrane-associated guanylate kinases (MAGuKs). The original

studies compared domain trees, through visual inspection,to gain insight into the history of domain

shuffling events. In this section, I present these families,the results from my analyses, and discuss

the impact of using my novel co-evolutionary approach.

Tree construction. Trees in these studies were either transcribed from the literature or recon-

structed from sequences. When necessary, I reconstructed trees using the following procedure:

1. Initial multiple alignments were constructed using the T-Coffee program [286].
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2. I further edited these multiple alignments manually using GeneDoc [287], considering

information from the literature such as conserved and functional positions.

3. Domain trees were constructed using the Neighbor Joining[51] program in Phylip [288].

4. Phylip’s Seqboot program was used to generate 100 bootstrap replicates for each tree.

5. Reference trees were generally rooted using an outgroup sequence or information from

the literature, as described below. Domain trees were rooted using the rooting parsi-

mony approach in NOTUNG, described on pg. 59.

5.1. Notch-related proteins

The Notch family consists of transmembrane receptor proteins that mediate cell-cell interactions

and signalling that are important during development in metazoa [28,289, and work cited therein].

Family members are characterized by a series of EGFL repeats, a set of three LNG domains,

a transmembrane domain, and a series of six cdc10/Ankyrin (Ank) domains. The co-evolution

of domains in this multidomain family was first investigatedin phylogenetic context by Maine

et al. [28], who constructed trees for the extracellular sub-sequence of the family and the LNG

and Ank domains in eight metazoan species. Their phylogenies were constructed by first aligning

sequences using ClustalV [290] and then building trees withPhylip [288]. They then compared the

trees for the repeated LNG and Ank domains with the tree for the extracellular sequence. Because

the trees were fairly consistent, they concluded that the ancestral family contained the same domain

architecture with three LNG domains and six Ank domains. Formy analysis, I transcribed these

trees and analyzed them with my methods in NOTUNG (Fig. 5.1). Non-binary nodes and weakly

supported edges were resolved using event parsimony in NOTUNG. My results suggest a similar

conclusion to those made by Maine et al. However, while the trees are largely consistent with one

another, Maine fails to comment on some of the observed tree disagreement. My analysis not only

locates this disagreement, but infers the possible domain shuffling events:(1) the first Ank domain

in rat Notch1, xenopus Xotch, human TAN1, and mouse Notch1 are the result of an ancestral

domain duplication and reciprocal losses;(2) the second LNG domain in mouse MotchA is the

result of a domain insertion from the second LNG domain in mouse MotchB; and(3) the first LNG

in mouse Motch1 is the result of a domain insertion from the first LNG in mouse MotchA. The

extracellular sequences, which were treated as the reference in the paper and my analysis, were
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also reconciled with the species tree, indicating a number of ancestral and lineage-specific gene

duplications that were also noted in the paper.

5.2. Protein tyrosine kinases

Protein tyrosine kinases (PTKs) phosphorylate proteins bytransferring a phosphate group from

ATP to a tyrosine residue in the protein. They are involved inmany important cellular processes,

including cell signaling, cell growth, cell differentiation, metabolism, cell-cell adhesion, cell motil-

ity, and cell death. PTKs are generally divided, both functionally and evolutionary, into two

classes: transmembrane receptor-linked PTKs and cytoplasmic non-receptor PTKs [291]. Fig. 5.2

shows the family tree, as represented by the kinase domain, with both the cytoplasmic and receptor

classes. I built this tree from the sequences of all kinase domains in humans. The kinase domain

is thought to be a primary domain (as defined on pg. 55), and is thus used as the reference tree to

represent the evolution of the multidomain PTK family.

As seen in Fig. 5.2, many members of the cytoplasmic class contain the SH3 and SH2 domains,

often as a pair. The phyletic distribution of these domains suggests several alternate hypothe-

ses for the origins of these domain architectures. Was this the result of a single insertion of the

domain pair, followed by losses of the pair in some descendants and losses of the SH3 domain

in others and by a duplication of SH2 in others? Or were there an insertion of the pair in the

Tec/Abl/Src/Frk/Csk/Fes ancestor with loss of SH3 in Fes, an insertion of SH3 in Ack, and an in-

sertion with duplication of SH2 in Syk? According to the domain gain-loss approach (see pg 21),

shown in Fig. 5.3, based only on domain architectures, the SH3-SH2 pair were gained at the an-

cestor of the Fes, Csk, Frk, Src, Tec, and Abl subfamilies andpersisted in all domain architectures,

with the exception of the loss of SH3 in the Fes subfamily. In addition, two SH2 domains were

gained in the Syk subfamily and one SH3 domain was gained in the Ack subfamily. However,

this approach does not consider the sequence evolution of the SH3 and SH2 domains, which may

contradict this inference.

Nars et al. [27] originally analyzed this family, seeking the answers to these questions. They built

trees for the SH3, SH2, and kinase domains were aligned usingthe Pileup program in GCG [292],

and domain trees were constructed using maximum parsimony in the PAUP* program [293]. Trees

were rooted using outgroup sequences. After a visual inspection to compare the trees, the authors

concluded that since the domain trees were consistent, these domains co-evolved. I transcribed the
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(a) (b)

(c) (d)

Figure 5.1: Trees from Maine et al. [28](a) Species tree for the eight species. Abbreviations: ce
- Caenorhabditis elegans; xl - Xenopus laevis; gg - Gallus gallus; hs - human (Homo sapiens); mm -
Mus musculus; rr - Rattus rattus; dm - Drosophila melanogaster; and lc -Lucilia cuprina (blowfly). (b)
Tree for the Notch extracellular sequences, reconciled with the species tree in (a).(c) Tree for the six re-
peated Ank domains in the sampled Notch genes reconciled with the extracellular sequence tree in (b).(d)
Tree for the three LNG domains in the Notch gene family reconciled with the extracellular sequence tree in
(b).
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Figure 5.2:Tree for the PTK gene family, built from the sequence of the kinase domains. Subfamilies
are collapsed to leaf nodes, and representative domain architectures for each subfamily are shown. Trans-
membrane receptor PTKs have a transmembrane domain, denoted as a black rectangle in the architectures.
Transmembrane PTKs with an I-set domain are denoted with redcolored names; those with an I-set domain
have a purple colored name. Cytoplasmic PTKs are denoted with blue colored names. (Domain architectures
were adapted from Robinson et al. [291]).

trees from this paper and used my new algorithms in NOTUNG to analyze these domains system-

atically. Because the trees had a number of non-binary nodes, I used NOTUNG to resolve these

nodes using event parsimony. My analysis (seen in Fig. 5.4) generally agrees with the assessment

of Nars et al. However, my analysis proposes three domain shuffling events that were not presented

in the paper. In particular,(1) that the domains co-evolved from the insertion of SH3-SH2 inthe

Tec/Abl/Src/Frk/Csk/Fes ancestor, not the ancestor of all; (2) that the SH2 pair in the Syk subfam-

ily (KSyk and Zap70) was the result of a domain insertion followed by a domain duplication; and

(3) that the SH3 in the Ack subfamily (PTK6 and SrmS) was the result of a domain insertion. Nars

et al. failed to comment on how the two SH2 domains arose in Sykor the observation that the Syk

and Ack families are separate from the other SH3-SH2 containing families, which would require a

number of losses to explain an insertion in the ancestor of all SH3-SH2 containing families.
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Figure 5.3:History of the gain and losses of SH2, SH3, and I-set domains in the PTKs using the domain
gain-loss approach with the kinase tree, representing the history of the gene family.

I further analyzed this family by examining the evolutionary history of the immunoglobulin I-

set domains. As can be noticed from Fig. 5.2, many members of the receptor sub-class con-

tain repeated I-set domains. I sought to determine whether these domains, like SH2 and SH3,

were the result of a single ancestral insertion, or whether additional domain shuffling occurred.

The domain gain-loss approach (Fig. 5.3) infers an ancestral gain of two I-set domains in the

Axl/Tie/PDGFR/VEGFR/FGFR ancestor followed by two lossesin the Met/Ryk subfamily ances-

tor and one loss in each of the Ret/VEGFR/FGFR ancestral subfamily and the Ret subfamily. In

addition, there were independent gains of four I-set domains in PTK7 and one I-set domain in

NTRK3 (Trk).

Using my method in NOTUNG to compare the Ig I-set domain tree to the kinase reference tree

revealed some interesting insights (see Figs. 5.5 and 5.6).First, the I-set domains in PTK7 appear

to be the result of an ancestral insertion followed by local duplications, rather than inheritance

of an ancestral PTK with multiple I-set domains. In this reconciliation, one I-set domain was

present in the ancestor of all growth factor receptors (TIE1, PDGFRs, VGFRs and FGFRs) and

the Axl (MERTK, UFO, and TYRO3), Met (MET and RON), and Ryk subfamilies. This domain

was subsequently lost in the Met/Ryk ancestor and duplicated independently in the growth factor

receptors and the Axl subfamily. Both copies of the domain inthe Axl subfamily were lost in UFO.
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(a) (b) (c)

Figure 5.4:Trees constructed by Nars et al. [27]. All trees were rooted by using an outgroup sequence.(a)
The kinase domain tree. Gray leaf nodes represent those genes without an SH2 or SH3 domain. Other leaves
are colored according to subfamily membership.(b) Tree for the SH2 domains in all PTKs, reconciled with
the kinase tree in (a).(c) Tree for the SH3 domains in all PTKs, reconciled with the kinase tree in (a).

Also, one copy of the duplicated domain in the growth factor receptors was lost in CSF1R, Kit, Flt3,

VGFR1, RET, TIE2, and the ancestor of VGFR2 and VGFR1. The first I-set domain in VGFR3

was further duplicated. There were also a number of more contemporary domain insertions. The

second I-set in CSF1R was the result of a domain insertion from an ancestral I-set in the Axl

subfamily. The second I-set in VGFR1 resulted from a domain insertion from the I-set domain

in NTRK3, which, in turn, was the result of a domain insertionfrom the first I-set in PTK7. The

second I-set in FGFR2 was the result of a domain insertion from the I-set in FGFR1. Finally, the

I-set domain in UFO was the result of an insertion from the first I-set in PTK7.

Fig. 5.6 shows a schematic of this reconstruction of the history of the I-set and kinase domains
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(a) (b)

Figure 5.5: Trees I constructed for the PTKs. Gray leaf nodes represent those genes without an I-set
domain. Other leaves are colored according to subfamily membership. (a) Tree for the kinase domain,
treated as reference. This tree was rooted using information from the literature.(b) The tree for all I-set
domains in PTKs, reconciled with the kinase domain in (a). This tree was rooted using event parsimony
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in the context of the gene family history. This reconstruction shows that analyzing both domain

architecture and sequence information (as represented by the trees) may imply much more domain

shuffling activity than inferred from architecture alone. In the latter case, a number of the more

recent insertions in my reconstruction would not be inferred. In addition, the prediction that the

second I-set domain in the Axl subfamily is not orthologous to the second I-set domain in the other

growth factors, would not be possible. For this case with theIg I-set domain, by adding sequence

information and my new method, the history of this family is more understandable.

5.3. Membrane-associated Guanylate Kinases (MaGuKs)

As observed in the history of I-set domains in the PTKs, not all domain repeats are the result of

a single ancestral domain duplication. Rather, similar patterns of tandem arrays of I-set domains

arose independently several times during evolution. This presented the question of whether this

observation is unique to the Ig domain or to the PTK family. Asseen in Fig. 5.7, many members

of the membrane-associated guanylate kinase (MaGuKs) family have the same number of PDZs in

a tandem array (e.g., the three PDZs in all members of the DLG (DLG 1-4) and Zo subfamilies). It

was, thus, also of interest to investigate whether the PDZ repeats were inherited from an ancestral

gene, or whether there was more domain shuffling activity in this family.

Until recently, the MaGuKs were thought to be uniquely metazoan [30, 294], but have since been

shown to exist in the premetazoan lineages of the protistCapsaspora owczarzaki[295] and the

choanoflagellateMonosiga brevicollis[296]. The members of the MaGuK family act as scaf-

folding proteins in various types of intercellular junctions, exhibiting a broad range of specific

functions within this general category. They are involved in many cell-cell communication and

signal transduction functions (see, for example [297, and work cited therein]). The MaGuKs orig-

inally evolved from catalytically active guanylate kinases, which are responsible for transferring a

phosphate group from ATP to a guanosine monophosphate (GMP)residue. Since this divergence,

however, they have lost the GMP binding and phosphorylationcapabilities [297]. All MaGuKs

contain a single guanylate kinase (GuK) domain, one or more PDZ domains, and either an SH3

domain or WW motifs, both domains associated with protein-protein interactions. MaGuKs ex-

hibit considerable diversity in domain content, includingboth variation in the number of PDZ

copies and the presence of additional, auxiliary domains.

MaGuK architectures are characterized by a common pattern with variations typical of many multi-
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Figure 5.6:Schematic history of the gene family showing domain shuffling events in the history of the I-set
domain.(a) The schematic developed by inspection of the reconciled I-set domain tree.(b) The schematic
as inferred and drawn automatically in NOTUNG.
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Figure 5.7:The MaGuK gene family as represented by the tree for the GuK domain. Leaves are decorated
with domain architectures.

domain families. What forces drive this interplay between commonality and variation? Were these

architectures the result of an ancestral domain architecture that persisted, like the SH3-SH2-PTK

architectures in protein tyrosine kinases, or was more domain shuffling involved in the formation

of this family, as with the I-set domains in PTKs?

The co-evolutionary history of these domains was first investigated by te Velthuis, et al. [30],

who built trees for individual domains and compared them through inspection. Their trees were

constructed by aligning sequences in ClustalX [298] and then building Bayesian trees with Mr-

Bayes [44] and maximum likelihood trees with PhyML [299]. The authors concluded that the

PDZ-SH3-GuK architecture evolved only once; their conclusions contained no inferences of any

domain insertions beyond the ancestral ones. They did inferthat the proliferation of PDZs in the

MAGI subfamily was due to domain duplication in that subfamily and that the proliferation of

PDZs in the DLG and ZO subfamilies was the result of domain duplications in their common an-

cestor. However, the trees they constructed and evaluated included many non-binary nodes. Thus,

much information was lost, as these nodes provide no information on history, and their analysis

was basically the domain gain-loss approach based on the GuKtree. In order to further investi-

gate this family and its evolutionary history, I built treesfor the GuK, SH3, and PDZ domains in

human and compared them using NOTUNG to infer the domain shuffling events. Sequences for

all GuK, SH3, and PDZ domain instances in human MaGuKs were obtained from [30]. The GuK
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tree was rooted using the functional GuK domain as an outgroup [30]. The roots of the SH3 and

PDZ trees were inferred using event parsimony with NOTUNG. For this family, the GuK domain

was treated as the reference. Several lines of evidence support the use of the GuK domain tree as a

proxy for the locus history. First, it is thought that the ancestral MaGuK protein had a GuK domain

(and possibly other domains as well), which was inherited byvertical descent by all contemporary

MaGuKs. The varied MaGuK architectures subsequently arosethrough insertion, deletion, and

duplication in the descendants of this progenitor. This assumption is supported by the observation

that the GuK domain only appears in a restricted set of architectures, compared with the other,

more promiscuous, domains in the family. Further, the phylogenetic distribution of functional

GuK domains is broader than the catalytically inactive GuK,suggesting that the progenitor GuK

resulted from an ancestral GuK domain through a single, ancient loss-of-function event [30, 297].

Additional evidence derives from near perfect phylogenetic congruence between the SH3 and GuK

domains as discussed below.

Applying the domain gain-loss approach (see Fig. 5.8) suggests that the ancestral MaGuK had a

single SH3, which was lost in the MAGI subfamily, and a singlePDZ. In addition, it would infer

that PDZs expanded by two domains in the the common ancestor of the MAGI/DLG/ZO/Carma/

CACNB subfamilies and again by three domains in the ancestorof the MAGI subfamily and by

one domain in DLG5. These PDZs would have then evolved through vertical descent, without

further shuffling, with the exception of the Carma/CACNB ancestor, which lost two PDZs and the

CACNB subfamily, which lost the third PDZ. Note, however, that this inference process ignores

sequence variation in the SH3 and PDZ domains.

Using my method to compare the SH3 and GuK trees revealed that, for the most part, they have

similar histories, as shown in Fig. 5.9. My analysis suggests that it is likely that the ancestor of all

MaGuKs had a single SH3 domain, which was lost in the MAGI clade (MAGI 1-3). In addition,

in contrast to the analyses of te Velthuis et al., my analysisalso suggests that the contemporary

SH3 domain in the Carma subfamily (Carma 1-3) may be the result of a domain insertion from the

ancestor of the ZO subfamily (ZO 1-3 and DLG5) and loss of the ancestral SH3 domain, rather

than a result of vertical descent.

The comparison of the GuK tree with the tree for PDZ, Fig. 5.9,also reveals that more domain

shuffling may have occurred in the history of this family thanpreviously assumed. Reconciliation

reveals repeated internal domain duplications, losses, and insertions between genes, suggesting

recent domain swapping between the ZO, DLG, and Carma subfamilies. My analysis suggests

that the ancestor of all MaGuKs had a single PDZ domain; this domain evolved through vertical
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Figure 5.8:History of the(a) SH3 and(b) PDZ domains in MaGuK as inferred using the domain gain-loss
approach. Clades that have the same domain architectures onthe leaves have been collapsed to a single node
(i.e., MAGI 1-3).

descent to form the present copy of PDZ in all members of the Mpp clade (Mpp 1-7 and Cask).

This ancestral domain was duplicated twice more in the ancestor of all MaGuKs except the Mpp’s.

In the MAGI subfamily, one of these copies was lost, while another was duplicated another four

times, resulting in the multiple repeats seen in the MAGI. A different domain duplication occurred

in the ancestor of DLGs, ZOs, Carma’s, and CACNBs (CACNB1-4), followed by differential

losses. As with the analysis of the I-set domains in PTKs, contemporary domain insertions were

also observed: the second PDZ in DLG5 is the result of a domaininsertion from Carma3; the

fourth PDZ in DLG5 is the result of a domain insertion from thethird PDZ in the ZO subfamily;

and the PDZ in Carma1 is the result of a domain insertion from the third PDZ in DLG5.

Fig. 5.10 shows a schematic, based on the NOTUNG output, conveying the combined histories of

the PDZ, SH3, and GuK domains. This figure reveals that many ofthe inferences based on the

domain gain-loss approach are not supported by the sequencedata: (1) the common ancestor of

the DLG, ZO, Carma, and CACNB subfamilies had four, not three, PDZ domains;(2) a cassette

of three PDZs was not transmitted to the DLGs and ZOs by vertical descent - rather, a series of
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(a) (b) (c)

Figure 5.9:Trees I constructed for the MaGuK gene family. Leaves are colored according to subfamily
membership.(a) Tree for the GuK domain, treated as reference. This tree was rooted using active guanylate
kinase domains from outside the family.(b) The tree for all SH3 domains in MaGuKs, reconciled with the
GuK domain in (a).(c) The tree for all PDZ domains in MaGuKs, reconciled with the GuK domain in (a).
Trees in (b) and (c) were rooted using event parsimony

duplications, losses and insertions gave rise to the same domain architecture in all the subfamily

members; and(3) PDZs in the same position in the architecture of different genes are not more

closely related to each other than to other PDZs. This suggests that analyses based on domain

architectures alone may underestimate the extent of domainshuffling and convergent evolution of

domain architectures that is occurring and underscores thevalue of methods that include sequence

comparison. It further suggests that estimates of domain shuffling rates using such methods may

give very different results than from previous studies and that new genomic analyses using these

approaches are imperative.
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CACNB

DLG 5

ZO

MAGI

DLG 1-4

Carma2

Carma1

Carma3

MPP/Cask

(a)

(b)

Figure 5.10:Schematic history of the gene family showing domain shuffling events in the history of the
GuK, SH3, and PDZ domains. Monophyletic clades with no events were collapsed to a single leaf node.(a)
The schematic developed by inspection of the reconciled domain trees.(b) The schematic as inferred and
drawn automatically in NOTUNG.
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5.4. Event cost parameter selection

In the methods described here, a linear combination of the number of duplications, insertions, and

losses is used to score candidate event histories by their total, weighted event cost, referred to

as theDTL-score(i.e., DTL-Score= δ ∗ numdup+ τ ∗ numins + λ ∗ numloss). Different event

cost parameters could result in different optimal event histories. For example, when the combined

cost of one duplication and one loss is less than the cost of aninsertion (δ+λ < τ), the optimal

history for the family in Fig. 1.2a is a duplication of the redcircle domain followed by a loss (as in

Fig. 3.6). This solution has a DTL-score ofδ+λ . However, ifτ > δ+λ, the optimal event history

for the same trees is an insertion of domainr1 fromg2 into g1, resulting in a DTL-score ofτ.

How should cost parameters be selected in order to obtain themost accurate inference? For case

studies, evidence such as synteny, LTR repeats, transposonintegration sites, and intron loss can be

used to guide selection among several candidate event histories. For large scale analyses, maximum

likelihood estimation can be used to estimate parameters for a parsimony model if the probability

of an event on a given branch is small [24]. For example, ratescan be estimated by modeling

domain shuffling as a birth death process, as in my Master’s thesis work [300] or similar to Karev

et al. [147, 159]. Rates can then be converted into event costparameters by taking the negative

natural log of the rate (i.e.,− ln r i for rater i of eventi) [24].

In all the above analyses, parameter values were selected such that the duplication cost was more

than the loss cost, and the insertion cost (τ) was more than a loss plus a duplication (i.e,λ < δ
andδ+λ < τ). Here, I demonstrate that for in-depth studies, the space of all reconciliations can

be explored empirically, and that optimal solutions for different parameter functions correspond

to contiguous, distinct regions of the cost-parameter space. For this study, I reconciled the SH3

and PDZ domain trees with the GuK domain tree using various duplication, insertion, and loss

parameter values between 1 and 100. Specifically, I calculated the DTL-score for all parameter

value triples(δ,τ,λ) ∈ F3, whereF = (1,5,10,15. . .100).

For the SH3 reconciliation, there were only three differentoptimal solutions, summarized in Ta-

ble 5.1. In the space of all parameter values, shown in Fig. 5.11, these three different reconciliations

occupy distinct regions that overlap only at the boundaries. Note that in order to display the pa-

rameter space in two dimensions, the indexx andy variables are defined as the ratiosτ/λ and

δ/λ, respectively. Based on the number of events associated with the different reconciliations, the

following inequalities define the borders of the regions in the parameter space, corresponding to
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All reconciliations of SH3 in MaGuK
Reconciliation Duplications Insertions LossesRegion equation

(1) 0 1 2 λ≤ τ≤ δ+2λ
(2) 1 0 4 δ+2λ≤ τ
(3) 0 3 0 τ≤ λ

Table 5.1:Summary of the three different reconciliations possible depending on the parameter values used.
Each region, seen in Fig. 5.11 is defined by the number of different events. The final column provides the
boundary equations, in terms of duplication costδ, insertion cost,τ, and loss costλ, defining which solution
will be reached depending on parameter values.

the distribution of reconciliations.

Reconciliation (1) τ+2λ≤ 3τ τ+2λ≤ 4λ+δ

λ≤ τ τ≤ 2λ+δ

∴ λ≤ τ≤ 2λ+δ (5.1)

Reconciliation (2) δ+4λ≤ τ+2λ δ+4λ≤ 3τ

δ+2λ≤ τ
1
3

δ+
4
3

λ≤ τ

∴ δ+2λ≤ τ since
1
3

δ < δ and
4
3

λ < 2λ (5.2)

Reconciliation (3) 3τ≤ 2λ+ τ 3τ≤ 4λ+δ

τ≤ λ τ≤
4
3

λ+
1
3

δ

∴ τ≤ λ since λ <
4
3

λ+
1
3

δ (5.3)

With the reconciliation of the PDZ and GuK trees, there were many more (16) different optimal

solutions, as described in Table 5.2. As with SH3, the different optimal reconciliations all oc-

cupied distinct regions only overlapping at the boundariesof these regions. Equations for these

boundaries can similarly be defined in terms of parameters. The partition of the parameter space

and the associated reconciliations can be pre-computed. Then, the reconciliation for any choice

of parameter values can be retrieved from this pre-computedset, by determining which region is

associated with those parameter values.

The number of optimal event histories depends on the size of the trees and the extent of topological

incongruence As these results show, for small problem instances there are only a few optimal
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(1) 0D; 1I; 2L
(2) 1D; 0I; 4L
(3) 0D; 3I; 0L
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Graph of different reconciliation solutions
by duplication/loss cost and insertion/loss cost

log(insertion cost / loss cost)

lo
g(

du
pl

ic
at

io
n 

co
st

 / 
lo

ss
 c

os
t)

*

* *

* *
*

*
*

*
*

*
*

*
*

**
*

***

*
****

*****

******

******

*******

*******

********

********

*********

*********

**********

**********

***********

* *

* *

* *
*

*
*

*
*

*
*

*
*

**
*

***

*
****

*****

******

******

*******

*******

********

********

*********

*********

**********

**********

***********

* *

*

*

*

*

*

*
*

*
*

*

*
*

*
*

*
*

**

*
*

***

*
****

*
*****

******

*******

*******

********

********

*********

*********

**********

**********

***********

***********

* *

*

*

*

*

*

*

*
*

*

*
*

*

*
*

*
*

*
*

*
**

*
*

***

*
*

****

*
*****

*
******

*******

********

********

*********

*********

**********

**********

***********

***********

************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*
*

*
*

*
**

*
*

*
***

*
*

****

*
*

*****

*
******

*
*******

********

*********

*********

**********

**********

***********

***********

************

************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*
*

*
**

*
*

*
***

*
*

*
****

*
*

*****

*
*

******

*
*******

*
********

*********

**********

**********

***********

***********

************

************

*************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*
*

*
***

*
*

*
****

*
*

*
*****

*
*

******

*
*

*******

*
********

*
*********

**********

***********

***********

************

************

*************

*************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*
*

*
****

*
*

*
*****

*
*

*
******

*
*

*******

*
*

********

*
*********

*
**********

***********

************

************

*************

*************

**************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*
*

*
*****

*
*

*
******

*
*

*
*******

*
*

********

*
*

*********

*
**********

*
***********

************

*************

*************

**************

**************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*
*

*
******

*
*

*
*******

*
*

*
********

*
*

*********

*
*

**********

*
***********

*
************

*************

**************

**************

***************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*
*

*
*******

*
*

*
********

*
*

*
*********

*
*

**********

*
*

***********

*
************

*
*************

**************

***************

***************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*
*

*
********

*
*

*
*********

*
*

*
**********

*
*

***********

*
*

************

*
*************

*
**************

***************

****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*
*

*
*********

*
*

*
**********

*
*

*
***********

*
*

************

*
*

*************

*
**************

*
***************

****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*

*
*

*
*********

*

*
*

*
**********

*
*

*
***********

*
*

*
************

*
*

*************

*
*

**************

*
***************

*
****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*

*
*

*
*********

*

*

*
*

*
**********

*

*
*

*
***********

*
*

*
************

*
*

*
*************

*
*

**************

*
*

***************

*
****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*

*
*

*
*********

*

*

*
*

*
**********

*

*

*
*

*
***********

*

*
*

*
************

*
*

*
*************

*
*

*
**************

*
*

***************

*
*

****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*

*
*

*
*********

*

*

*
*

*
**********

*

*

*
*

*
***********

*

*

*
*

*
************

*

*
*

*
*************

*
*

*
**************

*
*

*
***************

*
*

****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*

*
*

*
*********

*

*

*
*

*
**********

*

*

*
*

*
***********

*

*

*
*

*
************

*

*

*
*

*
*************

*

*
*

*
**************

*
*

*
***************

*
*

*
****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*

*
*

*
*********

*

*

*
*

*
**********

*

*

*
*

*
***********

*

*

*
*

*
************

*

*

*
*

*
*************

*

*

*
*

*
**************

*

*
*

*
***************

*
*

*
****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*

*
*

*
*********

*

*

*
*

*
**********

*

*

*
*

*
***********

*

*

*
*

*
************

*

*

*
*

*
*************

*

*

*
*

*
**************

*

*

*
*

*
***************

*

*
*

*
****************

* *

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
******

*

*

*
*

*
*******

*

*

*
*

*
********

*

*

*
*

*
*********

*

*

*
*

*
**********

*

*

*
*

*
***********

*

*

*
*

*
************

*

*

*
*

*
*************

*

*

*
*

*
**************

*

*

*
*

*
***************

*

*

*
*

*
**************** * * *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
*****

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
****

*

*

*
*

*
*****

*

*

*
*

*
*****

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
****

*

*

*
*

*
*****

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
***

*

*

*
*

*
****

*

*

*
*

*
****

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
***

*

*

*
*

*
****

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
**

*

*

*
*

*
***

*

*

*
*

*
***

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
**

*

*

*
*

*
***

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

*

*

*
*

*
**

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*
**

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*

*
*

*
****************

*
*

*
****************

*
*

****************

*
****************

****************

***************

**************

*************

************

***********

**********

*********
********
*******
******
***** **** ******

*
*
*

(1) 0D; 1I; 2L
(2) 1D; 0I; 4L
(3) 0D; 3I; 0L

(c)

Figure 5.11:Parameter analysis of the SH3 domain tree reconciled with the GuK domain tree, as shown in
the parameter space ofδ/λ andτ/λ. Points represent a single reconciliation under one specified parameter
triplet {δ,τ,λ}. Colors represent the inferred number of events as shown in the legend.(a) Reconciliations
for all examined parameter triplets.(b) The plot in (a) zoomed in to show detail.(c) The data from (a)
plotted according to a log on both axes.
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5.4. EVENT COST PARAMETER SELECTION

All reconciliations of PDZ in MaGuK
Reconciliation Duplications Insertions Losses Region

(1) 0 20 0
2τ≤ δ
τ≤ λ

(2) 0 18 2
2λ≤ 2τ≤ 5λ

2τ≤ δ
(3) 0 16 7 5λ≤ 2τ≤ δ

(4) 4 8 7
3δ≤ 6τ≤ 4δ+2λ

5λ≤ 2τ

(5) 6 5 8
2δ+λ≤ 3τ≤ 3δ

2δ+6λ≤ 5τ
(6) 11 0 20 2δ+9λ≤ 2τ
(7) 9 2 11 2δ+4λ≤ 2τ≤ 2δ+9λ

(8) 8 3 9
δ+λ≤ τ≤ δ+2λ

2λ≤ τ

(9) 7 4 8
5λ≤ 3τ

2δ+6λ≤ 5τ
λ≤ δ≤ τ≤ δ+λ

(10) 4 10 2
λ≤ τ≤ δ≤ 2τ
5τ≤ 2δ+6λ

λ≤ δ≤ τ≤ δ+λ

(11) 4 12 0
δ≤ 2τ≤ 4δ
3τ≤ δ+2λ

τ≤ λ

(12) 5 9 2
δ≤ τ≤ 2δ

2δ+4λ≤ 6τ≤ 6δ+3λ
5τ≤ 2δ+6λ

(13) 7 7 3
3λ≤ 3τ≤ 5λ

6δ+3λ≤ 6τ≤ 2δ+8λ

(14) 8 4 7
δ+4λ≤ 3τ≤ 6λ

δ≤ λ

(15) 7 8 2
2δ≤ τ≤ λ
δ+2λ≤ 3τ

(16) 6 11 0 6δ≤ 3τ≤ δ+2λ

Table 5.2:Summary of the 16 different reconciliations possible depending on the parameter values used.
Each region, seen in Fig. 5.12 is defined by the number of different events. The final column provides the
boundary equations, in terms of duplication costδ, insertion cost,τ, and loss costλ, defining which solution
will be reached depending on the parameters.
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CHAPTER 5. CASE-STUDIES: HISTORIES OF MULTIDOMAIN FAMILIES FROM THE LITERATURE

INFERRED USING THE CO-EVOLUTIONARY FRAMEWORK
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Graph of different reconciliation solutions
by duplication/loss cost and insertion/loss cost
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Graph of different reconciliation solutions
by duplication/loss cost and insertion/loss cost
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Figure 5.12:Parameter analysis of the PDZ domain tree reconciled with the GuK domain tree, as shown in
the parameter space ofδ/λ andτ/λ. Points represent a single reconciliation under one specified parameter
triplet {δ,τ,λ}. Colors represent the inferred number of events as shown in the legend.(a) Reconciliations
for all examined parameter triplets.(b) The plot in (a) zoomed in to show detail.(c) The data from (a)
plotted according to a log on both axes.(c) The plot in (c) zoomed in to show detail.
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5.5. SIGNIFICANCE OF RESULTS

histories. Further, each history corresponds to a contiguous region of the parameter space that

overlaps with other regions only at well-defined, limited boundaries. Thus, for in-depth analyses of

multi-domain families, all optimal solutions for different parameter-space regions can be explored.

5.5. Significance of results

The studies and results provided here have demonstrated howmy methods and associated software

can be used to infer the history of domain shuffling events of amultidomain family. In addition,

I have demonstrated that the analysis of such families usinga tree from only a single domain and

inferring ancestral states based on the domain gain-loss approach alone may underestimate the

amount of shuffling. In particular, a number of recent studies have investigated patterns of domain

shuffling using such approaches based on domain architecture alone. The sequences of individual

instances of a particular domain were not compared. The authors of these studies [134, 140, 142]

concluded that a specific domain architecture usually aroseonly once in an ancient ancestor was in-

herited by vertical descent by all members of the family. However, my analyses that take sequence

information to account using tree reconstruction and reconciliation, shown in Figs. 5.6 and 5.10,

suggest that, for the studied families, the conclusions of these architecture-based studies do not

hold.

Major insights can already be observed from a thorough studyof the families presented here. First,

it appears that cassettes containing the same number of domain copies may have evolved indepen-

dently in different family members. For example, the three PDZ cassettes in the Zo1-3 clade were

the result of ancestral domain duplication, domain loss, and local domain duplication. Similarly,

while the SH3 domain in most MaGuK subfamilies was inheritedfrom an ancestral instance by

vertical descent, The single SH3 in the Carma subfamily results from replacement of the ances-

tral SH3 domain by a lateral insertion from the ancestral ZO.If sequence information were not

taken into account, the above inferences would be missed because the conserved domain content

would be thought to result from a single set of ancestral events, under the gain-loss parsimony

assumption. My work, based on tree comparison, indicates that much more duplication, loss, and

insertion occurred than a parsimony analysis of domain architectures alone would suggest. Of

particular note, including sequence evolution can suggestdomain insertions not visible to domain

architecture methods. In addition, when considering only architectures, domains in the same po-

sition in different genes would appear to be recent homologs; however, my work shows this may

not be the case always. For example, the second I-set domain in FGFR3 and FGFR4 in the PTKs
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INFERRED USING THE CO-EVOLUTIONARY FRAMEWORK

are not closely related to the second I-set domain in FGFR2; rather, they are recent homologs to

thethird I-set domain in FGFR2. An analysis through inspection, however, would suggest that all

domain copies in position 1 are recent homologs, and so on.

Note that we often see a domain insertion with domain loss resulting in the replacement of the

domain in one architecture with a domain from another architecture. One hypothesis for this ob-

servation, alternative to domain shuffling, is the occurrence of gene conversion. Domains that have

undergone gene conversion will appear to be more closely related than they actually are. A num-

ber of studies have investigated the propensity for gene conversion among duplicatedgenesas a

function of properties such as sequence similarity and spatial proximity [301–310]. However, I am

unaware of a systematic evaluation of gene conversion amongdomains, although specific instances

have been reported [311, for example]. My methods could be used to identify possible candidates

of gene conversion, which could then be further analyzed using more detailed information about

the gene (i.e., with other methods of gene conversion detection, such as [312–314] or [311]).

All these results are exciting because my approach has the potential to overturn prior results based

on the domain gain-loss approach, such as inferred relativerates of domain shuffling and the cur-

rently held assumption that convergent evolution of the same architectures is rare [139,142]. If the

gain-loss approach underestimated the number of events, then previously inferred relative rates of

events are likely inaccurate. In addition, it appears that the same architectures, especially when

including repeated domains, may have evolved more than once. This suggests that my method

has the potential to yield much greater insight into the process of domain shuffling than current

methods by explicitly inferring domain shuffling events through phylogenetic methods, rather than

considering static properties.
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Chapter 6

Co-evolution of co-occurring domains in the

human genome

In order to demonstrate the utility of my methods, I carried out an analysis of all pairs of com-

parable domain superfamilies in the human genome. Domain shuffling activity between pairs of

co-occurring domains can be assessed by reconciling their respective domain trees. Pair-wise do-

main tree reconciliation provides information about the relative shuffling propensity of various

domain superfamilies and does not require family predictions or gene family tree inference.

The computational pipeline for this study is summarized in Figs. 6.2a and 6.2b. Amino acid se-

quences for all genes in the human genome were obtained from the Panther 7.0 database [315]

(http://www.patherdb.org). Domain architectures and domain boundaries for instances of each

domain superfamily were identified by scanning the genomic sequences with the set of identifying

HMMs from the Pfam database [61, 62, 316]. Each domain instance is referenced by:(1) its do-

main superfamily identifier;(2) the identifier for the gene in which it occurred; and(3) the domain

position in that gene (i.e., a numberi indicating the domain was theith domain in the domain

architecture). For example, Mpp2PDZ3 identifies the PDZ domain as the third domain in the ar-

chitecture of protein Mpp2. Of the roughly 20,000 genes in the human genome, 15,733 had at least

one PFAM domain identified. Of these, 6,562 (just over 40%) contained at least two domains, rep-

resenting more than 2,300 different domain architectures.These architectures range in size from

two domain instances to 330 domain instances (see Fig. 6.1a). Table 6.1 describes the 11 largest

architectures in terms of the number of domain instances in the architecture.
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Longest Multidomain Architectures in Human
Protein name Uniprot ID Length

Titin Q8WZ42 330
Nebulin P20929 145
Low-density lipoprotein receptor-related protein 2 P98164 75
Low-density lipoprotein receptor-related protein 1B Q9NZR2 74
Prolow-density lipoprotein receptor-related protein 1 Q07954 73
Obscurin Q5VST9 62
Hemicentin-1 Q96RW7 59
Mucin-16 Q8WXI7 55
Fibrillin-1 P35555 52
Fibrillin-2 P35556 52
Fibrillin-3 Q75N90 52

Table 6.1:The 11 longest domain architectures, in number of domain instances, of multidomain proteins
in human.
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Figure 6.1:(a) The distribution of architecture lengths for all multidomain proteins in the human genome.
(b) Distribution of the sizes of domain superfamilies, by the number of domain instances identified in the
human genome. In both histograms, the final column represents all instances greater than 25. A list of the
longest architectures and largest families can be found in Tables 6.1 and 6.2, respectively.
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Largest Domain Superfamilies in Human
Domain Superfamily Pfam name Pfam ID Size

Zinc finger, C2H2 type zf-C2H2 PF00096 6,111
Ankyrin repeat Ank PF00023 1,308
WD40, G-beta repeat WD40 PF00400 959
Leucine-rich repeat LRR1 PF00560 844
Fibronectin type III fn3 PF00041 705
7 transmembrane receptor (rhodopsin family) 7tm1 PF00001 670
Cadherin Cadherin PF00028 619
Collagen triple helix Collagen PF01391 584
Immunoglobulin I-set I-set PF07679 541
EGF-like EGF PF00008 463
Immunoglobulin ig PF00047 420
Tetratricopeptide TPR1 PF00515 405
Protein kinase Pkinase PF00069 378
Calcium-binding EGF EGFCA PF07645 344
RNA recognition motif RRM1 PF00076 319
Sushi Sushi PF00084 317
Kruppel associated box KRAB PF01352 311
Kelch motif Kelch1 PF01344 296
Spectrin repeat Spectrin PF00435 290
Pleckstrin homology PH PF00169 273

Table 6.2:The 20 largest domain superfamilies in human, as defined by the number of domain instances
identified in the human genome.

Once the entire genome was scanned and domain boundaries were identified, the amino acid se-

quence of every domain instance was extracted from the genomic data. In this dataset, there were

3,891 different domain superfamilies ranging in size from one instance to over 6,000 instances. The

distribution of superfamily sizes, by the number of domain instance found in the human genome

can be seen in Fig. 6.1b. The largest families are shown in Table 6.2

These files were then processed following the tree construction pipeline, shown in Fig. 6.2a. MSAs

were built for all domain superfamilies with three or more representatives in the data set using the

MAFFT program [317]. Each alignment was then trimmed to remove poorly aligned and uninfor-

mative columns using the TrimAl program [318]. The trimmed MSA was then used to reconstruct

a domain tree for each superfamily using the Neighbor-Joining (distance-based) method provided

in the Phylip package [288] and bootstrapped 100 times.

Once trees for each superfamily were constructed, reconciliation was performed following the

111



CHAPTER 6. CO-EVOLUTION OF CO-OCCURRING DOMAINS IN THE HUMAN GENOME

Sequence

Database

Domain

Database

Domain

Identification

Panther 7.0

PFAM

Scan sequences with domain HMMs

Superfamily

Sequence

Files

Sequence

Alignment

MAFFT

Superfamily

Alignments

Sequence

Trimming

TrimAl

Pruned

Alignments

Tree

Building

Phylip

Superfamily

Trees

Domain

Architectures

(a)

Domain

Architectures

Identify

Co-occurring

Domains

Domain

Pairs

Database

Identify

Reference

& Embedded

Reference

Tree

Embedded

Tree

Reconcile 

in

Notung

Reconciled

Tree with:

Domain

Duplications

Insertions

Losses

For each co-occuring pair

Superfamily

Trees

(b)

Figure 6.2:(a) Tree Construction Pipeline. First, domains are identified from the amino acid sequences and
the domain model database, providing domain architecturesand domain instance boundaries, which are used
to extract domain sequences. A multiple sequence alignmentis constructed for each domain superfamily
and then trimmed to remove poorly aligned regions. Finally,a domain tree is constructed for each domain
superfamily. (b) Reconciliation Pipeline. Domain architectures are analyzed to produce a list of all co-
occurring domain pairs. Reconcilable domain pairs are identified, and the trees corresponding to these pairs
are then reconciled in NOTUNG, providing data on domain shuffling events.

112



pipeline in Fig. 6.2b. I used the identified domain architectures to compile a list of co-occurring

domain pairs. Trees for all comparable domain pairs were then reconciled. Given a candidate

reference domainDR and a candidate embedded domainDE, DR andDE arecomparableif

1. DR andDE co-occur in a protein more than once,

2. DR appears exactly once in each protein in which they co-occur.

Recall that the reconciliation algorithm takes as input a rooted reference tree, a rooted embedded

tree and a mapping between the leaves. In this case, the mapping is established by protein co-

occurrence. Each embedded domain instance is mapped to the reference domain instance with

which it co-occurs. The requirement thatDR occur only once in each protein ensures that this

mapping is unique and unambiguous. Note that given a comparable pair of domains,D1 andD2,

each of which occurs only once in every protein in which they co-occur (a one-to-one pair), either

member of the pair can take the role of the reference domain. In this case, the corresponding

domain trees are reconciled twice, once withDR = D1 and once withDR = D2. If one member

of the pair appears more than once in one or more proteins (a many-to-one pair), then the pair

can only be reconciled in one direction. Ifboth domains appear more than once in a protein (a

many-to-many pair), then the pair is not comparable and cannot be reconciled at all. For example,

in Fig. 6.3a the blue domain co-occurs with the red domain ing1 andg2. Because the blue domain

only appears once in each protein, the blue domain isDR and the red domain isDE, as in Fig. 6.3b.

In this case, the domains are many-to-one and a mapping is easily established. However, we can

not treat the red domain asDR, with the blue domain asDE. As seen in Fig. 6.3b,g1 b maps to

bothg1 r1 andg1 r2, and the mapping of the parent ofg1 b cannot be determined.

Once all comparable pairs were identified and the reference and embedded roles assigned, these

pairs were reconciled using NOTUNG’s command-line functionality with the duplication, insertion,

and loss algorithm. Of the 4,097 different co-occurring pairs, 2,914 domain pairs were reconciled

(see Table 6.3). Of the 1893 comparisons in one direction, 1,287 inferred at least one event. This

indicates that 606, or roughly 68%, of reconcilable domain pairs co-evolved by vertical descent

with no additional shuffling once the initial pair was formed. Thus, more than half of compa-

rable pairs either formed a pair at least twice in evolutionary history or sustained a duplication.

Fig. 6.4 shows the distribution of the number of duplicationand insertions events inferred in a

reconciliation. Most reconciliations contained only a fewevents, implying that most domain pairs

evolve largely through co-divergence. Some pairs, however, show a high amount of domain shuf-

fling, such as the reconciliations of Nebulin with SH31 (143 duplications and 6 insertions) and

Cadherin with Cadherin2 (5 duplications and 137 insertions).
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Figure 6.3:Explanation ofx-to-y mapping, based on the example family in Fig. 1.2.(a) Domain architec-
ture of the blue and red domain-containing proteins.(b) A many-to-one mapping of the leaves of the red
domain tree to leaves of the blue domain tree, because more than one leaf in the red tree is mapped to the
same leaf in the blue tree.(c) A one-to-many mapping of the leaves of the blue domain tree toleaves of the
red domain tree, there exists a leaf in the blue tree that is mapped to more than one leaf in the red tree. Thus,
when reconciling the red and blue domains, only the blue domain can act as the reference.

Summary of Domain Pairs in Human.
Pairs Reconciliations

Pairs of distinct domains 4,097 NA
Only one leaf in both trees 180 0
Many-to-many 2024 0
Many-to-one 872 872
One-to-one 1,021 2042

Total 2,914

Table 6.3:The number of different co-occurring pairs of domains in thehuman genome, broken down by
their x-to-y relationships.
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Figure 6.4:Distributions of the number of(a) duplications,(b) insertions, and(c) duplicationsand inser-
tions for a single reconciliation. Reconciliations containing no events were not included.
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Of the reconciliations resulting in at least one event, 576 contained only duplications and losses

and 862 contained only insertions and losses; the remaining265 contained both duplications and

insertions. These numbers suggest that most reconciliations are dominated by either duplication or

insertion, but not both. Fig. 6.5 explores this possibilityfurther. As seen in the figure, duplications

and insertions do seem to be negatively correlated — reconciled pairs that have many duplications,

tend to have few insertions, and vice versa. Spearman’s rankcorrelation test [319] reveals that

duplications and insertions are slightly, negatively correlated, with a significant p-value. Overall,

as suggested by this figure, the number of domains that were replicated by duplication is greater

than the number replicated by insertions (the ratio of duplications to insertions is 1.23). Note

that my methods do not consider events involving more than one domain at a time —compound

events. While the total number of events may be overestimated if compound events are common,

thenumber of domainsaffected by duplication or insertion are still the same. Thus, these results

suggest that the effect of domain duplication is more commonthan domain insertion.

In addition to investigating trends in inferred events per reconciliation, I also analyzed the total

number of events inferred per domain superfamily. When examining events on a per superfam-

ily basis, we can further break this down into superfamiliesacting as the embedded or reference

domain. For each domain superfamily,D, the total number of events is calculated twice: first, by

summing the events for all reconciliations in whichD = DE and second, by summing the events

for all reconciliations in which theD = DR. Out of the 1611 superfamilies with more than two

children, there are 914 different embedded domain superfamilies, 110 of which only act as a em-

bedded domain; and 897 reference superfamilies, 93 of whichonly act as a reference domain. The

remaining 804 superfamilies can play both roles.

When the aggregate behavior of domain superfamilies is considered, most families do not partic-

ipate in a large number of domain shuffling events, as seen in Figs. 6.6 and 6.7. However, some

superfamilies appear to be more mobile than others. These superfamilies are presented in Table 6.4.

As seen in Figs. 6.8 and 6.9, when the number of events per family are considered, the number

of insertions versus duplications per superfamily is weakly, but significantly, positively correlated.

It is interesting to note the difference in trends when comparing events per reconciliation with

events per family. This indicates that while a domain pair tends toeither duplicate or insert on

a per reconciliation basis, superfamilies as a whole do not seem to continue that trend. Rather,

superfamilies will participate in both types of events, andif a family is involved with a number

of insertions it is also likely to be involved in a number of duplications. This also suggests that

some superfamilies are generally active (i.e., participate in both types of events) and others are
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Figure 6.5: (a) Comparison of the number of duplications and insertions perreconciliation. Each dot
represents a reconciliation of an embedded tree and reference tree.(b) The same as in (a), but zoomed in
to present details.(c) The same as in (b), but with outliers removed and reconciliations with cadherin, fn3,
EGF, and laminin domains highlighted. Spearman’s rank correlation,r, between duplications and insertions
is shown with its p-value. The solid line representsy= x.
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Figure 6.6:Summary information for embedded domains. Event numbers are totals over all reconciliation
in which the domain participates. Distributions of the number of (a) duplications;(b) insertions; and(c)
duplicationsand insertions. Reconciliations containing no events were notincluded.
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Figure 6.7:Summary information for reference domains. Event numbers are totals over all reconciliation
in which the domain participates. Distributions of the number of (a) duplications;(b) insertions; and(c)
duplicationsand insertions. Reconciliations containing no events were notincluded.
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Outlier domains
Embedded domain Reference domain Duplications InsertionsDuplication+ insertions

LRR 1 82 58 140
TSP 1 82 62 144
I-set 152 2 154
Spectrin 165 9 174
Laminin EGF 90 85 175
Nebulin 172 6 178
EGF 167 71 238
Cadherin 49 202 251
Ank 274 41 315

NODP 61 37 98
Laminin N 48 57 105
Cadherin2 5 138 143
SH3 1 152 10 162

Table 6.4: Domain superfamilies with a high number of duplication and/or insertion events when sum-
marized over the embedded and reference. Events are totaledover all reconciliations in which the domain
participates.

more static. This correlation effect is slightly stronger for reference than embedded superfamilies.

One possible reason for this is that there is a maximum numberof events that can be inferred on

an embedded tree, but there is no such limit for the referencetree. This is discussed further in the

upcoming paragraphs.

I also considered how the size of the embedded and reference trees influences the number of in-

ferred events. Larger trees could allow for more shuffling because there are more domain instances

and more chances to diverge. That is exactly what is observedin Figs. 6.10 and 6.11. The num-

ber of events inferred during a reconciliation is significantly, highly correlated with the size of

the embedded tree, and significantly, but not as highly, correlated with the size of the reference

tree. This intuitively makes sense. Domain shuffling could be contributing to the growth of larger

domain superfamilies, in addition to gene duplication. Thus, larger families are more likely to

have been involved in domain shuffling events. Note that the maximal number of events,NE, that

can be inferred given the size of the embedded tree. Because leaf nodes in the embedded tree do

not represent any event, the maximum number of nodes that canbe assigned an event is limited

by the number of internal nodes. Thus, the maximal number of duplications and insertions in the

embedded tree isNE = (
|VE|

2 − 1). While the number of events in some reconciliations reaches

NE through a combination of duplications and insertions (Fig.6.11a), it is interesting that several

achieveNE with only duplication events (Fig. 6.10a), but only a few reachNE with insertion events
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Figure 6.8: (a) Comparison of the number of duplications and insertions summarized over each embedded
domain superfamily. Each dot represents a domain superfamily and all the events inferred when that domain
acts as the embedded.(b) The same as in (a), but zoomed in to present details.(c) The same as in (b), but
without the correlation and with Ank, cadherin, EGF, Nebulin, and lamininEGF superfamilies highlighted.
Spearman’s rank correlation,r, between duplications and insertions is shown with its p-value. The solid line
representsy= x.
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Figure 6.9: (a) Comparison of the number of duplications and insertions summarized over each reference
domain superfamily. Each dot represents a domain superfamily and all the events inferred when that domain
acts as the reference.(b) The same as in (a), but zoomed in to present details.(c) The same as in (b),
but without the correlation and with SH31, cadherin2 laminin N, and NODP superfamilies highlighted.
Spearman’s rank correlation,r, between duplications and insertions is shown with its p-value. The solid line
representsy= x.
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Near-Maximal Number of Events
Embedded domain Reference domain Duplications Insertions|VE| |VR|

ig RhoGEF 17 0 35 1
Ank FYVE 20 0 41 1
PPAK Pkinase 23 0 47 1
Ank MutS V 24 0 49 1
TSP1 F5 F8 type C 24 0 49 1
RNA pol Rpb1 R RNA pol Rpb1 2 25 0 51 1
RNA pol Rpb1 R RNA pol Rpb1 3 25 0 51 1
RNA pol Rpb1 R RNA pol Rpb1 1 25 0 51 1
RNA pol Rpb1 R RNA pol Rpb1 5 25 0 51 1
RNA pol Rpb1 R RNA pol Rpb1 4 25 0 51 1
fn3 Laminin N 27 0 55 1
LSPR Cu-oxidase3 28 0 57 1
Ldl recepta NHL 29 0 59 1
Ldl recepta EGF2 29 0 59 1
Ldl receptb NHL 31 0 63 1
Ldl receptb EGF2 31 0 63 1
Nebulin SH31 143 6 321 5
Sushi Pentaxin 31 0 63 1
CheC PDZ 32 0 65 1
I-set IQ 36 0 73 1
I-set G2F 42 0 85 1

Table 6.5:Reconciliation pairs that meet or nearly meet the maximum number of events on a tree, based
on tree size. Events are for the specified reconciliation.

only (Fig. 6.10c). The reconciliations that reachNE through duplications plus insertions are also

the domains that meet, or nearly meet, the maximum through duplications alone (see Table 6.5).

One explanation for this phenomenon is the presence of genesin the human genome that contain

long strings of domain repeats, which likely evolved through repeated domain duplication, and a

lack of genes which evolved domains solely through domain insertions.

In contrast to the embedded tree, the reference tree may havemore than one event associated with

any node. The red lines in Figs. 6.10b, d and 6.11b represent the reconciliations that have as many

events as nodes in the reference tree. Points above this linehave more events than nodes in the

reference tree, indicating that some nodes in the referencetreemustbe associated with more than

one event. Points below this line indicate reconciliationswhere nodes in the reference treemaynot

be associated with more than one event. Note that there are a large number of reconciliations that

fall above this line.
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Figure 6.10:Comparing the number of inferred events in a reconciliationwith the size of the trees,|Vi | par-
ticipating in the reconciliation. Each dot represents a single reconciliation.(a) The number of duplications
and theVE are significantly, but not strongly, correlated.(b) In contrast, the number of duplications and
|VR have a weak, negative correlation that is significant.(c) Insertions are more correlated than duplications
with |VE|. (d) Insertions are also positively (rather than negatively) correlated with|VR|. Spearman’s rank
correlation,r, between duplications or insertions and|Vi | is shown with its p-value. The red solid lines in
(a) and (c) represent number of events= 0.5∗ |VE| − 1, while the red solid lines in (b) and (d) represent
number of events= |VR|.
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Figure 6.11:Comparing the number of inferred events in a reconciliationwith |Vi |. Each dot represents a
single reconciliation.(a) The number of duplications and insertions are highly, and significantly, correlated
with |VE|. (b) In contrast, the duplications plus insertions, are less, but still significantly, correlated with
|VR|. Spearman’s rank correlation,r, between duplications plus insertions and tree size is shown with its
p-value. The red solid line in (a) represents number of events= 0.5∗ |VE| − 1, while the black solid line
represents the least squares best fit of a line: number of events= 0.284∗ |VE|. The red solid line in (b)
represents number of events= |VR|.

I also considered the correlation between the number of inferred events and the promiscuity of a

domain, quantified by the number of other superfamilies withwhich the domain co-occurs. Do-

main promiscuity is often assumed to also be a measure of a domain’s “mobility.” In general, the

thought is that a domain has more partners because it has beeninserted into more contexts. How-

ever, because models currently in use do not capture dynamicproperties, little evidence is available

to refute or support this assumption. Fig. 6.12 shows scatter plots of the number of co-occurrences

with distinct domains as a function of the number of domain insertions. If promiscuity arises from

increased mobility, we would expect co-occurrences to increase with insertions. While this gen-

eral trend is seen, with a statistically significant, positive correlation, Fig. 6.12 shows that some

domains co-occur with many other domains, yet have experienced relatively few insertions while

others are involved in many insertions, yet have relativelyfew partners (see also Table 6.6 for an

example of these domains). These are potential attractor/mobile domains and are good candidates

for a detailed study for evidence of mobility (or lack thereof), which is beyond the scope of this

thesis.
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Domains with Poor Correlation between Partners and Insertions
Embedded domain Reference domain Number partners Duplications Insertions

Cadherin 7 49 202
Neur chanmemb 1 0 12
ConnexinCCC 1 0 11
Connexin 1 0 11
FG-GAP 4 5 42
Laminin EGF 14 90 85
EGF 20 167 71
TSP1 18 82 62
LRR 1 21 82 58

AT hook 11 15 1
I-set 20 152 2
dsrm 9 10 1
RasGEFN 8 0 1
SAM 2 8 1 1
PH 43 11 18
efhand 25 17 5
RhoGEFN 19 2 3

Cadherin2 2 5 138
CadherinC 2 4 41
Reprolysin 4 10 53
Neur chanLBD 1 0 12
Integrin alpha 2 1 24
Laminin N 7 48 57

Bromodomain 14 5 1
efhand 14 16 1
I-set 9 5 1
zf-CXXC 9 5 1
RhoGEF 21 56 3
PH 38 26 10
Pkinase 36 51 20
SH3 1 31 152 10

Table 6.6:Domain superfamilies with the weakest correlation betweenpromiscuity (number of different
partners) and the number of inferred events, including either many partners and few events, or few partners
but many events. Events are totaled over all reconciliations in which the domain participates as either the
embedded or reference tree.
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Figure 6.12:Comparing the number of different superfamilies with whicha domain co-occurs to the num-
ber of inferred events all reconciliations. Each dot represents the summarized data for a domain superfamily.
The number of insertions summed over all reconciliations for a domain acting as(a) the embedded and(b)
the reference are positively correlated, with a high-levelof significance. Spearman’s rank correlation,r,
between insertions and the number of partners is shown with its p-value. The solid black lines represent
y= x.

This analysis also provides evidence for theconvergent evolutionof domain architectures. In the

scatter plot in Fig. 6.12, the domains with the most insertions have relatively few partners, sug-

gesting that domains are repeatedly inserted adjacent to the same partners. This could be evidence

that certain domain architectures are particularly advantageous and suggests that these are the most

mobile domains, but not the most promiscuous domains. This observation also speaks to the ques-

tion: is it unusual for the same domain architecture to arisemore than once through independent

events? The presence of domains with high insertion to co-occurrence ratios suggests that same

domain pairs must arise more than once. Otherwise, we would expect to see (at least) as many

partners as insertions (as represented by the black lines inthe figures). Roughly 20% of domain

superfamilies in this study have more insertions than partners.
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6.0.1. Significance of results

Through this high-throughput analysis, I have demonstrated the utility of the algorithms described

in Chapter 4 for genome-scale analyses. All 2,914 tree pairswere reconciled in NOTUNG in only

3 hours, 1 minute, and 28.33 seconds, on a 3.2ghz OptiPlex GX620 computer. In addition, I have

presented results describing general patterns of domain shuffling in the human genome. First,

more than half of comparable domain pairs participated in some type of domain shuffling event.

Second, domain proliferation via duplication events is generally more common (≈ 1.25 times)

than proliferation by insertion. In addition, events do notoccur with equal frequency across all

families, and some families are more “mobile” than others. Third, comparison of the number

of inferred events with tree size and the number of co-occurring domains sheds further light on

domain mobility and the convergent evolution of domain architectures. First, larger trees, and thus

larger families, are involved in more domain shuffling, which may have contributed to the larger

size of these families. In addition, while there is a positive correlation between the number of

partners for a domain and the number of events in which that domain is involved, there are still a

number of superfamilies that do not fit this generalization.Both domains with many partners but

few events, and domains with few partners involved in many events were observed. This provides

indirect evidence that mobility is not synonymous with promiscuity (as measured by number of

partners). However, it is not possible to determine from pairwise domain tree comparisons which

of the two domains was inserted. Similarly, these results suggest that the same domain pairs form

more than once and that convergent evolution of the same domain pair may be more common than

previously thought.
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Chapter 7

Discussion

Over the past thirty years, molecular phylogenetics has grown into a well-established and essential

field in the life sciences and is invaluable for many applications. Although there is an abundance of

research on phylogenetic methods for single-domain genes,current approaches are not appropriate

for the analysis of multidomain genes. When researchers first recognized that some genes are

a mosaic of sequence fragments [52, 53], the consensus was that these types of genes were rare

exceptions. However, with the advent of whole genome sequencing, the extent of such genes has

become readily apparent: the percentage of genes with two ormore domains has been estimated

to range from 27% of all genes in prokaryotes and 40% in metazoans [32] to as much as 60%

in prokaryotes and 80% in eukaryotes [80]. Gene families containing multidomain members not

only evolve via sequence substitution and gene duplication, transfer, and loss, but also through

domain shuffling, a process in which individual domains are duplicated, deleted, and inserted

into new contexts. Because multidomain families can consist of multiple domain superfamilies

that also occur in otherwise unrelated gene families, different domain superfamilies in the same

multidomain family may have different evolutionary histories [27–31]. Yet, standard phylogenetic

methods do not recognize this possibility and will not inferdomain shuffling events.

Ironically, these gene families that elude current phylogenetic approach are of particular evolution-

ary and functional importance. They played transformativeroles in key evolutionary transitions,

including the emergence of multicellularity in animals andchordate and early vertebrate evolu-

tion [33,35,81]. Many multidomain families are associatedwith fundamental molecular functions

such as cell signaling and cell adhesion.
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7.1. Summary of results

In this thesis, I have presented my work on:(1) the development of a model of co-evolution of do-

mains with the locus of the gene family;(2) the design of algorithms to realize this model;(3) the

implementation of these algorithms into software capable of in-depth and/or high-throughput anal-

yses;(4) a detailed empirical analysis of a set of multidomain families from the literature, demon-

strating the power of my approach; and(5) a study of domain shuffling in the human genome,

providing information on genome-level patterns of domain shuffling and demonstrating the suit-

ability of my approach for genomic-scale studies.

In Chapter 3, I discussed the classical single-domain model[181] of gene family evolution and

the locus model of multidomain gene family evolution [151].A multidomain family is the set

of genes descended from a common locus in the genome. Under this model, a tree structure

is an appropriate representation of multidomain family’s evolution; domain shuffling events are

annotations on this tree. I developed a model of the evolution of multidomain families, in which

a multidomain protein is represented as a co-evolving set orsequence of domains. The domain

shuffling events and ancestral domain architectures in the history of the family can all be inferred

by comparing trees representing these co-evolving domains. I further developed this model in

the context of reconciliation to define the abstract domain shuffling events consistent with known

molecular mechanisms for shuffling.

My integrated model of multidomain family evolution comprises the evolutionary history of each

constituent domain (including the sequence mutation that gave rise to it), the evolutionary history

of the locus as a whole, the domain shuffling events that gave rise to the domain architectures, and

the ancestral domain architectures. The use of a comprehensive, formal framework to investigate

co-evolutionary relationships in a multidomain context isa novel and dramatic departure from pre-

vious approaches. While several studies have focused on some aspect of these co-evolutionary re-

lationships (domain-species evolution [129,138,140,142,320] or domain-domain evolution [139]),

an explicit and comprehensive formal framework that modelsthe co-evolution of domains, genes,

and species has not been proposed.

To realize this model, I developed four algorithms (presented in Chapter 4) to infer the evolutionary

history of a multidomain family:

1. A reconciliation algorithm for duplication, heuristic loss, and incomplete lineage sort-

ing, given a binary embedded tree and a non-binary referencetree. The details of this
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algorithm have been published inThe Journal of Computational Biology[252] and

implemented in the NOTUNG package by Ben Vernot.

2. A reconciliation algorithm for horizontal transfer, duplication, and loss, given binary

embedded and reference trees. I implemented this algorithmin NOTUNG and extended

the GUI to handle aspects specific to multidomain evolution.

3. A reconciliation algorithm for duplication, heuristic loss, incomplete lineage sorting,

and transfer given a binary embedded tree and a non-binary reference tree. This algo-

rithm is based on algorithms (1) and (3) that I developed. It has been implemented in

NOTUNG by Han Lai, under my supervision.

4. An algorithm to infer ancestral states of the reference tree and assign events to the ref-

erence tree, given a set of reconciled embedded trees. This algorithm was implemented

in NOTUNG by a Master’s student, Ravi Chinoy, under my supervision.

I used my algorithms in NOTUNG to apply my novel approach to two data sets: a set of multidomain

families discussed in the literature and the set of all domains in the human genome.

A few studies have considered domain trees in a reconciliation framework. These studies used an

ad hoc, informal version of this approach to explore the differinghistories of various domains in

the same multidomain family [27–30]. In this body of work, disagreement between domain trees

is inferred by inspection, and taken as general evidence of domain shuffling, although the specific

domain shuffling events are not inferred. Inference by visual inspection is error prone and not

feasible for large data sets. A limitation of this work is that no models, algorithms, or software to

infer multidomain gene family trees or domain shuffling events have been proposed, until now. My

algorithms and software will allow researchers to perform phylogenetic analysis of such families

consistently and on a much larger scale. A great advantage ofthe tree comparison method is that

it incorporates both sequence and domain architecture information. Moreover, unlike the domain

architecture model, this representation makes it possiblenot only to infer domain shuffling events,

but also to infer which specific domain in one gene was duplicated and then inserted into a different

gene.

In Chapter 5, I selected three multidomain families from theliterature (the protein tyrosine ki-

nases [27], the Notch-related genes [28], and the membrane-associated guanylate kinases [30]) to

demonstrate how my work can be used to study the evolution of such families. Over the last decade,

a body of work based on domain architecture parsimony has established several hypotheses about
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the processes of multidomain evolution that are often treated as accepted theory. However, I have

demonstrated that the domain gain-loss, based on architecture parsimony alone, may underesti-

mate the extent of domain shuffling. In particular, my approach is able to infer domain insertions

that may not be apparent to domain architecture parsimony methods. As a result, my approach

has the potential to overturn prior results based on domain architecture parsimony, such as rates

of domain shuffling events and the assertion that convergentevolution of the same architectures

is rare [142]. My novel methodology, which captures both domain architecture and sequence in-

formation, provides a platform upon which to test whether a more informative model will lead to

different conclusions. Specifically, in my empirical analyses, I repeatedly observed that the same

assemblage of domains may have evolved independently, multiple times. As a result, domains in

the same position in paralogous genes may not be close homologs, as previously assumed. These

results suggest that my new method has the potential to provide a deeper, more detailed glimpse

into the area of multidomain evolution.

In Chapter 6, I describe the application of the developed methods and software to all pairs of com-

parable domain superfamilies in the human genome. This study revealed a number of interesting

observations about the pattern of domain shuffling in humans. Specifically, there was evidence

of domain shuffling in more than half of all comparable domainpairs, indicating that the pair ei-

ther formed at least twice in their evolutionary history or included a domain duplication. Also of

note was the observation that domain duplications are 1.23 times more common than insertions.

Summarizing results over all instances of a particular domain provided further insights into the

behavior of domain superfamilies as a whole: A co-occurringpair of domains tends to proliferate

eitherby duplication or by insertion. In contrast, families as a whole will participate in both types

of events, and if a family is involved with a number of insertions it is also likely to be involved in

a number of duplications.

Comparing the inferred number of domain shuffling events with properties of domain superfamilies

indicated two interesting correlations. First, the numberof events inferred during a reconciliation

is significantly and highly correlated with the size of the embedded tree, which is representative

of the size of the domain family. This suggests that larger families are larger because they were

involved in more domain shuffling with gene duplication. Of note was the observation that a few

domain pairs reach the maximal number of events that can be inferred from tree discordance given

the size of the embedded tree. These are mostly the result of genes that contain long strings of

domain repeats, which likely evolved through repeated domain duplication. In addition, a num-

ber have reference trees containing nodes associated with more than one event. This observation,
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plus the distribution of events per reconciliation, indicates that there is agradientof “mobility”

in which some superfamilies are much more mobile than others. This was further investigated

by the comparison of the number of different co-occurring partners of a domain, a widely used

measure of promiscuity, with the amount of shuffling in whichthat domain was involved. While

this comparison revealed a correlation between these two quantities, there were noted exceptions.

Some domains co-occur with many other domains, yet have experienced relatively few insertions

while others are involved in many insertions, yet have relatively few partners. This indicates that

there may be a distinction between mobility and co-occurrence, although these definitions were

previously assumed to be synonymous (see [154]). The presence of domains with high insertion to

co-occurrence ratios also suggests that domains are repeatedly inserted adjacent to the same part-

ners and is possible evidence that convergent evolution of domain architectures is not infrequent.

Limitations. While the method presented here has an advantage over previously proposed meth-

ods for analyzing the evolution of multidomain proteins, there are still some limitations. First,

while my method does take sequence information from domainsinto account, through the con-

struction of domain trees, this does not cover the full sequence of every gene:linker sequences,

the sequence between domains, are not included. Thus the history of some parts of the gene are

ignored. However, this omission may not pose a significant problem. Domain boundaries tend to

coincide with exon boundaries [102, 112, 321]. Also, domains correspond to sequences that have

a fold and/or function found in many contexts. As a result, they are more likely to be shuffled

than arbitrary fragments lacking these characteristics. Second, this method assumes that all do-

main instances in the multidomain family have been accurately annotated; yet this assumption is

not necessarily valid, as false negative errors are not uncommon [322]. While the effect of domain

misannotation on event inference has not been largely studied, Weiner et al. [127], in their study on

domain losses, reports that misannotations accounted for only a small fraction of false positive do-

main loss predictions. In addition, with increasing amounts of genomic and structural data, as well

as improved computational techniques and continued manualcuration, the number of false nega-

tive domain misannotations will continue to decline [322].Third, the reconciliation of multidomain

families is based on an event parsimony approach, and does not include a probabilistic model of

uncertainty, etc. Several problems remain for future work.Parsimony approaches are well-suited

to data sets in which events are rare, due to selective pressure. Probabilistic models would comple-

ment the parsimony framework presented here. Bayesian approaches [147,159,215,219,300,323],

which assume homogeneous rates, are appropriate for data sets in which duplication and loss are

neutral, stochastic processes. A probabilistic frameworkprovides a natural setting for incorporat-
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ing sequence data directly into the reconciliation process. As such, a complete phylogenetic toolkit

should include both approaches. However a probabilistic model has the disadvantage that it is both

computationally intensive and that it requires enough datato learn parameters, which may not be

possible with domain sequences since they are very short. Finally, as discussed in Sec. 5.5, in-

ferred domain insertion with domain loss events may be the result of gene conversion on a domain

level, rather than domain shuffling events. The hypothesis for gene conversion can be ruled out

by screening members of multidomain gene families for gene conversion in a pre-processing step,

such as with the OrgConv [312] or GeneConv [313, 314] software. Alternatively, my work may

prove to be a useful approach for detecting gene conversion.

7.2. Future work

The novel approach to the phylogenetic analysis of multidomain proteins, presented in this thesis,

represents a major step towards furthering our understanding of multidomain evolution. It further

suggests a number of open research directions, including with further algorithmic development of

this work and the application of these methods to other data sets and to answer specific evolutionary

questions.

7.2.1. Future directions for algorithmic development

I have developed and implemented reconciliation algorithms for inferring events and composing

evolutionary histories of multidomain gene families. My results suggest several important direc-

tions for further development:(1) identification of possible compound events;(2) identification

of insertions originating outside the gene family;(3) improved identification and avoidance of

temporal inconsistencies;(4) parameter selection; and(5) development of algorithms for the tree

inference problem. Many of these are unique challenges thatdo not arise in other reconciliation

frameworks.

Compound events. My event model, like all reconciliation approaches, assumes that each event

modifies one entity (i.e., domain or gene) at a time. However,it is possible that a fragment en-

coding two or more domains could be the target of a single insertion, duplication, or deletion — a

compound event. If such compound events do, in fact, occur, the reconciliation will overestimate
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the amount of shuffling that takes place. Current evidence suggests that domain insertions and

losses tend to involve a single domain (rather than a set of domains) [130,131,133,134], but it has

been observed that tandem repeats can expand through internal duplication of several domains at

once [170, 324, 325]. Current methods to identify compound events are limited to tandem repeats

involving the same number of domain instances from the same domain superfamily in each dupli-

cation. Compound insertions have not been considered. Development of improved methods for the

detection of compound events would be beneficial to this field. Specifically, domain tree structure

and reconciliations could be exploited to identify compound events.

The origin of insertions. The ability to infer the source of insertions is a particularstrength

of our approach. My algorithms, likeall reconciliation algorithms that include horizontal events

such as insertion, are based on the assumption that insertions or transfers originatewithin the gene

family. A promising approach to infer insertions that originate from outside a given multidomain

family is to consider all instances of the domain superfamily in the genomes of interest. Recon-

ciliation methods for full domain superfamilies trees, notjust trees constructed from the domain

instance in the given multidomain family, could provide a solution for inferring external domain

insertions in such cases.

Temporal constraints and cycles. To be biologically relevant, inferred insertions must obey

temporal constraints; insertions can only occur between contemporaneous taxa. However, because

the relative timing of nodes in different lineages in the reference tree is, in general, unknown,

the algorithms presented here only identify temporal violations that create cycles. If reference

tree nodes are partitioned into sets of contemporaneous taxa, a reconciliation algorithm could be

developed that only considers insertions that occur withinthe same set [326]. An improved rec-

onciliation technique that incorporates species information could be developed along these lines,

by exploiting divergence time estimates available from other sources; e.g., the fossil record. If the

reference tree is a gene tree, prior reconciliation with a species tree could be used to transfer time

estimates from the species tree to the reference gene tree nodes, via the mappings.

Selecting event costs. Different values for event cost parameters may result in different optimal

event histories. As I demonstrated in Sec. 5.4, the set of different solutions and the region in pa-

rameter space that they occupy can be determined by samplingthe parameter space and reconciling

with these samples. The development of a methodology to systematically enumerate all possible
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histories and sample the space of reconciliations would be of great benefit to genomic-scale studies

where sampling the parameter space is not feasible.

In addition, further genomic-scale analyses using a maximum likelihood approach could provide

estimates for domain shuffling event rates. These rates are expressed in terms of the number of

events that occur per unit of time. These rates could then be converted into event costs — those

events with higher rates should be assigned lower costs because they occur more often. While a

simple inversion of rates would seem appropriate, it is not statistically consistent. Statistical anal-

yses of parsimony methods have revealed that the appropriate rate-to-cost function is the negative

natural log of the rate (i.e.,− ln r i for rater i of eventi) [24].

7.2.2. Future directions for biological analysis

The goal of my thesis was to develop methods to help bridge thegap between the large amount

of available multidomain protein data and our lack of efficient, sufficiently detailed methods to

analyze this data. The models, algorithms, and software I developed to meet this goal promise to

provide the research community with tools to analyze a wide range of multidomain gene families,

which could not be studied with standard phylogenetic methods. My methodology can also be

used to investigate and evaluate phylogenetic hypotheses.Open scientific questions that can be

investigated, with my methods:

1. Do different types of domains (e.g., domains associated with adhesion versus signal-
ing) have different shuffling propensities?

2. Does shuffling occur more frequently within or between multidomain gene families?

3. Are shuffling rates lineage specific, and, if so, how much variation is observed in
domain shuffling rates across species lineages?

4. How do inferred species-specific and family-specific rates compare to gain and loss
rates reported in previous studies of gene and domain families [272,300,327,328]?

5. How often do domain insertions cross species boundaries?

6. Has the mobility of a given domain changed over time?

7. How does the emergence of new domains or new architecturescorrelate with major
evolutionary transitions, such as multicellularity, or the emergence of metazoans, ver-
tebrates, and primates?
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The origin of inserted domains. Almost nothing is known about theorigins of inserted domains

because prior studies were based on models in which domain instances are indistinguishable. Un-

der such a model, all members of the domain family are equallylikely donors. In order to infer

the most likely source of a domain insertion, it is necessaryto consider variation within a domain

family. My algorithm infers the donor and the recipient geneof each insertion, making it possible

to investigate the extent to which domain shuffling occurs within a gene family, between distinct

gene families, and to what extent domain shuffling is contained within in species boundaries.

Differences across lineages. Is multidomain evolution a universal process with similar behav-

ior in all lineages, or does the interplay between gene duplication, domain shuffling and sequence

evolution differ between lineages? Since at this point multidomain evolution has been studied in

much greater detail in bacteria and animals than in plants and fungi, it is difficult to know to what

extent results from those studies can be generalized. In addition, many studies have been carried

out on the complete set of whole genome data available at the time of that study, which typically

include hundreds of bacterial genomes and only a handful of eukaryotic genomes. Possible lineage

specific differences would likely be obscured by this disparity in numbers and the use of combined

analyses. Moreover, it has been observed that the increasedcomplexity of multidomain families in

metazoans coincided with the advent of multicellular animals. It is an intriguing question whether

the same patterns of gene duplication and domain insertion that prompted the evolution of meta-

zoan signal transduction families also dominate in other lineages.

Domain promiscuity. A domain may be promiscuous because it is mobile (i.e., frequently in-

serted into new contexts) or because it is an attractor (i.e., insertions into the neighborhood of this

domain tend to be selectively advantageous). Numerous measures have been proposed for quanti-

fying domain promiscuity [32,120,121,123,155,173,174,329], each of which are based on domain

architecture statistics, not on a explicit model of domain shuffling events. These measures repre-

sent the domain content in contemporary proteins without considering events that gave rise to that

domain content. Measures based on domain architecture statistics may not give a good estimate

of mobility, and thus may include domains that are attractors, but not mobile. My methodology

can be used to estimate domain mobility and compare these estimates with previous measures of

promiscuity, as reported in Chapter 6. Two important questions this can help answer are: What

is the relationship between family-specific shuffling rates, inferred using an explicit, event-based

model, and traditional measures of promiscuity? Can event models distinguish between actively

mobile domains and attractors, and is such a dichotomy appropriate?
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Convergent evolution. Several studies have consideredconvergent evolution of domain archi-

tectures, that is, the propensity for the same architecture to arise more than once through indepen-

dent events. Convergent evolution is generally thought to occur rarely [116, 139], although more

recent evidence is less clear [139, 143]. The assumption driving these studies is that a domain

combination that is selectively advantageous, once formed, is unlikely to separate. Thus, identical

domain architectures in contemporary proteins are assumedto be related through vertical descent.

However, prior studies were based on methods that do not explicitly model events and have treated

all domain instances as indistinguishable. These models could obscure evidence of repeated for-

mation of the same domain combinations. Several recent studies of specific multidomain protein

families have commented on instances where convergent evolution of domain architectures is the

most compelling explanation for similar architectures in distantly related species [178, 179]. As

shown, my methodology is capable of recognizing identical or very similar architectures that arose

through independent events. Thus, it provides an excellentplatform to investigate whether an

approach that captures sequence similarity between domaininstances uncovers evidence that the

same domain architecture forms more than once.
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