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Abstract 

Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation 

fleet on time scales of a decade or two.  This dissertation investigates battery degradation, and 

how the introduction of PHEVs may influence the electricity grid, emissions, and petroleum use 

in the US.  It examines the effects of combined driving and vehicle-to-grid (V2G) usage on the 

lifetime performance of relevant commercial Li-ion cells.  The loss of battery capacity was 

quantified as a function of driving days as well as a function of integrated capacity and energy 

processed by the cells. The cells tested showed promising capacity fade performance: more than 

95% of the original cell capacity remains after thousands of driving days worth of use. Statistical 

analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G 

galvanostatic cycling. These data are used to examine the potential economic implications of 

using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use 

during peak hours. The maximum annual profit with perfect market information and no battery 

degradation cost ranged from ∼US$140 to $250 in the three cities. If the measured battery 

degradation is applied, however, the maximum annual profit decreases to ∼$10–120. The 

dissertation details the increase in electric grid load and emissions due to vehicle battery 

charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne 

CO2 price, and this case but with existing coal generators retrofitted with 80% CO2 capture. It 

also models emissions using natural gas or wind+gas.  PHEV fleet percentages between 0.4 and 

50% are examined. When compared to 2020 CAFE standards, net CO2 emissions in New York 

are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller 

benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is 

reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under 

a cap.  Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to 

installing charging infrastructure.  Fuel use was modeled using the National Household Travel 

Survey and Greenhouse Gasses, Regulated Emissions, and Energy Use in Transportation model.  

It was found that increasing AER of plug-in hybrids was a more cost effective solution to 

reducing gasoline consumption than installing charging infrastructure.  Comparison of results to 

current subsidy structure shows various options to improve future PHEV or other vehicle subsidy 

programs.  
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Chapter 1 Introduction  

1.1Overview and Motivation 

Personal mobility enabled by automobiles has been woven into US culture for nearly a century.  

For example, soon after the automobile became widely available to U.S. citizens, the National 

Park Service (NPS) made a concerted effort to encourage automobile travel to and in National 

Parks [1].  The most visited section of the NPS system is a road. The Blue Ridge Parkway, 

authorized in 1933 by the National Industrial Recovery Act, consists of approximately 500 miles 

of scenic highway [1].  Nearly a century after its authorization the NPS’s preferred alternative for 

managing the Parkway specifies that it “would be actively managed as a traditional, self-

contained, scenic recreational driving experience [2].”   

The ratio of automobiles to people climbed for most of the 20
th

 century.  Whether driving to 

work or traveling to one of the many National Parks, most US citizens interact with personal 

vehicles on a regular basis.  Indeed proposals to increase tax on gasoline are often framed as 

unfair to ordinary persons because of the necessity to drive.  There are costs associated with the 

widespread adoption of vehicles. It has linked the cost of transportation to petroleum prices and 

vehicle use in urban areas has ensured emissions are close to population centers concentrating 

localized negative environmental effects where people live.  Plug-in hybrid electric vehicles 

(PHEVs) have the potential to mitigate some of these issues. 

In the US, transportation uses nearly a third of the energy consumed annually (27.5 quads in 

2010), 97% of which is provided by petroleum [3].  The light duty fleet accounted for 60% of 

this energy use and 45% of total US petroleum use in 2009 [4].  It appears that transportation 

will soon surpass the industrial sector as the largest energy consumer in the US (Figure 1.1).   
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Figure 1.1 – Energy consumption in the US by sector since 1950 [5] 

Despite increases in passenger car efficiency, there has been increasing fuel consumed from 

1980 to 2004 (Figure 1.2).  While an increase in light duty truck sales reduced fleet efficiency 

gains, overall fleet efficiency still increased each year [6].  An increase in vehicle miles travelled 

(VMT) per capita caused the observed increase in fuel consumed per capita (Figure 1.3).   

 

Figure 1.2 – Passenger car fleet efficiency and US gasoline consumption [6] 
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Figure 1.3 – The total VMT per capita has increased more than the VMT per vehicle as households 

purchased additional vehicles [7-9] 

From 1960 to 1980 the VMT per capita rapidly increased, but VMT per vehicle held relatively 

steady as households purchased additional vehicles and decreased in size.  It appears that in 2008 

there was slowdown in adding vehicles because VMT per capita decreased, but VMT per vehicle 

held relatively steady.  This can also been seen when comparing the number of vehicles per 

household, which increased in each subsequent National Household Travel Survey (formerly 

National Personal Travel Survey) until 2009 [10,11]. 

Oil is easily transported, so the specific country of origin is not important.  However, having 

such an important sector of the economy so dependent on one type of fuel is an economic risk 

and seen as a threat to national security because if a producing country reduces output it affects 

all consuming countries not just those that purchased directly from those reducing production 

[12].  Economic downturns and increased fuel prices have coincided with a decrease of gasoline 

usage (Figure 1.4).  The amount of money spent purchasing gasoline is still much higher in real 

terms than any time between 1990 and 2004.  Regression of GDP growth on lagged petroleum 

prices has shown a statistically significant relationship [13-22].  Although recessions have also 

often been observed to follow oil price spikes there is still substantial debate about the magnitude 

of response in GDP growth [22].  
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Figure 1.4 – Comparison of GDP growth, unemployment rate, and amount spent per capita on gasoline [23-

26] 

Consumers appear to show little short run elasticity to gasoline prices, and recent analysis of the 

2006 price spike shows that the elasticity of demand has likely decreased from that seen in the 

price spike between 1975 and 1981 [27].  Gasoline prices climbed even higher in 2007 and have 

held at relatively high values since that time (Figure 1.5). 

The cost of crude oil has fluctuated significantly in the last century (Figure 1.5).  Although 

consumers may take into account expected fluctuations in gas prices, if they believe prices will 

remain high due to resource constraints, alternatives face a lower hurdle to compete.  Hybrid 

electric vehicles move the fleet to more efficient vehicles, but as seen in the past that does not 

necessarily lead to reductions in petroleum use because of a rebound effect seen in terms if 

increased VMT.  It is possible that the growth in VMT would slow because consumers have only 

a limited amount of time to drive, but increases in demand from developing nations will likely 

keep upward pressure on fuel prices for some time to come.  Increasing fuel cost has led to slight 

reductions in per capita fuel use, but it is unlikely there is political will to implement a higher tax 

on fuel to further reduce consumption.   
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Figure 1.5 – First purchase price of oil taken from EIA adjusted via (1851 to 1890 - Consumer Price Index by 

Ethel D. Hoover; 1890 to 1912 - Cost of Living Index by Albert Rees; 1913- 2010 CPI) [28, 29, 30] 

 

Burning petroleum in highway vehicles significantly contributes to total criteria pollutant 

emissions in the US: 53% of CO, 31% of NOX, 24% of VOCs, 1.7% of PM2.5 in 2011 [31].  

Transportation is also responsible for a significant proportion of US CO2 emissions, 31% in 2009 

[4]. 

There are policy options to reduce petroleum consumption without relying on taxes.  Changing 

the fleet to use alternative sources of energy has the potential to drastically reduce petroleum 

consumption.  Vehicles could be produced that run on biofuels, natural gas, or utilize electricity.  

An advantage of partially electrifying the transportation fleet is that it would provide for greater 

flexibility of primary fuel sources.   

Electric vehicles are not a new idea.  In 1900 of the 2370 automobiles in New York, Chicago and 

Boston 49% were steam powered (often burning kerosene), 34% were electric vehicles (EVs) 

and 17% gasoline [32].  At the time electrics enjoyed usability advantages.  Steam vehicles took 
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a long time to start and gasoline powered vehicles required cranking.  However the low energy 

and power density of lead acid batteries combined with increased gasoline infrastructure, 

allowing longer trips, and reduction in both the price of petroleum (Figure 1.5) and gasoline 

vehicles, led to the demise of the electric vehicle [33].   

In the late 1990s California passed legislation requiring 2% of model 1998 vehicles be zero 

emissions.  This led automakers to introduce new electric vehicles [34].  General Motors 

introduced the EV1 using lead acid batteries in 1996.  GM leased the vehicle and did not sell it.  

The first EV1 had a lead acid battery pack with capacity of 16.5 kWh and mass of 500kg [34].  

This was later replaced with a nickel metal hydride battery pack with capacity 26.4kWh and 

mass 481 kg [35].  Eventually the EV1 was cancelled and the leased vehicles were crushed [36].  

Other battery electric vehicle (BEV) projects from Toyota, Ford, Nissan (using NiMH and lead 

acid batteries) were also discontinued and 80% of the EVs sold in California were destroyed 

[37].  Gasoline prices were relatively low between 1985 and 2004, making it more difficult for 

EVs to compete.   

Using onboard vehicle storage to help stabilize the electricity grid, termed vehicle-to-grid (V2G), 

was an idea proposed to help improve the value of early generation electrified vehicles [38].  

While NiMH packs are better than lead acid packs in mass, volume, and cycle life, they were not 

enough in the late 1990s to make electrified vehicles gain mass market acceptance (Figure 1.6).  

As gas prices rise and batteries improve, electrified vehicles become more viable than they were.  

In late 2010 the Chevy Volt (a PHEV) and Nissan Leaf (a BEV) were introduced in the US 

market [36].  Both vehicles use lithium ion (Li-ion) battery packs.  Due to the higher energy 

density these packs are both lighter and smaller.  For example, the Volt’s 16 kWh pack is 

roughly 1/3
rd

 the size of the EV1’s original 16.5 kWh pack [39].   
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Figure 1.6 – Ragone plot comparing energy and power density of various battery types (adapted from [40]) 

 

With advances in battery technology and the introduction of PHEVs, it is important to examine 

their likely effects.  This thesis investigates battery degradation, and how the introduction of 

PHEVs may influence the electricity grid, emissions, and petroleum use in the US.   

1.2 Organization of Thesis and Research Questions 

This thesis is divided into four chapters (2-5) that were written as research papers.  A brief 

synopsis of the research conducted and key results for each chapter is included below. 

Chapter two describes battery testing and measured degradation for LiFePO4 batteries.  At the 

time of the testing, these batteries were in contention for inclusion in the Chevy Volt.  They were 

already being used in the Hymotion pack sold as an aftermarket addition to the Toyota Prius to 

convert it to a PHEV.  Currently they are also included in the Fisker Karma PHEV and GM has 

signed an agreement to use them in an upcoming EV [41].  It was found that depth-of-discharge 

(DoD) alone was not the best predictor of the degradation of high-power LiFePO4 A123Systems 

M1 cells.  If cells exhibiting this property are used to create battery packs for PHEVs, then a 

PHEV can utilize a battery with lower rated capacity and use a greater proportion of the battery: 

however, doing so might make discharge rate and associated ohmic heating more of an issue.  

The current subsidy structure is based on total energy storage, not usable energy storage and 
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would therefore not differentiate between a battery that allowed only 20% state-of- charge (SOC) 

swing and one that allowed 90%.   

The dominant cell degradation method is not dependent upon depth of discharge. Instead the 

integrated number of lithium ions that have been intercalated/de-intercalated into the electrodes, 

regardless of the DoD at which these events occur seems to drive the degradation.  Multiple 

regression analysis showed there was a significant difference in degradation when energy was 

used for driving and constant rate discharge.  

This work also showed why the composition of a “test cycle” is important when attempting to 

quantify battery degradation.  The percent capacity lost per normalized Wh or Ah processed is 

quite low: -6.0x10
-3 

% for driving support and -2.7x10
-3 

% for V2G support.  Using constant 

discharge degradation to predict driving degradation is likely inaccurate, and a correction factor 

should be used if a more representative cycle cannot be tested.  It is likely this difference is in 

response to polarity changes (corresponding to regenerative braking events in vehicles).  

Therefore, V2G modes that require charge and discharge from the battery (for example balancing 

intermittent resources) will lead to more rapid battery capacity fade and should be avoided to 

minimize battery capacity loss over many years of use.  It appears that the cycle life of these 

cells is more than adequate to enable electrified transportation (>15 years simulated driving and 

4 years real testing).  However, because the tests were run at room temperature, it is possible that 

mechanical stress due to variations in temperature and accelerated aging from higher 

temperatures might reduce calendar life.  

Chapter 3 focuses on the viability of using PHEVs for energy arbitrage.  This was chosen as a 

topic because of it might improve the economics of PHEV ownership.  Ancillary services such as 

frequency regulation were not considered because only a small number of vehicles will saturate 

that market [38].  Vehicle owners are unlikely to receive sufficient incentives from electricity 

arbitrage to motivate large-scale use of car batteries for grid support.  Maximum annual profit 

with perfect market information and no battery degradation cost is $142-$249 in the three cities 

considered (Rochester NY, Boston MA, and Philadelphia PA) due to small variation in LMPs 

and the size of the battery pack.  With degradation included, the maximum annual profit (even if 

battery replacement costs fall to $5000 for a 16 kWh battery pack) is $12-$118; in the more 

realistic lower bound profit case, the annual profit is $6 - $72. If the difference between high and 
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low LMPs grows in the future the value of energy arbitrage will increase, providing greater 

incentive to individuals or a hypothetical aggregator. However, any growth in electricity 

arbitrage will lower the gain, since vehicle owners will increase the presently low night demand 

and decrease peak demand, lowering the LMP spread. 

Changes in net social welfare (change in consumer surplus less producer surplus) from energy 

arbitrage were also found to be small.   The increase in net social welfare from battery storage 

was estimated to be equivalent to $8/vehicle/year based on Sioshansi and co-authors estimate of 

the net social welfare of energy storage in PJM during 2007 (for 4 GWh of total storage, about 

380,000 16 kWh vehicles using 2/3 of their battery pack capacity for electricity) [42].  It is likely 

that the net social welfare provided by energy storage would increase at high levels of variable 

renewable power generation. If 25% of total U.S. generation were wind or solar, 10
12

 kWh, the 

integration cost would likely be on the order of 0.5 to 1 cent per kWh, then the integration cost 

mitigation would be $20 - $40/vehicle/year [43].  This assumes all 250 million vehicles 

participated in grid support and all integration costs could be mitigated by vehicle storage. Since 

not all vehicles could participate, the amount available per participating vehicle would be 

proportionally higher. In that case, there may be opportunities to transfer some of that benefit to 

the vehicle owner.  

Avoiding the cost of new peaker plants is likely the largest potential grid benefit. A simple cycle 

natural gas turbine that is used 100 hours per year has fixed costs of approximately $50/kW, or 

50¢/kWh. Add to that 10¢/kWh for fuel, for a total of 60¢/kWh, or $432 over the 100 hours the 

peaker would have run.  Since these 100 hours are likely to be in 4 hour blocks on about 25 days 

of the year a vehicle owner could offset only roughly 2 hours of demand before the battery was 

depleted.  Thus, the grid operator might be able to avoid ~$200 of peaking costs per participating 

vehicles.  With such small monetary rewards, even a minimal barrier would likely preclude the 

use of batteries for energy arbitrage.  Voiding the warranty on a very expensive component such 

as a traction battery is not a small risk.  If the warranty for batteries was changed to reflect 

energy throughput instead of miles travelled it may be possible to overcome this hurdle.  It is 

likely that manufacturers would rather have such a warranty as well to take into account 

differences in owner driving, but such a decision might face complaints from potential PHEV 

owners. 



Chapter 1 

 

10 

Chapter 4 focuses on use phase emissions of PHEVs.  It investigates how a carbon price on 

electricity, charging strategies, battery size, and location would affect use phase emissions of 

PHEVs.  Charging strategies change net emissions associated with PHEVs.  In NYISO, the smart 

charging scenario (charging at night) resulted in lower or equal net emissions than home 

charging and lower than work charging.  In PJM, smart charging generally causes higher 

emissions than other charging strategies because coal is often on the margin at night.  In PJM 

there is a tradeoff between use of off-peak charging and increased emissions.  Information about 

generation resources should be used in concert with pricing data to find the optimal charging 

strategy in individual RTOs.  The natural gas, or gas and wind combined charging cases, will 

result in significant decreases to CO2 and NOX emissions.  

Electric vehicles will place upward pressure on net SO2 emissions.  With the Cross State Air 

Pollution Rule (CSAPR) delayed by the courts there is uncertainty about the level of capped 

emissions.  Net SO2 emissions caused by vehicles will be less than 6% in NYISO and 2% in 

PJM, of the proposed 2014 CSAPR cap on electric generators under any of the reduced SO2 

scenarios (SO2 allowances to states in question remained the same in CSAPR and under clean air 

transport rule) [44, 45].  

A CO2 price of $50/tonne on only electricity will not be effective at reducing net CO2 emissions 

from a PHEV fleet unless it encouraged the use of CCS.  PHEVs are likely to place upward 

pressure on SO2 allowance prices if emission caps bind, or to increase emissions if the caps do 

not bind.    PHEVs will probably reduce net CO2 and NOX emissions, but are unlikely to reduce 

net SO2 emissions.  In the end net emissions from PHEVs depend on the efficiency of the 

conventional vehicle fleet, PHEV CD (charge depletion, all-electric mode) mode efficiency, 

charging strategy, battery size, driving patterns, and generator mix used for charging. 

Chapter 5 compares the policy decision to support increasing gasoline displacement through 

increasing all-electric range (AER) vs. installation of charging infrastructure.  When comparing 

the option to increase PHEV AER or install charging points, it appears that under a set of 

assumptions strongly favorable to infrastructure increasing AER still achieves greater gasoline 

savings per dollar spent.  The implied value of gasoline savings is the value placed on savings 

that would justify spending to enable a given vehicle scenario.  Thus the higher the value the 

more expensive that option is in terms of gasoline savings.  It was found that the maximum 
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implied values of gasoline savings for increased AER for each class (cars, SUVs and trucks) was 

$1.97, $0.67, and $2.90, which was less than the minimum implied values when installing 

workplace infrastructure $3.27, $1.04, and $3.07 for respective classes. 

This does not imply the current federal subsidy focused on increasing battery size is properly 

designed.  The results of this study imply that the current subsidy structure favors large battery 

packs significantly and does not seem aligned with societal benefits.  If all of the value in 

subsidizing PHEVs was allocated to gasoline savings it would imply that we subsidize 4 kWh 

battery PHEVs at $1.25 per gallon saved.  At the same time 16 kWh battery PHEVs are 

subsidized at roughly $4.50 per gallon saved because each additional kWh of rated battery 

capacity is subsidized at $417 per kWh.  Prior work suggests that large battery packs likely have 

worse life cycle emissions [46].  Aligning the subsidy to equally reward gasoline savings is 

preferable, but complicated because it is currently predicated on pack size instead of usable pack 

energy.  As discussed in chapter 2, there are differences in battery degradation that means this 

subsidy might disadvantage a battery chemistry with higher costs per kWh even if the cost per 

usable kWh were lower.  Because of this it would be preferable to subsidize based on usable 

battery energy instead of rated capacity.  It is suggested that the best subsidy structure might be 

to target AER in a low power driving cycle such as the urban dynamometer driving cycle.  This 

more carefully incentivizes automakers to provide vehicles that will displace gasoline with 

electricity and allows them the freedom to choose the design and battery chemistry they want. 
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2.2 Abstract 

The effects of combined driving and vehicle-to-grid (V2G) usage on the lifetime performance of 

relevant commercial Li-ion cells were studied.  We derived a nominal realistic driving schedule 

based on aggregating driving survey data from the National household travel survey and the 

Urban Dynamometer Driving Schedule, and used a vehicle physics model to create a daily 

battery duty cycle. Different degrees of continuous discharge were imposed on the cells to mimic 

afternoon V2G use to displace grid electricity. The loss of battery capacity was quantified as a 

function of driving days as well as a function of integrated capacity and energy processed by the 

cells. The cells tested showed promising capacity fade performance: more than 95% of the 

original cell capacity remains after thousands of driving days worth of use. Statistical analyses 

indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G 

galvanostatic cycling. These data are intended to inform an economic model. 

2.3 Introduction 

One suggested benefit of plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles 

(BEVs) is to provide electricity for off-vehicle use, “vehicle-to-grid” (V2G) services, when 

parked [1].  These benefits might include peak load shifting, frequency regulation and other 
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ancillary services, smoothing variable generation from wind and other renewables, and providing 

distributed grid-connected storage as a reserve against unexpected outages.  To determine the 

financial and technical feasibility of these applications, it is essential to quantify the effect of this 

kind of usage on battery degradation and performance.  Most previous measurements have 

indicated  that Li-ion battery capacity decreases as a result of cycling, and the magnitude of this 

loss is dependent on both the number of cycles and the depth of discharge (DoD) that the battery 

is subjected to during these cycles[2].  While these characteristics are well understood for the 

LiC(Ni)oO2/graphite based cells used in the consumer electronics market (as well as for lead 

acid and  NiMH systems) , there is far less published data for the current and next generation of 

high rate cells that may see wide adoption in PHEV and BEV battery packs.  Those data that 

have been published indicate it is possible to make Li-ion cells with much less capacity fade and 

dependence on depth of discharge than is commonly assumed [3].  However, these results are 

insufficient to determine the economics of V2G energy sales because they are from cycling that 

is not representative of battery use for driving and battery use for grid energy.  

To provide more representative data, we examined the battery degradation of a battery cell 

already being implemented in the PHEV Hymotion battery pack (an aftermarket PHEV 

conversion), the A123 Systems ANR26650M1 cell.  We have examined the response of multiple 

sets of these cells (from different lots) to gauge their behavior in both simulated driving and 

combined driving/V2G energy sales modes.  Our ultimate goal is to determine the performance 

and financial costs associated with cycling for V2G energy use in combination with a typical 

PHEV driving duty cycle.  Simulating the actual discharge pattern also has enabled us to 

determine if there is a difference between dynamic discharge (representing the driving) and 

constant discharge (energy arbitrage) using statistical analyses. 

 

2.4 Experimental 

2.4.1 Driving profile created with data taken from NHTS 

The energy arbitrage potential of a vehicle battery depends on both the usable capacity and the 

fraction of the pack used for daily driving, while the lifetime cost of performing energy arbitrage 

will depend on how the pack degrades as a function of use mode. To experimentally quantify 
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this, a nominal urban driving/V2G power profile and correlated battery test regime was derived 

by combing several common data sets.  A representative urban commute driving duty cycle was 

constructed, using data from the 2001 National Household Travel Survey (NHTS) of 70,000 

households [4].  To do this, we created a dataset from the NHTS day trip file tabulating the daily 

trip profile of a vehicle.  The day trip file contains “data about each trip the person made on the 

household’s randomly-assigned travel day” [5].  These trips include walking, taking public 

transportation, driving, or any other means of travel.  We extracted only the trips taken by 

vehicles owned by households and eliminated trips taken at the same time by different members 

of the household in the same vehicle.  This resulted in a new data set that tabulates the daily 

vehicle trips, instead of those of individual household members.  The number of vehicles owned 

by the household is included in the day trip files, and only vehicles that were driven were used in 

the trip calculation.    

The vehicle information dataset was then cross-referenced to append vehicle-specific 

information, such as the age, fuel economy, and other relevant information.  Vehicle-specific 

information was used to check for potential trends that might indicate that the NHTS data would 

not apply to PHEVs; none were found.  Three cities in the Northeastern quadrant of the United 

States were selected: Boston (BOS), Philadelphia (PHL), and Rochester NY (ROC).  These cities 

were chosen because they are located in three different electricity markets and because they each 

had a high number of NHTS participants.  The median number of trips taken on a given day by 

vehicles driven in each of the three cities was four (the mean was 4.46 for cities combined).  For 

this reason, only vehicles which took four trips were thereafter considered in the determination 

of the representative profile.  The median start time, duration, velocity, and distance of each trip 

in the three cities are listed in Table 2.1. Because the three cities had similar median trips, the 

data from all three cities were combined to make a single trip profile (Figure 2.1).  The total 

distance traveled was 29 km (original data in miles) when combining all four trips.  This is 

similar to the result obtained if the same analytical steps are applied to the entire NHTS dataset 

(total distance of 29 km; however trip start times and velocities vary). 
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Table 2.1 – Trip characteristics for 3 cities modeled and combined data used for battery testing 

City Trip Start Time Duration (min) Average Trip 

Velocity (kph) 

Distance (km) 

BOS 1 8:48 14 38.6 7.2 

2 12:28 14.5 33.9 8.0 

3 15:00 10 32.2 6.4 

4 17:30 14.5 32.2 6.4 

PHL 1 9:00 15 38.6 6.4 

2 12:04 11 38.6 6.4 

3 15:15 10 32.2 6.4 

4 17:00 15 32.2 8.0 

ROC 1 8:43 15 45.1 9.7 

2 12:30 12 38.6 8.0 

3 15:40 10 38.6 6.4 

4 17:30 15 41.4 8.0 

Combined 1 8:45 15 38.6 8.0 

2 12:16 12 38.6 6.4 

3 16:30 10 34.8 6.4 

4 17:20 15 38.6 8.0 
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Figure 2.1 The daily driving profile used in cell testing.  This profile is an aggregate of data taken from all 3 

cities included in study. (Horizontal portions show when vehicle is parked, while diagonal portions represent 

driving). 

 

 

2.4.2 Model constructed to replicate the energy use profile for driving 

To determine the quantity and rate of energy transferred to and from a battery during driving 

conditions, we constructed a simple physics model that computed the energy needed to propel a 

typical vehicle through the NHTS trip profile. As an input to this model, the vehicle 

distance/velocity profile  in each trip was created by sampling the Urban Dynamometer Driving 

Schedule (UDDS) and overlaying these segments into the average NHTS distance vs. time 

profile [6].  The 1370 second-long UDDS profile was doubled in length to allow contiguous 

selections to span from the end of original UDDS profile to the beginning.  These selections 

were portions of the UDDS profile, and significant fractions were repeated multiple times 

(Figure 2.2). 
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Figure 2.2 Portions of urban dynamometer driving schedule (UDDS) were chosen to closely match 

driving profile shown in Figure 2.1 in terms of duration and average velocity. 

 

To calculate the power vs. time battery duty cycle needed to achieve this velocity/acceleration 

profile, the vehicle was assumed to have the physical characteristics of a 2008 Toyota Camry; 

the mass was 1588kg (3500 lbs), coefficient of drag of 0.28 and a frontal area of 2.7m
2
.  Rolling 

resistance of the tires was assumed to be 0.01 [7]. The efficiency of power transfer from 

regenerative braking to batteries was assumed to be 40%, the efficiency from battery to wheels 

was assumed to be 80% [8]. The battery pack energy capacity was assumed to be 16 kWh (as in 

Chevrolet's proposed Volt) [9]. The density of air was taken from the US standard atmosphere at 

sea level.   

An 800 watt constant load was added to account for the power needed for all activities unrelated 

to movement such as heater, air conditioner, radio, lights and other accessories [10].   The total 

load every second was therefore obtained by adding the 800 watt load to the power necessary to 

achieve the velocity defined in the UDDS.  The force needed as a function of time to achieve the 

UDDS target speed is a summation of the forces listed in Table 2.2.   
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Table 2.2 – Forces considered when calculating energy use for PHEV in charge depleting mode 

Force Considered Equation Example: 

Velocity=10 m/s 

Acceleration=1m/s
2
 

Acceleration F = ma 1590kg*1=1590N 

Air resistance Far =  ½ ρv
2
CdA 

½*1.23
3m

kg
*

2

s

m
10 









0.28*2.67m
2
=45.8N 

Rolling Resistance Frr = Crrmg 0.01*1590kg*9.8m/s
2
=156N 

 

If the acceleration is sufficiently negative (indicating braking), that its absolute value is greater 

than air resistance and rolling resistance combined, then regenerative braking is occurring and 

the power values for motion are given by equation 1.  The regenerative value will be therefore be 

negative and indicates battery charging.  Equation 2 describes the necessary power for cases 

where no regenerative braking occurs. 

power =   tvmgCACvma rrd  **4.0  2/1 2    (1) 

power = 
 

8.0

**  2/1 2 tvmgCACvma rrd  
    (2) 

Using this model, we compute that the vehicle would use 31% of its battery pack capacity to 

drive the derived 4-trip profile, with 0.28 kWh/mile being withdrawn from the battery on 

average. This value appears reasonable; the Electric Power Research Institute’s (EPRI) hybrid 

electric working group suggests 0.26 kWh/mile for a compact sedan [11].   

The duty cycle profile derived from this model is used here as power-based "C-rate", the 

discharge power rate of a battery normalized to the total energy content.  For example, for a 16 

kWh battery a 16 kW load would be defined as having a discharge power with a 1 C-rate, 32 kW 

would be a 2 C-rate, etc. (in this case we are using power instead of the more common electronic 

current in Amps and Ah, for ease of calculation during economic analyses).  By normalizing to 
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cell energy and using a C-rate to determine power/current loads, the testing cycle can be run on 

any individual cell.  

Under regenerative braking conditions, the battery pack will be charged if the deceleration 

provides more power than used by the constant base load (Figure 2.3). The cumulative 

distribution of power levels over a 24 hour period was calculated to illustrate the amount of time 

during the test cycle that the battery was under various loads (Figure 2.4).  The near-vertical 

portion is due to the base load that is constant when there is nearly no force required for motion.  

As a result of the relatively large energy-to-power ratio for a battery pack of this size, the 

absolute value of the C-rate imparted to the battery exceeds 1 only 20% of the time.  The 

maximum absolute C-rate value was 2.85.  This value is modest compared to the demonstrated 

rate capability of the tested cells, which are qualified by the vendor to a C-rate of at least 20 C 

 

Figure 2.3 Example of relationship between acceleration  and power required (in C-rate) for trips 1 and 4.  A 

negative C-rate corresponds to discharge rate from pack.  Deceleration can lead to regenerative braking if it 

is significant - in this case, around 7% of the energy is regained via regenerative braking. 
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Figure 2.4 Cumulative distribution function of power requirements for daily driving (all 4 trips).  Given large 

pack size the current rates are low most of the time.  The near-vertical portion is a result of times when 

velocity and acceleration are low and the base load to run accessories dominates the power needs for vehicle. 

 

2.4.3 Cell acquisition and cycling 

Thirteen cells were purchased at three separate times, and came from four different fabrication 

lots.   Due to equipment limitations, testing start dates were staggered as new equipment became 

available.  All testing was conducted with Arbin BT2000 series battery cyclers.  The inception of 

testing of the first 4 cells (lot 1) was followed after 3 months by 4 more cells (lots 2 & 3), in turn 

followed by 5 more cells (lot 4) after another 4 months.  Cells from lot 1 underwent 2400 cycles, 

lot 2 and 3 completed 2000 cycles and lot 4 had reached 1000 cycles when this paper was 

submitted.  Again, each cycle in this case represents a single driving day, so some of these cells 

were tested the equivalent of at least 5 driving years. 

The cells were not thermally controlled and were kept at the lab ambient temperature, which 

varied from 24˚ to 27˚C, but was most commonly approximately 25˚C.  Data published by the 
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manufacturer indicating good cell stability and uniformity up to at least 40˚C imply that the cell 

temperatures used in this testing were not high enough to cause excess degradation, nor were 

they variable enough to significantly affect the data. [12]  A thermocouple was connected to one 

cell and temperature was monitored through several full driving cycles; the cell temperature did 

not increase significantly, as expected from these cells, which have been engineered for high rate 

applications and so do not heat up significantly under the nominally low C rates experienced. 

The cells were subjected to one of five different driving day testing cycles.  Test cycle 1 

corresponded to driving only and is shown in Figure 2.5, while each of the other 4 cycles 

consisted of the same daily duty cycle, with varying amounts of additional V2G discharge in the 

afternoon hours..  The V2G discharge consisted of a specific time at a galvanostatic C/2 rate 

(1.15 A in this case), and in and a cutoff voltage of 2.5 V was used to avoid over-discharge.  A 

C/2 discharge rate was chosen to represent V2G simulation because it scales to an approximate 8 

kW rate of withdrawal from the 16 kWh pack.  The rate might be forced lower depending on the 

infrastructure available in the home; a 240V, 30A circuit could maintain only 7.2 kW of energy 

transfer.  This implies the rate of discharge will likely be below C/2 slightly unless a special 

circuit is installed.  Each cycle began with a 1 C galvanostatic charge of 2.3 A until cells reached 

a voltage of 3.6 V followed by a 5 minute rest.  Then trips 1-3 were executed with 5 minute rests 

between each.  The V2G discharge then was conducted.  The driving only cells had no V2G 

discharge (3 cells, one each from lots 1, 2, and 4).  Test cycle 2 had one V2G discharge of 1.15 A 

for 995 s (3 cells, one each from lots 1, 2, and 4).  Test cycle 3 had one V2G discharge lasting 

1715 s (3 cells, one each from lots 1, 2, and 4).  Test cycle 4 had 2 V2G discharges and was the 

same as test cycle 3 with an additional V2G discharge after trip 4 held until the cell voltage 

dropped to 3.2 V (3 cells, one each from lots 1, 3 and 4).  Test cycle 5 extended the second V2G 

discharge until 2.5 V (1 cell from lot 4).    This test regimen is indicated in Table 2.3. 
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Figure 2.5 – Test current profile used to simulate driving day for cells showing all trips. The times 

after trips 3 and 4 when V2G discharge was simulated are indicated. 

 

Table 2.3 – Testing regimens used on cells 

Test cycle Length of first V2G 

Discharge (s) 

Voltage at end of second 

V2G discharge 

1 0 NA 

2 995 NA 

3 1715 NA 

4 1715 3.2 

5 1715 2.5 

 

The duration of the rest period the end of each driving day simulation was adjusted such that 

each test case, regardless of the degree of V2G discharge, lasted 3 hours.  This regimen was 

repeated for 100 cycles, and then the cells were put through a C/2 charge/discharge 

“measurement” cycle to 100% state of charge/discharge to measure cell capacity.  This started 

with charging the cell 1.15 A until it reached a voltage of 3.6V.  Then the voltage was held 

constant until the current tapered to 0.01A to ensure the cells were fully and equally charged.  

After a 5-minute rest the cells were discharged at 1.15 A rate until voltage fell below 2.5 V (i.e. 

100% DoD).  The capacity measured through this discharge was defined as the cell capacity at 
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that point in the testing.  To avoid biasing the results with differing rest periods between test 

cycle and baseline cycle the baseline check automatically began 5 minutes after completion of 

the 100 test cycles. 

2.5 Results and Analyses 

The cells from different lots did not behave identically.  Lot 1 showed a significant degree of 

variation in capacity retention as the cells were cycled (Figure 2.6 a-b), with cells increasing and 

decreasing in capacity as they were cycled, although the overall trend was downward.  Lots 2 - 4 

showed remarkable consistency in degradation (Figure 2.6c).  It is possible (and believed by the 

author) that the unusual scatter observed in the data from lot 1 is somehow linked to the integrity 

of the BT2000 test unit used for these cells (on which only these 4 cells have been tested), 

though such a link has not been quantified.  For this reason they are not used in the final 

statistical analysis. 
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Figure 2.6 Degradation of cells versus driving days simulated  (a) full range, (b) same information 

zoomed, (c) with highly variable cells from lot 1 dropped. 
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Because the cells from different lots might have undergone different formation (at the factory) 

before testing started it was necessary to find a way to determine an initial capacity in a 

consistent manner.  One common approach is to measure capacity after a specific number of 

identical low rate cycles.  We considered this unsuitable because we felt it was desirable to avoid 

running a large number of cycles on the battery in an attempt to normalize them and thus 

decrease capacity by an unknown amount.  The next alternative we considered was to measure 

the capacity after an arbitrary number of cycles, but with 5 different possible test cycles this was 

also unsatisfactory.  Instead, we performed a linear regression on each cell data set to back-

predict their initial capacity in terms of cycles tested.  This capacity was then used to determine 

the relative loss as a function of cycles instead of using a numerical value for the total energy 

content.  A linear regression of relative capacity degradation vs. cycles was then used to predict 

when the cell would reach 80% of original capacity.  This information was used to predict the 

cycle life vs. DoD/cycle.   

Overlaying the values on the VARTA Automotive plot shows that DoD/cycle appears to have a 

smaller effect on degradation with these cells compared to those reported previously, particularly 

given that a single “cycle” in this case was representative of an entire day’s worth of driving. 

This appears to indicate that the portion of a cell's capacity used, or the ultimate depth of 

discharge, is not as important with A123 systems based cells as with the cells on VARTA plot 

labeled old LiIon and NiMH (Figure 2.7), where DoD is a key variable [13].  As the degree of 

discharge per driving day increases, the predicted cycle life does not fall as rapidly as 

conventional data analysis commonly predicts.  For example, in cells discharged to 95% DoD 

per cycle, our measurements predict that 5300 cycles will be needed before reaching 80% of 

initial capacity instead of around 1500 cycles as indicated by the VARTA data.  Also, daily 

cycles with shallower DoD values do not appear to increase cycle life as significantly as those 

indicated from the VARTA analyses.  This suggests that a greater portion of the cell capacity 

could be used during each cycle than would be suggested by the VARTA plot if applied to this 

chemistry. 
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Figure 2.7 Laboratory results overlaid onto VARTA curves illustrating more linear response in cycle 

life as a function of depth of discharge for the cells tested. 

 

Figure 2.8 shows data for a C/2 discharge of the same cell (from lot 3) after 0, 1000, and 2000 

simulated driving days.  The potential profile in the voltage plateau region was essentially 

unchanged after 2000 cycles, indicating that internal resistance did not change significantly, as 

the differential in cell polarization under discharge before and after the 2000 cycles was 

imperceptible.  The decrease in delivered capacity after cycling is manifested as a departure from 

the discharge plateau after 1.82 Ah of discharge for the heavily cycled cell, vs. 1.91 Ah for the 

uncycled cell (Figure 2.8b). 
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Figure 2.8 Voltage discharge profiles of a cell that reached an ultimate DoD value of 73% each driving day.  

The initial, 1000
th

 and 2000
th

 baseline discharge curves are shown. 

 

The test profiles used on these cells were very different from those typically published (i.e. 

potential-limited galvanostatic charge/charge at intermediate rates), so a different approach is 

used here to quantify the capacity fade as a function of battery use. Simple accounting for the 
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%DoD at end of cycle DoD does not accurately represent the amount of energy processed by a 

cell per cycle.  For example, the ratio of charging from regenerative braking to discharging 

produced by the model was 0.076; if 100% energy efficiency is assumed, then at least 14% more 

energy is exchanged during a driving cycle beyond the energy associated with the indicated DoD 

value. To this end, percent initial capacity was related to the total capacity (in Ah) processed by 

each cell, a value that included the discharge for driving, charging from regenerative braking, 

charging during the evening to recharge the battery for the next day, baseline check.  This value 

can be directly related to the moles of Lithium ions transferred between the electrodes during 

use.   

Data collected from cell lot 1 showed inconsistencies, again, consistent with the capacity versus 

cycle life for these cells.   However, the second set of cells, lots 2 – 4, showed a high level of 

consistency in degradation with respect to integrated Ah processed; the cells appear to degrade in 

response almost exclusively to capacity processed as opposed to the number of cycles, or the 

DoD per cycle (Figure 2.9a).  The sample analysis based on energy processed (in Wh) showed 

marginally better results and were more directly applicable to modeling the energy arbitrage 

potential of the cells (Figure 2.9b).  There appeared to be a slight difference in slope between 

cells.  Those with greater energy arbitrage discharge appeared to degrade slightly slower.  

Comparing two specific cells from lot 2 over a similar range of energy processed shows a 

different but statistically insignificant slope (at the 95% level) (Figure 2.10).  Adding cells from 

lot 4 tightens the 95% confidence interval lessening the overlap of the two slopes, at the 95% 

level, but they are still not statistically different.  
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Figure 2.9 Degradation as a function of (a) capacity (Ah) processed by cell or (b) energy (Wh) processed by 

cell for all but lot 1 cells.  Both appear linearly related, as expected given the nominally linear discharge 

profile of the LiFePO4/graphite system.   
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Figure 2.10 Capacity degradation as a function of energy processed for two cells tested with contrasting end-

of-cycle depth of discharge values (35% and 73% DoD). The slight observed difference would indicate less 

degradation for higher DoD/cycle cell, however the 95% confidence interval of slopes overlaps for these fits, 

so they are not statistically discernible. 

 

To investigate this further, a multiple linear regression was conducted to relate the degradation of 

the cells to the type of cycling incurred.  The first step was to break the total Wh processed by 

each cell in different categories of charge and discharge.  It was assumed that these different 

cycling regimes could be represented by driving discharge, driving recharge (from regenerative 

braking), energy arbitrage discharge, and recharge.  The first two are dynamic, while the last two 

categories are constant rate.  The values were normalized to the initial capacity of each cell to 

remove variation from differing initial capacity.  Regenerative braking recharge was highly 

correlated with the driving discharge because the simulation had a specific ratio of regenerative 

braking to driving discharge as defined by the UDDS.  Therefore, regenerative braking was 

dropped from the multiple linear regression analysis. Only driving discharge and energy 

arbitrage discharges were considered for the multiple linear regression, because the other values 
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could be almost perfectly predicted if these values were known.  The errors of the resulting 

regression appear to follow the assumption of normality, as shown in Figure 2.11, which 

indicates that a multiple linear regression can be used without fear that the errors follow a pattern 

that would indicate some hidden underlying process [14]. 

 

Figure 2.11 Q-Q plot shows errors are normally distributed for multiple linear regression.  The line 

represents expected values for a normal distribution. 

 

The resulting regression appeared linear (adjusted R
2
=0.96).  The relative size of the coefficients 

implies that the battery usage associated with driving causes more loss in cell capacity per Wh 

processed than usage associated with V2G load shifting (lower rate, more controlled discharges) 

(Table 2.4).  The confidence intervals are small enough that there is no overlap as indicated by 

the high absolute value of the t-stat.  The regression relates percent capacity loss to energy 

discharged driving, energy discharged for arbitrage, and initial capacity.  An example is shown 

in Table 2.5, where we illustrate how a given quantity of energy processed in a particular mode 
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can be used to predict the percent capacity loss.  Because all cells underwent the same cycling 

associated with driving, the differences in these coefficients relates not just to the difference in 

degradation from dynamic discharge versus constant discharge, but also to other hidden variables 

such as cell aging, which is thought to be minimal over the approximately 12 months of testing 

performed for this study [15].   

Table 2.4 – Results of multiple linear regression 

Coefficient Value t-stat Confidence 

Interval 

Wh discharged 

driving 

-5.99E-5 -34.9 1.71E-6 

Wh discharged 

arbitrage 

-2.71E-5 -14.6 1.85E-6 

Constant 1.00 2120 4.7E-4 

 

Table 2.5 – Examples using results of multiple linear regression to calculate battery capacity degradation 

Coefficient Value Normalized Multiplied 

by 

Coefficient 

Wh discharged 

driving 

3000 Wh 462 -0.027 

Wh discharge 

arbitrage 

1500 Wh 231 -0.0062 

Initial Capacity 6.5 Wh 1  

Capacity Remaining 97% 

 

2.6 Discussion/Conclusions 

The loss of capacity as a function of driving days shown in Figure 2.6 indicates that the 

degradation of these high-power LiFePO4 - based cells does not follow the same pattern as 

commonly used previous reported results and models [16,17].  These data reveal that in bench 

top testing of simulated driving conditions,  the cell DoD does not does not have nearly as great 

an effect on lifetime as previously reported values for other battery chemistries (commonly those 

based on layered metal oxide cathodes such as LiMO2 where M is some combination of Co, Ni, 

and Mn) [14, 15, 18].  This result implies that a LiFePO4/graphite– based PHEV battery pack 

with properly matched cells can be cycled through a very broad state of charge range without 
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incurring any significant increase in capacity loss as a function of Ah or Wh processed.   In 

principle, a PHEV can utilize a smaller battery and use a greater proportion of the battery, 

however doing so might make discharge rate and associated ohmic heating more of an issue.  

After 2000 cycles the low rate discharge potential profile appears very similar to that collected 

before cycling started, and a very small fraction of the initial capacity has been lost.  This 

observation is consistent with the hypothesis that only a minimal Solid Electrolyte Interphase 

(SEI) layer must be forming during cycling of these cells, and that the mechanical cycling of the 

electrodes does not induce loss of connection and capacity fade . The tendency for increased I
2
R 

cell heating after many cycles is not present (due to the relatively low C-rates encountered), and 

so failure mechanisms associated with this effect are minimal. 

The comparison between capacity fade as a function of cycle number and Ah processed provides 

several key insights to the processes at work in these batteries.  First, the dominant cell 

degradation method is not dependent upon depth of discharge, or rate of discharge (at least up to 

the 3C spikes encountered in this test regimen).  For example, if only the data shown in Figure 

2.6 were used to examine capacity loss, the conclusion might be drawn that degradation was 

indeed a function of depth of discharge.  However we show in Figure 2.9 that, in fact, the cycle 

DoD and relative fraction of low-rate galvanostatic cycling vs. acceleration/regenerative braking 

current pulses are not important even over thousands of driving days. Rather, it is the integrated 

number of lithium ions that have been intercalated/de-intercalated into the electrodes, regardless 

of the DoD at which these events occur.   Nevertheless, there are still other factors of importance.  

The multiple regression shows there is a difference between driving energy withdrawn and 

constant discharge. With the low rate constant discharge associated with roughly half the 

degradation of the dynamic discharge (-6.0E-3% and -2.7E-3% for 1 normalized Wh).  For this 

reason, using constant discharge degradation to predict driving degradation is likely inaccurate, 

and correction factor attributed to the kind of cycling encountered is prescribed.   

The literature commonly indicates that the dominate mechanisms for capacity loss in Li-ion cells 

are (1) the formation of a resistive and progressively Li-consuming interfacial layer between the 

functional graphite at the anode and the electrolyte, and (2) the physical degradation of active 

materials and electrode structures [19].  Our data indicate a much lower loss of capacity as a 

function of cycles and Ah processed, a result consistent with the use of high performance nano-
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structured electrode (cathode) materials that are much more physically stable during use and so 

do not degrade.  The remaining loss in capacity is likely due to anode interfacial film of 

Li2O/LiF/Li2CO3/Other formation [20]. In most interpretations, the loss of capacity is correlated 

to amount of Li that has reacted to form the SEI and so is no longer functional in the battery 

function.  The fact that we observed little to no relationship between DoD and capacity fade 

supports the idea that the SEI formation at the anode occurs at the same rate regardless of state of 

charge and degree of graphitic lithiation.  A recent capacity degradation model is consistent with 

this hypothesis; the anode potential was not varied significantly during simulation and so depth 

of discharge was not nearly as important as the time-integrated current of Li-ions the SEI was 

driven to process during cycling [17].  Higher rate cycling causes more rapid capacity loss.  This 

is also consistent with the literature in several ways:  at higher rates greater overpotentials are 

observed at the electrode surfaces and will therefore slightly enhance the rate SEI formation.  

Local heating at the electrode surface at high rates could also increase the rate of SEI formation.  

It should also be noted that the cells were kept at room temperature throughout the test mainly 

for convenience.  It is acknowledged, however, that the rate of capacity loss would almost 

certainly have been greater for cells kept at elevated temperatures during testing.  Elevated and 

variable temperature testing will be conducted in our labs to explore this possibility.  

 

2.7 Summary 

The composition of a test “cycle” is important when quantifying battery degradation, and using 

depth of discharge (DoD) per cycle as an independent variable when studying capacity fade can 

be misleading in cases where each cycle is laden with rapid discharge and charge events.  

Analyses performed here show that the strongest indicator of capacity fade for the type of cell 

tested (A123Systems M1 Cell) was the integrated capacity or energy processed, regardless of the 

DoD experienced.   Furthermore, statistical analyses show that using a PHEV battery for V2G 

energy incurs approximately half the capacity loss per unit energy processed compared to that 

associated with more rapid cycling encountered while driving, and DoD was not important in 

either case except as a reflection of energy processed. The percent capacity lost per normalized 

Wh or Ah processed is quite low: -6.0x10
-3 

% for driving support and -2.70x10
-3 

% for V2G 

support.  These values show that several thousand driving/V2G driving days incur substantially 
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less than 10% capacity loss regardless of the amount of V2G support used.  However, V2G 

modes that are more intermittent in nature will lead to more rapid battery capacity fade and 

should be avoided to minimize battery capacity loss over many years of use.   
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3.2 Abstract 

We examine the potential economic implications of using vehicle batteries to store grid 

electricity generated at off-peak hours for off-vehicle use during peak hours. Ancillary 

services such as frequency regulation are not considered here because only a small 

number of vehicles will saturate that market. Hourly electricity prices in three U.S. cities 

were used to arrive at daily profit values, while the economic losses associated with 

battery degradation were calculated based on data collected from A123 Systems 

LiFePO4/Graphite cells tested under combined driving and off-vehicle electricity 

utilization. For a 16kWh (57.6 MJ) vehicle battery pack, the maximum annual profit with 

perfect market information and no battery degradation cost ranged from ∼US$140 to 

$250 in the three cities. If the measured battery degradation is applied, however, the 

maximum annual profit (if battery pack replacement costs fall to $5000 for a 16kWh 

battery) decreases to ∼$10–120. It appears unlikely that these profits alone will provide 

sufficient incentive to the vehicle owner to use the battery pack for electricity storage and 

later off-vehicle use. We also estimate grid net social welfare benefits from avoiding the 

construction and use of peaking generators that may accrue to the owner, finding that 

these are similar in magnitude to the energy arbitrage profit. 

3.3 Introduction 
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Legislation enacted in 2008 provides a subsidy in the form of tax credits for purchasers of 

plug-in-hybrid electric vehicles (PHEVs) to increase market acceptance [1].  Subsidies 

may be economically justified if they support private investments that have social 

benefits. One suggested benefit has been that PHEVs could provide services to the 

electricity sector (vehicle-to-grid or V2G services) [2].  These benefits might include 

peak load shifting, smoothing variable generation from wind and other renewables, and 

providing distributed grid-connected storage as a reserve against unexpected outages. 

Hybrid electric vehicles, battery electric vehicles, and plug-in hybrid electric vehicles 

(PHEVs) rely on batteries located in the vehicle to store energy.   

One of the fundamental properties of electricity markets is the lack of cost-effective 

storage [3].  Without storage, meeting peak demand requires underutilized investment in 

generators and transmission lines.  Because of the costs of meeting peak demand, the 

difference between daily peak and off-peak costs can vary greatly throughout the year 

(wholesale markets see this as a price difference; a small but increasing number of retail 

customers also see this as a price difference).  If the difference is small on a given day, 

single purpose storage facilities either make minimal revenue or sit unused and 

depreciating.  Single purpose battery energy storage facilities have not proven 

economical except in niche applications such as delaying a distribution system upgrade 

[4].  A plausible conjecture is that V2G, that relies on dual purpose batteries where the 

initial capital cost of the battery is not assigned to the off-vehicle electricity use because 

the battery was purchased for driving, will be more economic for grid support than 

batteries whose capital cost must be amortized for grid use.  With vehicle batteries, if 

load shifting or peak shaving is not economical the only wasted expenditure is the cost of 

the controllers and converters, some of which will likely be installed in any case to enable 

off-peak charging (although additional electronics would be required for V2G).  This 

possibility, along with quick battery reaction times, has made V2G applications to 

stabilize or slow fluctuations from intermittent sources (such as wind or solar) a subject 

of research interest [5].  V2G has the potential to diminish the need for rapid ramping of 

following generators to match variable power sources.  Rapidly ramping generators may 

not be the lowest cost generators, and ramping can lead to increases in pollution [6]. 
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Here we examine the net revenue that a vehicle owner could receive from V2G energy 

sales to estimate whether this would provide an attractive incentive for owners to 

participate in V2G operations as a dual use for the battery pack whose capital cost has 

been largely justified by transportation. V2G services could be sold in an organized 

market as ancillary services (spinning reserve and regulation), as energy sales to the grid 

(running the meter backwards), or their value could be captured as avoided grid 

electricity purchases (running the meter slower).  The first two incur transaction costs and 

grid costs, while the third does not; it is the third we examine here. Net revenue, as used 

here, is the net of avoided grid energy purchases from using the energy stored in the 

vehicle battery pack less the cost of grid electricity used to charge the battery pack and 

the cost associated with shortening the battery pack's lifetime by cycling for such energy 

use.  

3.4 Methodology 

We examine energy arbitrage (buying low cost power to charge the battery pack and 

discharging the battery pack at high power price times) with PHEVs assuming that 

electricity sold will be replenished from the grid later in the evening so the battery pack is 

be full in the morning.  Hourly historical locational marginal pricing (LMP) data were 

obtained for three cities: Boston (BOS), Rochester NY (ROC) and Philadelphia (PHL). 

Each city is in a different electricity market and good data from the 2001 National 

Household Travel Survey (NHTS) of 70,000 households [7] are available to construct 

driving profiles in each of these metropolitan areas [8].  The three cities have annual 

mean temperatures that are not far enough from the national average of 11.6 C to 

materially affect the modeled battery state of charge: Boston is 10.7 C, Rochester is 8.7 

C, and Philadelphia is 12.4 C [9]. 

LMP data are available for the years from 2003 to 2008 for Rochester and Philadelphia; 

the first full year of Boston data is 2004.  The LMPs (plus a transmission and distribution 

charge) provided the cost for buying the electricity, and the maximum potential profit for 

avoiding electricity purchase, or for selling the electricity in the absence of transaction 

costs.  We model a vehicle with a 16 kWh battery pack, as used in Chevrolet's proposed 

Volt [10]. 
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We model energy arbitrage by owners to offset their own electricity consumption during 

high priced periods.  This simplifies consideration of transaction costs.  On the other 

hand, it ignores possible social benefits such as increased rates of utilization of utility 

investments or other benefits that might accrue to society if PHEV owners used their 

vehicles in a widespread fashion for energy arbitrage.  Thus, it is an analysis of the 

economic benefits to individuals providing energy arbitrage services, although we use 

coarse estimates of the net social welfare to bound additional revenue below.   

  

3.4.1 Revenue 

We calculate the revenue from energy arbitrage based on LMP data from the PECO, 

Genesee, and Boston nodes of PJM, NYISO, and ISO-NE.  These nodes serve 

Philadelphia, Rochester, and Boston, respectively.  LMP data from 2003-2008 are used to 

calculate the maximum revenue possible from energy arbitrage (2004-2008 for Boston).  

For this model, we assume the PHEV owner is under a real time pricing (RTP) tariff. We 

add a transmission and distribution (T&D) cost of 7 ¢/kWh [11] to the hourly nodal price 

to estimate the RTP.  The net effect of the T&D costs is small given high round trip 

efficiency (RTE).  We use an RTE of 85% as our base case.   The discharge efficiency 

(DCHeff) and charge efficiency (CHeff) were both assumed equal and the square root of 

0.85 so that they result in 85% RTE (our laboratory measurements showed DC-DC 

energy efficiency of cells only in excess of 95% for discharge/charge cycles).  It is 

assumed the PHEV owner is a price taker.  The results therefore estimate the incentive 

for owners, in a RTP scenario, to choose to use their PHEV for energy arbitrage.   

We estimated the profit possible from energy arbitrage by subtracting the degradation 

cost and the cost of buying electricity from that of selling it to offset the owner's use and 

multiplying by the number of kWhs transacted and adjusting for efficiency. 

 

  Costn DegradatiokWh*
CH

D&TLMP
DCH*D&TLMPSELLProfit($) Transacted

eff

BUY

eff 








 


(1)
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The kWh transacted by a profit-maximizing PHEV owner depends on the percent of the 

battery pack energy available after driving, the battery pack size, and the marginal cost of 

degradation associated with additional withdrawal from the battery pack.  The variable 

cost of battery degradation depends on the amount of energy withdrawn.  Thus, the 

objective function for the transaction optimization considers revenue and variable costs 

(battery degradation), but not fixed costs necessary for using a PHEV for energy arbitrage 

because the capital cost of the battery pack and charging station are considered here to be 

sunk costs. 

3.4.2 Degradation Cost 

Degradation cost was calculated based on the multiple linear regression based on 

laboratory data from cycling LiFePO4 cells described in [12].  While other chemistries, 

such as those based on the  Li4Ti5O12 anode, have been considered for vehicle use, their 

low cell voltage, relatively poor energy density, and higher expense per unit energy make 

their use less likely in the near term.  For example, a recent analysis indicates that the 

electrode materials for a Lithium Titanate/LiMn2O4 cost approximately $58/kWh as 

compared to $35/kWh for the graphite/LiMn2O4 analog (though the titanate system is 

currently exhibiting superior cycle life performance) [13].  Not surprisingly,  the major 

automotive companies have  elected to use Li-ion cell chemistries based on graphite 

anode materials and either lithium-transition metal-oxide or lithium iron phosphate 

cathode material.  For this reason, we have selected a LiFePO4 based chemistry, as 

produced by A123 Systems.  This company is currently producing after market PHEV 

battery packs, as well as partnering with Chrysler as a battery supplier for its line of EV 

and extended range vehicles, and has also recently partnered with GE [14]. 

The cost associated with using energy from the battery pack is given in equation 2.  Note 

that the V2G degradation coefficient is negative. 

edBattery Us ofPercent *
1)-(0.8

DegV2G *Costt Replacemen
Costn Degradatio 

     

(2) 
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Estimates of the current price of the Chevy Volt's battery pack range from $5,000 to 

$11,000 [15]. However, it is a different battery chemistry from the battery we tested.  We 

used a value of $5,000 ($312/kWh) and performed sensitivity analyses using the range 

$2,500 to $20,000.  With a $5,000 replacement cost, our laboratory measurements [8] 

predict a degradation cost of 4.2¢/kWh served.    

3.4.3 Model 

We use a sell-before-buy model. The battery pack begins a day fully charged. The time 8 

AM to 4:59 PM is reserved exclusively for driving (the driving profiles used are given in 

section 2.1 of [8]). Discharging for household electricity and charging are allowed in 

other hours. The battery pack is fully charged at the lowest cost hours (charging requires 

2.2 hours for a fully discharged 16 kWh battery pack using the infrastructure constraint 

discussed below). No discharge is permitted between the time charging finishes and the 

start of the 8 AM driving window. The appendix contains details of the model. 

To estimate the portion of battery pack capacity a profit-maximizing consumer would 

choose to devote to energy arbitrage on a given day, we use two different methods.  The 

first method uses perfect information to find an upper bound on profit.  In this model, 

owners know what the RTP will be in the future; they pick the most expensive LMP hour 

to use the battery pack for home energy use ("sell") and the cheapest hour after to 

recharge.  When the amount of energy to exchange exceeds the capability of the assumed 

240V single-phase, 30A circuit infrastructure (7.2 kWh/h exchanged) the use is restricted 

to 7.2 kW per unit time available.  Then the next least or most expensive hour is 

considered in steps until the battery pack is completely discharged or it is no longer 

profitable to use the vehicle for energy arbitrage.  The vehicle is fully charged before 8 

AM each morning. 

The second method uses knowledge of the real time prices in the previous two weeks to 

predict the hours that would be least expensive to recharge; this estimates a reasonable 

lower bound on profit. The predicted price in each hour of the coming day is the average 

price seen in that hour over the previous 14 days. Using this prediction for the cost of 

recharge and knowledge of the actual RTP in an hour when selling is contemplated; the 

model determines whether selling in a given hour would be profitable. If so, it uses 
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battery pack energy for home energy use. Of course, it sometimes mispredicts the cost of 

recharging, and the net revenue is less than if perfect information were available. The 

profit is then calculated as the revenue less cost to charge and less the additional battery 

degradation cost from energy arbitrage.   

3.5 Results 

 The yearly profits from the years of 2003-2008 using perfect information, a $5,000 

battery pack cost, and our measured battery degradation are shown below (Table 3.1).  

The maximum annual profit ($118) occurred in the Philadelphia area in 2008.  A vehicle 

owner in Boston, even with perfect information, would have seen profits of $12 to $48, 

depending on the year. 

Table 3.1 – Upper bound annual profits for each area over years listed with perfect information and 

$5000 battery replacement cost for a 16kWh battery 
Year Area 

PHL  ROC  BOS 

Profit kWh  Profit kWh  Profit kWh 

2003 $22 1,286  $25 474  N/A N/A 

2004 $17 1,120  $19 451  $19 252 

2005 $110 2,458  $71 1,157  $48 1,119 

2006 $58 1,471  $46 1,037  $39 667 

2007 $95 2,223  $69 1,210  $15 625 

2008 $118 2,264  $107 1,650  $39 1,128 

 

The lower bound of profit estimated without perfect information resulted in profits that 

reached their maximum in Philadelphia in 2005 (Table 3.2).  Even with perfect 

information the maximum annual profit was $118 per year. The 2007 profit in the more 

realistic lower bound case represents 5%, 2%, and 0.5% of the average residential 

customer's yearly electricity bill in 2007 in RHL, ROC, and BOS, respectively [16]. 

Profit would not increase greatly with a larger battery because the limitation of the local 

circuit infrastructure (240 V, 30 A) would curtail the rate at which power could be used 

(sold) during high priced periods. 
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Table 3.2 – Lower bound annual profits for each area over years listed using 14 day backcasting 

averaging method and $5000 battery replacement cost for a 16kWh battery 
Year Area 

PHL  ROC  BOS 

Profit kWh  Profit kWh  Profit kWh 

2003 $10 1,123  $13 395  N/A N/A 

2004 $6 1,009  $7 415  $5 198 

2005 $72 2,169  $33 978  $18 865 

2006 $38 1,384  $25 862  $28 508 

2007 $57 1,889  $28 988  $6 514 

2008 $67 1,998  $14 1,202  $15 897 

 

3.6 Sensitivity Analysis 

We performed sensitivity analyses on the effect of battery pack replacement cost on 

profit (Figure 3.1-Figure 3.2). The median value and yearly maximum and minimum for 

the period 2003-2008 are shown for upper and lower bound scenarios.   
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Figure 3.1 V2G energy arbitrage profit sensitivity to battery pack replacement cost with perfect 

information in the three cities studied. The symbol indicates the median annual profit for the years 

studied and the range indicates the most and least profitable years. The profit in each city is 

calculated for battery replacement costs of $0, $2,500, $5,000, $10,000, and $20,000. 
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Figure 3.2 V2G energy arbitrage profit sensitivity to battery pack replacement cost with 14 day 

backcasting method in the three cities studied. The symbol indicates the median annual profit for the 

years studied and the range indicates the most and least profitable years. The profit in each city is 

calculated for battery replacement costs of $0, $2,500, $5,000, $10,000, and $20,000. 

 

Profit drops rapidly with increasing battery pack cost until replacement cost reaches 

$10,000 then becomes asymptotic near zero profit.  With the battery pack replacement 

cost set to zero, the cost of degradation is also zero.  This yields the maximum profit 

given no marginal cost of degradation.  The median for the six years is $200 in the most 

profitable city (Philadelphia), a 17% decrease in the average Pennsylvania annual 

electricity bill.  In the least profitable (Boston), the profit in the median year represents 

10% of the average Massachusetts electric bill.  The difference in buying and selling 

LMPs necessary for profitable arbitrage is a function of battery pack replacement price 

and the buying LMP.  The response of profit to varying battery degradation costs thus is 

reflective of the distribution of LMPs in the various RTOs.  The difference between peak 
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and off peak is higher in PJM than the other RTOs, but the lower value in Philadelphia at 

high battery replacement costs reflects fewer extremely high price events in PJM that 

would justify use of the battery pack if replacement costs were high.  In the lower bound 

Boston becomes more profitable than Rochester for this reason. 

T&D costs and RTE had a small effect on annual profits.  Lower round-trip efficiency 

incurs extra T&D costs; at 100% RTE, the T&D charges cancel out completely.  

Sensitivity analysis of RTE shows that it reduces profit in an approximately linear 

fashion (Figure 3.3-Figure 3.4).  The perfect information annual profit decreases more 

rapidly than the backcasting model.  RTE (the AC-DC conversion efficiency) is 

important because it occurs twice for energy arbitrage.  An increase in efficiency of AC-

DC conversion of 2.7% would increase the RTE from 85% to 90% average annual profits 

by $33 over the 6 year period for PHL and ROC.  T&D had a similar though smaller 

effect over the range of values tested (Figure 3.5-Figure 3.6). 
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Figure 3.3 V2G energy arbitrage profit sensitivity to round trip efficiency (RTE) with perfect 

information in the three cities studied. The symbol indicates the median annual profit for the years 

studied and the range indicates the most and least profitable years. The profit in each city is 

calculated for RTE of 0.75, 0.80, 0.85, 0.90, and 0.95. 
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Figure 3.4 V2G energy arbitrage profit sensitivity to RTE with 14 day backcasting method in the 

three cities studied. The symbol indicates the median annual profit for the years studied and the 

range indicates the most and least profitable years. The profit in each city is calculated for RTE of 

0.75, 0.80, 0.85, 0.90, and 0.95. 
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Figure 3.5 V2G energy arbitrage profit sensitivity to Transmission and Distribution charges with 

perfect information in the three cities studied. The symbol indicates the median annual profit for the 

years studied and the range indicates the most and least profitable years. The profit in each city is 

calculated for T&D charges of 0, 0.05, 0.07, 0.09, and 0.11 ¢/kWh. 
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Figure 3.6 V2G energy arbitrage profit sensitivity to T&D charges with 14 day backcasting method 

in the three cities studied. The symbol indicates the median annual profit for the years studied and 

the range indicates the most and least profitable years. The profit in each city is calculated for T&D 

charges of 0, 0.05, 0.07, 0.09, and 0.11 ¢/kWh. 

Whether vehicle owners will make their energy available for sale on a particular 

day is of interest to grid operators. Given the base case assumptions ($5,000 battery 

replacement cost and 85% RTE, 7.2 kW infrastructure wiring), it was profitable in the 

Philadelphia area to participate in energy arbitrage 56% of the days in the years 2003-

2008 (Figure 3.7).  This decreases to 38% if battery pack replacement cost is $10,000.  

The difference between perfect information and the more realistic backcasting method 

does not affect the number of kWh discharged as strongly as profit (Figure 3.8-Figure 

3.9).  On average for all replacement costs and locations the number of kWh offered for 

arbitrage based on backcasting method was 89% of the number offered based on perfect 
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information (we note that backcasting profit was only 51% of that for perfect 

information). 

 

Figure 3.7 Percent of days in Philadelphia area of PJM that energy arbitrage is profitable 

given different battery replacement costs and perfect information. 
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Figure 3.8 V2G energy arbitrage quantity sensitivity to battery pack replacement cost with perfect 

information in the three cities studied. The symbol indicates the median annual kWh discharged for 

the years studied and the range indicates the most and least kWh discharged. The arbitrage in each 

city is calculated for battery replacement costs of $0, $2,500, $5,000, $10,000, and $20,000. 
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Figure 3.9 V2G energy arbitrage quantity sensitivity to battery pack replacement cost with 14 day 

backcasting method in the three cities studied. The symbol indicates the median annual kWh 

discharged for the years studied and the range indicates the most and least kWh discharged. The 

arbitrage in each city is calculated for battery replacement costs of $0, $2,500, $5,000, $10,000, and 

$20,000. 

 

3.7 Conclusion 

The results suggest that vehicle owners are not likely to receive sufficient incentives from 

electricity arbitrage to motivate large-scale use of car batteries for grid support.  The 

maximum annual profit even with perfect market information and no battery degradation 

cost is $142-$249 in the three cities considered due to the relatively small variation 

present in LMPs, 230 V 30A infrastructure, and the size of the battery pack.  With 

degradation included, the maximum annual profit (even if battery replacement costs fall 

to $5000 for a 16 kWh battery pack) is $12-$118; in the more realistic lower bound profit 

case, the annual profit is $6 - $72. If the difference between high and low LMPs grows in 
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the future the value of energy arbitrage will increase, providing greater incentive to 

individuals or a hypothetical aggregator. However, any growth in electricity arbitrage 

will lower the gain, since vehicle owners will increase the presently low night demand 

and decrease peak demand, lowering the LMP spread. 

Could some of the grid's contribution to social welfare from battery storage (change in 

consumer surplus less producer surplus) justify subsidies to provide sufficient incentives 

for the owner to use PHEV and BEV batteries for grid support?  Sioshansi and co-authors 

[17] estimate the net social welfare of energy storage in PJM during 2007 to be 

equivalent to $8/vehicle/year (for 4 GWh of total storage, about 380,000 16 kWh vehicles 

using 2/3 of their battery pack capacity for electricity).  Walawalkar and co-authors find 

that the effect of demand response in PJM gives similar low net social welfare per kWh 

[18]. It is possible that the net social welfare provided by energy storage may increase at 

high levels of variable renewable power generation. Various estimates of the integration 

cost of variable renewable power to 15-25% of total generation indicate costs on the 

order of 0.5 to 1 cent per kWh [19]. Suppose 25% of total U.S. generation were wind or 

solar, 10
12

 kWh. Then the integration cost mitigation would be $20 - $40/vehicle/year if 

all 250 million vehicles participated in grid support and all integration costs could be 

mitigated by vehicle storage. Of course, not all vehicles would participate, so the amount 

available per participating vehicle may be proportionally higher. In that case, there may 

be opportunities to transfer some of that benefit to the vehicle owner. However, not all 

the integration cost would be captured by battery owners. The largest potential grid 

benefit is the avoided cost of new generation plants to meet peak demand. The 

battery/wiring system is capable of meeting 7.2 kWh of load in a peak hour. A simple 

cycle natural gas turbine that is used 100 hours per year has fixed costs of approximately 

$50/kW, or 50¢/kWh. Add to that 10¢/kWh for fuel, for a total of 60¢/kWh, or $432 over 

the 100 hours the peaker would have run.  A specific vehicle owner would not be able to 

help the grid avoid all $432, since those 100 hours are likely to be in 4 hour blocks on 

only 25 days and the vehicle's battery would discharge for only a bit less than 2 hours. 

Thus, the vehicle owner might be able to avoid ~$200 of peaking costs. In states with 

traditional regulated electricity, the public utility commission might elect to avoid paying 

the utility to install and run a peaker, instead giving some of the avoided cost to V2G 
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owners. In restructured states, the ISO/RTO may pay an aggregator to provide V2G 

power instead of paying a generator a capacity payment; the aggregator would then pay 

some of their revenue to the vehicle owner. In the absence of such incentives, it is 

unlikely that large-scale grid energy storage in PHEVs will be attractive to vehicle 

owners.  
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3.9 Appendix: Model 

 

Hours required to recharge from driving 

Driving Discharge*Battery Size=0.341*16=5.47kWh 

Infrastructure: 

 Capacity=240V*30A=7.2kW 

Time and Energy needed to recharge: 

DCHeff=CHeff=
0.85  

effCH

SizeBattery  * Discharge Driving
=

0.85

5.47kWh
=5.93kWh 
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7.2kWh

5.93kWh
=0.82 hours 

 

Buying for driving recharge: 

Minimize 

kWh*
CH

TND)(LMP

eff

1Buy Bt

 

3117 1  Bt  (Corresponds to 5pm to 7am) 

 

Selling: 

Maximize   SizeBattery *Percent*
CH

TND)(LMP
DCH*TND)(tLMP

eff

1Buy

effs1Sell 






 


Bt
 

1117 Bs tt   

  SizeBattery *Percent*
CH

TND)(LMP
DCH*TND)(tLMP

eff

1Buy

effsSell 






 


Bt
> 

Percent*
1)-(0.8

DegV2G *Costt ReplacemenBattery 
Costn Degradatio   

 

 
SizeBattery 

CH*7.20.821
Percent eff

 =0.729 

Percent<1-Driving Discharge 

Choose Next Buying hour: 

min kWh*
CH

TND)(LMP

eff

2Buy Bt
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3117 2  Bt  (Corresponds to 5pm to 7am) 

12 BB tt   

 

Decide Whether to Sell (and hence buy in the hour just chosen): 

Maximize   SizeBattery *Percent*
CH

TND)(LMP
DCH*TND)(tLMP

eff

2Buy

effs1Sell 






 


Bt
 

2117 Bs tt   

1117 Bs tt   

 
SizeBattery 

CH*7.2kWh1
Percent eff =0.4148 

 

eff

eff

CH

DCH*0.729
SizeBattery 

7.2kWh

Percent



 =0.4152 

Percent<1-Driving Discharge-0.0729 

 

Other constraints same as above (namely revenue>cost) 

Choose Next Buying hour: 

min kWh*
CH

TND)(LMP

eff

3Buy Bt
 

3117 3  Bt  (Corresponds to 5pm to 7am) 

123 BBB ttt   

Decide Whether to Sell (and hence buy in the hour just chosen): 



Chapter 3 

61 

Maximize   SizeBattery *Percent*
CH

TND)(LMP
DCH*TND)(tLMP

eff

3Buy

effs1Sell 






 


Bt
 

3117 Bs tt   

2117 Bs tt   

1117 Bs tt   

 
SizeBattery 

CH*7.2kWh1
Percent eff =0.4148 

   

eff

effeff

CH

DCH*0.4148DCH*0.729
SizeBattery 

7.2kWh

Percent



 =3.21E-4 

Percent<1-Driving Discharge-0.0729-0.4148 

Other constraints same as above (namely revenue>cost) 

Decide whether to get new selling hour (and hence buy in the hour just chosen): 

Maximize   SizeBattery *Percent*
CH

TND)(LMP
DCH*TND)(tLMP

eff

3Buy

effs2Sell 






 


Bt
 

3217 Bs tt   

2217 Bs tt   

1217 Bs tt   

12 SS tt   

 
SizeBattery 

CH*7.2kWh1
Percent eff =0.4148 
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effCH

SizeBattery 

7.2kWh

Percent  =0.488 

Percent<1-Driving Discharge-0.0729-0.4148-3.21E-4 

Other constraints same as above (namely revenue>cost) 
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4.2 Abstract 

Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on 

time scales of a decade or two. We calculate the electric grid load increase and emissions 

due to vehicle battery charging in PJM and NYISO with the current generation mix, the 

current mix with a $50/tonne CO2 price, and this case but with existing coal generators 

retrofitted with 80% CO2 capture. We also examine all new generation being natural gas 

or wind+gas.  PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with 

small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the 

National Household Travel Survey. Three charging strategies and three scenarios for 

future electric generation are considered. When compared to 2020 CAFE standards, net 

CO2 emissions in New York are reduced by switching from gasoline to electricity;, coal-

heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or 

replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward 

pressure on SO2 emissions or allowance prices under a cap.
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4.3 Introduction 

Mass-market electric vehicles have recently been introduced in the USA, following the 

introduction in China of the BYD plug-in hybrid electric vehicle (PHEV) in 2008. Here we use 

the term PHEV to denote both plug-in hybrid vehicles and extended-range electric vehicles 

(EREVs).  Vehicle gasoline consumption can be displaced by electric power generation. The net 

air emissions of such displacement depend on the fleet gasoline mileage, PHEV fleet electric 

mileage, and electric generation mix at the time vehicle charging takes place. Moving emissions 

to the electricity sector has advantages, but the resulting environmental quality depends on net 

changes in emissions. 

Existing electricity generation assets can likely support a significant number of PHEVs (1-3).  

Previous work has predicted reductions in NOX and CO2 emissions when comparing PHEVs to 

conventional vehicles (CVs), but the magnitude varies and depends on PHEV and generation 

mix assumptions (4-9).  Pollutant concentration has been estimated to decline in densely 

populated areas, but may increase near generators (6, 7).  The majority of these models suggest 

an increase in SO2 emissions; however one comes to a contrasting conclusion based on 

assumptions that rely on aggressive new emissions control technology (8).  SO2 emissions from 

USA power plants in 2008 and 2009 respectively were 7.9 and 5.6 million short tons, well under 

the Acid Rain Program cap of 8.95 MT for 2010 (10). 

In modeling PHEV effects on the electric grid, it is important to know when vehicles will charge, 

and how much energy they will need.  Only one of the previous analyses (5) uses driving data to 

predict the energy needed for recharging and the time when that recharging will likely take place.  

Those that do not use driving data make assumptions that strongly influence their results (e.g. 

assuming that a specific percentage of miles are driven using only battery energy, or that all 

vehicles require the same charge and arrive at designated times at charging points).  Variation in 

assumptions can lead to significant changes in conclusions.  For example, if the required charge 

is changed from 4.8 to 12 kWh and the charge rate is changed from 1.2 to 7.2 kW (variations that 

are within reasonable ranges) then the peak-added load from all vehicles arriving at specific 

assumed hours could more than double system load (1).  Another simplification is modeling only 

one type of PHEV; if all SUVs were replaced with small cars, emissions would decline 

significantly regardless of whether those small cars were PHEVs or CVs. 
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Use of data from surveys of travel that log vehicle type and driving data allows both time and 

energy requirements to be predicted.  We use publicly-available data to predict net emissions 

from PHEVs under different CO2 scenarios.  Vehicle electricity use is predicted using multiple 

PHEV types, different charging strategies, battery sizes, CV efficiencies, charge depleting (CD, 

all-electric mode) efficiencies and charge sustaining (CS, gasoline mode) efficiencies of the 

vehicles.    

To model the electric power generation fleet, we consider four approaches. First, we model a 

scenario in which the generation capacity needed to charge PHEVs has the same attributes as the 

generation capacity currently available. Second, we model replacement or retrofit of current coal 

generators with CO2 capture and sequestration (CCS). Third, we model all new generation as 

natural gas (assuming 45% efficiency, a heat rate of 7600  BTU/kWh) (11). Finally, we model all 

new generation as 30% wind, 70% natural gas by energy. We also consider the implications of a 

binding cap on SO2 emissions. 

We estimate that PHEVs are likely to have lower net emissions of NOX and CO2 than a 

conventional vehicle fleet, given current (10.7 liters/100 km) efficiencies.  When compared to 

2020 CAFE standards (6.7 liters/100 km),  net CO2 emissions in New York are greatly reduced 

by switching from gasoline to electricity, but coal-heavy PJM shows lower benefits unless coal 

units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, 

but SO2 increases unless a cap binds (discussed below).  A $50/tonne CO2 price applied only to 

combustion emissions in the electric sector will have a negligible short-term effect on net CO2 

emissions from PHEVs.   

4.4 Methods 

4.4.1 Estimating the additional electric load from electric vehicles 

To model the incremental increase in electricity load from the addition of PHEVs, we used the 

day trip file from the 2009 national household travel survey (NHTS) (12).  This file was 

analyzed to enumerate the trips taken by vehicles in the survey.  The NHTS data file contains trip 

frequency, length, start and end time, mode, and vehicle attributes (make, model, year) from 

150,000 USA households.  We used the data to model vehicles trips taking into account the 

battery state of charge.  To reflect the range of the current U.S. federal subsidy structure for 
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reported battery capacity, we modeled a small battery of 4 kWh and a large battery of 16 kWh 

for passenger cars (13).  Batteries for other vehicle classes were scaled by their charge depleting 

(CD) mode efficiencies resulting in "small" batteries of 4, 5.27, and 5.58 kWh and “large" 

batteries of 16, 22.1, and 22.3 kWh for cars, vans, and SUVs/light trucks respectively. Using the 

trip distances from the NHTS data, we modeled the amount of electricity necessary to move the 

vehicle assuming two different sets of CD efficiencies.  The first, referred to as 2005, assumes 

0.19, 0.24, and 0.34 kWh/km for cars, vans, and SUVs/light trucks respectively.  The second, 

referred to as 2020, assumes 0.12, 0.16, and 0.23 kWh/km for cars, vans, and SUVs/light trucks 

respectively.  These values include losses in transmission and are consistent with estimates from 

other sources (14-17).  The lower efficiency case was compared to current conventional vehicles, 

and the higher case to a fleet meeting 2020 CAFE standards of 35 mpg.  Charge rate was 

assumed to be 7.2 kW, but a lower charge rate (1.4 kW) was not found to change load 

characteristics significantly for small battery PHEVs (supporting information).  

The total distance travelled in electric mode was constrained by a limit that allowed vehicles to 

use 75% of battery capacity. Once the battery was depleted, gasoline was assumed to provide 

motive force for the charge sustaining (CS) mode travel.  The arrival times for vehicles were 

then used to predict the times of day when grid load from PHEVs would occur, given different 

charging strategies (described in the displaced gasoline section below).  More information about 

this method is available in the supporting information. 

Since the boundary of PJM is not coincident with state boundaries, we estimated the number of 

vehicles in PJM by using statewide vehicle registrations for states that are mostly in PJM (18).  

The ratio of vehicles per GWh of annual load for each state was combined in a weighted average 

to yield an estimate of 30 million vehicles in PJM.  We used 10.5 million vehicles in NYISO 

(18). The PHEV market share of this fleet was modeled at three levels: 0.45% (corresponding to 

a goal of 1 million PHEVs nationwide (19)) 10, and 25%.   

4.4.2 Generator Dispatch 

We used the method described in (20) to construct monthly short-run marginal cost (SRMC) 

curves for each electric power generator in PJM and NYISO from EPA eGRID data (21) and 

DOE fuel cost and heat content data (22). The monthly SRMC curves allow seasonal NOX 

emission calculations. The effects of a price on CO2 were modeled as in (20). Here we do not 
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model the effects of transmission constraints, nor of the additional emissions when generators are 

started and ramped to full power. We also modeled the effects of replacing all coal generation 

with coal generators that capture 80% of emitted CO2, using a 20% energy penalty to de-rate the 

nameplate capacity.   We adopted the assumption that coal plants equipped with CCS reduced 

SO2 emissions by 98% (23). 

The hourly load with and without electric vehicles was combined with the SRMC curve to 

determine the market clearing price.  The generators predicted to bid in at or below the market 

clearing price make up the generation fleet that in each hour. Once the dispatched generators 

were determined in each hour, CO2, NOX, and SO2 emissions from the eGRID database for each 

generator were used to predict emissions from the additional load in response to PHEVs.   

4.4.3 Displaced Gasoline 

Reductions in gasoline consumption from using a PHEV depend on the CD and CS mode 

efficiencies and the miles travelled in each mode.  The miles travelled in CD mode depends on 

the size of the PHEV battery.  The net change in gasoline usage can then be determined, using 

the efficiency of conventional vehicles.  Given large batteries, petroleum consumption could be 

reduced by 65-90% for every conventional vehicle replaced with a PHEV, depending on the 

number of charges in the day and the efficiency of the vehicle in charge depleting mode.  Small 

batteries could reduce consumption by 25-50%.   

Subtracting the distance travelled in CD mode from the total distance travelled by the vehicle 

yields the distance travelled in CS mode and the miles displaced from regular gasoline travel.  

We assume that the efficiency in CS is equal to that of the CV fleet so any increase in CV fleet 

efficiency increases the CS efficiency.  This efficiency determines the amount of fuel used by 

PHEVs and CVs.  This choice was made because, although PHEVs have the ability to use 

regenerative braking to increase efficiency, they carry additional weight compared to 

conventional cars, and  thus will likely be less efficient in CS mode than a hybrid electric vehicle 

(HEV) such as the Prius.  When a consumer chooses a PHEV instead of a conventional vehicle 

both will likely have similar technology and therefore more efficient PHEVs will coexist with 

more efficient conventional vehicles.  Because of this the lower efficiency CD mode values are 

combined with 2005 new vehicle efficiency, and the higher efficiency CD values are compared 
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to 2020 new car efficiency (assumed to be 35mpg).  This assumption is used throughout this 

work. 

The changes that will allow the CV fleet to meet the 2020 CAFE standards will also increase 

efficiency of PHEVs.  Advances in aerodynamics and body weight reduction are as applicable to 

PHEVs as CVs.  Drive train and engine efficiency improvements will also increase PHEV 

efficiency, though improvements will not necessarily yield identical efficiency increases in CVs 

and PHEVs.  If a lighter, more efficient engine is developed for CVs it could be incorporated in 

PHEVs as a range extender.   

4.4.4 Net Emissions 

Reductions in gasoline consumption from using a PHEV depend on the CD and CS mode 

efficiencies and the miles travelled in each mode.  The miles travelled in CD mode depends on 

the size of the PHEV battery.  The net change in gasoline usage can then be determined, using 

the efficiency of conventional vehicles.  Given large batteries, petroleum consumption could be 

reduced by 65-90% for every conventional vehicle replaced with a PHEV, depending on the 

number of charges in the day and the efficiency of the vehicle in charge depleting mode.  Small 

batteries could reduce consumption by 25-50%.   

Subtracting the distance travelled in CD mode from the total distance travelled by the vehicle 

yields the distance travelled in CS mode and the miles displaced from regular gasoline travel.  

We assume that the efficiency in CS is equal to that of the CV fleet so any increase in CV fleet 

efficiency increases the CS efficiency.  This efficiency determines the amount of fuel used by 

PHEVs and CVs.  This choice was made because, although PHEVs have the ability to use 

regenerative braking to increase efficiency, they carry additional weight compared to 

conventional cars, and  thus will likely be less efficient in CS mode than a hybrid electric vehicle 

(HEV) such as the Prius.  When a consumer chooses a PHEV instead of a conventional vehicle 

both will likely have similar technology and therefore more efficient PHEVs will coexist with 

more efficient conventional vehicles.  Because of this the lower efficiency CD mode values are 

combined with 2005 new vehicle efficiency, and the higher efficiency CD values are compared 

to 2020 new car efficiency (assumed to be 35mpg).  This assumption is used throughout this 

work. 
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The changes that will allow the CV fleet to meet the 2020 CAFE standards will also increase 

efficiency of PHEVs.  Advances in aerodynamics and body weight reduction are as applicable to 

PHEVs as CVs.  Drive train and engine efficiency improvements will also increase PHEV 

efficiency, though improvements will not necessarily yield identical efficiency increases in CVs 

and PHEVs.  If a lighter, more efficient engine is developed for CVs it could be incorporated in 

PHEVs as a range extender.   

4.5 Results 

We show results for a 10% PHEV market share of the light-duty vehicle fleet.  Other PHEV 

market shares are included in the supporting information, but results are similar except for the 

lowest 0.45% level (with fewer PHEVs charging, the specific plant used to charge them becomes 

uncertain).   

Compared to 2005 gasoline fleet efficiency levels, all charging strategies and CD mode 

efficiencies yield reduction of CO2 emissions.  If the 2020 conventional vehicle fleet efficiency 

target of 35 MPG is compared to the 2020 CD efficiency, net CO2 emissions drop significantly 

in switching from gasoline to electricity in NYISO, but less in PJM because of the differences in 

generation, unless CCS generation is used.   

Home charging occurs near peak system load, smart charging near minimum system load, and 

work charging occurs both near peak system load (at the same time as home charging) and 

earlier in the day when most vehicles are arriving at work.  These differences in timing result in 

changes in generator mix and thus emissions.  In PJM, home charging results in the greatest CO2 

reductions with no CO2 price and relies more on natural gas generation.  In NYISO, smart 

charging results in greater CO2 reductions because of the large number of natural gas generators 

predicted to be used to meet demand.   

 Few qualitative changes are observed between small and large battery sizes.  Large batteries 

increase the magnitude of emissions changes, but do not change the sign except in the case of 

NOX emissions in NYISO with work or home charging.  Large batteries are also more sensitive 

to charge rate (see supporting information). 
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Figure 4.1: Net metric tons of CO2, and net kg of NOX emitted per vehicle-year given PJM and NYISO 

generation mix and all natural gas and 30% wind / 70% natural gas (in the latter two cases the charging 

strategy is not relevant because the emissions are independent of the time a vehicle charges and represent 

charging twice or only once).  For comparison, the predicted emissions per conventional vehicle using 2005 

(22 mpg) and 2020 (35 mpg) efficiencies are 4.1 and 2.6 MT CO2, and 10 and 6.4 kg NOX.  Emissions for 2005 

fleet and 2020 fleet are compared given the status quo (no CO2 price) as well as a $50/tonne CO2 price in 

conjunction with CCS installed on coal plants given 2020 efficiencies.  A similar figure for large batteries is 

included in the supporting information. 

 

4.5.1 CO2 emissions 

Without a CO2 price there is no incentive to use a generator with lower CO2 emissions.  Both 

current and future PHEVs are predicted to result in net decreases of emissions in all charging 

strategies and both RTOs.  In NYISO home charging does not decrease CO2 emissions as much 

as smart or work charging because it is displacing gasoline with plants near the peak, often using 

oil (discussed below).  Smart charging relies on 86% natural gas in NYISO, whereas home 

charging uses only 44% natural gas.  In NYISO work and smart charging have similar CO2 

emissions.  PJM shows nearly the opposite result with smart charging having significantly lower 

reductions in CO2 emissions (relying on 98% coal).  Home and work charging in PJM exhibit 

similar levels of CO2 emissions. 

Adding a $50/tonne CO2 price does not significantly alter the plants used to meet a given load.  

The no-PHEV load is adjusted using a -0.1 price elasticity of demand.  By itself, this causes a 
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significant decrease in emissions (20).   No price elasticity was applied to demand associated 

with PHEVs, since it is likely that in an era with large penetration of PHEVs that the 

combination of gasoline price, electricity price, battery price, and (possibly) subsidies that 

encourage large-scale adoption will make the substitution of electricity for gasoline attractive.   

Emissions associated with PHEVs are compared to emissions given the no-PHEV load and a 

$50/tonne CO2 price (supporting information); there was very little effect.   

We modeled the effects of converting only coal plants to CCS. Under the CCS scenario, smart 

charging in PJM relies on 91% coal, and 4% natural gas, with  5% oil and biomass.  The 

percentage from coal is smaller than the non-CCS cases because CCS reduces the net capacity of 

coal plants.  In NYISO, the generation mix for PHEV load is 6.4% coal, 88% natural gas, 2.7% 

oil, 0.4% biomass, and 2.3% renewable.  In PJM, CO2 emissions savings are roughly doubled 

from the no-CCS case, while in NYISO there is only a slight reduction compared to the status 

quo. 

Using only natural gas generators (at 45% efficiency) to charge PHEVs, means that charging 

time does not affect emissions.  Thus, the smart charging scenario is not included.  Net emissions 

of CO2 are reduced by 0.55-0.69 tonnes compared to 2005 CVs and by 0.47-0.57 tonnes 

compared to 2020 CVs.  Reductions in the wind case are larger.  In PJM net emissions of CO2 

are likely to be reduced 4-62%.  In NYISO, net emissions of CO2 are likely to be reduced 9-42%. 

4.5.2 NOX emissions 

At the outset, we note that there is insufficient experience with PHEVs to reliably predict certain 

aspects of their operational NOX emissions (e.g. cold starts). Thus, our results apply to vehicles 

in the CD mode, but CS mode operations require additional data (such as the chosen control 

strategy of manufacturers). CO2 price does not directly affect NOX emissions.  However, coal 

generators emit more NOX per MWh produced on average than other generators (24), so any 

increase in natural gas compared to coal reduces NOX.  Emissions of NOX decline in all 

scenarios except work charging in NYISO because high-emission generators being used at a 

specific time in the day to charge PHEVs in NYISO.  Both home and work charging increase 

peak demand because the uncontrolled charge after vehicles arrive home closely coincides with 

system peak load.   
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Smart charging in NYISO results in the greatest reductions of NOX.  This relies heavily on 

natural gas that has low NOX emission rates.   Home charging uses the same energy as smart 

charging, but takes place largely in the evening near peak load (supporting information).  In PJM 

home charging based on the current generation mix and short-run marginal costs  would be 55% 

coal, 33% natural gas, 10% oil and 2% biomass.  Using the 2005 generation mix of NYISO. this 

load would be met with a mostly oil generators:  the marginal units for home charging in NYISO 

would be 1% coal, 44% natural gas, 54% oil and 0.5% biomass.  Oil use in New York reached a 

15-year high in 2005 (16% of generation). Dual-fuel generation represents the majority of 

marginal units in New York City, Long Island, and Albany (25). In 2008, high oil price and low 

natural gas price drove these units to use 6 times more gas than in 2005 (supporting information), 

and oil represented only 3% of generation. It is reasonable to expect that recent shale gas 

exploitation will keep oil use low in New York in the next decade, Thus, our "all natural gas" 

scenario is likely to better represent future NYISO emissions from charging PHEVs than the 

2005 data.  

Adding a $50/ton CO2 price significantly decreases the no-PHEV load.  This is especially 

important in NYISO.  Instead of seeing increases of NOX ranging from 0.22-0.29 kg per vehicle-

year as in the status quo case reduction of 1.5-1.6 kg per vehicle-year are expected.   

In the CCS scenario there is little change in NOX emissions.  For amine-based carbon capture 

(added to coal plants in our model) to function ,the amount of SO2 and NO2 must be below 10 

ppm, but NO2 makes up very little of the NOX emissions from a power plant (23).  IGCC and 

chilled ammonia systems also require low SO2. CCS decreases the electricity output of coal 

plants per MMBTU of fuel (due to the energy penalty of CCS ), but the NOX/MMBTU remains 

roughly constant decreasing only 1% (21).  Thus, the NOX/MWh generated by coal plants would 

increase without additional emission controls.  This is especially noticeable in the PJM smart 

charging scenario that relies heavily on coal.  NOX emissions are still reduced compared to a CV. 

Using only natural gas causes significant reductions in NOX emissions.  This model does not 

reflect any increase in emissions from gas generators ramping to follow wind (26), so NOX 

emissions from the electricity generation fall by 30%.  NOX emissions will decline between 7 

and 43% in PJM and 5-70% in NYISO except in the work charging scenario.  In either case NOX 

emissions are likely to decrease significantly for each PHEV that displaces a CV.   
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4.5.3 SO2 emissions 

Unlike the other pollutants, net SO2 emissions increase in most scenarios (Figure 4.2a).  National 

2005 electric sector emissions were 9.4 million tonnes of SO2, compared to combined emissions 

for highway vehicles of 0.13 million tonnes (Figure 4.2),  reflecting the low sulfur content of 

motor fuels in the United States. Even with 25% PHEVs,  neither RTO would exceed current 

SO2 emissions caps established under the Acid Rain Program, because the annual SO2 emissions 

have declined in 2008 and 2009 (27) to 88% and 63% of the 2010 cap, respectively.  The decline 

is likely due to actions taken in anticipation of the now-voided Clean Air Interstate Rule and 

demand reductions associated with the recent recession.  The highest increase in SO2 emissions 

from the electricity sector from our model was 0.17 million tonnes in PJM (with smart charging, 

large batteries, low efficiency CD mode, and 25% PHEVs), comparable to the current total 

emissions from highway vehicles using liquid fuels.  

The proposed Clean Air Transport Rule (CATR) would greatly reduce the allowable SO2 

emissions in both NYISO and PJM, making results such as those in Figure 4.2a unlikely in the 

28 capped states unless the CATR is not implemented.  We now consider the introduction of 

PHEVs when generators have complied with the 2014 CATR. SO2 emissions must decrease 

below those in 2005 by 77% in NYISO to comply.  PJM is not made up of a single state; the 

weighted average of reductions necessary in Pennsylvania, Ohio, Maryland, Virginia, West 

Virginia, Delaware, and New Jersey was estimated to be 83%.  These reductions were then 

applied to SO2 emissions factors for plants in each RTO and the model was rerun (Figure 4.2b).  

With the electric generation reductions necessary to meet the CATR, net vehicle emissions in 

NYISO are near zero and those in PJM are always lower than 0.9 kg per vehicle-year for small 

batteries.   

We emphasize that under CATR, while per-vehicle net SO2 emissions increase, total emissions 

from electric generating units in the capped states cannot.  Thus, if CATR goes into effect as 

proposed, and we assume emissions in the RTOs are just under the cap without PHEVs, the 

additional generation would cause an upward pressure on SO2 allowance prices.  EPA estimates 

that the marginal cost of SO2 allowance prices in Pennsylvania near the cap limit will be ~$22 

per additional thousand tonnes (28).  Thus, for 0.9 kg/vehicle-year, the approximately 840 tonnes 

of additional SO2 emissions from charging vehicles in Pennsylvania would increase the SO2 



Chapter 4 

74 

allowance prices by ~$19/tonne (EPA estimates that the allowance price will be ~$2300/tonne at 

the proposed Pennsylvania 2014 cap limit of 128,542 tonnes).   

 
Figure 4.2: Net kg SO2 emitted per vehicle-year given (a) PJM and NYISO generation mix of 2005, as well as 

all natural gas and 30% wind / 70% natural gas, and (b) PJM and NYISO with generator emissions factors 

for SO2 reduced to comply with CATR.    For comparison, the predicted annual emissions per conventional 

vehicle using 2005 (22 mpg) and 2020 (35 mpg) efficiencies are 0.20 and 0.13 kg SO2.  Emissions for 2005 fleet 

and 2020 fleet are compared given the status quo (no CO2 price) as well as a $50/tonne CO2 price in 

conjunction with CCS installed on coal plants.  Different charging strategies are modeled to determine the 

timing of PHEV charging.  A similar figure for large batteries is included in the supporting information. 

 

SO2 emissions would not change significantly in response to a CO2 price alone except for an 

increase in the NYISO smart charging case.  However, CCS will require SO2 emissions to be 

reduced significantly to avoid contamination during portions of the capture process for IGCC or 

amine capture. Thus, the net SO2 emissions in the CCS cases are closer to zero (23). Using only 

natural gas or a combination of natural gas and wind both results in essentially no change to net 

SO2 emissions.   

4.6 Discussion 

Net emissions from PHEVs depend on the efficiency of the conventional vehicle fleet, PHEV 

CD (charge depletion, all-electric mode) mode efficiency, charging strategy, battery size, driving 
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patterns, and generator mix used for charging.  In all cases, net CO2 emissions decline.  In most 

cases, NOX emissions decline (NOX emissions in NYISO increase when combined with work 

charging, because of the heavy reliance during 2005 on oil to accomplish this charging and 

specific plants being used; natural gas has supplanted oil in most NYISO units recently).  With 

large batteries, NOX emissions are unchanged.  Even in a RTO with cleaner generation overall, 

the marginal units might have higher emissions factors; in PJM, the plants charging near peak 

emit less NOX than those in NYISO.  Using only natural gas, or gas and wind combined, will 

result in significant decreases to CO2 and NOX emissions.  It is also possible that there would be 

some improvements to grid stability and a decreased need for balancing fluctuations in wind 

generation if variable charging of PHEVs is coordinated with changes in wind output. 

Electric vehicles will place upward pressure on net SO2 emissions.  With the Clean Air Interstate 

Rule vacated by the courts and the final rule promulgation of CATR delayed by EPA, there is 

uncertainty about the level of capped emissions. Net SO2 emissions caused by vehicles will be 

less than 6% in NYISO and 2% in PJM, of the proposed 2014 CATR cap on electric generators 

under any of the reduced SO2 scenarios. We note that the upstream (largely refinery) emissions 

displaced by decreasing gasoline use are ~ 0.45 kg SO2 per vehicle-year (supporting 

information).  This is more than half of the SO2 emissions reduction required to comply with 

CATR.  However, it is possible that the associated upstream refining emissions will also 

decrease when CATR is implemented. 

Choosing a charging strategy can change the resulting net emissions associated with PHEVs.  In 

NYISO, the smart charging scenario generally resulted in lower or equal net emissions than 

home charging and lower than work charging, resulting in lower emissions.  In PJM, smart 

charging generally causes higher emissions because coal is often on the margin at night.  In PJM 

there is a tradeoff between use of off-peak charging and increased emissions.  RTOs and LSEs 

should be aware of possible tradeoffs between cost and emissions before encouraging particular 

charging strategies.  Information about generation resources should be used in concert with 

pricing data to find the optimal charging strategy in individual RTOs. 

4.7 Conclusion 

There are strong arguments in favor of electrification of the transportation sector in addition to 

net emissions.  Combining numerous mobile emission sources into a far small number of 
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stationary sources offers opportunities for cost-effective emissions reduction that may not 

otherwise be feasible in the transportation sector, and the location of emissions is likely to be 

moved farther from densely populated areas.  If PHEV cars displace light trucks, SUVs, and vans 

from the fleet, emissions will be further reduced from the values reported here.   

Enacting a CO2 price of $50/tonne will not be effective at reducing net CO2 emissions from a 

PHEV fleet.  PHEVs are likely to place upward pressure on SO2 allowance prices if emission 

caps bind, or to increase emissions if the caps do not bind.    PHEVs will probably reduce net 

CO2 and NOX emissions, but are unlikely to reduce net SO2 emissions. 
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4.9 Supporting Information 

4.9.1 Timing and magnitude of additional load from PHEVs 

The national household transportation survey (NHTS) was used as the basis for estimating the 

timing and magnitude of additional load from PHEVs (1).  The NHTS day trip file was divided 

according to month, and by weekday and weekend.  Then the resulting trip data was reorganized 

to list the vehicle trips for the day.  Estimation of the driving distribution was conducted for 

weekday (Monday-Friday) and weekend days due to significant changes in driving patterns.  

These data were used to list vehicle trips by trip length (some are zero length for cars not used 

during a day), for each month, with weekend days separated from work-week days. We modeled 

that the vehicles operate entirely on electric propulsion until they reach the design limit of energy 

in the pack (assumed as 75% of the rated capacity).  Thereafter the vehicle continues in charge 

sustaining mode for the rest of the driving, using gasoline for propulsion (PHEV) or charge 

sustaining (EREV).  The NHTS data on use of cars, vans, and light trucks allowed us to model 

the charging load based on the relative proportions of those vehicle types. The electricity use for 

all trips was based on vehicle efficiency.  Added load is based on battery state and an assumed 

7.2 kW circuit infrastructure (240V single-phase, 40A de-rated for continuous use). The charger 

is assumed to by 92% efficient.  A separate run was conducted assuming 1.4 kW rate charging 

and similar emissions results were achieved for small batteries. 

Not all vehicles are driven on a given day so all vehicles, whether driven or not, were included in 

the total number.  The vehicle trips were modeled on a monthly basis.  Therefore it was assumed 

that the load added by PHEVs was identical on weekdays throughout a given month and also that 

all weekends in a month are identical.   

Four different levels of PHEV market penetration were modeled.  The first is based on the goal 

of having 1 million PHEVs nationwide (0.45%) (2).  The others are 10%, 25%, and 50%.  For 

every number of PHEVs modeled the entire NHTS day trip file was run.  To model a specific 

percentage the file was looped multiple times until the desired number of vehicles to constitute 

the correct percentage was reached or surpassed.  This was done to avoid omitting the vehicles 

near the end of the dataset on the last loop in each case otherwise.  In all cases the charging time 

is limited both by the time the vehicle is available to charge and the charge needed based upon 

the reported distance driven prior to charging. 
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The timing of vehicle charging varies depending on the strategy modeled.    An example is 

shown (Figure 4S.1 and Figure 4S.2) for the highest and lowest load days in PJM.  The example 

includes a fleet of 50% PHEVs to illustrate the timing.  The timing of smart charging is based on 

the average load during the given month and therefore may not perfectly flatten load during 

every night.  The lowest load day of the year was a weekend and therefore it is unsurprising that 

the PHEV load leads to an increase over existing load.   

 

 

Figure 4S.1: Load on day of minimum hourly demand(Sunday, April 10, 2005) in PJM, 50% PHEVs with (a) 

small batteries and (b) large batteries 

 

 

Figure 4S.2: Load on day of maximum hourly demand(Tuesday, July 26, 2005) in PJM, 50% PHEVs with (a) 

small batteries and (b) large batteries 

 

Work and home charging are quite similar throughout the year so it is possible to show the 

average added load per PHEV used.  Results for home charging are shown in Figure 4S.3.   The 
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average hourly load per PHEV driven is shown given different charge depleting mode 

efficiencies, battery sizes (a and b for small, c and d for large) and separating weekends and 

weekdays (a and d for weekday, b and c for weekend).  It is clear from the figure that many of 

the small battery PHEVs are depleted upon arrival at their destination.  This can be observed by 

noting the small difference between current and 2020 efficiencies.  With large batteries the 

difference is much greater because a significant number of vehicles do not entirely deplete their 

battery. 
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Figure 4S.3: Load per PHEV driven given home charging for (a) small batteries on a weekday, (b) small 

batteries on a weekend, (c) large batteries on a weekday, (d) large batteries on a weekend. 

 

Figure 4S.4 shows results for work charging and is otherwise similar to Figure 4S.3.  It is notable 

that the small battery cases can charge the battery in one hour so the magnitude of load is also 

indicative of the timing of vehicle arrival.  With large batteries this is no longer the case. 
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Figure 4S.4: Load per PHEV driven given work charging for (a) small batteries on a weekday, (b) small 

batteries on a weekend, (c) large batteries on a weekday, (d) large batteries on a weekend. 

 

If a slower charge rate is used then the load curves do change.  Figure 4S.5 and Figure 4S.6 show 

load changes when charging infrastructure is varied.  What is most notable is the load given 

small batteries is very similar.  This results in similar emissions and means that charge rate is not 

greatly relevant for small batteries.  This is a response to the varied nature of vehicle arrival 

times.  The natural distribution means that peaks from arrival and short charge times largely do 

not matter.  With large batteries a low charge rate does greatly change the load profile by 

lowering peak additional load and spreading it across the day.  However such low charge rates 

are unlikely with large batteries.  In some cases this limits the ability of vehicles to actually 

charge their battery.  The lower efficiency rate is used to maximize demand associated with 

PHEVs. 
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Figure 4S.5: A comparison of load given home charging with lower efficiency vehicles and two separate 

charge rates for (a) small batteries on a weekday, (b) small batteries on a weekend, (c) large batteries on a 

weekday, (d) large batteries on a weekend. 
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Figure 4S.6: A comparison of load given work charging with lower efficiency vehicles and two separate 

charge rates for (a) small batteries on a weekday, (b) small batteries on a weekend, (c) large batteries on a 

weekday, (d) large batteries on a weekend. 

4.9.2 Generator Dispatch 

We used the method described in (3) to construct monthly short-run marginal cost (SRMC) 

curves for each electric power generator in PJM and NYISO from EPA eGRID data (4) and DOE 

fuel cost and heat content data (5).  We combined that with regionally appropriate fuel cost and 

quality data from the same year.  A dispatch order curve was created for PJM and NYISO using 

the 2005 data and reported annual generator availability.   

 

 We modeled the effect of a CO2 price using the CO2 emissions data included in the eGRID 

database.  Adding a CO2 price increases the short run marginal cost (SRMC) of generators with 
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listed CO2 emissions and can change the dispatch order slightly.  The change is more noticeable 

in PJM where a large part of the generation mix is low cost coal than in NYISO.  We also 

modeled the effect of a CO2 price on dispatch mixes where the coal generators are replaced with 

coal generators that capture 80% of their CO2 and sequester it. The effects of the plant use of 

electric power for capture, compression, pipeline shipment, and injection of the carbon dioxide 

were modeled by de-rating the plant output by 20% of current nameplate generation capacity.  

We assume there are no forced or unforced outages, and no constraints due to NOX seasonal 

shutdowns to simplify modeling.  The monthly SRMC curves allow seasonal NOx emission 

calculations (for plants that repot separate emissions factors in eGRID database). An example 

SRMC curve created based on the yearly average capacity for PJM is shown in Figure 4S.7.  

Given a scheduled no-PHEV load the plants with minimal SRMC that meet the load are used.  

PHEV load is then added onto the no-PHEV load for each hour and the additional plants needed 

are determined along with their related emissions. 
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Figure 4S.7: SRMC curve for PJM based on yearly averages. Three different curves are shown for the three 

different carbon scenarios.  Adding CCS decreased the SRMC of coal plants compared to a $50/tonne CO2 

price, but also results in a decrease in overall system capacity. 

 

The effects of a price on CO2 were modeled as in (3). The hourly load with and without electric 

vehicles was combined with the SRMC curve to determine the market clearing price.  The 

generators predicted to bid in at or below the market clearing price make up the generation fleet 

that in each hour. Once the dispatched generators were determined in each hour, CO2, NOx, and 

SO2 emissions from the eGRID database for each generator were used to predict emissions from 

the additional load in response to PHEVs.   
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Here we do not model the effects of transmission constraints, nor of the additional emissions 

when generators are started and ramped to full power. However eGRID records emissions from 

plants throughout the year and thus should include emissions associated with ramping plants up 

and down.  Plants that ramp up and down, or start often should have relatively higher emissions 

rates.  The predicted number of plant starts does not increase a great deal in response to the 

added load from PHEVs and is shown in Table 4S.1 for large batteries in NYISO and PJM.  It is 

possible given smart charging the number of plants starts will actually likely decline.  With 

smaller batteries the changes in plant starts are also smaller. 

Table 4S.1 – Generator starts with large batteries 

Charging 
Strategy 

%PHEVs 

Percent Change 

NYISO PJM 

Work 
Charging 

0.44% 0.12% 0.16% 

10% 1.9% 9.4% 

25% 7.6% 29.3% 

Home 
Charging 

0.44% 0.11% 0.12% 

10% 2.8% 8.4% 

25% 9.0% 25.6% 

Smart 
Charging 

0.44% -1.7% -0.9% 

10% -13% -10% 

25% -28% -23% 

 

Figure 4S.8 and Figure 4S.9 show the modeled plants starts with and without PHEVs in PJM.  

The eGRID data should reflect actual emissions from plants.  As seen in the figures the plants 

that are cycling due to changes in load throughout the day are the same plants that are cycling 

more or less often in response to PHEVs.  Because of this it is assumed that their emissions 

factors already largely take into account the cycling that the plants undergo. 
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Figure 4S.8: Modeled plant starts in PJM given 10% PHEVs and small batteries 

 

 

Figure 4S.9: Modeled plant starts in PJM given 10% PHEVs and large batteries 
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This model does not account for regional flows between power control areas.  In 2005 net 

imports accounted for 10% of NYISO load (4).  Net exports accounted for 6% of PJM generation 

(4).  Because only the load in each area was accounted for, the model under or over estimates the 

amount of pollution depending on where the excess generation occurred.  This difference 

explains a great deal of the variation between the reported and modeled emissions in each power 

control area.  The two did not solely transfer power between markets though.  So the emissions 

characteristics of the imports and exports are not clear.  According to a letter from the director of 

system and resource planning for NYISO the majority of imports came from Canada and were 

mostly hydroelectric and nuclear generation (6). 

Table 4S.2 – Comparison of modeled emissions and reported emissions in 2005 

 
Million Tons 

CO2 
Tons SO2 Tons NOX 

PJM 
reported 

460 2,900,000 740,000 

PJM 
modeled 

410 2,900,000 670,000 

Diff -10% -1% -9% 

NYISO 
reported 

61 180,000 66,000 

NYISO 
modeled 

59 200,000 74,000 

Diff -3% 11% 12% 

 

We also modeled the effects of replacing all coal generation with coal generators that capture 

80% of emitted CO2, using a 20% energy penalty to de-rate the nameplate capacity.   We 

adopted the assumption that coal plants equipped with CCS reduced SO2 emissions by 98% (7). 

4.9.3 Generator fuel mix used for charging 

The generation mix used to charge PHEVs depends on the charging time of day shown 

previously.  The specific plants used were estimated following a previously described method 

(8).  Figure 4S.10 through Figure 4S.12 show the mix of fuel types predicted to be used for 

charging PHEVs given different numbers of PHEVs, charging strategies, and carbon scenarios.  

Only the medium charge depleting mode efficiency values are shown since there were only 

negligible changes in response to changing the charge depleting efficiency. 
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Figure 4S.10: Generation mix used to charge in PJM given small batteries and PHEV numbers ranging from 

1 million nationwide to 50% of the fleet.  Coal declines as number of PHEVs grows because coal generators 

are already used to their capacity. 2005 generation mix assumed. 
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Figure 4S.11: Generation mix used to charge in PJM given large batteries and PHEV numbers ranging from 

1 million nationwide to 50% of the fleet. Introduction of a carbon price increases the amount of coal used for 

PHEVs because generators previously used to meet the no-PHEV load are now available for charging PHEVs 

due to predicted declines in load associated with increased prices.  2005 generation mix assumed. 

 

Figure 4S.12: Generation mix used to charge in NYISO given small batteries.  Coal use for PHEVs predicted 

to increase given a carbon price.  2005 generation mix assumed. 
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Figure 4S.13: Generation mix used to charge in NYISO given large batteries.  Coal use for PHEVs predicted 

to increase given a carbon price.  2005 generation mix assumed. 

 

The marginal fuel postings for PJM in 2005 were used to compare with these results (Figure 

4S.14).  These include imports which were not taken into account in the dispatch model.  They 

also include the effects of congestion in the grid which dictates each power plant cannot 

necessarily serve each load.  Overall the results indicate that coal is on the margin a good deal of 

the time throughout the year. 
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Figure 4S.14: Marginal fuel postings from 2005 in PJM showing high percentage of time coal is on the 

margin.  The marginal fuel is coal more than 50% of the time throughout the day. 

4.9.4 Effect of a carbon price on emissions 

The effect of a carbon price was modeled assuming that the price elasticity of demand is -0.1.  

The changes predicted in response to a carbon price for load, and emissions are shown in Table 

4S.3 and Table 4S.4.  In both the CCS and carbon price no-PHEV load decreases in response to 

price changes.  A carbon price results in decreased emissions (predictable given a decreased 

load), but with CCS some pollutants increase due to the lower electricity output per BTU of fuel 

consumed by coal plants.  NYISO has fewer coal plants so the increase of emissions from coal 

plants with CCS does not outweigh other emissions savings. 
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Table 4S.3 – Comparison of no-PHEV load and emissions under carbon scenarios in PJM 

Carbon 

Scenario 

Change 

in Load 

Change 

in CO2 

Change 

in NOx 

Change 

in SO2 

Change 

in CH4 

Change 

in N2O 

Change 

in Hg 

$50/ton 

Carbon Price 
-8.3% -23% -24% -19% -11% -23% -26% 

$50/ton 

Carbon Price 

and CCS 

-4.9% -79% 5.3% -83% 17% 6.3% 3.6% 

 

 

Table 4S.4 – Comparison of no-PHEV load and emissions under carbon scenarios in NYISO 

Carbon 

Scenario 

Change 

in Load 

Change 

in CO2 

Change 

in NOx 

Change 

in SO2 

Change 

in CH4 

Change 

in N2O 

Change 

in Hg 

$50/ton 

Carbon 

Price 

-3.5% -18% -40% -34% -16% -29% -34% 

$50/ton 

Carbon 

Price and 

CCS 

-3.4% -47% -32% -76% -11% -19% -2.9% 

 

4.9.5 Additional emissions from the electricity sector due to charging 

Figure 4S.15 through Figure 4S.17 show emissions per additional MWh of load from PHEVs 

and include pollutants not discussed in the main text.  The increase is measured from the no-

PHEV case.  This distinction is important because the emissions overall for the carbon price or 

CCS case might be lower than the status quo case for a given number of PHEVs, but the increase 

in emissions in response to adding PHEVs might be larger for those cases than the carbon status 

quo case.  This section does not reflect net emission changes including offset petroleum usage. 

The charts show the average emissions per additional MWh of load combining small batteries, 

large batteries, and all three different charge depleting efficiencies.  Uncertainty bars indicate the 
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maximum and minimum among those options.  The x-axis is labeled to indicate the percent of 

vehicles that are PHEVs and the charging strategy used for PHEVs.  By normalizing the 

emissions to the MWh of load the difference in charging twice in work charging and other 

charging strategies which only charge one time is reduced.  It is apparent that emission rates in 

some combinations of charging strategies, carbon scenarios, are more sensitive to the number of 

PHEVs being charged than others. 

 

Figure 4S.15: Metric tons carbon dioxide emitted to charge various numbers of PHEVs in PJM and NYISO.  

Markers indicate average value while error bars indicate the minimum and maximum value predicted given 

any combination of battery size and charge depleting efficiency covered in the paper.  2005 generation mix 

assumed. 

 

The emissions of CO2 shown here are reflected in the net emissions results in the main paper 

which found higher net emission of CO2 with a $50/ton carbon price.  Different numbers of 

PHEVs do not appear to influence the emissions given either a carbon price or CCS in PJM.   
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Figure 4S.16: Kilograms of NOx emitted per MWh to charge various numbers of PHEVs in PJM and 

NYISO.  Markers indicate average value while error bars indicate the minimum and maximum value 

predicted given any combination of battery size and charge depleting efficiency covered in the paper.  2005 

generation mix assumed. 
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Figure 4S.17: Kilograms of SO2 emitted per MWh to charge various numbers of PHEVs in PJM and NYISO.  

Markers indicate average value while error bars indicate the minimum and maximum value predicted given 

any combination of battery size and charge depleting efficiency covered in the paper.  2005 generation mix 

assumed. 

4.9.6 Emissions from gasoline 

The distance traveled in CS mode is recorded for each vehicle along with the total distance 

travelled by vehicles.  The total distance can be considered the conventional fleet and gasoline 

consumption is calculated based on the efficiencies described in the main text and shown below 

(table S5).  The same is done for PHEVs using the distance in CS mode to calculate gasoline 

consumption by PHEVs.  The same efficiency values are used for CS mode travel and vehicles 

that PHEVs replace.  This is done for a number of reasons.  The increase in weight associated 

with creating a PHEV will decrease efficiency to some extent.  Also the comparison does not 

exclude hybrids.  Hybrids will get boosts from regenerative braking and effectively run in CS 

mode constantly.  Hybrids will also be more efficient than similar PHEVs running in CS mode.  

To achieve the 2020 CAFE standards it will likely be necessary to have a significant number of 

hybrids in the fleet.  This does mean that the estimates of displaced emissions may be lower than 

actually observed especially if PHEVs are replacing CVs instead of HEVs.  
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Table 4S.5 – Fuel efficiency (l/100km) 

Vehicle Type Current 2020 (35 MPG fleet) 

Car 9.1 5.9 

Van 12 7.6 

SUV 13 7.8 

Truck 13 7.8 

 

The liters of gasoline consumed are multiplied by the factors reported in the EPA documents 

cited in the main text and reported again in Table 4S.6. 

 

Table 4S.6 – Emissions Factors 

Pollutant kg/l gasoline 

CO2 2.3 

SO2 1.1e-4 

NOx 5.8e-3 

 

The difference between emissions from total and CS miles can be used to find the reduction in 

pollution from mobile sources attributable to partial electrification of the distance travelled. 

4.9.7 Net emissions per PHEV 

Figure 4S.18 through Figure 4S.21 show net emissions of CO2, NOx, and SO2 per vehicle-year 

given PJM and NYISO generation mix.  The number of PHEVs modeled varies from 0.4% to 

50% of the vehicle fleet.  For comparison, the predicted emissions per conventional vehicle using 

2005 and 2020  efficiencies are 3.7 and 2.3MT CO2, 9.3 and 5.8 kg NOx, and 0.18 and 0.11 kg 

SO2.  Columns represent medium charge depleting (CD) mode efficiency and uncertainty bars 

represent high and low CD efficiency.  Emissions for 2005 fleet and 2020 fleet are compared 

given the status quo (no carbon price) as well as a $50/ton CO2 price and a $50/ton CO2 price in 

conjunction with CCS installed on coal plants.  Different charging strategies are modeled to 

determine the timing of PHEV charging as discussed previously in the supporting information. 
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Figure 4S.18: Net emissions given 10% PHEVs and  small batteries.  Net metric tons of CO2, and net kg of 

NOx and SO2 emitted per vehicle-year given PJM and NYISO generation mix as well as all natural gas and 

30% wind combined with natural gas.  For comparison, the predicted annual emissions per conventional 

vehicle using 2005 (22 mpg) and 2020 (35 mpg) efficiencies are 4.1 and 2.6 MT CO2, 10 and 6.4 kg NOx, and 

0.20 and 0.13 kg SO2.  Emissions for 2005 fleet and 2020 fleet are compared given the status quo (no carbon 

price) as well as a $50/ton CO2 price and a $50/tonne CO2 price in conjunction with CCS installed on coal 

plants.  Different charging strategies are modeled to determine the timing of PHEV charging.   2005 

generation mix assumed. 
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Figure 4S.19: Net emissions given 10% PHEVs and large batteries.Net metric tons of CO2, and net kg of NOx 

and SO2 emitted per vehicle-year given PJM and NYISO generation mix as well as all natural gas and 30% 

wind combined with natural gas.  For comparison, the predicted annual emissions per conventional vehicle 

using 2005 (22 mpg) and 2020 (35 mpg) efficiencies are 4.1 and 2.6 MT CO2, 10 and 6.4 kg NOx, and 0.20 and 

0.13 kg SO2.  Emissions for 2005 fleet and 2020 fleet are compared given the status quo (no carbon price) as 

well as a $50/ton CO2 price and a $50/tonne CO2 price in conjunction with CCS installed on coal plants.  

Different charging strategies are modeled to determine the timing of PHEV charging.   2005 generation mix 

assumed. 
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Figure 4S.20: Net emissions per vehicle given 0.44% PHEVs 2005 generation mix assumed.  
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Figure 4S.21: Net emissions per vehicle given 25% PHEVs 2005 generation mix assumed. 

4.9.8 Sensitivity to natural gas prices 
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The high petroleum use in NYISO was likely a response to low prices for petroleum relative to 

natural gas prices (Figure 4S.22).  Natural gas prices have fluctuated more than coal prices 

recently.  Because of this the model was also run assuming gas cost $4.90 / mmbtu. 

 

Figure 4S.22: Percent petroleum used for generation in NYISO compared to the ratio of petroleum to natural 

gas prices per BTU.  There is clearly anti-correlation between the ratio of petroleum to natural gas prices and 

the percent petroleum (9, 10). 
 

The results are shown below for the 2005 gas prices and lower gas prices assuming a 10% PHEV 

fleet. 

Table 4S.7 – Net CO2 emissions MT/vehicle-year in PJM given 2005 natural gas prices 

Battery  
2005 Status 

Quo 

2005 

$50/tonne 

2005 CCS 

 

2020 Status 

Quo 

2020 

$50/tonne 
2020 CCS 

Small 

Smart -0.18 -0.19 -0.81 -0.13 -0.15 -0.71 

Work -0.33 -0.36 -0.87 -0.26 -0.28 -0.73 

Home -0.28 -0.29 -0.68 -0.23 -0.24 -0.59 

Large 

Smart -0.49 -0.55 -2.2 -0.32 -0.36 -1.6 

Work -0.82 -0.86 -2.0 -0.54 -0.57 -1.4 

Home -0.83 -0.84 -1.8 -0.57 -0.59 -1.4 
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Table 4S.8 – Net CO2 emissions MT/vehicle-year in PJM given 490 cents/Mbtu natural gas prices 

 

Battery  
2005 Status 

Quo 

2005 

$50/tonne 

2005 CCS 

 

2020 Status 

Quo 

2020 

$50/tonne 
2020 CCS 

Small 

Smart -0.23 -0.34 -0.80 -0.18 -0.28 -0.70 

Work -0.44 -0.30 -0.85 -0.35 -0.23 -0.71 

Home -0.35 -0.24 -0.66 -0.29 -0.19 -0.58 

Large 

Smart -0.65 -0.90 -2.1 -0.44 -0.64 -1.6 

Work -1.0 -0.72 -1.9 -0.74 -0.47 -1.4 

Home -1.0 -0.72 -1.8 -0.72 -0.49 -1.3 

 

 

Table 4S.9 – Net CO2 emissions MT/vehicle-year in NYISO given 2005 natural gas prices 

 

Battery  
2005 Status 

Quo 

2005 

$50/tonne 

2005 CCS 

 

2020 Status 

Quo 

2020 

$50/tonne 
2020 CCS 

Small 

Smart -0.58 -0.45 -0.65 -0.53 -0.42 -0.59 

Work -0.54 -0.48 -0.63 -0.52 -0.47 -0.58 

Home -0.41 -0.37 -0.47 -0.40 -0.37 -0.45 

Large 

Smart -1.6 -1.2 -1.7 -1.2 -0.95 -1.3 

Work -1.2 -1.1 -1.4 -0.93 -0.84 -1.1 

Home -1.2 -1.1 -1.3 -0.90 -0.83 -1.0 

 

 

Table 4S.10 – Net CO2 emissions MT/vehicle-year in NYISO given 490 cents/Mbtu natural gas prices 

 

Battery  
2005 Status 

Quo 

2005 

$50/tonne 

2005 CCS 

 

2020 Status 

Quo 

2020 

$50/tonne 
2020 CCS 

Small 

Smart -0.39 -0.58 -0.64 -0.33 -0.50 -0.56 

Work -0.47 -0.47 -0.65 -0.38 -0.37 -0.54 

Home -0.38 -0.35 -0.50 -0.32 -0.29 -0.42 

Large 

Smart -1.1 -1.6 -1.7 -0.75 -1.1 -1.3 

Work -1.1 -1.1 -1.5 -0.76 -0.74 -1.0 

Home -1.1 -1.0 -1.4 -0.76 -0.72 -1.0 

 

With no carbon price net emissions of CO2 generally decline in response to a lower 

natural gas prices in PJM.  In NYISO the opposite holds true because the no-PHEV 

load then uses more of the natural gas leaving the PHEV load to relying on dirtier 

plants. Cheaper natural gas would also allow a CO2 price to be more effective as 

seen in PJM, however it is unlikely natural gas prices will remain low compared to 

coal if demand significantly increases.  In NYISO where many plants are dual fuel 
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plants running on petroleum or natural gas it is likely that natural gas will continue 

to be cheaper and the preferred fuel. 

4.9.9 Upstream emissions 

The paper focuses only on use phase emissions.  Upstream emissions from both PHEVs and the 

vehicles they will be displacing are significant.  Data on upstream emissions associated with 

lithium-ion batteries being used in PHEVs is not yet common.  For example in the GREET 

model the description of the battery data states the following (11): 

We collected data from another source and calculated the energy required for assembly and testing of an 

Ni-MH battery to be approximately 35.2 million Btu/ton of battery material; the data revealed that battery 

testing requires significant amounts of electricity (Gaines 2006). The large discrepancy between the values 

for Ni-MH batteries is troubling, and even the other values have been questioned because the energy 

required for vehicle assembly is much lower. We decided to use the Li-ion value from Ishihara et al. (1999) 

and the Ni-MH value from Gaines (2006) as default values for GREET 2.7, but we hope to find publicly 

available data that could replace these sources. By using our default values, the resulting energy 

requirement for Pb-Ac assembly is 27.5 million Btu/ton of battery material 

This highlights some of the problems associated with attempting to specify the emissions 

associated with a relatively new product.  Testing of batteries need not require using huge 

amounts of energy as it is entirely feasible to feed energy back into the grid when discharging 

batteries instead of simply wasting the energy as heat.  Then the only losses are the efficiency 

losses associated with charge and discharge cycles and conversion and synchronization to the 

grid.  Using the GREET data and assuming 140Wh/kg energy density the emissions associated 

with battery assembly are shown below (tables S11-S12). 

 

Table 4S.11 – Emissions associated with battery assembly for small batteries 

Battery size 

kWh 
Tons CO2 kg NOX kg SO2 

4 0.08 0.09 0.20 

5.16 0.11 0.12 0.25 

5.33 0.11 0.12 0.26 

5.33 0.11 0.12 0.26 
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Table 4S.12 – Emissions associated with battery assembly for small batteries 

Battery size 

kWh 
Tons CO2 kg NOX kg SO2 

16 0.34 0.36 0.79 

20.65 0.44 0.46 1.02 

21.33 0.45 0.48 1.05 

21.33 0.45 0.48 1.05 

 

These emissions increases from battery creation are quite small in comparison to the emissions 

savings for CO2 and NOX.  In one year it is likely the emissions savings over gasoline will 

surpass the additional emissions associated with battery creation.  Emissions of SO2 are likely to 

increase, and increase further according to this, but once again the magnitude is similar to one 

year’s use phase emissions.  These emissions will likely decrease as the electricity grid becomes 

cleaner since many are associated with electricity use.  The yearly gallons of gasoline displaced 

per PHEV depends on the number of charges and battery size and is shown below. 

Table 4S.13 – Liters saved per vehicle and upstream emissions (well-to-pump) 

Battery 

Size 
Charging strategy 

Annual liters 

gasoline saved 
kg SO2 kg Nox MT CO2 

Small 
Home 580 0.45 0.91 0.32 

Work 740 0.58 1.16 0.41 

Large 
Home 1550 1.2 2.43 0.86 

Work 1690 1.3 2.65 0.94 

 

The annual upstream emissions from gasoline production are significant and the savings 

associated with displacing the gasoline are as well, but there are upstream emissions from the 

electricity produced to displace the gasoline.  A complete life cycle assessment is beyond the 

scope of this work and will not be conducted.
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Chapter 5 Relative Cost of Reducing U.S. Gasoline Consumption via 

Increased Plug-in Hybrid All-electric Range vs. Charging Infrastructure 

5.1 Chapter Information 

Authors: Scott Peterson and Jeremy Michalek 

5.2 Abstract 

Electric vehicle policies in the United States currently include subsidies based on battery size and 

subsidies for installing charging stations in public places.  We compare increasing the all-electric 

range (AER) of plug-in hybrid electric vehicles (PHEVs) to installing charging infrastructure as 

alternate methods to reduce gasoline consumption.  Fuel use was modeled using the National 

Household Travel Survey and Greenhouse Gasses, Regulated Emissions, and Energy Use in 

Transportation model.  It was found that increasing AER of plug-in hybrids was a more cost 

effective solution to reducing gasoline consumption than installing charging infrastructure.  

Comparison of results to current subsidy structure shows that subsidy does not align with fuel 

savings. 

5.3 Introduction 

The 1975 Energy Policy Conservation Act enabled CAFE standards to be created in response to 

the Arab oil embargo.  This standard attempted to increase the efficiency of the fleet by setting 

efficiency standards for passenger cars (starting in 1978).  As time passed efficiency 

requirements increased and eventually other vehicles were included in the standards, but then 

they remained static for many years.  In 2007 the Energy Independence and Security Act was 

passed “to move the United States toward greater energy independence and security.”  This act 

required the combined fuel economy average for model year 2020 to reach 35 mpg, but 

stipulated penalties only if manufacturers fell below 92% of the standard.  The act also allows 

manufacturers to trade credits which could allow one manufacturer to specialize in fuel efficient 

vehicles and another to make gas guzzlers.  Certain vehicle types, such as flex-fuel vehicles 

(those that run on E85) are attributed an increase in fuel economy, but this bonus declines to 0 by 

2019.  It also provided loan guarantees for advanced battery research and grant programs for 
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plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) to help make 

electric vehicles feasible.  The date has since been moved forward from 2020 to 2016 [1]. 

At the end of 2010 General Motors introduced the Volt and Nissan introduced the Leaf.  The 

Volt is the first mass market PHEV in the Unites States, and the Leaf is a BEV.  Other 

automakers plan to introduce PHEVs and BEVs in the U.S. soon.  These types of vehicles use 

electricity to displace gasoline from the transportation sector. 

While BEVs may seem the easiest solution to displacing gasoline with electricity, there are 

significant drawbacks.  High rate charging for the recently released Nissan Leaf allows the 

battery to be charged to 80% in 30 minutes.  This is still slow compared to refilling a gas tank 

and requires new infrastructure.  This would mean stopping every 70 miles for approximately 30 

minutes.  There are battery chemistries that would allow for quicker charging, but they are more 

expensive, and completely replacing conventional vehicles (CVs) would still likely require 

changes in infrastructure (such as new transmission, sub-transmission, and distribution lines).  

While there are enough generation assets to supports a significant fleet of BEVs this does not 

mean that current infrastructure could support charging of BEVs along interstates in rural areas 

which would be necessary for BEVs to fully replace CVs [2-5].  It is possible that in the future 

the necessary infrastructure will be in place to support a fleet mostly made up of BEVs, but in 

the short term this is unlikely.  This research will focus on PHEVs because they can more easily 

replace current vehicles and can benefit from charge points without a large disbenefit if a charge 

point is unavailable. 

PHEVs differ from BEVs because they can continue operating as a gasoline hybrid when their 

battery is depleted.  Unlike a hybrid electric vehicle (HEV) like the Prius that uses a battery as a 

buffer to store braking energy, PHEVs also have the ability to store electricity from the grid on-

board and use it to displace gasoline while driving.  Drivers will not need to change their habits.  

Long trips can still be undertaken without waiting for charging (as in a BEV), and short trips can 

be taken using less or no gasoline depending on PHEV design.  These advantages do not come 

without a penalty.  PHEVs require an internal combustion engine (ICE) like a HEV or CV and 

large batteries (similar to BEVs).  A PHEV designed for 40 miles of electric range will weigh 

and cost more than a BEV with similar range.  It will also weigh and cost more than a 
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conventional vehicle with similar performance and interior space.  Additional battery capacity 

can also be underutilized if a vehicle does not travel far enough in a normal day. 

A great deal of the cost increase in PHEVs is related to the large on-board battery.  To help 

overcome this obstacle policymakers have provided incentives based on battery size.  The 

American Recovery and Reinvestment Act of 2009 provides a tax credit of $2,500 for per plug-

in hybrid electric vehicle sold and an additional $417 for each additional kWh of traction battery 

capacity in excess of 4 kWh (capped at $7,500 for vehicles with a gross vehicle weight less than 

14,000 pounds) [6].  This subsidy for a specific manufacturer’s vehicles declines to 50% then 

25% in a “phaseout” period, which begins in the second calendar quarter after that manufacturer 

has sold 200,000 vehicles, and lasts four calendar quarters [6].  Each additional kWh of storage 

results in diminishing returns in terms of reduction in gasoline usage.   

The US Department of Energy (DOE) granted $37 million for installing 4,600 charge points in 

specific markets around the nation (over $8,000 per charge point) [7].  DOE also granted $99.8 

million to fund the EVProject which is installing 14,000 level 2 (208-240V) chargers, and a 

variety of other infrastructure and monitoring equipment (making  the cost calculation for a 

specific charge point troublesome) [8].  While BEVs would require a large number of charge 

points if they were to displace gasoline vehicles, PHEVs can benefit from a smaller number.  

This is because a PHEV does not require a charge point, but if a charge point is available then 

more gasoline could be displaced with electricity using a given PHEV.  If PHEVs benefit 

significantly from charge points then they could help justify installations that could also be used 

by BEVs.  Charge points could help small battery PHEVs displace a greater amount of gasoline.  

This research investigates whether subsidies for increased all-electric trange (AER) is an 

efficient way to spend future incentives for PHEVs or if funding to subsidize installation of 

charge points away from home would be more effective at decreasing gasoline consumption. 

5.4 Methodology 

The goal of this paper is to determine whether subsidies are more efficient at reducing gasoline 

consumption when targeted to incentivize increased vehicle all-electric range (AER) or  when 

targeted to increased charging infrastructure deployment.  To do this we first calculate fuel use 

accounting for both gasoline and electricity use by PHEVs with AERs ranging from 5-25 miles 

with a variety of charging strategies.  Second, we estimate the necessary charging infrastructure 
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to enable each charging strategy. Finally we use estimates of cost and gasoline displacement to 

compare across options. 

5.4.1 Fuel use model 

This work uses two main data sources.  The first is the National Household Travel Survey 2009 

(NHTS) which lists travel information from diaries of over 150,000 households [9].  The NHTS 

day trip file which is used lists trips taken by the household on a randomly assigned day.  The 

second is the Department of Energy’s Greenhouse Gasses, Regulated Emissions, and Energy Use 

in Transportation (GREET) Model, version1.8d [10].  The GREET model assesses energy use in 

transportation and includes simulations for passenger cars, SUVs, and light trucks with over 80 

fuel systems and technologies.  This paper uses the estimates of vehicle efficiency in charge 

depleting (CD) and charge sustaining mode (CS), taken from GREET 1.8d 2015.  Combining 

these efficiency numbers with vehicle travel patterns from the NHTS day trip file allows the 

prediction of estimated gasoline and electricity consumption from PHEVs with an AER ranging 

from 5-60 miles relative to a reference conventional vehicle.  Base case assumptions are shown 

in Table 5S.12 of the supporting information and described below. 

The GREET data assume that PHEVs with AERs less than or equal to 25 miles utilize a split 

powertrain and blended control strategy, while PHEVs with AER in excess of 25 miles utilize a 

serial hybrid design, which is far less efficient in charge sustaining mode (the Chevy Volt with 

AER 37 does not use a serial design [11]).  This assumption causes the model to have a dip in 

overall vehicle efficiency and increase in cost when moving from an AER of 25 to 30 miles 

(Figure 5.3).  To avoid the serial powertrain assumption, we consider only AERs less than 30 

miles; however, our results shown later suggest that AER values above 30 miles are not 

competitive with the shorter AER ranges on a cost per gallon saved metric regardless of 

powertrain assumption in all sensitivity scenarios.  
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Figure 5.1 – Basic fuel use model overview 

The NHTS data were processed according to the same methodology described in previous work 

with changes as described below [4].  The daily vehicle travel data were extracted and weighted 

according to the vehicle weights assigned in the sample.  To estimate the timing of fuel savings, 

vehicles are partitioned by age and vehicle class because their travel varies significantly along 

both dimensions (Figure 5.2, Figure 5.3).  Changes in efficiency as vehicles age were ignored.  

PHEV battery capacity will decline with age, which would shorten AER if manufacturer control 

strategy does not increase the allowable state of charge swing.  Whether PHEVs will encounter 

more or less engine wear depends on how PHEVs use their engine.  If the engine speed is 

partially decoupled from the wheel speed using the electric motor to compensate, this could 

prolong engine life by enabling the engine to run mostly at steady state.  On the other hand if the 

engine starts and stops often and revs to follow vehicle power demand then engine wear could 

increase.  We consider cars, SUVs, and trucks (vans were ignored because data were unavailable 

for efficiency and cost, but they make up the smallest portion of the classes mentioned here).  

The total distance traveled in CD and CS mode for each vehicle under each charging strategy 

scenario is calculated.  Then the energy consumption of each vehicle in the sample is calculated 

using the previously mentioned GREET efficiency in charge depleting and charge sustaining 

mode estimates and assuming vehicles began each day fully charged and charge completely after 

the last trip of the day.   

Hypothetical charging scenarios were included to determine how much additional gasoline 

consumption could be substituted with electricity by charging vehicles at times in addition to the 

default once per day at home after the last trip of the day.  Vehicles were allowed to charge if 
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they were parked at least 30 minutes at a location.  Each charging pattern is described in Table 

5.4.  The total electricity use f 
ELEC

 and gasoline use f 
GAS

 are calculated for vehicle class c, 

vehicle AER β, and charging scenario γ.  These values are then summed over each year a of 

vehicle life of the average NHTS-computed CD and CS mode gasoline and electricity 

consumption among all vehicle profiles associated with a vehicle of class c, age a, and surveyed 

on a weekend WE or weekday WD in the NHTS data set as shown in Equation set 5.1: where a 

is vehicle age in years, L is the vehicle life assumed in our model (12 years base case), j indexes 

the vehicle driving profiles taken from the NHTS day trip file, Ja,c,WE is the set of NHTS vehicle 

profiles of age a and class c surveyed on a weekend, Ja,c,WD refers to those surveyed on a 

weekday, |Ja,c,WE| is the number of NHTS vehicles of age a and class c surveyed on a weekend, 

|Ja,c,WD| is the number of vehicles of age a and class c surveyed on a weekday, and η
CD-E

,  η
CD-G

, 

and η
CS-G

 are the vehicle’s electrical efficiency in CD mode (mi/kWh), gasoline efficiency in CD 

mode (mi/gal), and gasoline efficiency in CS mode (mi/gal) as estimated by GREET (shown in 

tables  5.1 - 5.3 below).  
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Equation set 5.1 

Table 5.1 - η
CD-E

 in mi/kWh for 2015 vehicles from GREET 1.8d 

AER 5 10 15 20 25 

Car 5.2 5.2 5.3 5.3 5.3 

SUV 4.5 4.5 4.5 4.5 4.5 

Truck 4.9 4.9 4.9 4.8 4.8 
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Table 5.2 - η
CD-G

 in mi/gallon for 2015 vehicles from GREET 1.8d 

AER 5 10 15 20 25 

Car 74 74 78 82 82 

SUV 54 54 56 58 58 

Truck 41 41 42 42 42 

 

Table 5.3 - η
CS-G

 in mi/gallon for 2015 vehicles from GREET 1.8d 

AER CV HEV 5 10 15 20 25 

Car 27 38 43 43 43 42 42 

SUV 20 28 28 28 28 28 28 

Truck 18 24 25 25 25 25 25 

 

The functions d
CD

j and d
CS

j use the NHTS data to compute the distance that a vehicle with AER 

of β under charging scenario γ traveling on vehicle day trip profile j would travel in CD mode 

and CS mode, respectively. We examine β{5,10,15,20,25} miles and γ{home evening, home 

all, work home evening, work home all, all stops}, where the charging scenarios are described in 

Table 5.4.  

Table 5.4 – Charging scenarios 

Charging Scenario Brief Description 

Home evening Vehicle charges after arriving home on last trip of the day 

Home all Vehicle charges anytime it is parked at home for at least 30 minutes 

Work home evening Vehicle charges when it first arrives at work and is parked for at least 

30 minutes and at home after last trip of the day 

Work home all Vehicle charges anytime it is parked at either home or work for at 

least 30 minutes 

All stops Vehicle charges anytime it is parked anywhere for at least 30 minutes 

 

The procedure for computing d
CD

 and d
CS

 for each vehicle in the set of a given age, AER, 

charging scenario, class, and weekday or weekend (set {a, β, γ, c, WE, WD} ) starts by assuming 

each vehicle begins the day fully charged.  The vehicle is tracked through all reported trips and it 

is assumed it operates first in CD mode, where it consumes both electricity and gasoline, 

switches to CS mode once the battery drops to its target state of charge (SOC) (40% of battery 

energy remaining according to GREET), and fully recharges after the last trip of the day. We use 
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trip distances and times specified in the NHTS dataset and assume a constant efficiency per 

VMT from GREET (η
CD-E

,  η
CD-G

, and η
CS-G

).  For each trip if a vehicle’s battery is above the 

target SOC then the total battery energy required to complete a trip is calculated.  If the battery 

has enough energy, the SOC is decremented by the energy requirements of the trip.  If the SOC 

is too low to complete the trip in CD mode then the SOC is decremented to the target SOC and 

the portion of the trip not travelled in CD mode is travelled in CS mode.  If the vehicle battery is 

at the target SOC at the beginning of a trip the entire trip is travelled in CS mode.  When a 

vehicle parks, the time between trips is calculated and if it is greater than or equal to 30 minutes 

then the vehicle can charge if the designated charging scenario allows charging at the location 

the vehicle is reported parked. 

 GREET also accounts for reduction in real-world efficiency compared to test cycle efficiency, 

where the AER is rated. This means that simulated AER may be shorter than rated AER (but this 

is especially likely for the serial hybrid configuration that is not included in this analysis).  

Vehicles that are not driven on the survey day have a d
CD

 and d
CS

 of zero, but are included so 

that the average total mileage found when simulating the trips (found by adding d
CD

 and d
CS

 of 

all vehicles in a set and dividing by the total number in that set) and fuel use estimates properly 

reflect all vehicles in NHTS (that are classed as car, SUV, or truck).  The resulting daily 

consumption is multiplied by either 104 for weekends or 261 for weekdays and summed to 

convert to annual consumption for a given age, AER, and charging scenario.  The NHTS file 

does not specify if travel was on a holiday, nor are vacation days specified and such days should 

be accounted for on average weekday travel.  Calculating fuel use by CVs and HEVs is 

accomplished in the same manner, but total mileage is used instead of tracking d
CD

 and d
CS

 

separately since these vehicles do not use separate fuels. 

 The results of total distance travelled annually by all vehicles in a set of given age and class 

divided by the number of vehicles (both driven and not driven) in that set is shown in Figure 5.2.  

To simulate the life of a vehicle it was assumed that it was driven in a manner consistent with 

reported NHTS data for a vehicle of its age and class as found previously.  Thus, for the base 

case of a 12 year vehicle lifetime it is assumed a car drives roughly 14,000 miles in the first year, 

13,000 in the next year and so on for each year until it reaches year 12  (Figure 5.2).  Calculation 

of fuel consumption uses each vehicle age and class separately so any changes in travel patterns 
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as vehicles age are accounted for.  However, it was found that the primary reason that vehicle 

miles traveled (VMT) declined with age was that the vehicle was less likely to be driven on a 

given day.  It was found that older vehicles, that were driven, generally followed similar driving 

patterns to their newer counterparts.  The total consumption numbers for each AER, vehicle 

class, and vehicle age are reported in the supporting information for the base case. 

 

Figure 5.2 – Change in annual VMT with vehicle age as found from NHTS data 
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Figure 5.3 – Comparison of vehicle gasoline consumption over 12 year life and all-electric range 

 of vehicles using GREET 1.8d 2015 efficiency numbers (AER on x-axis corresponds to GREET AER) 

gasoline use includes both CD and CS travel 

5.4.2 Infrastructure estimates 

Because the amount of shared charging infrastructure required per PHEV to enable work and all 

stops charging scenarios will vary tremendously with the number of PHEVs in operation, we 

attempt to estimate an infrastructure case that is favorable to charging points.  The first 

assumption is that charging infrastructure is based on widespread PHEV adoption and charger 

installation; thus a new charge point would not need to be installed every time a person moves, 

changes jobs, goes on a different errand and so on.  If charging infrastructure offers less value 

than increasing AER in this optimistic case it will be even worse with low PHEV penetration, 

requiring more chargers per vehicle.  To make these optimistic estimates the number of charges 

for each charging strategy was tabulated when the fuel use model was run with NHTS data (as 

described in fuel use model section).  The total number of charges per vehicle driven in the work 

charging case was compared to the home evening only charging case to determine how many 

additional charges occurred when a vehicle was parked at work.  Similarly the total number of 

charges per vehicle in the all stops charging case was compared to the work home all stops case 
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to determine the number of additional charges at locations other than home or work.  Since every 

trip uses some energy, the number of charges does not change with AER.  The average additional 

charges were weighted by the number of vehicles of a given age and class in the sample to 

determine the number of additional charge points used to estimate charging infrastructure.  The 

NHTS includes only data that generally describes the location such as home, work, place of 

worship, shopping and so on.  It is acknowledged that this lack of information could lead to 

errors in the estimated number of charge points needed.  Over counting could result when a 

vehicle parks at the same location twice in the day (if it is not work or home), it could also occur 

because the same charge point could serve more than one vehicle if they parked at different times 

in the day.  Undercounting will occur because averaging does not account for peak demand, 

vehicles could charge at work, leave and return to find the charge point occupied or a vehicle 

surveyed on a given day might not travel to work (on a holiday for example), but the next day it 

could.  We are likely undercounting infrastructure needs to enable charging scenarios and thus 

results are purposefully favorable toward infrastructure. 

The weekday or weekend set of vehicles was used depending on which resulted in a greater 

demand for charge points.  Using these average values instead of estimating peak demand for 

charge points once again makes the estimates more favorable for charging infrastructure.  It was 

found that charging at work resulted in 0.47 additional charges per driven vehicle on a weekday 

compared to home evening charging only.  According to NHTS data, only about 67% of vehicles 

were driven on a given weekday.  Thus about 30% of PHEVs surveyed could charge at work on 

a weekday (0.67*.47).  The number of additional chargers to enable work charging was set at 0.3 

per PHEV to reflect this.  Similarly, it was found that on weekends all stops charging resulted in 

an additional 1.5 charges per PHEV driven compared to work home all charging.  However, only 

about 60% of vehicles are driven on a weekend so an additional 0.9 chargers per PHEV was 

assumed necessary to enable all stops charging (using weekday numbers would result in 0.76).   

5.4.3 Cost estimates 

We created lifetime cost estimates by combining available cost estimates for vehicles, fuel, and 

infrastructure as described below.  There are two cases considered.  The first, our base case, 

examines the problem by assuming that a single entity purchases all vehicles, charging stations, 

and fuel.  The second case, consumer behavior, attempts to reflect consumer behavior by tallying 
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costs for vehicles and fuel separate from charge points and using a higher discount rate to reflect 

observed and estimated consumer behavior.   

The costs of charging infrastructure are varied over a range shown in the table below and include 

installation and equipment costs and are lower in the base case than has been observed thus far 

for charging away from home [7, 12].  Installation costs can vary tremendously.  Plugging into 

an outlet at home with the included cord is free.  Installing a machine to take credit cards or other 

forms of payment, deal with potential vandalism, and withstand exposure to the elements for 

charging a vehicle away from home is likely more expensive regardless of charge rate.  If a home 

owner had to install a new panel or get a new meter to accommodate charging it would obviously 

be more expensive than simply adding a circuit to an existing panel.  Retrofitting charge points 

into some commercial settings could also be very expensive.  Public charge points would utilize 

some amount of electricity even when not charging and would need maintenance, but neither of 

these costs is included in the model.  The base case charging rates were assumed to be 1.4 and 

7.7 kW for home and away charging because higher rates had minimal usefulness (see 

supporting information).       

Table 5.5 – Charging infrastrucutre cost estimates [7] 

 Low Base Case High 

Home 1.4 kW $25 $75 $550 

Home 7.7 kW $500 $1,125 $4,000 

Away 1.4 kW $1,050 $3,000 $9,000 

Away 7.7 kW $2,500 $5,000 $15,000 

Away 38.4 kW $11,000 $20,000 $50,000 

 

Lifetime cost premium for different options are found as follows.  Vehicle costs are taken from 

the 2015 average case estimated by Argonne National Labs in their 2011 report on potential of 

technologies in the light duty vehicle fleet to reduce petroleum consumption, hereafter referred to 

as LDVFC [13].  These are manufacturing costs and report the additional cost compared to a CV.  

All vehicle costs from this report were multiplied by 1.5 to account for markup [14].  Any 

differences in vehicle maintenance cost are ignored.  Lifetime gasoline and electricity use is 

estimated from the previously described fuel use model.  Fuel costs are taken from the EIA 
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Annual Energy Outlook (AEO) 2011 that lists retail prices including taxes, using their 

“traditional high oil price” case as our base case and including other cases in supporting 

information [15].  Fuel costs are taken starting in the year corresponding to vehicle age using the 

assumption that vehicles are purchased in the year 2015 as defined in the vehicle cost numbers.  

Fuel costs occur through time so an NPV calculation is used to bring all costs to consistent value.  

The NPV for each vehicle class, AER, and each charging scenario is calculated using a 5% 

discount rate (in the base case), as shown in Equation set 5.2.  Then the change in NPV 

compared to a CV is calculated (lifetime cost premium) for each AER and vehicle class.  

Negative lifetime cost premium values indicate lifetime savings. 

CVPHEV NPVNPVPremiumCost    Lifetime   

 

 

    
 

CH

L

a
a

d

GAS

t

ELEC

t

L

t
t

d

tLc C
r

PfPf

r

LiCPMT
DP

t








 

 1

Gas

ca

ELEC

ca

1

PHEV
1

,,

1

),,(
NPV


 

 

  tL

L

Lc

i

iC




11
PMT

 
 

 

 
















L

t
t

d

GAS

t

ct

ct

r

P
J

d

1

,c

CV
1

NPV


 

Equation set 5.2 

 

Where DP is down payment (100% of additional cost of vehicle of class c in base case), rd is 

discount rate and t is year of vehicle life, ELEC

tP is the price of electricity from AEO 2011 report 

for a given year, and GAS

tP is the price of gasoline from AEO report for a given year.  PMT is the 

annual payment (0 in base case), Cc is additional cost of a vehicle of class c and home charging 

infrastructure over a CV of class c minus the down payment, iL is loan rate, and Lt is loan period 

in years and CCH is the cost of charging infrastructure away from home.  

Studies about alternative vehicle purchase, conducted using surveys, have found consumer 

discount rates of 21-49%, but generally agree that in the near term the most likely value is nearer 

to the lower part of the range [16,17].  One problem with such surveys is that it has been shown 
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that consumers are unlikely to understand a NPV calculation [18].  It has been posited that when 

making an actual purchase a consumer might seek out expert information regarding NPV style 

results [19].  This idea is supported by findings suggesting that implicit consumer discount rates 

decline as purchase price increases. A study conducted looking at refrigerator purchases found 

that consumer had a discount rate of about 45% [25].  There is a possibility that some of these 

refrigerators were purchased by landlords, or others that were not paying the utility costs and 

therefore had little incentive to purchase an efficient model (principal-agent problem).  Other 

studies focusing on retirement plans instead of appliance purchases found lower discount rates 

ranging from 1.3-25.7% which may be attributed to the greater value (perhaps supporting the 

idea that an individual thinks more carefully about a financial decision of larger amount) [20-23].  

These studies also found that in general those with higher incomes and education levels exhibited 

lower discount rates.  It is possible that studies focusing on retirement decisions are biased 

toward higher income households who exhibit lower discount rates.  The newer of these studies 

examined the military drawdown of the early 1990s and the decision service members faced 

about accepting either a lump sum payment or annuity.  It found that discount rates varied 

considerably among service members depending on whether they were enlisted or officers [23].  

It was found that officers had a discount rate of 11.5% and enlisted has a discount rate of 25.7%.  

In aggregate the discount rate was 17.5%.  Given that surveys regarding purchase of alternative 

vehicle found an implied discount rate in the low 20% range and that the actual decision 

regarding retirement resulted in an implied rate of 17.5%, the consumer behavior case used a 

value of 20%. 

It has been reported that over 80% of new vehicles were purchased using a loan (between 1998 

and 2003) and that the median loan had a period of 60 months and rate of 8.7% with down 

payment of 14% [24].  Twenty percent of new vehicles are not purchased on a loan. Our 

consumer behavior case assumes conditions that are in some sense averaged, where consumers 

take a 60 month loan at 8.7% with a 31% down payment. 

In the consumer behavior case consumers purchase vehicles and fuel using a discount rate of 

20% (and are assumed to have knowledge of charging infrastructure that will be available), 

charge points are still purchased outright (presumably by government), so no discount rate is 

applied, and the total cost is found by adding the cost of charge points, vehicle and fuel despite 
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two separate groups making the purchases.  Once again if the lifetime cost premium is negative it 

implies the PHEV fuel costs relative to the reference CV are low enough to offset the increase in 

vehicle cost and cost of chargers.   

In all cases it is assumed that for adoption of a given AER vehicle or charging strategy a subsidy 

would be required to make the scenario equal in lifetime cost premium to the lowest cost option.  

While it is not assured that lifetime cost parity or savings will necessarily induce consumers to 

adopt a vehicle, for the purposes of comparison it is assumed.  There are non-monetary reasons 

that may tilt some consumers toward such a purchase, and others away.  At the same time 

consumers often exhibit surprisingly high discount rates and gravitate toward purchasing 

whatever costs less in the beginning regardless of lifetime costs [25]. 

5.5 Results 

These results assume that the traction battery lasts the lifetime of the vehicle for PHEVs.  Figure 

5.4 summarizes these results for the base case.  Figure 5.5 shows the results for the consumer 

behavior case.  Home evening and home all stops charging are averaged (shown with diamonds) 

and the error bars indicate the results for home all and home evening.  The same is true for work 

home evening and work home all charging (shown by squares).  AER increases to the right in the 

figure and is labeled on the all stops charging case.  Lifetime cost premium on the x-axis relates 

how the cost of adopting each scenario and varies from that of a conventional vehicle.  It is made 

up of the cost of the vehicle, charging infrastructure, and NPV of fuel costs over vehicle lifetime.  

Minimum lifetime cost is the point farthest to the left.  Lowest lifetime gasoline consumption is 

shown by the lowest point on the graph.  If a point (such as AER 5 and work charging) is to the 

right and higher to any other point on the graph it is dominated and should not be considered as a 

way to reduce fuel consumption by a decision maker.  If lifetime cost premium is negative the 

selected choice would result in lifetime savings compared to CV.  It is assumed that the 

minimum subsidy to enable any scenario can be found by the difference between its cost and the 

lowest cost option (furthest to the left on the graphs). 
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Figure 5.4 – Base case results. Cost of vehicle, chargers, and NPV of fuel costs over vehicle lifetime compared 

to CV.  The minimum necessary subsidy can be found by comparing the cost premium of any point to the 

lowest cost point.  Increasing AER is consistently preferred over work charging.  All stops charging is 

significantly more expensive.  Given a 12 year vehicle life, AEO traditional high oil price, GREET 1.8d 2015 

efficiency, 2015 average vehicle costs from LDVFC with 50% markup, and a 5% discount rate on fuel 

purchases.  Vehicles and chargers purchased outright.  Open circles represent CVs, open triangles HEVs, and 

diamonds show results for PHEVs using and average of home evening and home all with error bars 

indicating the difference between those values, squares show the average of work home evening and work 

home all charging with error bars indicating the difference between those values.  Filled circles show the 

results for all stops charging.  AER values increase in 5 mile increments from 5 to 25 and are labeled on all 

stops charging scenario for clarity.   

  

Calculating the difference between options can be used to compare the valuation of gasoline 

savings necessary to justify paying more for a different option.  For example, in the base case 

using a passenger car, shown in Figure 5.4, a PHEV5 has the lowest lifetime cost.  The PHEV10 

is $275 more expensive over vehicle lifetime and saves 165 gallons of gasoline.  If the entire 

value of the subsidy were attributed to effects from gasoline savings this would imply a value of 

$1.66 per gallon saved.  To pay for additional charging infrastructure they would require $21.7 

per gallon saved using PHEV5 or $10 per gallon using PHEV25. 

The consumer behavior case is shown in Figure 5.5.  Using a higher discount rate, the same 

results are found in terms of AER and charging infrastructure, however not all PHEV options 

results in lifetime savings.  In the case of trucks only PHEV5 decreases lifetime cost compared to 
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CVs.  HEVs for SUVs and trucks are the lowest lifetime cost options.  If gasoline savings were 

valued at $0.92/gallon or it would make sense to pay owners to move from a HEV SUV to a 

PHEV5.  In a more realistic early adoption scenario the infrastructure to enable charging at 

workplaces would be more expensive because more charging points would be necessary per 

PHEV.  Enabling charging at all stops of over 30 minutes would likely be even more expensive 

during early adoption since there is less predictability of where the owner a PHEV might travel 

compared to workplace charging. 

 

Figure 5.5 –Consumer behavior case. Discount rate at 20% for vehicle and fuel.  Chargers purchased up 

front, other values the same as Figure 5.4.  Minimum necessary subsidy for adoption of given scenario can be 

found by comparing a point to the point farthest to the left (PHEV5 for cars, HEV for SUV, and SUV for 

truck) 

We summarize the results presented in figures 5.4 and 5.5 as follows. First, PHEVs save gasoline 

over conventional vehicles in all cases. Second, PHEV cars save gasoline and total lifetime costs 

over conventional cars, in both the base case and the case where consumers exhibit a 20% 

discount rate. Third, subsidizing charge points at work or elsewhere increases total cost without 

saving more gasoline (unless the additional charge points lead to larger rates of PHEV adoption). 

Fourth, PHEVs save gasoline compared to HEVs, and subsidizing AER saves gasoline at the cost 

of approximately $2 per gallon saved. 



Chapter 5 

125 

If gasoline prices are lower than AEO prediction in the future it will not change the preference of 

increasing AER compared to installing charge points (see supporting information).  It would 

simply shift all points to the right relative to conventional vehicles.  This might necessitate a 

subsidy to encourage the adoption of HEVs and PHEVs, but would not justify spending on 

charging infrastructure. 

5.6 Limitations 

Not all vehicle owners will have access to off street parking, or their own garage.  While vehicle 

owners who are home owners with a garage are likely to pay for home charge points themselves, 

they are extremely unlikely to pay for those at other locations with the possible exception of a 

workplace charger.  The likely entities that would pay for charge points (or receive a subsidy to 

install charge points) would be property owners where the charge point is installed, electric 

utilities, or charge point network operators.  This study does not explicitly consider any charge 

point maintenance costs, but operators will have to sell the electricity for enough to pay for the 

installation, maintenance, and any profit.  The higher charge rates assumed for charging away 

from home may result in ohmic heating and a decrease of charging efficiency for smaller AER 

vehicles (resulting in higher electricity costs and greater battery degradation).  The desire for 

profit could lead to consumers facing a higher electricity price when charging away from home, 

but given the lower rates paid by large customers it is also possible that consumers could pay the 

same or less and the party operating the charge point could still make a profit.  Charge points 

might last longer than vehicles as well so that in the long run fewer charge points per vehicle 

would need to be installed, but as discussed previously when PHEVs are being introduced there 

will need to be far more installed. 

Paying for the installation of charge points does not encourage their use or investigation about 

where is an effective site for a charge point.  If a group’s business was in selling electric vehicle 

supply equipment (EVSE) then they would want to install charge points as cheaply as possible so 

they could sell the most EVSEs with a given grant.  If the company that installs them will profit 

from electricity sales they are incentivized to install them in locations where vehicle owners want 

to charge.  Another feasible scenario is vehicle manufacturers trying to promote the installation 

of charge points so that they are always within a certain distance of each other.  They might 

never be used, but their availability might make purchasers of BEVs more comfortable while 



Chapter 5 

126 

driving with the knowledge that a charge point is somewhere relatively nearby (reducing range 

anxiety). 

Current subsidies for vehicles are given in the form of tax credits to purchasers.  There are other 

alternatives such as a direct payment regardless of tax liability or even payments to 

manufacturers.  Funding manufacturers directly for vehicle research is not a new idea, but 

subsidies targeted at vehicle purchasers make more sense because they incentivize companies to 

actually sell products instead of simply build up patent portfolios.   

We assume a single owner purchases a vehicle and drives it until they get rid of it with no 

salvage value.  Given consumers discount rates often seen a salvage value of $3,000 in year 8 

might only be worth $700 (at 20%) or $335 in year 12.   

This paper considers only AERs from 5-25.  The results would change if higher range AERs 

were considered.  The jump in cost (from LDVFC) and decrease in CS mode efficiency (from 

GREET), when moving to a serial hybrid at AER 30, makes charge points more competitive but 

it is unlikely such vehicles would be widely produced (see supporting information).    

This methodology considers only gasoline savings and does not consider the possible desire to 

improve the technology of PHEVs by incentivizing their adoption.  Nevertheless this limitation 

should not affect the results of the study unless the technology of EVSEs needs to be improved 

more than PHEVs. 

Because the percent markup over manufacturing costs is held constant it means the markup on 

higher AER vehicles is higher in dollar terms than HEVs and those vehicles with smaller AER.  

It is feasible that at some point consumers could purchase different AER versions of the same 

vehicle, which might reduce markup.  If a constant increase over manufacturing cost were 

assumed instead vehicles of greater AER would offer higher lifetime savings compared to base 

case (see supporting information). 

There are obviously other factors affecting vehicle adoption rates.  HEVs were not originally 

found to be cost competitive with CVs in the past yet individuals adopted them [26].  This 

implies that some people place value on more than the monetary savings from reduced gasoline 

consumption.  It is likely that some small group of people will likewise place value on driving on 
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electricity instead of gasoline beyond the savings associated with fuel costs.  This will not be 

enough to lead to mass adoption, but could help during the learning phase as PHEVs become 

more commonplace. 

The vehicle cost estimates from LDVFC do not include a breakdown by component so the 

precise increase in vehicle cost associated with the traction battery is not clear [13].  However a 

case assuming that the cost differential between a HEV and PHEV is made up of traction battery 

is included in the supporting information.  Most warranties currently appear to be 8 years for the 

traction battery so it is assumed the battery will last 8 years in the supporting information [27-

29].  It was found that in the truck case work place charging with AER of 20 was superior to 

home charging with AER 25. 

This paper does not include valuation of air quality benefits derived from displacing gasoline 

with electricity.  These benefits would depend on a variety of factors and were judged beyond 

the scope of this paper (the type of pollutant considered, the location of power generation 

compared to population centers, prevailing weather patterns, etcetera.).   

5.7 Summary and Discussion 

In all cases the maximum AER of 25 is reached in this study before charging infrastructure is 

considered.  When comparing the option to increase PHEV AER or install charging points it 

appears that under a set of assumptions strongly favorable to infrastructure increasing AER still 

achieves greater gasoline savings per dollar spent.  Comparing the subsidy necessary to make an 

option equal to the lowest cost option we find the following.  The maximum subsidy per gallon 

saved for increased AER for each class (cars, SUVs and trucks) is $1.97, $0.67, and $2.90, 

which is less than the minimum subsidy per gallon saved when installing workplace 

infrastructure $3.27, $1.04, and $3.07 for respective classes. 

Convincing owners to plug in when they are parked for short times may be difficult which would 

decrease cost effectiveness of charging infrastructure.  Whether it is worth plugging in at home 

any time a person parks for more than 30 minutes to save 100 gallons over the life of the vehicle 

is questionable.  The same issue arises when parking away from home.  Taking the time to 

conduct a transaction, to pay for electricity, would make consumers less likely to charge when 

parking for short periods.  Integrating parking charges and electricity charges into one payment, 
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or utilizing some sort of automated payment system would be desirable if the infrastructure 

already being installed is to be used.  Under the home all charging strategy, increasing home 

charge rates from 1.4 to 3.8 kW results in a maximum increase of 2.5% in CD miles travelled by 

fleet with AER of 15 (AERs that are smaller and larger see less increase in CD mode travel).  

Increasing to 7.7 from 1.4 kW for home charging results in a maximum increase of 3% in CD 

miles travelled for a fleet with AER 20.  That is mainly because smaller AER vehicles can be 

charged quickly even with a low rate charger and larger AER vehicles generally do not need as 

many interim charges through the day.  More information on charge rate comparisons is included 

in the supporting information.    

Using assumptions strongly favorable to charging infrastructure, the maximum subsidy to make 

lifetime cost equivalent to lowest cost option, when increasing AER, was 5-40% less than the 

minimum cost for installing charging infrastructure depending on vehicle class.  Using the metric 

of gasoline saved per dollar spent it makes more sense to use federal subsidies to encourage 

increased AER instead of installing charging infrastructure, however this does not imply the 

current federal subsidy structure is well designed. In the base case PHEVs have a lower lifetime 

cost than HEVs in all cases except the SUV case.  The SUV case would require a payment of 

$0.12 per gallon saved to make a HEV and PHEV5 equivalent in the base case.  A median 

estimate for externality benefits of saving a gallon of gasoline that includes the cost of oil supply 

disruptions ($0.09) and monopsony effect ($0.22) is $0.31 per gallon saved [30,31].  In the 

consumer behavior case this value would need to be increased to $0.92 per gallon saved to make 

a consumer ambivalent between a SUV HEV and PHEV5. 

If all of the value in subsidizing PHEVs was allocated to gasoline savings it would imply that we 

subsidize 4 kWh battery PHEVs at $1.25 per gallon saved.  At the same time 16 kWh battery 

PHEVs are subsidized at roughly $4.50 per gallon saved (Figure 5.6).  When comparing the 

gasoline savings in the results from this paper to the actual federal subsidy structure it is clear 

that federal subsidies are not currently aligned with the goal of decreased gasoline consumption.  

What could justify these differences in subsidies?   
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Figure 5.6 – Comparison of current federal subsidy to base case assumptions showing fuel savings over 

vehicle life (home evening charging).  An estimate based on EPA Chevy Volt reported efficiency is also 

included for comparison [32].  The federal subsidy significantly favors larger battery packs.  Hybrid electric 

vehicles (HEVs) are also shown in the circle. 

The first possible explanation is the externality of emissions from transportation.  The change in 

net air emissions in the use phase is largely proportional to the amount of petroleum displaced by 

electricity, though the charge timing could result in varying magnitude of the emissions changes 

[4].  It is also likely that emissions will move away from populated areas in proportion to the 

amount of electricity displacing gasoline [33, 34].  However larger batteries entail higher 

upstream emissions per vehicle and such packs are more likely to be underutilized.  Based on 

prior work we expect life cycle analysis to favor shorter range AER vehicles [35].  So ignoring 

emissions effects actually implies that the subsidy predicted only based on gasoline savings 

slightly favors higher AER vehicles.   

Another explanation could be technology development.  Is there a reason to think that larger 

batteries would help advance technology more than smaller batteries?  It does not appear there is 
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reason to believe advancements in battery technology will improve with larger battery PHEVs.  

This is because larger battery PHEVs will see lower power demands from cells comprising the 

battery and have more room to degrade as time passes.  However it is possible that larger battery 

based PHEVs could spur drivetrain development.   Overall there is not a clear case that larger 

battery PHEVs help advance technology more than smaller battery based PHEVs. 

The remaining possibility is that a subsidy could be designed to increase employment.  There is 

also no clear reason that subsidizing larger battery packs at a higher value per gallon saved 

would encourage higher employment than subsidizing smaller battery packs at an equal level per 

gallon saved.  

Given that the current subsidy seems misaligned we offer preferable policy alternatives.  

Calculating lifetime gasoline savings based on vehicle rated efficiencies could be used to set 

subsidies, but it is acknowledged that such a calculation requires significant assumptions which 

could be controversial.  The first option is to subsidize additional battery capacity at $80-100 per 

kWh instead of $417 per kWh.  This would more closely align the subsidy with gasoline savings 

and would also reduce the cost of the subsidy program if it remained based on a fixed number of 

vehicles sold.  However, a subsidy based on the rated kWh capacity of the pack would still 

penalize a vehicle allowing a greater SOC swing.  While the Volt allows 65% swing (similar to 

GREET assumptions of 60% SOC swing) some battery chemistries and manufacturers appear to 

allow more (Leaf and i-Miev EPA fuel economy ratings imply they allow far more than 65% 

SOC swing) [36, 37].  To avoid biasing manufacturer battery selection it would be preferable to 

subsidize based on usable battery capacity instead of rated capacity [38].   

Another possible alternative which also encourages technology development for PHEVs would 

be to subsidize based on actual AER (instead of equivalent AER) in a specific low demand drive 

cycle, such as the urban dynamometer driving schedule (UDDS).  Compared to the current 

subsidy this would directly incentivize automakers to design PHEVs in a manner that focuses on 

displacing gasoline with electricity.  Automakers would be free to choose any battery chemistry 

they thought would be best and have no incentive to pick a battery that enabled them to get a 

larger capacity pack at a constant price point.  For example, it would encourage including 

batteries with high enough power capabilities in small pack PHEVs to operate using electricity in 

low demand situations.  This would ensure battery technology improvements were incentivized 
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as well.  Automakers could still provide differentiation of performance to consumers in blended 

mode, or by including a higher power rated pack, but if the consumer were willing to drive no 

more aggressively than the UDDS they could operate the vehicle entirely in electric mode during 

CD mode travel.  Consumers could also benefit from such a subsidy as it would make 

understanding AER easier when comparing across vehicle options.   

HEVs and PHEVs with low AER and only home charging generally provide the largest gasoline 

savings per dollar spent, offering both lower costs and lower gasoline consumption than CVs, 

depending on the consumer's discount rate. It is therefore possible that incentivizing a larger 

number of consumers to purchase HEVs or low-AER PHEVs would save more gasoline under a 

fixed policy budget than incentivizing a relatively smaller number of consumers to purchase 

high-AER PHEVs [35]. However, given a fixed market of electrified vehicle adopters, if more 

gasoline savings is needed than what can be achieved with a HEVs and low-AER PHEVs, 

additional savings can be achieved per vehicle more efficiently by paying for additional AER 

than by paying for extra charging infrastructure. 

Looking forward as battery prices decrease and the AER resulting in maximum lifetime cost 

savings increases the value of plugging in each time a vehicle stops will also decline.  Although 

the recently announced DC quick charger from Nissan costs far less than in the past ($9,900), it 

requires three phase AC input [39].  The actual installation costs of such units are likely to be 

substantial.  Co-locating fast chargers to save on trenching and other installation costs would 

increase the likelihood of transformer upgrades and other costly changes to the distribution 

system.  However, installing charging infrastructure would also provide employment 

opportunities for local workers, whereas increasing AER would provide employment for workers 

in the supply chain for battery manufacturing.   

5.8 Conclusions 

Increased PHEV AER is more cost effective at reducing gasoline consumption than public 

infrastructure investment, even under optimistic assumptions.  Federal subsidies for charging 

infrastructure should be analyzed based on the benefit to BEVs because PHEVs are unlikely to 

gain a substantial benefit regardless of AER.  Our results call into question the design of the 

current PHEV subsidy and suggest that there are a number of policy options that will likely 

achieve the similar goals more efficiently.  It would be preferable to align the subsidy to value 
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gasoline savings equally across the different PHEV options unless there is specific reason cited 

to avoid this.  These subsidy options are subsidizing based on: actual AER in a low demand drive 

cycle, usable battery capacity, or battery size aligned to fuel savings. Gasoline savings from 

charging infrastructure are not cost competitive with efforts to increase the AER of PHEVs.   
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5.10 Supporting information 

 

5.10.1 Acronyms 

η
CD-E

 – vehicle electric efficiency in charge depleting mode  

η
CD-G

 – vehicle gasoline efficiency in charge depleting mode 

η
CS-G

 – vehicle gasoline efficiency in charge sustaining mode 

AEO – annual energy outlook published by energy information administration  

AER – all electric range 

BEV – battery electric vehicle 

CAFE – corporate average fuel economy 

CD – charge depleting mode 

CS – charge sustaining mode 

CV – conventional vehicle 

d
CD

 – distance in charge depleting mode 

d
CS

 – distance in charge sustaining mode 

E85 – an ethanol gasoline blend with 85% ethanol 

EIA – Energy Information Administration 

EVSE – Electric vehicle supply equipment 

GHG – greenhouse gas 

GREET – Greenhouse Gasses, Regulated Emissions, and Energy Use in Transportation 

HEV – hybrid electric vehicle 

ICE – internal combustion engine 
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kWh – kilowatt hour 

LDVFC – Potential of technologies for displacing gasoline consumption by light-duty vehicles 

through 2045 

mpg – miles per gallons 

NHTS – National Household Travel Survey  

NPV – net present value 

PHEV – plug-in hybrid electric vehicle 

PTC – production tax credit 

VMT – vehicle miles travelled 

WD – weekday designator 

WE – weekend designator 
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5.10.2 Consumption tables by class and age 

These tables list the annual fuel consumption calculated with fuel use model as described in main 

text for each vehicle class and age. 

Table 5S.6 – Annual fuel consumption for cars (gallons gasoline per vehicle) 

 Grid Independent PHEV AER (miles) 

Age CV HEV 5 10 15 20 25 

1 521 372 314 299 284 269 257 

2 486 347 293 279 265 251 240 

3 451 322 272 258 244 231 221 

4 411 294 247 234 221 209 199 

5 386 276 231 219 207 195 186 

6 391 280 234 222 210 198 189 

7 372 266 222 210 197 185 177 

8 397 284 237 224 211 198 189 

9 382 273 227 214 202 189 181 

10 349 250 208 195 183 172 163 

11 351 251 208 196 183 171 163 

12 356 254 212 200 188 177 169 

13 341 244 202 189 178 167 159 

14 294 210 173 162 151 141 134 

15 314 224 187 176 166 156 149 
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Table 5S.7 – Annual electricity consumption for cars (kWh per vehicle) 

 PHEV AER (miles) 

Age 5 10 15 20 25 

1 333 631 879 1,088 1,280 

2 308 583 812 1,007 1,185 

3 298 563 783 968 1,136 

4 282 531 736 909 1,068 

5 273 512 709 871 1,015 

6 280 522 720 885 1,033 

7 282 525 720 882 1,027 

8 296 554 762 933 1,087 

9 295 550 753 919 1,063 

10 282 522 713 869 1,007 

11 293 541 737 898 1,040 

12 280 515 702 854 988 

13 291 535 721 869 1,001 

14 265 484 656 793 913 

15 246 452 615 748 864 
 

Table 5S.8 – Annual fuel consumption for SUVs (gallons gasoline per vehicle) 

 Grid Independent PHEV AER (miles) 

Age CV HEV 5 10 15 20 25 

1 759 562 516 490 465 442 424 

2 786 582 535 506 481 457 437 

3 728 539 494 467 442 419 401 

4 701 519 475 449 425 402 384 

5 727 539 491 463 437 413 394 

6 623 461 420 395 372 351 335 

7 576 426 387 363 341 321 305 

8 476 353 320 299 280 263 250 

9 426 316 287 269 253 239 228 

10 499 369 336 316 297 281 267 

11 333 247 222 207 193 181 172 

12 338 251 227 212 198 186 176 

13 252 187 167 154 143 133 125 

14 265 196 177 165 155 146 140 

15 200 148 132 122 114 106 100 
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Table 5S.9 – Annual electricity consumption for SUVs (kWh per vehicle) 

 PHEV AER (miles) 

Age 5 10 15 20 25 

1 399 754 1,063 1,323 1,546 

2 412 784 1,106 1,382 1,618 

3 398 756 1,064 1,327 1,551 

4 390 742 1,042 1,297 1,515 

5 428 806 1,128 1,402 1,637 

6 372 702 986 1,224 1,426 

7 363 682 954 1,180 1,369 

8 307 580 815 1,010 1,170 

9 266 499 696 860 996 

10 306 574 801 992 1,154 

11 238 438 606 742 852 

12 224 422 589 728 844 

13 197 363 497 610 705 

14 182 337 462 561 639 

15 158 286 390 477 545 
 

Table 5S.10 – Annual fuel consumption for trucks (gallons gasoline per vehicle) 

 Grid Independent PHEV AER (miles) 

Age CV HEV 5 10 15 20 25 

1 617 475 428 411 397 384 372 

2 668 514 462 442 426 411 397 

3 606 466 418 400 385 372 360 

4 628 483 432 412 396 381 368 

5 702 540 484 464 446 430 416 

6 557 428 381 361 345 330 317 

7 647 497 444 423 406 390 377 

8 630 484 431 410 392 376 362 

9 588 452 401 380 362 347 334 

10 520 400 355 336 320 305 293 

11 512 394 348 329 312 298 286 

12 573 441 390 369 351 336 323 

13 470 362 318 300 284 270 260 

14 464 357 312 293 277 264 253 

15 538 414 364 342 325 310 298 
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Table 5S.11 – Annual electricity consumption for trucks (kWh per vehicle) 

 PHEV AER (miles) 

Age 5 10 15 20 25 

1 242 459 657 835 984 

2 275 525 754 960 1,130 

3 259 490 697 882 1,031 

4 286 542 769 968 1,132 

5 301 569 812 1,026 1,201 

6 285 537 762 959 1,116 

7 306 575 813 1,022 1,189 

8 312 586 829 1,044 1,216 

9 312 585 826 1,032 1,196 

10 277 519 736 927 1,083 

11 289 540 762 950 1,100 

12 319 593 830 1,035 1,199 

13 279 521 733 912 1,045 

14 297 546 756 928 1,064 

15 331 610 842 1,038 1,189 
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5.10.3Sensitivity Analysis 

This section examines a variety of different assumptions as shown in Table 5S.12.  An 

examination of possible changes in value when including battery replacement in year 8 of 

vehicle lifetime is included.   

 

 

Table 5S.12 – Base case assumptions and ranges considered in sensitivity analysis 

Parameter Base value Range of sensitivity 

Fuel costs 
AEO 2011 traditional high oil 

price [1] 

Reference case, GHG price 

economy wide 

Vehicle cost 
LDVFC 2015 Average with 50% 

markup[2] 

No markup, low and high from 

LDVFC with 50% markup 

Charger cost 
As defined in Table 5.5 of main 

document 

As defined in Table 5.5 of main 

document 

Charge rate (kW) 1.44 at home and 7.68 when away 
1.44 ,3.8, 7.68 Home 

1.44, 7.68, 38 kW Away 

Vehicle efficiency GREET 1.8d 2015 [3] GREET 1.8d 2010-2020 

Discount rate 5% 0, 50% 

Vehicle life 12 years 8,  15 

Vehicle loan (years) 5 0, 5 years 

Loan rate 8.74% 0 

Down payment 31% 0, 100% 

Chargers per PHEV 

required to enable work 

charging 

0.3 0.2, 0.6 

Chargers per PHEV 

required to enable all 

stops charging 

0.9 1.5 

 

  



Chapter 5 Supporting Information 

141 

 

Table 5S.13 – Sensitivity summary table 
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5.10.3.1 Base Case Results 

We show Base case results first for comparison to other sensitivity cases shown below (Figure 

5S.1). 

 

Figure 5S.1 – Base case results. Cost of vehicle, chargers, and NPV of fuel costs over vehicle lifetime 

compared to CV.  The minimum necessary subsidy can be found by comparing the cost premium of any point 

to the lowest cost point.  Increasing AER is consistently preferred over work charging.  All stops charging is 

significantly more expensive.  Given a 12 year vehicle life, AEO traditional high oil price, GREET 1.8d 2015 

efficiency, 2015 average vehicle costs from LDVFC with 50% markup, and a 5% discount rate on fuel 

purchases.  Vehicles and chargers purchased outright.  Open circles represent CVs, open triangles HEVs, and 

diamonds show results for PHEVs using and average of home evening and home all with error bars 

indicating the difference between those values, squares show the average of work home evening and work 

home all charging with error bars indicating the difference between those values.  Filled circles show the 

results for all stops charging.  AER values increase in 5 mile increments from 5 to 25 and are labeled on all 

stops charging scenario for clarity. 

   

 

 

5.10.3.2 Fuel Costs 

The fuel costs from AEO reference case (Figure 5S.2) and AEO greenhouse gas economy wide 

(Figure 5S.3) scenarios are shown below.  Lower petroleum prices result in most of the vehicles 

being more expensive, but with other base case assumptions they still result in lifetime cost 

savings compared to CVs.  Increasing AER still dominates the option to install charge points.   
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Figure 5S.2 – Using fuel costs from AEO reference case scenario instead of traditional high oil price case 

 

 

 

Figure 5S.3 – Using fuel costs from AEO greenhouse gas price economy wide scenario instead of traditional 

high oil price case 
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5.10.3.3 Vehicle Costs 

Removing the markup on manufacturing costs shows how vehicles would compare if markup 

were not proportional to vehicle cost, but instead was a constant value (Figure 5S.4).  It is 

possible that if consumers are allowed to purchase different AER options on the same vehicle the 

markup may not be proportional.    If this were the case the largest change is in the SUV case 

where the results are inverted and a PHEV20 is the lowest lifetime cost compared to CV.  

Reducing vehicle costs obviously increases the distance between options to increase AER and 

install charging infrastructure (Figure 5S.5).  Increasing the vehicle costs makes work charging 

infrastructure preferable after AER of 15 is reached in the truck case and makes the SUV of AER 

25 about equal to work charging (Figure 5S.6). 

 

Figure 5S.4 – No markup on manufacturing costs instead of 50% markup in base case 
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Figure 5S.5 –LDVFC 2015 low cost case 

 

 

Figure 5S.6 – LDVFC 2015 high cost case 
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5.10.3.4 Discount Rate 

Discount rates tend to vary tremendously for consumers.  Value of 0% is shown below in Figure 

5S.7.  A higher discount rate of 50% is shown in Figure 5S.8.  Increased AER range is still 

preferred to charging infrastructure. 

Figure 5S.7 – Discount rate 0% instead of 5% in base case. 
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Figure 5S.8 – Discount rate 50% instead of 5% in base case. 

5.10.3.5 Vehicle Life 

Shortening vehicle lifetime decreases the amount of fuel savings possible and thus the value of 

HEVs and PHEVs declines (Figure 5S.9).  Increasing vehicle lifetime increases the fuel savings 

and the value of all points (Figure 5S.10).
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Figure 5S.9 – Eight year vehicle lifetime instead of 12 years as in base case 

 

 

Figure 5S.10 – Fifteen year vehicle lifetime instead of 12 years as in base case. 

5.10.3.6 Charger Costs 

If charger costs are significantly lower (Figure 5S.11), charging is more competitive with 

increasing AER.  In this case AER for cars reaches 25 still, but SUVs only reach 20 before work 

charging is preferred and trucks only reach 10 before work charging is preferred.  If charger 

costs are higher (Figure 5S.12) then the charging options show a greater lifetime cost. 
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Figure 5S.11 – Low charger costs  ($25 for 1.4kW at home, $2500 for 7.7kW away from home) 

 

Figure 5S.12 – High charger costs ($550 and for 1.4kW at home, $15,000 for 7.7kW away from home) 

5.10.3.7 Chargers necessary to enable charging strategy 

If fewer installations could provide for work charging of the fleet then work charging is more 

competitive with increased AER and surpasses increased AER in the truck case for AER of 20 

and 25 (Figure 5S.13).  In other cases AER is still preferred.  In the opposite case with 0.6 
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chargers per PHEV work chargers are far less competitive (Figure 5S.14).  Increasing the ratio of 

chargers, to enable all stops charging, increases the difference in cost between work and all stops 

charging significantly (Figure 5S.15).

Figure 5S.13 – Lower ratio of chargers to enable work charging (0.2 per PHEV instead of 0.3) 

 

Figure 5S.14 – Higher ratio of work chargers (0.6 per PHEV instead of 0.3) 
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Figure 5S.15 – Higher ratio of chargers to enable all stops charging (1.5 per PHEV instead of 0.9) 

5.10.3.8 Battery Replacement 

It is likely that battery replacement will be necessary at some point in a vehicles lifetime 

especially if small AER PHEVs utilize a higher percentage of their batteries at higher c-rates.  

Currently it appears that battery replacement warranties are 8 years and 100,000 miles (Volt 

allows 30% capacity degradation before warranty replacement) [4-6].  Figure 5S.16 shows 

results for battery replacement in year 8 of vehicle lifetime assuming costs above HEV can be 

attributed entirely to battery.  Battery replacement makes truck cases of AER 20 and 25 inferior 

to work charging.  Other cases remain the same. 
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Figure 5S.16 – Battery replacement in year 8 assuming all increase in cost above HEV is attributed to battery 

cost 

5.10.3.9 Vehicle Efficiency 

Using GREET 2010 efficiency numbers reduces the efficiency of the CV being compared and 

actually improves the lifetime cost savings of PHEV cases (Figure 5S.17).  The more efficient 

CVs in the GREET 2020 case result in the opposite effect (Figure 5S.18).  Neither of these cases 

changes vehicle costs to match vehicle efficiencies.   
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Figure 5S.17 – Vehicle efficiency using GREET 2010 instead of 2015 

 

Figure 5S.18 – Vehicle efficiency using GREET 2020 instead of 2015 
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5.10.3.10 Charge Rate 

 

Figure 5S.19 – Home all stops charging rates compared 

Increasing the charge rate at home results in only modest gains for PHEVs with small AERs 

(Figure 5S.19).  A large part of this is because with a 30 minute minimum charge time a PHEV 

with AER 5 can usually charge the battery up completely.  As AER increases the difference in 

charge rate becomes more apparent because it takes longer to charge a large depleted pack than a 

small depleted pack.  As pack size continues to increase though there is a good chance that the 

battery will not be depleted during interim charges in the day.  This can be seen by the slow 

decrease in the difference between 7.7 and 3.8kW rates.  The largest increase in miles travelled 

in CD mode occurs at AER of 15 and is less than 3%.   
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Figure 5S.20 – Illustration of charge rate effectiveness at increasing CD mode travel in a given charging 

strategy.  High refers to 38kW charging stations away from home and 7.7kW charging at home.  Base refers 

to 7.7kW charging stations away from home and 1.4kW charging at home.  Chart compares the increase 

from charge rates above 1.4kW. 

This chart (Figure 5S.20) compares the increase in miles travelled in CD mode when charge rates 

are increased from 1.4 kW in various charging scenarios.  For example the Base all case refers to 

charging at 7.7kW every stop of greater than 30 minutes when away from home and 1.4kW 

when at home, the increase refers to the alternative of charging at a 1.4kW rate away from home 

and at home.  All stops charging shows a greater increase than work charging (around 6% for 

AER range 5-25).  This makes sense because vehicles are usually parked for longer periods at 

work so the charge rate is not as important.  If PHEVs utilize electricity faster in CD mode 

charge rates will likely be more important.  This explains why serial PHEVs gain far more 

benefit from charge points.  If the small AER hybrids behaved more like serial hybrids they 

would likewise see increases greater than 10%.  Work charging for AERs between 5 and 25 sees 

less than a 3% increase in CD miles.  This chart shows that high rate charging (38kW vs. 7.7kW 

for base case charge points away from home) does not offer much benefit for small AER 

PHEVs.  The vehicles would also be unlikely to take advantage of such high charging rates 

without damaging their batteries.  As the AER increases the difference between high rate and 

base case charging hold fairly steady in the all stops charging scenarios, but in work charging 

they converge.  Both all stops and work charging show decreasing benefit from the interim 

charges as AER increases and more vehicles can complete their travel with only one charge. 
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Figure 5S.21 – Comparison of charge rates across charging strategies 

As expected from the results in the main paper all stops charging increases travel in CD mode 

significantly (Figure 5S.21).  Increasing charge rates to 38kW from 7.7kW offers only marginal 

benefit to small AER PHEVs which likely cannot use such high charge rates in any case.  These 

results suggest that the base case using 7.7kW chargers while away from home and 1.4kW 

chargers at home captures most of the benefit of charging throughout the day.  A 1.4kW rate can 

be accomplished by any outlet in an owner’s garage and PHEVs come with a cord to utilize such 

an outlet.  Installing a charge point in the home is likely an unnecessary and currently costly 

decision.  The reason that a 7.7kW rate was chosen away from home for the base case is that the 

infrastructure costs are driven by installation and equipment costs.  If an owner can charge for 

free in a regular outlet then it is obviously beneficial to them, but if a charge point is installed 

that takes payment and controls electricity flow the marginal cost to install a 7.7kW instead of 

1.4kW charger is likely to be quite small. Also a 3% increase in CD miles compared to the home 

work all charging strategy is bigger than a 3% increase in the home all stops charging strategy.  

Values for low and high charge rates are shown in Figure 5S.22 and Figure 5S.23.  The cost 

differential in charge rates results in changes to slope.  
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Figure 5S.22– Low charge rates (1.4kW) everywhere. 

 

 

Figure 5S.23 – High charge rates (38kW away from home and 7.7kW at home) 

5.10.3.11 Vehicle Loan and Down Payment 

This section is based on the consumer behavior case because it involves a loan.  Purchasing 

without a loan decreases the value of all points (Figure 5S.24).  Paying for the entire vehicle on 

loan increases the value of all points since the discount rate is higher than loan rate in base case 
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(Figure 5S.25).

Figure 5S.24 – Full payment (100% down payment or no loan) instead of a five year loan

Figure 5S.25 – Zero down payment instead of 31% down payment as in base case. 

5.10.4 Vehicle Aging 

As vehicles age the probability that a given vehicle is driven on a given day declines.  The NHTS 

data was analyzed to find the probability of a vehicle being driven on a given day.  A binomial 

distribution was used to model the likelihood of a vehicle being driven and one standard 
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deviation is shown on charts below (Figure 5S.26, Figure 5S.27).  While consecutive years show 

overlap there is a definite trend toward declining chances of a vehicle being driven as it ages.  

The entire dataset was analyzed and weekend and weekday values of the probability of being 

driven were compared.  The probability that the differences observed on weekends and weekdays 

were due to random chance was too small to report. 

  

 

Figure 5S.26 – Likelihood of vehicle being driven on a given weekday versus vehicle age 

.  Standard deviation shown in error bars is taken form a binomial distribution of weekday data 
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Figure 5S.27 – Likelihood of vehicle being driven on a given weekend versus vehicle age.  Standard deviation 

shown in error bars is taken form a binomial distribution of weekend data  
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Chapter 6 Conclusions 

This research investigated ways to increase the benefits of PHEVs and examine some potential 

pitfalls.  Partially electrifying the transportation sector has the potential to greatly reduce 

petroleum use and shift much of the energy needs of the light duty fleet to the electricity sector.  

Electrifying the transportation sector enables previously infeasible emissions control strategies 

because power plants are stationary.  There are still some likely negatives of adoption PHEVs 

besides their initial cost.  For example, SO2 emissions are likely to increase without regulatory 

action.   Battery technology is far from the energy and power density of internal combustion 

engines, even given the enhanced efficiency of an electrified drivetrain [1].  However, batteries 

are continuing to close the gap and do not need to match the ICE when a PHEV architecture is 

being considered.  Much like the pursuit of solar cells with greater efficiency we may already be 

at a point where cost reductions should be pursued instead of increases in energy and power 

density, or battery lifetime.  Already commercial vehicles are being sold using a PHEV 

architecture and many more are set to be introduced.  Hopefully by examining some of these 

issues ahead of time emissions can be further reduced and any subsidies encouraging the use of 

PHEVs can be shaped to more efficiently allocate funding toward goals that are beneficial to 

society. 

Currently available cells have promising capacity fade performance and allow for a broad state-

of-charge (SOC) swing.  The current federal subsidy is designed in a way that incentivizes 

picking cells with lower cost per rated capacity and penalizes cells that have higher cost per rated 

capacity even if the cost per usable capacity is lower.  Manufacturers might also choose to limit 

the SOC swing to increase the longevity of their battery (even if they degrade in response to 

energy throughput decreasing the SOC swing would increase the battery lifetime if a vehicle 

switches to CS mode once depleted).  This chapter suggests that a subsidy based on usable pack 

energy would make far more sense than one based on rated capacity.  It would remove an 

incentive to pick a battery that does not necessarily align with societal benefits associated with 

reduced gasoline consumption.  It would also encourage manufacturers to increase the SOC 

swing allowed. 
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The benefits from energy arbitrage are unlikely to significantly change the economics of PHEV 

adoption.  It is extremely unlikely for vehicle owners to participate in the market on their own.  

There are benefits however, and an aggregator might participate in the market.  Instead of using 

vehicles to provide energy to the grid using them as dispatchable load likely makes more sense in 

the near term.  This still captures some of the benefits of energy arbitrage and would result in 

increased generation utilization.  It is also possible that it could help with integration of 

renewable resources. 

Use phase emissions of PHEVs are sensitive to charge time and net emissions could double if a 

vehicle were charged at different times.  In some areas it would make sense to charge during 

periods of low demand because the emissions and cost would both be reduced.  Other areas face 

a more difficult decision and will face a tradeoff in costs and emissions.  Information about 

generation resources should be used in concert with pricing data to find the optimal charging 

strategy in individual RTOs.  A carbon price on electricity alone would be ineffective at reducing 

vehicle related emissions.  It seems that PHEVs will increase SO2 emissions unless there is 

regulatory action, but CO2 and NOX emissions are both likely to decline in the use phase 

compared to conventional vehicles (CVs).  The natural gas, or gas and wind combined charging 

cases show that the total emissions decrease for CO2 and NOX is roughly 20-30% even with very 

clean generation and 5-20% with existing generation assets.  Emissions of SO2 are very sensitive 

to regulations.  In 2011 the electricity sector emitted 4.7 million tonnes of SO2 far below the cap 

of 8.6 million tonnes [2].  These emissions will increase significantly if electrified vehicles 

replace conventional vehicles and there are no regulatory changes.  The court delayed cross-state 

air pollution rule would force significant reductions in SO2 emissions and mean that if states 

were operating at the emissions cap that any electricity used to displace gasoline would actually 

result in net decreases to SO2 emissions. 

When attempting to encourage the adoption of PHEVs subsidizing increased all-electric-range 

for vehicles is more cost effective than spending money on charging infrastructure.  The current 

subsidy appears to be misaligned with societal benefits.  Because it subsidizes rated battery size 

it could lead to distortions in the market.  It encourages automakers to pick batteries with a high 

rated capacity to cost ratio and does not encourage a wide SOC swing.  This means automakers 

are encouraged to design vehicles with large batteries and low SOC swing to allow for battery 
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degradation.  If the subsidy targets large batteries under the premise that such PHEVs will lead to 

greater technological learning then the subsidy could target actual all-electric range rated on a 

low demand drive cycle instead and achieve the same sort of goals.  It also avoids the possibility 

of subsidizing a vehicle that is inefficient and happens to have a battery with a higher rated or 

even usable energy capacity.  If the subsidy was designed on the premise that larger batteries 

means more petroleum is displaced then this work shows that the subsidy increases with battery 

size too quickly or starts too low.   
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