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Abstract
The articulated motion of humans is varied and complex. We use the range of
motion of our articulated structure for functional tasks such as transport, ma-
nipulation, communication, and self-expression. We use our limbs to gesture and
signal intent. It is therefore crucial for an autonomous system operating and
interacting in human environments to be able to reason about human behav-
ior in natural, unconstrained settings. This requires reliably extracting compact
representations of behavior from possibly noisy sensors in a computationally ef-
ficient manner. The goal of this thesis is to develop computational methods for
extracting compact keypoint representations of human pose from unconstrained
and uncontrolled real-world images and video. Estimating articulated human
pose from unconstrained images is an extremely challenging task due to com-
plexity arising from the large number of kinematic degrees of freedom of the
human body, large appearance and viewpoint variability, imaging artifacts and
the inherent ambiguity when reasoning about three dimensional objects from two
dimensional images.

A core characteristic of the problem is the trade-off between the complexity
of the human pose model used and the tractability of drawing inferences from
it: as we increase model fidelity by either incorporating structural and physi-
cal constraints or making fewer limiting assumptions, the problem of searching
for the optimal pose configuration becomes increasingly difficult and intractable.
Cognizant of this trade-off, in this thesis, we develop methods to reason about
articulated human pose from single images by developing a modular sequential
prediction framework called a Pose Machine. Pose Machines reduce the struc-
tured prediction problem of articulated pose estimation to supervised multi-class
classification. The modular framework allows for integrating the latest advances
in supervised prediction, incorporates informative cues across multiple resolu-
tions, learns rich implicit spatial models by making fewer limiting assumptions,
handles large real-world datasets, and can be trained in an end-to-end manner.
Additionally we develop methods for estimating pose from image sequences and
reconstructing pose in three dimensions by finding tractable substructures to in-
corporate physicial and structural constraints while maintaining tractability.

1



Acknowledgements

I would like to thank my advisors, Yaser Sheikh and Takeo Kanade, for teaching
me everything I know about research. Their incredible patience, their ideas of
what research is about, and their insistence on excellence and on playing the long
game will stay with me for a lifetime. Their impact on my growth and thinking
will fill pages. I hope it suffices to say: it has been an honor.

I am very grateful to my other committee members. Drew Bagnell for being
a great teacher and collaborator, I have always come away from a discussion with
you with a deeper understanding. Andrew Fitzgibbon, whose amazing mentor-
ship during my summer at Microsoft Research Cambridge will remain a huge
influence, and Deva Ramanan for his valuable advice and kind words of encour-
agement.

I originally came to Carnegie Mellon with the goal of pursuing research in
speech recognition but—in what turned out to be a life-changing decision—I
serendipitously enrolled in Martial Hebert’s computer vision class. Thanks Mar-
tial, for being my first mentor at the RI and taking a chance on a fresh-off-the-
boat, wet-behind-the-ears master’s student all those years ago.

I would like to thank my collaborators over the years. Some of the impor-
tant ideas in this thesis were developed during a train ride through Italy with
Daniel Munoz. Thanks, Dan, for being a great collaborator and critic, the next
Yuengling is on me. I would also like to thank Shih-En Wei, Kenny Marino,
Daniel Huber, Kris Kitani, Hamid Izadinia, Michael Devyver and Dhruv Batra.
Special thanks to Jamie Shotton for his mentorship and giving me the opportu-
nity to work at Microsoft Research and Leonid Sigal for his mentorship at Disney
Research. I would also like to thank all the members of the Perceptual Comput-
ing Lab including Hyun Soo Park, Hanbyul Joo, Tomas Simon, Eakta Jain, Yair
Movshovitz-Attias, Minh Vo, Natasha Kholgade, Tim Godisart and Sean Baner-
jee. Thanks to the computer vision group members, past and present, for all the
discussions, feedback, and friendship. Thanks, Dan, Abhinav I & II, Saurabh,
Ishan, Aravindh, David, Scott, Ed, Narek, Jack, Kit, and everyone else. The

2



Robotics Institute provides an amazing environment for being a graduate stu-
dent. Particular thanks to Suzanne Lyons Muth, Jessica Butterbaugh, Yukiko
Kano, Suzette Gambone Rachel Burcin, and everyone else at the RI for making
being a graduate student at the RI an absolute pleasure.

My time at Carnegie Mellon was amazing thanks to the company of some
truly wonderful people. Thanks to Tomas Simon, Debadeepta Dey, and Jiuguang
Wang for all the good times. Shout out to everyone who passed through the Youth
Hostel. Satyajith Amaran, Utsav Prabhu, Aranya Venkatesh, Supreeth Achar,
you guys were my family away from home. Thanks to everyone at the CMU Quiz
Club, past and present, for the endless entertainment and great company. Thanks
to Nishtha, Keshav, Chitra, Vinod, Sid “Julian” Garg, Vyas, Vas, Apurva, Ash-
wati, Divya, Toups, Ji, Samrat, Udaya, Lavan, Venkat, Abhijeet, Maddali, Mike
(he’s in my team), and Erle. Thanks to Pandu, Bhatta, DC, Pavan, Charlie, Pota,
KVM (hat-tip for the Vishwaroopa Darshana reference), Kuba, Khaj, Ashank,
and Vada for being my closest friends and brothers-in-arms.

I’d like to thank my family and extended family. Thank you, Usha Aunty and
Shankar Uncle, for always providing a home away from home during my stay in
the United States. Thank you, Harini, for your love and support. I am a better,
happier, less chaotic person since I met you. Finally, this thesis is dedicated
to my parents, brothers, and my wife Harini, without whose unconditional love,
unwavering support and selfless sacrifice, none of this would be possible. Thank
you for always believing in me.

3



“Thine own eyes are insufficient,
I will grant you divine vision—behold!”1

1Chapter 11, Verse 8 of the Vishwaroopa Darshana, Bhagavad Gita
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CHAPTER1
Introduction

Figure 1.1: The Horse in Motion, Eadweard Muybridge, 1899. Muybridge settled a popular question of
the day showing by means of photographs that a galloping horse indeed has all four hooves off the ground
simultaneously, an event too fleeting to be captured by the human eye.

The visual study of natural articulated motion from images dates back at
least to Muybridge [1899] and his study of human and animal locomotion. In
possibly the first instance of visual inference of articulated motion from images,
Muybridge conclusively proved that a galloping horse does indeed have all four
hooves off the ground simultaneously (Figure 1.1), settling a popular debate of
the day. Muybridge’s [1899, 1901] early photographic studies showcased the rich
range of complex motions that naturally occurring articulated structures can
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CHAPTER 1. INTRODUCTION

Image

(a) Input
2D Anatomical Landmarks 3D Human Pose and Camera

(b) Output Representation

Figure 1.2: Our goal is to efficiently and accurately localize 2D and 3D joints from images and
video.

execute.

Beyond answering questions regarding equine flight-worthiness, the visual
study of articulated motion can be informative and revealing. In particular, be-
cause the articulated motion of humans is varied and complex; we use the range of
motion of our articulated bodies for functional tasks, such as transport and ma-
nipulation, as well as for communication and self expression. When we interact,
a large fraction of the information we convey is via non-verbal communication,
using our limbs to gesture and signal intent. It is therefore crucial for an au-
tonomous system, operating and interacting in cluttered and uncontrolled human
environments, to understand human behavior in its natural setting. Reasoning
usefully about such behavior requires efficiently extracting compact representa-
tions of the behavior from its possibly noisy sensing modalities, dealing with
uncertainty in measurement, inherent power limitations, and a computational
budget.

What constitutes a good representation for understanding natural articulated
motion? We require that the representation (a) retains enough information such
that desired task-specific, potentially higher level content can be inferred from
it; (b) can be feasibly extracted from raw input (c) is compact and unambigu-
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CHAPTER 1. INTRODUCTION

ous, with few degrees of freedom. Simultaneously satisfying all these criteria
is challenging because of trade-offs that arise between each of the desiderata.
While one can conceive of detailed surface representations which capture every
muscle movement and micro-expression, such a representation can be difficult to
extract and unwieldy to perform down-stream computations with. Conversely,
a representation such as a silhouette while allowing for higher-level reasoning,
might be noisy and ambiguous. In this work we use a representation consisting
of keypoints corresponding to anatomical landmarks on the articulated structure
in 2D and 3D. Studies of the human visual perception system show that several
higher-level percepts regarding behavior, intent and subject characteristics can
be inferred from such a minimal representation1. The goal of this thesis is then
to develop computational methods to automatically reason about the natural ar-
ticulated motion and configuration of humans, from unconstrained images and
image sequences by extracting such minimal keypoint representations. From an
image, such as in Figure 1.2a, our goal is to localize the anatomical landmarks
of the person in the image, assemble its configuration in three-dimensions, and
position the camera at the relative vantage from where the image was captured.
This task, while nearly effortless for humans, has proven to be a long-standing
challenge for computers.

1.1 Scientific Challenges

The main challenges in estimating articulated human pose from images arise
from the following sources of complexity: kinematics, appearance, ambiguity and

1In his seminal work, Johansson [1973] developed a minimal information display consisting
of lights attached to a subject’s joints to study the human perception of biological motion.
From these point light displays alone, human observers have been shown to be able to infer
higher level information such as arm movements [Pollick et al., 2001], American Sign Language
[Poizner et al., 1981] identity [Perrett et al., 1985], gender ([Kozlowski and Cutting, 1977]), and
the relative weight of lifted objects [Runeson and Frykholm, 1981].

10



CHAPTER 1. INTRODUCTION

imaging. We describe these sources of complexity in detail below.

Kinematics: The first challenge arises, in part, due to the large state space
of articulated objects such as humans. The articulated structure results in
a state space exponential in the number of kinematic degrees of freedom.
For an articulated structure with d degrees of freedom and θ possible states,
which could be locations in an image or discretized joint angles, there are
θd possible configurations. As an example, in a simplified human body
model with d = 16 degrees of freedom2 and with each degree of freedom
discretized into θ = 100 states, we have 1032 possible configurations. Even
with a conservative coarse estimate, we arrive at a large configuration space
to reason over.

Appearance: The second challenge is due to the large variation in image
evidence. The same articulated configuration can have varying appearance
depending on local appearance factors such as clothing and skin color, and
global appearance factors such as illumination, shadows etc. Additionally,
the appearance of each part of an articulated object in an image is coupled
with the configuration the object and the relative camera pose. Building
upon our earlier counting argument, we can attempt to list the number
of possible appearance states. Assuming a simple model with ηl states
for local appearance properties, such as color and identity, and ηg for a
global property such as lighting, this induces a total number of (θηl)dηg
appearance states. As an example, setting local appearance ηl = 10 and
global appearance ηg = 10, generates 1043 different appearances.

Ambiguity: In addition to the large variation, the monocular pose estima-
tion problem is also riddled with ambiguities in geometry and appearance.
Geometrical ambiguity arises because the problem of estimating the 3D con-
figuration of points from their 2D projections is ill-posed, even when fitting

2By some estimates, the human body has up to 244 degrees of freedom [Zatsiorsky, 1998].

11



CHAPTER 1. INTRODUCTION

a known 3D skeleton3. Appearance ambiguity arises due to the fact that the
human body has a bilateral plane of symmetry resulting in the symmetric
appearance of parts on the left and right halves of the body. Additionally,
in natural unconstrained environments with measurement noise and imag-
ing artifacts, background clutter can often appear indistinguishable from
the appearance of parts of the body and vice-versa.

Imaging: The process of projecting a scene onto the image plane results
in a loss of information along the optical axis. In the pose estimation
problem, this introduces complexity due to self-occlusion and inter-person
occlusion, where parts of the same articulated structure or interacting ar-
ticulated structures occlude each other along the camera axis. Reasoning
about the presence of an occluded part is an extremely challenging task due
to the absence of local evidence, and must be inferred only from context.
The relative viewpoint of the camera with respect to the articulated object
introduces additional complexity, as the number of possible appearances is
multiplicative with the number of possible relative viewpoints.

In essence, the problem of articulated pose estimation could be distilled to one
of finding a valid configuration from an exponentially large number of possible
configurations that explains ambiguous and uncertain image evidence.

Approaches to tackle the articulated human pose estimation problem can
be broadly separated into two phases. The first, modelling, usually takes the
form of designing a scoring (objective) function that assigns each configuration a
score, with plausible configurations being assigned higher scores and implausible
configurations assigned lower scores. To design a scoring function, researchers
have relied on approaches that involve scoring a configuration by measuring the

3 As noted in [Lee and Chen, 1985], each 2D end-point of a limb subtends a ray in 3D space.
A sphere of radius equal to the length of the limb centered at any location on one of these
rays intersects the other ray at two points (in general) producing a tuple of possible 3D limb
configurations for each location on the ray.
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Head Neck L-Shoulder L-Elbow L-WristInput Image

Figure 1.3: Confidence maps from independent part detectors. Parts with
strongly discriminative appearance such as the head and shoulders have sharp peaks
and unimodal confidence maps. Parts lower down in the kinematic chain of the human
skeleton tend to be harder to detect due to large appearance variation.

agreement between learned visual appearance and the observed image appearance
corresponding to the configuration being scored. A complete decomposition of
the scoring function that reasons about each degree of freedom independently is
usually not successful. In Figure 1.3 we show the confidences for detecting each
part in an image independently using local appearance, we see that the confidence
maps are noisy, ambiguous, with a large number of false positive detections.
Relying purely on local appearance is therefore not a viable strategy. However,
as far back as [Helmholtz et al., 1909] it has been hypothesized that in addition
to relying on learned appearance of objects, humans also rely on common sense
physical and structural constraints (Table 1.1) to aid visual reasoning. Relying
purely on appearance can allow implausible configurations such as the classical
problem of double counting in 2D pose estimation where two limbs are allowed to
occupy the same region in the image. In order to prevent such configurations, it
becomes necessary to penalize body configurations that violate such physical and
structural constraints by incorporating them into the model. In Table 1.1, we
list a set of cues and constraints that assist in the task of estimating articulated
human pose.

The second phase of estimating articulated human pose, inference, involves
designing algorithms to efficiently score and search through the set of possible

13
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Appearance Cues Structural Constraints Physical Constraints
Local appearance Kinematic chain structure Temporal consistency
Mid-level Appearance Inextensibility of limbs Mutual Exclusion
Global Appearance Structural symmetry Rigid deformation
Appearance Symmetry

Table 1.1: Useful constraints and cues in the articulated human pose estimation problem.

configurations. When the scoring function is such that it decomposes over states,
algorithms can be designed for searching through the state space in an efficient
manner. As an example, when the problem of estimating articulated human
pose is modelled as a tree structured conditional random field [Lafferty et al.,
2001], efficient dynamic programming algorithms can be employed. In continuous
state spaces, if the model is designed such that the scoring function has certain
geometric structure (e.g., convexity), efficient and provably optimal optimization
methods can be employed.

A core characteristic of the articulated human pose estimation problem is the
trade-off that arises between the complexity of the model (scoring function) and
the tractability of drawing inferences from it—the more complicated the model,
the harder it becomes to find exact answers to the questions we ask of it. In
discrete state spaces, this could be because the addition of certain constraints
disallows the scoring function from decomposing over states, thus preventing the
use of efficient search algorithms. In the continuous case, certain constraints
or priors can result in a non-convex optimization problem with multiple local
minima making exact and efficient optimization difficult.

This trade-off defines a spectrum in the approach to these problems. On
the one hand, one could prefer simple models that trade accurate modeling for
exact inference, and on the other hand we have approaches that prefer accurate
modeling but operate with inexact or approximate inference.

14



CHAPTER 1. INTRODUCTION

1.2 Core Contributions of this Thesis

Cognizant of the trade-off described above, this thesis develops solutions to articu-
lated pose estimation problems with two distinct approaches: (i) tightly coupling
modeling and inference to side-step the complexity-tractability trade-off and (ii)
developing models which incorporate physical and structural constraints with
tractable substructures that enable efficient inference. We discuss our contribu-
tions in the context of these approaches:

(i) Tightly coupled modeling and inference for pose estimation: In the
context of predicting the 2D locations of anatomical landmarks, a key observation
is that the spatial context of a landmark provides a strong cue for predicting its
location. Classical approaches such as the pictorial structure approach [Fischler
and Elschlager, 1973; Felzenszwalb and Huttenlocher, 2005; Yang and Ramanan,
2013] aim to capture such correlations and spatial dependencies between the
parts via a graphical model. However, inference in graphical models is diffi-
cult and inexact in all but the most simple models such as a tree-structured or
star-structured model. These simplified models are unable to capture important
dependencies and interactions between parts and lead to characteristic errors.
Models that incorporate additional constraints are difficult to learn and perform
inference with [Kumar et al., 2005]. When people interact in images, this prob-
lem is compounded exponentially. We side-step this trade-off between modeling
complexity and tractability of inference by directly learning an inference proce-
dure for predicting the location of landmarks. We develop an inference machine
[Munoz et al., 2010; Ross et al., 2011] architecture called a Pose Machine con-
sisting of a sequence of predictors trained to predict the location at each stage in
the sequence mimicing the mechanics of message-passing inference in graphical
models. The Pose Machine architecture (Chapter 4) provides a modular frame-
work for implicitly modeling complex spatial dependencies between parts and
reduces the structured prediction problem of pose estimation to a sequence of
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CHAPTER 1. INTRODUCTION

simple classification problems. The modular nature of the architecture allows us
to incorporate the latest advances in supervised prediction, including deep con-
volutional networks. Using the top-down design philosophy of a pose machine we
develop a convolutional architecture called a Convolutional Pose Machine. Con-
volutional Pose Machines achieve state-of-the-art results on benchmark datasets
for monocular pose estimation due to several design features suggested by the
pose machine architecture, such as intermediate supervision, inter-mixed multi-
resolution cues, and large receptive fields. For the problem of interacting people,
we develop Dyadic Pose Machines (Chapter 5) to parse the articulated pose of
two interacting objects. The contributions described here were published in the
following papers:

Varun Ramakrishna, Daniel Munoz, Martial Hebert, James A. Bagnell, and
Yaser Sheikh. Pose Machines: Articulated Pose Estimation via Inference
Machines. In European Conference on Computer Vision, 2014.

Shih-En Wei, Varun Ramakrishna and Yaser Sheikh. Convolutional Pose
Machines: A Deep Architecture with Intermediate Supervision. Under re-
view at IEEE International Conference on Computer Vision, 2015.

(ii) Incorporating structural constraints with tractable substructures:
We examine how to design models with richer structural and physical constraints
that allow for tractable substructures that enable feasible inference. Tracking
articulated human pose in image sequences is challenging due to the symmet-
ric appearance of human body parts and due to self occlusions. In Chapter 6,
we show how to incorporate mutual-exclusion constraints that, prevent double
counting of body parts, provides a representation for occlusions, and encourages
temporally smooth part-tracks. This is achieved by greedily solving tractable sub-
problems that model the motion of parts with symmetric appearance, drawing
from ideas in the multi-target tracking literature.

The problem of reconstructing human pose in 3D is challenging due to in-

16



CHAPTER 1. INTRODUCTION

herent kinematic complexity and ambiguity. In Chapter 7, given 2D (x, y) ∈ R2

locations for landmarks in an image, we develop algorithms for reconstructing
the 3D pose ((X, Y, Z) ∈ R3 locations of each anatomical landmark) of the artic-
ulated structure (human skeleton). We develop a model that is able to represent
a wide variety of actions by relying on a large motion-capture dictionary while in-
corporating anthropometric constraints that preserve plausible limb-lengths. We
show that inference can be broken down into a series of tractable subproblems
solved in succession. The contributions described in this section were published
in the following papers:

Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Reconstructing
3D Human Pose from 2D Image Landmarks. In European Conference on
Computer Vision, 2012.

Varun Ramakrishna, Yaser Sheikh, and Takeo Kanade. Tracking Human
Pose by Tracking Symmetric Parts. In IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

1.3 Broad Impact

The models and methods developed in this thesis have the potential for contri-
butions towards research and development in a wide array of fields.

1.3.1 Pose Estimation from Passive Sensors

Fast and reliable articulated human pose estimation enables a wide spectrum of
applications. The success of the Microsoft Kinect, which leverages a depth sensor
to perform pose estimation, is testament to how accurate and real-time articu-
lated human pose estimation can impact human-computer interaction. However,
the Kinect addresses only a small fraction of the scenarios in which people are
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imaged. Images on the internet, images captured from hand-held devices and
millions of frames of archival footage are still overwhelmingly in 2D (RGB). In
scenarios where passive sensing is the only option (as opposed to active sensing
such as the structured light sensor in the Kinect), which could be either due to
on-board power constraints or when the environment prevents active sensing4,
RGB cameras are by far the most widely used sensor. Enabling fast and accurate
articulated human pose estimation to work in unconstrained environments from
low-cost, low-power sensors will push the boundaries of how we interact with
machines.

1.3.2 Autonomous Reasoning in Human Environments

Autonomous agents deployed in and sharing real-world human environments need
to reason and interact with humans. An autonomous car operating on and shar-
ing roads with human drivers will need to understand a police officer’s hand ges-
tures and follow an indicated direction, or detect and understand that a cyclist’s
outstretched arm points to his intended direction of motion. In these scenar-
ios, efficiently extracting a compact and accurate representation for the human’s
behavior is crucial to reacting in a safe and timely manner. Urban human en-
vironments are cluttered, unstructured and result in noisy sensor measurements.
Performing articulated pose estimation in such scenarios will require the method
to be robust to heavy background clutter and widely varying illumination. In this
thesis, we develop and demonstrate methods that are robust to wide variation
in background, illumination, and individual appearance. The key to achieving
this is the fact that we are able to reduce the structured prediction problem to
supervised prediction and then leverage powerful classification algorithms with
high-inductive bias that are capable of learning sophisticated decision bound-

4In the case of outdoor sunlit environments, the sun’s infrared emissions wash out the
projected IR patterns from structured light sensors such as the kinect. Sensors which can
project patterns bright enough to be sensed even in sunlight have untenable power requirements
[Gupta et al., 2013].
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aries. The methods developed in this thesis for efficient pose estimation from
monocular images will enable reasoning about human motion, action, and intent
in traditionally difficult urban human environments.

1.3.3 Understanding Social Scenes

A large fraction of the information conveyed when people interact is non-verbal.
The body language of interacting people communicates emotion, intent and its
study from video can reveal useful insights about behavior. Park et al. [2012,
2013] study the social dynamics of interacting people from ego-centric video,
but limit their representation to gaze. Accurate pose estimation for multiple
interacting people will advance our understanding of social dynamics by providing
richer representations and reconstructions of such scenes. Current indoor pose
estimation algorithms that rely on depth sensors make restrictive assumptions on
the relative vantage of sensor with respect to the sensor. Inter person occlusions
and interacting actors also further degrade performance. The methods developed
in this thesis has the potential to overcome such limitations furthering research
in this area.

1.3.4 Immersive Virtual Experiences

Virtual reality is moving from the pages of science fiction into everyday use and is
beginning to show promise as a new medium of communication. True immersion
in a virtual environment requires high fidelity in the behavior and motion of a
virtual avatar for which accurate human pose estimation is critical. Traditionally
this has only been possible with expensive motion capture setups such as the
Vicon [Peak, 2005] system, or more recently, using active sensors such as the
Microsoft KinectTM. Additionally, pose estimation when multiple actors interact
in an environment can be challenging. The methods developed in this thesis
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for performing pose estimation from passive sensors have the potential to enable
portable and immersive virtual reality in a wide variety of environments, and in
complex multi-actor settings.
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CHAPTER2
Background

Figure 2.1: Joinville Soldier Walking, Etiénne-Jules Marey, 1883. Marey developed the tech-
nique of chronophotography to study the locomotion and physiology of human skeletal motion.
Marey dressed his subject in a black suit with reflective tape attached to the clothing between
the subject’s joints.

The earliest visual studies of natural articulated motion were performed con-
currently by Muybridge (see Figure 1.1) and the French physiologist Etiénne-Jules
Marey. Marey’s [1878, 1895] fascination of the human form and its biomechanics
led him to develop a new photographic technique, chrono-photography, to cap-
ture spatial-temporal aspects of human skeletal motion. By dressing his subjects
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in black velvet suits and marking joint positions in white, he captured multiple
instances of human motion on a single photographic plate clearly highlighting
spatio-temporal skeletal motion (see Figure 2.1). Using this technique, Marey
was able to gain previously unknown insights into articulated motion such as the
motion of the center of gravity during complex body motions such as gymastics,
the distribution of force when gymnasts land in different configurations and the
positions of body parts and their effects on balance during complex motions.

The modern successor of Marey was the Swedish psychologist, Johansson
[1973], who devised the dynamic point-light display1 technique where actors were
recorded wearing illuminated markers on the joints and head of the body while
performing simple activities, such that only the illuminated markers were visible
in the recording. Johannson was able to complellingly show that when human
subjects were shown frames of the recording in quick succession they were able to
easily discern the action being performed by the actor, but found it impossible to
impute the configuration from a single frame suggesting the importance of motion
in action understanding and the reliance on "learned" motion representations.

The core ideas in many current approaches for automatically understanding
articulated objects from visual input trace their origins to theories regarding the
representation and recognition of objects in the human visual perception system
and early efforts to replicate them computationally. One of the essential ideas,
that of representing an object by a collection of visual primitives or parts, is cen-
tral to many current computational methods for understanding articulated pose.
Proponents of Gestalt theory [Koffka, 1935], a movement in psychology, posited

1Point-light displays (PLD) revolutionized the study of human perception of biological mo-
tion. Research in the visual perception of biological motion has shown that many complex
actions can be recognized solely from PLDs including facial expressions [Bassili, 1978], arm
movements [Pollick et al., 2001], and American Sign Language [Poizner et al., 1981]. From
only PLDs, subjects could infer identity [Perrett et al., 1985], gender ([Kozlowski and Cutting,
1977]), and the relative weight of lifted objects [Runeson and Frykholm, 1981]. We point the
interested reader to [Blake and Shiffrar, 2007; Giese and Poggio, 2003] for a comprehensive
review and summary of current findings in the area.
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(a)

FISCHLER AND ELSCHLAGER: PICTORIAL STRUCTURES

LEFT
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(a)

VALUE(X)=(E+F+G+H)-(A+B+C+D)

Note: VALUE(X) is the value assigned to the
L(EV)A corresponding to the location X
as a function of the intensities of locations
A through H in the sensed scene.

(b)

K K2=CONSTANTS
a=(C+D+E+F)/4
p=(A+B+G+H+I+J)/6

p-(X+F)
IF [X<(a-K}) OR. a < /3)THEN VALUE(X)=yFK2
ELSE VALUE (X) = y

(c)
Fig. 3. Reference description of a face. (a) Schematic representation

of face reference, indicating components and their linkages.
(b) Reference description for left edge of face. (c) Reference
description for eye.

(noisy) face pictures using two references which in-
cluded, but differed in, the nose/mouth definitions. In
the first series, consisting of 90 experiments, there were

83 completely correct embeddings, and 7 partially incor-
rect embeddings. The errors involved six experiments
in which the nose/mouth complex was offset by three to
four resolution cells from its ideal location, and one ex-

periment in which both the eyes and the nose/mouth
complex were improperly placed. In the second series,
consisting of 45 experiments, the placement of the nose/
mouth complex was judged incorrect in 3 experiments,
while all the other components were always correctly
embedded.

Analysis of the face experiments led to the following
conclusions. In spite of almost perfect performance in
embedding the hair, eyes, and sides of the face, precise
placement of the nose/mouth complex based on strictly
local evaluation was almost impossible in some of the
noisy pictures due to loss of detail [e.g., see Fig. 4(b) ].
With the attribute feature of the LEA not yet opera-

tional, and with the arbitrary decision to use binary
(rather than multivalued) weights in the spring arrays

for these experiments, the LEA restricted the feasible
region over which an optimum value could be selected
for embedding the nose/mouth complex, but did not
bias the selection as would genetally be the case. In the
presence of heavy noise, the simple nose/mouth descrip-

tions used in these experiments were not always ade-
quate to produce a local optimum in the L(EV)A at or
near the ideal embedding location. (A three-resolution
cell deviation was considered an error.)

Image-Matching Experiments Using Terrain Scenes
Approximately 40 experiments have been performed

using terrain scenes (including both aerial and ground
scenes). The object in each case was to create a relatively
simple description of some portion of the scene and then
attempt to find the proper embedding of the description
in the image (or some distorted or alternate view of
the image).
The descriptions employed two basic types of com-

ponents: 1) texture components, in which- the "texture
value" of a point was defined as a crude statistical func-
tion of the intensity values and gradients in some local
region surrounding the point; and 2) shape components,
which were defined by collections of "edge" points hav-
ing specified gradients.

Fig. 5(a) shows an example of a terrain (reference)
description. Fig. 5(b) shows its successful embedding
relative to the computer-stored version of the photo-
graph of the actual terrain segment as shown in Fig.
5 (c). Each coherent piece in reference 5 (a) is represented
by several points enclosed by a dotted line. In this ex-
ample, the points of each enclosure of the reference com-

(b)

Figure 2.2: (a) Marr and Nishihara [1978] proposed an object-centred hierarchical model for
the representation and recognition of a complex three-dimensional object. The model consists
of a modular collection of volumetric primitives arranged in a hierarchy with increasing detail.
(b) Fischler and Elschlager’s [1973] pictorial structure model consists of a collection of parts
arranged together with spring-like constraint relationships between them.

that the brain perceives objects as a whole by the perceptual grouping of visual el-
ements that obey the principles of proximity, similarity, symmetry and simplicity.
Marr and Nishihara [1978] proposed a hierarchical model composed of volumet-
ric primitives for the object-centric representation of biological forms (see Figure
2.2a) and provided one of the first plausible computational models for perform-
ing inference of such a representation from images. Biederman’s [1987] theory of
recognition-by-components in the human visual system was based on assembling
geometric primitives called “geons” such as generalized cylinders [Binford, 1971],
blocks [Roberts, 1963], or ellipsoids [Pentland, 1986].

There is an extensive variety of work2 in the computational understanding of
human action, posture and behavior from images and image sequences. In this
chapter, we provide a review of approaches to the problem of articulated pose
estimation, where the goal is to automatically localize the positions of joints in
an image and estimate their configuration in three dimensions.

2We point the reader to Gavrila [1999], Moeslund et al. [2011] and Forsyth et al. [2006] for
comprehensive reviews of work in the visual analysis of humans
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Some of the earliest work is by Fischler and Elschlager [1973] who provided the
first computationally feasible and demonstrable algorithm for the understanding
of complex objects in images. They developed the pictorial structures representa-
tion for complex objects which decompose the appearance of the object into a set
of visual components or “parts”, linked to each other via spring-like constraints
on their relative deformations. Fischler and Elschlager [1973] also provided dy-
namic programming formulation that could be utilized to efficiently compute
the optimal configuration of each of the parts that explains image evidence. In
the following sections we discuss prior work in pose estimation in the context of
monocular images, image sequences and approaches to dealing with the difficult
case of multiple interacting articulated objects.

2.1 Pose Estimation from Monocular Images

In the pictorial structure or parts-based paradigm for articulated pose estimation,
the goal is to localize joint locations or anatomical landmarks on the human body
from a single image I. This is usually formulated as the problem of finding a
configuration for each part i ∈ V , V = {1, . . . , P}, where P is the number of
parts, that maximizes an objective function:

S(y, I) =
∑
i∈V

φi(yi, I) +
∑

(i,j)∈E
φij(yi, yj, I), (2.1)

where y = (y1, . . . , yP ) ∈ Y , is the configuration of the ith part in the image, Y
is the set of possible configurations in the image and E is a set of edges that link
parts. The appearance term φi, scores the local image evidence of placing part i at
the location yi, while the structure term φij scores the relative placement of parts
i and j at the locations yi and yj respectively. The collection of parts V and the
linkages between them E form a graph G = (V , E). Estimating the configuration
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(a) (b) (c)

Figure 2.3: Tree structured models. (a) The tree-structured pictorial structure model of
Felzenszwalb and Huttenlocher [2005] and extended by Andriluka et al. [2009]; Pishchulin et al.
[2012] uses rectangular templates to model parts and a state representation that models the
location, scale and orientation of each rectangular part, (b) the tree structured deformable parts
model of Yang and Ramanan [2011] uses flexible templates around keypoints instead of limbs,
and (c) a hierarchical tree model arranges parts in a hierarchy of increasing detail, versions of
which have been used by [Sun and Savarese, 2011; Wang et al., 2011; Duan et al., 2012; Zhu
et al., 2008].

of parts thus requires modeling and reasoning about both appearance (given by
the choice of φi) and structure (the form of φij and the topology of G). We
review related work in the context of design choices and models for appearance
and structure.

2.1.1 Models for Structure

Tree Structured Models

The seminal work of Felzenszwalb and Huttenlocher [2005] built on the original
pictorial structures [Fischler and Elschlager, 1973] and introduced the first prac-
tical algorithms for matching a pictorial structure approach to 2D images. The
model expresses the articulated structure of the human body as a tree-structured
graphical model with kinematic priors that couple connected limbs. By using
a parametric quadratic function to model pairwise spatial term (φij) that link
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coupled limbs they leverage efficient distance transforms [Felzenszwalb and Hut-
tenlocher, 2004] to speed-up inference of the optimal configuration that explains
image evidence.

Building on the success of the pictorial structures model, several approaches
adopt a tree-structured graphical model to represent human pose. [Ramanan,
2007; Buehler et al., 2008; Andriluka et al., 2009; Pishchulin et al., 2013b] improve
upon the original pictorial structures formulation by using expressive predictors
for part detection and develop increasingly sophisticated models for kinematic
relationships between parts. [Andriluka et al., 2009] use a parametric Gaussian
distribution in a local co-ordinate frame to model the relative deformation of
connected parts. Their model can be categorized as a loose-limbed model first
introduced in [Sigal and Black, 2006], where limbs are not rigidly attached at
joints allowing small deviations from the joint location. [Johnson and Evering-
ham, 2010] showed improved pose estimation by clustering the training data by
configuration and training a separate tree-model for each configuration cluster
allowing for simpler spatial models in each cluster, but overall increasing expres-
sivity.

Deformable Parts Model: The deformable part model [Felzenszwalb et al.,
2008] derives from the pictorial structures formulation and has been one of the
most successful methods for object detection. Objects are modelled as a collection
of parts with spring constraints between adjacent parts. [Yang and Ramanan,
2011] extend the deformable parts model to perform articulated pose estimation
by introducing smaller flexible parts arranged in a tree structured model whose
parameters are learned jointly in a max-margin learning framework. They differ
from previous pictorial structure models in using a mixture model to model small
regions around keypoints as the representation for parts instead of a rigid rectan-
glular template for each whole limb as in pervious models. This allows them to
learn simpler spatial models and allows for greater flexibility. [Wang and Mori,
2008] use a mixture of tree models to deal with the problem of double counting
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where the same region in the image can be used to explain more than one limb.

Search Space Reduction: Evaluating complex image features such as segmen-
tation boundaries, optical flow, etc., can be expensive. Many techniques aim to
reduce the search space so that expensive feature computations are performed
only at a few pruned image locations. Ferrari et al. [2008] use a weak model
followed by a grab-cut segmentation algorithm to prune the search space. Sapp
et al. [2010] use a structured prediction cascade of pictorial structure models that
learns a thresholding function to prune the state space. The thresholding func-
tion is designed to be aware of the optimal global configuration of all the parts
and does not naively use only local image evidence to prune states.

Image Dependent Modeling: Chen and Yuille [2014a] achieve impressive re-
sults by using a convolutional neural network to learn image dependent unary and
pairwise potentials of the tree-structured model of Yang and Ramanan [2011].
The use of image-dependent priors can potentially constrain the search space
further allowing for more accurate inference and has been employed in work by
Pishchulin et al. [2013a]; Sapp et al. [2010, 2011].

Hiearachical Tree Models: Tree models have also been adapted to incorporate
a hierarchical representations of appearance. Sun and Savarese [2011] use a tree
structured hierarchy of parts from larger composite parts such as whole limbs in
coarse levels of the hierarchy to smaller parts modelling the appearance around
joints in finer levels of the hierarchy. Pishchulin et al. [2013a] condition the spatial
priors for detection of anatomical landmarks on the detection of larger composite
parts. Tian et al. [2012] use a hierarchical tree model with latent variables to
represent composite parts.
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Beyond Trees

Many of the methods above have been successful on images where all the limbs
of the person are visible, but are prone to characteristic errors such as double-
counting image evidence, which occur because of correlations between parts, such
as during self occlusion, that are not modeled by a tree-structured model. In
order to get around the some of the deficiencies of tree models, many approaches
propose to augment the tree structured model with edges to capture additional
relationships between parts:

Occlusion Constraints Wang et al. [2011] use a hierarchical poselet represen-
tation with a non-tree structured graph but require the use of approximate loopy
belief propagation for inference. While inference is exact in their model they rely
on efficient bound computation which increases in complexity with the number of
loops in the model. Sigal and Black [2006] use per-pixel hidden binary variables
to encode occlusion relationships between parts resulting in a loopy graph and
perform inference using a non-parametric variant of belief propagation.

Symmetric Part Constraints: Jiang and Martin [2008] incorporate mutual
exclusion constraints by eschewing a graphical model and framing inference as a
max-flow linear integer programming problem over a reduced number of locations
for each part produced by an earlier state-space reduction step. Tian and Sclaroff
[2010] use a loopy model enforce appearance symmetry constraints and uses a
branch and bound algorithm to perform inference.

Limb Co-ordination Constraints: Limbs move in a co-ordinated fashion.
While this information can be captured by tree-structured graphs, often weak
local image evidence can prevent information flow. In order to accurately model
limb co-ordination, edges between parts not connected in the standard tree struc-
ture need to be modeled. Lan and Huttenlocher [2005] use a common-factor
model that augment the tree-structure with an additional latent factor that ac-
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counts for co-ordination between limbs. Kiefel and Gehler [2014] introduce the
field of parts model where the presence or absence of each part at every image
location is modeled with a large number of binary variables. Efficient inference in
this large, loopy, model is performed by using high-dimensional gaussian filtering
on a mean-field approximation of the model.

These models are usually difficult to perform inference on and rely on ap-
proximate inference methods at learning and test time. Moreover, the above
tree and non-tree models usually involve some degree of careful modeling—for
example, Andriluka et al. [2010] models deformation priors either by assuming a
parametric form for the pairwise potentials or as in Yang and Ramanan [2011]
who restrict the appearance of each part to belong to a mixture model. These
trade-offs are usually required to allow for tractable learning and inference. Even
so, learning the parameters of these models usually involves fine-tuned solvers or
approximate piecewise methods.

Implicit Models for Structure

Implicit shape models eschew a parametric model of human shape for an implicit
model that learns a spatial model directly from data. Some of the drawbacks of
explicitly modelling articulated structure arise from the fact that simple para-
metric models are often ill-suited for modeling the complexity of the full range
of human deformation. The choice for the particular parametric form is usually
motivated largely by the ease of performing inference rather than the suitability
of the model for capturing the variation in the data. Implicit models aim to
overcome these drawbacks by not committing to a particular parametric form
and by learning the correlations between parts in a data-driven manner using an
expressive learning algorithm.

Bai and Tu [2009] introduced the auto-context algorithm for capturing con-
textual information via the use of context from neighboring pixel classifiers for
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Fig. 6: A visualization of our model for K = 14 parts and T = 4 local mixtures, trained on the Parse dataset.
We show the local templates above, and the tree structure below, placing parts at their best-scoring location
relative to their parent. Though we visualize 4 trees, there exists TK ⇡ 2e7 global combinations, obtained by
composing different part types together with different springs. The score associated with each combination
decomposes into a tree, and so is efficient to search over using dynamic programming (1).

Instead of manually annotating bounding boxes as
PASCAL Person Layout Challenge does, we generate
each of them as the tightest box that covers the set of
ground truth keypoints.

APK: In a real system, however, one will not have
access to annotated bounding boxes at test time, and
so must address the detection problem as well. One
can cleanly combine the two problems by thinking
of body parts (or rather joints) as objects to be de-
tected, and evaluate object detection accuracy with
a precision-recall curve [49]. As above, we deem a
candidate to be correct (true positive) if it lies within
↵ · max(h, w) of the ground-truth. We call this the
average precision of keypoints (APK). This evaluation
correctly penalizes both missed-detections and false-
positives. Note that correspondence between candi-
dates and ground-truth poses are established sepa-
rately for each keypoint, and so this only provides a
“marginal” view of keypoint detection accuracy. But
such marginal statistics are useful for understanding
which parts are more difficult than others. Finally,
APK requires all people to be labeled in a test im-
age, unlike PCP and PCK. We have produced such
annotations for Parse and Buffy, and will make them
public.

PCP vs PCK vs APK. We compare different eval-
uations for the Parse dataset in Fig. 5, using the
implementation of PCP in the Buffy toolkit. Because
APK is the most realistic and strictest evaluation, we
deem it the “gold standard”. By tweaking the non-
maximum suppression (NMS) strategy for our detec-
tor to return more candidate poses, we do worse at

APK but artificially do better at PCP (as implemented
in the Buffy toolkit). This behavior makes sense given
that false positives are not penalized by PCP, but
penalized by APK. We would like to produce a similar
curve comparing APK and PCK under different NMS
strategies, but recall that PCK is not affected by NMS
because ground-truth windows are given. Rather, we
select a arbitrary dimension of our model to evaluate
(such as the number of mixtures), and show a positive
correlation of PCK with APK. Because PCK is easier to
interpret and faster to evaluate than APK, we use PCK
to perform diagnostic experiments exploring different
aspects of our model in the next section.

7.3 Diagnostic experiments

We define a full-body skeleton for the Parse set, and
a upper-body skeleton for the Buffy set. To define a
fully labeled dataset of part locations and types, we
group parts into orientations based on their relative
location with respect to their parents (as described
in Section 6.1). We show clustering results in Fig. 3.
We use the derived type labels to construct a fully
supervised dataset, from which we learn flexible mix-
tures of parts. We show the full-body model learned
on the Parse dataset in Fig. 6. We set all parts to be
5 ⇥ 5 HOG cells in size. To visualize the model, we
show 4 trees generated by selecting one of the four
types of each part, and placing it at its maximum-
scoring position. Recall that each part type has its own
appearance template and spring encoding its relative
location with respect to its parent. This is because we
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Quantitative Results

Leeds Sports Poses (LSP) [4]

• 1,000 train, 1,000 test images
• observer-centric annotations for testing [2]
• Percentage Correct Parts (PCP) criterion
Method Torso Upper Lower Upper Fore Head Total

leg leg arm arm

PS [1] 80.9 67.1 60.7 46.5 26.4 74.9 55.7
PS-flex 80.5 70.2 66.5 46.7 32.0 70.2 58.1

+ rot-dep single 82.2 72.5 67.9 51.6 31.6 78.3 60.8
+ rot-inv single 83.6 73.6 69.8 52.4 39.4 78.1 63.2
+ rot-dep mix 87.2 76.0 72.2 55.9 40.5 83.3 66.0
+ pose-dep mix 84.5 75.4 70.3 53.4 40.5 78.0 64.2

+ spec head/torso 89.2 76.7 72.8 56.9 41.2 84.7 66.9

+ mid-level appearance 89.4 78.7 74.0 59.7 43.9 86.0 68.8
+ mid-level p/wise 88.7 78.8 73.4 61.5 44.9 85.6 69.2

Yang&Ramanan, CVPR’11 84.1 69.5 65.6 52.5 35.9 77.1 60.8
Pishchulin et al., CVPR’13 87.5 75.7 68.0 54.2 33.9 78.1 62.9
Eichner&Ferrari, ACCV’12 86.2 74.3 69.3 56.5 37.4 80.1 64.3

Image Parse (IP) [6]

• 100 train, 205 test images

Method Torso Upper Lower Upper Fore Head Total
leg leg arm arm

Our full model 93.2 77.1 68.0 63.4 48.8 86.3 69.4

Andriluka et al., IJCV’11 86.3 66.3 60.0 54.6 35.6 72.7 59.2
Yang&Ramanan, CVPR’11 82.9 69.0 63.9 55.1 35.4 77.6 60.7
Duan et al., BMVC’12 85.6 71.7 65.6 57.1 36.6 80.4 62.8
Pishchulin et al., CVPR’13 92.2 74.6 63.7 54.9 39.8 70.7 62.9
Yang&Ramanan, PAMI’12 85.9 74.9 68.3 63.4 42.7 86.8 67.1
Johnson&Everingham, CVPR’11 87.6 74.7 67.1 67.3 45.8 76.8 67.4

Limitations

Self-occlusion Rare poses Strong foreshortening

Conclusion
• local and mid-level representations are complementary
• strong local appearance model already outperforms

state of the art when using basic tree connectivity
• best result to date by leveraging complementarity
) code available!
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Figure 6. A poselet describing a frontal face and five of its exam-

ples. Top row: The configuration spaces showing the eyes, nose

and left ear keypoints. Bottom row: the corresponding image

patches. By construction all examples of a poselet have similar

configurations and are therefore semantically similar.

In addition, it is possible that the i-th keypoint be present
in one example but missing from the other. In this case the
respective term is ws(i)b where (σ, a, b, h) are fixed param-
eters of the model.

Given an example s from human annotation as, H3D can
efficiently find the corresponding closest example r from
annotation ar. In particular, H3D uses a weighted least
squares fit based on ds(r) to derive the similarity trans-
form (tx, ty, α, s) that brings the keypoints of annotation
ar as close as possible to the normalized coordinates of s.
We can then measure the quality of the match based on the
residual distance ds(r). Note that the distance is measured
in 3D space which allows us to distinguish between key-
points near each other and ones with large foreshortening
and learn them in different poselets. Figure 7 shows some
query examples on the left and their corresponding closest
matches on the right. Notice how our pose space proximity
results in examples that, while visually different, are seman-
tically quite similar. This is a very important advantage of
our method: our poselet classifiers are going to learn the
kind of visual dissimilarity that corresponds to instances of
the same semantic class, and thus learn to recognize the se-
mantic class.

We have a simple and efficient procedure to generate a
poselet candidate from our training data: Given a rectangu-
lar window from one human annotation, we use the above
described least-squares method to find the closest corre-
sponding window from every other human annotation in our
training set and we keep the examples whose residual dis-
tance is less than λ. The parameter λ controls the tradeoff
between quantity and quality of the examples. For instance,
for a very aggressive setting our frontal face poselet will
start to include some profile faces as well. We set λ em-
pirically to a value of 0.1 which results in lots of examples
without affecting too much the quality.

Using the above procedure we could generate hundreds

Figure 7. Example query regions (left column) and the correspond-

ing closest matches in configuration space generated by H3D.

Configuration space proximity tends to produce semantically sim-

ilar examples, although they may be visually very different. The

first row, for example, tends to generate frontal-facing people

whose left hand is raised near their head. The second row shows

examples whose right foot is closer to the camera than their left

foot; i.e. matching is done in 3D space.

of thousands of poselet candidates, for example by starting
from random windows. We chose instead to run a scanning
window over all positions and scales of all annotations in
our training set. We don’t need to search over orientation
as our least-squares fit will discover rotated examples of the
same poselet. This procedure results in about 120K pose-
lets, which, by construction, are semantically tight. We then
prune them by removing poselets with very few examples
(which correspond to rare configurations) and poselets that
are too close to each other in configuration space (which
could happen as a result of double-counting during scan-
ning)5. This left us with about 2000 poselet candidates.

4. Selecting and Training Poselets

We train classifiers to detect the presence of each poselet by
using the examples of the poselet as positive examples, and
random image patches from images not containing people
as the negative examples. We use a linear SVM and our
features are Histograms of Oriented Gradients as proposed
by Dalal and Triggs [3]. We use their recommended settings
for all parameters, except our scan window has dimensions
of 96x64. We train using bootstrapping: we train an initial
classifier using the positive and a random set of negative
examples, then we use it to scan over images not containing
people and collect false positives, and then we do a second
round of training by including these hard false positives into
the negative training set.

Not all 2000 poselet candidates are suitable for training
– some may not train well and others may be redundant. To
reduce the computational complexity, we first prune the set
of poselet candidates by an order of magnitude: Using an
estimate of their cross-validation score and their pairwise

5In our current implementation we do not scan over rotations; thus we
also remove poselets that have wide orientation variance

Figure 3. DS part deformations. (left) Deformations for three ex-

ample parts. Black is the mean contour. Red and blue are ±2
standard deviations from the mean along the first 3 principal com-

ponent directions. Stars mark the joint locations which deform

with the contour. (right) Mean part shapes for the female and male

body (14-part model). The dots represent joint points (see text).

Pairwise potentials. The DS pairwise potentials relate
the shape coefficients of a part to the shapes and relative
orientations of neighboring parts. While these relationships
could be quite complex, we find that a reasonable model is
obtained with a simple Gaussian model.

Let i and j be two connected parts. The pairwise
model between part i and part j is a multivariate Gaussian
ψij(li, lj |Θij) =

N (zj , sin(θji), cos(θji), qji, tj , zi, ti|µij , Σij) (5)

where θji is the relative angle of j with respect to i. The
vector qji defines the distance between the joints of the
parts; that is, qji = (pji − pij), where pji is the joint point
of part j connecting j with part i and pij is the joint point of
part i. The points pji and pij are both defined in the local
coordinate system of the part i, which has its origin ci at
the midpoint between the joint points, and is aligned with
the main axis of the part. Note that the vector qji is analo-
gous to the spring that connects two parts in the PS model
representation. The scalars ti and tj are the lengths of the
two parts, defined as the distance between the part joints.
For the torso, the part length is defined by the distance be-
tween the neck joint and the belly button. Finally, the mean
and covariance Θij = (µij , Σij) of the Gaussian model are
learned using the training samples described above.

The DS model is unique in that it is a distributed repre-
sentation of body shape. The assumption is that the shape
of an individual body part predicts something about the lo-
cation and shape of parts that share a joint with it. Figure
4 illustrates the learned model by showing samples from it.
Given a part shape we generate samples from the pairwise
model for the part neighbors outwards along the tree. Note
how the shape of the torso defines a distribution for the ori-
entation of the upper arms.

Figure 4 (left) shows two different torso shapes that are
used as starting points for sampling from the model. Note
that the sampled poses are very different from these differ-

Figure 4. Sampling from the DS model. (left) Two different torso

shapes are outlined in black. Samples from the DS model are

shown as dotted black lines. These are generated by starting with

the torso and moving out along the tree structure. The red con-

tour shows the most likely pose and shape for the parts. (right)

Two more examples starting from different shapes of the upper

arm (the model is rendered in the coordinate system of the arm).

Figure 5. Examples of the DS model in a variety of poses. Note

how much the model’s left calf (magenta) varies in shape.

ent starting torso shapes. This is due to the fact that torso
shape is very much related to body pose. In contrast, Fig-
ure 4 (right) shows sampled poses starting from differently
shaped upper arms; a single arm shape does not say nearly
as much about the overall pose and shape of the body. Taken
together however, the collection of body parts and their spa-
tial relationships say a good deal about body shape. Exam-
ples of various posed models are shown in Figure 5. These
provide a fairly realistic representation of 2D body shape.

4. The DS “puppet”

There are several tools for annotating human pose in im-
ages but most give fairly crude descriptions of the body in
terms of “sticks” [13]. Bourdev and Malik [5] annotate im-
ages of people with joint locations, infer a 3D body pose,
and label super pixels as corresponding to different body
parts or clothing. We exploit the DS shape model to pro-
vide a new annotation tool that is easy to use and directly
manipulates the 2D body shape.

The interface allows a user to selectively move or lock
the joint points described in the previous section. The shape
of the model is inferred conditioned on these fixed points.
The user sees the model deforming as he or she moves the
points and can thus position it over an image.

We collected an annotated data set of 217 images. Ex-
ample annotations are shown in Figure 6. These annotations
are used for training the likelihood model in the following
section.

Figure 3. DS part deformations. (left) Deformations for three ex-

ample parts. Black is the mean contour. Red and blue are ±2
standard deviations from the mean along the first 3 principal com-

ponent directions. Stars mark the joint locations which deform

with the contour. (right) Mean part shapes for the female and male

body (14-part model). The dots represent joint points (see text).

Pairwise potentials. The DS pairwise potentials relate
the shape coefficients of a part to the shapes and relative
orientations of neighboring parts. While these relationships
could be quite complex, we find that a reasonable model is
obtained with a simple Gaussian model.

Let i and j be two connected parts. The pairwise
model between part i and part j is a multivariate Gaussian
ψij(li, lj |Θij) =

N (zj , sin(θji), cos(θji), qji, tj , zi, ti|µij , Σij) (5)

where θji is the relative angle of j with respect to i. The
vector qji defines the distance between the joints of the
parts; that is, qji = (pji − pij), where pji is the joint point
of part j connecting j with part i and pij is the joint point of
part i. The points pji and pij are both defined in the local
coordinate system of the part i, which has its origin ci at
the midpoint between the joint points, and is aligned with
the main axis of the part. Note that the vector qji is analo-
gous to the spring that connects two parts in the PS model
representation. The scalars ti and tj are the lengths of the
two parts, defined as the distance between the part joints.
For the torso, the part length is defined by the distance be-
tween the neck joint and the belly button. Finally, the mean
and covariance Θij = (µij , Σij) of the Gaussian model are
learned using the training samples described above.

The DS model is unique in that it is a distributed repre-
sentation of body shape. The assumption is that the shape
of an individual body part predicts something about the lo-
cation and shape of parts that share a joint with it. Figure
4 illustrates the learned model by showing samples from it.
Given a part shape we generate samples from the pairwise
model for the part neighbors outwards along the tree. Note
how the shape of the torso defines a distribution for the ori-
entation of the upper arms.

Figure 4 (left) shows two different torso shapes that are
used as starting points for sampling from the model. Note
that the sampled poses are very different from these differ-
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the torso and moving out along the tree structure. The red con-

tour shows the most likely pose and shape for the parts. (right)
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arm (the model is rendered in the coordinate system of the arm).

Figure 5. Examples of the DS model in a variety of poses. Note

how much the model’s left calf (magenta) varies in shape.

ent starting torso shapes. This is due to the fact that torso
shape is very much related to body pose. In contrast, Fig-
ure 4 (right) shows sampled poses starting from differently
shaped upper arms; a single arm shape does not say nearly
as much about the overall pose and shape of the body. Taken
together however, the collection of body parts and their spa-
tial relationships say a good deal about body shape. Exam-
ples of various posed models are shown in Figure 5. These
provide a fairly realistic representation of 2D body shape.

4. The DS “puppet”

There are several tools for annotating human pose in im-
ages but most give fairly crude descriptions of the body in
terms of “sticks” [13]. Bourdev and Malik [5] annotate im-
ages of people with joint locations, infer a 3D body pose,
and label super pixels as corresponding to different body
parts or clothing. We exploit the DS shape model to pro-
vide a new annotation tool that is easy to use and directly
manipulates the 2D body shape.

The interface allows a user to selectively move or lock
the joint points described in the previous section. The shape
of the model is inferred conditioned on these fixed points.
The user sees the model deforming as he or she moves the
points and can thus position it over an image.

We collected an annotated data set of 217 images. Ex-
ample annotations are shown in Figure 6. These annotations
are used for training the likelihood model in the following
section.

(a) Rectangular Templates (b) Parts (c) Contour Models (d) Poselets

Figure 2.4: Appearance Models. (a) Pictorial structure models traditionally have used
rectangular templates, with a separate template modeling each discretized rotation state (Image
courtesy, [Pishchulin et al., 2013a].), (b) the deformable part model of Yang and Ramanan [2011]
use gradient histograms in patches around keypoints, (c) the deformable structures model of
Zuffi et al. [2012] model the appearance of each part with a PCA contour model (Image courtesy,
[Zuffi et al., 2012].) (d) poselets model mid-level patches which cluster together in appearance
and configuration space (Image courtesy, [Bourdev and Malik, 2009]).

a variety of computer vision tasks. Dantone et al. [2013] learn better part de-
tectors by using a sequence of multiple random forests. Models that attempt to
learn a regressor that maps image features directly to a vector representing the
articulated pose can also be thought of as performing implicit shape modeling.
These methods have been popular in work that attempts to directly estimate 3D
pose. Agarwal and Triggs [2004a] attempt to directly estimate 3D pose by using
a relevance vector regressor on image silhouettes. Toshev and Szegedy [2013] re-
cently used a standard deep convolutional architecture [Krizhevsky et al., 2012]
to regress a vector of the 2D co-ordinates of anatomical landmarks.

2.1.2 Models for Appearance

Rigid Templates: The most popular method for capturing the appearance of
parts of a articulated body model is the use of rigid rectangular templates. For
models that use a limb and joint-angle based representation [Pishchulin et al.,
2013b; Felzenszwalb and Huttenlocher, 2005; Andriluka et al., 2009], the parts
correspond to a limb and use a rectangular template that is parameterized by,
position, scale and orientation (see Figure 2.4a). Models that use a keypoint
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based representation3 Yang and Ramanan [2011]; Chen and Yuille [2014a], use
parts that are represented by a patch tightly cropped around each keypoint (see
Figure 2.4b).

Contour Models: The work of Zuffi et al. [2012, 2013] introduced the de-
formable structures model that forgoes the traditional rigid rectangular template
representation for parts in lieu of a more accurate contour model that accurately
captures object boundaries (see Figure 2.4c). Points along the contour are rep-
resented as a linear combination of basis contour points that are computed using
principal component analysis. The accurate contour model requires inference to
be performed in a continuous domain, which is handled by using a non-parametric
form of belief propagation. Sapp et al. [2010] also use contour support features
in later stages of their cascaded model to provide richer image evidence for part
location.

Poselet Models: While limbs and keypoints are semantically meaningful, they
might not be best suited for detection. Combinations of parts that occur in a
fixed configuration and therefore have a consistent discriminative visual structure
can improve the probability of detection. The poselets [Bourdev and Malik, 2009]
framework uses a mid-level representation that capture the appearance of geo-
metrically consistent configurations (see Figure 2.4d). Mid-level representations
for part appearance have also been used by Pishchulin et al. [2013a]; Wang et al.
[2011]; Sun and Savarese [2011].

Global Models: Global models do not decompose the appearance of the articu-
lated object into a collection of parts, instead try to learn a representation of the
global appearance for regressing directly to matching exemplar in a dataset. Pose
estimation is performed by transferring a smoothed pose estimate of the nearest
matching exemplars. Popular features to capture global appearance have been
silhouette features [Agarwal and Triggs, 2004b], shape context features [Mori and

3There is evidence in the cognitive neuroscience literature that suggests that points on joint
locations are highly informative and provide a powerful representation.
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Malik, 2006], HMAX features.

Learned Appearance: Many of the above approaches utilize gradient statistics,
contour information or distance transform based features to encode the appear-
ance of articulated objects. An alternative increasingly powerful approach is to
directly learn a feature embedding for part appearance. The approaches by Taylor
et al. [2010]; Tompson et al. [2014] and Jain et al. [2014] directly learn a repre-
sentation for regions around anatomical landmarks using a deep convolutional
architecture trained using backpropagation on a task-specific loss function.

2.2 Pose Estimation from Image Sequences

In image sequences, the temporal smoothness and articulated dynamics of natural
motion provide additional useful cues for pose estimation. We discuss related
work that use different approaches to incorporate temporal smoothness cues.

Tracking by Detection: In tracking by detection approaches, hypotheses for
the pose are generated in each frame of the video independently followed by a
data-association step which selects poses from each frame to form a complete
pose track. One of the first models to track human pose over long natural im-
age sequences was demonstrated by Ramanan et al. [2005]. A canonical pose is
detected in the sequence from which the authors estimate a strong appearance
model for each limb. Once an appearance model is obtained the authors follow a
tracking by detection approach, reducing tracking to independent person-specific
model detection in each frame.

In Park and Ramanan [2011], the model of Yang and Ramanan [2011] is
sampled to obtain the N highest scoring diverse pose hypotheses in each frame,
followed by dynamic programming routine to obtain a sequence of poses in an
image sequence. The approach by Andriluka et al. [2008] detects people in each
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frame independently and uses a latent gaussian process dynamical model to infer
the pose through the image sequence.

Graphical Model-based Approaches: Several methods adopt a graphical
model approach to the problem and incorporate temporal continuity cues into
the model via pairwise inter-frame potentials. The main challenge in this case
is that the additional temporal edges in the graph between parts in adjacent
frames introduce a large number of loops making inference slow and approximate.
These approaches are also restricted to operate in a "batch" fashion. Ferrari et al.
[2008] use loopy belief propagation in a simple temporal model where parts in
successive frames are connected by temporal edges. Sigal and Black [2006] use
non-parametric belief propagation with learned motion distributions for temporal
edges. In Sapp et al. [2011], the authors use dual decomposition to perform
inference where the loopy graph is broken up into a set of slave trees in which
inference is feasible, and agreement is enforced via Lagrange multipliers.

Learned Dynamics: Several approaches learn dynamical models for human mo-
tion and use the learned dynamics to predict a configuration in the next frame
given an estimate for the configuration in the current frame. Isard and Blake
[1998] use ‘factored sampling’ along with a learned dynamical model to propa-
gate distributions over position and shape through time. Approaches by Urtasun
et al. [2006] learn a dynamical model directly from data using discriminative
methods such as gaussian processes [Lawrence, 2004]. Instead of learning dy-
namical models from data, Brubaker et al. [2007] and Vondrak et al. [2008] use a
detailed biomechanical characterization of human dynamics coupled with image
based observation models to track human pose. A limitation of these models is
that they usually require fairly accurate initialization and are prone to drift. In
addition, human motion can be highly complex and learning a dynamical model
from data that can generalize across human action, shape and identity remains
a challenge.
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Flow-based Filtering Models: In early work by Hogg [1983], projections
of 3D primitives are tracked over image sequences. Bregler and Malik [1998]
parametrized the kinematic tree of the human body using twists and exponential
maps, and propagate pose estimates by performing least squares optimization to
match measured and predicted flow of image gradients. Sheikh et al. [2008] use
a Kalman filtering approach to tracking a set of articulated templates where pre-
dictions from a dynamical model are combined with detections from a per-frame
body detector to obtain new location estimates.

2.3 Pose Estimation for Interacting Objects

When jointly reasoning about multiple interacting articulated objects in a scene,
the state space for inference grows exponentially with the number of actors. Addi-
tionally, inter-person occlusions, non-canonical relative views and close proximity
degrade standard pose estimation performance. A possible approach to dealing
with the problem of interacting articulated objects is to reason about each ob-
ject individually. Methods such as those proposed by Ghiasi et al. [2014] and
Chen and Yuille [2014b] approach the problem by reasoning about each person
individually. These methods reason about the pose of individuals by modeling
local occlusions of body parts while remaining agnostic to the interacting indi-
vidual. Reasoning about the joint configuration of the interacting object results
in a more difficult inference problem. In work by Andriluka and Sigal [2012],
interactions between individuals are modeled using a graphical model with addi-
tional connections between parts of the interacting objects, Eichner and Ferrari
[2010] develops models for reasoning jointly about multiple people in a scene, by
designing a graphical model that incorporates inter-person occlusion and inter-
person exclusion terms. This results in a loopy graphical model, where inference
is difficult. The authors either use a branch and bound approach to perform
inference or approximate loopy belief propagation algorithms, which can poten-

34



CHAPTER 2. BACKGROUND

tially be intractable for models incorporating complex interactions and degrade as
the number of interactions increase and the model becomes more “loopy”. Yang
et al. [2012] study the problem of interacting people, but restrict their scope to
the problem of detecting types of interactions, by fitting tree structured models
trained for each interaction type and scoring the detections using the fitting error.
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CHAPTER3
Preliminaries

In this chapter, we provide a concise review of the tools from computer vision
and machine learning that are employed in later chapters. Estimating articulated
pose requires obtaining confidences for the location of each part in the image
(represented by image patches around keypoints or rectangular limb templates).
We begin by describing classic sliding-window pipelines for object detection and
end-to-end convolutional architecturesthat perform feature learning directly from
data. Articulated pose estimation requires the prediction of valid configurations
of multiple parts simultaneously. We therefore review tools from machine learning
for structured prediction, where the goal is to predict output objects that can be
many-dimensional and possess certain regularities or structure in their output
space.

3.1 Detection Pipelines for Rigid Objects

The standard object detection pipeline in computer vision consists of two stages:
image feature map computation followed by supervised classification of
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 3.1: Feature Maps: On the left we show the input image, on the right are a set of
feature maps computed from the image. The feature maps are registered to the image so that
pixel correspondence can be established. Panels (1)-(3) correspond to the LAB feature maps,
(4) gradient magnitude, (5)-(10) gradient orientation histograms for 6 orientation bins)

sliding windows. A common object detection pipeline as introduced by [Dalal
and Triggs, 2005] uses a set of gradient histogram bin feature maps with a linear
support vector machine classifier trained to indicate the presence or absence of an
object at each location in the image. The pipeline used by [Viola and Jones, 2001]
consisted of set of cascaded classifiers operating on haar features computed using
an integral image of the original grayscale image. [Dollár et al., 2009] describe
an object detection pipeline that consists of a set rich channel features followed
by classifiers that operate on haar features, local sums and histograms that are
computed efficiently using integral images.

Feature maps or channel features are non-linear transformations of the image
registered so that a pixel location across the channel maps corresponds to the
same pixel location in the image. Object presence can then be determined by
a classifier that operates on each image location with spatial support on the
feature maps, predicting a distribution over object classes, or determining the
presence/absence of an object at that location.
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3.1.1 Feature Maps

While there are a large number of different feature transformations that can be
applied to an image, we describe a few that we use in later chapters for the task
of part detection. We closely follow the feature channels as presented in [Dollár
et al., 2009] as they provide a diverse set of informative features that are fast to
compute.

LAB Colorspace: The RGB image is non-linearly transformed into the LAB
color space that consists of a luminance (L) channel and two color channels (AB).
The LAB colorspace is designed to approximate human vision and represent a
color space that is perceptually uniform, i.e., perceptually similar colors occur
closer together in this color space.

Gradients: Object boundaries and edges manifest as discontinuities in intensity
values across the image plane. The magnitude and orientation of gradient of the
image thus provide strong cues for object detection. Gradients can be computed
by applying a set of image filters to a Gaussian smoothed image. The image
filters fx and fy measure image differences in the x and y directions at an image
location z = (u, v) ∈ R2. Convolving the filters with the image I results in the
gradient responses,

gx = I ∗ fx, gy = I ∗ fy, (3.1)

where ∗ denotes a convolution operator. The magnitude and orientation of
an image gradient at a location in the image can be computed as G(z) =√
gx(z)2 + gy(z)2 and O(z) = tan−1( gy(z)

gx(z)) respectively.

Histograms: Statistics of gradient responses in small image regions also provide
strong cues for object shape and have been one of the most successful features
[Dalal and Triggs, 2005] for object detection. The quantization and binning
of gradient orientations in image cells also provides some degree of invariance to
small deformations and translation of object shape. A gradient histogram channel
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for orientation θ can then be computed by binning the orientation responses into
one of τ bins, followed by counting pixels with specified orientation θ ∈ [θ1 . . . θτ ]
:

Hθ(z) = 1
|Nσ(z)|

∑
δ∈N (z)

G(δ) · 1(O(δ) = θ) (3.2)

where Nσ(z) is a set of image co-ordinates in a neighborhood of the image pixel
location z of size determined by pooling scale σ.

Feature Map Computation as a Convolutional Architecture: An inter-
esting point to note is that the standard feature map computation pipeline can be
abstracted to be comprised of a linear convolutional filtering step as in Equation
3.1 followed by a point-wise application of a non-linear function as in the com-
putation of the gradient magnitude and orientation and the quantization step,
followed by an aggregation or pooling step as in Equation 3.2. We will see later in
the chapter that convolutional architectures for feature learning will use a similar
pipeline for feature learning, but differ in that the parameters for the filters and
non-linear operations are learned from data.

In the sliding window object detection pipeline, at each location z in the
image, features are collected from a window of size sx × sy corresponding to
the size of the object from each feature map. The features are collected into a
vector and supplied to a classifier which is trained to predict whether an object
is present at each location. In the following section, we review a popular choices
for performing supervised multi-class classification and discuss the trade-offs and
issues associated with them.

3.1.2 Supervised Classification

Supervised classification is the task of finding a discriminative function that clas-
sifies the training dataset D = {(xi, yi)}, where xi ∈ X ⊂ Rd and yi ∈ Y ⊂ R
represent the features and corresponding label respectively of the ith sample.
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Algorithm 1 train_random_forest(D, N)
1: Input: N //Number of trees
2: Input: D //Training dataset
3: for i = 1 . . . N do
4: Sample subset Di from dataset D.
5: fi = grow_tree(Di, 0)
6: end for
7: Return: Learned forest {fi}N

i=1.

Often, the task of supervised learning is formulated as one of minimizing the
empirical risk R over a dataset D given by:

R(f) = 1
|D|

∑
(xi,yi)∈D

l(f(xi), yi) (3.3)

where l(·, ·) is a function that measures the loss incurred by making the predic-
tion f(xi) for a sample with ground truth label given by yi. The empirical risk
minimization problem is then to find the optimal f ∗ satisfying the following:

f ∗ = min
f

R(f) (3.4)

We discuss some popular choices for the predictive function f and algorithms
used for learning.

Random Forests: Random forests are a powerful and versatile supervised pre-
diction algorithm introduced by [Breiman, 2001]. A random forest consists of
a collection of decision trees, each trained on a random subset of the data and
whose predictions are averaged at test time. Random forests have been em-
pirically shown to be one of the most versatile and consistently high perform-
ing supervised learners on a variety of supervised learning tasks [Caruana and
Niculescu-Mizil, 2006] in general and computer vision tasks in particular as in
[Shotton et al., 2013].

Training a random forest proceeds by first selecting subsets of the data to
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Algorithm 2 grow_tree(D, d)
1: Input: D = {(xj ,yj)}|D|j=1 //Training dataset
2: Input: d //Current depth
3: Initialize: root //Root node of subtree
4: if |D| < nmin or d > dmax then
5: root→is_leaf = true
6: root→ yo ← 1

|D|
∑|D|

j=1 yj

7: else
8: DL, DR, split_idx, thresh ← find_best_split(D)
9: root→split_idx ← split_idx
10: root→thresh ← thresh
11: root→left ← grow_tree(DL, d+ 1)
12: root→right ← grow_tree(DR, d+ 1)
13: end if
14: Return: root

train each decision tree on: a procedure known as bootstrap aggregation (see Al-
gorithm 1). A decision tree is then trained in a recursive manner as outline in
Algorithm 2. The dataset is recursively split at each node of the tree by choosing
a threshold on a feature value such that splitting on that feature results in dis-
tributions for the left and right children that maximize a particular information
criteria. Popular choices for the splitting criteria include maximizing information
gain, minimizing co-variance of the split distributions or maximizing the purity
of each of the splits. At test time, each data sample is propagated down each
of the trees eventually reaching a leaf node in each of the trees. The predicted
label distribution ypred is obtained by averaging the distributions yio stored at the
resulting leaf of each of the trees:

ypred = 1
N

N∑
i=1

yio (3.5)

Random forest inference can be implemented to operate efficiently in parallel
on a GPU by converting the recursive tree traversal into an iterative traversal as

41



CHAPTER 3. PRELIMINARIES

shown in [Sharp, 2008]1. While, efficient algorithms for training random forests
exist, the key bottleneck in scaling up training to handle datasets with millions
of data points is the fact that the learning algorithm requires O(nd) memory.
While online variants [Saffari et al., 2009; Denil et al., 2013] have been proposed,
their performance has not yet been demonstrated to be competitive with their
batch variants.

Boosting as Functional Gradient Descent: The empirical risk minimization
problem in Equation 3.3 can be thought of as finding the optimal function f ∈ F ,
where F is a function space with a well defined inner product [Friedman, 2001].
In this view, optimization of this objective corresponds to performing gradient
descent in the function space F where in each iteration the predictor is updated
by taking a gradient step,

ft ← ft−1 + αt∇R(ft), (3.6)

where αt is the step-size and ∇R(ft) is the functional gradient of the empirical
risk function R. The gradient R(ft) of the empirical risk function is defined only
at the data points in the dataset D. This results in updates to the predictive
function only at data points seen during training which can lead to overfitting.
To mitigate this, a smooth function ht ∈ H which is defined in all of X , is fit
to the gradient ∇R(ft), by either projecting the gradient into H or finding the
h ∈ H that is closest to the functional gradient according to a chosen metric.
The resulting function after T steps of gradient descent is given by:

fT =
T∑
t=0

αtht. (3.7)

1Current graphics processing units (GPU) possess a single instruction scheduler which results
in algorithms with high amounts of branching to execute slowly. The transformation from a
recursive formulation to an iterative formulation drastically reduces the number of branching
instructions allowing maximal utilization of the parallelization capabilities GPUs offer.
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The functional gradient descent view of empirical risk minimization captures
different variants of boosting depending on the choice of hypothesis class H and
loss function l(·) used. For e.g., the Adaboost algorithm of [Freund and Schapire,
1997] use an exponential loss function and decision stumps as the class of weak
learners. General convex loss functions can be optimized using a sub-gradient
method variant of the above as shown by [Grubb and Bagnell, 2011]. In later
chapters, we use Boosted Random Forests, which are a powerful class of predictors
which use random forests as the hypothesis class H, and have been shown to
have strong empirical performance on a variety of learning tasks [Caruana and
Niculescu-Mizil, 2006].

3.1.3 Convolutional Architectures for Object Detection

Deep convolutional networks also known as convolutional neural networks were
made popular by LeCun et al. [1989] and are inspired by several early neural
architectures such as Fukushima’s [1980] Neocognitron. These architectures have
achieved stellar performance on a variety of classification tasks in computer vi-
sion as first demonstrated by Krizhevsky et al. [2012] and many others [Girshick
et al., 2014; Szegedy et al., 2014; Sermanet et al., 2013] subsequently. Deep con-
volutional networks are attractive as they perform feature learning, extraction
and classification jointly in a single framework which can trained in an end-to-
end fashion. These architectures have the advantage of learning features, directly
from the data, that are tuned to the task being performed by backpropagating
gradients of the task objective.

A deep convolutional network is comprised of successive layers of convolu-
tional linear filtering followed by the application of a point-wise non-linear func-
tion (see Figure 3.2). Let I ∈ Rw×h×3 be a 3-channel color image of width and
height equal to w and h respectively, and W i

l ∈ Rk×k and bil be the weights
and bias of the ith linear filter at a layer l. We denote by Xl−1 ∈ Rw′×h′×K the
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Figure 3.2: Convolutional Architectures: A deep convolutional architecture consists of a
series of feature maps produced by a succession of filter convolution operations followed by the
application of a point-wise non-linearity or a pooling operation. We show a fully convolutional
architecture that produces dense pixel predictions for every location in the image.

collected set of responses or feature maps {X i
l−1}i∈(1...Kl−1) to the Kl−1 filters in

the l − 1th layer. The response at the lth layer to the ith filter is given as:

X i
l = σ(

∑
j

Xj
l−1 ∗W i

l + bil), (3.8)

where σ(·) is a non-linear function that is applied pointwise to each location. In
the first layer, the filters are applied to the image, i.e., X0 = I. A popular choice
for the non-linear function is the use of a clipped linear function called a rectified
linear unit [Nair and Hinton, 2010], where σ is given by,

σ(u) = max(u, 0) (3.9)

In order to introduce a small degree of invariance to translations of the input,
the feature responses are often aggregated and subsampled using a pooling layer.
A popular choice for the pooling layer is the use of max pooling, which involves
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sliding a window across the feature map with a particular stride, and picking
the maximum feature map response within each window, resulting in a new sub-
sampled feature map (see Figure 3.2). Additional layers, such as dropout [Hinton
et al., 2012] have been proposed to improve generalization. Dropout layers turn
off units at random with probability p = 0.5 during training. The motivation is
that during training, by turning off units at random, the network being learned
is an average of several different sparser networks whose pathways are a subset
of the full network thereby performing model averaging resulting in improved
generalization.

In order to train the network, an objective function, l(yn, ŷn), can be defined
in terms of the feature maps in the output layer L, yn = {Xj

L}
KL
j=1, and desired

outputs ŷn for the nth image sample. The network is then learned by minimizing
the average loss (empirical risk) across the training dataset, D, given by:

LW(D) = 1
N

N∑
n=1

l(yn, ŷn), (3.10)

where W is a vector of all the weights in all the layers of the network. Popular
choices for the objective function are the euclidean loss function, soft-max re-
gression loss or cross-entropy loss functions. Learning the parameters W of the
network proceeds by performing gradient descent on the objective LW(D) as,

Wt ←Wt−1 + αt∇LW(D)

where αt is a learning rate and the gradients ∇LW(D) are computed using the
backpropagation algorithm introduced by [Rumelhart et al., 1985] and later ap-
plied to convolutional networks by [LeCun et al., 1989]. For a simple and practical
explanation on how to compute derivatives for deep architectures in general we
point the interested reader to the introductory chapter of [Sutskever, 2013].

Object detection can be performed using convolutional architectures by train-
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ing the network to produce, at the output layer, a set of confidence maps for differ-
ent objects or background. The network is trained by supplying ideal-confidence
maps ŷn with peaks in the confidence maps corresponding to the locations of the
objects in the image In.

3.2 Structured Prediction

In the previous section we reviewed methods for localizing a single rigid object
using a standard sliding window detection pipeline and alternatively by the use of
a deep convolutional architecture. The problem of estimating human pose entails
the joint detection of multiple parts of an object that can deform with respect
to one another and is an instance of a structured prediction problem in computer
vision. A structured prediction problem is a supervised learning problem in which
the output space possesses underlying structure where only certain configurations
of the output are valid.

While the precise definition varies according to domain, in computer vision,
a structured prediction problem can be defined to be the problem of learning a
predictor,

f(I) : I → Y , Y ⊂ Rd, (3.11)

where I ∈ I is an image, I is the space of images and Y is a structured out-
put space of dimension d. The problem of articulated pose estimation, is often
framed as a structured prediction problem with output space Y ⊂ R2P , corre-
sponding to the (x, y) locations of P keypoints of the object. The output space
of the articulated pose estimation problem is said to have structure, as only cer-
tain configurations of keypoint locations are considered valid. For example, the
location of the head tends to co-occur with the location of the neck and shoulders
in a subset of fixed configurations. A key challenge in such problems with large
output spaces is the inference problem of searching over the exponential number
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of configurations for the optimal configuration.

Structured prediction techniques aim to learn a predictor that exploits the
structure in the output space for reasoning about the exponentially many con-
figurations. One of the most popular methods has been the use of a graphical
model2 which represents a joint probability distribution between the variables,
represented as graph that encodes conditional independences. Conditional ran-
dom rields have been the method of choice in the articulated pose estimation
problem. A conditional random field is a discriminative undirected graphical
model that learns a distribution over the output variables conditioned on the
input variables. Inference in the graphical model setting involes finding the most
probable configuration of variables or finding the marginal distributions of the
joint distribution. The approach of using an inference machine [Munoz et al.,
2010; Ross et al., 2011] for structured prediction eschews a probabilistic model for
a sequential prediction approach that directly mimics the inference procedures
used in standard graphical model based approaches. We provide a brief review
of both these techniques in the context of articulated pose estimation.

3.2.1 Conditional Random Fields

In this section, we describe conditional random fields which are a class of undi-
rected graphical models that has found wide application in computer vision. Con-
ditional random fields model the conditional distribution between the output
variables y = (y1 . . . yP ), y ∈ Y and the input features x. In the articulated
pose estimation problem each of the output variables yi could refer to either the
(u, v) location of a landmark or the joint-angle state of a limb. The conditional
independences between the variables in the distribution are encoded in a graph
G = (V , E) where V ∈ {1 . . . P} is the set of nodes for each variable and E ⊂ V×V

2We point the reader to [Wainwright and Jordan, 2008] for a comprehensive overview of
theory and algorithms for learning and inference in graphical models.
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is the set of edges in the graph. The distribution can be expressed as a factorized
Gibbs distribution, parametrized by θ, as follows,

P (y|x; θ) ∝
∏
i∈V

ψi(yi|x)
∏

(i,j)∈E
ψij(yi, yj|x). (3.12)

where ψi(·) is a unary compatibility or potential function associated with each
yi and ψij(·, ·) is a potential function associated with pairs of variables. The
potential functions are constrained to be positive functions, and therefore are
convenient to express as exponentials,

ψi(yi|x) = exp{−Ei(yi; θi)}, ψij(yi, yj|x) = exp{−Eij(yi, yj; θij)} (3.13)

where Ei and Eij are functions parameterized by θi and θij respectively. Note
the dependence on the input x is implied, but dropped for notational conve-
nience. The distribution in Equation 3.12 can then be expressed as P (y|x) =
1
Z

exp{−E(y,x; θ)} where Z, the partition function, serves to normalize the dis-
tribution and is given by, Z = ∑

y∈Y
exp{−E(y,x; θ)}. The energy function E is

then given by,

E(y,x; θ) =
∑
i∈V

Ei(yi; θi) +
∑

(i,j)∈E
Eij(yi, yj; θij) (3.14)

Thus, every conditional random field is associated with an energy function as
in Equation 3.14. In this interpretation, the unary terms Ei can be thought of
functions that measure compatibility between the input x and a particular choice
for the variable yi, with a low energy indicating high compatibility. The pairwise
terms measure the compatibility between choices for pairs of variables yi and yj.
In the context of the articulated pose estimation problem, the unary terms Ei
measure the compatibility of the placement of a part i at a location yi and can
be obtained using the confidence maps from a detection pipeline for each part
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as described in Section 3.1. The pairwise term Eij measures the compatibility
of placing parts i and j at locations yi and yj respectively and is often modeled
with a quadratic function that penalizes large displacements.

Learning: A natural objective for learning the parameters θ of the distribution in
Equation 3.12 is that of maximizing the likelihood of the data {(xk,yk)} ∈ D
under the distribution with parameters θ. This can also be written as equivalent
to minimizing the negative log likelihood Lθ :

θ∗ = arg max
θ

∏
(xk,yk)∼D

P (yk|xk; θ) = arg min
θ

Lθ(D). (3.15)

The gradient of the negative log likelihood with respect to the parameters can be
shown to be given by,

∂Lθ(D)
∂θi

=
∑
D
P (yi|xk)E

′

i(yi; θi)−
∑
D
E
′

i(yki ; θi) (3.16)

∂Lθ(D)
∂θij

=
∑
D
P (yi, yj|xk)E

′

ij(yi, yj; θij)−
∑
D
E
′

ij(yki , ykj ; θij) (3.17)

The learning rule given above aims to update parameters by moving in a direction
that reduce the difference between the expected value of the energy terms under
the model parameters and the empirical value of the energy terms. Computing
the derivatives with respect to the parameters requires performing marginal in-
ference to compute the marginal distributions P (yi, yj|xk) and P (yi|xk) which
can be NP-hard for general graphs. To deal with this, many approaches compute
approximate marginals using loopy belief propagation or MCMC sampling based
techniques.

An alternative objective for learning is the maximum margin learning ob-
jective. In this approach set forth by [Taskar et al., 2003] and [Tsochantaridis
et al., 2005], the objective is to maximize the margin between the energy of the
ground truth label for each sample yk in the dataset D and all other possible
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labellings y ∈ Y \ yk. This can be written as the constraint set:

E(yk; θ) ≤ E(y; θ)−∆(y,yk) + ξ, ∀y ∈ Y \ yk, ξ > 0 (3.18)

where ∆(y,yk) measures the structured loss between the configuration y and
the ground truth. The number of constraints in the set above is exponential,
but can be replaced by a single constraint per sample in a formulation known as
margin-scaling by observing that ξ = max

y

(
E(yk; θ)− E(y; θ) + ∆(y,yk)

)
. The

resulting optimization problem is then:

min
θ

1
2‖θ‖

2
2 +

∑
(xk,yk)∈D

max
y

(
∆(y,yk)− E(y; θ)+

)
+ E(yk; θ) (3.19)

The subgradient of the above loss function F can be expressed as:

∂Fθ = E
′(yk; θ)− E ′(y∗; θ), (3.20)

where y∗ = arg min
y

(
E(y; θ)−∆(y,yk)

)
. Thus, during learning in the max-

margin scheme we are required to compute the configuration y∗ that minimizes
the loss augmented energy function above. Computing the optimal configura-
tion is an instance of maximum a posteriori inference and is NP hard in general.
Approximate schemes include max-product message passing, graph cuts [Kol-
mogorov and Zabin, 2004], linear programming formulations [Wainwright et al.,
2005] and dual decomposition [Komodakis et al., 2007]. It is useful to note that
bothMAP andmaximum likelihood parameter estimation for graphical models re-
quire performing inference in an inner loop to compute gradients or sub-gradients
during learning.

Inference: Given a model as in Equation 3.12 with parameters θ learned from
data, and input features x, there are usually two types of inference problems we
are concerned with. The first type of inference corresponds to marginal inference,
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which can be computed by marginalizing over the remaining variables:

P (yi|x) =
∑

y\yi∈Y
P (y|x). (3.21)

The above equation forms the basis of the sum-product belief propagation
algorithm, where the underlying graph is transformed into a factor graph [Kschis-
chang et al., 2001]. A factor graph introduces new factor nodes for each clique in
the graph. Belief propagation on the factor graph involves the recursive compu-
tation of the following equations that pass messages between factors and nodes,
and between nodes and factors:

µv→f (yi) =
∏

f ′∈N (i)\f
µf ′→i(yi), (3.22)

µf→i(yi) =
∑

yf |yi=y′i

ψf (yf )
∏

j∈N (f)\i
µj→f (yj), (3.23)

P (yi|x) =
∏

f∈N (i)
µf→i(yi), (3.24)

where µi→f (yi), µf→i(yi) are messages from variables to factors and factors to vari-
ables respectively. N (i) \ f denotes the neighboring factor nodes of the variable
i excluding the factor f , similarly N (f) \ i represents the neighboring variables
of factor f excluding variable i and y′i is an assignment of the variable yi. When
the graph G is a tree or a chain, exact marginals for each of the variables can be
computed in two passes of message passing. For general graphs, exact marginal
inference is NP-hard, but approximate marginals can be computed by passing
messages described in Equations 3.22-3.24 until convergence in a procedure called
loopy belief propagation.

The second type of inference is to find the configuration of output variables
y that is most probable under the posterior distribution P (y|x) amaximum a
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posteriori inference where we seek to find the optimal configuration of the output:

y∗ = arg max
y∈Y

P (y|x) (3.25)

The above equation reminds us of the definition of structured prediction in Equa-
tion 3.11, where the prediction function is now given by f(I) = min

y∈Y
E(y; θ). Sim-

ilar to Equations 3.22-3.24, the most probable configuration can be computed by
using a variant of loopy belief propagation known as max-product message
passing, where the summation in Equation 3.23 is replaced by a max operator.

In variational mean field inference, the intractable distribution P (y|x)
is approximated by a tractable distribution Q(y) that minimizes the Kullback-
Liebler (KL) divergence KL(Q‖P ) between the two distributions. The distri-
bution Q is chosen to be a distribution that can be factorized as the product
of independent marginals Q(y) = ∏

i qi(yi) [Wainwright and Jordan, 2008]. By
differentiating the KL divergence objective and setting the gradient to zero, the
following update rule can be obtained for each marginal qi as3:

qi(yi) ∝ ψi(yi)
∏

j∈N (i)
exp [φj→i(yi)] . (3.26)

where φj→i, the mean-field message from variable yj to yi, is given by:

φj→i(yi) =
∑
yj

qj(yj) logψij(yi, yj). (3.27)

Inference is thus performed by iteratively computing Equations 3.26, 3.27 until
convergence to obtain marginals qi for each variable. The update rule in Equation
3.26 for each variable yi is a function of the the associated unary term ψi(yi) and
the the mean-field messages from its neighborsN (i). It is useful to note that when

3A detailed derivation for the mean field update equations can be found in [Koller and
Friedman, 2009]
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the pairwise potential takes the form ψij(yi, yj) = f(|yi−yj|), the computation of
the message in Equation 3.27 reduces to a convolution, allowing the use of efficient
computational techniques for fast convolutions4. In this view, we observe that
each marginal is updated by the product of convolving neighboring marginals,
qj, with a transformed pairwise term.

3.2.2 Message Passing Inference Machines

Graphical models aim to provide a distinct separation between modeling and in-
ference. However, learning the parameters of a graphical model includes perform-
ing inference as the dominant subroutine to calculate gradients or subgradients of
the learning objective. As inference is intractable for all but the simplest graphs
[Cooper, 1990], approximate inference techniques are used during learning which
can lead to multiple adverse effects. Kulesza and Pereira [2007] show that ap-
proximate inference during learning can reduce the expressivity of a model and
lead the learning procedure astray by misleading the search for the correct model
parameters. Kumar et al. [2005] show that, in practice, test time performance
can be drastically effected by the particular type of approximation used and can
be sensitive to a mismatch between the inference method used during testing and
training.

Message passing inference machines [Munoz et al., 2010; Ross et al., 2011;
Munoz, 2013] aim to overcome these problems by providing tight coupling be-
tween learning and inference. Inference machines are motivated by the observa-
tion that message passing inference as described in Section 3.2.1 can be viewed
as a sequence of simpler prediction problems. Inference machines can be viewed
as an unrolling of the sequence of computations in message passing inference and

4A compelling example is from Krähenbühl and Koltun [2011], who use mean-field inference
on a densely connected CRF in the context of image segmentation. By using Gaussian pairwise
terms, they reduce marginal updates to high-dimensional gaussian filtering, for which fast
computational techniques exist (such as those proposed by Adams et al. [2010]).
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directly training a predictor to produce the ideal message updates in each iter-
ation. As a consequence, inference machines eschew probabilistic modelling of
the data. As the goal in structured prediction is to obtain an accurate output
configuration y∗ that has lowest score compared to all possible configurations
and we are not necessarily concerned with an accurately calibrated probability
for each configuration [LeCun et al., 2006].

We describe a mean field inference machine which emulates the sequence
of computations in variational mean field inference (see Section 3.2.1), where we
observed that the updates consist of a aggregating information from estimates
of marginals of neighboring variables as described in Equation 3.26. We observe
that the mean-field inference procedure can be viewed as sequential classification,
where, in each iteration, a predictor with a log-linear form produces an estimate
for the marginal of each variable, using features computed from the marginals
of neighboring variables as given in Equation 3.27. The mean field update of
Equation 3.26 in tth iteration can be written as:

qti(yi) ∝ ψi(yi) exp
 ∑
j∈N (i)

φt−1
j→i(yi)

 . (3.28)

Written in this form, the mean field update for the marginal has the familiar
log-linear form of maximum-entropy classifiers such as a logistic classifier, using
messages from neighboring variables φj→i(yi) as input features. We summarize
the procedure in Algorithm 3.

A mean field inference machine consists of a sequence of predictors {gti}
trained to directly predict the “marginals” for each variable yi. Note that the
term marginal is used in a loose sense, as an inference machine does not model an
actual probability distribution; the marginals in this case can be thought of as a
measure of confidence for each variable. Eschewing probabilsitic modeling, such
as the use of an exponential family distribution or parametric potential functions,
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Algorithm 3 mean_field_inference
1: Input: x //Features
2: Set: {q0

i } //Initialize uniform marginals
3: for t = 1 . . . T do
4: for i = 1 . . . P do
5: φt

j→i(yi)←
∑

yj
qt−1

j (yj) logψij(yi, yj) ∀j ∈ N (i) //Compute “features”

6: qt
i(yi)← 1

Zψi(yi) exp
(∑

j∈N (i) φ
t
j→i(yi)

)
//“Predict” marginal

7: end for
8: end for
9: Return: {qT

i }

Algorithm 4 mean_field_inference_machine
1: Input: x //Features
2: Set: {q0

i } //Initialize uniform “marginals”
3: for t = 1 . . . T do
4: for i = 1 . . . P do
5: φt

j→i(yi)← Ψ(yi,qt−1
j ) ∀j ∈ N (i) //Compute features

6: qt
i(yi)← gt

i({φt
j→i(yi)}) //Predict “marginal”

7: end for
8: end for
9: Return: {qT

i }

and viewing the inference procedure purely a sequence of supervised prediction
problems allows us greater flexibility. We are now free to choose the form of the
“predictor” allowing for high-capacity models and the “features” used to convey
contextual information from neighboring variables. For a mean-field inference
machine, the predictions in the tth iteration would be written as:

qti(yi) = gti
(
{φtj→i(yi)}j∈N (i)

)
, (3.29)

where gti is a predictor for the variable yi and {φtj→i(yi)}j∈N (i) are features com-
puted using a feature transform Ψ(z,q), where z is a variable assignment and q
is a marginal, and computed as:

φtj→i(yi) = Ψ(yi,qt−1
j ) (3.30)
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In this view, the predictors {gti} are not constrained to be of a particular para-
metric form and we are free to use any high-capacity predictor that is suited to
the inference task such as a boosted random forest or a universal function approx-
imator [Hornik et al., 1989] such as a convolutional neural network. Replacing
the features with a general feature transform Ψ allows for modeling potentially
richer interactions. We summarize the inference procedure for a mean-field in-
ference machine in Algorithm 4. Note the similarity to the inference procedure
of Algorithm 3. We see that the resulting procedure reduces structured predic-
tion to a sequence of supervised classification problems. Learning an inference
machine thus only requires training the supervised classifiers in each iteration
to produce the ideal marginals (available to us during training) using features
x and contextual features computed on neighboring marginals {qt−1

j }j∈N (i) from
the previous iteration. The message passing inference procedure in loopy belief
propagation can be emulated in a similar fashion by an inference machine as de-
scribed in Ross et al. [2011], where predictors are trained to produce the sequence
of messages between factors and nodes in a factor graph.

In following chapters, we describe and apply inference machines developed for
the task of articulated pose estimation. We find that the pose machine architec-
ture provides a modular framework for a difficult structured prediction problem
and a systematic design for composing powerful supervised predictors such as
convolutional neural networks for the task of pose estimation.
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Pose Machines

In this chapter we describe our approach for localizing keypoints of a deformable
articulated object in a single image. We address this problem in the context of
human pose estimation where the keypoints correspond to anatomical landmarks
on the body. Detecting landmarks by relying purely on local image evidence
tends to perform poorly. In Figure 4.1, we show confidence maps for the detec-
tion of the head, elbow and wrist keypoints using only local image evidence. We
see that for parts with discriminative appearance (such as the head), we obtain
confidence maps with a strong unimodal peak, however for parts with large ap-
pearance variation such as the wrist and for parts without strongly discriminative
appearance such as the hip, we obtain noisy confidences.

This is due to two primary sources of complexity in estimating the articulated
pose of a human from an image. The first arises from the large number of degrees
of freedom (nearly 20) of the underlying articulated skeleton which leads to a high
dimensional configuration space to search over. The second is due to the large
variation in appearance of people in images. The appearance of each part can
vary with configuration, imaging conditions, and from person to person.
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Head Neck L-Shoulder L-Elbow L-WristInput Image

Figure 4.1: Confidence maps from independent part detectors. Parts with
strongly discriminative appearance such as the head and shoulders have sharp peaks
and unimodal confidence maps. Parts lower down in the kinematic chain of the human
skeleton tend to be harder to detect due to large appearance variation.

A powerful cue for detecting a part is its spatial context: the detection of
one part can provide cues for the detection of other parts. Detecting the face,
for which proven algorithms exist, provides a strong cue for the location of other
parts like the shoulders and torso. The intuition that the locations of parts in an
image are spatially correlated can be captured in a graphical model framework. In
such a model, we define a graph with the nodes representing the locations of parts
and edges between nodes encoding conditional independences. The parameters of
such a model can then be learned by maximizing a data likelihood or max-margin
objective. Detecting part locations is then reduced to performing inference on
the learned graphical model.

Pictorial structure approaches [Felzenszwalb and Huttenlocher, 2005; Ra-
manan et al., 2005; Andriluka et al., 2010, 2009; Yang and Ramanan, 2011;
Johnson and Everingham, 2010] employ a tree-structured graphical model to
capture the correlations and spatial dependencies between the locations of each
of the parts. However, inference in graphical models is difficult and inexact in all
but the most simple models such as a tree-structured or star-structured model.
These simplified models are unable to capture important dependencies between
locations of each of the parts and lead to characteristic errors. One such error—
double counting (see Figure 4.2)—occurs when the same region of the image is
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used to explain more than one part. This error occurs because of the symmetric
appearance of body parts (for e.g., the left and right arm usually have similar
appearance) and that it is a valid configuration for parts to occlude each other.

Unfortunately, modeling this appearance symmetry and self-occlusion with a
graphical model requires additional edges and induces loops in the graph. Such
non-tree structured graphical models typically require the use of approximate in-
ference (e.g., loopy belief propagation), which makes parameter learning difficult
[Kulesza and Pereira, 2007]. Moreover, defining the potential functions in these
models requires careful consideration when specifying the types of interactions.
This choice is usually dominated by parametric forms such as simple quadratic
models in order to enable tractable inference [Felzenszwalb and Huttenlocher,
2005]. Finally, to further enable efficient inference in practice, many approaches
are also usually restricted to use simple classifiers such as mixtures of linear mod-
els for part detection [Yang and Ramanan, 2011], which are choices guided by
tractabilty of inference rather than the complexity of the underlying data dis-
tribution. Such trade-offs result in a restrictive model that do not address the
inherent complexity of the problem.

This chapter describes an approach that aims to side-step this complexity vs.
tractability trade-off by directly training the inference procedure. Conceptually,
the presented method, which we refer to as a Pose Machine, is a sequential
prediction algorithm that emulates the mechanics of message passing to predict
a confidence for each variable (part), iteratively improving its estimates in each
stage. The inference machine architecture is particularly suited to tackle the
main challenges in pose estimation. First, it incorporates richer interactions
among multiple variables at a time, reducing errors such as double counting, as
illustrated in Figure 4.2.

Second, it learns an expressive spatial model directly from the data without
specifying the parametric form of the potential functions. Additionally, its mod-
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Figure 4.2: Reducing double counting errors. By modelling richer interactions we
prevent the double counting error that occurs in tree models. On the left we show
the belief for the left foot of the person in each stage of the pose machine. The belief
quickly converges to a single sharp peak. On the right, we see that the tree-structured
model has a max-marginal for the left foot with multiple peaks and resulting in both
legs being placed on the same area in the image.

ular architecture allows the use of more expressive predictors which are better
suited to deal with the highly multi-modal appearance of each part. Inspired by
recent work [Pishchulin et al., 2013a; Sapp and Taskar, 2013] that has demon-
strated the importance of conditioning finer part detection on the detection of
larger composite parts in order to improve localization, we incorporate these
multi-scale cues in our framework by also modeling a hierarchy of parts.

4.1 Model Overview

We view the problem of detecting anatomical landmarks as a structured predic-
tion problem. That is, we model the pixel location of each anatomical landmark
(which we refer to as a part) in the image, yp ∈ Z ⊂ R2, where Z is the set
of all (u, v) locations in an image. Our goal is to predict the structured output
y = (y1, . . . , yp) for all P parts. A pose machine consists of a sequence of multi-
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class classifiers, gt(·), that are trained to predict the location of each part. In each
stage t ∈ {1 . . . T}, the classifier predicts a confidence for each output variable
assignment yp = z, ∀z ∈ Z based on features of the image data xz ∈ Rd and
contextual information from the preceeding classifier in the neighborhood around
each yp. In each stage, the computed confidences provide an increasingly refined
estimate for the variable. For each stage t of the sequence, the confidence for the
assignment yp = z is computed and denoted by

bt(yp = z) = gpt

(
xz;

P⊕
i=1

ψ(z,bit−1)
)
, (4.1)

where
bpt−1 = {bt−1(yp = z)}z∈Z , (4.2)

is the set of confidences from the previous classifier evaluated at every location z
for the pth part. The feature function ψ : Z × R|Z| → Rdc computes contextual
features from the classifiers’ previous confidences, and ⊕ denotes an operator for
vector concatenation. We denote the collection of P +1 confidence maps of stage
t as bt

Unlike traditional graphical models, such as pictorial structures, the inference
machine framework does not need explicit modeling of the dependencies between
variables via potential functions. Instead, the dependencies are arbitrarily com-
bined using the classifier, enabling potentially complex interactions among the
variables. Directly training the inference procedure via a sequence of simpler
subproblems, allows us to use any supervised learning algorithm to solve each
subproblem. We are able to leverage the state-of-the-art in supervised learning
and use a sophisticated predictor capable of handling multi-modal variation. In
following sections, we describe the supervised classification framework used for
detecting parts using only (a) only local image evidence in the first stage of the
sequence and (b) using spatial context from a previous stage’s predictions in
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Figure 4.3: Complexity in configuration and appearance. (a) The full set of spatial
configurations of the human body in the LEEDS sports training dataset [Johnson and Evering-
ham, 2010] are visualized. The highly articulated nature of the underlying skeleton results in a
large number of possible configurations to search over. (b) Variation in appearance for hands
and feet in the LEEDS sports dataset. Appearance varies greatly with configuration, imaging
conditions and from instance to instance resulting in a multi-modal distribution.

subsequent stages of the sequence.

4.2 Keypoint Localization from Local Evidence

In the first stage of the sequence of predictors, the classifier g1 uses only local
image evidence around each location z to predict confidences each of the P parts
and a background class:

g1 (xz)→ {bp1(yp = z)}p∈0...P (4.3)

This is a challenging task, because, as shown in Figure 4.3, parts have large
variation in appearance. The same configuration can have different appearance
depending on local factors such as clothing and skin color, and global factors
such as illumination. Additionally, the appearance of each part in the image is
coupled with the configuration of the body and the relative camera location.

Using a simple counting argument, we can enumerate the number of ap-

62



CHAPTER 4. POSE MACHINES

pearance states possible. Assuming a simplified model with ηl states for local
appearance properties, such as color and identity, and ηg for a global property
such as lighting, a total number of (θηl)dηg appearance states are induced. As an
example, setting local appearance ηl = 5 and global appearance ηg = 10, gener-
ates 1029 different appearances. Our goal then, is two-fold: first, to come up with
a representation of local image evidence that is invariant to some of the factors
described above, and second, to use a predictor that is able to effectively learn a
decision boundary to separate the classes based on the above representation.

The aforementioned two-fold approach is the classical supervised classification
pipeline of extracting manually designed image features at each image location
followed by classification using a multi-class classifier. The features and classifier
need to both be chosen carefully so as to effectively handle the inherent complexity
of the data distribution. Additionally, in order to gain maximally from very
large datasets, the learning algorithms for the chosen predictor should scale with
the size of the dataset. We describe some of the trade-offs and design choices
associated with such a pipeline in Section 4.2.1.

Alternatively, feature engineering and classification can be combined and
learned jointly, directly from data. Deep architectures [Bengio, 2009] are a
method for learning both the feature representation and the predictor simul-
taneously. Deep convolutional architectures with many layers have been effective
for several vision tasks such as object detection [Sermanet et al., 2013], image
segmentation [Long et al., 2015] etc. In Section 4.2.2 we describe a deep convo-
lutional architecture for the task of part classification from local image evidence.

4.2.1 A Classical Supervised Classification Pipeline

In the classical supervised classification pipeline (see Section 3.1) the primary
goals are to engineer features that represent the data effectively and to choose
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a classifier capable of learning accurate decision boundaries based on these fea-
tures. We describe choices for both criteria in the context of problem of part
classification.

Image Features

We extract a set of image features from a patch at each location in the image.
We use Histogram of Gradients (HOG) features, LAB color features, and gradient
magnitude which correspond to standard channel features as described in Section
3.1. We model a keypoint by a patch around its location with a spatial extent
of 40 pixels assuming that scaled training samples have objects (persons) with
a height 200 pixels. We choose a bin size of either 4 or 8 depending on the
resolution of prediction required.

Choice of Predictor

The modular nature of the pose machine architecture allows us to insert any
supervised learning classifier as our choice of multi-class predictor g. As the data
distribution is highly multi-modal, a high-capacity non linear predictor is re-
quired. A good choice for the predictor is the random forest predictor [Breiman,
2001] and its boosted variant: gradient boosted random forests [Friedman, 2001].
Random forests and boosted random forests have been empirically shown [Caru-
ana and Niculescu-Mizil, 2006] to consistently outperform other methods on sev-
eral datasets. We learn a boosted random forest classifier (see Section 3.1.2) by
optimizing the SVM hinge loss objective [Grubb and Bagnell, 2011]. We use 25
iterations of boosting, with a random forest classifier. Each random forest classi-
fier consists of 10 trees, with a maximum depth of 15 and with a split performed
only if a node contained greater than 10 training samples.

In the context of articulated human pose estimation we use 14 parts to model

64



CHAPTER 4. POSE MACHINES

Input
Image

5⇥5

C

5⇥5

C

5⇥5

C

9⇥9

C

1⇥1

C

1⇥1

C

2⇥
P

2⇥
P

h⇥w⇥3
h0⇥w0

P1+1

Loss
1f1x1

1

Figure 4.4: Convolutional Architecture for Keypoint Localization We show a deep con-
volutional architecture for performing keypoint localization that relies on local image evidence
in a small region (receptive field) around each pixel location

a full body model and a 10 parts for an upper body model. At each location z in
the image, features xz are extracted and supplied to the classfiier g1 to produce
the beliefs {b1(xp = z)} for each of the parts p ∈ {1 . . . P + 1}.

4.2.2 A Convolutional Architecture for Part Detection

Deep convolutional networks provide an architecture to perform both feature
learning and classification in a single architecture trained jointly. The advantage
of such an architecture is that the network is free to learn the most suitable
representation for the given task, directly from the data instead of having to adapt
to a manually designed representation. We describe a convolutional architecture
for our task of part detection from local image evidence. Figures 4.4 shows
the network structure for part detection from local image evidence using a deep
convolutional network. The evidence is local because the receptive field of the
network is constrained to a tightly cropped patch around the keypoint location.
We use a network structure composed of 6 convolutional layers followed by two
1 × 1 convolutional layers which results in a fully convolutional [Long et al.,
2015] architecture (see Figure 4.4) that allows inputs of an arbitrary size h ×
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L-ShoulderL-ElbowImage Neck

Figure 4.5: Spatial context from confidence maps can provide valuable cues for detection. The
peak in the confidence map for easier to detect landmarks such as the shoulder can be a strong
cue for the location of difficult to detect landmarks such as the left elbow.

w. The image is first contrast normalized and then passed through the three
convolutional layers with kernels of size 5× 5× 128, 5× 5× 128, and 5× 5× 32.
We perform max-pooling with stride 2 after the first two convolutional layers
resulting in an output layer of size h

4 ×
w
4 × 32 after the third layer. The fourth,

fifth, and sixth layers have kernel sizes of 9× 9× 512, 1× 1× 512, 1× 1× (P1 +
1) resulting P + 1 output confidence maps of size h′ × w′, corresponding to P
body parts and background. The fourth layer of the network is equivalent to
the first fully connected layer that takes the cascade of spatial features (into a
long vector of length 512) in a typical deep network such as Krizhevsky et al.
[Krizhevsky et al., 2012]. Similarly, the two 1 × 1 convolutional layers are the
convolutional equivalent of fully connected layers. We use rectified linear units
[Nair and Hinton, 2010] after each convolutional layer except the last one. The
receptive field of the first level of the hierarchy is thus 64×64 pixels. The network
can effectively be viewed as sliding a deep network across an image and regressing
each 64× 64 image patch to a P1 + 1 sized output vector that represents a score
for each part at that image location.
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4.3 Sequential Prediction with Spatial Context

As discussed in the previous section, detecting landmarks from purely local image
evidence performs poorly in general. While landmarks such as the head and
shoulders that have consistent appearance, the detection rate is around 50%,
but for landmarks lower down the kinematic chain, the accuracy is closer to
25%. However, the landscape of the confidence maps around a part location,
albeit noisy, can be very informative. The fact that the confidence map for the
shoulder has a sharp peak in the vicinity of the elbow can be used as a strong
cue for predicting the location of the elbow (see Figure 4.5). A predictor in
subsequent stages (gt>1) can use the spatial context (ψ(·)) of the noisy confidence
maps in a region around the image location z and improve its predictions by
leveraging the fact that parts that occur in consistent geometric configurations.
In this section we describe how to design or learn a feature representation that
encodes the spatial context of the confidence maps relative to a location in the
image. We discuss designed features in Section 4.3.1, and describe a convolutional
architecture for learnign such a representation in Section 4.3.2.

4.3.1 Designing Spatial Context Representations

To capture the spatial correlations between the confidences of each part with
respect to its neighbors, we describe the design of two types of feature maps
denoted by ψ1 and ψ2.

Context Patch Features. The feature map ψ1 at a location z takes as input
the confidence maps for the location of each landmark and produces a feature
that is a vectorized patch of a pre-defined width extracted at the location z in
the confidence map bpt (see Figure 4.6a). We denote the set of patches extracted
and vectorized at the location z, from the beliefs of the parts in the hierarchy
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Figure 4.6: Context Feature Maps (a) Context patch features are computed from
each scoremap for each location. The figure illustrates a 5× 5 sized context patch (b)
The context offset feature comprises of offsets to a sorted list of peaks in each scoremap.

level l, by c1(z,bpt−1). The feature map ψ1 is therefore given by:

ψ1(z,bt−1) =
⊕

p∈0...Pl
c1(z,bpt−1). (4.4)

In words, the context feature is a concatenation of scores at location z extracted
from the confidence maps for each part in each level the hierarchy. The context
patch encodes neighboring information around location z. Note that because we
encode the context from all parts, this would be analogous to having a graphical
model with a complete graph structure and would be intractable to optimize.
The context patch feature can also be reduced in size by performing pooling in
smaller windows in the grid, this has the effect of increasing spatial invariance,
but at the cost of precise localization.

Context Offset Features. We compute a second type of feature, ψ2, in order
to encode long-range interactions among the parts that may be at non-uniform,
relative offsets. First, we perform non-maxima suppresion to obtain a sorted list
of K peaks from each of the P confidence maps lbpt−1 for all the anatomical land-
marks. Then, we compute the offset vector in polar co-ordinates from location z
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to each kth peak in the confidence map of the pth part denoted as as opk ∈ R+×R
(see Figure 4.6b). The set of context features computed on b1 is then given by:

c2(z,bpt−1) = [op1; . . . ; opK ] . (4.5)

The context feature ψ2 is then formed by concatenating the offset features
c2(z, lbpt−1) from the confidence maps for each part in the the hierarchy:

ψ2(z,bt−1) =
⊕

p∈1...P
c2(z,bpt−1). (4.6)

The context patch features (ψ1) capture coarse information regarding the
confidence of the neighboring parts while the offset features (ψ2) capture pre-
cise relative location information. The final context feature ψ is computed by
concatenating ψ1 and ψ2:

ψ = ψ1
⊕

ψ2 (4.7)

In the second stage of a pose machine, the classifier g2 accepts as input the
image features xz and features computed on the confidences via the feature func-
tion ψ for each of the parts in the previous stage. The feature function ψ serves to
encode the landscape of the confidence maps from the previous stage in a spatial
region around the location z of the different parts. As shown in Figure 4.7 we
see that the context features proposed are complementary: the patch features
outperform the offset features on the elbow joints, but the offset features outper-
form the patch features on the wrist joints. Using both sets of features together
outperforms using just either further suggesting that they encode complementary
information.
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Table 5
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Figure 4.7: Effect of context features on performance. We compared variants of our
model using the different types of designed context features for localizing the elbow and wrist
landmarks on the FLIC dataset. We see that the context features proposed seem to be comple-
mentary: the patch features outperform the offset features on the elbow joints, but the offset
features outperform the patch features on the wrist joints. Using both sets of features together
outperforms using just either further suggesting that their effects are complementary

4.3.2 Learning Spatial Context Representations

Instead of hand-crafting features to capture contextual information from the pre-
vious stage beliefs/confidences, we could also use the feature learning capabilities
of a convolutional architecture to directly learn a representation. A deep convo-
lutional neural network is especially suited for the task as it can potentially learn
arbitrarily complex functions of the input [Hornik et al., 1989].

For a pose machine, with a convolutional network as the prediction module,
we do not define an explicit function that computes context features. Instead,
we aim to learn ψ by designing a network with an appropriately sized receptive
field on the confidences from the previous stage. The second stage predictor is
designed such that the spatial support of the network’s receptive field is large
enough to capture information regarding spatial co-occurrences in the confidence
maps of the different parts. In contrast to the method described above which
uses handcrafted features to summarize contextual information, we directly learn
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Convolutional Architecture for a 2-Stage Pose Machine

Figure 4.8: Convolutional Architecture for a 2-stage Pose Machine We show a deep
convolutional architecture for a pose machine with two stages. In the second stage we use a
convolutional architecture that uses both confidence maps from the previous stage as well as
features learned directly from the image. Below, we also show the effective receptive field on
an image at various parts of the architecture.

a feature representation on the combination of confidence maps and the original
image via a deep convolutional network (see Figure 4.8). The subsequent stages
therefore learn a image-dependent spatial model by combining information re-
garding the beliefs of parts from the previous stage and local image evidence
from each patch.

Large receptive fields for learning spatial context: The design goal for the
network in the second stage (and subsequent stages) is to provide a sufficiently
large spatial region on the confidence maps (from the previous stage) as input
so that the second stage network can learn potentially complex and long-range
correlations between the locations of anatomical landmarks. The design of the
network is guided by achieving a receptive field at the output layer of second
stage network that meets this criterion.

Our design for the second stage network is shown in Figure 4.8 for the two
hierarchy levels. The confidence maps from the first stage were generated from
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Figure 4.9: Large receptive fields for spatial context We show that networks with large
receptive fields are effective at modelling long range spatial interactions between parts. We see
that performance in terms of localization accuracy on the FLIC dataset increases for a network
with increasing receptive field uptil around 250 pixels and saturates thereafter.

a network that examined the image locally with a receptive field of size 64× 64.
In the second stage, we design a network that drastically increases the equivalent
receptive field. Large receptive fields can be achieved either by pooling, at the
expense of precision, increasing the kernel size of the convolutional filters largely
increasing the number of parameters or by increasing the number of convolutional
layers at the risk of encountering vanishing gradients during training. We choose
to use multiple convolutional layers as it allows us to be parsimonious with respect
to the number of parameters of the model while the risk of vanishing gradients
is offset thanks to the intermediate supervision (described in following sections)
enforced during training.

As shown in Figure 4.8, the network predicting locations of parts consists of
a network which recomputes image features (note the similarity in construction
to the first stage network of Figure 4.8, except for the last three convolution
layers) and subsequent layers that operate on the combined image features and
confidence maps. The image feature maps (denoted by xz) are combined with
the confidence maps for the parts from both hierarchy levels from the previous
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(a) 9 ⇥ 9 Convolution Layer (b) 13 ⇥ 13 Convolution Layer (c) 13 ⇥ 13 Convolution Layer

Figure 4.10: Visualization of learned spatial context filters We visualize the filter kernels
for the convolutional layers of the second stage of our architecture. These filters correspond
to layers that take as input both image feature maps and confidence maps from the preceding
stage. The above layers are cascaded to achieve the desired receptive field on the confidence
maps

stage. The confidence maps from preceding layers that are at a different resolu-
tion are correspondingly up-sampled using a deconvolutional layer [Long et al.,
2015] or down-sampled using a max-pooling layer of the appropriate stride. The
combination of image feature maps and confidence maps are then passed as input
to a network with four convolutional layers which increase the receptive field fol-
lowed by two 1× 1 convolutional layers which effectively apply a fully connected
network in a convolutional fashion across the image. We visualize some of the
filters learned by our model in Figure 4.10. The receptive field on the confidence
maps bt−1 is 45×45, which is equivalently 252×252 pixels on the original image.

We find that accuracy improves with the size of the receptive field. In Figure
4.9 we show the improvement in accuracy on the FLIC dataset [Sapp and Taskar,
2013] as the size of the receptive field on the original image is varied by varying the
architecture. We see that the network achieves the best accuracy at an effective
receptive field of between 200 − 250 which also happens to be roughly the size
of the object in the normalized training images. This improvement in accuracy
with receptive field size also suggests that the network does indeed encode long
range interactions between parts and that doing so is beneficial.
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Level 1 Level 2 Level 3
Figure 4.11: A Hierarchy of Parts: Parts at various scales can be informative and can
provide co-operative cues for detection.

4.4 Incorporating a Hierarchy

The visual structure around each landmark can provide discriminative informa-
tion that is useful for prediction. Oftentimes larger regions around a landmark can
contain more discriminative structure than a smaller tightly cropped region. For
example, for landmarks such as the wrist joint, a patch tightly cropped around it
has little distinguishable visual structure. Whereas, when we include additional
visual context, we observe the consistent discriminative visual structure of the
forearm. Multi-scale cues such as these can be useful for detection. In this section
we describe how we incorporate such a hierarchy over scale in a pose machineby
instantiating a separate set of predictors for each level in the hierarchy (see Fig-
ure 4.11. We also describe the corresponding convolutional architecture for a
hierarchical pose machine that incorporates multi-scale cues by using networks
with differing receptive fields.
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4.4.1 Hierarchical Pose Machines

We define a hierarchy of scales from smaller atomic parts to larger composite
parts. Each of the L levels of the hierarchy have parts of a different type. At
the coarsest level, the hierarchy can be comprised of a single part that captures
the whole body. The next level of the hierarchy is comprised of composite parts
that model regions around landmarks that capture the visual structure of full
limbs, while the finest level of the hierarchy is comprised of small parts that
model a tightly cropped region around an anatomical landmark. We denote by
P1, . . . , PL, the number of parts in each of the L levels of the hierarchy. In the
following, we denote lgpt (·) as the classifier in the tth stage and lth level that
predicts the score for the pth part. While separate predictors could be trained
for each part p in each level l of the hierarchy, in practice, we use a single multi-
class predictor that produces a set of confidences for all the parts from a given
feature vector at a particular level in the heirarchy. For simplicity, we drop the
superscript and denote this multi-class classifier as lgt(·). To obtain an initial
estimate of the confidences for the location of each part, in the first stage (t = 1)
of the sequence, a predictor lg1(·) takes as input features computed on a patch
extracted at an image location z, and classifies the patch into one of Pl part
classes or a background class (see Figure 4.12), for the parts in the lth level of
the hierarchy. We denote by xlz, the feature vector of an image patch for the lth

level of the hierarchy centered at location z in the image. A classifier for the lth

level of the hierarchy in the first stage t = 1, therefore produces the following
confidence values:

lg1(xlz)→
{
lbp1(yp = z)

}
p∈0...Pl

, (4.8)

where lbp1(yp = z) is the score predicted by the classifier lg1 for assigning the
pth part in the lth level of the hierarchy in the tth stage at image location z.
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Figure 4.12: (a)A single multiclass predictor is trained to predict each image patch into
one of P+1 classes. By evaluating each patch in the image, we create a set of confidence
maps bjt . In each stage, a predictor is trained to predict the confidence of the output
variables. The figure depicts the message passing in an inference machine at test time.
In the first stage, the predictors produce an estimate for the confidence of each part
location based on features computed on the image patch. Predictors in subsequent
stages, refine these confidences using additional information from the outputs of the
previous stage via the feature maps ψ1 and ψ2.

Analogous to Equation 4.2, we represent all the confidences of part p of level l
evaluated at every location z = (u, v)T in the image as lbpt ∈ Rw×h, where w and
h are the width and height of the image, respectively. That is,

lbpt [u, v] = lbpt (yp = (u, v)T ). (4.9)

For convenience, we denote the collection of confidence maps for all the parts
belonging to level l as lbt ∈ Rw×h×Pl (see Figure 4.12).

In subsequent stages, the confidence for each variable is computed similarly
to Equation 5.1. In the order to leverage the context across scales/levels in the
hierarchy, the prediction is defined as

lgt

xlz,
⊕
l∈1...L

ψ(z, lbt−1)
→ {

lbpt (yp = z)
}
p∈0...Pl

, (4.10)

As shown in Figure 4.12, in the second stage, the classifier lg2 takes as input the
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Figure 4.13: Intermediate Predictions for a Hierarchical Pose Machine: We show the
confidence maps at each of the three stages and for three levels of a hierarchical pose machine.
Detection cues are shared across hierarchy levels to improve prediction in each stage.

features f lz and features computed on the confidences via the feature function ψ
for each of the parts in the previous stage. Note that the the predictions for a part
use features computed on outputs of all parts and in all levels of the hierarchy
( {lbt−1}l∈1...L). The inference machine architecture allows learning potentially
complex interactions among the variables, by simply supplying features on the
outputs of the previous stage (as opposed to specifying potential functions in
a graphical model) and allowing the classifier to freely combine contextual in-
formation by picking the most predictive features. The use of outputs from all
neighboring variables, resembles the message passing mechanics in variational
mean field inference [Ross et al., 2011].
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Figure 4.14: Architecture for Convolutional Pose Machines. We show a deep convolu-
tional architecture for a pose machine with three stages and a two level hierarchy. The pose
machine is shown in the top right with insets described below. Insets (a) and (b) show the
architecture that operates only on image evidence in the first stage for each of the hierarchy
levels. Insets (c) and (d) show the architecture for subsequent stages which operate both on
image evidence as well as confidence maps from preceding stages. The architectures in (c) and
(d) are repeated for all subsequent stages.The network is locally supervised after each stage
using an intermediate loss layer that prevents vanishing gradients during training. (Best viewed
in color)

4.4.2 Convolutional Architecture for a Hierarchical Pose
Machine

We show the convolutional architecture for a hierarchical pose machine in Figure
4.14. The architecture consists of two types of sub-networks. The first type
corresponds to the first stage of the pose machine and performs part detection
from purely local image evidence as shown in the insets (a) and (b) of Figure 4.14
for the first and second levels of the hierarchy respectively. The second type of
network (shown in insets (c) and (d) of Figure 4.14) corresponds to subsequent
stages of the pose machine and is repeated for the number of stages specified.
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These networks update the confidences for each part by leveraging both image
evidence and spatial context learned from the confidence maps of preceding stages.

The design of these networks is motivated by the achieving the desired recep-
tive field for each of the levels. For the first level of the hierarchy (Figure 4.14(a))
we use a network structure composed of 6 convolutional layers followed by two
1×1 convolutional layers which results in a fully convolutional [Long et al., 2015]
architecture that allows inputs of an arbitrary size h × w. The image is first
contrast normalized and then passed through the three convolutional layers with
kernels of size 5× 5× 128, 5× 5× 128, and 5× 5× 32. We perform max-pooling
with stride 2 after the first two convolutional layers resulting in an output layer
of size h

4 ×
w
4 × 32 after the third layer. The fourth, fifth, and sixth layers have

kernel sizes of 9× 9× 512, 1× 1× 512, 1× 1× (P1 + 1) resulting P1 + 1 output
confidence maps of size h′×w′, corresponding to P1 body parts and background.
The fourth layer of the network is equivalent to the first fully connected layer
that takes the cascade of spatial features (into a long vector of length 512) in a
typical deep network such as Krizhevsky et al. [Krizhevsky et al., 2012]. Simi-
larly, the two 1× 1 convolutional layers are the convolutional equivalent of fully
connected layers. We use rectified linear units [Nair and Hinton, 2010] after each
convolutional layer except the last one.

The receptive field of the first level of the hierarchy is thus 64 × 64 pixels.
The network can effectively be viewed as sliding a deep network across an image
and regressing each 64× 64 image patch to a P1 + 1 output vector. The network
structure for the second level (Figure 4.14b) of the hierarchy is identical except
for an additional 5 × 5 × 32 convolutional layer followed by a pooling layer to
approximately double the receptive field to 132× 132.
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4.5 Inference

At test time, inference proceeds in a feed-forward sequential fashion emulating
message passing inference as discussed in Section 3.2.2.

For the architecture in Figure 4.12 the sequence alternates between im-
age/context feature computation and prediction using the multi-class classifier.
Features are extracted from patches of different scales (corresponding to each of
the L levels of the hierarchy) at each location in the image and input to the
first stage classifiers {lg1}Ll=1, resulting in the output confidence maps {lb1}Ll=1.
Context features are passed to the classifiers in the next stage via the feature
maps ψ1, ψ2 on the confidences lb1 from the previous stage. Updated confidences
{lb2}Ll=1 are computed by the classifiers lg2 and this procedure is repeated for
each stage. The computed confidences are increasingly refined estimates for the
location of the part as shown in Figure 4.16. The location of each part is then
computed as,

∀l,∀p, ly∗p = argmax
z

lbpT (z). (4.11)

The final pose is computed by directly picking the maxima of the confidence map
of each part after the final stage.

The architecture in Figure 4.14 can be thought of as a single convolutional
network. Prediction in this architecture is simply evaluating the network output
at the last layer by performing a forward-pass on the architecture. As before, the
location of each part is computed by directly picking the location corresponding
to the maximum of each confidence map as generated by the network.
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Algorithm 5 train_stage_wise
1: Initialize:

{
lb0 = ∅

}
l∈1,...,L

2: for t = 1 . . . T do
3: for i = 1 . . . N do
4: Create {lbt−1}L

l=1 for each image i using predictor lgt−1 using Eqn. 5.2.
5: Append features extracted from each training image i, and from corresponding

{lbt−1}L
l=1 (Eqns. 4.4 & 4.6), to training dataset Dt, for each image i.

6: end for
7: Train lgt using Dt.
8: end for
9: Return: Learned predictors {lgt}.

4.6 Learning

Learning in our setting involves estimating the parameters of the predictors,
{lgt}, in each level l ∈ {1, . . . , L}, and for each stage t ∈ {1, . . . , T} from train-
ing data. Each of the predictors is simply a supervised classifier, and therefore
learning reduces to simply training multiple supervised classifiers. Learning can
either proceed sequentially in a stage-wise manner as described in Section 4.6.1 or
jointly, where all the predictors are trained simultaneouly using backpropagation
as described in Section 4.6.2. The stage-wise learning procedure is suitable when
the predictors are not differentiable with respect to their parameters as is the
case with classifiers such as random forests and boosted random forests, while
joint training is suitable for when the classifiers are differentiable and gradients
can be backpropagated as is the case for a deep convolutional architecture. We
discuss both learning scenarios and address some of the challenges that arise.

4.6.1 Forward Stagewise Training

We describe the stage-wise training procedure in Algorithm 5. Training proceeds
sequentially: the first set of predictors {lg1} are trained using a dataset D0 con-
sisting of image features on patches extracted from the training set of images at
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the annotated landmarks. For a subsequent stage t, the dataset Dt is created
by extracting and concatenating the context features from the confidence maps
of the previous stage, {lbt−1}Ll=1, for each image, at the annotated locations.
The predictor in the next stage {lgt} is then trained using dataset Dt and the
procedure is iterated.

Stacked Training

Training the predictors of such an inference procedure can be prone to overfitting.
Using the same training data to train the predictors in subsequent stages can
cause them to rely on overly optimistic context from the previous stage, or overfit
to idiosyncrasies of that particular dataset. Ideally we would like to train the
subsequent stages with the output of the previous stages with noise characteristics
similar to that as encountered at test time. In order to achieve this, we use the
idea of stacked training [Wolpert, 1992; Carvalho and Cohen, 2005].

Stacked training aims to prevent predictors trained on the output of the first
stage from being trained on same training data. Stacking proceeds similarly to
cross-validation by making M splits of the training data D into training and
held-out data {Dm,D/Dm}m=1...M . For each predictor we aim to train in the
first stage, we make M copies, each trained on one of the M splits of the training
data. To create the training data for the next stage, for each training sample, we
use the copy of the predictor that has not seen the sample (i.e., the sample is in
the held-out data for that predictor). Proceeding in this way creates a dataset
to train the next stage on the outputs of the previous stage, ensuring that the
outputs mimic test-time behavior. We repeat the stacking procedure for each
subsequent stage. The stacking procedure is only performed during training to
create a training dataset for subsequent stages. At test time, we use a predictor
in each stage that is trained using all of the data.
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Figure 4.15: Intermediate supervision addresses vanishing gradients. We track the
change in magnitude of weights in layers at different depths in the architecture, across train-
ing epochs, for models with and without intermediate supervision. We observe that for layers
closer to the output the distribution has a large variance for both with and without interme-
diate supervision, however as we move from the output layer towards the input, the gradient
magnitude distribution peaks tightly around zero with low variance (the gradients vanish) for
the model without intermediate supervision. For the model with intermediate supervision the
distribution has a moderately large variance throughout the network. At later training epochs,
the variances decrease for all layers for the model with intermediate supervision and remain
tightly peaked around zero for the model without intermediate supervision. (Best viewed in
color)

4.6.2 Joint Training with Intermediate Supervision

The design described above for a pose machine results in a deep architecture that
can have a large number of layers. Training such a network with many layers
can be prone to the problem of vanishing gradients [Bradley , 2010; Glorot and
Bengio, 2010; Bengio et al., 1994] where, as observed by Bradley [2010] and
Glorot and Bengio [2010], the magnitude of backpropagated gradients decreases
in strength with the number of intermediate layers between the output layer and
the input layer.

Fortunately, the sequential prediction framework of the pose machine provides
a natural approach to training our deep architecture that addresses this problem.
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Each stage of the pose machine is trained to repeatedly produce the confidence
maps or beliefs for the locations of each of the parts. We encourage the network
to repeatedly arrive at such a representation by defining a loss function at the
output of each stage t and hierarchy level l that minimizes the l2 distance between
the predicted and ideal confidence maps for each part. The ideal confidence map
for a part p is written as lbp∗(Yp = z). The cost function we aim to minimize at
the output of each stage at each level is therefore given by:

lft =
Pl∑
p=1

∑
z∈Z
‖lbpt (z)− lbp∗(z)‖2

2. (4.12)

The overall objective for the full architecture is obtained by adding the losses
at each stage and is given by:

F =
T∑
t=1

L∑
l=1

lft. (4.13)

The objective in Equation 6.6 describes a decomposable loss function that op-
erates on different parts of the network (see Figure 4.14). Specifically, each term
in the summation is applied to the network after each stage t effectively enforcing
supervision in intermediate stages through the network. Intermediate supervision
has the advantage that, even though the full architecture can have many layers,
it does not fall prey to the vanishing gradient problem as the intermediate loss
functions replenish the gradients at each stage.

We verify this claim by observing histograms of gradient magnitude (see
Figure 4.15) at different depths in the architecture, across training epochs, for
models with and without intermediate supervision. In early epochs, as we move
from the output layer to the input layer, we observe that the gradient distribu-
tion is tightly peaked around zero because of vanishing gradients for the model
without intermediate supervision. The model with intermediate supervision has
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a much larger variance across all the layers suggesting that learning is indeed
occurring in all the layers thanks to intermediate supervision. We also notice
that as training progresses, the variance in the gradient magnitude distributions
decreases pointing to model convergence.
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4.7 Analysis

4.7.1 Which Learning Method?

We compare different variants of training the network in Figure 4.17a and demon-
strate the benefit of intermediate supervision with joint training across stages
using a model trained in four ways: (i) using a global loss function that enforces
intermediate supervision (ii) stage-wise; where each stage is trained in a feed-
forward fashion and stacked (iii) as same as (i) but initialized with weights from
(ii), and (iv) as same as (i) but with no intermediate supervision. We find that
network (i) outperforms all other training methods, showing that intermediate
supervision and joint training across stage is indeed crucial in achieving good
performance.

4.7.2 Performance Across Stages

We show a comparison of quantitative performance across each stage on the
LEEDS dataset in Figure 4.17b. We show that the performance increases mono-
tonically across stages as the predictor in subsequent stages make use of contex-
tual information in a large receptive field on the previous stage confidence maps
to resolve confusions between parts and background. In Figure 4.16 we see the
score maps for the wrist and elbows across three stages. In the first stage we
find that the confidence for the wrists and elbows are noisy and multimodal. In
subsequent stages, the confusions are resolved resulting in a single peak at the
correct location of the anatomical landmark.
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4.7.3 Does the Hierarchy Help?

We compare models with one and two levels in the hierarchy on LEEDS in Figure
4.18. We find that for the model using OC annotations the effect of using a
two level hierarchy is marginal, however, we see a substantial improvement in
performance with the two-level model when using PC annotations. The difficulty
in learning person-centric pose estimation lies in the fact that the front-back
ambiguity needs to be resolved. The favorable performance of the two-level model
over the single-level model seems to suggest that information at a coarser scale
assists the model in resolving this ambiguity.

4.7.4 Effects of Missing Context

In the design of a convolutional pose machine, the predictor networks in subse-
quent stages refine their estimates of part locations based on both image evidence
and spatial context inferred from the confidence maps of the preceding stage.
The goal of this experiment is an ablative analysis to learn which parts are most
informative in terms of the spatial context they provide. We use a 3-stage convo-
lutional pose machine on the LEEDS dataset with observer-centric annotation.
We deliberately zero out the confidence map for each part in turn (one at a time)
and observe the change in accuracy for each part at the final output layer.

Figure 4.19 shows that among all the body parts, the elbows and knees rely
on the spatial relationship with other parts the most as they suffer in the largest
drop in accuracy. Furthermore, there is a strong correlation between elbows
and wrists, and between knee and ankles. Unsurprisingly, the detection of head
seems to provide the most informative spatial context and zero-ing out the head’s
confidence map results in the largest average drop in accuracy across all the parts.
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4.8 Evaluation

4.8.1 Leeds Sports Pose Dataset.

We evaluate our method on the Extended Leeds Sports Dataset that consists of
11000 images for training and 1000 images for testing with annotations provided
for the full body. The LEEDS dataset consists of images of people performing a
wide variety of complex sports actions.

We train a model with 3 stages and 2 hierarchy levels to predict 14 parts.
We evaluate our method on both observer-centric (OC) and person-centric (PC)
annotations using the Percentage Correct Keypoints (PCK) metric [Yang and
Ramanan, 2013]. We see that for observer-centric annotations (see Figure 4.20)
we outperform the nearest competing method by approximately 10 percentage
points in the high precision regime (PCK@0.1) and approx. 5 percentage points
in the lower precision regime (PCK@0.2). Person-centric annotations impose a
harder problem on the pose estimation task since disambiguating the left from
right limbs relies on observing the target’s pose relative to the camera, in addition
to the spatial relationship of parts in the image plane. Figure 4.16 shows that our
our model develops a representation that is able to resolve the left-right ambiguity
across the stages the with large receptive fields. Our method again outperforms
all of the other methods, as shown in Figure 4.20.

In Figure 4.20 and Figure 4.21 we show complete quantitative comparisons
between our method and the closes competing methods on LEEDS Sports Dataset
with PCK metric. For observer-centric annotation, we outperform all other meth-
ods ([Chen and Yuille, 2014a], [Pishchulin et al., 2013b], [Ouyang et al., 2014],
and [Ramakrishna et al., 2014b]) by a considerable margin, especially on difficult
but important parts including the wrist, elbow, knee, and ankle. In Figure 4.22
we compare accuracy curves for the top-3 predictions for each part in an image
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with the single best prediction for each part in an image. The comparison curves
in Figure 4.22 suggests that there is still additional improvements to be gained
by disambiguating between the top-3 detections.
Table 4.1: Performance comparison of our method in three different precision regimes using the
PCK metric on observer-centric annotations.
High precision: PCK@0.05 for LEEDS OC

Head Shoulder Elbow Wrist Hip Knee Ankle Total
Ours 3-Stage 2-Level 49.1 32.9 35.3 31.2 18.9 38.0 36.2 34.5
[Pishchulin et al., 2013a] 40.5 28.4 23.6 17.6 21.0 28.9 28.2 26.9
[Chen and Yuille, 2014a] 28.6 21.8 20.4 16.8 16.5 19.6 13.6 19.6
[Ouyang et al., 2014] 39.0 27.2 17.9 14.6 17.6 20.2 24.5 23.0
[Ramakrishna et al., 2014a] 18.0 13.8 9.8 7.7 12.9 12.8 12.3 12.5

Medium precision: PCK@0.1 for LEEDS OC
Head Shoulder Elbow Wrist Hip Knee Ankle Total

Ours 3-Stage 2-Level 81.4 68.2 60.2 53.5 53.5 67.3 64.1 64.0
[Pishchulin et al., 2013a] 74.9 56.1 44.3 33.0 55.4 56.1 51.6 53.1
[Chen and Yuille, 2014a] 68.2 56.6 48.1 43.7 49.0 51.0 42.7 51.3
[Ouyang et al., 2014] 73.7 57.5 41.3 34.2 48.0 48.5 50.8 50.6
[Ramakrishna et al., 2014a] 50.6 43.2 31.2 23.6 38.5 36.5 37.0 37.2

Low precision: PCK@0.2 for LEEDS OC
Head Shoulder Elbow Wrist Hip Knee Ankle Total

Ours 3-Stage 2-Level 93.1 87.5 75.4 68.5 86.1 83.2 77.3 81.6
[Pishchulin et al., 2013a] 87.5 77.6 61.4 47.6 79.0 75.2 68.4 71.0
[Chen and Yuille, 2014a] 91.5 84.7 70.3 63.2 82.7 78.1 72.0 77.5
[Ouyang et al., 2014] 86.5 78.2 61.7 49.3 76.9 70.0 67.6 70.0
[Ramakrishna et al., 2014a] 84.9 77.8 61.4 47.2 73.6 69.1 68.8 69.0
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Table 4.2: Performance comparison of our method in three different precision regimes using the
PCK metric on person-centric annotations.
High precision: PCK@0.05 for LEEDS PC

Head Shoulder Elbow Wrist Hip Knee Ankle Total
Ours 3-Stage 2-Level 48.9 29.0 32.0 27.4 18.0 30.9 27.0 30.4
[Tompson et al., 2014] 41.0 32.2 30.1 28.2 16.9 29.9 30.1 29.8
[Pishchulin et al., 2013a] 40.7 19.9 18.4 13.6 15.4 21.1 21.9 21.6
[Chen and Yuille, 2014a] 24.5 18.1 19.2 14.4 11.8 15.5 8.7 16.0
[Wang and Li, 2013] 30.2 14.6 10.1 10.0 9.9 12.9 15.9 14.8

Medium precision: PCK@0.1 for LEEDS PC
Head Shoulder Elbow Wrist Hip Knee Ankle Total

Ours 3-Stage 2-Level 82.0 61.0 55.5 49.8 47.5 58.7 48.8 57.6
[Tompson et al., 2014] 76.2 63.2 54.2 50.5 42.0 56.5 53.4 56.6
[Pishchulin et al., 2013a] 74.8 39.2 32.7 26.1 40.0 40.9 39.0 41.8
[Chen and Yuille, 2014a] 61.6 49.3 49.1 40.1 36.5 41.9 29.8 44.0
[Wang and Li, 2013] 65.6 36.7 26.4 24.7 29.8 34.0 36.3 36.2

Low precision: PCK@0.2 for LEEDS PC
Head Shoulder Elbow Wrist Hip Knee Ankle Total

Ours 3-Stage 2-Level 94.0 79.8 70.6 65.2 77.9 74.1 61.4 74.7
[Tompson et al., 2014] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3
[Pishchulin et al., 2013a] 87.2 56.7 46.7 38.0 61.0 57.5 52.7 57.1
[Chen and Yuille, 2014a] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4
[Wang and Li, 2013] 84.7 57.1 43.7 36.7 56.7 52.4 50.8 54.6

In Tables 4.1, we tabulate the accuracy of our method and competing methods
at different precision regimes. Our method displays large performance gains in
the high precision regime where we are better by up to 13.6 percentage points,
against the closest competitor. We also report average performance over the
whole precision range by including the area under curve (AUC) in the last column
of Table 4.1.

In Tables 4.2, we tabulate the accuracy of our method and competing meth-
ods ([Tompson et al., 2014], [Pishchulin et al., 2013b], [Chen and Yuille, 2014a],
and [Wang and Li, 2013]) at different precision regimes for person-centric annota-
tions. While the gap in performance is smaller we still outperform all competing
methods on average in all precision regimes. The most prominent error mode for
the model trained with person-centric annotations is still the confusion between
parts with symmetric appearance. This occurs because the front-back ambiguity
needs to be resolved.
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4.8.2 FLIC Dataset

We evaluate our method on the FLIC Dataset [Sapp and Taskar, 2013] that
consists of 3987 images for training and 1016 images for testing with 9 annotations
provided for the upper body. The FLIC dataset consists of frames taken from
cinema. We report accuracy as per the metric introduced in Sapp et al. [Sapp and
Taskar, 2013] for the elbow and wrist joints in Figure 4.25. Again we outperform
all prior art in PCK metric in both high precision (PCK@0.05) by 7.5 percentage
points on wrists and 7 percentage points on elbows, and in the lower precision
regime (PCK@0.1) by 3 percentage points on wrists and 6.5 percentage points
on elbows. We show qualitative results in Figure 4.24.
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Figure 4.16: Comparison of confidence maps across stages for the elbow and wrist joints on the
LEEDS dataset for a three stage deep pose machine. The subsequent stages of the convolutional
pose machine learns a spatial model that aids in resolving confusions between parts. The first
stage predictions for the wrist joints are often ambiguous or erroneous.
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Figure 4.17: (a) Comparisons on the LEEDS dataset between the different training methods.
(b) Comparisons on the LEEDS dataset across each stage using joint training from scratch with
intermediate supervision.
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Figure 4.18: Hierarchy Levels Comparison: Comparisons on the LEEDS dataset across number
of stages using training from scratch with OC and PC annotation, respectively.
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Figure 4.19: Ablative Analysis of Missing Context. We list the change in accuracy using
PCK with a threshold of 0.05 when each part is removed in turn. We observe that among all
the body parts, the elbows and knees rely on the spatial relation with other parts the most as
they suffer in the largest drop in accuracy. Furthermore, there is a strong correlation between
elbows and wrists, and between knee and ankles. The detection of head provides the most
informative spatial context and resulting in the largest average drop in accuracy across all the
parts, when zero-ed out.
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Figure 4.20: PCK Performance on LEEDS Sport Data with Observer-centric Annotation
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Figure 4.21: PCK Performance on LEEDS Sport Data with Person-centric Annotation
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Figure 4.22: PCK Performance on LEEDS Sport Data with Person-centric Annotation for the
Top-3 predictions for each part. In green we show the accuracy curves using top-3 predictions
and in black we show the accuracy curves for the best prediction in each image.
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Figure 4.23: Qualitative results of our method on the LEEDS dataset using person-centric annotations. We
see that the method is able to handle non-standard poses and resolve ambiguities between symmetric parts for
a variety of different relative camera views (best viewed in color).
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Figure 4.24: Qualitative results of our method on the FLIC dataset (best viewed in color)
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Figure 4.25: Quantitative results for the elbow and wrist joints on the FLIC dataset for a
convolutional pose machine with three stages and two levels. We outperform all competing
methods.

98



CHAPTER5
Parsing Visual Dyads

When people physically interact they convey crucial non-verbal information. The
articulated pose of interacting people can convey information regarding social
status, the relationship between the actors and the intent of the interaction.
However, reasoning about articulated pose for interacting articulated objects from
images is extremely challenging. In this chapter we discuss these challenges and
focus on the problem of reasoning about the articulated pose of two interacting
individuals from a single image. We term such an interaction in an image a visual
dyad1. A visual dyad consists of a visual interaction between a pair of individuals.
A visual interaction can include the result of physical interactions between the
actors which manifest as proximity, contact and the relative configuration of the
objects in the image, and interactions that are induced by the imaging process
such as occlusion and illumination changes.

The usual challenges of performing articulated pose estimation are com-
pounded when dealing with interacting objects. Estimating articulated pose in
the presence of dyadic interactions requires reasoning about combinatorially many

1We borrow the term dyad from sociology, where it refers to a pair of individuals linked via
a social interaction [Macionis and Gerber, 2010].
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Figure 5.1: Interacting people present a special challenge for pose estimation algorithms. We
see that in the images shown above from the Proxemics dataset [Yang et al., 2012], parts from
each of the individuals are in close proximity to each other making assigning ownership of each
part to the individuals a challenging task. Additionally, parts from each of the individuals
occlude tend to occlude each other.

configurations and combinatorially many interactions. For an articulated body
model with d degrees of freedom and K possible states for each degree of freedom,
we have O

(
dK
)
possible configurations. ForM interacting objects, the number of

possible total configurations of the ensemble of objects increases to O
(
(Md)K

)
.

A model attempting to deal with such a large state-space must be equipped to
take advantage of statistical regularities in the way such objects interact. The
imaging process introduces additional challenges when dealing with interacting
objects. Due to differing depths of the objects relative to the camera, inter object
occlusions are one of the main difficulties faced when parsing visual dyads. Limbs
or parts of one individual can occlude parts of the other individual in the pair
and vice-versa. Occluded parts complicate reasoning about full configurations as
assumptions about part-connectivity are broken. A second challenge is that of
resolving ambiguous part ownership. As both objects in the dyad belong to the
same class (i.e., people), their parts tend to have similar appearance. When the
objects are in close proximity, it becomes difficult to assign ownership of detected
parts to each of the individuals in the dyad. Resolving this ambiguity requires
reasoning about the relative configuration and correlating the appearance of the
part with the appearance of the individual.
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Figure 5.2: Pose Machine for Parsing Visual Dyads: Two parallel sequences of predictors
are trained to estimate the pose of each participating object in the visual dyad. Each sequence
specializes in predicting the object in the left and right parts of the image plane respectively.

A possible approach to dealing with the problem of interacting articulated
objects is to reason about each object individually. Methods such as those pro-
posed by [Ghiasi et al., 2014] and [Chen and Yuille, 2014b] approach the problem
in an interaction-agnostic fashion. These methods reason about the pose of in-
dividuals by modeling local occlusions of body parts while remaining agnostic to
the interacting individual. In work by [Andriluka and Sigal, 2012], interactions
between individuals are modeled using a graphical model with additional connec-
tions between parts of the interacting objects. This results in a loopy graphical
model, where inference is difficult. The authors use a branch and bound approach
to perform inference, which can potentially be intractable for models incorporat-
ing complex interactions. [Yang et al., 2012] study the problem of interacting
people, but restrict their scope to the problem of detecting types of interactions,
by fitting tree structured models trained for each interaction type and scoring the
detections using the fitting error. In this chapter we make the case for reasoning
about interacting objects jointly and not in isolation. We describe a model for
jointly estimating the articulated pose of both interacting objects in a visual dyad
that leverages the success of the pose machine architecture for modelling complex
spatial interactions via a sequential prediction procedure.
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5.1 Model Overview

As in the previous chapter we view the problem of detecting the anatomical
landmarks of interacting objects as a structured prediction problem. We model
the pixel location of each anatomical landmark (which we refer to as a part) in
the image, yp ∈ Z ⊂ R2, where Z is the set of all (u, v) locations in an image. Our
goal is to predict the structured outputs yl = (yl1, . . . , ylp) for all P parts of the
left object and right object where l ∈ {L,R} refer to the left and right objects.
Our basic assumption regarding the interacting objects is that they occur in a
horizontal relative geometric configuration, thus allowing us to classify each object
as belonging to the left or the right of the image plane. A dyadic pose machine
consists of an initial part predictor g0(·) that is trained to predict the location
of the P anatomical landmark s regardless of object ownership from local image
evidence and a sequence of predictor pairs {glt(·)}l∈{L,R} that are trained to predict
the location of parts belonging to the left and right persons respectively from
both local image evidence and contextual information from preceding classifiers.
In each stage t ∈ {1 . . . T}, the classifier predicts a confidence for each output
variable assignment ylp = z ∀z ∈ Z, l ∈ {L,R} based on features of the image data
xz ∈ Rd and contextual information from the preceeding classifiers of both objects
in the neighborhood around each yp. In each stage, the computed confidences
provide an increasingly refined estimate for the variable. The confidence for the
ith part agnostic of object ownership is given by:

b0(yp = z) = gp0 (xz) , (5.1)

where xz refer to local image evidence around the location z. In subsequent
stages the predictors {glt(·)}l∈{L,R} resolve part ownership based on local image
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evidence and contextual information from previous predictions:

lgt

xlz,
⊕

l∈{L,R}
ψ(z, lbt−1), ψ(z,b0)

→ {
lbpt (yp = z)

}
p∈0...Pl

. (5.2)

For convenience, we denote the collection of confidence maps for all the parts
belonging to level l as lbt ∈ Rw×h×P .

The predictors in subsequent stages use object-agnostic part beliefs (bo, local
image evidence xlz and the object-specific part beliefs lbt−1 from preceding stages
to compute updated confidences for the object-specific part beliefs (see figure
5.3. As before the inference machine architecture allows the learning of complex
spatial interactions between both parts of the same object as well as parts of
the interacting object as each predictor is presented context from both objects.
This allows the model to implicitly reason about the relative configurations of
interacting objects. We see that in subsequent stages the predictors are able to
resolve the part ownership starting from the object-agnostic detections produces
by the predictor g0(·). As in the previous chapter, the procedure models a fully
connected graph where contextual information is shared between all parts of
all objects. This allows the model to reason about inter-object occlusions as
relationships between all parts are modeled. It also enables the model to learn
to reason about complex joint configurations of the interacting objects.

We use deep convolutional networks as the prediction modules for the predic-
tors for object-agnostic part detection (g0 ) and the object-aware part predictors
{lgt}l∈{L,R}. As described in section 4.3.2, contextual information on the out-
put of preceding stages is captured by designing a network with the appropriate
receptive field.
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Figure 5.3: Intermediate outputs of a dyadic pose machine: In the first row we show
the object-agnostic part detection confidences. We see multiple peaks for each part on both
interacting people. The second and third row show outputs for the left and right object-aware
part predictors. We see that the bimodality of the part detections is attenuated with the
detection on the corresponding object being strengthened. The fourth and fifth row show an
additional stage of the sequence.

5.2 Learning

Each stage of the dyadic pose machine is trained to repeatedly produce the con-
fidence maps or beliefs for the locations of each of the parts for each of the inter-
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acting objects. Similar to the training procedure described in Section 4.6.2, we
encourage the network to repeatedly arrive at such a representation by defining
a loss function at the output of each stage. In the order-agnostic stage, we define
a cost function that minimizes the euclidean distance between the order-agnostic
part predictions, 0bp(z), and the ideal scoremaps, 0bp∗(z), for each location z in
each training image:

f0 =
P∑
p=1

∑
z∈Z
‖0bp0(z)− 0bp∗(z)‖2

2. (5.3)

In subsequent stages t, for each object l ∈ {L,R}, we define a loss function
that penalizes the l2 distance between the predicted and ideal confidence maps
for each part. The ideal confidence map for a part p is written as lbp∗(Yp = z).
The cost function we aim to minimize at the output of each stage at for each
object is therefore given by:

lft =
P∑
p=1

∑
z∈Z
‖lbpt (z)− lbp∗(z)‖2

2. (5.4)

The overall objective for the full architecture is obtained by adding the losses
at each stage and summing over every image in the training dataset D, and is
given by,

F =
∑
D

(
f0 +

T∑
t=1

L∑
l=1

lft

)
. (5.5)

As the full architecture is differentiable, the above loss function can be min-
imized using a first order method such as stochastic gradient descent. Gradients
throught the entire architecture can be computed by the backpropagation al-
gorithm [Rumelhart et al., 1988; LeCun et al., 1989]. The performance of the
convolutional architecture improves with the data used for training. We perform
data augmentation by rotating, flipping and cropping the image to generate a
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large training corpus.

5.3 Inference

At test time, inference comprises of performing a feedforward pass through the
convolutional architecture of the dyadic pose machine to produce the beliefs at
the final stage lbT for each object in the ordering l ∈ {L,R}. The location for
anatomical landmarks ylp for each object in the ordering, l ∈ {L,R}, are then
obtained by finding the location in each of the scoremaps that corresponds to the
maximum score:

ylp = arg max
z

lbpT (z). (5.6)

In the dyadic pose machine, we model part presence during training. Parts
that are not visible in training images do not contribute to peaks in the ideal
training score maps. Therefore, at test-time, we only predict the presence of
parts by assigning parts a location as in Equation 5.6 if the score corresponding
to the location exceeds a visibility threshold τvis. The visibility threshold is
calibrated using validation data, by finding the threshold value which provides
the fewest misclassifications of part visibility. Therefore we have:

ylp =


arg max

z

lbpT (z), if max
z

lbpT (z) ≥ τvis

not visible if max
z

lbpT (z) < τvis

(5.7)

5.4 Results and Analysis

We analyze and evaluate our model for dyadic pose prediction on the Proxemics
dataset introduced by [Yang et al., 2012]. The datasets consists of 578 images of
people interacting, with two or three people per image. We use 300 images for
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Figure 5.4: Comparison between dyadic pose prediction and single pose prediction. We see that
the pose predictor operating on individuals is prone to incorrectly assigning part ownership and
suffers when there is heavy inter-person occlusion. In contrast the dyadic pose machine is able to
predict pose in the presence of a large degree of inter-person occlusion and complex interactions.

training and the rest for testing. We show some representative image samples in
Figure 5.1. The dataset includes annotations for 10 keypoints on the upper body.
We train a model as described in the previous section to predict the 10 keypoints
for the left (L) person and the right (R) person. We evaluate accuracy using the
percentage correct keypoints (PCK) metric introduced in [Yang and Ramanan,
2013]. The PCK metric computes the accuracy of a keypoint prediction as a
function of a threshold distance from the ground truth keypoint.

5.4.1 Comparison with Monadic Prediction Baseline:

In Figure 5.5 we plot the PCK accuracy comparing our baseline model that
consists of an architecture trained to predict a single person (monadic pose pre-
diction) as described in Chapter 4, with the dyadic pose prediction model as
described in the previous sections over all poses in the dataset. We find that the
dyadic pose prediction model outperforms the monadic model by a large margin.
We show qualitative comparisons between the individual pose predictions and
the dyadic pose predictions in Figure 5.4.
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Figure 5.5: We compare the dyadic pose machine model with a baseline that consists of a convolutional
pose machine as described in the previous chapter in sequential fashion, the pose is predicted for each person
separately anchored on a crop of the image based on a face detection result.
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Figure 5.6: PCK evaluation comparing performance of the left person and right person predic-
tors of a dyadic pose machine. Note the keypoints on the right arm of the left person predictor
and left arm of the right person predictor. We see that these parts tend to occlude each other
resulting in lower accuracy.

5.4.2 Comparison of Left/Right Predictions:

We compare the pose estimation accuracy for the left person with the accuracy for
the right person in Figure 5.6. We note that they perform comparably, except
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for a drop in accuracy for keypoints on the left arm of the right person, and
keypoints on the right arm of the left person. This is because these parts are
highly prone to inter-person occlusions.

5.4.3 Accuracy based on Interaction Type

: We show the pose estimation accuracy using the PCK metric based on each type
of interaction as coded in the Proxemics dataset [Yang et al., 2012] in Figure 5.8.
The dataset is divided into six different types of interactions: hand-hand, hand-
shoulder, hand-torso, shoulder-shoulder, elbow-shoulder and hand-elbow. We see
that

5.5 Discussion

We developed a pose-machine architecture for reasoning about visual dyads.
Dyadic pose prediction is challenging due to the large variation in the coupled
configuration of the dyad. We find that when people occur in configurations that
obey the ordering assumptions (left/right) we are able to parse each object’s pose
successfully, reasoning about inter-person occlusions and asssigning correct part
ownership. The primary failure mode for the method is when ordering assump-
tions are violated in the image, and the relative ordering is not captured by a
simple left/right designation. In Figure 5.9 we show common failure modes. We
see that in images when the subjects have a top/down ordering, our method does
not perform favorably. We also find that certain poses with intricate interactions
and complex single configurations can also prove troublesome if similar examples
haven’t been seen previously during training. Developing a consistent and stable
ordering method coupled with training with large datasets that cover the large
variation in dyadic configurations is an avenue for future work.
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Figure 5.7: Qualitative examples of dyadic pose prediction on the PROXEMIC dataset[Yang et al., 2012].
Keypoints and limbs are only overlaid if the detection confidence is above a threshold for visiblility.
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Figure 5.8: Comparison of PCK performance across types of interactions as described in Yang
et al. [2012].
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Figure 5.9: Failure examples. The primary failure mode is when the ordering assumption is
violated. We see that in most failure cases the left-right ordering of subjects does not hold.
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CHAPTER6
Tracking Articulated Human Pose

As far back as [Gibson et al., 1969], researchers have noted the importance of
having a representation for occlusion to reason about motion. Representing oc-
clusion is particularly important in estimating human motion because, as the
human body is an articulated structure, different parts occlude each other fre-
quently. The human body is structurally symmetric and parts tend to be occluded
by their symmetric counterparts, such as left knees by right knees. This occurs
because the viewer’s optical axis is often perpendicular to the body’s bilateral
plane of symmetry.

Spatial representations for reasoning about occlusion require evaluating a
large set of possible spatial configurations [Sigal and Black, 2006], which scales
combinatorially as we move from images to videos. Spatial representations also
rely on weak cues; for example, the location and appearance of a shoulder provides
only a weak cue as to whether the elbow is occluded. Temporal representations
can make use of strong temporal continuity priors to reason about occlusions. It
has been noted that even in the human visual system [Remus and Engel, 2003],
temporal motion continuity serves occlusion reasoning. A part that is visible
and has a smooth trajectory before and after a period of non-visibility must be
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Algorithm 6 sym_track

1: Compute max-marginals µ∗(xf
i ) using Equation eq:maxmarg for root part in each frame.

2: Sample root part proposals X f
p ∼ µ∗(x

f
i )

3: Track root part by minimizing the objective in Equation 6.3.
4: while In breadth first fashion, select next part(s) do
5: Compute max-marginals (µ∗(xf

p)) for current part(s) conditioned on the tracked locations
of parent parts.

6: if is_symmetric_pair then
7: Sample part proposals X f

p ,X f
q from corresponding max marginals

8: Track symmetric parts using formulation in Equation 6.6
9: else
10: Sample part proposals X f

p ∼ µ∗(xf
p)

11: Track part using formation in Equation 6.3
12: end if
13: end while

occluded for that period. If a system cannot reason about occlusion temporally,
motion consistency will force it to struggle to find image evidence to support a
smooth path when occlusion occurs. This can corrupt tracking even outside the
duration of occlusion.

In this chapter, we argue that temporal reasoning about occlusion is essential
to tracking human pose and handling double counting. We divide the body into
a set of singleton parts and pairs of symmetric parts. Our key insight is that
tracking human pose can be cast as a multi-target tracking problem where the
"targets" are related by an underlying articulated structure. Our contributions
are: (1) an occlusion-aware model for tracking human pose that enforces both
spatial and temporal consistency; (2) a method for jointly tracking symmetric
parts that is inspired by optimal formulations for multi-target tracking.
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head

neck

shoulders

hips

feet

Iteration 1 Iteration 2 Iteration 3 Iteration 4

f � 1 f f + 1 f � 1 f f + 1 f � 1 f f + 1 f � 1 f f + 1

Iteration 11

f � 1 f f + 1

Figure 6.1: Graphical representation of the algorithm. We use a tree-structured de-
formable parts model in each frame to generate proposals for each part. In the first iteration,
we track the head node using an LP tracking formulation. Proposals for the next symmetric
pair in the tree are generated by conditioning each tree on the tracked locations computed
in the previous iteration. Symmetric parts are tracked simultaneously with mutual exclusion
constraints. The method proceeds by sequentially conditioning the tracking of parts on their
parents until all the parts are tracked.

6.1 Tracking Human Pose

The (u, v) location of a part p in a frame at time instant f is denoted by xfp .
We denote by up = [x1

p . . . x
F
p ], the locations of part p in frames 1 to F and by

u the set of tracks for all parts (1, . . . , P ). A symmetric part pair is a pair of
parts (p, q) that share the same appearance. The goal of human pose tracking is
to estimate the location of each part of the person in every frame of the image
sequence. We write this as maximizing the following scoring function over the
full model:

u∗ = argmax
u

E(u1,u2, . . .uP ). (6.1)

Optimizing the above scoring function over the full model requires a search over
an exponential number of configurations and is NP-hard in general.

To bypass the intractability of the objective, we proceed by approximating
the function and making stage-wise locally optimal decisions (see Figure 6.1). We
begin with a root node for which the false positive rate is the lowest [Yang and
Ramanan, 2011]. For human pose, this root node is the head for which we are
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able to get reliable detections. Given a set of proposals for the location of the
head in each frame (Section 6.3.1), we solve for the optimal track u∗1,

u∗1 = argmax
u1

E(u1,u2, . . .uP ). (6.2)

s

6.2 Tracking a Singleton Part

Given a set of proposals denoted by X f
p for part p in the image at each frame f ,

we first augment the proposal sets with an occlusion state ofp for each frame. We
form tracklets ptijk for each part by combining triplets (ixf−1

p , jxfp ,
kxf+1

p ) where
ixfp ∈ X f

p is a proposal at location i in the image or an occlusion state ofp .

We denote by pUf
ijk the indicator variable that is associated with tracklet ptijk

that takes values ∈ {0, 1} corresponding to the tracklet being selected or not.
We associate with each tracklet, a score ufijk based on appearance, detection, and
foreground likelihood cues, which is described in Section 6.3.2. Our goal then is
to maximize the following objective subject to constraints:

max
{pU}

∑
∀i,j,k,f

pufijk
pUf

ijk

s.t. {Uf
ijk} ∈ {0, 1}

∀f, ∀(j, k) ∑
i

pUf
ijk = ∑

l

pUf+1
jkl (Continuity)

∀f, ∑
i,j,k

pUf
ijk = 1 (Uniqueness)

(6.3)

The above optimization problem corresonds to finding the single best path
in a lattice graph and can be solved efficiently using dynamic programming.
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Continuity Constraints enforce conservation of flow by stating that the flow
entering the nodes j and k should be equal to the flow emanating from those
nodes. These constraints essentially encode the connectivity of a track, preventing
fragmented tracks.

Uniqueness Constraints limit the flow at each time instant to be 1. This
implies that one object is being tracked in the network graph.

6.2.1 Conditioned Tracking

Once the optimal track u∗1 has been obtained (Section 6.2), we generate proposals
and track the next set of nodes conditioned on the optimal parent track u∗1.

(u∗2) = argmax
u2

E(u1 = u∗1,u2,u3,u4 . . .uP ). (6.4)

We use the same formulation as in Section 6.2 to obtain the optimal track u∗2.

Next, for a symmetric pair of parts whose tracks are given by (u3,u4) we
simultaneously estimate the optimal tracks (See Section 6.3):

(u∗3,u∗4) = argmax
u3,u4

E(u1 = u∗1,u2 = u∗2,u3, . . .uP ). (6.5)

Tracking is conditioned on the optimal parent track by fixing the location of the
parent in each of the frames to the tracked locations and re-running dynamic
programming inference in each of the trees in each frame (Section 6.3.1).

We proceed in this manner, by conditioning the tracking of the child nodes
on the optimal tracks of their parents and by tracking symmetric parts using a
joint formulation, until all the parts have been tracked.
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Occlusion Node
for Part p

Detection Node
for Part p 

Detection Node
for Part q 

Occlusion Node
for Part q

Mutual Exclusion 
Constraints

f = 1 f = 2 f = 3 f = 4 f = 5 f = 6

f = 1 f = 2 f = 3 f = 4 f = 5 f = 6

Flow Path
for Part p 

Flow Path
for Part q 

Figure 6.2: Max-flow formulation for symmetric part tracking. The blue and red dots denote
detections for each of the parts separately in each frame. The gray nodes denote occlusion
nodes for each frame. The dotted lines depict mutual exclusion constraints between certain
sets of nodes. The symmetric tracking problem is to find the best scoring path in each of these
graphs subject to the mutual-exclusion constraints.

6.3 Tracking a Pair of Symmetric Parts

Our approach treats the problem of tracking symmetric pairs of parts as a multi-
target tracking problem. In multi-target tracking, the goal is to track multiple
objects that share the same appearance and hence the same generic detector
(typically pedestrians). The objects move in the scene in an unconstrained fashion
with mutual occlusions. Recent methods have modeled multi-target tracking as a
network flow problem [Andriyenko and Schindler, 2010; Jiang et al., 2007; Berclaz
et al., 2011] where finding tracks is equivalent to pushing K-units of flow through
a graph where K is the number of objects to be tracked.

Our formulation is as follows: we denote by pU and qU the set of all indicator
variables for tracklets p and q respectively. Our full objective is now the following
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optimization problem:

max
{pU,qU}

∑
i,j,k,f

pufijk
pUf

ijk + ∑
i,j,k,f

qufijk
qUf

ijk

s.t. {Uf
ijk} ∈ {0, 1}

∀f, ∑
i

pUf
ijk = ∑

l

pUf+1
jkl (Continuity)

∀f, ∑
i

qUf
ijk = ∑

l

qUf+1
jkl∑

i,k

pUf
ijk +∑

i,k

qUf
ijk ≤ 1 (Mutual Exclusion)

∀f, ∑
i,j,k

pUf
ijk = 1 (Uniqueness)

∀f, ∑
i,j,k

qUf
ijk = 1

(6.6)

Mutual Exclusion Constraints. We enforce mutual exclusion constraints that
prevent the symmetric parts from occupying the same location in the image. In a
typical self-occlusion scenario the score of a particular location in the image will
be high for both the symmetric parts. In such a case the mutual-exclusion con-
straints enforce that only one part can occupy the location, while the symmetric
counterpart is either pushed to an occlusion node or to another location in the
image that is consistent with the constraints and has a high score. We enforce
these constraints by limiting the total flow at nodes in both networks that share
the same location in the image.

This formulation corresponds to maximizing the flow through two separate
networks that interact via the mutual exclusion constraints. The above opti-
mization problem is an integer linear program and solving it is NP-complete.
However, we can relax the problem by replacing the integral constraints by al-
lowing 0 ≤ pUf

ijk ≤ 1 and 0 ≤ qUf
ijk ≤ 1. The relaxation can be shown to be

tight for most practical cases [Andriyenko and Schindler, 2010].

We solve this linear program using a commercially available solver [MOSEK].
In the case of non-integral solutions, we use a branch and cut method to find the
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integral optimum as suggested in [Andriyenko and Schindler, 2010].

Occlusion Interpolation Once a solution is obtained, the location of the oc-
cluded part is estimated by interpolating between the image location of the node
preceding and following occlusion using cubic B-spline interpolation.

6.3.1 Generating Part Proposals via Max-Marginals

Human pose in a frame at each time instant is modeled with a tree-strutured
deformable part model as in recent work by [Yang and Ramanan, 2011]. A
deformable part model is a tree-structured CRF that maximizes the following
score, given an image:

S(xf ) =
∑
i=1

wFi φ(It, xfi ) +
∑
i,j

wijψ(xfi , x
f
j ) (6.7)

where xt = [xf1 . . . xfP ] is the pose in frame f , φ(If , xfi ) are a set of image features
computed at location xfi , ψ(xfi , x

f
j ) is a quadratic function that measures the

displacement between parts i and j. The weights wi and wij are the parameters
of the CRF that are learned as described in [Yang and Ramanan, 2011].

To generate proposals for part locations in each frame, we compute the max-
marginal of the above scoring function at each part. The max-marginal for part
i in frame f is given by:

µ∗(xti = s) = max
xt:xti=s

S(xt), (6.8)

which is the maximum of the scoring function with the part i clamped to location
s. The max-marginal provides a peaky approximation of the true marginal distri-
bution. We compute max-marginals for each tree in each frame separately. The
max-marginals for a tree-structured graphical model can be computed efficiently
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Figure 6.3: Scoring Tracklets. (a) Proposals for the head are generated from the max-
marginal score map shown in (d). (b) Proposal sets are augmented by tracking each proposal
forwards and backwards to ensure smooth tracks. (c) Foreground likelihood used to score
tracklets (d) The detection likelihood for the head part.

for all the parts by performing two passes of max-sum message passing inference.
We perform non-maxima suppression on the max-marginal score map for each
part to generate a set of location proposals in each frame.

We expand the proposal set by tracking each proposal forwards and back-
wards using a Lucas-Kanade template tracker [Baker and Matthews, 2004] to
obtain extended proposal sets X t

i . This ensures smoother tracks and makes the
proposal generation robust to frame-to-frame inconsistencies of the detector.

Once a parent part has been tracked, the max-marginals for the child nodes
are recomputed by conditioning on the tracked locations of the parent nodes.
The conditioned max-marginals for part i in frame f with a set of parent nodes
pa(i) with tracked locations x∗pa(i) can be written as:

µ∗(xfi = s) = max
xf :xfi =s,

∀j∈pa(i), xfj=xf∗j

S(xf ). (6.9)

This can be efficiently computed for a tree, as before, by performing dynamic
programming max-sum inference.
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6.3.2 Scoring Part Tracklets

Each tracklet is assigned a likelihood score that consists of terms that measure
the detection likelihood, the foreground likelihood and motion prior:

sfijk = αssfore(Uf
ijk) + αfsdet(Uf

ijk)
+αmsmot(Uf

ijk).
(6.10)

The weighting co-efficients of the different terms were set by performing a grid
search on validation data.

Detection Likelihood. The likelihood of detection for a particular part is
obtained by using the max-marginal score of the tree-structured CRF model. We
normalize the max-marginal score and obtain a likelihood of detection of part p
at location i as:

ldet(ixfp) ∝
exp(−µ∗(xfp = i))∑L
s=1 exp(−µ∗(xfp = s))

. (6.11)

For a tracklet with occlusion nodes we assign a constant score for the occlusion
nod ldet(iofp) ∝ podet. This constant needs to be calibrated in relation to the scores
of the detector and is found by performing a grid search on validation data. The
detection score for the tracklet Uf

ijk is obtained as:

sdet(Uf
ijk) = ldet(ixf−1

p ) · ldet(jxfp) · ldet(kxf+1
p ). (6.12)

Motion Likelihood. We use a constant velocity motion model. In order to
check for constant velocity, we require two motion vectors, and therefore we use
three consecutive sites in our formulation (similar to [Andriyenko and Schindler,
2010]). We denote the two motion vectors as vij = xf−1

i −xfj and vjk = xfj −x
f+1
k .

Our motion score is now given by:
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smot(Uf
ijk) = e

−
(
‖vij−vjk‖

σm

)2

. (6.13)

The constant velocity model allows us to enforce smoother trajectories and
penalize large deviations.

Foreground Likelihood. The foreground likelihood is estimated by computing
a background model by median filtering the image sequence. The foreground
likelihood is estimated as:

smot(Uf
ijk) = (1− pb(xf−1

i )) · (1− pb(xfj ))

·(1− pb(xf+1
k ))

where pb(xfj ) denotes the probability of the location xfj of belonging to the back-
ground, as given by:

pb(x) = 1√
2πσb

e
−
(
‖I(x)−Ib(x)‖

σb

)2

(6.14)

where Ib is the computed background model. As before, we assign a constant
score to occlusion nodes.

6.4 Experimental Analysis

We perform qualitative and quantitative experiments on two challenging datasets
to determine the performance of the proposed algorithm. In order to test the
tracking method we model human pose with the tree-structured CRF model of
[Yang and Ramanan, 2011]. For all experiments, we train the model on the
PARSE dataset introduced in [Ramanan et al., 2007]. We model the human
body with 26 parts as in [Yang and Ramanan, 2011]: 2 singleton parts for the
head and neck and a total of 12 symmetric pairs of parts for the shoulders, torso,
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legs, and upper arms.

Comparisons. As our baseline, we compare the method of [Park and Ramanan,
2011] that also uses a detector for pose in each frame [Yang and Ramanan, 2011]
that is trained on the same training data. The n-Best pose configurations are
generated for each frame and tracking is performed by modeling pose tracking
with a chain-CRF and performing viterbi-decoding like inference.

6.4.1 Datasets.

We test our method on a variety of challenging datasets consisting of both indoor
and outdoor sequences.

Human Eva-I: We evaluate our method on a standardized dataset that com-
prises of sequences of actors performing different actions in a indoor motion cap-
ture environment. We report results on the 250 frames each of the sequences
S1_Walking, S1_Jog, S2_Jog for camera 1. We show qualitative results in Fig-
ure 6.7.

Outdoor Pose Dataset: This dataset consists of 6 sequences collected by us
comprising of 4 different actors performing varied actions outdoors with a natural
cluttered background. The actors perform complex actions and switch between
actions within the same video. The poses they assume include many with signif-
icant self-occlusion.

Sequences from [Park and Ramanan, 2011]: We also test our method on
the walkstraight and baseball sequences used in [Park and Ramanan, 2011] for
evaluation and report PCP scores on these videos. We show qualitative results
in Figure 6.4.
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Figure 6.4: Qualitative Comparison. We show improvement frames on two of the sequences
used in [Park and Ramanan, 2011].

6.4.2 Detection Accuracy

We use two metrics to evaluate our algorithm. We use the PCP criterion as in
[Ferrari et al., 2008] and keypoint localization error (KLE). Keypoint localization
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Metric Method Head Torso U.L. L.L. U.A. L.A.
PCP Ours 1.00 0.69 0.91 0.89 0.85 0.42

[Park and Ramanan, 2011] 1.00 0.61 0.86 0.84 0.66 0.41
KLE Ours 0.53 0.88 0.67 1.01 1.70 2.68

[Park and Ramanan, 2011] 0.54 0.74 0.80 1.39 2.39 4.08

Table 6.1: PCP scores and keypoint localization error for the baseball and walking videos. We
outperform the baseline due to better temporal consistency and occlusion handling.

error measures the average euclidean distance from the ground truth keypoint
normalized scaled by the size of the head in each frame to correct for scale
changes. As our method (and most 2D pose estimation methods) cannot dis-
tinguish between left and right limbs we report the score of the higher scoring
assignment. We obtain significantly better results than our baseline [Park and
Ramanan, 2011] on the outdoor pose dataset as reported in Table 6.2. The main
improvements are in the tracking of the lower limbs which are especially suscepti-
ble to double counting errors. Our method reduces the double counting artifacts
and enforces temporal smoothness for each part resulting in smoother and more
accurate tracks. We also show improvments on the sequences used in [Park and
Ramanan, 2011], PCP and KLE accuracies are reported in Table 6.1.

Metric Method Head Torso U.L. L.L. U.A. L.A.
PCP Ours 0.99 0.86 0.95 0.96 0.86 0.52

[Park and Ramanan, 2011] 0.99 0.83 0.92 0.86 0.79 0.52
KLE Ours 0.39 0.58 0.48 0.48 0.88 1.42

[Park and Ramanan, 2011] 0.44 0.58 0.55 0.69 1.03 1.65

Table 6.2: PCP scores and keypoint localization error for the six sequences of the outdoor
pose dataset. We obtain a significant improvement over the baseline due to better temporal
consistency and occlusion handling.
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Metric Method Head Torso U.L. L.L. U.A. L.A.
PCP Ours 0.99 1.00 0.99 0.98 0.99 0.53

[Park and Ramanan, 2011] 0.97 0.97 0.97 0.90 0.83 0.48
KLE Ours 0.27 0.48 0.13 0.22 1.14 1.07

[Park and Ramanan, 2011] 0.23 0.52 0.24 0.35 1.10 1.18

Table 6.3: HumanEvaI evaluation. PCP scores and keypoint localization error for sequences
from the HumanEva-I dataset. We obtain significant improvement over the baseline due to
better temporal consistency and occlusion handling. We particularly perform well on the lower
and upper legs which typically are difficult because of mutual occlusions.

6.4.3 Double counting errors

We observe a significant decrease in the number of double counting errors of our
method over the baseline (Figure 6.6). In the outdoor pose dataset we reduce
the number of double counting errors by substantially by around 75 %, while we
observe a decrease of approximately 41 % on the HumanEva-I sequences.
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Figure 6.5: Qualitative Comparison. We show frames of symmetric tracking of human pose in comparison
to the baseline [Park and Ramanan, 2011] on outdoor pose dataset. Note that our method reduces double
counting errors especially on frames when the person is entering a profile view with mutual occlusion.
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Figure 6.6: Reduction in double counting. We achieve a reduction in double counting
errors on both our evaluation datasets due to better occlusion reasoning and mutual exclusion
constraints.
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Figure 6.7: Qualitative Comparison. We show improvement frames on a sequence from
the HumanEva-I dataset. We reduce double counting errors by reasoning about occlusion and
enforcing mutual exclusion constraints.
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CHAPTER7
Reconstructing Articulated Human Pose

Geometrically, the problem of estimating the 3D configuration of points from their
2D projections is ill-posed, even when fitting a known 3D skeleton1. With human
observers, the ambiguity is likely resolved by leveraging vast memories of likely
3D configurations of humans [Peelen and Downing, 2007]. A reasonable proxy
for such experience is available in the form of motion capture libraries [MoCap],
which contain millions of 3D configurations. The computational challenge is
to tractably generalize from the configurations spanned in the corpus, ensuring
anthropometric plausibility while discouraging impossible configurations.

Kinematic representations of human pose are high-dimensional and difficult
to estimate directly. Allowing only statistically plausible configurations leads to
compact representations that can be estimated from data. Linear dimensionality
reduction (such as PCA) is attractive as it yields tractable and optimal estimation
methods. It has been successfully applied to constrained deformable objects, such
as faces [Matthews and Baker, 2003] and action-specific body reconstruction,

1 As noted in [Lee and Chen, 1985], each 2D end-point of a limb subtends a ray in 3D space.
A sphere of radius equal to the length of the limb centered at any location on one of these
rays intersects the other ray at two points (in general) producing a tuple of possible 3D limb
configurations for each location on the ray.
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2D Anatomical Landmarks 3D Human Pose and Camera

Sunday, March 4, 2012

Figure 7.1: Given the 2D location of anatomical landmarks on an image, we estimate the 3D
configuration of the human as well as the relative pose of the camera.

such as walking [Safonova et al., 2004]. However, as we add poses from varied
actions, the complexity of the distribution of poses increases and, consequently,
the dimensionality of the reduced model needs to be increased (see Figure 7.2).
If we expand the dimensionality, linear models increasingly allow configurations
that violate anthropometric constraints such as limb proportions, yet yield a
projection in 2D that is plausible. The goal is therefore to develop an activity-
independent model while ensuring anthropometric regularity.

We present a method to reconstruct 3D human pose while maintaining com-
paction, anthropometric regularity, and tractability. To achieve compaction, we
separate camera pose variability from the intrinsic deformability of the human
body (because combining both leads to an approximately six-fold increase in
the number of parameters [Xiao et al., 2004]). To compactly model the intrin-
sic deformability across multiple actions, we use a sparse linear representation
in an overcomplete dictionary. We estimate the parameters of this sparse lin-
ear representation with a matching pursuit algorithm. Enforcing anthropometric
regularity through strict limb length constraints is intractable because satisfying
multiple quadratic equality constraints on a least squares system is nonconvex
[Boyd and Vandenberghe, 2004]. Instead, we encourage anthropometric regular-
ity by enforcing a necessary condition (i.e., an equality constraint on the sum of
squared lengths) as a constraint that is applied in closed form [Gander, 1981].
We solve for the model coefficients and camera pose within the matching pursuit
iterations, decreasing the reprojection error objective in each iteration.
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Figure 7.2: Data Complexity. (a) As more actions and, consequently, diverse poses are added
to the training corpus, the maximum reconstruction error incurred by a linear dimensionality
reduction model increases. (b) Maximum reconstruction error for each action separately using
PCA. Each action can be compactly modeled with a linear basis. (c) Using a sparse repre-
sentation in an overcomplete dictionary estimated using Orthogonal Matching Pursuit (OMP)
achieves lower reconstruction error for 3D pose.

Our core contributions are: (1) a new activity-independent representation of
3D human pose variability as a sparse embedding in an overcomplete dictionary,
and (2) an algorithm, Projected Matching Pursuit, to estimate the sparse model
from only 2D projections while encouraging anthropometric regularity. Within
the matching pursuit iterations, we explicitly estimate both the 3D camera pose
and the 3D body configuration. We evaluate our method to test generalization,
and robustness to noise and missing landmarks. We compare against a standard
linear dimensionality reduction baseline and a nearest neighbor baseline.

7.1 Sparse Representation of 3D Human Pose

A 3D configuration of P points can be represented by X =
(
XT

1 , . . . ,XT
P

)T
∈

R3P×1 of stacked 3D coordinates. Under weak perspective projection, the 2D
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coordinates of the points in the image are given by

x =
IP×P ⊗

sx 0
0 sy

 1 0 0
0 1 0

R

X + t⊗ 1P×1, (7.1)

where x ∈ R2P×1, ⊗ denotes the Kronecker product, s ∈ R2×2 is a diagonal scale
matrix with sx and sy being the scales in the x and y directions , R ∈ SO(3)
and t ∈ R2×1 denote the rotation and translation parameters of the weak per-
spective camera that we collectively denote as C. We assume the camera intrinsic
parameters are known. Estimating X and C from only the image evidence x is,
fundamentally, an ill-posed problem. We see from Equation 7.1 we have 3P + 7
parameters that we need to estimate from only 2P equations.

If the points form a semantic group that deform in a structured way, such as
anatomical landmarks on a human body, we can reduce the number of parameters
that need to be estimated using dimensionality reduction methods that learn
the correlations between the points [Cootes et al., 2001]. Linear dimensionality
reduction methods (e.g., Principal Component Analysis (PCA)) can be used to
represent the points as a linear combination of a small number of basis poses,

X = µ +
K∑
i=1

biωi, (7.2)

whereK is the number of basis poses, bi are the basis poses, ωi are the coefficients,
and µ ∈ R3P×1 is the mean pose computed from training data. Under this model,
we now have to estimate only K + 7 parameters instead of the original 3P + 7
parameters.

A direct application of PCA to all the poses contained in the corpus2 raises
difficulties as shown in Figure 7.2a. For a single action, PCA performs well.

2We use the Carnegie Mellon Motion Capture Database [MoCap] to obtain a large corpus
of 3D human poses.
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As the diversity in actions in the data increases, the number of PCA compo-
nents required for accurate reconstruction increases, and the assumption of a low
dimensional linear subspace becomes strained. In particular, the maximum re-
construction error increases as the diversity in the data is increased because PCA
inherits the occurrence statistics of poses in the corpus and not just the extent
of variability.

7.1.1 Sparse Representation in an Overcomplete Dictio-
nary

In Figure 7.2b we see that each individual action is compactly representable by a
linear basis. Therefore, an arbitrary pose can be compactly represented by some
subset of the set of all bases,

X = µ +∑K
i=1 biωi,

{bi}i∈IB∗ ∈ B∗ ⊂ B,
(7.3)

where µ is the mean pose, B ∈ R3P×(
∑Na

i=1 N
i
b) is an overcomplete dictionary of

basis components created by concatenating N i
b bases computed from Na different

actions, B∗ is an optimal subset of B, and IB∗ are the indices of the optimal
basis B∗ in B. We validate this observation in Figure 7.2c by using Orthogonal
Matching Pursuit (OMP) [Pati et al., 1993; Tropp and Gilbert, 2007] to select
a sparse set of basis vectors to reconstruct each 3D pose in a test corpus. The
sparse representation is able to achieve lower reconstruction error with higher
compaction on the test set than using a full PCA model. It is instructive to note
the behavior in Figure 7.2c of the maximum reconstruction error, which usually
correspond to atypical poses. For human poses, we conclude that the sparse
representation demonstrates greater generalization ability than full PCA.
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7.1.2 Anthropometric Regularity

Linear models allow cases where the 2D projection appears to be valid (i.e., the
reprojection error is minimized), but the configuration in 3D violates anthropo-
metric quantities such as the proportions of limbs. Enforcing anthropometric
regularity (i.e., that limb lengths follow known proportions) would discourage
such implausible configurations. For a limb3 between the ith and jth landmark
locations, we denote the normalized limb length as lij. The normalized limb
lengths are set by normalizing with respect to the longest limb of the mean pose
(µ). For a 3D pose X, we can ensure anthropometric regularity by enforcing

‖Xi −Xj‖2 = lij,

∀(i, j) ∈ L
(7.4)

where L = {(i, j)}Nli=1 is the set of pairs of joints between which a limb exists and
Nl is the total number of limbs in the model. Unfortunately, applying quadratic
equality constraints on a linear least squares system is nonconvex. A necessary
condition for anthropometric regularity is

∑
∀(i,j)∈L

‖Xi −Xj‖2
2 =

∑
∀(i,j)∈L

l2ij. (7.5)

This constraint limits the sum of the squared distances between valid landmarks
to be equal to the sum of squares of the limb lengths4. The feasible set of the
constraint in Equation 7.5 contains the feasible set of the constraints in Equation
7.4. The necessary condition on the sum of squared limb lengths is therefore a
relaxation of the constraints in Equation 7.4. As shown in [Gander, 1981], this
necessary condition can be applied in closed form.

3We loosely define a limb to be a rigid length between two consecutive anatomical landmarks
in the tree.

4Note that since we are using normalized limb-lengths, these constraints become constraints
on limb proportions rather than on limb lengths.
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Algorithm 7 Projected Matching Pursuit
1. Initialize r0 = x− (I⊗ sR) µ− t⊗ 1
2. While (‖rt‖ ≥ tol)

3. imax = arg max
i
〈rt, (I⊗ stRt) Bi〉

4. B∗ = [B∗ Bimax ]
5. Solve: {C∗,Ω∗} = arg min ‖x̂− (I⊗ sR) B∗Ω‖2
subject to constraints in Equation (7.8) using Section 7.2.2 & Section 7.2.3

6. Recompute residual rt+1 = x− (I⊗ s∗R∗) (B∗Ω∗ + µ)− t∗ ⊗ 1
7. Set Ωt+1 = Ω∗

8. Return {C∗,Ω∗,B∗}

7.2 Matching Pursuit under Camera Projection

We solve for the pose and camera by minimizing the reprojection error in the
image. The resulting optimization problem can be stated as follows

min
Ω,C,IB∗

‖x− (I⊗ sR) (B∗Ω + µ)− t⊗ 1‖2

s.t. ∑
∀(i,j)∈L

‖Xi −Xj‖2
2 = ∑

∀(i,j)∈L
l2ij,

B∗ ⊂ B.

(7.6)

Although the problem is non-linear, non-convex, and combinatorial, it has
the following useful property in the set of arguments (C,Ω, IB∗): we can solve
optimally, or near-optimally, for each subset of the arguments given the rest.
This property suggests a coordinate descent-style algorithm. Algorithm 7 de-
scribes a matching pursuit algorithm we refer to as Projected Matching Pursuit
for coordinate descent on the reprojection error objective.
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7.2.1 Algorithm

The combinatorial challenge of picking the optimal set of basis vectors from an
overcomplete dictionary to represent a given signal is NP-hard. However, tech-
niques exist to solve the sparse representation problem approximately with guar-
antees [Tropp and Gilbert, 2007; Tropp, 2004]. Greedy approaches such as or-
thogonal matching pursuit (OMP) [Mallat and Zhang, 1993; Tropp and Gilbert,
2007] reconstruct a signal v with a sparse linear combination of basis vectors
from an overcomplete dictionary B. It proceeds in a greedy fashion by choosing,
at each iteration, the basis vector from B that is most aligned with the residual
r (the residual is set equal to v in the first iteration). The new estimate of the
signal v̂ is computed by reconstructing using the basis vectors selected at the
current iteration and the new residual (r = v − v̂) is computed. The iterations
proceed on the residual until K basis vectors are chosen or a tolerance on the
residual error is reached.

In our scenario, we do not have access to the signal of interest, namely the
3D pose X. Instead, we are only given the projection of the original 3D pose
in the image x. We present a matching pursuit algorithm for reconstructing a
signal from its projection and an overcomplete dictionary. At each iteration of our
algorithm, the optimal basis set B∗ is augmented by matching the image residual
with basis vectors projected under the current camera estimate and adding the
basis vector which maximizes the inner product to the optimal set. Given the
current optimal basis set B∗, the pose and camera parameters are re-estimated as
outlined in Section 7.2.2 and Section 7.2.3. The algorithm terminates when the
optimal basis set has reached a predefined size or the image residual is smaller
than a tolerance value. The procedure is summarized in Algorithm 7. We have
an intuitive and feasible initialization in the mean 3D pose computed from the
training corpus.
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7.2.2 Estimating Basis Coefficients with Anthropometric
Regularization

To encourage anthropometric regularity we enforce the necessary constraint from
Equation 7.5 which limits the sum of squared limb lengths. We can write each
3D landmark Xi = EiX, where Ei = [· · · 0 I3×3 0 · · · ] is a 3 × 3P matrix that
selects out the ith landmark.

We can write Eij = Ei − Ej, and express each limb length as ‖EijX‖ = lij.
Equation 7.5 can now be rewritten in matrix form as:

‖CX‖2
2 =

∑
∀(i,j)∈L

l2ij, (7.7)

where C is a 3Nl × 3P matrix of the Nl stacked Eij matrices. Where Nl is the
number of limbs.

Given the optimal basis set B∗ and the camera C, solving for the coefficients of
the linear model Ω can now be formulated as the following optimization problem:

min
Ω
‖x̂− sR ⊗ IP×PB∗Ω‖2

s.t. ‖CB∗Ω−Cµ‖2
2 = ∑

∀(i,j)∈L
l2ij,

(7.8)

where x̂ = x − sR ⊗ IP×Pµ − t ⊗ 1P×1. The above problem is a linear least
squares problem with a single quadratic equality constraint that can be solved
optimally in closed form as shown in [Gander, 1981].

There also exists a natural lower bound on the length of the limb between
the estimated joint locations, X∗i and X∗j , in terms of the image projections xi
and xj. Using the triangle inequality we can show that

‖X∗i −X∗j‖ ≥ ‖s−1(xi − xj)‖. (7.9)
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The above inequality shows that the estimated limb lengths are bounded by the
length of the limbs in the image. Thus we can guarantee that the estimated limb
length will not collapse to zeros as long as the limb has finite length in the image.

7.2.3 Estimating Camera Parameters

Given the current estimate of the pose X̂ = B∗Ω + µ, and the image projections
x, we need to recover the weak perspective camera parameters C. This can be
written as the following

min
C
‖x− (I⊗ sR) X̂− t⊗ 1‖2

s.t. RTR = I
(7.10)

This can be solved as an instance of the orthogonal procrustes problem [Schone-
mann, 1966] or by using an off-the-shelf non-linear least squares solver.

7.3 Experimental Analysis

We perform quantitative and qualitative evaluation of our method. We use the
Carnegie Mellon motion capture database for quantitative tests and compare our
results against using a representation baseline (direct PCA on the entire corpus)
and a non-parametric nearest neighbor method.

For all experiments, an overcomplete shape basis dictionary was constructed
by concatenating the shape bases learnt for a set of human actions. We use a
model with 23 anatomical landmarks. Each pose in the motion capture corpus
was aligned by procrustes analysis to a reference pose. Shape bases were then
learnt for the following motion categories- ‘running’, ‘waving’, ‘arm movement’,
‘walking’, ‘jumping’, ‘jumping jacks’, ‘run’, ‘sit’, ’boxing’,’bend’ by collecting
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Figure 7.3: Quantitative evaluation on optical motion capture. (a) We compare our method
against two model baselines - a nearest neighbor approach and a linear model that uses PCA on
the entire corpus. Reconstruction error is reported against annotation noise σ on a test corpus.
(b) We evaluate the sensitivity of the reconstruction to each anatomical landmark annotation.
(c) We show the sensitivity in reconstruction to missing landmarks. The radius of each circle
indicates the relative magnitude of error in 3D incurred when the landmark is missing (d) The
additional reconstruction incurred when the landmark is missing.

sequences from the CMU Motion Capture Dataset and concatenating PCA com-
ponents which retained 99% of the energy from each motion category.

7.3.1 Quantitative Evaluation

Optical Motion Capture. To evaluate our methods we test our algorithm on
a sequence of mixed activities from the CMU motion capture database. We take
care to ensure that the motion capture frames come from sequences that were
not used in the training of the shape bases. We project 30 frames of motion
capture of diverse poses into 4 synthetically generated camera views. We then
run our algorithm on the 2D projections of the joint locations to obtain the
camera location and the pose of the human. We report 3D joint position error
with increasing annotation noise σ in Figure 7.3a.

We compare our method against two baselines. The first baseline uses as
a linear model, a basis computed by performing PCA on the entire training
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Sunday, March 4, 2012

Figure 7.4: Our method is able to handle missing data. We show examples of reconstruction
with missing annotations. The missing limbs are marked with dotted lines. We are able to
reconstruct the pose and impute the missing landmarks in 3D.

corpus. Anthropometric constraints are enforced as in Section 7.2.2. The second
baseline uses a non-parametric, nearest neighbor approach that retains all the
training data. The 2D projections in each test example are matched to every
3D pose in the corpus by estimating the best-fit camera using the method in
Section 7.2.3. The 3D pose that has the least reprojection error under the best-
fit camera estimate is returned. The results are reported in Figure 7.3. We find
that our method that used Projected Matching Pursuit achieves the lowest RMS
reconstruction error. We also tested the effect of imposing an equality constraint
on the sum-of-squared limb length ratios and find that we deviate from the ground
truth on our test set by 13.1% on average.

We evaluate the comparative importance of the anatomical landmarks by
performing two experiments:

Joint Sensitivity. We test the sensitivity of the reconstruction to each
landmark individually. Each pose in the testing corpus is projected into 2D with
synthetically generated cameras and each landmark is perturbed with Gaussian
noise independently. Figure 7.3b shows the sensitivity of the reconstruction to
each landmark. The maximum length of a limb in the image is 200 pixels, the
minimum limb length is 20 pixels, and the average length of a limb in the image
is 94.5. pixels The noise is varied to about 10% of the average limb length in the
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image.

Missing Data. An advantage of our formulation is the ability to handle
missing data. In Figure 7.4 we show examples of reconstructions obtained with
incomplete annotations. We perform an ablative analysis of the joint annotations
by removing each annotation in turn and measure the increase in the reconstruc-
tion error. We plot our results in Figure 7.3d. The radius of each circle is
indicative of the error incurred when the annotation corresponding to that joint
is missing. We find that the extremal joints are most informative and help in
constraining the reconstruction.

7.3.2 Qualitative Evaluation

Comparison with recent work. We compare reconstructions obtained by our
method to work by [Valmadre and Lucey, 2010]. Their method requires multiple
images of the same person and requires a human annotator to resolve depth
ambiguities. We present our comparative results in Figure 7.5. Our method is
applied per frame to images of the ice skater Yu-Na Kim and compared to the
reconstructions obtained by Valmadre et al. We can see in Figure 7.5 that we
are able to obtain good reconstructions per image, without the requirement of a
human annotator resolving the depth ambiguities.

Internet Images. We downloaded images of people in a variety of poses
from the internet. The 2D joint locations were manually annotated. We present
the results in Figures 7.7a and 7.6. In Figure 7.6 we first obtained individual
camera and pose estimates for each of the annotated human figures. We then
fixed the camera upright at an arbitrary location and placed the human figures
using the estimated relative rigid pose. It can be seen that the camera estimates
are consistent as the actors are placed in their correct locations.

Non-standard viewpoints. We also test our method on images taken
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Valmadre et al.
(Uses multiple images)

Our Method
(Uses a single image)

Sunday, March 4, 2012

Figure 7.5: Comparsion with recent work. Valmadre et al., estimate human pose using
multiple images and requires additional annotation to resolve ambiguities. Our method achieves
realistic results operating on a single image and does not require additional annotation

from non-standard viewpoints. We reconstruct the pose and relative camera
from photographs downloaded from the internet taken from viewpoints that have
generally been considered difficult for pose estimation algorithms. We are able to
recover the pose and the viewpoint of the algorithm for such examples as shown
in Figure 7.7b.

Monocular video. We demonstrate our algorithm on a set of key frames
extracted from monocular video in Figure 7.7c. The relative camera estimates
are aligned to a single view-point to obtain a sequence of the person performing
an action. Note that we are able to estimate the relative pose between the camera
and the human correctly resulting in a realistic reconstruction of the sequence.
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Sunday, March 4, 2012

Figure 7.6: Reconstruction with multiple people in the same view. The camera estimation is
accurate as the people are placed consistently.

Sunday, March 4, 2012

(a) Reconstruction of people in arbitrary poses from internet images.
Friday, March 2, 2012

(b) Reconstruction of people viewed from varied viewpoints.

Sunday, March 4, 2012

(c) Our algorithm applied to four frames of an annotated video.

Figure 7.7: We acheive realistic reconstructions for people in (a) arbitrary poses, (b) captured
from varied viewpoints and (c) monocular video streams.
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Monday, March 5, 2012

Figure 7.8: Failure Cases. The method does not recover the correct pose when there are
strong perspective effects and if the mean pose is not a good initialization.

7.4 Discussion

We presented a new representation for human pose as a sparse linear embed-
ding in an overcomplete dictionary. We develop a matching pursuit algorithm
for estimating the sparse representation of 3D pose and the relative camera from
only 2D image evidence while simultaneously maintaining anthropometric regu-
larity. Every step in the matching pursuit iterations is computed in closed form,
therefore the algorithm is efficient and takes on average 5 seconds per image to
converge. We are able to achieve good generalization to a large range of poses
and viewpoints. A case where the algorithm does not result in good reconstruc-
tions are in images with strong perspective effects where the weak perspective
assumptions on the camera model are violated and in poses where the mean pose
is not a reasonable initialization (See Figure 7.8).
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Conclusion

Natural articulated motion results in complex configurations of the articulated
structure. Additionally, complexity arising due to appearance variation and
imaging pose further challenges in the pose estimation problem. Traditional ap-
proaches have attempted to handle this complexity by building simplistic models,
such as tree-structured models, where inference is tractable and exact. However,
obtaining good performance in the pose estimation tasks requires incorporating
global cues and non-tree like interactions. In this thesis, we identify that the core
challenge in estimating the articulated pose of objects is the trade off that arises
between modeling and inference. As we attempt to increase model fidelity by
incorporating additional constraints, richer interactions between variables, and
sophisticated features, we find that performing inference is difficult and learning
the parameters of such models is a challenge.

In this thesis we addressed this trade off in two ways: (i) by incorporat-
ing physical and structural constraints by leveraging tractable substructures in
modeling human pose and (ii) by enforcing tighter coupling between learning
and inference via a sequential prediction procedure called a pose machine. In
the former, we showed how we can incorporate constraints such as limb-length
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constraints and symmetric mutual exclusion constraints while solving tractable
subproblems during inference. In the latter we showed that the sequential predic-
tion procedure of a pose machine is well suited for combining complex interactions
between variables with little or no overhead as the number of these interactions
increase.

Modeling complex relationships between variables and incorporating global
cues is key to improving the performance of structured prediction problems such
as pose estimation. Important contextual interactions in the pose estimation
problem include:

• Spatial Context: The spatial location of parts provide a strong cues for
part detection. Parts which can be easily detected provide anchors for the
detection of difficult parts, additionally, parts co-occur in a geometrically
consistent fashion, which can be leveraged to improve detection.

• Visual Context: The visual appearance of nearby parts and the appear-
ance at parts at a different resolution provide strong cues for part detection.
The appearance of a neighboring part, for e.g., an upraised upper arm pro-
vides cues for the appearance and location of the elbow.

• Semantic Context: Labels of parts in a spatial vicinity also provide use-
ful information for reasoning about articulated pose. The fact that the
left knee occurs in a particular location should prevent the prediction of
the right knee at the same location. A semantic hierarchy of parts orga-
nized into anatomical landmarks at the finest level of the hierarchy and
parts corresponding to limbs in coarser levels of the hierarchy aids in pose
estimation. Additionally, when objects interact, knowledge of interacting
object provides additional information that can prevent characteristic er-
rors.

• Temporal Context: Detection of parts in adjacent frames of a image
sequence provide strong cues for part detection in the current frame. Tem-
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poral consistency provides valuable features for reasoning about occlusion
and prevents errors due to weak image evidence in particular frames.

The pose machine architecture developed in this thesis enables the incorpo-
ration of all the above types of contextual interactions between variables. In
addition to being able to incorporate rich contextual and global cues, pose ma-
chines have the following distinct advantages:

Modular Feedforward Architecture: The pose machine reduces the
structured prediction problem of pose estimation into a sequence of super-
vised classification problems. As a result learning does not require optimiz-
ing a complicated structured loss or the need for specialized solvers. The
modular architecture allows the plug and play of any supervised predictor,
including powerful feedforward predictors such as convolutional architec-
tures. Convolutional pose machines allow the learning of both image and
context features directly from raw input. The feedforward

Implicit Spatial Modeling: The pose machine architecture eschews prob-
abilistic modeling in favor of a sequential prediction procedure. Classifiers
in subsequent stages of the sequence use and combine cues in whatever
fashion is most predictive of part locations and do not have to rely on
hand-crafted spatial modeling.

Scalability and Extensibility: The architecture allows us to easily incor-
porate additional cues with very little additional computational overhead.
The pose machine architecture can be easily extended to incorporate hier-
archical cues, temporal cues (see Section 8.1.3) and cues from interacting
objects (see Chapter 5). Additionally, when used in concert with convolu-
tional architectures, the convolutional pose machine can be trained in an
end-to-end manner on large datasets by leveraging first order online training
methods.

Further advances in the state-of-the-art in pose estimation are likely to come
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from the use of massive internet-scale datasets for training. The architecture of a
convolutional pose machine leaves us well poised to deal with large scale datasets.
The online training of a convolutional pose machine allows for streaming data
during learning thereby enabling the use of massive datasets.

The architecture of a convolutional pose machine allows for dense pixel-wise
predictions that rely on rich local and global contextual cues and can be extended
to a variety of different structured prediction problems in computer vision. The
work in this thesis opens up several different avenues for research and potential
future applications. In the following section, we outline areas for future study.

8.1 Future Work

8.1.1 MAP Inference

Pose machines in particular, and message passing inference machines in general,
are currently limited to producing “marginal” like output confidence maps by
emulating marginal inference in graphical models. Recall from Section 3.2.1 that
marginal inference for a variable xi of a graphical model with a joint distribution
P (x1, . . . ,xP ) is performed by summing over the remaining variables (marginal-
ization) using the sum-product algorithm, resulting in the message updates in
Equations 3.22-3.24. The mean-field inference machine of [Munoz et al., 2010],
the inference machines of [Ross et al., 2011] and the work presented in this the-
sis for pose estimation all focus on producing belief maps for each variable that
resemble marginals.

An alternative method of inference is maximum a-priori inference, where the
goal is to compute the highest scoring configuration for the variables. Computing
the highest scoring configuration requires performing max-product inference on
a graphical model, where the summations of Equation 3.22-3.24 are replaced by
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max operators and result in the computation of max-marginals:

µi→f (yi) =
∏

j∈N (i)\f
µf→i(yj), (8.1)

µf→i(yi) = max
yf

ψf (yf ) ∏
j∈N (f)\i

µj→f (yj)
 , (8.2)

m(yi|x) =
∏

f∈N (i)
µf→i(yi), (8.3)

wherem(yi|x) is the max-marginal for variable yi, µi→f (yi), µf→i(yi) are messages
from a variables to factors and factors to variables respectively. N (i) \ f denotes
the neighboring factor nodes of the variable i excluding the factor f and similarly
N (f)\ i represents the neighboring variables of factor f excluding variable i. For
a variable yi,

m(yi = y) = max
y∈Y\yi:yi=y

P (y1, . . . , yP ) (8.4)

A max-marginal for a variable is the score of the configuration, for each setting
of that variable, given all other variables have been set optimally. Designing an
inference machine to emulate MAP inference, remains an open problem and an
interesting direction for future research.

8.1.2 Inference over Latent Variables

A limitation of the pose machine architecture that currently limits its deployment
for traditional bounding box style parts-based object detection is the requirement
of part annotations. In the deformable part model of [Felzenszwalb et al., 2008],
the star-structured graphical model is trained with latent part locations, which
are initialized with mean positions. During learning, only the bounding box of the
full object is given, while the part locations are updated latently. Additionally,
for some objects, it is not clear what good “keypoints” are. Interesting future
work would be to automatically find good keypoints and to incorporate latent
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Figure 8.1: Temporal Pose Machines. Predictions in each frame take advantage of predic-
tions in adjacent frames in additional to temporal continuity features between adjacent frames.

part location updates into the training procedure removing the need for detailed
part annotations. This would allow us to perform object-detection that leverages
the rich spatial modeling capacity of the pose-machine architecture for reasoning
about complex interactions between object parts.

8.1.3 Incorporating Temporal Context

As natural motion is smooth, beliefs for the location of a part in adjacent frames
inform the prediction of the location of a part in the current frame. Additionally,
when parts move in and out of occlusion, temporal continuity provides strong cues
for part location under occlusion. Interesting future work would be to extend the
pose machines architecture to handle video and incorporate temporal cues from
adjacent frames.

In Figure 8.1 we show a proposed model for a temporal pose machine in which
context features are passed between adjacent frames. The proposed architecture
operates on sliding window of F frames. In the first stage each predictor makes
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Figure 8.2: When multiple people interact, there is often inter-person occlusions, non-canonical
relative views and close proximity which degrade standard pose estimation performance. Image
courtesy, Tomas Simon.

a pose prediction independent of adjacent frames. In subsequent stages, each
predictor combines context features computed from the present, past and future
frames in addition to the original image features to produce an updated confidence
for the location of each part.

8.1.4 3D Pose Machines

When multiple people interact, inter-person occlusions, non-canonical relative
views and close proximity degrade standard pose estimation performance. In
Figure 8.2, we show a point cloud reconstructed from multiple commodity depth-
sensors in a capture environment. We see that although no one view is com-
pletely unoccluded, from multiple views, we are able to assemble a complete raw
3D representation where the objects are separated in 3D. Operating on such a
point-cloud representation may mitigate some of the challenges of standard pose
estimation algorithms. The design of a pose machine to perform landmark local-
ization on 3D point clouds is an interesting direction of future work. In the same
vein, extension of pose machines to incorporate multiple modalities of data. In
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early work by [Munoz et al., 2012], additional modes of data, namely registered
LIDAR data was incorporated into the hierarchical inference machine model of
[Munoz et al., 2010]. Interesting future work would include extending the pose-
machine model to incorporate addtional input modes such as point-clouds to
perform pose estimation directly in 3D.
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