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ABSTRACT

Automatic face recognition performance has been steadily improving over years of active re-

search, however it remains significantly affected by a number of external factors such as illumina-

tion, pose, expression, occlusion and resolution that can severely alter the appearance of a face and

negatively impact recognition scores. The focus of this thesis is the pose problem which remains

largely overlooked in most real-world applications. Specifically, we focus on one-to-one matching

scenarios where a query face image of a random pose is matched against a set of “mugshot-style”

near-frontal gallery images. We argue that in this scenario, a 3D face-modeling geometric ap-

proach is essential in tackling the pose problem. For this purpose, we utilize a recent technique

for efficient synthesis of 3D face models called 3D General Elastic Model (3DGEM). It solved

the pose synthesis problem from a single frontal image, but could not solve the pose correction

problem because of missing face data due to self-occlusion. In this thesis, we extend the formula-

tion of 3DGEM and cast this task as an occlusion-removal problem. We propose a sparse feature

extraction approach using subspace-modeling and `1-minimization to find a representation of the

geometrically 3D-corrected faces that we show is stable under varying pose and resolution. We

then show how pose-tolerance can be achieved either in the feature space or in the reconstructed

image space. We present two different algorithms that capitalize on the robustness of the sparse

feature extracted from the pose-corrected faces to achieve high matching rates that are minimally

impacted by the variation in pose. We also demonstrate high verification rates upon matching non-

frontal to non-frontal faces. Furthermore, we show that our pose-correction framework lends itself

very conveniently to the task of super-resolution. By building a multiresolution subspace, we ap-

ply the same sparse feature extraction technique to achieve single-image superresolution with high

magnification rates. We discuss how our layered framework can potentially solve both pose and

resolution problems in a unified and systematic approach. The modularity of our framework also

keeps it flexible, upgradable and expandable to handle other external factors such as illumination

or expressions. We run extensive tests on the MPIE dataset to validate our findings.
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Chapter 1

Introduction

Despite years of active research, automatic face recognition in images remains an unsolved prob-

lem for a number of reasons. Firstly, faces are non-rigid objects that deform non-linearly with

the slightest change in expression. Secondly, they are captured at a distance which makes them

prone to illumination changes and cast shadows. Moreover, even the slightest movement of the

head often results in a noticeable perspective change. All of these factors significantly alter the

appearance of the face, which can severely impact face recognition performance. Thirdly, being

a non-obtrusive biometric that requires little cooperation from the subject, face recognition also

needs to handle other external factors such as occlusion due to articles of clothing, hair obstructing

parts of the face, eyewear, facial hair, etc. Face recognition becomes even more challenging in un-

cooperative scenarios such as surveillance footage or faces in a crowd, where all the above factors

are magnified and present simultaneously.

While all of these factors have been studied, the pose problem is the only one that we believe

is still largely unsolved, particularly in trying to solve face verification tasks. Most commercially

deployed face recognition systems do not explicitly correct for the pose the same way that they

preprocess the image to normalize illumination, and merely assume that the test faces are frontal

or near-frontal. They sometimes employ simple 2D affine or projective transforms to align a small
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set of fiducial points, which does not take into consideration the 3D structure of the face and in the

process add other detrimental artifacts to the resulting 2D pose-corrected face. In this thesis, we

propose to analyze and understand the pose problem thoroughly, and propose a novel solution.

Pose-tolerant feature extraction becomes even more critical for face recognition systems that

rely on a single view of a subject for matching or enrollment, which is the main focus of this thesis.

Such one-to-one systems take a single query facial image of an arbitrary pose and try to match it

to a single or set of presumed frontal “mugshot” gallery images. The widespread availability

of affordable imaging devices such as security cameras and mobile phone cameras is generating

an ever-increasing number of faces that might need to be automatically processed, and in these

uncontrolled environments the query faces are usually non-frontal. In the case of surveillance

footage, the acquisition devices are usually placed higher up on a wall or ceiling to offer them

a vantage viewpoint, and as a result the observed faces will exhibit high degrees of pitch and

yaw, where traditional and naive 2D-based automatic pose-correcting measures (such as affine and

projective transforms) quickly breakdown. As a matter of fact, perfectly frontal face images are

very hard to come by, even in controlled environments where the subject is cooperating with the

system. It is commonly observed that most people adopt a slight head tilt when their picture is

taken. In fact, the posture of the head is part of the human body language, which along with the

posture of the rest of the body, gestures and eye movements enables humans to subconsciously send

and receive signals for what is known as non-verbal communication. It is believed that non-verbal

communication constitutes a very large part of human communication [2]. Even though body

language is not an exact science, it has been thoroughly studied and analyzed over the years, and in

the psychology community the posture of the head is believed to suggest certain meanings [3, 4] as

follows: head tilted to one side is generally accepted as a non-threatening gesture, submissiveness

or thoughtfulness. It signals possible interest or vulnerability. A head tilted downwards is generally

a signal of criticism, disapproval and admonishment if it comes from a position of authority. A chin

pointed up suggests pride, defiance or confidence. It usually exposes the neck, which is a signal
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of strength and resilience. The point that comes across is that even in fully-cooperative scenarios

perfectly frontal faces are the exception rather than the norm, and face recognition engines need to

systematically handle pose variations.

In practice, the pose problem is often compounded with another equally disruptive problem,

that of low-resolution in the observed image. This problem plagues most surveillance footage,

where the quality of the imaging sensors is usually poor, and ultra-wide angle lenses are attached

to the sensor to increase the field of view but in return reduces the number of pixels apportioned

for every observed face. Therefore, it is important for an automatic face recognition engine to be

able to handle low resolution faces in conjuncture with the variations in pose. This thesis aims to

provide answers for both problems.

1.1 The Big Picture

The architecture we are proposing in this thesis to handle pose and resolution variations remains

a general, modular and extendable framework. The gist of our approach to handling pose varia-

tions is a 3D-face modeling step to geometrically correct the viewpoint of the face and a sparse

feature-extraction step to map the pose-corrected faces to a domain that is stable under pose vari-

ations. Most pose-tolerant approaches in the literature eschew 3D modeling for its complicated

implementation and high-computational cost and instead attempt to solve the surrogate problem

of learning the relationship between different viewpoints using standard statistical methods. In

this thesis, we go back to the original problem of matching off-angle faces which we believe at

heart is a 3D problem, and we show how we can efficiently accomplish the 3D modeling and

pose-correction using simple and easily reproducible techniques. The sparsity component of our

approach is crucial to handle the underdetermined systems which arise as a by-product of pose-

correction, as the amount of missing information representing self-occluded pixels increases. We

borrow on ideas from the field of Compressive Sensing to find a stable solution in highly under-
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determined systems, and specifically rely on `1-minimization for its sparsity-inducing properties.

Finally, we show that this framework effortlessly lends itself to handling low-resolution faces as

well. We show how we can modify our framework to achieve single-image super-resolution to

enhance the visual cues of a low-resolution face and show how we could potentially achieve both

pose-tolerance and resolution-tolerance by developing a unified theoretical framework to handle

both challenges simultaneously.

When designing a face recognition system, it is important to build a modular and flexible

system of interconnected modules with minimal dependence between them. Our framework keeps

this in mind and relies on a sequence of independent modules to perform various tasks, such as face

detection, face pose estimation, facial landmarking, 3D modeling, etc. One could potentially use a

different implementation for a given module, or fuse modules together, or insert a new module to

handle a different external face factor such as illumination.

1.2 Outline of this Thesis

For the remainder of this document, we refer to the techniques that take a non-frontal test face and

generate an equivalent frontal-looking face as pose correction. On the other hand, we refer to the

techniques that take a near-frontal face and generate an equivalent face of an arbitrary non-frontal

viewpoint as pose synthesis. This dissertation is structured as follows. Chapter 2 will give a brief

overview of some recent efforts to tackle pose-tolerance in face recognition. We argue that we

need an essential 3D modeling step and for that we review a fast and efficient 3D face-modeling

technique in Section 2.2.2 called 3DGEM. Chapter 3 will extend the formulation of 3DGEM to

handle non-frontal images when building a 3D model. The core of our pose-correction approach is

fitting a 3D model to the non-frontal test image, rendering the 3D model at a frontal viewpoint and

extracting features that are stable under pose variations. We develop different shape-free represen-

tations where we use `1-minimization to obtain a sparse feature vector. Even though the algorithms
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we develop later only rely on this feature extraction step, we also show how we could synthesize

an equivalent frontal-looking face that we could feed into traditional face recognition algorithms.

Chapter 4 will apply the pose-correction technique of Chapter 3 to improve verification rates when

matching a non-frontal test image to a near-frontal gallery image. We benchmark all the different

image representations in two separate but related domains. We also show that we can readily ex-

ploit the qualities of the sparse feature extraction in the coefficient domain to significantly improve

the verification rates. We present two different algorithms that can capitalize on the discrimi-

native power available in the sparse pose-tolerant feature vector. We also investigate the use of

shape information in a pose-correction framework, and compare the results of pose-correction to

pose-synthesis. Chapter 5 will apply some of the techniques of Chapter 3 towards the problem of

super-resolution. We rely on sparse feature extraction in a shape-free representation to enhance

the spatial resolution of low resolution faces, with magnification rates as high as 16x, and starting

from faces with as few as 8 pixels between the eyes. We also analyze the impact of low resolution

non-frontal faces on the pose-correction technique presented in this dissertation, and offer future

ideas on how to solve the pose and resolution problem simultaneously. Chapter 6 will conclude

this work by summarizing the results and findings and discussing future research ideas.

Appendix A presents a quick primer on Compressed Sensing and `1-minimization as it is rel-

evant to this thesis. Appendix B derives the SimBoost algorithm used in Chapter 4. Appendix C

presents a brief overview of advanced correlation filters and the Class-dependent Feature Analysis

(CFA) algorithm that we used in Chapter 4. Finally Appendix D includes more experimental re-

sults and tables and graphs as well as results on a different dataset of face images to show that our

methods generalizes well on different images.
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Chapter 2

Background

Pose-tolerance in face recognition has been researched for a number of years. The adverse effects

of non-frontal poses in face recognition were quantitatively assessed over a decade ago [5]. A

recent comprehensive review by Zhang and Gao [6] categorizes and compiles all the different

approaches in the literature. In this comprehensive study, they conclude that all of the surveyed

methods come with limitations and fall short of solving the pose problem, and that “continuing

efforts are still necessary towards ultimately reaching the goal of pose-invariant face recognition

and achieving the full advantage of being passive for face recognition”. We next include a brief

literature survey of most well-known techniques to tackle face recognition in the presence of non-

frontal poses.

2.1 Brief Literature Review

The earliest efforts included recording the test subjects at different possible angles and used a

statistical model for each angular bin [7, 8]. TensorFaces [9] were used to interpolate an unseen

view, however TensorFaces are very computationally and memory expensive. To overcome this

limitation, simple 2D warping methods were applied on frontal faces to generate equivalent non-
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frontal images such as in [10]. Beyond simple 2D warping techniques, most efforts fall under two

main families of algorithms. One family of algorithms makes use of an explicit 3D geometric

transformation, while the other family avoids the 3D modeling step, which we call the statistical

modeling approach. This thesis follows the 3D geometric approach to solve the pose problem, but

we briefly review both approaches in the next section.

2.1.1 Statistical Modeling Approaches

A common family of pose-tolerant approaches in face recognition can be categorized under Sta-

tistical Modeling Approaches. In these methods, the relationship between frontal and non-frontal

image are treated as a statistical machine learning model problem, without including an explicit

3D mapping step. This relationship could be either learned in the image space or some other fea-

ture space mapped from the image representation. In [11], Gabor jets were extracted from several

(hand-selected) locations on the face and their responses were transformed (by multiplying with

a transformation matrix) when the viewpoint changed. The authors showed how the rank-1 iden-

tification rates between different viewpoints favourably improved when they applied this kind of

transformation to the Gabor jets. Gabor jets play a central role in the Elastic Bunch Graph Match-

ing (EBGM) algorithm [12], and it has since been extended to handle non-frontal viewpoints by

modifying the Gabor jets extraction step [13]. In [14], the relationship between training pairs of

frontal and non-frontal images are learned using Neural Nets (NN). The authors combine this prior

knowledge with Hidden Markov Models (HMM) to synthesize profile faces from frontal mugshot

images. Recent statistical approaches attempt to map input features to a pose-invariant feature

space. In [15], the authors developed a Bayesian classifier based on Gaussian Mixtures Mod-

els (GMM) to extend a frontal face model with artificially synthesized models corresponding to

non-frontal views. The synthesis techniques, based on Maximum Likelihood Linear Regression,

learn how the frontal face models are related to the non-frontal models. In [16], inspired from a

view-based Linear Discriminant Analysis (LDA), several locally linear transformations are simul-
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taneously extracted to maximize inter-class separation while minimizing intra-class separation in a

transformation domain that corresponds to the soft-clustering of the data. The number of clusters

is dictated by the number of training viewpoints.

In the most prominent global statistical approach, Eigen Light-Fields, Gross et al. [17] unified

all possible appearances of faces in different poses within a framework of light field. The authors

make use of the redundancy of the light-field to represent face images in different poses using a

single set of eigenvectors and eigenvalues to capture identity-change variations. Pose-invariance

is treated as a missing data problem: the test image and gallery image are assumed to belong to a

larger data vector containing all possible poses. The missing information can be estimated based

on a prior knowledge of the joint multivariate Gaussian probability distribution of the complete

dataset.

All of the previous statistical approaches are mainly global approaches as they model the full

face. Local statistical approaches have been suggested to improve the overall performance. In [18]

and [19] for instance, a probabilistic formulation is adopted to measure similarities between face

patches belonging to different viewpoints.

One of the most prominent local statistical approaches is Tied Factor Analysis (TFA) [20].

Prince et al. assume that all face images of a single person lie on a manifold in the “observation

space”, and they can be generated from the same vector in a high-dimensional “identity space”.

Their approach is a generative method where they learn the mapping from the “identity space” to

the “observation space” rather than the other way around. They learn the parameters of the gen-

erative model that maximizes the joint likelihood of the observed data and the corresponding data

in identity space. However they cannot observe the identity vector directly, and can only infer a

posterior distribution over them for some fixed parameter vector. To solve this chicken-and-egg

problem, they resort to an iterative approach using Expectation-Maximization (EM) algorithm on

a set of training images of known poses. Having learned the parameters that describe the mapping

from the identity space to the observed space, they can now synthesize what a face will look like
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at a different pose. However when matching a probe image of an arbitrary pose, they follow a

Bayesian rule that assigns the test image to the class that maximizes the likelihood of it belonging

to that class, which takes into account the evidence with respect to all the other classes. Despite

this last classification rule which clearly corresponds to score normalization, their rank-1 identifi-

cation rates remain modest. To further improve the performance, they resort to a local-patch based

approach. Given 14 non-occluded points control points on the face, they extract Gabor-like infor-

mation from a 5× 5 grid centered around the control points. Every element of that grid contains a

square patch of the image, and they extract information that represents gradient, scales and mean

intensities that they combine into one feature vector. In training, they learn 14 separate tied factor

analyzers, one for each grid. Each feature gets its own likelihood estimation for each possible sub-

ject. When matching a testing face, they treat each of these likelihoods independently and take the

product to calculate the final classification Bayes rule. This local approach significantly increases

the complexity of the algorithm, but enables them to increase their rank-1 identification rates. Their

results include test angles up to ±90◦, and compare favourably against results from [17] and [21].

Note that when handling half-profile and full-profile faces, some of their control points are placed

on the ears and the hairline of the subjects, which typically are not included in 3D face modeling.

A more recent effort ([22]) aimed to solve the pose and resolution problem simultaneously.

Tensor analysis is used to estimate the approximate pose and the rough locations of the facial land-

marks. SIFT features are then extracted from the fiducial points. The authors use Multidimensional

scaling (MDS) to map the SIFT descriptors extracted from both high and low resolution images to

a common space where the distances from each other approximate the distances had all descriptors

been extracted from high-resolution images. This mapping is learned on training data that pro-

vided the SIFT feature vector at different resolutions and viewpoints. The transformation matrix

responsible for the mapping is obtained by minimizing a cost function that also invokes the itera-

tive majorization algorithm. The dimensionality of the combined SIFT features extracted around

fiducial points is reduced with PCA. The authors train on 100 randomly sampled subjects from
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MPIE and include all the different illuminations available in their training. They report improved

results on 3x magnification rates and ±30◦ yaw variation.

2.1.2 Geometric Approach with 3D Modeling

3D face modeling was suggested as a way to handle pose. Some of the earliest efforts [23, 24] re-

quired multiple viewpoints to create a basic 3D model. In [24], photometric stereo techniques are

employed to synthesize novel viewpoints and illumination patterns. Their approach sequentially

estimates lighting conditions and surface gradients using singular value decomposition (SVD).

Other methods made use of multiple images without an explicit 3D step [25]. In [26], a geo-

metrical mapping is adopted to map a face image after estimating its pose onto the surface of a

3D ellipsoid and the recognition is performed on the surface of the ellipsoid. The multiple im-

age requirement requirement made the 3D geometric approach unattractive. A breakthrough was

achieved when Blanz and Vetter [27] relaxed this requirement and generated a 3D model from a

single 2D image with a method they called 3D Morphable Models (3DMM). In [21], the authors

proposed the use of 3DMM (reviewed below) to correct for the pose problem in a related approach

to what we are proposing in this thesis. Part of the results was included in [5] and showed that ex-

plicit 3D correction helped the verification results (measured on 2 test yaw angles, and 2 test pitch

angles) favourably. In [28], a variant of the 3DMM formulation is presented to estimate the texture

information and illumination coefficients using spherical harmonics models. The spherical har-

monics representation offers a low-dimensional linear subspace that can accurately approximate a

convex Lambertian object under a wide variety of lighting conditions.

2.2 3D Face Modeling Primer

The ill-posed problem of reconstructing 3D face models from 2D images has been well studied

over the last few years [29]. “Shape-from-X” techniques rely on either multiple images separated
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temporally or by pose. For the requirement of the one-to-one face matching application of this

paper, we require a technique which can generate a 3D model from a single input image. We

briefly review the two most common techniques to achieve 3D face models from a single 2D input

image.

2.2.1 3D Morphable Models

Blanz and Vetter proposed a 3D Morphable Model (3DMM) [27] based on image-based recon-

struction and prior knowledge of face shapes and textures. During training, an offline 3D face

model is learned for a number of 3D scans. Using a variant of Optical Flow, they find the full cor-

respondence between vertices. The structure of a face is then captured in a shape vector s ∈ <3N

(containing x, y and z coordinates of N vertices of a face) and a texture vector t (containing the

R,G,B color values of the mean-warped face image). 3DMM builds two separate models: a shape

model such that any shape vector s can be represented by s = s̄ +
∑

i αisi. The second model is a

texture model, such that a given texture vector can be expressed as t = t̄+
∑

i βiti. The purpose of

the 3D model is to parametrize the face representation, such that we can synthesize a new face im-

age by changing the parameters of both models simultaneously. During the testing phase, 3DMM

presented an algorithm to fit the Morphable Model to an input 2D face. The first step is to initialize

the Morphable Model (which may require human input), and then iteratively estimate the model

parameters of the testing image by minimizing the mean squared error between the input pixel in-

tensities and the reconstructed intensities using a stochastic gradient descent. The gradient descent

converges to a final estimate of all of the model parameters, such as shape and texture coefficients,

3D orientations, ambient light parameters, color offsets and contrasts, etc. Altering the pair of the

shape and texture parameter vectors in a constrained fashion enables 3DMM to modify other facial

attributes such as expressions or the perceived weight and gender of the test subject. Altering the

ambient lighting and color parameters enables 3DMM to modify other shading attributes such as

illumination.
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The 3DMM formulation is accurate, however it is computationally expensive and requires a

complicated iterative optimization of the model parameters. For our purpose of pose-correction,

we require a rapid 3D prototyping technique and for that we rely on another state-of-the-art yet

simpler and less computationally intensive 3D modeling technique we review in the next section.

2.2.2 Classical 3D Generic Elastic Models for Pose Synthesis

3D Generic Elastic Models (3DGEM) were first introduced by Heo and Savvides [30] as an effi-

cient and computationally inexpensive real-time method for generating near-accurate 3D models

from a single frontal face image. It was also shown that near-accurate 3D models are sufficient

for robust rank-1 identification accuracy at off-pose angles [31], by rotating the frontal target im-

age to match the probe viewpoint, making the 3DGEM technique invaluable at pose-invariant face

identification.

Let p′ = [x′p, y
′
p]

T represent the location of any single observed landmark point on an image,

corresponding to the “actual” 3D point represented as p = [xp, yp, zp]
T. The aim of 3D struc-

ture reconstruction can be formulated as a very ill-posed problem of recovering p from a single

observation p′. These points are related by the well-known camera projection equation:

p′ = K · [R|t] · p (2.1)

where p′ and p represent the 2D and 3D points in homogeneous coordinates respectively, K rep-

resents the 3×4 intrinsic camera matrix, R and t represent the 3D rotation and translation compo-

nents respectively. Since any translation component can be compensated for by merely re-centering

the frame of reference for the face, we can represent the problem as a simpler projection equation:

p′ = K ·R · p (2.2)
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without using homogeneous coordinates, i.e. K and R are the 2 × 3 projection matrix and 3 × 3

rotation matrix respectively. In the case of frontal 3D GEM, the rotation matrix R is clearly an

identity matrix, and the internal camera matrix is assumed to be an orthographic projection (i.e. it

simply drops the z component without altering the (x, y) components), K = [I2×2|0].

The underlying assumption in the 3DGEM technique is that structural information of depth

z of a human face is not significantly discriminative across different subjects, provided the faces

are perfectly aligned at all 2D fiducial landmarks (x, y). Given a perfect pixel correspondence at

every facial feature on the face, Heo and Savvides showed that the depth information for these

aligned correspondences does not vary significantly among a particular ethnic and gender group.

Consequently, if this dense 2D (x, y) spatial configuration of an input face image can be reliably

localized, then a mean generic depth map can be elastically deformed based on the 2D fiducial

facial features and the mean depth values z̄ can be assigned to corresponding points to generate a

complete 3D structure.

We obtain this dense 2D spatial structure of the face image by first localizing certain predefined

fiducial points on the face either manually or by utilizing an automatic technique such as the

Modified Active Shape Model (MASM) [32]. A triangular mesh is constructed from these points,

which is then subdivided multiple times by means of the loop subdivision algorithm [33] to obtain

a dense 2D point set representing the deformations in the face. An elastic deformation function φ

can be constructed from these points which can deform a mean 2D structure (x̄, ȳ) to the identified

shape, i.e. (x, y) = φ(x̄, ȳ).

A mean generic depth map represented as ẑ = z̄|φ(x̄, ȳ) is constructed from a set of aligned

3D face models obtained from the USF Human ID database [27]. This depth map serves as an

index for depth association, corresponding depth values from this map are assigned to the dense

2D point set obtained from the test image using the learned elastic deformation function φ to obtain

a dense 3D structure p = [x′, y′, ẑ]T for the face. Heo and Savvides [34] have shown that the mean

depth map captured most of the variations and there was little gain by using more basis vectors to
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(a) 3DGEM flowchart

(b) 3DGEM output

Figure 2.1: 3DGEM pose synthesis example. The different images were obtained by rendering the
3D model obtained in the Figure 2.1a at different yaw angles.

represent the variations.

After a texture mapping step, a dense 3D model of the input face is obtained, which can be

rendered at any pose. The flowchart of the complete algorithm outlined above to construct these 3D

models from frontal 2D input images is depicted in Figure 2.1a. Examples of synthetic viewpoints

generated by rendering the 3D model at different angles are depicted in Figure 2.1b.
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Chapter 3

Pose Correction

In section 2.2.2 we showed how could take a near-frontal image and generate an arbitrary view-

point. However the practical problem that needs attention is the inverse problem, that of taking an

arbitrary non-frontal query image and match it to a database of images. Most face gallery databases

(such as passport photos and DMV photos databases) consist of frontal or near-frontal faces, and

it would currently be too expensive to rotate all faces in the database to match the viewpoint of a

query image of an arbitrary angle. Instead, we argue that it is more efficient to leave the gallery un-

perturbed and process the query image to correct its pose back to frontal, where more face features

are visible. Figure 3.1 shows a flowchart of our proposed pose correction approach. However, our

proposed approach implies building a 3D model from a non-frontal image. Section 3.1 offers an

extension of 3DGEM to handle non-frontal input images. It is important to note that correcting the

pose of non-frontal images will introduce pixels that are “self-occluded” for being on the nonvisi-

ble farside of the face. Section 3.2 will introduce a novel approach to extract a sparse feature vector

from the image which we will show is stable under changing pose and with an arbitrary number

of missing pixel dimensions. We will use this feature vector extensively in Chapter 4 to boost

verification rates. Finally in section 3.4, we will show that given this sparse feature vector, we can

synthesise a pose-corrected face with no missing pixel dimensions from which we can generate a
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Figure 3.1: To match a non-frontal query image to a set of nearly frontal gallery images, we propose
a methodology to correct the pose of the query image. Firstly, 3D modeling is adopted to render
an equivalent frontal-looking face. Secondly, a sparse feature representation is extracted from the
3D-corrected face so that we can match it to the frontal gallery images in a low-dimensional feature
space that is pose-tolerant.

traditional crop to feed into current commercial face matchers.

3.1 Construction of 3DGEM Structure from Non-Frontal Im-

ages

While the 3DGEM technique outlined in the previous paragraph has been proved to be efficient

and reasonably accurate, its formulation only allows the generation of 3D models from a single

frontal 2D face image. We now extend the functionality of 3DGEM to construct near-accurate 3D

models from a single non-frontal image as well.

In the case of non-frontal images, the primary impediment stems from the fact that the observed

2D landmark points in the image do not directly represent the (x, y) variations of the face in the

3D space, as the rotation matrix R is no longer an identity matrix. In this case, we can rewrite
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Equation 2.2 as:

 x′

y′

 =

 1 0 0

0 1 0



r11 r12 r13

r21 r22 r23

r31 r32 r33



x

y

z

 (3.1)

where the K and R matrices have been written in terms of their individual components. Under

the GEM assumption, the value of z can be assigned from a generic depth map as ẑ = z̄|φ(x̄, ȳ).

Incorporating this value and simplifying the above equation, we obtain the values of x and y as:

 x

y

 =

 r11 r12

r21 r22


−1  x′ − r13ẑ

y′ − r23ẑ

 (3.2)

It is important to note that the 3D structure of the face can be recovered only if the rotation

matrix R is known. We compute this rotation matrix by using a commercial pose estimation

engine which gives us the pitch, yaw and roll angles of the face in the image.

There are two caveats to 3D reconstruction in this manner: firstly, the technique relies on

accurate localization of a sparse set of landmarks on the input face image, some of which may

be occluded due to the pose. Secondly, since the texture details of some regions of the face are

distorted due to the pose angle, it may be difficult to accurately obtain the texture of the 3D face

structure.

We address the first issue by developing a new version of MASM which is able to localize the

79 points on the face across a wide range of input face poses (from −40◦ to +40◦). In this range

of poses, we find that all 79 points are reliably visible or can be approximated to a reasonable

accuracy.

Once the sparse set of 2D landmarks are localized in the input image, we densify this point set

by means of triangulation and multiple levels of loop subdivision. The corresponding 3D structure
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Figure 3.2: Non-frontal 3DGEM rendering flowchart.

is then generated and texture-mapped by sampling and interpolating the image at the corresponding

points. This 3D model can then be rendered at a frontal viewpoint to obtain a “pose-corrected”

image of the face. The flowchart of the modified algorithm to construct these 3D models from 2D

input images is depicted in Figure 3.2.

3.2 Subspace Modeling to Extract Features Stable Under Pose

Variations

In the previous section we showed how we can use 3D modeling to change the viewpoint of a face

by taking into account the 3D structure of the human face. However this 3D correction step, which

is an approximation of the true 3D face model, will inevitably introduce errors, especially after

we render the model at novel and arbitrary angles. There are two main sources of 3DGEM errors.

The first is at the 3D model formation stage, which is inherent to 3DGEM (such as the generic

depth assumption, or the accuracy of landmarks, etc.). The second source of error is induced at the

rotation/de-rotation stage, where we might be amplifying the errors of the first stage by arbitrarily

varying the posture of the 3D model (such as the problem of dealing with missing/occluded pixel
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information on the far side of the face). Hence, relying on 3D modeling alone is not sufficient to

achieve reliable pose-tolerance. Instead, we aim to extract a feature vector from pose-corrected

faces that will minimally change when the viewpoint changes. In order to achieve this, we rely

on subspace modeling after the 3D step to extract features. Specifically, we can build a subspace

from a very large number of representative training face images which offer variations in gender,

expressions, illuminations, external features (such as eyewear, facial hair, scars, etc.) which will let

us represent any unseen test image. The following subsection will detail how we use this subspace

to extract a pose-tolerant feature vector.

3.2.1 Shape-Free Representation for Accurate Texture Analysis

Since we are interested in obtaining a feature vector from mostly texture information, it is beneficial

to isolate the texture from shape when building the subspace. We define “shape” by the x and y

coordinates of a specific set of predefined landmarks on a face. The shape information can be

discounted by having all faces adopt the same shape before we model the subspace. In other

words, for a true shape-free representation, all facial features (eyebrows, eyes, nose, mouth, etc.)

should have the same dimensions and locations for all faces. Once this is accomplished, the only

discriminative factor left between the shape-normalized faces is the texture. For this purpose, a

global transformation, such as an affine transformation of the entire face, is not enough, since

it multiplies every pixel of the input image by the same transformation matrix. Instead, local

transformations, where every triangle bounded by any three control points can be transformed

independently, are needed.

One approach is to warp all faces to a particular mean shape using a piecewise-linear warping

scheme as in [35]. This method however will introduce discontinuities and other artifacts which

negatively impact the subspace modeling of the texture information. An alternative approach is

to make use of 3DGEM, and build a 3D generic structure and render all face textures with this

common structure to normalize the shape of faces as depicted in Figure 3.3. This will essentially
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Figure 3.3: Shape-free generation module.

render all the faces given a common shape denominator just like the previous method, but 3DGEM

will ensure a much smoother rendering free of high frequency discontinuities and artifacts. Fig-

ure 3.4 depicts three frontal faces from the MPIE database [36] with a traditional crop using eye

coordinates, and their equivalent shape-free representation.

With this shape-free representation, we can set out to build a subspace that accurately models

all the texture variation. Since the purpose is not to learn how to discriminate between the training

faces but to represent the texture feature-space accurately, simple representations such as PCA [37]

or NMF [38] built from several thousands of face images transformed in the shape-free domain is

sufficient to capture the principal texture variation. We will employ PCA for its energy compaction

properties which will become evident once we discuss the sparse feature extraction step.

3.2.2 3D Occlusion Detection for Pose-Corrected Faces

3DGEM relies on texture mapping to render the model at given angle. When the model is built on

a frontal face, the observed texture contains enough information for texture mapping to generate

a smooth and artifact-free image. However, when the model is built on a non-frontal face, the

pixel information on the far-side of the face is mostly unobserved due to self-occlusion, and as a
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(a) Frontal images of the first 3 subjects in the MPIE database.

(b) The corresponding traditional 128× 128 pixels crops of the images in (a).

(c) The corresponding shape-free representations of the images in (a).

Figure 3.4: Comparison between traditional face crop and shape-free representation. The latter is
essential for feature extraction and reconstruction in the presence of missing texture information.

result, texture mapping will invariably introduce stretching artifacts when the model is rendered at

a frontal or opposite angle. The advantage of using 3D modeling is that we can relatively easily

detect the pixels which are likely to exhibit stretching artifacts after pose-correction. This can

be inferred in 3D, where we represent the face surface by a triangular mesh. Every triangle is

defined by three control points obtained from the initial 79 landmark points and their subsequent

subdivisions. Since we have the coordinates of the vertices of all triangles in the mesh, we can
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(a) Original face image with varying yaw.

(b) Pose-corrected images in shape-free representation with occlusion detection.

Figure 3.5: An MPIE subject with (a) the original image from different angles (b) the correspond-
ing pose-corrected shape-free images depicting the pixels beyond a certain angle from the viewing
direction, and which will exhibit high stretching.

obtain the direction of the surface normal, and the angle between that normal and the viewing

direction. If that angle exceeds a given threshold (60◦ in this case), then this pixel is likely to

belong to a region that will exhibit stretching artifacts (due to self-occlusion), and hence not be

representative of the true texture value at that location. Figure 3.5 illustrates the different levels of

stretching-prone pixels for pose-corrected face images taken from different angles.

Note that in Figure 3.5 this method results in finding pixels prone to exhibit stretching even in

the frontal faces. This is because even in a frontal face, the normal to the side of the nose surface

deviates over 60◦ from the viewing direction. This will not be an issue, as we will be reconstructing

these missing pixels via subspace modeling anyway.

3.2.3 The Duality of Pose Correction and Occlusion

By carefully observing Figure 3.5, we can clearly see that pose correction (after the 3D de-rotation

step) translates into an occlusion removal problem: the more severe the out-of-plane rotation in

Figure 3.5a, the wider the vertical occlusion “band” that appears in the shape-free representation

in Figure 3.5b and the greater the number of missing pixels. Therefore our 3D-modeling and de-

rotation step has reformulated the original pose-correction problem into an occlusion challenge.
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Our feature-extraction task now becomes a problem of coping with a varying number of missing

pixels (or dimensions). While making use of symmetry is an obvious option to overcome this prob-

lem and estimate the occluded part of the face, it is not the most accurate way. Faces are understood

to be asymmetrical to the point where facial asymmetry has been used as a biometric [39]. More-

over, faces become even more asymmetrical when expressions are involved, as neuropsychology

research has shown that humans display more expressions on left side of the face [40, 41]. Studies

have tried to link the uneven display of expressions on the face to hemispherical specialization of

the brain and handedness, as right-handed subjects are believed to express emotions differently

than left-handed subjects [42, 43].

We now explain one way we can theoretically fit a feature vector on data with missing di-

mensions (corresponding to missing pixels on the face) using a subspace of trained faces. This

approach is a much better way to tackle the pose-correction modeling problem than assuming fa-

cial symmetry. To simulate a finer varying degree of occlusion (finer than what is provided by

MPIE’s non-frontal angles), we switch to using traditional frontal faces and artificially remove a

vertical band of increasing width to approximate the occlusion pattern. For the remainder of this

subsection, we assume we have a built a large subspace of training faces that are representative of

the occluded face that needs to be reconstructed and is represented by a PCA subspace [37] using

a basis of N eigenfaces. It is important to note that our method can be applied to other subspaces,

and we only show PCA as one simple example to demonstrate the pose-tolerance feature extraction

process.

Let the test image be vectorized into a vector x of dimensionality d and represented by x = Vc + m,

where V is the matrix of vectorized eigenfaces, c is the vector of coefficients, and m is the vec-

torized mean face. The problem is to now estimate the values of the missing pixels in a partially

occluded face by utilizing the subspace. This is a “missing data” problem, and the following

derivation details how we can overcome it.
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3.2.4 `2-norm Feature Extraction in Subspace with Missing Dimensions

For notation simplicty, let x′ be the vector of active pixels of x. x′ is of size d′ and d′ < d pixels.

Similarly, let m′ be the mean of active mean pixels. For notational simplicity, we can also introduce

x′c = x′ −m′, which represents the centered version of x′ of size d′. V′ is the matrix of active rows

that are in V. We need to solve for the coefficient vector c, so in the case of an overdetermined

system ( d′ > N ), we can minimize the following cost function J(c):

J(c) = ‖xc
′ −V′c‖22 (3.3)

= (x′c −V′c)
T

(x′c −V′c) (3.4)

= x′Tc x′c − x′Tc V′c− cTV′Tx′c + cTV′TV′c (3.5)

Setting the gradient∇J(c) with respect to c to zero, we obtain:

2V′TV′ĉme = 2V′
T
xc
′ (3.6)

ĉme = (V′
T
V′)−1V′

T
xc
′ (3.7)

ĉme = (V′
T
V′)−1V′

T
(x′ −m′) (3.8)

The vector ĉme represents the minimum-error PCA projection coefficients of the image x′ which

includes occluded pixels. Observe that the dimensionality of ĉme is the same as the number of

eigenfaces. Therefore, we can reconstruct a new image x of size d from c using the following:

x̂me = Vĉme + m (3.9)

What we have achieved with Equations 3.8 and 3.9 is the obtaining of projection coefficients

from an input image with missing dimensions, and the reconstructing of a full-dimension image
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from those coefficients with no missing pixels. When there is no occlusion (d′ = d), Equation

3.8 degenerates into a standard a PCA formulation and x̂lse = x. This simple reconstruction step

enables us to visually assess the quality of the fit. If the coefficient vector we solve for is a “bad”

solution, then the reconstruction would not produce a natural-looking smooth face with no artifacts.

Conversely, if we can get to the “true” coefficient vector that explains all the observed faces across

poses, then the reconstructed faces would look identical no matter what the input pose is.

Even though Equation 3.5 yields a reasonable reconstruction as shown in Figures 3.6a and

3.6b, it is obvious that the method described above suffers from a major problem: it is struggling

to reconstruct the same face as the occlusion increases. Figures 3.6a and 3.6b show that as the

occlusion grows to occupy half of the face, the reconstruction contains artifacts. This is because

the matrix to invert in Equation 3.8 is of size N ×N but of rank d′. As the occlusion grows bigger,

d′ grows smaller and V′TV′ becomes rank deficient when N exceeds d′. So accordingly we have

to limit N to be smaller than d′.

Alternatively, instead of minimizing the least squares of the error vector, as in Equation 3.5, we

can opt for an underdetermined (d′ < N ) to minimize the following cost function:

min J(c) = ‖c‖2 subject to V′c = x′c (3.10)

The Euclidean norm allows us to elegantly solve the equation using Lagrange multipliers. We

define the Lagrangian:

L(c, λ) = ‖c‖2 + λT(V′c− x′c) (3.11)

The optimality conditions occur when the following system of equations holds. First set the gradi-

ent of L(c, λ) with respect to c to 0:

∂L(c, λ)

∂c
= 2c + V′

T
λ = 0 (3.12)
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and the gradient with respect to λ to 0:

∂L(c, λ)

∂λ
= V′c− x′c = 0 (3.13)

Equation 3.12 yields the following:

ĉmn = −1

2
V′

T
λ (3.14)

Plugging this solution into V′c = x′c from Equation 3.13 leads to:

V′ĉmn = −1

2
V′V′

T
λ⇒ λ = −2(V′V′T)−1x′c (3.15)

Inserting this solution to Equation 3.14 yields the following answer:

ĉmn = −1

2
V′

T
λ = V′T(V′V′T)−1(x′ −m′) (3.16)

The vector ĉmn represents the minimum-norm in `2 that can be used analogously to Equation

3.5 to reconstruct a new image x̂mn = Vĉmn + m.

To compare the different reconstructions, we set up a toy example where we introduce an ar-

tificial occlusion on a test face, as mentioned earlier, and try to reconstruct the occlusion using

the methods described above. The test face belongs to a subject not contained in the training

set. We consider different image resolutions to cover the overdetermined case (d′ > N ) and un-

derdetermined case (d′ < N ). We compare the resulting minimum-norm and least-square error

reconstructions for increasing levels of occlusion for the underdetermined case (d′ < N ). Figures

3.6a and 3.6b depict the occluded face, the least-square error reconstructions (after reducing the

number of eigenfaces to keep Equation 3.8 feasible) and the minimum `2-norm reconstruction, for

images of size 100× 100 pixels and 64× 64 pixels respectively.

As depicted in Figures 3.6a and 3.6b, both methods struggle to reconstruct the full face when
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(a) 100× 100 pixels

(b) 64× 64 pixels

Figure 3.6: Reconstruction of occluded faces of different sizes. For each size, the top row depicts
the occlusion level. The middle row depicts the `2 least-square-error solution while the bottom row
depicts the `2 minimum norm solution.
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the level of occlusion increases. The least-square error reconstruction, which we will refer to

as “L2-PCA” for the remainder of this document, suffers from numerical instability, while the

minimum-norm reconstruction degenerates towards the mean face in the dimensions that are oc-

cluded.

3.2.5 `1-norm Sparse Feature Extraction in Subspace with Missing Dimen-

sions

To address the challenges mentioned at the end of subsection 3.2.4, we need to find a solution

that doesn’t suffer from the invertibility problem and can reconstruct the faces when the size of

the subspace increases. One possible way, is to find a sparser solution for the coefficient vector

c using `1-minimization. A sparse solution will allow us to represent individual faces in clusters

of eigenvector bases since the face data is more likely to be multimodal, while PCA assumes

unimodality. Moreover, in `1-minimization literature, underdetermined problems are usually the

norm rather than the exception, and N can largely exceed d′.

`1-minimization has been studied since the 1970s, and has been known to return a sparse so-

lution. Initially used in reflection seismology in geophysics, it has experienced a very high-profile

resurgence with the emergence of Compressed Sensing (CS) theory [44] where, under some as-

sumptions on the sensing matrix, it has been shown to be an efficient equivalent to the so-called

“`0-norm”approach to recover the sparsest solutions to certain undetermined system of linear equa-

tions [45]. Compressed Sensing corresponds to the idea of encoding a large sparse signal using a

relatively small number of measurements, and minimizing the `1-norm (or one of the many vari-

ants) to decode the original signal. It is attractive for numerous applications because it reduces the

number of measurements required to reconstruct a given amount of information. The trade-off is

the need to develop a non-trivial decoding process. See Appendix A for a brief overview of CS

and `1-minimization solvers.
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The standard `1-minimization problem solves the following convex program:

min J(c) = ‖c‖1 subject to V′c = x′c (3.17)

Equation 3.17, known as Basis Pursuit (BP) [46], finds the vector with smallest `1 norm of vector

c defined as ‖c‖1 =
∑d

i=1 |ci|.

As the results in [45] show, if a sufficiently sparse c0 exists such that V′c0 = x′c, then Equation

3.17 will find it. In the presence of noise, Equation 3.17 becomes:

min ‖c‖1 subject to ‖V′c− x′c‖2 ≤ ε (3.18)

for a given ε and is known as Basis Pursuit Denoising (BPDN) [47] in the signal processing com-

munity and Lasso [48] in the statistical community. Moreover, there are numerous variants of

Equations 3.17 and 3.18 that are all sparsity-inducing techniques.

CS theory shows that a sparse signal can be recovered provided the measurement matrix pos-

sesses certain desirable properties. To date, random matrices and matrices whose rows are taken

from orthonormal matrices have been proven to be desirable. These matrices are invariably dense,

which contradicts the usual assumption made by conventional optimization solvers. Dedicated al-

gorithms for such signal reconstruction has been developed since the early days of CS. There are

several classes of methods that seek to solve the previous equation, namely Gradient Projection

(GP) [49], Homotopy [50], Iterative Shrinkage-Thresholding (IST) [51, 52], Proximal Gradient

(PG) [49, 53], and Augmented Lagrange Multiplier (ALM) [54].

The intrinsic details of specific solvers is beyond the scope of this analysis, however so far a

solver based on (ALM) [55] has consistently outperformed other solvers in the case of our feature-

extraction and face reconstruction application, and will be used for the remainder of this study (see

Appendix A for a brief overview of the ALM solver). We will refer to this method as “L1-PCA”.

Figures 3.7a and 3.7d depict the reconstructions obtained via L1-PCA and L2-PCA. Figures 3.7
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show that the sparse reconstruction is smoother and more visually pleasing at all resolutions and

avoids introducing artifacts.

3.3 Pose Tolerance Induced by Sparse Representation

The reconstructions achieved by L1-PCA (and depicted in Figure 3.7) are nothing short of remark-

able compared to L2-PCA and given the challenge that nearly half of the input pixels are missing.

This highlights the capabilities of the sparse feature extraction induced by `1-minimization. In

the next few subsections we empirically show the advantages of the sparse feature extraction by

measuring its resilience to occlusion, which as a reminder, in our case is the dual problem of

pose-tolerance.

3.3.1 Sparsity Analysis

In this section, we measure and compare the sparsity or the number of nonzero coefficients of

the different feature extraction schemes on the synthetic occlusion toy dataset presented earlier.

Figure 3.8a depicts the histogram of the values of the L2-PCA coefficient vector of the synthetic

toy example at the 2% occlusion level (which corresponds to the first column of images in figure

3.7). The height of the bin at 0 represents the number of null coefficients. Figure 3.8b depicts

the histogram of the values of the L1-PCA coefficient vector. It is very obvious that at this very

low occlusion level (2%) and for a dimensionality of 6000 (which corresponds to the number

of eigenfaces in our PCA basis), `1-minimization forced over half of the values in the coefficient

vector to be zero, while the L2-PCA coefficient vector is not sparse at all (a mere 28 coefficients ouf

of 6000 were set to zero). Figure 3.8d depicts the standard deviations of the distributions in Figures

3.8a and 3.8b as the occlusion level increases to 50%. The coefficient histograms of L2-PCA get

wider and wider as the level of occlusion increases, which means that L2-PCA is struggling to

fit a coefficient vector that best explains the observed data and is assigning arbitrary weights to
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(a) 200× 200 pixels

(b) 128× 128 pixels

(c) 100× 100 pixels

(d) 64× 64 pixels

Figure 3.7: Reconstructing occluded faces of different sizes. For each size, the top row shows
the occluded input images. The middle row shows the L2-PCA reconstructions. The bottom row
shows the L1-PCA reconstructions.
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principal components across the entire basis. Figure 3.8d plots the count of null coefficients for

the two methods as the level of occlusion increases. With L1-PCA, as the occlusion level increases

to cover half of the face, the sparsity level reaches over 60%. This suggests that L1-PCA abstains

from assigning weights arbitrarily when the fitting becomes challenging as a result of missing

dimensions. This in returns enables it to maintain a natural looking reconstruction, because higher

order principal components that represent mostly noise are not assigned a heavier weight as the

number of available dimensions drops and the system becomes increasingly underdetermined.

3.3.2 Robustness Analysis

Another advantage of the sparse feature extraction method that we observed is its ability to keep

finding a good solution, regardless of the size of the training data or the increasing availability of

misleading training faces that might deviate the solution. To illustrate this concept, we consider

the half-occluded face from the synthetic dataset, which is the most challenging problem. We

then solve for the coefficients using L1-PCA and L2-PCA with a subspace consisting of increasing

numbers of training subjects (all different from the test subject). Figure 3.9 compares the MSE

between the original and reconstructed images as the number of training subjects in the subspace

increase. What we observe is that the MSE initially drops as a result of having a more represen-

tative subspace, but then the added degrees of freedom adversely affects L2-PCA, while L1-PCA

achieves and maintains a good reconstruction regardless of the number of training subjects in the

subspace. This trend justifies our hypothesis that the training data becomes increasingly multi-

modal and that the unimodal assumptions of PCA hinders the L2-PCA solution. Essentially, it

becomes harder to find a “good” and stable solution when the subspace contains a large number of

individuals. We observe the same pattern regardless of the size of the image/subspace.
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(a) Sparsity histogram of the L2-PCA coefficient at a 2%
occlusion level.
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(b) Sparsity histogram of the L1-PCA coefficient at a 2%
occlusion level.
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(c) Standard deviation of the distributions of (a) and (b) as
a function of the percentage of occlusion level.
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(d) Percentage of null coefficients as a function of the per-
centage of occlusion level.

Figure 3.8: Sparsity Analysis. Figures (a) and (b) plot the histogram of the coefficient values for
L2-PCA and L1-PCA respectively at a 2% occlusion level. The bin at 0 represents the number
of zero coefficients. Figure (c) plots the standard deviation of the histograms in (a) and (b) as
a function of the increasing occlusion level. Figure (d) plots the sparsity or the number of null
coefficients as a function of the occlusion level.
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(a) 200× 200 pixels
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(b) 128× 128 pixels
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(c) 100× 100 pixels

Figure 3.9: Mean-Square Error between the reconstructed half-face belonging to an unseen subject
and the original full face produced by L2-PCA and L1-PCA using an increasing number of subjects
in the training subspace.(a), (b) and (c) show the MSE plots at different image resolutions.

3.3.3 Stability Analysis

Achieving pose tolerance in this dual occlusion-space means that the coefficient that we extract

from the observed data should minimally change as the number of observed dimensions drops. We

empirically observed that the L1-PCA coefficient vector is stable for varying number of missing

dimensions (pixels). To confirm this observation, we need to monitor the “drift” of fit as the

occlusion increases. We could simply plot the first three coefficients of each method as function of

occlusion, but this will not give a holistic view of the change that could be happening further down

the higher order dimensions. Instead, to check the overall relative stability of the L1-PCA solution

compared to the L2-PCA solution, we build a joint subspace of L2-PCA and L1-PCA coefficients,

and project these coefficients onto this subspace. Figure 3.10 depicts the 3D plots of the first three

coefficients for both reconstructions as the occlusion increases for varying resolutions.

The clustering of the L1-PCA coefficients, shown in Figure 3.10, in the joint coefficient space

implies that the sparse approach, when applied to pose-corrected images, is critical to producing

consistent reconstructions (as the yaw angle of the input image varies), thus resulting in a pose-

tolerant feature representation. In Chapter 4 we will show that the stability of this sparse feature

extraction step is crucial for face recognition. The minimal drift of the feature as the occlusion
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Figure 3.10: 3D plots of the first three principal components of the L2-PCA (red) and L1-PCA
(green) reconstruction coefficients in the joint coefficient space for varying occlusion levels. These
plots enable us to compare the evolution of the reconstruction coefficients as the occlusion in-
creases. The L1-PCA coefficients (in green) seem to be better clustered (yielding a more invariant
set of features with less variation) than their L2-PCA counterparts (in red) implying a higher level
of pose-tolerance. The different subplots (a),(b),(c) and (d) correspond to different image resolu-
tions. The occlusion levels are indicated along the 3D curve.
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increases (which represents increasingly non-frontal viewpoints) means that it can effectively rep-

resent the identity of the subject. The clustering of the feature vector in coefficient space thus

translates into a clustering of the feature vector in identity space, as coefficients extracted from dif-

ferent subjects (and different viewpoints) will be maximally separated in the feature space. Section

4.3.2 will investigate this concept further.

3.3.4 A Compressed Sensing Perspective

`1-minimization is the workhorse of Compressed Sensing (briefly reviewed in Appendix A). A

great deal of theoretical work has been undertaken to prove when and why `1-minimization is able

to recover a signal. From a compressed sensing perspective, it is assumed that an image x of size

d needs to be recovered from d′ measurements (such that d′ < d). It is also assumed x has a sparse

linear expansion in a basis Ψ such that x = Ψc and that c is S-sparse (i.e contains S non-zero

coefficients). Assume only d′ total measurements of x are observed, where every measurement i is

obtained by the inner product of the ith row φi of a measurement matrix Φ with the image, given

by 〈φi,x〉. The coherence of the two basis, given by µ(Ψ,Φ) = d.maxi,k |〈φi,ψk〉|, where ψk

is the kth column of Ψ, was introduced in [56] to represent how “distant” the two basis are from

each other. It was shown in [56] that if d′ is greater than µ (Ψ,Φ) .S. log(d), then `1-minimization

will recover the image x with very high probability.

From this incoherence view of compressed sensing, we can justify why our L1-PCA derivation

can recover the image. In our pose-correction formulation, the sparse basis Ψ is the matrix of

eigenfaces V. The image x has a fundamentally sparse basis expansion in V as most of the energy

is concentrated in the first few eigenfaces that carry most of the variation. The measurements are

simply the d′ un-occluded pixels and the measurement basis Φ is therefore the standard canonical

basis (it will essentially be an identity matrix missing some of its rows that correspond to the self-

occluded pixels). The coherence between these two bases is minimal, and CS theory indicates

that despite a significant proportion of missing pixels, we can still reconstruct the original image
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x using `1-minimization. For that reason, we do not need complex dictionary learning methods

to be able to reconstruct the image, as the simple PCA subspace offers us a sparse representation.

One could still learn a purpose-specific dictionary that might generate a better reconstruction, but

we leave this step as future work, and focus on the combination of PCA representation and `1-

minimization to recover the image with missing dimensions.

3.4 Subspace Modeling to Synthesize Pose-Corrected Faces

The primary purpose of this chapter is to extract a pose-tolerant feature vector from non-frontal im-

ages. The 3D-modeling de-rotation step transformed the pose-correction problem to an occlusion

problem. In the previous section, we used `1-minimization to extract a sparse representation from a

subspace with missing dimensions and showed that this sparse representation is stable under vary-

ing degrees of occlusion. We validated our results by reconstructing the synthetic occlusion toy

example and checking the quality of the reconstruction. We can do the same on the pose-corrected

face images. As previously mentioned, we solve for the vector VĉL1-PCA from missing data, but

we can then reconstruct a full dimension image:

x̂L1-PCA = VĉL1-PCA + m (3.19)

A slightly more accurate reconstruction approach is to avoid reconstructing the observed pose-

corrected pixels, and to restrict the reconstruction to the pixels that are self-occluded. Let OCCLUSION

denote the set of occluded pixels detected with the technique described in section 3.2.2 and de-

picted in Figure 3.5b. Let x̂STRETCH denote the pose-corrected image rendered by 3DGEM at a

frontal viewpoint and with no occlusion detection. Then for every pixel i, we can define:

x̂
(i)
HYBRID =

 x̂
(i)
L1-PCA if i ∈ OCCLUSION

x̂
(i)
STRETCH else

(3.20)
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x̂HYBRID represents the hybrid shape-free image that only reconstructs the occluded parts of the

pose-corrected face. Figures 3.12, 3.13, and 3.14 compare the hybrid synthesis to the L1-PCA

synthesis. In general, the differences are very subtle and only become prominent in the presence

of high-frequency information such as facial hairs, moles, eye-glasses, etc. This is due to the fact

that L1-PCA’s sparse representation tends to suppress the higher-order principal components that

are usually responsible for high-frequency components. To make this document more readable, we

now introduce labels for the different image representations that we have presented so far and that

we will keep encountering in this thesis:

• HOLES: denotes the shape-free representation that contains blank pixels which represent the

pixels likely to exhibit rendering artifacts, as detected by the 3D occlusion detection module

presented in section 3.2.2.

• STRETCH: denotes the shape-free representation where we disable the occlusion detection

module, and let the texture mapping component of 3DGEM estimate all pixel values of the

pose-corrected face. As explained earlier, this will inevitably introduce stretching artifacts,

because of the scarcity of available pixel information for texture mapping to operate on.

• L1-PCA: denotes the shape-free representation generated by Equation 3.19 which recon-

structs the entire face using the sparse feature vector fit on the non-occluded pixels observed

in HOLES.

• L2-PCA: denotes the shape-free representation generated by Equation 3.9 which reconstructs

the entire face using the minimum-squared error feature vector fit on the non-occluded pixels

observed in HOLES.

• HYBRID: denotes the shape-free representation generated by Equation 3.20, which mixes

the non-occluded pixels from STRETCH and the occluded pixels from L1-PCA.

The next chapter will empirically show the discriminative properties of the feature vector

ĉL1-PCA and how we can use it to improve verification rates, but in this section we showcase the
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qualitative properties of the L1-PCA and HYBRID reconstructions. The shape-free representation

of section 3.2.3 is ideally-suited for synthesis as well as analysis. So the following reconstructions

are shown using the shape-free representation.

3.4.1 Correcting Yaw

To illustrate our pose-correction reconstruction results, we employ the CMU Multi-PIE (MPIE)

database [36]. It offers multiple viewpoints of a total of 337 subjects split into four sessions and

spread across a wide of yaw angles. Currently, for yaw-correction, we limit our method to handle

the [−45◦ + 45◦] range. This range guarantees that we still observe both eyes which is what

our automatic facial landmarking scheme and 3DGEM currently require. Note that this is not a

limitation of our framework, rather one imposed by the landmarking and 3D modeling steps, and in

future work, we plan to eliminate this limitation. For given input images of varying yaw, we build a

non-frontal 3DGEM model, de-rotate the model and render it at 0◦, and detect the pixels likely to be

occluded. We then apply the different reconstruction methods mentioned in the previous section.

In our comparison we also include the case where we disable the occlusion detection module

resulting in a representation we denoted previously as “STRETCH”. Figures 3.12c indicates the

locations of the pixels likely to be corrupted by 3D rendering artifacts and whose representation we

called “HOLES”. Figures 3.12d and 3.12e depict the L2-PCA and L1-PCA reconstruction methods

respectively. Figure 3.12f depicts the “HYBRID” representation. Figures 3.13 and 3.14 offer

the same comparisons for different subjects. Appendix D contains more sample reconstructions

for different subject in MPIE and for subjects from the FERET [57] pose database to show this

technique is not database-dependent. It is obvious from Figures 3.12, 3.13 and 3.14 that the sparse

reconstruction is more visually pleasing, and more natural looking. Beyond 15◦, the stretching

artifacts induced by standard 3DGEM (as illustrated in Figure 3.12b) become too apparent, and

the inconsistency of the L2-PCA reconstruction (Figure 3.12d) introduces unnatural artifacts that

are reminiscent of numerical instability.
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To confirm the stability of the sparse feature extraction method (described in section 3.3.2), we

run a slightly different experiment. While the experiment in section 3.3.2 was performed in the

dual occlusion-space, and increased the size of the training set by adding more unseen subjects,

the following experiment takes place in the primal pose-correction space. The training subspace

always starts by featuring the original frontal face of the testing subject, but then we increase

the training set by adding more unseen subjects. We then check the reconstruction of the pose-

corrected image of the test subject for the different methods using this increasing training set.

We measure the MSE between the pose-corrected image and the original frontal image of the test

subject. We repeat this procedure for ten different subjects and average the MSE results. Figure

3.11 plots the MSE between reconstructed pose-corrected images and the original frontal images

as we increase the number of training “texture” subjects. Note that both methods start with a very

low MSE, because at the first iteration the subspace is built on frontal faces of the test subject

only. But at the next iteration, the subspace consists of more unseen frontal faces, and as a result

the reconstruction error will increase. However, observe that regardless of the input yaw angle,

the L1-PCA average MSE stabilizes after a certain number of training subjects (which include the

test subject), while the L2-PCA average MSE keeps climbing with the number of training subjects.

This confirms our previous finding (of section 3.3.2) that L1-PCA is less prone to “lose” the correct

solution and always seems to converge to the true solution regardless of the number of available

misleading exemplars in the training set.

3.4.2 Correcting Pitch

So far, our analysis and experimental results have focused on correcting yaw. However, the same

technique can be used to correct the pitch problem. A nonzero pitch angle is very likely to be ob-

served in challenging faces to identify. In a surveillance scenario, the cameras will most probably

be placed high up on a wall or a ceiling to provide the camera with a vantage viewpoint. This in

return will make subjects appear with a high degree of pitch. Assuming we can accurately estimate
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(c) −15◦ Pose Corrected

Figure 3.11: Average PSNR for 10 different faces computed between pose-corrected and frontal
shape-free images, for a varying number of subjects in the training set. The training set always
starts by having the test subjects, then adds more subjects. (a), (b), (c) show results at different
yaw angles.

this pitch angle, the pose-correction technique we described above can be applied with minimal

change to generate a frontal-looking corresponding image. However, estimating pitch is slightly

more challenging than estimating yaw. This is because the face goes through less deformation

when pitch changes compared to yaw, and a 10◦ change in pitch is barely discernible while it is

very obvious in the case of yaw change. The MPIE database does not offer as much variation in

pitch than it does in yaw, so for the following experiment, we captured our own images to prove

the concept. We set up the camera at a known distance from the subject, and increase its height in

such a way that the apparent pitch angle of the face is a known value. Figure 3.15a depicts the re-

sulting face image for a pitch range of 0 to 40 with increments of 5◦. The following columns of the

same figure depict the shape-free representation with occlusion detection, the resulting L1-PCA

and HYBRID reconstructions respectively.

3.4.3 Generating a Standard Facial Crop

After we synthesise a shape-free pose-corrected image, we can go one extra step in adding the

shape back in the reconstructed image. This is essentially reversing the process described in sec-

tion 3.2.3 and depicted in Figure 3.3. We can build a 3DGEM frontal modal from the reconstructed
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face image (whose x and y landmark coordinates are known and are common for all reconstructed

faces) and then replace the mean coordinates with the actual pose-corrected coordinates of the orig-

inal input face. This will void the shape-free representation and give the reconstructed faces their

individual shape information back1. We can then take the reconstructed face with original shape

information and crop it to a specific size (for example 128 × 128 pixels) and using given control

points (for example crops aligned using the two eyes). Figure 3.16 compares our pose-corrected

traditional crop, to another traditional approach which consists of warping the non-frontal images

to a frontal mean shape and then cropping by aligning the face using both eyes. We benchmark

against a piecewise-linear local warping scheme (see [35]) which is typically used in Active Ap-

pearance Models (AAM) [58] and seems to be one of the very few local warping schemes that can

handle the severe distortion due to varying yaw. As we can observe in Figure 3.16, our L1-PCA

pose-corrected traditional crop (with shape information) renders a smoother and more realistic

face image while local 2D warping introduces severe distortions that essentially renders the image

useless for face recognition purposes.

3.5 Summary of Findings and Results

In this chapter we presented a technique to extract a sparse feature vector from non-frontal images

and showed that this feature vector is stable under varying poses. We will use this sparse feature

vector to perform one-to-one face verification in the next chapter. We also used this sparse feature

vector to synthesize a pose-corrected natural-looking image that corresponds to the non-frontal

face image. Thus, these are the main contributions of this chapter:

• Extended the 3DGEM formulation to handle non-frontal images and produce a 3D model

from a non-frontal input face.

• Introduced an artifact-free shape-free representation based 3DGEM which we showed is
1The next chapter will discuss the shape information in detail and its impact on face recognition and its use in this

pose-correction framework
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ideal for texture analysis and synthesis.

• Introduced a 3D occlusion detection technique that enables us to identify which pixels are

likely to be occluded and hence be badly rendered when de-rotating the 3D model to a frontal

viewpoint.

• Formulated the pose problem as an occlusion problem. After the 3D de-rotation step, the

shape-free pose-corrected faces exhibit a number of occluded pixels which is a function of

the input yaw. The more severe the input angle, the wider the occlusion band is.

• Formulated a solution to find a sparse feature vector using `1-minimization in the presence

of mission dimensions (corresponding to occluded pixels). We showed this solution to have

the following crucial advantages:

? Handles severely underdetermined systems of equations

? Does not suffer from numerical instability issues

? Is not prone to “lose” the correct solution when the number of training images increases

? Is stable and changes minimally when the degree of occlusion (or number of missing

dimensions) changes

? Does not degenerate towards the mean

• Empirically showed how our pose-correction technique handles variations in both pitch and

yaw.

• Demonstrated how we can use the extracted sparse feature vector to reconstruct or synthesize

a frontal looking face image.

• Demonstrated how to transform an image to a shape-free domain suitable for texture analysis

and synthesis, and then how to put the shape information back to generate traditional image

crops.
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(a) Original face image with yaw varying from −45◦ to +45◦ in increments of 15◦.

(b) STRETCH: Pose-corrected images in shape-free representation with no occlusion detection and no reconstruction.

(c) HOLES: Pose-corrected images with occlusion detected in shape-free representation.

(d) L2-PCA reconstructed pose-corrected images in shape-free representation.

(e) L1-PCA reconstructed pose-corrected images in shape-free representation.

(f) HYBRID: L1-PCA+STRETCH pose-corrected images in shape-free representation.

Figure 3.12: MPIE subject 1 with (a) the original images at different yaw angles (b) The equiva-
lent pose-corrected shape-free images with no occlusion detection. As a result, the texture mapping
module in 3DGEM will introduce stretching artifacts due to interpolating from too few available
pixels. (c) The equivalent pose-corrected shape-free images with pixels that are likely to be oc-
cluded detected in 3D. (d) The equivalent reconstructed pose-corrected images using L2-PCA in
shape-free representation. (e) The equivalent reconstructed pose-corrected images using L1-PCA
in shape-free representation. (f) Hybrid representation which consists of the un-occluded pixels
from (c) and occluded pixels from (e). The sparse feature vector responsible for this reconstruction
will be used (in the next chapter) to achieve one-to-one verification rates.
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(a) Original face image with yaw varying from −45◦ to +45◦ in increments of 15◦.

(b) STRETCH: Pose-corrected images in shape-free representation with no occlusion detection and no reconstruction.

(c) HOLES: Pose-corrected images with occlusion detected in shape-free representation.

(d) L2-PCA reconstructed pose-corrected images in shape-free representation.

(e) L1-PCA reconstructed pose-corrected images in shape-free representation.

(f) HYBRID: L1-PCA+STRETCH pose-corrected images in shape-free representation.

Figure 3.13: MPIE subject 2 with (a) the original images at different yaw angles (b) The equiva-
lent pose-corrected shape-free images with no occlusion detection. As a result the texture mapping
module in 3DGEM will introduce stretching artifacts due to interpolating from too few available
pixels. (c) The equivalent pose-corrected shape-free images with pixels that are likely to be oc-
cluded detected in 3D. (d) The equivalent reconstructed pose-corrected images using L2-PCA in
shape-free representation. (e) The equivalent reconstructed pose-corrected images using L1-PCA
in shape-free representation. (f) Hybrid representation which consists of the un-occluded pixels
from (c) and occluded pixels from (e). The sparse feature vector responsible for this reconstruction
will be used (in the next chapter) to achieve one-to-one verification rates.
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(a) Original face image with yaw varying from −45◦ to +45◦ in increments of 15◦.

(b) STRETCH: Pose-corrected images in shape-free representation with no occlusion detection and no reconstruction.

(c) HOLES: Pose-corrected images with occlusion detected in shape-free representation.

(d) L2-PCA reconstructed pose-corrected images in shape-free representation.

(e) L1-PCA reconstructed pose-corrected images in shape-free representation.

(f) HYBRID: L1-PCA+STRETCH pose-corrected images in shape-free representation.

Figure 3.14: MPIE subject 3 with (a) the original images at different yaw angles (b) The equiva-
lent pose-corrected shape-free images with no occlusion detection. As a result the texture mapping
module in 3DGEM will introduce stretching artifacts due to interpolating from too few available
pixels. (c) The equivalent pose-corrected shape-free images with pixels that are likely to be oc-
cluded detected in 3D. (d) The equivalent reconstructed pose-corrected images using L2-PCA in
shape-free representation. (e) The equivalent reconstructed pose-corrected images using L1-PCA
in shape-free representation. (f) Hybrid representation which consists of the un-occluded pixels
from (c) and occluded pixels from (e). The sparse feature vector responsible for this reconstruction
will be used (in the next chapter) to achieve one-to-one verification rates.
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(a) Original (b) HOLES (c) L1-PCA (d) HYBRID

Figure 3.15: Pose correction for pitch angles increasing from 0◦ to 40◦ in increments of 5. (a)
shows the original input images (b) shows the corresponding shape-free representation with occlu-
sion detection (c) shows the resulting L1-PCA shape-free reconstructions (d) shows the HYBRID
representation which consists of the the original pixels when the pixel is not occluded, and the
L1-PCA equivalent pixel when the pixel is occluded.
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(a) Original face images with yaw varying from −45◦ to +45◦ in increments of 15◦.

(b) 2D warped images obtained using local piecewise-linear warping.

(c) 2D warped images obtained using local weighted mean warping.

(d) Cropped L1-PCA reconstructed pose-corrected images with shape information.

Figure 3.16: Comparison with traditional cropping. MPIE subject 2 with (a) original images at
different yaw angles. The equivalent pose-corrected images using traditional 2D warping methods
are shown using piece-wise linear (b) and local weighted-mean (c). The equivalent crops obtained
using L1-PCA after adding the shape back are shown in (d).
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Chapter 4

Face Recognition with Pose Correction

In the previous chapter, we introduced a pose-correction method that consists of three main com-

ponents: First, a 3D modeling step (3DGEM) that builds a 3D-model from a non-frontal face

image. We can render this model at any arbitrary angle, and we choose 0◦ to generate a frontal-

looking face. Second, we showed that this 3D model is not sufficient to achieve pose-invariance,

so we introduced a shape-free representation which is ideally suited for texture analysis and syn-

thesis. Third, we introduced a subspace modeling approach that relies on sparse `1-minimization

for feature extraction in the shape-free domain. We showed this feature to be stable under a wide

variation of pose and produced a smooth and artifact-free reconstruction. These three components

work together to let us achieve pose-tolerance. In this chapter, we show how we can utilize this

sparse pose-tolerant feature to achieve one-to-one face verification. The Modus operandi of most

experiments in this chapter is illustrated in the flowchart of Figure 4.1. We assume we have a

large database of frontal or near-frontal faces and that the test images are non-frontal and of an

arbitrary pose. We run extensive and large scale experiments on the MPIE database to validate the

pose-tolerance of our sparse feature extraction. We also analyze the effect of shape information in

a pose-correction framework, and compare pose-correction to pose-synthesis. We also present two

algorithms to perform robust face recognition across pose variations.

49



Derotation + Occlusion 
Detection 

Shape-Free 
Transformation 

Feature Extraction & 
Reconstruction 

Build 3DGEM model 

Shape-Free 
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POSE-CORRECTION 

MATCHING 

frontal -45⁰ -30 ⁰ -15⁰ 15⁰ 30⁰ 45⁰ 
Non-Frontal  Test Faces Frontal  Gallery Faces 

Figure 4.1: Experimental setup for face recognition with pose correction using our framework.

4.1 Analyzing Texture Information in Pose Corrected Images

The experimental setup of our first pose-correction test is depicted in Figure 4.1. Our gallery

database consists of the frontal images1 of the MPIE database. The query set consists of 6 non-

frontal images 2 which roughly represent yaw angles ranging from −45◦ to +45◦ in increments of

15◦. Every frontal face goes through the shape-free transformation and then the feature extraction

step. Every non-frontal face goes through the 3D step to fit a non-frontal 3D model, which is

then rendered at 0◦ and has its occluded pixels detected. It then goes through the shape-free

transformation, and then a feature extraction step just like the frontal face. All of our experiments

are one-to-one, which means every pair of (frontal, non-frontal) faces is matched independently,

and we have no prior information on the size of the gallery set, or the number of query images,

and we do not perform any kind of score normalization. Unless we specifically say otherwise, the

1angle code 05 1 in the MPIE technical description
2angle codes 19 0, 04 1, 05 0, 14 0, 13 0 and 08 0 in the MPIE technical description
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matcher consists of a normalized cosine-distance (NCD) given by:

NCD(a,b) = 1− 〈a,b〉
‖a‖ ‖b‖

(4.1)

where a and b are two vectors (features or vectorized images). Figure 4.2 depicts the ROCs ob-

tained on all 6 different angles after the image synthesis step and using all the different shape-free

image representations we defined in the previous chapter. These ROCs represent the normalized

cosine distance performance between the reconstructed pose-corrected shape-free images and the

frontal images seen in Figure 3.12. As a reminder, the black ROC corresponds to the STRETCH

representation: shape-free images as rendered by the 3D model with no occlusion detection or

reconstruction (such as those depicted in Figure 3.12b). The blue ROC corresponds to matching

the HOLES representation: taking into account the non-occluded pixels (such as those depicted

in Figure 3.12c) . The red and green ROC correspond to matching the L2-PCA and L1-PCA

representations respectively (such as those depicted in Figures 3.12d and 3.12e). The cyan ROC

corresponds to matching the HYBRID representation: pose-corrected images that mixes the ob-

served un-occluded pixels from STRETCH and the occluded reconstructed pixels from L1-PCA

(such as those depicted in Figure 3.12f).

Analyzing Figure 4.2, we can conclude that no matter what the test angle is, the L2-PCA and

STRETCH representations are consistently under-performing, and this is not surprising given the

degree of visual distortion apparent in the reconstructed images. It is interesting to note that the

L1-PCA representation very narrowly but consistently outperforms the HYBRID representation.

Even though the HYBRID representation is more faithful to the observed data, its ROC shadows

that of the L1-PCA representation. That is mostly because the smoothing resulting from the sparse

reconstruction which suppresses the higher-order principal components is effectively denoising the

images. The denoised images are performing better in a one-to-one verification framework than

the original images. L1-PCA also narrowly beats the “HOLES” images except for very low FAR
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(a) Shape-free −45◦ PoseCorrection
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(b) Shape-free matching at 45◦
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(c) Shape-free matching at −30◦
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(d) Shape-free matching at 30◦
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(e) Shape-free matching at −15◦
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(f) Shape-free matching at 15◦

Figure 4.2: ROC of verification performance of pose-corrected shape-free reconstructed images on
the MPIE database consisting of 337 unique subjects. The gallery images are frontal and the query
images are at the angle indicated in the caption.
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in the 15◦ case. The “HOLES” result is interesting, given that this representation is an intermediate

step between L1-PCA and HYBRID. It measures the discriminative information available in the

native image with no extraneous subspace reconstructions. Though the result is remarkable, this

representation is not very usable, since little can be done with a shape-free image full of blank pix-

els. If we train an image classifier with this image representation, the algorithm will inevitably try

to learn the pattern of blank pixels, which changes with every image. Therefore, for the remainder

of this thesis, we will drop the comparison against the “STRETCH” and “HOLES” options and fo-

cus mainly on L1-PCA and HYBRID for feature extraction and reconstruction. Overall, the actual

verification score remains poor, but the remaining sections of this chapter will provide some ideas

on how to improve them.

The above result represents shape-free images, which is only a one-sided view of face infor-

mation. In [59], the individual contributions of shape and texture information have been studied in

a large scale analysis involving frontal faces. It was empirically shown that shape information is

reasonably discriminative, and demonstrated significant improvement in performance by analyzing

shape and texture information separately and fusing them to boost recognition rates. In the next

section we extend the study of shape information study for non-frontal faces.

Table D.13 summarizes the verification rates for the different image representations measured

at 1% FAR. We also include in the comparison the reconstructed images with shape information

added back and the warped images using different warping schemes, such as those depicted in

Figure 3.16.

4.2 Analyzing Shape Information in Non-frontal Faces

In [59], the effectiveness of shape information was demonstrated by a purely shape-based face

recognition. A dense set of 79 landmark (or control) points were stacked with y coordinates fol-

3See Appendix D for this result.
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lowing x coordinates to form a feature vector that describes the shape of the face. Procrustes anal-

ysis [60] is used to align all shape vectors and remove all traces of rotation, scale and translation.

It was shown in a large-scale analysis involving the FRGC database [61] that shape information

alone can outperform the overall performance of the entire face.

4.2.1 View-Based Shape Information

To investigate the effectiveness of shape information across pose, we recreate the same experi-

mental setup on a per-view basis. For every test angle, we create a “generic” shape-only subspace

from 88 subjects belonging to MPIE sessions 2 and 3. We then test by matching 249 MPIE session

1 subjects against 105 subjects from MPIE session 2. All those 105 subjects from session 2 are

present in session 1. All 249 testing subjects are not seen in training. Figure 4.3 displays the ROCs

for all 6 test angles. For every case we compare manual landmarking to automatic landmarking to

validate the robustness of the findings.

The ROCs in Figure 4.3 show the view-based verification performance using shape information

only. The feature extraction corresponds to a simple projection on a shape subspace trained on

unseen faces at the corresponding angle. What is remarkable to observe is that the effectiveness of

the shape information does not decrease as the viewpoint deviates from frontal, for both manual

and automatic landmarking. This validates the results of [59] that shape information is important,

not only in frontal faces, but also off non-frontal faces. However, this finding is less useful in our

pose-correction framework than it is for pose-synthesis, since we do not plan to perturb the frontal

faces or their shape information. We need to find out if this discriminative shape information is

carried over after the non-frontal faces go through the 3D pose-correction step.

54



10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate

V
er

ifi
ca

tio
n 

R
at

e

−45° Session 2 vs Session 1

 

 

manual LM
auto LM

(a) Shape matching at −45◦
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(b) Shape matching at 45◦
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(c) Shape matching at −30◦
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(d) Shape matching at 30◦
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(e) Shape matching at −15◦
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(f) Shape matching at 15◦

Figure 4.3: Verification performance of shape-only information using a subspace model trained
on 88 subjects from MPIE sessions 3. ROCs represent matching the shape information of MPIE
session 1 versus MPIE session 2. All subjects are unseen during training.
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4.2.2 Pose-Corrected Shape Information

We assume our gallery faces are frontal, and the equivalent non-frontal shape information of the

gallery faces is either not-available or too costly to obtain. We can therefore apply the techniques of

the previous chapter to obtain pose-corrected shape information via 3DGEM. Figure 4.4 portrays

the experimental setup used for pose-corrected shape-only matching. Non-frontal test faces go

through the 3D-modeling step and the derotation step, and then we only measure the resulting

x and y coordinates of the original 79 landmarks after the derotation step. Just as the previous

experiment, this new shape pose-corrected vector goes through a Procustes analysis step to align

all shape vectors and eliminate rotation, scale and translation variations. Since the resulting pose-

corrected landmarks are not only a function of the original landmarks but also a function of the

3D-model and the derotation step, they are dependent on both the accuracy of the landmarks and

the accuracy of the pose estimator. Therefore, when measuring verification rates, we consider all

possible combinations of landmarking and pose estimation schemes.

For the following experiment, we train a shape-only subspace on frontal and pose-corrected

non-frontal shape vectors from MPIE sessions 2 and 3. When we test, we match the pose-corrected

shape information of the non-frontal images to the shape information of the frontal gallery images

by projecting onto this shape-only subspace (as was done in the previous experiment). The match-

ing method employed is a simple normalized cosine-distance metric. We compute the ROCs for all

possible angles, and for all possible combinations of landmarking and pose estimation schemes.

The results are depicted in Figure 4.5. The first observation to make is that there is a visible dis-

crepancy between the performance of manual and the automatic modes (for both landmarking and

pose-estimation). This suggests that shape-based matching after pose correction is highly sensitive

to the accuracy of the landmarking and the pose estimation. Even though the automatic land-

marking did not significantly impact the shape-based matching in a view-based mode (previous

section), the errors the landmarking is making in conjunction with the pose estimator errors are

getting amplified after the pose-correction step. The second observation to make is that even the
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Procrustes 

MATCHING 
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frontal -45⁰ -30 ⁰ -15⁰ 15⁰ 30⁰ 45⁰ 
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Figure 4.4: Experimental setup for face recognition with pose correction using our method on
shape information only. The input data is a vector of stacked x and y coordinates. 3D modeling
is used to find the corresponding frontal looking coordinates. Procrustes analysis is performed to
align all shape vectors and eliminate rotation, scale and translation from the input images. The
feature extraction step corresponds to projecting on a PCA shape subspace built on unseen face
shapes.

fully manual results are significantly deteriorating as the input angle deviates from frontal. This

suggests that the pose-corrected shape information loses a lot of its discrimination power. This

problem is inherent to the landmarking scheme we are following which places landmarks on the

best available location given the pose, rather than the true location of the landmarks. For instance,

in a frontal face, the right face contour points are placed on the boundary of the face that separates

the face from the background. However in a non-frontal image, the same right contour points are

still placed on the boundary that separates the face from the background, but those points now fall

well inside the right cheek. This inherent variance of the landmarking scheme between frontal and

non-frontal gets amplified by 3DGEM, and makes shape-only based matching for pose-corrected

faces practically impossible.

We tried to attenuate this problem by discounting the shape coordinates that fall on the far side

of the face, and use L1-PCA in a missing-shape-information problem similar to the one detailed
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(a) −45◦ Shape Pose Corrected vs. Frontal
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(b) 45◦ Shape Pose Corrected vs. Frontal
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(c) −30◦ Shape Pose Corrected vs. Frontal
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(d) 30◦ Shape Pose Corrected vs. Frontal
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(e) −15◦ Shape Pose Corrected vs. Frontal
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(f) 15◦ Shape Pose Corrected vs. Frontal

Figure 4.5: Shape-only based matching. MPIE session 1 pose corrected images versus MPIE
session 1 frontal images. We show the performance for both automatic and manual landmarking
and pose estimation. Shape information loses its discrimination with pose correction. The shape
feature vector is a projection on a shape subspace of unseen faces, and the matcher is normalized
cosine distance.
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the previous chapter, but this hardly seemed to make a difference, which suggests this problem

plagues all points on the face, and not just the occluded ones. That is why, until we develop or

utilize a different landmarking scheme, we drop the shape information in pose-corrected images,

and rely solely on the shape-free representation for feature extraction and reconstruction, which

systematically alleviate those problems by discounting the shape information for all subjects.

4.3 Matching in Coefficient Space

Instead of reconstructing the image and matching the reconstructed images where one could argue

we are hallucinating pixel values, we could stop at the feature extracting step and use c in Equation

3.18 as the feature vector to match with. In our case, this could be exactly equivalent to matching

with the entire image, had we not subtracted the mean when building the PCA subspace. If an

image x1 is represented by x1 = Vc1 (instead of Vc1 + m) and similarly another image x2 is

represented by x2 = Vc2, then the normalized cosine distance between coefficients is equivalent

to normalized cosine distance between images:

NCD (Vc1,Vc2) = 1− cT
1V

TVc2

‖Vc1‖ ‖Vc2‖
= 1− cT

1c2

‖c1‖ ‖c2‖
= NCD(c1, c2) (4.2)

Equation 4.2 holds when V is an orthonormal basis, which is the case of our PCA basis. It is

not uncommon to build a PCA linear subspace without subtracting the mean, and this has been

shown to improve the results in certain cases. Moreover, as it is usually done with PCA repre-

sentation, verification performance significantly improves when the first few coefficients, which

represent the first few eigenfaces, are dropped [24]. That is because the first few eigenfaces are

dominated by ambient illumination and therefore are common for all subjects in the dataset. By

disregarding the first few dimensions that are common for everybody, a face matcher can focus

on the dimensions that are more representative of the individual subjects. This improvement in
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verification rates suggests that there is significant discriminative information in the middle band

of PCA coefficients, where the lower band (representing the first eigenfaces) captures the largest

variations which are common for everybody, and the higher band (representing the last eigenfaces)

predominantly represents noise. Figure 4.7 depicts the resulting ROCs from matching the feature

vectors extracted from the shape-free pose-corrected images using L2-PCA and L1-PCA. More-

over, we compare against the coefficients fit on the HYBRID representation. As a reminder, this

representation contains the original observed pixels, and the L1-PCA occluded pixels. Therefore,

extracting coefficients from the HYBRID representation represents a dual operation where we find

the sparse feature from the observed data, reconstruct the occluded pixels, and then refit the co-

efficients on the full reconstructed image. The PCA subspace was built without subtracting the

mean (for Equation 4.2 to hold), and we also disregarded the first few dimensions of every feature

vector which further improved the matching performance. To gauge the statistical significance of

this result, we also measure the confidence intervals using a bootstrap [62] and threshold sweep

approach [63]. Figure D.6 shows the corresponding ROCs with a 95% confidence band centered

around the mean verification rates.

Comparing the results of Figure 4.2 to those of Figure 4.7, we observe a very visible perfor-

mance improvement. For instance, at the most extreme angles, the verification rate has improved

from roughly 10% and 0.1% FAR to 40% for the −45◦ angle and 30% for the +45◦ angle at the

same FAR. This was achieved by simply dropping coefficients from the feature vector. Also note

that the gap between the L1-PCA and L2-PCA ROCs has increased when matching in coefficient

space, which confirms that our sparse feature extraction carries more discriminative information

and has a better tolerance for pose variations. Also note that the ROCs of the HYBRID and L1-

PCA coefficients are essentially identical. Very little is gained by reffiting the coefficients on the

full HYBRID image compared to the sparse feature representation of L1-PCA. Therefore, for the

remainder of this document, we will drop the HYBRID coefficient representation and focus on the

L1-PCA coefficient representation which comes at half the computational cost of HYBRID. Table
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(f) Pose-corrected shape-free feature 15◦

Figure 4.6: Verification performance of matching with the coefficients after dropping the first few
dimensions. The matcher used is normalized cosine distance. The testing set contains all 337
unique MPIE subjects.
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D.1 compares the verification rates obtained for matching in the coefficient space with the rest of

the reconstructed image representations.

4.3.1 SimBoost for Weighted Non-Linear Coefficients Matching

While the previous observation seems to be based more on intuition rather than rigorous mathemat-

ical analysis, it clearly shows that there is a lot of discriminative information to be obtained from

the coefficient feature vector. This makes the sparse feature vector a perfect candidate for feature

selection algorithms, that will methodically pick the most significant dimensions. For this reason,

we present a simple matching algorithm based on boosting to select and non-linearly combine the

different dimensions of our sparse feature vector. This algorithm weighs dimensions differently

based on the similarity matrix the feature vector induces on a validation set, and hence we call it

SimBoost. SimBoost is detailed in Appendix B. The improvement in verification performance due

to SimBoost is depicted in Figure 4.19. Replacing the simple normalized-cosine distance matcher

by SimBoost which corresponds to a nonlinear weighted combination of feature dimensions is

allowing us compensate for errors introduced by our pose-correction technique. This in return

significantly enhances the verification rates as depicted in Figure 4.19.

4.3.2 Identity Retention Across Pose Variations

In section 3.3.3 we showed how the L1-PCA sparse feature vector minimally changed as the levels

of occlusion (representing pose) increased. The minimal drift of L1-PCA in feature space is the

result of the sparsity of the feature vector, as `1-minimization will abstain from assigning weights

to arbitrary dimensions as the number of missing dimensions increases. It is specifically this

minimal drift of the L1-PCA feature vector in coefficient space that makes it better suited for face

recognition than L2-PCA, since it translates into a minimal drift in identity space. Coefficients

extracted from different subjects (and different viewpoints) will be maximally separated in the
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(f) Pose-corrected shape-free feature 15◦

Figure 4.7: Verification performance of matching with the coefficients after dropping the first few
dimensions. The matcher used is normalized cosine distance. The testing set contains all 337
unique MPIE subjects.
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Figure 4.8: Verification performance of matching with the coefficients within each viewpoint. The
gallery set consists of MPIE session 1. The probe set consists of 104 subjects from MPIE session 2
that are included in session 1. The matcher used in NCD. The rest of the angles have been omitted
to make the figure more readable.

feature space, which explains why L1-PCA outperformed L2-PCA in the ROCs of Figure 4.7. To

further prove this point, we set up the following experiment. The gallery set consists of the pose-

corrected face images of MPIE session 1 subjects at various angles. The query set consists of the

pose-corrected face images of a hundred of those same subjects, at the same corresponding angles,

only from a different session (MPIE session 2). We then match the pose-corrected images within

each viewpoint, to gauge the impact of pose-correction on maintaining the identities of the subjects

across pose. Figure 4.8 shows the ROCs obtained for this experiment. The ROCs in Figure 4.8a

exhibit a marked performance drop for L2-PCA when matching within each viewpoint, which is

not the case for L1-PCA as shown in Figure 4.8b. This confirms that the intra-class variations

due to the L1-PCA feature vector are stable under varying poses and will minimally impact the

inter-class variations.

4.4 Pose Synthesis versus Pose Correction

In this section, we further justify the use of pose-correction over pose-synthesis. One could argue

that if we reconstruct the image, pose-correction is introducing new information that is estimated
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from a training set which may not be representative of the testing data. Instead of pose-correcting

the query image which one could argue is introducing new information that is estimated from a

training set, we could have the gallery near-frontal images match the pose of the query image,

which albeit less efficient, might be more faithful to the data. This would involve building 3D

models of all gallery images as shown in Figure 4.9. This approach brings its own share of chal-

lenges as well, most common of which is the masking problem. In images rendered from 3D, each

face will display a different contour and traditionally masks are used to “mask-out” the uncommon

regions. However, we could avoid this problem by adopting a similar approach to the previous

section and render all faces to a mean non-frontal shape, which would ensure that no information

is lost in a masking process. Figure 4.10 compares the shape-free images generated by the pose-

correction module to those generated by the pose-synthesis module. The faces in the top row of

Figure 4.10 have all been generated by the frontal image of the MPIE subject. We fit a shape-free

3DGEM model on this frontal face, and render it at different angles to synthesize different view-

points. On the other hand, the bottom row of Figure 4.10 displays the shape-free images rendered

by a non-frontal 3DGEM model built on the non-frontal image. We can observe that the discrep-

ancies between the two approaches increase with the yaw angle, with the most visible changes

occurring around the area of the cheeks.

To compare pose-synthesis against pose-correction, we match the two types of images in Fig-

ure 4.10. Specifically, we take the frontal gallery images, fit a frontal 3DGEM model on them,

and rotate them to match the angle of the query image. Similarly, we fit a non-frontal 3DGEM

model on the query image to generate a shape-free representation. In this shape-free domain, both

gallery and query faces have exactly the same dimensions, and all features of the faces are perfectly

aligned. Figure 4.11 depicts the ROCs obtained for every test angle and for every unique subject

in the MPIE database. To compare, we also plot the best (L1-PCA) result obtained on the same

dataset using the pose-correction approach of section 4.1 and depicted in Figure 4.2. We observe

that using the naive cosine distance matcher, pose-correction narrowly outperforms pose-synthesis
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Build 3DGEM model 
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-45⁰ -30 ⁰ -15⁰ 15⁰ 30⁰ 45⁰ 
Non-Frontal  Test Faces Frontal  Gallery Faces 

   0⁰ 

Figure 4.9: Pose synthesis experimental setup. To match in shape-free representation, we fit a
non-frontal 3DGEM on the test images. We also fit a frontal 3DGEM on the gallery face and rotate
it to match the angle of the test image.

in all test angles. Note that the smaller the yaw angle, the more pose-correction outperforms pose-

synthesis which suggests that our current non-frontal 3D modeling is operating at its limits. With

the current formulation, building non-frontal 3DGEM models from input faces beyond 45◦ de-

grees will introduce artifacts that are more prominent than those introduced by the pose-synthesis

approach at these angles.

4.5 Sensitivity Analysis

Our pose-correction technique makes three important assumptions. First we assume the face has

been accurately localized in the image. More importantly, we also assume that we can obtain

accurate landmarks and pose estimates to generate the non-frontal 3D model. In this section, we

analyze the relative impact of the accuracy of those estimates on verification performance induced
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(a) −45◦ (b) −30◦ (c) −15◦ (d) 0◦ (e) 15◦ (f) 30◦ (g) 45◦

Figure 4.10: Pose correction vs. pose synthesis. The top row represents the shape-free face syn-
thetically generated using 3DGEM from a frontal image. The bottom row represents the shape-free
image obtained using a non-frontal 3DGEM model. The columns (a) through (g) show different
yaw angles. The differences between the top and the bottom row becomes more pronounced as the
yaw angle increases.

by the sparse feature vector fit in shape-free representation. (See section 4.2 for sensitivity analysis

on shape-only based verification). So far all the results have been obtained on manually annotated

face images. All 79 control points have been manually placed on the face for all test angles. The

angles were estimated to be at fixed value following the technical description of the MPIE database

acquisition protocol. We now switch to a fully automated process that requires no human operator

intervention.

4.5.1 Automatic Mode of Operation for Pose Correction

Automatic landmarking of faces is a well studied subject. Early efforts go back to the Active Shape

Models (ASM) [64] and Active Appearance Models (AAM) [58]. When the aim is to accurately

place landmarks on the face, ASMs have been shown to be more accurate and easier to train and fit

on unseen faces [65]. That is because they rely on local texture modeling which is less susceptible

to illumination variations than the global texture models used by AAMs. In this dissertation we

rely on a robust variant of ASMs called Modified Active Shape Model (MASM) [32]. MASM

uses 2D search profiles and relies on an image subspace of profile texture variations to update the
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(e) Shape-free matching at −15◦
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Figure 4.11: Pose correction vs. pose synthesis verification ROCs. Normalized Cosine Distance
on shape-free texture images. All 337 unique MPIE subjects are included in this experiment.
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location of a given landmark during the search. To handle non-frontal images, we train a view-

based MASM, with a different model for every range of viewpoints, each view bin spanning 15◦

in yaw. As for automatic pose estimation, we rely on a commercial software that estimates the

pose as a function of face detection responses. It maintains distinct view-based face detection

models, and given a testing image of an unknown yaw, it measures the response triggered by

each of the detection models. The yaw value is estimated by regressing on the detection model

responses. When using a simple normalized cosine distance matcher on the sparse coefficients

(like we did in section 4.3), we notice that the overall one-to-one verification slightly improves

with using automatic landmarking and automatic pose estimation compared to manual ground-

truth information. Figure D.44 depicts the verification performance of the sparse feature with

the different combinations of landmarking and pose estimations modes. This suggests that the

automatic modes are more consistent that manual ground-truth information. To investigate this

further, we now analyze the impact of landmarking and pose estimation separately.

4.5.2 Landmarking Sensitivity

It is not obvious to measure the impact of landmarking accuracy. Facial landmarking is a com-

plex multiresolution approach that is constrained by the concept of legal face shape. Therefore,

adding random noise to the landmark coordinates is a not representative of real world test sce-

narios, since random motion of landmark points are unlikely to happen. Instead of randomly

perturbing the landmarks of the subjects in the database and then measuring verification accura-

cies, we instead perform a more realistic study: we run the automatic facial landmarking, and then

measure the drift between the manual coordinates and the automatic landmarks (a mean squared

error scheme is standard in the landmarking literature). For every angle, we get a drift distri-

bution, and then classify as “good” fits, the landmarks whose drift is below the mean drift. A

“bad” fit are the images whose landmarking drift is greater than the average drift. (Figure D.5

4See Appendix D for this result
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Figure 4.12: Landmarking Sensitivity Matrices. To the left and top of every matrix we indicate
the number of fits that we deemed to be “good” or “bad”. The color-coded values indicate the
verification rate for this combination measured at 0.1% FAR. For most angles, the biggest drop
of performance (cool color temperature) is observed when the frontal images are well landmarked
but the non-frontal images are not. Conversely, the best performance was when both frontal and
non-frontal landmark fitting was good (warm color temperature)

in Appendix D depicts a few examples of bad landmarking fitting). We then observe the pose-

correction performance trends between the Cartesian product of {{Frontal Good} , {Frontal Bad}}

and {{Nonfrontal Good} , {Nonfrontal Bad}}. The verification rates of these four combinations

for every angle are color-coded in Figure 4.12. The cooler the color for a specific combination,

the lower the verification rate (measured at 0.1% FAR) for this combination. On the other hand,

the warmer the color, the higher the average verification rate. This test represents a more realistic

measure of the impact of bad landmarking on the verification rates than randomly perturbing the

landmarks of every subject in the dataset.

In all test cases except two, the highest verification rates occur when both the landmarking

and pose estimation are accurate. Surprisingly, in all test cases except one, the worst performance
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is recorded for the Frontal Good, Nonfrontal Bad combination, rather than the Frontal Bad, Non-

frontal Bad combination. And typically, if the frontal landmark fitting is “bad”, it is not responsible

for a worst-case scenario. What this implies is that when both fits are bad, some of the errors cancel

each other out. This consistency explains why overall the ROCs displayed in Figure D.4 improved

in the automatic landmarking case. Even though the fitting is sometimes off, the variance of the

landmarks is reduced and this improved consistency translates into improved verification rates.

4.5.3 Pose Estimation Sensitivity

As previously mentioned, our pose-correction method requires an estimate of the face pose to

compensate for it by rotating the face model in the opposite direction to give it a frontal viewpoint.

This makes the results dependent on the accuracy of the pose estimator. In this section, we analyse

the impact of the pose estimates on the verification performance. The standard deviation of the yaw

estimates grow as the pose becomes increasingly non-frontal. Figure 4.13 shows that the standard

deviations of yaw estimates for the −45 and 45 degrees is almost double that of the frontal faces.

We can compute similar sensitivity matrices to those in the previous section. We can define a

good pose estimate for a given viewpoint an estimate that doesn’t deviate more than one standard

deviation from the mean for that viewpoint. Figure 4.14 depicts the color-coded results for all

six angles of the MPIE dataset. However, no specific sensitivity pattern emerges. For ±15◦ the

combination of “good” frontal pose-estimate and “bad” non-frontal estimates seems to result in the

worst verification results, but ±45◦ that same combination is responsible for the top performance.

This seems to suggest that the pose estimator is also significantly biased. What we deem to be bad

estimates (because they deviate from the mean by more than one standard deviation) may actually

be good estimates, if the mean is offset by some bias. This highlights the fact that estimating a

pose is challenging because the true head pose is hard to evaluate.
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Figure 4.13: Automatic yaw estimation histograms. Note that the standard deviation at the extreme
angles is almost double the standard deviation at the frontal viewpoint.

4.6 Robust Matching Algorithms

So far all face verification results have been based on simple normalized-cosine distance match-

ers or SimBoost which is a non-linear way of matching weighted coefficients. We now capi-

talize on the pose-tolerance of L1-PCA coefficients to train a more robust classifier based on

advanced Correlation Filters (CF) called Class-Dependent Feature Analysis (CFA). Appendix C

briefly overviews CFs and explains the CFA algorithm. Advanced correlation filters have a num-

ber of inherent advantages that make them ideal for use in 2D data, especially faces. The CFA

algorithm harnesses the power of correlation filters in a multiclass problem. In a nutshell, given

a training set of N classes, we build a correlation filter for each class. Each correlation filter can

be designed to trigger maximum response for the elements of this class, and zero response for

elements of the negative classes. Given the N filters, we can now represent an unseen test sample

by a feature vector of size N , each dimension representing how much the test sample correlates
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Figure 4.14: Pose Sensitivity Matrices. To the left and top of every matrix we indicate the number
of pose estimates that we deemed to be “good” or “bad”. The color codes indicate the verification
rates for a specific combination at 0.1% FAR.
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Yaw Test Angles

Matching Mode Feature Mode −45◦ −30◦ −15◦ 15◦ 30◦ 45◦

Verification Rate L1-PCA CFA 72.29 92.77 99.19 99.6 97.19 77.92
at 0.1% FAR L1-PCA SimBoost 62.65 91.57 97.19 97.99 89.56 57.03

Rank-1 Identification L1-PCA CFA 85.95 97.19 100 100 98.78 89.16
L1-PCA SimBoost 51.00 85.94 97.18 97.18 87.95 53.41

Table 4.1: Matching performance on MPIE session 1 with L1-PCA CFA used for feature extrac-
tion. The verification rate is measured at 0.1% FAR. For CFA, the matching metric is normalized
cosine distance. The experiment represent a genuine one-to-one scenario as we do not perform
score normalization of any kind.

with a given class filter. This sequence of one-against-all responses creates a robust representation

for any arbitrary test sample. We apply the CFA algorithm on the sparse feature vector extracted

from shape-free pose-corrected images, and the verification improvement is very significant. Fig-

ure 4.19 depicts the ROC for different angles when using CFA with the L1-PCA features. The

training set for CFA consists of 88 subjects from MPIE sessions 2 and 3. The testing set consists

of 249 different subjects from MPIE session 1. There is no overlap between testing and training

subjects. Table 4.1 summarizes the performance of our CFA algorithm.

4.6.1 CFA Experimental Analysis

The performance of CFA depends on the number of training classes available. With too few train-

ing classes, the algorithm will find it hard to discriminate between unseen testing faces, and with

too many classes, the algorithm will saturate and essentially starts learning noise because it will

be challenging to enforce the correlation constraints for a very large number of training faces and

training classes. In this experiment, we analyze the impact of the number of available training

classes on the pose-corrected verification rates. As a reminder, the training faces used with CFA

are all frontal (pose-corrected frontal and originally frontal faces), and therefore our implementa-

tion of CFA is not a view-based approach. We could probably significantly improve our results by
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(f) L1-PCA CFA at 15◦

Figure 4.15: Impact of available number of training classes on Verification Rate. The y axis
represents the verification rate measured at 0.1 % False Accept Rate. The x axis represents the
number of available training classes.

adopting a view-based CFA approach, but for reasons that will become evident in section 4.8, we

will stick to training the CFA on pose-corrected face images from multiple angles. Figure 4.15 de-

picts the progression of verification rates as a function of the number of available training classes.

The verification rates are measured at 0.1% FAR.

The test set consists of MPIE session 1. The training set consists of the 88 subjects in sessions

2 and 3 that are not present in session 1. Figure 4.15 shows that for the near-frontal angles, as

few as 30 classes are enough for CFA to get very close to its maximum verification rate and then

saturates. In the other cases, as the yaw angles increase, the dependence on the number of training

classes becomes more linear, since the task becomes more challenging, and suggests that with

more training data the verification rates could have kept improving.

75



4.7 Evaluation Against Commercial Face Recognition Engines

Most commercial face matchers do not explicitly correct for pose beyond the classical 2D warping-

based methods. In this section, we benchmark our best result against commercial matchers. Note

that this comparison cannot be fair for a number of reasons. First, commercial face recognition

software developers have access to unlimited amount of training data, including all the database

that are available to us and that we experiment with (MPIE, FERET, etc.). Therefore, it is to be

expected that the matching accuracies they obtained on the MPIE frontal and near-frontal faces are

very high. (The fact that they score perfect scores on MPIE but perform poorly on a small set of

random images captured in the lab with similar viewpoints made us suspect that they are training

on our testing dataset). Second, to avoid this problem, we had to push the matcher beyond their

advertised pose operating range, and that’s when we saw their performance drop sharply.

Commercial Matcher 1 is a popular commercial matcher that is only a few years old, and it

explicitly mentions that it can handle pose up to ±40◦ in yaw. The gallery dataset consists of

MPIE’s frontal images from session 1 (249 subjects) and the query dataset consists of MPIE’s

±45◦ images. For 23 of these query images, it rejected the comparison saying that these input

faces were“invalid”. Therefore, to be as fair as possible, we discarded the same 23 images from the

query set for all algorithms involved in this experiment. Commercial Matcher 2 is another popular

commercial matcher, and while it does not explicitly advertise that it handles poses, it did not reject

any images due to the severely non-frontal viewpoint. Moreover, to guarantee a fair comparison,

we bypass the commercial matchers’ face detection and manually provide the location of the face

and eye coordinates, so that the results are not biased by errors due to face detection. We also

disabled all score normalization schemes which typically affect results significantly. Matcher 1

did not permit us to override the normalization engine, so we ran the software on pairwise matches

and populated the similarity matrix one entry at a time.

Figure 4.16 compares the performance of the commercial matchers with our best matcher L1-
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Figure 4.16: One-to-one verification performance comparison against commercial face matchers.

PCA CFA at the most extreme viewpoint. Commercial matchers 1 and 2 obtained a perfect score

on the non-frontal MPIE images, but their performance severely dropped at the extreme viewpoint

while our method exhibited a more graceful performance drop off.

4.8 Matching Non-frontal Images to Other Non-frontal Images

So far we have assumed a standard mugshot scenario where the gallery images are frontal and test

images are assumed to be of an arbitrary viewpoint. However, the methodology we presented in the

previous chapter can be easily extended to handle the case where both gallery and query images

are non-frontal. This could be a more realistic assumption in surveillance footage or in crime

scene investigations where several non-frontal snapshots of a presumed suspect are available, and

we would like to find a match between them. Figure 4.17 depicts the flowchart of our technique

modified to handle non-frontal gallery images. The remarkable aspect of our method is that the

flowchart in Figure 4.17 requires little or no extra effort compared to the one depicted in Figure

4.1. That is because our algorithms for pose-correction have all been trained on a frontal and
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Figure 4.17: Experimental setup for face recognition with pose correction when the gallery image
is non-frontal and the test image is of an arbitrary viewpoint.

pose-corrected images. For instance, our CFA and SimBoost algorithms have been trained on

the pose-corrected unseen subjects of MPIE sessions 2 and 3 (88 subjects total unseen in session

1). These images represent all available angles (including frontal) all pooled together in a unified

generic training set. In testing, our algorithm is completely blind as to which angle constitutes

the gallery image, and which angles represent the query images. Figure 4.18 depicts the ROC for

matching gallery images at −45◦ against query images of random yaw angles.

It is remarkable to note that when the gallery images are at −45◦, the performance does not

significantly drop when the test angles vary. In fact, when the query images are at 45◦ which is the

opposite angle of the gallery images, the verification performance at 0.1% FAR remains around

80%. In fact, with our method, we can mix and match angles in both gallery and query sets. In this

next experiment, we let the gallery faces be of a given angle, and have the query set be a mix of all

the remaining angles. Table 4.2 summarizes the resulting verification rates measured at 0.1% FAR

when using our L1-PCA CFA algorithm for feature extraction with cosine distance as the matcher.
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Figure 4.18: Verification performance on MPIE session1 with the non-frontal gallery images at
−45◦.
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Angle of Gallery Images

Feature Mode Matching Mode −45◦ −30◦ −15◦ 0◦ 15◦ 30◦ 45◦

L1-PCA CFA Verification 77.04 89.49 88.62 86.01 90.29 91.76 78.64

L1-PCA CFA Rank-1 Identification 88.82 96.45 96.25 95.18 96.45 96.39 90.43

Table 4.2: Matching performance with a mixed-angle testing set. The verification rate is measured
at 0.1% FAR using normalized cosine distance on L1-PCA CFA features. We indicate the angle of
the gallery images. The corresponding test angles are all the remaining angles. For example, if the
Gallery angle is 0◦, the test angles are [−45◦,−30◦,−15◦, 15◦, 30◦, 45◦] combined together.

4.9 Summary of Findings and Results

In this chapter we capitalized on the sparse feature extraction and reconstruction to achieve high

one-to-one verification rates. Figure 4.19 summarizes the verification performance improvement

using the different methods presented in this chapter.

Here are the main contributions of this chapter:

• Benchmarked the one-to-one verification results of all the different image representations

presented in Chapter 3 and showed that the L1-PCA representation is the best.

• Empirically showed that pose-corrected shape information carries too much variance. There-

fore, all pose-correction results took place in the shape-free representation.

• Showed that verification performance in coefficient domain can outperform that of recon-

structed pixel domain. This proves that there is a lot of discriminative information available

in the sparse feature extracted from the pose-corrected images.

• Developed a feature selection technique called SimBoost based on a non-linear weighted

combination of similarities between feature vector components. This technique improved

pose-correction verification rates significantly.

• Presented a CFA-based technique to perform robust face recognition.

• Benchmarked our technique against commercial face matchers and comprehensively outper-
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(d) +30◦ PoseCorrection Comparison
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Figure 4.19: Verification performance on MPIE session1. The training set consists of 88 unseen
subjects from MPIE sessions 2 and 3. All test subjects are unseen in the training. For each angle
we depict the performance progression for the different methods presented in this chapter.
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formed them.

• Since our matchers are not view-based, and have been trained on pose-corrected images, the

gallery images are not restricted to being frontal. We showed that when matching gallery

images at−45◦, the verification rates do not significantly drop with test angles as extreme as

+45◦.
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Chapter 5

Application in Single Face Image

Super-resolution

Super-resolution refers to the enhancement of the visual qualities of a low resolution image. Low

resolution images are the result of how far the object of interest is from the camera, the specifica-

tions of the imaging sensor (and its tolerance to noise and low-light capabilities), and the quality of

the optical lenses attached to the sensor. The widespread availability of affordable digital imaging

devices, such as cell phone cameras, surveillance cameras, etc., comes as a result of the recent

mass production and the shrinking in size of these devices. However, this does not always trans-

late into increased image quality, and in general the visual quality of footage obtained by these

devices remains poor. The problem is exacerbated by the ever-shrinking size of the CCD sensor

which increases the amount of noise in the image, and the use of wide-angle lenses to increase the

view angle but in return introduces barrel distortion. Moreover, the popular need for wireless com-

munications with the devices has forced the manufacturers to implement aggressive compression

algorithms to increase throughput, but in return, further introduce image artifacts and blurring to

the footage. Finally, in surveillance applications, most cameras are placed high up on a wall or on

a ceiling to offer them a vantage viewpoint. However, this makes the object of interest too distant
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from the camera and decreases the number of pixels apportioned to the face.

The holy grail of face recognition is to build a system that can handle true real world data. This

data emerges from surveillance footage, or mobile devices, where it is not only the viewpoint that

poses a challenge, but also the low resolution image. Even though face recognition algorithms do

not require megapixel images, having high-resolution texture information certainly helps. Most

algorithms can produce respectable results with image resolutions as low as 50 × 50 pixels [66].

The problem is that most faces in the wild do not even meet these minimum size requirements. For

instance, most surveillance cameras currently deployed consist of a wide-angle lens (to capture as

much of the scene as possible) coupled to a 640×480 pixel sensor. A subject standing a few meters

away will not reproduce a face with a significant number of pixels between the eyes, rendering it

impossible even for a human operator to identify. In one of the earlier studies on this same topic,

Bachmann [67] observes that there is an abrupt fall in identification efficiency by human operators

when the faces become smaller than 24× 18 pixels.

Super-resolution, or reversing this last problem, is a severely ill-posed problem, where the so-

lution does not always exist, and when it exists, it is not unique and is very sensitive to perturbation

in the input. Despite years of active research, it still remains an open challenge, particularly when

trying to break the 4x magnification barrier in resolution. In this chapter, we apply the same tech-

nique we developed in Chapter 3 to attempt to solve the low resolution problem. We rely on sparse

feature extraction and a multiresolution face model to develop a single-image super-resolution (or

face hallucination) technique. If we can achieve great results using single image resolution, we can

enhance this solution using a sequence of images.

This chapter is structured as follows: we first briefly overview some of the classical approaches

to face super-resolution. We then adapt the method we developed earlier for pose-correction to

handle the resolution problem. This involves learning a different face model based on a mul-

tiresolution pyramid of faces. We then evaluate our method on synthetic low-resolution images

(obtained from downsampling the high resolution images). We also show that our method is inher-
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ently robust to noise by reformulating it as a Bayesian approach. Finally, we analyze the case of

non-frontal faces and show that theoretically our method represents a unified framework to solve

the pose-correction and super-resolution problems simultaneously.

5.1 Background

Most single-image super-resolution techniques are limited because they are constrained by the

number of available pixels. Early methods mostly relied on interpolation techniques, such as

nearest-neighbor, bilinear or cubic B-spline interpolation [68] or convolution kernels [69]. Interpolation-

based methods assume global continuity and maintains smoothness constraints that often produce

results with blurred edges and textures which are essentially unusable in a face recognition frame-

work. Edge-preserving interpolation techniques have been proposed, such as adaptive splines [70],

and POCS (Projection Onto Convex Sets) interpolation [71]. Interpolation techniques aware of

edge information were also proposed. Nonlinear interpolation with edge fitting [72] incorporated

local edge fitting to avoid interpolation across edges. Similarly, edge-directed interpolation [73]

makes use of edge orientation information to perform directional interpolation, and the interpo-

lation occurs along an edge rather than across one. While interpolation gives satisfactory results

when the input image size is reasonable, its performance abruptly drops when the input resolution

is low. More powerful techniques are therefore needed to generate higher resolution images.

Another class of methods make the assumption that multiple low-resolution images available.

Typical approaches of this kind relied on a registration method (such as cross-correlation) to cor-

rectly align the low resolution images, followed by the inversion of the resolution-reduction func-

tion (assumed to be a low-pass filter followed by a decimation operation), and use regularization

to resolve the severely ill-posed nature of the problem [74]. A common way of regularizing the in-

verse problem was to cast the problem in a Bayesian framework (find the high-resolution estimate

that maximizes the likelihood of observing the low-resolution image conditioned on the true high
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resolution image). This is typically done by a assuming a prior on the image model and a noise-

model [75, 76, 77]. Different Bayesian approaches use different priors (such as a Gaussian [78]

distribution or a Gibbs [79] distribution). These priors express assumptions about the local rela-

tionship between the pixels values in the high-resolution image, and as a result act as a smoothing

agent in the MAP optimization to encourage each pixel to take on the average of its neighbours in

the reconstructed image. Another method [80] also used a Bayesian approach to estimate the un-

known point spread function, by marginalizing the likelihood of the image registration parameters

over the unknown high-resolution image using Gaussian process priors.

A large part of the earlier super-resolution algorithms are based on homogeneous (station-

ary) Markov Random Fields (MRFs) assumptions, since the Markovianity assumption lends itself

very elegantly to super-resolution applications. This implies that a pixel value depends solely on

the neighborhood of that pixel. The homogeneous part of their assumption implies that different

neighborhoods have equal size. De Bonet et al. [81] proposed a non-parametric sampling method

to infer high-frequency features from available low-frequency features in the context of multireso-

lution texture synthesis.

Super-resolution of face images is slightly different than super-resolution of general images,

because we can make more assumptions about the structure of the human face, and have face-

specific image priors. In their seminal work on super-resolution, Baker and Kanade [82] abandoned

the MRF framework for a more general Bayesian MAP formulation which is more suitable for syn-

thesizing global textures as with face images. The authors used a large number of training images

to compute a multiresolution pyramid of features (such as Laplacian and Gradients features). Each

level of the pyramid corresponds to a different resolution that is obtained by reducing the original

native full resolution. In testing, given an input low-resolution image, they populate the top of

the pyramid of features (that they call “the Parent Structure”), and for every pixel location, they

exhaustively search (using the nearest-neighbor approach or Gradient descent) the training set for

a pixel value that generates a similar feature vector. Moreover, they use a Bayesian framework to
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incorporate more than one input low-resolution images. Assuming the input images have been ac-

curately aligned together (using control points on the face or a registration method such as optical

flow), the nearest-neighbor search is replaced by a maximum a posteriori computation that reflects

the likelihood of observing several low-resolution pixel values and a prior on the high-resolution

values.

Liu et al. [83] combined a global parametric model and local non-parametric approach in a

two-step statistical approach. They assumed a high and low frequency mixture model, and for

super-resolution, the reconstructed low-frequency information is inferred by a global linear model

that learns the relationship between high and low resolution images, while the reconstructed high-

frequency information is captured by learning the residual between the original high-resolution

and the super-resolution image using a patch-based nonparametric Markov network.

In [84], a simple PCA-based global approach was attempted. Given high-resolution training

images, they downsample them and build a PCA subspace of reduced-resolution images, where

they project the input low-resolution image to obtain the PCA coefficients. The authors use those

low-resolution induced coefficients to reconstruct the high-resolution equivalent face using the

full-resolution eigenfaces. To make sure that the final reconstruction is “face-like”, they introduce

artificial constraints on the coefficient values. These constraints are a function of the eigenvalues

learned from training for every principal component.

A more recent work [1] exploited the properties of sparse image representation for single-

image super resolution. Their patch-based local approach simultaneously learns two distinct over-

complete dictionaries. One for high-resolution patches, and one for low-resolution ones. Given

an input low-resolution patch, its sparse representation in the low-resolution dictionary is used to

recover a high-resolution patch from the high-resolution dictionary. Local consistency is achieved

by requiring the patches to overlap, and requiring the high-resolution patches to agree on the over-

lapped area. In the specific case of face hallucination, a two-step approach was adopted, similar

to previous methods. The first step is a global approach to reconstruct what they call a “medium
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high-resolution” smooth face using NMF [38], which is then enhanced with high-frequency infor-

mation using the local patch-based approach that makes use of the sparse feature extraction using

the coupled dictionaries learned at the training stage.

Another recent work [85] exploited sparsity. The basic idea in this work is to use kernel ridge

regression to learn the mapping between low and high resolution images. To avoid blurring arti-

facts, a post-processing step that relies on a prior model is employed.

5.2 Sparse Feature Extraction for Hallucinating Faces

Global face super-resolution approaches are criticized for not being able to render sharp edges and

high-frequency information, or that PCA-based methods often degenerate towards the mean face.

However, we have empirically shown in Chapter 3 that `1-minimization did not exhibit any of these

problems, and the sparse PCA feature extraction preserved sharp edges in the reconstruction.

In this section we borrow several concepts from Chapter 3 to achieve face super-resolution.

Since the problem at hand is a texture reconstruction problem, we first rely on the shape-free

representation that decouples the shape information from the text information.

One of L1-PCA’s main strengths are its ability to produce a “good” solution in the PCA space

in the presence of severe occlusions (missing data dimensions) leading to a highly underdeter-

mined system. The `1-minimisation solution produced a sparse feature vector that we showed to

be largely tolerant to pose when properly utilized. To export the same benefits to the hallucinating

face problem and we utilize a high-dimensional multiresolution PCA subspace (represented by a

matrix V of vectorized eigenfaces and a mean vector m) trained on a Gaussian pyramid [86] of

training images (the same images used for training the pose-correction subspace). This subspace

will represent the correlation between the equivalent pixels in high and low resolution. Similar

to [82], this pyramid will enable us to avoid explicitly modeling the resolution-reduction function

or parameters of a point-spread-function.
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Figure 5.1: Depiction of a Gaussian Pyramid of k levels for N face images in the shape-free
representation taken from the MPIE dataset.

Given a training image Ii, the Gaussian pyramid G0(Ii), . . . , Gk(Ii) for such an image is de-

picted in Figure 5.1. Following [86], the bottom level of the pyramid is the image itself, and every

subsequent level is obtained by Gi+1(I) = REDUCE (Gi(I)) where the REDUCE operator is

defined by the following equation:

REDUCE(I) [i, j] =
5∑

m=1

5∑
n=1

w [m,n] I [2i+m, 2j + n] (5.1)

w in this case is a 5 × 5 low-pass Gaussian filter kernel. We build the training subspace by con-

catenating the vectorized images of all k levels into a single column. For testing, we assume we

only have access to the kth level of the pyramid of an unseen face image. The active dimensions

in this current “missing-data” problem are the dimensions corresponding to the pixels of the input

low-resolution image. The missing dimensions are the dimensions corresponding to the pixels of

the images in the lower levels of the pyramid. In the case where a middle resolution image is

available and as is common in most super-resolution algorithms that rely on Gaussian pyramids,
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the smaller levels of the pyramid can be populated, and the active dimensions become the top of

the pyramid, while the missing dimensions are at the bottom of the pyramid.

For notational simplicity, let x′ be the vector of active pixels of x provided by the lth level of

the Gaussian pyramid and let x′ be of size d′ and d′ < d pixels. Similarly, let m′ be the mean

of the active mean pixels. For notational simplicity, we can also introduce x′c = x′ −m′, which

represents the centered version of x′ and is of size d′. V′ is the matrix of active rows that are in V.

We need to solve for the coefficient vector c. As in L1-PCA, we can solve for the following cost

function:

min ‖c‖1 subject to ‖V′c− x′c‖2 ≤ ε (5.2)

Given the solution coefficient vector cL1-PCA, we can simply reconstruct the entire pyramid

column xL1-PCA = VcL1-PCA + m, and extract whichever level of the pyramid we want. Figure 5.3

depicts the reconstruction results for different levels magnification levels (2k).

Our low-resolution parent-structure feature extraction step is similar to the one described in [82],

but unlike in [82], our method is global and relies on the `1-minimization to avoid degenerating

towards a mean face. Unlike [84] where the coefficient vector c is extracted by projecting on

low-resolution eigenfaces and reconstructing using high-resolution eigenfaces (and which does

not provide any theory as to what ties the two subspaces together), our subspace learns the coupled

high-and-low frequency from the training Gaussian pyramids (or equivalent features) simultane-

ously and hence our eigenfaces are multiresolution so no artificial constraints need to be introduced

to guarantee a smooth face-like reconstruction.

More importantly, the simplicity of our method keeps it modular and allows for further im-

provements. For instance, it could replace the global reconstruction part of any two-step approach

(such as [1, 83]) which first compute a rough global reconstruction and further enhance it with a

slower and more specialized local patch-based algorithm. Similarly, the Gaussian pyramid-based
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subspace could be augmented with any other features such as a Laplacian pyramid or gradient-

based features.

5.3 Evaluation on Experimental Data

We evaluate L1-PCA for global face hallucination by downsizing the original MPIE session 1

images in the shape-free domain. The original shape free images provide an interocular distance

of 100 pixels, and when we reconstruct a lower resolution image, we recover that original size. We

evaluate the quality of our reconstruction for different magnification factors (different k-levels of

the Gaussian pyramid).

We benchmark results against the best interpolation techniques, such as bicubic polynomial

interpolation [69] and Lanczos resampling which uses a Lanczos kernel (a windowed sinc func-

tion) to smoothly interpolate the value between samples. This latter method is usually employed

by most commercial photo displaying software. We also benchmark against cubic B-spline inter-

polation [70] which marginally outperforms traditional bicubic polynomial interpolation. Table 1

summarizes the average PSNR obtained for 249 reconstructions using the different methods. The

PSNR between two images I and J , given by Equation 5.3, is a common objective image recon-

struction quality metric typically used in denoising and image/video compression applications. As

the MSE approaches zero, the PSNR goes to infinity. In lossy image/video compression, the typi-

cal PSNR values range from 30 to 50 dB, and anything below 20 dB is deemed unacceptable [87].

As is also common, since the PSNR is a logarithmic scale, the average PSNR reported was com-

puted by first measuring the average MSE and then converting the average MSE to PSNR rather

than averaging PSNR values directly.

PSNR(I, J) = 20 · log10

(
255√

MSE(I, J)

)
(5.3)
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Average PSNR (in dB)
Interocular
distance

Magnif.
factor Interpolation

Bicubic Cub B-spline Lanczos3 Yang et al. Kim et al. L1-PCA

25 pixels 4x 24.21 24.23 24.32 24.53 24.37 32.80
12.5 pixels 8x 20.59 21.04 20.66 20.77 20.57 28.97
6.25 pixels 16x 8.47 19.14 8.46 17.84 17.66 26.33

Table 5.1: Summary of the average PSNR (in dB) for different super-resolution techniques.

The results tabulated in Table 5.1 represent the average PSNR in dB produced by different

magnification rates (starting from different interocular distances) and for different techniques.

Whereas the MSE and PSNR metrics quantify the faithfulness of the reconstruction to the

original face, our next experiment measures how much of the discriminating information of the

original face the reconstruction retains. For that we set up a simple face matching experiment,

and measure the verification rate at different magnification levels, summarized by the ROCs in

Figure 5.2. The gallery set consists of the original high-resolution MPIE session 1 shape-free

faces, while the query set contains 341 subjects with 104 of them seen in the gallery set (same

subjects, but different images as they originate from MPIE session 2) while the rest of them are

unseen in the gallery set (a mix of MPIE session 2, session 3, and FERET faces). The input

query face images have been downsized to provide 25, 12.5 and 6.25 pixels between the eyes

and then reconstructed to the original 100 pixels between the eyes, to provide the magnification

ratios of 4, 8 and 16 respectively. Normalized cosine distance is the metric used for the simple

matcher. Figure 5.2 shows that L1-PCA hallucinated faces with 4x magnification offer the same

discrimination between faces as the original high resolution images. Naturally the ROCs drop

for high magnification ratios, but the relative drop for L1-PCA is significantly less than for naive

interpolation.

We also benchmark our L1-PCA method for super-resolution against the method in [1] (an im-
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(a) 4x magnification
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(b) 8x magnification
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(c) 16x magnification

Figure 5.2: Effect of super resolution on cross-session matching. The gallery images are 249
full-resolution face images from MPIE session 1. The query images are 341 reconstructed super-
resolution images from MPIE sessions 2, 3 and FERET. 104 of test subjects are seen in the gallery
set. Our face hallucination method handles the drop in resolution much more gracefully than
bicubic interpolation. With an input resolution of 25 pixels between the eyes, our super-resolution
technique fares as well as the original high-resolution in this face verification experiment.

plementation of the approach is available [88]) since theoretically this approach is closest to ours.

The differences are that our approach is global, and our dictionary is given by Gaussian-pyramid

face model, while theirs is twofold, one global based on NMF to generate a smooth intermedi-

ate face, and then an expensive local patch-based approach to infer high-frequency information.

The intermediate global face provides patches whose sparse representation (from a low-resolution

dictionary) is used to generate a high-resolution patch (using the high-resolution dictionary, and

both dictionaries were learned jointly)1. Since their method is local patch-based, their storage

requirement is much lower than our method, since they only need to keep the two compact dic-

tionaries. On the other hand, their method is much slower because of the number of overlapping

patches it needs to process, while our method extracts the sparse representation once from the en-

tire low-resolution face. Even though their method marginally beats interpolation methods at 4x

1We retrained the method of [1] using the software made publicly available by the first author using different crops
and different number of faces, and different dictionary sizes. The results we show use the following parameters: λ =
0.1, 100000 patches, dictionary size = 1024, upscaling factor 2, patch size = 5, overlap = 4, 1000 shape-free tightly-
cropped and registered training faces. The results reported were obtained without the use of their backprojection global
method which seemed to hurt the MSE of the reconstructed high-resolution face image.
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magnification, it breaks down for lower input resolutions and returns a very blurry reconstruction2.

We also benchmark against the method of [85]. An open-source implementation by the author

is available here [89]. However, we could not retrain their algorithm on face images only so we

used it as is. It is important to note that their magnification factor was limited to 4x, so for higher

magnification rates we ran the algorithm twice on the same image.

5.4 Sensitivity to Noise

So far we have assumed that input signal is clean. The motivation for super resolution was low

resolution faces that come from poor quality surveillance cameras or video footage. In these cases,

the signal will most likely be contaminated with noise. One could first denoise the image and then

apply super-resolution. However, we can demonstrate that our approach can intrinsically handle

noise without an explicit denoising step. Let’s assume that our signal x = Vc + n is corrupted

with additive white Gaussian noise n (white noise with a constant spectral density and a Gaussian

distribution of amplitude). Let the noise be normally distributed with zero mean and variance σ2.

Equation 5.2 can be reformulated using Lagrange multipliers

arg min
c
‖V′c− x′c‖

2
2 + λ ‖c‖1 (5.4)

This in return corresponds to the traditional Bayesian formulation that seeks to maximise the pos-

terior probability:

P (c|x) =
P (x|c)P (c)

P (x)
(5.5)

which corresponds to solving the following MAP problem:

ĉ = arg max
c

P (c)P (x|c) (5.6)

2We tried different product of upscale ratios, for example to achieve 8x, upscale with a factor of 2 three times, or
with a factor of 4 followed by a factor of 2.
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where the prior P (c) is assumed to be Laplacian with location parameter 0 and scale parameter b

given by:

P (c) =
1

2b
exp

(
−‖c‖1

b

)
(5.7)

Since n ∼ N (0, σ2) the likelihood P (x|c) is also normally distributed with mean Vc and variance

σ2:

P (x|c) =
1

2σ2
exp

(
− 1

2σ2
‖Vc− x‖22

)
(5.8)

Combining Equations 5.8 and 5.7 back in Equation 5.5 translates into maximizing the sum of the

exponents, or minimizing the negative of the sum of the exponents:

arg min
c

1

2σ2
‖Vc− x‖22 +

‖c‖1
b

(5.9)

Equations 5.9 and 5.4 are identical for λ = σ2/b. This shows that our technique is inherently

a Bayesian approach that is designed to handle noise by modeling the prior of the coefficient

vector c, assuming white Gaussian noise, and looking for the solution vector that is optimal is the

MAP-sense. λ controls the sparsity of the solution, so the sparser the model, the bigger σ2 can be

(assuming b to be constant) which means the more noise in the data our model assumes. Figure

5.6 depicts noisy image super resolution reconstruction. The images have been corrupted by the

AWGN channel with variance increasing by a factor of 10 in each case (σ2 = 0.0001, 0.001 and

0.001 respectively). The parameter ν that controls the sparsity of the L1-solver had to be increased

accordingly. We selected the optimal ν by finding the optimal value with respect to reconstruction

error on a validation set. As predicted by our above calculation, those optimal values were greater

by a factor of 10 each time, confirming our model.

This last analysis highlights the similarities between our method and standard Bayesian super-

resolution approaches [75, 77, 78, 79, 82]. The most significant contrasts is that their methods

operate in pixel space (or a related space, such as Laplacian or Gradient features), while we merely

95



operate in the PCA-space of a shape-free Gaussian pyramid representation. Moreover, our smooth-

ness prior is an `1-based measure which prevents the reconstruction from degenerating towards the

mean, which is often the case in traditional Bayesian super-resolution techniques.

5.5 Pose-Correction with Low Resolution Images

The remarkable reconstruction results our method achieved with magnification rates of 16x so far

assumed a frontal low-resolution input face. However, the technique of section 5.2 is essentially

the same as the one we followed for pose-correction, and this has great implications: we could

potentially achieve pose-correction and super-resolution in the same unified framework provided

by the sparse feature extraction. This section investigates this idea further.

5.5.1 Pose-Correction Sensitivity to Low Resolution

We first measure the impact of resolution on our pose-correction method outlined in Chapter 3.

In that chapter, the 3D model that 3DGEM built for the shape-free representation set the distance

from the camera to the face to a certain value that guarantees an interocular distance of 100 pixels.

All training and testing shape-free images were preprocessed in this fashion to generate images

with 100 pixels between the eyes. In this experiment, we use the same training data (and hence the

same face model), and the gallery images are still assumed to be of full resolution. What changes

now is that the non-frontal images have been downsampled to offer a lower resolution and fewer

pixels between the eyes (measured in the frontal viewpoint). This, in return, reduces the amount

of non-frontal shape and texture information available in the testing images. In this experiment,

3DGEM still performs the de-rotation of the face at the full resolution, and it is 3DGEM’s texture

mapping module that interpolates the texture information up to 100 pixels between the eyes. This

essentially corresponds to extracting features from the upsampled non-frontal faces.

We first measure the impact of low-resolution on the L1-PCA coefficients. Figure 5.7 shows the
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ROCs obtained for the experiment described earlier using a simple Normalized Cosine Distance

(NCD) measure on the coefficients directly, without passing them through the CFA algorithm,

which will compensate for a drop in discriminative power and bias the results positively. The

presence of pose makes the task harder on super-resolution, and it is not surprising that we see a

drop in performance when matching across low-resolution and non-frontal faces. In Figure 5.2, it

can be seen that with 25 pixels between the eyes, the verification rates remains largely unaffected,

but in the presence of pose, we need as many as 50 pixels between the eyes to leave the overall

performance unaffected. Figure 5.7 shows the ROCs obtained for verification using the L1-PCA

coefficients extracted from the low-resolution non-frontal test images. We can see that degradation

is controlled, and with 25 pixels between the eyes, the performance does not deviate too much

from the original resolution. However the loss of discriminative information in smaller resolutions

drops the verification rates significantly as we start to lose features. Note that we can even detect a

minor improvement at the±45◦ angles with 50 interocular pixels, since the downsampling cancels

out some landmarking human errors.

We now apply the CFA algorithm on the L1-PCA coefficients extracted from the low-resolution

face images, to measure how much variation in resolution can the CFA algorithm handle and

correct for. Figure 5.8 shows the ROCs obtained for the low-resolution images. We also report the

rank-1 identification rates as the testing resolution drops. Table D.43 summarizes all the matching

results and Figure 5.9 presents a bar graph of the identification rates of the L1-PCA CFA algorithm.

We see virtually no drop at half the resolution (50 pixels) and an average drop of 15% at the quarter

of the resolution (25 pixels). Figure 5.8 shows the corresponding verification rates.

It must be noted that for the first three resolutions the identification rates remain somewhat

flat across the testing angles, which indicates that our algorithm behaves predictably when dealing

with low-resolutions. It is only at the lowest resolution that the performance finally breaks down.

With only 13 pixels between the eyes for a frontal viewpoint, the pose image at ±45◦ offers very

3see Appendix D for this result

97



little information for our algorithm to work with without an explicit super-resolution step. This

hypothesis is validated by the observation that the verification ROCs for these extreme angles at

that resolution are essentially the same whether we use the CFA algorithm or the simple NCD

matcher. Most of the discriminative information has been lost. Hence the need to extract super-

resolution features from the low-resolution non-frontal image, which we briefly introduce in the

following section and leave as future work.

5.5.2 Sparse Feature Extraction from Non-frontal Low Resolution Faces

Previously, we were just measuring the impact of low-resolution images on the pose-correction

technique as presented and described in Chapter 3, without actively correcting for low-resolution.

The sparse feature was extracted from the input images interpolated up to the face model’s size.

However, for magnification factors greater than 3x, the performance visibly starts to degrade. We

now investigate whether actively correcting for low-resolution by extracting features in the mul-

tiresolution pyramid and performing pose correction using the sparse feature vector can further

improve our results.

Matching With Low-Resolution Non-frontal Faces

When matching across different resolutions, several approaches have been researched over the

years. The most common approach is to enhance the low-resolution image using super-resolution

techniques, and then perform the matching. Alternatively, one could downsample the high-resolution

gallery faces and match at low resolutions. As a compromise, several approaches that combine

super-resolution and face matching in the same framework have been studied. In [90], a method

called S2R2 that simultaneously performs super-resolution and recognition was proposed. The

authors of [90] augment the super-resolution formulation by incorporating terms that reflect the

classifier’s metric. They repeat the optimization for every gallery subject to obtain impressive re-

sults. In [91], a generative model that separates the illumination and downsampling effects was
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proposed. The authors show that the downsampling effects are person-specific and propose a

statistical method to learn the parameters of a subject model. In [92], the authors use Multidi-

mensional Scaling (MDS) to map low and high-resolution faces to a Euclidean space where the

separation between classes is maintained. In [93], they presented a Bayesian framework to perform

super-resolution in tensor space. Given a low resolution face, they directly compute a maximum

likelihood identity parameter vector in the high-resolution tensor space. This can be used for either

reconstruction or recognition.

Our pose-correction framework lends itself very easily to extracting the feature vector from

the low-resolution input faces, just as we did to achieve super-resolution. Unifying our super-

resolution and pose-correction frameworks, and similar to Equation 3.18, we can now extract the

following coefficient feature-vector:

min ‖c‖1 subject to ‖V′MRc− x′MRc‖2 ≤ ε (5.10)

where V′MR represents the matrix of active rows of VMR which is the matrix of vectorized

multiresolution eigenfaces. Similarly, x′MR is the vector of observed low-resolution and pose-

corrected pixels in the multiresolution vector x. In other words, the same methodology we pre-

sented in Chapter 3, can be applied in a low-resolution setting, by swapping the subspace in which

we extract features with a multiresolutional subspace. We leave this last method to be pursued as

future work.

5.6 Summary of Results

In this chapter we achieved the following:

• Showed that our L1-PCA method can be interpreted as a Bayesian approach with a Laplacian

prior on the coefficient vector c.
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• Showed that L1-PCA has an inherent robustness to noise as a result of the previously de-

scribed bullet point.

• Showed that L1-PCA can be used as a single-image face super-resolution technique to re-

construct a global face.

• Showed that this super-resolution application of L1-PCA fits the same framework that we

used for pose-correction and therefore can be used to achieve both.

• Showed that our pose-correction results from Chapter 3 are robust to low resolution input

images down to 25 pixels between the eyes (for the equivalent frontal viewpoint).
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(a) Input (b) Original (c) L1-PCA (d) Bspline (e) Yang et al.

Figure 5.3: 4x magnification results. Starting with 25 pixels between the eyes (a) input image (b)
original (c) L1-PCA (d) cubic B-spline (e) the method of [1].
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(a) Input (b) Original (c) L1-PCA (d) Bspline (e) Yang et al.

Figure 5.4: 8x magnification results. Starting with 12.5 pixels between the eyes (a) input image
(b) original (c) L1-PCA (d) cubic B-spline (e) the method of [1].
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(a) Input (b) Original (c) L1-PCA (d) Bspline (e) Yang et al.

Figure 5.5: 16x magnification results. Starting with 6.75 pixels between the eyes (a) input image
(b) original (c) L1-PCA (d) cubic B-spline (e) the method of [1].
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(a) Original (b) No Noise (c) σ2 = 0.0001 (d) σ2 = 0.001 (e) σ2 = 0.01

Figure 5.6: Noise Tolerance. Reconstruction with 8x magnification, starting from an interocular
distance of 12.5 pixels. The low resolution images were corrupted with AWGN of increasing
variance.
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10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate

V
er

ifi
ca

tio
n 

R
at

e

−15° Verification Performance

 

 

inter−occular 100px
inter−occular 50px
inter−occular 25px
inter−occular 13px
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(f) Sensitivity at 15◦

Figure 5.7: Verification rate of pose-corrected images as a function of query image interocular
distance. The matcher used is normalized cosine-distance in coefficient space. The gallery images
are full resolution with 100 pixels between the eyes. Note that this result represents the inherent
tolerance of our method to low-resolution without an explicit super-resolution reconstruction or
feature extraction which is the topic of this chapter.
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(e) Sensitivity at −15◦
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Figure 5.8: Verification rate of pose-corrected images as a function of query image interocular
distance. The matcher used is CFA on L1-PCA coefficients. The gallery images are full resolution
with 100 pixels between the eyes. Note that this result represents the inherent tolerance of our
method to low-resolution without an explicit super-resolution reconstruction or feature extraction
which is the topic of this chapter.
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Figure 5.9: Tolerance of the L1-PCA CFA features to low-resolution when identifying across pose.
The gallery images are the original resolution MPIE session 1 frontal faces. The query images are
the non-frontal MPIE session 1 images downsampled to different sizes. We measure the rank-
1 identification rates for different resolutions denoted by the available pixels between the eyes
(measured for a frontal viewpoint). Note that this represents the inherent tolerance of our method
to low-resolution without explicit super-resolution reconstruction or feature extraction which is the
topic of this chapter.
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Chapter 6

Conclusion

In this thesis, we presented a novel sparse feature extraction technique that we showed was tolerant

to pose variations and low-resolution. We built a face model with a large number of training images

that have been preprocessed to adopt the same shape (represented by x and y coordinates of land-

marks) and represented by a PCA basis of eigenvectors and mean face. We then fit a 3D model on

the non-frontal face and rotated the 3D model to render a frontal-looking shape-free face. We used

`1-minimization to extract a feature vector from the pose-corrected face discounting the occluded

pixels which fall on the parts of the face we do not observe. We showed that our `1-based feature

vector carries a great deal of discriminative information that we could use to perform face recog-

nition. We presented two different algorithms that make use of this discriminative information

to achieve a strong verification one-to-one performance that outperforms commercial matchers.

Furthermore, we showed that we could reconstruct a frontal-looking face that corresponds to the

input non-frontal face in case one requires a reconstructed face to feed into commercial match-

ers. We also showed that our method is tolerant to changes in yaw, pitch, and resolution. Our

verification performance was barely affected when input faces were reduced to offer no more than

25 pixels between the eyes. We also applied the same methodology to enhance the resolution of

low-resolution faces. We showed that we could obtain magnification factors of 16x and starting
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from images with as few as seven pixels between the eyes. Despite the multitude of components

Face Detection 

Training Data Face Landmarking 

3D Modeling Subspace Modeling 

Pose Estimation 

Sparse Feature 
 Extraction 

Matching in Feature 
Space 

Reconstruction Super-resolution 

Matching in Image 
Space 

Matching in Image 
Space 

Figure 6.1: The big picture which highlights the modularity of our approach. At the heart of our
method lies a sparse feature extraction step (due to the missing dimensions problem). The rest
of the modules are interchangeable. It is possible to upgrade to any face detector, pose estimator,
landmarker, 3D modeling technique and subspace modeling training technique.

involved in our feature extraction technique, our framework remains highly modular and flexible.

The flowchart depicted in Figure 6.1 highlights the modularity of our approach. Each component

remains independent to a very large extent from the preceding and succeeding modules and can

be easily interchanged with another equivalent module. This plug-and-play flexibility keeps our

technique easily upgradable. The sparse feature extraction step remains at the heart of our frame-

work, and this step too can be modified. This layered architecture in our framework holds a clear

advantage over most other statistical 2D modeling approaches which build a vertical architecture

comprising of complicated and interconnected steps. All of our components are very active fields

for research (for example face landmarking, pose estimation, 3D modeling, etc.), and upgrades to
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any individual component will undoubtedly translate into improved overall performance.

6.1 Summary of Contributions

This thesis aimed to isolate and solve the lack the pose-tolerance in current face recognition algo-

rithms. We presented a framework to perform a pose-correction feature extraction step. The main

contributions of this thesis are listed below:

• We invented a new 3D modeling technique to generate a 3D model from a single non-frontal

image.

• We described a new shape-free representation for 2D and 3D faces.

• We created a sparse global pose-tolerant feature extraction method based on `1-minimization.

• We showed that with current facial landmarking scheme, the shape information for non-

frontal images carry too much variance and can hinder face recognition.

• We showed that the L1-PCA feature can be used for pose and resolution tolerant feature

extraction.

• We showed how we can use the L1-PCA feature to synthesize pose-corrected and resolution-

enhanced frontal faces.

• We showed drastic improvement of verification results over commercial matchers when

matching across different viewpoints (an average 50% verfication rate improvement at 0.1%

FAR for the ±45◦ yaw angles).

• We applied the framework to achieve single-image face hallucination (with up to 16x mag-

nification ratio).

• We presented a new algorithm based on boosting to non-linearly combine dimensions of a

feature vector.
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6.2 Relation to Previous Work

Most of the serious efforts that seek pose-tolerance in face recognition seem to be divided between

two groups. One that explicitly relies on 3D face modeling to geometrically correct the posture

of the face, and one that explicitly avoids the 3D modeling step and rely on statistical methods

to model the relationship between frontal and non-frontal faces. Methods belonging to the latter

group justify their approach by citing that the 3D step is too slow or computationally expensive.

However, 3DGEM provided a simple and easily implementable framework to rapidly obtain a

fairly accurate 3D model that approximates the true 3D face. Our method capitalizes on rapid 3D

prototyping to avoid complex statistical modeling approaches that make rigorous assumptions that

can be hard to justify or verify. Most 2D modeling statistical approaches resort to local patch-based

approaches in an effort to improve their modest global-based results. This however adds a layer of

complexity that our method avoids by extracting a global feature. We have reasons to believe our

results could improve if we were to adopt a patch-based approach, but the high verification rates

we already achieve with a simple global approach is a testament to the soundness of our approach.

Moreover, certain patch-based approaches (such as [20]) place patches on the ears and hairlines

of the subjects. Our 3D modeling technique so far only models a tight mask around the face, and

we believe that by incorporating extra information available on the head (such as ears and hair

information) our results could further improve.

Our method bears some similarity to the approach of [17] in that we both treat the problem as

a missing-data problem. While they consider the missing-data as entire viewpoints of the face, our

missing data corresponds to a few self-occluded pixels that fall on the far-side of the face. We also

borrow ideas from [24] by dropping the first few PCA coefficients.

The 3DGEM modeling technique we use is a direct competitor to the 3DMM algorithm of

[27]. While the speed advantage of 3DGEM over 3DMM is obvious, the former also holds another

advantage: it is more forensically accurate, as it does not not iteratively reconstruct the texture like
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3DMM does. Instead, 3DGEM just works with whatever observable pixel information is there,

and relies on texture mapping to cast the texture on top of the 3D model. Should the face have a

distinctive textural feature (such as a mole or scar), 3DGEM will reproduce this feature unaffected,

while 3DMM might smooth it out.

Although it is hard to compare our 3D geometric approach to statistical approaches that eschew

3D modeling and learn the relationship between frontal and non-frontal images via pattern recogni-

tion methods, it is useful to contrast the end-result performance. For this purpose, we compare our

method to the recent work of [22] which adopts a unified approach to pose and resolution tolerance

similar to ours. As a reminder, in this approach they rely on Tensorfaces to estimate the pose and

the fiducial points on which to extract SIFT features, reduce the dimensionality of the combined

SIFT features using PCA, and resort to an MDS-based mapping to learn the relationships between

frontal and non-frontal faces (and in this case low and high resolution faces). They mostly rely on

the robustness of the SIFT features to handle the illumination variations. However, they reported

pose-tolerance performance for the ±30◦ range only, and resolution-tolerance results with only 3x

magnification rates and at the −30◦ and −15◦ angles only. For higher magnification rates they

restrict the pose angle further to 15◦. Curiously, their SIFT+MDS peak performance happens at

the extreme illuminations1 which cast significant shadows on the face. This seems to suggest either

a bias in their training or a dependency on the presence of sharp shadows on the face. More im-

portantly, their rank-1 identification rates remain on average 8% lower than the identification rates

we obtain using a simple normalized-cosine matcher on the reconstructed pixels of our L1-PCA

reconstruction. As a reminder, this specific image representation is easily outperformed by the co-

efficient representation, and by our L1-PCA CFA features. Moreover, our results were computed

on all 337 unique subjects of the MPIE dataset (their method uses 100 subjects for training and

the remaining 237 for testing). Furthermore, our method handles a wider range of angles (±45◦).

Even though we have not analyzed the effect of illumination on our methods, we firmly believe

1illuminations number 14, 15 and 18 in the MPIE technical description
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that our framework is more than capable of handling the presence of illumination variations. As

for the resolution-tolerance performance, their 3x decrease-in-resolution results are comparable

to our 4x decrease-in-resolution tolerance. This is without our method explictly correcting for

low-resolution and simply working with whatever resolution is available, while their method is

designed and optimized to handle low-resolution images.

6.3 Future Research Directions

The pose-correction framework we presented represents a baseline approach that has vast room for

improvement in every module. Next we offer some insight on how different modules in Figure 6.1

could be upgraded to improve the overall performance. We can try:

Performing super-resolution on non-frontal images: As explained in section 5.5.2, our pose-

correction framework lends itself very easily to super-resolution, and vice versa. It is therefore

relatively easy to extract features from super-resolution coefficients from non-frontal faces for

matching or reconstruction.

Different subspace modeling techniques to learn features on training data: Our method

relied a simple PCA basis to represent our training data. There are more advanced subspace learn-

ing methods that could potentially improve our feature extraction and reconstruction accuracies.

Our framework is general and lends itself to any subspace modeling method, and we used PCA as

a simple example to demonstrate our approach.

Incorporating soft-biometric information: Our training data included a large mix of different

ethnicities, genders and other extraneous face information such as beards, glasses, etc. . . Arguably,

we could have gender and ethnic specific subspaces, and rely on the soft-biometric information of

the test subject to select the adequate model. This soft-biometric information can be automatically

obtained (see [94]) with reasonable accuracy. As importantly, the 3D modeling step can make very

good use of the soft-biometric prior information, as we could use a gender and ethnic specific 3D
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mean shape model to generate the 3D model.

Different landmarking scheme that is better suited for pose changes: In the current land-

marking scheme we used, contour points falling on the far side of the face get occluded beyond

25◦, and as a result get placed on the best available boundary of the face which usually falls on the

cheekbone far away from the actual contour. This discrepancy made the shape information incon-

sistent in a pose-correction framework, and made us discount the shape information and rely solely

on the shape-free representation. With a more comprehensive landmarking scheme, we have every

reason to believe that our pose-correction face matching results will improve when we incorporate

the pose-corrected shape information.

Reformulating the feature extraction step to incorporate more than one input face (whether

doing pose-correction or super-resolution). This would involve re-engineering the `1-minimizing

solver and modifying it to incorporate more constraints.

Extending the 3D modeling step to build half-face models: Currently our 3D face modeling

requires observing both eye sockets in the test face. By considering only the half face, we could

potentially handle poses beyond the half-profile and all the way to full profile.

Optimizing the matching in a watch-list 1 : N identification scenario: In this case, one

could use clever score normalization techniques [95] to boost matching rates significantly.

Incorporating an illumination-tolerant component in the pose-correction framework: This

could either be a separate module in the sequence of modules depicted in Figure 6.1 that will ex-

plicitly perform a pre-processing step to normalize illumination (such as [96, 97]), or could be part

of the feature extraction module. We believe that our method with its sparse feature extraction

scheme on L1-PCA coefficients that disregard the first few dimensions is well equipped to handle

the adverse effects of illumination variations.

114



Appendix A

Brief Overview of `1-minimization

In the nineteenth century `2-minimization became more mainstream due to the simplicity and ele-

gance of deriving closed-form solutions using linear algebra, while `1-minimization often relied on

expensive iterative numerical approaches. But with the ubiquity of affordable and powerful com-

puting which mitigated the disadvantages of iterative solutions, the advantages `1-minimization

started to become more obvious and `1-minimization underwent a huge resurgence.

The main conceptual differences between `1 and `2 minimization can be observed in the fun-

damental problem of solving for x in Ax = b with A ∈ Rm×n. Let’s first assume an overdeter-

mined problem where m > n, the `2-minimization or least-squares operates on a sum-of-square-

differences concept and will put a small weight on small residuals, and a large weight on large

residuals. This in return makes it sensitive to outliers. Alternatively, we could minimize the `1

distance or sum of the absolute values as the residuals between Ax and b, which comparatively

will put more weight on the small residuals, and less weight on larger residuals, since they are not

squared anymore. In the underdetermined case with m < n, the problem becomes ill-posed due

to the null-space of A, and there are infinitely many solutions. Throughout literature, people have

chosen the minimum-energy solution (such as the one given in Equation 3.16). By analogy, we

could also instead pick the solution that has minimum `1-norm.
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The underdetermined case, where we have considerably more unknowns than equations, comes

up very frequently in endless applications and domains, such as geophysics, biomedical imaging

and biomedical engineering, signal processing, error correction, etc. . . . The sparsity-inducing

properties of `1-minimization have been empirically known since the 1970s [98]. In [99], it was

already demonstrated that if a bandlimited signal is corrupted on an interval of less than a certain

fraction of its bandlimit, then the original signal can be recovered simply by finding the closest

signal in `1. Solving for the minimum `1-norm of a vector with an `1-norm regularization term as a

goodness-of-fit criterion was suggested in [100] and a `2-norm regularization term in [101]. (Those

ideas were later more thoroughly analyzed and reintroduced more recently in the statistics com-

munity as Lasso [48] and in the signal processing community as Basis Pursuit [46, 102]). In [103],

the matrix A represented a combined “dictionary” of different representations or bases, each ide-

ally suited to model a different phenomenon (for example a sinusoidal basis for periodic signals,

wavelet, or curvelet-based representations ideal to represent discontinuous and signals with edges).

Given a signal, the authors proposed a greedy algorithm (called Matching Pursuit) to extract fea-

tures that takes advantage of the strengths of each representation, with numerous applications in

broad areas such as transform coding, deconvolution and deblurring applications, statistical es-

timation, etc. Many variants of matching pursuit have been proposed since then (OMP [104],

ROMP [105], StOMP [106], CoSaMP [107], etc.). Theoretical foundations of exact recovery con-

ditions for greedy algorithms were also studied (see [108]). For a review and analysis of greedy

methods see [109].

Sparsity in the `0-sense (which represents the number of nonzero elements) is generally an NP-

complete problem [110]. The current best algorithms are of exponential complexity and look for a

best fit via an exhaustive search of the subsets of columns of the dictionary matrix. Non-exhaustive

algorithms that directly operate on the `0-regularized cost function (and the S-sparse constrained

optimization) have been proposed (such as in [111]). However, since the optimization problem is

non-convex, the strategies that `0-minimization solvers follow only guarantee to find local solu-
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tions, which make them sensible to good initialization. In [102] it was empirically demonstrated

that if the signal has a sparse expansion in the `0-sense than `1-minimization can be used instead

to recover it.

The concept of sparsity steadily regained more prominence and started to significantly impact

how people viewed the traditional data acquisition paradigms, especially in the vastly undersam-

pled cases where measurements are very expensive (the classical example is that of IR-sensitive

CCDs), or the acquisition process is slow (scan time in magnetic resonance imaging), or few sen-

sors are available, etc. This gave rise to the field of Compressive Sensing (CS) [44], which aimed

to non-adaptively acquire information efficiently with as few measurements as possible to recon-

struct the signal, instead of the traditional approach of measuring a very large amount of data, then

compressing it (minimizing some reconstruction error) by throwing away redundant information.

A.1 Compressed Sensing Primer

Some of the earlier theoretical foundations of CS were laid out by [56] where the concept of

incoherence was reintroduced1. They make the distinction between two systems, the sparsity basis,

and the measurement basis. To illustrate this dual concept, let f be the image of size n and we

assume that f has a sparse or nearly sparse expansion in the basis Ψ such that f = Ψx. Let S

represent the cardinality of x or sparsity degree such that ‖x‖0 := |supp(x)| ≤ S. Another basis

Φ, called the sensing or measurement basis is introduced. It represents the domain in which we

are observing the measurements yk = 〈φk, f〉, where k = 1 through m, where m is the number

of measurements and m < n. For instance, if we are sensing in the Fourier domain, Φ could

be complex exponentials and Ψ could be a wavelet representation or a canonical basis (where the

1A related concept called mutual-coherence and defined equivalently was already used in [103].
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signal is assumed to be sparse) 2. The coherence between the two bases is given by:

µ(Ψ,Φ) = n.max
j,k

∣∣〈φj,ψk

〉∣∣ (A.1)

Roughly speaking, it represents how far apart are the bases. For instance, a time basis, represented

by shifted delta functions and a frequency basis represented by complex exponentials, are maxi-

mally incoherent. Note that if ψk and φj are unit-norm, the coherence obeys 1 < µ(Ψ,Φ) ≤ n.

One practical way to achieve a high incoherence is to have the sensing basis be constructed with

Gaussian White Noise, or sequences of random binary entries (±1), or random projections, etc.

This guaranteed global measurements that are incoherent with the original signal. In [112] it was

showed that if f is S-sparse in Ψ, and we uniformly select m measurements at random in Φ, then

`1-minimization will let us exactly recover the original image with very high probability if

m > µ (Ψ,Φ) .S. log(n) (A.2)

Note that this process is non-adaptive, i.e, we can fix the sensing basis (any random basis

incoherent with the original basis in which the original signal expansion is nearly-sparse) and keep

it unmodified regardless of the signal or the number of measurements. More importantly, observe

that if S is small, then the number of measurements m needed can be significantly smaller than the

Shannon-Nyquist rate. This breakthrough later gave rise to a large number of ideas and papers on

how to better design this random “dictionary” or sensing matrices, such as [113, 114] and many

more.

A more rigorous and more general foundational result was later introduced in [47]. The two

separate sparsity and sensing systems were unified under a Restricted Isometry Property (RIP)

concept, which dropped the probabilistic guarantee for an exact reconstruction for a deterministic

2In our framework of Chapter 3, Ψ is the eigenfaces basis V, and Φ is the canonical basis, where 1 represents a
pixel we observe and 0 the rest of the pixels.
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one. Now we need to recover x ∈ <n from y = Φx. From [115], The RIP of a sensing matrix Φ,

which is a function of the sparsity S and a scalar δ is defined by:

(1− δ) ‖x‖22 ≤
∥∥Φx2

2

∥∥ ≤ (1 + δ) ‖x‖22 (A.3)

Roughly speaking, this means that the sensing matrix Φ acts as an approximate isometry on the

set of vectors that are S-sparse in the basis. This also implies that the columns of Φ have to be

approximately orthogonal. The RIP is a necessary condition if we wish to be recover all sparse

signals x from all the measurements in y. If ‖x‖0 = S then Φ must satisfy the lower bound of

the RIP with δ < 1. Moreover, the RIP also suffices to ensure that several practical algorithms

can recover any nearly-sparse or sparse signal from noisy measurements. It was also shown that

for a small enough δ, `1-minimization can be used in a linear program to relax the `0 problem and

recover the sparse signal. It was later proved ([116, 117]), that for random Gaussian noise sensing

matrices, the RIP holds if m > S log(n/S). Furthermore, in [118], it was shown that another way

of designing the sensing basis Φ that meets the RIP was to start with a unitary matrix basis (like

the Fourier Basis or in our case an eigenfaces basis) and to randomly select rows.

Independently and around the same time, the same findings about the recoverability of sparse

signals using `1-minimization was demonstrated by [119]. Instead of incoherence/RIP, they intro-

duced a related concept called the spark of a matrix A, given by the smallest number of columns

from A that are linearly dependent.

A.2 Brief Overview of `1 Solvers

Going back to the original Ax = b problem, we have argued in the previous section that if x is

sufficiently sparse and the sensing matrix A is incoherent with the basis under which x is sparse,

then it can be recovered by `1-minimization using Equation A.4. In the absence of noise, the
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general optimization problem is given by:

min ‖x‖1 subject to Ax = b (A.4)

In the presence of noise, the constraints are relaxed to instead minimize the reconstruction

error:

min ‖x‖1 subject to ‖Ax− b‖2 ≤ ε (A.5)

where ε is a small positive constant to represent the anticipated noise level. The unconstrained

equivalent of Equation A.5 is given by:

min
x

1

2
‖Ax− b‖22 + λ ‖x‖1 (A.6)

A.2.1 Second-Order Methods

While Equation A.4 is a linear program (LP) which can be solved by classical algorithms, Equation

A.6 can be cast a second order cone programming problem and thus can be solved via interior point

methods [53]. Although it is very hard to review the vast literature on this subject, see [55] for an

in-depth review of modern `1-minimization techniques. The classical approach is to iteratively

recast the inequality constrained problem into an equality constrained problem, and then solve it

using Newton’s method [120] with the barrier method. This is what Primal-Dual Interior-Point

Algorithms (PDIPA) (such as [121]) attempt to do. Homotopy methods [50, 122] take advantage

of piecewise-linear properties of the `1-regularization path. They identify the next breakpoints

along the solution path by examining the optimality conditions. However these path-following

methods (which compute the entire solution path) become slow for large-scale problems. To al-

leviate these problems, an alternative method called the Truncated Newton Interior-Point Method

(TNIPM) [123] was suggested. It uses a specialized interior-point method that uses precondi-

tioned conjugate gradient [124] algorithms to find search direction and step size for the following
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optimization problem:

min
x

1

2
‖Ax− b‖22 + λ

n∑
i=1

vi such that− vi ≤ xi < vi with i = 1, ..., n (A.7)

In general, most of the second-order methods become intractable in modern large-scale and

high-dimensional datasets and this motivated the need for simpler gradient-based (first-order) al-

gorithms for solving Equation A.6 based on simple matrix/vector multiplications.

A.2.2 First-Order Methods

First-order methods, rely on renewed interest in iterative thresholding ideas (for the original `0-

optimization [111, 125]) and the subdifferential of the `1-norm to reduce the per-step complexity,

at the cost of increasing the total number of iterations. Some of these methods roughly fall under

the following families of methods: Proximal Gradient (PG) (such as [49, 123]) and the related Iter-

ative Shrinkage-Thresholding Algorithms (ISTA) (such as [51, 52]). They operate on the classical

method of minimizing an unknown function by going in the negative direction of the gradient. For

instance let f : <n → < be a continuously differentiable convex function:

min
x
f(x) (A.8)

We can iteratively solve Equation A.8 by starting from an initial x0 ∈ <n and updating it according

to:

xk+1 = xk − tk+1∇f(xk) (A.9)

where tk+1 is a suitable step-size and k is the iteration number.

Furthermore, we can also assume that ∇f(x) is Lipschitz continuous with constant 1/tk.

Roughly speaking this means the gradient does not vary too fast (for twice differential functions

it implies that ∇2f(x) ≤ (1/tk)I and the eigenvalues of the Hessian are smaller than 1/tk). The
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Lipschitz property allows us to fix a quadratic upper bound on f(x) (see [126]). So at a given

iteration k, we can solve the following optimization:

xk+1 = arg min
x

(
f(xk) + (x− xk)

T∇f(xk) +
1

2tk+1

‖x− xk‖22
)

(A.10)

By completing the squares, we can rewrite Equation A.10 into the following quadratic optimization

problem:

xk+1 = arg min
x

1

2tk+1

‖x− (xk − tk+1∇f(xk))‖2 (A.11)

Taking the gradient of the function to minimize in Equations A.10 or A.11 with respect to x and

setting it to zero will yield the well known gradient descent update of Equation A.9.

Let us now aim to solve a composite optimization problem:

min
x
f(x) + g(x) (A.12)

where f(x) is a convex smooth function but g(x) is a convex non-smooth function. Proximal-

Gradient methods maintain the quadratic upper bound on f(x) but simply add g(x) to it to obtain

an upper bound on the global function:

xk+1 = arg min
x

(
f(xk) + (x− xk)

T∇f(xk) +
1

2tk
‖x− xk‖22 + g(x)

)
(A.13)

The same manipulation yields the following proximal optimization:

xk+1 = arg min
x

1

2tk+1

‖x− (xk − tk+1∇f(xk))‖2 + g(x) (A.14)

The solution of Equation A.14 is the proximal-gradient (PG) algorithms update rule:

xk+1 = proxtk (xk − tk+1∇f(xk)) (A.15)
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where prox is the proximal operator. Intuitively, this operator corrects for the addition of g(x)

which made us deviate from the global unique solution that minimized f(x). In the general case,

this operator is expensive to obtain, however in the special case where g(x) = λ ‖x‖1, it can be

done efficiently. As done earlier, we can take the gradient of the function to minimize with re-

spect to x and set it to 0. More importantly, we can make use of the separatibility of the `1-norm

(‖x‖1 =
∑n

i=1 |xi|) to make of the minimization of x a one-dimensional element-wise minimiza-

tion problem and obtain (see [127]) the corresponding update rule to Equations A.9 and A.15:

xk+1 = τλtk+1
(xk − tk+1∇f(xk)) (A.16)

with τα the shrinkage operator (also called soft-thresholding) defined by the following function

and depicted in Figure A.1:

τα(x)i = max (|xi| − α, 0) sign(xi) (A.17)

Note the similarities between Equations A.9 and A.16. This method is referred to as (ISTA). To

recap, in this case where the gradient of ∇f(x) = AT (Ax− b), the general update step of IST

methods look like the following:

xk+1 = τλt
(
xk − 2tAT(Axk − b)

)
(A.18)

The convergence of PG and ISTA (which is a function of α) has been analyzed in literature and

it although it is a simple algorithm, it is often criticized for its slow convergence speed (which is

dominated by the gradient computation above). To alleviate this, more recent methods (such as

NESTA [128] and FISTA [127]) make use of improved and fast-converging first-order gradient

methods first discovered in ([129]) called the Accelerated-Gradient method and whose update rule
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Figure A.1: Shrinkage-thresholding function.

is given by:

xk+1 =yk − tk+1∇f(yk) (A.19)

yk+1 =xk+1 + αk+1 (xk+1 − xk) (A.20)

This variant of the gradient algorithm incorporates a momentum parameter (α) that takes into ac-

count the previous two iterations to accelerate convergence. The corresponding accelerated version

of the IST method above is called Fast-ISTA [127] and whose update rule is roughly given by:

xk+1 =τλt (yk − tk+1∇f(yk)) (A.21)

yk+1 =xk+1 + αk+1 (xk+1 − xk) (A.22)

We next focus on a variation of the FISTA algorithm which we used in our study, which was

deemed in [54] to be good compromise between accuracy and speed.

A.2.3 Augmented Lagrangian Method

The Augmented Lagrangian method (ALM) [130, 131] has re-emerged lately in the Compressed

Sensing community, is included in most solvers and packages, and has seen many new variants

and development. The main idea is to eliminate the equality constraints by adding a penalty term

to the original cost function that assigns a very heavy weight to points that fall outside the feasible

124



set.

Augmented Lagrangian methods aim to solve constrained optimization problem below:

minh(x) subject to Ax = b (A.23)

by minimizing the equivalent (unconstrained) cost function:

Jρ(x, λ) = h(x) + (ρ/2) ‖Ax− b‖22 + λT (Ax− b) (A.24)

The first two terms of Equation A.24 correspond to the penalty method (and ρ is the penalty

parameter), which is then augmented by the additional penalty mimicking the method of Lagrange

multipliers (λ is the Lagrangian). In other words, J0 is the traditional Lagrangian for problem

(A.23)). Equation A.24 can be solved the same way as a traditional Lagrangian method, obtaining

the gradient of the augmented function (or its dual) and then evaluating the resulting equality

constraint residual. From [130] we have the following update rules:

xk+1 := arg min
x

Jρ(x, λ
k) (A.25)

λk+1 :=λk + ρ
(
Axk+1 − b

)
(A.26)

ALM has been shown [126] to converge much faster than with the quadratic penalty method alone

since ρ does not need to go to infinity and there is little extra computational overhead from adding

the extra penalty term.

Observe that when h(x) = c ‖x‖1 in Equation A.23 (which then becomes identical to Equation

3.17), we can use any of the solvers previously mentioned to solve Equation A.25. The solver used

in our pose-correction study utilized an ISTA-type approach for the dual form of the Augmented

Lagrangian Method.
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Appendix B

SimBoost: A Meta-Algorithm to Measure

Similarity Between Multidimensional

Feature Vectors

In this appendix, we present a novel yet simple way of obtaining a similarity measure between

two high-dimensionality vectors motivated by AdaBoost [132] and based on a non-linear weighted

combination of distance measures between the two vectors. The intuition behind this algorithm

emerged from the need to select the dimensions that are the most discriminative for a verification

purpose. For that reason, it is based on AdaBoost. When applied to a two-class classification

problem, AdaBoost has proved very successful and was dubbed “best off-the-shelf classifier in the

world” [133]. However, AdaBoost struggles in the case of high-dimensional multiclass problems.

Several multiclass extensions to AdaBoost have been proposed over the years, but in this appendix

we present a simple way of extending AdaBoost for a multiclass verification problem without the

explicit need for a multiclass classification scheme.

AdaBoost [132] is an ensemble-learning method designed to select and combine weak classi-

fiers into stronger classifier. AdaBoost operates by maintaining a distribution of weights over all
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the training samples. The weight of a given training sample implies how “important” is this sample

at a given iteration of the algorithm.

There exists several variants of the AdaBoost algorithm. We will review two of the more

common ones, the traditional Discrete AdaBoost and the more advanced Real AdaBoost, and then

present the algorithm which we call SimBoost, since it is obtained by boosting classifiers trained

on different similarity matrices that represent the same data.

B.1 Discrete AdaBoost

AdaBoost is an iterative algorithm that can construct a “strong” classifier as a linear combination:

f(x) =
T∑
t=1

αtht(x) (B.1)

of “weak” high-bias classifiers ht(x) : χ → {−1,+1}, where T is the total number of classifiers.

The final classifier or final hypothesis is given by:

H(x) = sign (f(x)) (B.2)

Algorithm 1 Discrete AdaBoost
Given samples (x1, y1), . . . , (xN , yN) where xi ∈ χ and yi ∈ {−1,+1} and N is the total number
of samples. Initialize the weight distribution W1(i) = 1/N
For t = 1, . . . , T
• ht = arg min

hj∈H
εj =

∑N
i=1Wt(i)1{yi 6= hj(xi)}

• Set αt = 1
2

ln
(

1−εt
εt

)
• Update:
Wt+1(i) = Wt(i)exp(−αtyiht(xi))

Zt

where Zt is a normalization factor such that Wt remains a distribution
The final output if the final strong hypothesis:
H (x) = sign

(∑T
t=1 αtht(x)

)
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If we have N total samples xi for i ∈ 1, . . . , N , samples xi’s classified as to belong to the

negative class will have f(xi) values that are negative. Samples classified to belong to the positive

class will have positive f(xi) values. Therefore for misclassified samples (where the sign of yi

does not agree with the sign of f(xi)) will have the product f(xi)yi negative. Crucially, AdaBoost

relies on the exponential function that enables us to write that

yiht(xi) ≤ 0 (B.3)

e−yiht(xi) > 1 (B.4)

and therefore we can now find an upper bound on the training error given by:

training error (Hfinal) =
1

N

N∑
i=1

1{H(xi 6= yi)} (B.5)

=
1

N

1 if yiH(xi) ≤ 0

0 other
(B.6)

≤ 1

N

N∑
i=1

exp (−yif(xi)) (B.7)

By unwrapping the recursion of the weight update rule and using induction, we can prove that

WT+1(i) =
1

N

exp
(
−yi

∑T
t=1 αtht(xi)

)
∏T

t=1 Zt
(B.8)

=
1

N

exp (−yif(xi))∏T
t=1 Zt

(B.9)

exp (−yif(xi)) = NWT+1(i)
T∏
t=1

Zt (B.10)
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Plugging the last equation in the inequality of (B.7) we get

training error (Hfinal) ≤
1

N

N∑
i=1

NWT+1(i)
T∏
t=1

Zt (B.11)

≤
T∏
t=1

Zt (B.12)

We detailed the proof that the training error is bounded by the product of the normalizing Zt. Now

we will express Zt as a function of the error of every weak classifier. For the 0/1 loss function, the

training error εt of a weak classifier ht at iteration t is the sum of the weights of the misclassified

samples:

εt =
N∑
i=1

Wt(i)1{yi 6= ht(xi)} (B.13)

At a given iteration t, to make sure the sum of all weights is always equal to one, Zt is defined

as the sum of the current weights, which are the weights of the previous iteration exponentially

modified as specified by the update rule:

Zt =
N∑
i=1

Wt(i)exp (−αtyiht(xi)) (B.14)

=
∑

i s.t h(xi)=yi

Wtexp (−αtyiht(xi)) +
∑

i s.t h(xi)6=yi

Wtexp (−αtyiht(xi)) (B.15)

=
∑

i s.t h(xi)=yi

Wte
−αt +

∑
i s.t h(xi)6=yi

Wte
−αt (B.16)

= e−αt (1− εt) + eαtεt (B.17)
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To find the minimum Zt with respect to αt set the derivative to zero:

dZt
dαt

= e−αt (1− εt) + eαtεt = 0 (B.18)

εte
αt = (1− εt) e−αt (B.19)

e2αt =
(1− εt)
εt

(B.20)

αt =
1

2
ln

1− εt
εt

(B.21)

This is the penalty that the missclassified samples exponentially “pay”, and at the same time the

reward that the positive samples exponentially “earn”. We can also also express Zt in terms of εt

as follows:

Zt = 2
√
εt (1− εt) (B.22)

Let εt = 1/2 − γt where γt represents how much better than chance is the classifier doing at

iteration t, we can then write

training error (HT ) 6
T∏
t=1

Zt (B.23)

=
T∏
t=1

[
2
√
εt (1− εt)

]
(B.24)

=
T∏
t=1

√
1− 4γ2t (B.25)

6 exp

(
−2

T∑
t=1

γ2t

)
(B.26)

So as long as γt is positive, the training error is bounded and decreasing. AdaBoost is adaptive,

and we do not need to have an a priori knowledge of γ or T . As long as we make sure γt >> γ,

then the training error is guaranteed to decrease.
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B.2 Real AdaBoost

Real AdaBoost [134] improves upon Discrete AdaBoost by using confidence-rated predictions at

every iteration of the algorithm. The weak hypotheses in Real AdaBoost make their predictions

by partitioning the domain into disjoint blocks. There is no single weight for the vote of a specific

classifier, but different weights for every domain block. The alpha term now is absorbed into the

weak classifier whose response depends on where in the domain space the sample falls.

B.3 SimBoost: Using boosting to combine feature vector coef-

ficients

We now adapt AdaBoost, which is a feature selection and classification algorithm, to handle a

multiclass matching problem where every sample is represented by a multidimensional feature

vector.

As in Algorithm 1, at every iteration t if we maintain a positive γt where εt = 1/2 − γt,

we guarantee that the training error is decreasing. This means that for a given similarity matrix

M(i) based on a subset of the total dimensions, the corresponding ROC should be better than the

diagonal. By controlling how big is d′ with respect to d, we can control the area under the curve

(AUC) of the ROC.

B.4 Evaluation

To evaluate the efficacy of Algorithm 2, we setup the following experiment. We use the FRGC [61]

generic dataset to train SimBoost. We test on the FRGC gallery dataset of 16028 face images for a

total number of comparisons that exceeds 128 million.
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Figure B.1: ROC of FRGC Experiment 1 which contains over 128 million matches. The feature
vector is a standard PCA coefficient vector obtained by projecting onto the PCA basis trained on
the FRGC generic dataset.
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Figure B.2: This plot depicts the Verification Rate increase, reported at 0.1% FAR, as a function
of SimBoost iterations. Also depicted on the same graph the performance of baseline PCA, with
and without skipping any coefficients.
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Algorithm 2 Discrete SimBoost
Given a training set of samples, partition the set into s1 gallery samples, and s2 query samples.
Let (v1

gallery, c1), . . . , (vs1
gallery, cs1) be the gallery samples and (v1

query, c1), . . . , (vs2
query, cs2)

be the query samples where vi ∈ <d and ci ∈ {C1, C2, . . . , Ck}. k is the total number of training
classes and Ci represents the class label.
Create a set S = {dimset1, dimset2, · · · , dimsetm} of random and overlapping sets of dimen-
sions. Each dimseti is a set of d′ random dimensions sampled from a discrete uniform distribution
U (1, d), with d′ < d andm > d. These sets account for every dimension

⋃m
i=1 dimseti = {1, ..., d}

to make S an over-complete set of random dimensions.
Generate a set M =

{
M(1),M(2), · · · ,M(m)

}
of similarity matrices. Every M(i) is an s1 × s2

matrix where every M
(i)
k,l entry represents the similarity given a distance metric between samples

vgalleryk and vqueryl considering dimensions dimseti only.
Each M(i) yields a distribution of authentic scores and impostor scores. (x

(i)
1 , y1), . . . , (x

(i)
N , yN)

represent the scores extracted from M(i) and yi ∈ {−1,+1} the labels where −1 represents an
impostor score and +1 an authentic score. Let N = s1 × s2 be the total number of scores in the
similarity matrix.
Let H be the set of all possible weak classifiers hi given score distributions generated by all simi-
larity matrices inM
Initialize the weight distribution W1(i) = 1/N
For t = 1, . . . , T
• ht = arg min

hj∈H
εj =

∑N
i=1Wt(i)1{yi 6= hj(xi)}

• Set αt = 1
2

ln
(

1−εt
εt

)
• Update:
Wt+1(i) = Wt(i)exp(−αtyiht(xi))

Zt

where Zt is a normalization factor such that Wt remains a distribution
The final output if the final strong hypothesis:
H (x) = sign

(∑T
t=1 αtht(x)

)
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Appendix C

Class-Dependent Feature Analysis

In this appendix we review a classifier based on advanced correlation filter theory, called Class-

Dependent Feature Analysis (CFA). The kernel version of this classifier is called KCFA. In this

dissertation, we use CFA on the pose-corrected shape-free images or their feature vector represen-

tation (see Chapters 3 and 4).

C.1 Advanced Correlation Filters Overview

Correlation filters evolved from the simple Matched Filter [135] into complex multi-image multi-

class filters that exhibit very advantageous properties that are ideal for challenging tasks such as

unconstrained face recognition. We briefly review two of the filters we use in this dissertation.

C.1.1 Equal Correlation Peak Synthetic Discriminant Function Filters

The basic correlation filter is the Equal Correlation Peak Synthetic Discriminant Function Filter

(ECP-SDF)[136]. Unlike the Matched Filter, which matches one template at a time to a given

scene, the ECP-SDF can handle multiple templates built into one filter. The desired correlation

value at the origin is specified in a constraint vector u which is the size of the number of images
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we are training the filter on. Typically, one would set a desired value of 1 for positive training

images (enforcing maximum correlation) and a value of 0 or−1 for the negative samples (enforcing

no correlation or maximum de-correlation respectively). Let X denote the matrix containing the

training images vectorized and places along its columns. We need to design the filter hECP-SDF such

that:

XThECP-SDF = u (C.1)

By assuming that the filter is a linear combination of the training images or hECP-SDF = Xα and

substitution into the first equation, we can solve for α to obtain:

α =
(
XTX

)−1
u (C.2)

We then derive the following filter:

hECP-SDF = X
(
XTX

)−1
u (C.3)

THe ECP-SDF essentially corresponds to the minimum-`2-norm filter h such that Equation C.1

holds. The ECP-SDF controls the correlation values at the origin (as specified by u) and has

no control over the rest of the correlation plane, and therefore yields many false peaks located

elsewhere in the correlation plane. The MACE filter was developed to fix this problem.

C.1.2 Minimum Average Correlation Energy Filters

Minimum Average Correlation Energy (MACE) filters [137] solve the false peaks problem by

suppressing the rest of the correlation plane. The average correlation energy (ACE) of the cross-

correlation outputs are minimized while maintaining the constraints at the origin. Therefore typical

correlation outputs from MACE filters typically exhibit very sharp peaks which makes detection

and localization easy. The formulation of MACE happens in the frequency domain where corre-
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lations can be very efficiently computed. Applying Parseval’s theorem (which relates the spatial

domain energy to the frequency domain energy), we can efficiently obtain a “prewhitening” matrix

D which contains the average power spectrum of all training images along its diagonal.

ACE =
1

N

N∑
i=1

h+Dih = h+Dh (C.4)

where N is the number of training images, and D = 1
N

∑N
i=1 Di. We can now minimize the

following cost function:

min J(h) = h+Dh subject to X+h = u (C.5)

where now X is a complex matrix containing the 2D Fourier transform of the training images

vectorized and stacked along its columns, and h is the vectorized 2D Fourier transform of the

filter. The + operator denotes the conjugate transposition of a complex matrix. Following the

same derivation as Equation 3.11 in section 3.2.4, we obtain the following filter hMACE:

hMACE = D−1X
(
X+D−1X

)−1
u (C.6)

Note the similarities between Equations C.3 and C.6. However, the former is in spatial domain

while the latter is in frequency domain. Filtering with a MACE will generally return a very sharp

peak with reduced side-lobes, as the overall correlation place energy is minimized by including D

in the formulation. The correlation output of a ECP-SDF filter hECP-SDF given an input y is given

by yThECP-SDF. In the case of MACE, we can further exploit the diagonal structure of D in equation
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C.6 as shown below:

y+hMACE = y+D−1X
(
X+D−1X

)−1
u (C.7)

=
(
D−0.5y

)T
((

D−0.5X
)T (

D−0.5X
))−1

u (C.8)

= y′
T
X′
(
X′

T
X′
)−1

u (C.9)

where y′ = D−0.5y and X ′ = D−0.5X indicates pre-whitened versions of y and X respectively.

What we have achieved in Equation C.9 is converting the MACE formulation back into the spatial

domain by incorporating a pre-whitening step of the training data. This can be efficiently done

by taking the 2D Fourier transform of the training matrix X, pre-multiplying it by D−0.5 and then

taking the inverse 2D Fourier transform, such that the resulting y′ and X′ are in spatial domain.

The MACE formulation can be extended to incorporate some noise tolerance[138]. Equation

C.6 becomes:

hOTSDF = T−1X
(
X+T−1X

)−1
u (C.10)

where T =
(
αD +

√
1− α2C

)
. C presents a diagonal matrix whose elements represent the noise

power spectral density. For a white noise model, C = I. α represents the blending parameter

(any positive scalar ≤ 1) which controls the trade-off between noise tolerance and peak sharpness.

Therefore the filter in Equation C.10 is called the Optimal Tradeoff Synthetic Discriminant Filter

(OTSDF). Note that when α = 1, the OTSDF degenerates into a MACE filter.

C.1.3 Kernel Extension

The MACE and OTSDF formulations can be easily be extended to kernel space since the data

appears in the form of inner products. Suppose we map the data to some other feature space by

the non-linear mapping Φ. The kernel “trick” lets us map the data into an inner product space

without having to compute the mapping Φ explicitly. For two vectors xi and xj , K(xi,xj) =
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〈Φ(xi),Φ(xj)〉. The kernel function defined here can be used as long as it forms an inner-product

and satisfies Mercer’s theorem[139] to ensure that we are still working in a Hilbert inner-product

space. The kernel extension of Equation C.9 becomes:

Φ(y)TΦ(hMACE) = K(y′,X′) (K (X′,X′))
−1

u (C.11)

Examples of kernel functions are polynomial, Radial Basis Function (RBF), and neural net sig-

moidal kernels.

C.2 Class-Dependent Feature Analysis

Correlation filters have been applied with great success to a number of 2D-based classification

problems in biometrics (face [140, 141], fingerprints [142], iris [143]) and Automatic Target

Recognition (ATR) [144]. They have shown to be highly modular and robust to occlusion, mis-

alignment, and exhibit a graceful degradation. The CFA algorithm aims at harnessing the power of

correlation filters in a classification framework. We first assume that all input images are correctly

centered, and only measure the correlation peak at the center. Given a training set of C classes, one

could train C filters (for instance MACE or OTSDF), each designed to provide a peak of 1 (max-

imum correlation) for images belonging to the given class, and no peak at all (zero correlation)

for images belonging to all other classes. This way one could represent unseen testing images by

a feature vector of length C each dimension representing the correlation peak by the correspond-

ing filter. This feature vector represents how much the unseen testing sample correlates with each

one of the training classes. Figure C.1 shows a diagram that depicts how an unseen face image is

tested with a MACE filter built for class 2, in an N -class problem, each class containing 4 training

images. For this specific case depicted in the Figure C.1, the constraints vector u will be given by:
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Class1 
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- mace-2 h 

Class2 Class N 

   … 

   … 
Figure C.1: Schematic to illustrate the building of a MACE filter hmace2 for class 2 out ofN classes
each with 4 images. The unseen testing image y is filtered with the resulting MACE filter. The
filter response in given by the inner product between hmace2 and y. This scalar value will represent
how much the test face y triggers the filter built for class 2. By repeating the process for N filters,
we obtain a feature vector of size N , each entry representing how much the test face correlates
with all training classes.
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u1 = [0 0 0 0]T (C.12)

u2 = [1 1 1 1]T (C.13)

uN = [0 0 0 0]T (C.14)

umace2 = [u1 u2 . . . uN ]T (C.15)

And the X matrix will contain all the vectorized training images X = [x1
1...4x

2
1...4 . . .x

N
1...4]. The

filter response for an input face image y is given by Equation C.9.
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Appendix D

Additional Experimental Results

D.1 Results on MPIE

The following is a list of additional results and figures for the MPIE dataset:

• Figure D.1: An additional example of different image representations after reconstructing

pose-corrected images.

• Figure D.2: An additional example of different image representations after reconstructing

pose-corrected images.

• Figure D.3: ROCs of traditional 2D warping techniques versus pose-correction using L1-

PCA.

• Figure D.4: ROC of L1-PCA coefficient matching for different combination of automatic

and manual landmarking and pose estimation.

• Figure D.5: Examples of bad landmarking fit.

• Table D.1: Verification results on MPIE for different image representations.

• Table D.2: Rank-1 identification rates on MPIE for different image representations.

• Table D.3: Rank-1 identification rates for different combinations of automatic and manual
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landmarking and pose estimation.

• Table D.4: Rank-1 identification rates when the resolution (represented by the number of

pixels between the eyes in a frontal viewpoint) of the query images drops.

• Figure D.6: ROCs of matching in coefficient space using the L1-PCA, L2-PCA and HY-

BRID representations using NCD as the matcher. 95% confidence intervals are plotted on

the ROCs to illustrate the statistical significance of the result.

Yaw Test Angles

Verification Mode Image Representation −45◦ −30◦ −15◦ 15◦ 30◦ 45◦

128× 128 crop 2D warp plin 29.37 48.96 64.68 64.68 38.57 31.45
with shape added back 2D warp lwm 23.73 43.91 62.9 63.79 40.65 25.22

L1-PCA crop 35.31 60.53 85.75 85.45 57.56 32.34

Shape-Free Reconstruction L1-PCA 29.37 48.96 64.68 64.68 38.57 31.45
L2-PCA 23.73 43.91 62.9 63.79 40.65 25.22
HYBRID 26.7 45.69 71.81 73.5 40.94 26.40
STRETCH 23.14 34.71 59.64 66.46 29.97 21.66
HOLES 23.73 42.73 70.02 74.18 38.57 25.81

Shape-Free Coefficients L1-PCA 66.46 91.69 98.51 98.81 88.72 63.5
L2-PCA 52.81 84.56 95.25 96.73 81.00 54.3
HYBRID 66.76 91.69 98.51 98.81 88.72 63.2

Table D.1: Verification Rates measured at 1% FAR using normalized cosine distance. The Mode
denotes whether the shape information is incorporate in the image or suppressed and whether we
are matching in the reconstructed images or in the coefficient space. The Image Representation
lists all the different representations we defined in Section 3.4. All 337 unique subjects from the
combined MPIE sessions are included in this experiment.
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Yaw Test Angles

Identification Mode Image Representation −45◦ −30◦ −15◦ 15◦ 30◦ 45◦

128× 128 crop 2D warp plin 58.75 85.45 95.54 96.73 86.35 53.70
with shape added back 2D warp lwm 51.92 86.05 97.03 97.03 87.83 52.81

L1-PCA crop 48.07 90.20 98.22 99.12 87.54 45.42

Shape-Free Reconstruction L1-PCA 55.49 89.32 97.63 98.22 89.62 50.45
L2-PCA 43.62 78.64 96.14 97.33 85.46 46.89
HYBRID 53.12 88.43 97.33 97.92 89.02 48.96
STRETCH 53.11 85.16 97.03 98.51 87.24 51.63
HOLES 53.11 84.27 98.22 98.51 89.61 53.70

Shape-Free Coefficients L1-PCA 61.72 93.18 98.81 97.92 82.49 45.70
L2-PCA 41.25 81.00 96.74 98.22 78.93 38.58
HYBRID 62.02 93.18 98.81 98.22 83.98 45.99

Table D.2: Rank-1 Identification rates using normalized cosine distance. The Mode denotes
whether the shape information is incorporate in the image or suppressed and whether we are match-
ing in the reconstructed images or in the coefficient space. The Image Representation lists all the
different representations we defined in Section 3.4. All 337 unique subjects from the combined
MPIE sessions are included in this experiment.

143



(a) Original face images with yaw varying from −45◦ to +45◦ in increments of 15◦.

(b) STRETCH: Pose-corrected images in the shape-free representation with no occlusion detection and no reconstruction.

(c) HOLES: Pose-corrected images with occlusion detected in the shape-free representation.

(d) L2-PCA reconstructed pose-corrected images in the shape-free representation.

(e) L1-PCA reconstructed pose-corrected images in the shape-free representation.

(f) HYBRID: L1-PCA+STRETCH pose-corrected images in the shape-free representation.

Figure D.1: MPIE subject 14 with (a) the original image from different angles (b) The equivalent
pose-corrected shape-free images with no occlusion detection. As a result the texture mapping
module in 3DGEM will introduce stretching artifacts due to interpolating from too few available
pixels. (c) The equivalent pose-corrected shape-free images with pixels that are likely to be oc-
cluded detected in 3D. (d) The equivalent reconstructed pose-corrected images using L2-PCA in
shape-free representation. (e) The equivalent reconstructed pose-corrected images using L1-PCA
in shape-free representation. (f) Hybrid representation which consists of the unoccluded pixels
from (c) and occluded pixels from (e). The sparse feature vector responsible for this reconstruction
is used in Chapter 4 to achieve one-to-one verification rates.
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(a) Original face image with yaw varying from −45◦ to +45◦ in increments of 15◦.

(b) STRETCH: Pose-corrected images in the shape-free representation with no occlusion detection and no reconstruction.

(c) HOLES: Pose-corrected images with occlusion detected in the shape-free representation.

(d) L2-PCA reconstructed pose-corrected images in the shape-free representation.

(e) L1-PCA reconstructed pose-corrected images in the shape-free representation.

(f) HYBRID: L1-PCA+STRETCH pose-corrected images in shape-free representation.

Figure D.2: MPIE subject 23 with (a) the original image from different angles (b) The equivalent
pose-corrected shape-free images with no occlusion detection. As a result the texture mapping
module in 3DGEM will introduce stretching artifacts due to interpolating from too few available
pixels. (c) The equivalent pose-corrected shape-free images with pixels that are likely to be oc-
cluded detected in 3D. (d) The equivalent reconstructed pose-corrected images using L2-PCA in
shape-free representation. (e) The equivalent reconstructed pose-corrected images using L1-PCA
in shape-free representation. (f) Hybrid representation which consists of the unoccluded pixels
from (c) and occluded pixels from (e). The sparse feature vector responsible for this reconstruction
is used in Chapter 4 to achieve one-to-one verification rates.
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Yaw Test Angles

Image Representation Landmarking Pose Estim. −45◦ −30◦ −15◦ 15◦ 30◦ 45◦

L1-PCA Reconstruct. Manual Manual 55.49 89.32 97.63 98.22 89.62 50.45
Manual Auto 56.68 89.02 97.33 97.92 89.91 54.89
Auto Manual 48.96 84.27 96.44 97.33 83.09 44.80
Auto Auto 51.63 84.27 96.44 97.03 85.76 48.37

L1-PCA Coefficients Manual Manual 61.72 93.18 98.81 97.92 82.49 45.70
Manual Auto 60.53 92.29 98.52 97.92 85.16 44.21
Auto Manual 56.68 89.02 97.32 98.22 89.61 49.55
Auto Auto 58.16 88.72 97.33 98.22 90.50 50.15

Table D.3: Rank-1 Identification rates using normalized cosine distance for the two L1-PCA repre-
sentations. We tabulate the effect of automatic operation on both landmarking and pose estimation.
All 337 unique subjects from the combined MPIE sessions are included in this experiment.

Low Resolution Yaw Test Angles

Identification Mode Interocular Dist −45◦ −30◦ −15◦ 15◦ 30◦ 45◦

L1-PCA CFA 100 pixels 85.95 97.19 100 100 98.78 89.16
50 pixels 87.95 98.39 100 100 98.79 88.75
25 pixels 64.25 77.51 75.10 95.58 85.14 65.86
13 pixels 22.89 31.32 49.80 40.57 32.93 23.29

L1-PCA Coefs 100 pixels 65.06 93.57 99.59 97.99 81.12 45.78
50 pixels 62.66 90.77 99.19 97.59 80.32 42.16
25 pixels 42.16 59.84 75.90 91.57 59.84 30.12
13 pixels 14.45 23.69 48.59 39.35 23.69 16.90

Table D.4: Rank-1 Identification rates using normalized cosine distance on MPIE session 1 when
the gallery set is of high-resolution and the query set is of decreasing resolution.
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(a) 2D warping at −45◦
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(b) 2D warping at 45◦
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(c) 2D warping at −30◦
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(d) 2D warping at 30◦
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(e) 2D warping at −15◦
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(f) 2D warping at 15◦

Figure D.3: ROC to compare the verification advantage of our pose-correction method (having
added the shape back such that those depicted in Figure 3.16d) to traditional 2D-warping methods
such as those depicted in Figure 3.16c. All unique MPIE 337 subjects using Normalized Cosine
Distance as matcher. 147
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(a) L1-PCA coefficients −45◦
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(b) L1-PCA coefficients at 45◦
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(c) L1-PCA coefficients at −30◦
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(d) L1-PCA coefficients at 30◦
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(e) L1-PCA coefficients at −15◦
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(f) L1-PCA coefficients at 15◦

Figure D.4: MPIE sensitivity analysis on all unique 337 subjects. Normalized Cosine Distance on
L1-PCA shape-free coefficients. LM denotes landmarking. PE denotes Pose Estimation.
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(a) −45◦ (b) −30◦ (c) −15◦ (d) 0◦ (e) 15◦ (f) 30◦ (g) 45◦

Figure D.5: Example of bad landmarking automatic fitting for all angles in the MPIE dataset. The
top row represents the worst fit (defined as the highest drift between manual landmarked points and
automatically landmarked points in a mean squared error sense) for the given angle. The second
and third rows represents the second and third worst drift respectively. The columns (a) through
(g) denotes the different yaw angles.
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(a) 2D warping at −45◦ (b) 2D warping at 45◦

(c) 2D warping at −30◦ (d) 2D warping at 30◦

(e) 2D warping at −15◦ (f) 2D warping at 15◦

Figure D.6: Verification performance of matching with the coefficients after dropping the first few
dimensions. The matcher used is normalized cosine distance. The testing set contains all 337
unique MPIE subjects. 95% confidence bands are centered on the ROCs to depict the statistical
significance of the result.
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D.2 Results on FERET Database

The following is a list of additional results and figures for the FERET pose dataset. See [57] for a

description of the construction and use of the database.

• Figure D.7: Example of different image representations after reconstructing pose-corrected

images.

• Figure D.8: An additional example of different image representations after reconstructing

pose-corrected images.

• Figure D.9: An additional example of different image representations after reconstructing

pose-corrected images.

• Figure D.10: ROC of verification rates for matching pose-corrected images to frontal in

coefficient space.

• Figure D.11: ROC of verification rates for matching pose-corrected images to frontal after

applying the CFA algorithm on the L1-PCA features.

• Table D.5: Rank-1 identification rates on the FERET dataset which includes 8 different non-

frontal viewpoints and 200 subjects. MPIE session 1 is used to train the CFA algorithm.

• Table D.6: Rank-1 identification rates on the FERET dataset when the gallery images are at

−40◦. MPIE session 1 is used to train the CFA algorithm.
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Yaw Test Angles

Rank-1 Identification −40◦ −30◦ −20◦ −10◦ 10◦ 20◦ 30◦ 40◦

L1-PCA CFA 63.50 95.00 99.50 99.50 98.00 96.50 90.00 75.00

Table D.5: Rank-1 Identification rates using normalized cosine distance on L1-PCA CFA coeffi-
cients. The size of the gallery and test set is 200 subjects. The training set consists of MPIE session
1 subjects.

Yaw Test Angles

Rank-1 Identification −30◦ −20◦ −10◦ 0◦ 10◦ 20◦ 30◦ 40◦

L1-PCA CFA 90.00 86.50 78.50 75.50 68.50 66.00 59.50 54.00

Table D.6: Rank-1 Identification rates using normalized cosine distance on L1-PCA CFA coeffi-
cients when the gallery faces are at −40◦. The size of the test set is 200 subjects. The training set
consists of MPIE session 1 subjects.
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(a) Origi-
nal

(b) HOLES (c) L1-PCA (d) HYBRID

Figure D.7: Pose-correction for yaw angles increasing from −40◦ to 40◦ in increments of 10◦. (a)
input images (b) the corresponding shape-free representation with occlusion detection (c) corre-
sponding L1-PCA shape-free reconstructions (d) HYBRID representation which consists of the the
original pixels when the pixel is not occluded, and the L1-PCA equivalent pixel when occlusion is
detected.
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(a) Origi-
nal

(b) HOLES (c) L1-PCA (d) HYBRID

Figure D.8: Pose-correction for yaw angles increasing from −40◦ to 40◦ in increments of 10◦. (a)
input images (b) the corresponding shape-free representation with occlusion detection (c) corre-
sponding L1-PCA shape-free reconstructions (d) HYBRID representation which consists of the the
original pixels when the pixel is not occluded, and the L1-PCA equivalent pixel when occlusion is
detected.
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(a) Origi-
nal

(b) HOLES (c) L1-PCA (d) HYBRID

Figure D.9: Pose-correction for yaw angles increasing from −40◦ to 40◦ in increments of 10◦. (a)
input images (b) the corresponding shape-free representation with occlusion detection (c) corre-
sponding L1-PCA shape-free reconstructions (d) HYBRID representation which consists of the the
original pixels when the pixel is not occluded, and the L1-PCA equivalent pixel when occlusion is
detected.
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(a) Shape-free matching at−45◦ PoseCorrection
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(b) Shape-free matching at 45◦
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(c) Shape-free matching at −30◦
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(d) Shape-free matching at 30◦
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(e) Shape-free matching at −15◦
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(f) Shape-free matching at 15◦
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(g) Shape-free matching at −15◦
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(h) Shape-free matching at 15◦

Figure D.10: Verification rates using NCD in coefficient space for the L1-PCA and L2-PCA rep-
resentations. The size of the FERET dataset is 200 subjects.156
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(a) Shape-free matching at −40◦
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(b) Shape-free matching at 40◦
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(c) Shape-free matching at −30◦
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(d) Shape-free matching at 30◦
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(e) Shape-free matching at −20◦
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(f) Shape-free matching at 20◦
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(g) Shape-free matching at −10◦
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(h) Shape-free matching at 10◦
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