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Abstract

A problem that is frequently found in large-scale multiple testing is that, in the present

stage of experiment (e.g. gene microarray, functional MRI), the signals are so faint that it

is impossible to attain a desired level of testing power, and one has to enroll more samples

in the follow-up experiment. Suppose we are going to enlarge the sample size by a times

in the follow-up experiment, where a > 1 is not necessary an integer. A problem of great

interest is, given data based on the current stage of experiment, how to predict the testing

power after the sample size is enlarged by a times.

We consider test z-scores and model the test statistics in the current experiment as

Xj ∼ N(µj , 1), 1 ≤ j ≤ n. We propose a Fourier approach to predicting the testing power

after n replicates. The approach produces a very accurate prediction for moderately large

values of a ( a ≤ 7). Finally, we discuss potential applications of this method on real data

with emphasis on gene microarray data.
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Chapter 1

Introduction

Until recently, “simultaneous inference” meant considering just a handful of hypothesis

tests at the same time. Rapid progress in technology, particularly in genomics and imag-

ing, has vastly upped the ante for simultaneous inference problems giving rise to large

scale multiple testing. Now 500 or 5,000 or even 50,000 tests may need to be evaluated

simultaneously, raising new problems for the statistician, but also opening new analytic

opportunities.

Examples of testing problems in biomedical and genomic research include the following:

• The identification of differentially expressed genes in high-throughput gene expres-

sion experiments such as microarray experiments, i.e., genes whose expression mea-

sures are associated with possibly censored biological and clinical covariates and

outcomes

• The identification of co-expressed genes in high-throughput gene expres- sion ex-

periments, i.e., pairs or sets of genes with correlated expression measures across

1
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biological samples

• Tests of association between gene expression measures and biological an- notation

metadata, e.g., Gene Ontology annotation

• Tests of association between phenotypes and codon/amino acid mutations, e.g., as-

sociation between viral replication capacity and HIV-1 sequence variation

Simultaneous hypothesis testing begins with a collection of null hypotheses,

H01, H02, . . . H0n

corresponding test statistics, possibly not independent,

X1, X2, . . . , Xn

and their corresponding p-values,

P1, P2, . . . , Pn

with ith p-value, Pi, measuring how strongly xi, the observed value of Xi, contradicts H0i;

“Large-scale” means that n is a large number.

One of the problems frequently faced in large scale multiple testing is that the signals

contained in the test statistics are faint. If the signals are faint, then distinguishing the null

hypothesis from the alternative is a challenging problem. However, if the more replicates of

the sample are collected, then the signal strength increases. As a result, the average power

of the testing procedure improves. The main focus of this thesis is to answer the following

question: how many replicates are required to attain a pre-specified level of power?
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We study this problem in the context of the normal means problem

Xj = µj + εj εj
iid∼ N(0, 1) j = 1, . . . , n (1.0.1)

where the jth case is a signal if µj , 0.

1.1 Motivation

As a motivating example, we consider the example of differentially expressed genes in

details. In this type of data, the main focus is to identify which genes are responsible

for a particular disease. First two groups of people are chosen, one group comprising of

the patients and the other one, controls. Then for a large number of genes, the difference

in average gene expression of both the groups are recorded. This is equivalent to testing

simultaneously a large number of null hypotheses, one for each gene. The null hypothesis,

for a particular gene, corresponds to that gene being not differentially expressed. See for

example, Brown and Botstein (1999); Lander (1999). Given a set of hypotheses to be

tested and a set of test statistics, one for each hypothesis, a particular test statistic is said

to contain a signal if the corresponding null hypothesis is false. The test statistic in this

case is the normalized difference in average gene expression.

Now, the challenge is how to detect the genuine signals from noisy data. It has been

pointed out in Pan et al. (2002) that it may be necessary to design an experiment that

uses multiple arrays containing multiple measurement for each gene. One reason is that

because of a high noise-to-signal ratio, a single array may not provide enough information

that can be reliably extracted Lee et al. (2000). An important and natural question often

asked by biologists is how many replicates are required ?
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1.2 Main problem in details

The question asked by biologists in the above set-up can be generalized in the following

way. In a lot of practical applications, the signal-to-noise ratio is found to be high. This

makes reliably testing hypotheses difficult. At least four factors determine the power of

simultaneous multiple testing:

• the proportion of no-null hypotheses.

• the distribution of the signals.

• measurement variability

• sample size.

Only the latter is under the experimenter’s control. Moreover, if the signals are too

weak then an increase in sample size will also lead to stronger signals. Given a set of

hypotheses and a test-statistic corresponding to each hypothesis, how many more copies

of test-statistic (samples) for each hypothesis one needs for reliable testing. ? The larger

the number of copies, which we call replication multiplicity, the smaller the signal-to-noise

ratio.

However, collecting more samples is a costly procedure. One would like to know before-

hand the minimal number of samples required to achieve a certain degree of reliability for

testing, from the available sample. This gives rise a lot of interesting estimation problems

for the enlarged sample from the current sample. Several quantities are of interest. A few

examples are given below.
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• Average power: When a null hypothesis is rejected, it is a positive. A positive may be

a true positive (TP) or a false positive (FP), depending on whether the hypothesis is

correctly or incorrectly rejected. The average power of a procedure is the fraction of

true positives that it yields. Larger sample size leads to decrease in signal-to-noise to

ratio. Decrease in signal-to-noise ratio implies increase in average power for testing.

So it is important to consider the prediction of the expected average power which

can be obtained from an enlarged sample.

• False Discovery Rate (FDR): The false discovery rate (FDR) of a test is defined

as the expected proportion of false positives among the declared significant results

[Benjamini and Hochberg (1995), Benjamini and Hochberg (2000), Keselman et al.

(2002)]. Because of this directly useful interpretation, FDR is a more convenient scale

to work on instead of the P-value scale. For example, if we declare a collection of 100

genes with a maximum FDR of 0.10 to be differentially expressed, then we expect a

maximum of 10 genes to be false positives. No such interpretation is available from

the p−value. Control of the FDR has been widely accepted as a criterion in multiple

testing. The FDR level serves as an important guideline for practitioner. Increase in

sample size means discovery of more signals and hence, decrease in FDR. Prediction

of FDR for the enlarged sample is also of great interest.

• Required replication multiplicity: A larger sample usually means a larger power and

a better control of the FDR. It is of interest to know the minimum sample size or

replication multiplicity that is required to achieve a pre-specified level of average

power or FDR , or both.

All the quantities of interest described above can be computed using the two key

quantities ε, the proportion of non-null hypotheses, and PR, the expected positive rate
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for the enlarged sample. Positive rate is the expected proportion of positives. More details

about positive rate are in §(3.4). From hereon, we will refer to the positive rate for the

enlarged sample as the future positive rate. Future expected positive rate refers to the

expected fraction of null hypotheses rejected by the test statistic computed on an enlarged

sample, had it been available.

We emphasize the role of the proportion of non-null hypotheses, ε and the future

positive rate, PR in the light of the following equations.

ε = 1
n
·#{j : Hj is false}.

The (future) expected positive rate is related to the true positive rate (TPR) and false

positive rate (FPR) through

PR = (1− ε) · FPR+ ε · TPR,

and that the FDR is related to these quantities through

FDR = (1− ε) · FPR
PR

= (1− ε) · FPR
(1− ε) · FPR+ ε · TPR.

Therefore, the problems of estimating the proportion and the positive rate are of great

interest. (Note that the positive rate associated with current data is relatively easy to

estimate, but that associated with the future data is much harder to estimate).

The problem of estimating ε, the proportion of non-null hypotheses, has been studied

before in great detail. For example, see Genovese and Wasserman (2004), Jin (2008),Jin

and Cai (2007), Meinshausen and Rice (2006). The main focus of this thesis is to propose
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an efficient estimation procedure for the future expected positive rate, PR and study the

properties of the estimator.

1.3 Summary of results

The main technique used in estimating the expected positive rate is as follows. Expected

positive rate, as a function of the unknown vector µ, in (1.0.1) can be expressed as a

simple average of identical functions over the coordinates of µ. The Fourier transform of

PR, depends on the unknown vector µ only through the average characteristic function

of the coordinates of µ, which can be estimated using standard deconvolution technique.

Our main results are the following:

1. For a broad class of models G1, with no restriction on the proportion of non-null

hypotheses, ε, we give rate of convergence of the mean-squared error of the estimator

of PR (Theorem (4.1.1)).

2. An asymptotic lower bound for the minimax risk of estimating PR in the class G1 is

established (Theorem (4.2.1)). This shows that the MSE of our proposed estimator

is optimal upto a logarithmic factor.

3. We also consider class of models G2, where the proportion of non-null hypotheses,

ε → 0 as the total number of hypotheses n → ∞. We propose some subtle changes

in the estimation procedure in this case, as compared to G1 in (4.3). The rate of

MSE of our estimator for PR in this case is established (Theorem 4.3.1).

This thesis is organized as follows. In §2, we review the recent methods in large

scale multiple testing which are important for applications such as false discovery rate
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control, etc. We also review some estimation problems related to multiple testing. In

§3, we describe the set-up under which we consider testing a large number of hypotheses.

In particular, we describe the distribution of the test-statistics and the structure of the

signals. We consider two important aspects with regard to the structure of the signals.

One is their distribution, and the other is sparsity of the signals. We also present in §3

a Fourier approach for constructing estimators for general functionals.In §4 we define the

positive rate (PR) which is the main quantity of interest, in terms of the parameters under

the set-up we consider in §3. We also propose an estimator for estimating PR using the

Fourier approach and study the asymptotic properties of this estimator under different

regimes. In particular, we obtain theoretical rates of convergence for the mean squared

error for our proposed estimator. In §5.1 we conduct some simulations to demonstrate the

efficiency of the proposed estimator. In §5.2, we apply our method to some real datasets

in gene microarray such as, the colon data Alon et al. (1999) and the leukemia data Golub

et al. (1999). In §6 we make some concluding remarks and mention some future directions

of research in this area.



Chapter 2

Review

In this chapter we review some of the inference problems related to the model,

Xj = µj + εj εj
iid∼ N(0, 1) j = 1, . . . , n (2.0.1)

which is more popularly known as the many normal means problem in the statistical

literature. The jth case is a signal if µj , 0, otherwise it is noise. One of the foremost

works on normal means was usage of shrinkage estimators by James and Stein in 1961

James and Stein (1961). In this chapter we will discuss some of the testing and estimation

procedures developed in recent years for the model in (2.0.1).

2.1 Testing

The testing problems we are going to discuss are of the following two types:

9
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• Simultaneous testing of the set of hypotheses

H0j : µj = 0 vs. H1j : µj , 0 1 ≤ j ≤ n

• Overall testing or testing for checking if there is any signal at all for a given set of

hypotheses. Letting ε = 1
n#{j : µj , 0}, the proportion of signals, this is equivalent

to testing if ε = 0 or not.

2.1.1 Simultaneous testing

Simultaneous testing of a large number of hypotheses is very frequent these days in a

variety of problems such as detection of differentially expressed genes, imaging etc. Con-

trol of type I error in this kind of situation is not very effective. Controlling type I error

amounts to controlling the probability of at least one false positive. Generally this pro-

cedure is carried out in practice using the Bonferroni correction. Assuming that there

are n hypotheses to be tested and we want control the familywise error rate at level α,

the Bonferroni method tests each individual hypothesis at level α
n . But it is known that

this type of correction is very conservative and its power is too low. This was discussed

in Dudoit et al. (2003) who showed, by comparing several testing procedures, such as

Bonferreni method, false discovery rate and per-comparison error rate, that the power of

Bonferroni method is much lower compared to others.

The most significant development to overcome this kind of problem, was proposed

by Benjamini and Hochberg (1995). They argued that the idea of controlling familywise

error rate is not necessary because when there is a large number of hypotheses to be

tested, then controlling the probability of at least one false rejection will lead to very
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low power. Instead, they proposed to control the expected ratio of the number of falsely

rejected hypotheses to the total number of rejected hypotheses, which they called the

False Discovery Rate (FDR). More formally, let V be the number of falsely rejected null

hypotheses and S the number of correctly rejected null hypotheses. Let Q be defined as

Q =


V

V+S if V + S , 0

0 otherwise

FDR is defined as E[Q].

A simple procedure for controlling FDR at level q is the following where q is chosen by

the user. Let there be n null hypotheses to be tested, H01, . . . ,H0n and let p1, . . . , pn be the

corresponding p−values. Let the p−values be arranged in increasing order of magnitude

by p(1) ≤ . . . ≤ p(n). Also let the null hypothesis in the increasing order of p−values be

H(01), . . . ,H(0n). Let

k̂FDR = max{k : p(k) ≤ q
k

n
}

and reject the null hypothesesH(01), . . . ,H(0k̂FDR). Benjamini and Hochberg (1995) showed

that for the above testing procedure, E[FDR] ≤ q. In fact in the case of n independent

hypotheses with n0 true null hypotheses, they showed that

E[FDR] = q
n0
n
≤ q

The main idea of FDR is that if there is a large number of hypotheses to be tested

simultaneously, instead of controlling the probability of incorrectly rejecting at least one

null hypothesis, we let some null hypotheses to be incorrectly rejected only controlling for

FDR, then we get a much more powerful testing procedure.
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2.1.2 Overall testing

Overall testing is carried out when we are interested in testing if there is any signal at all.

In particular we consider the following. We assume there are n hypotheses to be tested

with Xj being the test statistic for the jth hypothesis. We test,

H0j : Xj ∼ N(0, 1) vs. Xj ∼ N(µj , 1) µj > 0

In fact, Donoho and Jin (2004) considers a slightly simpler model for this problem.

H0 : Xj
i.i.d∼ N(0, 1) 1 ≤ j ≤ n

H1 : Xj
i.i.d∼ (1− ε)N(0, 1) + εN(µ, 1) 1 ≤ j ≤ n

where ε is the proportion of non-null hypotheses. In Donoho and Jin (2004), ε and µ

were calibrated in the following way. They chose ε = n−β with β ∈ (1
2 , 1) and µ =

√
2r logn with 0 < r < 1. In this setting, with µ and ε known, the optimal test is the

likelihood ratio test. It was shown in Ingster (1998), that there is a detection boundary

described by a function ρ∗(β) such that if r > ρ∗(β) then the likelihood ratio test can

successfully determine whether the null hypothesis is true or not. Letting p(1) ≤ . . . ≤ p(n)

be the p−values arranged in increasing order. Donoho and Jin (2004) proposed the higher

criticism statistic,

HC∗ = max
0≤jα0n

√
n[j/n− p(j)]/

√
p(j)(1− p(j))

The higher criticism test statistic rejects the null hypothesis for large values of HC∗.

Donoho and Jin (2004) showed that it can detect whether the null hypothesis is true or
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not, in the same region of the detection region as the likelihood ratio test, adapting to the

unknown values of β and r.

2.2 Estimation

In this section, we will review the following three problems for the model in (2.0.1):

• Estimation of the vector µ under the assumption that the proportion of non-zero

means, ε→ 0 as the number of observations n→∞.

• Estimation of the null distribution under a slightly general set up

Xj ∼ N(µj , σ2
j ) Xj ⊥ Xj′ , j , j

′

H0j : (µj , σj) = (µ0, σ0) vs. H1j : (µj , σj) , (µ0, σ0)

where µ0 and σ0 are unknown.

2.2.1 Estimation of µ

In Abramovich et al. (2006), an estimator for µ was proposed for the model (2.0.1) based

on hard thresholding. It was argued that in the sparse case, i.e. when the proportion

of non-zero components of µ, ε, is small then estimating µ by hard thresholding would

be a sensible strategy. Formally, for any threshold t, hard thresholding at t gives the jth

component of the estimator µ̂ as proposed as

µ̂j =


xj if |xj | > t

0 otherwise
(2.2.2)
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A review of Donoho et al. (1992) and Donoho and Johnstone (1994a) on minimax estima-

tion on µ over the space

`0(ε) = {µ : 1
n

n∑
j=1
|µj | ≤ ε}

shows that the ideal threshold t in (2.2.2) is

tβ =
√

2(1− β) logn where ε = nβ−1 β ∈ (0, 1)

The smaller the value of β, the smaller the value of ε. A small value of ε means the data is

very sparse. However the parameter β which is related to sparsity, is unknown in practice.

Abramovich et al. (2006) showed the following estimator adapts to this unknown sparsity:

• Take the order statistics |x|(1) ≥ . . . ≥ |x|(n).

• Compare them to the series of right tail Gaussian quantiles tk = z(q/2 · k/n) where

q is the chosen by the FDR controlling procedure.

• Choose kFDR to be the largest index k for which |x|(k) ≥ tk.

Then the estimator µ̂ of µ obtained by thresholding at t̂kFDR = t̂F , is

µ̂F,j =


xj if |xj | > t̂F

0 otherwise

The threshold adapts to the unknown sparsity and attains the minimax rate over `0(ε)

provided the false discovery rate q = qn → 0 as n→∞.
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2.2.2 Estimation of null distribution

Cai and Jin (2010) considered a more general version of the model in (2.0.1)

Xj
i.i.d.∼ (1− ε)φ(x− µ0

σ0
) + ε

∫
φ(x− u

σ
)g(u, σ) du, 1 ≤ j ≤ n (2.2.3)

with the constraints that

|ξ|αĝ(ξ|σ) ≤ A and ε ≤ ε0n−β (2.2.4)

with α > 0 and β ∈ [0, 1
2) and ε0 ∈ (0, 1).

The main problem was to estimate µ0 and σ0. This problem is of practical importance

as Efron et al. (2001) pointed out in the case of microarray data for breast cancer, that

the true null distribution is not N(0, 1) i.e. (µ0, σ0) , (0, 1) in (2.2.3). Efron et al. (2001)

cited a number of reasons for this phenomenon such as unobserved covariates, correlations

across arrays etc.

Cai and Jin (2010) showed at high frequencies, the characteristic function of the Xj ’s

can be used to estimate the parameters µ0 and σ0. More formally, they showed that if

r(ξ) = E[eiξXj ] is the characteristic function of Xj , 1 ≤ j ≤ n, then

r(ξ) ≈ (1− ε)e−σ2
0ξ

2
/2 · eiµ0ξ

Now, we can retrieve σ0 and µ0 from the characteristic function r above in the following

way:
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σ̂2
0(γ) = −

(
d
ds |r(s)|
s|r(s)|

)∣∣∣∣∣
s=ξn(γ)

, µ̂0(γ) =
(

1
r2(s)Im(r̄(s)r′(s))

)∣∣∣∣∣
s=ξn(γ)

(2.2.5)

where ξn(γ) = inf{ξ : ξ > 0, |r(ξ)| ≤ n−γ}. Finally since, r(ξ) = E[eiξXj ] is un-

known, they substituted it with the empirical characteristic function r̂n(ξ) = 1
n

∑n
j=1 e

iξXj

and followed the same procedure as above. Cai and Jin (2010) proved that the above

procedure gives minimax estimator both for µ0 and σ2
0 in the class of models described by

(2.2.3) and (2.2.4).



Chapter 3

Methodology

The main focus of this thesis is to predict power of testing procedure in large scale multiple

testing, when the sample size is increased. In this section we will introduce the model

of the test-statistics, describe what we mean by enlarged sample and also justify our

model assumptions with the help of a simple example. Next, we define and explain our

main quantity of interest, the positive rate (PR), and also describe the importance of

estimating it. Finally, we introduce a general approach using tools from Fourier expansion

for estimating functionals of the type of positive rate.

3.1 Gaussian Model

Let there be n independent hypotheses to be tested, the null hypothesis

H0j : µj = 0 vs. H1j : µj , 0 j = 1, . . . , n. (3.1.1)

17
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Let Xj be the test statistic for the jth hypothesis. We assume that Xj ’s are independent

and

Xj ∼ N(µj , 1), 1 ≤ j ≤ n (3.1.2)

The test-statistics Xj , 1 ≤ j ≤ n come from the sample available to us which we will

refer to as the “current sample”. The assumption about the model of the test-statistics

Xj , 1 ≤ j ≤ n will be justified in §(3.3). Since, our main focus is to study the increase in

power for testing in case of (3.1.1) as a result of increase in sample size, we first describe in

details what we mean by an enlarged sample. We refer to the enlarged sample by “future

sample”, since it is not available to us while we are doing inference.

3.2 Future Sample

Next, we consider the future sample. By future sample we mean, in the future more

observations will be collected. Let us assume the sample size in future will be a times

the current sample size, with a > 1. In order to clarify what we mean by future sample,

we assume a is an integer although it is not necessary, as we will see later in §(3.3) .

Corresponding to each observation Xj in the current sample as in (3.3.2), we assume

we have a independent and identically distributed copies of Xj in the future sample for

1 ≤ j ≤ n. The future sample can be described as the following:

Current Sample: Xj

Future Sample: (Xf
1j , . . . , X

f
aj)

Xf
jk

i.i.d.∼ N(µj , 1), 1 ≤ k ≤ a, 1 ≤ j ≤ n
where µj is same as in (3.1.2) for 1 ≤ j ≤ n. Now we can construct the test-statistic for

the future sample by taking a simple average across replications and normalizing by the
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standard deviation for each observation i.e.

Xf
j = 1√

a

a∑
k=1

Xf
kj 1 ≤ j ≤ n

Denoting the test-statistic for the jth case by Xf
j for the future sample, we have

Xf
j ∼ N(

√
aµj , 1), 1 ≤ j ≤ n

In the next section we justify the assumptions about the model of the test-statistics Xj ,

1 ≤ j ≤ n from the current sample in (3.1.2) as well as the distribution of the test statistics

Xf
j , 1 ≤ j ≤ n, in future sample.

3.3 Justification for model assumptions

We justify the model described above for the test statistics Xj , 1 ≤ j ≤ n in the context

of hypothesis testing in (3.1.1) with a simple example. We consider the problem of de-

tection of differentially expressed genes, described as one of the main motivations in the

introduction. Suppose, gene expression measurements are collected on n genes from two

groups of people, control and patients. One group has p1 people and the other one has

p2 people. The problem of interest, is to detect which genes between these two groups we

differentially expressed. Hence, in this case the total number of hypotheses to be tested is

equal to n. Each gene yielded a two-sample t−statistic. For the jth gene, the t−statistic

is

Tj = G1j −G2j√
V ar(G1j) + V ar(G2j)

(3.3.1)
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where G1j and G2j are the mean expression levels for the jth gene in the first group and the

second group respectively. µj is the expected value of Tj for the jth gene for j = 1, . . . , n.

If the degrees of freedom of Tj is moderately large for all j, it can be assumed that

Tj
approx∼ N(µj , 1) 1 ≤ j ≤ n

Hence, we assume the test statistic, Xj comes from N(µj , 1) for 1 ≤ j ≤ n.

Additionally denoting the proportion of non-null hypotheses in (3.1.1) by ε, and as-

suming the non-zero coordinates of the vector µ come from a density g, the whole set up

and the model can be described in the following way. Let F be the subset of {1, . . . , n}

with |F| = nε such that if j ∈ F , then H0j is false for j = 1, . . . , n. This simply means out

of the n hypotheses to be tested, F is the set of coordinates for which the null hypothesis

is false. Also assume that if H0j is false, then µj ∼ g for some density g for 1 ≤ j ≤ n.

Here, ε, F and g are unknown. Then,

Xj
iid∼ N(0, 1)∀ j ∈ Fc (3.3.2)

Xj′
iid∼
∫
φ(x− u) g(u) du∀ j′ ∈ F

Xj is independent of Xj′ ∀j ∈ F
c, j

′ ∈ F

where φ(·) is the density of N(0, 1).

Now we focus on the distribution of the future test-statistics, Xf
j for 1 ≤ j ≤ n. Going

back to the example of differentially expressed genes, we consider again the two-sample

t − test as in 3.3.1. For the jth hypothesis, let T fj be the future two-sample t−statistic,
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for 1 ≤ j ≤ n.

T fj =
G
f
1j −G

f
2j√

V ar(Gf1j) + V ar(Gf2j)
(3.3.3)

where Gf1j and G
f
2j are the mean expression levels for the jth gene in the first group and

the second group respectively for the future sample. Now,

E[G1j −G2j ] = E[Gf1j −G
f
2j ]

However,

V ar[Gf1j ] + V ar[Gf2j ] =
(
V ar[G1j ] + V ar[G2j ]

)
× 1√

a

Hence,

T fj
approx∼ N(

√
aµj , 1) 1 ≤ j ≤ n

Letting Yj be the test statistic for the future data for the jth hypothesis, we have Yj ∼

N(
√
nµj , 1) for j = 1, . . . , n. Since the coordinates out of {1, . . . , p} for which the null

hypotheses are false, remain the same as in the case of the current sample, the marginal

density of the future test statistics is

Yj
iid∼ N(0, 1)∀ j ∈ Fc (3.3.4)

Yj′
iid∼
∫
φ(x−

√
au) g(u) du∀ j′ ∈ Fc

Yj is independent of Yj′ ∀j ∈ F
c, j

′ ∈ F
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3.4 Testing Procedure and Positive Rate

Having described the hypotheses and the distribution of the test statistics, we turn our

attention to the testing procedure that we are going to consider. Note that the model we

consider from §3.1 is,

Xj
iid∼ N(µj , 1) j = 1, . . . , n (3.4.1)

where only a small proportion ε of the vector µ are significantly large and the locations

of these components are not known in advance. In such situations, an appropriate testing

procedure should be based on hard thresholding. To be more specific, we choose an

appropriate threshold t, and then decide that,

H0j is false if |Xj | > t

H0j is true, otherwise (3.4.2)

for j = 1, . . . , n.

The most immediately compelling motivation for this strategy is provided by wavelet

analysis, since the wavelet representation of many smooth and piecewise smooth signals is

sparse in precisely our sense. For more on this, see Abramovich et al. (2006). The threshold

can be chosen in various ways. One of these ways is to choose it based on controlling false

discovery rate by Benjamini and Hochberg (1995). Our main focus, though is not on the

choice of the threshold t. Our main focus is to estimate a quantity called the positive rate

(PR), which we will introduce below, for a range of interesting thresholds t.

In (3.4.2), we discussed the testing strategy for the current (available) sample. Since

our quantity of interest is related to the future (enlarged) sample, we discuss very shortly
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the testing strategy for the future sample. Note that for the future sample, the future

test-statistics,

Yj
iid∼ N(

√
aµj , 1) j = 1, . . . , n (3.4.3)

If the future test-statistics were available to us, then similar to (3.4.2), the testing strategy

should be,

H0j is false if |Yj | > t

H0j is true, otherwise (3.4.4)

for j = 1, . . . , n. Note that, we use t as a generic threshold here. Before going into further

details about positive rate, we revisit some standard terminology for multiple testing.

Given a set of hypotheses and a testing procedure, we have the following:

• When a null hypothesis is rejected, we call it a positive.

• When a null hypothesis is rejected by the test procedure, but in reality it is true, we

call it a false positive.

• When a null hypothesis is rejected by the test procedure, and also in reality it is

false, we call it a true positive.

Comparing (3.4.1) and (3.4.3), it is evident that the signal strength for the future

sample (i.e. when the sample size is increased by a times) the signal strength is increased

by
√
a times. An increase in signal strength implies that one should be able to discover

more signals in the future sample. Our main goal, as described in the introduction in

§1, is to investigate how much one can gain by increasing the sample size. One way to

quantify this is, given the testing procedure described in (3.4.4), what should be its power



3.4. Testing Procedure and Positive Rate 24

for the future sample. In other words, given a value of the replication multiplicity a and

a threshold t, how can we estimate power for the future sample given the current data

{Xj}nj=1. In the case of a collection of hypothesis, by power of a testing procedure we

mean the expected proportion of true positives discovered by it.

From here on, we will refer to expected proportion of true positives as true positive rate

(TPR), expected proportion of false positives as false positive rate (FPR) and expected

proportion of positives as positive rate (PR). As described above, our main quantity of

interest is TPR for the future sample (enlarged by a times). First we derive formulas for

TPR, FPR and PR from which the relationship among them will be evident. Then we will

explain why we want to estimate PR instead of TPR. From the testing procedure for the

future sample as described in (3.4.4), given a threshold value t and replication multiplicity

a, and also using (3.4.3),

TPR(t, a) =
EH1j true[

∑n
j=1 I(|Yj | > t)]

{#j : H1j true} (3.4.5)

=
∑n
j=1 PH1j true(|Yj | > t)

nε

= nε[1−
∫

Ψ(u; t, n)g(u) du]
nε

= 1−
∫

Ψ(u; t, n)g(u) du

where

Ψ(u; t, a) = 1− [Φ̄(t−
√
a · u) + Φ̄(t+

√
a · u)], (3.4.6)

with Φ̄ = 1− Φ being the survival function of N(0, 1)
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Similarly for the false positive rate and the positive rate we have,

FPR(t, a) =
EH0j true[

∑n
j=1 I(|Yj | > t)]

{#j : H0j true} (3.4.7)

=
∑n
j=1 PH0j true(|Yj | > t)

n(1− ε)

= n(1− ε)[1−Ψ(0; t, a)]
n(1− ε) = 1−Ψ(0; t, a)

PR(t, a) = 1
n

n∑
j=1

P (|Yj | > t) (3.4.8)

= 1
n
EH0j true[

n∑
j=1

I(|Yj | > t)] + 1
n
EH1j true[

n∑
j=1

I(|Yj | > t)]

= 1
n
· n(1− ε)[1−Ψ(0; t, a)] + 1

n
· nε[1−

∫
Ψ(u; t, n)g(u) du]

= 1− (1− ε)Ψ(0; t, a)− ε
∫

Ψ(u; t, a)g(u) du.

where Ψ is as described in (3.4.6).

Combining (3.4.5), (3.4.7) and (3.4.8) we have

PR = (1− ε) · FPR+ ε · TPR (3.4.9)

Now, the positive rate PR, being a simple average over all the components of µ (as will

be shown in §4) is much easier to estimate compared to TPR. This is because TPR

is a function of only the signals i.e. the non-zero components of µ whose coordinates

are unknown. However, from the relationship between TPR and PR in (3.4.9), the only

unknown quantity involved is ε. Note that from (3.4.7) and (3.4.6), given a threshold

value t, FPR is known. However the problem of estimating the proportion of non-null
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hypothesis, ε is well-studied [Genovese and Wasserman (2004),Jin (2008),Jin and Cai

(2007),Meinshausen and Rice (2006)]. We will discuss more about estimating ε in §4.

Now, suppose we have an efficient estimator of the proportion of non-null hypothesis, ε.

Also suppose we have an estimator P̂R of the positive rate PR. Then from (3.4.9), we

can have an estimator for TPR,

T̂PR = P̂R− (1− ε̂) · FPR
ε̂

Another reason why estimating the positive rate, PR, is important can be given from

the perspective of false discovery rate (FDR). Suppose we choose a threshold t and apply

the testing procedure in (3.4.2) to the current data. Let us denote the false discovery rate

for the current data by FDRc. Let, for the choice of the same threshold t, the testing

procedure be applied to the future sample as in (3.4.4). Let us denote the false discovery

rate for the future sample by FDRf . Now, it can be derived easily, that

FDRf

FDRc
= PRc

PRf

where PRc and PRf refers to the current and future positive rates respectively. Since

the future sample is enlarged in size, more signals are expected to be discovered for the

same threshold t. Moreover, the number of false signals are expected to be the same since

increase in sample size only affects the true signals. Now the current positive rate, for a

threshold t is very easy to estimate. It is nothing but the survival function,

P̂R
c = 1

n

n∑
j=1

I(|Xj | > t)



3.5. A Fourier approach for estimation 27

Hence an estimator of P̂Rf , which we refer to above as just PR allows us to estimate the

decrease in false discovery rate due to enlarging the sample size.

Hence, the central problem for us is then how to estimate PR(t, a) for a given value

of the threshold t and replication multiplicity a, from the sample available at the current

stage i.e. Xj for j = 1, . . . , n. In the next subsection a Fourier approach is proposed for

estimating general functionals which are of the same form as the positive rate, PR.

3.5 A Fourier approach for estimation

From (3.4.8), it follows that the positive rate for a given value of threshold t and replication

multiplicity a can be written as

1− PR(t, a) = 1
n

n∑
j=1

P (|Yj | ≤ t) = 1
n

n∑
j=1

E[Ψ(µj ; t, a)] (3.5.1)

In this section we focus on estimating general functionals of the form of the positive

rate i.e. functionals which can be represented as simple average over all components of

the vector µ. Suppose we want to estimate functionals of a much broader class of the form

T (h) = 1
n

n∑
j=1

E[h(µj)] (3.5.2)

for some function h. Also note that the function Ψ(u; t, a) in (3.4.6) has a nice decay as

the value of |u| gets large as is evident from Figure (3.5). Hence, the Fourier transform of

Ψ(·; t, a) exists. We also assume, for the functional T (h), h also has a Fourier transform.

It should be noted, that from (3.4.8) and (3.4.6), it follows that PR is of the form of

(3.5.2) with h replaced by Ψ. For simplicity of notations, we also assume h is a symmetric
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function.
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Figure 3.1: Display of Ψ(u; t, a) with the threshold value t = 2, and replication multiplicity
a = 2.

The idea of using Fourier transforms for estimating functionals of the form of T was

proposed in Jin (2008) for estimating the proportion of non-null hypothesis, ε. Note that

the proportion ε of non-null hypothesis can be represented as,

ε = 1− 1
n

n∑
j=1

I(µj = 0).

Although, ε is a discontinuous function at 0, it can be approximated by smooth function

which has a Fourier transform. For more details see, Jin (2008). One way of looking at
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estimating functionals T of the form (3.5.2) is the following. Note that,

T (h) = 1
n

n∑
j=1

E[h(µj)] (3.5.3)

= 1
n

n∑
j=1

E
[ ∫

ĥ(ξ) cos(ξµj) dξ
]

= E
[ ∫

ĥ(ξ) 1
n

n∑
j=1

cos(ξµj) dξ
]

=
∫
ĥ(ξ)[(1− ε) + εĝ(ξ)] dξ

where for any function r(·) , r̂(·) denotes its Fourier transform. We also made use of the

fact that (1− ε) proportion of the µ′js are 0 and the rest come from an unknown density g

which follows from (3.1.1). The distribution of the elements of µ can also be described as

µj
iid∼ (1− ε)δ0 + ε · g j = 1, . . . , n

Let φµ be the characteristic function of the distribution of µj for any j, j = 1, . . . , n. Also

let, φX be the characteristic function of Xj , for any j, j = 1, . . . , n. Also let φ̂ be the

characteristic function of standard normal distribution. Using deconvolution, it follows

that

φµ(ξ) = φX(ξ)
φ̂(ξ)

Then from (3.5.3), it follows that,

T (h) =
∫
ĥ(ξ)φµ(ξ) dξ =

∫
ĥ(ξ)φX(ξ)

φ̂(ξ)
dξ (3.5.4)
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Since we observe X, we can estimate φX by its empirical characteristic function

φ̃X(ξ) = 1
n

n∑
j=1

cos(ξXj)

Using the fact that φ̂(ξ) = eξ
2/2, an estimator of the functional T of the form (3.5.2) is,

T̂ (h) =
∫
ĥ(ξ) φ̃X(ξ)

φ̂(ξ)
dξ =

∫
ĥ(ξ)

1
n

∑n
j=1 cos(ξXj)
e−ξ2/2 dξ (3.5.5)

Now the standard deviation in using an estimator of the form of T̂ (h) in (3.5.5) is,

O
( 1√

n

) ∫
eξ

2/2|ĥ(ξ)| dξ

Unless we restrict the integral in the Fourier domain to an appropriately chosen compact

support, the error is going to blow up. Thus, we can use a slightly modified version of the

estimator T̂ (h) in (3.5.5) as

T̂ (h;ω) =
∫
ĥ(ξ)ω(ξ)

1
n

∑n
j=1 cos(ξXj)
e−ξ2/2 dξ (3.5.6)

where the function ω controls the standard deviation of T̂ (h;ω).

We present another way of looking at the problem of estimating the functional T . The

idea is to construct an appropriate function f(x), and estimate T (h) with

T̂ (h) = 1
n

n∑
j=1

f(Xj).
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In fact, direct calculations show that

E[T̂ (h)] = 1
n

n∑
j=1

E[f(Xj)] = 1
n

n∑
j=1

E[(f ∗ φ)(µj)]

where ∗ is the usual convolution. So ideally, the estimator would be unbiased if it were

possible to construct an f such that

f ∗ φ ≡ h. (3.5.7)

However, for such an f to exist, in the frequency domain f should satisfy

f̂ · φ̂ = ĥ, or f̂(ξ) = eξ
2/2 · ĥ(ξ). (3.5.8)

where r̂ denotes the Fourier transform of r and φ is the standard normal density, φ̂(ξ) =

eξ
2/2. Generally, the function (f̂(ξ) = eξ

2/2 · ĥ(ξ)) is not integrable and hence such an f

does not exist. This is the case of PR with h = Ψ and also of ε with h(u) = 1{u=0}.

To overcome this difficulty i.e. to construct an f such that f̂ is integrable and f

approximately satistfies (3.5.8), a symmetric continuous function ω(ξ) is chosen, which

will be referred to as a kernel, so that the function ω(ξ) · eξ2/2 · ĥ(ξ) is integrable. Then

f̂(ξ) in (3.5.8) is replaced by

f̂(ξ;ω) = ω(ξ) · eξ2/2 · ĥ(ξ). (3.5.9)

By symmetry and inverse Fourier transformation, the unique f that satisfies (3.5.9) is

f(x;ω) =
∫
ω(ξ) · eξ2/2 · ĥ(ξ) cos(ξx) dξ. (3.5.10)
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Note that a desirable kernel ω should be such that ω has sufficiently thin tail i.e. ω(ξ) ≈ 0

for large values of ξ in order to make the existence of f possible, but at the same time for

small values of ξ, ω(ξ) ≈ 1 so that,

f(·;ω) ∗ φ ≈ h. (3.5.11)

Figure (3.2) shows the plot of a desirable kernel ω.
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Figure 3.2: Display of a desirable kernel ω(ξ).

In the literature, it is frequently seen that tampering a function significantly in the

frequency domain may only result in a change that is uniformly small in the spatial domain.

In this case, the ideal f(·) as described in (3.5.7) cannot be constructed. The function

f(·, ω) in (3.5.10) is an approximate version of f(·) where the approximation is done in

the Fourier domain. The difference of f(·) and f(·, ω) is uniformly small although f̂(·)

and f̂(·, ω) are significantly different.
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Having constructed f(·, ω) in (3.5.10) , the functional T (h) can be estimated with

T̂ (h;ω) = 1
n

n∑
j=1

f(Xj ; ω). (3.5.12)

From both perspectives, in (3.5.6) and (3.5.12), we arrive at the conclusion that it is

reasonable to estimate a functional T (·) of the form

T (h) = 1
n

n∑
j=1

E[h(µj)] (3.5.13)

with estimators of the form,

T̂ (h;ω) =
∫
ĥ(ξ)ω(ξ) 1

n

n∑
j=1

cos(ξXj) · eξ
2/2 dξ (3.5.14)

for an appropriately chosen kernel ω.

In §4, we give an explicit form of the estimator for positive rate using the Fourier

approach described so far. We also study its asymptotic properties in detail. In particular,

we give the rate of convergence for the mean squared error of this estimator. We also focus

on the sparse case i.e. when the proportion of non-null hypothesis, ε → 0 as n → ∞. In

the process, we also derive an efficient kernel for estimating positive rate.



Chapter 4

Main Results

In this chapter, first we construct an estimator P̂R(ω; t, a) for positive rate PR(t, a) for a

generic kernel ω in (4.0.2). In §(4.1), we obtain an upper bound, for a general kernel ω,

of the mean squared error of the estimator in a broad class of models G1. Then we choose

an efficient kernel ω̃ by minimizing the upper bound uniformly over the class G1. For this

kernel ω̃ we obtain its rate of convergence. However, in many real datasets, for example

in the gene microarray data for leukemia Golub et al. (1999) and colon Alon et al. (1999)

data, it is believed that the proportions of signals is very small i.e. ε is very small. In these

cases, the estimator of PR in (4.0.1) can be modified, to get a better rate of convergence.

For this reason, in §(4.3) we consider also another class of models G2 where the proportion

on non-null hypothesis, ε, is very small. We derive results for convergence for G2 as in the

case of G1. In §§(4.3.1), we discuss how to estimate the proportion of non-null hypothesis,

ε, which is needed for estimating the positive rate using the class G2.

From here,we will denote PR(t, a) simply with PR for notational simplicity. Unless

otherwise mentioned, it should be understood that PR denotes the positive rate for a

34
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threshold value t and a replication multiplicity a. For constructing an estimator of the

positive rate, we apply the general framework of Fourier approach introduced in Section

3.5 . From (3.5.1), it follows that

1− PR = 1
n

n∑
j=1

E[Ψ(µj)]

Now, the positive rate PR is of the form T (h) as in (3.5.2) with h(·) = Ψ(·; t, a). From

(3.5.10) and (3.5.12) it follows that for a general kernel ω, an estimator P̂R(ω; t, a) of

PR(t, a) can be constructed as

P̂R(ω) = 1− 1
n

n∑
j=1

f(Xj ;ω) (4.0.1)

where

f(x;ω) = 1
2π ·

∫
ω(ξ) · eξ2/2 · Ψ̂(ξ; t, a) cos(xξ) dξ, (4.0.2)

where Ψ̂ denotes the Fourier transform of Ψ with

Ψ̂(ξ; t, a) = 2t√
a
· e−ξ2/(2a) · sin(tξ/

√
a)

tξ/
√
a

. (4.0.3)

Next, we calculate an upper bound for the bias and the variance of P̂R(ω). From §3.1,

Xj
iid∼ N(µj , 1), 1

n{#j : µj , 0) = ε and if µj , 0 then µj ∼ g for some density g for

j = 1, . . . , p. So this class of models can be parametrized by ε and g. We consider the

following broad class G1

G1 = {(ε, g) : 0 ≤ ε ≤ 1 where g is any density } (4.0.4)
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However, as mentioned in the beginning of this chapter, in many real datasets, the

proportions of signals, ε, is very small. We index ε by εn, assuming that as the number

of hypotheses n increases, εn decreases. Hence, we consider a second class of models G2,

where we consider smooth densities g characterized by the tail behavior of ĝ, the Fourier

transform of g. Hence, we take

G2 = {(ε, g) : ε ∈ (0, εn) and |ξ|α|ĝ(ξ)| ≤ A for large |ξ|} (4.0.5)

where

εn = C · n−β with β ∈ [0, 12], ε0 ∈ (0, 1) and α > 0

This class G2 is smaller than G1 and it has been proposed before in Cai and Jin (2010).

In the following section, our goal is to find a uniform upper bound for the MSE for

P̂R over G1 for any kernel ω and then find an optimal kernel by minimizing the upper

bound with respect to the kernel ω. §(4.3) deals with the same problem for G2.

4.1 Estimating positive rate for G1

Lemma (4.1.1) gives a uniform upper bound of the MSE of P̂R(ω) over G1 for any given

kernel ω.

Lemma 4.1.1 Fix a ≥ 1 and t > 0, and let ω be any kernel. Over the class G1,

(
E[P̂R(ω)]− PR

)2 ≤ t

π
√
a

∫
e−ξ

2/a · (ω(ξ)− 1)2 dξ. (4.1.1)
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and

Var(P̂R(ω) ≤ t

π
√
a

∫ 1
n
e(1− 1

a
)ξ2 · ω2(ξ) dξ. (4.1.2)

Proof of lemma (4.1.1) is in the appendix. Lemma (4.1.1) gives an upper bound to the

MSE of P̂R(ω),

MSE(P̂R(ω)) ≤ t

π
√
a

∫
e−ξ

2/a[(ω(ξ)− 1)2 + 1
n
eξ

2 · ω2(ξ)] dξ, (4.1.3)

Now, the optimal kernel ω is derived in Lemma (4.1.2) by minimizing the right hand

side of (4.1.3) using standard variation principle.

Lemma 4.1.2 Fix a ≥ 1 and t > 0. A continuous compactly-supported kernel that mini-

mizes the right hand side of (4.1.3) is given by

ω̃(ξ) =
(
1 + 1

n
eξ

2)−1
, −∞ < ξ <∞ (4.1.4)

Proof: From (4.1.3) it follows that the optimization problem amounts to minimizing

F (ω) = 1
π

t√
a

∫ ∞
−∞

[
(ω(ξ)− 1)2e−ξ

2/a + 1
n
ω2(ξ)eξ2(1− 1

a
)
]
dξ

with respect to ω. In order to minimize F , we use calculus of variation principle. Let ω1

be any smooth and symmetric function. If F has a minimum at ω̃, then F (ω̃+εω1) should

have a derivative equal to 0 with respect to ε at ε = 0.

∂F (ω̃ + εω1)
∂ε

ε=0 = 2
π

t√
a

∫ ∞
−∞

[
(ω̃(ξ)− 1)e−ξ2/a + 1

n
ω̃(ξ)eξ2(1− 1

a
)
]
ω1(ξ) dξ
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Using the fact that, ∂F (ω̃+εω1)
∂ε ε=0 = 0 and ω1 smooth, we get

(ω̃(ξ)− 1)e−ξ2/a + 1
n
ω̃(ξ)eξ2(1− 1

a
) = 0∀ ξ

Hence it follows that, ω̃(ξ) = 1
1+ 1

n
eξ2 . �

A plot of the kernel ω̃ in (4.1.4) is given in Figure (4.1). The kernel ω̃ is a compactly

supported function which is approximately equal to 1 around 0. This matches our intuition

about the kernel in Figure (3.2). Having obtained an efficient kernel ω̃, we can construct

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

ξ

ω
(ξ
)

Figure 4.1: Display of kernel ω̃ in (4.1.4).

the estimator P̂R(ω̃) from (4.0.1). The following theorem characterizes the MSE of P̂R(ω̃).

Theorem 4.1.1 Fix a ≥ 1 and t > 0. For sufficiently large n, there is a constant C =
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C(a, t) > 0 such that

MSE(P̂R(ω̃)) ≤ C · a2

log2(n)
· n−1/a.

The proof of theorem (4.1.1) is in the appendix. Our main goal behind the Fourier

approach in (3.5.11) and (4.0.2) was to construct an f using a kernel ω such that

f(·;ω) ∗ φ(u) = Ψ(u)

Since the interesting range of threshold values t are O(
√

logn), we also give in (4.1.2)

the rate of integrated mean squared error for estimating positive rate in the interval

t ∈ [q1
√

logn, q2
√

logn].

Theorem 4.1.2 Fix a ≥ 1 and t > 0. For sufficiently large n, there is a constant C =

C(a, t, q1, q2) > 0 such that

∫ q2
√

logn

q1
√

logn
MSE(P̂R(ω̃; t, a)) dt ≤ C · a2

logn · n
−1/a.

The proof of theorem (4.1.2) is in the appendix. Our main goal behind the Fourier

approach in (3.5.11) and (4.0.2) was to construct an f using a kernel ω such that

f(·;ω) ∗ φ(u) = Ψ(u)

With the optimal kernel ω̃, the difference between

f(·; ω̃) ∗ φ(u) and Ψ(u) (4.1.5)
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is surprisingly small as shown in Figure(4.2), that illustrates the approximation in (4.1.5),

where we compare the two functions for t = 2 and a = 2, 4, 6, 8. For a ≤ 4, the difference

between two functions is very small. As a increases, the rate of convergence of the bias

decreases and hence the approximation becomes less accurate.
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Figure 4.2: Display of 1 − f(·; ω̃) ∗ φ(u) (dashed) and 1 − Ψ(u) (solid) with t = 2, and
a = 2, 4, 6, 8 from left to right then from top to bottom.

In the next section, we derive a lower bound for minimax risk over G1 for estimating

PR.
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4.2 Lower bound for the minimax rate

For deriving an asymptotic lower bound for the minimax risk, as n → ∞, for estimating

PR over G1, we model the X ′js in as

Xj
i.i.d.∼ f

where f is the Gaussian mixture model

f(x) = (1− ε)φ(x) + ε

∫
φ(x− u)g(u) du (4.2.1)

Similarly we take

G1 = {f : f(x) = (1− ε)φ(x) + ε

∫
φ(x− u)g(u) du, ε ∈ (0, 1) & g any density}

All the results proved so far for estimating PR are also true for this case. The minimax

risk for estimating PR in G1 is defined as

R(G1) = inf
T̂

sup
G1

E
(
P̂R− PR

)2

As we shall see in the next theorem, our proposed estimator matches the lower bound

except for a logn term.

The following theorem characterizes the lower bound for the minimax risk.

Theorem 4.2.1 Fix a > 1 and t > 0. For sufficiently large n, there exists a constant
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C = C(a, t) > 0 such that

lim
n→∞

n1/a · log2+α(1−1/a)+ 1
a (n)

a2 · R(G1) ≥ C

In this case, our proposed estimator for PR achieves the optimal rate except for a log

term.

We sketch the main idea of the proof. In order to find the lower bound we construct two

densities f1 and f2 ∈ G1 such that f1 and f2 are indistinguishable in the sense that their

Hellinger distance is o(1/n) but the positive rate (PR) associated with f1 and f2 are as

far as possible.

Now we discuss the construction of f1 and f2. Let

h(ξ) =


−π|ξ| 0 ≤ |ξ| ≤ 1

|ξ|−2 |ξ| > 1

Take ĝj(ξ) = e−ξ
2/2 + ϑ0ŵj(ξ) for j = 1, 2 with

ŵ1(ξ) = s1(|ξ|)h(ξ) + s2(|ξ|)|ξ|−2

ŵ1(ξ) = s1(|ξ|)h(ξ)

where s1(ξ) is a smooth function around ξ = 1. Let τn = log(nε2) − log logn. s2(ξ) is a

smooth function such that

s2(ξ) =


0 0 ≤ ξ ≤ √τn

1 ξ ≥
√
τn + c
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where the constant c is chosen in such a way that t√
a
·
√
τn + c = 2kπ + π/2. For large

enough u, both w1(u) and w2(u) are equal to 1
|u|2 (1 +O(1)). Hence, by choosing ϑ0 small

enough gj is a density and fj(x) = (1 − ε)φ(x) + ε
∫
φ(x − u)gj(u) ∈ G1 for j = 1, 2 .

Clearly,

f2(x) ≥


C · ε(1 + |x|)−2 for large enoughx (say, |x| > c1)

Ce−
1
2x

2 |x| ≤ c1

‘

Lemma 4.2.1 Let fni be the joint distribution of X1, . . . , Xn for i = 1, 2. The Hellinger

affinity between fn1 and fn2 (= ρ(fn1 , f2(n)))→ 1 as n→∞.

The next lemma gives a lower bound on |PR(f1)− PR(f2)|.

Lemma 4.2.2 There exists a constant C > 0 such that r · |PR(f1 − PR(f2))|2 → C as

n→∞.

Now using the above three lemmas, the proof of Theorem 4.2.1 follows since, for any

estimator P̂R of PR, we have

max[E(P̂R−PR(f1))2, E(P̂R−PR(f2))2] ≥ Cρ4(fn1 , fn2 )(|PR(f1−PR(f2))|2) ≥ C · r−1

Hence ,

lim
n→∞

rmax[E(P̂R− PR(f1))2, E(P̂R− PR(f2))2] ≥ lim
n→∞

C · ρ4(fn1 , fn2 ) = C.

4.3 Estimating positive rate for G2

We now study the special case where ε is small and g is a smooth density, as in the class

G2 in (4.0.5), a case that arises in many practical situations. In this case, it is possible to
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reduce considerably the rate of mean squared error of P̂R(ω) in (4.0.1). In (4.0.1) for any

kernel ω , it is possible to reduce the bias of P̂R(ω) without increasing its variance, by

modifying the estimation procedure as follows. First, for any kernel ω. Recall that

PR(t; a) = (1− ε)2Φ̄(t) + ε ·
∫

(1−Ψ(u; t, a)) g(u).

= 1− (1− ε)
2π

∫
Ψ̂(ξ; t) dξ − ε

2π ·
∫ [∫

Ψ̂(ξ; t, a) · cos(ξu) dξ
]
g(u) du (4.3.1)

At the same time, direct calculations show that

E[P̂R(ω)] = 1− (1− ε)
2π

∫
ω(ξ) · Ψ̂(ξ; t) dξ − ε

2π ·
∫ [∫

ω(ξ) · Ψ̂(ξ; t, a) · cos(ξu) dξ
]
g(u) du.

(4.3.2)

From (4.3.1) with (4.3.2) it follows that

Bias[P̂R(ω)] = (1− ε)b0(ω) + εb1(ω) where

b0(ω) = 1
2π
∫
(1− ω(ξ)) · Ψ̂(ξ; t) dξ and

b1(ω) = 1
2π ·

∫ [∫
(1− ω(ξ)) · Ψ̂(ξ; t, a) · cos(ξu) dξ

]
g(u) du.

(4.3.3)

Now for any kernel ω, b0(ω) is known. So, if we use an estimator ε̂ for ε, and then

estimate the positive rate by

P̂R(ω, ε̂) = P̂R(ω) + (1− ε̂)b0

then,

Bias[P̂R(ω, ε̂)] = Bias(ε̂) · b0(ω) + εb1(ω) (4.3.4)
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In case of G2 where ε is very small, Bias(ε̂) is much smaller than (1 − ε) and so

comparing (4.3.3) with (4.3.4), it is easy to see that the bias for P̂R(ω, ε̂) is smaller than

P̂R(ω). Before discussing any further about estimation of the positive rate for G2, we

discuss the estimation of the proportion ε.

4.3.1 Estimation of proportion ε

We restrict our attention here only to using a Fourier approach. The problem of estimat-

ing ε, the proportion of non-null hypotheses, has been extensively studied using Fourier

approach in Jin (2008), Jin and Cai (2007) and Cai and Jin (2010). As mentioned in

subsection (3.5), the Fourier approach can be applied for estimating the proportion since

ε = 1− 1
n

n∑
j=1

E[I(µj = 0)]

which is of the same form as in (3.5.13) with h(u) = I(u = 0). However, the function

h in this case is discontinuous at 0. For estimating ε, the function I(u = 0) can be

approximated by a continuous function and then we can use the Fourier approach as in

(3.5.14). For more details see Jin (2008). The estimator proposed in Jin (2008), based on

this approach, is

ε̃ = 1− 1
n

n∑
j=1

∫
r̃(ξ)eξ2/2 cos(ξXj) dξ (4.3.5)

where γ0 ∈ (0, 1
2) is an appropriately chosen constant, and the kernel r̃ is any symmetric

density on [−
√

2γ0 logn,
√

2γ0 logn]. Here r̃ plays the same role as the general kernel ω

in (3.5.14). It follows from Cai and Jin (2010) that ε̃ cannot achieve the optimal rate in

the class G2 although simulations show it performs very well numerically. Here we propose

another estimator ε̂, a slightly modified version of ε̃ which performs numerically at least
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as good as ε̃ (see Figure (5.1)) and also achieves theoretically the optimal rate . The

estimator we propose here is,

ε̂ = 1− 1
n

n∑
j=1

∫
r(ξ)eξ2/2 cos(ξXj) dξ (4.3.6)

where γ0 ∈ (0, 1
2) and the kernel r is a smooth density on [−

√
2γ0 logn,

√
2γ0 logn] with

no mass on [−δ, δ] for some small δ. The choice of an appropriate γ0 and δ as well as r

will be discussed in §(5.1.1) . From Cai and Jin (2010), we have

Var(ε̂) ≤ |Bias(ε̂)|2 ≤ C · ε2n
1

(logn)α (4.3.7)

The rate of MSE of ε̂ will be used in the next section for estimating the MSE for PR.

Rate of MSE for positive rate PR

It follows from (4.3.4), that the final estimator proposed for estimating PR in G2 is, given

a generic kernel ω,

P̂R(ω, ε̂) = P̂R(ω) + (1− ε̂)
2π

∫
(1− ω(ξ)) · Ψ̂(ξ) dξ (4.3.8)

Following the same procedure as in lemma (4.1.1), an efficient kernel ω∗ is obtained by

minimizing the MSE of P̂R(ω, ε̂) as a functional of ω. As in lemma (4.1.2), that the

solution of this optimization problem is the kernel,

ω∗(ξ, εn, α) = 1
1 + C · (logn)α

nε2n
eξ2

−∞ < ξ <∞ (4.3.9)
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Proof of (4.3.9) is obtained by minor modifications of lemma (4.1.1), and hence it is

omitted. It is important to note that the kernel ω∗ compared to the kernel ω̃ in (4.1.4)

in the class G1, where the support is O(
√

logn), the support of ω∗ is O(
√
ε2n logn) i.e.the

kernel has a decreasing support as a result of sparsity. As sparsity increases i.e. the

proportion of non-null hypotheses, ε, decreases, the part of the positive rate, PR, involving

the non-null hypotheses decreases. As a result the bias decreases. The larger the support

of the kernel, the smaller the bias and the larger the variance. As a result of the trade-off

between bias and variance, the support of the kernel decreases since the bias decreases

with sparsity. Using the kernel ω∗ in (4.3.9), the rate of MSE of P̂R(ω∗, ε̂) in the class

G2 is given in the following theorem.

Theorem 4.3.1 Fix a ≥ 1 and t > 0. For sufficiently large n, there is a constant C > 0

such that

MSE[P̂R(ω∗, ε̂)] ≤ C · a2

log2+α(1−1/a)(n)
· ε2(1−1/a)
n n−1/a.

The proof of the above theorem can be obtained by minor modifications of the Theo-

rem 4.1.1 and hence it is omitted. As we can see above, the kernel giving the optimal rate

of convergence for the class G2 depends on εn as well as α which are unknown in prac-

tice. For practical purposes, when it is known beforehand that the proportion of non-null

hypotheses, ε, is very small, we propose to use the kernel

ωplug(ξ) = 1
1 + eξ2

nε̂2

−∞ < ξ <∞ (4.3.10)

where ε̂ is given in (4.3.6) and estimate positive rate by P̂R(ωplug, ε̂) as in (4.3.8). Since

in practice, we do not know the value of εn in G2 we plugged in the value of the estimator

of proportion, ε̂ in place of εn.
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The lower bound for the minimax risk in the case of G2 is much harder to obtain

compared to G1. The fact that ε→ 0 very fast as n→∞ makes the problem more difficult.

The approach used for the minimax risk in G1 was that we constructed two densities f1

and f2 where the Fourier transform of f2 is obtained by truncating the Fourier transform

of f1 at a large frequency. This approach does not work in the case of G2. We believe the

MSE of our estimator for G2 is minimax, at least upto a logarithmic factor, but to prove

it some other idea of construction of f1 and f2 is needed.

In the next chapter, we will focus about the performance of the estimator ε̂ in (4.3.6)

using simulations. We will also simulate data from models in the class G2 and illustrate the

performance of the estimator P̂R(ωplug, ε̂) for estimating positive rate. We will compare

our method for estimating positive rate with other standard methods and also apply our

method for real datasets in gene microarray such as the leukemia data Golub et al. (1999)

and the colon data Alon et al. (1999).



Chapter 5

Applications

In this chapter we demonstrate the performance of our estimator for positive rate. We

focus only on the case where the proportion of non-null effects, ε, is small since it is more

relevant for practical purposes. Now our estimator for positive rate in the sparse case,

P̂R(ωplug, ε̂), as in (4.3.8) with ωplug as in (4.3.10), depends on the estimator, ε̂ of the

proportion ε in (4.3.6). Hence, in §(5.1) first we show the performance of the estimator ε̂.

Then we focus on the performance of P̂R(ωplug, ε̂). Then in §(5.2), we apply our estimator

for estimating the positive rate for the gene microarray datasets such as the leukemia data

Golub et al. (1999) and the colon data Alon et al. (1999).

5.1 Simulation study

In this section, we discuss the choice of the kernel r and δ for estimating the proportion

of non-null effects (ε), as described in (4.3.6). Then we also test the performance of the

resulting estimator by simulation. We also use simulations to test the performance of

49
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P̂R(ωplug, ε̂) in (4.3.8) with ω replaced by ωplug in (4.3.10).

5.1.1 Simulation study for estimating proportion

Our proposed estimator from (4.3.6) is

ε̂ = 1− 1
n

n∑
j=1

∫
r(ξ)eξ2/2 cos(ξXj) dξ (5.1.1)

where γ0 ∈ (0, 1
2) and the kernel r is a smooth density on [−

√
2γ0 logn,

√
2γ0 logn] with

no mass on [−δ, δ] for some small δ. In this section, we discuss the choice of the tuning

parameters γ0, δ, and r for estimating εp. First consider the problem of estimating εp

which involves the choice of the tuning parameter γ0. Recall from (4.3.6), r is a symmetric

density on [−1, 1] with no mass on [−δ, δ] for some small δ. We choose δ = 0.01 and

r(ξ) = C · e
1

1−ξ2 , δ < |ξ| < 1

and for ε̃p in (4.3.5) we again choose

r̃(ξ) = C · e
1

1−ξ2 , |ξ| < 1

For more details on choosing the kernel r we refer to Jin (2008). Simulation results show

that choosing γ0 ∈ [0.2, 0.25] gives good numerical result for both ε̃ in (4.3.5) and ε̂.

Numerically, their performance depends both on the signal strength and on n. Here, we

do simulations for different signal strengths for n = 5000 in the following way :

for the signal strength s, we assume under H1, µ ∼ U(s, s+ 1) with s fixed in [1, 4]. The

value for ε is taken to be 10%. For each value of s simulate in the following way.
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1. Generate µ from U(s, s+1) and then generate an observation X from (1−ε)N(0, 1)+

εN(µ, 1).

2. Repeat step 1, n times and estimate ε using ε̂ as well as ε̃ with γ0 = 0.2.

3. Repeat steps 1 & 2, 100 times and compute the mean squared error of ε̂.

Figure (5.1) illustrates the performance of ε̃ and ε̂. Both seem to perform equally good.

However, since ε̂ is theoretically optimal in G2 while ε̃ is not, we use ε̂ as an estimator of ε.
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Figure 5.1: The plot displays the mean squared error of ε̃ (green) and ε̂ (blue). The mean
squared error is plotted on the y−axis versus the signal strength s along the x−axis. ε̂
does slightly better for weaker signals whereas ε̃ does slightly better for strong signals, but
overall there is not too much difference.
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5.1.2 Simulation study for estimating positive rate

We now look at the numerical performance of our estimator P̂R(ωplug, ε̂). In this section,

our objective is to predict the positive rate,PR(t, a) in (3.4.8), for threshold value t and

replication multiplicity a using the available data. Then we compare it with the actual

positive rate for a replications.

We set n = 10, 000. Take the range of the threshold value t to be (1, 3) which is usually

the most interesting range for practical purposes. We set the proportion of non-null effects

ε = 5% and ε = 10%. We generate nε signals from U( 1√
a
, 1√

a
+ 1) so that

√
a · µ is a

constant. Our goal is to simulate weak signals inversely proportional to the number of

replications a. For the number of replications a,we take a = 2 and a = 4. Now, for each

value of a and each value of ε, we do the following steps:

1. Generate nε values of µ from U( 1√
a
, 1√

a
+ 1).

2. For each such value of µ generate an observation from N(µ, 1). Generate n(1 − ε)

observations from N(0, 1).

3. Using our estimator P̂R(ωplug, ε̂) we predict the positive rate for each value of the

threshold t.

4. Repeat steps, 2 and 3 for 100 independent cycles.

As it can be seen in Figure (5.2), for the case a = 2, the estimated positive rate almost

merges with the true positive with very low variance. For the case, a = 4, the mean

squared error is slightly larger. The yellow dashed curve in Figure (5.2) represents the

positive rate from the available data. In the case of ε = 10%, when the proportion of

signals is moderately high, the true positive rate for both replication multiplicities a = 2
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and a = 4, as well as the estimated positive rate is much larger than the current positive

rate. This is very encouraging in practice, because our estimator tells that by increasing

the number of replications, the power of the testing procedure can be increased.
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Figure 5.2: Display of the positive rate (PR) for threshold values t ∈ [1, 3]. The top row is
for ε = 5% and the bottom row is for ε = 10% with a = 2 and a = 4 replications from left
to right. The solid line(green) is the true PR and the blue dashed line is the estimated
PR. The yellow dashed line is the PR from the current data. The red dashed line is the
95% confidence interval.
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5.2 Application to real datasets

We consider gene microarray data for cancer for colon Alon et al. (1999) and leukemia

Golub et al. (1999). Below, we give a brief description of both the datasets.

• Colon data: This data is based on cancerous growths (tumors) found in the tissue

of colon. This dataset contains 62 samples. Among them, 40 tumor biopsies are

from tumors (labeled as “negative”) and 22 normal (labeled as “positive”) biopsies

are from healthy parts of the colons of the same patients. The total number of genes

to be tested is 2000.

• Leukemia data: Leukemias are primary disorders of bone marrow. They are

malignant neoplasms of hematopoietic stem cells. The total number of genes to

be tested is 7129, and number of samples to be tested is 72, which are all acute

leukemia patients, either acute lymphoblastic leukemia (ALL) or acute myelogenous

leukemia (AML).

In both of the datasets described above, data on gene microarray is collected for

two distinct groups and the main problem of interest is — which genes are differentially

expressed between these two groups ? We want to test the performance of our method

assuming only half of the samples is available to us i.e. only 11 controls and 20 patients in

case of the colon data and, 24 controls and 12 patients in case of the leukemia data. We

want to predict the positive rate (PR) for the whole dataset i.e. for 2 replications (n = 2).

Our objective is two-fold: one, we want to see if there is any significant difference

between our estimator and the positive rate of the current data , in which case one can

get an idea if there were twice the number of samples available, then how many more
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true discoveries can be made and second, we want to see how close is our estimator to the

positive rate for the whole data having observed only half of the data.

5.2.1 Converting the data to z−scores and estimating the null

In order to get the z−scores, first we follow the standard procedure of calculating the

two sample t−statistics for all the genes. Our assumption is for most of the genes the

t−statistics are independent and identically distributed observation from N(µ0, σ
2
0) and a

small proportion of the genes might come from a mixture of different normally distributed

subpopulations. So, we estimate the null distribution using the method in Jin and Cai

(2008) and then standardize the t−statistics using the estimated null parameters. To give

the reader an idea of how these z-scores look, we plotted the histogram for the whole data

in Figure 5.3 along with standard normal density. From Figure (5.3) we can say that most

of the observations are coming from N(0, 1) distribution except for a small proportion.

The estimate for the proportion of non-null effects, ε̂p turns out to be 7.03% for colon data

and 8.56% for the leukemia data.

5.2.2 Power prediction using our estimator

We chose at random two-thirds of the data and computed our estimator. We also used

the fact that the proportion of non-null effects is bounded by 5% which is widely believed

to be true by biologists. We repeated this procedure 100 times and computed the mean

of the estimator as well as the 5% and 95% quantiles over all the 100 permutations. In

Figure (5.4), the results can be found. In Figure (5.5), we zoomed in on Figure (5.4) in

the region where the predicted PR is significantly higher than the current PR.



5.2. Application to real datasets 56

−4 −2 0 2 4 6
0

20

40

60

80

100

120

140

160

180

200

−10 −5 0 5 10
0

50

100

150

200

250

300

350

400

450

500

Figure 5.3: Display of histogram for the z−scores using the whole dataset. The left plot
is for the colon data and the right plot is for the leukemia data. The red dashed line is
the N(0, 1) density.
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Figure 5.4: Display of the mean of the estimator (blue dashed) along with the 5% and
95% quantiles (red dashed). The green curve is the survival function for the whole data
and the dashed yellow curve is the false positive rate
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Figure 5.5: Figure (5.4) zoomed in the region where predicted PR exceeds the current
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Chapter 6

Conclusion and Future Work

In this thesis, I have given a practical solution to address the problem of estimating

the power one can obtain for a given number of replications in multiple testing. I have

estimated the positive rate for a given threshold t and replication multiplicity a, which

is both convenient to estimate since it is a simple average, as well as serves the purpose

of studying the relationship between power and replications as described earlier in the

introduction. I have derived good theoretical properties of this estimator. In particular,

an asymptotic lower bound for the minimax risk is established for a very general class of

models, G1. Our proposed estimator in this class matches this lower bound except for a

logarithmic term. I also obtained the rate of convergence of the MSE in the sparse case,

i.e. when the proportion of non-null hypotheses ε, is small (G2). This case is of practical

importance, since for many real data such as the leukemia data Golub et al. (1999) and

colon data Alon et al. (1999), the proportion of signals is small. I believe the rate of MSE

in G2 is asymptotically minimax, but deriving a sharp lower bound for minimax risk in

this case needs a different approach as compared to the case of G1. This will be discussed

59
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in more details in future work. I also demonstrated very encouraging performance of our

estimator through simulations as well as real data.

The next logical steps for this research falls into two categories: studying the minimax

risk for estimating PR in the class G2 and trying to find an estimator for PR which adapts

to unknown sparsity in the classG2. These are discussed in details in the next section.

6.1 Future work

6.1.1 Minimax risk for sparse case

From theorem(4.3.1), it follows that the rate of MSE of P̂R(ω∗, ε̂) for estimating PR in

G2 is

MSE[P̂R] ≤ C · a2

log2+α(1−1/a)(n)
· ε2(1−1/a)
n n−1/a.

where Xj
i.i.d.∼ f , g is a density and

G2 = {f : f(x) = (1−ε)φ(x)+ε
∫
φ(x−u)g(u) du ε ∈ (0, εn) & |ξ|α|ĝ(ξ)| ≤ A for large |ξ|}

with εn = ε0n
−β with β ∈ [0, 1

2 ]. Now the minimax rate for estimating PR in G2 is defined

to be

R(G2) = inf
T̂

sup
G2

E[T̂ − PR]2

The lower bound for the minimax risk in the case of G2 is much harder to obtain compared

to G1. The fact that ε → 0 very fast as n → ∞ makes the problem more difficult. The

approach used for the minimax risk in G1 was that we constructed two densities f1 and f2

where the Fourier transform of f2 is obtained by truncating the Fourier transform of f1
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at a large frequency. This approach does not work in the case of G2. The main problem is

the following. The Fourier transform of PR is of the form a(ξ)e−ξ2/(2a) which follows from

(4.0.3). Moreover, the Fourier transform of standard normal density is e−ξ2/2. Suppose

we construct two densities f1 and f2 similar to G2 by truncating such that

f̂1(ξ) =


f̂2(ξ) if |ξ| ≤ τ

0 otherwise
(6.1.1)

Now,

L2(f1, f2) = ε2ne
−τ2

p(τ) and
(
PR(f1)− PR(f2)

)2
= e−τ

2/ap(τ)

where p(·) is a generic polynomial function. The smoothness of the Fourier transform of

PR puts the error in PR for f1 and f2 in the same asymptotic scale as the L2 error of

f1 and f2. Choosing τ such that L2(f1, f2) = O(1/n) gives us just the lower bound that

we get from our proposed estimator. Now, the Hellinger distance between f1 and f2 is

even smaller because f1(x) = (1 − ε)φ(x) + ε
∫
φ(x − u)g1(u). The first component of f1

in the spatial domain which is φ(x) is very smooth while in the second component there

is ε which lies in the interval (0, C ·n−β). This increases the Hellinger distance, and hence

we need to truncate for a larger interval in which case the lower bound is much smaller.

In deconvolution problems, if the bias dominates the variance or the variance dominates

the bias then this kind of frequency matching method works. In this case, the main problem

is the smoothness of the Fourier transform of the function to be estimated is of the same

order as the smoothness of the characteristic function of standard normal. There can be

two possible reasons for the failure of this approach. Either the two point testing argument

is not suitable or a different approach for construction of densities for a two point testing

argument is necessary.
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6.2 Adapting to unknown sparsity

Consider the class G2 again from above. In (4.3.9), I derived the kernel ω∗ which minimizes

the MSE of the proposed estimator by a trade-off between the bias and the variance in

G2. Basically this kernel thresholds at frequency γ O
(√

log(nε2n)
)

in the Fourier domain.

However, in practice this threshold is unknown. Hence, I suggested to use the kernel ωplug

in practice which plugs in the estimator of ε in place of εn. This estimator performs well

in simulations as well as real data as shown in chapter 5.

However, it will be interesting to see if its possible to use a data dependent threshold

which can adapt to this unknown sparsity. In the case of estimating the coordinates of the

mean vector in the sparse case, Abramovich et al. (2006) showed that hard thresholding

using the false discovery rate gives the optimal procedure. As mentioned in chapter (2),

the false discovery rate is able to adapt to unknown sparsity. Similar ideas can be used in

this case to derive an adaptive estimation strategy.



Appendix A

Proofs

A.1 Proof of Theorem 4.1.1

Denote the bias of PR∗(t, a) by b∗(ω; t, a). Using (A.2.8) we get,

∣∣b∗(ω; t, a)
∣∣ ≤ t

π
√
a

∫
|ω∗(ξ)− 1| · |sin(ξt/

√
a)

ξt/
√
a
| · e−ξ2/2a dξ.

Substituting ω∗ from Lemma 4.1.2, we get

∣∣b∗(ω; t, a)
∣∣ ≤ t

π
√
a

∫ [ 1
ne

ξ2

1 + 1
ne

ξ2

∣∣sin(ξt/
√
a)

ξt/
√
a

∣∣ · e−ξ2/2a
]
dξ.

We introduce some more notations for simplicity. Let a(ξ) =
1
n
eξ

2(1− 1
2a )

1+ 1
n
eξ2 , b(ξ) =

∣∣ sin(ξt/
√
a)

ξt/
√
a

∣∣
and

I1 =
∫ 1

ne
ξ2(1− 1

2a )

1 + 1
ne

ξ2

∣∣sin(ξt/
√
a)

ξt/
√
a

∣∣ dξ. (A.1.1)
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Then, I1 =
∫
a(ξ)b(ξ) dξ. The change of variable, ξ =

√
logn+ η

2
√

logn in (A.1.1), gives

a(ξ) =
1
ne

(
logn+η+ η2

4 logn

)
(1− 1

2a )

1 + 1
ne

(
logn+η+ η2

4 logn

) = n−
1

2a
e

(η+ η2
4 logn )(1− 1

2a )

1 + e
(η+ η2

4 logn )

and b(ξ) =
∣∣∣sin

(
t
√

logn√
a

(1 + η
2 logn)

)
t
√

logn√
a

(1 + η
2 logn)

∣∣∣ ≤ √
a

t
√

logn
1∣∣1 + η
2 logn

∣∣ , and hence

I1 =
∫
a(ξ)b(ξ) dξ ≤

√
an−

1
2a

t logn

∫ 1∣∣1 + η
2 logn

∣∣ e(η+ η2
4 logn )(1− 1

2a )

1 + e
(η+ η2

4 logn )
dη

As n→∞, by Dominated Convergence Theorem,

∫ 1∣∣1 + η
2 logn

∣∣ e(η+ η2
4 logn )(1− 1

2a )

1 + e
(η+ η2

4 logn )
dη ∼

∫
eη(1− 1

2a )

1 + eη
dη ∼ 2a · C1 ⇒ I1 . C1

(a3/2n−
1

2a

t log p
)

(A.1.2)

Combining (A.1.1) and (A.1.2) gives,

∣∣b∗(ω; t, a)
∣∣ . C1 · n−( 1

2a ) a

logn ≤ C1 · n−( 1
2a ) a

logn , (A.1.3)

uniformly for all ε between 0 and 1. Using (A.2.11),

Var(PR∗(t, a)) ≤ 1
n
· E
[( t

π
√
a

∫
ω∗(ξ)sin(ξt/

√
a)

ξt/
√
a

e(1− 1
a

)ξ2/2 cos(ξX1) dξ
)2]

≤ t2

nπ2a

(∫
|ω∗(ξ)|

∣∣sin(ξt/
√
a)

ξt/
√
a

∣∣e(1− 1
a

)ξ2/2 dξ
)2
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Inserting ω∗ from Lemma 4.1.2 and using triangle inequality and symmetry around 0 gives,

Var(PR∗(t, a)) ≤ 4 t2

nπ2a

(∫ ∞
0

1
1 + 1

ne
ξ2

[∣∣sin(ξt/
√
a)

ξt/
√
a

∣∣eξ2(1− 1
a

) 1
2
]
dξ)2 (A.1.4)

We introduce some more notations.

Let , I21 =
∫ ∞

0

∣∣sin(ξt/
√
a)

ξt/
√
a

∣∣eξ2(1− 1
a

) 1
2

1 + 1
ne

ξ2 dξ (A.1.5)

Also let, a1(ξ) = eξ
2(1− 1

a ) 1
2

1+ 1
n
eξ2 and, as before, b(ξ) =

∣∣ sin(ξt/
√
a)

ξt/
√
a

∣∣. Then, I21 =
∫∞

0 b(ξ)a1(ξ) dξ

. Using the change of variable, ξ =
√

logn+ η
2
√

logn in I21 we get,

a1(ξ) = e
(logn+η+ η2

4 logn )(1− 1
a

) 1
2

1 + 1
ne

(logn+η+ η2
4 logn )

= n(1− 1
a

) 1
2
e

(η+ η2
4 logn )(1− 1

a
) 1

2

1 + e
η+ η2

4 logn

and as before b(ξ) ≤
√
a

t
√

logn
1∣∣1 + η
2 logn

∣∣
Hence we get,

I21 ≤
√
a

t

n(1− 1
a

) 1
2

logn

∫ ∞
−∞

e
(η+ η2

4 logn )(1− 1
a

) 1
2

1 + e
η+ η2

4 logn

1(η > −2 logn)
|1 + η

2 logn |
dη

∼
√
a

t

Cn(1− 1
a

) 1
2

logn

∫ ∞
−∞

eη(1− 1
a

) 1
2

1 + eη
dη = C ·

√
a

t

n(1− 1
a

) 1
2

logn (A.1.6)

The last approximation in (A.1.6) follows from Dominated Convergence Theorem.

Inserting I21 in (A.1.4) gives,

Var(PR∗(t, a)) ≤ C · n
− 1
a

log2 n

(
1 + a3/2

t log3/2 n

)2
∼ C · n

− 1
a

log2 n
(A.1.7)
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Together, (A.1.3) and (A.1.7) gives,

MSE(PR∗(t, a)) . C ·
(
n−

1
a

a2

log2 n
+ n−

1
a

log2 n

)
∼ C · n−

1
a

a2

log2 p

A.2 Proof of Lemma 4.1.1

Consider the first claim. For short, denote the bias by b(ω; t, a) = E[P̂R(ω; t, a)]−PR(t; a).

By (4.0.3) and (4.3.2),

|b(ω; t, a)| = t

π
√
a

∣∣∫ (ω(ξ)− 1)sin(ξt/
√
a)

ξt/
√
a

e−ξ
2/2a ·

[
(1− ε) + ε

∫
cos(ξu) dF (u)

]
dξ
∣∣

≤ t

π
√
a

∫
|ω(ξ)− 1| · |sin(ξt/

√
a)

ξt/
√
a
· |e−ξ2/2a dξ. (A.2.8)

Use Hölder inequality,

(∫
|ω(ξ)−1|·|sin(ξt/

√
a)

ξt/
√
a
|·e−ξ2/2a dξ

)2 ≤ (
∫

(ω(ξ)−1)2 ·e−ξ2/a dξ
)
·(
∫ (sin(ξt/

√
a)

ξt/
√
a

)2
dξ),

(A.2.9)

where by elementary calculus,

∫ (sin(ξt/
√
a)

ξt/
√
a

)2
dξ =

√
a

t

∫ sin2(η)
η2 dη =

√
aπ/t. (A.2.10)

Inserting (A.2.9) and (A.2.10) into (A.2.8) gives the first claim.

Consider the second claim. By definition and symmetry

Var[PR(ω; t, a)] = 1
n
·Var

( t

π
√
a

∫
ω(ξ)sin(ξt/

√
a)

ξt/
√
a

e(1− 1
a

)ξ2/2 cos(ξX1) dξ
)

≤ 1
n
· E
[( t

π
√
a

∫
ω(ξ)sin(ξt/

√
a)

ξt/
√
a

e(1− 1
a

)ξ2/2 cos(ξX1) dξ
)2]
. (A.2.11)
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Since | cos(ξX1)| ≤ 1,

E
[(∫

ω(ξ)sin(ξt/
√
a)

ξt/
√
a

e(1− 1
a

)ξ2/2 cos(ξX1) dξ
)2] ≤ (∫ |ω(ξ)| · |sin(ξt/

√
a)

ξt/
√
a
| · e(1− 1

a
)ξ2/2 dξ

)2
.

(A.2.12)

Now, by similar argument,

(∫
|ω(ξ)| · |sin(ξt/

√
a)

ξt/
√
a
| · e(1− 1

a
)ξ2/2 dξ

)2 ≤ t

π
√
a

∫
ω2(ξ)e(1− 1

a
)ξ2
dξ. (A.2.13)

Inserting (A.2.12) and (A.2.13) into (A.2.11) gives the second claim. �

A.3 Proof of Lemma 4.2.1

The hellinger distance equals h2(f1, f2) ≤ ε2
∫ (f1(x)−f2(x))2

f2(x) dx ≤ ε2(I + II) where I =

C
∫
|x|<c1

(f1(x)− f2(x))2 dx and II ≤ C 1
ε

∫
|x|≥c1

(1 + |x|2)(f1(x)− f2(x))2 dx. Using Parse-

val’s identity and Lemma (??) we get,

I ≤ C
∫

(f1(x)− f2(x))2 dx = C

∫
(f̂1(ξ)− f̂2(ξ))2 dξ

≤ C
∫
|ξ|>√τn

e−ξ
2 |ξ|−2 dξ ≤ Ce−τnτn−2−(1/2) ≤ C

nε2 logn
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II ≤ C 1
ε

∫
(1 + |x|2)(f1(x)− f2(x))2 dx

= C
1
ε

[ ∫
(f̂1(ξ)− f̂2(ξ))2 dξ +

∫
(f̂ (1)

1 (ξ)− f̂ (1)
2 (ξ))2 dξ

]
≤ C 1

ε

∫
|ξ|>√τn

e−ξ
2
ξ2−4 dξ

≤ C 1
ε
e−τnτ1−2−(1/2)

n = C

nε3
√

logn

Hence, h2(f1, f2) ≤ C
n ·

1
ε
√

logn which implies the Hellinger affinity between fn1 and fn2 =

ρ(fn1 , fn2 )→ 1 as n→∞.

A.4 Proof of Lemma 4.2.2

Using Parseval’s identity, we can write

|PR(f1)− PR(f2)| = ε|
∫

Ψ(u; t, a)(g1(u)− g2(u)) du|

= ε

2π |
∫
ξ>
√
τn

Ψ̂(ξ; t, a)s2(ξ)|ξ|−2 dξ|

where

Ψ̂(ξ; t, a) = 2e−ξ2/(2a) · sin(tξ/
√
a)

ξ
.

Let, |PR(f1)− PR(f2)| = |III + IV | where

III = ε

π

∫
√
τn<ξ<

√
τn+c

Ψ̂(ξ; t, a)s2(ξ)|ξ|−2 dξ
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and

IV = ε

π

∫
ξ≥
√
τn+c

Ψ̂(ξ; t, a)|ξ|−2 dξ

Observe, that s2 is an analytic function with bounded derivatives in the interval √τn <

ξ <
√
τn + c. Using Taylor’s theorem we get, |s2(ξ)| ≤ C · |ξ − √τn| for √τn < ξ <

√
τn + c. Let r = n1/a

ε2(1− 1
a )

log2+2(1−1/a)+1/a(n)
a2 . Now we show that, r1/2|III| = o(1) as n→∞.

Substituting ξ = √τn + η√
τn

, and letting l(n) = √τn(
√
τn + c− √τn), we get

r1/2|III| ≤ Cr1/2ε1−1/a n−1/2a

log1+ 2
2 (1−1/a)+ 1

2a (n)

∫ l(n)

0

| sin(√τn + η√
τn

)|
(1 + η/τn)(1 + 2)

· η
√
τn
e−η/ae−η

2/2τn dη

≤ C 1
a

∫ l(n)

0

| sin(√τn + η√
τn

)|
(1 + η/τn)(1 + 2)

· η
√
τn
e−η/ae−η

2/2τn dη

Noting that l(n) → c and using dominated convergence theorem we get, r1/2|III| =

O( 1√
logn)

Now we show that r1/2|IV | → C > 0 as n → ∞. Again substituting ξ =
√
τn + c +

η√
τn+c , we get

r1/2|IV | = r1/2 · Cπε1−1/a n−1/2a

log1+ 2
2 (1−1/a)+ 1

2a (n)

∫ ∞
0

sin(
√
τn + c+ η√

τn+c)
(1 + η/τn + c)(1 + 2)

· e−η/ae−η2/2τn dη

→ C

a

∫ ∞
0

e−η/a dη = C

Hence, we get r · |PR(f1 − PR(f2))|2 → C > 0 as n→∞.
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