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Abstract

Increasingly, real world problems require multiple predictions while traditional supervised
learning techniques focus on making a single best prediction. For instance in advertisement
placement on the web, a list of advertisements is placed on a page with the objective of
maximizing click-through rate on that list.

In this work, we build an efficient framework for making sets or lists of predictions where
the objective is to optimize any utility function which is (monotone) submodular over a list of
predictions. Other examples of tasks where multiple predictions are important include: grasp
selection in robotic manipulation where the robot arm must evaluate a list of grasps with the
aim of finding a sucessful grasp, as early on in the list as possible and trajectory selection
for mobile ground robots where given the computational time limits, the task is to select a
list of trajectories from a much larger set of feasible trajectories for minimizing expected cost
of traversal. In computer vision tasks like frame-to-frame target tracking in video, multiple
hypotheses about the target location and pose must be considered by the tracking algorithm.

For each of these cases, we optimize for the content and order of the list of predictions.

Crucially– and in contrast with existing work on list prediction – our approach to pre-
dicting lists is based on very simple reductions of the problem of predicting lists to a series
of simple classification/regression tasks.

This provides powerful flexibility to use any existing prediction method while ensuring
rigorous guarantees on prediction performance. We analyze these meta-algorithms for list
prediction in both the online, no-regret and generalization settings.

Furthermore we extend the methods to make multiple predictions in structured output
domains where even a single prediction is a combinatorial object, e.g. , challenging vision
tasks like semantic scene labeling and monocular pose estimation.

We conclude with case studies that demonstrate the power and flexibility of these re-
ductions in problems from document summarization, prediction of the pose of humans in
images, to predicting the best set of robotic grasps and purely vision based autonomous
flight in densely cluttered environments.
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CHAPTER1
Introduction

Many real world problems require or benefit from multiple predictions. Consider adver-
tisement placement on the web: a natural formulation involves the prediction of a list of
advertisements to show– rather then a single choice– on a web-page with the objective of
maximizing click-through rate [Bishop et al. 2006] of that list.

Other examples of domains where multiple predictions are important include: web search
where a list of results are presented in response to a query [Carbonell and Goldstein 1998;
Manning et al. 2008; Horvitz 2001], extractive document summarization where multiple rep-
resentative sentences are selected from a document to summarize it [Ross et al. 2013b], grasp
selection in robotic manipulation where the robot arm must evaluate a list of grasps with
the aim of finding a successful grasp as early on in the list as possible, trajectory selection
for mobile ground robots where the task is to select a list of trajectories from a much larger
set of feasible trajectories for minimizing expected cost of traversal [Dey et al. 2012], or in
frame-to-frame target tracking in video where multiple hypotheses about the target loca-
tion and pose must be considered by the tracking algorithm [Pirsiavash et al. 2011; Park
and Ramanan 2011]. This problem of returning a list of predictions to a query is remarkably
common across tasks in fields like computer vision, path planning, manipulation, information
retrieval, optimal control, computational biology, and human-robot interaction.

Traditionally, machine learning has developed mature tools with well understood theory
and practice for producing a single best prediction. In this work we build simple, provably
efficient tools for making multiple predictions whenever the objective is to optimize any
objective function which is (monotone) submodular over a list of predictions. In spite of the
ubiquity of such list prediction problems, tools for them have lagged behind the state-of-the-
art for single best prediction.

Drawing upon recent advances in the optimization literature [Streeter and Golovin 2008;
Radlinski et al. 2008; Munagala et al. 2005; Horvitz 2001; Golovin and Krause 2010; Krause
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and Guestrin 2008], we develop a set of methods for learning to make multiple predictions
with theoretical performance guarantees in a number of broad settings. For each setting we
answer the questions 1) what is the right subset of predictions to evaluate given budgeted
computation time and or 2) what is the right order of evaluating these predictions when
mission success is critical. The settings can be broadly grouped into the following categories:

• Library of choices: In settings where the task is to predict a list from an a priori set
of large number of choices and the only information available is via executing that list
e.g. , path planning for autonomous mobile robots where the task is to select a subset
of trajectories to evaluate on the terrain around the robot, from a large set of feasible
trajectories. The true quality of a trajectory is revealed only after it has been traversed
by the robot.

• Contextual library of choices: A library of choices where for every available choice
additional information is available via features of the environment e.g. , advertisement
placement, where for a given context on a web page a list of advertisements need to be
selected to be placed in the side pane. Another example is making multiple predictions
in structured output problems like monocular pose estimation where the task is to
annotate the pose of a object from a single image. In this case the context is the
features of the image and multiple predictions are necessary per image frame for a
subsequent tracking algorithm to find the right pose.

Additionally the above settings can each be further subdivided into two additional cate-
gories:

• Static: In this setting the order in which queries are received by the system is inde-
pendent of what list of choices are predicted for each query. The example of monocular
pose estimation is a case where the list of predictions for a given query image does not
influence in any manner the choice of the next query image.

• Dynamic: In contrast to the static setting, in the dynamic setting the choice of list
of actions predicted directly influences the next query the system will receive. A good
example is path planning for autonomous mobile robots where predicting which sets
of trajectories to evaluate in the current step decides the next place in the world the
robot will travel to in the next time step. Such dynamic settings also arise often in
interactive systems. Other concrete examples include web search, manipulation, and
conversational robots.

There are two main properties of a list that one cares about: 1) For a list of budgeted
length, is the right answer contained within the list (i.e. a list with high recall)? 2) What is
the order of evaluating a library of items so that the correct choice is encountered as early on

8



Table 1.1: Examples of multiple prediction applications Top: The manipulator must pick
a list of grasps to try given a library of pre-computed grasps Middle: Autonomous mobile
robots must decide which set of trajectories to evaluate given a budget on prediction time
Bottom: A list of advertisements need to be predicted on a web page for optimizing click-
through rate
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as possible? In both cases we directly optimize for the objective of interest during training,
without incorporating any additional parameters.

We will first discuss algorithms (Chapter 2) and provide a concrete example (Chapter
2.1) and then consider analysis (Chapter 2.2). In Chapter 3 we will detail more efficient
versions, their detailed analysis and more case studies. Finally we will be considering the
relationship with other approaches in literature for providing multiple predictions (Chapter
5).

Chapter 2 efficiently reduces the greedy algorithm to consider features of the environment
by extending it to consider lists of policies instead of lists of items. We term this procedure
ConSeqOpt short for “CONtextual SEQuence OPTimization". By competing against the
best list of policies in a given policy class we produce better lists. Applications to robot
motion planning for manipulation are presented.

Chapter 3, 3.1 proposes a more efficient version of ConSeqOpt which we term as SCP,
short for “Sequential Contextual Prediction”. Chapter 3.2 demonstrates additional case stud-
ies for both SCP and ConSeqOpt.

Chapter 4 extends the approach of ConSeqOpt to structured output problems like se-
mantic scene classification and monocular human pose estimation. The exponentially large
label set requires care in implementing or approximating the weighting scheme of Chapter 2.
We term the resulting family of algorithms SeqNBest, a contraction of “SEQuence N-Best".

In Chapter 5, we review, compare and contrast alternate approaches to making multiple
predictions. These include methods based on extracting multiple predictions from a single
statistical model Batra et al. [2012], heuristic objective functions for constructing diverse pre-
dictions Carbonell and Goldstein [1998], and ad-hoc schemes for developing multiple models
Guzman-Rivera et al. [2014b].

In Chapter 6 we apply the paradigm of making multiple predictions to enabling pure
vision-based autonomous unmanned aerial vehicle (UAV) flight through dense clutter. We
demonstrate real world experiments with an off-the-shelf quadrotor and show that by making
multiple obstacle depth predictions, up to 71% increase in average flight distance can be
achieved over making a single best prediction.

We will conclude with still open problems and future directions in Chapter 7.
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CHAPTER2
Contextual Optimization of Lists

We begin by delving straight into the algorithm for predicting a list of items given some
context of the example. By the word “context” we mean features of the example under
consideration. A list is an ordered sequence of items of finite length. In Chapter 2.1 we will
give a concrete case using this algorithm for robot motion planning. For now assume that we
have a library of items A and a dataset D of |D| examples. We will use i to index position in
the list and j to index examples. We use {. . .} to indicate a list. A list of N items is indicated
by {ai}Ni=1. Each example is represented by a feature vector xj of length L. By stacking xj

we create a matrix X of size |D| × L. Thus each row of X represents a feature vector. S is
the space of all possible lists that can be made from items in library A. Given such a feature
matrix X and library A our aim is to to predict a list of items S ∈ S of length N ≤ |D|
for each example, so that we can maximize F = Ed∼D[f(Sj ,xj)] where f : S × d → [0, 1]
is some task specific utility function we are interested in maximizing. Note that f is a list
function, i.e. it takes in lists of items Sj as input and evaluates them on an example d
represented by feature vector xj and returns a non-negative score. The example d is drawn
from a (unknown) distribution (d ∼ D) of examples. Later on we will show how special
mathematical properties of f lead to performance guarantees of the algorithms we present in
this work. We term the first algorithm we present below as ConSeqOpt Batch which is
short for “CONtextual SEQuence OPTimization”. Due to the batch nature of training where
it sees all the training data before it predicts a list, we append the word “Batch”.

The input to ConSeqOpt Batch (Algorithm 1) is the desired list length N , a multi-
class classifier training procedure, the dataset D of examples and library of items A. The
algorithm proceeds by training a classifier πi ∈ H in the loop indexed by i and H is the
hypothesis space. Line 2 evaluates the function computeMarginalLoss and outputs a matrix
MLi . MLi and the feature matrix X are then used to train a multi-class cost-sensitive
classifier πi in line 3.

We use a toy example to detail every step of the training process. Suppose we have a
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Algorithm 1 ConSeqOpt Batch: Algorithm for training using classifiers
Input: List length N,

Multi-class cost sensitive classifier training procedure: R|D|×L × R|D|×|A| → H,
Dataset D of |D| number of examples and associated features X : R|D|×L,
Library of items A

Output: list of classifiers {π1, π2, . . . , πN} (π : R|D|×L → A|D|)

1: for i = 1 to N do
2: MLi ← computeMarginalLoss(X, {π1, π2, . . . , πi−1},A)
3: πi ← train(X,MLi)
4: end for

Algorithm 2 computeMarginalLoss(X, {π1, π2, . . . , πi−1,A)}

Input: Features of the dataset X : R|D|×L,
List of multi-class cost sensitive classifiers {π1, π2, . . . , πi−1} (π : R|D|×L → A|D|) ,
Library of items A

Output: MLi

1: for j = 1 to |D| do
2: for k = 1 to |A| do
3: MBi [j, k] = f(π1(xj)⊕ π2(xj) . . . πi−1(xj)⊕A[k],xj)

−f(π1(xj)⊕ π2(xj) . . . πi−1(xj),xj)
4: end for
5: end for
6: MLi = convertGainsToLosses(MBi)

Algorithm 3 ConSeqOpt Batch: Algorithm for inference using classifiers
Input: List of multi-class cost-sensitive classifiers {π1, π2, . . . , πN},

Test example feature vector x : R1×L

Output: List of selected items S = {a1, a2, . . . , aN}

1: Initialize empy list S = {}
2: for i = 1 to N do
3: S ← S ⊕ πi(x)
4: end for
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Figure 2.1: Illustration of two iterations of ConSeqOpt Batch using multi-class classifiers
on a toy dataset of 4 examples and library of 10 items.

dataset of |D| = 4 examples, each example is described by a feature vector of dimension
L = 8. So X is of shape 4 × 8. Also suppose that we have a library of |A| = 10 items.
Figure 2.1 shows the toy X matrix, the library A and the values of important variables for
two iterations of the loop in Algorithm 1. We will now walk through the steps to illustrate
how these numbers were obtained:

Iteration 1:

• computeMarginalLosses: In the first iteration, line 2 executes computeMarginalLosses.
It takes in X, A and the output of previously trained classifiers on X as input. Since at
this point no previous classifiers have been trained, there are no previous predictions.

13



We first create the entries of the matrix MB1 by evaluating our objective function f

on every example, for every item in the library A. The columns correspond to items.
For ease of illustration only the first row has been filled out. Say that when item a1 is
input to f on the first example, the output is f(a1,x1) = 0.8. Similarly f(a2,x1) = 0.1,
f(a3,x1) = 0.2, etc, until all columns are filled. This is repeated for every example until
the whole matrix is filled. In this step the entries in each row of MB1 are subtracted
from the maximum entry in that row, and rescaled to [0, 1] to create ML1 .

• train: In this step the train function is executed. This takes in the ML1 matrix com-
puted in the last step and the features of the examples matrix X as input and trains
a cost-sensitive multi-class classifier πi [Langford and Beygelzimer 2005]. Each item in
A constitutes a class and the matrix ML1 constitutes the per example per class cost of
predicting an item for that example. For example, for the first example the classifier
will see that the best item to pick is a4 since it is 0.0 cost, while picking a6 is the worst
since it pays a cost of 1.0.

Iteration 2:

• computeMarginalLosses: In the second iteration, line 2 executes computeMarginalLosses
with X, A and the list of classifiers trained up to now, which in this case is just the
first classifier π1 from iteration 1. To create the entries of the MB2 matrix we first
calculate the item chosen by π1 on each example. So for every example the item that
π1 thought to be the best is obtained. Due to imperfect learning π1 may not pick the
best item for every example. For example, in the toy example it picks a5 for the first
example even though a4 is the best one since it has 0.0 cost. In Figure 2.1 we show
this step separately by using the variable Yπ1 which stores this chosen item for every
example.

Secondly the gain in f obtained by adding an item from A is calculated. For example,
for the first position in the first row we calculate f(a5 ⊕ a1,x1) − f(a5,x1), for the
second position f(a5 ⊕ a2,x1)− f(a5,x1) and so on. In this example the numbers are
calculated based on the function f being the max function. f(a5 ⊕ a1,x1) is therefore
max(0.5, 0.8) = 0.8. Note that f(a1,x1) = 0.8 from MB1 . Since f(a5,x1) = 0.5, this
leads us to f(a5⊕a1,x1)− f(a5,x1) = 0.8− 0.5 = 0.3. The rest of the entries are filled
up this way. Once MB2 is calculated, the entries are then subtracted from 1 to turn
gains to loss. This is the ML2 matrix.

• train: As in the first iteration the train function is executed to train a multi-class cost-
sensitive classifier π2. This uses the rows of ML2 for obtaining per example per class
costs.
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The procedure for computeMarginalLoss is formally described in Algorithm 2. Algorithm
3 details the simple inference procedure. On a test example represented by feature vector x
the list of classifiers {π1, π2, . . . , πN} are invoked to construct the list of items S.

Algorithm 4 shows the equivalent algorithm using regressors instead of using classifiers
(Algorithm 1). This alternate formulation has the advantage of being able to introduce
new items to the library A without retraining the sequence of regressors. Instead of directly
identifying a target class, we use a regressor in each position of the list to produce an estimate
of the gain from each item at that particular position. MBi calculated in line 2 is a |D||A|
matrix of the actual marginal benefit computed in a similar fashion as MLi of Algorithm 1,
and M̃Bi is the estimate given by the regressor at the ith position. In line 2 we compute
the feature matrix Xi and MBi in the function computeFeaturesAndBenefit. This function
is detailed in Algorithm 5. In this case, a feature vector is computed per item per example
in the function expressItemInExample. The implementation of this function is application
dependent and a concrete example will be provided in Chapter 2.1. By stacking up all such
feature vectors xj where j indexes into examples, we build up the matrix Xi. For feature
vectors of length L, Xi has dimensions |D||A| × L. The features and gains at the ith slot
are used to train regressor Ri and then invoked on the same training data producing the
estimate M̃Bi . Note that each data point consists of a row of the matrix Xi and the target
value is the corresponding entry for that item and example in MBi . For each example, we
pick the item a which produces the maximum entry in the corresponding row in M̃Bi to be
our chosen item for that example (Line 5 in Algorithm 4). These items are then stacked up
to produce YRi which is then a |D| length vector as illustrated in Figure 2.1.

For inference, we take the list of trained regressors obtained from training and a test
example d, express all items in A in this new example to obtain matrix X, where each row
is the feature vector describing an item from A in that example. We invoke the regressor for
that position of the list, on each feature vector in X to get the predicted gains of each item
at that particular position. We choose the item with the maximum such predicted gain and
fill the list at that location with this item. This procedure is repeated for every position of
the list.

Online Variants: Algorithms 7 and 8 detail the analogous online variants of ConSeqOpt
Batch using classifiers and regressors respectively. The online versions train N copies (one
copy per position) of online variants of multi-class cost-sensitive classification and regression
like online Support Vector Machines (SVM) [Hazan et al. 2007; Ratliff et al. 2007b], process
one example at a time by sampling from D, and updating themselves using the loss incurred
on that example by using the “update” function to update the internal distribution over
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Algorithm 4 ConSeqOpt Batch: Algorithm for training using regressors
Input: List length N,

Regressor training procedure: R|D||A|×L × R|D||A| → H,
Dataset D of |D| number of examples,
Library of items A

Output: list of regressors {R1,R2, . . . ,RN} (R : R|D||A|×L → R|D||A|)

1: for i = 1 to N do
2: Xi,MBi ← computeFeaturesAndBenefit(D, {YR1 ,YR2 , . . . ,YRi−1},A)
3: Ri ← train(Xi,MBi)
4: M̃Bi ← Ri(Xi)
5: YRi ← argmax(M̃Bi)
6: end for

Algorithm 5 computeFeaturesAndBenefit(D, {YR1 ,YR2 , . . . ,YRi−1},A)
Input: Dataset D,

Current regressor list output on dataset {YR1 ,YR2 , . . . ,YRi−1}, (YR : A|D|)
Library of items A

Output: MBi : R|D||A|, Xi : R|D||A|×L

1: Xi = []
2: for j = 1 to |D| do
3: for k = 1 to |A| do
4: MBi [j, k] = f(YR1 [j] ⊕ YR2 [j] . . .YRi−1 [j] ⊕ A[k],xj) - f(YR1 [j] ⊕

YR2 [j] . . .YRi−1 [j],xj)
5: xj ← expressItemInExample(dj ,Ak)
6: Xi ← Xi ⊕ xj
7: end for
8: end for

Algorithm 6 ConSeqOpt Batch: Algorithm for inference using regressors
Input: Trained list of regressors {R1,R2, . . .RN},

Test example d
Output: List of selected items S = {a1, a2, . . . , aN}

1: S = {}
2: X = []
3: for k = 1 to |A| do
4: xk ← expressItemInExample(d,A[k])
5: X← X⊕ xk
6: end for
7: for i = 1 to N do
8: a← argmax Ri(X)
9: S ← S ⊕ a

10: end for
16



Algorithm 7 ConSeqOpt Online: Algorithm for training using online classifiers
Input: List length N,

Multi-class cost-sensitive online classifier training procedure: RL × R|A| → H ,
Distribution of examples D,
Library of items A

Output: list of online classifiers {Φ1,Φ2, . . . ,ΦN} (Φ : RL → A)

1: for t = 1 to T do
2: dt ← Sample(D)
3: xt ← computeFeatures(dt)
4: for i = 1 to N do
5: MLti ← computeMarginalLoss(xt, {YΦ1 , . . .YΦi−1},A)
6: Φi ← update(xt,MLti)
7: YΦi ← Φi(xt)
8: end for
9: end for

Algorithm 8 ConSeqOpt Online: Algorithm for training using online regressors
Input: List length N,

Online regression training procedure: R|A|×L × R|A| → H,
Distribution of examples D,
Library of items A

Output: list of online regressors {Υ1,Υ2, . . . ,ΥN} (Υ : R|A|×L → R|A|)

1: dt ← Sample(D)
2: for t = 1 to T do
3: for i = 1 to N do
4: Xti,MBti ← computeFeatureAndBenefit(dti, {YΥ1 , . . . ,YΥi−1},A)
5: Υi ← update(xti,MBti)
6: M̃Bti ← Υi(xti)
7: YΥi ← argmax(M̃Bti)
8: end for
9: end for
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learners. 1

Algorithm 7 runs for T rounds, sampling an example dt each round, computing its
feature representation xt and using the list of online cost-sensitive classifiers Φi to compute
the marginal loss of each action at every position and then updating itself using the marginal
loss matrix MLti . Note that MLti now contains only one row since there is only a single
example. Then the updated online classifier is used to predict the correct item on the example
to produce YΦi .

Similarly, the online version using regressors in Algorithm 8 also samples an example
each round and updates a list of online regressors Υi.

The inference procedures are the same as before in Algorithm 3 and 6 for classification
and regression respectively.

1In case of a deterministic algorithm, the update function updates the internal policy for choosing an item
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2.1 Case Study: Manipulation Planning via Contextual Con-
trol Libraries

In manipulation a common reoccuring task is to find a collision-free path from start to
goal location. This is a challenging problem as this usually involves finding feasible paths
in the configuration (joint) space of a manipulator which are typically high dimensional.
Probabilistically complete planners like RRT [Kuffner and LaValle 2000] and PRM [Kavraki
et al. 1996] are guaranteed to find a feasible path provided there exists at least one such path
from start to goal. Unfortunately they can be expensive to run in such high dimensional
spaces.

Recent work [Zucker et al. 2013; Jetchev and Toussaint 2009], has shown an alternate
approach which proceed by relaxing the hard constraint of avoiding obstacles into a soft
penalty term on collision and use simple local optimization techniques that quickly lead to
smooth, collision-free trajectories suitable for robot execution. Often the default initialization
trajectory seed is a simple straight-line initialization in joint space [Zucker et al. 2013]. This
heuristic is surprisingly effective in many examples, but suffers from local convergence and
may fail to find a trajectory even when one exists. In practice, this may be tackled by
providing cleverer initialization seeds using classification [Jetchev and Toussaint 2009; Zucker
2009]. While these methods reduce the chance of falling into local minima, they do not
have any alternative plans should the chosen initialization seed fail. A contextual ranking
of a library of initialization seeds using ConSeqOpt can provide feasible alternative seeds
should earlier choices fail. We take an approach similar to Dragan et al. [Dragan et al. 2011]
where novel trajectories can be evaluated with respect to the environment the manipulator is
operating in currently. A library of proposed initialization trajectory seeds can be developed
in many ways including human demonstration [Ratliff et al. 2007a] or use of a slow but
complete planner [Kuffner and LaValle 2000].

We conducted experiments where we attempt to plan a trajectory to a pre-grasp pose
(goal) over the target object in a cluttered example using the local optimization planner
CHOMP [Zucker et al. 2013] and minimize the total planning and execution time of the
trajectory. A training dataset of |D| = 310 examples and test dataset of 212 examples are
generated. Each example contains a table surface with five obstacles and the target object is
randomly placed on the table. The starting pose of the manipulator is randomly assigned,
and the robot must find a collision-free trajectory to the end pose above the target object.
To populate the control library, we consider initialization trajectories that move first to an
“exploration point" and then to the goal. The exploration points are generated by randomly
perturbing the midpoint of the original straight line initialization in joint space. The resulting
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initial trajectories are then piecewise straight lines in joint space from the start point to the
exploration point, and from the exploration point to the goal. 2 30 trajectories generated
with the above method form our control library A. Figure 2.2a shows an example set for a
particular example. Notice that in this case the straight-line initialization of CHOMP goes
through the obstacle and therefore CHOMP has a difficult time finding a valid trajectory
using this initial seed.

(a) The default straight-line initialization of
CHOMP is in bold. Notice this initial seed goes
straight through the obstacle and causes CHOMP
to fail to find a collision-free trajectory.

(b) The initialization seed for CHOMP found us-
ing ConSeqOpt is in bold. Using this initial seed
CHOMP is able to find a collision free path that
also has a relatively short execution time.

Figure 2.2: CHOMP initialization trajectories generated as control actions for ConSeqOpt.
The end effector path of each trajectory in the library is traced out. The trajectory in bold
in each image traces the initialization seed generated by the default straight-line approach
and by ConSeqOpt, respectively.

In our results we use a small list (3 positions) to ensure the overhead of ordering and
evaluating the library is small. When CHOMP fails to find a collision-free trajectory for
multiple initializations seeds, one can always fall back on slow but complete planners. Thus
the contextual control sequence’s role is to quickly evaluate a few good options and choose the
initialization trajectory that will result in the minimum execution time. We note that in our
experiments, the overhead of ordering and evaluating the library is negligible as we rely on a
fast predictor and features computed as part of the trajectory optimization, and by choosing
a small list length we can effectively compute a motion plan with expected planning time

2Half of the seed trajectories are prepended with a short path to start from an elbow-left configuration,
and half are in an elbow-right configuration. This is because the local planner has a difficult time switching
between configurations, while environmental context can provide much information about which configuration
to use.
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under 0.5 seconds. We can solve most manipulation problems that arise in our manipulation
research very quickly, falling back to initializing the trajectory optimization with a complete
motion planner only in the most difficult of circumstances.

For each initialization trajectory, we calculate 17 simple feature values which populate a
row of the feature matrix Xi. 3 During training time, we evaluate each initialization seed in
our library on all examples in the training set, and use their performance and features to train
each regressor Ri in ConSeqOpt Batch (Algorithm 4). At inference time, we simply run
Algorithm 6 to produce YR1 , . . . ,YRN as the sequence of initialization seeds to be evaluated.
Note that while the first regressor uses only the 17 basic features, the subsequent regressors
also include the difference in feature values between the remaining actions and the actions
chosen by the previous regressors. These difference features improve the algorithm’s ability
to consider trajectory diversity in the chosen actions.

We compare ConSeqOpt Batch with two methods of ranking the initialization library:
a random ordering of the actions, and an ordering by sorting the output of the first regressor.
Sorting by the first regressor is functionally the same as maximizing the absolute benefit
rather than the marginal benefit at each slot. We compare the number of CHOMP failures
as well as the average execution time of the final trajectory. For execution time, we assume
the robot can be actuated at 1 rad/second for each joint and use the shortest trajectory
generated using the N seeds ranked by ConSeqOpt Batch as the performance. If we fail
to find a collision free trajectory and need to fall back to a complete planner (RRT [Kuffner
and LaValle 2000] plus trajectory optimization), we apply a maximum execution time penalty
of 40 seconds due to the longer computation time and resulting trajectory.

The results over 212 test examples are summarized in Figure 2.3. With only simple
straight line initialization, CHOMP is unable to find a collision free trajectory in 162/212
examples, with a resulting average execution time of 33.4 seconds. While a single regressor
(N = 1) can reduce the number of CHOMP failures from 162 to 79 and the average execution
time from 33.4 to 18.2 seconds, when we extend the sequence length, ConSeqOpt is able to
reduce both metrics faster than a ranking by sorting the output of the first regressor. This
is because for N > 1, ConSeqOpt Batch chooses a primitive that provides the maximum
marginal benefit, which results in trajectory seeds that have very different features from the
previous slots’ choices. Ranking by the absolute benefit tends to pick trajectory seeds that
are similar to each other, and thus are more likely to fail when the previous seeds fail. At

3Length of trajectory in joint space; length of trajectory in task space, the position (x,y,z) values of the
end effector position at the exploration point (3 values), the distance field values used by CHOMP at the
quarter points of the trajectory (3 values), joint values of the first 4 joints at both the exploration point (4
values) and the target pose (4 values), and whether the initialization seed is in the same left/right kinematic
arm configuration.
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a sequence length of 3, ConSeqOpt Batch has only 16 failures and an average execution
time of 8 seconds. A 90% improvement in success rate and a 75% reduction in execution
time. Note that planning times are generally negligible compared to execution times for
manipulation hence this improvement is significant. Figure 2.2b shows the initialization seed
found by ConSeqOpt Batch for the same example as in Figure 2.2a. Note that this seed
avoids collision with the obstacle between the manipulator and the target object enabling
CHOMP to produce a successful trajectory.
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Figure 2.3: Results of ConSeqOpt Batch for manipulation planning in 212 test examples.
The top image shows the number of CHOMP failures for three different methods after each
slot in the sequence. ConSeqOpt Batch not only significantly reduces the number of
CHOMP failures in the first slot, but also further reduces the failure rate faster than both
the other methods when the sequence length is increased. The same trend is observed in the
bottom image, which shows the average time to execute the chosen trajectory. The ‘Straight
Seed’ column refers to the straight-line heuristic used by the original CHOMP implementation

We confirm from this experiment our initial intuition that diversity in high ranks is
important to avoid selecting redundant items which are highly likely to fail together. One
could conceivably enforce diversity by first finding an appropriate distance measure between
items and then selecting items sequentially in a greedy-like manner where an item is only
added to the list if it is maximum distance away from all previously selected items currently
in the list. In practice such a procedure is difficult to implement because of two reasons:
1) the problem of finding the right distance measure between high dimensional objects like
grasps, trajectories in configuration space etc is non-trivial and 2) this brings up the question
of how much diversity is to be enforced and usually leads to free parameters which need to
be then cross-validated [Batra et al. 2012]. By observing the mathematical properties of the
task objective (monotone submodular) we elegantly sidestep both of these issues and are also
able to provide performance guarantees of the algorithm.
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2.2 ConSeqOpt Analysis

In this section we analyze ConSeqOpt Batch in detail and provide details on when such a
procedure will work, the explicit assumptions, the applicability of such assumptions to real
world list prediction problems and performance guarantees of our methods.

2.2.1 Submodularity of Lists and the Greedy Algorithm

A function f : S×D → [0, 1] is monotone submodular for any list S ∈ S and example d ∼ D,
where S is the set of all lists if it satisfies the following two properties:

• (Monotonicity) for any list S1, S2 ∈ S, f(S1) ≤ f(S1 ⊕ S2) and f(S2) ≤ f(S1 ⊕ S2)

• (Submodularity) for any list S1, S2 ∈ S, f(S1) and any item a ∈ A, f(S1 ⊕ S2 ⊕ a) −
f(S1 ⊕ S2) ≤ f(S1 ⊕ a)− f(S1)

where ⊕ means order dependent concatenation of lists, A is the library of all available items.
In this work we are concerned with contextually maximizing such monotone submodular
objective functions. We will show through numerous case studies (Chapter 3.2) the wide real
world applicability of ConSeqOpt and its more efficient variants.

So the first question that naturally arises is when a list length N is specified, what are
the items from A one should put in the list to maximize the objective of interest. Another
closely related question is what is the order in which items in A should be evaluated such that
the probability of encountering an item which succeeds at the task at hand is maximized.
This is exactly the question being asked in the robot manipulation path planning problem
in Chapter 2.1. Unfortunately, the answer to both of the above questions was proven to be
NP-hard by Nemhauser et al. [Nemhauser et al. 1978]. This implies that the only way to find
the best list of specified length or the best ordering of all items in the library is to enumerate
all possible lists of items and score each list using the monotone submodular objective and
pick the highest scoring one. Even for relatively small sized libraries the set of all possible
lists grows exponentially prohibitively large. For example for a library of 30 items, the set
of all lists of length 30 has 30! = 2.6525286E+32 lists in it (without replacement) and 3030

(with replacement).

But it turns out that there exist simple algorithms with good approximation guarantees
for maximizing monotone submodular functions.

Consider the Greedy algorithm (Algorithm 9) which proceeds by first initializing an
empty list S and selecting each item such that the addition of the item to the existing list
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Algorithm 9 Greedy
Input: List length N,

Library of items A
Output: List of items S = a1, a2, . . . aN
1: S = {}
2: for i = 1 to N do
3: for j = 1 to |A| do
4: gj = Ed∼D f(S ⊕ aj ,d)− f(S,d)
5: end for
6: a = argmax

j∈1,...,|A|
gj

7: S ← S ⊕ a
8: end for

up to that point increases f the most in expectation over a distribution of examples d ∼ D.
The loop stops once N items have been picked.

Feige proved [Feige 1998] that the list returned by the greedy algorithm is guaranteed to
achieve (1− 1

e ) of the optimal list of length N i.e. :

Ed∼D f(Sgreedy,d) ≥
(
1− 1

e

)
max
|S|≤N

Ed∼D f(S,d). (2.1)

This problem of finding the optimal list of budgeted size N has been studied in literature as
the Budgeted Maximum Submodular Coverage problem [Khuller et al. 1999; Streeter
and Golovin 2008].

Additionally Feige et al., [Feige et al. 2004] proved that for the problem of finding the
optimal ordering of all items in A so that the successful item can be encountered as early
on as possible, the ordering returned by Greedy is guaranteed to find the successful item
within 4 times the depth of the optimal ordering:

cost(Sgreedy) ≤ 4 cost
(
argmax
|S|≤|A|

Ed∼D f(S,d)
)
, (2.2)

where cost(S) is the number of elements of the list we had to go through to find the one that
succeeded at the task at hand. Such problems have been studied in literature as Min-Sum
Submodular Set Cover [Feige et al. 2004; Streeter and Golovin 2008; Munagala et al.
2005].

In the manipulation planning example in Chapter 2.1, the task is to find an ordering
of the initial trajectories in the library of 30 initial trajectories so that we can encounter
the trajectory which succeeds in finding a collision free path as early on as possible. This
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can be equivalently phrased as maximizing the probability of encountering a successful ini-
tial trajectory in a given list S of trajectories over a distribution of examples d ∼ D, i.e.
Ed∼D f(S,d) = Ed∼D P (S,d). Streeter and Golovin [Streeter and Golovin 2008] proved that
such objectives are monotone, submodular. Therefore given a dataset of training examples
one can use the Greedy algorithm detailed above (Algorithm 9) for finding the best ordering
of the initial trajectories in the library |A|. The Greedy solution will have the performance
guarantees outlined above for both Budgeted Maximum Submodular Coverage and
Min-Sum Submodular Set Cover.

Intuitively, the Greedy method is picking items in the list which provide the maximum
marginal benefit at that position of the list. This way additions to the list which do not
result in much gain to the objective are avoided. Another way of looking at this for the
manipulation problem is to imagine picking an initial trajectory in the first position of the
list hoping that it will be successful over most of the examples it encounters, but due to
imperfection in both data and evaluation it fails. What this immediately shows is that initial
trajectories similar to the first one are likely to fail as well and should not be selected for
the second position. Initial trajectories which are different from the first one, but are still
likely to succeed should be selected (diverse but relevant). The Greedy algorithm naturally
captures this notion of diversity and relevance when the objective is monotone submodular
and comes up with an optimal list up to approximation guarantees.

But the Greedy algorithm has a crucial limitation: it ignores the context of the example
while constructing the list of initial trajectories. Ideally we would like a method that takes
into account the rich features of the example available through the various sensors (e.g.
cameras, depth cameras, lidars) mounted on the manipulator to aid in predicting a list
of initial trajectories to maximize the probability of finding a successful one as early as
possible. In the following section we analyze how ConSeqOpt overcomes this limitation
while maintaining the performance guarantees of the Greedy algorithm.

2.2.2 ConSeqOpt: Contextualizing the Greedy Algorithm

We will first examine how the Greedy algorithm is contextualized by a reduction to learning
a list of classifiers to result in the ConSeqOpt Batch algorithm detailed in Algorithms 1
and 4.

In machine learning, reduction [Alina Beygelzimer and Zadrozny 2009] is the process of
breaking down a challenging problem for which no easy solution exists to smaller problems for
which well-understood theoretical and practical solutions exist. By relating the performance
of the solutions to the smaller problems, statements can be made about the quality of the
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solution to the more challenging problem.

We reduce the problem of predicting lists to invoking a list of multi-class classifiers,
each of which in turn predicts an item in the resulting list. We establish a formal regret
reduction [Beygelzimer et al. 2005] between cost sensitive multi-class classification error and
the resulting error on the learned list of classifiers. Specifically, we demonstrate that if we
consider the items in A to be the classes and train a series of classifiers–one for each position
of the list–on the features of a distribution of examples, we can then produce a near-optimal
list of classifiers, which in turn can be invoked to produce the near-optimal list of items for
a test example.
Theorem 1. If each of the classifiers {π1, π2, . . . , πi, . . . , πN} trained in Algorithm 1 achieves
multi-class cost-sensitive regret of ri, then the resulting list of classifiers is within at least(
1 − 1

e

)
max
S∈S

Ed∼D f(S,d) −
∑N
i=1 ri of the optimal such list of classifiers S from the

same hypothesis space. 4

Proof. (Sketch) Define the loss of a multi-class, cost-sensitive classifier π over a distribution
of examples D as l(π,D). Each example can be represented as (xn,m1

n,m
2
n,m

3
n, . . . ,m

|A|
n )

where xn is the set of features representing the nth example and
m1
n,m

2
n,m

3
n, . . . ,m

|A|
n are the per class costs of misclassifying xn. m1

n,m
2
n,m

3
n, . . . ,m

|A|
n are

simply the nth row of MLi (which corresponds to the nth example in the dataset D). The best
class has a 0 misclassification cost and while others are greater than equal to 0 (There might
be multiple actions which will yield equal marginal benefit). Classifiers generally minimize
the expected loss l(π,D) = E

(xn,m1
n,m

2
n,m

3
n,...,m

|A|
n )∼D

[Cπ(xn)] where Cπ(xn) = m
π(xn)
n denotes the

example-dependent multi-class misclassification cost. The best classifier in the hypothesis
space H minimizes l(π,D)

π∗ = argmin
π∈Π

E
(xn,m1

n,m
2
n,m

3
n,...,m

|A|
n )∼D

[Cπ(xn)]. (2.3)

The regret of π is defined as r = l(π,D) − l(π∗,D). Each classifier associated with ith

slot of the list has a regret ri.

Streeter et al. [Streeter and Golovin 2008] consider the case where the ith decision made
by the greedy algorithm is performed with additive error εi. Denote by Ŝ = 〈ŝ1, ŝ2, . . . , ŝN 〉
a variant of the list S in which the ith argmax is evaluated with additive error εi. This can

4When the objective is to minimize the time (depth in list) to find a satisficing element then the resulting
list of classifiers Ed∼D f(Ŝ〈N〉, d) ≤ 4

∫∞
0 1−maxS∈S Ed∼D f(S〈n〉, d)dn +

∑N

i=1 ri.
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be formalized as

Ed∼D
[
f(Ŝi ⊕ ŝi,d)− f(Ŝi,d)

]
≥ max

si∈A
Ed∼D

[
f(Ŝi ⊕ si,d)− f(Ŝi,d)

]
− εi, (2.4)

where Ŝ0 = 〈〉, Ŝi = 〈ŝ1, ŝ2, ŝ3, . . . , ŝi−1〉 for i ≥ 1 and si is the predicted item by classifier πi.
They demonstrate that, for a budget or list length of N

Ed∼D f(Ŝ〈N〉,d) ≥ (1− 1
e

) max
S∈S

Ed∼D f(S,d)−
N∑
i=1

εi, (2.5)

assuming each item takes equal time to execute.

Thus the ith argmax in (2.4) is chosen with some error εi = ri. An εi error made
by classifier πi corresponds to the classifier picking an item whose gain is εi less than the
maximum possible. Hence the performance bound on additive error greedy list construction
stated in (2.5) can be restated as

Ed∼D f(Ŝ〈N〉,d) ≥ (1− 1
e

) max
S∈S

Ed∼D f(S,d)−
N∑
i=1

ri. (2.6)

Theorem 2. The list of squared-loss regressors {R1, . . . ,Ri, . . . ,RN} trained in Algorithm
4 is within at least (1− 1

e )max
S∈S

f(S)−
∑N
i=1

√
2(|A| − 1)rregi of the optimal list of classifiers

S from the hypothesis space of multi-class cost-sensitive classifiers.

Proof. (Sketch) Langford et al. [Langford and Beygelzimer 2005] show that the regret reduc-
tion from multi-class classification to squared-loss regression has a regret of

√
2(|k| − 1)rreg

where k is the number of classes and rreg is the squared-loss regret on the underlying re-
gression problem. In Algorithm 4 we use squared-loss regression to perform multi-class clas-
sification thereby incurring for each slot of the list a reduction regret of

√
2(|A| − 1)rregi

where |A| is the number of items in the library and rregi is the regret of the regressor
for the ith slot. Theorem 1 states that the list of classifiers achieve Ed∼D f(Ŝ〈N〉,d) ≥
(1 − 1

e ) maxS∈S Ed∼D f(S,d) −
∑N
i=1 ri of the optimal list of classifiers. Plugging in the re-

gret reduction from [Langford and Beygelzimer 2005] we get the result that the resulting list of
regressors in Algorithm 4 is within at least (1− 1

e ) max
S∈S

Ed∼D f(S,d)−
∑N
i=1

√
2(|A| − 1)rregi

of the optimal list of multi-class cost-sensitive classifiers.

Theorem 1 proves that ConSeqOpt Batch using classifiers efficiently finds the approx-
imately greedy list of classifiers from the hypothesis space of all such classifiers. Similarly
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Theorem 2 proves that ConSeqOpt Batch using regressors also find the approximately
greedy list of regressors from the hypothesis space of all such regressors.
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CHAPTER3
Data-Efficient Contextual Optimization of

Lists

In this chapter we develop a more efficient version of ConSeqOpt. ConSeqOpt sequentially
trains N classifiers or regressors, one for each position of the list. Since predictors responsible
for earlier positions of the list will generally start choosing optimal or near-optimal items for
most examples in the dataset, the predictors responsible for later positions often do not
observe enough examples to learn effectively to predict items which will bring the maximum
gain to the objective at those positions. In other words the later predictors usually starve
for data unless a large amount of data is available to begin with. We propose a closely
related approach which trains a single (no-regret) online learner (policy) to produce a list
of predictions. We term this approach as “Submodular Contextual Policy” algorithm, or in
short SCP.

By leveraging recent work in imitation learning [Ross et al. 2011], SCP preserves similar
performance guarantees as ConSeqOpt while being more data-efficient since all the data is
used for training the learner. We will first describe the algorithm for the context-free case,
where no features of the example are available. In this case as with the Greedy algorithm, the
performance of a list S ∈ S is evaluated by its expected value over an unknown distribution
of examples d ∼ D: Ed∼D f(S,d) where f is monotone submodular. The Greedy algorithm
with perfect knowledge of D can find a list S of length N such that it has the performance
guarantees listed in 2.1 and 2.2 for the Min-Sum Submodular Set Cover and Budgeted
Maximum Submodular Coverage problems respectively. Although D is unknown, we
assume (as in the case of ConSeqOpt) that we observe samples d ∼ D and can evaluate
any list S ∈ S using the objective function f(S,d) during training. Our goal is to develop
a computationally and statistically more efficient algorithm, which has similar performance
guarantees as ConSeqOpt.

Algorithm 10 describes SCP in the context-free setting for the online Budgeted Max-
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Algorithm 10 SCP: Algorithm for training in context-free setting
Input: List length N ,

List length of best list to compete against K,
No-regret online learner routine “update”,
Library of items A

Output: Learnt internal distribution over items p : A → [0, 1]

1: for t = 1 to T do
2: St = {}
3: for i = 1 to N do
4: a← sample(pt)
5: St ← St ⊕ a
6: end for
7: d← sample(D)
8: for all a ∈ A do
9: rt(a)←

∑N
i=1(1− 1

K )N−jb(a|St,i−1,d)
10: end for
11: for all a ∈ A do
12: lt(a)← max

a′∈A
rt(a′)− rt(a)

13: end for
14: for all a ∈ A do
15: pt+1 ← update(lt(a))
16: end for
17: end for

Algorithm 11 SCP: Algorithm for inference in context-free setting
Input: List length N ,

Learnt internal distribution over items p : A → [0, 1],
Library of items A

Output: S ∈ S of length N

1: S = {}
2: for i = 1 to N do
3: a← sample(p)
4: S ← S ⊕ a
5: end for
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imum Submodular Coverage setting. SCP requires an online learning algorithm sub-
routine (denoted by the function “update”) that is no-regret with respect to a bounded loss
function l : A → [0, 1], maintains an internal distribution over items in A for prediction
and can be queried for multiple predictions (i.e. multiple samples). Algorithms that meet
these requirements include Randomized Weighted Majority [Littlestone and Warmuth 1994],
Follow-the-Leader [Kalai and Vempala 2005], EXP3 [Auer et al. 2003] and many others. In
contrast to prior work [Streeter and Golovin 2008; Dey et al. 2012], SCP employs only a single
no-regret online learning routine in the inner loop. The sample function samples the online
learner’s internal distribution over items in A to output an item a. The update function
takes in a loss lt and updates the internal distribution over items.

SCP proceeds by training over a sequence of examples d ∼ D. At each iteration SCP
queries the online learner to generate a list of N items (via sample(pt)) which samples from
its internal distribution over items pt, evaluates a weighted cumulative gain of each item on
the sampled list to define a loss related to each item and then uses the online learner (via
update) to update its internal distribution.

During training we allow the algorithm to construct lists of length N rather than K. In
its simplest form, one may simply choose N = K. However it may be beneficial to choose N
differently than K, as is shown later in the theoretical analysis (Chapter 3.1).

Perhaps the most unusual aspect of Algorithm 10 is how the loss is defined using the
weighted cumulative gains of each item:

rt(a)←
N∑
i=1

(1− 1
K

)N−jb(a|St,i−1,d), (3.1)

where St,i−1 denotes the first i−1 items in St and b(a|St,i−1) = f(St,i−1⊕a,d)−f(St,i−1,d).
Intuitively 3.1 represents the weighted sum of gains of item a in example d had we added it
at any intermediate position in St. The gains in different positions are weighed differently,
where position i is adjusted by a factor (1 − 1

K )N−i. These weights are derived via our
theoretical analysis and indicate that benefits in early positions should be more discounted
than benefits in later positions. Intuitively, this weighting has the effect of re-balancing the
benefits so that each position contributes more equally to the overall loss.

In principle SCP and ConSeqOpt can be applied in partial feedback settings (e.g.
advertisement placement) where the value of f is only observed for some items by using
bandit algorithms instead (e.g. EXP3, [Auer et al. 2003]). As this is an orthogonal issue, we
will focus here on the full information feedback case.

We now consider the contextual setting where features v of each example d are observed
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before choosing the list. Consider a hypothesis space Π which has uncountaby many hy-
potheses. Conceivably the Greedy algorithm can consider each such hypothesis and come
up with the best ordering of these hypotheses (up to known approximation bounds). Since
this is not feasible to do in practice due to the uncountably many hypotheses contained in
Π, in Chapter 2.2 we leveraged optimization based techniques to modify Greedy so that it
could be “lifted” to the space of classifiers or regressors (hypotheses). The resulting algo-
rithm ConSeqOpt could thus successfully compete against the approximately best list of
hypotheses that the Greedy algorithm could find if it could consider the uncountably many
hypotheses in Π. Similarly our goal here is to compete against the best list of hypotheses
(ψ1, ψ2, . . . , ψN ) from a hypothesis class Π. Each of these hypotheses are assumed to choose
an item solely based on features of the example d ∼ D.

We embed Π within a larger class Π ⊂ Π̃ where hypotheses in Π̃ are functions of both
example and a partially constructed list. (Π̃ : RL ×S → A where L is the size of the feature
vector v representing example d and S is the space of all possible lists of items). Then any
ψ ∈ Π̃, (ψ(v, S)), selects an item to append to S, given features of d and features of list S.
We will learn a hypothesis (or distribution of hypotheses) from Π̃ that attempts to generalize
list construction across multiple positions of the list. 1

Algorithm 12 details an extension of SCP to the contextual setting. At each iteration,
SCP constructs a list St for the example d, using its current hypothesis or by sampling from
its current distribution over hypotheses. Analogous to the context-free setting, we define a
loss function over the learner subroutine “update”. We represent the loss using weighted cost-
sensitive classification examples {(vti, cti, wti)}Ni=1, where vti denotes features of the example
d and list St,i−1, wti = (1 − 1

K )N−i is the weight associated to this example, and cti is the
cost vector specifying the cost of each item a ∈ A:

cti(a) = max
a′∈A

b(a′|St,i−1,d)− b(a|St,i−1,d). (3.2)

The loss incurred by any hypothesis ψ is defined by its loss on this set of cost-sensitive
classification examples i.e.

lt(ψ) =
N∑
i=1

wticti(ψ(vti)). (3.3)

These new examples are then used to update the hypothesis (or distribution over hypotheses)
using a no-regret online algorithm “update”.

This reduction effectively transforms the task of learning a hypothesis for this submodular
1Competing against the best list of hypotheses in Π̃ is difficult in general as it violates submodularity:

hypotheses can perform better when added later in the list (due to list features). Nevertheless, we can still
learn from Π̃ and compete against the best list of hypotheses in Π.
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Algorithm 12 SCP: Algorithm for training in contextual setting
Input: List length N ,

List length of best list to compete against K,
Contextual no-regret online learning routine,
Hypothesis class Π̃ : RL × S → A,
Library of items A

Output: Hypothesis (or distribution over hypotheses) ψ : RL × S → A

1: for t = 1 to T do
2: St = {}
3: d← sample(D)
4: for i = 1 to N do
5: vti ← computeFeatures(St,i−1,d)
6: St ← St ⊕ ψt(vti)
7: cti ← []
8: for j = 1 to |A| do
9: ctij ← max

a′∈A
b(a′|St,i−1,d)− b(aj |St,i−1,d)

10: cti ← cti ⊕ ctij
11: end for
12: wti ← (1− 1

K )N−i
13: end for
14: ψt+1 ← update(ψt, {(vti, cti, wti)}Ni=1)
15: end for

Algorithm 13 SCP: Algorithm for inference in contextual setting
Input: List length N ,

Library of items A,
Hypothesis (or distribution over hypotheses) ψ : RL × S → A

Output: List of selected items S

1: S = {}
2: for i = 1 to N do
3: v ← computeFeatures(S,d)
4: a← ψ(v)
5: S ← S ⊕ a
6: end for
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list optimization problem into a standard cost-sensitive classification problem2. Analogous
to the context-free setting, we can also extend to partial feedback setting where f is only
partially measurable by using contextual bandit algorithms like EXP4 [Auer et al. 2003] as
the online learner. Having transformed our problem into online cost-sensitive classification,
we now present approaches that can be used to achieve no-regret on such tasks.

For finite policy classes Π̃, one can leverage any no-regret online algorithm such as
Weighted Majority [Littlestone and Warmuth 1994]. Weighted Majority maintains a dis-
tribution over hypotheses in Π̃ based on the loss lt(ψ) for each ψ and achieves regret at a
rate of

R =

√
K ′

log |Π̃|
T

, (3.4)

for K ′ = min(N,K). In fact the context-free setting can be seen as a special case where
Π = Π̃ = {ψ|a ∈ A} and ψ(v) = a for any v. However, achieving no-regret for uncountably
many hypotheses classes is in general not tractable. A more practical approach is to employ
existing reductions of cost-sensitive classification problems to convex optimization problems,
for which we can efficiently run no-regret convex optimization (e.g. gradient descent). These
reductions effectively upper bound the cost-sensitive loss by a convex loss, and thus bound
the original loss of the list prediction problem. We briefly describe two such reductions from
[Beygelzimer et al. 2005].

Reduction to Regression We transform cost-sensitive classification into a regression prob-
lem of predicting the cost of each item a ∈ A. Afterwards, we choose the item with the lowest
predicted cost. Analogous to ConSeqOpt using regressors in Algorithm 4, we convert each
weighted cost-sensitive example (vti, cti, wti) into |S| weighted regression examples. For ex-
ample, if we use least-squares linear regression, the weighted squared-loss for a particular
example (vti, cti, wti) and regressor R would be

l(R) = w
∑
a∈A

(RT vti(a)− c(a))2. (3.5)

Reduction to Ranking Another useful reduction transforms the problem into a “ranking”
problem that penalizes ranking an item a above a better item a′. In our experiments, we
employ a weighted hinge loss. The penalty is therefore proportional to the difference in cost of
the mis-ranked pair. For each cost sensitive example (vti, cti, wti) we generate |A|(|A| − 1)/2
ranking examples for every distinct pair of items (a, a′) where we must predict the best item
between (a, a′) (potentially by a margin) with a weight wti|cti(a) − cti(a′)|. For example if

2This is similar to DAgger [Ross et al. 2011] developed for sequential prediction problems like imitation
learning can be seen as a specialization of DAgger for submodular list optimization and ensures that we learn
learners that pick good items under the lists they construct.
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we train a linear SVM [Joachims 2005], we obtain a weighted hinge loss of the form:

wti|cti(a)− cti(a′)| max(0, 1− hT (vti(a)− vti(a′))) sign|cti(a)− cti(a′)|, (3.6)

where h is the linear hypothesis. At prediction time, we simply predict the item a∗ =
argmax
a∈A

hT vti(a). This reduction proves advantageous whenever it is easier to predict pairwise

rankings rather than the actual cost.

3.1 SCP Analysis

We now show that Algorithm 10 is no-regret with respect to the Greedy algorithm’s expected
performance over the training instances. Our main theoretical result provides a reduction
to an online learning problem and directly relates the performance of our algorithm on the
submodular list optimization problem to the standard online learning regret incurred by the
routine. Although Algorithm 10 uses only a single instance of on online learner routine
it achieves the same performance guarantee as prior work [Streeter and Golovin 2008] and
ConSeqOpt that employN separate instances of an online learner. This leads to a surprising
fact: it is possible to sample from a stationary distribution over items to construct a list that
achieves the same guarantee as the Greedy algorithm!

For a sequence of training examples {dt}Tt=1, let the sequence of loss functions {lt}Tt=1
defined in Algorithm 10 correspond to the sequence of losses incurred in the reduction to the
online learning problem. The expected regret of the online learning algorithm is:

E[R] =
T∑
t=1

Ea′∼pt [lt(a′)]−min
a∈A

T∑
t=1

lt(a), (3.7)

where pt is the internal distribution of the online learner used to construct list St. Note
that an online learner is called no-regret if R is sublinear in T .

Let F (p,N) = ESN∼p[Ed∼D[f(SN ,d)]] denote the expected value of contstructing lists by
sampling (with replacement) N elements from distribution p, and let p̂ = argmax

t∈{1,2,...,T}
F (pt, N)

denote the best distribution found by the algorithm. We define a mixture distribution p̄

over lists that constructs a list as follows: sample an index t uniformly in {1, 2, . . . , T}, then
sample N elements (with replacement) from pt. Note that F (p̄, N) = 1

T

∑T
t=1 F (pt, N) and

F (p̂, N) ≥ F (p̄, N). Thus it suffices to show that F (p̄, N) has good guarantees. We show that
in expectation p̄ (and thus p̂) constructs lists with performance guarantees close to Greedy.
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3

Theorem 3. Let α = exp(−N
K ) and K ′ = min(N,K). For any δ ∈ (0, 1), with probability

≥ 1− δ

F (p̄, N) ≥ (1− α)F (S∗K)− E[R]
T
− 3

√
2K ′ln(2/δ)

T
, (3.8)

where S∗K is the optimal list of length K.

Proof. See Appendix A and A.2.

Corollary 1. If a no-regret algorithm is used on the sequence of losses lt, then as T → ∞,
E[R]
T → 0 and

lim
T→∞

F (p̄, N) ≥ (1− α)F (S∗K). (3.9)

Proof. See Appendix A and A.2.

Theorem 3 provides a general approximation ratio to the best list of size K, when con-
structing a list of a different size N . For N = K, we obtain the typical (1− 1

e ) approximation
ratio [Feige 1998]. As K increases, this provides approximation ratios that converge expo-
nentially to 1. Naively one might expect regret E[R]/T to scale linearly in K ′ as it involves
loss in [0,K ′]. However we show that regret actually scales as O

√
K ′ (e.g. using Weighted

Majority [Littlestone and Warmuth 1994]). Our result matches the best known results for
this setting [Streeter and Golovin 2008], while using a single online learner, and is especially
beneficial in the contextual setting due to improved generalization.
Corollary 2. Using Weighted Majority [Littlestone and Warmuth 1994] with the optimal
learning rate guarantees with probability ≥ 1− δ

F (p̄, N) ≥ (1− α)F (S∗K)−O(

√
K ′ log(1/δ)

T
) +

√
K ′ log |A|

T
). (3.10)

Proof. See Appendix A and A.2.

We now present performance guarantees for SCP in the contextual setting, that relate
performance on the submodular list optimization task to the regret of the corresponding
online cost-sensitive classification task. Let lt :

∼
Π → R compute the loss of each hypothesis

ψ on the cost-sensitive classification examples {(vti, cti, wti)}Ni=1 collected in Algorithm 12 for
example d. We use {lt}Tt=1 as the sequence of losses for the online learning problem.

3Additionally, if the distributions pt converge, then the last distribution pT+1 must have performance
arbitrarily close to p̄ as T →∞. In particular, we can expect this to occur when the examples are randomly
drawn from a fixed distribution that does not change over time.
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For a deterministic online algorithm that picks the sequence of hypotheses {ψt}Tt=1, the
regret is:

R =
T∑
t=1

lt(ψt)−min
ψ∈
∼
Π

T∑
t=1

lt(ψ). (3.11)

For a randomized online learner, let ψt be the distribution over hypotheses at iteration
t, with expected regret:

E[R] =
T∑
t=1

Eψ′t∼ψt [lt(ψ
′
t)]−min

ψ∈
∼
Π

T∑
t=1

lt(ψ). (3.12)

Let:
F (ψ,N) = ESψ,N∼ψ[Ed∼D[f(Sψ,N ,d)]], (3.13)

denote the expected value of constructing lists (Sψ,N ) by sampling (with replacement) N
hypotheses from hypotheses distribution ψ (if ψ is a deterministic hypothesis, then this means
we use the same hypothesis at each position of the list). Let ψ̂ = argmaxt={1,2,...,T} F (ψt, N)
denote the best distribution found by the algorithm in hindsight.

We use a mixture distribution ψ̄ over hypotheses to construct a list as follows: sample an
index t uniformly in {1, 2, . . . , T}, then sample N learners from ψt to construct the list. As
before, we note that F (ψ̄, N) = 1

T

∑T
t=1 F (ψt, N) and F (ψ̂, N) ≥ F (ψ̄, N). We again focus

on providing good guarantees for F (ψ̄, N) as shown by the following theorem:
Theorem 4. Let α = exp(−N

K ) and K ′ = min(N,K). For any δ ∈ (0, 1). After T iterations,
for deterministic online algorithms, with probability ≥ 1− δ:

F (ψ̄, N) ≥ (1− α)F (S∗ψ,K)− R

T
− 2

√
2 ln(1/δ)

T
, (3.14)

where S∗ψ,K is the list of length Kthat can be constructed by the best distribution ψ over
hypotheses. Similarly, for randomized online algorithms, with probability at least 1− δ:

F (ψ̄, N) ≥ (1− α)F (S∗ψ,K)− E[R]
T
− 3

√
2K ′ ln(2/δ)

T
, (3.15)

Proof. See Appendix A and A.2.

Thus as in the context-free case, a no-regret online algorithm must achieve F (ψ̄, N) ≥
(1−α)F (S∗ψ,K) with high probability as T →∞. This matches similar guarantees provided by
ConSeqOpt. Despite having similar guarantees, we intuitively expect SCP to outperform
ConSeqOpt in practice because SCP can use all data to train a single predictor, instead
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of being split to train K separate ones. We empirically verify this intuition in Chapter 3.2.
When using surrogate convex loss functions (such as regression or ranking loss), we provide
a general result that applies if the online learner uses any convex upper bound of the cost-
sensitive loss. An extra penalty term is introduced that relates the gap between the convex
upper bound and the original cost-sensitive loss:
Theorem 5. Let α = exp(−N

K ) and K ′ = min(N,K). If we run an online algorithm on the
sequence of convex losses Ct instead of lt, then after T iterations, for any δ ∈ (0, 1), we have
that with probability at least 1− δ:

F (ψ̄, N) ≥ (1− α)F (S∗ψ,K)− R̃

T
− 2

√
2ln(1/δ)

T
− G. (3.16)

Proof. See Appendix A and A.2.

This result implies that using a good surrogate convex loss for no-regret convex optimiza-
tion will lead to a learner (or distribution of learners) that has good performance relative
to the optimal list of learners. Note that the gap G, often may be small or non-existent.
For instance, in the case of the reduction to regression or ranking, G = 0 in realizable set-
tings where there exists a “perfect” hypothesis in the class. Similarly where the problem is
near-realizable we would expect G to be small. 4

3.2 Case Studies

3.2.1 Case Study: Robotic Manipulation Planning

We applied SCP to the robot manipulation planning task used to showcase ConSeqOpt in
Chapter 2.1. The goal is to predict a set of initial trajectories so as to maximize the chance
that one of them leads to a collision-free trajectory. We use local trajectory optimization
techniques such as CHOMP [Zucker et al. 2013], which have proven effective in quickly finding
collision-free trajectories using local perturbations of an initial trajectory. Note that selecting
a diverse set of initial trajectories is important since local techniques such as CHOMP often
get stuck in local optima.5

We use the same dataset as used for ConSeqOpt. It consists of 310 training and 212
test environments of random obstacle configurations around a target object, and 30 initial
seed trajectories. In each environment, each seed trajectory has 17 features describing the

4We conjecture that this gap term G is not specific to our particular scenario, but rather is (implicitly)
always present whenever one attempts to optimize classification accuracy via surrogate convex optimization.

5i.e. similar or redundant inital trajectories will lead to the same local optima.
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Figure 3.1: (a) SCP performs better at even low data availability while ConSeqOpt suffers
from data starvation issues (b) With increase in slots SCP predicts news articles which have
lower probability of the user not clicking on any of them compared to ConSeqOpt (c)
ROUGE-1R scores with respect to the size of the training data

spatial properties of the trajectory relative to obstacles. In addition to the base features,
we add features of the current list with respect to each initial trajectory. We use the per
feature minimum absolute distance and average absolute value of the distance to the features
of initial trajectories in the list. We also use a bias feature always set to 1, and an indicator
feature which is 1 when selecting the element in the first position, 0 otherwise. This enables
a distinction between the case where the minimum and average features are 0 because there
are no trajectories in the list yet, versus when they are 0 because we are actually considering
a trajectory which is already in the list.

We compare SCP to ConSeqOpt (which learns N separate predictors), and Regression
(regress success rate from features to sort initial trajectories; this accounts for relevance but
not diversity).

Figure 3.1 (left) shows the failure probability over the test environments versus the
number of training environments. ConSeqOpt employs a reduction to N classifiers. As a
consequence, ConSeqOpt faces data starvation issues for small training sizes, as there is
little data available for training predictors lower in the list.6 In contrast, SCP has no data
starvation issue and outperforms both ConSeqOpt and Regression.

3.2.2 Case Study: Personalized News Recommendation

In the news recommendation setting the task is to present a sequence of news articles to a
user so as to maximize the probability of the user clicking on at least 1 recommended article,
which is similar to the initial trajectory selection problem in manipulation.

6When a successful initial trajectory is found, benefits at later positions are 0. This effectively discards
training environments for training classifiers lower in the list in ConSeqOpt.
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We built a stochastic user simulation based on 75 user preferences derived from a user
study in [Yue and Guestrin 2011]. Using this simulation as a training oracle, our goal is to
learn to recommend articles to any user (depending on their contextual features) to minimize
the failure case where the user does not like any of the recommendations.7

Articles are represented by features, and user preferences by linear weights. We derived
user contexts by soft-clustering users into groups, and using corrupted group memberships
as contexts.

We perform five-fold cross validation. In each fold, we train SCP and ConSeqOpt on
40 users’ preferences, use 20 users for validation, and then test on the held-out 15 users.
Training, validation and testing are all performed via simulation. Figure 3.1 (middle) shows
the results, where we see the recommendations made by SCP achieves significantly lower
failure rate as the number of recommendations is increased from 1 to 5.

3.2.3 Case Study: Document Summarization

Method ROUGE-1F ROUGE-1P ROUGE-1R

SubMod 37.39 36.86 37.99

DPP 38.27 37.87 38.71

ConSeqOpt 39.02± 0.07 39.08±0.07 39.00±0.12

SCP 39.15±0.15 39.16±0.15 39.17±0.15

Greedy (Oracle) 44.92 45.14 45.24

Table 3.1: ROUGE unigram score on the DUC 2004 test set

In the extractive multi-document summarization task, the goal is to extract sentences
(with character budget N) to maximize coverage of human-annotated summaries.

Following the experimental setup from [Lin and Bilmes 2010] and [Kulesza and Taskar
2011], we use data from the Document Understanding Conference (DUC) 2003 and 2004 (Task
2) [Dang 2005]. Each training or test instance corresponds to a cluster of documents, and
contains approximately 10 documents belonging to the same topic and four human reference
summaries. We train on the 2003 data (30 clusters) and test on the 2004 data (50 clusters).
The budget is N = 665 bytes, including spaces.

We use the ROUGE [Lin 2004] unigram statistics (ROUGE-1R, ROUGE-1P, ROUGE-
1F) for performance evaluation. Our method directly attempts to optimize the ROUGE-1R

7Also known as abandonment [Radlinski et al. 2008].
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objective with respect to the reference summaries, which can be easily shown to be monotone
submodular [Lin and Bilmes 2011].

We aim to predict sentences that are both short and informative. Therefore we maximize
the normalized marginal benefit,

b′(a|St,i−1) = b(a|St,i−1)/l(a), (3.17)

where l(a) is the length of the sentence a.8 We use a reduction to ranking as described in
Chapter 3 using (3.17). While not performance-optimized, our approach takes less than 15
minutes to train.

Following [Kulesza and Taskar 2011], we consider features xi for each sentence consisting
of quality features qi and similarity features φi (xi = [qTi , φTi ]T ). The quality features, attempt
to capture the representativeness for a single sentence. Similarity features φi for sentence ai
as we construct the list St measure a notion of distance of a proposed sentence to sentences
already included in the set.9

Table 3.1 shows the performance (Rouge unigram statistics) comparing SCP with exist-
ing algorithms. We observe that SCP outperforms existing state-of-the-art approaches, which
we denote SubMod [Lin and Bilmes 2010] and DPP [Kulesza and Taskar 2011]. “Greedy (Or-
acle)” corresponds to the clairvoyant oracle which uses the Greedy algorithm 9 to directly
optimize the test Rouge score and thus serves as an upper bound on this class of techniques.
Figure 3.1 (right) plots Rouge-1R performance as a function of the size of training data,
suggesting SCP’s superior data-efficiency compared to ConSeqOpt.

8This results in a knapsack constrained optimization problem. We refer the reader to [Zhou et al. 2013]
for a detailed analysis.

9A variety of similarity features were considered, with the simplest being average squared distance of tf-idf
vectors. Performance was very stable across different features. The experiments presented use three types:
1) following the idea in [Kulesza and Taskar 2011] of similarity as a volume metric, we compute the squared
volume of the parallelopiped spanned by the TF-IDF vectors of sentences in the set St,k ∪ ai; 2) the product
between det(GSt,k∪ai ) and the quality features; 3) the minimum absolute distance of quality features between
ai and each element in St,k.
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CHAPTER4
Multiple Output Structured Prediction

In previous chapters (Chapter 2 and 3) we have detailed a method for directly predicting
sets and lists that maximize monotone submodular objectives in general settings. In this
chapter we propose extensions to the structured output setting. Such tasks are ubiquitious
in computer vision tasks such as object recognition [Girshick et al. 2014], semantic segmen-
tation [Carreira and Sminchisescu 2010], tracking [Kalal et al. 2012], monocular human pose
estimation [Yang and Ramanan 2011] and point cloud classification [Munoz et al. 2010]. These
tasks are often addressed by a pipeline architecture where each module of the pipeline pro-
duces several hypotheses as input to the next module. Considering multiple options at each
stage is good practice as it avoids premature commitment to a single answer which, if wrong,
can jeopardize the quality of decisions made downstream [Felzenszwalb and McAllester 2007;
Viola and Jones 2001]. As an example consider Figure 4.1 where multiple predictions are
generated for a foreground/background segmentation task. We see that the prediction with
the highest confidence (denoted by prediction 1) can be far from the groundtruth. The prin-
cipal requirement of a list is that at least one hypothesis in the list is close to the groundtruth
labeling (high list recall). A characteristic of lists which achieve high recall in a small num-
ber of hypotheses is diversity [Radlinski et al. 2008] which increases the odds of at least one
accurate prediction.

Our central insight is that diversity in a list of structured predictions need not be enforced,
but that it is an emergent property of optimizing the correct submodular recall objective. Sim-
ilar to ConSeqOpt our procedure trains a sequence of predictors, each of which produces
a hypothesis. Consider the semantic scene labeling problem where the task is to label every
pixel with a semantic label like “grass”, “sky”, etc. It is not beneficial to predict a labeling
in the second position of the list which differs from the first labeling in the list only by a
few pixels. Note that the desired property is to achieve high recall, while diversity is merely
a characteristic of lists that achieve this. Therefore our objective optimizes for recall and
does not explicitly enforce diversity, instead the maximization of the submodular objective
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Image Prediction 1 Prediction 2 Prediction 3

Figure 4.1: For a given image our method trains a small number of structured predictors in
sequence. For a test image, the list of predictors are invoked to produce multiple hypotheses.
Our approach produces high recall lists within a small number of hypotheses and can use any
structured predictor available.

naturally produces diverse hypotheses. Conveniently, as summarized in Chapter 2, submod-
ular monotone functions can be maximized efficiently by greedily maximizing the marginal
benefit which ensures performance within 1− 1

e (∼ 63%) of the optimal list of items of a fixed
length [Nemhauser et al. 1978].

Making a single best prediction in structured problems is difficult due to the combina-
torially large state space that has to be considered. While a number of approaches, both
probabilistic [Lafferty et al. 2001; Kohli et al. 2013] and margin-based [Tsochantaridis et al.
2005; Taskar et al. 2003], for learning and inference in structured problems are well known,
methods for making multiple predictions in structured problem domains are relatively few
[Guzman-Rivera et al. 2012; Batra et al. 2012; Park and Ramanan 2011; Kulesza and Taskar
2010]. We develop a learning-based approach to produce a small list of structured predictions
that ensures high recall in a variety of computer vision tasks.

In contrast to recent developments which train a single model during the learning phase
and modify the inference procedure to produce multiple hypotheses at test time [Batra et al.
2012; Park and Ramanan 2011; Kulesza and Taskar 2010], our approach trains separate
predictors during the learning phase to produce each of the hypotheses in the list. This
alternate approach has several advantages—the learning procedure is optimized for the task
of producing a list with high recall; diversity does not need to be enforced in an ad hoc
fashion but is an emergent property of lists that maximize our objective; it is agnostic to
the inference method used and can be utilized for any class of structured predictor. We
empirically demonstrate our approach on common vision tasks such as estimating human pose
from a single image, semantic scene segmentation and foreground/background segmentation.
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The primary contributions of our approach are:

• Our approach is a model agnostic framework applicable to extending any structured pre-
diction algorithm to make multiple predictions. In any task domain for which learning
algorithms exist to generate a single best prediction, our approach can be employed for
making multiple predictions by training multiple instances.

• Our approach is parameter free. In contrast, current state-of-the-art approaches enforce
diversity by explicitly introducing a diversity modeling term in the objective function. Such
parameters are tuned on validation data. It is not clear that artificially enforcing diversity
in such a way is the right thing for the task at hand to achieve the best performance
[Caruana et al. 2004; Misra et al. 2014].

• We study the empirical performance of our approach and demonstrate state-of-the-art
results on multiple predictions for monocular pose estimation and foreground/background
segmentation on benchmark datasets.

4.1 Related Work

Kulesza et al. [Kulesza and Taskar 2011] have adapted determinantal point processes (DPP),
a model used in particle physics for optimizing for diverse but low error predictions. DPPs
are especially attractive because they allow for efficient, exact inference procedures and are
similar to monotone, submodular optimization methods.

The related work in multiple structured prediction can be grouped into two categories:
1) The first are methods which are model-dependent. These methods are tied to the specific
learning and inference procedure being used (e.g. S-SVM, CRF) and cannot easily be adapted
to different structured prediction methods. 2) The second category of models are model-
agnostic, which are not tied to the specifics of the chosen structured prediction method.

Model-dependent methods: Batra et al. [Batra et al. 2012] deal with the problem of
inferring low error and diverse solutions from a Markov Random Field (MRF). They approach
this problem by introducing a constraint in the MRF objective function which says that
a new solution must be at least some distance away from each of the previous solutions.
The constraint is moved to the objective by a Lagrangian multiplier λ and then solved
using a supergradient algorithm. λ is treated as a free parameter and is optimized over a
validation set. They term this approach as DivMBest. Note that a single model is initially
learnt (the MRF) and only during inference time diverse solutions are obtained by imposing
constraints on the inference procedure. Nilson et al. [Nilsson 1998] and Weiss et al. [Yanover
and Weiss 2004] propose methods for using loopy belief propagation for finding the most
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probably solutions at inference time in graphical models. But their methods don’t try to
incorporate diversity to improve performance. Park and Ramanan [Park and Ramanan 2011]
use a modified version of standard max-product inference which aims to enforce diversity by
incorporating part-overlap constraints, which they term as NBest.

In the approach proposed by Guzman-Rivera et al. [Guzman-Rivera et al. 2012], a struc-
tured SVM [Tsochantaridis et al. 2005] (S-SVM) is trained for each position of the list. During
inference time, each S-SVM is invoked to predict a structured output. They minimize an up-
per bound of the non-convex, structured hinge loss via a kmeans-based initialization step and
an expectation-maximization (EM) style coordinate-descent minimization algorithm. They
term their approach as Multiple Choice Learning (MCL). In more recent work, Guzman-
Rivera et al. [Guzman-Rivera et al. 2014a] explicitly add diversity to the MCL objective and
optimize a surrogate via an EM style block coordinate-descent minimization routine similar to
MCL. An extra parameter which trades off between diversity and accuracy is then tuned via
cross-validation. They term this approach as Diverse Multiple Choice Learning (DivMCL).

In comparison to such model-dependent methods, our proposed method is model-agnostic
and can use any structured prediction approach.

Model-agnostic methods: To the best of our knowledge, the only such method is the ad
hoc boosting-like weighting scheme used in [Guzman-Rivera et al. 2012, 2014b] which we
denote henceforth as GR14. The weighting scheme of GR14 [Guzman-Rivera et al. 2014b]
has been used for specific task of camera re-localization. This method has a free parameter
which must be tuned on validation data. In comparison our approach is parameter free and
achieves comparable or better results on standard vision tasks.

4.2 Approach

Structured prediction problems in machine learning and computer vision are characterized by
a multidimensional structured output space Y, where the notion of structure varies according
to the problem. For example, in semantic scene understanding, the structure in the output
y ∈ Y refers to the fact that nearby regions in the image tend to have correlated semantic
labels. In human pose estimation from images, the location of a limb in the image is correlated
with the locations of other limbs.

One possible approach to structured predictions could be to use the well understood
approach of multi-class classification by treating each possible structured output as a label.
If this were possible, multiple low error and diverse interpretations could be directly generated
using a scheme such as ConSeqOpt [Dey et al. 2013], described in Chapter 2. However,
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the challenge in such structured prediction tasks is that the space of possible output variable
combinations is exponential in the number of labels for each variable. For example for an
image with 104 pixels and 21 possible labels for each pixel there are 21104 possible labelings.
This is also why structured prediction tasks cannot be addressed by multi-class classification
as the number of classes is exponentially large. As a result, directly applying a procedure
such as ConSeqOpt to generate multiple interpretations is infeasible.

Our approach is inspired by the ideas set forth in ConSeqOpt and SCP. We define a
monotone submodular function over a list of structured predictors and show that a simple
greedy algorithm can be used to train a list of such predictors to produce a set of structured
predictions with high recall. More formally our problem can be stated as follows.

Problem Statement: The goal of our approach is, given an input image I ∈ I, to produce a
list of N structured outputs Y (I) = {y1,y2, . . . ,yN} ∈ Y with low error and high recall. We
formulate this as the problem of learning a list of structured predictors S = {}1, }2, . . . , }N}
where each predictor }i : I → Y, }i ∈ H, in the list produces the corresponding structured
output yi, where H is a hypothesis class of structured predictors and Y is the space of
structured predictions.

We begin by describing a submodular objective that captures the notion of low error and
high recall. Let us denote jth training sample as a tuple {(Ij ,yjgt)}j∈1...|D|, where for each
image Ij , the ground truth structured label is denoted by yjgt. We denote by l : Y×Y → [0, 1],
a loss function that measures the disagreement between the predicted structured output y
and the ground truth structured label ygt. The corresponding function measuring gain is
thus given by g(y,ygt) = 1− l(y,ygt). We define a list of structured outputs as:

YS(I) = {}i(I)}i∈1...N . (4.1)

We then define the quality function,

f(YS(I),ygt) = max
i∈1,...,N

{g(}i(I),ygt)}, (4.2)

= 1− min
i∈1,...,N

{l(}i(I),ygt)} (4.3)

that scores the list of structured predictions YS(I) by the score of the best prediction produced
by the list of predictors S = {}1, }2 . . . , }N}. We note that to maximize this scoring function
with respect to the list of predictions at least one of the predictions yi in the list needs to
be close to the ground truth. In order to learn a list of predictors that works well across
a distribution of the data, the objective function we would like to optimize is the expected
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value of the above function over the distribution of the data D:

F (S,D) = E(I,ygt)∼D [f(YS(I),ygt)] . (4.4)

The resulting optimization problem is therefore to find the list of predictors S that
maximizes the objective function F in Equation 4.4 and can be written as follows:

max
S

E(I,ygt)∼D [f(YS(I),ygt)] . (4.5)

The function F of the form in Equation 4.4 can be shown to be a monotone submodular
function over lists of input items as shown in Appendix B, [Dey et al. 2012]. The natural
approach for submodular optimization problems of the form in 4.5 is to use a greedy algorithm
[Nemhauser et al. 1978]. In each greedy step i, we add the structured predictor }∗i , that
maximizes the marginal benefit. For our objective, maximizing the marginal benefit is written
as:

}∗i = arg max
}∈H

F (Si−1 ⊕ {}},D)− F (Si−1,D). (4.6)

Maximizing the marginal benefit, as written above, over the space of structured predictors by
enumeration is difficult, because there can be uncountably many such predictors. Instead, we
take the approach of directly training a structured predictor to maximize the marginal benefit.
As we do not have access to the true distribution of the data, we maximize the marginal
benefit using the empirical distribution D̃. We denote the loss lji = l(yji ,y

j
gt) as shorthand for

the loss of the ith predictor on the jth training sample. Rewriting the objective with respect
to the empirical data distribution and in terms of the loss per example we have,

F (Si−1 ⊕ }, D̃)− F (Si−1, D̃))

=
∑
j∈D̃

(
min {lj1, . . . , l

j
i−1} −min{lj1, . . . , l

j
i }
)
, (4.7)

=
∑
j∈D̃

max
(
min {lj1, . . . , l

j
i−1} − l

j
i , 0

)
, (4.8)

=
∑
j∈D̃

max
(
ξji−1 − l

j
i , 0

)
. (4.9)

where ξji−1 in 4.9 is the minimum loss obtained by the list of i−1 predictors on jth sample till
now. Since training procedures for structured predictors are usually implemented to minimize
loss we rewrite 4.9 and 4.6 as:
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Algorithm 14 SeqNBest: Algorithm for training
Input: List length N,

Structured prediction routine } ∈ H,
Dataset D of |D| examples,

1: S = {}, {wj
0 = 1}j∈1...|D̃|

2: for i = 1 to N do
3: }i = trainStructuredPredictor(D̃, wi−1)
4: S ← S ⊕ }i
5: wi = computeMarginalWeights(S, D̃)
6: end for
7: Return: S = {}1, }2, . . . , }N}

Algorithm 15 computeMarginalWeights (S, D̃)
Input: List of trained structured predictors S,

Dataset D̃
1: for j = 1 to |D̃| do
2: l = {}
3: for i = 1 to |S| do
4: li = l(}i(Ij),yjgt)
5: l← l ⊕ li
6: end for
7: ξ ← min(l)
8: if SeqNBest1 then
9: wj ← ξ

10: else if SeqNBest2 then
11: wj ← ξ3/

(
3ξ2 − 3ξ + 1

)
12: end if
13: end for
14: Return: w = {w1, w2, . . . , w|D̃|}

Algorithm 16 SeqNBest: Algorithm for inference
Input: Trained list of classifiers }1, }2, . . . , }N ,

Test example I
Output: List of structured predictions S

1: S = {}
2: for i = 1 to N do
3: y← }i(I)
4: S ← S ⊕ y
5: end for

48



}∗i = arg max
}∈H

∑
j∈D̃

max
(
ξji−1 − l

j
i , 0

)
, (4.10)

= arg min
}∈H

∑
j∈D̃

min
(
lji − ξ

j
i−1, 0

)
(4.11)

Let us denote the per-example desired loss lActual = min
(
lji − ξ

j
i−1, 0

)
which is the

summand in Equation 4.10. Consider the relationship of the loss lActual as a function of the
loss of the current predictor lji and the best loss seen before the current predictor (ξji−1). This
is drawn in Figure 4.2a and denoted by the line lActual. We observe that if a predictor obtains
a loss greater than the previous best, ξji−1 on an example it does not contribute towards
lowering of the loss defined in Equation 4.10. Whereas if it achieves loss less than ξji−1, it
lowers the objective by the same amount that it is less than ξji−1. Optimizing such a loss
directly tends to be difficult as it can require modifications that are specific to the structured
predictor’s training procedure. Instead, we take the approach of optimizing a tight linear
upper bound of the loss (lSeqNBest1 in Figure 4.2a) which results in a procedure that only
requires re-weighting the training data and is model-agnostic. Consider a linear upper bound
on lActual defined by the parameter wji ,

wji l
j
i ≥ lActual. (4.12)

Training a predictor which optimizes the surrogate loss on the left hand side of 4.12 is
equivalent to training a structured predictor which weights each data sample with the weight
wji :

∑
j∈D̃

wji l
j
i ≥

∑
j∈D̃

min
(
lji − ξ

j
i−1, 0

)
. (4.13)

Note that by setting the weight of each sample to be proportional to the marginal benefit
left (wji ∝ ξji−1) we are minimizing a tight linear upper bound of the actual loss function we
wish to minimize (lActual). This relationship is indicated by the line lSeqNBest1 in Figure 4.2b.
Our training procedure might be reminiscent of boosting [Freund et al. 1999] where several
predictors are combined to produce a single output. In contrast, our procedure is trained to
produce a list of predictors each of which makes a separate prediction in a list of predictions.
Additionally we are also optimizing a completely unrelated loss function.

An alternative tight linear upper bound can be calculated by minimizing the L2 norm
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between lActual and a linear loss function given by wji l
j
i . Consider a family of linear upper

bounds of the quality function lActual which has the form

lSeqNBest2 = wji l
j
i + b. (4.14)

Note that to achieve a tight upper bound, candidate lines must pass through the point
(ξji−1, 0). Substituting (ξji−1, 0) in Equation 15 we get

0 = aξji−1 + b, (4.15)

b = −aξji−1. (4.16)

To obtain the tightest upper bound (in a L2 sense) we minimize the L2 distance between
lActual and lSeqNBest2 to obtain a. The L2 distance between lActual and lSeqNBest2 is

A =
∫
‖lSeqNBest2 − lActual‖22 dl, (4.17)

=
∫ ξji−1

0
[(lji − ξ

j
i−1)− (alji + b)]2dl (4.18)

+
∫ 1

ξji−1

(alji + b)2dl. (4.19)

Differentiating the expression for A with respect to a (the slope of the line), setting it to
0, and using the constraint that the line must pass through (ξji−1, 0), we get

a =
(ξji−1)3

3(ξji−1)2 − 3ξji−1 + 1
. (4.20)

This gives the optimal slope of the line lSeqNBest2 which minimizes the gap between it and
lActual.

The graphical relationship between ξji−1 and the optimal weight (slope of the line) in
lSeqNBest2 is shown in Figure 4.2a. We see that lSeqNBest1 weights the examples directly
proportional to the previous best loss ξji−1, while lSeqNBest2 tends to aggressively upweight
hard samples which have high best previous loss (ξji−1 > 0.5) and aggressively downweights
easier examples which have low best previous loss (ξji−1 < 0.5).

We summarize our algorithm in Algorithm 14. We begin by assigning a weight of 1 to
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each training sample in the dataset. In each iteration i, we train the structured predictor }i
with the dataset D and associated weights for each training sample w and append it to the
list of predictors S. We recompute the weights w using the scheme described in Algorithm 15.
We iterate for the specified N iterations and return the list S = {}1, . . . , }N} of structured
predictors. We term this simple but powerful approach as “Sequential N-Best” or SeqNBest.

4.2.1 An Example

As an example, on the task of image segmentation the required inputs are the number of
predictionsN , we want to make per example, training datasetD and the structured prediction
procedure for learning and inference }. We illustrate the algorithm via a toy dataset of 3
images (See Figure 4.2), where the task is to perform foreground/background segmentation
by marking each pixel with either the foreground or background label. Assume that we have
trained 2 predictors already, and are calculating the importance (weight) of each image for
the 3rd predictor. The second and third rows show the performance of the two predictors on
these images. Note that none of the predictors do well on the image of the elephant, however
one of the predictors does really well on the helicopter. This tells us intuitively, that training
the third predictor should concentrate more on the image of the elephant, but not as much
on the other two since at least one of the previous predictors has done relatively well on it.
The last row in the figure shows the weights for each image which is the minimum of the
errors obtained by all previous predictors. This weighting rule achieves the desired behavior
of working harder on examples which none of the previous predictors have performed well
on.
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Image

Output of
Predictor 1

Output of
Predictor 2

Weight for 
Predictor 3

= min(0.9, 0.3) 
= 0.3

 80% error

 60% error
= min(0.8, 0.6) 
= 0.6

5% error

85% error

= min(0.85, 0.05)
= 0.05

 30% error

 90% error

Figure 4.2: Illustration of SeqNBest training procedure. Consider a toy training dataset of 3 images
(chosen from the iCoseg dataset [Batra et al. 2010], where the task is to do foreground/background
separation. The first predictor gets 30% pixel error on the bear image, while the second predictor
gets 90% pixel error. Intuitively, since the first predictor did well already on this image, we should
not try as hard on this image compared to the elephant image where none of the 2 predictors did very
well. The rule for weighting data points for training the next predictor is minimum of the error by
the previous predictors and the last column shows this being applied to this contrived example. Note
that the elephant image has the highest weight since none of the previous predictors did well on it,
while the helicopter one has the lowest weight, since the first predictor did really well on it.

4.3 Case Studies

We evaluate our methods against both model-dependent [Park and Ramanan 2011; Guzman-
Rivera et al. 2012; Batra et al. 2012] and model-independent methods [Guzman-Rivera et al.
2014b] (See Chapter 4.1). Note that the weighting scheme of GR14 [Guzman-Rivera et al.
2014b] has been used for the specific task of camera re-localization and published results on
standardized datasets do not exist. We make a best effort comparison by reimplementing
their method for standardized tasks.

We demonstrate that using our simple yet powerful weighting scheme results in bet-
ter performance than model-dependent methods and comparable or better performance for
model-agnostic methods with much less computation due to lack of parameter tuning step.
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4.3.1 Case Study: Human Pose Tracking in Monocular Sequences

In monocular pose estimation the task is to estimate the 2D locations of anatomical land-
marks from an image. The task is challenging due to the large variation in appearance and
configuration of humans in images. Additional challenges are posed by partial occlusions,
self-occlusions, and foreshortening. A related task is to track the pose of a human subject
through a sequence of frames of video. In the tracking by detection paradigm of human pose
tracking, multiple hypothesis poses are generated per frame of video and then stitched to-
gether using a data association algorithm. This avoids making hard commitment to a single
best pose at a frame. As long as the correct pose is present amongst the multiple hypothe-
sized poses for each frame, the algorithm can have a chance at picking the correct one using
additional temporal information.

Datasets: We evaluate our method on producing multiple predictions for each image in the
PARSE dataset used introduced by Yang and Ramanan [Yang and Ramanan 2011] and on
the tracking datasets introduced in Park and Ramanan [Park and Ramanan 2011] named
“lola”, “lola”, “walkstraight” and “baseball”. We use the same model, code and training set
as Yang and Ramanan [Yang and Ramanan 2011] and use our two weighting methods to
train N models as detailed in Algorithm 14 to produce 4 models. We use the same test set
used by Yang and Ramanan to compare the average percentage of correct parts (PCP) of the
best pose as the number of pose hypotheses is increased from 1 to 4.

Analysis Figure 4.3 shows that as the number of hypotheses is increased SeqNBest1 and
SeqNBest2 find accurate poses earlier in the list than NBest. The figure plots the average
across the test set, of the best pose predicted as the number of pose hypotheses is increased.
Batra et al.[Batra et al. 2012] refer to this as the “oracle” accuracy of a list of predictions. We
show results with NBest with and without non-maximum suppression post processing. Note
that even with non-maximum suppression, NBest is unable to outperform SeqNBest, which
requires no post-processing step. We also compare against the boosting-like weighting scheme
of GR14 [Guzman-Rivera et al. 2014b]. GR14 performs marginally better than SeqNBest,
achieving 81.95% oracle accuracy compared to SeqNBest1’s 80.83% by position 4. Note that
this boosting-like weighting scheme has a free parameter which is tuned by cross-validation,
while we are parameter free. We used the exact same set of values of this free parameter as
used in [Guzman-Rivera et al. 2014b] to tune it for all our following experiments.

In Figure 4.1 we compare the performance of DivMBest with respect to SeqNBest1
and SeqNBest2. Three models were trained using the two SeqNBest schemes on the
PARSE training set and then compared to the “oracle” PCPs reported by NBest and Di-
vMBest. In each video sequence SeqNBest1 or SeqNBest2 achieves higher recall. In the
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Figure 4.3: As the number of pose hypotheses allowed is increased from one to four, Se-
qNBest predicts more accurate poses compared to NBest with non-maximum suppression.
Both start out at 73.8% percentage of correct parts since the first position’s model is identical
to both but by the 4th position SeqNBest has achieved 81.61% average best accuracy while
NBest achieves 79.37%.

“walkstraight” dataset SeqNBest1 achieves 98.5% PCP in 3 positions where DivMBest
needs 100 predictions to reach the same accuracy. Similarly for “lola1”, 20 predictions,
“lola2”, 7 predictions and for “baseball” 7 predictions are needed by DivMBest to reach the
same “oracle” PCP as SeqNBest2. Note that GR14 after much tuning on validation data
is still behind SeqNBest on all four videos.

4.3.2 Case Study: Image Foreground/Background Separation

We apply our method to the task of foreground/background segmentation where the task is
to assign each pixel in an image with either the foreground or background label.

Dataset: We use the set of 166 images of the iCoseg dataset [Batra et al. 2010], spanning
9 different events, as used by MCL [Guzman-Rivera et al. 2012]. The dataset is roughly,
equally split into training, validation and test sets. The exact splits were provided to us by
the authors of MCL.
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Figure 4.4: For each of the three images the top row is the list of 4 pose hypothesis by NBest
while the bottom 4 are by SeqNBest. For baseball player SeqNBest predicts the correct
pose in the 2nd guess, for the gymnast in the 3rd guess and the 4th guess for the cyclist. Note
that in each case SeqNBest1 produces poses which are diverse from each other while trying
to be relevant to the scene. In each case NBest produces poses which are almost identical
to each other and none of which are close to the ground truth pose.
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Table 4.1: Comparison of SeqNBest1 and SeqNBest2 to NBest and DivMBest. The
average best PCP plotted as the budget for generating hypotheses is increased. In each case
SeqNBest1 and/or SeqNBest2 predicts more accurate poses for the number of hypotheses
allowed.

Analysis: We compare the performance of SeqNBest to MCL in two ways: 1) We use the
exact implementation of S-SVM provided to us by the authors of MCL as the structured
predictor routine in SeqNBest to train 6 predictors 2) Secondly, to showcase the flexibility
of SeqNBest to use any structured predictor available, we use the Hierarchical Inference
Machine (HIM) algorithm by Munoz et al. [Munoz et al. 2010] to train SeqNBest. We
use texture and C-SIFT [Gould et al. 2010] as features. Figure 4.5 (left) shows the “oracle”
accuracy of a list of predictions. Additionally we compared against GR14 [Guzman-Rivera
et al. 2014b]. We find that using the same predictor and features as in MCL, SeqNBest1 and
MCL have comparable performance in Figure 4.5 (left). When HIM is used as the structured
predictor (Figure 4.5 (right)), it performs much better from the first position and obtains 6%
average best error in 6 predictions. The reduction of error stops after the first 3 positions
because the HIM model starts approaching the theoretical limits of its performance on the
test set, which is 2% (this was obtained by training and testing HIM on the test set itself).
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Figure 4.5: Average best pixel error in the image background, foreground segmentation task
as number of predictions are increased. SeqNBest (with S-SVM) uses the same S-SVM
structured predictor routine as MCL.

In summary, variants of SeqNBest performed on par with model-dependent methods
like MCL, which have the advantage of leveraging the specifics of the chosen structured
predictor (in this case S-SVM). SeqNBest, however, is model-agnostic and can be readily
applied to any structured predictor. We find that SeqNBest used in conjunction with HIM
outperforms the other model-agnostic method, GR14, which is also trained with HIM as the
base predictor (Figure 4.5 (right)). This also serves as an example of SeqNBest’s flexibility
in being able to plug-in any powerful predictor.

4.3.3 Case Study: Image Segmentation

As mentioned earlier semantic scene segmentation is a very challenging task, where every
pixel in an image has to be assigned a semantic label like “boat”, “sky” etc. In this section
we show initial promising results with SeqNBest. Note that these are not meant to be
competitive with the most recent state-of-the-art advances in image segmentation but meant
to showcase the flexibility of our approach in using any predictor.

Dataset: In PASCAL VOC 2012 segmentation challenge [Everingham et al.] the task is
to mark every test image with one of 20 class labels or the background class. Figure 4.6
shows some example images and their annotated groundtruth labels. There are 1464 images
in train and 1449 in the val set which we use as the test set in our experiments below.

Analysis: We use the Hierarchical Inference Machine (HIM) algorithm byMunoz et al. [Munoz
et al. 2010] to learn 5 structured predictors in the SeqNBest framework. We use the output
of category-specific regressors of [Carreira et al. 2012] as additional features to HIM. In the
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Table 4.2: As the number of predictions is increased, we observe a 10.60% gain in “oracle”
accuracy over a single prediction on the PASCAL VOC 2012 val dataset.

Position 1 2 3 4 5

Oracle acc. (%) 42.91 45.96 46.44 47.09 47.46

Figure 4.6: Qualitative examples of multiple semantic scene segmentations on the PASCAL
VOC 2012 dataset. Each predictor tries to get right what the previous predictors have not
been able to cover well. For example the cow grazing scene the first two predictors miss parts
of the cow while the third one gets majority of it correct.

first position HIM achieves 42.91% average intersection/union accuracy over all 21 classes.
Table 4.2 shows the “oracle” accuracy as the number of predictions is increased to 5 where
the “oracle” accuracy is 47.46% which is a 10.6% gain.

Prasad et al. [Prasad et al. 2014], have proposed inference procedures for extracting
diverse hypotheses in MRFs using various higher-order potentials [Delong et al. 2012]. This
is another example of the model-dependent category of methods as described in Chapter 4.1.
Similar to us, they have demonstrated their method on the semantic segmentation challenge
in PASCAL VOC 2012 val set. They show impressive “oracle” gains of v 12% over a single
prediction. Since their model and code is not yet available, it is not currently possible to
directly compare against SeqNBest. We use a different model to achieve similar boosts.
Again, this showcases the ease of use and generality of our approach. Note that we are not
constrained to specific models or specific diversity terms which may be only compatible with
particular model representations.

In ongoing experiments we are using recent advances in convolutional neural networks
[Long et al. 2014; Hariharan et al. 2014] as the structured predictor for generating multiple
segmentations using SeqNBest.
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CHAPTER5
Discussion

The three main approaches presented until now for predicting set and lists (ConSeqOpt
(Chapter 2), SCP (Chapter 3), SeqNBest (Chapter 4)) rely on “reductions” for algorithm
design. The main idea in reductions is a simple but powerful one: given a challenging problem
for which no obvious solution strategies exist, break it down into simpler problems with well-
understood theoretical and practical solutions and then relate performance on the simpler
problems to the original problem of interest. Well known reductions include: Quanting
[Langford et al. 2012] from quantile regression to classification; Probing [Langford and
Zadrozny 2005] from squared loss regression to classification; Costing [Zadrozny et al. 2003]
from importance weighted classification to binary classification by rejection sampling; Searn
[Daumé Iii et al. 2009] from structured prediction to binary classification; Dagger [Ross
et al. 2011] imitation learning and structured prediction to no-regret online learning. Such
reductions leverage existing methods for classification, regression and structured prediction
and allow rapid progress to be made on the new task. Furthermore, due to their modular
nature, if improved techniques for classification, regression or structured prediction become
available in the future, they can be readily plugged in without any change in the algorithm.
This makes the approaches proposed in this work versatile and better able to weather the
test of time.

[Yue and Joachims 2008] tackle the problem of predicting diverse sets of items for infor-
mation retrieval settings. Their approach has two stages. In the first stage a user makes a
query and a set of relevant documents are returned by an oracle (e.g. search engine). In the
second stage, their approach then finds the subset of documents which achieves maximum
approximate coverage of subtopics. This is obtained by using the Greedy algorithm under
the assumption that “covering” words in the user query will cover topics (since topics that
a document covers are unknown). In contrast ConSeqOpt and SCP don’t separate the
problem of list prediction into two stages, instead they train classifiers/regressors to directly
predict the list that is competitive with the Greedy algorithm that has perfect knowledge
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of the user’s objective. This also bypasses the need for a relevance oracle like a search engine
to find a set of relevant items in the first stage.

[Yue and Guestrin 2011] tackle the problem of personal news recommendation where a
list of personalized news articles are recommended to the user. They assume a parameterized
submodular reward function whose parameters are then learnt using user interaction data in
a partial feedback setting using linear stochastic bandit algorithms (one copy per position
of the list similar to [Streeter and Golovin 2008] and ConSeqOpt). The main limitation
of this approach is the realizability assumption i.e. that the true user interaction model
lies within their considered linear model class. In contrast the approaches proposed here
explicitly consider a submodular reward function over lists and are agnostic to the reward
model of the user. As a result any feature space can be used to model the reward that a
particular article brings to a certain position in the list instead of only the submodular basis
functions that are used in [Yue and Guestrin 2011].

As mentioned before in Chapter 4.1 determinantal point processes (DPP’s), is a model
used in particle physics for optimizing for diverse but low error predictions. Given a library of
items, questions regarding the probability of subsets of these items can be efficiently answered.
Given a subset of the items, the probability of that subset is proportional to the value of
the determinant of the sub-matrix whose rows and columns correspond to the items under
consideration. This can be geometrically interpreted as the volume of the parellopipe enclosed
by the vectors representing those items. Vectors which are similar to each other will enclose
less area as opposed to vectors which are much different. This naturally encourages sets
consisting of diverse items to be picked. DPP’s have been used in document summarization,
pose estimation and other tasks where predicting lists is important [Kulesza and Taskar 2011,
2010]. But both learning and inference in DPP’s remains approximate. In contrast we take
the route of directly optimizing for the objective at hand to predict lists.
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CHAPTER6
Autonomous UAV Flight through Dense

Clutter

Unmanned Aerial Vehicles (UAVs) have recently received a lot of attention by the robotics
community. While autonomous flight with active sensors like lidars has been well studied
[Scherer et al. 2008; Bachrach et al. 2009], flight using passive sensors like cameras has
relatively lagged behind. This is especially important given that small UAVs do not have the
payload and power capabilities for carrying such sensors. Additonally, most of the modern
research on UAVs has focussed on flying at altitudes with mostly open space [Dey et al. 2011].
Flying UAVs close to the ground through dense clutter [Ross et al. 2013a; Scherer et al.
2008] has been less explored. In this chapter we leverage the multiple prediction techniques
developed in earlier chapters and apply them to the problem of pure vision-based autonomous
UAV flight through dense clutter. We show that using the paradigm of multiple predictions
we are able to increase average flight length by up to 71% over the single prediction case.

Receding horizon control [Kelly et al. 2006] is a classical deliberative scheme commonly
used in autonomous ground vehicles including five out of the six finalists of the DARPA
Urban Challenge [Buehler et al. 2008]. Figure 6.2 illustrates receding horizon control on our
UAV in motion capture. In receding horizon control, a pre-selected set of dynamically feasible
trajectories of fixed length (the horizon), are evaluated on a cost map of the environment
around the vehicle and the trajectory that avoids collision while making most progress towards
a goal location is chosen. This trajectory is traversed for a bit and the process repeated again.

We demonstrate the first receding horizon control with monocular vision implementation
on a UAV. Figure 6.1 shows our quadrotor evaluating a set of trajectories on the projected
depth image obtained from monocular depth prediction and traversing the chosen one.

This is motivated by our previous work [Ross et al. 2013a], where we used imitation
learning to learn a purely reactive controller for flying a UAV using only monocular vision
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Figure 6.1: Example of receding horizon with a quadrotor using monocular vision. The lower
left images show the view from the front camera and the corresponding depth images from
the monocular depth perception layer. The rest of the figure shows the overhead view of
the quadrotor and the traversability map (built by projecting out the depth image) where
red indicates higher obstacle density. The grid is 1x1 m2. The trajectories are evaluated on
the projected depth image and the one with the least collision score (thick green) trajectory
followed.

Figure 6.2: Receding horizon control on UAV in motion capture. A library of 78 trajecories
of length 5 m are evaluated to find the best collision-free trajectory. This is followed for some
time and the process repeated.
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through dense clutter. While good obstacle avoidance behavior was obtained, there are
certain limitations of a purely reactive layer that a more deliberative approach like receding
horizon control can ameliorate. Reactive control is by definition myopic, i.e., it concerns itself
with avoiding the obstacles closest to the vehicle. This can lead to it being easily stuck in
cul-de-sacs. Since receding horizon control plans for longer horizons it achieves better plans
and minimizes the chances of getting stuck [Knepper and Mason 2009]. Another limitation
of pure reactive control is the difficulty to reach a goal location or direction. In a receding
horizon control scheme, trajectories are selected based on a score which is the sum of two
terms: first, the collision score of traversing it and second, the heuristic cost of reaching the
goal from the end of the trajectory. By weighting both these terms suitably, goal-directed
behavior is realized while maintaining obstacle-avoidance capability. But it is to be noted
that reactive control can be integrated with receding horizon for obtaining the best of both
worlds in terms of collision avoidance behavior.

Receding horizon control needs three working components

1. A method to estimate depth: This can be obtained from stereo vision [Schmid et al.
2014; Matthies et al. 2014] or dense structure-from-motion (SfM) [Wendel et al. 2012].
But these are not amenable for achieving higher speeds due to high computational
expense. We note that in the presence of enough computation power, information from
these techniques can be combined with monocular vision to improve overall perception.

Biologists have found strong evidence that birds and insects use optical flow to navigate
through dense clutter [Srinivasan 2011]. Optical flow has been used for autonomous
flight of UAVs [Beyeler et al. 2009]. However, it is difficult to directly derive a robust
control principle from flow. Instead we follow the same data driven principle as our
previous work [Ross et al. 2013a] and use local statistics of optical flow as features in
the monocular depth prediction module. This allows the learning algorithm to derive
complex behaviors in a data driven fashion.

2. A method for relative pose estimation: To track the trajectory chosen at every cycle,
the pose of the vehicle must be tracked. We demonstrate a relative pose estimation
system using a downward facing camera and a sonar, which is utilized by the controller
for tracking the trajectory (Chapter 6.2.5).

3. A method to deal with perception uncertainty: Most planning schemes either assume
that perception is perfect or make simplistic assumptions of uncertainty. We intro-
duce the concept of making multiple, relevant yet diverse predictions for incorporating
perception uncertainty into planning. The intuition is predicated on the observation
that avoiding a small number of ghost obstacles is acceptable as long as true obstacles
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are not missed (high recall, low precision). The details are presented in Chapter 6.2.4
and are related to the methods developed in Chapters 2 and 3. We demonstrate in
experiments the efficacy of this approach as compared to making only a single best
prediction.

In summary our list of contributions are:

• Budgeted near-optimal feature selection and fast non-linear regression for monocular
depth prediction.

• Real time relative vision-based pose estimation.

• Multiple predictions to efficiently incorporate uncertainty in the planning stage.

• First complete receding horizon control implementation on a UAV with monocular
vision.

6.1 Hardware and Software Overview

In this section we describe the hardware platforms used in our experiments. Developing and
testing all the integrated modules of receding horizon is challenging. Therefore we assembled
a rover (Figure 6.3) in addition to a UAV (Figure 6.3) to be able to test various modules
separately. The rover also facilitated parallel development and testing of modules. Here we
describe the hardware platforms and overall software architecture.

6.1.1 Rover

The skid-steered rover (Figure 6.3) uses an Ardupilot microcontroller board [Ardupilot 2015]
which takes in high level control commands from the planner and controls four motors to
achieve the desired motion.

Other than the low-level controllers, all other aspects of the rover are kept exactly the
same as the UAV to allow seamless transfer of software. For example, the rover has a front
facing PlayStation Eye color camera (640×480 at 30Hz) which is also used as the front facing
camera on the UAV.

A Bumblebee color stereo camera pair (1024 × 768 at 20Hz) is rigidly mounted with
respect to the front camera using a custom 3D printed fiber plastic encasing. This is used
for collecting data with groundtruth depth values (Chapter 6.2) and validation of planning
(Section 6.2.6). We calibrate the rigid body transform between the front camera and the
left camera of the stereo pair using Bouget’s camera calibration toolbox [Bouguet 2004].
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Figure 6.3: (Top) Quadrotor used as our development platform. (Bottom) Rover assembled
with the same control chips and perception software as UAV for rapid tandem development
and validation of modules.
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Stereo depth images and front camera images are recorded simultaneously while driving the
rover around using a joystick. The depth images are then transformed to the front camera’s
coordinate system to provide groundtruth depth values for every pixel. The training depth
images are from a slightly different perspective than encountered by the UAV during flight,
but we found in practice that the depth prediction modules generalized well to the UAV.
Details in Chapter 6.2

6.1.2 UAV

Figure 6.3 shows the quadrotor we use for our experiments. Figure 6.4 shows the schematic of
the various modules that run onboard and offboard. The base chassis, motors and autopilot
are assembled using the Arducopter kit [Ardupilot 2015]. Due to drift and noise of the IMU
integrated in the Ardupilot unit, we added a Microstrain 3DM-GX3-25 IMU which is used
to aid real time pose estimation. There are two cameras: one facing downwards for real time
pose estimation (PlayStation Eye color camera, 320× 240 at 120Hz) and one facing forward
(PointGrey Chameleon color camera 640×480 at 30Hz) for obstacle avoidance. The onboard
processor is an Odroid XU-3 quad-core ARM based small board computer [Odroid 2015]
which runs Ubuntu 14.04 and ROS Groovy [Quigley et al. 2009]. This unit runs the pose
tracking and trajectory following modules. LidarLite, a lidar based sensor [LidarLite 2015] is
used to estimate altitude. The image stream from the front facing camera is streamed to the
base station where the depth prediction module processes it; the trajectory evaluation module
then finds the best trajectory to follow to minimize probability of collision and transmits it to
the onboard computer where the trajectory following module runs a pure pursuit controller
to do trajectory tracking [Coulter 1992]. The resulting high level control commands are sent
to the Ardupilot which sends low level control commands to the motor controllers to achieve
the desired motion. In following sections we describe each module in detail.

6.2 Monocular Depth Prediction

In this section we detail the 3 depth prediction techniques we have developed and used in
experiments, preceded first by the data collection methodology.

6.2.1 Data Collection

RGB-D sensors like the Kinect, currently do not work outdoors. Since camera and calibrated
nodding lidar setup is expensive and complicated we used a rigidly mounted Bumblebee stereo
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color camera and the PlayStation Eye camera for our outdoor data collection. This setup was
mounted on the rover (Figure 6.3). We collected data at different neighboring locations with
varying tree density, under varying illumination conditions and in both summer and winter
conditions (Figure 6.5). Our corpus of imagery with stereo depth information is around 16000
images and growing. We will make this dataset publicly available in the near future.

Testing Area

Training Area

Training Area

(a) Testing and training areas near Carnegie Mellon University,
Pittsburgh, USA. The images below show a couple of examples from
winter with snow on the ground. The tree density is approximately
one tree per 12× 12 m2 area.

Training Area

(b) Additional training area with higher density of trees (approxi-
mately one tree per 6× 6 m2). Images below show examples from
summer.

Figure 6.5: Testing and training areas.

6.2.2 Depth Prediction by Fast Non-linear Regression

In this section we describe the depth prediction approach from monocular images, and the
fast non-linear regression method used for regression.

An image is first gridded up into non-overlapping patches. We predict the depth in meters
at every patch of the image (Figure 6.6 yellow box). For each patch we extract features which
describe the patch, features which describe the full column containing the patch (Figure 6.6
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green box) and features which describe the column of three times the patch width (Figure 6.6
red box), centered around the patch. The final feature vector for a patch is the concatenation
of the feature vectors of all three regions. When a patch is seen by itself it is very hard to
tell the relative depth with respect to the rest of the scene. But by adding the features of the
surrounding area of the patch, more context is available to aid the predictor [Divvala et al.
2009; Oliva and Torralba 2007].

Figure 6.6: The yellow box is an example patch, the green box is the column of the same
width, and the red box is the column of 3 times the patch width. Features are extracted
individually at the patch, and the two columns. They are concatenated together to form the
total feature representation of the patch.

Description of features

In this part we describe in brief the features used to represent the patch. We mainly borrow
the features as used in previous work on monocular imitation learning [Ross et al. 2013a] for
UAVs, which are partly inspired by the work of Hoiem et al., [Hoiem et al. 2005] and Saxena
et al., [Saxena et al. 2005]. We predict the depth at every patch using these features,which
is then used by the planning module.

• Optical flow: We use the Farneback dense optical flow [Farnebäck 2003] implemen-
tation in OpenCV to compute for every patch the average, minimum and maximum
optical flow values. By using optical flow statistics as features, temporal information
is also available to the learning algorithm. While related works have used optical flow
information directly to derive control policies [Srinivasan 2011; Beyeler et al. 2009],
but in practice we found the estimation of flow itself to be noisy, even when a very
computationally expensive optimization based algorithm using a GPU is used [Wedel
et al. 2009]. Additionally for the area of the image directly in front of the UAV, optical
flow is the zero by definition. This makes distingusing between obstacles and free space
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(a) Radon transform features help capture strong edges in images

(b) Histogram of oriented gradients (HoG) features help capture
local gradient orientation information

(c) We used the per pixel hand detector of Li et al. [Li and Kitani
2013] to detect trees in images and its output as features to the
learning algorithm for predicting depth

(d) Temporal information is maintained by computing optical flow
statistics over the image, statistics of which are then used as features
in the learning algorithm for depth prediction.

Figure 6.7: Illustration of image features used in the learning algorithm for monocular depth
prediction. 70



directly in front of the UAV difficult. Instead we have taken the aforementioned data
driven approach where the estimation of the local scene depth is left to the learning
algorithm which is aided by optical flow information but is not completely dependent
on it. See Figure 6.7d.

• Radon Transform: The radon transform [Helgason 1980] of an image is computed by
summing up the pixel values along a discretized set of lines in the image, resulting in
a 2D matrix where the axes are the two parameters of a line in 2D: angle θ of the line
and s the distance along the line. We discretize this matrix in to 15×15 bins. For each
angle θ the two highest values are recorded. This encodes the orientations of strong
edges in the image. See Figure 6.7a

• Structure Tensor : At every point in a patch the structure tensor [Harris and Stephens
1988] is computed and the angle between the two eigenvectors is used to index in to a
15-bin histogram for the entire window. The corresponding eigenvalues are accumulated
in the bins. In contrast to the radon transform, the structure tensor is a more local
descriptor of texture. Together with radon features the texture gradients are captured,
which are strong monocular depth cues [Wu et al. 2004].

• Laws’ Masks: These describe the texture intensities [Davies 2004]. We use six masks
obtained by pairwise combinations of one dimensional masks: (L)evel, (E)dge and
(S)pot. The image is converted to the YCrCb colorspace and the LL mask is applied
to all three channels. The remaining five masks are applied to the Y channel only.
The results are computed for each window and the mean absolute value of each mask
response is recorded.

For further details on radon transform, structure tensor and Laws’ masks usage see
[Ross et al. 2013a].

• Histogram of Oriented Gradients (HoG): This feature has been used widely in the com-
puter vision community for capturing texture information for object detection [Dalal
and Triggs 2005]. The HoG descriptor computes the histogram of local gradient ori-
entations over local patches in an image. In our implementation we compute the HoG
feature over 9 orientation bins. See Figure 6.7b

• Tree feature: We use the per pixel fast classifier by Li et al. [Li and Kitani 2013] to train
a supervised tree detector. Li et al. originally used this for real time hand detection
in ego-centric videos. They use a random forest to predict whether each pixel in an
image belongs to a human hand. We adapted this fast per pixel labeling method to
predict for us the probability of each pixel belonging to a tree, in an image patch. This
information is then used as a feature for that patch. See Figure 6.7c
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Fast Non-linear Prediction

Due to harsh real-time constraints an accurate but fast predictor is needed. Recent linear
regression implementations are very fast and can operate on millions of features in real time
[Langford et al. 2007] but are limited in predictive performance by the inherent linearity
assumption. In very recent work Agarwal et al. [Agarwal et al. 2013] develop fast iterative
methods which use linear regression in the inner loop to obtain overall non-linear behavior.
This leads to fast prediction times while obtaining much better accuracy. We implemented
Algorithm 2 in [Agarwal et al. 2013] and found that it lowered the error by 10% compared
to just linear regression, while still allowing real time prediction.

Budgeted Feature Selection

While many different visual features can be extracted on images, they need to be computed in
real time. The faster the desired speed of the vehicle, the faster the perception and planning
modules have to work to maintain safety. Additionally the limited computational power
onboard a small UAV imposes a budget within which to make a prediction. Each kind of
feature requires different time periods to extract, while contributing different amounts to
the prediction accuracy. For example, radon transforms might take relatively less time to
compute but contribute a lot to the prediction accuracy, while another feature might take
more time but also contribute relatively less or vice versa. This problem is further complicated
by the “grouping” effects where a particular feature’s performance is affected by the presence
or absence of other features.

Given a time budget, the naive but obvious solution is to enumerate all possible combi-
nations of features within the budget and find the group of features which achieve minimum
loss. This is exponential in the number of available features. Instead we use the efficient
approach developed by Hu et al. [Hu et al. 2014] to select the near-optimal set of features
which meet the imposed budget constraints. Their approach uses a simple greedy algorithm
that first whitens feature groups and then recursively chooses groups by the reduction in
explained variance divided by the time to achieve that reduction. A more efficient variant of
this with equivalent guarantees, chooses features by computing gradients to approximate the
reduction in explained variance, eliminating the need to “try” all feature groups sequentially.
For each specified time budget, the features selected by this procedure are within a constant
factor of the optimal set of features which respect that budget. Since this holds across all
time budgets, this procedure provides a recursive way to generate feature sets across time
steps.

Figure 6.8 shows the sequence of features that was selected by Hu et al.’s [Hu et al. 2014]
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feature selection procedure. For any given budget only the features on the left up to the
specified time budget need to be computed.
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Figure 6.8: On the upper x-axis the sequence of features selected by Hu et al.’s method [Hu
et al. 2014] and the lower x-axis shows the cumulative time taken for all features up to that
point. The near-optimal sequence of features rapidly decrease the prediction error. For a
given time budget, the sequence of features to the left of that time should be used.

Figure 6.9: Depth prediction examples on real outdoor scenes. Closer obstacles are indicated
by red.
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6.2.3 Visual Odometry based Depth Prediction

Monocular visual odometry (VO) is the process of jointly estimating the camera pose and 3D
scene geometry given a sequence of camera images. Generally, feature-based methods for VO
[Davison et al. 2007; Klein and Murray 2007] consist of two separate steps: First, a set of fea-
ture observations is obtained from the given image. Second, camera pose and scene geometry
are obtained as a function of these features only. While, this abstraction greatly reduces the
complexity of the problem, it comes with several drawbacks. While feature-based methods
allow us to estimate camera pose in real-time, the resulting feature based maps provide a very
sparse representation of the scene geometry to have any reliable collision avoidance. Only im-
age information conforming to the respective feature type and parametrization âĂŞ typically
image corners and blobs or line segments âĂŞ is utilized.To overcome this limitation, direct
approaches [Stühmer et al. 2010; Wendel et al. 2012; Templeton 2009; Geyer et al. 2006] for
scene geometry reconstruction have become increasingly popular in the last few years.

Direct Methods for VO

Instead of operating solely on visual features, direct methods directly work on the images
instead of a set of extracted features, for both mapping and tracking: The world is modeled
as a dense surface while in turn new frames are tracked using whole-image alignment. This
concept removes the need for discrete features, and allows the exploitation of all information
present in the image. In addition to higher accuracy and robustness, in environments with
little interesting points to extract features on, this provides substantially more information
about the geometry of the environment. We utilize the framework of [Engel et al. 2013]: a
method for semi-dense direct depth map estimation i.e. a dense depth map covering all image
regions with non-negligible gradient.

Semi-dense Depth Map Estimation

The depth measurements are obtained by [Engel et al. 2013]’s proposed probabilistic approach
for adaptive-baseline stereo . This method explicitly takes into account the knowledge that in
video, small baseline frames occurs before large baseline frames. A subset of pixels is selected
for which the disparity is sufficiently large and for each selected pixel a suitable reference
frame is selected. A one dimensional disparity search is performed. The obtained disparity is
converted to an inverse-depth representation, where the inverse depth is directly proportional
to the disparity. The map is then updated using this inverse depth estimate.

The inverse depth map is propagated from to subsequent frames, once the pose of the
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(a) (b)

Figure 6.10: Semi-dense Depth Map Estimation. (a) Sample image and (b) Inverse Depth
Map (red is near, blue is far) of a sample image during flight as generated by monocular
visual odometry based approach. It is to be noted that only reliable depths are propagated
and the rest are discarded (black regions), hence resulting in a semi-dense representation.
Note: Best seen in color.

following frames have been determined and refined with new stereo depth measurements.
Based on the inverse depth estimate d0 for the pixel, the corresponding 3D point is calculated
and projected into the new frame and assigned to the closest integer pixel position providing
the new inverse depth estimate d1. We assume the camera rotation to be small, thus the new
inverse depth map can be approximated by

d1(d0) = (d−1
0 − tz)−1,

where tz is the camera translation along the optical axis. Now, for each frame, after the depth
map has been updated, a regularization step is performed by assigning each inverse depth
value the average of the surrounding inverse depths, weighted by their respective inverse
variance (σ2). An example of the obtained depth estimates has been shown in Figure 6.10
Note: In order to prevent sharp edges, which can be critical in detecting trees, we only
perform this step if two adjacent depth values are statistically similar i.e. their variances are
within 2σ.

Dense Tracking

We represent an image as I : Ω → R, the inverse depth map and inverse depth variance
map as D : ΩD → R+ and V : ΩD → R+, where ΩD contains all pixels which have a valid
depth hypothesis. Note that D and V denote mean and variance of the inverse depth, as this
approximates the uncertainty of stereo much better than assuming a Gaussian-distributed
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depth [Montiel et al. 2006].

Given a semi-dense inverse depth map for the current image, the camera pose of the new
frames is estimated using direct image alignment: given the current map {IM , DM , VM}, the
relative pose ξ ∈ SE(3) of a new frame I is obtained by directly minimizing the photometric
error

E(ξ) :=
∑

x∈ΩDM

‖IM (x)− I(w(x,Dm(x), ξ))‖δ,

where w : ΩDM ×R × SE(3) → ω projects a point from the reference frame image into the
new frame and ‖ · ‖δ is the Huber norm to account for outliers. The minimum is computed
using iteratively re-weighted Levenberg-Marquardt minimization [Engel et al. 2014].

Scale Estimation

Scale ambiguity is inherent to all monocular visual odometry based methods. This is not
critical in visual mapping tasks, where the external scale can be obtained using either fiducial
markers [Daftry et al. 2015], or known dimension of objects in the scene as a post processing
step. However, for osbtacle avoidance in real-time, it is required to accurately recover the
current scale so that the distance to the object is known in real world units. We resolve the
absolute scale λ ∈ R+ by leveraging motion estimation from a highly accurate single beam
laser lite sensor [LidarLite 2015] onboard. We measure, at regular intervals (operating at
15Hz), the 3-dimensional distance travelled according to the visual odometry xi ∈ R3 and
the metric sensors yi ∈ R3. Given such sample pairs (xi,yi), we obtain a scale λ(ti) ∈ R as
the running arithmetic average of the quotients ‖xi‖‖yi‖ over a small window size. We further pass
the obtained set of scale measurements through a low-pass filter in order to avoid erroneous
measurements due to sensor noise. The true scale λ is thus obtained and used to scale the
depth map to real world units.

6.2.4 Multiple Predictions

The monocular depth estimates are often noisy and inaccurate due the challenging nature
of the problem. A planning system must incorporate this uncertainty to achieve safe flight.
Figure 6.11 illustrates the difficulty of trying to train a predictive method for building a
perception system for collision avoidance. Figure 6.11 (left) shows a ground truth location of
trees in the vicinity of an autonomous UAV. Figure 6.11 (middle) shows the location of the
trees as predicted by the perception system. In this prediction the trees on the left and far
away in front are predicted correctly but the tree on the right is predicted close to the UAV.
This will cause the UAV to dodge a ghost obstacle. While this is bad, it is not fatal because
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the UAV will not crash but make some extraneous motions. But the prediction of trees in
Figure 6.11 (right) is potentially fatal. Here the trees far away in front and on the right are
correctly predicted where as the tree on the left originally close to the UAV is mis-predicted
to be far away. This type of mistake will cause the UAV to crash into an obstacle it does not
know is there.

Groundtruth Bad Prediction Fatal Prediction 

3 m

10 m

3 m

10 m

3 m

10 m

Figure 6.11: Illustration of the complicated nature of the loss function for collision avoidance.
(Left) Groundtruth tree locations (Middle) Bad prediction where a tree is predicted closer
than it actually is located (Right) Fatal prediction where a tree close by is mispredicted
further away.

Ideally, a vision-based perception system should be trained to minimize loss functions
which will penalize such fatal predictions more than other kind of predictions. But even
writing down such a loss function is difficult. Therefore most monocular depth perception
systems try to minimize easy to optimize surrogate loss functions like regularized L1 or L2

loss [Saxena et al. 2005]. We try to reduce the probability of collision by generating multiple
interpretations of the scene to hedge against the risk of committing to a single potentially
fatal interpretation as illustrated in Figure 6.11. Specifically we generate 3 interpretations of
the scene and evaluate the trajectories in all 3 interpretations simultaneously. The trajectory
which is least likely to collide on average in all interpretations is then chosen as the trajectory
to traverse.

One way of making multiple predictions is to just sample the posterior distribution of a
learnt predictor. In order to truly capture the uncertainty of the predictor, a lot of interpre-
tations have to be sampled and trajectories evaluated on each of them. A large number of
samples will be from around the peaks of this distribution leading to wasted samples. This
is not feasible given the real time constraints of the problem.
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In previous chapters (Chapters 2 and 3), we have developed techniques for predicting
a budgeted number of interpretations of an environment with applications to manipulation,
planning and control. Batra et al., [Batra et al. 2012] have also applied similar ideas to
structured prediction problems in computer vision. These approaches try to come up with
a small number of relevant but diverse interpretations of the scene so that at least one of
them is correct. In this work, we adopt a similar philosophy and use the error profile of the
fast non-linear regressor described in Chapter 6.2 to make two additional predictions: The
non-linear regressor is first trained on a dataset of 14500 images and its performance on a
held-out dataset of 1500 images is evaluated. For each depth value predicted by it, the average
over-prediction and under-prediction error is recorded. For example the predictor may say
that an image patch is at 3 meters while it is actually either, on average, at 4 meters or at
2.5 meters. We round each prediction depth to the nearest integer, and record the average
over and under-predictions as in the above example in a look-up table (LUT). At test time
the predictor produces a depth map and the LUT is applied to this depth map, producing
two additional depth maps: one for over-prediction error, and one for the under-prediction
error.

Similarly for the Direct VO based depth image prediction, we make multiple predictions
by utilizing the variance of the estimated inverse depth which is already calculated in the
framework of [Engel et al. 2013]. At every pixel the variance of the inverse depth is used to
find the inverse depth value one standard deviation away from the mean (both lower than
and higher than the mean value) and inverted to obtain a depth value. So as before a total
of 3 depth predictions are made: 1) mean depth estimate 2) depth estimate at one standard
deviation lower than the mean depth at every pixel and 3) depth estimate at one standard
deviation greater than the mean depth at every pixel.

Figure 6.12 shows an example in which making multiple predictions is clearly beneficial
compared to the single best interpretation (using the non-linear regression depth estimation
method). We provide more experimental details and statistics in Chapter 6.3.

6.2.5 Pose Estimation

As discussed before, a relative pose-estimation system is needed to follow the trajectories
chosen by the planning layer. We use a downward looking camera in conjunction with a
downward facing single beam lidar [LidarLite 2015] for determining relative pose. Looking
forward to determine pose is ill-conditioned due to a lack of parallax as the camera faces
the direction of motion. There are still significant challenges involved when looking down.
Texture is often very self similar making it challenging for traditional feature based methods
[Newcombe et al. 2011; Klein and Murray 2007] to be employed.
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Figure 6.12: The scene at top is an example from the front camera of the UAV. On the left
is shown the predicted traversability map (red is high cost, blue is low cost) resulting from a
single interpretation of the scene. Here the UAV has selected the straight path (thick, green)
which will make it collide with the tree right in front. While on the right the traversability
map is constructed from multiple interpretations of the image, leading to the trajectory in
the right being selected which will make the UAV avoid collision.

In receding horizon, absolute pose with respect to some fixed world coordinate system
is not needed, as one needs to follow trajectories for short durations only. So as long as
one has a relative, consistent pose estimation system for this duration (3 seconds in our
implementation), one can successfully follow trajectories.

We used a variant of a simple algorithm that has been presented quite often, most recently
in [Honegger et al. 2013]. This approach uses a Kanade-Lucas-Tomasi (KLT) tracker [Tomasi
and Kanade 1991] to detect where each pixel in a grid of pixels moves over consecutive frames,
and estimating the mean flow from these after rejecting outliers. We do the outlier detection
step by comparing the variation of the flow vectors obtained for every pixel on the grid to a
specific threshold. Whenever the variance of the flow is high, we do not calculate the mean
flow velocity, and instead decay the previous velocity estimate by a constant factor.

This estimate of flow however tries to find the best planar displacement between the two
patches, and does not take into account out-of-plane rotations, due to motion of the camera.
Camera ego-motion is compensated using motion information from the IMU. Finally the
metric scale is estimated from sonar. We compute instantaneous relative velocity between
the camera and ground which is integrated over time to get position.

This process is computationally inexpensive, and can be run at very high frame rates.
Higher frame rates lead to smaller displacements between pairs of images, which in turn
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Figure 6.13: The overall flow of data and control commands between various modules. The
pure pursuit trajectory follower and low-level controller (purple boxes) are shown in greater
detail at the bottom.

makes tracking easier.

We evaluated the peformance of the flow based tracker in motion capture and compared
the true motion capture tracks to the tracks returned by flow based tracker. The resulting
tracks are as shown in Figure 6.14

6.2.6 Planning and Control

Figure 6.13 shows the overall flow of data and control commands. The front camera video
stream is fed to the perception module which predicts the depth of every pixel in a frame,
projects it to a point cloud representation and sends it to the receding horizon control module.
A trajectory library of 78 trajectories of length 5 meters is budgeted and picked from a much
larger library of 2401 trajectories using the maximum dispersion algorithm by Green et al.
[Green and Kelly 2006]. This is a greedy procedure for selecting trajectories, one at a time,
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Figure 6.14: Comparison of the differential flow tracker performance vs ground truth in
motion capture. Yellow tracks are the true trajectories as determined by the very accurate
motion capture system, green are those determined by the algorithm. Note that due to
constant replanning every 3 second, small drift in following a specific trajectory can be easily
tolerated. So as long as the drift is not more than a few centimeters over a trajectory, collision
avoidance is not compromised.

so that each subsequent trajectory spans maximum area between it and the rest of the
trajectories. The receding horizon module maintains a score for every point in the point
cloud. The score of a point decays exponentially the longer it exists. After some time when
it drops below a user set threshold, the point is deleted. The decay rate is specified by setting
the time constant of the decaying function. This fading memory representation of the local
scene layout has two advantages: 1) It prevents collisions caused by narrow field-of-view
issues where the quadrotor forgets that it has just avoided a tree, sees the next tree and
dodges sideways, crashing into the just avoided tree. 2) It allows emergency backtracking
maneuvers to be safely executed if required, since there is some local memory of the obstacles
it has just passed.

Our system accepts a goal direction as input and ensures that the vehicle makes progress
towards the goal while avoiding obstacles along the way. The score for each trajectory is
the sum of three terms: 1) A sphere of the same radius as the quadrotor is convolved along
a trajectory and the score of each point in collision is added up. The higher this term is
relative to other trajectories, the higher the likelihood of this trajectory being in collision. 2)
A term which penalizes a trajectory whose end direction deviates from goal direction. This
is weighted by a user specified parameter. This term induces goal directed behavior and is
tuned to ensure that the planner always avoids obstacles as a first priority. 3) A term which
penalizes a trajectory for deviating in translation from the goal direction.

The pure pursuit controller module (Figure 6.13) takes in the coordinates of the trajectory
to follow and the current pose of the vehicle from the optical flow based pose estimation system
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(Chapter 6.2.5). We use a pure pursuit strategy [Coulter 1992] to track it. Specifically,
this involves finding the closest point on the trajectory from the robot’s current estimated
position and setting the target waypoint to be a certain fixed lookahead distance further
along the trajectory. The lookahead distance can be tuned to obtain the desired smoothness
while following the trajectory; a larger lookahead distance leads to smoother motions, at the
cost of not following the trajectory exactly. Using the pose updates provided by the pose
estimation module, we head towards this moving waypoint using a generic PD controller.
Since the receding horizon control module continuously replans (at 5 hz) based on the image
data provided by the front facing camera, we can choose to follow arbitrary lengths along a
particular trajectory before switching over to the latest chosen one.

Validation of Modules

We validated each module separately as well as in tandem with other modules where each
validation was progressively integrated with other modules. This helped reveal bugs and
instabilities in the system.

Monocular Depth 
Estimation

Receding Horizon 
Control

Integrated 
Testing on Rover

Pose Estimation

Control Modules for 
Trajectory Following

Hardware in the 
Loop

Testing on UAV

Time
Complete Deliberative 
Flight through Clutter

Figure 6.15: Development and testing of different modules occured in parallel. The depth
estimation and planning modules were developed and tested on the rover while the pose
estimation and control modules required for following trajectories were developed and tested
on the UAV. Hardware-in-the-loop (HWIL) testing of all planning and control modules was
done on the UAV before perception and planning modules from the rover were integrated
and then tested on the UAV for complete autonomous flight through clutter.

• Trajectory Evaluation and Pure Pursuit Validation with Stereo Data on Rover : We
tested the trajectory evaluation and pure pursuit control module by running the entire
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pipeline (other than monocular depth prediction) with stereo depth images on the rover.
Figure 6.16.

• Trajectory Evaluation and Pure Pursuit Validation with Monocular Depth on Rover :
This test is the same as above but instead of using depth images from stereo we used
the monocular depth prediction. This allowed us to tune the parameters for scoring
trajectories in the receding horizon module to head towards goal without colliding with
obstacles.

• Trajectory Evaluation and Pure Pursuit Validation with Known Obstacles in Motion
Capture on UAV : While testing of modules progressed on the rover we assembled and
developed the pose estimation module (Chapter 6.2.5) for the UAV. We tested this
module in a motion capture lab where the position of the UAV as well of the obstacles
was known and updated at 120 Hz. (See Figure 6.2)

• Trajectory Evaluation and Pure Pursuit Validation with Hardware-in-the-Loop (HWIL):
In this test we ran the UAV in an open field, fooled the receding horizon module to
think it was in the midst of a point cloud and ran the whole system (except perception)
to validate planning and control modules. Figure 6.17 shows an example from this
setup.

• Whole System: After validating each module following the evaluation protocol described
above, we ran the whole system end-to-end. Figure 6.1 shows an example scene of the
quadrotor in full autonomous mode avoiding trees outdoors. We detail the results of
collision avoidance in Section 6.3.

Figure 6.16: Receding horizon control validation with rover using depth images from stereo.
The bright green trajectory is the currently selected trajectory to follow. Red trajectories
indicate that they are more likely to be in collision.
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Figure 6.17: Hardware-in-the-loop testing with UAV in open field. The receding horizon
module was fooled into thinking that it was in the midst of a real world point cloud while it
planned and executed its way through it. This allowed us to validate planning and control
without endangering the UAV.

6.3 Experiments

In this section we analyze the performance of the deliberative approach using the three depth
prediction approaches detailed and discuss pros and cons of each method. All experiments
were conducted in a wooded area with dense trees and a light-weight tether to the UAV for
safety. Figure 6.5 shows the location of the test site (Schenley Park, near Carnegie Mellon
University, Pittsburgh, PA). There is approximately 1 tree per 12× 12 m2 in this area.

We separately evaluate performance of the perception module and the ability of the entire
system to fly in dense clutter.

6.3.1 Perception Evaluation

Figure 6.18 shows the average depth error against depth images obtained from stereo pro-
cessing. The average error values for non-linear regression are obtained from a held-out set
of 100 images. We readily observe that direct visual odometry performs really well with low
error values up to [15, 20] m. Please note that direct visual odometry is not a learning based
method while non-linear regression is trained on a dataset of stereo depth images. This graph
nevertheless serves to show the accuracy of the visual odometry based method.

6.3.2 System Performance Evaluation

We evaluate performance by recording the average distance flown autonomously by the UAV
over several runs, before an intervention. An intervention, in this context, is defined as the
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Figure 6.18: Average root-mean-squared-error (RMSE) binned over groundtruth depth buck-
ets of [1, 5] m, [5, 10] m, etc. Groundtruth depth images are obtained from stereo image
processing.
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Figure 6.19: Average flight distance per intervention. For each method, the corresponding
multiple prediction variant performs significantly better. We also plot the performance of
the pure reactive approach from [Ross et al. 2013a] as a baseline to highlight that being
deliberative significantly raises collision avoidance performance.
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pilot overriding the autonomous system to prevent the UAV from an inevitable crash. Ex-
periments were performed using both the multiple predictions approach and single best pre-
diction, for each depth prediction method. Figure 6.19 shows the average distance traversed
per intervention and Figure 6.20 shows the average number of trees avoided by the UAV per
intervention using each perception method. We make several immediate observations:

• Multiple predictions gives a significant boost to the average flight distance
for each depth prediction method over corresponding single prediction ap-
proach.. In the case of non-linear regression based depth prediction, making multiple
predictions gives an 135% improvement, and in the case of direct visual odometry the
improvement is 71%. This validates our intuition from Chapter 6.2.4 that by avoiding
a small number of extra ghost obstacles, we can significantly reduce crashes due to
uncertainty.

• Deliberative approaches perform much better than pure reactive obstacle
avoidance. This is not surprising since by definition deliberative approaches can reason
further and make better decisions than reactive approaches. Direct visual odometry
with multiple predictions can fly, on average 3.48 times longer than pure reactive control
used in our previous work [Ross et al. 2013a].

• Direct visual odometry based depth prediction significantly outperforms
non-linear regression based depth prediction and pure reactive control.
While this is not surprising given the accuracy of the depth maps produced by di-
rect visual odometry in Chapter 6.2.3, it is surprising that even when we are moving
forward, which is the direction of least parallax, good depth maps can be realized.
This can be attributed to the fact that geometric constraints provided by the ground
and trees on the periphery of the field of view over multiple frames provide enough
contraints for an accurate depth map.

• Overall with our best performing approach (Direct visual odometry with
multiple predictions we can fly 516 meters on average before an intervention)

In Figure 6.21 failures are broken down by the type of obstacle the UAV failed to avoid,
or whether the obstacle was not in the field-of-view (FOV) for the non-linear regression based
depth prediction method (both single best and multiple prediction approaches). Overall, 39%
of the failures were due to large trees and 33% on hard to perceive obstacles like branches and
leaves. As expected, failures due to FOV issues are now the least contributor to overall inter-
ventions compared to the reactive control strategy [Ross et al. 2013a] which had 29.3% FOV
related interventions, while deliberative approach has only 9%. This is intuitive, since the
reactive control is myopic in nature and our deliberate approach helps overcome this problem
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Figure 6.20: Average number of trees avoided by the UAV per intervention. This provides
an additional idea of the density of the test site.
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Figure 6.21: Percentage of failure for each type. Red: Large Trees, Yellow: Thin Trees, Blue:
Foliage, Green: Narrow FOV.

as described in previous sections. Figure 6.22 shows some typical intervention examples.

6.4 Conclusion

While we have obtained promising results, a number of challenges remain: better handling of
sudden strong wind disturbances and control schemes for leveraging the full dynamic envelope
of the vehicle. In ongoing work we are moving towards complete onboard computing of all
modules to reduce latency. We can leverage other sensing modes like sparse, but more
accurate depth estimation from stereo, which can be used as “anchor” points to improve
dense monocular depth estimation. Similarly low power, light weight lidars can be actively
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Figure 6.22: Examples of interventions: (Left) Bright trees saturated by sunlight from behind
(Second from left) Thick foliage (Third from left) Thin trees (Right) Flare from direct sun-
light. Camera/lens with higher dynamic range and more data of rare classes should improve
performance.

foveated to high probability obstacle regions to reduce false positives and get exact depth.
Another central future effort is to integrate the purely reactive [Ross et al. 2013a] approach
with the deliberative scheme detailed here, for better performance.
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CHAPTER7
Open Issues and Future Work

In this work we have proposed methods for predicting lists which maximize monotone sub-
modular objectives. Recent advances in literature [Gupta et al. 2010; Buchbinder et al. 2014;
Pan et al. 2014] have proposed methods for optimizing non-monotone submodular objectives
in the context-free setting. Similar reductions as demonstrated in this work can be harnessed
for contextualizing the optimization of non-monotone submodular objectives as well. This
will find ready use in robotics, computer vision and general decision-making scenarios.

In all the methods presented here, we have assumed that executing the list of actions
does not change the current environment. A concrete example of this is to consider the
manipulation planning case study 2.1 where a list of initial seed trajectories is proposed by
ConSeqOpt or SCP for evaluation by the manipulator. As the manipulator executes this
list on the environment, it is possible that it will modify the environment by unintentionally
moving the objects. This changes the environment and affects the probability of success of
subsequent seed trajectories. If the change is large it invalidates the performance guarantees
of the list.

In ongoing work we are exploring connections to adaptive submodularity [Golovin and
Krause 2010] and imitation learning [Ross et al. 2011] to produce decision policies which
observe the result of the current action and then suggest the next action to try.

Another limitation we would like to highlight is our methods can’t propose novel actions
that are not present in the library. Muelling et al. [Muelling et al. 2010] generalize actions
already present in a motion library to synthesize new actions in an online manner which are
more suited for the task at hand. By incorporating such action synthesis methods into our
framework we can propose better action lists for the task at hand.

In the case of multiple structured output prediction (Section 4, it might be possible to
modify the training procedure of Structured-SVMs (specifically the decoding stage) [Tsochan-
taridis et al. 2005; Ratliff et al. 2007c] for getting the exact same performance guarantees
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as ConSeqOpt in the non-structured output case. We will investigate this direction in the
near future.
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APPENDIXA
Proofs of SCP Theoretical Results

This appendix contains the proofs of the various theoretical results presented in this paper.

A.1 Preliminaries

We begin by proving a number of lemmas about monotone submodular functions, which will
be useful to prove our main results.
Lemma 1. Let A be a set and f be a monotone submodular function defined on list of items
from A. For any lists A,B, we have that:

f(A⊕B)− f(A) ≤ |B|(Es∼U(B)[f(A⊕ s)]− f(A))

for U(B) the uniform distribution on items in B.

Proof. For any list A and B, let Bi denote the list of the first i items in B, and bi the ith

item in B. We have that:

f(A⊕B)− f(A)
=

∑|B|
i=1 f(A⊕Bi)− f(A⊕Bi−1)

≤
∑|B|
i=1 f(A⊕ bi)− f(A)

= |B|(Eb∼U(B)[f(A⊕ b)]− f(A))

where the inequality follows from the submodularity property of f .

Lemma 2. Let A be a set, and f a monotone submodular function defined on lists of items
in A. Let A,B be any lists of items from A. Denote Aj the list of the first j items in A,
U(B) the uniform distribution on items in B and define εj = Es∼U(B)[f(Aj−1 ⊕ s)]− f(Aj),
the additive error term in competing with the average marginal benefits of the items in B
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when picking the jth item in A (which could be positive or negative). Then:

f(A) ≥ (1− (1− 1/|B|)|A|)f(B)−
|A|∑
i=1

(1− 1/|B|)|A|−iεi

In particular if |A| = |B| = k, then:

f(A) ≥ (1− 1/e)f(B)−
k∑
i=1

(1− 1/k)k−iεi

and for α = exp(−|A|/|B|) (i.e. |A| = |B| log(1/α)):

f(A) ≥ (1− α)f(B)−
|A|∑
i=1

(1− 1/|B|)|A|−iεi

Proof. Using the monotone property and previous lemma 1, we must have that: f(B) −
f(A) ≤ f(A⊕B)− f(A) ≤ |B|(Eb∼U(B)[f(A⊕ b)]− f(A)).

Now let ∆j = f(B)− f(Aj). By the above we have that

∆j

≤ |B|[Es∼U(B)[f(Aj ⊕ s)]− f(Aj)]
= |B|[Es∼U(B)[f(Aj ⊕ s)]− f(Aj+1)

+f(Aj+1)− f(B) + f(B)− f(Aj)]
= |B|[εj+1 + ∆j −∆j+1]

Rearranging terms, this implies that ∆j+1 ≤ (1−1/|B|)∆j+εj+1. Recursively expanding
this recurrence from ∆|A|, we obtain:

∆|A| ≤ (1− 1/|B|)|A|∆0 +
|A|∑
i=1

(1− 1/|B|)|A|−iεi

Using the definition of ∆|A| and rearranging terms, we obtain f(A) ≥ (1−(1−1/|B|)|A|)f(B)−∑|A|
i=1(1 − 1/|B|)|A|−iεi. This proves the first statement of the theorem. The following two

statements follow from the observations that (1 − 1/|B|)|A| = exp(|A| log(1 − 1/|B|)) ≤
exp(−|A|/|B|) = α. Hence (1− (1−1/|B|)|A|)f(B) ≥ (1−α)f(B). When |A| = |B|, α = 1/e
and this proves the special case where |A| = |B|.

For the greedy list construction strategy, the εj in the last lemma are always ≤ 0, such
that Lemma 2 implies that if we construct a list of size k with greedy, it must achieve at least
63% of the value of the optimal list of size k, but also that it must achieve at least 95% of
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the value of the optimal list of size bk/3c, and at least 99.9% of the value of the optimal list
of size bk/7c.

A more surprising fact that follows from the last lemma is that constructing a list stochas-
tically, by sampling items from a particular fixed distribution, can provide the same guarantee
as greedy:
Lemma 3. Let A be a set, and f a monotone submodular function defined on lists of items
in A. Let B be any list of items from A and U(B) the uniform distribution on elements in B.
Suppose we construct the list A by sampling k items randomly from U(B) (with replacement).
Denote Aj the list obtained after j samples, and Pj the distribution over lists obtained after
j samples. Then:

EA∼Pk [f(A)] ≥ (1− (1− 1/|B|)k)f(B)

In particular, for α = exp(−k/|B|):

EA∼Pk [f(A)] ≥ (1− α)f(B)

Proof. The proof follows a similar proof to the previous lemma. Recall that by the monotone
property and lemma 1, we have that for any list A: f(B) − f(A) ≤ f(A ⊕ B) − f(A) ≤
|B|(Eb∼U(B)[f(A ⊕ b)] − f(A)). Because this holds for all lists, we must also have that
for any distribution P over lists A, f(B) − EA∼P [f(A)] ≤ |B|EA∼P [Eb∼U(B)[f(A ⊕ b)] −
f(A)]. Also note that by the way we construct sets, we have that EAj+1∼Pj+1 [f(Aj+1)] =
EAj∼Pj [Es∼U(B)[f(Aj ⊕ s)]]

Now let ∆j = f(B)− EAj∼Pj [f(Aj)]. By the above we have that:

∆j

≤ |B|EAj∼Pj [Es∼U(B)[f(Aj ⊕ s)]− f(Aj)]
= |B|EAj∼Pj [Es∼U(B)[f(Aj ⊕ s)]− f(B)

+f(B)− f(Aj)]
= |B|(EAj+1∼Pj+1 [f(Aj+1)]− f(B)

+f(B)− EAj∼Pj [f(Aj)])
= |B|[∆j −∆j+1]

Rearranging terms, this implies that ∆j+1 ≤ (1 − 1/|B|)∆j . Recursively expanding this
recurrence from ∆k, we obtain:

∆k ≤ (1− 1/|B|)k∆0

Using the definition of ∆k and rearranging terms we obtain EA∼Pk [f(A)] ≥ (1 − (1 −
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1/|B|)k)f(B). The second statement follows again from the fact that (1−(1−1/|B|)k)f(B) ≥
(1− α)f(B)

Corollary 3. There exists a distribution that when sampled k times to construct a list,
achieves an approximation ratio of (1 − 1/e) of the optimal list of size k in expectation. In
particular, if A∗ is an optimal list of size k, sampling k times from U(A∗) achieves this
approximation ratio. Additionally, for any α ∈ (0, 1], sampling dk log(1/α)e times must
construct a list that achieves an approximation ratio of (1− α) in expectation.

Proof. Follows from the last lemma using B = A∗.

This surprising result can also be seen as a special case of a more general result proven in
prior related work that analyzed randomized set selection strategies to optimize submodular
functions (Lemma 2.2 in [Feige et al. 2011]).

A.2 Proofs of Main Results

We now provide the proofs of the main results in this paper. We provide the proofs for the
more general contextual case where we learn over a hypothesis class Π̃. All the results for
the context-free case can be seen as special cases of these results when Π = Π̃ = {ψ|a ∈ A}
and ψ(computeFeatures(S,d)) = a for any example d and list S.

We refer the reader to the notation defined in Chapter 2 and 3 for the definitions of the
various terms used.
Theorem 1. Let α = exp(−N/K) and K ′ = min(N,K). After T iterations, for any δ, δ′ ∈
(0, 1), we have that with probability at least 1− δ:

F (ψ,N) ≥ (1− α)F (S∗ψ,K)− R

T
− 2

√
2 ln(1/δ)

T

and similarly, with probability at least 1− δ − δ′:

F (ψ,N) ≥ (1− α)F (S∗ψ,K)− E[R]
T −

√
2K′ ln(1/δ′)

T

−2
√

2 ln(1/δ)
T
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Proof.
F (ψ,N)
= 1

T

∑T
t=1 F (ψt, N)

= 1
T

∑T
t=1 ESψ,N∼ψt [Ed∼D[f(Sψ,N ,d)]]

= (1− α)Ed∼D[f(S∗ψ,K ,d)]
−(1− α)Ed∼D[f(S∗ψ,K ,d)]
− 1
T

∑T
t=1 ESψ,N∼ψt [Ed∼D[f(Sψ,N ,d)]]

Now consider the sampled examples {dt}Tt=1 and the hypotheses ψt,i sampled i.i.d. from ψt to
construct the lists {St}Tt=1 and denote the random variables Xt = (1−α)(Ed∼D[f(S∗ψ,K ,d)]−
f(S∗ψ,K ,dt)) − ESψ,N∼ψt [Ed∼D[f(Sψ,N ,d)]] − f(St,dt)]. If ψt is deterministic, then simply
consider all ψt,i = ψt. Because the dt are i.i.d. from D, and the distribution of hypotheses
used to construct St only depends on {dτ}t−1

τ=1 and {Sτ}t−1
τ=1, then the Xt conditioned on

{Xτ}t−1
τ=1 have expectation 0, and because f ∈ [0, 1] for all d ∈ D, Xt can vary in a range

r ⊆ [−2, 2]. Thus the sequence of random variables Yt =
∑t
i=1Xi, for t =1 to T , forms

a martingale where |Yt − Yt+1| ≤ 2. By the Azuma-Hoeffding’s inequality, we have that
P (YT /T ≥ ε) ≤ exp(−ε2T/8). Hence for any δ ∈ (0, 1), we have that with probability at
least 1− δ, YT /T ≤ 2

√
2 ln(1/δ)

T . Hence we have that with probability at least 1− δ:

F (ψ,N)
= (1− α)Ed∼D[f(S∗ψ,K ,d)]
−[(1− α)Ed∼D[f(S∗ψ,K ,d)]
− 1
T

∑T
t=1 ESψ,N∼ψt [Ed∼D[f(Sψ,N ,d)]]]

= (1− α)Ed∼D[f(S∗ψ,K ,d)]
−[(1− α) 1

T

∑T
t=1 f(S∗ψ,K ,d)

− 1
T

∑T
t=1 f(St,dt)]− YT /T

= (1− α)Ed∼D[f(S∗ψ,K ,d)]
−[(1− α) 1

T

∑T
t=1 f(S∗ψ,K ,dt)

− 1
T

∑T
t=1 f(St,dt)]− 2

√
2 ln(1/δ)

T
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Let wi = (1− 1/K)N−i. From Lemma 2, we have:

(1− α) 1
T

∑T
t=1 f(S∗ψ,K ,dt)− 1

T

∑T
t=1 f(St,dt)

≤ 1
T

∑T
t=1

∑N
i=1wi(Eψ∼U(S∗

ψ,K
)[f(St,i−1)⊕ ψ(St,i−1,dt))]

−f(St,i,dt))
= Eψ∼U(S∗

ψ,K
)[ 1
T

∑T
t=1

∑N
i=1wi(f(St,i−1 ⊕ ψ(St,i−1,dt))

−f(St,i,dt))]
≤ maxψ∈Π[ 1

T

∑T
t=1

∑N
i=1wi(f(St,i−1 ⊕ ψ(St,i−1,dt))

−f(St,i,dt))]
≤ maxψ∈Π̃[ 1

T

∑T
t=1

∑N
i=1wi(f(St,i−1 ⊕ ψ(St,i−1,dt))

−f(St,i,dt))]
= R/T

Hence combining with the previous result proves the first part of the theorem.

Additionally, for the sampled examples {dt}Tt=1 and the hypotheses ψt,i, consider the
random variables QN(t−1)+i = wiEψ∼ψt [f(St,i−1 ⊕ ψ(St,i−1,dt))] − wif(St,i,dt). Because
each draw of ψt,i is i.i.d. from ψt, we have that again the sequence of random variables
Zj =

∑j
i=1Qi, for j = 1 to TN forms a martingale and because each Qi can take values in a

range [−wj , wj ] for j = 1+mod(i−1, N), we have |Zi−Zi−1| ≤ wj . Since
∑TN
i=1 |Zi−Zi−1|2 ≤

T
∑N
i=1(1 − 1/K)2(N−i) ≤ T min(K,N) = TK ′, by Azuma-Hoeffding’s inequality, we must

have that P (ZTN ≥ ε) ≤ exp(−ε2/2TK ′). Thus for any δ′ ∈ (0, 1), with probability at least
1− δ′, ZTN ≤

√
2TK ′ ln(1/δ). Hence combining with the previous result, it must be the case

that with probability at least 1− δ− δ′, both YT /T ≤ 2
√

2 ln(1/δ)
T and ZTN ≤

√
2TK ′ ln(1/δ′)

holds.

Now note that:

maxψ∈Π̃[ 1
T

∑T
t=1

∑N
i=1wi(f(St,i−1 ⊕ ψ(St,i−1,dt))− f(St,i,dt))]

= maxψ∈Π̃[ 1
T

∑T
t=1

∑N
i=1wi(f(St,i−1 ⊕ ψ(St,i−1,dt))

−Eψ′∼ψt [f(St,i−1 ⊕ ψ′(St,i−1,dt))])] + ZTN/T

= E[R]/T + ZTN/T

Using this additional fact, and combining with previous results we must have that with
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probability at least 1− δ − δ′:

F (ψ,N)
≥ (1− α)F (S∗ψ,K)− [(1− α) 1

T

∑T
t=1 f(S∗ψ,K ,dt)

− 1
T

∑T
t=1 f(St,dt)]− 2

√
2 ln(1/δ)

T

≥ (1− α)F (S∗ψ,K)− E[R]/T − ZTN/T − 2
√

2 ln(1/δ)
T

≥ (1− α)F (S∗ψ,K)− E[R]/T −
√

2K′ ln(1/δ′)
T

−2
√

2 ln(1/δ)
T

We now show that the expected regret must grow with
√
K ′ and not K ′, when using

Weighted Majority with the optimal learning rate (or with the doubling trick).
Corollary 1. Under the event where Theorem 1 holds (the event that occurs w.p. 1− δ− δ′),
if Π̃ is a finite set of hypotheses, using Weighted Majority with the optimal learning rate
guarantees that after T iterations:

E[R]/T ≤ 4K′ ln |Π̃|
T + 2

√
K′ ln |Π̃|

T

+29/4(K ′/T )3/4(ln(1/δ′))1/4
√

ln |Π̃|

For large enough T in Ω(K ′(ln |Π̃|+ ln(1/δ′))), we obtain that:

E[R]/T ≤ O(

√
K ′ ln |Π̃|

T
)

Proof. We use a similar argument as Streeter & Golovin in Lemma 4 in [Streeter and
Golovin 2008] to bound E[R] in the result of Theorem 1. Consider the sum of the ben-
efits accumulated by the learning algorithm at position i in the list, for i ∈ 1, 2, . . . , N ,
i.e. let yi =

∑T
t=1 b(ψt,i(St,i−1,dt)|St,i−1,dt), where ψt,i corresponds to the particular sam-

pled hypothesis by Weighted Majority for choosing the item at position i, when construct-
ing the list St for example dt. Note that

∑N
i=1(1 − 1/K)N−iyi ≤

∑N
i=1 yi ≤ T by the

fact that the monotone submodular function f is bounded in [0, 1] for all examples d.
Now consider the sum of the benefits you could have accumulated at position i, had you
chosen the best fixed hypothesis in hindsight to construct the entire list, keeping the hy-
pothesis fixed as the list is constructed, i.e. let zi =

∑T
t=1 b(ψ∗(St,i−1,dt)|St,i−1,dt), for

ψ∗ = arg maxψ∈Π̃
∑N
i=1(1 − 1/K)N−i

∑T
t=1 b(ψ∗(St,i−1,dt)|St,i−1,dt) and let ri = zi − yi.

Now denote Z =
√∑N

i=1(1− 1/K)N−izi. We have Z2 =
∑N
i=1(1 − 1/K)N−izi =

∑N
i=1(1 −

1/K)N−i(yi + ri) ≤ T +R, where R is the sample regret incurred by the learning algorithm.
Under the event where theorem 1 holds (i.e. the event that occurs with probability at least
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1 − δ − δ′), we had already shown that R ≤ E[R] + ZTN , for ZTN ≤
√

2TK ′ ln(1/δ′), in
the second part of the proof of theorem 1. Thus when theorem 1 holds, we have Z2 ≤
T +

√
2TK ′ ln(1/δ′) +E[R]. Now using the generalized version of weighted majority with re-

wards (i.e. using directly the benefits as rewards) [Arora et al. 2012], since the rewards
at each update are in [0,K ′], we have that with the best learning rate in hindsight 1:
E[R] ≤ 2Z

√
K ′ ln |Π̃|. Thus we obtain Z2 ≤ T +

√
2TK ′ ln(1/δ′) + 2Z

√
K ′ ln |Π̃|. This

is a quadratic inequality of the form Z2 − 2Z
√
K ′ ln |Π̃| − T −

√
2TK ′ ln(1/δ′) ≤ 0, with the

additional constraint Z ≥ 0. This implies Z is less than or equal to the largest non-negative
root of the polynomial Z2 − 2Z

√
K ′ ln |Π̃| − T −

√
2TK ′ ln(1/δ′). Solving for the roots, we

obtain
Z ≤

√
K ′ ln |Π̃|+

√
K ′ ln |Π̃|+ T +

√
2TK ′ ln(1/δ′)

≤ 2
√
K ′ ln |Π̃|+

√
T + (2TK ′ ln(1/δ′))1/4

Plugging back Z into the expression E[R] ≤ 2Z
√
K ′ ln |Π̃|, we obtain:

E[R] ≤ 4K ′ ln |Π̃|+ 2
√
TK ′ ln |Π̃|

+2(2T ln(1/δ′))1/4(K ′)3/4
√

ln |Π̃|

Thus the average regret:

E[R]
T ≤ 4K′ ln |Π̃|

T + 2
√

K′ ln |Π̃|
T

+29/4(K ′/T )3/4(ln(1/δ′))1/4
√

ln |Π̃|

For T in Ω(K ′(ln Π̃+ln(1/δ′))), the dominant term is 2
√

K′ ln |Π̃|
T , and thus E[R]

T isO(
√

K′ ln |Π̃|
T ).

Corollary 2. Let α = exp(−N/K) and K ′ = min(N,K). If we run an online learning
algorithm on the sequence of convex loss Ct instead of `t, then after T iterations, for any
δ ∈ (0, 1), we have that with probability at least 1− δ:

F (ψ,N) ≥ (1− α)F (S∗ψ,K)− R̃

T
− 2

√
2 ln(1/δ)

T
− G

where R̃ is the regret on the sequence of convex loss Ct, and G = 1
T [
∑T
t=1(`t(ψt)− Ct(ψt)) +

minψ∈Π̃
∑T
t=1Ct(ψ) − minψ′∈Π̃

∑T
t=1 `t(ψ′)] is the “convex optimization gap” that measures

how close the surrogate losses Ct is to minimizing the cost-sensitive losses `t.

Proof. Follows immediately from Theorem 1 using the definition of R, R̃ and G, since G =
1if not a doubling trick can be used to get the same regret bound within a small constant factor [Cesa-

Bianchi et al. 1997]
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R−R̃
T
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APPENDIXB
Proof of Monotone Submodularity of

Quality Function

Consider the quality function which scores a set of predictions for an input image by the loss
of the best prediction in the set. Using the same notation in Chapter 4, the quality function
is reproduced as:

f(YS(I),ygt) = max
i∈1,...,N

{g(}i(I),ygt)}, (B.1)

= 1− min
i∈1,...,N

{l(}i(I),ygt)} (B.2)

The above equation scores the sequence of structured predictions YS(I) = {}i(I)}i∈1...N

by the score of the best prediction produced by the predictors S = {}1, }2, . . . , }. Such a
function f was proved to be monotone, submodular by Dey et al. in [Dey et al. 2012]. We
reproduce the proof here for convenience while adapting the exposition to the specific usage
in our case:

A set function f which maps subsets A ⊆ A of a finite set A to the real numbers. f is
called submodular if, for all A ⊆ B ⊆ A and S ∈ A \B it holds that

f(A⊕ S)− f(A) ≥ f(B ⊕ S)− f(B) (B.3)

where ⊕ is the concatenation operator. Such a function is monotone if it holds that for any
sets S1, S2 ∈ A, we have

f(S1) ≤ f(S1 ⊕ S2) (B.4)

f(S2) ≤ f(S1 ⊕ S2)
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We want to prove that f (B.2) is monotone, submodular. We make B.2 more general by
replacing the loss of a particular prediction l(}i(I)) with cost(ai) where ai is a particular
item. The simplified equation is:

f ≡ 1− min
ai∈A
{cost(ai)} (B.5)

where A is the set of allowed items.

This can be proved if minai∈A{cost(ai)} is monotone supermodular. A function f is
supermodular if it holds that

f(A⊕ S)− f(A) ≤ f(B ⊕ S)− f(B) (B.6)

Theorem 2. The function min
ai∈A
{cost(ai)} is monotone, supermodular where ai are predic-

tions.

Proof. Submodularity: Assume that we are given sets A ⊆ B ⊆ A, S ∈ A \ B. We want
to prove the inequality in B.6. Let R = B \ A, the set of elements that are in B but not in
A. Since A⊕R = B we can now rewrite B.6 as

f(A⊕ S)− f(A) ≤ f(A⊕R⊕ S)− f(A⊕R) (B.7)

We refer to the left and right sides of B.7 as LHS and RHS respectively. Define a∗ as the
prediction which has the least cost. Hence there can be three cases:

• Case 1: a∗ ∈ A In this case LHS = RHS = 0

• Case 2: a∗ ∈ R In this case RHS ≥ LHS

• Case 3: a∗ ∈ S In this case RHS ≥ LHS

Since in all possible cases it can be seen that RHS is greater than or equal to LHS it
is proved that min

ai∈A
{cost(ai)} is supermodular. Note that if there are multiple predictions

which have the same minimum cost as a∗ then similar arguments still hold and even in the
worst case when they are distributed across S, R and A, Case 1 holds.

Monotonicity Consider two sequences S1 and S2. Define a∗ as the predictions which
has the least cost. We want to prove that min

ai∈A
{cost(ai)} is monotone decreasing, i.e.

f(S1) ≥ f(S1 ⊕ S2) (B.8)

f(S2) ≥ f(S1 ⊕ S2)
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There are three possible cases:

• Case 1: a∗ ∈ S1 =⇒ f(S1) = f(S1 ⊕ S2) and f(S2) ≥ f(S1 ⊕ S2)

• Case 2: a∗ ∈ S2 =⇒ f(S1) ≥ f(S1 ⊕ S2) and f(S2) = f(S1 ⊕ S2)

• Case 3: a∗ ∈ S1 ⊕ S2 =⇒ f(S1) = f(S1 ⊕ S2) and f(S2) = f(S1 ⊕ S2)

Since in all possible cases the conditions in B.8 are satisfied min
ai∈A
{cost(ai)} is monotone

decreasing.

Corollary 3. The function f of Equation 4.3 in the paper is monotone, submodular due to
min
ai∈A
{cost(ai)} being monotone, supermodular by Theorem 2.

Corollary 4. The function F (S,D) = E(I,ygt)∼D [f(YS(I),ygt)] (Equation 4.4 in the paper)
is also monotone submodular since non-negative sums of monotone submodular functions is
also monotone submodular.
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