
Privacy Preserving Information Sharing in
Modern and Emerging Platforms

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Department of Electrical and Computer Engineering

Yuan Tian

BASc Communication Engineering, Zhengzhou University
MS Computer Science, Beijing University of Posts and Telecommunications

Carnegie Mellon University
Pittsburgh, PA

May 2018

© Yuan Tian, 2018

All Rights Reserved

ii

Acknowledgements

I would like to thank my advisor Professor Patrick Tague for the excellent mentorship, the

research freedom, and the great encouragement given throughout my PhD career. I also

give my thanks to all my committee members. Professor Lujo Bauer for giving me valuable

advice for my research and career choice, Dr. Shuo Chen for all insightful discussions and

the collaborations, Dr. Stuart Schechter for the suggestions and mentorship at Microsoft

Research. Without you all, this thesis would definitely have not been possible!

My family, Huixian Tian and Hui Pang, thank you for all the love and support!

During my Ph.D. study, I got great support from my friends in Carnegie Mellon University

and outside. Thank you very much for your friendship! I would like to thank my labmates

Arjun Athreya, Eric Chen, Bruce DeBruhl, Jun Han, Madhu Harishankar, Yuseung Kim,

Le T. Nguyen, Emmanuel Owusu, Brian Ricks, and Xiao Wang. I would like to thank my

collaborators Amar Bhosale, Sungho Cho, Prof. Lorrie Faith Cranor, Weisi Dai, Xianheng

Guo, Dr. Lin-Shung Huang, Prof. Collin Jackson, Prof. Limin Jia, Robert Kotcher, Wookjong

Kwak, Dr. Yue-Hsun Lin, Dr. Bin Liu, Ying-Chuan Liu, Sanjay Parab, Yutong Pei, Joao Sa

Sousa, Prof. Blase Ur, Dr. Helen Wang, Prof. XiaoFeng Wang, Prof. Carlee Joe-Wong, Nan

Zhang, and Prof. Joy Zhang.

I would like to thank my friends during the graduate school: Aniruddha Basak, Youzhi Bao,

Irina Brinkste, Akshay Chandrashekaran, Guan-Lin Chao, Chen Chen, Nicolas Christin,

David Cohen, Dr. Willam Chan, Prof. Anupam Datta, Amit Datta, Samantha Goldstein,

iii

Chih Hu, Abhinav Jauhri, Wonkyum Lee, Bing Liu, Suyoun Kim, Prof. Michelle Mazurek,

Dr. Piotr Mardziel, Prof. Ole Mengshoel, Prof. Bryan Parno, Shijia Pan, Prof. Vyas Sekar,

Sari Smith, Stephanie Scott, Prof. John Shen, Nathan Snizaski, Michael Stroucken, Zheng

Sun, Jennifer Wolfeld, Miao Yu, Ming Zeng, Hengzhi Zheng, Dr. Jun Zhao, Prof. Pei Zhang,

Prof. Jia Zhang, Yingrui Zhang, and Dr. Zongwei Zhou.

To all my Facebook, Microsoft Research, and Samsung Research coworkers, mentors, and

friends, thank you all! I would like to thank Dr. Cormac Herley, Dr. Peng Ning, Dr. Ioannis

Papagiannis, Marjori Pomarole, Henry Corrigan-Gibbs, Chenguang Shen, Anhong Guo, Dr.

Yan Michalevsky, Xiang Ren, Peng Gao, Prof. Huan Sun, Robert Xiao, and Yu Zhang.

The thesis research was supported in part by NSF CNS-1223477, 1223495, 1527141 and

1618493, and ARO W911NF1610127.

iv

Abstract

Users share a large amount of information with modern platforms such as web platforms

and social platforms for various services. However, they face the risk of information leakage

because modern platforms still lack proper security policies. Existing security policies, such

as permission systems and isolation, can help regulate information sharing. However, these

policies have problems, such as coarse granularity, bad usability, and incompleteness, espe-

cially when new features are introduced. I investigate the security impacts of new features

in web and mobile platforms and find design problems that lead to user information leakage.

Based on these analyses, I propose design principles for permission systems that mediate

how information should be shared in modern and emerging platforms, such as web and so-

cial platforms, to provide functionality with privacy preserved. I aim to design permission

systems that only allow least-privilege information access. Specifically, I utilize program

analysis and natural language processing to understand how applications use sensitive data

and correlate these data with their functionality. With this understanding, I design schemes

that ask for user consent about unexpected information access and automatically reduce

overprivileged access. I provide guidelines for platform designers to build their permission

systems according to respective adversary models and resources. In particular, I imple-

ment the new permission system for social platforms and Internet of Things (IoT) platforms

that enable least-privilege information sharing. For the social platforms, I incorporate the

primitives of Opaque handle, Opaque display, and User-driven access control (OOU) to de-

sign a least-privilege, user-friendly, developer-friendly, and feature-rich permission system.

According to my study on Facebook, OOU can be applied to remove or replace 81.2% of

sensitive permission instances without affecting functionality. For IoT platforms, I present

a new authorization framework, SmartAuth, that supports user-centric, semantic-based au-

thorization. SmartAuth automatically collects security-relevant information from an IoT

application’s description, code, and annotations, and generates an authorization user inter-

face to bridge the gap between the functionalities explained to the user and the operations

the application actually performs.

vi

Table of Contents

Acknowledgements iii

Abstract v

Table of Contents vii

List of Tables xi

List of Figures xiii

1 Introduction 1

2 Identifying and Understanding the Conflicts between Functionality and

Privacy 5

2.1 Screen-Sharing Attacks Using a New HTML5 API 6

2.1.1 Threat Model . 6

2.1.2 New Cross Origin Request Forgery Attack with the API 8

2.2 Privacy and Functionality Conflicts of Data Sharing in Social Platform . . . 11

2.2.1 Study Methodology . 14

2.2.2 Permission Systems in Social Platforms 16

2.2.3 Limitations of Permission Models for Social Platforms 17

2.3 Related Work . 22

2.3.1 CSRF Attacks and Defenses . 22

vii

2.3.2 Limitations of Permission Systems on Client OSes 23

2.3.3 Limitations of Permission Systems in Social Platforms 24

3 Designing and Building Secure and Privacy-Preserving Systems 25

3.1 Privacy Preserving Context Sharing for Social Networks 25

3.1.1 Introduction . 26

3.1.2 System Model . 28

3.1.3 Threat Model . 29

3.1.4 Design Goals . 30

3.1.5 OOU Primitives . 32

3.1.6 Evaluation of OOU on Facebook . 38

3.1.7 Designing a Permission Model for the Somex Activity Platform . . . 51

3.1.8 Discussion . 59

3.2 User-Centered Authorization for Smarthome Apps 60

3.2.1 Introduction . 61

3.2.2 Background . 66

3.2.3 SmartAuth Design Overview . 71

3.2.4 Design and Implementation . 73

3.2.5 Evaluation . 85

3.2.6 Limitations . 93

3.3 Related work . 94

3.3.1 Improving the Permission Systems in Client OSes 94

3.3.2 Improving Privacy for Sharing Information with Third-Party Apps on

Social Platforms . 95

3.3.3 Bridging the Gap between User Expectation and App Behaviors for

Mobile Apps . 97

3.3.4 IoT Security and Privacy . 98

viii

4 Conclusion and Future Work 101

4.1 Conclusion . 101

4.2 Future Research Directions . 102

4.2.1 Reliable, Secure and Usable Systems For Emerging Platforms 103

4.2.2 Privacy-Preserving Machine Learning 103

APPENDICES 112

A Supplemental Materials 113

A.1 Supplemental Materials for the Study on Facebook Permission 113

A.1.1 Facebook Login Permission Details 113

A.1.2 Survey for Users’ Mental Model about Facebook Permissions 113

A.2 Supplemental Materials for the Study on Smarthome Authorization Systems 124

A.2.1 Survey for Users’ Mental Model about Smarthome Permission 124

A.2.2 Smarthome Patching . 133

A.2.3 SmartAuth Working Example . 135

A.2.4 Apps Used in the Lab Study . 135

A.2.5 Details of the Lab Study for SmartAuth 135

A.2.6 Crowdsourcing for Unexpected Behavior Sensitivity 141

ix

x

List of Tables

3.1 We tabulate and index the representative set of apps included in our study. . 41

3.2 We analyze the Facebook permission usages in the 60 apps (242 permission

instances), and find that 169 permission instances can be removed by opaque

display or opaque handle, and 31 permission instances can be removed by

user-driven access control. 42

3.3 Compatibility test results among 30 over privelged SmartApps. 100

A.1 Facebook login permission details . 124

A.2 Apps in the lab study . 136

xi

xii

List of Figures

2.1 The threat model of attacks with screen-sharing API. 7

2.2 Steps of a CSRF attack. 1. attacker.com requests a page with secret vali-

dation tokens from bank.com. 2. The screenshots with the source code and

secret validation tokens are transmitted to the attacker’s server via the screen-

sharing API. 3. The attacker sends a form with a post request and the secret

validation tokens to attacker.com to transfer money. 4. The post request is

sent from the user’s browser to bank.com and accepted by bank.com. 9

2.3 Secret session arguments can be retrieved from the source code. 12

2.4 Multiple session arguments are exposed in the source code. 12

2.5 The form of a post request to send money. 13

2.6 One of the Facebook permission pages we show in our survey. 19

3.1 System model of the social platform and applications. 30

3.2 Activity-based social platform share more sensitive context about user ac-

tivities, which enables compelling features for third-party applications. For

example, knowing the exact activity (whether the user is doing Christmas

shopping or entertaining), Amazon can provide more accurate recommenda-

tions. Amazon will know whether to link the user to a previous session about

“iPad” or a session about “A song of Ice and Fire”. 31

xiii

3.3 We provide an example to illustrate the simple usage of the opaque handle

primitive. In fact, the opaque handle can also point to more complicated data

structure to provide even more utility. For more details, see Section 3.1.7. . 33

3.4 We provide an example to illustrate the use of the opaque display primitive. 35

3.5 We provide an example to illustrate the use of the user-driven access control

primitive. 36

3.6 Friends’ data access is not allowed after Facebook permission model 2.0, so

UberSync lost the ability to sync friends’ data. The opaque handle and opaque

display allow UberSync to display friends’ profile photos and contacts without

sacrificing privacy. All UberSync learns is the number of friends, which is not

considered as sensitive. 51

3.7 An activity token is an opaque handle that points to the current activity of a

user. The activity token enables Somex to point to current activity without

sacrificing privacy. Amazon can query the activity token to link the user to a

previous browsing session. 54

3.8 Using user-driven access control to share context from an application to Somex.

An app can call the Share_Action API to ask users to share context implicitly. 56

3.9 Somex uses opaque display to display context in an application without ex-

posing context to the application. 56

3.10 Case study: collaborators shop together for Christmas. An app such as Ama-

zon can call the get_actions_of_activity API to display the collaborators’

actions such as Christmas shopping. 57

3.11 Case study: collaborators share comments and experiences about a question.

An application such as Google can call the get_actions_on_objects_of_activity

API to display collaborators’ actions for this activity performed on an artifact. 59

xiv

3.12 User 1 and user 2 collaborate on shopping for birthday gifts. With the APIs

we designed, Somex enables applications to utilize the cross-session, cross-

user, and cross-application context without sacrificing privacy. For example,

users can see the context-aware recommendations and collaborators actions

on the same gift shopping activity. 59

3.13 The installation interface of SmartApp Safety Watch lists configuration op-

tions without connecting to higher-level app functionality. There is also no

guarantee the app’s actual behavior is consistent with its description. 62

3.14 Users install commercial IoT apps through their mobile devices, allowing the

vendor’s IoT cloud to interact with the user’s locally deployed IoT devices

through direct Internet connectivity or an IoT hub. IoT apps pair event

handlers to IoT devices, issue direct commands to IoT devices, and provide

web interfaces to interact with external servers. 67

3.15 We provide a high-level block diagram to illustrate the design overview of our

SmartAuth system. 72

3.16 We illustrate the security policy generated for the Humidity Alert app, which

is communicated to the user to request authorization. 73

3.17 As an example, we illustrate NLP analysis of the Coffee After Shower de-

scription: “This app is designed simply to turn on your coffee machine while

you are taking a shower.” Red characters indicate parts of speech (e.g., “VB”

stands for verb). Blue characters are typed dependencies (e.g., “advcl” stands

for adverbial clause modifier). 77

xv

3.18 We illustrate the three-step policy correlation for the Coffee After Shower app.

1) We apply the context clues “bathroom” and “coffee” for entity correlation.

2) We use the attribute model and command model to extract and correlate

the context and action. 3) We use typed-dependency analysis and causal

relationship model to correlate the policies generated from the description

and program analysis. 80

3.19 For Five tasks, participants chose between two similar IoT apps, one of which

was overprivileged. This graph shows the proportion of participants who

chose the overprivileged app. Similar to what one would expect from random

selection, around half of the participants who saw the Samsung SmartThings

interface chose the overprivileged app. In contrast, only between 6% and 26%

of SmartAuth participants chose the overprivileged app. 88

3.20 We plot the average delay of various functions in the SmartThings platform.

The darker bar in each pair represents the delay in the unmodified platform

with virtual devices, while the lighter represents the delay in our customized

platform with the additional overhead introduced by SmartAuth. Event han-

dlers incur the highest incremental overhead, while commands incur the high-

est proportional overhead (almost double the base case). 91

xvi

Chapter 1

Introduction

Modern platforms such as web platforms and social platforms host a large amount of user

data (users’ locations, photos, posts, etc.). Third-party applications use the information to

provide customized services and social experiences through the applications. Sharing the

information to third-party applications without sacrificing privacy is always a challenging

problem. For example, Facebook removed 30 permissions to access friends’ data, such as

their emails and photos, in 2015 over privacy concerns [1]. This change led to the death of

many third-party applications that utilized this social information, such as Jobs with Friends

and CareerSonar [2].

In this thesis, we first study the problems with the current design and implementation of

sharing information with applications on modern platforms such as web platforms and social

networking platforms. We identify problems with existing permission systems; for example,

social networking platforms claim that they have to sacrifice functionality of third-party

applications for privacy concerns [2], and a smarthome application that claims only to control

the air conditioner in the application’s description also has access to the smart locks. With

knowledge of these problems, we provide design principles for least-privilege information

sharing with applications. We consider least-privilege information sharing as sharing only

1

what is needed for the functionality of applications. Our hypothesis is that the platform can

work as a mediator to share sensitive information with one third-party application without

sacrificing privacy. We approach the problem in the following steps: 1) analyze how user

information is used and correlated with the functionality of the application; 2) stop sharing of

the information that are not needed for the functionality automatically when possible, such as

by using opaque display (only allow applications to display sensitive content without allowing

access the content), according to the observed category of information usage; 3) communicate

efficiently with the user about the unexpected data usage for the rest of the cases; and

4) examine trade-offs such as functionality and performance to optimize the design of the

information-sharing framework. Specifically, we implement our solutions on social network

platforms and smarthome platforms, including Facebook and Samsung SmartThings.

For the social platform, we analyze how social networking applications use information and

we design schemes to only expose the information applications need for functionality. We

run an analysis of the applications and categorize different information usage and choose

solutions accordingly. For different categories, we show how we can use various techniques

to remove the need for certain permissions. Based on our insights from the application

analysis, we propose the following three primitives that can be used to remove permissions

and share less information with applications. First, the platform can give an opaque handle

referring a datum to an application, allowing the application to share or track the datum

without learning the datum itself. For example, when a user tags a friend in a photo on a

social networking platform, the platform generates a token (opaque handle) for the friend

and shares the token with the application instead of the friend’s real user ID. Second, the

platform can provide an opaque display capability to allow an application to show a datum to

the user without learning the datum itself. For example, a third-party application cannot get

the profile photo and name of users’ friends to show them to the users to enrich their social

experiences inside the application because Facebook has removed permissions pertaining

to friends’ information; however, the application can display the friends’ information in an

2

isolated view without accessing sensitive content. Third, the two platforms can enable user-

driven access control to allow a user’s natural interaction with an application to implicitly

grant the necessary permissions to support the user’s activities. We evaluate our permission

framework using the following metrics: 1) privacy gain—how much information users do not

need to share with the applications in the new framework compared to previous permission

systems; 2) developer effort—how difficult it is to implement the framework; 3) platform

overhead—how much computation power the platform needs to support the scheme; and 4)

coverage—what fraction of permission instances can be replaced by the framework.

For the smarthome platform, the overprivilege problem stems from the design of the frame-

works. Different from platforms such as mobile and social networks, the privacy implication

of the permission in smarthome is related to the context. For example, motion sensors on the

door can detect people knocking on the door, and motion sensors on a medicine drawer can

detect whether people pull out the drawer. What really matters here is the gap between the

operations that the user thought the smarthome application would perform, which mostly

comes from the applications’ descriptions, and those that actually take place. We propose to

bridge the gap by automatically collecting security-relevant information from a smarthome

application’s description, code, and annotations and generating a usable authorization user

interface. To address the unique challenges in the smarthome application authorization,

where states from a collection of devices are used to determine the operations that can hap-

pen on other devices, we come up with a set of new technologies that link the context of a

device (e.g., a humidity sensor in a bathroom) to the semantics of an activity (e.g., taking

a bath) reported by the applications’ descriptions through natural language processing and

program analysis. We would like to demonstrate that such policies can be enforced efficiently

without interfering with the normal operations of existing smarthome applications.

Overall, this thesis will provide insights into designing a new information sharing/permission

system for new platforms that can share user data with untrusted applications. We make

3

two major contributions: 1) For the platforms we study, we design least-privilege information

sharing systems that fit the needs of the applications and platforms. 2) For new platforms,

we provide design frameworks and best practices for developers of new platforms. Developers

can learn from our experiences to study what information applications need and design their

platforms with the tradeoffs we discussed.

4

Chapter 2

Identifying and Understanding the

Conflicts between Functionality and

Privacy

When introducing new features in a platform or designing new platforms, developers run

into the conflicts among functionality, security and privacy goals. In this chapter, we use the

browser platform and the social platform as examples to study the conflicts between func-

tionality and privacy in practice. On the one hand, we show that new features can introduce

security violations. For example, the HTML5 screen-sharing API provides compelling func-

tionality for benign applications, but malicious applications can utilize the feature to steal

user data, transfer money from a user’s bank account, or steal users’ browsing history. On the

other hand, platforms such as Facebook sometimes sacrifice functionality for user privacy [1].

We will talk about the details of these problems in the following sections.

5

2.1 Screen-Sharing Attacks Using a New HTML5 API

HTML5 has introduced many new concepts in the browser world. In particular, the new

HTML5 screen-sharing API impacts the security implications of browsers tremendously.

One of the core assumptions on which browser security is built is that websites cannot

get the content displayed on a user’s screen. However, screen sharing enables websites

to see a user’s screen. Consequently, websites will potentially be able to see all visible

content from the user’s screen, irrespective of its origin. This cross-origin content access,

when combined with human vision limitations, can introduce new vulnerabilities because

the foundation of browser security — same-origin policy can be bypassed easily. An attacker

can capture sensitive information from a victim’s screen using the new API without the

consent of the victim. We investigate the security implications of the screen-sharing API

and discuss how existing defenses against traditional web attacks fail during screen sharing.

We show that several types of attacks are possible with the help of the screen-sharing API,

namely cross-site request forgery, history sniffing, and information stealing. We discuss

how popular websites such as Amazon and Wells Fargo can be attacked using this API

and demonstrate the consequences of these attacks including economic loss, compromised

accounts, and information disclosure.

2.1.1 Threat Model

In-Scope Threats. We are concerned with the security impact of the new screen-sharing

API. We discuss attacks that can be launched when the user is using a screen sharing service

hosted by a malicious website. The threat model for our study consists of a web attacker

whose goal is to steal the user’s sensitive information from other target sites and the browser

and to affect the integrity of the user’s account. To provide an outline of the threat model,

we identify four roles involved and define their abilities below. Figure 2.1 displays the

relationships and interactions among these four roles.

6

User on Malicious Screen-sharing Website Attacker Server

1) Collect sensitive
information

2) Send attack flow

Target
Website A

Target
Website B

Target
Website C

Target
Website D

User‘s Browser

Malicious Screen
Sharing website

Target Victim Websites

User

Figure 2.1: The threat model of attacks with screen-sharing API.

• Web Attacker: A web attacker is a malicious website owner who hosts a website

with a valid SSL certificate and uses the screen-sharing API to see the user’s screen.

The attacker lures the user to visit the site and convinces the user to share the screen.

Once the user starts using screen sharing on the malicious website, the web attacker

displays sensitive information of the user on the screen and collects this information.

Furthermore, the web attacker can utilize security credentials that they extracts from

the pixels of the user’s screen to launch more sophisticated attacks, such as the Cross-

Site Request Forgery (CSRF) attack with the CSRF token.

• User: A user is a victim that visits a malicious website and uses the screen sharing

services from the website. The website does not request the user to enter any sensitive

data when sharing the screen. Also, the user does not open any browser tab or a

window that reveal their personal data to the attacker. We assume that the user

does not log out of target sites such as Gmail, Wells Fargo and Amazon. We argue

the assumption is reasonable because most popular sites do not invalidate the user’s

session until the user logs out. Users might believe that the attacker’s site cannot

access their data on other sites since the browser’s same-origin policy prevents cross-

origin data access. Therefore, the user may not feel that it is necessary to log out of

7

services before starting screen-sharing.

• User’s Browser: We assume that the user’s browser is patched for vulnerabilities

that allow history sniffing and autocomplete history stealing reported in the past [3,

4, 5].

• Target Sites: Target sites contain users’ sensitive information that an attacker at-

tempts to steal. Our threat model assumes that target sites defend against cross-site

scripting (XSS) and CSRF attacks. These sites use secret validation tokens to protect

against CSRF attacks and these tokens cannot be stolen by traditional web attackers

without screen sharing because they cannot access cross-origin page sources.

Out-of-Scope Threats. We do not consider the following threats.

• Network Attackers. We assume that network attackers cannot steal any sensitive

information by acting as a Man-in-the-Middle (MitM) because all of the target sites

operate over HTTPS.

• Accidental Screen-sharing. It is possible that users can be tricked to share their

screens without knowing what is happening. However, in this paper, we only consider

the case where people clearly know they are sharing their screens. We assume that

people know what they input while their screens are being shared and that their screens

will be shown to other parties. We do not consider information disclosure via actions

such as users typing sensitive data on the screen while screen-sharing is on.

2.1.2 New Cross Origin Request Forgery Attack with the API

In the following section, we use a new CSRF attack as an example to explain the vulner-

abilities of the screen-sharing API. The screen-sharing API breaks the same-origin policy,

therefore, many defenses based on the same-origin policy no longer work. One dangerous

example is the CSRF defense. In the CSRF attack, the attacker disrupts the integrity of the

8

Figure 2.2: Steps of a CSRF attack. 1. attacker.com requests a page with secret validation
tokens from bank.com. 2. The screenshots with the source code and secret validation tokens
are transmitted to the attacker’s server via the screen-sharing API. 3. The attacker sends a
form with a post request and the secret validation tokens to attacker.com to transfer money.
4. The post request is sent from the user’s browser to bank.com and accepted by bank.com.

user’s account state by forging a request with the user’s credential. A commonly adopted

defense against CSRF attacks relies on the trusted site to set secret validation tokens that

are only known by the user’s browser and are sent back with the request to authenticate the

sender. However, this defense is vulnerable in a situation where the content of the target

site is likely to be leaked to third parties [6]. Particularly, in the case of screen sharing,

the user’s secret validation tokens are accessible to the attacker hosting attacker.com with

malicious screen sharing services (see Figure 2.2). When the user is fooled to start screen

sharing, the attacker could catch the pixels of the user’s screen and embed an iframe pointing

to the target website. Besides displaying content from the target website, the attacker can

even display the target website’s code by the view-source links in the iframe. If the target

site bank.com doesn’t enable X-Frame-Options [7], the view-source link will expose the en-

tire page source including the secret validation tokens to the attacker. Once the attacker

obtains the secret token, the attacker can send forged requests from the user’s browser. The

trusted site accepts this request since it contains the expected authentication information:

the HTTP cookie and the secret validation tokens.

9

Retrieving secret validation tokens from target sites is a crucial step in a CSRF attack. First,

the attacker uses an iframe with the view-source attribute to expose the source code on the

screen. The view-source attribute syntax is different between Google Chrome and Firefox.

For Google Chrome, the code can be implemented as follows:

<i f rame viewsource="viewsource "

s r c="https : // bank . com" . . . />

For Firefox, the code has slight changes on the attribute:

<i f rame s r c="view−source : https : // bank . com" . . . />

Next, the attacker can exploit relative positioning of CSS to locate the lines that contain the

secret validation tokens inside the iframe. By using a negative value for the top attribute

along with the position property, the attacker can scroll the iframe to a specific position.

For example,

<div s t y l e =" po s i t i o n : abso lu t e ; top :−2000px">

<i f rame s t y l e ="width :800 px ; he ight :10000px "

v iewsource="v iewsource "

s r c="http :// bank . com" />

</div>

With this technique, the attacker can collect the CSRF token or other security credentials

from a size-limited window.

We use the code mentioned above to test multiple popular websites that adopt secrete val-

idation tokens to defend against CSRF. Below, we describe one case study of Wells Fargo

where we are able to break its defense mechanism through screen-sharing.

The Wells Fargo Case. Wells Fargo uses session arguments intensively on their websites.

10

One usage is passing a session argument as a URL parameter in the page to send money.

The mechanism prevent CSRF attacks in most cases; however, it will not work while the user

is sharing the screen because the attack can retrieve the URL parameter from the source

code. For example, in Figure 2.3 the source code of the “Transfer" page reveals the URL of

“Send & Receive Money" which is supposed to be secured by the session argument. Since

the Transfer page doesn’t enable X-FRAME-OPTIONS, the attacker is able to use iframe

and view-source mentioned above to extract the URL.

When the attacker successfully lands on the “Send & Receive Money" page, the attacker is

able to perform a variety of severe and persistent CSRF attacks because this page contains

multiple critical session arguments and URLs that allow the attack to send forged requests.

For example, in Figure 2.4, the source code exposes the session arguments and URLs for

requests to update recipients, add recipients, and manage contacts. The attack can expose

critical information to manipulate the user’s recipient and contact lists. Worse, attackers

can transfer money to their own accounts because the page also provides a link to transfer

money (see Figure 2.5).

2.2 Privacy and Functionality Conflicts of Data Shar-

ing in Social Platform

Social platforms such as Facebook, Google+, Instagram, and Twitter, share user data with

third-party applications to enable customized services. However, current best practices can-

not provide a good balance between functionality and privacy. In the following sections, we

study limitations of the social network permission systems, especially for conflicts between

functionality and privacy.

Social platforms benefit highly from knowledge of user activities as well as the specific context

around those activities, where context includes (but is not necessarily limited to) aspects

11

Figure 2.3: Secret session arguments can be retrieved from the source code.

of when and where the activity takes place, who else is involved in the activity, and details

of how the activity occurs. To demonstrate the importance of activity context, we provide

several illustrative examples, together with context-free scenarios.

• “Alice watched a movie” versus “Alice watched the show of Star Trek Beyond with

Bob at the AMC theater at 7:05 pm last Thursday”.

Figure 2.4: Multiple session arguments are exposed in the source code.

12

Figure 2.5: The form of a post request to send money.

• “Carol shopped online” versus “Carol liked the Backcountry.com retailer that was sug-

gested by a Facebook advertisement, after she clicked on the link and spent four minutes

browsing the company’s online store”.

As each of the examples illustrates, these scenarios include not just private information about

what the user did, but also user behavior and contextual details across multiple platforms,

apps, and websites. The context may have immense value to the various parties involved,

especially business intelligence value for the companies and improved social relevance for the

users. In fact, this is a large part of what has recently propelled social networking platforms

like Facebook, LinkedIn, and others to success as advertising platforms [8].

Along with the value of sharing user activities and contextual information, there is a signif-

icant privacy concern about sharing the fine-grained personal behavioral information across

apps and users. Hence, there is an important issue of privacy versus utility in such scenarios.

Currently, social platforms such as Facebook, Instagram, Twitter, and LinkedIn use permis-

sions for third-party applications built on their platform APIs for accessing personal profile,

activity, friendship status, and other data. The existing permission systems are very similar

to those of modern client OSes such as Android and iOS. However, designing permission

systems for social platforms poses additional challenges compared to these modern client

OSes. The role of permission systems for modern client OSes is to let the user of a device

grant permissions to applications that access sensitive resources on (and local to) the device,

such as cameras, location information, and address book. In comparison, user context in

13

social platforms is accumulated from different applications’ contributions as well as from

other users’ contributions (such as a status update from the user’s friend concerning the

user). Therefore, permission system designers need to be concerned about (1) whether an

application’s contribution can be accessed by another application and (2) whether a user’s

contribution should be accessible to another user’s application.

In order to understand current permission use in social platforms, we perform a set of user

surveys and a study of how both the permission models and applications’ permission usage.

From our study, we identify several shortcomings of current permission systems in social

platforms.

• Many permissions do not satisfy the least-privilege principle and they do not match

users’ expectations.

• The application review process to approve permission usage incurs significant delay for

developers [9], affecting app availability and revenue generation.

• Platforms have even sacrificed functionality due to privacy concerns, specifically includ-

ing examples of allowing users to share their friends’ information, ultimately leading

to an end-of-life for several applications (e.g., Jobs with Friends, Adzuna Connect, and

CareerSonar) [1]. In our 18-month study of Facebook apps, we found that permissions

themselves have evolved, been deprecated, and have become subject to new review

criteria.

2.2.1 Study Methodology

To understand whether current permission systems can enable context sharing without pri-

vacy concerns, we investigate the permission systems in several popular social platforms,

especially for Facebook. Our approach to studying existing social platform permission sys-

tems and get a deeper understanding of how they work includes the following tasks.

14

First, we perform an in-house study about the permission documentation and version history.

Our study includes documentation of the social platforms Facebook, Google+, Instagram,

Twitter, and LinkedIn. Moreover, since several of these platforms have changed their per-

missions and APIs over time, we also compare the historic versions to understand the trends.

We read the permission and API documents to see what context information is available and

how to retrieve the information from these platforms. We pay special attention to change

logs and announcements to gain insight into platform designers’ motivations.

Second, we perform a survey to better understand how users feel about permission systems

in existing social platforms and to gauge their mental model of how such systems work.

Our survey was performed using Amazon Mechanical Turk1 (MTurk, for short), and we

recruited a total of 300 Facebook users, identified by an average age of 29.7 years old (age

range is 19-67) with a gender breakdown of 41% female, 58% male, 1% unknown. 79% of

the participants use Facebook for more than 3 years, 16% of the participants use it for 1-3

years, and only 4% of the participants use it for less than 12 months. In our survey, we aske

the user’s perspective about how the context information is shared in social platforms and

how do they manage the context sharing. Since Facebook is the most popular platform, we

design the questions based on Facebook, and tests whether current permissions match users’

mental models, and whether they will utilize permission management methods provided by

Facebook (opt out permissions when loging in or revoking permissions). More interestingly,

we also used a variety of third-party apps to gain first-hand experiences with the different

systems from the user’s perspective. The survey details are in Appendix A.1.2.

Third, we take the role of a developer by creating and submitting apps and participating in

the app review process to better understand the app approval criteria. We submit two music

recommendation apps four times with different sets of permissions. To test how effective the

review is, we also use the permission data differently in each app.

1https://www.mturk.com/mturk/welcome

15

https://www.mturk.com/mturk/welcome

2.2.2 Permission Systems in Social Platforms

Before diving into the identified limitations, we first introduce the current permission sys-

tems briefly. An application asks a user’s approval of permissions the first time a user

logs in to their account on a social platform. Instagram and Twitter list all the permis-

sions requested on one screen and request users to accept all permissions in order to sign

in. For example, a third-party application for Instagram asks for many permissions such

as access to comments, relationships, and likes; while the user has to approve all permis-

sions to install the application. Google+ and Facebook try to give users more control over

permissions. For example, Google+ introduces a feature called incremental permissions [10].

A Google+ application can request no permissions at sign-in, and later ask for permissions

when a user accesses corresponding functionality. For example, a document management

application only asks for the basic profile permission when a user signs in, and then asks the

user about Google Drive permission right before the user starts to manage the documents.

Once a user approves an incremental permission, the application gets the privilege forever.

Similarly, Facebook also enables users to only choose some permissions to grant when signing

in [11]. Moreover, Facebook displays more sensitive “extended” permissions on a separate

screen to draw more attention from users. For example, in a music application, users will

see the publish_actions permission displayed on a separate screen, and they can choose to

skip the permission. Later, the music application can ask the user once again, and the user

can choose whether to approve it. Note that the application can access resources with the

permission in the future once the permission is granted.

Permission systems for social platforms contain permissions for reading and writing contex-

tual information, and the permission numbers are usually not small. For example, Twitter

provides data access permissions to access users’ profile, tweets, friends, followers, and direct

messages and action permissions to modify users’ profile and post tweets on the users’ be-

half [12]. Facebook has even more permissions. Facebook has 47 permissions in its version

16

2.2 for applications to access users’ information [11]. An application requests these permis-

sions when a user connects his Facebook account to the application. Facebook divides these

permissions into the following five categories. (1) Basic permissions: these include three

permissions that enable access to users’ public profiles, users’ emails and users’ friends who

already installed the same app. (2) Extended profile properties: these permissions are all

sensitive properties of a person’s public profile. (3) Extended permissions: these include the

most sensitive pieces of profile information. All extended permissions appear on a separate

screen in the login interface so a user can decide whether to approve these or not. (4) Open

graph permissions: these permissions are for gaining access to open graph data stored in

users’ profiles. (5) Page permission: this permission enables applications to administer any

Facebook pages that a user manages.

To audit permission usage in applications, Facebook has employed an application review

process since permission version 2.0. Among all permissions, three basic permissions could

be used without the review process. For the other 36 permissions, the applications need

to go through the review process to submit documents about permission usage and provide

test accounts. The review process differs depending on the number of permissions asked and

the sensitivity of requested permissions [13]. For Instagram, developers can only use one

specific permission without review and need to go through the review process for the other

five permissions [14].

2.2.3 Limitations of Permission Models for Social Platforms

We discuss the limitations of current social platform models in this section. As we observe

from the overview in Section 2.2.2, current social platforms primarily rely on manifest-based

permissions for sharing context information, meaning that the user is forced to accept all of

the requested permissions or abandon the app. This model is often referred to as the “all

or nothing” permission model. A few social platforms, including Google+, use on-demand

user prompts for a small subset of permissions. However, both of these approaches have

17

fundamental limitations that make it extremely difficult to effectively share context while

preserving privacy, forcing the platform to make a trade-off between privacy and utility.

Lack of Least-Privilege Context Sharing One primary limitation of both manifest-

based and prompt-based permission systems is that the permissions are coarse-grained and

share more information than what is needed by the application. Facebook is a representative

example of a social platform that does not follow the least-privilege principle. Of the 47

permissions used by the Facebook application platform, 29 allow persistent access to user

content once granted, as detailed in Table A.1. For example, once a user approves the

user_posts permission, the app can access all future posts of the user, regardless of the

context. In addition, once an app (and its developer) has access to a user’s activity and

context data, they can use it on- or off-line for any purpose at their leisure, regardless of

what was disclosed in their application documentation and approval form. To understand

how Facebook’s review works, we submitted our own apps to Facebook for review, and

we submit apps with similar descriptions and interfaces but have different usages of the

permissions in the app’s code. We do not observe any differences in Facebook’s approval

process although the apps’ behaviors are different. For example, developers can claim that

they only use sensitive information such as username, email, and company affiliations to

create app profiles, when in reality they can freely share this information with ad libraries

or for malicious purposes.

Our intuition is that persistent access with a single approval likely does not match many

users’ expectations. To test this idea, we run a survey on Amazon Mechanical Turk (MTurk)

to collect real users’ sentiments about content sharing in social networks. We display Face-

book permission pages for third-party applications such as the one shown in Figure 2.6 and

ask their understanding and attitude towards the permissions. We also ask about their ex-

periences of using third-party applications on Facebook to get deeper insights. The survey

details are in Section A.1.2 of the appendix. Out of the 300 participants who completed our

18

Figure 2.6: One of the Facebook permission pages we show in our survey.

MTurk survey:

• 40% (120 out of 300) do not expect an application to access their future content using

permissions granted in the past,

• 43% (129 out of 300) do not expect an application to share future content using per-

missions granted in the past,

• 61% (183 out of 300) are uncomfortable with the application accessing future content,

and

• 73% (219 out of 300) are uncomfortable with the application posting future content.

While these results do not necessarily show an overwhelming displeasure with the current

permission model, they demonstrate that there is significant room for improvement toward

giving users what they expect.

19

Burdens on Developers and Users As a part of the Facebook application review pro-

cess described previously [13], developers are required to put extra time and effort into

documenting various aspects of data access and sharing, and additional time is spent on the

review process itself. Of the 47 permissions currently allowed by the Facebook platform 2, 44

need to be manually reviewed and approved [13], costing a developer between three and 14

business days before their application is published. Additionally, users need to review several

permissions when they sign into a third-party application. Since many of the permission de-

cisions do not apply directly when the user signs in, the user is forced to make good privacy

decisions out of context, which is unnecessary mental burden. The latest versions of the

Facebook and Google+ platforms provide a mechanism for users to configure the permissions

to be granted to an application [15, 16]. While this is good for user privacy because users

can opt in or out of information sharing, it requires extra effort and deeper understanding

of the permissions and their usage. Out of the 300 participants who completed our MTurk

survey, only 53% (159) said they would spend the time to configure the permissions. Again,

this demonstrates a gap between expectation and reality.

Sacrificing Functionality for Privacy Another important limitation for the Facebook

permission system is that the current scheme does not have a good balance between function-

ality and privacy. We observe that many social platforms decided to make design decisions

that sacrifice functionality of context sharing due to privacy concerns [1]. Currently, in order

to enable context-aware services, social platforms treat contextual information like other

data under the current privacy system. As the contextual information can be very sensi-

tive, these platforms either support very limited sensitive context sharing or don’t support

the functionality at all. As a representative example, version 1.0 of Facebook’s permission

system allowed users to accept a permission that would share their friends’ context data

(using a total of 30 permissions), but these permissions were later removed in versions 2.0+

in favor of privacy [1]. These restrictions manifest in two ways: sharing across applications
2The research was done in 2016, and the latest version of Facebook permission is v2.6.

20

and sharing across users.

Blocking Information Sharing across Applications: Facebook enforces very strict require-

ments for sharing context across applications, making it almost impossible to utilize context

of other applications. Despite context sensitivity, sharing context across applications can be

very useful and even enable new services. On the side of privacy, blocking cross-application

sharing prevents profiling agents or malicious parties from tracking user activities. However,

user activities in one app can provide precious utility to another app. To exemplify the

privacy-utility conflict, consider a wedding registry app that keeps a record of which gifts

have already been purchased, so guests will not bring duplicate gifts. From the user’s per-

spective, every shopper would want to know what has already been purchased, regardless of

which store it was purchased from. However, competing stores may not want each other to

know about their customers’ respective activities. Facebook claims that the read_stream

permission could allow an app to read the posts in a user’s news feed, so we assumed that

apps could access content from other apps in this way. However, the permission is only

granted to apps building a Facebook-branded client [11]. In our study, we didn’t find any

apps granted this permission since Facebook started reviewing apps in permission model

version 2.0+. They planed to deprecate this permission when version 2.3 expires in August

2017 [17]. Similarly, Instagram, Google+, and LinkedIn do not support sharing context in-

formation across applications. Though these social platforms enable applications to post on

behalf of the user to their platform, they don’t allow the applications to read other unrelated

posts. Therefore, these applications cannot benefit much from the contextual information of

the social platforms.

Blocking Information Sharing across Users: Facebook also has deprecated permissions for

sharing friends’ context to applications for privacy reasons. Sharing friends’ context can im-

prove the social experience in the applications, but this sharing creates issues with consent.

Facebook deprecated 30 permissions about friends’ context in versions above 2.0, including

21

friends_checkin (access places where users’ friends checkin on Facebook), friends_likes

(acess items friends likes on Facebook), and friends_photos (access friends’ photos on

Facebook) because of privacy concerns [17]. Removing these permissions can block many

useful scenarios. For example, a shopping app can display a list of friends with upcoming

birthdays and a wishlist according to the pages that the friend liked and other information

available on the friend’s profile. With Facebook version 1.0, the shopping app could ask

for friends_birthday (access friends’ birthdays) and friends_likes to achieve this use-

ful functionality to help find gifts for their friends. However, the user’s friends might feel

uncomfortable sharing their birthday and likes with the shopping application. Therefore,

Facebook has removed these friends_* permissions to protect user privacy, also preventing

functional uses of friends’ context such as the above example. Many apps such as Job Fu-

sion3 had to remove important features or even shut down when they could no longer get

such information about users. For example, an app cannot access a user’s friend’s employer,

so it cannot match and refer job opportunities within the same company. Unsurprisingly,

developers have filed complaints about losing such functionality and expressed their opinions

that they had legitimate reasons to get access to such information [18, 19].

2.3 Related Work

In this section, we compare our work with previous work on CSRF attacks and permission

systems for social platforms.

2.3.1 CSRF Attacks and Defenses

Previous studies show various techniques of stealing the CSRF tokens. Vela [20] demonstrates

a heavy-load CSS-only attribute reader by using attribute selectors. However, it is not

practical to read CSRF tokens with high entropy within a short period of time. Heiderich

3https://jobfusion.co/blog

22

https://jobfusion.co/blog

et al. propose another CSS attack by using features such as web-fonts based on SVG and

WOFF, CSS-based animations, and the CSS content property to extract CSRF tokens [21].

However, their attack focuses on CSRF token protected links, so the attack will not work

in a scenario in which the CSRF token is not attached to the links. In contrast, the attack

using the screen-sharing API can extract any CSRF token, irrespective of whether the X-

Frame-Options are set or not by the target page.

There have been multiple proposals for CSRF defenses. SOMA [22] and App Isolation [23]

provide CSRF defenses by defining valid entry points for the website. This can protect

against the CSRF attacks using the screen-sharing API, but it is not feasible to whitelist

all the entry points. Moreover, the web relies heavily on interlinks, so these solutions are

not widely adopted. Gazelle [24] and Tahoma [25] provide cookie isolation between different

apps, which also protect them from CSRF attacks. However, the strict isolation has some

usability issues. Researchers [6] investigate current CSRF defense methods such as CSRF

token, Referer header validation, and custom header and propose an approach of checking

the origin of the request. According to their study, the CSRF token, which is the most

popular defense, is reliable if well implemented. However, we find that the CSRF token

defense does not work during screen sharing because the attacker can read the CSRF token

directly. Mao et al. propose a defense by inferring if a request reflects a user’s intention [26].

To judge the intention, they suggest checking the request’s referer and all webpages hosted

in ancestor frames of the referer. However, referer information can be manipulated by the

attacker and sending referer information also raises privacy concerns.

2.3.2 Limitations of Permission Systems on Client OSes

Permission systems for modern client OSes such as Android and iOS have been studied ex-

tensively. Researchers have examined the privacy of using manifest and prompts for sharing

locally stored resources. On the one hand, research shows that many users do not read or

understand manifest permissions [27, 28, 29]. Further study also find that Android appli-

23

cations have historically requested more permissions than they need [30, 31]. In addition,

researchers point out that the current permission system on Android lacks information such

as frequency of accessing sensitive information [32]. On the other hand, studies find that

users get bored or annoyed by prompts and tend to ignore them [33, 34, 35]. In contrast

to these previous results on client OSes, we care not only about local resources on users’

devices, but also about sensitive context accumulated on the social platforms from different

applications and different users.

2.3.3 Limitations of Permission Systems in Social Platforms

Users have high expectation for privacy on social platforms [36, 37], but current permission

models fail to match their expectations [38, 39]. However, these previous papers usually

focus on information revelation in users’ profiles or the usability of the privacy settings.

For example, Gross et al. investigate the information users provide in their profiles in Face-

book [40].

Instead, we study a few examples to understand the conflict between the functionality and

privacy in current permission systems on social platforms. Previously, only papers about

ad hoc case studies of the conflict exist. For example, Wisniewski et al. study the conflict

stirred by using the tagging feature and privacy [41].

24

Chapter 3

Designing and Building Secure and

Privacy-Preserving Systems

In Chapter 2, we analyze the conflicts of privacy and functionality in current platforms.

With the understanding of the problems and challenges, we propose design principles for

sharing information so that both privacy and functionality requirements are satisfied. We

implement special designs for social platforms and smarthome platforms.

3.1 Privacy Preserving Context Sharing for Social Net-

works

Context sharing in social platforms enables context-aware services for third-party applica-

tions, providing great utility and value. However, context should be considered carefully

due to its privacy-sensitive nature. In fact, protecting user privacy in social platforms is

more challenging than that in client operating systems such as Android and iOS because

the context is accumulated from different applications and users, not just from the local

device resources. In Section 2.2.3, we investigate current permission models for Facebook

25

to identify limitations of context sharing. Learning from these findings, we incorporate the

primitives of opaque handle, opaque display, and user-driven access control (the OOU prim-

itives, in short) to design a least-privilege, user-friendly, developer-friendly, and feature-rich

permission system. We present our study of context sharing in Facebook applications and

our findings show that OOU can be applied to remove or replace 82.64% (200 out of 242) of

permission instances without affecting functionality. We further demonstrate the application

of OOU by designing a permission system for the next-generation social platform, Somex,

that can enable compelling context-aware scenarios with very limited information sharing.

3.1.1 Introduction

Learning from our surveys and several cases observed during our study in Section 2.2.3, we

identify five desirable goals for a permission system in a modern social network that involves

detailed activity and context sharing. First, users should be minimally burdened by the per-

mission process, ideally by minimizing the number of permissions that must be approved by

users. Second, users should be minimally interrupted by prompts to approve permissions on

the fly to further reduce user burden. Third, applications should be limited by a permission

system that satisfies the least-privilege principle. Fourth, the social network platform should

ensure that data access and sharing match users’ expectations. Fifth, applications should be

able to provide full functionality without being inhibited by permission restrictions, enabling

cross-user and cross-application sharing without compromising on other goals.

When studying social platforms, we observe that applications often do not need to have

full access to the sensitive context. For example, applications just display the information

or link to the information. For example, a contact app may simply need to display the

friends’ contact information of a user. Therefore, platforms could operate in a more privacy-

preserving way that does not affect application utility by making the activity and context

information opaque to the app. With a small amount of effort, the platform can mediate the

information sharing between the user and the app, instead of blindly giving the information

26

to the app. For example, the platform can provide a service so that the contact app embeds

a display interface such as an iframe to display friends’ contact information, without allowing

the app to access the contact information.

Motivated by the insights, we advocate for the inclusion of the OOU primitives to design

permission systems for activity and context sharing in social platforms. The platform can

provide the application with an opaque handle, a pointer bound to the data without giving

the data itself to the application. The platform can similarly provide an opaque display

capability to allow an application to show a piece of data to the user without handing over the

data itself. The platform can enable user-driven access control to allow the user’s natural

interaction with an application to implicitly grant necessary permissions to support the user’s

activities [42]. We believe that the appropriate combination of these OOU primitives can

lead to improvement in social network usability and privacy, without sacrificing functionality

(and at times even while providing additional functionality).

To evaluate our hypothesis, we study popular applications on the Facebook social platform.

We conducted a study of Facebook applications over an 18-month period to observe trends

in permission usage and to further evaluate the potential values of OOU primitives. From

surveying 60 Android applications that use Facebook login out of the top 300 applications,

we found that we can eliminate 200 of 242 permission instances (82.64%).

In fact, the OOU primitives can even enable more compelling context-based features. Build-

ing on the outcomes of our Facebook study, we design and implement a permission system

for the emerging Somex activity-based social platform [43], based on the OOU primitives.

In Somex, an activity is an abstraction that is used to group or tag items from different ap-

plications. An activity is an ongoing effort that a user keeps returning to, such as a project,

trip planning, or event planning. An activity can involve multiple partners, allowing col-

laborative activity tagging of shared items. As a result, third-party applications for Somex

provide more superior user experience when they are activity-aware, as the activity context

27

enables more personalized services. We demonstrate that Somex requires only one manifest

permission and no user prompts to enable more pervasive and frequent sharing of activity

and context information.

In summary, the contributions of this project are as follows.

• We identify a key principle for designing permission systems of social platform that is

least-privilege, user-friendly, developer-friendly, and feature-rich. The principle is to

use three primitives: opaque handle, opaque display, and user-driven access control.

• We evaluate the efficacy of the OOU primitives by analyzing Facebook permissions in

existing popular applications and find that the OOU primitives can help remove or

replace over 80% of sensitive permission instances.

• We design and implement a permission system from scratch for the emerging social

platform Somex using the OOU primitives. Our full-fledged implementation of the per-

mission system enables many more feature-rich scenarios comparing to current social

platforms.

3.1.2 System Model

As illustrated in Figure 3.1, a social network platform maintains users’ context across a wide

array of users, their friends, and the applications that they use. The platform then supports

a variety of ways that applications can leverage this context information and feed additional

application information back into the platform. Moreover, the platform may allow users to

discover each other or provide services to each other based on common context. The platform

is solely responsible for managing, protecting, and sharing activity and context information

among users, applications, and services. Meanwhile, applications are isolated from each

other, but they are allowed to embed user interfaces and content from other applications, as

long as the platform supports such interaction and protects embedded content from leaking

across the application boundaries.

28

Current social platforms share a wide variety of user-specific information including users’

activities, interests, and application usage. By analyzing trends in social network platform

capabilities, we expect the depth and breadth of information collected and shared to increase,

especially in relation to contextual information around user and application activities. Specif-

ically, new activity-based social platforms such as Somex [43] rely heavily on the current and

historical context of users’ activities to provide richer functionality and user experiences, as

illustrated in Figure 3.2. Storage and sharing of users’ sensitive context information in such

platforms is thus a question of serious concern.

3.1.3 Threat Model

We consider attackers that are untrusted third-party applications on a social platform. Our

work approaches are designed from the social platform’s perspective, so we assume that the

platform is trusted. Building trustworthy or decentralized social platforms is an orthogonal

problem. We do not address misbehavior at the operating system level in this work, so we

further assume that the OS is benign and not buggy. We consider the following potential

threats: an application tries to access user context when the user does not grant access, and

an application tries to get more context than it needs to function. In this work, we aim to

reduce the context information that third-party applications can access while preserving their

functionality or even providing more value to applications. In the permission model that we

design, a social platform does not share context information with a third-party application

when the data is not needed or can be made opaque for the functionality of the application.

When the application needs to compute using the context information, the social platform

shares only the information that is granted with user’s authentic and usable authorization.

We do not address the problem that applications leak user data via network or other schemes

after they get the data. Mechanisms such as information flow control are helpful but are

complementary. We consider the problem of identifying malicious applications to be out of

our scope.

29

User’s
context in

the
platform

User’s context in
the application

User’s context in
the application

Context-aware
services

Context-aware
services

Social
platform

Application 1

Application 2

Figure 3.1: System model of the social platform and applications.

3.1.4 Design Goals

Based on our system model described above, our goal is to design usable permission systems

that can enable rich functionality using context sharing while protecting user privacy. We

note that the three properties of usability, rich functionality, and privacy preservation are

often in conflict and require designers to choose one property over the other. However, our

goal is to avoid trade-offs and provide all three properties to the greatest extent possible.

As such, we aim to minimize users’ burden in interacting with platform permissions and

constrain applications’ access to sensitive contextual data while allowing the platform to

provide services around the sensitive data on behalf of the applications.

We approach the above-mentioned aim of providing usability, rich functionality, and privacy

preservation in context-rich social network platforms through specific goals. In terms of

usability, we have the following goals.

• Minimize the number of permissions. Fewer permissions can reduce the user’s

burden of inspecting the permission lists and the developer’s burden to request and

pass the platform’s permission review process.

30

AliceGame of
Thrones

Finished watching

A Song
of Ice

and FireShared

IPad

Game of
Thrones

Bob Robot
turtles

IPad

(a) Facebook’s social graph is a representation of
social context, and consists entities of (users and
objects) and their relationships.

AliceGame of
Thrones

Finished watching

A Song
of Ice

and FireShared

IPad

Activities:
Christmas shopping
Entertainments

Game of
Thrones

Bob Robot
turtles

IPad

(b) Activity-based social platforms such as Somex
augmented the social graph with activities to which
existing entities belong.

Figure 3.2: Activity-based social platform share more sensitive context about user activities,
which enables compelling features for third-party applications. For example, knowing the
exact activity (whether the user is doing Christmas shopping or entertaining), Amazon can
provide more accurate recommendations. Amazon will know whether to link the user to a
previous session about “iPad” or a session about “A song of Ice and Fire”.

• Minimize the number of prompts. The applications should present fewer prompts

to users to further reduce mental effort of the user that participates in privacy protocols

and permission actions.

In terms of privacy, we have the following goals.

• Operate according to the least-privilege principle. Applications should only

have access to the information that they need for functionality. Moreover, applications

should not obtain or share any information without the user’s explicit or implicit

consent. Finally, applications should not be allowed to gain persistent access to current

and future information sources unless it is clear to users that consent is permanent.

Cross-application and cross-user sharing should match the user’s expectations whenever

possible.

• Eliminate privacy side effects. Applications should not be able to infer social or

contextual relationships from available data unless that is the expressed purpose of the

31

data access. Moreover, applications should not be able to collude with each other to

infer user activities across applications.

Finally, in regard to providing rich functionality without compromising on privacy or usabil-

ity goals, we approach the following goals.

• Support effective context retrieval. Social platforms should support sharing con-

text information to provide better functionality for services such as context-aware

search or targeted ads. Knowing the context can enable applications to optimize re-

sults to be more accurate for the current activities. For example, user actions may

have a different meaning or different importance depending on the activity context.

Moreover, recommendations that utilize current activities’ contextual information are

more fine-grained, accurate, and valuable.

• Support collaboration. Users should be able to share experiences and knowledge to

collaborate on similar tasks, and they should be able to view each other’s activities on

a shared project. Such context sharing across users can improve application value to

users.

Ultimately, these goals combine to provide great value to users, application developers,

and the platform. Specifically, users appreciate privacy protections and usable interactions,

developers provide the utility necessary to gain reputation and loyalty from customers, and

the platform gains attention and grows due to adoption by developers and users.

3.1.5 OOU Primitives

To achieve these goals for designing permission systems, we present three primitives that

can be used to provide functionality, usability, and privacy for context sharing on social

platforms. In what follows, we introduce the three data sharing primitives of opaque handle,

opaque display, and user-driven access control (referred to collectively as the OOU primitives)

and describe their application in social platforms.

32

Yuan Tian | yuan.tian@sv.cmu.edu | Carnegie Mellon University

Third-party AppThird-party App FacebookFacebook
1. Login/request user_friends permission
3. Facebook grants access
4. Request to tag friends

38

6. Tag friends with their names and IDs

FriendUser

2. Only asks the permission from the user
5. Send friends’ names and IDs

Name: Bart Simpson
ID: 0000000001

(a) In Facebook permission Version 1.0, app devel-
opers can request user_friends permission to tag
friends of users. The third party app can get friends’
names and unique Facebook IDs from this permis-
sion. After Facebook permission Version 2.0, third
party app can get friends’ names when tagging the
friends.

Yuan Tian | yuan.tian@sv.cmu.edu | Carnegie Mellon University

Third-party AppThird-party App Social PlatformSocial Platform
1. Login/request to tag user’s friends
2. Send opaque handles

39

3. Tag user’s friends with opaque handles

Opaque handle:
abcd0123456789

(b) With opaque handle, the application can tag a
friend of a user without knowing who that friend is.

Figure 3.3: We provide an example to illustrate the simple usage of the opaque handle
primitive. In fact, the opaque handle can also point to more complicated data structure to
provide even more utility. For more details, see Section 3.1.7.

Opaque Handle

An opaque handle is a reference to sensitive information that enables applications to provide

functionality without getting the sensitive data directly. It is a random string that identifies

a single piece of information, a single user for that piece of information, and the application

request for the handle. To prevent colluding applications from tracking users, unique handles

can be provided to different applications to reference the same piece of information.

In current social platforms, applications ask for permissions to access sensitive content,

though they only need a reference linking to a specific user’s content. In such a case,

granting the applications access to a handle pointing to the user’s content is sufficient.

A potential case where opaque handles could reduce the number of permissions is to retrieve

the IDs of a user’s friends. For example, when a user tags one of her friends in a photo

in Version 2.0+, Facebook generates a token (opaque handle) for the friend and shares the

token with applications that have user_friends permissions. This approach is better for

privacy than sending user id and name directly in Version 1.0. However, Facebook still

33

doesn’t achieve the privacy benefits of an opaque handle. Along with the token, Facebook

also sends the friend’s name to the applications, while in fact, applications get enough utility

from the token and don’t actually need to know the friend’s name as well. By using the

opaque handle, developers do not need permissions to get friends tagged in photos. If an

application wants to also display the friend’s name as part of the application, it needs to

access the name to display it on the screen, but the technique described in the next section

will address this.

The concept of an opaque handle can be very powerful. It is possible to attach an opaque

handle to complex data structures or abstractions, far beyond simple data like a username.

An opaque handle can enable very compelling context-based features. We will revisit the

use of opaque handles for complex data in Section 3.1.7 for the Somex platform.

Opaque Display

An opaque display is a widget provided by the social platform that an application can

use to display content to the user without exposing the content to the application. In

many cases, applications ask for sensitive information from the user, but they only need to

display this information in the interface. Thus, applications that are given access to this

information are actually over-privileged. The opaque display can eliminate this unnecessary

information sharing; instead of giving the information to the application, the social platform

can provide an isolated interface that displays the information. The opaque display can be

implemented with techniques similar to cross-domain iframes in a web browser [44] or similar

to LayerCake [45] in Android to guarantee that the application can only display the content

but cannot know the content being displayed. As illustrated in Figure 3.4, the application

wants to display a user’s profile photo in the application account of the user, and the opaque

display widget allows it to do so without needing access to the profile photo.

With the opaque display, the social platform can remove undesired privilege from the appli-

34

Yuan Tian | yuan.tian@sv.cmu.edu | Carnegie Mellon University

Third-party AppThird-party App FacebookFacebook
1. Login/request friends_photos permission
3. Facebook grants access
4. Request friend’s photos

40

6. Display friend’s photos

FriendUser

2. Only asks the permission from the user

App’s view User’s view

5. Send friend’s photos

(a) In Facebook permission Version 1.0, app devel-
opers can request friends_photos to access photos
of friends without friends being aware. Facebook
removed these permissions about friends’ data in
Version 2.0, therefore applications can no longer get
photos from friends.

Yuan Tian | yuan.tian@sv.cmu.edu | Carnegie Mellon University

Third-party AppThird-party App Social PlatformSocial Platform
1. Login
2. Render opaque display

42

3. Display photosin embedded opaque display interfaces

(b) With opaque display, the application can dis-
play the photos of friends without accessing these
photos.

Figure 3.4: We provide an example to illustrate the use of the opaque display primitive.

cations. As users don’t have to approve the display permission, they also have less burden,

thereby improving usability. Again, this can be achieved without impacting application

functionality.

User-Driven Access Control

Roesner et al. proposed user-driven access control to get user approval implicitly [42]. With-

out additional permission requests, the application can embed the approval into existing user

interactions. Consider a photo editing app that needs to access and modify a user’s photos.

Instead of using explicit permission requests which place more burden on users, the appli-

cation can embed a user-driven access control widget, showing a button “Choose Photo”,

asking the user to share photos with the application. By clicking on the button, the user

is implicitly approving the application’s abilities to access photos, instead of directly asking

the user for photo access permissions. User-driven access control removes unnecessary user

interactions and is easier for users to understand and opt out (by not clicking the button).

The social platform can get the user’s authentic interaction from the embedded widget and

infer user’s intention to share the photo.

35

Yuan Tian | yuan.tian@sv.cmu.edu | Carnegie Mellon University

Third-party AppThird-party App FacebookFacebook
1. Login/request user_photos permission
3. Facebook grants access
4. Request user’s photos

44

5. Access all user’s photos

User

2. Asks the permission from the user

(a) In Facebook, app developers can request
user_photos to access all the photos of users. Users
will not be notified again when the app is accessing
these photos.

Yuan Tian | yuan.tian@sv.cmu.edu | Carnegie Mellon University

Third-party AppThird-party App Social PlatformSocial Platform
1. Login
2. Show the UI to select aphoto to edit

45

4. Edit the photouser selects

User

3. Collect the user interaction of selecting a photo to edit

(b) With user-driven access control, the permission
is granted by user’s natural interaction with an ap-
plication. For example, the user can explicitly click
on the select button to share a photo about play-
ing saxophone to share with a photo-editing app.
The permission is built into the design of the func-
tionality of selection in the applications. Instead of
sharing all the photos and even all the photos in the
future, the user can share the photo that she wants
the app to access.

Figure 3.5: We provide an example to illustrate the use of the user-driven access control
primitive.

Platform Design with the OOU Primitives

Social platforms can apply the OOU primitives of opaque handle, opaque display, and user-

driven access control to reduce the number of permissions and user prompts, thereby re-

ducing user burden (increasing usability) and developer burden (potentially increasing the

availability and revenue).

We provide the following design process to outline how to design platforms that support

the OOU primitives. First, the platform designer will identify useful scenarios of sharing

context or other sensitive information. For each useful scenario, the platform designer can

determine whether it is possible to share the data opaquely. If so, an API can be provided to

developers to support this scenario using an opaque handle or opaque display. For example,

the platform can provide an API to allow app developers to display the user’s profile photo

in the application, a feature that is useful (or even essential) for a game app that wants to

display the user’s profile photo in the high score board. If alternatively, the platform wants

36

to allow computation over the data, for example, photo editing, the platform can provide an

API for interactions that rely on user-driven access control, reducing the need for an explicit

permission or prompt. In the example of photo editing, if a user takes action indicating that

they want to edit a photo, it should be clear that they are implicitly granting permission for

the application to access the photos to edit. If a scenario cannot support user-driven access

control, the platform can fall back to a default of manifest permission or user prompt.

Observations

In our survey of existing social network applications, we did observe some experimental

usage of the OOU primitives. However, the primitives are not widely deployed and are not

used systematically. For example, as we discussed in Section 3.1.5, Facebook has started to

use tokens to tag user’s friends but doesn’t get the privacy benefits of an opaque handle.

Facebook also adopts opaque display in some scenarios such as the comment box [46], but

doesn’t use this primitive systematically. Facebook and Twitter also introduce user-driven

access control for posting to user’s timeline (applications can embed a Facebook “like” button

and a Twitter tweet button to share information), but they still support applications to post

to a user’s timeline with the manifest permission. In addition, Facebook provides embedded

“like” buttons for websites, which can get the user’s information only if he or she clicks the

“like” button. Similarly, Facebook provides user information to a page only if the user clicks

to “like” the page. These implementations are ad-hoc and only cover a very small subset

of permissions. Furthermore, when social platforms support these implementations, they

usually also keep the traditional manifest permissions or prompts. To date, there has been

no systematic study available about the extent to which these design primitives can help to

improve the privacy and the functionality of social platforms.

37

3.1.6 Evaluation of OOU on Facebook

In this section, we present our evaluation of the OOU primitives on the popular Facebook

social platform. We demonstrate that the OOU primitives can provide tangible improve-

ments to the functionality, usability, and privacy for real social platforms. Since Facebook

has adjusted their permission policies over time, we did a longitudinal study (October 2014

to March 2016) about real applications to see how the OOU primitives can help. Our inves-

tigation shows that the OOU primitives can account for most current permission usage: 200

out of 242 permission instances in our study. The OOU primitives can even restore function-

ality of permissions that have been deprecated due to privacy concerns. By applying OOU,

platform designers can reduce the developer’s efforts of going through the reviews, simplify

user interactions, and protect user privacy.

We also modified an open source app [47] to show the effectiveness of the OOU primitives.

To evaluate how helpful these OOU primitives are to app developers, we further surveyed

developers to gauge their perspective about sensitive permissions and applying the three

primitives.

Analysis Methodology

Since Facebook is one of the most popular social platforms, we analyze Facebook apps to

evaluate how well OOU work. The first step is to download Facebook apps. Facebook

marketplace is only a games portal (https://www.facebook.com/appcenter now redirects

to https://www.facebook.com/games/), which does not provide a representative survey

of applications using Facebook APIs because the applications in the game portal are all

games. For diversity, we look at popular Google Play applications that use Facebook API.

From the top 300 applications in Google Play, we chose 60 applications randomly from the

applications that use the Facebook OAuth service and are not heavily obfuscated. We study

these applications over an 18 month period from two perspectives: (1) analysis of decompiled

38

https://www.facebook.com/appcenter
https://www.facebook.com/games/

source code to determine how permissions are used and (2) use of the app and inspection of

resulting network traffic to further understand information usage. We repeat our analysis

for current and previous versions of the applications. We use the dex2jar1 and JD2 tools

to review the decompiled code manually, and use the Charles proxy3 to analyze the traffic.

Analysis of the permission usage is a non-trivial task, involving extensive manual analysis

of the logic flow inside the applications to identify possible data use. We first decompile the

code to inspect the level of obfuscations. Usually, if the app uses the obfuscation feature

provided by ProGuard, the Java class names and function names are obfuscated to some

extent (depends on the parameters the developers set). However, if apps are written with a

different framework and just use Java as a wrapper, the core logic of the app is not obfuscated.

Then we will work on these unobfuscated or lightly obfuscated apps in our study. Current

Android apps usually have many files in the app, and it is very time-consuming to read line

by line. Therefore, we first go through different files in the apps’ codes to have a brief idea of

the functionality implemented in the app. Then we focus on the files which are most relevant

to the permissions to see how the data is requested and follow the logic to see where the

data is used or whether the data is sent away to a remote server or a third-party service (for

example, to an advertisement library). Sometimes the first estimation of the functionality

might not be correct, and we didn’t find reasonable things. Then we will study more files

in details. We try our best to identify all the permissions in the app. On the other hand,

we also use the app to understand its functionality and observe the traffic when we perform

certain actions in the app. We use the traffic information to verify whether our analysis

about sending data is correct.

1https://sourceforge.net/projects/dex2jar/
2http://jd.benow.ca/
3https://www.charlesproxy.com/

39

https://sourceforge.net/projects/dex2jar/
http://jd.benow.ca/
https://www.charlesproxy.com/

Eliminating Permissions Using OOU

We found that the three OOU primitives can help to remove permissions for Facebook

applications. When the sensitive information is only referred to or displayed, we can replace

the permission with the opaque handle, and opaque display. For example, Timehop4 presents

activities from a user’s social networks from the same date in previous years. It requests

many sensitive permissions such as user_status (read or edit a user’s status on Facebook),

user_posts (read a user’s Facebook posts or post to a user’s Facebook wall), user_events

(read or edit a user’s events on Facebook), and several more [11]. However, the app only

displays the sensitive information, so the opaque handle and opaque display can step in to

provide value. An interesting observation is that the opaque handle and opaque display can

be extremely helpful in utilizing friends’ data because most apps simply need to refer to or

display the friends’ information.

If the app needs to compute over the data, we cannot make the data opaque. When it

is obvious that the application needs the permission for a certain feature, we can replace

the permission by user-driven access control. We have seen many posting activities from

the application and location-based recommendations that can leverage user-driven access

control.

When apps need to compute over the sensitive data, and the usage of the data cannot

link directly to a user interaction, we cannot apply the OOU primitives. These cases are

relatively rare. For example, Hinge5 uses user_location, user_likes, and user_hometown

to recommend potential partners to date. Because of the high-level functionality, it is not

clear to the user that this information will be exposed when they take action to find matches.

Therefore, we cannot leverage user-driven access control.

In our investigation, we encountered instances of 230 out of the 242 permissions. Of these

4https://play.google.com/store/apps/details?id=com.timehop
5http://hinge.co/

40

https://play.google.com/store/apps/details?id=com.timehop
http://hinge.co/

Table 3.1: We tabulate and index the representative set of apps included in our study.

IndexApp IndexApp
1 com.gogobot 31 com.headspace
2 tunein.player 32 com.seatgeek
3 com.tappple.followersplus 33 com.birthdaycards
4 com.contextlogic.wish 34 com.picpal
5 com.yellowpages.android.ypmobile 35 com.podio
6 com.lucktastic.scratch 36 com.zedge
7 com.expedia.bookings 37 com.niketraining
8 com.skyscanner 38 com.sharethemeal
9 com.olx 39 com.feedly
10 com.tviplayer 40 com.dashradio
11 com.holyfood 41 com.younow
12 com.imdb.mobile 42 com.spotafriend
13 com.bleacherreport.android.teamstream 43 com.myfitnesspal.android
14 com.morecast 44 net.flixster.android
15 com.fox.now 45 com.myyearbook.m
16 com.espn 46 com.groupme.android
17 com.yidio.androidapp 47 com.webascender.callerid
18 com.timehop 48 com.clearchannel.iheartradio.controller
19 com.melodis.midomiMusicIdentifier 49 com.playrix.township
20 com.kickstarter 50 com.machinezone.gow
21 com.airbnb 51 com.glidetalk.glideapp
22 com.paxvoice 52 com.king.candycrushsaga
23 com.hinge 53 com.midasplayer.apps.diamonddiggersaga
24 com.papayamobile.kiwi 54 com.midasplayer.apps.bubblewitchsaga2
25 com.thescore 55 com.king.farmheroessaga
26 com.handmark.expressweather 56 com.spacegame.dessert
27 com.link 57 com.hotsuite
28 com.habitica 58 com.quora
29 com.shareity 59 com.groupon
30 com.anydo 60 com.droidhen.game.poker

230 permission instances, 169 permissions can be made opaque and 31 permissions can utilize

user-driven access control, while only 12 permissions cannot be eliminated using OOU.We are

unable to reach a conclusion about the remaining 30 permissions. There are 30 permissions

that we did not see usages. It could be because the developer submit reviews to apply for

the permission but does not use it actually, or it could be our investigations did not figure

out the usage. Please find the table for the permission usage details in Table 3.2. We also

provide the index information of the apps in Table 3.1.

41

Table 3.2: We analyze the Facebook permission usages in the 60 apps (242 permission
instances), and find that 169 permission instances can be removed by opaque display or
opaque handle, and 31 permission instances can be removed by user-driven access control.

App Permissions ODOH UDAC Cannot remove

the permission

with OOU

Cannot find the

permission usage

1 public_profile,

email,

user_friends,

user_birthday,

user_location,

user_hometown,

publish_actions

email,

public_profile,

user_birthday,

user_hometown

publish_action

user_location

user_friends

2 public_profile,

email

public_profile,

email
3 public_profile,

user_friends

public_profile,

user_friends

4 public_profile,

email,

publish_actions

public_profile,

email

publish_actions

5 public_profile,

email

public_profile,

email

6 public_profile,

email

public_profile,

email

7 public_profile,

email

public_profile,

email

8 public_profile,

email

public_profile,

email

9 public_profile,

email

public_profile,

email

10 public_profile,

email

public_profile,

email

42

11 public_profile,

email

public_profile,

email

12 public_profile,

email

public_profile,

email

13 public_profile,

email,

publish_actions

public_profile,

email

publish_actions

14 public_profile,

email,

publish_actions

public_profile publish_actions email

15 public_profile,

email,

user_about_me,

user_activities,

user_birthday,

user_education

_history,

user_hometown,

user_interests,

user_likes,

user_location,

user_relationships,

user_relationship

_details,

user_religion_politics,

user_website,

user_work_history,

user_photos,

publish_actions

public_profile,

email,

user_location

publish_actions user_about_me,

user_activities,

user_birthday,

user_education

_history,

user_hometown,

user_interests,

user_likes,

user_relation

ships,

user_relation

ship_details,

user_religion

_politics,

user_website,

user_work

_history,

user_photos

16 public_profile, email,

user_birthday

public_profile,

email

user_birthday

43

17 public_profile, email,

user_birthday,

user_interests,

user_likes,

user_location, pub-

lish_actions

public_profile, email,

user_birthday

publish_actions user_likes,

user_locaton,

user_interests

18 public_profile,

email,

user_birthday,

user_location,

user_events,

user_photos,

user_videos,

user_status,

user_posts,

user_friends,

publish_actions

public_profile, email,

user_birthday,

user_location,

user_events,

user_photos,

user_videos,

user_status,

user_posts,

user_friends

publish_actions

19 public_profile, email,

user_birthday,

user_location

public_profile, email,

user_birthday,

user_location
20 public_profile, email,

user_friends

public_profile, email,

user_friends

21 public_profile,

email,

user_friends,

user_activities,

user_birthday,

user_education

_history,

user_hometown,

user_interests,

user_likes,

user_location

public_profile,

email,

user_friends,

user_activities,

user_birthday,

user_education

_history,

user_hometown,

user_interests,

user_likes,

user_location

44

22 public_profile,

email, user_friends,

user_birthday,

user_location

public_profile user_friends email,

user_birthday,

user_location

23 public_profile,

email,

user_friends,

user_birthday,

user_work_history,

user_education

_history,

user_hometown,

user_location,

user_photos,

user_likes

public_profile,

email,

user_photos,

user_birthday,

user_work_history,

user_education

_history,

user_hometown,

user_likes

user_location,

user_friends

24 public_profile,

email,

user_friends

public_profile,

user_friends

email

25 public_profile,

email,

user_likes

public_profile,

email

user_likes

26 public_profile,

publiish_action

public_profile publish_action

27 public_profile,

user_birthday, pub-

lish_actions

public_profile,

user_birthday

publish_actions

28 public_profile,

user_friends

public_profile user_firends

29 public_profile,

email

public_profile,

email

30 public_profile,

email

public_profile,

email

45

31 public_profile,

email

public_profile,

email

32 public_profile,

email, user_location,

user_likes

public_profile,

email

user_location,

user_likes

33 public_profile,

email,

user_friends,

user_brithday,

publish_actions

public_profile,

email,

user_friends,

user_birthday

publish_actions

34 public_profile,

user_friends

public_profile,

email
35 public_profile, email,

user_work_history,

user_location,

user_website,

user_about_me

public_profile,

user_work_history,

user_location,

user_website,

user_about_me

36 public_profile,

email

public_profile,

email

37 public_profile,

email,

user_friends,

user_birthday,

user_location

public_profile,

email,

user_friends,

user_location

user_birthday

38 public_profile,

email,

user_friends,

publish_actions

public_profile,

user_friends

publish_actions email

39 public_profile,

publish_actions

public_profile publish_actions

40 public_profile,

email

public_profile,

email

46

41 public_profile,

user_friends,

publish_actions

public_profile publish_actions

42 public_profile,

email

public_profile,

email

43 public_profile, email,

user_birthday,

user_friends

public_profile,

email,

user_friends

user_birthday

44 public_profile,

email,

publish_actions

public_profile,

email

publish_actions

45 public_profile, email,

user_birthday

public_profile,

user_birthday

email

46 public_profile,

email

public_profile,

email

47 public_profile,

user_friends,

user_work_history,

user_location,

user_hometown,

email

public_profile,

email,

user_friends,

user_work_history

user_home

town,

user_location

48 public_profile, email,

user_birthday, pub-

lish_actions

public_profile,

email

publish_actions public_profile

49 public_profile,

user_friends,

publish_actions

public_profile,

user_friends

publish_actions

50 public_profile,

email

public_profile,

email

47

51 public_profile,

user_about_me,

email,

user_hometown,

user_likes,

user_birthday,

user_friends

public_profile,

email,

user_about_me

user_friends user_hometown,

user_likes,

user_birthday

52 public_profile,

email,

user_friends,

publish_actions

public_profile,

email

user_friends pub-

lish_actions

53 public_profile,

email,

user_friends,

publish_actions

public_profile,

email

user_friends, pub-

lish_actions

54 public_profile,

email,

user_friends,

publish_actions

public_profile,

email,

user_friends

publish_actions

55 public_profile,

email,

user_friends,

publish_actions

public_profile,

email,

user_friends

publish_actions

56 public_profile,

email,

user_friends,

publish_actions

public_profile,

email,

user_friends

publish_actions

48

57 public_profile,

user_friends,

user_status,

email,

user_about_me,

user_events,

user_likes,

read_custom_

friendlists,

user_photos,

user_posts,

user_videos,

user_managed_

groups,

read_page_mailboxes,

read_insights,

publish_action

public_profile,

user_friends,

user_status,

email,

user_about_me,

user_events,

user_likes,

read_custom_

friendlists,

user_photos,

user_posts,

user_videos,

user_managed_

groups,

read_page_mailboxes,

read_insights

publish_actions

58 public_profile,

email,

user_likes,

user_location,

user_work_history,

user_education_

history,

user_hometown

public_profile,

email

user_likes,

user_location,

user_work_

history,

user_education_

history,

user_hometown

59 user_friends,

email,

public_profile

public_profile,

email

user_friends

60 public_profile,

user_friends

public_profile user_friends

49

Proof-of-Concept Implementation

To demonstrate the practicality of using the OOU primitives, we modify the code of a

popular app UberSync from Google Play with the OOU primitives, and we demonstrate

that we can provide the same functionality and even bring back functionality that was lost

due to permission deprecation, without exposing users’ and their friends’ data. UberSync is a

popular application for syncing Facebook contacts to a phone’s contact list. The application

is open source, and it has over one million downloads and positive ratings. After version 2.0,

Facebook removed the permission friends_photos and only provides the names of friends

that also install the application for the friends_list permission. The application can no

longer get users’ friends’ information, such as profile photos and emails. The developers

had to stop the project and made a disclaimer that they can only sync the contacts that

also install the application or the user has to invite their friends that are not using the

application. The permission changes caused a drastic drop in the ratings of the UberSync

app due to loss of functionality, including many recent one-star reviews [47].

Since UberSync only displays friends’ names and photos, we can employ the opaque display

to achieve the same functionality without needing the permission. We update UberSync to

utilize the opaque handle and opaque display to achieve the same functionality in version

1.0 of the Facebook permission system without allowing the application or developer (us

in this case) to access the information. Specifically, we modify UberSync to use a token

to represent each friend to fetch content about the friend and embed an isolated view that

displays friends’ names, photos, and contact information, as is shown in Figure 3.66. The

modification is lightweight, requiring modification of around 30 lines of code for UberSync to

embed the opaque display and an additional 50 lines of code for the social platform to host

the service. With the opaque handle and opaque display, UberSync recovers the functionality

6We cannot modify Facebook itself, so we built a clone app that hosts users’ friends’ information
just like Facebook, and UberSync interacts with the clone app. If Facebook adpots the OOU
primitves, it can get similar results.

50

LOGIN
2. Send user access token

3. Send friends’ tokens

4. Ask for view using
access and friend tokens

FBClone

1. User logs into FB clone

4. Ask for view using
access and friend tokens

b@simpson.com

www.lisa.com

2. Send user access token

3. Send friends’ tokens

4. Ask for view using
access and friend tokens

5. Fills the embedded
view with friend’s contact

information

UberSync

1. User logs into FB clone

Independent
and isolated

embedded view

4. Ask for view using
access and friend tokens

5. Fills the embedded
view with friend’s contact

information

Figure 3.6: Friends’ data access is not allowed after Facebook permission model 2.0, so
UberSync lost the ability to sync friends’ data. The opaque handle and opaque display allow
UberSync to display friends’ profile photos and contacts without sacrificing privacy. All
UberSync learns is the number of friends, which is not considered as sensitive.

provided under version 1.0 of the Facebook permission system. Instead of getting all the

sensitive data about friends, UberSync only gets the number of user friends, which is not

considered as very sensitive and is granted to apps by Facebook by default.

3.1.7 Designing a Permission Model for the Somex Activity Plat-

form

The OOU primitives not only enhance users’ privacy but also enable new context sharing

capabilities for next-generation activity-based social platforms. In this section, we describe

our efforts toward designing a permission model for the Somex activity platform recently

designed by Microsoft Research [43]. Somex hosts users’ and collaborators’ sensitive activities

and shares the information with third-party applications for customized services. If Somex

adopts the same permission system as Facebook, the platform will run into privacy issues

of sharing collaborators’ data. Therefore, we design the Somex permission system around

the OOU primitives detailed in Section 3.1.5 to expose meaningful user activity and context

information to third-party applications. The resulting Somex core API requires only one

manifest permission. In what follows, we provide background on Somex, its requirements,

51

and our permission model design.

Overview of Somex

Somex is an activity-based, context-aware social platform. All of the digital interactions

between a Somex user and a device are organized based on the user’s high-level activities.

Examples of such activities include Christmas shopping, travel planning, or paper writing.

Somex employs a mixture of techniques (including manual labeling and machine learning)

to determine and infer, at any given time, the user’s activity context. In addition, Somex is

also able to provide good user experiences by associating each user’s activity context with

collaborators (e.g., shopping friends, travel partners, paper co-authors) [43]. The high-level

visions of Somex overlap with those of several prominent digital assistant engines including

Google Now7 and Cortana8. We believe the interests and recent advancements in building

activity-based, context-aware social platforms call for an in-depth study of the API design

and the permission system required for these platforms.

Privacy Requirements of Somex

The permission system of an activity-based, context-aware social platform such as Somex

has a fundamentally different set of privacy requirements than the permission systems of

traditional social platforms like Facebook. We highlight the differences below.

Activity-Sensitive Trust Model In traditional social platforms, third-party access to

certain user information is defined by a single Boolean variable (i.e., a user either grants or

denies an app access to his/her news feed). However, for an activity-based, context-aware

social platform, the trust between a user and a third-party application must be established

on a per-activity basis. For example, a user may trust Amazon with information regarding

her “Christmas Shopping” activity, but not her “Personal Finance” activity. In a normal
7https://www.google.com/landing/now/
8http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana

52

https://www.google.com/landing/now/
http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana

browsing session, the user may seamlessly switch between her two activities (e.g., shop for

Christmas presents while checking her credit score). A well-designed permission model should

minimize user burden, preserve the user’s privacy goals, and provide sufficient functionality

to the third-party application.

Time-Sensitive Trust Model Unlike traditional social platforms where user data is ob-

tained through explicit sharing, activity-based social platforms such as Somex or Google

Now possess a large amount of sensitive user information that is passively collected or in-

ferred. Therefore, it is crucial that passively collected user information is not exposed to

third-party applications without the user’s consent. In traditional permission systems (e.g.,

for Facebook or Android), access to certain user information is granted for the lifetime of

an application, unless explicitly revoked by the user. This type of permission scheme is

undesirable for activity-based platforms because it does not give the user full control of the

information being shared at any given time, as discussed earlier.

Overlapping Ownership of Digital Artifacts Suppose Alice and Bob are collaborating

on a wedding registry. Alice grants Amazon access to her current activity on Somex and

logs into Amazon to purchase an item. At this point, Somex detects that Bob already

has the same item in his shopping cart at Macy’s. Should this information be relayed to

Amazon? Clearly, warning Alice about potential duplicate purchase has value, but Bob

may not want to let Amazon know of his activity at Macy’s. The collaborative aspect of

activity-based social platforms raises an interesting research question: How can one enable

secure information sharing for digital artifacts with multiple owners? In Section 3.1.7, we

address this problem using opaque display.

The Somex API

We design the permission system and APIs for Somex with the OOU primitives, which

provide rich context-based functionality and still meet the privacy requirements. With our

53

Accessing current or recent activities

• Activity token – A random string that identifies a single activity, a single
user for that activity, and the relying party requested for this token.

Amazon

…
Alice: WWWWW
Browsed ipad
Browsed Surface pro 2
Browsed mac book pro

Visits Amazon
…

Alice: WWWWW
Browsed ipad
Browsed Surface pro 2
Browsed mac book pro

Visits Amazon

Amazon

…
Alice: WWWWW
Browsed ipad
Browsed Surface pro 2
Browsed mac book pro

Visits Amazon

Accessing current or recent activities

• Activity token – A random string that identifies a single activity, a single
user for that activity, and the relying party requested for this token.

…
Alice: XXXXXXX
Browsed Robot turtles
Purchased Catan
Browsed Roborally

Get token
Somex

…
Alice: XXXXXXX
Browsed Robot turtles
Purchased Catan
Browsed Roborally XXXXXXX

…
Alice: XXXXXXX
Browsed Robot turtles
Purchased Catan
Browsed Roborally

Get token

WWWWWW

Somex

Figure 3.7: An activity token is an opaque handle that points to the current activity of a user.
The activity token enables Somex to point to current activity without sacrificing privacy.
Amazon can query the activity token to link the user to a previous browsing session.

design, Somex needs only need one permission, no prompts, and enables third-party applica-

tions to provide superior user experiences because applications can leverage rich cross-session

context and cross-user context.

Somex organizes a user’s digital artifacts and actions performed on these artifacts into activ-

ities. We first define the three concepts that will be used throughout the rest of this section:

artifact, action, and activity.

Somex defines an artifact as a digital object or a piece of information that a user can interact

with. An artifact can be a file, a web page, merchandise on an e-commerce site, an identifier,

or a string. Similar to the concept defined in the Facebook Graph API [48], Somex designers

view an action as a human-readable string (defined by a developer) that represents a user’s

logical interaction with a certain artifact (e.g., “creates” a file, “purchases” merchandise).

Finally, Somex defines an activity as a label assigned to artifacts and actions that represents

the underlying user context. Each artifact can be associated with multiple activities, but

each action can only be associated with one activity. For example, merchandise from Amazon

can belong to both the “Christmas Shopping” activity and the “Wedding Registry” activity

while a user can “purchase” the merchandise for only one activity.

54

There are three meaningful services that Somex can offer to third-party applications:

• provide contextual information about the user’s current activity,

• record and share application-specific artifacts and actions for the current user,

• fetch relevant user artifacts and actions for the current activity or application.

We describe the API designed with OOU primitives to achieve each of the three services and

the techniques used to minimize the number of permissions required.

GetCurrentActivityToken

The GetCurrentActivityToken function provides context information about the user’s cur-

rent activity to a third-party relying party. It achieves this without explicitly revealing any

private data associated with the activity. This is done by using an activity token, an opaque

handle that identifies the user’s current activity context. One can imagine the activity token

as a browser cookie that is associated with an activity instead of a browsing session. Each ac-

tivity token is assigned on a per-application, per-user basis. That is, different relying parties

would receive distinct activity tokens for the same activity, ensuring that two applications

cannot collude to track a single user. Different collaborators of the same activity would also

receive distinct activity tokens for the same activity, ensuring that the relying party cannot

infer collaboration relationships between different users. Detailed attacks beyond this type

of inference are beyond the scope of this work.

By itself, the activity token does not expose any user data. However, it can be used similarly

as a browser cookie to link a user’s current “activity session” with a previous session that

the relying party has on record. Figure 3.7 illustrates an example of using the activity

token to obtain the user’s current activity context. In this example, the user has established

previous browsing sessions with Amazon. For the first browsing session, Amazon obtained

the activity token WWWWW from Somex and observed the user browsing laptops and tablets. For

the second session, Amazon obtained the activity token XXXXXXX from Somex and observed

55

Accessing sub-entity graph: Write

• Sharing can be done using user-driven access control
• User explicit sharing without permission prompt

Accessing sub-entity graph: Write

• Sharing can be done using user-driven access control
• User explicit sharing without permission prompt

Figure 3.8: Using user-driven access control to share context from an application to Somex.
An app can call the Share_Action API to ask users to share context implicitly.

Accessing sub-entity graph: Read

• Privacy-preserving activity feed using secure embedded user interface.
• Iframe for browsers and LayerCake for android
• No permissions needed

Third-party application

iframe

Query for collaborator’s
actions on iPad

Accessing sub-entity graph: Read

• Privacy-preserving activity feed using secure embedded user interface.
• Iframe for browsers and LayerCake for android
• No permissions needed

SomexQuery for collaborator’s
actions on iPad

Figure 3.9: Somex uses opaque display to display context in an application without exposing
context to the application.

the user browsing children’s toys. When the user visits Amazon once again with the activity

token XXXXXXX, Amazon could look at its history to infer that the user’s current browsing

session is related to shopping for children’s toys.

Share_Action The share_action function is designed for users to share an artifact to

applications and users. It is implemented using the user-driven access control primitive. We

illustrate in Figure 3.8 that users can share current context explicitly without a permission

prompt.

56

Figure 3.10: Case study: collaborators shop together for Christmas. An app such as Amazon
can call the get_actions_of_activity API to display the collaborators’ actions such as
Christmas shopping.

APIs to Fetch Artifacts and Actions We observe that applications in Somex do not

perform computation on Somex-supplied data and the Somex feed is usually directly pre-

sented to the user, hence we use the opaque display to show relevant artifacts and actions.

We use cross-domain iframes [44] in web and LayerCake [45] in Android to embed an opaque

display interface, thus we can display activity feeds without violating privacy. For example,

in Figure 3.9, Mike is visiting a shopping website and he wants to know his collaborators’

behaviors on an iPad. The shopping website displays his collaborators’ behaviors in a cross-

domain iframe such as “Alice purchased an iPad while Christmas shopping”. Mike can see

the context while the shopping website cannot.

We design several APIs to fetch actions opaquely without requiring permissions. We use the

get_actions_of_activity and get_actions_on_objects_of_activity APIs as examples

and explain the apps.

The get_actions_of_activity API is designed to get all collaborators’ actions performed

on a given activity. In Figure 3.10, a third party application such as Amazon can query the

actions with an actions token of one activity such as “Christmas shopping”. Somex will send

57

related actions such as “Adam bought a robot turtle while Christmas shopping”.

The get_actions_on_objects_of_activity API provides more specific query results than

get_actions_of_activity. It is designed to fetch all collaborators’ actions performed on

this activity for a particular artifact. In Figure 3.11, Eric is searching for a solution to an

error in his coding project. Instead of providing general search results, Google can combine

collaborators’ context to help Eric. Google queries Somex with an Object key (e.g., hash

of the search query) and activity token, and Somex passes collaborators’ actions to the

embedded opaque display. Therefore, Eric can see his collaborators’ comments about how

to solve his problem.

Using Somex APIs As is shown in Figure 3.12, Somex shares the utility of the con-

text information to third-party applications without disclosing the context. We demonstrate

the scenario when two users are collaborating to purchase birthday gifts. The third-party

applications can call the Somex APIs to benefit from the utility of rich context. For exam-

ple, Amazon can leverage the cross-session context (users’ previous actions with the same

activity such as gift shopping can be used to improve user experience), cross-user context

(collaborators’ actions can be used to improve user experience), and cross-application con-

text (users’ actions from different applications can also be used to improve user experience).

The cross-session context sharing can be achieved using an activity token. The cross-user

context and cross-application context can be achieved using secure embedded user interface

and activity token. The only permission that is being used is the manifest permission to get

the activity token.

Overall, our permission model design for Somex relies on only one manifest permission, while

allowing Somex to provide feature-rich services utilizing shared context across applications

and users without sacrificing privacy.

58

The Activity Platform for Apps/web sites
• Scenario #2: Eric stumbled upon a generic visual studio error message.

None of these resultsapply to my problem!
Knowledge box with collaborators’ comments

Figure 3.11: Case study: collaborators share comments and experiences about a question.
An application such as Google can call the get_actions_on_objects_of_activity API to
display collaborators’ actions for this activity performed on an artifact.

1. Visits the first time with Somex
• Manifest permission for activity token

2. Fetches Activity token
3. Shares info about a purchase on Somex

• No permission: User driven access control

User 1

1. Visits the first time with Somex
User 2

Time Activities:Birthday gift shoppingBook shopping

1. Visits the first time with Somex
• Manifest permission for activity token

2. Fetches Activity token
3. Call Get_actions_of_activity to fetch partners actions

• No permission: using opaque embedded UI

1. Revisits
2. Fetches Activity token
3. Amazon serves recommendations based on activity token

User 1

. . .

Figure 3.12: User 1 and user 2 collaborate on shopping for birthday gifts. With the APIs
we designed, Somex enables applications to utilize the cross-session, cross-user, and cross-
application context without sacrificing privacy. For example, users can see the context-aware
recommendations and collaborators actions on the same gift shopping activity.

3.1.8 Discussion

We have shown that the three primitives can be very helpful in removing information sharing

to third-party applications. In most cases, platform designers can make data opaque by59

using the first two primitives, where the platform don’t share privacy information but just

provide the utility for the third-party applications. When a piece of context needs to be

seen by the functionality of the application, then opaque handle and opaque display will

not be sufficient and a permission is needed. Even when a permission is needed, user-driven

access control could kick in to make granting seamless and share less information. Although

adopting user-driven access control means that the platform still needs to share user data

with third-party applications, user studies show that granting permission implicitly matches

users’ expectations to share data [42]. Also, the user-driven access control is designed to

ensure the user interface integrity, which enables reading authentic user interactions to infer

user intention. However, it is possible that if the permission cannot be integrated with the

application function (e.g., Somex Share button), user-driven access control also cannot be

used. From our evaluation, such occurrence is very rare. Homomorphic encryption [49] and

other privacy techniques [50] might be helpful to solve the problem when the applications

need to compute over data and the permission cannot be made user-driven. However, even if

the problem is solved, our work is still useful because we demonstrate the light-weight OOU

primitives have practical value for permission system design.

3.2 User-Centered Authorization for Smarthome Apps

After studying information sharing and permissions in social platforms, we also use similar

techniques in other collaborative platforms such as Internet of Things. Internet of Things

(IoT) platforms often require that users grant third-party apps permissions, such as the

ability to control a lock. Unfortunately, because few users act based upon, or even compre-

hend, permission screens, malicious or careless apps can become overprivileged by request-

ing unneeded permissions. To meet the IoT’s unique security demands, such as cross-device,

context-based, and automatic operations, we present a new design that supports user-centric,

semantic-based “smart” authorization. Our technique, called SmartAuth, automatically col-

lects security-relevant information from a SmartApp’s description, code, and annotations,

60

and generates an authorization user interface to bridge the gap between the functionalities

explained to the user and the operations the app actually performs. Through the inter-

face, security policies can be generated and further enforced through an enhancement of

the existing SmartThings platform [51]. To address the unique challenges in SmartApp au-

thorization, where states of multiple devices are used to determine the operations that can

happen on other devices, we devise new technologies that link a device’s context (e.g., a

humidity sensor in a bathroom) to an activity’s semantics (e.g., taking a bath) using natural

language processing and program analysis. We evaluate SmartAuth through user studies,

finding participants who use SmartAuth are significantly more likely to avoid overprivileged

apps.

3.2.1 Introduction

The rapid progress of Internet of Things (IoT) technologies has led to a new era of home

automation, with numerous smart-home systems appearing on the market. Prominent ex-

amples include Samsung’s SmartThings, Google’s Weave and Brillo [52, 53] and Apple’s

HomeKit [54]. These systems use cloud frameworks to integrate numerous home IoT de-

vices, ranging from sensors to large digital appliances, and enable complicated operations

across devices (e.g., “turn on the air conditioner when the window is closed”) to be performed

by a set of applications. Such an application, called a SmartApp in Samsung SmartThings

or generally an IoT app, is instantiated in the cloud. A user interface (UI) component on

the user’s smartphone enables monitoring and management. Like mobile apps, IoT apps

are disseminated through app stores (e.g., the SmartThings Marketplace [55]), which accept

third-party developers’ apps to foster a home-automation ecosystem. Unlike mobile apps,

IoT applications control potentially security-critical physical devices in the home, like door

locks. Without proper protection, these devices can inflict serious harm.

A recent study on Samsung SmartThings brought to light security risks of such IoT apps,

largely caused by inadequate protection under the framework [56]. Most concerning is the

61

Figure 3.13: The installation interface of SmartApp Safety Watch lists configuration options
without connecting to higher-level app functionality. There is also no guarantee the app’s
actual behavior is consistent with its description.

overprivilege problem in SmartApp authorization. Each SmartApp asks for a set of capa-

bilities (the device functionality the app needs), and the user must choose the IoT devices

to perform respective functions for the app (for example, see Figure 3.13). In mapping ca-

pabilities to devices, the user allows the IoT app to perform the set of operations defined

by those capabilities (e.g., turn on a light, unlock the door) based on event triggers (e.g.,

the room becomes dark, a valid token is detected near the door). However, this implicit

authorization suffers from issues related to coarse granularity and context ignorance, namely

that an app given any capability (e.g., monitoring battery status) of a device (e.g., a smart

lock) is automatically granted unlimited access to the whole device (e.g., lock, unlock) and

allowed to subscribe to all its events (e.g., when locked or unlocked).

In addition to the overprivilege that results from conflating all capabilities of a single device,

malicious IoT apps can overprivilege themselves by requesting unneeded, and sometimes

62

dangerous, permissions. While asking users to authorize third-party apps’ access to IoT de-

vices would, in concept, seem to prevent this sort of overprivilege, prior work on permissions

systems for mobile apps has repeatedly documented that users often fail to act based on, or

even understand these permission screens [57, 58, 28].

Even worse, unlike the Android permission model, which asks the user for permission to

access specific resources on a single device (e.g., location, audio, camera, etc.), access control

in a smarthome system is much more complicated. The policy is applied across devices,

defining the operations that should take place on certain devices in certain scenarios, as de-

scribed by the events observed by other devices (e.g., “ring the bell when someone knocks on

the door”). Explaining such complicated policies to users is challenging, and effective autho-

rization assistance should certainly go beyond what is provided by SmartThings (illustrated

in Figure 3.13). In particular, it may be difficult for a user to understand what is being

requested in the capability authorization UI, due to the gap between the app’s high-level

mission and the technical details of the capabilities it seeks across devices. As an example,

a typical user may have no idea how the ability to read from an accelerometer relates to

the purpose of detecting when someone knocks on a door. Furthermore, in the absence of

robust monitoring and enforcement by the platform, the authorization system provides little

guarantee that the capabilities requested by an app actually align with the app description.

As a result, despite the existing authorization system for IoT platforms, there can exist

a crucial gap between what a user believes an IoT App will do, and what the app actually

does. The idea that privacy is context-sensitive has been widely studied [59]. For example,

providing an individual’s sensitive health information to a doctor for the purpose of treating

the individual would often not violate the notion of contextual integrity, whereas providing

the same information to the individual’s financial institution would likely violate his or her

privacy. A similar principle holds in the IoT ecosystem. If an IoT app describes its own

purpose as unlocking the door when a visitor arrives, it is likely no surprise to a user that the

63

app can unlock the door. If, however, the same app had advertised itself as a temperature-

monitoring app, a user would likely find the app’s ability to unlock the door to be a security

risk.

In this project, we propose new user-centered authorization and system-level enforcement

mechanisms for current and future IoT platforms. We designed our approach, SmartAuth,

to minimize the gap between a user’s expectations of what an IoT app will do and the app’s

true functionality. To this end, SmartAuth learns about each IoT app’s actual functionality

by automatically harvesting and analyzing information from sources such as the app’s source

code, code annotations, and capability requests. Because the natural-language description

developers write to advertise an app in the app store is the key source of users’ expectations

for what the app will do, we use natural language processing (NLP) to automatically extract

capabilities from this description.

SmartAuth then compares the app’s actual functionality (determined through program anal-

ysis) to the functionality developers represent (determined through NLP). This automated

process is far from trivial because an in-depth understanding of the app focuses not only on

the semantics of the app activities, but also their context among the app’s broader goals.

Our approach for achieving this level of contextual understanding relies on program analysis

of the SmartApp’s source code and applying NLP techniques to code annotations (e.g., the

constant string for explaining the position of a sensor). We use further NLP to analyze

the app description provided by the developer to extract higher-level information about the

stated functionality, including entities (e.g., “a coffee machine”), actions (e.g., “taking a

shower”), and their relationships (e.g., “turn on the coffee machine after taking a shower”).

SmartAuth then compares such descriptions against insights from program and annotation

analysis to verify that the requested capabilities and called APIs match the stated function-

ality, leveraging semantic relations among different concepts and auxiliary information that

correlates them. For example, an annotation indicating a “bathroom” and the activity “take

64

a shower” are used to identify the location of the humidity sensor of interest.

To minimize the burden on the user, SmartAuth automatically allows functionality that is

consistent between the app’s natural-language description and code, yet highlights for users

discrepancies between the description and code since these are potentially unexpected be-

haviors. SmartAuth employs natural-language-generation techniques to explain, and seek

approval for, these unexpected behaviors. The outcome of this verification analysis is pre-

sented to the user through an automatically created interface that is built around a typical

user’s mental model (for example, as in Figure 3.16). SmartAuth then works within the

platform to enforce the user’s authorization policy for the IoT app.

We incorporated SmartAuth into the Samsung SmartThings platform as a proof of concept.

We evaluated our implementation over the 180 apps currently available in the SmartThings

marketplace. SmartAuth successfully recovered authorization related information (with a

false positive rate of 3.8% (7 out of 180) and no false negatives) within 10 seconds. We

found that 16.7% (30 out of 180) of apps exhibit the new type of overprivilege in which some

functionality is not described to the user even though these apps have passed the official

code review from Samsung [60]. In some cases, the problem comes from the brevity of the

descriptions, such as an app stating it can “control some devices” in your home. In other

cases, however, hidden functionality is more security-sensitive, e.g., accessing and actuating

an alarm without consent.

We also performed user studies to evaluate SmartAuth’s impact on users’ decision-making

process for installing IoT apps9. In a 100-participant laboratory study, we found that Smar-

tAuth helped users better understand the implicit policies within apps, effectively identify

security risks, and further make well-informed decisions to mitigate overprivilege hazards.

For instance, when using the current Samsung SmartThings interface to choose between two

similar apps, one of which was overprivileged, roughly half of participants chose to install

9Our user studies were conducted with IRB approval.

65

the overprivileged app in each of five tasks. Using SmartAuth, however, the majority of

participants chose the apps whose privileges better matched their descriptions, successfully

avoiding the overprivileged apps.

We also patch the 180 SmartApps automatically to validate the compatibility of our policy

enforcement mechanism. By observing the app behaviors when we trigger events in the

applications, we find no apparent conflicts with SmartAuth. Given our observations of the

effectiveness of the technique, the low performance cost, and the high compatibility with

existing apps and platforms, we believe that SmartAuth can be utilized by IoT app mar-

ketplaces to vet submitted apps and enhance authorization mechanisms, thereby providing

better user protection.

Our key contributions are as follows:

• We propose the SmartAuth authorization mechanism for protecting users under current

and future smarthome platforms, using the insights from code analysis and NLP of

app descriptions. This approach offers a new solution to the overprivilege problem and

contributes to the process of human-centered secure computing.

• We design a new policy enforcement mechanism, compatible with current home au-

tomation frameworks, which enforces complicated, context-sensitive security policies

with low overhead.

• We evaluate SmartAuth over real-world applications and human subjects, demonstrat-

ing the efficacy and usability of our approach to mitigate the security risks of overpriv-

ileged IoT apps.

3.2.2 Background

We provide relevant background information about home automation systems, challenges in

the IoT app landscape, and useful tools for natural language processing (NLP).

66

Install

IoT Apps

Subscribe

Event Handler

IoT devices

Commands

Event callback

IoT Cloud

IoT Hub

Beacon

Control

Simple

Control

Deploy IoT Apps

Get Notifications

User

Capability

System

Register capability

External Servers,
e.g., IFTTT

Access through

Endpoints

Figure 3.14: Users install commercial IoT apps through their mobile devices, allowing the
vendor’s IoT cloud to interact with the user’s locally deployed IoT devices through direct
Internet connectivity or an IoT hub. IoT apps pair event handlers to IoT devices, issue direct
commands to IoT devices, and provide web interfaces to interact with external servers.

Home Automation Systems

Home automation is growing with consumers, with many homeowners deploying cloud-

connected devices such as thermostats, surveillance systems, and smart door locks. Recent

studies predict home automation products will have $100 billion in revenue by 2020 [61],

drawing even more vendors into the area. As representative examples, Samsung Smart-

Things and Vera MiOS [62] connect smart devices with a smart hub which is then linked

to a remote cloud server. Such vendors typically host third-party IoT apps in the cloud,

allowing remote monitoring and control of a user’s home environment.

Figure 3.14 illustrates a typical home automation system architecture. We use Samsung

SmartThings to exemplify key concepts and components of such a system.

IoT apps written by third-party developers can get access to the status of sensors and control

devices within a user’s home environment. Such access provides the basic building blocks of

67

functionality to help users manage their home, for example turning on a heater only when

the temperature falls below the set point. Figure 3.14 depicts cloud-based IoT apps Beacon

Control and Simple Control installed by a user from their mobile device and with access to

the user’s relevant IoT devices.

Current IoT platforms use capabilities [63] to describe app functionality and request access

control and authorization decisions from app users. Unlike permissions, capability schemes

are not designed for security, but rather for device functionality. A smart lighting application,

for example, would have capabilities to read or control the light switch, light level, and

battery level. Because of the complexity of home automation systems, capabilities in such

platforms are often coarse-grained. One capability might allow an app to check several device

attributes (status variables) or issue a variety of commands. This functionality-oriented

design creates potential privacy risks, as granting an app a capability for a device allows it

to access all aspects of the device’s status and fully control the device.

An IoT app can also act as a web service to interact with the outside world, referred to as

an endpoint in Samsung SmartThings. Such an app handles remote commands from servers

and reacts accordingly. Many home automation platforms support standard authentica-

tion and authorization mechanisms such as OAuth to grant permission to third parties for

commanding or accessing devices.

Threat Model

We consider malicious smarthome applications or benign but vulnerable smarthome appli-

cations as attackers. In particular, we focus on the smarthome applications that request

permissions more than they need for their functionality. We assume that the smarthome

platform is secure and not buggy, and the users are benign. We assume that the users un-

derstand the functionality of the smarthome applications through reading the applications’

names and descriptions.

68

IoT App Security Challenges

Beyond basic overprivilege where an app requests a capability that is not needed, previous

research on IoT apps has studied two additional types of overprivilege [56]: coarse capabil-

ity and device-app binding. The former occurs when a capability needed to support app

functionality also allows unneeded activities. The latter involves implicitly granting a device

additional capabilities that are not needed or intended.

We have identified an additional type of overprivilege that relates not only to the func-

tionality of the IoT app, but also to the user’s perception of the app functionality, as seen

through the app description. We observe that several IoT apps exhibit capability-enabled

functional behaviors that are not disclosed to the user, causing a discrepancy between the

user’s mental model and the actual privilege of the app. We refer to this problem as undis-

closed overprivilege. This kind of overprivilege has been discussed in mobile apps [64], but

was never studied in the IoT space. An example of this type is an IoT app that describes

the ability to control lights while requesting capabilities to read and control a door lock.

Previous approaches may not flag this app as overprivileged, as long as the capabilities are

used. In fact, even after a majority of Samsung SmartThings apps were removed from the

market due to the previously reported overprivilege issues [56], we found that 16.7% (30 out

of 180) of the remaining apps still exhibit overprivilege risks. Details about identifying the

overprivilege risks are in Section 3.2.4.

Remote access is also an important security risk, as it enables apps to send sensitive data

to and receive commands from third-party servers. In our study, we found 27 cases of

such behavior, including cases where data was shared without user consent, a clear privacy

concern. A SmartApp’s ability to act as a web service expands the attack surface and

potentially allows a malicious server to send dangerous commands to an app running on a

user’s smart devices, even though users may not expect such remote control. We observed

17 apps with this behavior. Similar to the undisclosed overprivilege, remote access does

69

not match the user’s mental model, which illustrates a gap in the current configuration and

approval process.

Based on these observations, a general threat in the IoT app landscape is the ability for a

malicious or compromised IoT app to steal information from sensors or home appliances or to

gain unauthorized access to IoT device functionality. Even if the IoT platform itself is secure

and trustworthy and previous issues of authentication and unprotected communication are

patched [56, 65, 66], such issues with malicious apps may remain.

NLP Technologies

Since our approach analyzes app descriptions and gaps in users’ expectations, we rely on

several existing tools and techniques for natural language processing (NLP). The following

tools are employed in our work.

Word2Vec [67] is a state-of-the-art tool used to produce word embedding that maps words

to vectors of real numbers. Specifically, Word2Vec models are neural networks trained to

represent linguistic contexts of words. We use Word2Vec to determine the relationship

between two words by calculating the distance between the words in the embedding space.

Word2Vec has many advantages over previous approaches, including catching syntactic and

semantic information better than WordNet [68] and achieving lower false positive rates than

ESA [69].

Part-of-speech (POS) tagging is used to identify a word’s part of speech (e.g., noun or verb)

based on definition and context. A word’s relations with adjacent and related words in a

phrase, sentence, or paragraph impact the POS tag assigned to a word of interest. In our

work, we rely on the highly accurate Stanford POS Tagger [70].

We also rely on the typed dependencies analysis [71] to understand the grammatical struc-

tures of sentences, grouping words together to recognize phrases and pair subjects or objects

with verbs. The Stanford parser applies language models constructed from hand-parsed

70

sentences to accurately analyze sentences of interest.

3.2.3 SmartAuth Design Overview

In this section, we present the high-level design of SmartAuth, including our design goals,

system architecture, and security policy model.

Given the unique security challenges of smarthome systems, we believe that an authorization

system for IoT apps should be designed to achieve the following goals.

• Least-privilege: The system should grant only the minimum privileges to an IoT app,

just enough to support the desired functionality.

• IoT-specific: Compared with authorization models for mobile devices, which are de-

signed to manage a single device, the authorization system for a smarthome framework

should meet the needs for multi-device, context-based, automatic operations. Permis-

sion models based on manifest permissions or run-time prompts, such as those employed

in Android or iOS, either do not allow users to make context-based decisions or cannot

satisfy real-time demands (e.g., approval to actuate an alarm when fire is detected).

• Usable: The authorization system should be human-centric, minimizing the burden on

users while supporting effective authorization decisions.

• Lightweight: The authorization approach should not inhibit performance with signifi-

cant overhead.

• Compatible: The authorization approach should be compatible with existing smarthome

platforms and applications without breaking app functionality.

The key observation is that authorization decisions are made by humans, so a critical goal

is providing a human-centric design that helps users recover adequate semantic information

from IoT apps and presents it in a way that supports well-informed decision making. Our

design thus aims for an intelligent authorization system that extensively utilizes semantic

71

Program
Analyzer

Content
Inspector
（NLP）

Consistency
Checker

Authorization
creator

Policy
Enforcer

App
Code

App
Description

Security
Policy

Figure 3.15: We provide a high-level block diagram to illustrate the design overview of our
SmartAuth system.

analysis techniques to automatically understand an IoT app description, code, parameters,

and annotations; analyzes their semantic meaning to discovery inconsistency; and automat-

ically generates natural-language explanations of findings for the user.

Based on these design principles, our SmartAuth system includes five components: a program

analyzer, a content inspector, a consistency checker, an authorization creator and a policy

enforcer, as illustrated in Figure 3.15. The code analyzer extracts the semantics of an IoT app

through program analysis and NLP of app code and annotations, creating a set of privileges

that support the app functionality. In parallel, the content inspector performs NLP on the

app description to identify the required privileges explained to the user. The consistency

checker compares the results of code analysis and content inspection to generate security

policies and identify discrepancies between what is claimed in the description and what the

app actually does. These policies and information needed to support user decisions are then

presented through an authorization interface produced automatically by the authorization

creator, and the resulting policies are then implemented by the policy enforcer.

Our security policy model for the smarthome architecture is described in the form of a triple

72

Figure 3.16: We illustrate the security policy generated for the Humidity Alert app, which
is communicated to the user to request authorization.

(E,A, T). Item E represents the events, inputs, or measurements involving IoT devices and

describes the context of the policy. Item A represents the actions triggered by elements of E,

including commands such as “turn on”. Item T represents the group of targets of the actions

in A, such as a light receiving a command, noting that an empty target implies broadcast

of a message or command. This model captures typical IoT app functionality, as apps are

designed to issue commands to respond to observed state changes.

This model describes not only the policy produced by the authorization process, but also

the privileges both claimed in an app’s description and recovered from its code. Analysis of

the policy actions thus allows identification of overprivilege and presentation of conflicts or

situations that require the user to make a policy decision. Figure 3.16 illustrates an example

of such policies.

3.2.4 Design and Implementation

In this section, we detail our design and implementation of SmartAuth.

73

Automatically Discovering App Behaviors

To extract an app’s security-critical behaviors, we perform static analysis on the app’s source

code and use NLP techniques on code annotations and API documents.

We collected the source code for 180 Samsung SmartThings apps from a source-level market

in May 2016 [72]. This represents 100% of open-source SmartApps and 80.2% (180 out of

224) of all SmartApps at that time.

For each app collected, we parse its code and create an Abstract Syntax Tree (AST) from

the code, resolving classes, static imports, and variable scope. We choose to do AST trans-

formation for the app analysis for two reasons: (1) SmartThings apps are written in Groovy,

which transfers methods calls into reflective ones and creates challenges for existing binary

analysis tools to deal with reflections, (2) we have access to the source code which is suitable

for AST transformation. We extract the following key components of the AST for further

analysis: (1) method names, (2) variable names and scope, (3) a variety of expressions, and

(4) conditional statements.

Since capabilities are directly associate with the security behaviors, we first extract the

capabilities. Since apps request capabilities in their preference block, we search for the text

“capability.” in the preference block. We compare the search result with the list of capabilities

we collect from IoT app documents and add those found onto the list of requested capabilities.

Note that we maintain a global mapping of capabilities to commands and attributes, and

that one capability can involve multiple commands and attributes.

To identify what features of the capabilities that the app need, we analyze the commands

and attributes associated with the capabilities. Using our global mapping of capabilities

to commands and attributes, we search on the AST for the relevant commands called and

attributes subscribed. During this process, we identify and create a list of the methods

and commands used, together with another list of methods triggered in device subscription.

74

Recall that a SmartApp gets status updates by subscribing to events. Apps normally regis-

ter event subscription in the following format: subscribe(device, attribute, handler),

where device is the IoT device to which a SmartApp subscribes, attribute is the device’s

status whose change is being subscribed such as battery level or temperature, and handler

is a method invoked when the event occurs.

We then generate the security policy, starting from the method invoked on event subscription

and perform a forward tracing. We first analyze the invoked function’s code blocks to deter-

mine whether it contains conditional statements, which we analyze immediately. Otherwise,

we trace into the callee function. In the condition blocks, we look for (1) what the event

is and (2) what the object and action are. The invoked function of the event subscription

takes a parameter from the subscription, and the parameter carries information about the

event. Combining such information with the variable information from the AST, we iden-

tify both the event and associated capability. We further identify the action triggered by

the event. For example, an app might control a heater when the measured temperature is

above a threshold. Distinguishing whether the app turns the heater on or off is critical. We

thus search the result statement for commands that control a device. If so, we continue our

analysis to match the capability through variable analysis. Otherwise, we record the event

and trace into the callee function.

The previous analysis covers an app’s direct access to IoT devices, which we use to identify

overprivilege. We also analyze whether the app has remote access to servers other than the

SmartThings cloud. We consider two types of remote access: whether the app sends data to

the remote server and whether the app works as a web service to take commands from the

remote server. Both cases are privacy-invasive and likely violate user expectations. We search

the AST to match patterns including OAuth, createAccessToken, and groovyx.net.http.

Beyond analyzing code, we also examine clues from code annotations (e.g., comments and

text strings) to gain further information about the context and states of IoT devices. We

75

apply Stanford POS Tagging and analyze the nouns to determine whether they represent

location or time contexts. We find that most context clues in smarthomes relate to a place

in the home, such as a bedroom. For example, we can extract that the humidity sensor is

associated with bathroom from understanding the annotation in the following code snippet:

s e c t i o n ("Bathroom␣humidity␣ senso r ") {

input " bathroom " ,

" c a p ab i l i t y . re lat iveHumidityMeasurement " ,

t i t l e : "Which␣humidity␣ senso r ? "

}

Analyzing App Descriptions

A key goal of our project is revealing any discrepancy between what the app claims to do

and what it actually does. To find such discrepancies, we use NLP techniques to extract the

security policy from the app’s free-text description and program analysis to compare it with

the security policy extracted from the code. We extract and correlate the behaviors in three

layers: (1) entity, (2) context and action, (3) condition.

To begin inferring the security policy from human-written, free-text descriptions, we parse

the description. We first identify the parts of speech of the words used, then analyze the

description’s structure to find typed dependencies. Nouns and verbs are often related to

entities; for example, movement might be related to a motion sensor. From the structure

of the descriptions, we can then infer the relationship between entities by identifying the

typed dependencies. For instance, in the phrase “lock the door”, the typed dependency is

dobj(lock, door), meaning that the noun door is the accusative object of the verb lock. In

other words, lock might be the action and door might be the target of the security policy.

Usually, cases are more complex, and following we show how we analyze them.

Specifically, we apply the Stanford POS Tagger to identify parts of speech and use the

76

designed : VBN

is: VBZ simply : RB app : NN turn : VB

to :TO this: DT

machine : NN

coffee : NN on : IN your :
PRP

taking

while : IN

you : PRP

are: VBP

shower : NN

a : DT

det

auxoass
nsubjpass

advmod

mark

xcomp

case
nmod
:poss

nmod

compound
mark

nsubj

aux

advcl

det

dobj

Figure 3.17: As an example, we illustrate NLP analysis of the Coffee After Shower descrip-
tion: “This app is designed simply to turn on your coffee machine while you are taking a
shower.” Red characters indicate parts of speech (e.g., “VB” stands for verb). Blue characters
are typed dependencies (e.g., “advcl” stands for adverbial clause modifier).

Stanford Parser to analyze sentence structure, including typed dependencies. We follow

standard NLP practices, such as removing stop words [73] (e.g., “a,” “this”). Figure 3.17

provides an example of such analysis.

Because noun phrases and verb phrases usually describe the functionality of an app, we ana-

lyze these phrases to pinpoint the relevant entities. However, as the description is written by

developers and language can be very complicated, doing so can be challenging. In addition,

the device’s context can significantly impact the implications of the entities. To overcome

these difficulties, we design and implement the following process:

• The most straight-forward case is when the description explicitly includes the name of

the entity (e.g., humidity sensors). If so, we match words directly.

• Because of the diversity of language, the first step may not produce meaningful results.

However, even when the description does not contain the device name, the description

77

might contain words that are often used in contexts related to the devices. For example,

the description may mention detecting a flood, which relates to a humidity or moisture

sensor. We identify how related the words used in the description are to the relevant

devices through a word distance model that combines Word2Vec with a language model

trained from Google News [74]. This language model includes word vectors for a

vocabulary of three million words and phrases trained on roughly 100 billion words.

• The most challenging case is when the words in the description are not directly related

to the entity in the security policy we generated from code. To address this issue,

we compare the description to the context clues from code annotations. Consider the

example in Figure 3.18. We first extract the entity “bathroom” (the context clue)

from the annotation for the humidity sensor (capability.relativeHumidityMeasu-

rement), as identified through the code analysis (Section 3.2.4). We only identify

one entity from one annotation for the applications we analyze. This entity is then

compared with the entity “shower” recovered from the description using Word2Vec,

which reveals their semantic relation. In this way, we link “taking a shower” to the

humidity sensor. Similarly, the clue “coffee” is used to relate “coffee machine” in the

description to switch (capability.switch), a device recovered from the code.

Actually, simply connecting the entity from the description to devices in code is insufficient

for determining whether only expected behaviors (as specified in the description) happen.

For example, “lock the door when nobody is at home” and “unlock the door when nobody

is at home” have starkly different security implications. To compare the semantics of an

activity in the description to the operation of a device, we utilize a knowledge-based model.

Specifically, we parse the API documentation of SmartThings to generate the attribute

model and command model, that is, the sets of keywords for attributes and commands that

represent their semantics. Then, we parse the words and phrases in the description connected

to the entity-related word. This can be done by going through the typed-dependencies

78

graph. For example, in Figure 3.18, we have identified that “coffee machine” is an entity,

and we then parse the related phrase for the coffee machine is “turn on.” Such phrases

will be compared with the keywords in the attribute and command models to find matches.

During the matching process, we will first identify exact matches, and if we cannot find an

exact match, we will compare the words in the phrases with the words in the attribute and

command models by word vectors to identify the app’s behaviors.

After comparing the devices actually used in the code to those mentioned in the description,

we also need to know whether the actual control flow matches that of the policy model.

The causal relationship is critical for multi-device management where devices have impacts

on each other. For example, two IoT apps may both ask for access to a door lock, motion

sensor on the door, and presence sensor. A benign app might unlock the door when a family

member is at the door and locks it when someone other than a family member is there. A

malicious app might open the door anytime anyone is there. These two apps use the same

devices, but with different control flows.

To perform causal analysis, we analyze the typed dependencies and build knowledge-based

models of causal relationships. The causal relationships model is built with sentence struc-

tures and conjunctions related to conditional relationships. We apply the initial models to

the descriptions to identify which devices caused other devices to change status. For exam-

ple, the sentence “turn on the light when motion is sensed” represents that motion status is

the cause, and turn on the light is the result. At the end of this process, we obtain verified

behaviors that match in code and descriptions and unexpected behaviors that exhibit a mis-

match. The accuracy of the analysis is in Section 3.2.5.

79

Entity :
Coffee machine
Shower

Description analysis Program analysis

Entity :
Switch
Humidity sensor

Context clue:
Bathroom for the humidity
sensor
Coffee for the switch

Context:
Taking a shower

Action:
Turn on the coffee machine

Context:
Humidity reading > threshold

Action:
Turn on the switch

Triggers Triggers

1

2

3

2

Figure 3.18: We illustrate the three-step policy correlation for the Coffee After Shower app.
1) We apply the context clues “bathroom” and “coffee” for entity correlation. 2) We use
the attribute model and command model to extract and correlate the context and action.
3) We use typed-dependency analysis and causal relationship model to correlate the policies
generated from the description and program analysis.

Authorization Interface Generation

Towards making usability a first-order concern in designing our authorization scheme, we

first conduct an online survey to understand users’ expectations related to IoT app instal-

lation and the overprivilege problem. Using MTurk, we recruit adult participants who have

experience using smartphones. In July 2016, we post surveys with the title “Smarthome

Survey” on Mturk. We tell the participants that the survey is about their understanding

of Smarthome. Participants will be compensated for 0.5 dollars after finishing the survey.

To avoid biasing participants towards fraudulently claiming experience with SmartThings

to participate in the survey, we do not require that participants have used any smarthome

platforms to take the survey. However, we only analyze data from the 31.6% of the survey

participants who have previous experience with SmartThings.

In the survey, we asked about: (1) experience using IoT platforms and demographics, (2)

80

the factors they consider when installing third-party IoT apps, and (3) their perspective

on smarthome capabilities. We received responses from 300 participants who had used

SmartThings, identified by an average age of 30.8 years old (age range is 18-60) with a

gender breakdown of 32% female, 67% male, 1% unknown.

We asked participants to respond on a five-point scale about how much they care about six

factors they might consider when deciding whether or not to install a third-party Smart-

Things app. App functionality (66% (198 out of 300) strongly care, and 24% (72 out of 300)

care) and privacy (57% (171 out of 300) strongly care, and 28% (84 out of 300) care) were

the factors participants stated they cared about most in deciding whether to install an app.

To understand participants’ perspective on smarthome capabilities, we asked participants

to rate the sensitivity of different IoT device functions and to compare the sensitivity of

SmartThings capabilities and Android/iOS permissions. To ensure that participants under-

stood what we meant by smarthome capabilities, we both formally defined the concept and

demonstrated it using an example screen shot from a SmartThings device permission screen.

We asked participants to rate the sensitivity of eight IoT device behaviors on a four-point

scale (“not sensitive:1” to “very sensitive:4”). We find that participants have very different

risk perceptions for different behaviors of the same IoT device. For example, we find the aver-

age sensitivity rating for app’s ability to unlock their door is 3.28, whereas reading the battery

level of their door is only 1.87 (Mann–Whitney U = 21350, n1 = n2 = 300, P < 0.001 two-

tailed). These sharp distinctions highlight the importance of increasing the transparency to

users about what precise behaviors an app will perform in the home, rather than considering

all behaviors for a particular device monolithically. Our approach of automatically iden-

tifying discrepancies between the actual behavior of an app determined through program

analysis and the free-text app descriptions that users generally rely on when considering

whether to install apps [57] better supports these distinctions.

To this point, most research on app permissions has focused on smartphones. As a result,

81

we asked participants to select one of four statements indicating whether they considered

Android/iOS permissions and smarthome capabilities equally sensitive, Android/iOS per-

missions to be more sensitive, smarthome capabilities to be more sensitive, or whether they

were unsure. Suggesting that smarthome capabilities are a crucial area for research progress,

69% (207 out of 300) of participants indicated that they considered smarthome capabilities

to be more sensitive than Android/iOS permissions. Participants provided a free-text expla-

nation of why, and we performed qualitative coding on these responses by two researchers

(agreement rate=90.3%). The leading reason participants found IoT apps more sensitive is

that they perceived the home environment to inherently present greater risks. For exam-

ple, one participant wrote, “smarthome compromises can inflict serious damage or injury.

Imagine being locked in your house, with the heat cranked up. Or an invader monitoring

your location in the house, or studying your patterns. The risk involved in a smartphone

knowing your location or accessing the devices, like reading contents, contacts or accessing

the camera are far more limited in potential effects by an attacker.”

In generating the user interface, we aim to minimize the burden on the user and provide

information that matches the user’s mental model of the system. We rely on a policy

model that links app functionality with authorization. We first automatically summarize

the security policy, removing redundant logic, and then create language models to translate

the security policy into a human-understandable description using state-of-the-art natural

language generation techniques SimpleNLG [75]. SimpleNLG works as realization engine

that generates syntactic structures and linearises them. The newly generated description

explains to the user in natural language what device attributes and commands are being

used, and why. For example, the app monitors the temperature from the temperature sensor

and whether someone is at home by the presence sensor to turn on a heater when it is cold

and someone is home.

We designed our authorization approach to better align users’ expectations with the actual

82

behaviors of smarthome apps, as well as to reduce user burden during the authorization

process. Because many users rely on app descriptions, rather than permissions screens, to

evaluate smartphone apps [57], one way of reducing user burden is to assume that a user

would implicitly grant an app the permission to perform actions stated in the app description.

While any assumption that a user’s actions with an app perfectly follow the user’s intent

is necessarily flawed, prior work on smartphone permissions [57] suggests that assuming a

user would permit an app to perform the behaviors described in its app description is likely

at least as robust as assuming that a user intended to grant the permissions specified on

a permissions screen. We therefore minimize users’ burden by automatically granting the

attributes inferred from the app description. For the attributes that are not described in

the app descripton, we present the user with our automatically generated description of the

policy model rather than the potentially confusing settings that are currently used.

To highlight for users the most potentially risky unexpected behaviors, we design indicators

about the risk levels. We classify behaviors into three categories: verified behaviors that

match the claimed functionality, unexpected behaviors that are not sensitive, and dangerous

behaviors that are unexpected and risky. We determine these risk levels by asking security

experts and average users to rate their perceived risk based on status changes and device

operations. An example authorization interface is shown in Figure 3.16.

Policy Enforcement

Once a user sets his or her policy settings through the user interface, we enforce the policy

end-to-end by blocking unauthorized command and attribute access. Our policy-enforcement

module performs the required filtering operations locally. This module could be integrated

directly into the SmartThings Cloud.

We patched existing SmartApps to interact with our policy enforcement module using REST

APIs as if they were interacting with the SmartThings Cloud. Every command or attribute

83

function call in the patched app is substituted with an equivalent call to the module that

includes the device handler, command or attribute name, and any additional parameters.

After the module processes the request, a return value is sent back to the patched app

and handed to the code that invokes this command or attribute, which is transparent to

the original app. Similarly, the patched app also subscribes to events by connecting to the

enforcement module.

The policy enforcement mechanism starts when the user begins to install a SmartApp. The

user is directed to our enhanced interface to set up the devices used by the app and the

policies that will govern access by the app. This information is transmitted to the policy-

enforcement module to ensure that the app can only access what the user allows. Based on

the policies, the module will make two type of decisions.

• Commands and Attributes: Whenever the module receives a command or attribute

request from a patched app, it will extract the device ID and actions and check the

associated policies from the database to see if the request is allowed by the app for the

specified device. If allowed, the module will forward the request to the cloud service to

execute and respond, after which the module will forward the response to the patched

app. If denied, the request will be dropped and an error message will be returned to

the patched app. We expect that SmartApps will already be designed to handle error

messages, so the denial of requests should not impede normal operation. We further

analyze compatibility in Section 3.2.5.

• Events: Whenever there is an event reported by the SmartThings Cloud, the module

will retrieve the associated app IDs and policies from the database and forward the

event only to the apps that are allowed to access the event according to the app policy.

The module thus blocks all unauthorized subscribe, command, and attribute requests.

84

3.2.5 Evaluation

We evaluate SmartAuth in several dimensions, finding SmarthAuth is effective at automat-

ically extracting security policies, significantly helps users avoid overprivileged apps, and

adds minimal performance overhead when enforcing users’ desired policies.

Effectiveness in Extracting Policies

Our first step is to evaluate SmartAuth’s ability to accurately identify unexpected behaviors.

To this end, we manually analyze the description and the code of the 180 available SmartApps

and compare these manual analyses with the results of the automatic analysis. We first go

through the code to check what capabilities the app request, and the actions the app will take

when certain things happen. Then we check whether these behaviors match the descriptions.

In this process, we do not observe any false negatives, though we identify seven false positives

(3.9%) in which SmartAuth flagged a behavior as unexpected, but manual analysis suggests

the apps’ behaviors match their free-text descriptions.

These false positive cases happen because of the limitations of our NLP techniques. Two of

these cases occur because the apps use a product name to represent a device, but the product

name is not relevant to its functionality. For example, Mini Hue Controller uses the Aeon

Minimote10 input device with SmartThings. Two cases occur because the app referenced

another app to explain its functionality. For example, Keep Me Cozy Two claims that it

“works the same as Keep Me Cozy, but enables you to pick an alternative temperature sensor

in a separate space from the thermostat.” These cases can be improved by named entity

analysis to identify the app they refer to and merge the app’s behavior into the current

analysis. Another case occurs due to complicated logic spread through several sentences,

causing the description to be ambiguous. Two cases occur because the correlation of the

context is not intuitive, even from the human perspective. For example, it is not clear even

10http://aeotec.com/homeautomation

85

http://aeotec.com/homeautomation

for a human to infer that vibration on the floor implies that someone has woken up at night.

Note that we manually analyze the code of the smarthome apps to check whether they access

information that is not needed for their functionality. Because the ground truth is based on

human judgment, we might miss some malicious behaviors, although we have tried our best

to identify them.

Impact on Users

We first describe our user study to evaluate how SmartAuth impacted users’ app-installation

decisions, followed by additional data on the usability of SmartAuth itself.

From September to October 2016, We performed a between-subjects user study in which

we recruit 100 participants from Carnegie Mellon University Silicon Valley, Indiana Univer-

sity Bloomington, and Samsung Mountain view office11. Each participant came to our lab

and used a phone we provided to complete app installation tasks, in addition to answering

questions. We require that participants be adults who regularly use a mobile device and are

knowledgable about home automation systems. The details of the study is in Section A.2.5

of the appendix. We verify participants understand key concepts of smartphones and home

automation using screening questions. For example, we ask them how IoT apps are installed

and what purposes IoT apps serve. We also ask questions about demographics, as well as

questions about their experiences installing IoT apps. The protocol takes around 20 min-

utes. For the 100 participants in our study, their ages ranged from 19 to 41 years with

a mean age of 25.7 years, and 59% of participants reported as male and 41% as female.

The participants have education backgrounds ranging from high school to graduate school

(2% high school, 47% bachelor, 51% graduate degree). 68% of participants have a technical

background (engineers or students in computer science or related field). We carefully avoid

the IoT developers when we recruit in Samsung Mountain view office because they are very

familiar with the system and their results might be biased.
11We got IRB approvals for these experiments.

86

The study’s primary task is choosing IoT apps to install using the phone we provide. For

five different types of IoT apps, the participant chooses between one of two similar apps.

Each of the two apps in a pair has identical functionality, yet only one of the two apps in

a pair is overprivileged. To prevent this difference in permissions from being the obvious

variable of interest, we used apps whose titles and descriptions were roughly comparable.

For example, participants choose between “Lights Off with No Motion and Presence (by

Bruce Adelsman)” that will “Turn lights off when no motion and presence is detected for a

set period of time” and “Darken Behind Me (by Michael Struck)” that will “Turn your lights

off after a period of no motion being observed.” The apps used in the experiment are listed

in the table A.2.

Each participant is randomly assigned into one of two groups, specifying whether they will

see Samsung SmartThings’ authorization interface or SmartAuth while completing all tasks.

For each of the five app-selection tasks, participants saw the app installation page with two

choices. We asked the participant to choose only one of the two apps to install, and to

explain why.

In each of the five app pairs, if users choose among the two relatively similar apps effectively

at random, not realizing that one app is overprivileged, roughly 50% of participants would

choose the overprivileged app. Even though the current Samsung SmartThings authoriza-

tion interfaces shows users a list of the devices the app can access, including potentially

unexpected devices, this current interface did not help users avoid overprivileged apps. For

each of the five tasks, between 48% (24 out of 50) and 60% (30 out of 50) of participants who

saw the current SmartThings interface chose the overprivileged app, as shown in Figure 3.19.

In contrast, between 74% (37 out of 50) and 94% (47 out of 50) of participants who saw

the SmartAuth interface successfully avoided the overprivileged app, differing significantly

from the current SmartThings interface (Holm–Bonferroni corrected χ2, p ≤ .022 for all

five tasks). Note that for two of the tasks (A and B in Figure 3.19), the overprivilege was a

87

0

10

20

30

40

50

60

70

A B C D E

%
 w

h
o

 c
h

o
se

 o
v

e
rp

ri
v

il
e

g
e

d
a

p
p

App-Selection Task

SmartAuth

Samsung

SmartThings

Figure 3.19: For Five tasks, participants chose between two similar IoT apps, one of which
was overprivileged. This graph shows the proportion of participants who chose the over-
privileged app. Similar to what one would expect from random selection, around half of the
participants who saw the Samsung SmartThings interface chose the overprivileged app. In
contrast, only between 6% and 26% of SmartAuth participants chose the overprivileged app.

potentially dangerous behavior (e.g., unlock a door), whereas the overprivilege for tasks C–E

was potentially less risky (e.g., learn the temperature). For the two tasks with dangerous

overprivilege, only 10% (5 out of 50) and 6% (3 out of 50) of SmartAuth participants,

respectively, chose the overprivileged app. In contrast, 48% (24 out of 50) and 56% (28 out

of 50) of participants who saw the current SmartThings interface, respectively, chose the

overprivileged app. Even when they still chose the overprivileged app, we found that many

SmartAuth participants were aware of the overprivilege, yet said they either did not care

about the unexpected behaviors or thought the app might benefit from these behaviors in

the future.

In addition to evaluating SmartAuth’s impact on user behavior, we also measure the us-

ability of SmartAuth itself. In the laboratory study, after users choose among pairs of apps

and answer questions about privacy, we ask questions to elicit their perceptions of what

the interface communicated to them. For some of these questions, participants respond to

88

statements on a five-point Likert scale (from “1: strongly disagree” to “5: strongly agree”).

The first statement gauges the apparent completeness of explanations (“I feel that the app

interface explains thoroughly why the app can access and control these sensors/doors”),

and participants who used SmartAuth were more likely than those who used Samsung

SmartThings to agree (SmartAuth mean 4.06, SmartThings mean 2.40, Mann–Whitney

U = 337.5, n1 = n2 = 50, P < 0.001 two-tailed). The second statement measures the

user’s comfort in making a decision (“I feel confident to make a decision whether or not

to install the app after reading the interface”), and SmartAuth participants were signifi-

cantly more confident in their decisions (SmartAuth mean 4.12, SmartThings mean 2.46,

Mann–Whitney U = 320.5, n1 = n2 = 50, P < 0.001 two-tailed). The third statement

evaluates the perceived difficulty of finding information (“It is difficult to find the informa-

tion from the interface”), and SmartAuth participants were more likely to disagree with this

difficulty, meaning they found it easier (SmartAuth mean 2.72, SmartThings mean 3.56,

Mann–Whitney U = 713, n1 = n2 = 50, P < 0.001 two-tailed).

We also asked open-ended questions about what factors participants consider when deciding

to install an app. Both SmartAuth and Samsung SmartThings participants focused on two

factors in common: functionality and ease of configuration. However, SmartAuth partici-

pants also discussed privacy and unexpected or dangerous behaviors as a major factor. In

comparison, only a single one of the 50 Samsung SmartThings participants pointed out a

mismatch between the description and the Samsung SmartThings authorization screen as a

factor.

Performance and Compatibility

To evaluate the performance impact and ease of deployability for SmartAuth, we collected

all 180 open-source SmartApps in the Samsung SmartThings marketplace at the time of

research. Our experiments demonstrate that SmartAuth is both lightweight and backward

89

compatible.

We ran two performance tests: pre-processing performance (program analysis, description

analysis, behavior correlations, and policy description generation) and run-time performance

(authorization interface generation and policy enforcement). For testing the pre-processing

performance, we analyzed the 180 apps for 10 times each to generate the policy description.

On a 3.1 Ghz Intel Core i7 CPU with 16 GB memory, the pre-processing overhead for an

app is 10.42 seconds on average. Since pre-processing is a one-time cost and can be done

offline, we believe that the performance is reasonable even for vetting a large number of

applications.

For the run-time performance test and compatibility test, we instrumented the SmartApp

to interact with our policy server running on the Amazon EC2 cloud, which enforces the

rules defined by the user. Given our purpose of evaluating the compatibility of our tech-

nique with existing SmartApps, we set the authorization policies (granting permissions to

certain commands, attributes and event handlers) ourselves, instead of letting the user do

that, as would happen in practice. We designed our experiments to test the technique in

the worst-case scenarios. That is, we assume users would reject all unexpected and danger-

ous behaviors, requiring the maximum amount of policy enforcement. To enable large-scale

testing without requiring the purchase of every physical SmartThings device, we used Sam-

sung’s online SmartApp simulator platform12 instead of a mobile device. Instrumented apps

are then installed on the simulator, and their functionalities are tested with simulated IoT

devices.

As shown in Figure 3.20, we recorded the delay incurred by different command, attribute,

and event handler actions. We performed 1800 experiments among the 180 SmartApps on a

cloud server with 3.1 Ghz Intel Core i7 CPU and 1 GB memory. SmartAuth incurs an average

delay of 35.4 msec, which is small relative to the dominant network latency in cloud-based

12https://graph.api.smartthings.com/

90

https://graph.api.smartthings.com/

0

50

100

150

200

250

300

350

400

La
te

n
cy

 i
n

 m
ill

is
e

co
n

d
s

Latency in
Original App

Latency in
Patched App

Figure 3.20: We plot the average delay of various functions in the SmartThings platform.
The darker bar in each pair represents the delay in the unmodified platform with virtual
devices, while the lighter represents the delay in our customized platform with the additional
overhead introduced by SmartAuth. Event handlers incur the highest incremental overhead,
while commands incur the highest proportional overhead (almost double the base case).

IoT platforms.

Next, we test the degree to which SmartAuth policies to mitigate overprivilege and block

third-party remote access impact backward compatibility with existing SmartApps. As with

our performance analysis, we test the worst case of users blocking all unexpected and dan-

gerous behaviors and all remote access. We again test patched apps on Samsung’s online

simulator environment. We trigger events at least five times and insert debug messages into

the modified apps’ source code to observe apps’ behaviors while they gather data from the

cloud or when events have been triggered. To evaluate backward compatibility, we both

observe app behaviors and analyze the debugging messages. For tests related to overpriv-

ilege policy, we focused on the 30 apps that exhibit undisclosed overprivilege according to

the behavior correlation analysis. For the interested reader, these 30 apps are listed as Ta-

ble 3.3. These apps are identified because they either request capabilities not mentioned

91

in their descriptions (unexpected capability), or even worse, request capabilities that could

do harm (e.g., unlocking the door). For example, the Smart Security app presents a de-

scription: “alerts you when there are intruders but not when you just got up for a glass of

water in the middle of the night.” After scanning the source file, this app requests access to

motionSensor, contactSensor, and alarm capabilities, satisfying the description, but also

requests sensitive commands including turning on/off a switch, which is not mentioned in its

description. Therefore, we mark this access as an unexpected behavior. For the remaining

150 apps, we further patch them to comply with our policy enforcement mechanism. Specifi-

cally, apps with coarse capability overprivilege and device-app binding overprivilege are also

constrained to ensure the least privilege.

In our compatibility tests, none of the 180 apps crash after patching when we observe the

apps’ behaviors in the simulators, even with overprivilege security rules enforced. Even after

they are patched to remove overprivilege, the 180 apps behave the same as their original

versions. In other words, patching does not break the functionalities claimed in the app’s

description.

We further test how apps function if we block all third-party remote access, an extreme

case where the user denies all such requests. Of the 180 apps, only six apps suffer from

a loss of valid functionality. For example, Vinli Home Connect allows remote services to

control IoT devices, and this functionality breaks entirely when we block remote access. We

believe such examples will continue to be rather rare, especially when users are given clear

information and useful options to configure the app’s security policy. In addition, we envision

the possibility of a cloud-based reference monitor that could check run-time remote access

and filter out dangerous access, but such a design is beyond the scope of this work.

92

3.2.6 Limitations

Although SmartAuth advances user-centered authorization for the IoT, its design has limita-

tions. A malicious developer could use custom-defined methods and properties whose names

mirror SmartThings commands and attributes, thus fooling the program analysis. A future

version of SmartAuth could better recognize this technique. Our static analysis tool is based

on Groovy AST transformation. If handled correctly, the tool can detect obfuscated logic

(which cannot evade AST transformation), and obfuscated dynamic variable/function names

can be handled with define-use analysis within source code scope. Furthermore, the accuracy

of the NLP analysis depends on the quality of the description. A malicious developer could

try to craft natural-language descriptions for which SmartAuth’s NLP mistakenly extracts a

malicious behavior from the description, even when humans would not perceive that the text

discusses such a behavior. Future work could focus on recognizing these adversarial descrip-

tions. External services like IFTTT could be the future work for our project. Our approach

can be applied if we know the control flow information from IFTTT. External devices, if

they are approved by Samsung, will be included in the capability system and covered by our

project.

In addition, dynamic method invocation from remote servers is a threat that requires future

investigation. However, this is less of a concern because Samsung bans dynamic method

execution through code review [60]. In our compatibility analysis, we triggered different

events at least five times each. While we did not observe any crashes, this is not proof that

crashes will not occur.

Our user studies also have important limitations. While we did not draw attention to

this fact, particularly attentive participants might have recognized that SmartAuth was a

novel interface. This recognition might have biased participants to be complimentary of

an interface they assumed was being tested, as well as to pay particular attention to the

interface in the absence of habituation effects. Furthermore, users will not always have

93

a choice between an overprivileged app and a less privileged variant, and it is an open

question whether users might still install an overprivileged app if it is the only option. We

have one assumption that users will read the app description when they decide to install

apps. However, we did not run a formal user study to verify the assumption. We did observe

in the lab study that most users paid attention to the app description, but it would be

better to verify the assumption formally. Currently, the Smarthome market is still at an

early stage, and most of the users are with a technical background. Many participants in

our lab study have good technical background, which is representative for the current users.

However, when the smarthome systems get much more popular, our participants might not

be representative for future users.

3.3 Related work

In this section, we compare our work with previous work on permission systems, as well as

privacy for social platforms and smarthome.

3.3.1 Improving the Permission Systems in Client OSes

Researchers tried to improve the permission systems. To design better permission systems

that meet users’ expectations, researchers first study users’ expectations [76, 77]. Felt et al.

presented a set of guidelines for requesting permissions in mobile OSes [35], reducing the

number of warnings presented to users. The authors evaluated different user interfaces and

interactions for granting permissions and compared the effects of different user interfaces

on user experience. Based on these experiments, they developed guidelines for building

user interfaces for different permissions. One of our goals in this project is also to reduce

user burden, and we achieve this goal by applying the OOU primitives to further reduce

the number of permissions and prompts. Tiwari et al. developed the “Bubbles” system that

allows a user to define a digital boundary (called a bubble) around the data associated with an

94

event and share information in the unit of a bubble [78]. The authors designed a permission

model for “Bubbles” where a user can specify privacy requirements for each bubble. For

example, a user can specify which other users and applications can access information about

a wedding party. With “Bubbles”, a user can make in-context privacy decisions but also

needs to specify a policy for each bubble, thereby increasing user burden. Compared with

“Bubbles”, our permission model in Somex reduces user burden and still provides more

functionality (context-aware recommendations) by applying the OOU primitives. Roesner et

al. propose user-driven access control for managing resources in client OSes [42]. We advocate

that this technique can also be leveraged in social platforms. Liu et al. propose using users’

privacy profiles generated from permission settings from current apps to recommend privacy

settings for new apps [79]. Researchers implement a package installer that allows users to add

runtime constraints to the permissions [80]. In addition, researchers show that sending user

nudges, especially about information access frequency, are helpful to improve the awareness

of privacy on smartphone [81].

3.3.2 Improving Privacy for Sharing Information with Third-Party

Apps on Social Platforms

Researchers have proposed ways to improve privacy on social platforms. In particular, we

focus on the proposals that aim to improve user privacy when users share information to

third-party apps. Felt et al. studied the top 150 web applications in Facebook app center and

discovered that most applications can provide the desired functionality without accessing

a user’s private data [82]. They then proposed a “privacy-by-proxy” approach to shield

against user identification. This approach uses placeholders for user data and anonymized

user identity in applications. Their work was done in 2007 on Facebook web applications, but

much of Facebook’s functionality has changed, and most apps are now hosted externally. The

original proposal for an opaque display feature only worked for apps hosted on Facebook’s

website, not for today’s mobile apps and externally hosted web apps, while our design of

95

opaque display supports mobile and web apps. Moreover, Felt et al. propose an opaque

handle only for user identity, whereas we can extend the opaque handle to arbitrary context or

even to an abstraction of complex context such as an activity. Our much broader applicability

can encompass an ever-growing amount of context that the applications demand. In addition,

we have a full-fledged implementation of the permission system applying all principles and

many more feature-rich scenarios like Amazon, and knowledge box. Luo et al. propose to

send fake data to social platforms to protect user privacy against social platforms and other

users [83]. The privacy goal of this work is different because the authors consider social

platforms and users as attackers, while our model only considers untrusted applications.

This system also does not support context sharing. Singh et al. implemented information

flow control to protect user data on social platforms [84]. The authors track the usage of

user data and prevent the applications from leaking user information. Their work prevents

abuse of information after the permission is granted, which is orthogonal to our work. In

this project, we focus on providing limited information to applications while still providing

useful functionality. Researchers have proposed many approaches to de-anonymize social

network activities [85, 86]. We design and apply our primitives with special attention to the

privacy side effects, so that malicious applications cannot utilize our scheme to get any extra

information to track use across applications or infer that two users are connected.

Efforts have also been made to build decentralized social networks to protect user privacy.

These papers are generally related to our topic but with a different focus on broader problems

of social network privacy. Baden et al. proposed using attribute-based encryption to protect

user personal data on social networks and enable fine-grained policy for users to control

information sharing [87]. They build a prototype wall posting application that simulates

Facebook’s wall functionality in 2009. Safebook [88] is a decentrailized social network that

builds on the real-life trust between users. We focus on a different, practical, and pressing

problem, the solution to which helps social networks to protect user data from untrusted

third-party applications. Our solution is evaluated systematically in many diversified third-

96

party applications and is effective for modern and emerging social platforms.

3.3.3 Bridging the Gap between User Expectation and App Be-

haviors for Mobile Apps

Many researchers have studied permission systems for mobile devices and propose methods

to bridge the gap between user expectations and app behaviors. While some insights apply

to both domains, the unique features of IoT platforms introduce new security and privacy

challenges. Most similarly to SmartAuth, the Whyper system identifies Android permissions

that might be used from the app’s description [89]. The researchers do an extensive analysis

of app descriptions and match them with permissions, but they do not evaluate the real

security behaviors from the code of the applications. Even for analyzing descriptions, Smar-

tAuth is fundamentally different because Android permissions and APIs have very specific

privacy implications. In contrast, reasoning about implications in the IoT is much more

context-sensitive, necessitating our further use of NLP. Zhang et al. instead analyzed An-

droid apps using static analysis, generating descriptions for the security behaviors in the

applications [90]. These descriptions are helpful for users to understand the app’s behavior.

However, users are burdened with reading the long logs and still need to use the original An-

droid interface to authorize. In contrast, we remove many overprivilege cases automatically,

designing and testing a new scheme that minimizes user burden.

Many approaches build on this prior work. AutoCog [91] compares descriptions with per-

missions requested. AsDroid [92] analyzes the text in the user interface and the current

behavior to see whether it is a stealthy behavior. Appcontext [64] analyzes context that

triggers security behaviors and compares the context among apps to differentiate between

benign and malicious apps. Other researchers compare app behaviors to app descriptions

by clustering applications with similar functionality and finding apps that use uncommon

APIs [93]. Besides mobile permissions, researchers also look into privacy policies to identify

97

privacy inconsistency in the code and the privacy policy [94].

Researchers also study users’ expectations for permissions, focusing on users’ perceived

risks [28, 77]. For example, Egelman et al. investigate users’ perceptions of sensitive data

stored on their phones, including banking information and home address [95]. However, our

study about users’ mental model about IoT permission makes new a contribution because the

perceptions and requirements in IoT platforms are different from mobile platforms. Many

researchers have sought to improve mobile permissions. For example, Liu et al. propose pri-

vacy profiles to ease user burden [79]. Almuhimedi et al. propose information visualization to

improve user awareness of risks [81], Harbach et al. suggest using personal examples to better

explain permission requests [96], and Tan et al. suggest using developer-specified explana-

tions for understanding [97]. Researchers have also provided general guidelines for designing

permission systems [35, 42]. Users’ perceptions of mobile permissions and IoT permissions

share some characteristics. For instance, Wijesekera et al. observe through a field study that

mobile apps sometimes violate contextual integrity by accessing unexpected resources [98].

However, due to the differing privacy and security implications for IoT platforms, SmartAuth

further rethinks the design of authorization systems.

3.3.4 IoT Security and Privacy

IoT security and privacy is an emerging area. Previous research has largely focused on

identifying security and privacy vulnerabilities. Naveed et al. discuss the security binding

problems of smart devices that are external to the mobile phone [65]. Fernandes et al. run

a black-box analysis of Samsung SmartThings, pinpointing the overprivilege problem [56].

We instead reconceptualize overprivilege to be more practical and user-centered. To enhance

security and privacy goals in IoT and home automation systems, FlowFence [99] uses infor-

mation flow control and explicitly isolates sensitive data inside sandboxes. This approach

requires intensive modification to SmartApps, and the evaluation is done on Android in-

stead of a real smarthome system. Jia et al. gather information before executing sensitive

98

actions and ask for user approval through frequent run-time prompts [100]. However, in-

context prompts cannot satisfy the real-time automation of IoT apps (e.g., users need to be

awake to approve when an app needs to alarm the user that there is a fire at night). Users

will likely become habituated to approving these prompts, mistakenly approving unexpected

behaviors. BLE-Guardian [101] controls who can discover, scan, and connect to an IoT in-

terface. CIDS [102] designs an anomaly-based intrusion detection system to detect in-vehicle

attacks by measuring fingerprints from deployed ECUs based on clock behaviors. Sivaraman

et al. propose managing IoT devices through software-defined networking (SDN) based on

day-to-day activities [103].

Beyond framework or architecture solutions, enhancing the security of smart devices is also a

common countermeasure against attacks from remote or near field communication surfaces.

For example, Seda [104] proposed their attestation protocol for embedded devices. Through

software attestation and showing states gathered from booting sequences, Seda can construct

a security model for swarm attestation. Similar approaches to ensure IoT or smart device

integrity [105, 66, 106, 102] complement our system.

Some researchers have also examined IoT privacy from a usability perspective. For example,

Egelman et al. suggest using crowdsourcing to improve IoT devices’ privacy indicators [107].

Further, Ur et al. investigate parents’ and teens’ perspectives on smarthome privacy [108]

and Demiris et al. study seniors’ privacy perspectives for smarthome [109]. In contrast, we

design and user-test a new usable IoT authorization scheme.

99

Table 3.3: Compatibility test results among 30 over privelged SmartApps.

App Unexpected Capability Dangerous Capability Compatible
Alfred Workflow switch lock Not if block re-

mote access
Bright When Dark
And/Or Bright After
Sunset

switchLevel Yes

Camera Power Sched-
uler

switch Yes

Curling Iron motionSensor Yes
Forgiving Security contactSensor, switch alarm, motionSensor Yes
Good Night switch Yes
Jenkins Notifier colorControl switch Yes
Notify Me When button, contactSensor, accel-

erationSensor, presenceSensor,
smokeDetector, waterSensor

motionSensor, switch Yes

Photo Burst When accelerationSensor, contactSen-
sor

imageCapture, motion-
Sensor, switch, presence-
Sensor

Yes

Prempoint imageCapture, switch,
lock, garageDoorControl

Yes

Rise and Shine motionSensor Yes
Safe Watch contactSensor, accelerationSen-

sor, threeAxis, temperatureMea-
surement

motionSensor, presence-
Sensor

Yes

Send HAM Bridge Com-
mand When

contactSensor, accelerationSen-
sor, switch, waterSensor,
smokeDetector

motionSensor, presence-
Sensor

Yes

Simple Control switch, lock, thermostat, door-
Control, colorControl, music-
Player, switchLevel

lock, doorControl Not if block re-
mote access

Smart Light Timer contactSensor motionSensor Yes
Smart Security switch Yes
Smart Windows contactSensor Yes
SmartBlock Notifier switch Yes
Speaker Control contactSensor, accelerationSen-

sor, switch, waterSensor, button
motionSensor, presence-
Sensor

Yes

Speaker Mood Music contactSensor, accelera-
tionSensor, button, waterSen-
sor,musicPlayer

motionSensor, presence-
Sensor, switch

Yes

Sprayer Controller 2 switch Yes
Spruce Scheduler contactSensor Yes
Talking Alarm Clock switchLevel, temperature-

Measurement, thermostat,
relativeHumidityMeasurement

Yes

The Flasher presenceSensor Yes
Turn It On For 5 Min-
utes

contactSensor Yes

Undead Early Warning contactSensor switch Yes
Vinli Home Connect switch,lock Not if block re-

mote access
Virtual Thermostat motionSensor Yes
Weather Windows contactSensor Yes
Whole House Fan contactSensor Yes

100

Chapter 4

Conclusion and Future Work

4.1 Conclusion

Rich user information enables platforms to provide various useful services. However, protect-

ing the security and privacy of user data, especially when functionality conflicts with security

and privacy, is a challenging problem. We observe that current practices do not adequately

solve this conflict; platforms either share information for functionality but violate privacy or

sacrifice functionality for privacy concerns. I propose design principles that enable function-

ality and preserve privacy. Specifically, I use social platforms and smart home platforms as

case studies to demonstrate and implement these design principles.

I identify special challenges for privacy-preserving data sharing and propose solutions to

these challenges for use in different platforms. For the social platforms, I perform a multi-

faceted study of permission models, aiming to design models that provide rich functionality,

privacy preservation, and usability. I evaluate the use of opaque handles, opaque display, and

user-driven access control primitives toward maximizing functionality and usability without

sacrificing privacy. I evaluate the feasibility and efficiency of OOU primitives on Facebook

and find that for 87 primitives that incorporate OOU, 95 out of 117 sensitive permission in-

101

stances can be removed without affecting functionality. I further design a permission model

for the next-generation Somex social platform using the OOU primitives. My design enables

useful functionality, such as context-aware services, by utilizing contexts from different ap-

plications and users without violating privacy. We note that the OOU primitives cannot

address cases that involve computation of the data or cases in which the data access can-

not be made user-driven. I believe that our demonstration of the value of platform-based

mediation of sensitive data will motivate a wealth of future work in this area. For example,

a social platform can analyze common data usage patterns and develop customized opaque

services to further improve the privacy-preserving sharing of sensitive data. For the smart

home platform, I have identified the fundamental gap between how users expect an IoT app

to perform and what really takes place. I rethink the notion of authorization in IoT plat-

forms and propose an automated and usable solution called SmartAuth to bridge the gap.

SmartAuth automatically collects security-relevant information from an IoT app’s code and

description using a combination of program analysis and natural language processing and

generates a user-friendly authorization interface to inform the user of the unexpected app

behaviors. Through manual verification and in-lab human subject studies, I demonstrate

that SmartAuth enables users to make better-informed authorization decisions for IoT apps

compared to the current approach.

4.2 Future Research Directions

The work presented in this study falls into the broad areas of identifying privacy–functionality

conflicts and designing balanced systems. As the platforms and services keep evolving, more

problems will appear.

102

4.2.1 Reliable, Secure and Usable Systems For Emerging Plat-

forms

While working on the mobile OAuth project, I observed that in the computing ecosystem

with multiple players, securely integrating the different components was very challenging. For

example, users were using devices (e.g., smart vehicles, smart watches, drones, and smart

locks) and services (e.g., payment services and third-party apps) from different providers

daily. We need to understand the security implications of each component and their com-

binations to build secure systems. We are facing serious problems, such as how to verify

the security behaviors of automated cars and how to manage security and privacy for smart

cities. I plan to model the security risks for the emerging platforms formally, and then I will

design secure systems that provide the latest techniques and innovations. I will use my pre-

vious experiences in security analysis to understand security risks and design systems that

consider both security and functionality. Additionally, I plan to utilize hardware security

features to dynamically audit the platform and discover security risks. In addition to build-

ing the system, we need to consider the human factors when achieving security and privacy

benefits. We must examine how to minimize the security and privacy risks in the most user-

friendly way, given that minimizing risks through activities like managing sensors at home

can create many burdens for users. While working on the smart home permission design

project, I found that people tend to manage devices according to the context. We want to

build an access control system that organizes the devices via context-based approaches, such

as location, time, and user interaction.

4.2.2 Privacy-Preserving Machine Learning

Machine learning and big data analytics boost the success of many services, such as self-

driving cars, automatic personal assistants, and health-care informatics. While working

on the Facebook application analysis, I observed huge amounts of data collection targeted

103

for machine learning applications. I plan to build a data sharing and machine learning

scheme that processes data in a way that preserves privacy and includes hardware security

guarantees. Specifically, I have started a project that distributes deep neural networks into

sets of executing layers and optimizes the model against an adversary with access to the

parameters to infer the neural networks’ plaintext inputs.

In addition to exploring the machine learning algorithms, I plan to build a platform that

supports such privacy-preserving machine learning applications. I select the IoT platform

for designing the platform support because of the large amount of sensor data generated

and collected in the IoT platform. We want to explore how the fog mediation model can

clarify issues relating to data ownership and data sharing. I plan to address these issues in

two stages. First, we will evaluate approaches for analyzing IoT apps in order to align their

privacy-sensitive operations (e.g., read sensor data and actuate device) with the minimal

subset of privileged permissions required to support a given use case. Secondly, I plan to

design different modes of secure data sharing in the fog-computing context that balance

stakeholders’ data-sharing requirements with application requirements, resulting in a service

manifest that may be independently attested to by each stakeholder.

104

References

[1] J. Constine, Facebook is shutting down its API for giving your friends’ data to Apps,
https://techcrunch.com/2015/04/28/facebook-api-shut-down/, 2015.

[2] D. Bolles, "JOBS WITH FRIENDS" is shutting down, http://www.jobhuntersbible.
com/for-readers-of-parachute/view/jobs-with-friends-is-shutting-down,
2015.

[3] J. Grossman, Breaking browsers: Hacking auto-complete, http://jeremiahgrossman.
blogspot.com/2010/08/breaking- browsers- hacking- auto- complete.html,
2010.

[4] Apple Mailing List, APPLE-SA-2010-07-28-1 Safari 5.0.1 and Safari 4.1.1, http:
//lists.apple.com/archives/security-announce/2010//Jul/msg00001.html,
2010.

[5] Bugs@Mozilla, Bug 527935 - (CVE-2011-0067) untrusted events should not trigger
autocomplete popup, https://bugzilla.mozilla.org/show_bug.cgi?id=527935,
2009.

[6] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site request
forgery”, in Proceedings of the 15th ACM Conference on Computer and Communica-
tions Security, 2008.

[7] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting frame busting: A
study of clickjacking vulnerabilities on popular sites”, in Web 2.0 Security and Pri-
vacy, 2010.

[8] Dakota Shane,What Medium (and all social media platforms) can learn from YouTube’s
aweinspiring success, https://medium.com/the-mission/what-medium-and-all-
social-media-platforms-can-learn-from-youtubes-awe-inspiring-success-
73021179b605, 2017.

[9] Facebook, Login review, https://developers.facebook.com/docs/facebook-
login/review, 2016.

[10] Google, Inc., Incremental authorization, https://developers.google.com/+/web/
api/rest/oauth#incremental-auth, 2017.

[11] Facebook, Permissions reference - Facebook login, https://developers.facebook.
com/docs/facebook-login/permissions/, 2017.

105

https://techcrunch.com/2015/04/28/facebook-api-shut-down/
http://www.jobhuntersbible.com/for-readers-of-parachute/view/jobs-with-friends-is-shutting-down
http://www.jobhuntersbible.com/for-readers-of-parachute/view/jobs-with-friends-is-shutting-down
http://jeremiahgrossman.blogspot.com/2010/08/breaking-browsers-hacking-auto-complete.html
http://jeremiahgrossman.blogspot.com/2010/08/breaking-browsers-hacking-auto-complete.html
http://lists.apple.com/archives/security-announce/2010//Jul/msg00001.html
http://lists.apple.com/archives/security-announce/2010//Jul/msg00001.html
https://bugzilla.mozilla.org/show_bug.cgi?id=527935
https://medium.com/the-mission/what-medium-and-all-social-media-platforms-can-learn-from-youtubes-awe-inspiring-success-73021179b605
https://medium.com/the-mission/what-medium-and-all-social-media-platforms-can-learn-from-youtubes-awe-inspiring-success-73021179b605
https://medium.com/the-mission/what-medium-and-all-social-media-platforms-can-learn-from-youtubes-awe-inspiring-success-73021179b605
https://developers.facebook.com/docs/facebook-login/review
https://developers.facebook.com/docs/facebook-login/review
https://developers.google.com/+/web/api/rest/oauth##incremental-auth
https://developers.google.com/+/web/api/rest/oauth##incremental-auth
https://developers.facebook.com/docs/facebook-login/permissions/
https://developers.facebook.com/docs/facebook-login/permissions/

[12] Twitter, Application permission model, https://dev.twitter.com/oauth/overview/
application-permission-model, 2017.

[13] Facebook, Login review, https://developers.facebook.com/docs/facebook-
login/review, 2017.

[14] Instagram, Permissions review, https://www.instagram.com/developer/review/,
2017.

[15] Google, Change your Google+ Sign-In settings, https://support.google.com/
plus/answer/2980770, 2016.

[16] Facebook, Requesting and revoking permissions, https://developers.facebook.
com/docs/facebook-login/permissions/requesting-and-revoking, 2016.

[17] ——, Facebook platform changelog, https://developers.facebook.com/docs/
apps/changelog, 2016.

[18] Stackoverflow, Facebook graph API v2.0+ /me/friends returns empty, http://goo.
gl/f6QDyX, 2015.

[19] Torbjorn Nilsen, Petitioning Facebook:change the way permissions work in Facebook
API, https://www.change.org/p/facebook- change- the- way- permissions-
work-in-facebook-api, 2015.

[20] E. Vela, CSS attribute reader proof of concept, http://eaea.sirdarckcat.net/
cssar/v2/, 2011.

[21] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk, “Scriptless attacks:
Stealing the pie without touching the sill”, in Proceedings of the 2012 ACM conference
on Computer and Communications Security, ACM, 2012, pp. 760–771.

[22] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji, “SOMA: Mutual approval
for included content in web pages”, in Proceedings of the 15th ACM conference on
Computer and Communications Security, 2008.

[23] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson, “App isolation: Get the security
of multiple browsers with just one”, in Proceedings of the 18th ACM conference on
Computer and communications security, ACM, 2011, pp. 227–238.

[24] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter, “The
multi-principal OS construction of the gazelle web browser”, in Proceedings of 18th
USENIX Security Symposium, 2009, pp. 417–432.

[25] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy, “A safety-oriented plat-
form for web applications”, in Proceedings of 27th IEEE Symposium on Security and
Privacy, IEEE, 2006, 15–pp.

[26] Z. Mao, N. Li, and I. Molloy, “Defeating cross-site request forgery attacks with
browser-enforced authenticity protection”, in Financial Cryptography and Data Secu-
rity, Springer, 2009, pp. 238–255.

[27] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence in smart-
phone security and privacy”, in Proceedings of 8th Symposium on Usable Privacy and
Security, 2012.

106

https://dev.twitter.com/oauth/overview/application-permission-model
https://dev.twitter.com/oauth/overview/application-permission-model
https://developers.facebook.com/docs/facebook-login/review
https://developers.facebook.com/docs/facebook-login/review
https://www.instagram.com/developer/review/
https://support.google.com/plus/answer/2980770
https://support.google.com/plus/answer/2980770
https://developers.facebook.com/docs/facebook-login/permissions/requesting-and-revoking
https://developers.facebook.com/docs/facebook-login/permissions/requesting-and-revoking
https://developers.facebook.com/docs/apps/changelog
https://developers.facebook.com/docs/apps/changelog
http://goo.gl/f6QDyX
http://goo.gl/f6QDyX
https://www.change.org/p/facebook-change-the-way-permissions-work-in-facebook-api
https://www.change.org/p/facebook-change-the-way-permissions-work-in-facebook-api
http://eaea.sirdarckcat.net/cssar/v2/
http://eaea.sirdarckcat.net/cssar/v2/

[28] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android permis-
sions: User attention, comprehension, and behavior”, in Symposium on Usable Privacy
and Security, ACM, 2012, pp. 3–17.

[29] P. G. Kelley, L. F. Cranor, and N. Sadeh, “Privacy as part of the app decision-making
process”, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM, 2013, pp. 3393–3402.

[30] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demys-
tified”, in Proceedings of the 18th ACM conference on Computer and Communications
Security, ACM, 2011, pp. 627–638.

[31] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution in the an-
droid ecosystem”, in Proceedings of the 28th Annual Computer Security Applications
Conference, ACM, 2012, pp. 31–40.

[32] J. Jung, S. Han, and D. Wetherall, “Short paper: Enhancing mobile application per-
missions with runtime feedback and constraints”, in ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, ACM, 2012, pp. 45–50.

[33] S. Motiee, K. Hawkey, and K. Beznosov, “Do Windows users follow the principle of
least privilege?: investigating user account control practices”, in Proceedings of the
6th Symposium on Usable Privacy and Security, ACM, 2010, p. 1.

[34] K.-P. Yee, “Aligning security and usability”, IEEE Security & Privacy, vol. 2, no. 5,
pp. 48–55, 2004.

[35] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner, “How to ask for
permission”, in USENIX Conference on Hot Topics in Security, 2012.

[36] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer, “Social phishing”,
Communications of the ACM, vol. 50, no. 10, pp. 94–100, 2007.

[37] A. L. Young and A. Quan-Haase, “Information revelation and internet privacy con-
cerns on social network sites: A case study of Facebook”, in Proc. International Con-
ference on Communities and technologies, ACM, 2009, pp. 265–274.

[38] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove, “Analyzing Facebook
privacy settings: user expectations vs. reality”, in ACM SIGCOMM Conference on
Internet Measurement Conference, ACM, 2011, pp. 61–70.

[39] N. Wang, H. Xu, and J. Grossklags, “Third-party apps on Facebook: privacy and
the illusion of control”, in ACM Symposium on Computer Human Interaction for
Management of Information Technology, ACM, 2011, p. 4.

[40] R. Gross and A. Acquisti, “Information revelation and privacy in online social net-
works”, in Proceedings of the ACM Workshop on Privacy in the Electronic Society,
ACM, 2005, pp. 71–80.

[41] P. Wisniewski, H. Xu, H. Lipford, and E. Bello-Ogunu, “Facebook apps and tagging:
The trade-off between personal privacy and engaging with friends”, Journal of the
Association for Information Science and Technology, vol. 66, no. 9, pp. 1883–1896,
2015.

107

[42] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan, “User-
driven access control: Rethinking permission granting in modern operating systems”,
in Proceedings of the 33th IEEE Symposium on Security and Privacy, 2012.

[43] H. J. Wang, A. Moshchuk, M. Gamon, S. Iqbal, E. T. Brown, A. Kapoor, C. Meek, E.
Chen, Y. Tian, J. Teevan, M. Czerwinski, and S. Dumais, “The activity platform”, in
15th Workshop on Hot Topics in Operating Systems (HotOS XV), Kartause Ittingen,
Switzerland: USENIX Association, May 2015. [Online]. Available: http://blogs.
usenix.org/conference/hotos15/workshop-program/presentation/wang.

[44] W3C, Frames, http://www.w3.org/TR/html401/present/frames.html, 2014.
[45] F. Roesner and T. Kohno, “Securing embedded user interfaces: Android and beyond.”,

in Proceedings of 22nd USENIX Security Symposium, 2013, pp. 97–112.
[46] Facebook, Comments plugin, https://developers.facebook.com/docs/plugins/

comments/, 2016.
[47] D. Chereches, This project was discontinued, https://github.com/loadrunner/

Facebook-Contact-Sync, 2017.
[48] Facebook, Creating action types, https : / / developers . facebook . com / docs /

opengraph/creating-custom-stories/#actiontypes, 2014.
[49] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic

encryption over the integers”, in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2010, pp. 24–43.

[50] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, Machine learning classification over
encrypted data, Cryptology ePrint Archive, Report 2014/331, http://eprint.iacr.
org/2014/331, 2014.

[51] SmartThings, Inc., Samsung SmarThings, https://www.smartthings.com/, 2016.
[52] Google, Inc., Weave, https://developers.google.com/weave/, 2016.
[53] ——, Brillo, https://developers.google.com/brillo/, 2016.
[54] Apple, Inc., Apple HomeKit, http://www.apple.com/ios/home/, 2016.
[55] SmartThings, Inc., SmartThings marketplace, https://support.smartthings.com/

hc/en-us/articles/205379924-Marketplace, 2016.
[56] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home

applications”, in Proceedings of the 37th IEEE Symposium on Security and Privacy,
2016.

[57] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and D. Wetherall, “A
conundrum of permissions: Installing applications on an Android smartphone”, in
International Conference on Financial Cryptography and Data Security, 2012.

[58] P. G. Kelley, L. F. Cranor, and N. Sadeh, “Privacy as part of the app decision-making
process”, in ACM SIGCHI Conference on Human Factors in Computing Systems,
2013.

108

http://blogs.usenix.org/conference/hotos15/workshop-program/presentation/wang
http://blogs.usenix.org/conference/hotos15/workshop-program/presentation/wang
http://www.w3.org/TR/html401/present/frames.html
https://developers.facebook.com/docs/plugins/comments/
https://developers.facebook.com/docs/plugins/comments/
https://github.com/loadrunner/Facebook-Contact-Sync
https://github.com/loadrunner/Facebook-Contact-Sync
https://developers.facebook.com/docs/opengraph/creating-custom-stories/##actiontypes
https://developers.facebook.com/docs/opengraph/creating-custom-stories/##actiontypes
http://eprint.iacr.org/2014/331
http://eprint.iacr.org/2014/331
https://www.smartthings.com/
https://developers.google.com/weave/
https://developers.google.com/brillo/
http://www.apple.com/ios/home/
https://support.smartthings.com/hc/en-us/articles/205379924-Marketplace
https://support.smartthings.com/hc/en-us/articles/205379924-Marketplace

[59] H. Nissenbaum, “Privacy as contextual integrity”, Wash. L. Rev., vol. 79, p. 119,
2004.

[60] SmartThings, Inc., SmarThings code review guidelines, http://docs.smartthings.
com/en/latest/code-review-guidelines.html, 2017.

[61] Juniper Research, Smarthome revenues to reach $100 Billion by 2020, https://
www.juniperresearch.com/press/press-releases/smart-home-revenues-to-
reach-$100-billion-by-2020, 2008–2016.

[62] Vera Ltd., Vera: Smarter home control, http://getvera.com/, 2008–2016.
[63] H. M. Levy, Capability-based computer systems. Digital Press, 2014.
[64] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, andW. Enck, “Appcontext: Differentiating

malicious and benign mobile app behaviors using context”, in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, IEEE, vol. 1, 2015, pp. 303–
313.

[65] M. Naveed, X.-y. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “Inside job:
Understanding and mitigating the threat of external device mis-binding on Android”,
in Proceedings of the Network and Distributed System Security Symposium (NDSS’14),
2014.

[66] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad, “Proposed embedded security
framework for internet of things (IoT)”, in Wireless Communication, Vehicular Tech-
nology, Information Theory and Aerospace & Electronic Systems Technology (Wireless
VITAE), 2011 2nd International Conference on, IEEE, 2011, pp. 1–5.

[67] Y. Goldberg and O. Levy, “Word2vec explained: Deriving Mikolov et al.’s negative-
sampling word-embedding method”, arXiv preprint arXiv:1402.3722, 2014.

[68] G. A. Miller, “Wordnet: A lexical database for english”, Communications of the ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[69] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness using wikipedia-
based explicit semantic analysis.”, in International Joint Conference on Artifical In-
telligence, 2007, pp. 1606–1611.

[70] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky,
“The stanford corenlp natural language processing toolkit.”, in ACL (System Demon-
strations), 2014, pp. 55–60.

[71] S. N. Group, The Stanford Parser: A statistical parser, http://nlp.stanford.edu/
software/lex-parser.shtml, 2002.

[72] SmartThings, Inc., SmarThings public, https://github.com/SmartThingsCommunity/
SmartThingsPublic, 2016.

[73] C. D. Manning, Dropping common terms: stop words, http://nlp.stanford.edu/
IR-book/html/htmledition/dropping-common-terms-stop-words-1.html, 2016.

[74] Google, Inc.,Google News Vectors, https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM,
2016.

109

http://docs.smartthings.com/en/latest/code-review-guidelines.html
http://docs.smartthings.com/en/latest/code-review-guidelines.html
https://www.juniperresearch.com/press/press-releases/smart-home-revenues-to-reach-$100-billion-by-2020
https://www.juniperresearch.com/press/press-releases/smart-home-revenues-to-reach-$100-billion-by-2020
https://www.juniperresearch.com/press/press-releases/smart-home-revenues-to-reach-$100-billion-by-2020
http://getvera.com/
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
http://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM

[75] SimpleNLG, SimpleNLG, https://github.com/simplenlg/simplenlg, 2016.
[76] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang, “Expectation and

purpose: Understanding users’ mental models of mobile app privacy through crowd-
sourcing”, in Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
ACM, 2012, pp. 501–510.

[77] A. P. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems, but vibration ain’t one:
A survey of smartphone users’ concerns”, in Proceedings of the second ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, ACM, 2012, pp. 33–44.

[78] M. Tiwari, P. Mohan, A. Osheroff, H. Alkaff, E. Shi, E. Love, D. Song, and K.
Asanović, “Context-centric security”, in USENIX Conference on Hot Topics in Secu-
rity, USENIX Association, 2012, pp. 9–9.

[79] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy and usability on smart-
phones: Could user privacy profiles help?”, in Proceedings of the 23rd International
Conference on World Wide Web, ACM, 2014, pp. 201–212.

[80] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android permission model
and enforcement with user-defined runtime constraints”, in Proceedings of the 5th
ACM Symposium on Information, Computer and Communications Security, ACM,
2010, pp. 328–332.

[81] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck, L. F. Cranor,
and Y. Agarwal, “Your location has been shared 5,398 times!: A field study on mobile
app privacy nudging”, in Proceedings of the 33rd annual ACM conference on human
factors in computing systems, ACM, 2015, pp. 787–796.

[82] A. Felt and D. Evans, “Privacy protection for social networking APIs”, Web 2.0
Security and Privacy, 2008.

[83] W. Luo, Q. Xie, and U. Hengartner, “Facecloak: An architecture for user privacy on
social networking sites”, in International Conference on Computational Science and
Engineering, IEEE, vol. 3, 2009, pp. 26–33.

[84] K. Singh, S. Bhola, and W. Lee, “xBook: Redesigning Privacy Control in Social
Networking Platforms”, in Proceedings of 18th USENIX Security Symposium, 2009,
pp. 249–266.

[85] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A practical attack to de-anonymize
social network users”, in Proceedings of the 31st IEEE Symposium on Security and
Privacy, IEEE, 2010, pp. 223–238.

[86] A. Narayanan and V. Shmatikov, “De-anonymizing social networks”, in Proceedings
of the 30th IEEE Symposium on Security and Privacy, IEEE, 2009, pp. 173–187.

[87] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin, “Persona: An online
social network with user-defined privacy”, in ACM SIGCOMM Computer Communi-
cation Review, ACM, vol. 39, 2009, pp. 135–146.

[88] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving online so-
cial network leveraging on real-life trust”, IEEE Communications Magazine, vol. 47,
no. 12, 2009.

110

https://github.com/simplenlg/simplenlg

[89] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards automating
risk assessment of mobile applications”, in Proceedings of the 22nd USENIX Security
Symposium, 2013, pp. 527–542.

[90] M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic generation of security-
centric descriptions for Android apps”, in ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2015, pp. 518–529.

[91] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog: Measuring
the description-to-permission fidelity in Android applications”, in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, ACM,
2014, pp. 1354–1365.

[92] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid: Detecting stealthy
behaviors in Android applications by user interface and program behavior contradic-
tion”, in International Conference on Software Engineering, ACM, 2014, pp. 1036–
1046.

[93] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior against app
descriptions”, in Proceedings of the 36th International Conference on Software Engi-
neering, ACM, 2014, pp. 1025–1035.

[94] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson, N. Sadeh, S.
Bellovin, and J. Reidenberg, “Automated analysis of privacy requirements for mobile
apps”, in Proceedings of the Network and Distributed System Security Symposium
(NDSS’2017), 2017.

[95] S. Egelman, S. Jain, R. S. Portnoff, K. Liao, S. Consolvo, and D. Wagner, “Are you
ready to lock?”, in ACM SIGSAC Conference on Computer and Communications
Security, ACM, 2014, pp. 750–761.

[96] M. Harbach, M. Hettig, S. Weber, and M. Smith, “Using personal examples to improve
risk communication for security and privacy decisions”, in ACM SIGCHI Conference
on Human Factors in Computing Systems, 2014.

[97] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thompson, S. Egelman,
and D. Wagner, “The effect of developer-specified explanations for permission requests
on smartphone user behavior”, in ACM SIGCHI Conference on Human Factors in
Computing Systems, 2014.

[98] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and K. Beznosov,
“Android permissions remystified: A field study on contextual integrity”, in Proceed-
ings of 24th USENIX Security Symposium, 2015.

[99] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash,
“Flowfence: Practical data protection for emerging iot application frameworks”, in
Proceedings of the 25th USENIX Security Symposium, 2016.

[100] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, A. Prakash,
and S. J. Unviersity, “ContexIoT: Towards providing contextual integrity to appified
IoT platforms”, 2017.

111

[101] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of BLE device users”, in
Proceedings of 25th USENIX Security Symposium, USENIX Association, 2016.

[102] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for vehicle in-
trusion detection”, in Proceedings of 25th USENIX Security Symposium, USENIX
Association, 2016.

[103] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and O. Mehani, “Network-
level security and privacy control for smart-home IoT devices”, in 2015 IEEE 11th
International Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), IEEE, 2015, pp. 163–167.

[104] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter, G. Tsudik, and C.
Wachsmann, “Seda: Scalable embedded device attestation”, in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, ACM, 2015,
pp. 964–975.

[105] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl, “Tytan:
Tiny trust anchor for tiny devices”, in Proceedings of ACM/EDAC/IEEE Design
Automation Conference (DAC), IEEE, 2015, pp. 1–6.

[106] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi, and
G. Tsudik, “C-flat: Control-flow attestation for embedded systems software”, arXiv
preprint arXiv:1605.07763, 2016.

[107] S. Egelman, R. Kannavara, and R. Chow, “Is this thing on?: Crowdsourcing privacy
indicators for ubiquitous sensing platforms”, in ACM SIGCHI Conference on Human
Factors in Computing Systemss, ACM, 2015, pp. 1669–1678.

[108] B. Ur, J. Jung, and S. Schechter, “Intruders versus intrusiveness: Teens’ and par-
ents’ perspectives on home-entryway surveillance”, in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, ACM, 2014,
pp. 129–139.

[109] G. Demiris, “Privacy and social implications of distinct sensing approaches to im-
plementing smart homes for older adults”, in Annual International Conference on
Engineering in Medicine and Biology Society, IEEE, 2009, pp. 4311–4314.

112

A Supplemental Materials

A.1 Supplemental Materials for the Study on Face-
book Permission

A.1.1 Facebook Login Permission Details

In table A.1, I provide the information about Facebook login permissions. Specifically, I pro-
vide the information whether the permissions enable an app to access content in the future,
and whether the app needs to be reviewed to use the permissions [13]. To determine the
future content access, I go through the Facebook permission documents [11] to understand
what an app can do with a permission.

A.1.2 Survey for Users’ Mental Model about Facebook Permis-
sions

We ran user studies for users’ expectations about Facebook Permissions. We post surveys
about Facebook permissions with a title of “Facebook user experience survey” in Mturk.
We told users that we would ask their experiences about using Facebook. In the survey, we
asked the participants to answer our questions regarding their understanding of Facebook
permissions. For example, we asked them questions about what they think certain permis-
sions will allow the app to do. The survey took approximately 20 minutes, and the results
were collected via Mturk. Participants must be older than 18, be literate in English, and
use a Facebook account frequently. Each participant was paid 0.5 dollar for the survey. The
study was done in October 2014. The recruitment message was as follows:

We are a group of students in Carnegie Mellon University, doing research about Facebook
permissions. If you have used Facebook for at least 1 month and shared content on Facebook
before and you are an adult(18 years or older) living in the US, you would be very helpful to
our study. The survey takes about 30 minutes to finish. We will not collect any identification
data from you during the survey. Thanks!

Please read the consent form [Link to the consent form]

Please follow this link to the survey (Please only continue if you read and agree to the consent
form). [Link to the survey]

113

If a user agrees to do the survey, we will instruct the user to click on the link to the survey
hosted on Instant.ly to finish the survey to get a code, and then come back to Mturk to enter
the code.

We attach the survey on the following pages.

114

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 1/9

New Survey for Facebook Permission Expectations

Page 1

Q1: DESCRIPTIVE TEXT

Attention: Please make sure that you are qualified for this survey:
* You must be a Facebook user.
* You must have used Facebook for at least 1 month and shared content on Facebook.
* Your must be an adult, live in the USA and literate in English.

Q2: SINGLE-SELECT LIST

1.Do you have a Facebook account?

1 Yes
2 No

Q3: SINGLE-SELECT LIST

2. How long approximately have you been using Facebook?

1 1-6 months
2 6-12 months
3 1-3 years
4 3 and more years

Q4: SINGLE-SELECT LIST

3. Groupon is an app for searching deals. The following figure shows that Groupon asks to
access your status when you log into Groupon with Facebook account. Do you expect

Groupon to read your status anytime in the future?

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 2/9

1 Yes
2 No
3 I don't know

Q5: SINGLE-SELECT MATRIX

4. Groupon can read all the posts of your Facebook status in the future, including all the
content posted by your friends or shared by other applications, how comfortable do you feel
with it?

Very
comfortable

Somewhat
comfortable

Neutral
Somewhat
uncomfortable

Very
uncomfortable

I
don't
know

Comfort
level

Q6: SINGLE-SELECT LIST

5. Pandora is a music app. The following figure shows that Pandora asks to access the
pages you liked when you log into Pandora with Facebook account. Do you expect
Groupon to read your likes anytime in the future?

1 Yes
2 No
3 I don't know

Q7: SINGLE-SELECT MATRIX

6. Pandora can read all the likes in the future, how comfortable do you feel with it?

Very
comfortable

Somewhat
comfortable

Neutral
Somewhat
uncomfortable

Very
uncomfortable

I
don't
know

Comfort
level

Q8: SINGLE-SELECT LIST

7. Some apps will ask your permission to post to your timeline when you log into the apps
with Facebook. The following figure shows SlideShare asking your approval to post to your
timeline, who do you think the post will be visible to?

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 3/9

1 Public
2 All the Facebook users
3 All your Facebook friends
4 Your Facebook friends who use the same app
5 Some group of your Facebook friends
6 Only yourself

Q9: SINGLE-SELECT LIST

8. If you log into SlideShare with Facebook, do you expect SlideShare to post to your
timeline without your consensus?

1 Yes
2 No
3 I don't know

Q10: SINGLE-SELECT MATRIX

9. SlideShare could post to your timeline without your consensus after you log into
SlideShare with Facebook. How comfortable do you feel with it?

Very
comfortable

Somewhat
comfortable

Neutral
Somewhat
uncomfortable

Very
uncomfortable

I
don't
know

Comfort
level

Q11:

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 4/9

Q11: SINGLE-SELECT LIST

10. Some apps and websites provide a share button where you can choose what content
you want to share. The first figure demonstrates the share button on CNN.com and the
second figure shows that you are asked to confirm sharing the news after clicking the share
button. Who do you think the news will be shared to?

1 Public
2 All the Facebook users
3 All your Facebook friends
4 Your Facebook friends who use the same app
5 Some group of your Facebook friends
6 Only yourself

Q12: SINGLE-SELECT MATRIX

11. CNN will not share anything to your timeline unless you click the share button. How
comfortable do you feel with it?

Very
comfortable

Somewhat
comfortable

Neutral
Somewhat
uncomfortable

Very
uncomfortable

I
don't
know

Comfort
level

Q13: SINGLE-SELECT LIST

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 5/9

12. Which way of posting to your timeline do you prefer?
SlideShare: ask only at the first time you log in with Facebook and share content in the
future without your confirmation
CNN: you can choose what to share anytime and confirm before sharing

1 SlideShare
2 CNN
3 I don't like either

Q14: SINGLE-SELECT LIST

13. When some apps ask your permission to read your Facebook content, they also provide
you a way to edit what information you want to share. As is shown in the figure, you can
edit whether to share friend list, etc to the app. Will you spend time editing the content?

1 Yes
2 No
3 Sometimes

Q15: SINGLE-SELECT MATRIX

14. GoodRead is an app which provide book reviews, recommendations and discussions. If
you log into GoodRead with Facebook and you see a prompt as illustrated below, how

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 6/9

comfortable do you feel with allowing GoodRead to access these information?

Very
comfortable

Somewhat
comfortable

Neutral
Somewhat
uncomfortable

Very
uncomfortable

I
don't
know

Comfort
level

Q16: SINGLE-SELECT MATRIX

15. If you log into GoodRead with Facebook and you see a prompt as illustrated below
(more permissions than the previous prompt), how comfortable do you feel with allowing

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 7/9

GoodRead to access these information?

Very
comfortable

Somewhat
comfortable

Neutral
Somewhat
uncomfortable

Very
uncomfortable

I
don't
know

Comfort
level

Q17: SINGLE-SELECT LIST

16. Do you expect an application/web site (e.g., TripAdvisor) to be able to access the
content shared by another application/website (e.g., Yelp)?

1 Yes
2 No
3 I don't know

Q18: SINGLE-SELECT MATRIX

17. If TripAdvisor can only access all the content from Yelp through Facebook, no matter
what the content is about(could be very sensitive) , how comfortable do you feel with it?

Very
comfortable

Somewhat
comfortable

Neutral
Somewhat
uncomfortable

Very
uncomfortable

I
don't
know

Comfort
level

Q19:

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 8/9

Q19: SINGLE-SELECT MATRIX

18. If TripAdvisor can only access content about the same trip from Yelp through
Facebook, TripAdvisor will not access extra information. How comfortable do you feel with
it?

Very
comfortable

Somewhat
comfortable

Neutral
Somewhat
uncomfortable

Very
uncomfortable

I
don't
know

Comfort
level

Q20: SINGLE LINE TEXT

19. What's your age?

Q21: SINGLE-SELECT LIST

20. What is your gender?

1 Female
2 Male
3 Decline to answer

Q22: SINGLE-SELECT LIST

21. What is your highest education level of education you have completed?

1 No high school
2 Some high school
3 High school graduate
4 Some college - No degree
5 Associates / 2 year degree
6 Bachelor / 4 year degree
7 Graduate degree - Master, PhD, professional, medicine, etc

Q23: DROP DOWN LIST

22. Which of the following best describes your primary occupation(Drop-down list)?

1 Administrative support (e.g., secretary, assistant)
2 Art, writing, or journalism (e.g., author, reporter, sculptor)
3 Business, management, or financial (e.g., manager, accountant, banker)
4 Computer engineer or IT professional (e.g., systems administrator, programmer, IT
consultant)
5 Education (e.g., teacher)
6 Engineer in other fields (e.g., civil engineer, bio-engineer)
7 Homemaker

8/10/2017 Print New Survey for Facebook Permission Expectations | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/54496d41e4b0de54b32b25fe/print 9/9

8 Legal (e.g., lawyer, law clerk)
9 Medical (e.g., doctor, nurse, dentist)
10 Retired
11 Scientist (e.g., researcher, professor)
12 Service (e.g., retail clerks, server)
13 Skilled labor (e.g., electrician, plumber, carpenter)
14 Student
15 Unemployed
16 Decline to answer
17 Other

Thank You Page

Thank you for participating!
We greatly value your opinion.
Your survey code is "newFacebook", please go back to Mturk survey page and input the survey
code.

Table A.1: Facebook login permission details

Permission Access
Future
Con-
tent?

Need
Re-
view?

Permission Access
Future
Con-
tent?

Need
Re-
view?

public_profile No No user_religion_politics Yes Yes
user_friends Yes No user_status Yes Yes
email No No user_tagged_places Yes Yes
user_about_me No Yes user_videos Yes Yes
user_acitivites Yes Yes user_website No Yes
user_actions.books Yes Yes user_work_history No Yes
user_actions.fitness Yes Yes read_friendlists No Yes
user_actions.music Yes Yes read_insights Yes Yes
user_actions.news Yes Yes read_audience_network_ingights Yes Yes
user_actions.video Yes Yes read_page_mailbox Yes Yes
user_actions: (app_namespace) Yes Yes read_mailboxes Yes Yes
user_birthday No Yes read_stream Yes Yes
user_education_history No Yes manage_pages Yes Yes
user_events Yes Yes manage_notifications Yes Yes
user_groups Yes Yes publish_actions Yes Yes
user_games_activity Yes Yes rsvp_event Yes Yes
user_hometown No Yes pages_manage_instant_articles No Yes
user_interests No Yes ads_read Yes Yes
user_likes Yes Yes ads_management Yes Yes
user_location Yes Yes business_management Yes Yes
user_managed_groups Yes Yes pages_messaging Yes Yes
user_photos Yes Yes pages_messaging_payments Yes Yes
user_relationships Yes Yes pages_messaging_phone_number Yes Yes
user_relationship_details Yes Yes

A.2 Supplemental Materials for the Study on Smarthome
Authorization Systems

A.2.1 Survey for Users’ Mental Model about Smarthome Permis-
sion

In July 2016, we post surveys with the title “Smarthome Survey” on Mturk. The recruitment
message is as follows:

We are a group of students in Carnegie Mellon University, doing research about Smarthome.
If you have used Smarthome products or have knowledge about how Smarthome works and
you are an adult(18 years or older) living in the US, you would be very helpful to our study.
The survey takes about 30 minutes to finish. We will not collect any identification data from
you during the survey. Thanks!

Please read the consent form [Link to the consent form]

Please follow this link to the survey (Please only continue if you read and agree to the consent

124

form). [Link to the survey]

If a user agrees to do the survey, we will instruct the user to click on the link to the survey
hosted on Instant.ly to finish the survey to get a code, and then come back to Mturk to enter
the code.

In the following, I attach a copy of the survey that we distributed to evaluate users’ expec-
tations for Smarthome permissions.

125

8/10/2017 Print Smarthome User Study 2 | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/57ea125de4b0b125de6f8c41/print 1/7

Smarthome User Study 2

Page 1

Q1: SINGLE-SELECT LIST

Do you own a smartphone (phone / tablet)?

1 Yes
2 No

Q2: SINGLE-SELECT LIST

Do you know how to use a smartphone to control smart devices?

1 Yes
2 No

Q3: SINGLE-SELECT LIST

Smartthing is a mobile app that allows you to install third-party apps to manage
your smart devices at home. For example, you can install an app "Keep me
cozy" to control your air conditioner according to the temperature. Have you

8/10/2017 Print Smarthome User Study 2 | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/57ea125de4b0b125de6f8c41/print 2/7

used Smartthing before?

1 Yes
2 No

Page 2

Q4: DESCRIPTIVE TEXT

Third-party app you install with Smartthing will request to access some of your
devices. Please read the UI to answer the following questions.

8/10/2017 Print Smarthome User Study 2 | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/57ea125de4b0b125de6f8c41/print 3/7

Q5: COMMENT BOX

Please describe, to the best of your knowledge, what "Smarthome Capabilities"
are

Q6: DESCRIPTIVE TEXT

Smarthome capabilities represent the access to the devices in the
smarthome. For example, an app can request the montionsensor capability to
access the montion sensor.

Q7:

8/10/2017 Print Smarthome User Study 2 | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/57ea125de4b0b125de6f8c41/print 4/7

Q7: SINGLE-SELECT MATRIX

What factors will you consider when making decision of whether install a third
party app or not? And please indicate how much you care on each factor that
you will consider.

Strongly
care

Care
Neither
care or
not care

Not
care

Strongly
not care

The source / author of the
app

The popularity of the app

The functionality of the app

The privacy aspect of the app

The smarthome capabilities
that the app request

The relation of capability
requests to the app's
functionality

Others

Q8: COMMENT BOX

What is the other factors that you consider when you install a third party app?

Page 3

Q9: SINGLE-SELECT MATRIX

Third-party apps can access devices in the smart home after they are installed.
Please rate the risk levels of the different behaviors to access devices:

Very
sensitive

Sensitive
Slightly
sensitive

Not
sensitive

Lock your door

8/10/2017 Print Smarthome User Study 2 | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/57ea125de4b0b125de6f8c41/print 5/7

Unlock your door

Read the input of your door
lock

Read the battery level

Read your motion sensor

Control your water pump

Turn on/off your light

Adjust the level of your light

Q10: SINGLE-SELECT LIST

Currently, once you select a lock to share to your smarthome third-party app,
you give the app the capability to lock/unlock the door, read the input and all the
other aspects to read or control the lock, do you hope to grant the app only part
of the capability, for example, only to read the lock's status instead of unlock the
lock?

1 Yes, I would like to have more control over the app to grant less
information/control
2 No, I don't care
3 No, it is too much trouble for me to control the app

Q11: SINGLE-SELECT LIST

Similar to smarthome capabilities, Android or iOS also provide permissions to
third-party apps to control the access to resources in the mobile phone such as
your location and contact book. Which one do you think is more sensitive?

1 Smarthome capabilties are more sensitive
2 Android or iOS permissions are more sensitive
3 I think they are the same
4 I don't know

Q12: COMMENT BOX

Please explain your reasons for your answers in the last question.

8/10/2017 Print Smarthome User Study 2 | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/57ea125de4b0b125de6f8c41/print 6/7

Page 4

Q13: COMMENT BOX

What is your age?

Q14: SINGLE-SELECT LIST

What is your gender?

1 Female
2 Male
3 Decline to answer.

Q15: SINGLE-SELECT LIST

What is your highest education level of education you have completed?

1 No high school
2 Some high school
3 High school graduate
4 Some college - No degree
5 Associates / 2 year degree
6 Bachelor / 4 year degree
7 Graduate degree - Master, PhD, professional, medicine, etc

Q16: DROP DOWN LIST

Which of the following best describes your primary occupation?

1 Administrative support (e.g., secretary, assistant)
2 Art, writing, or journalism (e.g., author, reporter, sculptor)
3 Business, management, or financial (e.g., manager, accountant, banker)
4 Computer engineer or IT professional (e.g., systems administrator,
programmer, IT consultant)
5 Education (e.g., teacher)
6 Engineer in other fields (e.g., civil engineer, bio-engineer)
7 Homemaker
8 Legal (e.g., lawyer, law clerk)
9 Medical (e.g., doctor, nurse, dentist)
10 Retired
11 Scientist (e.g., researcher, professor)
12 Service (e.g., retail clerks, server)
13 Skilled labor (e.g., electrician, plumber, carpenter)
14 Student

8/10/2017 Print Smarthome User Study 2 | Survey Builder™

https://platform.surveysampling.com/surveybuilder/survey/57ea125de4b0b125de6f8c41/print 7/7

15 Unemployed
16 Decline to answer
17 Other

Thank You Page

Thank you for participating!
Your personal survey code is Smarthome203

A.2.2 Smarthome Patching

Our patching script is written in roughly 600 lines of python code to modify the original
Groovy source file by the following steps. A toy example for a patched app Turn It On
For 5 Minutes is given in Listing A.1.

Listing A.1: We provide a code snippet for patched IoT app Turn It On For 5 Minutes. Text
in blue indicates statements that need to be patched, and text in red indicates either new code
instrumented by the script or replaced with our wrapped functions. The appSetting section added
after the definition block is used for OAuth configuration.

d e f i n i t i o n (
name : "Turn I t On For 5 Minutes " ,
namespace : " smartth ings " ,
author : " SmartThings " ,
d e s c r i p t i o n : "When a SmartSense Multi i s opened , a switch w i l l be

turned on , and then turned o f f a f t e r 5 minutes . " ,
category : " Sa fe ty Secu r i ty " ,

. . . \\
) {

appSetting "client_idFPS" // used to c on f i g app i d e n t i f i e r f o r OAuth .
appSetting "client_secretFPS" // used to c on f i g app s e c r e t f o r OAuth .
appSetting "http_serverFPS" // we con f i gu r e c loud s e r v e r u r l here .

}
. . .
mappings { // act as end-points for policy enforcement module to deliver event data

path("/post_event") {
action: [

POST: "handleEventFromProxyServer"
}

}
}
p r e f e r e n c e s {

s e c t i o n ("When i t opens . . . ") {
input " contact1 " , " c a p ab i l i t y . contactSensor "

}
s e c t i o n (" Turn on a switch f o r 5 minutes . . . ") {

input " switch1 " , " c a p ab i l i t y . switch "
}

}
de f i n s t a l l e d () {

l og . debug " I n s t a l l e d with s e t t i n g s : \${ s e t t i n g s }"
subscribe(contact1, "contact.open", contactOpenHandler)
subscribeToServer(contact1, "contact", "open", contactOpenHandler)

}

133

de f updated (s e t t i n g s) {
l og . debug "Updated with s e t t i n g s : \${ s e t t i n g s }"
unsubscribe()
unsubscribeToServer()
subscribe(contact1, "contact.open", contactOpenHandler)
subscribeToServer(contact1, "contact", "open", contactOpenHandler)

}
de f contactOpenHandler (evt) {

switch1.on()
sendCommandToProxyServer(switch1, "on", NULL, NULL, NULL, NULL)
de f f iveMinuteDelay = 60 ∗ 5
runIn (f iveMinuteDelay , turnOffSwitch)

}
de f turnOffSwitch () {

switch1.off()
sendCommandToProxyServer(switch1, "off", NULL, NULL, NULL, NULL)

}
. . .

To enable authorization in the for policy enforcement module, the script automatically inserts
dynamic pages and prepares a URL for the patched app to enable an OAuth authentication
flow at install time. The SmartThings platform provides a trigger for an OAuth authorization
flow via the URL containing an app identifier and its cloud-generated app secret. When the
user navigates to the URL, they will be redirected to the SmartThings login page to enter
credentials and receive an authorization token for later use.

The script next scans all devices on the SmartThings capability list1 by parsing all input
labels from the preferences section and its corresponding child pages, e.g., mainPage page
section. The script builds an internal structure called DL, maintaining a pair of informa-
tion (input label, device capability), for later code substitution for command or attribute
statements.

The script then parses event handler subscription and unsubscription statements by scan-
ning the keywords. A subscription statement consists of its input label, associated attributes,
and the corresponding event handler function. For instance, subscribe(motionSensors,
"motion.active", motionActive) means the app subscribes an event handler for status ac-
tivity of input motionSensors which has motion capability, and assign function motionActive
as callback handler. Therefore, our patching engine replaces this statement with an internal
function subscribeToServer() to send all corresponding parameters to the policy enforce-
ment module along with its app identifier. The module will determine whether this subscrip-
tion is allowed depending on user’s rules. If successful, the module will forward the event
data to the registered SmartApp. Unsubscription is much easier to implement, namely by
removing all subscriptions registered on the policy enforcement module.

The last step is to search all statements for possible command issuing or attribute retrieving
1http://docs.smartthings.com/en/latest/capabilities-reference.html

134

http://docs.smartthings.com/en/latest/capabilities-reference.html

associated with those device labels collected above. For example, the structure DL may con-
tain an input device called switch1 which has a switch capability. When the script parses
a statement containing the label switch1, e.g., switch1.on(), the script catches the function
call on() and checks against a capability structure defined based on the list of capabilities
and their associated functions and attributes2. Once the script confirms the call or attribute,
it replaces the original statement with the internal API call sendCommandToProxyServer()
by sending the request to the policy enforcement module with its app identifier, device label
(switch1), command label (on()) and any corresponding parameters.

After patching, each Groovy source file will contain around 128 new lines to provide endpoint
interfaces for the policy enforcement module.

A.2.3 SmartAuth Working Example

Here we use one example to show how SmartAuth works. The Flasher is an app that
claimed to flash a set of lights to notify user when motion, open/close event, or switch event
is detected. However, besides subscribing to motion sensor, contact sensor, and switch, the
app also subscribes to the presence sensor and the acceleration sensor. To bridge the gap
between what the users think the app do and the app’s real behaviors, we generate the
security policy from the code and from the description. We display the verified capabilities
according to their functionality, and notify users about the unexpected behaviors, similar to
Figure 3.16. On the interface, we further classify the unexpected actions into “unexpected”
and “dangerous”, according to the user perception measured through our crowd-sourcing
result. We present the security policy and unexpected/dangerous behaviors in a usable
authorization interface. After getting the response from the users, we enforce the policy so
that the app only gets what it needed for the functionality and what the user understand
and would like the app to access.

A.2.4 Apps Used in the Lab Study

We show the participants five group of apps in the SmartAuth and SmartThing interface,
as shown in Table A.2.

A.2.5 Details of the Lab Study for SmartAuth

We used e-mails and posters on Carnegie Mellon University Silicon Valley campus, Indiana
University Bloomington, and the Samsung Mountain View office to recruit participants for
the in-lab experiments of choosing a smarthome application. In the recruiting message, we
explained that the experiments would be about selecting smarthome applications to install.
To avoid potential biases, we didn’t tell users that permissions and functionality matter
in the experiments. We looked for participants who meet the following requirements: (1)
Participants must be 18 or older. (2) Participants must have experience using a smartphone.
(3) Participants should have basic knowledge about smarthome. (4) Participants must live
in the United States and be literate in English. The participants was invited to our lab

2http://docs.smartthings.com/en/latest/capabilities-reference.html

135

http://docs.smartthings.com/en/latest/capabilities-reference.html

and use our phones to do the experiments. They were asked to review and sign the consent
form before they start working on the study. Next we explained to participants the interface
of the smarthome to complete the app-selection task, and then we asked them questions
about this experience. The participants saw the app-installation pages and compare the
apps to choose one that they would like to install. We observed the user’s app-installation
decisions and asked them questions to see whether our interface helps the user understand
the functionality and avoid privacy breach. At the end, we asked the participants some
demographic questions. The participant was compensate for a 5-dollar Amazon gift card or
two slices of pizza. The total process will took approximately 20 minutes.

If you are interested to learn more details about the study, please find the following the
recuirtment message used at Carnegie Mellon Silicon Valley:

We are from Carnegie Mellon University, doing research about app usage. If you have used
mobile device for at least 1 month and you are an adult living in the US, you would be very
helpful to our study. You will receive a gift card of 5 dollars if you finish the study. Thanks!

Table A.2: Apps in the lab study

App
ID

App
Name

Description Overprivileged?
If so, Behavior
Type

1A Smart
Humidi-
fier

Turn on/off humidifier based on relative humidity from a
sensor.

NO

1B Humidity
Alert

Notify me when the humidity rises above or falls below the
given threshold. It will turn on a switch when it rises above
the first threshold and off when it falls below the second
threshold.

YES, Lock (Dan-
gerous)

2A Virtual
Thermo-
stat

Control a space heater or window air conditioner in con-
junction with any temperature sensor, like a SmartSense
Multi.

YES, Motion
Sensor (Danger-
ous)

2B Smart
Heater

Turn on/off the heater based on the temperature. NO

3A Lights
Off

Turn lights off when no motion and presence is detected for
a set period of time.

NO

3B Darken
Behind
Me

Turn your lights off after a period of no motion being ob-
served.

YES, Tempera-
ture Sensor (Un-
expected)

4A Flash A
Notice

When something happens (open/close, switch on/off, mo-
tion detected), flash lights to indicate.

NO

4B The
Flasher

Flashes a set of lights in response to motion, an open/close
event, or a switch.

YES, Presence
Sensor (Unex-
pected)

5A Left It
Open

Turn lights off when no motion and presence is detected for
a set period of time.

YES, Power Me-
ter (Unexpected)

5B Smart
Window

Compares two temperatures - indoor vs outdoor, for exam-
ple - then sends an alert if windows are open (or closed!). If
you don’t use an external temperature device, your zipcode
will be used instead.

NO

136

If you are interested in participating in this research study, you must meet the following
requirements:

(1) Participants must be 18 or above

(2) Participants must have experience of using a smartphone

(3) Participants should have basic knowledge about smart home

(4) Participants who live in the USA and literate in English

Your participation in the study is voluntary. The study will be in Building 19, NASA Ames
Research Center, CA 94035 and the study takes around 20 minutes. You will read the user
interface of Smart Home App Installation to choose Apps to mange the Smart Home devices.
You will then be asked survey questions about smarthome devices management.

Please contact Yuan Tian (yt@cmu.edu) if you are interested to join the study.

When the participants came to the lab to join the study, we gave them a paper consent form
to sign and the instructions about the study. The instructions wre similar to the purpose of
this study section and the procedures section in the consent form. Please find attached the
consent form to see more details.

137

Carnegie Mellon University

Consent Form for Participation in Research

Version 7.2015

Study Title: Smart Home Device Management Study

Principal Investigator: Yuan Tian, Ph.D candidate
Electrical and Computer Engineering, Room 1033, Building 19, NASA Ames Research Center, CA 94035
650-862-0576, yt@cmu.edu

Faculty Advisor: Patrick Tague, Associate Research Professor

Purpose of this Study
The purpose of the study is to investigate the users' management of smart home devices.

Procedures
 If you decide to participate in the study, first you will first read the consent form of the study and being
asked a few screening questions to make sure that you meet the requirements of the study. Then we will
ask you to read the user interface of Smart Home App Installation to choose Apps to mange the Smart
Home devices. Your major task is to choose one app from five groups of apps. After you finish your major
task, we will then ask you questions about the smarthome devices management experiences. In the
end, we will ask you some demographic questions.

The study will be in Building 19, NASA Ames Research Center, CA 94035 and the study takes around 20
minutes.

Participant Requirements
[List the requirements for inclusion of participants in the study. Include age requirement.]
(1) Participants must be 18 or above
(2) Participants must have experience of using a smartphone
(3) Participants should have basic knowledge about smart home
(4) Participants who live in the USA and literate in English

Risks
The risks and discomfort associated with participation in this study are no greater than those ordinarily
encountered in daily life or during read words from Smart Phone screen.

Benefits
There may be no personal benefit from your participation in the study but the knowledge received may
be of value to humanity.

CMU IRB Number: STUDY2016_00000336 Approved: 10/21/2016 Expires: 10/20/2017

Carnegie Mellon University

Consent Form for Participation in Research

Version 7.2015

Compensation & Costs
You will be paid 5 dollars after finishing the study.
There will be no cost to you if you participate in this study.

Confidentiality
By participating in the study, you understand and agree that Carnegie Mellon may be required to
disclose your consent form, data and other personally identifiable information as required by law,
regulation, subpoena or court order. Otherwise, your confidentiality will be maintained in the following
manner:

Your data and consent form will be kept separate. Your research data will be stored in a secure location
on Carnegie Mellon property. Sharing of data with other researchers will only be done in such a
manner that you will not be identified. By participating, you understand and agree that the data and
information gathered during this study may be used by Carnegie Mellon and published and/or disclosed
by Carnegie Mellon to others outside of Carnegie Mellon. However, your name, address, contact
information and other direct personal identifiers will not be mentioned in any such publication or
dissemination of the research data and/or results by Carnegie Mellon. Note that per regulation all
research data must be kept for a minimum of 3 years.

We will not record any personal information about you other than your signature on the consent form.
The data we collected will be transmitted in an encrypted way and stored in a password protected server
in the lab anonymously. Only the investigators of this project can access the data.

Rights
Your participation is voluntary. You are free to stop your participation at any point. Refusal to
participate or withdrawal of your consent or discontinued participation in the study will not result in any
penalty or loss of benefits or rights to which you might otherwise be entitled. The Principal Investigator
may at his/her discretion remove you from the study for any of a number of reasons. In such an event,
you will not suffer any penalty or loss of benefits or rights which you might otherwise be entitled.

Right to Ask Questions & Contact Information
If you have any questions about this study, you should feel free to ask them now. If you have
questions later, desire additional information, or wish to withdraw your participation please contact
the Principal Investigator by mail, phone or e-mail in accordance with the contact information listed
on the first page of this consent.

If you have questions pertaining to your rights as a research participant; or to report concerns to this
study, you should contact the Office of Research Integrity and Compliance at Carnegie Mellon
University. Email: irb-review@andrew.cmu.edu . Phone: 412-268-1901 or 412-268-5460.

CMU IRB Number: STUDY2016_00000336 Approved: 10/21/2016 Expires: 10/20/2017

Carnegie Mellon University

Consent Form for Participation in Research

Version 7.2015

Voluntary Consent

By signing below, you agree that the above information has been explained to you and all your current
questions have been answered. You are encouraged ask questions about any aspect of this research
study during the course of the study and in the future. By signing this form, you agree to participate in
this research study. A copy of the consent form will be given to you.

PRINT PARTICIPANT’S NAME

PARTICIPANT SIGNATURE DATE

I certify that I have explained the nature and purpose of this research study to the above individual and I
have discussed the potential benefits and possible risks of participation in the study. Any questions the
individual has about this study have been answered and any future questions will be answered as they
arise.

SIGNATURE OF PERSON OBTAINING CONSENT DATE

CMU IRB Number: STUDY2016_00000336 Approved: 10/21/2016 Expires: 10/20/2017

In the following, I attach a few questions asked in the study.

Please choose how much you agree with the following statements. {Strongly disagree, dis-
agree, neither agree or disagree, agree, strongly agree}.

• I feel that the app description explains thoroughly why the app can access and control
these sensors and devices.

• I feel confident to make a decision whether or not to install the app after reading the
description.

• It is difficult to find information from the description.

A.2.6 Crowdsourcing for Unexpected Behavior Sensitivity

We evaluated how sensitive the unexpected behaviors are by combining expert reviews and
crowdsourcing together. In particular, we had two security experts and 100 Mturkers to look
into the apps’ unexpected behaviors and evaluated how sensitive the unexpected behavior is
given the context of the app. We asked the participants to classify whether these unexpected
behaviors are dangerous or not(dangerous is counted as 1, and not dangerous is counted as
0). From the expert and Mturk responses, we assign each security expert a weight of 0.25,
and each Mturker a weight of 0.005. If the weighted sum is over 0.5, we consider the behavior
as dangerous.

141

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Identifying and Understanding the Conflicts between Functionality and Privacy
	Screen-Sharing Attacks Using a New HTML5 API
	Threat Model
	New Cross Origin Request Forgery Attack with the API

	Privacy and Functionality Conflicts of Data Sharing in Social Platform
	Study Methodology
	Permission Systems in Social Platforms
	Limitations of Permission Models for Social Platforms

	Related Work
	CSRF Attacks and Defenses
	Limitations of Permission Systems on Client OSes
	Limitations of Permission Systems in Social Platforms

	Designing and Building Secure and Privacy-Preserving Systems
	Privacy Preserving Context Sharing for Social Networks
	Introduction
	System Model
	Threat Model
	Design Goals
	OOU Primitives
	Evaluation of OOU on Facebook
	Designing a Permission Model for the Somex Activity Platform
	Discussion

	User-Centered Authorization for Smarthome Apps
	Introduction
	Background
	SmartAuth Design Overview
	Design and Implementation
	Evaluation
	Limitations

	Related work
	Improving the Permission Systems in Client OSes
	Improving Privacy for Sharing Information with Third-Party Apps on Social Platforms
	Bridging the Gap between User Expectation and App Behaviors for Mobile Apps
	IoT Security and Privacy

	Conclusion and Future Work
	Conclusion
	Future Research Directions
	Reliable, Secure and Usable Systems For Emerging Platforms
	Privacy-Preserving Machine Learning

	APPENDICES
	Supplemental Materials
	Supplemental Materials for the Study on Facebook Permission
	Facebook Login Permission Details
	Survey for Users' Mental Model about Facebook Permissions

	Supplemental Materials for the Study on Smarthome Authorization Systems
	Survey for Users' Mental Model about Smarthome Permission
	Smarthome Patching
	SmartAuth Working Example
	Apps Used in the Lab Study
	Details of the Lab Study for SmartAuth
	Crowdsourcing for Unexpected Behavior Sensitivity

