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Abstract

Virtually all robotics and computer vision applications require some form of pose

estimation; such as registration, structure from motion, sensor calibration, etc. This

problem is challenging because it is highly nonlinear and nonconvex. A fundamental

contribution of this thesis is the development of fast and accurate pose estimation by

formulating in a parameter space where the problem is truly linear and thus globally

optimal solutions can be guaranteed. It should be stressed that the approaches devel-

oped in this thesis are indeed inherently linear, as opposed to using linearization or

other approximations, which are known to be computationally expensive and highly

sensitive to initial estimation error.

This thesis will demonstrate that the choice of probability distribution significantly

impacts performance of the estimator. The distribution must respect the underlying

structure of the parameter space to ensure any optimization, based on such a distri-

bution, produces a globally optimal estimate, despite the inherent nonconvexity of

the parameter space.

Furthermore, in applications such as registration and 3D reconstruction, the corre-

spondence between the measurements and the geometric model is typically unknown.

In this thesis we develop probabilistic methods to deal with cases of unknown corre-

spondence. While the resultant formulation does not guarantee global optimality, it

increases the basin of convergence.

Another contribution of this thesis is the development of a generalized framework

for probabilistic point registration. By setting functional parameters such as sensor

noise and prior uncertainties appropriately, our framework captures many prior reg-

istration methods. Additionally our framework is also capable of predicting scope for

improvement in the existing algorithms, which are then verified experimentally.

To tie the ideas together, we present results in the context of surgical robotics - in

particular we demonstrate a surgical system that is capable of performing real-time

tumor localization, hand-eye calibration, registration of preoperative models to the

anatomy, and augmented reality.
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6-13 (a) Stereo image based tracking for a pelvis. Top row shows the left

stereo camera image, middle row shows estimated pose superimposed

and the bottom plot shows the RMS error vs time. At instance B,
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7-7 CAD model of a Stanford Armadillo man [7] and set of initial points
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8-5 Plot of the RMS error vs number of measurements used for dSPR and

probabilistic sparse point registration (pSPR), with a without noise in

the measurements. In the absence of noise, dSPR takes 12 measure-

ments and pSPR takes 18 measurements to converge to zero RMS
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10-1 Experimental setup showing the daVinci research kit (dVRK) robot

with a miniature force sensor attached to the end-effector. A stereo

camera overlooks the workspace of the robot. A phantom prostate with

embedded stiff inclusion is placed in the workspace of the robot. . . 276

10-2 The FSR sensor that we use in this chapter was developed by Li et al. [8]280

10-3 Flowchart showing all the modular components of our system. Some of
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fore the start of the experiment, while the other modules are constantly

run for the duration of the experiment. . . . . . . . . . . . . . . . . 282
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10-7 (a) An expanded flowchart of the “Stiffness map generation” block

shown in Fig. 10-3. As the robot probes a new point on the organ,

it calculates the stiffness value at that point. All the probed points

with their corresponding stiffness values are accumulated and used to

train a Gaussian process regression (GPR) (with predefined mean and

covariance functions) which is used to updates the estimated stiffness

map. (b) An expanded flowchart of the “Tumor search” block shown

in Fig. 10-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

10-8 (a) An expanded flowchart of the “Probing” block shown in Fig. 10-3.
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Chapter 1

Introduction

Several applications in robotics require estimation of pose (translation and orienta-

tion) between two references frames of interest; applications include medical image

registration [5], manipulation [9], hand-eye calibration [10] and navigation [9]. De-

pending on the nature of the sensor measurements, frequency of receiving the mea-

surements, knowledge of data association between the measurement modalities and

computational constraints imposed by the application, pose estimation offers differ-

ent challenges in different applications. As a result, a variety of approaches have

been developed in literature to cater to the unique challenges offered by different

applications [11, 12, 6, 10, 9, 13].

This thesis uses a probabilistic reasoning to estimate pose as opposed to determin-

istic methods. We believe that a probabilistic approach has the potential to reason

better about uncertainties that exist in the measurements, and our prior understand-

ing of the problem. Furthermore, the uncertainty in the state can guide the search for

the globally optimal pose. The thesis provides improvement to the state-of-the-art by

deriving linear models for probabilistic pose estimation and by using the appropriate

parameter space and probability distributions that respect the underlying structure of

the space. This results in fast, accurate and globally optimal pose estimates for a va-

riety of pose estimation problems when data association is known and locally optimal

estimates when data association is unknown. This thesis also develops a framework

which captures several existing works in literature, as its special case. Thus providing
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the theoretical foundation required to understand the existing works in literature and

help researchers decide which method would be most suitable for their application.

1.1 Related Work

1.1.1 Pose Estimation/ Registration

Much of the early literature deals with collecting all sensor measurements and pro-

cessing them offline in a batch to estimate the pose. Registration is an important

pose estimation problem that is frequently encountered in robotic applications, such

as computer vision [14], localization and mapping [15], surgical guidance [16], etc.

Registration is the process of finding a spatial transformation that aligns a point set

with a geometric model (or another point set). Horn et. al. [4] and Arun et. al. [17]

developed a least squares implementation for registration with known point corre-

spondence. Besl et. al. [11] introduced the ICP, which extends Horn’s methods for

unknown point correspondence by iteratively estimating point correspondence and

performing least squares optimization. Several variants of the ICP have been devel-

oped [12, 18, 19, 20]. Estepar et. al. [21], Segal et. al. [22] and Billings et. al. [23]

further generalized the ICP by incorporating sensor uncertainties.

In applications such as touch-based localization [24], hip-replacement surgery [25],

finger-print matching [26], 3D reconstruction using range scans [27], etc., normals

are available in addition to point measurements. Several registration approaches

have been developed that use orientation data in addition to point data for regis-

tration. The approach of Pulli et. al. [28] uses surface-normal information to filter

out measurements during the correspondence stage. Munch et. al. [29] use point

and surface-normal measurements in both the correspondence and minimization step.

Billings et. al. [25] have recently developed iterative most likely oriented point (IM-

LOP), a probabilistic framework to estimate pose using surface-normal and position

measurements, while incorporating measurement uncertainty in both the correspon-

dence and minimization step.
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In addition to point and surface-normal measurements there have also been sev-

eral approaches developed for pose estimation using pose measurements for applica-

tions such as hand-eye calibration. Hand-eye calibration has been posed as a least

squares estimation problem assuming complete knowledge of measurement correspon-

dence [30, 31, 32]. More recently, Ackerman et. al. [33] estimate the pose with un-

known correspondence.

With the advent for large volumes of easily shareable labeled-datasets, learning-

based approaches have gained popularity recently. Supervised learning approaches

such as [34, 35], provide good initial pose estimates and rely on local optimizers

such an ICP for refined estimates. These methods are however not very accurate

and generalize poorly to unseen object instances [36]. Recent work has attempted to

leverage the power of deep convolutional neural network (CNN) to overcome these

limitations. The works of [37, 38, 39, 40, 41], in particular directly regress over the

Euler angles of object orientations from cropped object images. On the other hand,

in applications such as robotic manipulation, 6-DOF pose is often decoupled into

rotation and translation components and each is inferred independently [37, 42, 43,

44, 45, 46].

1.1.2 Sequential Pose Estimation

In some applications of pose estimation such as structure from motion [15], hand-eye

calibration [31], localization [47, 48], etc. a stream of measurements is available and

it is desirable to have a sequential estimator to process the measurements online.

While the batch processing methods described earlier can be applied repeatedly on

incremental data to deal with sequential measurements, such an approach has been

observed to often perform poorly [5]. On the other hand, filtering-based methods

that model pose as a distribution and perform a maximum a posteriori (MAP) esti-

mate, are better at handling sequential measurements. The uncertainty in the state

variables is often modeled using PDF and the parameters of the PDF are updated

after each measurement. In contrast to batch estimation methods, where there is

no indication of when to stop collecting measurements, convergence of the state esti-
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mate and decrease in the state uncertainty provides clear indication of when to stop

collecting measurements

Several sequential estimation methods are based on Kalman filters, which model

the states and measurements using Gaussian distributions ([6, 5, 10, 49, 50]). Kalman

filters by construction provide optimal state estimates when the process and measure-

ment models are linear and the states and measurements are Gaussian distributed ([51]).

Pose estimation, however, is inherently a non-linear problem, and hence linear Kalman

filters produce poor estimates ([6, 49]). Several variants of the Kalman filter have been

introduced to handle the non-linearity. EKF-based filters perform first-order linear

approximations of the non-linear models [6]. UKF-based methods can be shown

to perform a second-order approximation of the nonlinear model by evaluating and

propagating the motion models at multiple deterministically sampled points SE(3)

( [5, 49]).

There has been some recent work in robotics towards the use of alternative dis-

tributions to model the noise on rotations for pose estimation problems. For exam-

ple, Langevin distributions have been used for pose estimation [52, 53]. Gilitschen-

ski et. al. [54] have recently developed a Bingham distribution-based recursive filtering

approach for orientation estimation. Glover et. al. [13] use Bingham distribution to

describe the orientation features, while Gilitschenski et. al. [55] use this distribution

for planar pose estimation. In a more recent work, [56] use a constrained Kalman

filter with dual quaternions as state vector.

The use of Bingham distribution to model uncertainties in rotation parameters is

a very valuable tool that has been largely under-utilized by the robotics community,

as also noted by [13]. One of the important reasons for this, is the difficulty in

computing the normalization constant as well as performing expensive convolution

operation over the distributions ([57]).

1.1.3 Parameter Space for Pose Estimation

There are several ways to parameterize pose and each choice of parameterization

comes with its own advantages [58, 59]. Faugeras et. al. [60] and Horn [4] use
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quaternions and Cartesian coordinates to parameterize the pose. Arun et. al. [17]

use an orthogonal matrix and Cartesian coordinates, while Walker et. al. [61] use

dual quaternions to parameterize the pose. Moghari et. al. [5] use Euler angles and

Cartesian coordinates to parameterize the pose and a UKF to estimate the pose.

Hauberg et. al. [49] confine the state variables over a known Riemannian manifold

and use a UKF to estimate the pose. Quaternions are used to parametrize SO(3) and

the state is estimated using an EKF in [62] and UKF in [63]. An iterative extended

Kalman filter (IEKF) with dual quaternions to parameterize the pose has been used

in [64]. Fan et. al. [56] use a constrained Kalman filter with dual quaternions as state

vector. More recently Brossard et. al. [65] use a UKF on Lie groups for visual inertial

odometry.

1.1.4 Dealing with Nonconvexity in Pose Estimation

Pose estimation is inherently a nonconvex optimization problem. The nonconvexity

is further pronounced when the correspondence between the measurements in the two

frames is unknown. The situation further worsens when there are only a small number

of sparse measurements available to estimate the pose and the object is symmetric.

There are broadly two approaches to deal with the issue of nonconvexity– i) use

global optimization approaches to find the best pose, ii) use heuristics to find ‘good’

correspondence.

Fitzgibbon et. al. [66] developed a Levenberg-Marquardt-based approach to simul-

taneously optimize for both correspondence and pose parameters. Yang et. al. [18]

developed globally optimal ICP (Go-ICP), a branch and bound-based optimization

approach to obtain globally optimal pose. More recently convex relaxation has been

used for global pose estimation using Riemannian optimization [67], semi-definite

programming [68, 69] and mixed integer programming [20]. A major drawback of

the above methods is the large computation time, rendering them unsuitable for real

time applications. Further, none of the above methods consider uncertainty in mea-

surements or in pose in their formulation.

Using heuristics to find correspondence can improve the computationally speed of
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the registration approaches. However, heuristics are application dependent and what

works for one application may not for another. For instance, in probing-based regis-

tration for surgical applications, anatomical segments and features can be easily iden-

tified by visual inspection. Choosing these features or points within these segments

can greatly help improve the correspondence as shown in [70, 71, 72]. In applications

where structured light (RGBD sensors) or range scanners are used, the point mea-

surements obtained are surprisingly dense, but they may be only partially descriptive

of the object to be registered. A variety of geometric features can be constructed

from this data and used for finding correspondence. The works of Gelfand et. al. [27]

use scale invariant curvature features, Glover et. al. [13] use oriented features and

Bingham Procrustean alignment, Makadia et. al. [73] use extended Gaussian images,

Rusu et. al. [74] use fast point feature histograms, and Godin et. al. [75] use color

intensity information for correspondence matching. When dealing with applications

where volumetric data is available, curve-skeletons [76] and heat kernel signature [77]

can be used to obtain a good initial estimate for the pose.

1.2 Story of This Thesis

The work in this thesis began as an interest in the problem of improving situational

awareness for surgeons performing minimally invasive surgery. The idea was to fuse

preoperative information such as CT scan or magnetic resonance imaging (MRI) with

information obtained during the surgery from stereo cameras, contact force measure-

ments, etc. to provide improved situational awareness to the surgeon. As a first step

towards this, we decided to perform force regulated probing of the tissue surface to

detect tumors and other stiff inclusions while simultaneously using position informa-

tion to localize the tool tip onto a geometric model of the anatomy obtained from

preoperative imaging. Our group named this problem, SCAR [78]. Our group had

earlier developed a filtering-based approach for SCAR that updates the state using

a stream of force and position measurements [78]. However, we made an observation

that every time the state was updated, there was an ambiguity in the registration
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along the normal direction that the anatomy is probed along. This ambiguity in turn

resulted in incorrect stiffness measurements. More details on this can be obtained

from Chapter 3. Our solution to resolve this ambiguity was to update the state

based on a mini-batch of “compatible” measurements. From each batch of compati-

ble measurements, a pseudo-measurement was created and used to update the state.

This helped resolve the ambiguity and produce accurate estimates of both pose and

stiffness distribution. This experience provided us a new way to think about using

Kalman filters, where one could use a mini-batch of measurements selected based on a

criteria; instead of the vanilla implementation that updates using every measurement

sequentially.

We then applied this experience to develop an improved filter for pose estimation.

We select pairs of point measurements (or mini-batches of measurements) that are

spatially spaced apart. We then formulate a measurement model using dual quater-

nions to parameterize the pose. The resultant update model decoupled orientation

from translation estimation and is linear in both orientation and translation. This

allowed us to use a linear Kalman filter to estimate the pose more accurately than

earlier approaches that required linearization or other forms of approximation. Sub-

sequently we modified the filter to process surface normal and pose measurements

as well. One aspect of the filter that was not satisfactory was the use of Gaussian

distribution to model uncertainty in unit quaternions. Gaussian distributions are

unimodal, while unit quaternions q̃ and −q̃ are equivalent and uncertainty in them

is best described by a bi-modal distribution. Further, the Kalman filter ensured that

the mean of the distribution lied on a unit-hypersphere (this constraint is imposed by

the unit norm condition of the rotation quaternion). But the distribution in general

did not respect the constraints of the parameter space. More details on this can be

obtained from Chapter 2 and Chapter 4.

While searching for a better parameterization and choice of probability distribu-

tion for pose estimation, we came across the work of Long et. al. [1]. Long et. al.

showed that stochastic systems evolving on SE(3) follow a banana-like distribution

in the space of Euler angles and Cartesian coordinates, but when transformed to the
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space of Lie algebra (exponential coordinates), they follow a Gaussian distribution.

Taking a cue from this research we posed the problem of pose and shape estimation

of a medical snake robot in the space of the twist coordinates. We observed that the

EKF used to find the pose and shape of the robot performed better than the one that

used Euler angles and Cartesian coordinates for parameterization. However, using

twist coordinates left the model highly non-linear and hence requiring linearization

in the form of EKF.

An important connection we observed was that a Gaussian distribution in the

space of so(3) is a Bingham in the space of unit quaternion. We reformulated the

problem of pose estimation by modeling the uncertainty in orientation using a Bing-

ham distribution and translation using a Gaussian distribution. The resulting for-

mulation performs filtering in a space where the probability distribution respects the

constraints of the space. Further the Bingham distribution has two modes which cap-

tures the symmetric q̃ = −q̃ property of unit quaternions. Our approach produces

an objective function with a single basin of attraction when the correspondence is

known. This allows us to guarantee global optimality. We validated our approach on

a number of simulated and real world experiments. Our approach, however, is only

locally optimal when the correspondence is unknown.

In order to deal with the nonconvexity of the problem introduced by lack of corre-

spondence, we developed a multi-hypothesis method. The approach uses uncertainty

in the pose to drive the exploration and exploitation, for finding the global optimum.

This approach was inspired by particle filters, multi-hypothesis filters and branch-

and-prune methods. While it is not guaranteed to find the global optimum, it proved

to be very good at escaping from local minima, and requires tuning of very few pa-

rameters which can be tuned intuitively. We further extended our approach to deal

with a small number of sparse point measurements. Our approach to sparse point

registration can use as few as 20 measurements to accurately estimate the pose for a

variety of shapes, as opposed to 100 measurements or more taken by most methods

in literature.

Having developed a good understanding of probabilistic pose estimation as a MAP
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problem, we decided to unify our understanding in a generalized framework. We de-

veloped a probabilistic framework that considers the problem of point-set registration

in its most general form. By setting functional parameters on sensor noise, prior un-

certainty, etc., our method captures most of the existing registration methods. This

allows a user to intuitively choose the optimal approach for registration without hav-

ing to try a large number of methods from literature. In addition, our work unifies

disparate point-set registration approaches into a single probabilistic framework and

reasons their application in terms of maximum likelihood estimate (MLE) or MAP es-

timate. Our framework also helps improve some of the existing registration methods,

by theoretically highlighting some unstated assumptions and approximations made

by existing methods.

Alongside the theoretical developments, there has been a constant emphasis in

this thesis towards validating our findings on practical applications. Throughout the

thesis one would find demonstration of our ideas on a number of simulation and real-

world examples such as 3D reconstruction and object tracking in Chapter 6, hand-eye

calibration in Chapter 4, touch-based localization in Chapter 8, tool-tip localization

in Chapter 3, robot shape estimation in Chapter 5, stereo registration and image

overlay in Chapter 10.

1.3 Technical Motivation

In this section, we present a list of key technical motivations for this thesis. While

Sec. 1.2 describes the various needs resulting in the development of this thesis, this

section consolidates the needs into technical motivations which then help highlight

the key contributions in Sec. 1.4.

1.3.1 Obtaining a Linear Update Model for Pose Estimation

Typically, filtering-based approaches provide incremental pose estimates using non-

linear update models that require linearization (in the case of EKF) or deterministic

sampling (in the case of UKF), which make them highly sensitive to initial estima-
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tion errors, and computationally expensive. This thesis will fulfill the need to develop

linear update models which can ensure globally optimal estimates.

1.3.2 Using Appropriate Probability Distribution

The Gaussian distribution is a popular choice for modeling the uncertainty in pose

parameters due to its convenient properties and natural appearance as a limit distri-

bution [49, 79, 80, 64, 47]. However, naively choosing a Gaussian distribution may

not capture the structure of error as it evolves and therefore an algorithm using such

a distribution may produce low quality estimates [81]. Hence, this thesis will fulfill

the need to develop probabilistic approaches for pose estimation using probability

distributions that respect the structure of the parameter space.

1.3.3 Probabilistic Nonconvex Optimization for Pose Esti-

mation

In applications such as point registration and 3D reconstruction, the correspondence

between the measurements in the different reference frames are unknown resulting in

a highly nonconvex problem [18]. Probabilistic methods that have been developed to

deal with this nonconvexity use particle filters [16], simulated annealing [82], genetic

algorithms [83] or multi-hypothesis filtering [84]. These implementations are compu-

tationally expensive and require several unintuitive parameters to be tuned. Thus,

this thesis will attempt to develop filtering methods for nonconvex optimization that

are computationally fast and have few intuitive parameters to tune.

1.3.4 Registration with Few Sparse Measurements

Several methods have been developed to perform registration when dense point mea-

surements are obtained [11, 12, 22, 5, 23]. However, these methods do not perform

well when the number of available point measurements are small (≈ 20), as in the

case of probing-based registration in surgical applications [70]. Prior work assume

a priori knowledge of landmarks or shape segments to hand-pick a small number of
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probing locations [70, 71]; which can be a very restrictive assumption. Others use

particle filter based approach which are computationally expensive and do not pro-

vide realtime pose updates [16]. Hence, this thesis will fulfill the need to develop a

computationally fast approach to pose estimation in the presence of a small number

of sparse measurements.

1.3.5 Unifying Registration Approaches in a Common Frame-

work

Since registration is such a commonly encountered problem in a variety of fields,

there are a number of different schools of thought when it comes to approaching

this problem. While some consider it to be a sum of squares optimization [11, 27],

others formulate it as a non-linear filtering problem [5, 6] or a mixed integer optimiza-

tion problem [20]. Some groups iterate between correspondence matching and finding

optimal pose [11, 18, 22, 23], while others optimize simultaneously for both correspon-

dence and pose parameters [66, 20]. Even among the methods that explicitly reason

about correspondence there is a rich diversity such as – closest point matching [11],

point-to-plane matching [22], most likely matching [23, 21], and soft-matching [85].

This diversity in the methods makes it difficult for a researcher to pick the best ap-

proach that would work for their application. Often the easiest method to implement,

such as ICP, may not yield optimal results for the chosen application. We believe

that our generalized framework may guide the user into selecting which approach is

best for a given problem.
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1.4 Key Contributions

The key contributions of this thesis are summarized in Table 1.1.

Table 1.1: Motivation and Key Contributions of this Thesis

Technical motivation Key contribution

Linear update model
Dual-quaternions for parameterizing pose

for pose estimation The value of updating state using hashes of measurements

Deriving uncertainty in the hash space

Using appropriate choice of

One-to-one mapping between Gaussian in

exponential coordinates and Bingham in unit quaternions

probability distribution A novel Bayes filter for pose estimation

using pose, position, and surface-normal measurements

Probabilistic nonconvex
Multiple start branch and prune filteroptimization for registration

Registration with few
Sparse point registrationsparse measurements

Developing a unified framework
Unifying prior registration methods in literature

for probabilistic registration Improving existing registration methods
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1.4.1 Probabilistic Linear Models for Pose Estimation

In this work, we derive linear update models for pose estimation using dual quater-

nions to parameterize the pose. While dual quaternions have been used in the past

for pose estimation, either linearizations were used [64] or measurement and pose

uncertainties were ignored [60, 61]. In our work, we use pseudo-measurements which

as obtained as a function of mini-batches of measurements (also referred to as ‘hash’

of measurements) to decouple rotation and translation and obtain a linear model.

Further we use results from stochastic filtering theory to compute the uncertainty in

the pseudo-measurements. To the best of our knowledge it is the first attempt at

deriving linear update models for probabilistic pose estimation. In summary the key

contributions resulting in probabilistic linear model are:

• Application of dual quaternions for probabilistic pose estimation.

• The value of updating using a hash of measurements.

• Deriving uncertainty in the hash space.

1.4.2 A Novel Bayesian Filter for Pose Update

The linear filter developed using dual quaternion, modeled the uncertainty in rota-

tion quaternion using a Gaussian. The Gaussian distribution does not capture the

constraints of the space of unit quaternions. Further Chirikjian et. al. [1] show that

Gaussian distribution in the space of Lie algebra (Exponential coordinates) accurately

capture the distribution of a stochastic system evolving on SE(3). We observe than

a Gaussian distribution in the space of exponential coordinates, so(3), is a Bingham

distribution in the space of unit quaternions. Thus, we improve upon our previous

formulation by modeling the uncertainty in rotation quaternion using a Bingham dis-

tribution. The Bingham distribution is defined on a unit hypersphere hence capturing

the unit norm constraint of the rotation quaternion. Further the Bingham distribu-

tion has two antipodal modes which captures the condition that unit quaternion q̃

and −q̃ represent the same rotation. Further we extend our formulation to process
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not only position measurements, but also surface normal and pose measurements. In

summary the key contributions of the Bingham filter for pose estimation are:

• One-to-one mapping between Gaussian distribution in exponential coordinates

and Bingham distribution in unit quaternions.

• Updating pose using position, surface-normal and pose measurements

1.4.3 Multiple Start Branch and Prune Filter

We introduce a new probabilistic approach for nonconvex optimization, called multi-

ple start branch and prune filter (MSBP). The MSBP starts with a number of initial

states, similar to a multi-hypothesis filter. These states are perturbed based on the

uncertainty. The perturbed states are updated and then pruned based on the in-

novation of the filter. This process is repeated iteratively until convergence. The

perturbation step encourages exploration while the pruning step encourages exploita-

tion. MSBP only has a few parameters to tune and can provide fast online estimates

of the optimal pose. The key contributions of MSBP are

• A fully probabilistic approach to nonconvex optimization

• Exploration and escaping local minima is guided by state-uncertainty

• Exploitation and pruning of solutions stuck in local minima is performed using

the innovation of the filter.

1.4.4 Probabilistic Sparse Point Registration

In this thesis, we develop a probabilistic method for robust sparse point registration (SPR)

using a small batch of approximately 20 sensor measurements. Our approach is iter-

ative and in each iteration, the current best pose estimate is perturbed to generate

several poses. Among the generated poses, the best pose as evaluated by an inexpen-

sive cost function is used as initial guess to estimate the locally optimum registration.

This process is repeated, until the pose converges within a tolerance bound. Similar
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to MSBP, this approach is also probabilistic. However, a key difference from MSBP is

that SPR processes a batch of small number of measurements, while MSBP processes

a continuous stream of measurements. Key contributions of the SPR are:

• Registration estimate using as few as 20 sparse point measurements.

• Probabilistic batch-processing approach that does not use any heuristic infor-

mation to form point correspondences.

1.4.5 Generalized Framework For Probabilistic Registration

An important contribution of this thesis is a probabilistic framework for point-set

registration. Our framework poses registration as a maximum A posteriori estimate

problem, taking into account uncertainties in the measurements as well as prior pose

parameters. The two key contributions of this framework are:

• Unifying prior registration methods in literature under a common framework.

• Predicting improvements to existing registration methods using the framework.
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1.5 Motivating Example in Medical Robotics

Figure 1-1: A. CT image of a liver with tumor. B. Corresponding preoperative model.
Picture courtesy: Johns Hopkins Medicine Gastroenterology and Hepatology

The task at hand is to detect and localize a tumor in the liver of a patient using a

robot assisted minimally invasive surgery. This task would first involve diagnosing the

presence of tumor in the liver, which is typically done using imaging modalities such

as computed tomography (CT), magnetic resonance imaging (MRI) or ultrasound

(US). Fig. 1-1(A) shows a slice of the CT scan of the liver, in which the tumor is

visible as a dark contrast. A preoperative model of the liver and the tumor is then

generated from the CT scans (see fig. 1-1(B)).

A setup as illustrated in Fig. 1-2 is used to perform the surgery. The setup consists

of a stereo vision system and a surgical robot with a force sensor attached to its tip.

The following are some important problems to be solved in order to locate the tumor:

1. Stereo registration: Register a stereo reconstructed surface of the liver to its

preoperative model; find pose TM
C ∈ SE(3) in Fig. 1-2.

The stereo camera provides a steady stream of thousands of point measure-

ments, which need to be registered to the preoperative model. The pose esti-

mation algorithm to be used needs to be capable of realtime computation, and

be able to handle noise in the measurements. In addition, the algorithm would
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Figure 1-2: Experimental setup for the motivating example. There are three frames of
reference that are of interest – robot frame R, camera frame C and preoperative model
frame M. We need to find the pose among all these frames, TM

R ,T
M
C ,T

R
C ∈ SE(3).

This would allow us to virtually overlay the model of the tumor in the camera’s view
and help navigate the robot to the tumor location.
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need to work without the knowledge of the point correspondence between the

measurements and the preoperative model. Sequential pose estimation with

unknown data association is described in Chapter 7. Once we perform stereo

registration, the geometric model of the tumor can be augmented into the view

of the camera. Augmented model of tumor would reduce the cognitive load of

the surgeon and enable accurate extraction of the tumor. Chapter 10 describes

the approach followed to perform the image overlay.

2. Estimating pose between camera and robot: We need to track the tip

of the robot in the camera frame and in the robot frame, and find the relative

pose between the two, TR
C ∈ SE(3). Estimating the relative pose between the

camera and the robot allows us to command the robot to a location as seen in

the camera frame (see Fig. 1-2).

The algorithm to be used for this problem needs to provide fast online updates

of the pose along with an uncertainty measure to indicate convergence of the

estimate. Unlike stereo registration, in this problem the data association can be

trivially obtained by synchronizing the camera feed with the kinematics data.

Chapter 6 and Chapter 4 provide details on how to estimate the pose for this

case.

3. Probing-based registration: To improve upon the estimate of the stereo

registration, the liver is probed with the robot and the obtained point measure-

ments on the surface are registered to the preoperative model; we need to find

TM
R ∈ SE(3) in Fig. 1-2.

In contrast to the stereo registration, there are fewer points available to be used

in the pose estimation. The pose estimation algorithm to be used needs to be

capable of using few sparse measurements to accurately register the robot frame

to the model frame. Registration using sparse point measurements is described

in Chapter 8.

4. Deformation compensation: Palpation introduces local deformation. This

deformation if not compensated for can lead to erroneous pose estimation. The
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deformation needs to be estimated and compensated for it during the registra-

tion.

The approach to be used would require realtime estimation of the local deforma-

tion from the sensed force and position measurements. Deformation compen-

sated registration using complementary model update is described in Chapter 3.

Pose estimation is a common theme that binds all the problems listed above. How-

ever, each problem has unique constraints due to the nature of the measurements, the

knowledge of the correspondences between the measurements, and the computation

time requirements. In this thesis, we develop probabilistic means to estimate the

pose for a variety of applications including the ones listed above. The approach that

we follow provides fast and accurate estimates of the pose that is robust to noise in

measurements and initial estimation errors.
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Chapter 2

Mathematical background

2.1 Point-set Registration

Point-set registration is the process of finding a spatial transformation that aligns a

point set defined in one frame of reference to a model (or another point set) defined

with respect to a different reference frame. Registration is frequently encountered

in robotic applications, such as computer vision [14], localization and mapping [15],

surgical guidance [16], etc.

Horn’s Method

When the correspondence between the points in the two point sets is known, rigid

registration can be solved analytically using a least-squares formulation as shown

in [4, 17, 60, 61]. Consider two point sets, A = {ai}, and B = {bi}, where ai, bi ∈ R3,

i = 1, . . . , n. Let T ∈ SE(3) be the transformation that aligns A and B,

ai
1

 = T

bi
1

 . (2.1)
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Note that the same transformation T aligns each bi to ai. The objective function to

be minimized is

O =
n∑
i=1

||ai −Rbi − t||2, (2.2)

where R ∈ SO(3) and t ∈ R3 are the rotation matrix and translation vector that

comprise the transformation T . Let the centroids of the two point sets be ac and bc,

ac =
1

n

n∑
i=1

ai, bc =
1

n

n∑
i=1

bi.

From Eq. 2.1,

ac = Rbc + t,

⇒t = ac −Rbc (2.3)

Eliminating t by substituting Eq. 2.3 in Eq. 2.2,

O =
n∑
i=1

||ai −Rbi +Rbc − ac||2,

=
n∑
i=1

||(ai − ac)−R(bi − bc)||2,

=
n∑
i=1

||(ui)−R(vi)||2, where ui = (ai − ac),vi = (bi − bc)

=
n∑
i=1

uTi ui + vTi vi − 2(uTi Rvi). (2.4)
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We ignore the terms independent of R. Minimizing O over R is equivalent to maxi-

mizing f ,

f =
n∑
i=1

(uTi Rvi),

= Tr

(
n∑
i=1

Ruiv
T
i

)
,

= Tr (RN ) , where N =
n∑
i=1

uiv
T
i . (2.5)

The R that maximizes f can be obtained as

R = V UT , where (2.6)

N = UDV T is the eigen decomposition of N .

For detailed proof on why the optimal R would have the form as shown above, refer

to [17].

Iterative Closest Point

However, when point correspondences are unknown, finding the optimal transforma-

tion becomes a nonconvex optimization problem with several local minima solutions.

Besl et. al. came up with the popular iterative closest point (ICP) method that re-

cursively finds correspondences and minimizes the alignment difference between point

sets [11]. Over the years several variants of the ICP have been developed [12]. The

ICP algorithm has two important steps:

1. Guess the correspondences between the point cloud and the model using a

closest point rule.

2. Compute the transformation which minimizes the distance between correspond-

ing points.

These two steps are repeated iteratively until convergence. The convergence criteria
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is usually a maximum number of iterations or the change in rotation and translation

falling below a user set threshold.

Input:
A = {ai ∈ R3}, i = 1, 2, ..., n
B = {bj ∈ R3}, j = 1, 2, ...,m
Initial transformation: T 0 ∈ SE(3)
Output: T ∈ SE(3) that aligns A and B
Initialize: T ← T 0

while not converged do
Correspondence: cj = FindClosestPoint(T (bj)), cj ∈ A
Minimization: T = argmin

T

m∑
j=1

‖cj − T (bj)‖2

end
Algorithm 1: Iterative Closest Update

Consider two point clouds, A = {ai}, ai ∈ R3, i = 1, . . . , n are points on the

geometric model of the object and B = {bj}, bj ∈ R3, j = 1, . . . ,m are points

obtained using sensor measurements. Let T ∈ SE(3) be the transformation that

aligns A and B. The ICP algorithm is listed in Alg. 1. In Alg. 1, the minimization is

typically performed using Horn’s method [4]; although there are other optimization

variants as well [17, 60, 61, 86].

2.2 Lie Group and Algebra

A Lie group is a set G with two structures: G is a group and G is a (smooth,

real) manifold. These structures agree in the following sense: multiplication and

inversion are smooth maps. This means that elements on the manifold also have a

dual meaning of a group member, and since there exists an algebra that relates group

elements to each other, then there is a corresponding relationship among the points

on the manifold. A Lie algebra g associated to a Lie group G happens to be the

tangent space at identity element I.

Associated with the Lie group and its Lie algebra there are two important func-

tions:
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• Exponential map: This maps elements from the algebra to the manifold: exp :

g 7→ G.

• Logarithm map: This maps elements from the manifold to the algebra: log :

G 7→ g.

For a detailed discussion on Lie group and algebra, refer to [87, 88, 89, 90, 91, 92].

We provide the properties of the special Euclidean group SE(3), which is an

example of Lie group, that will be studied in this thesis. SE(3) is the semi-definite

product R3 × SO(3). The elements of SE(3) can be represented by R ∈ SO(3) and

t ∈ R3 in the form of the following 4× 4 matrix,

T =

 R t

01×3 1

 ∈ SE(3). (2.7)

For a vector x = [v1, v2, v3, ω1, ω2, ω3]T ∈ R6, an element x̂, of the Lie algebra se(3)

can be expressed as,

x̂ =

 Ω v

01×3 0

 ∈ se(3), (2.8)

where v = [v1, v2, v3]T and Ω is the skew-symmetric matrix formed from [ω1, ω2, ω3]T :

Ω =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.9)

The vector x is referred to as the twist vector (also referred to as exponential co-

ordinates) and the operator ∧ is used to map from R6 to se(3). The twist vector

parametrizes an element of the Lie algebra se(3) that belongs to the Lie group SE(3).

The element T ∈ SE(3), corresponding to x̂ can be obtained by using a matrix ex-
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ponential,

T = exp(x̂), (2.10)

and so the twist vector x is also referred to as exponential coordinates. Thus, given

the exponential coordinates x, the SE(3) element can be obtained using the relation

shown in Eq. 2.10.

2.3 Quaternion

While there are many representations for SO(3) elements such as Euler angles, Ro-

drigues parameters, axis angles, etc, in this work uses unit-quaternions. We prefer

the quaternions because their elements vary continuously over the unit sphere S3 as

the orientation changes, avoiding discontinuous jumps (inherent to three-dimensional

parameterizations) [93]. A quaternion q̃ is a 4-tuple:

q̃ = (q0, q1, q2, q3)T , q̃ ∈ R4,

where q0 is the scalar part and vec (q̃) = q = (q1, q2, q3)T is the vector part of the

quaternion. Sometimes an alternate convention is used where

q̃ = (q1, q2, q3, q0) = (vec(q̃), scalar(q̃)) ([57]).

Quaternion Multiplication

Multiplication of two quaternions p̃ and q̃ is given by [59]

p̃� q̃ =

p0 −pT

p p× + p0I3


︸ ︷︷ ︸

F 1(p̃)

q =

q0 −qT

q −q× + q0I3


︸ ︷︷ ︸

F 2(q̃)

p (2.11)

where � is the quaternion multiplication operator and [v]× is the skew-symmetric

matrix formed from the vector v.
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Quaternion Conjugate

Given a quaternion q̃, its conjugate q̃∗ can be written as:

q̃∗ = (q0,−q1,−q2,−q3)T . (2.12)

The norm of a quaternion is:

||q̃|| =
√

scalar(q̃ � q̃∗). (2.13)

Unit Quaternion

A unit quaternion is one with ||q̃|| = 1. Unit quaternions can be used to represent

rotation about an axis (denoted by the unit vector k) by an angle θ ∈ [−π, π] as

follows

q̃ =

(
cos

(
θ

2

)
,kT sin

(
θ

2

))T
. (2.14)

Since rotating about k axis by θ is the same as rotating about −k axis by −θ, q̃ and

−q̃ both represent the same rotation.

Rotation Using Quaternions

A point b can be rotated by a quaternion q̃ to obtain a new point a as shown,

ã = q̃ � b̃� q̃∗, (2.15)

where ã = (0,aT )T and b̃ = (0, bT )T are quaternion representations of a, b respec-

tively.
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Properties of Quaternion Matrices

There are two important quaternion matrix functions, Ω1 : R4 → R4×4 and Ω2 : R4 →

R4×4, which are defined as

Ω1(q) =


q0 −qT1 −qT2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

 , Ω2(q) =


q0 −qT1 −qT2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 ,

for any unit quaternion q = (q0, q1, q2, q3)T ∈ R4. Some useful properties of these

matrix functions are

1. Ω2(q)Ω1(q)T = Ω1(q)TΩ2(q) =

1 0T

0 R

, where R ∈ SO(3).

2. Ω1(q)TΩ1(q) = Ω1(q)Ω1(q)T = Ω2(q)TΩ2(q) = Ω2(q)Ω2(q)T = (qTq)I4×4.

3. Ω1(a)b = Ω2(b)a.

4. Ω1(a)Ta = Ω2(a)Ta = aTae, where e = (1, 0, 0, 0)T .

2.4 Dual Quaternion

There are many representations for SE(3) elements such as Euler angles, quater-

nions, axis angles, etc. for rotation and Cartesian coordinates for translation. Dual

quaternions compactly represent pose, and with the methods presented in this paper,

give rise to a linear update model. Dual quaternions were introduced in 1873 by

William Clifford [94] as a means to combine rotations and translations while retain-

ing the benefits of the quaternion representation of rotation. Dual quaternions have

traditionally been used for kinematic analysis of linkage mechanisms [95, 59, 58, 96].

Dual quaternions have recently gained popularity in graphics applications such as

motion interpolation [97], transformation blending [98], as well as robotics applica-

tions such as hand-eye calibration [99, 32] and registration [64, 100, 101]. For a quick

introductory tutorial on dual quaternions, refer to [102].
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A dual quaternion d̂ is an 8-tuple (p0, p1, p2, p3, q0, q1, q2, q3), which can be written

in the form: d̂ = p̃+ εq̃, where p̃ = (p0, p1, p2, p3) and q̃ = (q0, q1, q2, q3) and quater-

nions and ε is a mathematical construct called the dual operator having the following

property: ε 6= 0 and ε2 = 0. The dual operator is a mathematical construct with a

defined property and is not to be confused as having a small value close to 0. p̃ is

called the real part and q̃ is called the dual part of the dual quaternion.

A dual quaternion used to represent a vector a ∈ R3 has the following form

â = 1 + ε (ã) , where ã = 0 + a. (2.16)

Dual Quaternion Multiplication

Multiplication of two dual quaternions d̂1 = p̃1 + εq̃1 and d̂2 = p̃2 + εq̃2 is given as

d̂1 ⊗ d̂2 = p̃1 � p̃2 + ε (p̃1 � q̃2 + q̃1 � p̃2) , (2.17)

where ⊗ is the dual quaternion multiplication operator.

Dual Quaternion Conjugate

Dual quaternions have three conjugates:

1. First conjugate: d̂
1∗

= p̃ − εq̃. This definition is only provided for the sake of

completeness, but is not used in this thesis.

2. Second conjugate: d̂
2∗

= p̃∗ + εq̃∗. A dual quaternion is called “unit” if

d̂⊗ d̂
2∗

= 1. This definition is important as the dual quaternion that parame-

terizes SE(3) is a unit dual quaternion.

3. Third conjugate: d̂
3∗

= p̃∗− εq̃∗. An important property of the third conjugate

that will be used in this work is,
(
d̂1 ⊗ d̂2

)3∗
= d̂

3∗
2 ⊗ d̂

3∗
1 .
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Dual Quaternion for Pose Representation

A dual quaternion that is used to represent an SE(3) element has the following form

d̂ = q̃r + ε
q̃t � q̃r

2
, (2.18)

where q̃r is the rotation quaternion whose form is as shown in Eq. 2.14 and q̃t = 0+ t

is the quaternion representation of the translational component of the SE(3) element,

t ∈ R3. For the sake of simplicity, we rewrite Eq. 2.18 as

d̂ = q̃r + εq̃d, where (2.19)

q̃d =
q̃t � q̃r

2
. (2.20)

It is important to note that d̂ is a unit dual quaternion since its dual-product with the

second conjugate is unity. Let point a ∈ R3 be obtained by transforming point b ∈ R3

using a dual quaternion d̂. The transformation can be mathematically described as

â = d̂⊗ b̂⊗ d̂
3∗
, (2.21)

where â and b̂ are obtained using Eq. 2.16.

Lemma 2.4.1. For a unit dual quaternion, d̂ = q̃r + εq̃d, the product of third and

first conjugate equals unity: d̂
3∗
⊗ d̂

1∗
= 1.

Proof:

d̂
3∗
⊗ d̂

1∗
= (q̃∗r − εq̃

∗
d)⊗ (q̃r − εq̃d)

= q̃∗r � q̃r − ε (q̃∗r � q̃d + q̃∗d � q̃r) , from Eq. 2.11

= 1− ε
(
q̃∗r �

q̃t � q̃r
2

+
q̃∗r � q̃

∗
t

2
� q̃r

)
. (2.22)

Using the property that q̃r is a unit quaternion and q̃∗t = −q̃t from Eq. 2.13. Eq. 2.22

can be further simplified as d̂
3∗
⊗ d̂

1∗
= 1.
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2.5 Bingham Distribution

The Bingham distribution was introduced in [57] as an extension of the Gaussian

distribution, conditioned to lie on the surface of a unit hyper-sphere. The Bingham

Figure 2-1: A 2D Bingham distribution: z = 1
N

exp(sTMZMTs), where M = I2×2,
Z = diag(0,−10), and s = (x, y). The mode is at x = ±1, y = 0.

distribution is widely used to analyze paleomagnetic data [103], computer vision [104]

and directional statistics [57]. Recently the Bingham distribution has found applica-

tions in robotics for orientation estimation [81, 54], feature description [13] and planar

pose description [55].

Definition 1. Let Sd−1 = {x ∈ Rd : ||x|| = 1} ⊂ Rd be the unit hypersphere in Rd.

The probability density function f : Sd−1 → R of a Bingham distribution is given by

f(x) =
1

N
exp(xTMZMTx),

whereM ∈ Rd×d is an orthogonal matrix (MMT = MTM = Id×d), Z = diag(z1, . . . , zd) ∈

Rd×d with z1 ≥ z2 ≥ · · · ≥ zd, is known as the concentration matrix, and N is a nor-

malization constant.
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Mode of the Distribution

It can be shown that adding a multiple of the identity matrix Id×d to Z does not

change the distribution ([57]).

f1(x) =
1

N1

exp(xTM(Z + λI)MTx)

=
1

N1

exp(xTMZMTx) exp(xTM (λI)MTx),

=
1

N1

exp(xTMZMTx) exp(λxTMMTx),

=
1

N
exp(xTMZMTx) = f(x),

where N = N1

exp(λ)
, xTx = 1 because x is on a unit hypersphere and MMT = I by

definition.

Thus, we conveniently force the first entry of Z to be zero ([57]). Because it is

possible to swap columns of M and the corresponding diagonal entries in Z without

changing the distribution, we can enforce z1 ≥ · · · ≥ zd, where z1 = 0. This represen-

tation allows us to obtain the mode of the distribution very easily by taking the first

column of M . The proof for this is shown below. The mode of f(x) is given by,

x∗ = argmax
x

f(x), subject to ||x|| = 1,

= argmax
x

xTMZMTx− λ(xTx− 1), (2.23)

where λ is the Lagrangian multiplier. x∗ is obtained by solving for x from the

following,

∂

∂x

(
xTMZMTx− λ(xTx− 1)

)
= 0,

⇒MZMTx− λx = 0.

Thus, the Lagrangian multiplier λ is the largest eigenvalue and x∗ is the eigenvector

corresponding to the largest eigenvalue of MZMT . Note that we choose the largest

eigenvalue because, when we substitute MZMTx = λx in Eq. 2.23, f(x) = λ.
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And since we are maximizing f(x) we choose the largest eigenvalue for λ. From the

construction of Z, the largest eigenvalue is 0 (which appears in the first column of

Z) and the corresponding eigenvector is the first column of M .

Note that sometimes an alternate convention is used in literature, wherein Z is

chosen such that the last entry of Z is 0 and the last column of M is chosen as the

mode of the distribution ([81, 57]).

Normalization Constant

The normalization constant N is given by

N =

∫
Sd−1

exp(xTMZMTx)dx,

=

∫
Sd−1

exp(sTZs)ds.

The matrix M does not affect the normalization constant ([57]). An intuition for the

same is, Z is an indicator of the spread of the distribution around the modes and

M is an indicator of the location of the modes and the direction of the dispersion

with respect to the modes. Hence, for a given Z, changing M results in an identical

distribution with a different location of the modes and orientation of the dispersion;

which does not affect the integration. Fig. 2-2 shows two choices of M with the

same Z that results in identical Bingham distributions that appear to be rotated

with respect to each other.

Computation of the normalization constant is difficult and often one resorts to

some form of approximation such as saddle point approximations, or precomputed

lookup tables ( see [13] and the references therein).

Antipodal Symmetry

An example of the PDF for two dimensions (d = 3) is shown in Fig. 2-1. The PDF’s

antipodal symmetry, i.e., f(x) = f(−x) holds for all x ∈ Sd−1. The antipodal

symmetry is important when dealing with distribution of unit quaternions, because
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Figure 2-2: The figure shows two Bingham distributions with Z = diag(0,−0.5,−2),

(a) M =
(

0.5322 −0.4953 −0.6866
0.7747 0.6120 0.1591
0.3415 −0.6166 0.7094

)
, (b) M =

(
0.2603 −0.6941 −0.6712
0.6578 0.6364 −0.4029
0.7068 −0.3366 0.6222

)
the q̃ and −q̃ describe the same rotation. The Bingham distribution with d = 4 is

used to describe the uncertainty in the space of the unit-quaternions.

Product of two Bingham Densities

Similar to a Gaussian, the product of two Bingham PDFs is a Bingham distribution,

which can be rescaled to form a PDF [81]. Consider two Bingham distributions

fi(x) = 1
Ni

exp
(
xTM iZiM

T
i x
)
, i = 1, 2. Then,

f1(x)·f2(x)

=
1

N1N2

exp(xT
(
M 1Z1M

T
1 +M 2Z2M

T
2

)︸ ︷︷ ︸
A

x)

∝ 1

N
exp

(
xTMZMTx

)
, (2.24)

where N is the new normalization constant after renormalization, M is composed of

the unit eigenvectors of A. Z = D −D11Id×d where D has the eigenvalues of A

(sorted in descending order) and D11 refers to the largest eigenvalue.
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Calculating the Covariance

Even though a Bingham distributed random vector x only takes values on the unit

hyper-sphere, it is still possible to compute a covariance matrix in Rd ([81]), which is

given by

Cov(x) = E(x2)− E(x)2, (2.25)

= M

(
diag

(
∂N(Z)
∂z1

N(Z)
, · · · ,

∂N(Z)
∂zd

N(Z)

))
MT . (2.26)

This is equivalently the covariance of a normally distributed x sampled from

N
(

0,−0.5
(
M (Z + λI)MT

)−1
)

, given |x| = 1, where λ ∈ R can be arbitrarily

chosen as long as (Z + λI) is negative definite ([54]). Fig. 2-3 shows two choices of λ

resulting in the same Bingham distribution. Without loss of generality λ = min(zi)

is chosen in this work.

Composition of two Bingham Distributions

Composition can be useful when we want to perturb a system, whose uncertainties

are modeled with a Bingham distribution, with a Bingham distributed noise. Un-

fortunately, the Bingham distribution is not closed under composition and we can

only approximate the composition as a Bingham ([57]). While the authors are not

aware of a general approach for composing n dimensional Bingham distributions, for

case of S1 and S3, prior work provides a method for finding the parameters of the

approximate Bingham distribution obtained by composition [81] and [105].

2.6 Bayesian Filter

State estimation problems that utilize filtering algorithms are typically comprised of

a recursive Bayesian formulation with probabilistic models. Bayesian filtering algo-

rithms seek to estimate a posterior probability distribution over an unknown state

vector xk at time step k given the control inputs uk and measurements zk. The PDF
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(a)

(b)

(c)

Normalization

Normalization

Figure 2-3: (a) A Gaussian distribution: f1(v) =
1
N1

exp
(
vT (diag(0,−3)− 1× I2×2)v

)
. In red is shown a slice of the Gaus-

sian as made by points lying on a unit circle. (b) A Bingham distri-
bution: f2(v) = 1

N2
exp

(
vTdiag(0,−3)v

)
. (c) A Gaussian distribution:

f3(v) = 1
N3

exp
(
vT (diag(0,−3)− 0.5× I2×2)v

)
. In red is shown a slice of

the Gaussian as made by points lying on a unit circle. The slice obtained from the
Gaussian distributions in (a) and (c), when normalized result in the same Bingham
distribution as shown in (b).
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can be factored using Bayes law,

p(xk|z1:k,u1:k) = ηp(zk|xk, z1:k−1,uk)p(xk|z1:k−1,uk),

where η is a normalization constant. Assuming the measurements are independent

and the processes Markov, we obtain

p(xk|z1:k,u1:k) =

η p(zk|xk, z1:k−1,uk)

∫
xk−1

p(xk|xk−1, z1:k−1,u1:k−1)p(xk−1|z1:k−1,u1:k−1)∂xk−1.

(2.27)

In Eq. 2.27, p(zk|xk, z1:k−1,uk) is the measurement model and p(xk|xk−1, z1:k−1,u1:k−1)

is the process model. Eq, 2.27 is often written in the following form,

bel(xk) = η p(zk|xk, z1:k−1,uk) bel(xk), (2.28)

where bel(xk) is the belief over the state xk and bel(xk) is the posterior before incor-

porating measurement zk.

Kalman Filter

The Kalman filter is a Bayesian filter, which assumes that xk, zk and uk are Gaussian

distributions. If the system has a linear measurement model and a linear process

model, the Kalman filter is the optimal stochastic estimator for the state xk [51].

The posterior distribution xk is parameterized as

xk ∼ N (µk,Σk).

There are two steps in a Kalman filter: prediction and update. In the prediction

step, given the previous estimate of the state, the current state is estimated using the
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process model. From Eq. 2.28,

bel(xk) =

∫
p(xk|xk−1, z1:k−1,u1:k−1)bel(xk−1)∂xk−1,

= η1

∫
exp

(
−1

2
(xk −Akxk−1 −Bkuk)

TR−1
k (xk −Akxk−1 −Bkuk)

)
exp

(
−1

2
(xk−1 − µk−1)TΣ−1

k−1(xk−1 − µk−1)

)
dxk−1,

= η1 exp

(
−1

2
(xk − µk|k−1)TΣ−1

k|k−1(xk − µk|k−1)

)
, where

µk|k−1 = Akµk−1 +Bkuk, (2.29)

Σk|k−1 = AkΣk−1A
T
k +Qk, (2.30)

where Ak is the state transition matrix, Bk is the control input matrix and Qk is the

covariance of the process model noise.

The update step corrects the predicted estimate using the obtained sensor mea-

surement zk by computing a Kalman gain Kk. To obtain the update equations we

use Eq. 2.28

bel(xk) = η p(zk|xk, z1:k−1,uk)bel(xk),

= η exp

(
−1

2
(zk −Hkxk)

TR−1
k (zk −Hkxk)

)
exp

(
−1

2
(xk − µk|k−1)TΣ−1

k|k−1(xk − µk|k−1)

)
,

where Hk is the measurement model, such that zk = N (Hkxk,Rk) and Rk is the

covariance of the measurement noise. We can obtain the µk|k by finding the maximum

likelihood estimate of bel(xk)

µk|k = argmax
xk

bel(xk),

= argmin
xk

(
(zk −Hkxk)

TR−1
k (zk −Hkxk) + (xk − µk|k−1)TΣ−1

k|k−1(xk − µk|k−1)
)
,

(2.31)

where Hk is the measurement model, such that zk = N (Hkxk,Rk) and Rk is the
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covariance of the measurement noise. Upon simplification we obtain

µk|k = µk|k−1 +Kk(zk −Hkµk|k−1), (2.32)

Σk|k = Σk|k−1 −KkHkΣk|k−1, where, (2.33)

Kk = Σk|k−1H
T
k (HkΣk|k−1H

T
k +Rk)

−1. (2.34)

From the above equations it can be observed that the uncertainty of the state Σk|k,

is reduced upon the inclusion of the information provided by the measurement.

The Kalman filter is only optimal for linear systems. For systems with nonlinear

process models and nonlinear measurement models, one popular method is to use an

EKF. An EKF linearizes the models about the current estimate and then perform

a similar prediction and measurement correction step. The other popular method

is to use an UKF. The UKF uses a deterministic sampling technique known as the

unscented transform to pick a minimal set of sample points (called ‘sigma points ’)

around the mean. These sigma points are then propagated through the nonlinear

functions, from which a new mean and covariance estimate are then formed. The

result is a filter which, for certain systems, more accurately estimates the true mean

and covariance. In addition, this technique removes the requirement to explicitly cal-

culate Jacobian (as required by EKF), which for complex functions can be a difficult

task in itself, if not impossible.
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Part I

Using mini batches of

measurements for state update
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Chapter 3

Complementary Model Update

Minimally invasive surgery (MIS) has the potential to reduce patient trauma, post-

operative complications, recovery time and cost. Unfortunately, surgical navigation

remains a challenging task in MIS, and hence computer aided surgery (CAS) was de-

veloped to assist surgeons in overcoming this challenge. A prerequisite for successful

CAS is an accurate registration of preoperative images to intra-operative anatomy.

Typically, prior work relied on image guided techniques [106] while others used struc-

tured light [107] and force-based exploration [108, 109]. In this chapter, we pursue

the concept of sensory-guided surgery based on force/contact exploration in flexible

environments.

Prior work by Sanan et. al. [78] addressed simultaneous compliance and regis-

tration estimation (SCAR) using a filtering approach. However, the filtering im-

plementation for SCAR is not robust to initialization error, and therefore we have

developed a new update model, termed complementary model update (CMU) that

can be used to accurately estimate the registration, in a filtering approach as well as

using a generic non-linear optimizer. This update model encodes both contact force

and contact location information.

The use of contact/force data comes with the advantage of providing stiffness in-

formation, which can enhance the performance and robustness of registration. This

advantage, however, comes at a cost of having to consider the induced local surface

deformation due to the physical interaction of the surgical tool with the organ. In
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this work, we simultaneously use multiple position-force measurements to estimate

the local deformation, which is then used to estimate the local stiffness as well as

registration parameters. Prior work in literature has looked at different types of

palpation strategies to infer mechanical properties of the tissue. For example, Ya-

mamoto et. al. [109] perform discrete probing of the tissue, while Liu et. al. [110]

perform a continuous motion palpation and Goldman et. al. [108] perform dynamic

excitation of the tissue. While the above mentioned approaches perform different

types of mechanical palpation to find tissue stiffness, they restrict themselves to flat

organs or assume they are already registered to the preoperative model. An excep-

tion being the work of Chalasani et. al. [111, 112], who assume non-flat organs and

estimate the shape of the organ and stiffness simultaneously using the force-position

measurements, but do not register themselves to a preoperative model. Since the

publication of our work [113], there has been more recent work by Wang et. al. [114]

which uses contact measurements to perform deformable registration, but does not

estimate stiffness in the process.

The performance of the our formulation is evaluated for various geometries, stiff-

ness distributions, subject to sensor noise levels and initial conditions. The new

formulation is validated with simulated data and experimental data obtained by pal-

pating a silicone phantom organ and an ex vivo organ. A simple experimental setup

consisting of a surgical tool that can sense force and position at its tip is used to

validate the core ideas for the use of contact/force based exploration data for regis-

tration. The robot experiments in this chapter were carried out by our collaborators

at Vanderbilt university. Ultimately, we show that the CMU approach overcomes the

aforementioned issues associated with local deformations due to contact exploration

and offers improved performance compared to other known methods. We believe this

approach can be used in MIS for resection or ablation of tumors in organs such as

liver, bladder and kidneys [115].
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3.1 Related Work

When the anatomy is rigid, registration yields the homogeneous transformation ma-

trix that relates points in the anatomy’s frame to the frame of its a priori model.

When dealing with anatomy that is flexible, we observe discrepancy between the

model of the source and the target due to– (i) the global deformation of the target

caused by swelling or organ shift due to gravity and positioning of the patient, (ii) lo-

cal deformation due to tool-tissue interaction. Non-rigid registration techniques, that

are popularly referred to as “deformable registration” methods, have been developed

to address this issue. A popular method used to perform deformable registration is

the coherent point drift (CPD) developed by Myronenko et. al. [116]. CPD uses a

probabilistic matching approach and assumes motion coherence between the points

in the two frames to find the registration as well as the optimal deformation of the

model. The elastic convolved ICP by Sagawa et. al. [117] uses organ geometry and

image processing to perform registration, but performs poorly when the visible organ

is obfuscated with blood and also respond adversely to change in lighting. Soti-

ras et. al. [118] in their review paper describe various other deformable registration

methods that are commonly used in literature. The majority of previous works relies

on non-contact based methods to produce geometric data for registration.

Other imaging modalities such as intraoperative ultrasound (US) based registra-

tion for soft bodies deal with registering the preoperative model to the US image,

instead of the surgical tool [119, 120]. The approach of Lunn et. al. [121] requires

a pre-registration step where either fiducial markers are used or an expert manu-

ally chooses points of interest from the US image to provide a good initial guess for

the registration algorithm. The approach of Songbai et. al. [122] on the other hand,

present a fiducial free way for registration using 3D ultrasound (3DUS). But this

method depends heavily on finding distinctive 3DUS features which may not be suc-

cessful in every surgical scenario. To the best of our knowledge, the only work that

uses contact/force based blind exploration data to perform registration is the work

of Sanan et. al. [78], who used an IEKF to simultaneously estimate the registration
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parameters and generate a stiffness map of the environment. In Section 3.2 we discuss

some of the drawbacks of the IEKF implementation of SCAR and motivate the need

for a more robust formulation.

Problem statement and assumptions

Given an a priori geometric model of an organ as well as the measurements of the

tool tip positions and associated contact forces, (i) the surgical tool needs needs to

be registered to the frame of the model, and (ii) the stiffness distribution over the

organ’s surface needs to be estimated. We make the following assumption in this

chapter:

1. The true shape of the organ is not globally deformed but instead experiences

local deformations only due to interaction with the tool.

2. The tool-tip’s position can be measured accurately.

3. The tool has force sensing capability so that it can be servoed in a hybrid

position-force control manner.

4. The forces applied by the tool are within the admissible range (typically ≈ 1N)

in which the organ only undergoes a small deformation that allows it to realize

its undeformed state when the force is removed.

5. The friction between the tool tip and the surface of the soft body is negligible.

3.2 Problem Formulation

In this section, we describe the complementary model update (CMU) to simultane-

ously estimate the variation of stiffness over the surface as well as register a flexible en-

vironment to its a priori model. Our group had earlier developed a filtering approach

for SCAR that was reported in [78]. For the rest of this chapter, the old implemen-

tation of SCAR using IEKF will be referred to as SCAR-IEKF-old. SCAR-IEKF-old
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Table 3.1: Notations

Symbol Description

[·]R Entities defined in robot’s frame
[·]C Entity defined in model’s frame
n Normal vector
dp Coordinates of deformed point
up Coordinates of undeformed point
T Homogeneous transformation matrix
f Force magnitude
c Stiffness
d Deformation depth
φ CAD model

uses a geometric prior represented in the form of a triangular mesh and therefore

each triangle was assigned its own stiffness values. The state vector xk consisted

of six registration parameters and the stiffness values associated with each triangle

of the triangular mesh. The update step involved using sensed position and force

measurements to minimize the following objective function:

h1(xk) = −(nCj )
T (dpCj −u pCj ) (ci)xk + fj, (3.1)

where dpCj = T xk
(
dpRj

)
. (3.2)

The position of the jth deformed point is dpRj , measured in the robot frame1 and

the corresponding sensed force is fj. The corresponding closest point on the CAD

model is upCj and the normal vector is nCj . The objective function h1(xk) is the

difference between the estimated force and the measured force. The objective function

is minimized over xk and as mentioned above, T , the homogeneous transformation

matrix and ci, the stiffness associated with triangle i (see notations in Table 3.1) are

obtained from xk and hence are updated simultaneously.

Fig. 3-1 shows the true location of the deformed point d∗pC1 which is at a depth d∗

along the normal nC1 . Let the location of the deformed point obtained from the reg-

istration estimate of previous iteration be d
k−1p

C
1 as shown in Fig. 3-1. The subscript

1We assume that the tool is rigidly attached to the robot and hence transformation between the
robot’s frame and the tool’s frame can be carried out trivially by a precomputed rigid transformation.
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Figure 3-1: Schematic shows ambiguity in single measurement based update

k − 1 indicates that the coordinates are transformed using the registration estimate

from the previous iteration. After applying the state update using Eq. 3.1, the up-

dated position of the deformed point is d
kp

C
1 , which is at a depth d along the normal

(see Fig. 3-1). The filter estimates the stiffness value to be ci =
fj
d
6= fj

d∗
= c∗i . As can

be observed from Eq. 3.1, substituting ci and d
kp

C
1 yields h1(xk) = 0. Substituting c∗i

and d∗

kp
C
1 in Eq. 3.1 also yields h1(xk) = 0. This results in an ambiguity in registra-

tion along the normal and an incorrect stiffness estimation. We make an observation

that when the registration is updated based on at least a pair of observations, the

ambiguity in registration is resolved. Let us select two points, upC1 and upC2 , on

the undeformed surface of the organ that are spatially close to each other. Since the

points are close to each other, we assume that the normals nC and the stiffness c at

both locations are the same. Let us apply a force of magnitude f1 and f2 respectively

at upC1 and upC2 . Upon application of the force, the surface would deform by depths:

di =
fi
c
, i = 1, 2. (3.3)
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From Eq. 3.3, we have:

c =
f2 − f1

d2 − d1

, when d2 6= d1. (3.4)

Let the coordinates of the deformed points be dpR1 and dpR2 . From Eq, 3.4, stiffness

c = f2−f1
||dpR2 −dpR1 ||

. We can now relate the deformed and undeformed probed points from

the linear stiffness model (see Fig. 3-1):

upC1 − nCd1 =d pC1

⇒upC1 − nC
f1

c
= T (dpR1 ), (3.5)

where T (p) transforms p from tool-frame to CAD model-frame. The LHS of Eq. 3.5

is the estimated position of the deformed point in the CAD model frame based on the

estimated stiffness c and the RHS is the coordinates of the sensed deformed points

transformed to the CAD model frame. While we used two points to estimate the

stiffness c in Eq. 3.4, in general we can use l measurements, where l ≥ 2, to estimate

the stiffness:

c =
fk
dk
, k = 1, 2, ...l

⇒c =
fi − fj
di − dj

, i, j ∈ {1, 2, ..., l} and i 6= j. (3.6)

From Eq. 3.6, stiffness c linearly relates the depth (di − dj) to the applied force

(fi − fj). Thus we have c = L(di − dj, fi − fj), where L is the function that returns

the slope of the best line fit through a regression on the data {(di − dj), (fi − fj)}.

Based on Eq. 3.5, we can form a new objective function for obtaining the best

registration as follows:

h2(T ) =
m∑
j=1

∥∥∥∥∥upCj − nCj (fβ)j

cj
− T ((dpRβ )j)

∥∥∥∥∥
2

, (3.7)

where (fβ)j and (dpRβ )j are the force and position measurements obtained by palpating
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the jth undeformed point and m is the total number of undeformed points being

probed. β ∈ {1, 2, ..., l} (l ≥ 2) is the index of the measurement taken from the set of

measurements at the jth undeformed point.

The stiffness is estimated first from the linear regression L using force-position

measurements and then used to optimize h2(T ). The objective function h2(T ) is the

difference in the squared norm of the distance between the estimated location of the

deformed point and the sensed location of the deformed point.

It is to be noted from Eq. 3.7 that h2(T ) only updates the registration and Eq. 3.4

updates the stiffness, unlike h1(xk) that is used to update both stiffness and registra-

tion (see Eq. 3.1). The decoupled stiffness and registration update implies that error

in registration does not affect stiffness estimate unlike in the work of Sanan et. al. [78].

Fig. 3-2 shows a flowchart that provides an overview of the various steps described

so far.

The various steps involved in the CMU approach are listed below:

1. Collection: In the collection step, pairs of force-position measurements which

satisfy the following conditions are grouped together in the same set:

(a) The force magnitudes are different.

(b) The direction of normals fall within a threshold of each other.

(c) The position measurements fall within a threshold of each other.

The three conditions stated above imply that position measurements correspond

to the same undeformed point being probed with different forces, and forming a

compatible set. Given the measurements (dpRi , fi), i = 1, 2, ..., n obtained so far,

we collect compatible sets, {((dpR1 )j, (f1)j), ((
dpR2 )j, (f2)j), ...}, j = 1, 2, ...,m,

where m is the total number of distinct sets obtained.

2. Stiffness estimation: For each of the compatible sets that have at least one

pair of force-position measurements, we estimate the local stiffness assuming a

linear stiffness model as shown in Eq. 3.6. In Sec. 3.5, we refer to the process

of using a criteria to collect a subset of measurements and then using those
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Figure 3-2: Flowchart describing the inputs and outputs for complementary model
update (a) Flexible environment with embedded stiff features is probed by a robot
(b) Location of probed points are sensed (c) Compatible force-position measurements
are collected (d) complementary model update estimates the registration and stiffness
map (e) Robot frame and model frame are registered (f) Stiffness map is generated
(g) Prior geometric model and the initial registration guess
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measurements to estimate the stiffness as hashing of measurements. The linear

regression used to find the stiffness is an example of a hash function2. And the

estimated stiffness is referred to as a pseudo measurement.

3. Correspondence: The points (dpRβ )j are transformed using the best registration

estimate available to obtain (dpCβ )j. We then find,
(
upCj ,n

C
j

)
= M

(
(dpCβ )j,φ

)
,

where M is the rule that finds the closest point upCj ∈ φ to (dpβ)Cj and the

corresponding normal nCj . Other alternates for M include methods such prob-

abilistic most likely correspondence as developed by Billing et. al. [23], proba-

bilistic multi-point correspondence as in the case of coherent point drift of My-

ronenko et. al. [116] or maximum penalized likelihood estimation of Kang et. al.

[124], and similarity transformation coefficients of Ryan et. al. [125].

4. Minimization: The objective function described in Eq. 3.7 is minimized using a

least squares solver, such as Horn’s method [4] or can be used in the update step

of a Kalman filter (for example a UKF for registration by Moghari et. al. [5])

to estimate the registration.

5. We loop between the Correspondence and Minimization step until convergence

or upto a fixed number of iterations, upon obtaining T .

We present results from an implementation of CMU that uses a least squares opti-

mizer for minimization [17]. We retain the convention used earlier to refer to our

implementation as SCAR-LSQ-CMU. We have also implemented a filtering approach

using CMU, which will be referred to as SCAR-IEKF-CMU.

The minimization step would only return a local minima when using a filter or

least squares solver. One way to find global minima is to use a branch and bound

technique as described by Yang et. al. [18].

2It must be noted that this is not the standard usage of the term hash function. The formal
definition of a hash function is any function that can be used to map data of arbitrary size to data of
fixed size [123]. While hash functions are typically used for accelerated database lookup, we borrow
the terminology in this work to denote the function that takes in measurements of arbitrary size
and returns a pseudo-measurement of fixed size.
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Input:
dpRi ∈ R3, i = 1, 2, ..., n
fi ∈ R, i = 1, 2, ..., n
A priori CAD model: φ
Initial transformation: T 0 ∈ SE(3)
Output: Transformation T that aligns dpRi with φ
Collection: Collect points satisfying compatibility criteria:
{
(
(dpR1 )j, (f1)j

)
,
(
(dpR2 )j, (f2)j

)
, ...}

Stiffness estimation: Estimate the linear stiffness
cj = L

(∥∥(dpRβ )j − (dpRγ )j
∥∥ , ((fβ)j − (fγ)j)

)
Optimize Initialize: T ← T 0

while not converged do
Correspondence:

(
upCj ,n

C
j

)
= M

(
T (dpRβ )j,φ

)
Minimization: T = argmin

T

m∑
j=1

∥∥∥upCj − nCj (fβ)j

cj
− T (dpRβ )j

∥∥∥2

end
Algorithm 2: Complementary Model Update

3.3 Results: Batch Estimation with Unknown Data

Association

3.3.1 Comparison with old implementation of SCAR

In Fig. 3-3 we compare the results of SCAR-LSQ-CMU with SCAR-IEKF-old for a

simulated case of a pyramid shaped organ with an embedded stiff feature that was

probed at 250 uniformly spaced points. The CAD model of the organ is represented

in the form of a triangular mesh with 524 faces. We choose an initial guess for

registration which is displaced along the Z direction by 4mm.

SCAR-LSQ-CMU accurately estimates the true registration after palpation of

about 20 points. While SCAR-IEKF-old correctly estimates the translation compo-

nents of registration (albeit not better than SCAR-LSQ-CMU), there is significant

rotational error even after probing 250 points (see Table 3.2).

The estimated stiffness map from SCAR-LSQ-CMU (see Fig. 3-3(b)) looks very

similar to the ground truth stiffness map (see Fig. 3-3(a)), unlike the stiffness map

estimated by SCAR-IEKF-old (see Fig. 3-3(c)). This example demonstrates how the

CMU overcomes the ambiguity described in section 3.2 and provides better estimates
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Table 3.2: Comparison of registration results between SCAR-LSQ-CMU and SCAR-
IEKF-old

x y z θx θy θz RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm)

Actual 0 0 0 0 0 0 –
SCAR-LSQ-CMU 0 0 0 0 0 0 0
SCAR-IEKF-old 0.32 0.12 2.46 -4.45 -1.03 1.22 5.66

compared to SCAR-IEKF-old.

(a) (b) (c) 

Figure 3-3: Stiffness in N/mm (a) Ground truth (b) Estimated by SCAR-LSQ-CMU
(c) Estimated by SCAR-IEKF-old

3.3.2 Evaluation of Robustness to Sensor Noise

In order to test the robustness of the proposed algorithm to the presence of noise in the

sensor measurements, we develop simulation data in which we artificially add noise

to the measurements. While do not consider measurement outliers in the simulation

experiments, we do observe outliers in the robot experiments. Any outliers present

in the measurements would first affect the linear regression that is used to estimate

the stiffness; which in turn would affect the registration. However, there exist several

robust techniques in literature to deal with outliers in linear regression [126]. In

practice we identify the k most likely outliers and use the remaining measurements
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in the regression, which is a popular approach developed by Gentleman et. al. [127].

While we use k = 10% in this work, k can be chosen to be any other value depending

on the prior knowledge of the outliers. We take the case of an organ whose shape

is as shown in Fig. 3-6(a) with a synthetic ground truth stiffness map as shown in

Fig. 3-4(a). The CAD model has 1311 triangle faces and is probed at 341 uniformly

spaced points. At each palpated point, we record 10 measurements by probing along

the normal up to a depth of 3mm in increments of 0.3mm. An artificial noise selected

uniformly from [0, 0.1]mm and [0, 0.1]N is added to the sensed position and force

respectively. Fig. 3-4(b) shows the stiffness map as estimated using SCAR-LSQ-CMU

on this data. The stiffness map reveals the stiff features present in the ground truth.

Following this we increase the noise in the sensed position, by selecting uniformly

from [0, 0.3]mm. The stiffness estimation as shown in Fig. 3-4(c) demonstrates that

SCAR-LSQ-CMU can reveal the stiff features even in the presence of high sensor

noise.

(a) (b) (c) 

Figure 3-4: Stiffness in N/mm(a) Ground truth (b) Estimated under low sensor noise
(c) Estimated under high sensor noise

Table 3.3 shows the comparison of the results as estimated by SCAR-LSQ-CMU

with ICP [11], one of the most popular registration methods. Since ICP does not

consider local deformations in its formulation, we create a modified formulation of

the ICP to compensate for the local deformations (which we term deformation com-
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Table 3.3: Registration results for different noise levels

x y z θx θy θz RMS
Low noise level (mm) (mm) (mm) (deg) (deg) (deg) (mm)

Actual 7 -12 15 -11.46 5.72 8.59 –
SCAR-LSQ-CMU 6.99 -11.94 14.99 -11.46 5.73 8.56 0.02
ICP 6.40 -11.32 17.39 -11.28 5.35 8.36 2.33
DICP 8.69 -13.63 17.12 -11.22 5.89 8.53 3.00

High noise level

SCAR-LSQ-CMU 6.99 -11.96 15.00 -11.48 5.72 8.56 0.02
ICP 7.15 -13.14 17.14 -11.44 5.80 9.06 2.35
DICP 8.59 -14.05 17.42 -11.30 5.94 8.87 3.24

pensated ICP or deformation compensated ICP (DICP)), so that we can provide a

fair comparison to SCAR-LSQ-CMU. In DICP we estimate the local deformation

from the stiffness data and then displace the probed points along the sensed normal

by the deformation depth to estimate the undeformed points3. Upon estimating the

undeformed points, we use the original ICP to estimate the registration. In addition

to finding the registration estimates, we also find the root mean square (RMS) error

between the estimated positions and true positions, over all the probed points.

We assume the initial registration guess is T 0 = I, where I is an identity matrix.

As expected, estimating local deformations results in SCAR-LSQ-CMU performing

better than ICP and DICP in both the cases. DICP is affected by noise in sensed

normal data resulting in a poor registration estimate, while SCAR-LSQ-CMU uses

normal from the CAD model.

3.3.3 Evaluation of Robustness to Initial Registration Error

For the simulated example presented in Section 3.3.2 with lower sensor noise, we

evaluate the registration estimates for two different initial registration errors. The

initial registration error for Case 1 is lower than that for Case 2. From Table 3.4 we

3Since the publication of our work, there has been some recent work by Chalasani et. al. [111, 112],
who use a similar approach to find the undeformed geometry of the organ surface. The difference
being they use forces estimated from a GPR since they perform continuous palpation, while we use
actual force measurements obtained from discrete probing.
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observe than SCAR-LSQ-CMU estimates registration accurately even in the presence

of high initial registration error.

Table 3.4: Evaluation of registration-robustness to initial conditions

x y z θx θy θz RMS
Case1 (mm) (mm) (mm) (deg) (deg) (deg) (mm)

Initial 7.30 -12.10 15.61 -10.91 5.25 8.39 –
Actual 7 -12 15 -11.46 5.72 8.59 –
SCAR-LSQ-CMU 6.95 -11.94 14.99 -11.45 5.68 8.56 0.03
ICP 7.07 -12.25 16.26 -11.40 5.79 8.73 1.31
DICP 7.69 -11.86 16.21 -11.32 5.89 8.42 1.22

Case 2

Initial -13.31 -2.42 32.18 -30.76 -9.74 36.98 –
SCAR-LSQ-CMU 6.97 -11.91 15.01 -11.47 5.70 8.54 0.02
ICP 7.07 -12.25 16.26 -11.40 5.79 8.73 1.31
DICP 8.93 -11.93 16.51 -14.93 6.05 8.66 3.67

3.3.4 Experimental Validation

To evaluate our CMU algorithm we have used a custom designed Cartesian robot

at Vanderbilt university with an open architecture controller [128] (see Fig. 3-5(a)).

The robot end-effector was equipped with an ATI Nano43 F/T sensor. A target

machine using Matlab Simulink R© Real-Time operating system was used for the low

level control at a control frequency of 1 KHz. For the probing and environment

exploration, a hybrid motion/force controller was implemented as in Khatib [129].

The motion control was accomplished using proportional derivative inverse dynamics

controller with a 5th order polynomial trajectory generator. A proportional integral

control law was used for force control. The force and motion reference commands

were generated on a host machine which communicated with the low-level target

machine using UDP. Post the publication of this work, our collaborators at Johns

Hopkins university have developed a complementary situational awareness (CSA)

software framework [130]. CSA is implemented as a component based framework,

using the open source cisst libraries, developed at Johns Hopkins University [131, 132],
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Figure 3-5: (a)Cartesian robot setup at Vanderbilt university used for experiments
(b) Contact location and surface norm estimation

with support for the robot operating system (ROS) [133]. In the future we plan to

use this framework to demonstrate our CMU approach on a daVinci research kit

(dVRK) [134].

Robot Automatic Probing Procedures

Given a target region for exploration, the host machine generates a uniformly dis-

tributed grid map (uniform spacing in the x̂ − ŷ plane of the robot) for probing

locations. Given a particular reference probing location xp, the robot repeats the

following steps to obtain the force-position measurements:

1. Making high force contact: The robot is first commanded to move to a desired

position xp and then to move along the Z direction until a force magnitude 0.5N

is reached.

2. Estimating surface norm: The surface normal n̂ is computed as the direction of

the sensed force: n̂ = fs/‖fs‖. The location of the contact point on the surface

can be computed as: xcont = xEE − n̂r (see Fig. 3-5(b)).
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3. Finding low force surface contact point: The robot first retrieves swiftly away

from the surface along the direction of the estimated normal and then moves

slowly towards the surface along the normal till the sensed force reaches a thresh-

old.

4. Probing and recording: The force and position measurements are recorded as

the robot moves up to a preset depth into the organ under position control.

Results of probing silicone model with stiff features

We use a silicone phantom organ with embedded stiff features as shown in Fig. 3-6(a)

to test the performance of SCAR-LSQ-CMU. The phantom is probed at 1010 uni-

formly spaced points. The stiffness map as estimated from SCAR-LSQ-CMU reveals

all four stiff features (see Fig. 3-6(b)). Table 3.5 shows the registration estimates from

SCAR-LSQ-CMU, ICP and DICP. From Fig. 3-6(c) we notice that SCAR-LSQ-CMU

has a lower RMS error than ICP and DICP after about 25 iterations. We also ob-

serve that the estimate converges with as few as 100 points for SCAR-LSQ-CMU as

opposed to ICP and DICP (see Fig. 3-6(d)). This suggests that even though we have

1010 probed points, for an accurate registration estimation we only need to probe

about 100 points randomly spread across the surface of the organ. It is important for

the chosen points to be spread across the organ so that they can provide a reasonable

estimate of the stiffness over the entire surface of the organ. Further, if the points

chosen are not spread across, then the obtained measurements may not be descrip-

tive enough to capture the geometry of the organ to be registered to. A Bayesian

optimization-based procedure to optimally choose the points to probe that can quickly

reveal the stiff inclusions, has been recently developed by Ayvali et. al. [2]. In the

next section we show results for our CMU approach using measurements obtained

from the Bayesian optimization approach.
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Table 3.5: Registration results for experimental data

Silicone model x y z θx θy θz RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm)

Actual 5 -7 10 5.73 5.73 -8.59 –
SCAR-LSQ-CMU 4.96 -7.07 10.07 5.71 5.70 -8.50 0.11
ICP 4.96 -7.05 10.76 5.71 5.71 -8.51 0.80
DICP 6.67 -6.86 10.83 5.56 5.79 -8.79 1.87

Ex vivo organ

Actual 7 8 -10 -5.73 -5.73 8.59 –
SCAR-LSQ-CMU 7.45 7.80 -9.81 -5.73 -5.48 8.69 0.28
ICP 5.56 7.39 -7.66 -0.43 -6.2 8.62 4.15
DICP 6.36 7.59 -9.66 -0.48 -5.84 8.52 3.49

Number of probed points Number of iterations 

(a) (b) 

(c) (d) 

Figure 3-6: (a) Top view of the silicone organ (b) Stiffness map as estimated by
SCAR-LSQ-CMU (Stiffness in N/mm) (c) Comparison of RMS error vs number of
iterations (d) Comparison of RMS error vs number of probed points
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Figure 3-7: (a) An ex vivo porcine liver with artificially embedded tumor (b) Posi-
tion of probed points on the surface of the organ (c) Stiffness map as estimated by
SCAR-LSQ-CMU (Stiffness in N/mm)(d) Variation of applied force with deformation
depth at three arbitrarily points chosen in (c)
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Results of probing ex vivo organ

In order to validate the proposed work in a more realistic scenario, we palpate a

porcine liver and use SCAR-LSQ-CMU for registration and stiffness estimation. A

triangular plastic inclusion is artificially placed inside the organ and sutured as shown

in Fig. 3-7(a). We palpate a region of interest on the liver at 196 equally spaced points.

In order to obtain the location of the inclusion, we manually probe the organ with an

optical marker and track the position using a Polaris Vicra optical tracking system.

We then place an optical marker on the tool tip to compare the position of the tool-

tip in the tracker’s frame as well as in the robot’s frame to obtain the ground-truth

registration.

We obtain a stiffness map as shown in Fig. 3-7(c), which clearly shows the stiff

inclusion. Fig. 3-7(d) shows linear variation of force with depth at three arbitrarily

chosen locations on the surface, validating our assumption of a linear stiffness model.

Table 3.5 shows the registration estimates for an initial registration guess of T 0 = I.

The accuracy of registration as required for clinical applications generally depends on

the size of the smallest tumor that needs to be removed and the resection margin [135,

136]. In this example, the size of the tumor is 2cm and the registration accuracy

obtained is 0.28mm. Hence we can safely say that the obtained registration accuracy

is sufficient to discern the tumor.

3.3.5 Results for Bayesian optimization guided probing

In the results demonstrated thus far, we considered exhaustively probing the entire

surface of the organ. Since exhaustive palpation can be very time consuming, the

SCAR-LSQ-CMU approach was used along with the Bayesian optimization approach

introduced by Ayvali et. al. [2] to simultaneously register and estimate the stiffness

distribution with minimal number of probings (see Fig. 3-9). The approach of Ay-

vali et. al. [2] uses Gaussian processes to model the stiffness distribution and Bayesian

optimization to direct where to sample next for maximum information gain. Instead

of finding the next point to probe, one may alternatively find the best continuous
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trajectory to probe. Continuous trajectories can provide a greater density of mea-

surements compared to discrete probing. Discrete probing, however, has the benefit

of providing a more accurate assessment of tissue stiffness at the probed point. On

the other hand, in continuous palpation, each force measurement corresponds to a

different undeformed surface location, which makes the tissue stiffness estimation

more challenging. Chalasani et. al. [111] developed a Gaussian process-based ap-

proach to estimate the stiffness and the underformed surface point from force and

displacement data obtained during continuous palpation. In the future, we plan to

use the SCAR-LSQ-CMU approach along with the continuous palpation approach of

Chalasani et. al. [111]. Post the publication of our work, there have been other con-

tinuous palpation approaches using Bayesian optimization by Chalasani et. al. [112],

ergodic coverage by Ayvali et. al. [137] and active area search by Salman et. al. [138].

For the rest of this section, we use the discrete probing approach of Ayvali et. al. [2]

to provide inputs to the SCAR-LSQ-CMU approach. We start with an initial set of

19 samples that are uniformly distributed over a grid on the surface of the organ

and terminate the palpation after 100 points. Fig. 3-8(a) shows where we think

the position of all the probed points are based on the initial registration guess and

their registered position estimated by SCAR-LSQ-CMU. The registered position

of the probed points (deformed points) lie below the surface of the CAD model as

expected; validating that the registration estimate is accurate. Fig. 3-8(b) and (c)

show the ground truth stiffness map and the predicted stiffness map, respectively.

The predicted stiffness map captures the stiff features present in the ground truth

stiffness map. On Matlab, predicting the stiffness distribution and determining the

next point to palpate takes 0.11s on average while updating the registration takes

1.2s on average for 100 probed points. Table 3.6 shows the registration results for

this experiment.

The required clinical accuracy of registration is application dependent. For tumor

localization, the registration accuracy can be dictated by the size of the smallest

tumor that needs to be resected or ablated [135]. For example, the smallest tumor
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Table 3.6: Registration results for CMU approach with Bayesian optimization guided
probing

x y z θx θy θz RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm)

Actual 5 10 -15 11.46 -11.46 5.73 –
Guess 0 0 0 0 0 0 –
SCAR-LSQ-CMU 4.56 9.24 -14.97 12.58 -11.27 5.69 1.14

size detected in livers is 1cm on average [139]. Hence, we conclude that the registration

accuracy we achieve is well above the requirements.

3.3.6 Evaluation in Presence of Stiffness Priors

A rotationally symmetric object has multiple solutions for rotation and/or translation,

resulting in an ambiguity in registration [17]. In other applications, this ambiguity is

usually resolved by introducing an additional dimension such as surface texture [140],

surface reflectance [141], etc.

In order to develop a formulation for registration that works reliably for any organ

geometry, we extend the CMU formulation by using a stiffness prior in addition to

the geometric prior for resolving the ambiguity in registration.

A prior stiffness map can be generated using elastography, physics based simula-

tions or other complementary methods. In this work we generate the prior stiffness

using a physics based simulation that assumes a linear stiffness model. The stiffness

values are normalized and classified into two discrete levels, high and low stiffness,

using Otsu method [142].

The only modification to the CMU formulation happens in the correspondence

step. In order to ensure that a point corresponding to a high stiffness region on the

model-frame is mapped to a point with high stiffness in the robots frame, we normalize

and classify the estimated stiffness map using [142] (Fig. 3-10(c) was generated from

Fig. 3-10(a)). We choose the point on the preoperative model that is closest and also

has the same discrete stiffness level in the prior stiffness map.

The stiffness map estimated by SCAR-LSQ-CMU using stiffness prior is shown in
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Figure 3-8: (a) Registration results for Example 3, (b) Ground truth stiffness map
(c) Estimated map for Example 3 with 119 probed points. The algorithm starts with
an initial grid of 19 points: 4 corners and 15 uniformly spaced points.
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Figure 3-9: Block diagram description of the Bayesian optimization guided probing
(Courtesy [2]).

Figure 3-10: (a) Estimated stiffness map (stiffness in N/mm). (b) and (c) Prior
stiffness map and estimated stiffness map respectively, normalized and stiffness values
classified to high and low stiffnesss levels. (d) Initial and true location of probed
points. (e) Estimated location probed points.
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Fig. 3-10(a). Note that the two stiff inclusions are clearly visible in the stiffness map.

In Fig. 3-10(d), black-diamond markers show the 180 points that were probed in the

region of interest. Green-square markers show the initial guess for the location of

the probed points. In Fig. 3-10(e), blue-star markers show the position as estimated

by SCAR-LSQ-CMU without using a stiffness prior. Red-circular markers show the

position estimated by SCAR-LSQ-CMU using the stiffness prior.

Table 3.7 shows the RMS error for ICP and SCAR-LSQ-CMU with and without

stiffness prior, for a representative example. SCAR-LSQ-CMU with stiffness prior

estimates the registration parameters very accurately and the RMS error is within

clinical requirements [135]. In this work, we use the value of the stiffness level to

filter out incorrect correspondences. It is however worth noting that we could also

associate weights to the matching based on proximity to the model and the stiffness

level. Such an approach could potentially perform better when the prior stiffness map

does not contain location of all stiff inclusions or when the location of stiff inclusions

is not accurate.

Table 3.7: Registration Evaluation in Presence of Stiffness Prior

x y z θx θy θz RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm)

Initial 0 0 0 0 0 0 –
Actual -20 15 15 -10 11.46 -8.59 5.73 –

SCAR-LSQ-CMU -16.4 19.9 -14.8 15.45 5.84 8.16 7.74
SCAR-LSQ-CMU with stiffness prior -21 16.73 -9.1 11.28 -8.6 5.23 2.19
ICP -18.9 20.5 -15.4 16.21 7.35 6.5 7.77

3.4 Conclusion

We have presented a new and robust formulation that uses mechanical palpation to

simultaneously estimate the stiffness distribution and register preoperative models to

visible anatomy. We believe the proposed model update is not a replacement but

instead complementary to existing intraoperative registration methods. The perfor-

mance of the new update method to several initial conditions, different geometries,
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stiffness profiles as well as sensitivity to sensor noise was evaluated and its robust-

ness was demonstrated by a number of examples. We also introduce deformation

compensated ICP (DICP) as an improvement over ICP, to provide a more fair com-

parison to SCAR-LSQ-CMU. We show that SCAR-LSQ-CMU performs better than

SCAR-IEKF-old, DICP and ICP. We also show that the performance of CMU can

be further improved by using stiffness priors.

While we presented an implementation of this update model with a least squares

optimizer in this paper, it must be noted that the update model can be used with other

optimizers as well as filtering approaches such as [78, 5], which forms part of future

work. In this work, we use a simple experimental setup for evaluating our method,

while avoiding additional sources of error such as robot deflection and positional errors

typically seen in existing surgical systems. However, we plan to deploy our algorithm

on research platforms that address key issues of surgical access constraints during

MIS and offer force sensing capabilities.

3.5 Contribution and Discussions

The contributions from this chapter include:

1. Development of a complementary model update that simultaneously estimates

stiffness map and registration.

2. Using a function of mini-batch of measurements as a pseudo-measurement for

updating the state.

Fig. 3-11 shows a schematic for state updates using a hash of measurements.

From a stream of measurements, we form pseudo-measurements by first separating

red measurements from green and evaluating a function of each category of measure-

ments to form red and green pseudo-measurements (See Fig. 3-11). These pseudo-

measurements along with the prior are then used to update the state. The novelty of

this approach is – (i) Not every measurement is directly used to update the state, but

instead a function of the measurements is used (for example, refer to the collection
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Figure 3-11: Schematic showing state update using a hash of measurements.

step of CMU in Sec. 3.2), (ii) we categorize measurements to compatible groups and

then evaluate a function of those measurements to form pseudo-measurements, in con-

trast to standard pseudo-measurement-based updates where a pseudo-measurement

is constructed by evaluating a function of every measurement (for example refer to

the Stiffness estimation step of CMU in Sec. 3.2 ).

In the case of SCAR, using the ‘hash’ update helps resolve the ambiguity that

existed in the prior approach by Sanan et. al. [78]. We demonstrate in the next

chapter, Chapter 4, that the hash-update helps derive a linear model for pose update

resulting in more accurate and fast estimates of pose.

3.6 Published Work

Material from this chapter has appeared in the following publications

1. R Arun Srivatsan, Elif Ayvali, Long Wang, Rajarshi Roy, Nabil Simaan and

Howie Choset, “Complementary Model Update: A Method for Simultaneous

Registration and Stiffness Mapping in Flexible Environments”, In the proceed-

ings of the International Conference on Robotics and Automation, Stockholm,

Sweden, May 2016, pp. 924-930.

2. R. Arun Srivatsan, Long Wang, Elif Ayvali, Nabil Simaan, and Howie Choset,
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Chapter 4

Dual Quaternion Filter for Pose

Estimation

Many applications in robotics such as registration, object tracking, sensor-calibration,

etc. use Kalman filters to estimate a time invariant pose by locally linearizing a non-

linear measurement model. In this work, we use a dual quaternion to represent the

pose and use pairs of measurements simultaneously to rewrite the measurement model

in a truly linear form with state dependent measurement noise. The intuition to form

pseudo-measurements using a pair of measurements simultaneously, was obtained

from our work on SCAR-LSQ-CMU which is described in Chapter 3.

Dual quaternions provide a means to compactly combine both rotation and trans-

lation in an unambiguous and singularity free manner [94]. While dual-quaternions

have been used with IEKF to estimate pose, the update model was non-linear [64].

Non-linear update models can be highly sensitive to initial estimation errors, and can

be computationally expensive. As a result in this work, we focus on deriving a linear

update model to estimate pose. Chaukron et. al. [143] come closest to our work in

terms of formulating a linear update model, but they only estimate the SO(3) ele-

ment. In this work we use multiple sensor measurements simultaneously to rearrange

the originally nonlinear update model into a linear form. To the best of our knowl-

edge, this is the first attempt to derive a linear update model for estimating time

invariant pose using a Kalman filter.
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The linear measurement model comes at the cost of state dependent measure-

ment uncertainty. Measurement uncertainty is typically state independent and can

be obtained based on the physical characteristics of the sensor and/or the measure-

ment process. However, in case of state dependence, there is an additional burden

of estimating the measurement uncertainty after each state update. State depen-

dent measurement uncertainties have been used in systems for satellite tracking [144]

and robot navigation [145]. We use an approach similar to Shuster et. al. [144] and

Chaukroun et. al. [143] to formulate the expressions for the state dependent mea-

surement uncertainties. It should be noted that the measurement uncertainties have

a linear dependence on their state vector, which allows for derivation of exact expres-

sions of uncertainties [146].

We consider two broad classes of applications in this section based on the type

of measurements used to estimate the pose: 1) those that use position measurements

such as registration from medical imaging [5], object tracking using laser range scan-

ners [147], etc. and 2) those that use pose (position and orientation) measurements

such as sensor calibration using inertial measurement units [148], hand-eye calibration

using stereo vision [31], etc . The linear measurement models and state-dependent

uncertainties are derived for both of these cases. We develop a dual quaternion-

based filter (DQF) for pose estimation in this section and compare the results with

non-linear filtering variants. We evaluate the formulation through simulations and

experiments for two applications: registration and sensor calibration. DQF produces

more accurate and fast estimates even in the presence of high initial errors.

4.1 Related Work

Estimation of SE(3) elements has been of interest for a long time in robotics literature.

Horn [4] and Arun et. al. [17] developed methods for least squares estimation of SE(3)

elements. While Horn uses quaternions to parameterize the orientation, Arun et. al.

use an orthogonal matrix to parameterize the rotation. While the methods of both

Horn and Arun et. al. first estimate the orientation and then estimate the translation,
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Walker et. al. [61] used dual quaternions and developed an approach to simultaneously

estimate rotation and translation. Wang et. al. [100] recently improved the work of

Walker et. al. but estimating scale in addition to the pose. Besl and McKay [11]

developed the popular ICP approach for finding the pose between a set of points in

one frame and a model or another set of points in another frame. The ICP iteratively

estimates the correspondence between the points and minimizes an objective function

to find a locally optimal pose.

Park et. al. [149] use Lie algebra elements and a least squares optimization ap-

proach to estimate the orientation and translation in a decoupled form. Chen [150]

used a screw-theoretic approach to provide an analysis on the conditions under

which a solution for the hand-eye calibration problem can be uniquely found. Dani-

ilidis et. al. [99, 32] developed upon the result of Chen by using dual quaternions to

simultaneously finds the best rotation and translation using a singular value decom-

position. More recently, Zhang et. al. [151] have developed an iterative method for

online estimation of pose in hand-eye calibration applications, using dual quaternions.

In the presence of noisy measurements, deterministic optimization methods have

been observed to perform poorly [6]. On the other hand, probabilistic estimation

techniques such as Kalman filters are effective at handling noisy measurements and

producing accurate estimates of the state and associated uncertainty [51]. Several

researchers have noted that filters used for pose estimation have non-linear update

models [49], and hence variants of the Kalman filter have been introduced to han-

dle this non-linearity. The EKF and UKF have been used to estimate SE(3) ele-

ments for satellite orientation [144], manipulation [152], registration [6, 5] and sensor

calibration [10]. EKF-based filters perform first-order linear approximations of the

non-linear update models and produce estimates which are known to diverge in the

presence of high initial estimation errors sa observed by Chaukroun et. al. [143].

UKF based methods do not linearize the models but instead require evaluation at

multiple specially chosen points (called sigma points), which can be expensive for

a high-dimensional system such as SE(3). In addition UKF-based methods require

tuning of multiple parameters, which is not intuitive.
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Prior work has also looked at several parameterizations of SE(3) that would im-

prove the performance of the filters. In the work of Hauberg et. al. [49] the state

variables are confined over a known Riemannian manifold and a UKF is used to

estimate the SE(3) element. Exponential coordinates were used with an EKF in

Chapter 5. Janabi and Marey [153] use Euler angles and Cartesian coordinates to

parameterize the pose and developed an iterative adaptive extended Kalman filter for

pose estimation. All the above methods involve highly non-linear update models with

trigonometric terms in them. Bar et. al. [154] use unit-quaternions to parametrize the

rotation component of SE(3) and an EKF to estimate the pose. Laviola et. al. [63]

also use unit-quaternions but estimate the pose using a UKF. Dual quaternions with

an IEKF has been used by Goddard et. al. [64]. Goddard et. al. however, do not use

the dual quaternion as the state vector. They instead include Cartesian coordinates

and a unit quaternion in their state vector and calculate the dual component from

the estimated translation. Unlike Goddard et. al., Filipe et. al. [101] include all the

terms of a unit dual quaternion in their state vector and use an EKF for state up-

date. They impose the inherent constraints of the unit dual quaternion after each

state update.

In this work, we use dual-quaternions to represent the SE(3) element; using mul-

tiple simultaneous measurements, we derive a linear update model which can be used

with a Kalman filter without the need for linearization.

4.2 Problem Formulation

Most applications that estimate time invariant pose can be broadly divided into two

cases: Case I, ones that use position measurements and Case II, that use pose mea-

surements for updating the state. The measurement model for both these cases are

non-linear and algebraically very different. Dual quaternions provides the means to

rewrite the measurement models for both these cases in a linear form. The rest of

this chapter deals with the derivation of measurement models for the two cases and

the corresponding uncertainties.
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4.2.1 Measurement Model for Position Measurements

Systems that use position-measurements for model update have the following general

form

a = Rb+ t, (4.1)

where a is a noise free sensor measurement, R ∈ SO(3) is the rotation matrix, b ∈ R3

is the point to be transformed and t ∈ R3 is the translation vector. In an application

such as rigid registration to a geometric model, a is the sensed location of points and

b is the corresponding point on the geometric model of the object. Eq. 4.1 can be

rewritten using dual-quaternions from Eq. 2.21 as shown

â = d̂⊗ b̂⊗ d̂
3∗
, (4.2)

where d̂ is as defined in Eq. 2.19. Applying Lemma 2.4.1, Eq. 4.2 can be rewritten as

â⊗ d̂
1∗

= d̂⊗ b̂. (4.3)

Let us consider the case of a pair of measurements ai, i = 1, 2. From Eq. 4.3, we have

âi ⊗ d̂
1∗

= d̂⊗ b̂i,

⇒(1 + εã1)⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗ (1 + εb̃1), and (4.4)

(1 + εã2)⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗ (1 + εb̃2) (4.5)

Subtracting Eq. 4.5 from Eq. 4.4, we obtain

(ε (ã1 − ã2))⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗
(
ε
(
b̃1 − b̃2

))
⇒ ε ((ã1 − ã2)� q̃r) = ε

(
q̃r �

(
b̃1 − b̃2

))
⇒ (ã1 − ã2)� q̃r − q̃r �

(
b̃1 − b̃2

)
= 0̃. (4.6)

107



Note that Eq. 4.6 does not have q̃d and contains only the rotation quaternion. Using

the quaternion multiplication described in Eq. 2.11, Eq. 4.6 can be rewritten in the

following form

Hq̃r = 0̃, where (4.7)

H =

 0 −(a1 − a2 − b1 + b2)T

(a1 − a2 − b1 + b2) (a1 − a2 + b1 − b2)×

 ∈ R4×4. (4.8)

The rotation quaternion q̃r lies in the null space of H . In order to estimate q̃r we

use a Kalman filter whose state vector is q̃r. For this filter, the pseudo-measurement

model is

h = Hq̃r, where h ∈ R4. (4.9)

We enforce the pseudo-measurement h = 0. The measurement in Eq. 4.9 is called

“pseudo-measurement” because h does not represent a true measurement (refer to

Sec. 7.1 for a discussion on pseudo-measurement models). The pseudo-measurement

model, is dependent on the state q̃r, and sensor measurements ãi and b̃i all of which

have associated uncertainties. In section 4.2.3, we discuss the procedure to compute

the uncertainty in the pseudo-measurement. Subsequently in section 4.3, we describe

the equations of the Kalman filter that estimates q̃r using the linear measurement

model.

After estimating q̃r using a Kalman filter, we need to estimate q̃t. Adding the

Eq. 4.4 and Eq. 4.5 we have

(2 + ε(ã1 + ã2))⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗
(

2 + ε(b̃1 + b̃2)
)
,

⇒2q̃t � q̃r = (ã1 + ã2)� q̃r − q̃r � (b̃1 + b̃2),

⇒q̃t =
ã1 + ã2

2
− q̃r �

b̃1 + b̃2

2
� q̃∗r. (4.10)

Thus, Eq. 4.10 computes q̃t directly using the estimated value of q̃r without the
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need for a Kalman filter. This is a helpful byproduct of using multiple measurements

simultaneously in Eq. 4.4. Since the scalar part of q̃t is 0 and vector part is t, we can

rewrite Eq. 4.10 in the following vector form

t =
a1 + a2

2
−Rq̃r

(
b1 + b2

2

)
, (4.11)

where Rq̃r is the rotation matrix formed using the quaternion q̃r. Section 4.2.3

describes the uncertainty associated with t.

4.2.2 Measurement Model for Pose Measurements

Systems that use pose-measurements for model update typically have the following

general form [149]

AX −XB = 0, (4.12)

whereA,X,B ∈ SE(3). A andB are noisy pose-measurements andX is the desired

transformation to be estimated.

A Kalman filter used to estimateX such as in [10], would have a pseudo-measurement

model of the form, h = AX −XB, h ∈ R3×3. One again we enforce the pseudo-

measurement h = 0. A UKF with a state matrix instead of state vector can directly

handle measurement models in matrix forms [49]. The pseudo-measurements can also

be converted to a vector form as shown in [10] and then estimated using a UKF. Using

dual quaternions we rewrite Eq. 4.12 in an alternate form, which would ultimately

result in a linear pseudo-measurement, thus allowing us to use a linear Kalman filter

for state estimation.

Let â, x̂, b̂ be the dual quaternions corresponding toA,X,B respectively. Eq. 4.12

can be rewritten as

â⊗ x̂− x̂⊗ b̂ = 0̂. (4.13)
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Using Eq. 2.19, Eq. 4.13 can be written as

0̂ =(ãr + εãd)⊗ (q̃r + εq̃d)− (q̃r + εq̃d)⊗ (b̃r + εb̃d),

=
(
ãr � q̃r − q̃r � b̃r

)
+

ε
(
ãd � q̃r + ãr � q̃d − q̃d � b̃r − q̃r � b̃d

)
. (4.14)

Hence we have

0̃ = ãr � q̃r − q̃r � b̃r (4.15)

0̃ = ãd � q̃r + ãr � q̃d − q̃d � b̃r − q̃r � b̃d. (4.16)

Eq. 4.15 has a form very similar to Eq. 4.6, with the only difference being that the

scalar parts of ãr, b̃r are not 0. If ãr = a0 + ar and b̃r = b0 + br, using Eq. 2.11 we

rewrite Eq. 4.15 as

Hrq̃r = 0, where (4.17)

Hr =

a0 − b0 −(ar − br)T

ar − br (ar + br)
× + (a0 − b0) I3

 ∈ R4×4. (4.18)

The pseudo-measurement model is

hr = Hrq̃r, (4.19)

and the pseudo-measurement hr = 0, where hr ∈ R4. The uncertainty associated

with hr is derived in section 4.2.3.

Similar to section 4.2.1, we use the estimated value of q̃r to estimate t. Using

Eq. 2.20, Eq. 4.16 can be rewritten as

0̃ = ãr � q̃t � q̃r − q̃t � q̃r � b̃r + σ̃1, (4.20)

where σ̃1 = 2ãd � q̃r − 2q̃r � b̃d. Multiplying both sides of Eq. 4.20 with q̃∗r, we
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obtain:

0̃ = ãr � q̃t − q̃t � q̃r � b̃r � q̃
∗
r + σ̃1 � q̃∗r,

= ãr � q̃t − q̃t � σ̃2 + σ̃3, (4.21)

where σ̃2 = q̃r � b̃r � q̃
∗
r and σ̃3 = σ̃1 � q̃∗r. The structure of Eq. 4.21 is similar to

Eq. 4.15, with the only differences being the addition of σ̃3 term. If σ̃2 = σ0
2 + σ2,

using Eq. 2.11 we rewrite Eq. 4.21 as

0 = H tt+ σ̃3, where (4.22)

H t =

 −(ar − σ2)T

(ar + σ2)× + (a0 − σ0
2) I3

 ∈ R4×3. (4.23)

Unlike the case discussed in section 4.2.1, t cannot always be directly obtained from

the estimated q̃r. This is because estimation of t would require inversion of a non-

square matrix H t. As shown in section 4.3, a linear Kalman filter is employed with

the following pseudo-measurement model to estimate t,

ht = H tt+ σ̃3, (4.24)

and pseudo-measurement ht = 0, where ht ∈ R3. The uncertainty associated with

ht is derived in section 4.2.3.

4.2.3 Uncertainty in pseudo-measurements when using pose

and position measurements

In order to estimate the uncertainties associated with the pseudo-measurements as

well as the translational vector described in the previous sections, we make use of an

important result from stochastic theory [146, pp. 90–91], [143, Appendix A] described

in Proposition 1.
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Uncertainty in pseudo-measurements when using position measurements

To find the uncertainty in the linear pseudo-measurement, we rewrite h from Eq. 4.9

in the following form

h = H(a1,a2, b1, b2)q̃r,

= G(q̃r)vtrue, where vtrue = (aT1 ,a
T
2 , b

T
1 , b

T
2 )T

=
[
G1 −G1 G2 −G2

]
vtrue. (4.25)

In Eq. 4.25, G1 =

 −qTr
−q×r + q0I3

 and G2 =

 qTr

−q×r − q0I3

, where q̃r = q0 + qr are

obtained from Eq. 2.11. Eq. 4.25 is the pseudo-measurement for a noise-free sensor

measurement vtrue. If v is the sensor measurement with noise δv, then

v , vtrue + δv (4.26)

Solving for vtrue from Eq. 4.26 and substituting in Eq. 4.25 yields:

h(q̃r) = G(v − δv)

= Gv + ν1, (4.27)

where ν1 = −G (q̃r) δv is a zero mean noise. From Eq. 4.27, the uncertainty in the

pseudo measurement Σh can be obtained using Eq. 1.

The expression for t assuming perfect measurements ai and bi is given in Eq. 4.11.

In the presence of noise in the measurements, similar to the derivation of Eq. 4.26,

we obtain from Eq. 4.10

t =
p1 + p2

2
− vec

(
q̃r �

q̃1 + q̃2

2
� q̃∗r

)
+ ν2, where,

ν2 = −δp1 + δp2

2
+ vec

(
q̃r �

δq̃1 + δq̃2

2
� q̃∗r

)
. (4.28)
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From Eq. 4.28, ν2 is a zero mean noise with variance Σt ∈ R3×3,

Σt =
Σp1 + Σp2

4
+ Στ , (4.29)

where τ = vec
(
q̃r �

δq̃1+δq̃2
2
� q̃∗r

)
, δq̃i = 0 + δqi. Στ is computed using Eq. 1 as

shown below

τ =vec

(
q̃r �

δq̃1 + δq̃2

2
� q̃∗r

)
=vec (q̃r � (0 + σ)) = −G2σ

where σ̃ = 1
2

[
G3 G3

]δq̃1

δq̃2

 and G3 =
[
q×r + q0I3

]
is obtained from Eq. 2.11.

Eq. 1 is then used to find Σσ,Στ .

Uncertainty in pseudo-measurements when using pose measurements

For pose based measurements, there are two pseudo-measurements corresponding to

estimation to q̃R and t. Eq. 4.19 and Eq. 4.24 are rewritten in the following form

hr = Grutrue, (4.30)

ht = Gtwtrue + σ3, (4.31)

where Gr =

q0 −qTr −q0 qTr

qr q0I3 − q×r qr −q0I3 − q×r

, utrue = (a0,a
T
r , b0, b

T
r )T ,

Gt =

0 −tT 0 tT

t −t× t −t×

 and wtrue = (a0,a
T
r , σ

0
2,σ

T
2 )T .

Eq. 4.30 and Eq. 4.31 are the pseudo-measurements for noise free sensor mea-

surements utrue, wtrue. If u and w are the sensor measurements with noise δu and

δw respectively, then hr = Gru+ ν3, ht = Gtw + σ3 + ν4, where ν3 = −Grδu and

ν4 = −Gtδw − δσ3 are zero mean noise with covariance Σhr and Σht respectively,

which can be obtained using Eq. 1.
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4.3 Kalman filter equations

As shown in Eq. 4.6 and in Eq. 4.14, q̃r and t can be estimated in a decoupled manner.

In this work, we formulate a Kalman filter that first estimates the rotation parameter

q̃r. For Case I, translation t and Σt can be directly estimated from Eq. 4.11 and

Eq. 4.29 upon estimating q̃r and Σq̃r . However for Case II, a Kalman filter is used

to estimate the mean and uncertainty in translation t.

The state vector of the Kalman filter that is used to estimate q̃r is xk = q̃r, xk ∈ R4.

The state vector is initialized with a suitable guess for mean and uncertainty. In the

absence of a good initial guess, the state is initialized to x0 = (1, 0, 0, 0)T with a

large initial uncertainty. If the uncertainty in rotation is known in terms of some

other parametrizations such as Euler angles, then the uncertainty is propagated to

the space of quaternions using a Jacobian mapping as shown in [155].

Since the pose to be estimated is time-invariant, the process model is static, i.e.,

xk|k−1 = xk−1|k−1. Upon obtaining measurements ai and bi, we formulate the pseudo-

measurement model h(xk|k−1) = Hkxk|k−1. The observation matrix Hk is given by

Eq. 4.8 for position measurements and by Eq. 4.18 for pose measurements. The mea-

surement uncertainty Σh
k is then calculated as shown in section 4.2.3 and section 4.2.3.

The state is updated using standard equations of the Kalman filter [51]

xk|k = xk|k−1 −Kk

(
Hkxk|k−1

)
, (4.32)

Σx
k|k = (I −KkH)Σx

k|k−1, where (4.33)

Kk = Σx
k|k−1H

T
(
HΣx

k|k−1H
T + Σh

k

)−1
. (4.34)

It has already been discussed that q̃r is a unit quaternion; which implies that

the state vector has to be a unit vector. This requirement is not enforced by the

equations of the Kalman filter directly. However, there are three methods to enforce

unit-normalization of state vector (1) including the constraint as an additional pseudo-

measurement [154], (2) reducing the dimension of the state vector by substituting

q0 =
√

1− q2
1 − q2

2 − q2
3 [144], (3) normalizing the state vector at the end of each
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update step [143]. The first two methods result in non-linear measurement models,

which defeats our purpose of developing equations for a truly linear filter. As a result

we resort to the third method of normalizing the state vector after every update and

suitably scaling the uncertainty,

x∗k|k =
xk|k∥∥xk|k∥∥ , Σx

∗

k|k =
Σxk|k∥∥xk|k∥∥2 . (4.35)

Such an approach has been shown to estimate efficiently in [62] and [64].

Upon estimating xk|k and Σxk|k, Eq. 4.11 and Eq. 4.29 are used to estimate tk|k

and Σtk|k, for Case I. For Case II, we initiate another Kalman filter whose process

model is static as in the case of q̃r. The measurement model is also linear as in the

case of q̃r. The equation for the measurement model is as shown in Eq. 4.24. The

observation matrix is evaluated at the estimated value of q̃r.

4.4 Results: Sequential Estimation with Known

Data Association

We apply the filtering method developed in the earlier sections to two examples:

rigid registration and sensor calibration representing Case I and Case II respectively.

Simulation as well as experimental results are provided in the following sections.

Rigid registration

The rigid-registration problem can be defined as finding the SE(3) element that aligns

points in one reference frame to the points in another reference frame. Usually points

in one frame are computed from a CAD model of the object and points in the other

frame are estimated from images, position sensors, laser range scanners, etc.

In this work, we use our DQF approach to register 100 points randomly sampled

from the surface of a geometric model of “Stanford bunny”. We first assume that the

point correspondence is known and estimate the registration with DQF, whose actual
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registration parameters are θx = 0, θy = 0, θz = 0, x = 0, y = 0, z = 0. Note that even

though dual quaternions are used to parameterize the pose, we report the results in

Euler angles and Cartesian coordinates for ease of understanding.

We sample 1000 initial registration estimates uniformly drawn from large ini-

tial errors in position, for x, y, z ∈ [−10000, 10000]mm and orientation θx, θy, θz ∈

[−180, 180]deg. From Fig. 4-1, we observe that DQF correctly estimates the reg-

istration for all the initial estimates. Following this, we perform two more experi-

ments with noise added to the sampled points. The noise is uniformly sampled from

[−2, 2]mm along each axis, in one case and [−3, 3]mm in the other. Fig. 4-1 shows that

the RMS error for all the estimates is only due to the noise in the measurements and

its magnitude matches well with the noise added to the points. Thus, when the point

correspondences are known, DQF accurately estimates the registration parameters

even in presence of very high errors in the initial estimate.
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Figure 4-1: RMS error upon estimating registration parameters with DQF for 1000
runs with different initial estimates, when the point correspondence is known. Three
experiments were carried out: 1) noise uniformly sampled from [-1,1], 2) noise uni-
formly sampled from [-2,2] and 3) no noise was added. DQF accurately estimates he
registration parameters in all cases

Sensor calibration

The sensor calibration problem is as follows: given the pose of two bodies Ai and

Bi, defined with respect to two different inertial frames: {1} and {2}, we would like
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to estimate the rigid transformation between the two bodies, by tracking Ai and

Bi, where the index i denotes an instance of time. Fig. 4-2(a) shows the various

frames described above. This problem can be described as AijX = XBij, where

Aij = A−1
i Aj and Bij = B−1

i Bj. X is the rigid transformation between the two

bodies which needs to be estimated as shown in Fig. 4-2(b).

If the measurements are noise-free, then X can be obtained analytically from a

pair of measurements: A12X = XB12 andA23X = XB23 [149, 150]. But sensors are

seldom noise-free, and hence several optimization based approaches exist to solve this

problem [4, 156], whose solution drives many applications [157, 33, 158, 31]. Recently

Faion et al [10] developed a filtering based solution to this problem, which could

perform online estimation using a UKF to estimate the pose which is parameterized

using axis-angle and Cartesian parameters. We compare our DQF to this UKF based

estimation. We also develop an EKF based estimation using the measurement model

described in [10] for a second comparison.

Simulation

We first tested our algorithm with simulated data and then with data collected from

real experiments. For the simulated case, we first generate 500 random poses for the

tool tip, Ai (i = 1, . . . , 500). We then choose a ground truth SE(3) element X to

generate the corresponding poses for the EM tracker Bi. We initialize the filters to

zero translation and zero rotation with an initial covariance of Σ
q̃r
0 = 5I4 for rotation

and Σt
0 = 100I3 for translation. We assume that the correspondence between the

sensed poses is known. Such an assumption is reasonable as the sensor measurements

can be easily time-synchronized. If this synchronization is not possible, correlation

between the sensor measurements can be obtained as shown in [148].

The SE(3) elements estimated by DQF, EKF and UKF are shown in Table 4.1

along with computation time for each algorithm and the error in position and orien-

tation parameters. DQF provides faster estimates and is more accurate, especially in

the translation estimation, compared to UKF and EKF.

Following this, we perturb Bi that is computed from the ground truth X. The
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Figure 4-2: (a) The setup shows a da Vinci robot with an EM tracker rigidly attached
to the tool. The reference frame for the EM tracker is shown in red. The reference
frame for the robot is located at its remote center of motion (RCM), shown in yellow.
The pose of the tip of the robot, Ai is shown in blue and the pose of the sensor, Bi

is shown in green. X is the transformation between the tip of the robot and the EM
tracker. (b) The robot is shown at two time instances i and j. Aij is obtained from
kinematics and Bij is obtained from the EM tracker measurements. The unknown
to be solved for is X, which can be posed in the form: AijX = XBij.
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pose is perturbed by a translation uniformly sampled from the interval [−2 2]mm

along each axis and a rotation uniformly sampled from [−10 10]deg along each axis.

The estimated parameters are shown in Table 4.1. Once again DQF estimated faster

and is more accurate than UKF and EKF.

Experimental validation

In order to test our formulation with real data, we use an experimental setup as shown

in Fig. 4-2(a), which consists of a da Vinci R© surgical robot (Intuitive Surgical Inc.,

Mountain View, CA) and an electromagnetic (EM) tracking sensor (trakSTARTM

from Ascension Technologies, Burlington,VT). The tracker is rigidly attached to a

known point on the tool of the robot. The robot is then telemanipulated and the

position and orientation of the tip of the robot is measured from the kinematics. The

position and orientation of the EM tracker with respect to the inertial frame attached

to the magnetic field generator is also simultaneously recorded. We then use DQF,

EKF and UKF to estimate the transformation between the frames of the tip of the

robot and the frame of the EM tracker. The last three rows of Table 4.1 shows the

parameters as estimated by DQF, EKF and UKF.

Fig. 4-3 shows the values of the quaternion and the translation vector as esti-

mated by the dual quaternion filter. The estimated values converge at around 100

measurements for rotation and 200 measurements for translation. Since the rotation

estimation does not depend upon translation estimation, we can stop running the

filter that estimates rotation after convergence and continue to run the translation

filter until convergence. We observe that it takes around 0.08s for the DQF estimate

to converge which is roughly 5 times faster than EKF and 15 times faster than UKF,

while being more accurate than both EKF and UKF. Since the estimation is close

to real time, we implement this algorithm in an online manner to estimate SE(3)

elements as needed.

119



Number of measurements
0 50 100 150 200 250 300 350 400 450 500 550 600

E
st

im
at

ed
 v

al
ue

s

-0.5

0

0.5

1

q
0

q
1

q
2

q
3

Number of measurements
0 50 100 150 200 250 300 350 400 450 500 550 600

E
st

im
at

ed
 v

al
ue

s 
(in

 m
m

)

-80

-60

-40

-20

0

t
x

t
y

t
z

(a)

(b)

Figure 4-3: (a) The plot shows the estimated value of the quaternion that represents
the rotation. The values converge at around 100 measurements. (b) The plot shows
the estimated value of the translation vector. The values converge at around 200
measurements.
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Table 4.1: Results for sensor calibration using dual quaternion filtering

Simulation: No noise in sensor measurements

x y z θx θy θz Time
(mm) (mm) (mm) (deg) (deg) (deg) (s)

Actual 5.73 8.59 11.46 10.00 -16.00 35.00 –
DQF 5.73 8.59 11.46 9.96 -15.95 34.91 0.25
EKF 3.38 1.82 5.25 10.09 -15.93 35.05 1.20
UKF 3.56 10.59 10.81 9.98 -15.98 35.05 3.11

Simulation: With noise in sensor measurements

DQF 5.59 8.22 11.38 9.95 -15.95 34.81 0.24
EKF -3.48 4.22 8.36 10.14 -16.01 35.01 1.15
UKF 5.89 10.44 10.01 10.83 -16.81 34.81 3.20

Robot experiments

Actual -4 -20 45 105 88 109 –
DQF -4.10 -17.50 -45.10 105.55 87.88 108.69 0.27
EKF -3.60 -22.00 -45.10 105.97 86.15 107.08 1.39
UKF -4.40 -14.1 -47.50 132.11 87.05 135.01 3.70

4.5 Results: Sequential Estimation with Unknown

Data Association

We perform registration in a more realistic scenario where point correspondence is

unknown. Point correspondence to the CAD model is found using a closest point

rule as in [11, 6, 5]. We repeat the exercise by adding noise to the points and then

estimating the transformation. The noise that is added is uniformly sampled from

[−2, 2] mm along each axis. In both the cases, we compare the dual quaternion based

filtering to an EKF-based estimator [6] and a UKF-based estimator [5]. Note that

these are not naive versions of EKF and UKF, but specific implementations of [6]

and [5] that we use, but we shall still refer to them as EKF and UKF in this chapter.

We choose an initial guess of zero rotation and zero translation and an initial

covariance of Σ
q̃r
0 = 5I4 for rotation and Σt

0 = 100I3 for translation. DQF, EKF

and UKF are implemented with 40 initial starts obtained by locally perturbing the

initial guess by translation sampled uniformly from [−15, 15]mm along each axis and

a rotation sampled uniformly from [−30, 30]◦ along each axis. Since the problem has
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several local minima, using multiple initial guesses improves the chances of finding

the global minimum.

Fig. 4-4(a) shows the CAD model of the Stanford bunny in green. The blue

diamond markers show the initial guess for the location of the points and the red

circular markers show the DQF estimated location of the points. Fig. 4-4(b) shows

the RMS error versus number of points used to estimate the parameters. The RMS

error decreases with the usage of more point measurements. DQF and EKF converge

to a smaller RMS error at about 10 points, while the UKF takes many more points

to converge. The first four rows of Table 4.2 show the actual registration parameters

and the estimated registration parameters. The right column of Table 4.2 shows the

time taken by the filters to update for 100 point measurements. DQF converges an

order of magnitude faster than EKF and UKF and also has the lowest RMS error.

Table 4.2: Results for registration using dual quaternion filter

No noise x y z θx θy θz RMS Time
(mm) (mm) (mm) (deg) (deg) (deg) (mm) (s)

Actual 22 -23 20 15 -10 -10 – –
DQF 22.54 -21.52 20.03 17.28 -9.94 -10.15 1.12 1.17
EKF 22.35 -26.39 21.11 11.43 -11.44 -14.76 3.88 155.02
UKF 21.36 -23.89 18.94 16.39 -5.95 -10.55 2.47 247.56

With noise

DQF 22.34 -24.22 18.79 13.37 -9.09 -10.18 2.70 1.08
EKF 20.29 -26.09 20.69 8.76 -12.79 -8.08 3.81 324.23
UKF 20.08 -24.78 14.6 11.90 -6.08 -8.04 4.80 510.73

Fig. 4-5 shows the results for the case where the sampled points are corrupted

with a noise uniformly sampled from [−2 2]mm along each axis. DQF accurately

registers the points to the CAD model as shown in the last three rows of Table 4.2.

DQF once again performs better than EKF and UKF, and takes lower computational

time 1.

We do not deal with outliers in this chapter. However, we report the results

for various levels of outliers in Table 4.3. We repeat the experiment from the noisy

1The computational time taken is calculated for a code running on MATLAB R2015a software
from MathWorks, running on a ThinkPad T450s computer with 8 GB RAM.
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Figure 4-4: (a) Initial position and DQF estimated position of 100 points are shown
against the CAD model of the “Stanford bunny”. DQF accurately registers the points
to the CAD model. (b) A plot of the RMS error wrt number of points for DQF, EKF
and UKF. DQF and EKF converge quickly, while UKF takes a while to converge.
DQF however converges to lower RMS error, with computation time an order of
magnitude lower than EKF and UKF as shown in Table 4.2.
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Figure 4-5: (a) Initial position and estimated position of 100 points with added
noise are shown against the CAD model of the “Stanford bunny”. DQF estimates
the registration parameters accurately even in the presence of noise. (b) A plot
of the RMS error wrt number of points for DQF, EKF and UKF. DQF and EKF
converge quickly, but UKF takes a while to converge. Overall, all the three filters
converge closely to one another, with the DQF performing marginally better. The
DQF converges with computation time an order of magnitude lower than the other
two as shown in Table 4.2.
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measurement case of Table 4.2 by adding various percentage of outliers. From the

available measurements, we randomly pick a chosen percentage of measurements and

add a noise which is randomly obtained from [−100, 100]mm along each axis, to

simulate outliers. As expected with increase in the level of outliers, the performance of

the algorithm degrades. We provide a discussion on dealing with outliers in Chapter 6.

Table 4.3: Registration with DQF in the presence of outliers

Outlier % RMS (mm)

0 2.70
5 4.74
10 8.45
15 11.56
20 15.87

4.6 Conclusion and Discussion

In this chapter, we have developed linear measurement models to be used with Kalman

filters for pose estimation. This was possible due to our choice of using dual quater-

nions to represent SE(3) elements and combining multiple sensor measurements si-

multaneously. All the information contained in the non-linear update model was

encoded in the linear measurement model and its corresponding uncertainty, which

happens to be state dependent in this case. Since the dependence on the state was

found to be linear, results from stochastic theory were used to determine the exact

expressions for the uncertainty. We show that the new linear measurement model al-

lows for decoupled estimation of rotation and translation using independent Kalman

filters. The decoupled estimation potentially has the advantage of running in-parallel

and accelerating the estimation process.

We have shown through simulations and experiments that the dual quaternion-

based linear filtering (DQF) is capable of estimating the pose more accurately with less

computation time compared to state-of-the-art filtering methods for pose estimation.

These characteristics of the DQF, make it an ideal candidate to be used in applications
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that require real-time pose estimation such as sensor calibration, localization and

manipulation. We do not perform any systematic study for dealing with outliers in

this chapter. We present ways to deal with outliers in Chapter 6.

A major limitation of the DQF is that, only the mean of the updated state is

guaranteed to lie on a unit-hypersphere. If we were to sample a point from the

PDF of the updated state, it would not satisfy the unit-norm constraint required

for a rotation quaternion. Furthermore, the fact that q̃r and −q̃r produce the same

rotation is not captured by the unimodal Gaussian distribution used to model the

state. These limitations will be addressed later in Chapter 6.

4.7 Contribution

The contributions from this chapter include:

1. Development of a linear update model for pose estimation. The linear model

is probabilistic and we derive exact expressions for the mean and uncertainty

of this model. The linear update model has be derived for position and pose

measurements.

2. Development of a Kalman filter that uses the linear update model for fast and

robust pose estimation.

4.8 Published Work

Material from this chapter has appeared in the following publication

1. R Arun Srivatsan, Gillian T. Rosen, Feroze M. Naina, and Howie Choset,“Estimating

SE(3) elements using a dual-quaternion based linear Kalman filter, in the pro-

ceedings of Robotics: Science and Systems, Michigan, USA, June 2016, doi

10.15607/RSS.2016.XII.013.
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Chapter 5

Lie Algebra Filter for Pose

Estimation
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Figure 5-1: The red points show the final location of a differentially driven robot mov-
ing along a straight line, with noisy wheel speeds. The PDF contours of Gaussian of
best fit (a) in Cartesian coordinates (b) in exponential coordinates (c) in exponential
coordinates when mapped into Cartesian space.

The SE(3) element can be parameterized in several ways, for example using Carte-

sian coordinates and Euler angles, dual quaternions, or using exponential coordinates.

However, using the exponential coordinates provides a ‘natural’ way of describing pose

uncertainties using Gaussians as they inherently exist in a Euclidean space [159]. For

example, Fig 5-1(a) shows the distribution over the Cartesian coordinates for a dif-

ferentially driven robot moving along a straight line. Note how the PDF contours of
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Gaussian of best fit are not a good approximate to the distribution. On the other

hand, representing the state vector in terms of exponential coordinates, captures the

distribution better. Fig 5-1(b) shows how the PDF contours of Gaussian of best fit in

exponential coordinates, approximates the distribution closely. When mapped back

into the Cartesian space through the exponential map, the Gaussian contours appear

to bend and take a banana-like shape as shown in Fig. 5-1(c), and approximate the

distribution closely.

Exponential coordinates have been extensively used to parameterize SE(3) in a

number of robotics problems [88, 160, 161, 1]. A number of recent works perform

ltering on Lie groups using exponential coordinates [162, 163, 164], [165, 166]. Taking

inspiration from the literature, in this chapter we show that deriving measurement

models for pose estimation using Gaussian distributions in exponential coordinates

provides accurate pose estimation even in the nonlinear setting. We exploit the under-

lying structure of the Lie group and algebra to estimate the pose and shape of a med-

ical snake robot (shown in Fig. 5-2) as well as perform SCAR using SCAR-LSQ-CMU

which was described in Chapter 3.

5.1 Pose and shape estimation for a medical snake

robot

When compared to conventional procedures, MIS have potential benefits including

“reduced-pain”, minimal “blood-loss”, faster healing and reduced tissue disruption.

To further improve upon MIS, our group, along with others [167, 168, 169, 170] have

been developing snake-like robots to provide deeper access to the anatomy with fewer

incisions. However, robot-guided MIS introduces other drawbacks such as lack of

situational awareness and limited sensory feedback. This forces surgeons to use their

expertise and cognitive reasoning in finding relation between pre-operative images

and the surgical reality. Although emerging technologies such as fiber optics, MRI,

ultrasound (US) and CT have proved to be useful, they suffer from a number of
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Figure 5-2: A highly articulated robotic probe, whose shape and pose is estimated in
this chapter

drawbacks. MRI restricts the robot from carrying any magnetic material and often

requires redesigning robots to be MRI compatible [171]. Using CT scan for localizing

the robot can result in over exposure to harmful radiation. US images are very noisy

and often difficult to work with. Fiber optics have been used not only to provide a

first person view form the tip of the robot, but also to find the shape of the robot by

using fiber Bragg grating (FBG) [172]. The images from fiber optics have a limited

field of view and the shape sensing using FBG is very expensive and is also affected

by changes in temperature as observed by Mihailov [173].

Prior efforts include generating 3D models of anatomical structures from pre-

operative scans and combining them with model-based tool tracking, to create a

virtual view of the operation for visual feedback. To successfully use this technique,

the tool needs to be registered in the frame of reference of the 3D model. A number

of algorithms have been developed to take input from electro-magnetic sensors [174],

ultrasound [175, 176] etc., and help in the registration process.

When the tool is a highly articulated robot, estimation is more difficult because of

the additional degrees of freedom (DOFs). Also complete knowledge of its shape con-

figuration is necessary to avoid interfering with organs. In the work of Tully et. al. [3]
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a nonlinear stochastic filtering method is used to estimate the shape and configura-

tion of a snake robot (see Fig. 5-2). It measures the pose of the tip and prescribes

a motion model based on the robot’s kinematics and history of the previous inputs.

The state of the snake robot, both its base pose and its internal shape, is described

in terms of Cartesian coordinates and Euler angles. In presence of high uncertainties,

this parametrization does a poor job of estimating the shape of the robot. However,

recent work by Long et. al. [1] shows that modeling a system using exponential coordi-

nates yields better estimation as opposed to using conventional parameters especially

in the presence of large uncertainties.

Exploiting the underlying structure of the Lie group and algebra which defines

motions for the robot, in this work we use an extended Kalman filter to estimate

the state of the system that is described by exponential coordinates. This approach

provides better estimate of shape than using a conventional parametrization [177].

5.1.1 Problem Formulation

Figure 5-3: (a) The state parameterization used to define the configuration of the
snake robot. (b) The effect of angles θi and φi on the pose between two successive
links. The images are taken from [3].

Definition of state vector

The state vector for anN link snake robot (see Fig. 5-3(a)) is described by Tully et. al. [3]

as

[p0, e0, φ1, θ1, . . . , φN−1, θN−1]T , where p0 = [x0, y0, z0]T and e0 = [α0, β0, γ0]T define
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the position and orientation respectively of the most proximal link, while φi, θi give

the rotation between successive links (see Fig. 5-3(b)). In this work, the state vector

is formulated in terms of exponential coordinates as,

xk = [v0
1, v

0
2, v

0
3︸ ︷︷ ︸

v

, ω0
1, ω

0
2, ω

0
3︸ ︷︷ ︸

ω0

, ω1
2, ω

1
3, . . . , ω

N−1
2 , ωN−1

3 ]T , (5.1)

where (vT ,ω0
T )T is the twist vector that is used to identify the element T 0 ∈ SE(3)

of the most proximal link of the robot. The variables ωi2, ω
i
3 for each link i are

exponential coordinates, representative of the relative rotation between successive

links with the subscripts indicating the axis along which they are defined (see Fig. 5-

3(b)). This section establishes the relation between the state vector in [3] and the

one in Eq. (5.1). In doing so we define the notion of state for both the proximal and

the remaining links.

Proximal link

Given the state vector of the proximal link, [x0, y0, z0, α0, β0, γ0]T , the rotation matrix

is first obtained as R = Rz(α0)Ry(β0)Rx(γ0), where Rk(φ) is the rotation matrix

describing the rotation about axis k by an angle φ. Upon obtaining R, the ma-

trix logarithm of R is evaluated to obtain the rotational component of exponential

coordinates ω0 = [ω0
1, ω

0
2, ω

0
3]T as shown in [88]. We obtain the following:

ω̂0 =
θ

2 sin θ
(R−RT ), (5.2)

where θ = arccos
(

trace(R)−1
2

)
and R 6= I3×3. Note that, if R = I3×3, then θ = 2πk,

where k is any integer and ω0 can be chosen arbitrarily. Having obtained ω0, v =

[v1, v2, v3]T can obtained as follows:

v = W [x0, y0, z0]T , (5.3)
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where W = I3×3 − ω̂0

2
+
(

1− θ sin θ
2(1−cos θ)

)
ω̂0

2

θ2
. Note that if θ = 0, then W = I3×3.

Distal links

The relative rotation between successive links is represented by φi and θi in Fig. 5-3(b).

Let the exponential coordinates describing the relative motion between successive

links be [vi1, v
i
2, v

i
3, ω

i
1, ω

i
2, ω

i
3]T . The equivalent of this in the exponential coordinates

can be obtained by following the procedure used in the case of the proximal link. The

relative motion between links is purely rotational and so we have, vi1 = 0, vi2 = 0, vi3 =

0. Further since there is no roll motion between successive links, ωi1 = 0. Thus ωi2, ω
i
3

alone are sufficient to describe the relative motion. Taking advantage of the way φi, θi

are defined, it is equivalent to stating that, in the axis-angle representation, ith link

is oriented at an angle φi about an axis: [0, cos θi, sin θi]
T , with respect to (i − 1)th

link.

It is well know that given an axis k = [kx, ky, kz]
T and an angle of rotation φ

about the axis, R = exp(Kφ), where exp(·) is the matrix exponential, K is the

skew-symmetric matrix formed from the vector k and the corresponding exponential

coordinates are [kxφ, kyφ, kzφ]T [87]. Hence the required exponential coordinates de-

scribing the relative motion between successive links can be obtained in terms of φi, θi

as follows:

ωi2 = φi cos θi, (5.4)

ωi3 = φi sin θi. (5.5)

Thus we establish that for an N−link snake, the state vector used in this work is

of the same dimensionality as that used in the work of Tully et. al. [3] and the two

representations are equivalent.
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Obtaining the SE(3) element

Given the state vector xk, the transformation matrix describing the pose of the most

proximally located link is given by:

T 0(xk) =

 R0 p0

01×3 1

 , (5.6)

where,

R0 = I3×3 +
sin θ

θ
ω̂0 +

1− cos θ

θ2
ω̂0

2

,

p0 = V [v0
1, v

0
2, v

0
3]T , (5.7)

V = I3×3 +
1− cos θ

θ2
ω̂0 +

θ − sin θ

θ3
ω̂0

2

,

θ = norm(ω0
1, ω

0
2, ω

0
3).

To compute the transformation matrix T i(xk) that represents the pose of ith link,

the following recursive process is defined:

T i(xk) = T i−1T i,ang(xk)T adv, (5.8)

T i,ang(xk) =

 Ri 03×1

01×3 1



T adv =


1 0 0 L

0 1 0 0

0 0 1 0

0 0 0 1

 ,

where L is the length of a link. The Cayley-Klein parameters c2, c3 (see Section 2.3

of Shoham et. al. [59]) are related to ωi2, ω
i
3 as follows:

c2 = cos θ tan
φ

2
, (5.9)

c3 = sin θ tan
φ

2
, (5.10)
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where, θ = atan2(ωi3, ω
i
2), φ =

√
(ωi2)2 + (ωi3)2. The rotation matrix Ri can be

obtained from c2, c3 as follows:

Ri =


1− c2

2 − c2
3 −2c3 2c2

2c3 1 + c2
2 − c2

3 2c2c3

−2c2 2c2c3 1− c2
2 + c2

3

 . (5.11)

5.1.2 Motion and measurement model

The motion of the snake-robot has three distinct modes: advancing, retracting and

steering. This section describes the motion models, fa(xk), fr(xk), fs(xk) respectively

for the same. An electro-magnetic sensor is used to measure the position of the tip of

the robot. A forward kinematic measurement model that incorporates measurement

from the sensor is also described in this section.

Advancing and Retracting motion

When the snake is advanced by one link, the state space grows by two parameters due

to addition of ωN−1
2 , ωN−1

3 . During advancement there is no relative motion between

the most distal link and the link before it, therefore φN−1 = θN−1 = 0, which implies

ωN−1
2 = ωN−1

3 = 0. Thus the motion model for advancement, fa(xk) remains the

same as the one defined by Tully et. al. [3]:

fa(xk) = [xTk , 0, 0]T . (5.12)

Assuming M is the length of the state vector at time-step k, the motion model for

retraction is also similar to the one defined by Tully et. al. [3]:

fr(xk) = [I(M−2×M−2)0(M−2×2)]xk. (5.13)

The length of the state is reduced by two because the EKF would track one link less.
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Steering motion

Tully et. al. [3] provide the relation between the differential lengths of the cables

(d1, d2, d3) and the orientation of the most distal link relative to the link behind it.

Since there exists a typographical error in the equations listed there and a derivation

of the relation is not provided, the correct relation has been derived and included

here for the sake of completeness.

Steering model

The kinematic representation of two adjacent units of the snake robot is shown in

Fig. 5-4. The units can be approximated by equilateral triangles of circumradius r

whose centers are separated by a fixed distance lc. The three cables pass through

the three vertices of the equilateral triangles at the base and the top. Kinematically

these can be modeled as prismatic actuators. The coordinates of the vertices of the

equilateral triangle of the base link are given as:

b1 = [0, 0, r]T , (5.14)

b2 =

[
0,−
√

3r

2
,−r

2

]T
, (5.15)

b3 =

[
0,

√
3r

2
,−r

2

]T
. (5.16)

The coordinates of the vertices of the equilateral triangle of the top link are, given a

relative rotation of Ri as defined in Eq. (5.11):

pk = Ri(bk + [lc, 0, 0]T ), for k = 1, 2, 3. (5.17)

The length of the cables di, i = 1, 2, 3 can be obtained geometrically as the distance

between bi and pi:

ηk
∆
= (bk − pk)T (bk − pk)− d2

k = 0, (5.18)
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Figure 5-4: Kinematic representation of two adjacent links

where k = 1, 2, 3. The design of the robot is such that, the ratio lc
r
≈ 0. Hence,

substituting this condition and simplifying yields the following constrain equations:

η1
∆
= 4r2(cos θN−1)2

(
sin

φN−1

2

)2

− d2
1 = 0 (5.19)

η2
∆
= − r2(−2 + cos 2θN−1 +

√
3 sin 2θN−1)

(
sin

φN−1

2

)2

− d2
2 = 0 (5.20)

η3
∆
= r2(2− cos 2θN−1 +

√
3 sin 2θN−1)

(
sin

φN−1

2

)2

− d2
3 = 0. (5.21)

Since there are only two unknowns, θN−1, φN−1 and three equations, any two equa-

tions can be solved simultaneously to obtain expressions for θN−1, φN−1. Eliminating

sin(φN−1/2)2 from Eq. (5.19) and Eq. (5.20), one obtains:

η4
∆
=− 2d2

1 + 2d2
2 + (d2

1 + 2d2
2) cos 2θN−1 +

√
3d2

1 sin 2θN−1 = 0. (5.22)

Eq. (5.22) is in terms of sin 2θN−1 and cos 2θN−1, by using half-tangent substitution,

it can be converted to an equation wholly in terms of tan θN−1. Upon solving for
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tan θN−1, one obtains:

tan θN−1 =

√
3d1 + 2

√
3d2

3d1

,

⇒θN−1 = arctan

(√
3d1 + 2

√
3d2

3d1

)
. (5.23)

From Eq. (5.19), we obtain:

φN−1 = 2

∣∣∣∣arcsin

(
d1

2r cos θN−1

)∣∣∣∣ . (5.24)

Using Eq. (5.23) and Eq. (5.24), the change in angles from the previous time step,

∆θN−1,∆φN−1 are computed and the corresponding ∆ωN−1
2 ,∆ωN−1

3 are obtained us-

ing Eq. (5.4). Thus the motion model for steering the snake is:

fs(xk) = xk + [0TM−1×1,∆ω
N−1
2 ,∆ωN−1

3 ]T , (5.25)

assuming M is the length of the state vector at that instant.

Measurement model

The tip of the highly articulated robot described by Degani et. al. [178] is sensed by

inserting an electromagnetic position sensor into one of the tool channels of the robot.

The sensor used in this work is a trakSTAR
TM

(Ascension Technologies, Burlington,

VT, USA) which has the capability to measure 6-DOFs pose of the tip of the robot

with respect to a world frame. Since the tracker might be removed from time to time

for insertion of tools into the same channel, the roll parameter sensed, is set free.

The sensor therefore observes five elements of the pose of the distal link, and the

measurement model is given as:

h(xk) = [pTN−1, αN−1, βN−1]T , (5.26)
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where pN−1 is the position of the distal link described in terms of Cartesian coordi-

nates and αN−1, βN−1 are the yaw and pitch of of the distal link as measured by the

sensor. The parameters pTN−1, αN−1, βN−1, can be obtained from TN−1(xk):

pN−1 = [TN−1(xk)1,4,TN−1(xk)2,4,TN−1(xk)3,4]T ,

αN−1 = atan2(TN−1(xk)(2,1),TN−1(xk)(1,1)),

βN−1 = atan2(−TN−1(xk)(3,1), σ),

where σ =
√
TN−1(xk)2

(3,2) + TN−1(xk)2
(3,3) and TN−1(xk)i,j refers to the ijth term of

TN−1(xk).

In this work the method to estimate the state of the snake given the measurements

of the position and orientation of the distal tip, is similar to the one described by

Tully et. al. [3]. The only difference is that the elements of the state vector are now

in terms of exponential coordinates. It is also worth noting that we still require an

advancement of at least one link before steering it for the system to be fully observable.

5.1.3 Results for robot pose and shape estimation

Two bench-top tests were conducted to find out the effectiveness of this filtering

approach. The snake robot as shown in Fig. 5-2, was driven using a joystick and

the distal link was tracked using an electro-magnetic sensor. During the experiment

time-stamped input values from the joystick as well as from the sensor were noted.

After the end of the experiment, keeping the shape of the snake fixed, the sensor was

pulled out of the tool-channel and a trail of data points was recorded that could be

post processed and used as ground-truth.

Using the filtering approach discussed in Section. 5.1.2, the shape of the robot

was estimated in both the tests. The length of each link was measured to to be 6.9

mm. The shape of the robot was also estimated using the approach described by

Tully et. al. [3] for the sake of comparison.

The average error between the estimated shape and the ground-truth in both the

experiments is tabulated in Table. 5.1. Fig. 5-5 shows the comparison between the
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Figure 5-5: Blue-dotted curve is the ground-truth, green-thick curve is the estimated
shape using proposed approach and red-thin curve is the shape estimate using the
approach described in [3]
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Figure 5-6: Comparison of variation in error between estimated position and ground-
truth across the links. Green line is the variation using proposed approach and red
dotted line is the variation using approach described by Tully et. al. [3]

Table 5.1: Comparison between estimated shape and ground-truth shape of the med-
ical snake robot

Experiment 1
proposed approach approach in [3]

Standard deviation (in mm) 1.0167 3.6942
Average error (in mm) 4.7708 6.7434

Worst case error (in mm) 7.1578 13.8296
Experiment 2

proposed approach approach in [3]
Standard deviation (in mm) 3.702 8.368

Average error (in mm) 16.406 18.768
Worst case error (in mm) 22.032 29.444
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ground-truth, the shape estimated by the proposed work and the shape estimated

by Tully et. al. [3]. Note how the shape estimated by the proposed approach closely

approximates the ground-truth. Fig. 5-6 shows the variation of the error between

the ground-truth and the shape estimated for various links. Notice how the proposed

method has low errors throughout, which is reflected in the low standard deviation

as shown in the Table. 5.1. The improvement in the results obtained is attributed

entirely to changing the space of the state vector to exponential coordinates.

5.1.4 Conclusion

Our algorithm makes use of sensing the tip position using an electro-magnetic sensor

and motions models to predict and update the shape of the entire robot. An important

contribution of this work has been describing the state at every instant, analytically

in terms of the exponential coordinates and using these as state vector for the filtering

to obtain more accurate estimates. Promising results have been obtained using the

formulation described in this chapter demonstrating the capability of this approach

to accurately filter the configuration of the robot in real-time.

The method described above can be extended to any system as long as the mo-

tion model can be obtained in closed-form in terms of exponential coordinates. Fu-

ture work would involve sensing the motor-encoder readings and using that in the

measurement update step to account for uncertainties arising from inaccurate motor

inputs. Also more advanced models that can capture the interaction of the robot

with deformable bodies is a subject of future work.

5.2 SCAR estimation using Lie algebra filter

In this section we build upon the SCAR-LSQ-CMU approach described in Chapter 3,

where simultaneous registration and compliance estimation is done using a mini-batch

of force-position measurements while assuming that the tool-tissue interactions are

approximated by a linear spring-based stiffness model. In this section, we relax the

assumptions of linearity in the tool-tissue interactions to account for palpation depth-
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dependent changes in the stiffness, a commonly observed phenomena in deformable

materials such as soft tissue [179]. We also utilize the experimental system presented

in the previous work of our collaborators at Vanderbilt university [128], where an

approach for stiffness and impedance exploration and autonomous motion in a deep

cleft were investigated.

Furthermore, in this section, a pre-registration step is presented to estimate a

prior for the filter which uses stiffness features segmented from a ground truth stiff-

ness map, that can be generated either by ultrasound elastography or mechanical

palpation. The pre-registration gives a good initial guess that helps in faster conver-

gence of the filter as opposed to an uninformative prior. In addition, an unscented

Kalman filtering approach is adopted with the hope of handling non linearities in pro-

cess and observation model better than extended Kalman filters or iterated extended

Kalman filters. The registration parameters are defined in the space of Lie algebra)

exponential coordinates) as they have proved to be more accurate at estimating pose

for localization [1] and shape estimation of medical snake robot as shown earlier in

this Chapter.

5.2.1 Methodology

In this work, we first develop a structured framework to estimate the material prop-

erties of the soft body being probed. To do this, we discretize the surface of the soft

body into a grid mesh and at each of the grid points, we fit a polynomial to describe

the variation of the stiffness with respect to change in palpation depth. It is worth

noting that while this ground truth variation of stiffness with respect to palpation

depth is calculated, perfect registration between the soft body and its CAD model is

assumed. A detailed description of this is provided in Section 5.2.2. For any unknown

position of the organ with respect to the robot base, a pre-registration is performed

to find a good initial registration estimate. This is done by scanning the surface at

two different controlled force levels and estimating a rough stiffness contour map.

Following that, the stiff regions are segmented from the contour stiffness map and

the centroids of the stiff features are compared against the centroids of stiff features
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on the ground truth stiffness map. The registration between the centroid points of

the stiff features is obtained using Horn’s method [4]. Section 5.2.3 describes the

pre-registration procedure in detail.

The registration is carried out by using an unscented Kalman filtering framework.

The registration estimate from the pre-registration step is used as the prior and the

using the polynomial description for stiffness variation at grid points, the palpation

force is modeled given the depth estimate at the point of palpation. The innovation

step of the filter comprises of minimizing the difference between the modeled force

and the measured force of palpation. Incorporating the raster palpation trajectory

in the process model helps converge faster. The filtering is performed in the space

of the Lie groups as developed by Hauberg et. al. [49], the procedure to do the same

and its benefits are described in Section 5.2.4.

5.2.2 Generating the ground truth stiffness map

Prior work by Sanan et. al. [78] assumes a linear stiffness model for the palpated

object where the stiffness did not vary with the palpation depth. In most practical

applications however, this assumption is unlikely to hold due to the nonlinear ma-

terial properties of biological tissues, which has been well established by Fung [180].

Capturing nonlinear material properties become crucially important when palpation

is being carried out for a subsurface embedded object such as a tumor or an artery,

which are located significantly below the organ surface, quite possibly beyond the

linear approximation of the stiffness relating force with the palpation depth.

In order to characterize depth dependent stiffness in the palpated object, we per-

form the following steps (see Fig. 5-7 ):

1. The surface is raster scanned with the 3 DOF cartesian robot (See Section IV for

further details). The point cloud of the robot tip pRi = (xi, yi, zi), the contact

force fRi and the local surface normal nRi at each point pRi are acquired. The

superscript R refers to entities in the robot’s reference frame ( refer to Table 3.1

to understand the notations). This process is repeated for i = 1 . . . q, where q
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is the total number of constant force scans.

2. The raw data fRi , nRi , and the z-coordinate of the point cloud zi are fitted to a

surface at pre-specified X-Y planar grid points (gx, gy) using a linear interpola-

tion scheme. This leads to the following fitted data nGi , fGi and pGi = (gx, gy, ẑi).

The superscript G refers to entities in the frame of the grid.

3. At each grid location (gx, gy), the stiffness along the local surface normal is

computed using a backward difference scheme, and is given as:

si(gx, gy) = −
nGi−1

T
(fGi − fGi−1)

nGi−1
T

(pGi − pGi−1)
(5.27)

The negative sign in the right hand side of Eqn. 5.27 accounts for the fact that

the force acting on the palpated object is opposite to the reaction force on the

force sensor measuring fRi . Representative stiffness maps are shown in Fig. 5-8.

4. At each grid location (gx, gy), the palpation depth di, computed relative to the

first scan corresponding to i = 1, and is given by:

di = nG1
T

(pGi − pG1 ) (5.28)

5. At each grid point (gx, gy), si is regressed on di using the quadratic relation:

si(di) = ad2
i + bdi (5.29)

where a and b are regression coefficients.

5.2.3 Pre-registration

The pre-registration step is carried out to find a rough initial guess for the registration,

which can then be used as a prior in the filtering process described in Section 5.2.4 for

estimating the registration. In prior work by Sanan et. al. [78], no pre-registration
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Figure 5-7: Schematic describing location of palpating points and the local surface
normal at consecutive force scans.
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Figure 5-8: Representative stiffness distributions obtained at (a) f2 = 1.5N , (b)
f3 = 2.0N and (c) f4 = 2.5N .
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was done and the initial guess was arbitrarily chosen. However, it will be shown

in Section 6.3 that choosing a reasonable initial guess from a pre-registration step

provides more accurate registration estimate. To perform pre-registration, the organ

is palpated at a very low force value. A low force value f 1 would deform the surface

very little and the tip positions obtained would closely emulate the points on the

surface of the organ model. Following this, the organ is palpated at a higher force

value f 2 and the tip positions are recorded. The depth of palpation is estimated from

the two palpation experiments performed and the stiffness is estimated assuming a

linear stiffness model. We justify such an assumption by acknowledging the fact that

in the pre-registration step we are not interested in computing the exact stiffness, but

instead we wish to identify the approximate locations of relatively stiff regions. The

location of the stiff regions are used as anatomical fiducials to register to the stiff

regions in the ground truth stiffness map.

(a) Stiffness map obtained by palpating at ar-
bitrary locations with 1.5N force. Centroids
of locally stiff regions are shown by circular
markers.

(b) Ground truth stiffness map for 1.5N
force. Centroids of locally stiff regions are
shown by diamond shaped markers.

Figure 5-9: Locally stiff regions are segmented from the stiffness map and centroid of
the segmented regions are computed.

The relative-stiffness contour map of the surface of the organ that is obtained,

shows contours of varying stiffness with varying color gradients as shown in Fig. 5-

9(a). While the stiffness map in Fig. 5-9(a) looks like a blurred out version of the

ground truth stiffness map shown in Fig. 5-9(b), the stiff regions still appear to be

at the same relative position. Thus we compare the location of the centroids of the

stiff regions to infer the transformation. The regions corresponding to higher stiffness

are segmented as shown in Fig. 5-9. Further the centroids of the segmented regions
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are computed. The coordinates of the centroids computed in the image frame can

be readily transformed to coordinates in the frame of the robot base. Similarly the

centroids of stiff regions are obtained from the ground truth stiffness map described

in Section 5.2.2 corresponding to force f 2. The coordinates of the centroids in the

ground truth stiffness map can be readily transformed to the frame of the organ

model. The registration between these two sets of centroids can be obtained using

Horn’s method [4].

5.2.4 Registration

Registration process involves estimating the homogeneous transformation matrix T ∈

SE(3), that relates the reference frame fixed to the base of the robot to the reference

frame attached to the model of the organ of interest. In this work, a filtering approach

is followed for estimating the registration. Unlike the prior work from our group [47,

78] where the state vector of the filter contains Euler angles and Cartesian coordinates

that parameterize T , in this work the registration is carried out directly in the space

of the Lie group by using a state matrix: T . The underlying Lie algebra of the space

is used to derive the equations of the filter as shown in [49]. Filtering in the tangent

space of the group provides more accurate estimation of the state as shown in [1, 49],

especially in the presence of high uncertainties in the process or measurement models.

In this work, we therefore adapt this approach of filtering in the space of the Lie group,

instead of choosing a Euclidean parameter space.

The state matrix is defined as:

Xk = T , where T =

R t

0 1

 , (5.30)

where R ∈ SO(3) is the rotation matrix and t ∈ R3 is the translation vector. We use

a UKF in this work as it is known to handle non-linearities in the process and mea-

surement models better [181]. The unscented filtering framework involves computing

intermediate states called ‘sigma points’ which are propagated through the non-linear
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process and measurement models of the system.

Sigma point computation

Consider the state X ∈ SE(3) and covariance P expressed in the basis of the tangent

space at X. The tangent space se(3) can be described using a six dimensional basis

commonly referred to as exponential coordinates [87]. Let σT = σ0, . . . ,σ12 be the

sigma points of the covariance P calculated in the Euclidean tangent space:

σ0 = x, (5.31)

σm = x+
(√

(M + λ)P
)
m
, m = 1, . . . ,M (5.32)

σm = x−
(√

(M + λ)P
)
m
, m = M + 1, . . . , 2M (5.33)

where M = 6 the dimension of the tangent space of SE(3), x̂ = logX are the expo-

nential coordinates that describe X, (
√
·)m denotes mth column of the Cholesky de-

composition and λ is a parameter for controlling the distance between the sigma points

and the mean. The sigma points obtained are then projected to the manifold describ-

ing SE(3) using the matrix exponential: σmSE(3) = expσm, where m = 0, . . . , 12.

Process and measurement models

The filtering process comprises of two main steps: prediction and update. In the

prediction step, a process model is used to predict the future state of the system

given it current estimate and in the update step, sensor data is used to correct the

state estimate. In this work, the process model is designed to be static i.e., Xk|k−1 =

Xk−1|k−1 and P k|k−1 = P k−1|k−1. The control input for the system is the estimated tip

position of the robot. The tip position is estimated using another UKF as described

in Section 5.2.4. The controlled force applied to the organ during the palpation serves

as the measurement. The measurement model for this system is:

h(Xk) = δkS(pc, δk), where δk = nT (pc − ptipc ), (5.34)
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where the subscript c denotes quantities in the frame of the organ model and S(pc, δk)

is a function that returns the stiffness value associated with a point pc on the organ

model when palpated to a depth δk, as described in Section 5.2.2. The point ptipc =

Rkp
tip
r + tk, where Xk =

Rk tk

0 1

 and ptipr is in the frame of the robot base as

estimated is Section 5.2.4. In Eq. 5.34, the surface normal n is obtained by finding the

normal associated with the point pc on the organ model. The measurement function

Eq. 5.34 is evaluated at the sigma points obtained earlier:

yk =
12∑
m=0

wmh(σSE(3)), (5.35)

where the weights wi are defined as:

w0 = λ/(λ+M), (5.36)

wm = 1/2(λ+M), m = 1, . . . , 2M, (5.37)

where the dimentionality of the space, M = 6.

Update step

The update step uses the sensor data zk to update the mean and variance and obtain

Xk|k and P k|k. The covariance and cross-covariance required to compute the Kalman

gain are:

P yy =
1∑

m=0

2wm(h(σmSE(3))− yk)(h(σmSE(3))− yk)T ,

P xy =
1∑

m=0

2wm(σm − xk|k−1)(h(σmSE(3))− yk)T .

The Kalman gain can be obtained as K = P xyP
−1
yy . The sensor measures the normal

force applied to the organ and thus we have zk = Fn. The estimate of the state is
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updated as follows:

Xk|k = exp ˆ(xk|k−1 +K(zk − yk)). (5.38)

The covariance is updated as follows:

P k|k = P k|k−1 +KP yyK
T . (5.39)

Estimation of tip position

The control input to the UKF presented above is ptipr , which is the position of the

tip of the robot in the frame of the base of the robot. At every iteration of the

UKF, ptipr is estimated using another UKF. The state vector of this second UKF is

qk = ptipr ∈ R3. The process model for the filter uses a constant velocity motion

model:

qk|k−1 = qk−1|k−1 + v∆t,

Qk|k−1 = Qk−1|k−1 +N ,

where v = (qk−1|k−1−qk−2|k−2)/∆t and ∆t is the time elapsed between two successive

filtering loops and N is the uncertainty in the process model that helps take care of

unmodeled scenarios such as change of direction of motion, accuracy of the robot etc.

The measurement model for this filter is:

h(q) = q,

The sensor measurement is the tip position: zk = ps. The sigma points and weights

are computed using Eq. 5.31 and Eq. 5.36 respectively, with the dimensionality of the

state vector M = 3. Since the state vector belongs to the Euclidean space, standard

equations for prediction and update for the UKF [181] are used. The state q is

continuously updated and whenever the UKF that estimates the registration requires

a control input, the latest estimate of q is used.
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5.2.5 Experimental setup

To demonstrate the validity of the proposed approach, palpation experiments at var-

ious constant forces were carried out, as outlined in Section 5.2.2. The experiments

were carried out by our collaborators at Vanderbilt university. The experimental

setup consisted of a 3-DOFs cartesian robot equipped with a force/torque sensor

(ATI Gamma F/T Transducer, S/N: FT8578) with an attached spherical probe 12.7

mm in diameter (see Fig 5-10. Centralized computed torque control for the Carte-

sian robot was implemented in a real-time system running at 1 kHz. Hybrid-force

control was used for raster positioning a silicone tissue phantom (M-F Manufactur-

ing), wherein force control was applied in along the local surface normal computed

from the F/T sensor, and position control was applied along the orthogonal direction.

Further details on the control architecture can be found in [128]. This is the same

experimental setup what was used in Chapter 3.

Five consecutive force-controlled scans were carried out from 1.0 N to 3.0 N at

intervals of 0.5 N. We observed that at higher forces, there was considerable distortion

in the phantom tissue, due to which data acquired at these forces were not considered

in the registration process.

5.2.6 Results for SCAR with Lie algebra filter

As a first step, the ground truth stiffness maps were computed for various forces

as described in Section 5.2.2. The stiffness maps for three sample forces are shown

in Fig. 5-8. Since the stiffness computations are interpolated over the surface of

the organ by using a grid mesh of points taken along a plane and projected to the

surface, the estimates are poor at the regions where the surface normals undergo a

quick change in orientations. As a result we omit points belonging to such regions

during our computations due to high uncertainties in the estimated values at those

points. Fig. 5-11(a) shows a contour plot of the variation in orientation of the surface

normals and in Fig. 5-11(b), the points in the light colored regions are not considered

for stiffness computation in the UKF.
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Figure 5-10: (a) 3-DOF Cartesian Robot at Vanderbilt University and (b) Experi-
mental setup with the probe palpating the phantom tissue.

(a) Contour plot of the variation in surface
normal over the surface of the model

(b) The white regions show high variation in
surface normal orientation

Figure 5-11:
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The location of the organ with respect to the base of the robot was carefully

measured to provide a ground truth registration, in order to measure how good our

estimated registration is. The ground truth registration is:

T =


0.9996 0.0276 0.0101 −34.7452

−0.0278 0.9995 0.0171 −7.2757

−0.0096 −0.0174 0.9998 16.3866

0 0 0 1.0000

 . (5.40)

The surface is first palpated at two force levels, 1N and 1.5N at arbitrary locations.

The tip location is sensed in both these experiments and a stiffness map is generated

from this data following the approach shown in Section 5.2.2. The stiffness map

generated is as shown in Fig. 5-9. Upon performing a pre-registration as shown in

Section 5.2.3 we obtain the following transformation matrix:

T =


0.9990 0.0436 0.0104 −34.8915

−0.0438 0.9989 0.0169 −6.5140

−0.0096 −0.0174 0.9998 16.3866

0 0 0 1.0000

 . (5.41)

Having performed the pre-registration, the surface was raster scanned as shown in

Fig. 5-12 with a constant force of 1.5N.

Palpation points were sampled at regular time intervals along the trajectory.

Fig. 5-13(a) shows the coordinates of the palpation points against the surface of

the organ. The UKF was used to estimate the registration using the prior from pre-

registration step. The UKF successfully registers the points to the surface of the
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Figure 5-12: Raster path that was used to palpate the silicon model

model as shown in Fig. 5-13. The final registration as estimated by the filter was:

T =


0.9989 −0.0316 0.0333 −34.5227

0.0320 0.9994 −0.0111 −8.5058

−0.0329 0.0122 0.9994 16.7827

0 0 0 1.0000

 ,

which is very close to the ground truth. When the registration estimation was per-

formed without using the palpation trajectory model, the estimates for tip position

took longer time to converge.

The estimation procedure when performed with an arbitrary initial guess, yields

inferior results. A sample result for a failed registration is as shown in Fig. 5-14. This

example demonstrates the importance of the pre-registration step. The registration

was also estimated using an IEKF instead of UKF and the results obtained were

found to be very similar.
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(a) The red dots represent the palpation
points in the frame of the organ model be-
fore registration

(b) The red dots represent the palpation
points in the frame of the organ model after
registration

Figure 5-13: Example of successful registration using the initial guess for the UKF
from pre-registration step.

(a) The red dots represent the palpation
points in the frame of the organ model be-
fore registration

(b) The red dots represent the palpation
points in the frame of the organ model after
registration

Figure 5-14: Example of bad registration when the intial guess for UKF is not chosen
from the pre-registration step.
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5.2.7 Conclusion

We have developed a probabilistic approach based on unscented Kalman filtering to

register a deformable object to a surgical tool using mechanical stiffness information

obtained by palpating the object. We assumed a realistic deformation dependent

stiffness model obtained by raster-scanning the object at varying forces along the

local surface normal of the object using a 3-DOFs Cartesian robot. Subsequently,

the stiffness distribution at a given scan force was used to pre-register the object to

the robot tip. In addition, a pre-defined palpation trajectory was used to specify the

process model of the filtering algorithm instead of uniformative distribution of the

palpation path.

To the best of the our knowledge, this chapter presents for the first time, a me-

chanical palpation based pre-registration step to provide a good initial guess to the

registration process. One of the key findings is that a pre-registration step significantly

improves registration accuracy. The implication of this result is that registration of

the surgical tool inside the human anatomy improves if an accurate pre-operative

elastic map of the anatomy of interest is provided prior to the surgical task . We

also observed that absence of a pre-defined trajectory leads to inaccurate registra-

tion. These findings encourage further research in proper selection of the palpation

trajectory that leads to the most optimal registration.

In this work, we did not consider global deformations in the deformation during

palpation. This is not an unlikely scenario, since anatomical structures are typically

geometrically unconstrained and could move globally during the palpation process.

In the future, we will focus on accounting for global deformations in the registration

process.

5.3 Contribution and Discussions

The contributions from this chapter include:

1. Derivation of closed form analytical expressions for the motion model to esti-
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mate the shape and pose of a medical snake robot, defined in terms of expo-

nential coordinates.

2. Using a realistic stiffness model for SCAR, for improved estimates.

3. A pre-registration step in SCAR using prior stiffness information.

4. An unscented filter for pose estimation using Lie algebra to parameterize pose.

Figure 5-15: When particles obtained from a banana shaped distribution in the space
of Euler angles (top left) are transformed to the space of exponential coordinates
they are distributed in the form of a Gaussian distribution (center). When particles
obtained from a Gaussian distribution in the space of exponential coordinates are
transformed to the space of unit quaternions, they are distributed in the form of a
Bingham distribution (right).

An important learning from this Chapter was that using exponential coordinates

to parameterize pose and perform filtering produces accurate pose estimates, as op-
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posed to using Cartesian coordinates and Euler angles. However, it must be noted

that even for the case of static pose estimation (where there is no process model), the

update model is nonlinear and requires linearization (as in the case of medical snake

robot’s shape estimation) or deterministic sampling approximations (as in the case

of SCAR); which can be susceptible to high initialization errors.

However, we observe that a Gaussian in the space of exponential coordinates map

to a Bingham distribution in the space of unit quaternions (as shown in Fig. 5-15). In

the next chapter we show how we make use of this mapping to derive the equations of

a linear filter that uses Bingham distribution to model the uncertainties in rotation

parameters. We show that such a formulation is not only more accurate but also

automatically handles the constraints imposed by the chosen parameterization.

5.4 Published Work

Material from this chapter has appeared in the following publications

1. R Arun Srivatsan, Matthew Travers, and Howie Choset, “Using Lie algebra for

shape estimation of medical snake robots, in the proceedings of the IEEE/ RSJ

International Conference on Intelligent Robots and Systems, Chicago, USA,

2014, pg 3483-3488.

2. R Arun Srivatsan, Rajarshi Roy, Long Wang, Nabil Simaan, and Howie Choset,

“Registering Surgical Tool to a Soft Body using Mechanical Palpation”, Tech.

report CMU-RI-TR-15-13, Robotics Institute, Carnegie Mellon University, June,

2015.
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Chapter 6

Bingham Filter for Pose

Estimation

Most of the prior work on online pose estimation linearize the non-linear measurement

model. This results in inaccurate estimates especially when the initial pose estimate

is erroneous. In order to address this issue, in Chapter 4, we used dual-quaternions

and developed a linear Kalman filter which is robust to initial pose errors. Our prior

work as well as the work of others ([154, 62, 63, 143, 182]), used unit-quaternions as

the underlying space and Gaussians to model the uncertainty in their distribution.

Gaussian distributions do not consider the structure of the underlying space, i.e,

antipodal symmetry introduced by q̃ = −q̃ ([81]).

Gaussian distributions can be used to model uncertainty, but are largely limited

to linear spaces and states that are unimodal in distribution. While much work has

been done to counteract this assumption, the bottom line is that linearizations are

still approximations. We believe that in order to obtain optimal state estimates, it

is critical to model uncertainties using the appropriate distributions that exploit the

fundamental structure of the parameter space. This work introduces an online pose

estimation method that uses a Bingham distribution and a Gaussian distribution to

robustly and accurately estimate the rotation and translation respectively.

The Bingham distribution is defined on a unit hypersphere and captures the an-

tipodal symmetry of the distribution of unit-quaternions ([57]) (see Fig. 6-1). When
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(a) (b)

Figure 6-1: A 3D Bingham distribution: c = 1
N

exp(vTMZMTv), where M = I3×3,
Z = diag(0,−0.5,−2), and v = (x, y, z)T , vTv = 1. The colors on the sphere show
the probability value. (a) Shows the mode at v = (1, 0, 0)T , (b) shows the mode at
v = (−1, 0, 0)T . More details can be obtained from Sec. 2.5.

compared to prior methods, the use of the Bingham distribution results in a for-

mulation that is accurate and has shorter computation time, because there is no

normalization step or projection onto a hyper-sphere.

Another advantage of our approach compared to the UKF-based pose estima-

tion method of Moghari et. al. [5] and EKF-based pose estimation method of Pen-

nec et. al. [6]) is the ability to update the pose not only using point measurements,

but also using surface-normal and pose measurements as well as simultaneous multiple

measurements (as obtained from a stereo camera or lidar).

Inspired by Horn [4], this work estimates pose by decoupling orientation from

translation estimation. The method uses a Bingham distribution-based filter (BF) for

orientation estimation and a Kalman filter for translation estimation. While there has

been some recent work on using the BF for orientation estimation ([81], [54]), there are

some key differences compared to our approach. Firstly, prior work assumes that the

state and measurements both are unit quaternions. Secondly, prior works deal with

non-linear measurement models [183], hence requiring approximations introduced by

linearization or deterministic sampling such as the works of Steinbring et. al. [184] and

Gilitschenski et. al. [54]. This results in computation of the normalization constant
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which is known to be expensive ([13, 81]). On the other hand, our approach does

not limit measurements to be unit quaternions and bypasses the computation of

normalization constant by using a linear measurement model. The computation of

normalization constant would still be required to find the covariance of the orientation

parameters, which is not part of the algorithm itself.

Faugeras et. al. [60] and Walker et. al. [61] have also derived linear models for

pose estimation. However, they estimate pose in a deterministic setting and do not

provide any guidelines for estimating the uncertainties associated with pose. Follow-

ing Chaukroun et. al. [143] and the approach shown in Chapter 4, in this work we

use results from stochastic filtering theory to derive exact expressions for the pose-

uncertainties.

We first derive the theory for applications where the data association between

the model and the sensor measurements is known. Following this, we extend the

approach to applications with unknown data association. To deal with unknown data

association, we use the popular k-d tree search and principal direction tree (PD-tree)

search. We also introduce a new look-up table-based approach for fast computations

when the data association is unknown. We show that the computational time taken

by this approach is a couple of orders of magnitude less than tree search. We take

advantage of the reduced computational time to recursively run the filter for dynamic

pose estimation.

6.1 Related Work

6.1.1 Batch Processing Approaches

Pose estimation has been of interest for a long time in the robotics literature. Much of

the early literature deals with collecting all sensor measurements and processing them

offline in a batch to estimate the pose. Horn [4] developed a least squares implemen-

tation for pose estimation with known point correspondence. Besl and McKay [11] in-

troduced the iterative closest point (ICP), which extends Horn’s methods for unknown

163



point correspondence by iteratively estimating point correspondence and performing

least squares optimization. Several variants of the ICP have been developed (refer

to the review on registration methods by [12]). Estepar et. al. [21], Segal et. al. [22]

and Billings et. al. [23] further generalized the ICP by incorporating measurement

noise uncertainties. A more detailed discussion on these methods can be obtained in

Chapter 9.

Orientation data (surface-normals) has been used in addition to point data for reg-

istration in prior works. The approach of Pulli [28] uses surface-normal information to

filter out measurements during the correspondence stage. Munchet. al. [29] use point

and surface-normal measurements in both the correspondence and minimization step.

Billings et. al. [25] have developed iterative most likely oriented point (IMLOP), a

probabilistic framework to estimate pose using surface-normal and position measure-

ments, while incorporating measurement uncertainty in both the correspondence and

minimization step. Billings et. al. [185] have more recently developed a generalized

IMLOP (GIMLOP) to deal with anisotropic noise in points and surface-normals.

In addition to point and surface-normal measurements there have also been sev-

eral approaches developed for pose estimation using pose measurements for applica-

tions such as hand-eye calibration. The works of Tsai and Lenz [30], Horaud and

Dornaika [31] and Daniilidis [32] formulate hand-eye calibration as a least squares

estimation problem assuming complete knowledge of measurement correspondence.

More recently, Ackerman et. al. [33] estimate the pose with unknown correspondence.

6.1.2 Probabilistic Sequential Estimation

Probabilistic sequential estimation approaches provide sequential state updates based

on a continuous stream of sensor measurements. The uncertainty in the state variables

is often modeled using a probability density function (PDF) and the parameters of the

PDF are updated after each measurement. In contrast to batch estimation methods,

where there is no indication of when to stop collecting measurements, convergence of

the state estimate and decrease in the state uncertainty provides clear indication of
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when to stop collecting measurements

Gaussian Filtering Approaches

Several sequential estimation methods are based on Kalman filters, which model the

states and measurements using Gaussian distributions [6, 5, 10, 49, 101]. Kalman

filters by construction provide optimal state estimates when the process and measure-

ment models are linear and the states and measurements are Gaussian distributed [51].

Pose estimation, however, is inherently a non-linear problem, and hence linear Kalman

filters produce poor estimates [6, 49]. Several variants of the Kalman filter have been

introduced to handle the non-linearity. EKF-based filters perform first-order linear

approximations of the non-linear models and produce estimates which are known to

diverge in the presence of high initial estimation errors [5]. UKF-based methods do

not linearize the models but instead utilize evaluation at multiple points, which can

be expensive for a high-dimensional system such as SE(3) [5, 49]. In addition, UKF-

based methods require tuning a number of parameters, which can be unintuitive.

Non-Gaussian Filtering Approaches

There has been some recent work in robotics towards the use of alternative distri-

butions to model the noise on rotations for pose estimation problems. For example,

Langevin distributions have been used for pose estimation by Carlone et. al. [52]

and Rosen et. al. [53]. Gilitschenski et. al. [54] have recently developed a Bingham

distribution-based recursive filtering approach for orientation estimation. Glover et. al.

[13] use Bingham distribution to describe the orientation features, while Gilitschen-

ski et. al. [55] use this distribution for planar pose estimation. Our work takes inspira-

tion from these works for modeling the uncertainty in the orientation using Bingham

distribution. Post the publication of our work, Fan et. al. [56] developed a variation

of that DQF developed in Chapter 4, by using a constrained Kalman filter with dual

quaternions as state vector.

The use of Bingham distribution to model uncertainties in rotation parameters is

a very valuable tool that has been largely under-utilized by the robotics community,
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as also noted by Glover et. al. [13]. One of the important reasons for this, is the

difficulty in computing the normalization constant as well as performing expensive

convolution operation over the distributions [57].

Alternate Parameterizations for Filtering

Prior work also has looked at several parameterizations of SE(3) that would improve

the performance of the filters. [49] confine the state variables over a known Rie-

mannian manifold and use a UKF to estimate the pose. Quaternions are used to

parametrize SO(3) and the state is estimated using an EKF in [62, 101] and UKF

in [63]. An IEKF with dual quaternions to parameterize the pose has been used by

Goddard et. al. [64].

Linear Filtering Approach

In Chapter 4, we have developed a linear Kalman filter for pose estimation using

dual quaternions and pairwise measurement update. While this method has been

shown to be robust to errors in initial state estimate and sensor noise, it has a few

drawbacks: (1) The uncertainty in the quaternions used for orientation estimate

is modeled using Gaussians which do not consider the condition that q̃ and −q̃

represent the same rotation. (2) The filter by itself does not produce unit-quaternion

estimates and hence after each estimate, a projection step is used to normalize the

state. The projection step introduces an additional error which is not accounted for

in the uncertainty estimate [186]. In addition, such a projection would have a large

error if the estimated state had a near zero norm. (3) The approach only requires

pairs of measurements per update. However, in many practical applications such as

image registration, several (≈ 104) measurements are available for processing in each

update step, and a pairwise update could be very inefficient and time consuming.

166



6.2 Problem Formulation

In this work we consider pose estimation applications that use– 1) position measure-

ments, 2) position and surface-normal measurements, and 3) pose measurements. We

derive linear models for all these cases in this section assuming the data association

between the model and the sensor measurements is known. Following that we shall

discuss the extension of our approach to applications where the data association is

unknown.

6.2.1 Position Measurements

Let ai, bi ∈ R3, (i = 1, . . . , n) be the locations of n points in two different reference

frames whose relative pose is to be estimated. The relation between points ai and bi,

is given by

ai = Rot(q̃)bi + t, i = 1, . . . , n, (6.1)

where Rot(q̃) ∈ SO(3) is the rotation matrix obtained from the unit quaternion

q̃ ∈ R4 and t ∈ R3. In an application such as point-registration, ai are points in

CAD-model frame and bi are points in sensor frame respectively.

Update Model

First consider the scenario where points in the sensor frame are obtained one at a

time in a sequential manner, as typically observed in the case of robotic probing (see

Chapter 3). Similar to Chapter 4, the equations for updating the pose estimate given

a pair of measurements (n = 2), are derived. From Eq. 2.15, Eq. 6.1 can be rewritten

as

ã1 = q̃ � b̃1 � q̃∗ + t̃, (6.2)

ã2 = q̃ � b̃2 � q̃∗ + t̃, (6.3)
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where q̃ is as defined in Eq. 2.14 and t̃ = (0, tT )T . Subtracting Eq. 6.3 from Eq. 6.2,

ã1 − ã2 = q̃ � (b̃1 − b̃2)� q̃∗,

⇒(ã1 − ã2)� q̃ = q̃ � (b̃1 − b̃2), (6.4)

since q̃ is a unit-quaternion. Using matrix form of quaternion multiplication shown

in Eq. 2.11, Eq. 6.4 can be rewritten as

F 1(ã1 − ã2)q̃ − F 2(b̃1 − b̃2)q̃ = 0,

⇒H(a1,a2, b1, b2)q̃ = 0, where (6.5)

H =

 0 −(av − bv)T

(av − bv) (av + bv)
×

 ∈ R4×4, (6.6)

av = a1 − a2 and bv = b1 − b2. Notice that Eq. 6.5 is a linear equation in terms of

q̃ and is independent of t.

Adding Eq. 6.2 and Eq. 6.3,

ã1 + ã2 = q̃ � (b̃1 + b̃2)� q̃∗ + 2t̃,

⇒t̃ =
(ã1 + ã2)− q̃ � (b̃1 − b̃2)� q̃∗

2
. (6.7)

Eq. 6.5 and Eq. 6.7 were derived in Chapter 4 using dual quaternions, however, no

geometrical intuition was provided. Fig. 6-2 provides the geometrical intuition behind

the decoupled estimation of q̃ and t. Estimating the pose between ai and bi can be

reduced to first estimating the orientation of vectors aijv and bijv and then estimating

the translation between the centroids of the points. A similar idea is commonly used

by Horn [4]. A key difference is that instead of forming vectors av = a1 − a2 and

bv = b1 − b2, Horn’s method uses av = a1 − ac and bv = b1 − bc, where ac and bc

are the centroids of ai and bi respectively.

Further, Eq. 6.5 is similar to the one used by Faugeras et. al. [60]. However,

Faugeras et. al. [60]did not consider uncertainties in sensor measurements while esti-
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Figure 6-2: Blue points (left) indicate ai and red points (right) indicate bi. Our
approach constructs vectors aijv = (ai − aj) and bijv = (bi − bj) as shown by black
arrows. The Bingham filter estimates the orientation between the black vectors. A
standard implementation of Horn [4] on the other hand, finds the orientation between
the green-dashed vectors. While the green-dashed vectors can only be constructed
using a batch of measurements, the black vectors can be constructed from sequential
measurements. The black vectors can be considered to be a special case of green-
dashed vectors where one pair of data points are considered at a time with one of the
points serving as the centroid.

mating q̃. In this work, we model the uncertainty in the sensor measurements ai, bi

using Gaussian distribution. Let asi = ai + δai and bsi = bi + δbi, where (·)s is a

sensor measurement, and δ(·) is the noise as sampled from a zero mean Gaussian,
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N (0,Σ(·)). Eq. 6.5 can be rewritten as

H(a1,a2, b1, b2)q̃ = 0,

H(as1,a
s
2, b

s
1, b

s
2)q̃ +G(q̃)µ = 0, (6.8)

where µ = (δa1, δa2, δb1, δb2)T and

G =
[
−W 1 W 1 W 2 −W 2

]
, (6.9)

where W 1,W 2 ∈ R4×3 are comprised of the last three columns of F 2(q̃) and F 1(q̃)

respectively.

It can be shown that G(q̃)µ is a zero mean Gaussian noise, N (0,Q), where the

uncertainty Q is obtained analytically. To evaluate Q, we make use of an important

result from stochastic filtering theory which is described in Proposition 1 (pp. 90–

91 of Jazwinski [146] and Appendix A of Chaukroun et. al. [143]). For the sake of

completeness, we prove the proposition in the Appendix .1. We also provide a couple

of examples that illustrate this proposition.

It is to be noted that Proposition 1 uses uncertainty in q̃ to evaluate Q. If no

prior information about the uncertainty of q̃ is available, then

Q = G(q̃)ΣµG(q̃)T . (6.10)

Linear Filter

In order to obtain an estimate of q̃ from Eq. 6.5, we use a Bingham distribution to

model the uncertainty in q̃,

p(q̃) =
1

N1

exp(q̃T M k−1Zk−1M
T
k−1︸ ︷︷ ︸

D1

q̃). (6.11)

If the pose was changing with time, then a suitable process model can be employed

as shown in [54]. For now we restrict the analysis to static pose estimation and hence
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do not consider a process model to evolve the pose estimate over time. Position

measurements are obtained, which are in turn used to update the pose estimate. The

pose is updated once for every pair of measurements received. The following is the

probability of obtaining a sensor measurement zk, given the state q̃k,

p(zk|q̃k) =
1

N2

exp

(
−1

2
(zk − h(q̃k))

TQ−1
k (zk − h(q̃k))

)
, (6.12)

where h(q̃k) is the expected sensor measurement and Qk is the measurement uncer-

tainty. Qk is obtained as shown earlier from Proposition 1. Since Qk is dependent on

the state q̃, we use the current best estimate q̃k−1 to estimate the uncertainty Qk.

From Eq. 6.8, we set the measurement to zk = 0 and measurement model to

h(q̃k) = Hq̃k. In a Bayesian update, the state q̃k is updated such that the predicted

measurement Hq̃k is close to the actual measurement zk. Setting zk = 0 ensures

that the state q̃k is updated so that Hq̃k = zk = 0 (as required from Eq. 6.8).

Since zk = 0 is not a true measurement, it is often referred to as pseudo-

measurement in literature ([187]). For a detailed discussion on deriving update equa-

tions using a linear pseudo-measurement model, refer to [188, 186]. Eq. 6.12 can be

rewritten for our case as,

p(zk|q̃k) =
1

N2

exp

(
−1

2
(Hq̃k)

TQ−1
k (Hq̃k)

)
,

=
1

N2

exp
(
q̃TkD2q̃k

)
,

where D2 = 1
2

(
−HTQ−1

k H
)
. Since Qk is a positive definite matrix (as required

by a Gaussian), D2 is a negative definite matrix. Since D2 is negative definite and

|q̃Tk | = 1, p(zk|q̃k) is an unnormalized Bingham distribution in q̃k. Note that we

assumed the PDF, p(zk|q̃k) to be a Gaussian distribution in zk, and the algebraic

simplification results in the PDF being a Bingham distribution in q̃k. Also note that

we can use eigen decomposition to obtain parameters of the Bingham distribution

D2 = M 2Z2M
T
2 . The parameters M 2 and Z2 are not to be confused as being equal

to H and Qk, due to the similarity in the form of the equations.
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Assuming the measurements are all independent of each other, the updated state

given the current state estimate and measurement can be obtained by applying Bayes

rule

p(q̃k|zk) ∝ p(q̃k)p(zk|q̃k)

∝ 1

N1

exp
(
q̃TkD1q̃k

) 1

N2

exp
(
q̃TkD2q̃k

)
(6.13)

∝ exp
(
q̃TkM kZkM

T
k q̃k

)
. (6.14)

And thus it can be seen that the maximum a posteriori estimate, p(q̃k|zk), is a

Bingham distribution, where M kZkM
T
k is obtained from the product of Binghams

as shown in Eq. 2.24. As mentioned in Sec. 2.5, the mode of the distribution q̃k, is

the first column of M k.

It is worth noting that when no prior uncertainty information is available, Qk can

be obtained from Eq. 6.10. However, it can be shown that the rank of Qk (obtained

from Eq. 6.10), is at most three. But Eq. 6.12 requires Qk to be invertible. Thus we

assume prior uncertainty of q̃ to be very large in such cases which would allow us to

use Proposition 1 and obtain an invertible Q. The first few state updates would not

produce meaningful results due to high uncertainty in q̃. But each update decreases

the uncertainty and after a few updates, the filter starts producing meaningful results.

After updating q̃k, we estimate tk from Eq. 6.7. The prior and likelihood of t are

p(t) =
1

N3

exp(−1

2
(t− tk−1)T (Σt

k−1)−1(t− tk−1))

p(q̃k,ai, bi|t) =
1

N4

exp(−1

2
(W 1t−W 1ac +W 2bc)

TR−1
k (W 1t−W 1ac +W 2bc)),

where the derivation for the likelihood and the definition of Rk, ac, bc are provided

in Appendix .2.
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We obtain tk by finding the maximum aposteriori estimate

tk = argmax
t

p(t)p(q̃k,ai, bi|t),

= argmin
t

(t− tk−1)T (Σt
k−1)−1(t− tk−1)+

(W 2t−W 2ac +W 1bc)
TR−1

k (W 2t−W 2ac +W 1bc)

Upon taking a partial derivative with respect to t and setting it to 0, we get

tk =
((

Σt
k−1

)−1
+W T

1R
−1
k W 1

)−1 ((
Σt
k−1

)−1
tk−1 +W T

1R
−1
k (W 1ac −W 2bc)

)
(6.15)

The covariance Σt
k is obtained from the double derivative

Σt
k =

((
Σt
k−1

)−1
+W T

1R
−1
k W 1

)−1

. (6.16)

The above update equations are identical to Kalman filtering update [51]. Hence, the

state is updated once for every pair of measurements received, until a convergence

condition is reached, or maximum number of updates is reached.

Simultaneous Multi-measurement Update

So far we have considered only the case where the state is updated once per pair of

measurements. However, such an approach can be inefficient when applied to pose es-

timation from stereo cameras or Kinect
TM

. In such applications, one typically obtains

several position measurements at each time instant and processing the measurements

in a pairwise manner can be time consuming. In order to address this situation, we

can rewrite Eq. 6.5 as:

Hjq̃ = 0, j = 1, . . . ,m.
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Hj has the form as shown in Eq. 6.6, where av, bv are obtained from point-pairs

constructed by subtracting random pairs of points or subtracting each point from the

centroid (similar to [4]). Since the measurements are assumed to be independent, we

have

p(zk|q̃k) =
m∏
j=1

1

N j
2

exp

(
−1

2
(Hjq̃k)

T q̃−1
k (Hjq̃k)

)
,

=
1

N3

exp(q̃TkD3q̃k), (6.17)

where D3 = 1
2

∑
j

(
−HT

j q̃
−1
k Hj

)
and N3 =

∏m
j=1 N

j
2 . Eq. 6.13 can be rewritten as

p(q̃k|zk) ∝
1

N1

exp
(
q̃TkD1q̃k

) 1

N3

exp
(
q̃TkD3q̃k

)
∝ exp

(
q̃TkM kZkM

T
k q̃k

)
, (6.18)

where M kZkM
T
k is obtained from Bingham multiplication. q̃k and tk are obtained

as shown in Sec. 6.2.1.

6.2.2 Surface-normal Measurements

In some applications, in addition to position measurements, surface-normal measure-

ments may also be available ([23, 113]). The following equation relates the surface-

normals in the two frames,

ñai = q̃ � ñbi � q̃
∗ i = 1, . . . , l

⇒ñai � q̃ = q̃ � ñbi

⇒J iq̃ = 0, where

J i =

 0 −(nai − nbi)T

(nai − nbi) (nai + nbi)
×

 ,
where nai are surface-normals in CAD-model frame and nbi are surface-normals in

the sensor frame. Similar to the derivation in the case of position measurements (see
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Eq. 6.17), we obtain,

p(zk|q̃k) =
1

N4

exp(q̃TkD4q̃k), (6.19)

whereD4 = 1
2

∑
i

(
−JTi S−1

k J i
)

+ 1
2

∑
j

(
−HT

j q̃
−1Hj

)
, Sk is the pseudo-measurement

uncertainty. Thus, we have

p(q̃k|zk) ∝
1

N1

exp(q̃TkD1q̃k)
1

N4

exp(q̃TkD4q̃k),

∝ exp(q̃TkM kZkM
T
k q̃k).

Instead of using a Gaussian distribution to model the uncertainty in the surface-

normal measurements, a von Mises Fisher distribution or a Kent distribution may

be chosen (depending on if the uncertainty is isotropic or anisotropic), as shown

by Billings et. al. [23]. For calculating the uncertainties using Proposition 1, the

covariance of the von Mises and Kent distributions can be calculated as shown by

Hillen et. al. [189] and Balov et. al. [190] respectively.

6.2.3 Pose Measurements

Systems that use pose measurements for model update typically have the following

general form ([149, 33])

AX −XB = 0, (6.20)

where A,X,B ∈ SE(3). These problems are generally referred to as ‘hand-eye

calibration’. A and B are pose-measurements and X is the desired transformation

to be estimated. While variants of this problem exist in the form of AX = BY (also

known as hand-eye robot-world calibration) ([158, 191]), these problems can also be

reduced to the form of AX = XB by using relative measurements ([192]). Let

ãr, b̃
r
∈ R4 be the unit quaternion and at, bt ∈ R3 be the translation, parameterizing
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A and B respectively. For Eq. 6.20, we have

ãr � q̃ − q̃ � b̃
r

= 0, and, (6.21)

ãt � ãr � q̃ + ãr � t̃� q̃

−t̃� q̃ � b̃
r
− q̃ � b̃

t
� b̃

r
= 0, (6.22)

where ãt , (0, (at)T )T , b̃
t
, (0, (bt)T )T . From Eq. 6.21 and Eq. 2.11, we obtain

Lr(ãr, b̃
r
)q̃ = 0, where, (6.23)

Lr(ãr, b̃
r
) = F 1(ãr)− F 2(b̃

r
) ∈ R4×4.

Eq. 6.23 is linear in q̃, as was the case in the previous sections. Thus we follow a

similar analyses to estimate q̃k and the associated uncertainty.

Once we obtain q̃k, its value is substituted in Eq. 6.22 and the terms are rearranged

to obtain

Lt(ãr,at, b̃
r
, bt)̃t+ τ̃ 3 = 0, where, (6.24)

Lt = F 1(ãr)− F 2(q̃k � b̃
r
� q̃∗k),

τ̃ 3 = ãt � ãr − q̃k � b̃
t
� b̃

r
� q̃∗k.

Eq. 6.24 can be simplified as shown

Ltt+ τ 3 = 0,

where Lt is a matrix composed of the last three columns of Lt.

We use a maximum a priori estimate to obtain tk and Σt
k similar to Eq. 6.15 and

Eq. 6.16,

tk =
((

Σt
k−1

)−1
+Lt

T
R−1
k L

t
)−1 ((

Σt
k−1

)−1
tk−1 − (Lt)TR−1

k τ 3

)
, (6.25)

Σt
k =

((
Σt
k−1

)−1
+Lt

T
R−1
k L

t
)−1

, (6.26)

176



where the uncertainty Rk can be obtained following steps similar to those shown in

Sec. 6.2.1. See Appendix .2 for the equation of Rk.

6.2.4 Dealing with Unknown Data-association

In this section, we discuss the general approach we follow for pose estimation when

the data association between sensor point and the model is unknown. We explain

the approach for the example of position measurements, but the general idea can be

easily extended for other forms of measurements.

Let ψ be the model shape that is often available in the form of a triangulated

mesh. Let bsi ∈ R3 be the sensor measurements in the sensor’s reference frame. If we

knew the point on ψ that is associated with bsi , then we could follow the approach as

shown in Sec. 6.2.1. However, we do not know this data association, and so we find

the point ai ∈ ψ, such that

ai = argmin
a∈ψ

|a−Rot(q̃k)bsi − tk|. (6.27)

This approach is referred to as ‘closest point’ correspondence and is often used in

methods such as ICP [11]. An alternate approach involves using a probabilistic criteria

(‘most likely’ correspondence developed by Billings et. al. [23]) instead of Eq. 6.27,

ai = argmax
a∈ψ

1

N
exp

(
−1

2
vTkSkvk

)
, (6.28)

= argmin
a∈ψ

vTkSkvk, (6.29)

where vk = a − Rot(q̃k)b
s
i − tk, and Sk = Rot(q̃k)Σ

bsiRot(q̃k)
T + Σa. Eq. 6.28

does not take into account the uncertainty associated with q̃k and tk. While it is

straightforward to estimate the uncertainty in the pose and incorporate in Eq. 6.28, we

suspect that doing so can result in worse data associations, especially when the initial

pose-uncertainty is very high. Additionally, both the ‘closest point’ as well as ‘most

likely’ paradigms are equivalent when the uncertainties Σbi ,Σa are isotropic (see

Billings et. al. [23]).
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Figure 6-3: (a) Shows a representative point cloud of a model. For ease of demon-
stration, we show a 2D case. Let the model have 7 points as shown by red dots. (b)
k-d tree constructed for the model points. (c) Look-up table approach is illustrated.
A grid is created around the model. The closest point from each grid center to the
model is computed using k-d tree. Each grid-color shows an index corresponding to
the closest point on the model. Given a new sensor point, we first transform it to the
model frame (using the best estimate of transformation). We then find which grid it
belongs to and return the precomputed closest point.

k-d Tree Search:

A naive implementation for optimizing Eq. 6.27 or Eq. 6.28 would require checking

every point in ψ and find the one that minimizes the objective. However, such an

approach takes O(n) time on an average, which can be practically infeasible in many

situations. As a result a popular approach to search for the optimal point in the

model involves using a k-d tree originally developed by Friedman et. al. [193] (see

Fig. 6-3(b)). A k-d tree with n points takes O(log n) time on an average per search.

There are different ways to build k-d trees depending on which coordinate is chosen
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for splitting the data. One often chooses the coordinate with the largest spread.

Building a k-d tree with n points has a complexity of O(n log n), where amedian of

medians algorithm is used to select the median at each level of the tree [194]. One

variant is the dyadic tree which cycles through the coordinates and splits the data at

the midpoint.There are several other variants of the k-d tree such as ball tree [195],

Vantage-point tree [196], etc.

Principal Direction Tree Search:

One may also use a principal direction (PD) tree originally developed by William et. al.

[197], though it was not called a PD-tree then. Others such as Verma et. al. [198]

used the term PD-tree. The primary difference between the k-d and PD-tree is that

each node of the PD-tree has a local coordinate system that is oriented based on the

spread of the points in ψ instead of being axis-aligned with the model’s reference

frame. Such a tree can result in more compact geometric bounds of nodes within

the PD-tree and hence provide a boost to the search efficiency. Billings et. al. [23]

use a PD-tree search in their algorithm and demonstrate improved performance over

k-d tree search. A variant of this method is the random projection tree (RP tree)

developed by Dasgupta et. al. [199]. In this tree a random vector is chosen and the

tree is split along the median of the data projected onto this vector. The RP tree

is computationally faster than PD-tree but produces lower accuracy results. Mc-

Cartin et. al. [200] have developed an approximate PD tree (APD tree) that has the

computational complexity of an RP tree with the accuracy comparable to a PD-tree.

Compared with k-d trees, PD trees and RP trees yield better space partitions and

thus lead to better order for visiting the points because the partition hyperplanes are

less limited and more flexible than those in k-d trees. However, in the query stage,

the time overhead in PD trees and RP trees is larger because the branching step,

determining which child of an internal node is next visited, requires an inner-product

operation that consists of O(d) multiplications and O(d) additions while it costs

only O(1) in k-d trees. Therefore, in high-dimensional problems k-d trees usually

achieve better accuracy than PD trees within the same search time, as observed by
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Wang et. al. [201].

Fast Look-up Table Search:

In this work, we have developed a faster (albeit more approximate) approach to

search for the closest point to the model. We refer to this approach as ‘look-up table’

approach. As shown in Fig. 6-3(c), we use a uniform grid to discretize the space

around the model. We then compute the closest point from the center of each grid to

the model using a k-d tree. The index of the closest point on the model to each grid

point gi is stored in a look-up table. Such a look-up table needs to be constructed

once before the start of the experiments. When we obtain a sensor measurement

bi, we find the closest grid-center to (Rot(q̃k)bi + tk), and return the corresponding

pre-computed closest point. Since the grid is uniform, the computation of the closest

grid center can be done in O(1).

Figure 6-4: Plot shows the time taken per search vs number of model points for k-d
tree and look up table approach. Irrespective of the number of model points, the
search time with look-up table approach remains of the same order (≈ 2× 10−3 ms).
k-d tree, on the other hand, takes 10−1 ms for 10 model points (which is 2 times
faster than look-up table) and 0.25 ms for 1 million model points (which is 100 times
slower than look-up table).

We choose a uniform grid in a box, which is three times the largest dimension of the

model, with 100 grid points in each dimension. The center of the grid space is chosen

to coincide with the center of the model. An advantage of this search method is that
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the closest point computation is carried offline, and finding the closest grid-center is

an inexpensive operation. Fig. 6-4 shows that when the model has > 10, 000 points,

the look-up table approach outperforms k-d tree by several orders of magnitude1.

However, a shortcoming of this approach is that the density of the grid dictates the

accuracy of the result, because every point inside each grid is assigned the same closest

point. Increasing the density of the grid would result in more accurate results at the

cost of increase memory storage to save the lookup table. It is also worth noting that

increasing the grid size would increase the memory requirements as well. For example

the look-up table for a grid with 100 grid points in each dimension has a size of 8.91

kB in Matlab.

It is interesting to note that Fig. 6-3 is actually a grid approximation of the Voronoi

diagram of the model points. The grid approximation allows for quick retrieval of

closest point, as opposed to saving the Voronoi cells and checking for which Voronoi

cell a given point belongs to. If we were to consider the model as a continuous surface

instead of a set of points, the look-up table approach can be modified to store the

closest point on the model surface, instead of storing the index of the model point.

This could increase the storage space requirements as we would be storing three floats

for each grid element as opposed to an integer.

It is worth noting that prior work such as 2D image registration of Paragios et. al.

[202], parametric surface fitting of Flory et. al. [203], and KinectFusion of Izadi et. al.

[15] compute a signed Euclidean distance between each grid point and the model, and

use this information to minimize an energy function to bring the sensed points close

to the model. Instead of finding the minimum Euclidean distance from grid point

to the model, if we were to store the coordinates of the model point that results

in the minimum distance, then those approaches would revert to our look-up table

approach.

1The time reported is for a script written in MATLAB R2017b software from MathWorks, running
on a ThinkPad T450s computer with 8 GB RAM and intel i7 processor.
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6.3 Results

In this section, we consider two scenarios for using the Bingham distribution-based

linear filter– 1) known data-association and 2) unknown data-association. Without

loss of generality, we choose the following values for all experiments, M 0 = I4×4,

Z0 = diag(0,−1,−1,−1) × 10−300 2, which represents an uninformative prior with

high initial uncertainty.

6.3.1 Known Data-association

Simulation Example– Point Cloud Registration:

In this section, we assume that the correspondence between points ai ∈ R3 and

bi ∈ R3 are known, and estimate the pose between the frames that these two point

sets lie in.

The coordinates of the data set asi are produced by drawing 100 points uniformly

in the interval [ -250 mm, 250 mm]. To create the noiseless data set bi, a random trans-

formation is applied to ai. This transformation is generated by uniformly drawing the

rotational and translational parameters in the intervals [−180◦, 180◦] and [−100 mm,

100 mm], respectively. In Experiment 1, no noise is added to bi. In Experiment 2 and

Experiment 3, a noise uniformly drawn from [-2 mm, 2 mm] and [-10 mm, 10 mm]

respectively, is added to each coordinate of bi. In Experiment 4 and Experiment 5, a

Gaussian noise drawn from N (0, diag(2, 2, 2)) and N (0, diag(10, 10, 10)) respectively,

is added to each bi.

The linear BF is used to estimate the pose in each of the experiments in a se-

quential manner. This procedure is repeated 1000 times with different datasets and

different transformations that are randomly generated. The results are compared

with DQF (from Chapter 4), Moghari-UKF [5] and Pennec-EKF [6]. We also com-

pare the results with an incremental variant of Horn’s method (Horn-Inc) [4]. In this

method we find estimate the pose once for every 4 measurements obtained using the

estimate from the previous update as an initial condition.

210−300 is the smallest positive normalized floating-point number in IEEE R© double precision.
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Figure 6-5: Histogram shows the RMS errors for the Bingham filter (BF), dual quater-
nion filter (DQF) from Chapter 4, unscented Kalman filter of [5] (Moghari-UKF),
extended Kalman filter of [6] (EKF) and an incremental variant of Horn’s method
([4]). (a) The results shown are for Expt. 3, where the sensed points have a noise
uniformly drawn from [-10 mm 10 mm]. The BF is most accurate with an average
RMS error of 10.30 mm and a 100% success rate. (b) The results shown are for
Expt. 5, where the sensed points have a noise obtained from a Gaussian distribution
N (0, diag(10, 10, 10)). The BF is the most accurate with an average RMS error of
4.95mm and a 100% success rate.

Table 6.1: Mean RMS errors for experiments involving three different levels of uniform
measurement noise.

Expt. 1 Expt. 2 Expt. 3
RMS Success RMS Success RMS Success
(mm) (%) (mm) (%) (mm) (%)

Our approach 0.00 100 2.06 100 10.30 100
DQF 0.00 100 2.72 99.70 12.17 99.90
Horn-Inc 0.00 100 4.96 97.30 34.80 78.30
Moghari-UKF 15.97 99.50 18.84 99.30 21.00 99.50
Pennec-EKF 74.20 88.20 83.41 83.90 47.312 94.80
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For each of the methods, if the RMS error at the end of any experiment is greater

than 250 mm (the size of the workspace considered), then we consider the experiment

to have failed. The average RMS errors over the first three experiments along with

the percentage of successful runs are tabulated in Table 6.1. Note that we do not

include failed experiments in our computation of RMS errors.

Fig. 6-5(a) shows the histogram of errors for Expt. 3. The BF always estimates

the pose with the lowest RMS error. The RMS error of DQF and Moghari-UKF

are both small, but larger than the BF. Due to the large initial orientation chosen,

they get trapped in local minima sometimes, which is captured by the bars at higher

RMS errors in Fig. 6-5(a). While Horn-Inc performs better than Moghari-UKF when

the noise is small, higher noise results in the Horn-Inc performing worse. Pennec-

EKF performed the worst in all the three experiments. For Expt. 3, the average run

time for the BF is 26 ms, compared to 9 ms of DQF, 3.8 ms of Horn-Inc, 130 ms of

Moghari-UKF and 17 ms of Pennec-EKF.

The average RMS errors for Experiment 4 and Experiment 5 along with the per-

centage of successful runs are tabulated in Table 6.2.

Table 6.2: Mean RMS errors for experiments involving two different levels of Gaussian
noise in the measurements.

Expt. 4 Expt. 5
RMS Success RMS Success
(mm) (%) (mm) (%)

Our approach 0.210 100.00 4.947 100.00
DQF 0.214 100.00 6.980 99.80
Horn-Inc 0.310 100.00 6.651 99.20
Moghari-UKF 15.960 99.40 20.770 99.70
Pennec-EKF 40.480 95.50 44.188 93.90

Fig. 6-5(b) shows the histogram of errors for Expt. 3. While the trend is similar to

the case of the first three experiments, all the approaches perform better than in the

case of uniform noise. This is an expected behavior, since the filters are developed to

handle Gaussian noise in the measurements. BF once again is most accurate among

all the methods.
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Real-world Example: Registering Camera and Robot Frame:

Fig. 6-6 shows an arm of a da Vinci R© surgical robot (Intuitive Surgical Inc., Mountain

View, CA) mounted on a table, and a stereo camera (ELP-1MP2CAM001 Dual Lens)

mounted on a rigid stand. The relative pose between the robot’s frame and the

camera’s frame is fixed, and needs to be estimated. To estimate this pose, the robot is

telemanipulated in arbitrary paths and the location of tip of the robot ai is computed

in the camera frame by segmenting the tip from the stereo image and estimating its

center. The position of the tip in the robot frame, bi is obtained from the kinematics

of the robot. The pose between the points ai and bi can be obtained as shown in

Sec. 6.3.1. Table 6.3 shows the RMS error and the time taken for estimation by the

Figure 6-6: A spherical tool tip is attached to the daVinci robot. The tip is tracked
using a stereo camera, which is held in a fixed position. As the robot is telemanipu-
lated, the spherical tool-tip is tracked using the stereo camera, and the relative pose
between the camera frame and the robot frame is estimated.

BF approach using pairwise updates, using 20 simultaneous measurement-pairs per

update (abbreviated as BFM-20 in the Table), and an incremental Horn’s method

(Horn-Inc) where the pose is estimated once per 20 measurements. We evaluate the

results for three termination criteria
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1. Criteria 1: If the change in the translation and rotation fall below a set thresh-

old, the algorithm is terminated. In this example we use 1mm and 0.1◦ as

threshold for translation and rotation respectively.

2. Criteria 2: If the conditions of Criteria 1 are satisfied and the uncertainty in the

rotation and translation fall below a set threshold. In this example we choose

the threshold for uncertainty in translation as 10−4 for the largest eigenvalue of

Σt
k and −103 for the largest non-zero diagonal element of Zk.

3. Criteria 3: The algorithms are terminated after processing a set number of

measurements. In this example we choose this number n = 200.

Table 6.3: Experimental results for robot-camera registration

Criteria 1 Criteria 2 Criteria 3
Time RMS n Time RMS n Time RMS n
(ms) (mm) (ms) (mm) (ms) (mm)

BF 5.81 6.11 53 5.89 6.11 53 25.29 3.34 200
BFM-20 1.53 2.81 28 1.66 2.77 31 29.81 2.74 200
Horn-Inc 0.43 2.84 25 0.43 2.84 25 14.16 2.86 200
BFM-200 - - - - - - 0.67 2.69 200
Horn-Batch - - - - - - 0.53 2.69 200

We observe that BFM-20 produces more accurate and faster results than the BF,

because multiple simultaneous measurements help smooth out the effect of the noise

in the measurements. Since Horn-Inc does not contain any uncertainty information,

results of Criteria 1 and Criteria 2 are identical. Uncertainty update in BFM-20, how-

ever, prevents premature convergence due to Criteria 1 and results in more accurate

estimate with Criteria 2. Instead of converging after using 28 data points, BFM-20

takes 31 points to converge according to Criteria 2.

When all three algorithms are run for 200 measurements, the accuracy of BFM-

20 is the highest. Unlike BF and BFM-20, after processing 200 points, Horn-Inc

has a higher RMS error. This is because in the filtering approaches, information

from previous measurements are ‘baked’ into the current estimate by the uncertainty

update; which is absent in Horn-Inc. Overall, Horn-Inc takes lowest computation
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time and performs better than BF, but produces higher errors than BFM-20. We also

perform a batch optimization using all 200 points and Horn’s method (abbreviated

as Horn-Batch in the table), as well as Bingham filter with a single update using 200

point measurements (Abbreviated as BFM-200). Both BFM-200 and Horn-Batch

converge to the same RMS error and take comparable computation time, with the

BFM-200 taking 0.14 ms longer due to additional computations involving uncertainty

update.

We also implement a naive outlier detector for all the algorithms, except BF.

For every mini-batch of measurements used per update, we first apply the current

estimate of the pose and sort the measurements bi based on their proximity to ai.

We then pick a fraction of the measurement-pairs that are closest and discard the

rest (we choose a fraction of 0.6 in this work). We update using only this fraction of

measurements. Any outlier present in the current batch of measurements would be

discarded in this process.

Table 6.4: Simulation results for robot-camera registration

x y z θx θy θz Time RMS
(mm) (mm) (mm) (deg) (deg) (deg) (ms) (mm)

Actual 11.79 261.49 27.29 178.25 7.29 -130.46 - -
BFM-20 11.78 261.45 27.52 178.38 7.33 -130.35 42 2.79
Horn-Inc 20.67 259.21 27.52 177.08 5.73 -131.42 34 3.66

Since we did not observe many outliers in the experiment, we created a simulated

example to test our approach in a more challenging case. In this simulation exper-

iment, we take the measurements from the robot experiment described above and

randomly chose 16% of the points to be outliers. We then estimate the pose using

BFM-20 and Horn-Inc as shown in Fig. 6-7(b). In the absence of outlier detection both

BFM-20 and Horn-Inc are highly inaccurate due to the presence of outliers. Upon

using outlier detection, both the methods perform well, with the BFM-20 producing

smoother estimates with lower RMS error than Horn-Inc.
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Figure 6-7: (a) Experimental results for robot-camera registration. BFM-20 produces
the most accurate pose estimation, while Horn-Inc is the fastest and BF is the most
erroneous. (b) Robot-camera registration results in the presence of 16% measurement
outliers. In the absence of outlier detection both BFM-20 and Horn-Inc perform
poorly. Outlier detection improves both BFM-20 and Horn-Inc, with the BFM-20
being smoother and more accurate.
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6.3.2 Unknown Data-association

Simulation Example– Point-cloud Registration

In this section we assume that the points ai and surface-normals nai are the vertices

and normals respectively, of a triangulated mesh. Fig. 6-8 shows the triangulated

mesh in the shape of a bunny [7], which has 86,632 triangles.

Figure 6-8: (a) Triangulated mesh of a Stanford bunny [7] is shown in green. Blue
arrows represent initial location and red arrows represent estimated location of points
and surface-normals. (b) Zoomed up view shows that the estimated location of points
accurately rests on the triangulated mesh and the estimated direction of the surface-
normals aligns well with the local surface normal. The Bingham filter takes 2.4s in
MATLAB and 0.08s in C++ to estimate the pose.

We randomly pick 5000 points from the triangulated mesh and to each coordinate

of the points, add a noise uniformly drawn from [-2 mm, 2 mm]. For each (bi,n
b
i ), the

correspondence is obtained by finding the closest point-normal pair (ai,n
a
i ) on the

triangulated mesh. We estimate the pose using the BF with 20 simultaneous multi-

measurements as described in Sec. 6.2.1. Fig. 6-9 shows the RMS error vs number of

simultaneous measurements used. Update based on one pair of measurements results

in a local optimum (RMS error is ≈ 70 mm as shown in Fig. 6-9). However, the

performance drastically improves when > 10 simultaneous measurements are used.

The penultimate row of Table 6.5 shows the pose parameters as estimated by

the BFM-20. We also estimate the pose using 20 simultaneous surface-normal and

position measurements (abbreviated as BFN-20 in Table 6.5). The RMS error for the
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Figure 6-9: Plot shows RMS error upon convergence versus number of simultaneous
measurements used. The more the number of simultaneous measurements used, the
lower is the RMS error.

Figure 6-10: Plot shows the RMS error in the pose vs number of state updates as
estimated by the Bingham filter using 20 simultaneous position and normal measure-
ments in each update. The estimate converges in around 40 iterations.

BFN-20 is lower than the BFM-20, but the time taken is higher because of additional

computations in the correspondence step involving surface-normals. Fig. 6-8(a) shows

the initial position of the surface-normals and point locations with blue arrows and the
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Table 6.5: Results for Registration of points and surface-normals to geometric model

x y z θx θy θz Time RMS
(mm) (mm) (mm) (deg) (deg) (deg) (s) (mm)

Actual 44.83 -50.45 7.15 -12.01 -21.49 -28.14 – –
DQF 44.83 -50.44 7.14 -12.02 -21.48 -28.14 13.21 1.89
ICP 44.52 -49.16 6.32 -9.05 -19.11 -30.40 77.83 2.04
Pulli 44.79 -49.83 6.83 -10.56 -20.50 -29.60 10.23 0.90
Go-ICP 44.69 -50.49 7.86 -12.04 -21.58 -27.83 - 0.72
IMLOP 44.91 -50.39 7.58 -12.01 -21.62 -28.11 472.8 0.32
BFM-20 44.44 -50.60 7.18 -12.66 -21.80 -27.58 0.38 0.41
BFN-20 44.60 -50.59 7.58 -12.01 -21.69 -28.29 2.46 0.32

BFN-20 estimated surface-normals and point locations with red arrow. The zoomed

up image Fig. 6-8(b) shows that our approach accurately registers the points as well

as aligns the surface-normals to the triangulated mesh.

Table 6.5 also shows the pose parameters as estimated by ICP [11], DQF, Pulli’s

method [28], Go-ICP [18] and IMLOP [25]. For the sake of a fair comparison, we

use k-d tree search for the correspondence in all the methods except IMLOP. The

correspondence criteria of IMLOP does not allow the use of a k-d tree and the au-

thors use a specialized PD-tree search. Go-ICP takes 0.8s for estimating the pose

parameters. However, we do not report the time taken for Go-ICP in Table 6.5 as the

code originally supplied by the authors runs in C++ while all the other algorithms

run on Matlab. BFM-20 implemented in Matlab takes less time than Go-ICP and is

more accurate as well. This improvement in accuracy is attributed to the fact that

Go-ICP does not consider uncertainties in measurements, while our approach does.

BFM-20 and BFN-20 are accurate and orders of magnitude faster than all the

methods. Fig. 6-10 shows the RMS error at the end of each update step for BFN-20.

The RMS error reduces to < 0.6mm at around 40 state updates. To obtain the same

accuracy as DQF and ICP (≈ 2mm), both BFM-20 and BFN-20 take ≈ 30 state

updates, which takes 0.28s. The accuracy of Pulli is greater than ICP because it uses

surface-normal information to prune the correspondence choices, which greatly helps

with the registration. While Go-ICP does not use any surface-normal information, it

performs a global search and hence produces results that are more accurate than ICP
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and Pulli. IMLOP uses the point and surface-normal information and is as accurate as

BFN-20 but takes several orders of magnitude more computation time. Furthermore,

BFN-20 and BFM-20 produce serial updates and can be terminated using a criteria

as described in Sec. 6.3.1. This is not possible in the case of IMLOP, which is a batch

processing method and uses all the measurements to produce the pose estimate.

Simulation Example– Comparing k-d tree vs Look-up Table

In this section we evaluate the accuracy and the time taken for registering points to

a model using k-d tree and look-up table-based approach. For this we consider the

Lucy model from Stanford point cloud library dataset [7]. The model has 1.2 million

triangle vertices. We first scale the model so that it fits within a cube of size 1 unit.

We randomly sample 2500 points from this model and add a noise to it that is sampled

fromN (0, diag(4, 4, 4)×10−4). We then apply a known transformation to these points

and then try to estimate that transformation using the BFM with 20 simultaneous

measurements. The transformation applied is (0.01,−0.02, 0.05) units in translation

and (10,−10, 25)◦ in rotation about each axis. We evaluate the performance of our

approach using k-d tree as well as look-up table with varying grid sizes. The results

are shown in Table 6.6. Note that the time reported does not include the time taken

to construct the k-d tree or the look-up table 3. As expected the k-d tree performs

the best in terms of accuracy. The look-up table is several magnitudes of order faster.

As we increase the grid density the accuracy of the look-up table increases as well,

while search time remains constant.

Real-world Example– Point-cloud Stitching

Stereo imaging devices such as the Microsoft Kinect
TM

offer colored point cloud data

(RGB-D: color and depth data), which is generated using a structured light based

depth sensor. The Kinect
TM

is widely used in robot navigation [204] and object

manipulation [9]. In this work, we align a pair of point cloud data obtained from

3The results are reported for a C++ implementation running on a MacBook Air, Processor 1.6
GHz Intel Core i5, Memory 8 GB 1600 MHz DDR3.
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Table 6.6: RMS error and time taken to register points to a geometric model with
1.2 million points.

Approach Grid Points Time RMS
(s) (mm)

kd tree - 2.62 0.013
Look-up table 20× 20× 20 0.004 0.046
Look-up table 40× 40× 40 0.004 0.029
Look-up table 100× 100× 100 0.004 0.021

the Kinect
TM

, using the Bingham filter, to develop a point-cloud model of the en-

vironment. It is assumed that there is some overlap between the two point clouds.

We demonstrate our approach on RGB-D images taken from the ‘Freiburg1-Teddy’

dataset of Sturm et. al. [205]. Fig. 6-11(a), (b) shows the snapshots of the images.

Fig. 6-11(d) shows the final model of the room as generated by our approach. We

use 20 simultaneous measurements and the same initial conditions as in the previous

cases. Our approach takes ≈ 0.21s for estimating pose, which is twice as fast as ICP

which takes ≈ 0.46s. In order to improve the speed we have implemented a C++

version of the Bingham filter, which takes only ≈ 2 ms 4. The RMS error of our

approach is 4.4cm, which is of the order of the accuracy of the sensor itself [204] and

is better than the RMS error of ICP, 6cm.

Real-world Example– Stereo Point Cloud Registration and Tracking

In this section we look at an example of stereo image registration. The transformation

between camera-frame and model-frame is estimated by registering the reconstructed

point cloud from stereo images with the geometric model of the object.

Since the stereo camera images can consist of a number of objects, we first man-

ually select the region containing the object of interest. We then refine the selection

using a graph cut-based image segmentation. We use the variant of the BF that uses

multiple simultaneous point measurements to estimate the pose. Since the pose esti-

mation is fast, we repeatedly estimate the pose even after convergence. This allows

us to track the object in the frame of the camera subject to slow motions. We use this

4Source code– https://github.com/biorobotics/bingham registration/tree/ros-free
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Figure 6-11: (a), (b), are two RGB-D images obtained from Kinect
TM

, with some
overlapping region.(c) The point cloud model estimated by aligning the point clouds
in (a) and (b) using the Bingham filter. The BF takes 0.21s to estimate the pose with
an RMS error of 4.4cm, as opposed to ICP, which takes 0.46s with an RMS error of
6cm.

approach to track 3 objects with varying level of geometric complexity. A Stanford

bunny, a pelvis bone and a prostate. The bunny is geometrically most expressive and

easy to track. The prostate is relatively symmetric and lacks interesting geometric

features and is the most difficult of the three objects to track.

Fig. 6-12 shows the RMS error over a 60s time period of tracking, in which the

bunny was moved by a user in arbitrary fashion. In the first 15 s, the user provides a
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Figure 6-12: The top row shows the bunny at three time instances A, B and C as seen
by the left stereo camera. The middle row shows the estimated pose of the bunny,
in green, superimposed on the stereo image. The plot at the bottom shows the RMS
error versus time, for pose estimation using Bingham filter, in an experiment that
involved a user moving the bunny in the view of the camera.

region of interest in the stereo images and segments the object based on its hue and

saturation. The BF then estimates the pose. Note that between 15-50 s, the bunny is

being manually moved and our approach is able to robustly and accurately track the

pose (For example instances A and B in Fig. 6-12). The RMS error is < 2mm, most

of which can be attributed to the noise in the stereo point cloud. After about 55 s,

the filter produces erroneous pose estimates (For example instance C in Fig. 6-12).

This is because the bunny was moved very quickly and the incremental errors in the

pose estimate resulted in a large difference from one frame to another and caused the

point cloud segmentation to lose track of which points it was meant to be registering

to.

Although the BF is able to handle moving objects, the image segmentation that we
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Figure 6-13: (a) Stereo image based tracking for a pelvis. Top row shows the left stereo
camera image, middle row shows estimated pose superimposed and the bottom plot
shows the RMS error vs time. At instance B, the pelvis was poked by the user which
results in erroneous pose estimate. However, the pose estimate recovers to a low RMS
error in a few seconds as shown in instance C. (b) Stereo image based tracking for a
prostate. Top row shows the left stereo camera image, middle row shows estimated
pose superimposed and the bottom plot shows the RMS error vs time. At instance
E, the prostate is shifted by about 2 inches in less than a second, and the Bingham
filter loses track of the object. However, the pose estimate recovers to a low RMS
error in a few seconds as shown in instance F.
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had previously been using to mask the point cloud received from the stereo cameras

limited us to tracking static objects. We had been using simple a graph cut algorithm

to segment our image , which required user input and could not be updated fast

enough to keep up with the camera frame-rate. For this work, we augmented our

segmentation by creating an automatic traveling mask. We begin by creating a mask

using graph cut as before and using this mask for a rough registration. Once we are

satisfied that the model is roughly registered to the object, we switch to using the

traveling mask. Using the same rendering engine used in the GUI, a z-depth buffer of

the same size as the camera image is rendered of the camera’s view of the model. This

depth buffer is scaled from 0 to 255 with 0 representing the pixel farthest from the

camera and 255 representing the closest. Since empty pixels are read as infinitely far

away they are limited to 0 in the depth buffer. Using this information, we create a new

mask for our camera image by masking out all pixels with a depth of zero, effectively

creating a cutout of our rendered model. Because we render the depth buffer every

time the model’s estimated transformation is changed, we create an image mask that

moves along with our model.

We repeat the experiments with 3D printed pelvis and silicone prostate (see Fig. 6-

13). In the case of the pelvis, the RMS error in the first two seconds is around 1.5mm.

After this we apply a force on the pelvis in order to dislodge it from its location (see

instance B in Fig. 6-13). Upon application of an external force on the object, the

pose estimation becomes erroneous (≈ 2.7mm). However, the BF is able to quickly

recover after the movement and within three seconds the RMS error has been reduced

to 1.8mm (see instance C in Fig. 6-13). Similarly, in the case of the prostate, the RMS

error is initially around 1mm (for example instance D in Fig. 6-13). We rotate and

shift the prostate by about two inches in less than a second at around 17s (instance

E in Fig. 6-13). The tracking RMS error increases to 2mm, but it reduces to 0.8mm

in about 3s.

While the above experiments on object tracking show promising results, we have

restricted ourselves to using repeated static pose updates. In theory, one could use

a process model that better captures the motion of the object, which we leave for
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future work.

6.4 Conclusion and Discussions

In this chapter, a Bingham distribution-based linear filter (BF) was developed for

online pose estimation. Bingham distribution captures the bimodal nature of the

distribution of unit quaternions as well as the unit norm constraint. By adapting the

linear measurement model developed in Chapter 4, a linear Bingham filter has been

developed that updates the pose based on a pair of position measurements. Further

the filter is extended to process surface-normal, pose as well as multiple simultaneous

measurements. We demonstrate the efficacy and the versatility of our approach on a

number of application in simulation and real-world experiments. The applications in-

clude sequential point registration, hand-eye calibration, object tracking, registration

of stereo-images and point-cloud stitching.

It has been shown through simulations and experiments that the BF is capable

of accurate pose estimation with less computation time compared to state-of-the-art

methods. It is empirically observed that using multiple simultaneous measurements

per update helps avoid local optima, when the correspondences are unknown. Further,

we have developed a fast approach to data association that is based on creating a

look-up table. This approach produces results that are several orders of magnitude

faster than conventional k-d tree-based approaches.

One drawback of our approach, as with most filtering based approaches, is that

the estimate can be trapped in a local minima when the data association is unknown.

Using a high initial uncertainty and more number of simultaneous measurements

helps alleviate this problem to an extent. However, in some applications only pairs of

measurements may be available per update, and the correspondences may be unknown

(for example, probing-based registration). In such situations, better correspondences

using a probabilistic metric as described by Billings et. al. [23], can improve the

estimate. Another approach to resolve this issue is to use a global optimizer for

filtering-based methods (see Chapter 7).
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While the focus of this chapter was static pose estimation, we also demonstrated

results for object tracking by running a series of static pose estimation. In the future,

we plan to develop a process model to capture the dynamics of the moving object, and

utilize an unscented Bingham filter [54] if this model is nonlinear. Another future

direction involves using the estimate of the concentration matrix of the Bingham

distribution to guide where to collect the next set of measurements that will improve

the pose estimation.

6.5 Contribution

The contribution from this chapter is:

1. Development of a Bayes filter using a combination of Bingham and Gaussian

distributions for fast, accurate and robust pose estimation. This approach can

provide sequential pose estimates with serial or batch measurements.

2. Fast and accurate pose estimates using position, surface-normal and pose mea-

surements.

3. A look-up table-based fast approach for dealing with unknown data association.

6.6 Published Work

Material from this chapter has appeared in the following publication

1. R Arun Srivatsan, Mengyun Xu, Nicolas Zevallos and Howie Choset, “Bingham

Distribution-Based Linear Filter for Online Pose Estimation, in the proceedings

of Robotics: Science and Systems, Boston, USA, July 2017.

2. R Arun Srivatsan, Mengyun Xu, Nicolas Zevallos and Howie Choset, “Prob-

abilistic Pose Estimation Using a Bingham Distribution- Based Linear Filter,

International Journal of Robotics Research (IJRR), 2018.
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Part III

Dealing with local minima in pose

estimation
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Chapter 7

Multiple Start Branch and Prune

Filter

Chapter 4 and Chapter 6 discussed probabilistic approaches for pose estimation when

the data association between the measurements were known. When data association

is unknown, then results form those chapters do not guarantee global convergence,

but only a local convergence. In this chapter we present a filtering approach for pose

estimation when the data association in unknown. The approach we present is generic

enough to be applied to other nonconvex optimization problems which are analytical

and yet each function evaluation is expensive and have a relatively low dimensional

(< 20) parameter space.

In various engineering applications such as automatic control systems, signal pro-

cessing, mechanical systems design, image registration, etc., we encounter problems

that require optimization of some objective function. While many efficient algorithms

have been developed for convex optimization, dealing with nonconvex optimization

remains an open question [206]. In this work, we introduce a new method for noncon-

vex optimization, called multiple start branch and prune filtering algorithm (MSBP).

Compared to popular methods, branch and bound [207], simulated annealing [208],

genetic algorithms [209], etc., MSBP only has a few parameters to tune and can

provide fast online estimates of the optimal solutions.

We believe that Kalman filter-based methods for nonconvex optimization [80]
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suffer less from issues surrounding computational efficiency and parameter tuning.

Multi-hypothesis filtering initially proposed by Reid et. al. [84] and the heuristic

Kalman algorithm (HKA) developed by Toscano et. al. [210, 80] are two popular

choices for filtering based methods for nonconvex optimization. Both these methods,

as well as MSBP, fall under the category of population based stochastic optimization

techniques. MSBP was developed for nonconvex optimization problems where the

objective function is available in an analytical form and yet is expensive to evaluate

( for example the case of point registration).

Unlike the HKA which starts with one initial state estimate, MSBP starts with

multiple initial states. These are further branched, updated and then pruned to

explore the search space efficiently while avoiding premature convergence to a local

minimum. A major advantage of MSBP over the methods mentioned above is the

high success rate of estimating all the minima in problems with multiple local/global

minima. The MSBP requires tuning of only three intuitive parameters, which makes

it easy for a non-expert to use the method.

In this work we evaluate and compare the efficiency of MSBP to other methods on

the Griewank function, which is a standard test for nonconvex optimization methods.

We also test MSBP on point set registration. This application is specifically chosen

to test our algorithm because of its analytical and yet expensive function evaluation

which offers practical challenges to most of the existing algorithms for nonconvex opti-

mization. MSBP is tested in the presence of high initial error, multiple global minima,

noisy data and incomplete data. In all these cases, MSBP accurately estimates the

global minima with a high success rate over multiple runs of the algorithm.

7.1 Related Work

In a general setting, an optimization problem consists of finding input variables within

a valid domain that minimize a function of those variables. An optimization problem
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can be represented as

minimize h(x), x ∈ Rnx (7.1)

subject to gi(x) ≤ 0, i = 1, . . . , nc

ej(x) = 0, j = 1, . . . , ne.

In Eq. 7.1, x is the nx dimensional input variable, also known as the optimization

variable, h is the objective function to be minimized, gi(x) and ej(x) are the inequality

and equality constraints respectively and nc and ne are the number of inequality and

equality constraints respectively.

Nonconvex optimization problems

We often encounter optimization problems that have a number of locally optimal so-

lutions which are optimal only within a small neighborhood but do not correspond

to the globally optimal solution that minimizes the function in the function domain.

Such problems are termed “nonconvex” optimization problems, in contrast to “con-

vex” optimization problems where any local minimum is also a global minimum.

Nonconvex optimization problems are in general non-trivial to solve because it is dif-

ficult to guarantee that the solution returned by the optimizer is global rather than

local.

For these problems, a standard approach is to use convex optimizers that employ

different randomization techniques to choose multiple initial starts, for example the

approach of Schoen et. al. [211]. The drawback of this approach is that for problems

with a large number of local minima solutions, a lot of computational effort may

be needed to find the global optimum (see [206] for a detailed discussion on this).

Branch and bound methods are also commonly used, but the curse of dimensionality

leaves them ineffective in cases with many optimization variables as pointed out by

Lawler et. al. [207].
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Heuristic methods for nonconvex optimization problems

Several heuristic methods have been developed to estimate global minima in noncon-

vex optimization problems such as simulated annealing (SA) [208], particle swarm

optimization (PSO) [212], genetic algorithms (GA) [209] and more recently recursive

decomposition (RD) developed by Friesen and Domingos [213]. SA is widely consid-

ered as versatile and easy to implement, but there are two major drawbacks: 1) there

are multiple unintuitive parameters that require tuning, and the results are known

to be sensitive to the choice of these parameters (The sensitivity to parameters and

difference between practice and theory of SA has been well studied by Ingber [214]);

2) the computation time is generally high for most practical applications and often

parallel is required, such as the approach of Ram et. al. [215]. PSO and GA are both

categorized as population-based random-search methods. PSO is more sensitive than

GA to the choice of parameters, and is known to prematurely converge unless the

parameters are tuned well. Also, GA is known to be computationally intractable for

many high dimensional problems, as observed by Seixas et. al. [83]. In contrast, RD

decomposes the objective function into approximately independent sub-functions, and

then optimizes the simpler sub-functions using gradient based techniques. The draw-

back of such a method is that not all functions can be decomposed into sub-functions,

in which case RD would perform similarly to a gradient descent with multiple starts.

Filtering-based methods for nonconvex optimization problems

Due to their ease of use and small number of tuning parameters, Kalman filter-based

methods have also been used in optimization [216, 217, 210]. Typically such methods

adapt a Kalman filter to have a static process model with the state vector comprised of

the optimization variables x and an initial state uncertainty Σ spanning the domain

of the search space. The measurement model is taken to be an evaluation of the

objective function. The measurement is chosen to be the value of the minimum that

we want the objective function to attain. By definition, with each iteration of the

Kalman filter, the state vector is updated such that the difference between the true
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measurement and the expected measurement is decreased [51], thus ensuring that

the objective function is minimized. The corresponding covariance also decreases as

the number of iterations increases. When the mean of the state stops changing over

iterations, or when the uncertainty decreases below a set threshold, we consider the

state to be the optimal estimate.

As shown in Sec. 2.6, a Kalman filter can provide the optimal estimate of xk|k
1 such

that

xk|k = argmax
x

p(x|zk,xk|k−1), (7.2)

provided x and z are both Gaussian distributed and the likelihood p(zk|xk|k−1) is

linear in xk|k−1. The solution to Eq. 7.2 is derived in Sec. 2.6,

xk|k = argmin
x

(x− xk|k−1)TΣ−1
k|k−1(x− xk|k−1)+

(zk − h(x))TR−1
k (zk − h(x)), (7.3)

where Σk|k−1 and Rk are the uncertainties associated with xk|k−1 and zk respectively.

Note that Eq. 7.3 contains a nonlinear function h(x) instead of the linear model Hx

as in Eq. 2.31. h is the unconstrained objective function as defined in Eq. 7.1.

Let hmin be the smallest value that h can attain, which is attained at x = xmin.

Since there is uncertainty associated with x, we have hmin = h(xmin) = h(x) + v,

where v ∼ N (0,R(x)) is state dependent measurement noise drawn from a zero mean

distribution with covariance R. For an optimization problem as shown in Eq. 7.1, we

choose the following measurement model

zk = h(x) + vk(x).

We set the measurement zk = hmin, as the state x will then be updated such that

the value of h is close to hmin. If hmin is not known a priori, zk+1 can be set to

an arbitrarily small value. The uncertainty R(x) can be computed analytically as

1va|b is the estimate of v at the ath iteration given measurements upto b iterations.
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shown in [146, pp. 90–91]. The resulting filter would provide an optimal estimate of

x as long as h is linear [51], as shown in Sec. 2.6. The following are the Kalman filter

equations modified for an optimization problem:

xk+1 = xk +Kk+1(hmin − h(xk)), (7.4)

Σk+1 = Σk −Kk+1Hk+1Σk, (7.5)

where the Kalman gain Kk+1 = ΣkH
T
k+1(Hk+1ΣkH

T
k+1 +R)−1 and h(xk) = Hkxk.

H is the Jacobian of the objective function h(x).

If h is nonlinear, variants such as the EKF, UKF, etc. can be used. In the presence

of constraint functions that must be satisfied as shown in Eq. 7.1, equality or inequal-

ity constrained Kalman filtering techniques can be applied. The works of Simon and

Chia [218] deal with equality constrained filtering, while Gupta and Hauser [217] deal

with both equality and inequality constrained filtering and Tully et. al. [47] provide

an improved approach to deal with inequality constrained filtering.

In general, the Kalman filter only estimates the local minimum. Popular ap-

proaches for nonconvex optimization problems include multi-start and multi-hypothesis

filtering as shown in Fig. 7-1(a) (originally introduced by Reid [84]). Multiple filters

each having a different randomly chosen initial start, are run in parallel, and after

each iteration the estimate with the maximum likelihood is chosen as the current best

estimate. Such an implementation has a good chance of finding global minima but

at the expense of increased computation time.

Particle filters have also been adapted as a smart alternative to multi-hypothesis

filtering, such as the work of Ma et. al. [16]. The resampling step in a particle filter

ensures that states with low weights are pruned while the others are retained ( see

Fig. 7-1(b)). Particle filters and multi-hypothesis filters both suffer from the curse

of dimensionality. When estimating four or higher dimensional parameters, a large

number of particles are needed to span the search space to find the global optimum,

which can be computationally expensive especially if the function evaluation is not

cheap.
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(a) (b) (c)

Figure 7-1: (a) Steps involved in one iteration of a multi-hypothesis filter with 2
initial start states. After each iteration the state with maximum likelihood estimate
is chosen as the best current estimate. (b) Steps involved in a particle filter with
3 particles. After updating the particles based on the measurement, resampling is
performed to remove particles with low weights. (c) Steps involved in one iteration
of the heuristic Kalman algorithm. In this example, the parent’s state is divided into
3 child states. The weighted sum of 2 child states with the lowest objective value is
used to obtain the pseudo measurement ξi+1.
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The HKA, introduced by Toscana et. al. [80], is a combination of Kalman filter-

ing and population-based random-search methods (see Fig. 7-1(c)). Starting with a

parent state, HKA spans child states and evaluates the function at the child states.

A pseudo measurement and its uncertainty (ξi+1,V i+1) are then obtained from the n

best states with the smallest function value, and the state (xi,Σi) is updated using

the pseudo measurement. Even though the parent state is divided into a number of

child states, in each iteration of the algorithm only a single state, is updated. Such

an approach has been shown to be suitable in situations where the function can only

be evaluated using experimental simulations and not analytically. For such problems,

HKA is a good optimization tool with very few parameters to tune and a good suc-

cess rate of finding global minimum [210]. However, when an analytical form of the

objective function is available, other methods perform much better than HKA.

7.2 Problem Formulation

In this section we show the formulation of our approach, multiple start branch and

prune filter (MSBP). The basic framework of the MSBP is shown in Fig. 7-2. The

various steps involved in the MSBP implementation are as follows:

1. The algorithm is initialized with n initial parent states (xik,Σ
i
k), i = 1, 2, . . . , n,

where k denotes the iteration index (see Section 7.2.1 for information on how

to choose the initial states).

2. Each parent state is divided into m child states (xi,jk ,Σ
i
k), (j = 1, 2, . . . ,m), by

sampling from the distribution (xik,Σ
i
k). The parent state is always retained as

one of the m child states. The child states that are generated from the parent

state can be viewed as perturbations being added to the states to overcome

local minima and to encourage exploration.

3. The child states are then updated using Eq. 7.4 to obtain (xi,jk+1,Σ
i,j
k+1).

4. From the n × m child states, the n states with the lowest innovation, i.e.,

zk+1 − h(xk+1|k) from Eq. 7.3 are chosen as parents for the next iteration.
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5. Among the n parent states chosen, if the means of any states come within an ε

threshold of each other, the state with the lower innovation is retained and the

others are pruned (n decreases every time pruning happens).

6. Steps 2-5 are repeated until convergence or up to a fixed number of iterations.

Figure 7-2: Steps involved in one iteration of the MSBP. Parent states are shown in
bold ellipses and child states are shown in dashed ellipses. In this example, n = 2,
m = 3.

From Fig. 7-1(a) it can be noted that multi-hypothesis filtering is a special case of

MSBP with m = 1 and ε = 0. The multi-hypothesis filter requires a large number

of initial states to converge onto a global minimum, as a lack of perturbation can

result in premature convergence to a local minimum. Also lack of a pruning step

in the multi-hypothesis filter often results in duplication of estimates by multiple

filters. Particle filters prune states with lower probability during the resampling step

and offer an advantage over multi-hypothesis filter. However, particle filters lack

the perturbation step and the state update step present in MSBP, which helps in

over coming local minima and quick convergence to the optimal solutions (Though

we do not have a proof for this, we empirically observe this in our experiments). In

comparison to other methods, such as SA, GA, PSO, etc., at each iteration in addition

to evaluation of the objective function at multiple states, the states themselves are

updated by the update model of the MSBP. While this could be viewed as additional

computation, the update step allows us to minimize the function faster and quickly
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identify the minima compared to the other methods. MSBP provides a maximum

of n estimates after each iteration as opposed to a single estimate provided by HKA

(see Fig. 7-1(c)). This is a drawback for HKA in problems that have multiple global

minima, as HKA would tend to return an estimate that is at a location intermediate

to both the minima. Running the HKA multiple times with different initial states can

improve the success rate of finding the global minimum, but at the cost of increased

computation time.

Thus, the MSBP offers the advantage of reduced computational load and memory

storage in addition to a higher success rate of estimating the global minima, for

problems with analytical objective functions. The only shortcoming is that when

dealing with very high dimensional systems (typically > 20), the update step of the

Kalman filter can become expensive as it would involve inverting a high-dimensional

matrix.

7.2.1 Choice of Initial State and Parameters

In addition to the choice of initial states, there are three parameters that require

tuning in the MSBP: n, m and ε. This section describes the intuition behind selecting

these parameters and the initial states.

• Initial state: In most practical problems the domain of the search space for

optimization is known. Without loss of generality, the uncertainty of all the

initial states is chosen to be equal to each other. The uncertainty is chosen to

be a diagonal matrix with each diagonal element set to be equal to σ2, such that

6σ equals the span of the domain in that dimension. Such a choice for Σi
0 is

generally conservative, and restricts the uncertainty in each of the parent state

to the search domain. The mean of the states xi0 are randomly chosen from the

valid search domain.

• Number of parent states n: n can be chosen based on prior knowledge of the

number of global minima present in the problem. If that number is not known

a priori, then a conservative estimate can be made. In practice we observe that
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choosing a value of n greater than the number of global and local minima present

in the search domain improves the success rate of the algorithm. However,

increasing the value of n also increases the computation time.

• Number of child states m: m is the number of child states per parent state. If

the estimator is stuck at a local minima, the perturbations help get it out of

the local minima. Hence, the greater the value of m, the greater the chances

of MSBP capturing the global minima. However a higher m would also mean

increased computation time. As result m should be chosen depending on the

allowable computation time for the application.

• Choice of ε: ε is the parameter that decides the threshold between the parent

states. ε helps prevent unnecessary computation and encourages exploration. A

large value of ε can prune several parent states at once and can result in missing

some solutions. ε = 0 would not prune any parent state, resulting in unwanted

computation in cases where multiple parent states are identical. Depending on

the application, ε can be chosen to be a fixed number for all iterations or its

value can be varied over the iterations.

Section 7.3.2 describes in more detail how these parameters are tuned for a case

study on point set registration.

7.3 Results

In this section, we first demonstrate the performance of MSBP by testing it on the

Griewank function. Following that, we do a case study of point set registration

problem.

7.3.1 Numerical experiment with Griewank function

A number of standard functions are used to test the performance of nonconvex opti-

mization methods [219]. In this work, we choose to test the MSBP on the Griewank
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Figure 7-3: (a) A plot of the Griewank function. (b) A histogram showing the values
estimated by 21 parent states of MSBP over 100 runs. The Y axis of the plot shows
the number of runs that estimate a particular state and the X axis shows the estimated
value. A histogram of the estimated value over 100 runs is shown for the following
algorithms (c) Histogram showing values estimated by Genetic algorithm, Simulated
annealing, Multi-hypothesis filter, and HKA.
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function. Fig. 7-3(a) shows the plot of Griewank function for x ∈ [−60, 60]. In the

chosen domain, the function is known to have a global minima at x = 0 and twenty

local minima at ±6.28, ±12.56, ±18.84, ±25.12, ±31.45, ±37.55, ±43.93, ±50.3,

±56.67.

As mentioned in Section 7.2.1 in order to ensure that 99% of samples fall within

the search domain we choose the uncertainty of the initial states, Σ0 = σ2
0, such

that 6σ0 = 120. The mean of the initial parent states are sampled from the normal

distribution N (µ,Σ0), where µ = 5. We choose µ = 5, as it is closer to the local

minima at x = 6.28 than the global minima at x = 0, and would be a more challenging

test for the optimization algorithm. For our implementation of MSBP, we use an EKF

since the function is non-linear. In addition we choose n = 21,m = 10, ε = 2. We run

all the algorithms until convergence. The algorithm is set to have converged when

the change in the estimate of the minima is less than 10−6. We observe that the

maximum number of iterations required by any algorithm is generally under 20. For

the sake of a fair comparison, the values of the parameters for all the algorithms were

tuned as per the recommendation in [80] and the best results have been reported.

We repeat the experiment 100 times to observe the performance of the method

over multiple runs. Fig. 7-3(b) shows the histogram of the values estimated by MSBP

over 100 runs, all of which converged within five iterations. The global minimum is

estimated correctly at x = 0 each time, while the local minima solutions are accurately

predicted by the remaining twenty parent states. The order in which the other parent

states estimate the local minima varies in each run of the algorithm, but they are

tracked in all of them.

In comparison, HKA was implemented with initial state (x0,Σ0) = (5, 400), 20

divisions, 2 best candidates, and a slow down coefficient of 0.7 . Fig. 7-3(c) shows the

histogram of values estimated by HKA over 100 runs. We observe that the algorithm

correctly estimates the local minima only 10% of the time. In 8% of the runs, HKA

estimates the local minima at x = 6.28 and x = −6.28, which are closest to the mean

of the initial state, x0 = 5. SA also estimates the global minimum only 15% of times

and rest of the times it gets stuck at nearby local minima (see Fig. 7-3(c)).
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A multi-hypothesis filter was also implemented, where we choose the same initial

states as those for MSBP with n = 21,m = 1, ε = 0. Fig. 7-3(c) shows the histogram

of estimated values over 100 repeated runs. More than 50% of the time, the algorithm

estimates the global minimum correctly. The rest of the times it estimates values close

to the global minimum or one of the two local minima closest to the global minimum

similar to the GA ( Fig. 7-3(c)).

7.3.2 Rigid Registration

Rigid registration is the process of finding a spatial transformation that aligns the

elements of two point sets. When the correspondence between the points in the two

point sets is known, rigid registration can be solved analytically as shown by Horn [4],

Arun et. al. [17], Faugeras [60] and Walker et. al. [61]. However, when point corre-

spondences are unknown, finding the optimal transformation becomes challenging

due to the presence of several local minima solutions. Besl and McKay [11] came up

with the popular ICP method that recursively finds correspondences and minimizes

the alignment difference between point sets. But this is only a locally optimal ap-

proach, and hence it is critical to start with a good initial condition. A branch and

bound based technique, called Go-ICP, has been developed to avoid this problem by

Yang et. al. [18]. However, this method has high computation time and is not suitable

in real time applications. In this work, we use the MSBP for registration of point sets

and demonstrate that it is able to find accurate estimates with low computation time.

We perform multiple case studies with different conditions using different standard

3D shape datasets to show the versatility of our algorithm.

We use a dual quaternion-based filter (DQF) for estimating the registration pa-

rameters (see Chapter 4). The MSBP can also be used with other filtering implemen-

tation for registration estimation such as the UKF of Moghari et. al. [5] and EKF of

Kang et. al. [220]. The DQF uses dual-quaternion representation for pose, and then

reposes the originally nonlinear estimation problem as a linear estimation problem.

This allows us to use Eq. 7.4 for estimating the optimal registration parameters (see

Chapter 4 for more information on the expression for objective function used). In
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each iteration of the MSBP, closest point correspondence is found between a pair of

points (as opposed to finding correspondence for all the points in the case of methods

such as ICP). The correspondence found using the parent states is retained for the

child states as well. Since the number of different correspondences that can be formed

between the two point sets is combinatorial, we expect many local minima solutions.

Hence, we choose a large value for n in all the applications below. When the state

uncertainty reduces below a desired threshold, we end the estimation process and

stop collecting measurements. Thus, the DQF has a built-in stop condition that al-

lows you to process a smaller number of measurements compared to batch processing

methods such as the ICP, in which we wait for all the measurements to be collected

before estimating the optimal registration.

Large initial transformation error

Fig. 7-4(a) shows the CAD model of a Stanford bunny [7]. The CAD model is

geometrically discretized using a triangular mesh with 43318 triangle vertices. We

collect 1000 random samples of points from the CAD model and apply a known

transformation to those points (see Table 7.1 for the applied transformation). We

then estimate the applied transformation with the MSBP. The values of various

parameters used are n = 40,m = 10, ε = 1. The experiment is repeated 100 times

to note the statistical performance of our method. Fig. 7-4(a) shows the MSBP

estimated points lie on top of the CAD model indicating accurate registration. On

an average our algorithm converges after using 120 measurements.

Table 7.1 shows the actual registration parameters and the estimated values. The

algorithm is compared with HKA, multi-hypothesis filtering, ICP, SA and GA. The

SA and GA implementation we use for the sake of comparison are as described

by Luck et. al. [82] and Seixas et. al. [83], which are a modified form of the orig-

inal implementations of SA and GA with ICP running internally in each iteration.

Luck et. al. [82] and Seixas et. al. [83] show that even though their approaches are

expensive per iteration, they result is requirement of fewer iterations over all for

convergence, and hence are faster and more accurate at estimating the registration
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Figure 7-4: (a) CAD model of a Stanford bunny. The initial position of 1000 points
in shown in blue-diamond markers, the position estimated by MSBP is shown in
red-circular markers. (b) Histogram of the estimated translation parameters, (c)
histogram of the estimated rotation parameters over 100 runs of the algorithm. In
(b) and (c), the Y axis shows the percentage of runs that return a particular value and
the X axis shows the estimated value returned by the parent state with the smallest
innovation. MSBP has a high success rate of estimating the optimal parameters.
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Table 7.1: Comparison of pose parameters as estimated by different registration meth-
ods for a case with large initial transformation error

x y z θx θy θz RMS Time
Case1 (mm) (mm) (mm) (deg) (deg) (deg) (mm) (sec)

Actual 30 -40 15 -55 80 -20 – –
MSBP 29.89 -39.84 14.67 -58.57 80.59 -23.31 0.48 28
ICP 42.04 -35.22 8.52 17.83 19.21 33.26 35.06 5.82
Multi-hyp 59.79 -20.66 15.26 53.08 -45.58 30.29 18.25 404.62
HKA -3.97 -17.69 17.45 31.39 31.69 -22.05 53.44 201.97
SA 29.16 -38.34 13.97 -51.75 81.67 -14.49 2.36 353.67
GA 30.08 -39.93 15.05 -54.59 79.92 -19.51 0.08 1051.00

parameters (These observations have been independently verified by us and hence we

do not report results for vanilla implementations of SA and GA in this work).

While MSBP and multi-hypothesis filter estimate the registration parameters in

a dual-quaternion space, we convert the estimated values into Cartesian coordinates

and Euler angles for easy comparison with other methods. The penultimate column

and the last column of Table 7.1 show the RMS error and time taken for various

algorithms 2.

For multi-hypothesis filtering, we use the same set of initial states as MSBP. For

HKA, ICP and SA we use a 4× 4 identity matrix as the initial transformation. The

bounds on the search space are [−100, 100] for translation and [−π, π] for rotation

around each axis. For HKA we use 40 divisions, 4 best candidates and a slow down

coefficient of 0.4. For GA we use an initial population of 100, cross-over probability

of 0.7 and mutation probability of 0.2. These values for the parameters are tuned as

per [210] and the best results are reported.

Fig. 7-4(a) shows that the displacement between the initial position of the points

and their true position on the CAD model, is quite high and ICP does not perform

well for such high initial errors. We notice that HKA also does not estimate the

transformation accurately, presumably because it gets stuck at a local minimum.

MSBP, SA and GA accurately estimate the transformation, however, SA and GA

2The computational time taken is calculated for script written in MATLAB R2015a software
from MathWorks, running on a ThinkPad T450s (20BX0011GE) laptop from Lenovo with 8 GB
RAM and intel i7 processor.
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take much more time than MSBP to estimate. Since each function evaluation consists

of an iteration of ICP internally, SA and GA both have higher estimation time than

MSBP.

The MSBP algorithm is run 100 times and a histogram of the estimated translation

and rotation parameters are shown in Fig. 7-4(b) and Fig. 7-4(c), respectively, which

show that there is a > 85% chance of MSBP converging to the correct value. In

comparison with MSBP, GA has a success rate of 10% and SA has a success rate of

20%. Thus, the MSBP produces accurate and repeatable results with high success

rate, despite large errors in initial registration.

Multiple global minima

In this example, we consider a snowflake as shown in Fig. 7-5(a), which has ro-

tational symmetry about an axis passing through its center and perpendicular to

its plane. The object is symmetric to its original shape when rotated about this

axis by ±60◦,±120◦ and 180◦. We sample 100 points from the CAD model of

the snowflake and transform those points by a known transformation: (x, y, θz) =

(15mm, 30mm, 45◦). We then use MSBP to estimate the applied transformation.

Since the snowflake is 2-dimensional, we restrict ourselves to in-plane registration.

We use the following parameter values for MSBP: n = 100,m = 10, ε = 5. After 100

iterations, the number of surviving parent states is 16. Fig. 7-5(b)-(g) show the posi-

tion of the points after applying a transformation given by the first six parent states as

estimated by the MSBP. The first six parent states of the MSBP accurately capture

the six global minima (Note that we limit our search domain to [−180◦, 180◦] and

hence there are 6 global minima in the search domain upto the rotational periodicity).

Noise in the input data

In order to test the robustness of the registration using MSBP in the presence of

noise in one of the point sets, we consider the example of Fertility as shown in Fig. 7-

6. 200 Points are sampled from the CAD model and a Gaussian noise N (0, σ2
n) is
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Figure 7-5: (a) CAD model of a snowflake.The initial position of 100 points and the
position estimated by MSBP are shown in blue-diamond and red-circular markers
respectively. The actual transformation between the points and the CAD model is
(15, 30, 45◦). (b)-(g) The first six parent states of MSBP. The estimated registration
parameters are given below the figure. Note how the rotation angles are 45◦±n×60◦,
(n = 0, 1, 2) due to the 6 way symmetry in the shape of the snowflake. Snowflake
CAD model courtesy of Thingiverse CAD model repository

applied to each of the points. The standard deviation σn is kept constant for all the

points, but is gradually increased from 1 to 20 in increments of 1 over several runs

(For reference, the CAD model can be fit in a box of size 300 × 200 × 100 units).

Left hand side of Fig. 7-6(a)-(c) shows that CAD model and the initial position of

the points in blue-diamond markers for 3 different values of σn. The right hand side

of Fig. 7-6(a)-(c) shows the CAD model and the location of the points after applying

the transformation as estimated by MSBP.

Note how the MSBP is able to successfully register the points for all the three

cases shown in the figure. Also note how after registration, the points appear to be

lying on the CAD model for lower σn and appear to be spread out of the CAD model

for the case with higher σn.

We do not present any systematic study to deal with outliers in this chapter.

However, we empirically observe that our approach is able to perform reasonably

well when there is about 15% outliers in the measurements. Table 7.2 shows the

average RMS error over 100 experiments for the case of registering 500 randomly

sampled points on a Stanford bunny (The model can fit in a box of size 85mm ×
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Figure 7-6: CAD model of Fertility and 100 points sampled from it and a noise
N (0, σ2

n) is added to the points. (a) the plot for σn = 1 (b) the plot for σn = 10
(c) the plot for σn = 20. CAD model of Fertility courtesy of AIM@SHAPE model
repository

85mm×85mm), which has various levels of measurement outliers. From the available

measurements, we randomly pick a chosen percentage of measurements. We then add

to the chosen measurements a noise which is randomly obtained from [−100, 100]mm

along each axis, to simulate outliers. Note that if the RMS error is greater than 35%

of the size of the object, then we consider that estimation result to be a failure.

Table 7.2 also shows the success rate for each case. Note that failed estimates are
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not included in the calculation of average RMS errors. As we increase the percentage

of outliers, the performance of our approach gets worse. The success rate drops and

the RMS error increases. To deal with outliers, one could follow the approach of

Myronenko et. al. [116], Billings et. al. [221] or Izatt et. al. [20].

Table 7.2: Registration with MSBP in the presence of outliers

Outlier % RMS (mm) Success (%)

0 1.01 100
10 1.43 80
15 2.72 80
20 5.95 70

Robustness to incomplete data

(a)

(b)

Initial 

MSBP

Figure 7-7: CAD model of a Stanford Armadillo man [7] and set of initial points
sampled from parts of the model. The points are not sampled uniformly from all over
the CAD, but have regions of missing information. (a) and (b) show two instances of
incomplete data registered accurately to the CAD model using MSBP.
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A number of practical applications that require registration involve partial or in-

complete datasets, such as 3D reconstruction from Kinect measurements as in the

case of KinectFusion [15]. In order to test the performance of MSBP for such appli-

cations, we consider an example of Stanford Armadillo man [7] (see Fig. 7-7). 500

points are sampled from the CAD model. In each run of the algorithm, one point

is picked from the point set at random and the selected point along with 250 of its

nearest neighbors are removed from the point set. The rest of the points are then

used for registration with the original CAD model.

We observe that in spite of the lack of complete point set information, MSBP is

able to correctly register the points to the CAD model. Fig. 7-7 shows two arbitrary

runs of the algorithm with different sets of points missing in each. In both the cases,

the MSBP correctly registers the points to the CAD model as shown in Fig. 7-7(a)-

(b).

7.4 Conclusion and Discussion

In this chapter, we developed the multiple start branch and prune filtering algorithm

(MSBP), a Kalman filter based method for nonconvex optimization. We show that

using multiple initial states along with branching, updating and pruning, allows us

to efficiently search for the optimal solution(s) in the domain of the search space

without prematurely converging to a locally optimal solution. MSBP requires tuning

of three parameters, the intuition behind which has been described and empirically

verified with several examples. We show that the standard multi-hypothesis filter is

a computationally less efficient, special case of the MSBP. With an example of point

registration, MSBP is also compared with popular methods for nonconvex optimiza-

tion and is found to estimate the optimal solutions accurately with a higher success

rate especially when: 1) the objective function is available in an analytical form, 2)

each function evaluation is expensive, 3) there are multiple global/local minima, and

4) the parameter space is relatively low dimensional (< 20).

Future work will involve an intermediate step to cluster the updated child states
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instead of using an ε threshold. By using an information filter instead of a Kalman fil-

ter, the expensive matrix inversion operation step in the state update can be avoided.

This would allow us to extend the MSBP for problems involving high dimensional

parameter spaces. Validating the effectiveness of MSBP on a variety of nonconvex

problems with different functional complexities, different number of parameters, and

studying parameter sensitivity, will be a part of our future publication.

7.5 Contribution

The contribution from this chapter is:

1. Development of a filtering approach for nonconvex optimization. The approach

can be used for probabilistic pose estimation with unknown data association.

2. The approach uses uncertainty for perturbation and innovation for pruning.

7.6 Published Work

Material from this chapter has appeared in the following publication

1. R Arun Srivatsan and Howie Choset,“Multiple Start Branch and Prune Filtering

Algorithm for Nonconvex Optimization, in proceedings of the Workshop on the

Algorithmic Fundamentals of Robotics, San Francisco, USA, December 2016.
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Chapter 8

Sparse Point Registration

In several applications of engineering, medicine and especially robotics, one often

encounters the need to perform registration. In a typical registration problem, the

spatial transformation between the geometric model of the object-of-interest and point

measurements of the object’s surface, needs to be estimated (see Fig. 8-1). In most

applications, the point clouds obtained from sensors such as lidar, Kinect, feature rich

stereo-images, etc, contain hundreds of points. Several methods have been developed

to perform registration when dense point measurements are obtained [11, 12, 22, 5, 23].

However, these methods do not perform well when only a small number of point

measurements are available, and hence in this work we develop a method for robust

sparse point registration (SPR).

Sparse point registration is of critical importance in surgical applications, where a

surgeon probes the visible anatomy using a robot in order to register the anatomy to

its preoperative model obtained from CT scan or MRI. In such applications, there is

a cost associated with probing more points and the goal is to quickly and accurately

register with a fewer number of measurements. Prior work either uses greater than 100

measurement points for reliable registration [222, 5, 23], or uses a priori knowledge

of anatomical landmarks to hand-pick a small number of probing locations [70, 71,

16, 223]. Simon et. al. [70] find the best points to probe my minimizing a stiffness

metric. Given a point to probe on the model, they use prior knowledge of anatomical

segments to find a point close to the desired point on the actual anatomy. The
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Figure 8-1: (a) Geometric model of the object (b) Point measurements in sensor frame
(c) Point measurements registered to the geometric model

work of Ma et. al. [71, 16], extends upon the work of Simon et. al., but they still

require manually probing points on the right anatomical segments. The approach

of Glozman et. al. [223] avoids choosing points based on the stiffness metric, but

instead precomputes a small number of best points to probe by perturbing the model

and computing which subset of points most affects the registration when selected.

Following this an expert surgeon manually chooses these points on the actual anatomy

and a pre-registration step is performed. This step helps reduce the initial registration

error greatly and eventually leads to an accurate registration. In an attempt to

keep the formulation general, in this work we do not assume any prior knowledge of

anatomical segments and do not use the help of experts for any pre-registration.

Our approach to SPR is developed as an iterative procedure and in each iteration,

the current best pose estimate is perturbed to obtain several poses. Each of poses

obtained after perturbation will hereby be referred to as a ‘pose particle’. The amount

of perturbation is reduced in each iteration to balance exploration and exploitation.

By evaluating a cost function, the best pose particle is selected and used as initial

seed for an optimization problem that computes a locally optimal pose. This process
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is then repeated for a fixed number of iterations or until convergence. The optimizer

used for computing the locally optimal pose can be deterministic or probabilistic and

depending on the requirement of the problem, two variants have been developed:

deterministic SPR (dSPR) and probabilistic SPR (pSPR). The dSPR uses iterative

closest point (ICP) [11], while the pSPR uses dual quaternion-based filter (DQF) (see

Chapter 4) to estimate the pose. Note that this approach may appear similar to the

stochastic ICP developed by Penney et. al. [224]. However, a key difference is that

stochastic ICP perturbs each point by a random noise, while our approach perturbs

the pose which results in each point being perturbed in a structured manner.

The dSPR is computationally faster than pSPR, but requires the perturbation

related parameters to be set manually. The pSPR on the other hand uses uncertainty

information to automatically set these parameters. An additional contribution of this

work is extending the online formulation of DQF in Chapter 4 to process batches of

point measurements.

In Sec. 8.2, the dSPR and pSPR are evaluated in simulation over a number of

standard data sets and compared against popular registration methods. The results

show that the SPR typically takes less than 20 points to accurately and robustly

estimate the registration and is more robust to initial registration errors (≈ 30◦

orientation and ≈ 30mm translation). In Sec. 8.2, a general guideline is provided on

how to automatically probe the object to get a good spread of sparse points. Sec. 8.2

also shows the experimental results where a robot automatically probes several objects

and accurately registers them to their geometric models.

8.1 Problem Formulation

8.1.1 Batch Dual Quaternion Filter

Dual quaternion-based filter (DQF) is a linear Kalman filtering based approach for

online pose estimation, developed in Chapter 4. Unlike ICP, DQF is not a batch

processing algorithm. It is more similar to a Kalman filter since it uses measurement
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information as it becomes available, but with one small difference– the DQF uses

pairs of measurements to update the registration estimate. Compared to other filter-

ing based registration methods such as [6, 5, 49], the DQF is preferred because it is a

truly linear filter without any approximations or linearizations, resulting in accurate

estimates which are quickly obtained. The transformation T ∈ SE(3) is parameter-

ized using the unit dual quaternion x = (q,d)T , where q ∈ R4 is a unit quaternion

that parameterizes the rotation, d is the dual component of x, d =
(
(0, t)T � q

)
/2

and � is the quaternion multiplication operator, t ∈ R3 is the translation vector.

In Chapter 7, we show that using a pair of measurements

Hq = 0, H ∈ R4×4 (8.1)

H =

 0 −(c1 − c2 − b1 + b2)T

(c1 − c2 − b1 + b2) (c1 − c2 + b1 − b2)×

 , (8.2)

t =
c1 − c2

2
−Real

(
q � b1 − b2

2
� q∗

)
, (8.3)

where ci and bi are points in the two reference frames that need to be registered,

q∗ is the conjugate quaternion and [ ]× is the operator that converts a vector to a

skew-symmetric matrix.

The update equations for the Kalman filter are:

qk = qk−1 −KkHkqk−1,

Σq
k = (I −KkHk)Σ

q
k−1, where,

Kk = Σq
k−1H

T
k (HkΣ

q
k−1H

T
k +Qk)

−1

where Σq
k is the uncertainty in the quaternion qk and Qk is the pseudo-measurement

uncertainty. The translation vector tk is obtained from qk using Eq. 8.3. For the

sake of brevity, the derivation for Qk = g(Σq
k,Σ

bj
k ,Σ

cj
k ) and Σt

k = f(Σq
k,Σ

bj
k ,Σ

cj
k )

representing the uncertainty in the translation, are omitted here. The expressions

along with their derivation can be obtained from Sec. 4.2.3.

The standard implementation of DQF requires ≈ 100 measurements for reliable
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registration estimation. In this work, the DQF is modified to a batch processing

variant, which updates using all the m measurements collected, instead of a single

pair per iteration. We shall henceforth refer to this variant as bDQF. As shown in

Sec. 8.2, bDQF requires fewer measurements for accurate estimation compared to the

standard DQF.

We modify Eq. 8.1 as

Gq = 0, G ∈ Rα×4,

G = [H1, . . . ,Hα],

where H i ∈ R4×4 is as defined in Eq. 8.2 and α = b
(
m
2

)
c. The update equations of

the filter remain the same. The algorithm for bDQF is shown in Alg. 3.

Input:
A = {ai ∈ R3}, i = 1, 2, ..., n
B = {bj ∈ R3}, j = 1, 2, ...,m
Initial transformation: q0 ∈ R4, t0 ∈ R3,
Output:
q ∈ R4, t ∈ R3 that aligns A and B
Σq ∈ R4×4,Σt ∈ R3×3

Initialize: k = 1
while not converged do

Correspondence:
T k−1(bj) = tk−1 +Real(qk−1 � bj � q∗k−1)
cj = FindClosestPoint(T k−1(bj)), cj ∈ A,
State Update:
qk = (I −KkGk)qk−1

Σq
k = (I −KkGk)Σ

q
k−1

tk = 1
m

(∑m
j=1 cj −Real

(
qk �

∑m
j=1 bj � q∗k

))
Σt
k = f(Σq

k,Σ
bj
k ,Σ

cj
k )

k = k + 1
end

Algorithm 3: Batch Dual quaternion filtering
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8.1.2 Steps Involved

Fig. 8-2 shows the basic framework of our SPR approach. The various steps involved

are as follows:

1. The algorithm 3 is initialized using an initial pose (see Fig. 8-2(b)).

2. The current best pose is perturbed and p perturbed poses are obtained. In

Fig. 8-2, p = 3 is chosen. The amount of perturbation is reduced over the

iterations. Refer Sec. 8.1.3 and Sec. 8.1.4 for more information on how to

choose the amount of perturbation.

3. A cost function is evaluated for each of the perturbed poses. The cost function

is the sum of the closest distance between the point measurements and the

geometric model:

Oj =
m∑
i=1

||T̃ j(bi)− ci||, j = 1, . . . , p,

where T̃ j ∈ SE(3) and ci ∈ A is the closest point in the A. In this step, we

use an approximate geometric model A∗ instead of A, to quickly evaluate the

cost function. Depending on the format of the geometric model, several existing

simplification techniques can be applied, such as [223, 225, 226]. For example,

when working with a triangulated mesh model, a quadric mesh simplification

can be used [227] as shown in Fig. 8-2(c).

4. The pose T̂ = argminT̃ j Oj, is chosen as the initial guess for a locally optimal

pose estimation using ICP or bDQF. In Sec. 8.2 we discuss the advantages and

limitations of using ICP over bDQF.

5. Steps 2-4 are repeated until convergence or up to a

fixed number of iterations.
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Figure 8-2: Figure shows the steps involved in an example of sparse point registration.
In this example, two iterations of the algorithm are shown. The best pose estimate
in each iteration is perturbed to obtain three pose particles. (a) Point measurements
(b) Geometric model of the object (c) The geometric model in different perturbed
poses. An approximate geometric model is used in this step. The number of triangle
vertices in the original model is 259,896 and the number of vertices in the approximate
model is 88. (d) The best pose from the perturbed poses is selected and a locally
optimal pose is obtained by using ICP or bDQF and the original geometric model.
(e) The best pose estimated from the previous iteration is perturbed to obtain three
new poses. The perturbation in this step is lower than the previous iteration. (f) The
locally optimal pose obtained after using ICP or bDQF. Note that the pose estimated
in the second iteration provides an improvement over the previous iteration.
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Input:
A = {ai ∈ R3}, i = 1, 2, ..., n
B = {bj ∈ R3}, j = 1, 2, ...,m
Initial transformation: T 0 ∈ se(3)
Output: T ∈ SE(3) that aligns A and B
Initialize: T ← T 0, k = 0, ε = inf
while k <MaxIterations OR ε >Threshold do

Perturbation: T̃ j = T k +N (0,Σk), j = 1, . . . , p
Evaluate Cost Function: Oj =

∑m
i=1 ||T̃ j(bi)− ci||

Locally Optimal estimate:
T̂ k = argminT̃ j Oj

T k = ICP(A,B, T̂ k) or DQF(A,B, T̂ k)
εk =

∑m
i=1 ||T k(bi)− ci||

if εk < ε then
T = T k, ε = εk

end
k = k + 1

end
Algorithm 4: Sparse Point Registration

8.1.3 Deterministic Sparse Point Registration (dSPR)

In the dSPR, ICP as described in Sec. 2.1 is used to find the locally optimal pose

(Step 4 of SPR). There are three tunable parameters:

1. Number of perturbations: Perturbations help the optimizer move out of a local

minima. The higher the number of perturbations, the faster the convergence to

the optimal estimate is. But higher perturbations also imply higher computa-

tion times. In this chapter we choose the number of perturbations p = 10.

2. Amount of perturbation: The amount of perturbation helps balance exploration

and exploitation. Higher perturbation encourages exploration while lower per-

turbation encourages exploitation. We start with a high perturbation amount

and decrease the perturbation over iterations. In this chapter we set the initial

perturbation in orientation to be drawn from a normal distribution with zero

mean and a standard deviation of 10◦. The initial perturbation in translation is

drawn from a normal distribution with zero mean and a standard deviation of

10mm in translation. The perturbation is decreased linearly until it is reduced
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to zero after a maximum of 30 iterations.

3. Termination criteria: The procedure can be terminated when the number of

iterations reaches a set limit or when the RMS error between the two point sets

is lower than a set threshold. In this chapter, we set the maximum number of

iterations to be 30 and the RMS error threshold to be 0.5mm. In addition the

maximum number of iterations of each ICP step is set to 20.

The choices of parameters made in this chapter for dSPR are based on manual tuning

over several standard data sets; and are not meant to exhibit any optimal behavior.

8.1.4 Probabilistic Sparse Point Registration (pSPR)

In the pSPR, bDQF as described in Sec. 8.1.1 is used to find the locally optimal pose.

There are two tunable parameters:

1. Number of perturbations: Since we use a Gaussian distribution-based filter, the

number of perturbations are be chosen to be equal to the number of sigma-points

(refer to the UKF for a discussion on the sigma points [181]). In the case of

bDQF, there are 15 sigma points. Unlike the dSPR, the amount of perturbation

need not be set manually, but can be chosen from a normal distribution with zero

mean and standard deviation matching the standard deviation of the current

state estimate.

2. Termination criteria: In this chapter, we set the maximum number of iterations

to be 12 and the RMS error threshold to be 0.5mm. The number of iterations

in each bDQF step is set to 50.

8.2 Simulation Experiments

We perform a number of simulation experiments on standard shape data sets to

systematically study the dSPR and pSPR. The results are compared with ICP,

bDQF and unscented particle filter (UPF) developed by Ma et. al. [16]. For all the
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simulation experiments, the objects are scaled to fit in a cube of edge length 100mm,

for a fair comparison of the registration errors 1.

8.2.1 Minimum Number of Points Required

Figure 8-3: Four different poses of the liver contain the same set of four green points.

Different shapes need different number of points for reliable registration estimates.

In theory, if the point correspondences are known, four points not lying on a plane are

sufficient to unambiguously find the pose [4]. If the correspondences are unknown,

there may exist multiple valid solutions for the pose when only a small number of

points are available (see Fig. 8-3). While the authors are not aware of any prior

work that describes the lower limit on the number of random points required to

reliably estimate the pose, the works of Simon et. al. [70] (later extended by El-

lis et. al. [72]) comes closest to answering this question. Given the geometry of the

object, Simon et. al. find a small number of feature points in the frame of the geo-

metric model, which when probed helps provide reliable registration estimates. But

in order to probe these points, their locations need to be known in the robot frame.

Thus their approach produces good results only when the initial registration guess is

close to the true registration. In an attempt to empirically find the minimum number

of point measurements required for reliable registration, we perform an experiment

where p random points from the model are selected. A known transformation is ap-

plied to these p points. The applied transformation and RMS error are estimated

1All the computations are carried using MATLAB R2015a software from MathWorks, running
on a ThinkPad T450s computer with 8 GB RAM and intel i7 processor.
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Figure 8-4: Plot of RMS error vs number of points used for registration, when using
dSPR. For each integer element on the X axis, mean error is computed over 100
experiments. Most of the shapes considered need ≈ 20 measurements for accurate
registration.
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using dSPR. The applied transformation is parameterized by Cartesian coordinates

(x, y, z) ∈ R3 and Euler angles (θx, θy, θz) ∈ R3. Each translation parameter is uni-

formly drawn from [−30, 30]mm and each orientation parameter is uniformly drawn

from [−30, 30]◦. The experiment is repeated 100 times and the mean error is calcu-

lated. This process is repeated for different values of p, where p ∈ {4, 5, . . . , 36}. We

perform this experiment for several shapes namely, Bunny, Armadillo, Dragon, Happy

Buddha, Lucy, Thai Statue–obtained from the Stanford Point Cloud library [7], Fer-

tility obtained from the AIM shape repository [228], femur bone, liver obtained from

https://grabcad.com and pelvis bone obtained from https://www.thingiverse.com/.

It is observed that some shapes like pelvis and Bunny require only 16 points, while

others like the Dragon require 36 points. Most of the shapes need ≈ 20 points. Given

a new shape, similar experiments can be run to empirically find out the minimum

number of random points required for reliably registration estimate.

8.2.2 Robustness to Noise

We repeat the experiment from the previous section for a femur bone, with different

amount of noise added to the points. The dashed lines in Fig. 8-5 show the mean

error for dSPR and pSPR over 100 experiments versus the number of measurements

used. The RMS error for both dSPR and pSPR decreases to zero after 12 and 18

measurements respectively.

The experiments were repeated under identical conditions, with a noise uniformly

drawn from [−2, 2]mm added to each coordinate of the point measurements. Fig. 8-5

shows that the mean error for dSPR and pSPR both converge to less than 2mm after

20 measurements. The performance of both dSPR and pSPR are very similar– with

and without measurement noise. Table 8.1 shows the RMS error for dSPR and pSPR

as well as the estimation time, for varying levels of noise, using 20 point measurements

and 100 measurements. When using 100 measurements, as expected, dSPR, pSPR,

standard ICP, bDQF and UPF accurately estimate the registration. However, when

using 20 measurements, dSPR and pSPR outperform the other methods. UPF takes

the most computation time compared to all the other methods because of the need

236

https://grabcad.com/library/femur-bone
https://grabcad.com/library/liver
https://grabcad.com
http://www.thingiverse.com/thing:1645117
https://www.thingiverse.com/
https://grabcad.com/library/femur-bone


Figure 8-5: Plot of the RMS error vs number of measurements used for dSPR and
pSPR, with a without noise in the measurements. In the absence of noise, dSPR
takes 12 measurements and pSPR takes 18 measurements to converge to zero RMS
error. In the presence of a uniform noise of 2mm, both pSPR and dSPR converge to
an RMS error of < 2mm after 20 measurements.
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to iterate over ≈ 2000 pose particles (other researchers have also noticed the high

computation time of UPF [5]).

In this work, we do not present comparisons with other popular registration meth-

ods such as generalized ICP [22], UKF-based registration [5], DQF [50], iterative most

likely point (IMLP) [23], etc. as those methods are not designed to work with less

than 100 measurements and hence the comparison would be unfair.

Table 8.1: Femur bone: Registration in the presence of noise

No noise 2mm noise 5mm noise

RMS Time RMS Time RMS Time
20 points (mm) (sec) (mm) (sec) (mm) (sec)

dSPR 0 0.08 1.08 0.44 1.79 0.46
pSPR 0 0.07 1.63 1.00 1.66 0.99
ICP 4.72 0.01 2.92 0.01 6.69 0.01

bDQF 2.84 0.05 2.19 0.09 7.83 0.09
UPF 7.13 161.77 22.12 159.83 24.23 242.38

100 points

dSPR 0 0.03 0.59 0.51 1.12 0.53
pSPR 0 0.13 0.64 2.53 1.07 3.10
ICP 0 0.01 0.72 0.01 0.93 0.01

bDQF 0 0.08 0.38 0.19 1.55 0.24
UPF 4.82 1891.1 8.06 1843.3 14.29 1594.0

Even though the RMS error is similar, the time taken by pSPR is greater than

dSPR. This is because each ICP evaluation in dSPR internally takes ≈ 20 iterations,

while each bDQF evaluation in pSPR internally takes ≈ 50 iterations for convergence

to a local minima. The benefit of using pSPR however, lies in the fewer parameters

that require tuning.

8.2.3 Point Selection Criteria

If an operator has visual information about the environment and telemanipulates the

robot, then it is trivial to pick points on the object spread across the surface of the

object. But if the robot is autonomously collecting point measurements then it is
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critical to ensure that the points are randomly distributed over the surface. To this

effect, two strategies that have been developed in this work. For both the strategies,

first find the location and dimensions of a cuboid in the workspace of the robot,

within which the object lies. The object can be probed from 5 faces of the cuboid

(Assuming the object rests on a table and cannot be probed from the bottom face).

The guidelines for probing the object to obtain point measurements are:

1. Choose a face of the cuboid at random, pick a point on this face at random and

probe along the direction joining the chosen point and the center of the bottom

face of the cuboid ( as shown in Fig. 8-6(a)). Stop moving the robot, once it

makes contact with the object.

2. If the object is relatively flat (the smallest face of the cuboid is < 30% of the

largest face), then the previous strategy would result in most of the probed

points lying on the face with the largest area. So an alternate strategy is

followed, where a random point is chosen on the face with largest area. The

robot is moved in the direction of the surface normal of this face, until contact

is made with the object (see Fig. 8-6(b)).

It is observed that such a strategy ensures that the points probed are spread evenly

over the surface of the object. It is also observed that sometimes the robot might pass

through holes in the object and make contact with the environment instead of the

object. Such points are not considered in the computations in this work. Note that the

probing strategies discussed here are only a general guideline, and the presented SPR

approach would work fine if measurements are obtained using alternate strategies such

as submodularity-based touch of Javdani et. al. [229], or manually by a teleoperator

as in our prior work [230].

8.3 Robot Experiments

In order to test our approach to SPR with real data, an experimental setup as shown

in Fig. 8-7(a) is used. The setup consists of a 6-DOF robot Foxbot R© equipped with
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Figure 8-6: A cuboid is selected in the workspace of the robot that conservatively
estimates the location of the object. (a) Different probing paths for the robot are
selected such that the probed points are spread across the surface of the object. The
colors of the path show the face of the cuboid that the paths originate from. (b) Point
collection strategy for relatively flat object. Some paths do not produce a point on
the object. If the robot does not make contact with the object during the course of
its path, then the point is not included in the registration.

an ATI Nano17 force sensor at the end-effector. The object of interest is clamped

in front of the robot and is probed using the strategies described in Sec. 8.2.3. The

objects chosen for this experiment are: Femur bone, pelvis bone and Stanford bunny.

The largest dimension for each of these objects is 100mm. Using the information

obtained from Fig. 6-10, we collect 18, 20 and 20 points respectively for the femur,

pelvis and bunny respectively. The following video shows the experiment in progress:

https://youtu.be/xnkGRFBDE0Q

Table 8.2: Experimental results

Pelvis Femur Bunny

RMS Time RMS Time RMS Time
(mm) (sec) (mm) (sec) (mm) (sec)

dSPR 2.17 1.5 1.38 1.56 5.00 1.76
pSPR 2.21 3.38 2.33 3.01 4.91 3.95

The blue circles in Fig. 8-7(b)-(d) show the initial guess for the location of the

point measurements and the red circles show the location as estimated by dSPR.
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Figure 8-7: (a) Experimental set up consists of a robot manipulator equipped with a
force sensor. The object that is to be registered is clamped and held in place. (b)-(d)
Blue circles represent the initial location of the point measurements and red circles
represent the registered location of the points. Pelvis bone, femur bone and bunny
are probed at 18, 20 and 20 points respectively.

Note that the estimated location of the points lie on the model of the objects. The

RMS error for the location estimated by dSPR and pSPR are shown in Table 8.2.

For 20 point measurements, the RMS error for bunny is higher than the other two

models as is consistent from our simulation experiments (see fig. 6-10).

8.4 Conclusion

In this work, a sparse point registration (SPR) method for robust registration using

a small number of sparse point measurements was developed. The approach can be

implemented in a deterministic manner (dSPR) or a probabilistic manner (pSPR).

The dSPR is faster but has more parameters to tune than pSPR. pSPR has the

added advantage over dSPR of providing the uncertainty in the registration estimate.

We also provide guidelines for choosing the tuning parameters for each algorithm.

Another contribution of this work is the development of a batch processing variant

of the dual quaternion filter, which is used in the pSPR.

Through simulations and robot experiments, both dSPR and pSPR are found to
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be robust and accurate compared to state-of-the-art methods. Even in the presence

of noise, our approach accurately estimates the registration compared to popular

deterministic and probabilistic approaches for registration. The computation time

was ≈ 1s for dSPR and ≈ 3s for pSPR. A C++ implementation would greatly reduce

the computation time. Through a number of simulations, it is empirically found that

most shapes require ≈ 20 points for reliable registration. Future work would explore

a more theoretical approach for finding the lower bound on the number of random

points required for registration.

In the future, we plan to extend the formulation to flexible objects that can

deform upon contact. Prior work such complementary model update (see Chapter 3)

can be used to estimate the local deformation introduced by forceful contact. Future

work will also explore using surface-normal in addition to point measurements for

registration.

8.5 Contribution

The contributions from this chapter include:

1. A probabilistic approach that estimates registration using a small number of

sparse point measurements.

2. A deterministic variant was also developed that can estimate registration with

sparse point measurements. This variant however, requires tuning a number of

parameters.

8.6 Published Work

Material from this chapter has appeared in the following publications

1. R Arun Srivatsan, Prasad Vagdargi and Howie Choset,“Sparse Point Regis-

tration, in proceedings of the International Symposium on Robotics Research,

2017.

242

https://www.ri.cmu.edu/publications/sparse-point-registration/
https://www.ri.cmu.edu/publications/sparse-point-registration/


2. R Arun Srivatsan, Prasad Vagdargi, Nicolas Zevallos and Howie Choset, “Mul-

timodal registration using stereo imaging and contact sensing, in Robotics: Sci-

ence and Systems, Workshop on ’Revisiting Contact - Turning a problem into

a solution’, 2017.
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Part IV

Generalizing prior methods into a

common framework
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Chapter 9

Generalized Framework for

Probabilistic Pose Estimation

In this chapter we focus on registering a point cloud obtained in sensor frame to a

point cloud or a surface model defined in model frame (see Fig. 9-1). Our framework

generalizes a number of popular registration approaches and provides registration es-

timates that are equivalent to or more accurate than existing methods. By restricting

our scope of study to point measurements, and assuming uncertainties in both po-

sition measurements and prior pose parameters, we derive an objective function to

formulate registration as an optimization problem. Minimizing the objective function

guarantees global optimality. We also derive a locally optimal variant for registration

which is based on an expectation maximization (EM) framework. This variant is

computationally faster than the globally optimal variant, although it only guarantees

convergence to a local optimum. Instead of burdening a user with having to try a

large number of existing methods in literature and then choose the one that best

works for their application, we provide the user a framework that considers point-set

registration at its most generic form with a recipe to obtain optimal registration, for

their application.
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Figure 9-1: Red points on the left need to be registered to a model of Stanford
bunny on the right. The ellipses in green show the uncertainty in the measurements,
while purple ellipses show the uncertainty due to both measurement noise and prior
registration estimate.

9.1 Related Work

Several approaches to point set registration have been developed over the last few

decades (for a review refer to [86]). Registration is always a nonconvex problem

irrespective of our knowledge of the correspondence between the points in the two

reference frames. Despite this, there are methods in literature that guarantee global

optimality when correspondence in known. For example if the uncertainty in the point

measurements is isotropic, Horn’s method [4], Arun’s method [17], the quaternion-

based approach of Faugeras and Hebert [60] and the dual quaternion-based approach

of Walker et. al. [61] provide theoretical guarantees on the globally optimal registra-

tion. If the uncertainty in point measurements is anisotropic, then methods such as

generalized ICP (G-ICP) [22], generalized total least squares ICP (GTLS-ICP) [21]

and IMLP [23] can guarantee optimal registration. And if the uncertainty in point

measurements is anisotropic and there exists a prior pse uncertainty, then the Bing-

ham distribution-based filter (BF) described in Chapter 6 provides optimal registra-

tion estimates.
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However, in many practical applications the correspondence is unknown. The it-

erative closest point (ICP) algorithm introduced by Besl and McKay [11] is a widely

popular algorithm that alternates between finding the best correspondence and the

optimal transformation given the correspondence. Many variants of the ICP have

ince been proposed (see [231] for a review). Some of these variants use surface nor-

mals [232], curvature [233], color-intensity [234], histogram of features [74], etc., in

addition to point measurements. Others are robust to outliers [66, 235, 236], use al-

ternate means to find correspondence [237], or use global optimizers [27, 238, 18, 20].

Probabilistic registration approaches have been developed to better handle the

noise in the measurements. For example, the works of Wells et. al. [239], Chui et. al. [240],

Granger et. al. [241, 85](expectation maximization ICP (EM-ICP)), use an EM frame-

work, wherein each point in one set, is mapped to every point in the other set with

a weight assigned for the correspondence (this is referred to as soft matching). An

objective function which is composed using these weights is then minimized to obtain

the optimal registration. This is in stark contrast to methods such as ICP where

the objective function uses a single closest point in the model frame that is esti-

mated for each sensor point (this kind of matching is referred to as hard matching).

Algorithms incorporating soft matching tend to achieve higher accuracy and have

wider basins of convergence towards the optimum compared to methods that use

hard matching [85, 116].

While many of the above methods assume equal isotropic noise in all point mea-

surements, anisotropic noise is more frequently encountered in realworld measure-

ments such as from range sensors [22], tomographic imaging [242], stereo imag-

ing [243], etc. The generalized total least squares ICP (GTLS-ICP) [21], and general-

ized ICP (G-ICP) [22] account for anisotropic noise in the measured data points. How-

ever, they use a closest point matching, in the correspondence phase. The anisotropic

ICP (A-ICP) [244] extends the prior work by using a Mahalanobis distance metric for

the point correspondence, that is a function of the sensor noise. The IMLP further

improves upon the A-ICP by using a most likely matching criteria1, instead of the

1The most likely matching criteria first finds the probability of a sensor point to be a potential
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Table 9.1: Classification of various registration methods

Registering point cloud to point cloud

Method Noise MLE or MAP Correspondence

EM-ICP [239, 241] Equal, Isotropic MLE Probabilistic soft
GTLS-ICP [21] Anisotropic MLE Closest point
G-ICP [22] Anisotropic MLE Closest point
A-ICP [244] Anisotropic MLE Mahalanobis distance
IMLP [23] Anisotropic MLE Most likely
Bingham filter [245] Anisotropic MAP Closest point
Our approach Anisotropic MAP Probabilistic soft

Registering point cloud to surface model

ICP [11] Equal, Isotropic MLE Closest point
IMLP [23] Anisotropic MLE Most likely
EKF [6] Anisotropic MAP Closest point
IEKF [64] Anisotropic MAP Closest point
UKF [5] Anisotropic MAP Closest point
UKF [49] Anisotropic MAP Closest point
Bingham filter [245] Anisotropic MAP Closest point
Our approach Anisotropic MAP Probabilistic soft

Mahalanobis distance [23].

All the methods described thus far do not use prior pose information, and can

be thought of as using maximum likelihood estimate (MLE) to find the optimal

transformation. However, in applications where reliable prior information is available,

maximum a posteriori (MAP) estimate provides more accurate registration. For

example, methods such as ICP only use point locations (red points in Fig. 9-1), while

methods such as IMLP use point locations and sensor noise (red points and green

ellipses in Fig. 9-1). In a MAP estimate approach, point locations, sensor noise and

uncertainty in prior pose are all used (red points and purple ellipses in Fig. 9-1). The

registration methods that use MAP estimate often utilize Bayesian filters, such as

EKF [6], IEKF [64], and UKF [5, 49]. While these methods resort to linearization

or some other form of approximation, the Bingham filter-based pose estimation (see

match to each model point. The model point that is most probable is then used in the objective
function that is optimized to obtain the best registration estimate. If the sensor noise was isotropic,
then the Mahalanobis distance of A-ICP, the most likely matching criteria of IMLP and the closest
point correspondence of ICP become identical.
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Chapter 6) avoids approximations by using a truly linear update model.

In this chapter we introduce a probabilistic framework which is most similar to

IMLP, but can perform both MLE and MAP estimation. The framework is also sim-

ilar to the Bingham filter, but it uses probabilistic correspondence instead of closest

point matching. In addition, we unify disparate point set registration approaches into

a single probabilistic framework and reasons their application in terms of – MLE or

MAP estimate, as shown in Table 9.1. We show that our framework formulates an

optimization problem for the most general case of registration and by appropriately

setting the functional parameters such as sensor noise, and prior pose distribution,

etc., the user is guaranteed to obtain the optimal registration for their application

without having to pick and choose from a large number of methods in literature.

9.2 Problem Formulation

We discuss the generalized framework for two broad cases of registration –

1. Registering a point cloud to another point cloud (an example is structure from

motion [22] ),

2. Registering a point cloud to a surface model (for example localizing surgical

tool [16]).

9.2.1 Case 1: Registering point cloud to point cloud

LetM = {m1, . . . ,mnM} be the set of points in the model frame and S = {s1, . . . , snS}

be the set of points in the sensor frame, such that mi, si ∈ R3. Let x be the set of

parameters that represent the transformation given by rotation R ∈ SO(3), and

translation t ∈ R3. Then the optimal registration parameters are obtained using a

maximum a posteriori (MAP) estimate as shown,

x∗ = argmax
x

P (x|S,M). (9.1)
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Table 9.2: Notations

Symbol Description

In×n n× n identity matrix
m̃ (0,mT )T∀m ∈ R3

M̃

[
0 0T

0 M

]
∈ R4×4∀M ∈ R3×3

M̂

[
1 0T

0 M

]
∈ R4×4∀M ∈ R3×3

M Last three columns of M ∈ R4×4

Upon invoking Bayes rule,

x∗ = argmax
x

P (x)︸ ︷︷ ︸
prior

P (S|M,x)︸ ︷︷ ︸
likelihood

. (9.2)

Let W ∈ RnS×nM be the matching matrix. Assuming there are no outliers, each

sensor point is mapped to a unique point on the model and hence we define W to

take binary values with each row having only one entry whose value is 1 (Sec. 9.2.3

describes how to deal with outliers ). We rewrite Eq. 9.2 by bringing in an explicit

dependence on W

P (S|M,x) =
∑
{W}

P (S,W |M,x),

=
∑
{W}

P (W |M,x)P (S|W,M,x). (9.3)

If we consider a random matching matrix W , then each possible matching matrix W

has a probability P (W = W ). Since Wij (the ijth element of W) takes binary values,

the expected value of Wij is obtained as follows

E(W ij) =
∑

Wij=0,1

WijP (W ij = Wij)

= P (W ij = 1).
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The probability of obtaining W , is

P (W = W ) =

nS∏
i=1

nM∏
j=1

(P (W ij = 1)︸ ︷︷ ︸
φij

)Wij , (9.4)

since Wij is binary. It is common practice to assume that each model point is equally

likely given no prior information about sensed points, i.e., φij = 1
nM

. Thus we have

P (W = W |M,x) =

nS∏
i=1

nM∏
j=1

(
1

nM

)Wij

. (9.5)

The likelihood of S given W is

P (S|W,M,x) =
∏
i,j

(P (si|mj,x))Wij . (9.6)

Substituting Eq. 9.5, 9.6, in Eq. 9.3,

P (S|M,x) =
∑
{W}

∏
i,j

(
1

nM
P (si|mj,x)

)Wij

,

=

nS∏
i=1

(
nM∑
j=1

1

nM
P (si|mj,x)

)
. (9.7)

Substituting Eq. 9.7 in Eq. 9.2 and taking the logarithm gives

x∗ = argmax
x

log(P (x)) +

nS∑
i=1

log

(
nM∑
j=1

1

nM
P (si|mj,x)

)
. (9.8)

There is no known closed form solution for x in Eq. 9.8, and to the best of our

knowledge there is no method in literature to directly minimize this criterion ro-

bustly [241, 85]. Global optimizers such as GA, PSO, branch and bound, etc. can be

used to obtain optimal pose from Eq 9.8.

Since it is evident from literature than using global optimizers results in larger

computation times [], we also develop a faster albeit locally optimal approach for

registration. This formulation is inspired by Wells [239], who us an EM approach to
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find x∗. From Eq. 9.2,

x∗ = argmax
x

P (x)
P (S,W |M,x)

P (W |S,M,x)︸ ︷︷ ︸
P (x|S,M)

,

= argmin
x
− log (P (x|S,M))︸ ︷︷ ︸

O(x)

. (9.9)

Since O(x) is independent of W , the expectation with respect to W will remain the

same, i.e., O(x) = EW (O(x)). From Eq. 9.2 and Eq. 9.9 we have

O(x) = −EW (log(P (x)))− EW (log(P (S,W |M,x))) + EW (log(P (W |S,M,x))).

Following the approach of [85], we add an explicit dependence on matching matrix

using Kullback-Leibler (KL) divergence between W and the a posteriori likelihood

of matches P (Wx = W ) = P (W |S,M,x),

O(x,W ) = O(x) + EW

(
log

(
P (W )

P (W |S,M,x)

))
,

= EW (log(P (W )))− EW (log(P (x)))− EW (log(P (S,W |M,x))) .

(9.10)

The distance is null whenWx = W , hence we haveO(x) = minW O(x,W ) = O(x,Wx).

Given the current best estimate of x, we first find the expected value of W ,

P (Wx = W ) =
P (S,W |M,x)

P (S|M,x)

=

nS∏
i=1

nM∏
j=1

(
φijP (si|mj,x)∑nM
k=1 φikP (si|mk,x)

)Wij

.

Comparing with Eq. 9.4, we have

E ((Wx)ij) =

(
φijP (si|mj,x)∑nM
k=1 φikP (si|mk,x)

)
. (9.11)

Following that, we use W = Wx to minimize Eq. 9.10 and obtain the best estimate
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of x. Note that only the last two terms in Eq. 9.10 are a function of x, thus xk =

argminxO(x,Wx) where

O(x,W ) =− log(P (x))−
∑
i,j

E(Wij)︸ ︷︷ ︸
wij

log (P (si|mj,x)) , (9.12)

where xk is the estimate of x at the kth iteration. By alternating between expectation

(Eq. 9.11) and minimization (Eq. 9.12), we are guaranteed to obtain a locally optimal

solution for x.

If there is no prior information about the distribution of the registration param-

eters, then the problem becomes a MLE instead of MAP. This implies, instead of

Eq. 9.2, we would use the following

x∗ = argmax
x

P (S|M,x)︸ ︷︷ ︸
likelihood

. (9.13)

Following the same derivation as for MAP, we would obtain

x∗ = argmax
x

nS∑
i=1

log

(
nM∑
j=1

1

nM
P (si|mj,x)

)
. (9.14)

Where x∗ obtained from Eq. 9.14 is guaranteed to provide globally optimal registra-

tion. Similarly for the locally optimal variant, Eq. 9.12 can be rewritten as

O(x,W ) =−
∑
i,j

E(Wij)︸ ︷︷ ︸
wij

log (P (si|mj,x)) . (9.15)

By alternating between Eq. 9.11 and Eq. 9.15, we are guaranteed to obtain a locally

optimal solution for x when no prior distribution for the registration parameters is

available.
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9.2.2 Case 2: Registering point cloud to a surface model

When registering two point clouds, a matching matrix W can be used to determine

the correspondence, as shown earlier. However, such an approach does not scale well,

when a point cloud needs to be registered to a surface. This is because the surface

has infinite points lying on it and it is computationally intractable to find the match

probability (as in Eq. 9.11) for each point on the model. Surface models are often

discretized using parameters that vary in a continuous domain or by meshes composed

of vertices, edges and faces (the faces are often polygonal in shape). There are prior

works which sample finite number of points on the surface and use the matching

matrix approach for registration [85]. Such an approach has been shown to be error

prone and only approximate [85].

Irrespective of the discretization used, in this work we assume that each sensed

point is homologous to a single point on the model. We define the optimization as

(x∗,m∗) = argmin
x,m

O(x,m), where

O(x,m) = − log (P (x))−
nS∑
i=1

log (P (si|m,x)) , (9.16)

where x∗ is the optimal registration parameters, m∗ is the set of optimal correspon-

dences in the model frame, m = {m1, . . . ,mnS} ∈ M are the points on the model

that correspond to si. However, we do not have a priori knowledge of the matches and

hence we alternate between finding correspondence (m) and minimizing an objection

function over x.

The corresponding model points mxk , given the current best estimate xk is

mxk = argmin
m

O(xk,m),

⇒mi = argmin
m∈M

− log(P (si|m,x)). (9.17)
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Keeping the updated matches mxk fixed, we find the best estimate of x

xk+1 = argmin
x

O(x,mxk). (9.18)

The iterative optimization setup ensures thatO(xk,mxk−1
) ≥ O(xk,mxk) ≥ O(xk+1,mxk),

i.e., with each iteration the function value decreases and thus after sufficient iterations

we are guaranteed to obtain a locally optimal solution for both x and m.

If there is no prior information about the distribution of the registration parame-

ters, then the problem becomes a MLE as discussed in the previous section. Instead

of Eq. 9.16, we would use the following

x∗ = argmin
x
−

nS∑
i=1

log (P (si|m,x))︸ ︷︷ ︸
O(x,m)

. (9.19)

9.2.3 Outlier Rejection

There are number of standard procedures to handle outliers when performing regis-

tration [235, 23, 236, 27]. The choices that we found to be best suited for a number

of applications are

• Distance thresholding: A chi-square test has been widely used and it is a simple

way to detect outliers [5, 23]. When evaluating the expected matching using

Eq. 9.24 or finding the most likely matches using Eq. 9.33, the log(P (si|mj,x))

term is a square Mahalanobis distance (if you ignore the normalization con-

stant). Outliers are detected by comparing square Mahalanobis distance at

each point measurement to the inverse cumulative density function of a chi-

square distribution with 4 degrees of freedom evaluated at some probability.

Outliers are simply ignored from the further calculations in that iteration.

• Percentage rejection: If there is some heuristic that says what percentage of

data would be outliers, then that percentage of sensed points with the farthest

distance from the model is ignored in each iteration [18]. The distance metric
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to be used can be the same Mahalanobis as described in the previous method.

This methods works fine if the percentage of outliers is not very high. Otherwise

it is observed to get trapped in local minima quickly.

9.3 Optimization Setup

9.3.1 Case1:Registering point cloud to point cloud

In order to find the optimal registration parameters from Eq. 9.12, we first derive the

form of P (x), P (si|mj,x) and wij. The form of P (x) considered here is

P (x) =
exp

(
1
2
qTDq − 1

2
(t− µ)TC−1(t− µ)

)
NDNC

, (9.20)

where ND, NC are normalization constants. x = (qT , tT )T , where q ∈ R4 is the unit

quaternion parameterizing the rotation and t ∈ R3 is the translation vector.

Let us define dij = mj − Rsi − t. Rewriting this equation in terms of unit

quaternions [61],

d̃ij =m̃j − Ω1(q)TΩ2(q)s̃i − t̃,

⇒ Ω1(q)d̃ij = Ω1(q)m̃j − Ω2(q)s̃i − Ω1(q)̃t︸ ︷︷ ︸
uij

,

where Ω1(q)TΩ2(q) = R̂, and Ω1(q)Ω1(q)T = I4×4 (more properties can be obtained

from Chapter 2).

Let mo
j , s

o
i , t

o be the noise-free model point, sensor point and translation estimate

respectively. We have m = mo+δm, si = soi +δsi, t = to+δt, where δm, δsi, δt are

the respective noise in model point, sensor point and translation vector. All the noises

are assumed to be sampled from zero mean Gaussian distributions with covariances

Σmj
,Σsi ,C respectively. When there is no noise, the transformed noise-free sensor

point must be located at the same place as the corresponding noise-free model point,
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i.e., r̃ij = 0,

uij −
(

Ω1(q)δ̃mj − Ω2(q)δ̃si − Ω1(q)δ̃t
)

︸ ︷︷ ︸
δuij

= 0, (9.21)

where δuij ∼ N (0,Sij), and the expression for Sij can be obtained in closed form

using the result of Proposition 1,

Sij =Ω1(q)Σ̃mj
Ω1(q)T + Ω2(q)Σ̃siΩ2(q)T+

Ω1(q)C̃Ω1(q)T +A1(Σ̃mj
~D)AT

1 +

A2(Σ̃si ~D)AT
2 +A3(C̃ ~D)AT

3 . (9.22)

Using Eq. 9.20, we derive the form of P (si|mj,x),

P (si|mj,x) =
exp

(
−1

2
uTij(Sij)

−1uij
)√

(2π)4|Sij|
, (9.23)

where uij and Sij are obtained from Eq. 9.21 and Eq. 9.22 respectively. Substituting

Eq. 9.23 in Eq. 9.11,

wij =
exp(−1

2
uTij(Sij)

−1uij)√
|Sij|

∑nM
k=1

exp(− 1
2
uTik(Sik)−1uik)√
|Sik|

. (9.24)

Substituting Eq. 9.20, 9.23, 9.24 in Eq. 9.12 and discarding terms independent of x

gives

O(x,W ) =− qTDq + (t− µ)TC−1(t− µ)

+

nS∑
i=1

nM∑
j=1

wij
(
uTij(Sij)

−1uij − log (|Sij|)
)
. (9.25)

O(x,W ) is minimized in a nested fashion, by first optimizing over q followed by t

and repeating the process until convergence. It is difficult to optimize O(x,W ) with

the log term in it, as it makes the equation highly non-linear. However, if one were to
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Input:
S = {si ∈ R3}, i = 1, 2, ..., nS
[M = {mj ∈ R3}, j = 1, 2, ..., nM]
(Surface model M)
Initial transformation: q0 ∈ R4, t0 ∈ R3,
Prior pose uncertainty: D0 ∈ R4×4, C0 ∈ R3×3

Output:
q ∈ R4, t ∈ R3 that aligns S and M
D ∈ R4×4,C ∈ R3×3

Initialize: k = 1
while not converged do

Correspondence:
[wij = E((Wx)ij) from Eq. 9.11]
(Update mi, i = 1, . . . , nS from Eq. 9.33)
Minimization:
Initialize: l = 1
while not converged do

Initialize: m = 1
while not converged do

Update q [from Eq. 9.26] (from Eq. 9.35)
Update Sij [from Eq. 9.22] (from Eq. 9.22 after substituting Σmj

= 0)
m = m+ 1

end
Update t [using Eq. 9.27] (using Eq. 9.36)
l = l + 1

end
qk = q
tk = t
Update Dk using [Eq. 9.30] (Eq. 9.37)
Update Ck using [Eq. 9.31] (Eq. 9.38)
k = k + 1

end
q = qk, t = tk, D = Dk, C = Ck

Algorithm 5: Point cloud to [point cloud] (surface model) registration
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use a branch and bound technique such as Go-ICP [18], the log term could be easily

considered. But in this chapter, we neglect the log term.

We first optimize O(x,W ) in Eq. 9.25 over q while also imposing the constraint

qTq = 1 with a Lagrange multiplier

∂O(x,W )− λ(qTq − 1)

∂q
= 0,

⇒

−D +

nS∑
i=1

nM∑
j=1

wijH
T
ij(Sij)

−1H ij︸ ︷︷ ︸
B0

−λI4×4

 q = 0,

⇒ (B0 − λI4×4) q = 0, (9.26)

where H ij = Ω2(m̃j) − Ω1(s̃i) − Ω2(̃t). q can be obtained from Eq. 9.26 by solving

an eigen value problem, with λ being the smallest eigen value and q being the eigen

vector corresponding to the smallest eigen value of B0. Note that from Eq. 9.22,

Sij is also dependent on q and we use the current best estimate of q to estimate

Sij. Upon obtaining q, we update Sij and once again update q from Eq. 9.26. This

process is repeated until convergence or a maximum number of iterations are reached.

After obtaining the best estimate of q given t, we keep the q constant and optimize

for t,

∂O(x,W )

∂t
= 0,

⇒C−1(t− µ)−
nS∑
i=1

nM∑
j=1

wijΩ1(q)
T

(Sij)
−1(uij) = 0,

⇒t =
(
C−1 +B1

)−1 (
C−1µ+B2

)
, where (9.27)

B1 =

nS∑
i=1

nM∑
j=1

wijΩ1(q)
T

(Sij)
−1Ω1(q), (9.28)

B2 =

nS∑
i=1

nM∑
j=1

wijΩ1(q)
T
S−1
ij (Ω1(q)mj − Ω2(q)si). (9.29)

After obtaining q and t iteratively from Eq. 9.26 and Eq. 9.27, we update the
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uncertainties in q and t by taking the double derivative of O(x,W ) with respect to

q and t,

Dk+1 = Dk −
∑
i,j

wijH
T
ij(Sij)

−1H ij, (9.30)

Ck+1 =

(
C−1
k +

∑
i,j

wijΩ1(q)
T

(Sij)
−1Ω1(q)

)−1

, (9.31)

where k is the index of the outermost iteration. A pseudo code describing the opti-

mization is provided in Alg. 5.

9.3.2 Case 2:Registering point cloud to a surface model

Substituting Eq. 9.20 and Eq. 9.23 in Eq. 9.16 and discarding terms independent of

x,m gives

O(x,m) =− qTDq + (t− µ)TC−1(t− µ)

+

nS∑
i=1

(
uTii(Si)

−1uii − log (|Si|)
)
, (9.32)

where Si is obtained by substituting Σmj
= 03×3 in Eq. 9.22.

We find the optimal value for x and m in an iterative manner. The corresponding

model points mxk , given the current best estimate xk is obtained as shown below

mi = argmin
m∈M

uTi (Si)
−1ui, (9.33)

where ui = Ω1(q)m̃ − Ω2(q)s̃i − Ω1(q)̃t. Unlike in the case of registering two point

clouds, the covariance corresponding to model pointsm on the surface are set to zero.

This constrains the model points to lie on the surface. Eq. 9.33 reduces to finding

closest points using a Mahalanobis distance metric as shown below. Let us consider
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the following definition for d

d = uTi (Si)
−1ui,

=
(

Ω1(q)m̃− Ω2(q)s̃i − Ω1(q)̃t
)T

(Si)
−1
(

Ω1(q)m̃− Ω2(q)s̃i − Ω1(q)̃t
)
,

= d̃i
T (

Ω1(q)TS−1
i Ω1(q)

)
d̃i, (9.34)

where d̃i = m̃ − s̃Mi − t̃, s̃i = ΩT
1 (q)Ω2(q)s̃i. s

M
i is the transformed location of si.

From Eq. 9.34, d is the Mahalanobis distance between m̃ and s̃Mi , with covariance

matrix Ω1(q)TSiΩ1(q).

As in the case of registration of point clouds, the optimal registration parameters

are obtained in an iterative fashion for the case of registration to surface model.

The optimal value of q assuming t to be fixed is obtained by solving for q in

(F 0 − λI4×4)q = 0, (9.35)

where F 0 is equivalent toB0 derived in Eq. 9.26 with the substitution of wij = δij (δij

is the Kronecker delta). q can be obtained by finding the eigen vector corresponding

to the smallest eigen value of F 0.

The optimal value of t assuming q to be fixed is

⇒t =
(
C−1 + F 1

)−1 (
C−1µ+ F 2

)
, (9.36)

where F 1, F 2 are equivalent to B1 and B2 obtained from Eq. 9.28 and Eq. 9.29

respectively with the substitution wij = δij.

After obtaining q and t iteratively from Eq. 9.35 and Eq. 9.36, we update the

uncertainties in q and t,

Dk+1 = Dk −
nS∑
i=1

HT
ii(Si)

−1H ii, (9.37)

Ck+1 =

(
C−1
k +

nS∑
i=1

Ω1(q)
T

(Si)
−1Ω1(q)

)−1

, (9.38)
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where k is the index of the outermost iteration. A pseudo code describing the op-

timization is provided in Alg. 5. In Alg. 5, the entities within (·) correspond to

registering to a point cloud, while the entities within [·] correspond to registering to

a surface model.

9.4 Generalization to Other Prior Approaches

9.4.1 Iterative Closest Point

ICP was originally developed for registering a data shape (which is decomposed into a

point set if not already in that form) to a model shape [11]. We consider our approach

for Case 2 and show that the ICP is a specific case of our implementation.

Let us make the following assumptions:

• Equal and isotropic noise, Σsi = λ1I3×3.

• No knowledge of prior distribution, hence we will resort to MLE.

Substituting the above assumptions in Eq. 9.22, gives S−1
i = 1

λ1
I4×4. Substituting Si

in Eq. 9.33 and simplifying gives,

mi = argmin
m∈M

(m−Rsi − t)T (m−Rsi − t),

which is the closest point criteria used to find correspondences in ICP.

Substituting Si in Eq. 9.36 and simplifying gives,

t = mc −Rsc, (9.39)

which is the same expression used to find t in the case of ICP. Substituting t from

Eq. 9.39 into Eq. 9.35

B0 =
1

nS

nS∑
i=1

(Ω2(m̃i − m̃c)− Ω1(s̃i − s̃c)). (9.40)
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q is obtained by finding the eigen vector corresponding to the smallest eigen value of

B0, which is the same as using the approach of Faugeras and Hebert [60] in ICP.

Thus, when performing MLE for registering a point cloud with equal isotropic

noise to a surface model, our approach becomes equivalent to ICP and it is the

optimal estimator.

9.4.2 EM-ICP

EM-ICP is similar to ICP, with the main difference being that it was developed for

registering point cloud to point cloud [241, 85]. Myronenko et. al. [116] developed

an approach called coherent point drift (CPD), which is very similar to the EM-ICP.

The important difference between CPD and EM-ICP is the method chosen to handle

the outliers. EM-ICP uses structural editing, a technique to remove outliers, instead

of using a probabilistic weight to account for outliers as in the case of CPS [116].

Ignoring the approach to handle outliers, bth these methods are identical and make

the same assumptions and hence we will refer to both of them as EM-ICP in this

chapter. We make the following assumptions

• Σsi = λ1I3×3 and Σmi
= 03×3.

• No knowledge of prior distribution, hence we will resort to MLE.

Upon considering our assumptions, Eq. 9.23 becomes

P (si|mj,x) =
− exp(1

2
dTijdij)

λ1

√
(2πλ1)4

, (9.41)

where dij = mj − Rsi − t. It can be verified that upon substituting Eq. 9.41 in

Eq. 9.11, Eq. 9.12, the equations for expectation and minimization are identical to

the ones in EM-ICP.

Thus, when performing MLE for registering a point cloud with equal isotropic

noise to another point cloud, our approach becomes equivalent to EM-ICP and it is

the optimal estimator.
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9.4.3 Generalized Total-Least-Squares ICP

Generalized Total-Least-Squares ICP (GTLS-ICP) and generalized ICP (G-ICP) are

extensions of ICP that takes into account anisotropic noise in model and sensed

points [21, 22]. As with ICP, both GTLS-ICP and G-ICP are MLE methods.

GTLS-ICP and G-ICP, make an approximation when it comes to the expectation

step. Instead of using soft matches using Eq. 9.11, the authors use a closest point

rule, similar to ICP.

Assuming MLE, Eq. 9.22 can be rearranged to obtain

Ω1(q)TSijΩ1(q) = Σ̃mj
+ R̂Σ̃siR̂

T
. (9.42)

Upon substituting Eq. 9.42 in Eq. 9.12 and ignoring the log term gives

O(x,W ) =

nS∑
i=1

dTi

(
Σmc(i)

+RΣsiR
T
)−1

di, (9.43)

where di = mc(i)−Rsi− t and wij = δc(i) j (δ is the Kronecker delta). The objective

function in Eq. 9.43 is identical to the ones used in GTLS-ICP and G-ICP [21, 22].

Another variation of the GTLS-ICP is the A-ICP [244]. The A-ICP uses a Maha-

lanobis distance metric instead of closest point rule. This approximation is shown to

provide an improvement over GTLS-ICP and G-ICP [244].

9.4.4 Iterative Most Likely Point Registration

The iterative most likely point (IMLP) is also a MLE and it was developed as an

improvement over A-ICP and other GTLS methods [23]. When registering point

clouds, IMLP is very similar to A-ICP, with the important distinction being the

definition of wij. Unlike A-ICP, IMLP computes wij using Eq. 9.11 without any

approximations. However, after computing wij, they set the wij with highest value

to 1 and the rest to 0.

264



When registering to a surface model, the correspondence is obtained from Eq. 9.33,

mi = argmin
m∈M

dTi (Σmi
+RΣsiR

T )−1di,

where di = mi − Rsi − t. Thus the correspondence criteria is identical to the

correspondence criteria of IMLP for registering point cloud to surface model.

The objective function for minimization is obtained from Eq. 9.32,

O(x,m) =

nS∑
i=1

(
uTii(Si)

−1uii − log(|Si|)
)
,

=

nS∑
i=1

[dTi (Σmi
+RΣsiR

T )−1di−

log(|Σmi
+RΣsiR

T |)], (9.44)

The objective function in Eq. 9.44 is identical to the one used in IMLP.

Thus when registering to a surface model and assuming MLE, our approach is

identical to IMLP. However, when registering to a point cloud, our approach uses

expectation of matches, while IMLP uses most likely matches. As shown by other

soft matching methods, our approach is expected to have a wider basin of convergence

when compared to IMLP.

9.4.5 Extended, Iterative Extended and Unscented Kalman

Filter for Registration

Unlike the methods discussed thus far, the EKF, IEKF and UKF-based registration

approach considers prior distribution in the registration parameters. All the filtering-

based approaches use a MAP estimate as shown in Eq. 9.2. However, there are two

key differences

• Different filtering approaches use different parameterizations for pose. For ex-

ample, Moghari et. al. [5] use Euler angles and Cartesian coordinates, while

Hauberg et. al. [49] use Lie algebra elements to parameterize the pose.

265



• The optimization method used is different for different filters. EKF is a special

case of Gauss Newton optimization without iterations [246], IEKF is a Gauss

Newton update [247] and UKF is a population-based stochastic optimization

technique [181].

All the filtering-based methods use a closest point matching rule. The objective

function they use is identical to Eq. 9.18. However, the actual form of the objective

function differs due to the choice of parameterization used by each method.

9.4.6 Bingham Filter-based Registration

Among the filtering-based methods, the one that comes closest our approach is the

Bingham filter-based registration described in Chapter 6. This approach makes all

the assumptions that we make in this chapter. An important distinctions is that the

bingham filter uses a closest point matching when registering to a point cloud as well

as to a surface model.

9.4.7 Suggestions For Improvement

1. ICP and EM-ICP assume equal isotropic noise in sensed points and no noise in

model points. We can easily relax these assumptions with our approach.

2. GTLS-ICP, G-ICP, A-ICP and IMLP use an approximate function for finding

the expectation of point matching when registering point clouds. Our approach

can provide more accurate point matching expectation and hence improve the

registration.

3. All the filtering-based approaches use an approximate closest point matching.

Our approach can use a more accurate point matching.
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9.5 Results

In this section we present experimental results for our approach and compare the

same with other prior approaches. We first present results for the case where the

correspondence is known, and then present results for the case with unknown corre-

spondence. For both the cases we present results for MLE and MAP. For the case

of unknown correspondence we present results for registering point cloud as well as

surface model. We terminate all the algorithms when the number of iterations exceed

100 or when the change in translation is less than 10−4mm and change in rotation is

less than 10−4deg. We start all algorithms with an initial condition of q = (1, 0, 0, 0)T

and t = (0, 0, 0)T .

Table 9.3: Experimental Results

x y z θx θy θz RMS
(mm) (mm) (mm) (deg) (deg) (deg) (mm)

Results for Experiment 1: Isotropic Noise
Actual 13.13 -48.53 -67.59 -19.29 11.33 -3.59 –
ICP, EM-ICP 13.15 -48.59 -67.58 -19.25 11.31 -3.60 0.0038
IMLP 13.15 -48.59 -67.58 -19.25 11.31 -3.60 0.0038
Our approach 13.15 -48.59 -67.58 -19.25 11.31 -3.60 0.0038

Results for Experiment 1: Anisotropic Noise
ICP, EM-ICP 13.17 -48.51 -67.59 -19.25 11.29 -3.59 0.003
IMLP 13.16 -48.52 -67.59 -19.25 11.33 -3.58 0.002
Our approach 13.18 -48.53 -67.58 -19.25 11.32 -3.58 0.002

Results For Experiment 3
Actual 24.90 -18.82 19.14 6.78 16.18 15.73 –
EM-ICP 24.04 -18.34 18.86 6.17 15.69 15.61 0.1531
GTLS-ICP 24.16 -18.46 18.97 5.98 15.52 15.58 0.1204
A-ICP 23.83 -17.99 19.06 6.37 15.76 15.91 0.1223
IMLP 24.03 -18.10 19.10 6.43 15.73 15.93 0.1160
Our approach 24.73 -18.65 18.91 7.25 15.84 15.94 0.0575

Results For Experiment 4
Actual -0.59 -24.84 9.56 13.36 2.08 15.07 –
ICP 0.67 -24.98 9.10 12.83 1.52 14.79 0.1167
IMLP -0.11 -24.34 8.84 12.76 1.72 15.26 0.0732
Our approach -0.06 -24.24 8.86 12.71 1.54 15.44 0.0623
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9.5.1 Experiment 1: Known Correspondence MLE

In this experiment we first study the case of isotropic noise and then study anisotropic

noise in the points. When the correspondence is known, both ICP and EM-ICP are

identical. GTLS-ICP, G-ICP, A-ICP and IMLP have identical objective functions,

but use different optimizers. Billings et. al. [23] show that IMLP outperforms GTLS-

ICP, G-ICP and A-ICP when the correspondence is known and hence we skip those

comparisons to save space.

The studies in this experiment were conducted by generating two noisy point sets

with known correspondence and known ground-truth alignment. For groundtruth, we

randomly generated 100 points uniformly distributed in the interval [-100, 100]mm

along each dimension. From these points, two different noisy point sets were gener-

ated by adding zero-mean Gaussian noise, while using a different covariance for each

point set. The eigen values of the noise covariance we set to [5, 5, 5]mm2 for the case

of isotropic noise and [5, 5, 20]mm2 for the case of anisotropic noise. Registration

accuracy is evaluated by computing the mean distance between the noise-free point

correspondences following each registration. Table 9.3 shows the results for a repre-

sentative case. When the noise is isotropic, all methods have identical performance.

When the noise is anisotropic, IMLP and our approach was identical (as was shown

theoretically in Sec. 9.4) and performed better than ICP.

9.5.2 Experiment 2: Known Correspondence MAP

The setup for this experiment is identical to experiment 1, with the only difference

being that instead of using all the measurements at once, we use a mini-batches of

last 10 measurements in each update. After each update, we take the current best

estimate of registration as the prior and estimate the next best estimate. For MAP

with known correspondence and anisotropic noise, the Bingham filter is identical

to our approach. In a similar experimental setup, in Chapter 6, we show that the

Bingham filter outperforms the EKF and UKF-based registration approaches and

hence we do not repeat those comparisons in this work. While the ICP and IMLP
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Figure 9-2: (a) Results for Experiment 2. (b) Results for Experiment 5.
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are not MAP approaches, we use them repeatedly to update the registration after

each small batch of measurements using the previous estimate as the starting point.

Fig. 9-2(a) shows the RMS error vs the number of point measurements used. Our

approach is effective at filtering out the noise and consistently having a lower RMS

error compared to the other approaches.

9.5.3 Experiment 3: Unknown Correspondence MLE and

Registration to a Point Cloud

The experimental setup for Experiment 3 is identical to the anisotropic noise case of

Experiment 1. We calculate the RMS error by calculating the average distance be-

tween the registered and known ground-truth positions of the points. Table 9.3 shows

the results for this experiment. EM-ICP performs the worst of all the algorithms be-

cause it does not handle anisotropic noise. As expected, IMLP outperforms EM-ICP,

GTLS-ICP and A-ICP. Our approach offers further improvement over IMLP, which

is enabled by the soft matching criteria as opposed to a hard most likely match of

IMLP (See theoretical study in Sec. 9.4).

9.5.4 Experiment 4: Unknown Correspondence MLE and

Registration to a Surface Model

For this experiment, we consider a Stanford bunny [7] for the surface model (see

Fig. 9-3). The experiments are conducted by randomly generating a set of 100 noisy

points from the mesh surface and applying a random misalignment to the points. The

anisotropic noise applied is the same as in Experiment 1. We evaluate ICP, IMLP

and our approach over this data as shown in Table 9.3. We measure the registration

error by randomly sampling a set of 100 noise-free points from the mesh and finding

the mean distance between the registered and known ground-truth positions of the

points. Once again our approach achieves lower RMS error than ICP and IMLP.
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Figure 9-3: Triangulated mesh model of Stanford bunny is shown in green. Black
points represent initial location and red points represent the registered location of
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9.5.5 Experiment 5: Unknown Correspondence MAP and

Registration to a Surface Model

We use the same setup as Experiment 4, but update registration after each mini-

batch of 30 measurements. After each update, we take the current best estimate of

registration as the prior and estimate the next best estimate. For both the Bingham

filter as well as our approach we assume large initial uncertainty in distribution of

pose– D0 = εI4×4 and C−1
0 = εI3×3, where ε → 0. Fig. 9-2(b) shows the RMS

error vs the number of point measurements used. Our approach converges the fastest

among all the approaches and also converges to the lowest value. The Bingham filter

being a MAP estimate performs better than IMLP. The RMS error after processing

500 points is 0.91mm for ICP, 0.027mm for IMLP, 0.026mm for Bingham filter and

0.016mm for our approach.

9.6 Conclusion

Despite decades of research in the field of point registration, it is still a challenge

to decide which algorithm to pick for a given application. The work presented in

this chapter unifies a variety of existing registration methods into a framework whose

parameters can be intuitively chosen to obtain the optimal approach for a given

application. Furthermore, it is observed that different research groups approach the

problem of point registration differently. This framework unites a lot of them in a

single optimization framework with different prior approaches being special cases of

the overlaying framework.

A noteworthy outcome of this framework is the ability to predict deficiencies in

existing approaches. To this effect we provide means to improve a number of methods

and validate the efficacy of the improvement in experiments.

While this framework provides a probabilistic view of the point registration prob-

lem, it does not guarantee globally optimal solutions; much like the existing ap-

proaches that it generalizes. However, the objective functions derived, can be min-
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imized without the approximations made, using global optimizers. This is a task

for future work. This task would also allow us to compare our results with more

simplistic global registration methods in literature. Future work also involves extend-

ing the framework to accommodate surface normals, curvature, and other geometric

descriptors.

9.7 Contribution

The two key contributions of this chapter are:

• Unifying previousy registration methods in literature under a common frame-

work.

• Predicting improvements to existing registration methods using the framework.
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Chapter 10

Real-time Augmented Reality

System for Improving Situational

Awareness

10.1 Introduction

Robot-assisted minimally invasive surgeries are becoming increasingly popular as they

provide increased dexterity and control to the surgeon while also reducing trauma,

blood loss and hospital stays for the patient [248]. These devices are typically tele-

operated by the surgeons using visual feedback from stereo-cameras, but without any

haptic feedback. This can result in the surgeon relying only on vision to identify

tumors by mentally forming the correspondence between intra-operative view and

pre-operative images such as CT scans/MRI, which can be cognitively demanding.

Automation of simple but laborious surgical sub-tasks and presenting critical in-

formation back to the surgeon in an intuitive manner has the potential to reduce

the cognitive overloading and mental fatigue of surgeons [249]. This work lever-

ages the recent advances in force sensing technologies [8], tumor localization strate-

gies [2, 137, 138], online registration techniques (see Chapter 4, 6) and augmented

reality [250] to automate the task of tumor localization and dynamically overlay the
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da Vinci Research Kit

Stereo Camera

Force Sensor

Prostate Phantom

Needle
Driver
Tool

Figure 10-1: Experimental setup showing the dVRK robot with a miniature force
sensor attached to the end-effector. A stereo camera overlooks the workspace of the
robot. A phantom prostate with embedded stiff inclusion is placed in the workspace
of the robot.

information on top of intraoperative view of the anatomy.

While the works in literature deal with force sensing [251, 252], tumor localiza-

tion [2, 249, 137, 111, 138, 112] and graphical image overlays [253, 254, 255, 256],

there is a gap in literature when it comes to systems that deal with all these issues

at the same time. For example, Yamamoto et al. [256] deal with tumor localization

and visual overlay, but they assume the organ is flat and place the organ on a force

sensing plate, which is not representative of a surgical scenario. On the other hand,

Garg et. al. [249] use a palpation probe mounted on a da Vinci research kit (dVRK)

tool (This probe was originally developed by McKinley et. al. [257]). However, they

do not deal with registering the organ or visual overlay of the estimated stiffness map.
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The work of Puangmali et. al. [251] (and many others as noted by Tiwana et. al. [252]

in their review paper) have developed miniature force sensing technologies for min-

imally invasive surgeries, but they do not discuss strategies to palpate or ways to

perform image overlay of the estimated stiffness map. The prior work from our group

including those of Ayvali et. al. [2, 137] and Salman et. al. [138] develop techniques

to smartly palpate a tissue and search for tumors with a small number of probings.

The work of our collaborators Chalasani et. al. [111, 112] provide an alternate way of

smart palpation by probing along continuous trajectories. However, these works do

not deal with graphically overlaying the estimated stiffness map. These works also

often use an ad hoc force sensing set up consisting of a plate mounted on a commercial

force sensor. Finally the work of Wang et. al. [258, 114] uses force controlled explo-

ration to perform registration to preoperative model of the organ, but they do not

estimate the stiffness of the tissue or perform graphical image overlay. The work in

this chapter aims to bridge these shortcomings and present a unified system capable

of addressing all the above mentioned issues at the same time.

The system of Naidu et. al. [259] comes closest to our work. They use a custom

designed tactile probe (developed by Trejos et. al. [260]) to find tumors and visually

overlay the tactile image along with the ultrasound images. The wide tactile array

that they use, allows for imaging sections of the organ instead of obtaining discrete

measurements, as in our case. This eliminates their need to develop sophisticated

tumor search algorithms. However, as acknowledged by Trejos et. al. [260], it is

not clear as to how their system would perform when using non-flat organs such

as prostates and kidneys; since the tactile array cannot deform and confirm to the

shape of the organ. Without performing registration, the image overlay would also

be affected on non-flat organs.

The framework presented in this work is robot agnostic and modular in nature.

We demonstrate the efficacy of the system by performing autonomous tumor local-

ization on a phantom prostate model and other custom fabricated flat silicone organs

with embedded tumors using the dVRK platform [134] (see Fig. 10-1). There are two

reasons for choosing the dVRK for demonstration – (1) it is a good representation
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of a surgical robot, (2) there are several research groups across the world that use

dVRK and we hope they will all benefit from the work presented in this chapter. A

miniature force sensor mounted at the tip of the dVRK needle driver tool (developed

by Li et. al. [8]) is used to sense the contact forces. An active tumor search strat-

egy developed by Salman et. al. [138] is used to localize the tumor. The estimated

stiffness map is overlaid on a registered model of the anatomy and displayed in real-

time on a stereo viewer. The overall focus of this chapter is to combine the various

contributions of this thesis into a demonstrative surgical system that would enable

fast estimation of registration, tumor search and graphical image overlay. We believe

that our contributions would be used in the software framework being developed by

our collaborators Chalasani et. al. [130] at Johns Hopkins university and Vanderbilt

university to provide online complementary situational awareness (CSA) for surgical

assistance.

10.2 Related Work

10.2.1 Tumor search approaches

The recent developments in force sensors have also resulted in a number of works

that automate mapping of the surface of the anatomy to reveal stiff inclusions. The

different palpation strategies commonly used are: discrete probing motion [256, 261],

rolling motion [110], cycloidal motion [262] and sinusoidal motion [111, 112]. Some of

these works direct the robot along a predefined path that scans the region of interest

on the organ [263, 256, 113], while others adaptively change the grid resolution to

increase palpation resolution around boundaries of regions with high stiffness gradi-

ents [262, 261].

Over the last two years, Bayesian optimization-based methods have gained pop-

ularity [2, 249, 137, 112]. These methods model the stiffness map using a Gaussian

process regression (GPR) and reduce the exploration time by directing the robot to

stiff regions. While the objective of most prior works is to find the high stiffness
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regions [2, 249, 137], recent work by Salman et. al. [138] on active search explicitly

encodes finding the location as well as the shape of the tumor as its objective.

10.2.2 Surgical registration and image overlay

There is a rich literature of image overlay for minimally invasive surgeries [253],

including some works on augmented reality in human-surgeries [264]. Often the image

that is overlaid is a segmented preoperative model, and it manually placed in the

intraoperative view [264, 255]. Very few works such as [254, 265], deal with manual

placement followed by automatic registration of the organ models. There are a number

of registration techniques that have been developed for surgical applications; the

most popular one being ICP [11] and its variants (See Rusinkiewicz et. al. [12] for a

survey on variants of ICP). There also exist methods that deal with local deformation

caused by tool-tissue interaction, such as the CMU approach in Chapter 3, and global

deformation caused by organ shift, swelling, etc. [116, 258, 114].

Probabilistic methods for registration have recently gained attention as they are

better at handling noise in the measurements. Billings et al. [23] use a probabilistic

matching criteria for registration, while methods such as [5, 6] (see Chapter 6, 9 for

more details) use Kalman filters to estimate the registration parameters. In Chapter 6

we reformulate registration as a linear problem in the space of dual quaternions and

uses a Bingham filter and a Kalman filter to estimate the rotation and translation

respectively. Such an approach has been shown to produce more accurate and fast

online updates of the registration parameters.

While the above literature deals with registering preoperative models onto an

intraoperative scene, there is very little literature that deals with overlaying stiffness

maps on the preoperative models and updating the maps in real-time as new force

sensing information is obtained. Real-time updates are very important because they

give the surgeon a better sense of what the robot has found and gives them insight

into when to stop the search algorithm which is a subjective decision, as observed

by Ayvali et. al. [137]. The works of Yamamoto et al. [256] and Naidu et al. [259]

are exceptions and deal with dynamic overlaying of the stiffness image, but only onto
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pre-registered flat organs. Their approaches do not generalize to the cases of non-flat

organs such as kidneys or prostates that we consider in this work.

10.2.3 Force sensing for surgical applications

Several survey papers report a number of devices that measure contact forces [251,

252]. Some common drawbacks with many existing devices are: difficulty to sterilize,

high cost, delicate components and lack of flexibility of form factor. Recently, Li et

al. [8] have developed a miniature force sensor that uses an array of thin-film force

sensitive resistor (FSR) with embedded signal processing circuits. A diagram of the

sensor can be seen in Fig. 10-2. This sensor is light-weight, inexpensive, robust, and

has a flexible form factor.

Protective tip

Sensor Cable

Force Sensor

Tool/Sensor Adapter

Needle Driver Tool

Figure 10-2: The FSR sensor that we use in this chapter was developed by Li et al. [8]

10.3 Problem Setting and Assumptions

We use an ELP stereo camera (model 1MP2CAM001) overlooking the workspace of

a dVRK [134]. A custom fabricated prostate phantom (made using Ecoflex 00-10) as

well as two other flat silicone organs, all embedded with plastic pieces to mimic stiff

tumors, are used for experimental validation.
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Given an a priori geometric model of an organ, the measurements of the tool tip

positions and associated contact forces, and stereo-camera images of the intraopera-

tive scene, our goal is to (i) register the camera-frame, robot-frame and model-frame

to each other, (ii) estimate the stiffness distribution over the organ’s surface, and (iii)

overlay the estimated stiffness distribution on the registered model of the organ and

display it back to the user.

We make the following assumptions in this work:

• The shape of the organ deforms only locally due to tool-interaction.

• The tool-tip pose can be obtained accurately from the robot kinematics.

• The forces applied by the tool are within the admissible range (less than 10N)

in which the organ only undergoes a small deformation (less than 8mm) that

allows it to realize its undeformed state when the force is removed.

• The stiff inclusion is located relatively close to the tissue surface, so that it can

be detected by palpation.

10.4 System Modeling

Fig. 10-3 shows the flowchart of the entire system. Modules such as camera calibra-

tion, model generation and registration need to be run only once at the beginning

of the experiment. On the other hand, the tumor search, probing, and augmented

display modules are run in a loop until the user is satisfied with the result and halts

the process. While the system is largely autonomous, user input is required in two

steps: (i) Camera-model registration, to select the organ of interest in the view of the

camera, (ii) selecting region of interest for stiffness mapping. The modularity of the

system allows the user to choose any implementation for registration, force-sensing

and tumor localization. The important modules of our system are discussed in detail

in the following sections.
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Figure 10-3: Flowchart showing all the modular components of our system. Some of
the modules such as camera calibration, stereo reconstruction, model creation, and
camera-robot-model registrations are performed once before the start of the experi-
ment, while the other modules are constantly run for the duration of the experiment.
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10.4.1 Registering Camera and Robot Frames

The cameras are calibrated using standard robot operating system (ROS) calibra-

tion [133]. The robot is fitted with a colored bead on its end effector that can be

easily segmented from the background by hue, saturation, and value. Registration

between the camera-frame and the robot-frame is performed by the user through a

graphical user interface (GUI) that shows the left and right camera images and has

sliders representing color segmentation parameters.

The robot is moved to a fixed set of six points and the tip positions are recorded

from the kinematics. These points are chosen to cover a substantial amount of the

robot’s workspace, stay within the field of view in the camera, and not contain sym-

metries that would make registration difficult. We chose to use only six points after

experiments showed that additional points failed to significantly decrease the root

mean squared (RMS) error, as shown in Table 10.1. For each of the points, we

perform a series of actions.

Table 10.1: RMS error vs number of points used

Number of points 5 6 7 8 11 51

RMS error (mm) 2.71 2.37 2.84 3.01 2.82 2.85

First, we move the robot to the specified location, then we process both the left and

right images to find the centroid of the colored bead fitted to the robot. The centroid

of the ball in pixels is found as the center of the minimum enclosing circle of the

contour with the largest area. We repeat this for as many frames as are received over

ROS in one second (in our case 15), and the centroid is then averaged over all frames

to reduce the effect of noise in the image. The centroid is drawn onto both images

in the GUI, allowing the user to evaluate the accuracy of the centroid estimation.

The pixel disparity is calculated as the difference between the x coordinates of the

centroid in the left and right images. This disparity is fed into a stereo-camera model

that ROS provides, to calculate a 3D point in the camera-frame.

Following this, we obtain six points in both the camera-frame and the robot-

frame (using the kinematics of the robot). We use Horn’s method [4] to calculate the
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Figure 10-4: (a) and (b) are left and right camera views showing the dVRK robot tool.
Cyan colored circles are drawn on both the images by finding the tool tip position
from the robot kinematics and then using the registration between robot frame and
camera frame. Note how the position of the circles visually confirms well with the
true location of the tool tip.

transformation T c
m between the camera and the robot frames. This transformation is

saved to a file and the calculated RMS error is displayed to the user. In addition, the

robot’s current position is transformed by the inverse of the calculated transformation

and projected back into the pixel space of both cameras. Circles are drawn at these

pixel positions in the left and right images in the GUI so that the user can visually

confirm that the registration is successful and accurate (see Fig. 10-4).

10.4.2 Registering Camera and Preoperative Model Frames

The transformation between camera-frame and model-frame, T c
m is estimated by

registering the reconstructed point cloud from stereo images with the preoperative

model of the organ. The intraoperative scene as viewed by the stereo cameras is as

shown in the top of Fig. 10-5. A user manually selects the region containing the organ

of interest. Following this the user can also further refine the selection using a graph

cut-based image segmentation (developed by Greig et. al. [266]).

A Bingham distribution-based filtering approach is used to automatically register

the stereo point cloud to the preoperative model (see Chapter 6). The mean time

taken to register is 2s and the RMS error is 1.5mm. The center row in Fig. 10-5 shows

the registered model of the organ overlaid on the stereo views. Note how the pose of
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Figure 10-5: Top row: Original left and right camera images. Middle row: Camera
images with registered prostate model shown in semi-transparent blue. The tumor
model is also shown to allow us to compare our stiffness mapping result. Bottom
row: The robot probes the organ and records force-displacement measurements. The
estimated stiffness map is then augmented on the registered model in this figure. Dark
blue regions show high stiffness. Note that the stiffness map reveals the location and
shape of the tumor.
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Figure 10-6: Registration results on a moving phantom prostate shown at three dif-
ferent times. Note the large disturbance at time (b) caused by applying an external
force to the organ and the recovered tracking at time (c).
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the registered model accurately matches the pose of the organ. In the same figure we

also show the model of the tumor in the registered view to highlight how accurately

the stiffness map estimates the location of the tumor (see bottom row of Fig. 10-5)

We also augmented the static graph-cut based segmentation using an automatic

traveling mask. Once we are satisfied that the model is roughly registered to the

object, we switch from the static graph-cut mask to the traveling mask. Using the

same rendering engine used in the GUI, a z-depth buffer is rendered from the camera’s

view of the model. This depth buffer is scaled from 0 to 255 with 0 representing the

pixel farthest from the camera and 255 representing the closest. Using this buffer,

we create a new mask for our camera image by masking out all pixels with a depth

of zero, effectively creating a cutout of our rendered model. Because we render the

depth buffer every time the model’s estimated transformation is changed, we create an

image mask that moves along with our model. Results using this traveling mask can

be seen in Fig. 10-6. Tracking is maintained even after we apply a large disturbance

to move the silicone prostate out from under the tracked model. Although extreme

movements will certainly make our system lose tracking, the system is robust to small

periodic movements similar to what might be seen in the body, due to physiological

motions such as respiration, heart beat, etc. as well as due to interactive forces during

palpation. To the best of our knowledge, the prior works on palpation-based stiffness

mapping assume the organ is rigidly clamped with respect to the robot and ignore

movement of the organ altogether [112, 259, 113, 109].

10.4.3 Tumor Search and Stiffness Mapping

The problem of tumor search is often posed as a problem of stiffness mapping, where

the stiffness of each point on a certain organ is estimated, and regions with stiffness

higher than a certain threshold are considered as regions of interest (tumors, arteries,

etc.). The framework that we use for localizing tumors utilizes Gaussian process (GP)

to model the stiffness distribution combined with a GP-based acquisition function to

direct where to sample next for efficient and fast tumor localization. This is described

in Fig. 10-7.

287



Update

Stiffness

Map

S

(a) (b)

Figure 10-7: (a) An expanded flowchart of the “Stiffness map generation” block shown
in Fig. 10-3. As the robot probes a new point on the organ, it calculates the stiffness
value at that point. All the probed points with their corresponding stiffness values
are accumulated and used to train a GPR (with predefined mean and covariance
functions) which is used to updates the estimated stiffness map. (b) An expanded
flowchart of the “Tumor search” block shown in Fig. 10-3
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By using GP, we assume a smooth change in the stiffness distribution across the

organ. Since every point on the organ’s surface can be uniquely mapped to a 2D grid,

the domain of search used is X ⊂ R2. The measured force and position after probing

the organ by the robot at x provides the stiffness estimation represented by y.

The problem of finding the location and shape of the stiff inclusions can be mod-

eled as an optimization problem. However, an exact functional form for such an

optimization is not available in reality. Hence, we maintain a probabilistic belief

about the stiffness distribution and define a so called “acquisition function”, ξacq, to

determine where to sample next. This acquisition function can be specified in various

ways and thus our framework is flexible in terms of the choice of this acquisition

function that is being optimized. Prior works have considered various choices for

the acquisition functions such as expectation improvement (EI) [2, 137], upper con-

fidence bound (UCB) [249], uncertainty sampling (UNC), active area search (AAS)

and active level set estimation (ALSE) [138].

While our system is flexible to the choice of acquisition function, in this work

we demonstrate tumor localization using active level set estimation (ALSE). ALSE

determines the set of points, for which an unknown function (stiffness map in our case)

takes value above or below some given threshold level h. The mean and covariance

of the GP can be used to define a confidence interval,

Qt(x) =
[
µt(x)± β1/2σt(x)

]
(10.1)

for each point x ∈ X̄. Furthermore, a confidence region Ct which results from inter-

secting successive confidence intervals can be defined as,

Ct(x) =
t⋂
i=1

Qi(x). (10.2)

ALSE then defines a measure of classification ambiguity at(x) defined as,

at(x) = min {max(Ct(x))− h, h−min(Ct(x))} . (10.3)
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ALSE chooses sequentially queries (probes) at x∗ such that,

x∗ = argmax
x∈X

at(x). (10.4)

For details on how to select the parameter h, we refer the reader to the work of

Gotovos et. al. [267].

10.4.4 Probing and Force Sensing

We affixed a miniaturized Tri-axial sensor developed by Li et. al. [8] onto the needle

driver tool for the dVRK to provide contact force measurements (see Fig. 10-1).

The force sensor is a force sensitive resistor (FSR) based force-to-voltage transducer

operating in thru-mode electrodes configuration. The design combines FSR array

with a center mounted pre-load mechanical structure to provide a highly responsive

measurement of contacting force and direction of the force vector. In this experiment,

we electrically bridged the four sensing array elements on the force sensor, to provide

improved sensitive force measurement along the normal direction of the sensor, since

the dVRK can be accurately oriented to probe along the local surface normal. In

addition, we implemented online signal processing software in the sensor embedded

controller, for analog signal amplification, filtering, automatic self-calibration, which

is crucial step to improve sensor performance when using inexpensive force sensing

materials such as 3M Velostat film from Adafruit.

First, the robot is commanded to a safe position p1 which is at a known safe height

zsafe as shown in Fig. 10-8(b). The robot is then commanded to move to position

p2 which is at an estimated distance λ from the desired probing point p0, along the

normal to the surface at p0, n (see Fig. 10-8(b)). While maintaining its orientation,

the tool is commanded to move to position p3 = p2 − (λ + dmax)n. The force and

position data are constantly recorded as the robot moves from p2 to p3. When the

force sensor contacts the tissue surface, if the contact force exceeds a set threshold

Fmax or if the probe penetrates more than a set depth dmax, the robot is no longer

moved. This ensures that the probing does not hurt the patient or cause any damage
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to the robot. Following this we retract the robot to position p2 and then p1. Note

that we do not record force and displacement data during the retraction process.

 

Figure 10-8: (a) An expanded flowchart of the “Probing” block shown in Fig. 10-3.
(b) The various steps taken to probe a desired point along a desired normal direction
as provided by the tumor search module.

Next the recorded data is treated as input to the stiffness mapping algorithm

similar to the complementary model update described in Chapter 3. There are two

important steps of this algorithm: (i) baseline removal, (ii) stiffness calculation. Ide-

ally, the force sensor reading should be zero when there is no contact between force

sensor and the interest area. However, in reality there is always a small residue in

the sensor readings even when there is no contact. Thus we find the mean sensor

output value when the probe is at p2 and then subtract all the subsequent measure-

ments from this baseline force. For stiffness calculation, we use a standard RANSAC

algorithm to find the best fit line between the y-axis (force sensor data) and x-axis

(displacement data). As a result, the calculated regression coefficient indicates the

changing rate of the contact force respect to a unit displacement, which can be used

as the best approximation of stiffness value. Fig. 10-9 shows the nearly linear varia-

tion of force with displacement, justifying the use of slope of the best fit line as an

approximation for the stiffness.
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A

B

Figure 10-9: The plot shows forces vs displacement for two sample points A and B on
the surface of the organ. Note that the forces are limited to 10N and the displacement
is also restricted to 8mm. RANSAC is used to find the best-fit line and the slope gives
us an estimate of the stiffness at the probed location. The circular 2D space forms
a one-to-one mapping with the 3D surface of the organ. The green circle represents
the user-defined ROI. The stiffness map is estimated in this ROI. Different shades of
blue are used to represent the stiffness values. Point A is located in on a stiff region,
while B is located on a soft region. The plot reveals the corresponding stiffness.
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10.4.5 Dynamic Image Overlay

The rendering of the overlays is done using the Visualization Toolkit (VTK). Two

virtual 3D cameras are created to match the real cameras using the results of cam-

era calibration. The pre-operative model is placed in virtual 3D space according to

the camera-to-organ registration, T c
m, and rendered as a polygonal mesh from the

perspective of each camera. These two renders are overlaid onto live video from the

left and right camera feeds as their backgrounds. These renderings are displayed in

a GUI divided into three tabs. The first tab is for registration, which overlays the

pre-operative model as described above and additionally allows the user to mask and

segment the point cloud as described in Sec. 10.4.2. It also provides buttons to start

and stop model registration. The second tab allows the user to select a ROI defined

in a 2D UV texture map that represents a correspondence between pixels on a 2D

image to 3D coordinates on the surface of the preoperative model (see Fig. 10-9(c)).

The third tab overlays the pre-operative model over the camera feeds and allows the

user to set the opacity of the overlay using a slider at the bottom of the window.

In addition, the renderings in the third tab add a texture to the rendered model.

For this texture, the results of the tumor search are turned into a heat-map image

representing relative stiffness in a user-specified ROI (see Fig. 10-9(c)). This ROI is

defined in 2D UV texture coordinates that represent a correspondence between pixels

on a 2D image to 3D coordinates on the surface of the polygonal mesh. The heat-map

image is broadcast over ROS and overlaid onto the pre-operative model’s 2D texture

image resulting in dark marks in high-stiffness areas while preserving texture details

found in the preoperative model’s original texture (see Fig. 10-9(c)). This 2D texture

is then applied to the polygonal mesh using the UV map, resulting in a 3D overlay of

the stiffness map onto the video feed from each camera. Fig. 10-10 shows the stiffness

maps at various stages of probing, dynamically overlaid on the registered model of

the organ. Note that the stiffness map clearly reveals the location and shape of the

tumor which is shown in the middle row of Fig. 10-5.
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(a) (b) (c)
Figure 10-10: The figures show the augmented stiffness map at various stages of
probing. The high stiffness regions are shown in darker shades of blue, while the low
stiffness regions are in lighter shades of blue.(a) Result after a single probe, (b) result
after 4 probings, (c) result after 10 probings.

10.5 Experiments and Validation

In this section, we validate our system through experimentation on various phantom

models. In addition to the experiments performed on the silicone prostate phantom,

an experiment was performed on a custom fabricated flat silicone organ embedded

with plastic inclusions to mimic stiff tumors. We used the dVRK robot with the

organ placed on a force sensing plate fitted with a commercial force sensor created

by ATI to generate the ground truth stiffness maps.

Upon generating the ground truth stiffness maps using a raster scan pattern with

a high density of probed points, the silicone organs were registered and probed using

the registration and search methods described in Sec 10.4. It is worth noting, that

unlike Yamamoto et. al. [256], we do not assume the flat organ is pre-registered. We

estimate the registration from the stereo-camera and use the estimated registration

for the overlay. Also the force sensing plate is only for ground truth stiffness mapping.

For the actual experiments, we use the miniature force sensor shown in Fig. 10-2. The

resulting stiffness maps, as well as a comparison of how the maps appear when overlaid

in our GUI, can be seen in Fig. 10-11 and 10-12. These figures show that our system

is able to capture the position and size of the tumors with far fewer probed points in

a fraction of the time taken to generate the dense stiffness map1. Fig. 10-13(a) and

1The experiments with our system took a total of 3 minutes to execute as opposed to the raster
scan that took upwards of 90 minutes.
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Figure 10-11: Experiments on the flat silicone organ. (a) The ground truth stiffness
map. (b) The stiffness map as estimated by our system. The probed locations are
shown by blue dots. (c) The ground truth stiffness map overlaid on top of the phantom
organ. (d) The estimated stiffness map overlaid on top of the phantom organ. The
stiffness maps are shown in the space of the UV map. The x and y range for ground
truth and estimated stiffness maps are the same.
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Figure 10-12: Experiments on the phantom prostate. (a) The ground truth stiffness
map. (b) The stiffness map as estimated by our system. The probed locations
are shown by blue dots. (c) The ground truth stiffness map overlaid on top of the
phantom organ. The stiffness maps are shown in the space of the UV map. The x
and y range for ground truth and estimated stiffness maps are the same. (d) The
estimated stiffness map overlaid on top of the phantom organ.
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Table 10.2: Accuracy, recall and precision of estimated stiffness maps
Accuracy (%) Recall (%) Precision (%)

Prostate 98.08 82.04 85.77
Flat organ 88.50 92.11 72.21

(b) show the front and back view of the phantom prostate with the overlaid image

of the estimated stiffness along with the surface normals at the locations the organ

was probed. As is evidenced by this figure, our system is capable of probing and

overlaying the image on a non-flat highly curved organ.

Figure 10-13: The prostate model with overlaid stiffness map. The surface normals
at the various probed locations are shown by the green arrows. (a) Front view (b)
Back view.

Table 10.2 shows the precision, accuracy and recall of the estimated stiffness maps

when compared to the ground truth. Precision, accuracy and recall are popular met-

rics to compare performance of regions-of-interest detection problems and have been

used to compare stiffness maps in literature [138]. The results show that the shape

and location of tumor as estimated by our approach is accurate and closely matches

the ground truth. Although the exact shape of the tumors is not perfectly captured

for the case of the flat organ, the resulting map is more than enough to show the

user where the tumors are located. The RMS error in the stiffness estimation for the

prostate phantom is 18.71 N/m and for the flat organ is 40.09 N/m, which is sufficient

for a surgeon to differentiate tumor from tissue as noted by Chalasani et. al. [111, 112].
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10.6 Discussions and Future Work

In this chapter, we presented a system that unifies autonomous tumor search with

augmented reality to quickly reveal the shape and location of the tumors while visually

overlaying that information on the real organ. Our system is capable of probing highly

curved organs as well as tracking the movement of the organ that may be caused by

the forceful interaction with the tissue. This has the potential to reduce the cognitive

overload of the surgeons and assist them during the surgery. Our system demonstrates

promising results in experimentation on phantom silicone organs.

While we demonstrate the task of stiffness mapping in this chapter, our system

can be used to visually overlay pre-surgical plans, ablation paths, annotate important

landmarks, etc. to aid the surgeon during the procedure. In our future work we plan

to account for large deformations of the organ and update the model accordingly.

We plan to utilize computationally fast approaches to segment the dVRK tools from

the images and avoid any obstructions to the overlaid stiffness map. Furthermore,

as demonstrated by other researchers in this field, we believe a hybrid force-position

controller can result in more accurate probing and hence better stiffness estimation.

Finally, we plan to perform experiments on ex-vivo organs and carry user studies to

asses the efficacy of the system in a realistic surgical setting.

10.7 Contribution

This is a capstone chapter describing how the various contributions of the previous

chapters can be combined into a single system.

10.8 Published work

Material from this chapter has appeared in the following publications

1. Nicolas Zevallos, R. Arun Srivatsan, Hadi Salman, Lu Li, Jianing Qian, Saumya

Saxena, Mengyun Xu, Kartik Patath and Howie Choset, “A Real-time Aug-

298



mented Reality Surgical System for Overlaying Stiffness Information”, condi-

tionally accepted to the Robotics: Science and Systems (RSS), June 2018.

2. Nicolas Zevallos, R. Arun Srivatsan, Hadi Salman, Lu Li, Jianing Qian, Saumya
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Vancouver, BC, Canada.
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ing for active search of tissue abnormalities in robotic surgery”, In the pro-
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Chapter 11

Discussions and future work

11.1 Summary of Contributions

This thesis developed a probabilistic framework for pose estimation which considers

the problem in its most general form. We use dual quaternions and a mini-batch of

measurements selected from the measurements available thus far, to develop a linear

update model. We use results from stochastic filtering theory to derive the uncertainty

in the linear model. Further, we develop a Bayesian filter for pose estimation that

uses a combination of Bingham and Gaussian distributions to model the uncertainty

in the rotation and translation parameters respectively. Our approach can use posi-

tion, surface-normal and pose measurements. When the correspondence between the

measurements and the model is known a priori, our approach guarantees global opti-

mality. When the correspondence is unknown, our approach is only locally optimal.

However, we develop a probabilistic approach that uses the state-uncertainty and the

innovation of the filter to help escape local minima and increase the basin of conver-

gence. Further, we also demonstrate a probabilistic approach for registration as few

as twenty sparse point measurements. Finally, we presented a framework that uses

probabilistic reasoning to estimate optimal registration using point measurements.

This framework, unifies most of the existing literature on point-set registration and

further provides suggestions to improve some of the existing methods.
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11.2 Directions for Future Work

11.2.1 Globally optimal registration considering uncertain-

ties

In Chapter 9, we presented an objective function in terms of pose parameters and

uncertainties in pose and measurements (See Eq. 9.8). We also show that our objective

function generalizes the objective function used by other global registration methods

such as Go-ICP [18], and the works of Izatt et. al. [20], Horowitz et. al. [68] and

Maron et. al. [69].However, it is worth noting that there is no prior work on globally

optimal registration, to the best of our knowledge, that considers uncertainties in the

prior pose parameters or sensor measurements. Since we have evidence from Chapter 6

and Chapter 9 that introducing uncertainties changes the objective function and shifts

the global minimum to a different set of pose parameters; it is critical to consider them

in the objective function. Therefor two future directions to pursue could be

1. Consider the objective function in Eq. 9.8, and reformulate it in a manner that

we can use a branch-and-bound method similar to Go-ICP or perform convex

relaxation in a manner that will allow us to use mixed integer optimization

similar to Izatt et. al. [20].

2. Relax a key assumption that prior works on global registration make, i.e. each

sensor point is matched to only one point in the model. We already have evi-

dence from Chapter 9 that probabilistic matching provides improved estimates.

While we do realize that the resultant formulation would still be time consuming

(as are all the other global registration approaches), we expect our formulation to

produce more accurate results due to the consideration of uncertainties. Furthermore,

in some applications such as photogrammetry [268] and offline 3D scanning [269],

higher accuracy may be a requirement over real-time computation capabilities.
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11.2.2 Dynamic pose estimation

This thesis focused on estimation of static poses. While Chapter 6 explored pose

tracking by repeatedly applying static pose estimation, no process model was used.

It is clear that if one were to use a process model that described the motion of the

object, then the resultant filter may no longer be linear (unless the process model

is exactly linear in the state). To deal with a nonlinear process model, one may

resort to using an ensemble filter [270] or an unscented filter in the space of dual

quaternions. It will be interesting to observe if (a) we can make approximations such

as linearization or deterministic sampling to make state updates in the space of dual

quaternions, and (b) compare if the approximations introduced still produce better

results than using an IEKF or UKF with Euler angles and Cartesian coordinates.

11.2.3 Estimating multiple constrained poses

In applications such as human pose estimation [271], multi-object manipulation [272],

reconstructing broken objects [273], etc. we need to find the pose of multiple objects

that are constrained with respect to each other. While a naive approach to do so

would be to run multiple pose estimators independently, a more efficient approach

would be to use the estimate pose of one object to constrain the pose of the others.

While there have been some deterministic approaches to incorporate the relative pose

constraints in literature such as reassembly of broken objects by Huan et. al. [273],

globally optimal point registration method of Izatt et. al. [20], and construction of

multi-component shape models by Chintalapani et. al. [274, 275], we are not aware of

any probabilistic approach that would consider sensor noise. One approach could be

to segment the sensed point clouds and set up a mixed integer optimization with the

integer variable assigning each segmented point cloud to an object model. Another

approach could be a hierarchical approach that first registers the biggest object first

and then removes the measurements corresponding to that object from the point

cloud and continues with registering the next object.

303



Figure 11-1: Left shows a Kent distribution from which x is sampled from. Right
shows the distribution of Ax.

11.2.4 Improving the choice of probability density functions

when using surface-normal measurements

When dealing with surface normal measurements, a Kent distribution is a good way to

describe the uncertainty. The Kent distribution is unimodal and is defined on a unit-

sphere, satisfying the unit norm constraint of a surface-normal. The Kent distribution

has been used to model uncertainty in surface normals by Billings et. al. [25, 185, 276,

221]. In this thesis we use Kent distribution to model the uncertainty in the surface

normal in Chapter 6, but use an approximate upper bounded Gaussian distribution

for estimating the uncertainty in the linear update model. We do this because, if

a variable x has a Kent distributed uncertainty, then a linear mapping Ax does

not have a Kent distributed uncertainty (see Fig. 11-1), unlike the case where x has

Gaussian distributed uncertainty. We however, do observe that the uncertainty inAx

is described by a unimodal on an ellipsoid. One way to avoid using an approximate

Gaussian distribution and continue using a Kent distribution is by modeling the

uncertainty in the linear update model using a distribution such as the one described

by Parry et. al. [277]. Another approach could be to use an unscented filtering over

the unit-sphere similar to the approach of Gilitschenski et. al. [54].
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11.3 Frequently Asked Questions

1. We have ICP. Why do we need any other registration method at all?

ICP is a very easy to implement method for registration and it works surpris-

ingly well in most applications. Therefore it makes sense to choose ICP as the

first registration method to try in any new application. However, as pointed

out by this thesis, ICP is merely a locally optimal approach that too when the

sensor noise is isotropic. When the noise in the model or the measurements

are anisotropic or when there exists some prior uncertainty in the registration

parameters, ICP will not produce accurate results as the assumptions that ICP

makes do not accurately depict the scenario. A better approach would be to use

an objective function that considers the anisotropy and also uses all the available

prior information to make an accurate estimation of the pose. Another related

scenario where ICP would perform poorly is described in the answer to FAQ 12.

Furthermore, if we were to implement the probabilistic framework developed in

this thesis, then depending up on the scenario, we would automatically end up

with the most optimal objective function to be minimized. This includes the

ICP when the prior is unknown and noise is isotropic.

2. What is the difference between registration and pose estimation?

Pose estimation is a general problem of finding an element of SE(3). Registra-

tion is a specific pose estimation problem in which one needs to find the pose

between a set of points (or points and surface normals) and a model (which

may be composed of points and normals). Typically in registration problems

one does not have the knowledge of correspondence between the measurements

and the model.

3. Why not simply use deep learning?

In the recent years, deep learning has gained widespread popularity in pose

estimation applications [41, 37, 42, 43, 44, 45, 46, 36, 37]. However, one needs

to be cautious when using deep learning methods as they typically need a large

repository of labeled datasets, which may be easily available when it comes to
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applications such as manipulating IKEA furniture [37] or finding pose of humans

for gaming [271], etc. but not so easy when it comes to medical applications.

Deep learning approaches do not provide bounds on the estimated pose and

they often use an ICP in the last step, initialized with the output of the learn-

ing method. We advocate for using our probabilistic approach in the last step

of the learning method instead of ICP. Further, in medical applications where

accuracy and boundedness are critical, a model-based approach such as ours

would provide more confidence to the user as opposed to a black-box optimiza-

tion such as a deep learning approach.

4. When to choose a probabilistic approach over a deterministic ap-

proach? Or should we always choose a probabilistic approach?

Deterministic approaches can be thought of as a special case of probabilistic

approaches. When the uncertainties in the probabilistic approach diminishes to

zero, we converge onto a deterministic approach. However, if there exist noise

in the sensor measurements, but we do not know the magnitude of that noise,

then using a probabilistic approach with a wrong noise uncertainty can produce

results that are worse compared to a deterministic approach with no noise. The

same is true for a wrong prior as well. A bad prior can be worse than using no

prior at all. Thus, it is recommended that deterministic methods be used when

a good estimate of the noise uncertainties is not present. If a good estimate of

the noise uncertainties is present but nor prior is present then MLE methods

are recommended over MAP (see Chapter 9 for more discussions).

5. What are some real-world scenarios, where heuristic information can

be used in addition to sensed point and normals for pose estimation?

It is an important observation that in many real-world scenarios, heuristic in-

formation is indeed present and it is important to use that information in an

appropriate manner to improve the pose estimation. Here are some examples

where heuristic information can help improve the pose estimation – (i) When

using stereo-vision for 3D reconstruction, we obtain color information in ad-
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dition to point cloud. If we use the color intensity in addition to the point

location for correspondence, we can easily eliminate a large number of incorrect

correspondences and improve the estimation [278]. (ii) For manipulating ob-

jects on a table top [279], we can first use RANSAC to fit a plane and estimate

the surface normal direction (z) to the table top and then set the prior pose

uncertainties to be small in translation along z and rotation along x and y. (iii)

When using a Kinect for structure from motion indoors, we can use heuristic

knowledge that there would exist plane walls and floors and detect them using

RANSAC and use their corners and edges for correspondence [280]. (iii) When

performing contact-based localization to a surgical organ, one can use anatom-

ical segments to restrict the possible point correspondences and improve the

pose estimation [70]. (iv) For laser scanning applications, we have heuristic

knowledge that there are no obstacles present between the scanner and the ob-

ject and thus the point cloud obtained would have very few outliers and would

be a connected set. This allows us to use scale-invariant feature matching such

as [27].

6. Why does this thesis not consider heuristic information in pose es-

timation?

The focus of this thesis was to demonstrate ideas in generic setting with no help

from heuristic knowledge. Not having heuristic information in a more challeng-

ing scenario and demonstrating the ideas to work in such a scenario only helps

convince ourselves that the results would improve when using heuristic informa-

tion. The major influence would be in the correspondence step and in setting

up of the prior uncertainties.

7. Some of the formulations appear difficult to implement or potentially

time consuming. Is it worth the time and effort to understand, and

continue further development on these lines, instead of using simpler

and faster implementations which might compromise a little on the

accuracy?
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This thesis aims to advance our understanding of pose estimation, provide a

framework to unify existing methods and help decide the best approach for

a given problem. This indeed comes at the cost of increased complexity of

formulations. However, the complexity is complemented by improved accuracy

in the estimates. Further, the formulations provide probabilistic estimates,

which means in addition to finding the best pose, we also provide uncertainty

in the pose which can further be used to guide collection of future measurements

and provide bounds to help decide when to stop collecting measurements. If

the application does not need highly accurate pose estimates or uncertainty

information, it may still be meaningful to use our approach due to its wider

basin of convergence.

8. If pose estimation is ultimately an optimization problem, then why

do we not use a global optimization method and call it a day? What

is the advantage of putting efforts into reformulating the problem and

reposing the problem in different ways?

Pose estimation is indeed a nonconvex optimization problem and using a global

optimizer should help find the best pose. However, there are two aspects which

are important to note– (i) The correct objective function should be used for

optimization. For example, the one used by Go-ICP [18] does not explicitly

reason about correspondence, the one used by Izatt et. al. [20] improves upon

Go-ICP but does not consider sensor noise, the one used by Gelfand et. al. [27]

uses curvature information which may not be available in all cases. (ii) Global

optimizers are often computationally expensive and pose difficulty to use in

real-time applications [18, 20].

9. There exist prior works such as Faugeras et. al. [60] and Walker et. al.

[61] which use linear models for finding the pose. How are the linear

models in this work different?

Faugeras et. al. [60] decouple orientation from translation and develop a linear

model in terms of unit quaternion. Walker et. al. [61] use dual quaternions to
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parameterize the pose and derive a linear equation in terms of rotation quater-

nion. They then substitute the value of the calculated rotation quaternion to

obtain translation. While both these approaches appear very similar to our ap-

proach, the key differences are – (i) These models do not consider sensor uncer-

tainty or prior pose uncertainty. Incorporating the uncertainties while retaining

the linear structure of the model in an important contribution of this thesis.

This was possible because of modeling uncertainty in unit quaternions using

a Bingham distribution and using results from stochastic filtering theory (see

Prop 1). (ii) Both [60] and [61] are batch processing methods. Which means,

when dealing with online pose estimation applications, these methods can be

repeatedly applied on a batch of measurements obtained thus far. However, we

observe in Chapters 6, 9 that such an approach does not produce good results.

On the other hand, our approach updates pose and uncertainties, and produces

accurate estimates because the information from the previous measurements are

‘baked’ into the state uncertainty. Finally, our approach becomes identical to

both [60, 61] when the model uncertainty is zero, there is no prior uncertainty

and the sensor uncertainty is isotropic.

10. How are the ideas presented in this thesis different from prior prob-

abilistic approaches such as IMLP of Billings et. al. [23] and filtering

approaches [5, 6, 64]?

A key difference between IMLP and our approach is that our approach is a

maximum a posteriori estimate (MAP) while IMLP is maximum likelihood es-

timate (MLE). IMLP does not explicitly consider prior pose uncertainty in its

formulation, which our approach does. In order to account for errors in cor-

respondence due to wrong pose estimates, IMLP incorporates a term called

“match uncertainty” in the noise uncertainties. This is a dynamic term that

adapts to the level of misalignment in the shapes being registered, and hence in

a sense is similar to an isotropic pose uncertainty. Chapter 9 shows the benefit

of considering prior pose distribution. Furthermore, similar to the answer to
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the previous question, IMLP is a batch processing method and repeatedly using

IMLP for online estimation produces poor results. Furthermore the methods

developed in Chapter 7, 8 help deal with escaping local minima solutions and

using a small number of sparse point measurements for pose estimation. These

approaches require state uncertainty estimate which is not present in IMLP.

The filtering-based approaches such as [5, 6, 64] are MAP estimates similar

to ours, however, their update models are nonlinear and require linearization

or higher order approximations. These approximations introduce errors in the

estimate and can even lead to divergence due to initialization errors.

11. What are the benefits of the methods shown in Part III, compared

to using a global optimizer to overcome local minima?

In Part III we use the state uncertainties to develop approaches that can avoid

local minima and explore the space for global optimum. This approach can

be thought of as a global optimization in itself. The key difference between

our approach compared to a conventional global optimizer such as genetic al-

gorithm, particle swarm optimization, etc., is that our approach explicitly uses

state uncertainty to guide the exploration and exploitation, while conventional

methods do not. Using uncertainty information to guide the search for optima

allows results in fewer parameters to tune and faster convergence as shown by

the results in Chapter 7.

12. Lets consider an example where there are two sources of measure-

ments. One is accurate and the other is very noisy. Is there any

benefit to using the noisy measurements at all or should we estimate

the pose only using the accurate measurements?

In general if using an accurate sensor provides sufficient information for the

pose estimation, then we can ignore the noisy sensor all together, as we would

need lesser processing and computation resources. However, redundancy does

have its benefits. In some cases, the noisy sensor may provide complementary

information, for example, a noisy force sensor can provide surface-normal infor-

310



mation which could complement an accurate position sensor. Or a noisy camera

looking at the object from a point of view different from that of an accurate

camera can provide information that would be hidden from the view of the

second camera. This information even though noisy can greatly improve the

pose estimate. Even if both the sensors are providing similar information, using

information from both can benefit the system in case the accurate sensor mal-

functions. Setting the sensor uncertainties appropriately will ensure that while

updating the pose, the contribution of the accurate sensor is weighed higher

than the contribution of the inaccurate sensor as dictated by the ratio of the

uncertainties. However, if one were to use registration approaches that do not

consider sensor noise (such as ICP), then the results can be affected greatly by

using measurements from the noisy sensor, as opposed to not using them at all.
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.1 Appendix 1

Proposition 1. Let us consider b ∈ Rm and c ∈ Rn which are samples obtained

from Gaussian distributions, N (0,Σb) and N (0,Σc) respectively. Let x ∈ Rl be

obtained from a Gaussian distribution, N (µx,Σ
x). Let h ∈ Rn, and a linear matrix

function G(·) : Rl → Rn×m, such that h = G(x)b + c. Assume that x, b and c are

independent. Then Σh is given by

Σh = G(µx)ΣbGT (µx) +N (Σb ~ Σx)NT + Σc, (1)

where ~ is the Kronecker product, Σ{·} is the uncertainty associated with {·} and

N ∈ Rn×lm is defined as follows

N , [G1 G2 · · · Gm]. (2)

Gi ∈ Rn×m is obtained from the following identity,

Gix = G(x)ei,

where ei is the unit vector in Rm with 1 at position i and 0 everywhere else. We now

use Proposition 1, to find the covariance of h which is defined as h =
∑p

i=1Gi(x)bi

h = G(x)b, where,

G =


G1(x)

. . .

Gp(x)

 , b = (bT1 , . . . , b
T
p )T .

Using Proposition 1 and simplifying, we obtain

Σh =

p∑
i=1

[
Gi(x)ΣbiGi(x)T +N i(Σbi ~ Σx)NT

i

]
, (3)

where N i is obtained from Eq. 2.
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Example .1.1. Let us apply Proposition 1 to find uncertainty associated with h =

G(x)b+ c, where x = (x1, x2)T ∈ R2. Let us assume,

Σb =

 0.7 0.01

0.01 4

 , Σc =

0.7 0.1

0.1 0.2

 , G(x) =

x1 −x2

x2 x1

 ,
µx = (1, 0)T and Σx =

1 0

0 0.1429

 .
From Proposition 1, we obtain

Σh =

1.4723 0.1100

0.1100 4.2773

 . (4)

In order to verify the accuracy of this covariance, we perform a Monte Carlo experi-

ment. We generate 100,000 samples of x, b and c from their respective distributions.

h is evaluated for each of the samples. We then find the covariance of the resulting

samples of h. The calculated covariance is

Σh
MC =

1.4741 0.1081

0.1081 4.2757

 . (5)

Note that Σh
MC is similar to Σh.

Example .1.2. Let us apply Proposition 1 to find uncertainty associated with h =

G(x)b + c, where x = (x1, x2)T ∈ R2, and |x|=1. Let us assume, the same values

for all parameters, except Σx. Since x is constrained to have a unit norm, we obtain

x from a Bingham distribution, B(M ,Z) (instead of a Gaussian as in the previous

example). Since the Bingham distribution is a Gaussian distribution with a unit norm

constraint as shown in Sec. 2.5 and Fig. 2-3, we demonstrate with an example that

Proposition 1 is valid even when x is obtained from a Bingham distribution instead

of a Gaussian.

LetM = I2×2 and Z = diag(0,−30). We first perform a Monte Carlo experiment

with 100,000 of x, b and c obtained from their respective distributions. h is evaluated
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Figure -2: PDF contours obtained from the covariance estimated using Proposition
1. The black points are samples of h = G(x)b + c obtained from 100,000 Monte
Carlo simulations. (a) Z = diag(0,−30) (b) Z = diag(0,−3).

at each of these samples and are plotted as shown in Fig. -2. Notice that the points

are distributed in the form of a Gaussian. The mean of the points is (0.005, 0.016)T

and covariance is

Σh
MC =

1.4551 0.1263

0.1263 4.1624

 . (6)

From Eq. 2.25, Σx = −0.5
(
M (Z + λI)MT

)−1
. Depending on the value of λ

chosen, the value of Σx changes. We observe that choosing λ = min(zi) results in a

conservative estimate for the covariance. The estimated covariance is

Σh =

1.4450 0.1101

0.1101 4.2725

 . (7)

Σh
MC and Σh are in good agreement with each other. Fig. -2(a) shows PDF contours

for the estimated Σh and the samples from the Monte Carlo simulation. We repeat

this experiment for Z = diag(0,−3). The PDF contours as well as 100,000 points

obtained from Monte Carlo simulation as shown in Fig. -2(b). Note how the estimated

PDF accurately describes distribution of the point samples obtained from Monte Carlo

simulation.
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.2 Appendix 2

Estimating the likelihood of obtaining t

From Eq. 6.7,

t̃ =
(ã1 + ã2)

2
− q̃ � (b̃1 − b̃2)

2
� q̃∗, (8)

=ãc − q̃ � b̃c � q̃∗, (9)

⇒t̃� q̃ = ãc � q̃ − q̃ � b̃c,

⇒F 2(q̃)̃t = F 2(q̃)ãc − F 1(q̃)b̃c, from Eq. 2.11

⇒W 1t = W 1ac −W 2bc, (10)

where W 1,W 2 ∈ R4×3 are the last three columns of F 2(q̃) and F 1(q̃) respectively.

From Sec. 6.2.1, asi = ai + δai and bsi = bi + δbi. Substituting these terms in

Eq. 10 gives

W 1t−W 1a
s
c +W 2b

s
c +G2(q̃)µ = 0,

where µ = (δa1, δa2, δb1, δb2)T and

G2 =
1

2

[
W 1 W 1 −W 2 −W 2

]
As observed earlier in the case of estimation of q̃, G2(q̃)µ is a zero mean Gaus-

sian noise, N (0,R), where the uncertainty R is obtained analytically similar to the

evaluation of Q from Proposition 1.
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