
Probabilistic-Cost Enforcement of Security
Policies in Distributed Systems

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical & Computer Engineering

Ioannis (Yannis) Mallios

B.Sc., Informatics, Athens University of Economics & Business
M.Sc.. Information Security, Carnegie Mellon University

M.Sc., Electrical & Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

December, 2016

Copyright ©2016 Ioannis Mallios
All rights reserved

iv

Acknowledgments

First of all, I thank my advisor Lujo Bauer. Lujo has been a great advisor in all

aspects of graduate school, always happy to listen to, answer questions, and discuss

research ideas. Without his help, guidance, and patience, this dissertation would not

be possible.

In addition, I would like to thank the members of my committee: Anupam Datta,

Jay Ligatti, and Dilsun Kaynar. I had the pleasure to interact and work with them

since the beginning of my PhD. Our collaboration on parts of this research, their

insights, guidance, and their feedback on improving this thesis have been invaluable.

Next, I thank Fabio Martinelli and Charles Morisset for being great collaborators

and co-authoring papers that are part of the material included in this thesis.

I would also like to thank the members of Lujo’s research group. They have been

great colleagues, and they have provided constructive feedback in many drafts of

papers and presentations.

I thank my close friends, whom I consider family, Thanasis Avgerinos, Nektarios

and Jill Leontiadis, Elli Fragkaki, Eleana Petropoulou, Vicky Theodoreli, and Ryan

Shaw. They have been wonderful friends and they have made graduate life much

easier.

I would like to thank John Poulakos and his family, who have been extremely

supportive since the first day I came to Pittsburgh.

I thank my family: my father Tasos, my mother Maria, and my brother Sotiris.

Without them, their unconditional love, support, understanding, and patience, grad-

uate studies would not have been possible.

Last, but definitely not least, I want to thankAshley. She has been extremely kind,

understanding, supportive, and very patient, especially during the last few hectic and

stressfull months. I am extremely grateful to have her in my life.

This work was partially supported by NSF grants CNS-0716343, CNS-0742736,

CCF-0917047, and CNS-0917047; by Carnegie Mellon CyLab under Army Re-

searchOffice grant DAAD19-02-1-0389, by EUFP7 projects NESSoS and SESAMO,

by H2020 EU NeCS, by MIUR PRIN Security Horizons, and by the Army Research

Laboratory under Cooperative Agreement Number W911NF-13-2-0045 (ARL Cy-

ber Security CRA). The views and conclusions contained in this document are those

of the author and should not be interpreted as representing the official policies, either

expressed or implied, of the Army Research Laboratory or the U.S. Government.

vi

Abstract

Computer and network security has become of paramount importance in our ev-

eryday lives. Cyber attacks can lead to a wide range of undesirable situations ranging

from breaches of personal information and confidential data to loss of human lives.

One way to protect computer and network systems is through the use of technical

(i.e., software and hardware) security mechanisms, such as firewalls and Intrusion

Detection Systems (IDSs).

Previous work has introduced formal frameworks that can be used to model such

technical security mechanisms. Such formal frameworks help us: (1) understand

the fundamental limitations of security mechanisms, (2) verify the correctness of the

design of security mechanisms, and (3) efficiently design secure systems.

While these frameworks provided an important first step for the modeling of

security mechanisms and the analysis of their enforcement capabilities, they were

able to model only individual security mechanisms and they could not be used to

compare the cost of different monitoring designs.

In this thesis we present formal frameworks for modeling and reasoning about

a larger class of security mechanisms and enforcement scenarios than previous re-

search. We demonstrate how our frameworks can be used to model different types

and architectures of security mechanisms, both for centralized and distributed sys-

tems (e.g., IDSs and distributed IDSs). We use our frameworks to identify and prove

new lower and upper bounds of the enforceable security policies by security mecha-

nisms.These results extend the list of bounds of enforceable security policies identi-

fied by previous research and broaden our understanding of fundamental limitations

of the enforcement capabilities of security mechanisms. Finally, we demonstrate

how to compare the expected cost of different designs of security mechanisms.

viii

Contents

1 Introduction 1

1.1 Dissertation Structure and Contributions . 11

2 Target-aware Enforcement 15

2.1 Introduction . 15

2.2 I/O Automata . 20

2.3 Specifying Policies, Targets, and Monitors . 25

2.3.1 Modeling Targets and Monitors with I/O automata 25

2.3.2 Modeling Monitoring Decisions with I/O automata 29

2.3.3 Security Policies . 32

2.3.4 Security, Truncation, Suppression, and Edit Automata 33

2.3.5 Translating Security and Edit Automata to I/O automata 35

2.3.6 Discussion . 39

2.4 Policy Enforcement . 41

2.4.1 Enforcement . 41

2.4.2 Comparing Enforcement Definitions . 46

2.5 Generally Enforceable Policies . 56

2.5.1 Auxiliary Definitions . 56

ix

2.5.2 Upper Bounds of Enforceable Policies 58

2.5.3 Lower Bounds of Transparently Enforceable Policies 62

2.6 Target-specifically Enforceable Policies . 67

2.7 Related Work . 77

2.8 Conclusion . 82

3 Distributed Enforcement 83

3.1 Introduction . 83

3.2 Differences Between Centralized and Distributed Systems 87

3.3 Multi-step and Distributed Attacks . 92

3.3.1 Multi-step Attack Specification Using Preconditions and Postconditions . 96

3.3.2 Theoretical and Practical Limitations of Attack Detection Using State-

transition-based Signatures . 100

3.4 Asynchronous Enforceability . 102

3.4.1 Definitions . 102

3.4.1.1 Modeling Distributed Systems 102

3.4.1.2 Modeling Monitored Distributed Systems 104

3.4.1.3 Policies and Enforcement . 106

3.4.2 Reduction to Decomposability . 110

3.4.3 Basic Decomposition . 113

3.4.3.1 Deterministic Automata . 114

3.4.3.2 Non-Deterministic Automata 122

3.4.4 A Blueprint for Decomposition Algorithms 130

3.4.5 Transformation of Global Monitors to Distributed Monitors 137

3.4.5.1 Input reordering automata . 137

x

3.4.6 Transformation of Distributed Monitors to Distributed Shared Memory

Monitors . 145

3.4.6.1 Asynchronous Shared Memory 146

3.4.6.2 Monotonicity . 151

3.4.6.3 Input Reordering and Causality Assumptions 158

3.4.6.4 Algorithms for TransformingDistributedMonitors toDistributed

Shared Memory Monitors . 161

3.4.7 Transformation of Distributed Shared Memory Monitors to Distributed

Message-Passing Monitors . 168

3.4.7.1 Atomic Objects . 169

3.4.7.2 Substitution of Shared Variables by Atomic Objects in Dis-

tributed Shared Memory Monitors 172

3.4.7.3 Transformation from the Shared Memory Model to the Net-

work Model . 173

3.5 Synchronous Enforceability . 176

3.5.1 Background (Synchronous Networks) 177

3.5.2 Decentralize Monitors in Synchronous Networks 178

3.6 Hierarchical Enforceability . 182

3.7 Distributed Security Automata . 186

3.8 Related Work . 190

3.9 Conclusions . 195

4 Probabilistic-Cost Enforcement 197

4.1 Introduction . 198

4.2 Background . 202

xi

4.2.1 Preliminaries . 202

4.2.2 Probabilistic I/O Automata . 204

4.2.3 Abstract Schedulers . 207

4.2.4 Running Example Modeled Using PIOA 209

4.3 Probabilistic Cost of Automata . 215

4.4 Cost Security Policy Enforcement . 218

4.5 Cost Comparison . 225

4.6 Related Work . 234

4.7 Conclusion . 236

5 Conclusion 237

5.1 Summary of Contributions . 238

5.2 Future Work . 240

Bibliography 245

xii

List of Figures

1.1 Target applications . 3

1.2 Reference monitors . 4

1.3 Partially-mediating monitors . 5

1.4 Monitor that passively mediates traffic through a broadcast channel 6

1.5 A distributed system . 7

1.6 Centrally monitored distributed system . 7

1.7 Decentralized monitoring . 8

2.1 System-call interposition: dashed line shows an input-mediating monitor; solid

line an input/output-mediating monitor. 16

2.2 I/O automata interface diagrams of kernel, application, and monitor 26

2.3 Signature and states of monitor I/O automaton enforcing “no more than n files

open per application” . 27

2.4 Transitions of monitor I/O automaton enforcing “no more than n files open per

application” . 28

2.5 Designs of Intrusion Detection Systems . 30

2.6 Operational semantics of truncation automata 34

2.7 Operational semantics of edit automata . 34

2.8 Operational semantics of suppression automata 35

xiii

3.1 I/O automaton transitions for attack #5. 99

3.2 Decentralized monitoring . 103

3.3 Global enforcement . 107

3.4 Distributed message-passing monitors . 108

3.5 Decomposing centralized automaton given a signature 115

3.6 ApplyingDetComp algorithm to decompose centralized automatonC to automata

D1 and D2 . 117

3.7 Decomposed automata D1 and D2 stepping through trace ib 118

3.8 Decomposing a closed action-deterministic centralized automaton 120

3.9 Applying NonDetDecomp algorithm to decompose non-deterministic centralized

automaton C to automata D1 and D2 . 124

3.10 Decomposed non-deterministic automata D1 and D2 stepping through trace ib . . 126

3.11 First transformation step of the blueprint for decomposition algorithms 131

3.12 Blueprint – Steps to decentralize global monitor 133

3.13 Second and third transformation steps of the blueprint for decomposition algorithms134

3.14 Transition relation of an automaton that is not input reordering 138

3.15 Decomposed automata A1 and A2 of the automaton whose transition relation is

depicted in Fig. 3.14 . 139

3.16 An asynchronous shared memory system (Diagram adopted from Lynch [1]) . . . 147

3.17 Users and shared memory system (Diagram adopted from Lynch [1]) 147

3.18 State transitions as accesses to read-modify-write variables 150

3.19 Transition relation of a centralized automaton A that is not monotone 152

3.20 Decomposed automata A1 and A2 that attempt to simulate automaton A depicted

in Fig. 3.19 . 153

3.21 Transformation of monitor DM to distributed shared memory monitor SM 159

xiv

4.1 TCP transport layer proxies and scrubbers. The circled portions represent the

amount of time that data is buffered. 200

4.2 Diagrams of interposing a Monitor between Clients and Server 209

4.3 Clienti PIOA definition . 210

4.4 State transition diagrams if Client and Server 211

4.5 Server PIOA definition . 211

4.6 MDENY PIOA definition . 212

4.7 Decision Diagrams . 213

4.8 MPROB PIOA definition . 214

xv

xvi

Chapter 1

Introduction

Computer and network security has become of paramount importance in our everyday lives.

Almost on daily basis, we witness a proliferation of attacks that result in breaches of personal

and confidential information, including email addresses and passwords [2, 3, 4], tax informa-

tion [5], bank and credit card accounts [6, 7], Social Security numbers [8, 9, 10], health in-

formation [9, 10, 11], and emails [12, 13, 14]. More recently, documented attacks on vehi-

cles [15, 16, 17], SCADA systems [18, 19, 20, 21, 22, 23], and governments’ servers and net-

works [24, 25] made it clear that computer and network attacks could result in life-threatening

situations. Thus, security scientists and engineers have been trying to develop and deploy mech-

anisms that will protect the systems and networks that we rely on.

Whether we are trying to protect a single file on a device or the traffic on an organization’s

network, we need to define our security goals. A security policy describes what are the behaviors

of the system (or the network) that are, and are not, allowed [26]. Security mechanisms are

methods, tools, or procedures used for enforcing security policies [26]. One of the most prevalent

types of mechanisms used for enforcing security policies are technical security mechanisms (i.e.,

software and hardware), as opposed to, for example, methods such as showing an identification

1

card for credential creation or using physical keys to access certain areas.

Previous work has introduced formal frameworks that can be used for modeling (technical)

security mechanisms [27, 28, 29, 30]. Such formal frameworks are of great significance and

benefit for the following reasons:

1. They can be used to analyze the intrinsic limits of different types of security mechanisms

by characterizing the class of security policies that these mechanisms can enforce. Such a

characterization can lead to a taxonomy of security policies based on mechanisms’ formal

semantics [27], similar to taxonomies in computability and complexity theory [31, 32].

2. They can guide the efforts and choices of systems’ designers in practice: for example,

a security engineer can avoid spending time to design monitors that implement security

policies that are inherently not enforceable; instead, she can focus on either reevaluating

the accepted risk of a weaker security policy, or the potential loss in the usability of the

underlying monitored system.

3. They can be used to (more efficiently) verify modeled security mechanisms which can

lead to systems with high assurance. For instance, when building systems, modifying,

experimenting on, and verifying a model of the system (that ignores some of the details

that are not important to the goals of the analysis) is much easier than experimenting on the

implementation itself [33].

Most of the formal frameworks that were introduced in the past aim to characterize the secu-

rity policies enforceable by a specific type of security mechanisms, namely reference monitors,

or run-time monitors [27, 30, 34]. Reference monitors are programs that are interposed between

an application and the (executing) environment, actively observing (i.e., mediating) the applica-

tion’s1 execution, and taking remedial action when an action of the target is about to violate the

1We will be using the terms application, target application, target, node, and host to refer to the software (and
potentially hardware) that the security mechanism is monitoring.

2

Environment
(e.g., Operating
System)

Application Environment
(e.g., User)

(a) Target application

Environment Application

(b) Target application with single
environment

Figure 1.1: Target applications

predefined security policy. Reference monitors were originally designed to enforce access con-

trol policies on the system’s objects by mediating all requests (i.e., references) users make [35].

Such a situation is depicted in Fig. 1.1a which for simplicity can also be modeled as in Fig. 1.1b2.

Reference monitors are widely implemented and used in systems today. Two typical examples

are depicted in Fig. 2.5: wrapping monitors (Fig. 1.2a) are models of practical implementations

such as software wrappers [37], inlined reference monitors [38], and virtual machines, whereas

traditional monitors (Fig. 1.2b) are models of implementations such as access control mecha-

nisms [39], protocol scrubbers [40], and system call interposition mechanisms [41].

Since the goal of such formal frameworks was to characterize the security policies that run-

timemonitors can enforce, the frameworks were well-suited tomodel scenarios where: individual

monitors that can completely mediate all security relevant actions (i.e., actions that the target

application wants to execute and could potent violate the security policy) enforce security policies

by preventing attacks, i.e., once an attempt to violate the security policy is detected the monitor

either terminates the target application (modeled by security automata [27]) or suppresses the

invalid behavior until the target itself decides to correct it (modeled by edit automata [30]).

Policy enforcement in practice relies on the use of multiple security mechanisms (whichmight

2The original formal frameworks of run-time monitors did not care about whom the application was interacting
with; only the fact that it was interacting with some environment [27, 30, 34, 36]. Typically the environment was
the underlying executing system, and the frameworks did not focus on the interaction between the user and the
application

3

Wrapping Monitor

ApplicationEnvironment

(a) Wrapping monitor

Environment Monitor Application

(b) Traditional monitor

Figure 1.2: Reference monitors

cooperate) whether the policy is enforced on a single computer or a network spanning various re-

mote physical locations. More concretely, to enforce a security policy onemight typically employ

firewalls [42, 43], Network Intrusion Detection Systems (NIDS) (e.g., Suricata [44]), Host-based

Intrusion Detection Systems (HIDS) (e.g., tripwire [45]), Intrusion Prevention Systems (IPS)

(e.g., snort [46]), audit logs, netflow data analysis [47], spam filters (e.g., SpamAssassin [48]),

etc. Next, we discuss two main reasons that security analysts rely on multiple security mecha-

nisms to enforce security policies.

The first reason that a security analyst relies on multiple security mechanisms stems from

the fact that security mechanisms have different capabilities. Thus, the analyst might need to

correlate information from different security mechanisms in order to enforce a security policy.

For example, consider a scenario where we have two different security mechanisms: a network-

based IDS, and web server access logs. The Apache chunked-encoding exploit is an attack where

a successful exploitation does not leave an entry in the server logs [49]. One way to detect the

attack is to analyze network packets looking for evidence of binary data that are followed by a

matching entry at the server logs [49]. If none is found then an alert is raised. Such an attack

could go undetected if either an IDS was not used, or server logs were not maintained. One useful

way that security mechanisms can be classified is along the the following three axes [50]:

1. Vantage: the placement of monitors3 within a network or a distributed system. Due to the

3For the rest of this thesis we will use the terms security mechanism and monitor interchangeably. Whether we
are referring to arbitrary security mechanisms or to the specific class of reference (or run-time) monitors will be clear

4

Environment Monitor Target

(a) Input-mediating monitor

Environment Monitor Target

(b) Output-mediating monitor

Figure 1.3: Partially-mediating monitors

geographical span of systems, and physical limitations of the underlying network architec-

ture, typically security mechanisms are located at specific physical locations and may not

have a complete view of the system. This means that they cannot offer complete coverage

of the network and they can only partially mediate security relevant actions. For example,

if the target (host) is using two different interfaces for its input and output traffic, then traf-

fic could be routed differently for each interface. This means that a security mechanism

monitoring only part of the network might not observe part of the host’s interaction with

the environment, as depicted in Fig. 1.3.

2. Domain: the information the security mechanism can observe and provide (e.g., network

traffic, application logs).

3. Action: how security mechanisms react to traffic they intercept. Mechanisms can: (1)

report, i.e., simply record all traffic they receive (e.g., NetFlow collectors, tcpdump, and

server logs); (2) generate events, i.e., summarize the traffic they receive and produce events

(e.g., an IDS producing an alert when it matches one of its signatures with observed traf-

fic); and (3) control, i.e., mechanisms that can modify or block traffic in addition to sending

events (e.g., IPSs, firewalls, and anti-spam systems). Note that whereas control monitors

must be interposed between entities so that they can control traffic, reporting and event

monitors (e.g., IDSs) may not be: theymight receive information through a broadcast chan-

from the context.

5

Environment Channel

Monitor

Target

Figure 1.4: Monitor that passively mediates traffic through a broadcast channel

nel (e.g., a switch’s spanning port or ethernet), as depicted in Fig. 1.4.

The second reason that multiple security mechanisms are used in practice to enforce security

policies is that correlation of information from these mechanisms can help in identifying attacks

with fewer false positives and negatives by identifying the temporal behavior of attackers. If an

attacker chooses to randomly try exploits on a network (which some worms actually do), then

the detection and defense can be easier (e.g., intercepting a Microsoft IIS exploit for an Apache

web server). Thus, typically, attackers rely on several steps in order to perform their attacks and

remain unnoticed, such as reconnaissance, intrusion, privilege escalation, and goal steps [51].

For example, an attacker might take the following steps to identify if a system is vulnerable to

a Winnuke attack (a DoS attack against the DNS system) [52]: use nslookup to locate the DNS

server, ping the server to check if the service is active, and, finally, scan port 139 (NetBios)

to learn if the Windows system is active. To detect this attack the analyst needs to correlate

information from three different types of logs: DNS, NetFlow, and syslog [52]. It is typical for

such correlation and analysis to happen at a central location. For example, if we are trying to

monitor a distributed system as the one depicted in Fig. 1.5, then a central monitor can mediate

the interaction between the distributed system and the environment (Fig. 1.6a), or even mediate

all communications, including the ones of the system itself (Fig. 1.6b).

However there are two main concerns that have been raised in the past regarding monitors

in central locations: a centralized monitor becomes (1) a single point-of-failure, and (2) over-

whelmed with the amount of data that it needs to collect (communication load to transmit data)

6

Environment

N1

N2

N3

N4

Figure 1.5: A distributed system

Environment

N1

N2

N3

N4

Monitor

(a) Monitored distributed system where a cen-
tral monitor actively mediates the interaction
between the environment and the nodes of the
system

Environment

N1

N2

N3

N4

Monitor

(b) Monitored distributed system where a cen-
tral monitor actively mediates all interactions,
including the ones among the nodes of the sys-
tem

Figure 1.6: Centrally monitored distributed system

and analyze (computational load). Thus, solutions have been introduced in order to achieve better

fault-tolerance, communication efficiency, and computational efficiency. Two main approaches

that have been suggested are hierarchical enforcement and decentralized enforcement.

In hierarchical approaches security mechanisms are organized in a hierarchical fashion. At

the lowest level of the hierarchy each mechanism is responsible for a subset of the nodes on

the network. At this level mechanisms collect data, perform some analysis, and forward the

results to monitors at higher levels which further analyze the data. With such approaches the

goal is to minimize the communication and computation by having some of the monitors do

7

Environment

Environment

Environment

Channel

Channel

Channel

N1

N2

N3

N4

C
ha
nn
el

C
ha
nn
el

C
ha
nn
el

C
ha
nn
el

(a) Distributed system with channels

Environment

Environment

Environment

Channel

Channel

Channel

M1
N1

M2
N2

M3
N3

M4
N4

C
ha
nn
el

C
ha
nn
el

C
ha
nn
el

C
ha
nn
el

(b) Monitored distributed system with decen-
tralized monitors

Figure 1.7: Decentralized monitoring

some work locally. This is a very attractive approach. If networks span over wide physical area

(e.g., a subnetwork in Silicon Valley and another one in Pittsburgh), then monitors operating

in a hierarchical fashion will enforce policies locally at each location, and will only exchange

information if attacks are relevant to both locations.

Decentralized approaches originated from security mechanisms that required co-operation

and coordination (e.g., distributed IDS and distributed firewalls). Security mechanisms are dis-

tributed over the network, operating independently of each other, and collecting and analyzing

data locally. Once a node realizes that this data might be relevant to some other agents, it for-

wards the appropriate information to them so that they can (collaboratively) identify the attack.

For instance, in Fig. 1.7a we see a distributed system with the channels that the system’s node use

to communicate with the environment and with each other. In Fig. 1.7b we see local monitors

8

attached to the nodes, using the underlying network infrastructure to communicate, and cooperate

to enforce the global security policy.

Research goal: Design a formal framework for modeling and analyzing security policies that

is expressive enough to model: (1) a wide variety of common types of security mechanisms, and

(2) distributed systems, networks, and security mechanisms that can communicate and interact.

In addition, the framework must provide the necessary tools that can be used to prove the correct-

ness of monitoring designs and algorithms that manipulate security objects (e.g., algorithms that

decompose a central security mechanism to security mechanisms that collaboratively enforce the

same security policy, as the central mechanism, over a distributed system).

The more expressive a formal framework is the more valuable it can be, as security engi-

neers and analysts can reason about a wider spectrum of practical enforcement scenarios. A

formal framework that allows us to model centralized, hierarchical, and decentralized security

mechanisms has a greater applicability than one that only allows us to model, and reason about,

individual monitors. However, the fact that we can now model and reason about a wider range

of monitoring designs for a single underlying target distributed system, naturally leads to the

same questions that security engineers face in real world: which design is better and should be

implemented?

In practice, the benefits of computer security are weighed against their total cost. Choosing

the design of a security mechanism (e.g., a centralized monitor or a decentralized architecture)

typically reduces to evaluating the cost of each candidate solution. To evaluate and compare each

monitoring design requires to identify the potential threats against that system, the likelihood that

they will occur, the loss of value that that they will incur, and finally the cost of the mechanism

itself. For instance, assume that we want to enforce a security policy over an asynchronous

9

distributed system. A decentralized approach would require the monitors to use some expensive

means of synchronization4. A centralized approach might be a more suitable solution, if the

probability of failure of the monitor is very low.

Research goal: Design a formal framework that is expressive enough to model different de-

signs of security mechanisms, providing the means to model and reason about their expected cost,

and allowing their comparison in an unambiguous and correct manner.

Thesis statement. In this thesis we present formal frameworks for modeling and reasoning

about a larger class of security mechanisms and enforcement scenarios than previous research.

We demonstrate how our frameworks can be used to model different types and architectures of

security mechanisms, both for centralized and distributed systems (e.g., IDSs and distributed

IDSs). We provide lower bounds of enforceable policies by monitors that can be modeled in

our frameworks. We characterize the constraints under which security policies are enforceable

in distributed systems. Finally, we demonstrate how to compare the expected cost of different

monitoring designs.

4Expensive in terms of communication complexity, as we discuss in more detail in Section 3.4

10

1.1 Dissertation Structure and Contributions

The transition from formal frameworks that can model individual (centralized) run-time monitors

to formal frameworks that can model various types of security mechanisms, distributed systems,

and costs of monitoring designs, introduces a number of complexities. For instance, it requires

dealing with issues that are related to modeling enforcement scenarios in more detail (e.g., lift-

ing key definitions of security policies and enforcement in order to deal with partial-mediation

and asynchronous communication, e.g., passively mediating IDSs). It also requires dealing with

issues that stem from the fundamental limitations of distributed systems (e.g., concurrent execu-

tions and partial ordering, lack of a global clock, and non-atomic events).

To deal with these complexities while introducing the key concepts, ideas, and results of

our frameworks, we have taken an incremental approach. In particular, we start by introducing

a formal framework that allows modeling one monitor and one target application that interact

asynchronously (Chapter 2). This allows us to introduce the concepts and key definitions of

enforcement without the (notational and conceptual) complexities of dealing with multiple tar-

gets, monitors, and communication channels. Then, we extend this basic framework to a more

fine-grained framework that allows modeling distributed systems and monitors (Chapter 3). Fi-

nally, we present a more detailed framework than the one of Chapter 2 that allows modeling and

reasoning about the expected cost of monitoring designs (Chapter 4).

More specifically, this thesis extends previous work in three principal ways:

1. We introduce a (basic) formal framework based on Input/Output automata that can be used

to model target applications, various types of monitors (e.g., partially mediating ones), and

the environment that the monitored targets operate (Chapter 2). In particular:

• We show how different monitors (e.g., partially mediating monitors) can be modeled

11

in our framework.

• We extend previous definitions of security policies to support more fine-grained rea-

soning of policy enforcement (e.g., enforcement that requires monitors to enforce the

security policy by modifying traffic).

• We identify a set of lower bounds of policies that are enforceable by monitors that

can be modeled in our framework.

• We demonstrate how to use our framework to derive meta-theoretical results, such

as the comparison of enforcement capabilities of monitors with different monitoring

interfaces (i.e., one monitor can mediate more actions than the other), and the char-

acterization of the class of security policies that monitors can enforce regardless of

their monitoring interface. Such results are of practical importance, because they can

help security engineers make design and implementation choices that lead to more

efficient enforcement solutions.

2. We extend the previous basic framework, by introducing a framework that allows modeling

distributed systems with arbitrary architectures, and distributed monitors (Chapter 3). In

this chapter, we make the following contributions:

• We characterize the security policies that are enforceable in asynchronous and syn-

chronous distributed systems. This characterization is based on an analysis of which

centralized monitors can be simulated by distributed monitors over a target (dis-

tributed) system.

• We provide a blueprint for decomposing centralized monitors to monitors that are

distributed over a network and enforce the same policies as the original centralized

monitors. This blueprint allows us to explore in an incremental way the fundamen-

tal limitations that one has to deal with when decomposing centralized monitors and

12

enforcing policies over distributed systems.

• We present two different decomposition algorithms as instantiations of our blueprint.

• We discuss how our algorithms compare to previous work on decentralizing security

policies, and how our results can be used to explain limitations or design choices in

this work.

• We provide a characterization of the security policies that are enforceable by monitors

that operate in a hierarchical manner. This is an important result, because hierarchical

enforcement is often introduced as an alternative to decentralized enforcement, but the

relation between the two approaches has not been yet formally analyzed.

• Finally, we identify the constraints under which monitors with simple capabilities

(e.g, security automata and insertion automata) can be used in a cooperative manner

to simulate monitors with seemingly more capabilities (e.g., suppression automata

and edit automata)

3. Finally, we introduce a formal framework based on Probabilistic Input/Output automata

that enables us to formally reason about the cost of different monitoring designs (Chapter

4). In particular:

• We introduce the concept of abstract schedulers which allows fair comparison of

systems, where a policy is enforced on a target by different monitors.

• We define cost security policies and cost enforcement, richer notions of (boolean)

security policies and enforcement. Cost security policies assign a cost to each trace,

allowing a richer classification of traces than just good or bad. We also show how to

encode boolean security policies as cost security policies.

• Finally, we show how to use our framework to compare monitor’s implementations

13

and we identify the sufficient conditions for constructing cost-optimal monitors.

Some of these contributions were first presented in a workshop paper written in collaboration

with Lujo Bauer, Dilsun Kaynar, and Jay Ligatti [36] (Chapter 2), and in a series of workshop

and journal papers written in collaboration with Lujo Bauer, Dilsun Kaynar, Fabio Martinelli,

and Charles Morisset [53, 54] (Chapter 4). The author of this thesis is the primary author of all

these papers.

14

Chapter 2

Target-aware Enforcement

2.1 Introduction

Today’s computing climate is characterized by increasingly complex software systems and net-

works facing inventive and determined attackers. Hence, one of the major thrusts in the software

industry and in computer security research is to devise ways to provably guarantee that software

does not behave in dangerous ways or, barring that, that such misbehavior is contained and miti-

gated. Example guarantees for program behavior include: only accessing memory that has been

allocated to them (memory safety); only jumping to and executing valid code (control-flow in-

tegrity); using no more than 10 MB of storage and 10 KB/sec network bandwidth for grid use

(resource allocation); and never sending secret data over the network (a type of information flow).

As discussed in Section 1, a common mechanism for enforcing security policies on untrusted

software is run-time monitoring. Run-time monitors observe the execution of untrusted applica-

tions or systems and ensure that their behavior adheres to a security policy. This type of enforce-

ment mechanism is pervasive, and can be seen in operating systems, web browsers, firewalls, in-

trusion detection systems, etc. An example of monitoring is system-call interposition [37, 55, 56],

15

Untrusted
application

Original
kernel

kernel space

user space

Modified
kernel

Monitor

system
call

allowed
result

allowed
system
call

system
call

result

un-mediated
result

Figure 2.1: System-call interposition: dashed line shows an input-mediating monitor; solid line
an input/output-mediating monitor.

depicted in Fig. 2.1: given an untrusted application and a set of security-relevant system calls, a

monitor intercepts calls made by the application to the kernel, and enforces a security policy by

taking corrective action when a call violates the policy.

There are many ways to implement run-timemonitors in practice; understanding and formally

reasoning about the specifics of their design is crucial. In Section 1 we discussed two dimensions

along which instantiations may differ are: (1) vantage, or the monitored interface: monitors

may mediate different parts of the communication between the application and the kernel; e.g.,

an input sanitization monitor will mediate only inputs to the kernel (dashed lines in Fig. 2.1);

and (2) action, or trace modification capabilities: monitors may have a variety of enforcement

capabilities, from being restricted to just terminating the application (e.g., when the application

tries to write to the password file), to being able to perform additional corrective actions (e.g.,

suppress a write system call and log the attempt)1.

Given the ubiquity of run-time monitors, it is important to minimize the likelihood of subtle

1In this thesis we focus on mechanisms that modify traces of the target application, but not on mechanisms that
directly modify the target application, such as by rewriting.

16

errors both in their design and implementation. Those errors can cause the enforcement mech-

anism to fail, leaving the target vulnerable to attacks. Several problems in the design and im-

plementation of interposition-based mechanisms have been identified [56], including: (1) incor-

rectly replicating kernel functionality in the monitor, (2) race/concurrency conditions (e.g., lack

of synchronization between the monitor and the kernel in copying and interpreting system call

arguments [57]), and (3) modeling a subset of the system call interface [56]. Formal methods are

a useful tool for identifying and preventing such design (and implementation) errors [58].

Several formal models, such as security automata [27] and edit automata [30], have been

proposed to model and reason about monitors and their enforcement capabilities (e.g., whether

themonitors can insert arbitrary actions into the stream of actions that the target wants to execute).

These models have been used to analyze and characterize the policies that are enforceable by the

various types of monitors.

However, such models do not capture many details of the monitoring process that are impor-

tant in practice (as described above), including the monitored interface and concurrency, leaving

scenarios that we cannot formally reason about. In the system-call interposition scenario, for

example, without the ability to model the asynchronous communication among the untrusted ap-

plication, the monitor, and the kernel, it would be impossible to differentiate monitors that can

mediate all security-relevant communication between the application and the kernel (solid lines

in Fig. 2.1) from monitors that can mediate only some of the communication (dashed lines in

Fig. 2.1). Moreover, race and concurrency bugs in the design or implementation of the inter-

position mechanism would not be detectable since such properties fall outside the scope of the

proposed formal models of monitors.

Some recent models allow for more detailed reasoning by modeling bi-directional commu-

nication between a monitor and its environment(e.g., application and kernel). However, they do

not explicitly model the application or system being monitored [59, 60]. Modeling the target ap-

17

plication allows for formal reasoning about important practical cases such as kernel functionality

replication [56]. Moreover, modeling the target and the monitor in the same formalism allows

us to analyze scenarios where a monitor designer creates customized monitors for the specific

components that are monitored. Such monitors that exploit knowledge about the component that

they are monitoring can enforce policies that would not be possible otherwise, i.e., without access

to the target application. For example, a policy that requires that every shared file that is opened

must eventually be released is outside the enforcement capabilities of run-time monitors, because

the monitor does not know what the untrusted application will do in the future [27]. However, if

the monitored application always releases any file that it opens, then this policy can be enforce-

able for that particular application. Such distinctions are often relevant in practice—e.g., when

implementing a patch for a specific type or version of an application—and, thus, there is a need for

formal frameworks to aid in making informed and provably correct design and implementation

decisions.

In this section, we introduce a framework, i.e., a set of definitions, based on I/O automata,

for more detailed reasoning about policies, monitoring, and enforcement. The I/O automaton

model [1, 61] is a labeled transition model for asynchronous concurrent systems. Similar to pre-

vious previousmodels of run-time enforcementmechanismswe use an automata-based formalism

to model asynchronous systems (e.g., the communication between the application, the monitor,

and the kernel). Our framework provides abstractions for reasoning about many practical details

important for run-time enforcement, and, in general, yields a richer view of monitors and appli-

cations than is typical in previous analyses of run-time monitoring. For example, our framework

supports modeling practical systems with security-relevant actions that the monitor cannot me-

diate, rather than assuming complete mediation [26, 62]. (We discuss more such examples in

Section 2.3.)

In this section, we make the following specific contributions:

18

• We show how I/O automata can be used to faithfully model target applications, monitors,

and the environments in which monitored targets operate, as well as various types of mon-

itors and monitoring architectures (Section 2.3).

• We extend previous definitions of security policies and enforcement to support more fine-

grained formal reasoning of policy enforcement (Section 2.4).

• We show our more detailed model of monitoring forces explicit reasoning about concerns

that are important for designing run-time monitors in practice, but that previous models

often reasoned about only informally (Section 2.5.2). We formalize these results by iden-

tifying the policies enforceable by any monitor in our framework.

• We demonstrate how to use our framework to exploit knowledge about the target appli-

cation to make design and implementation choices for more efficient enforcement (Sec-

tion 2.6). For example, we exhibit constraints under which monitors with different moni-

toring interfaces (i.e., one can mediate more actions than the other) can enforce the same

class of policies.

Roadmap We start by briefly reviewing I/O automata (Section 2.2). We then informally show

how to model monitors and targets in our framework and discuss some of the benefits of this

approach (Section 2.3). Next, we formally define policies and enforcement (Section 2.4). Then,

we show several examples of the meta-theoretical analysis that our framework enables by (a)

providing some upper bounds for enforceable policies (Section 2.5), and (b) exposing constraints

under which seemingly different monitoring architectures can enforce the same classes of policies

(Section 2.6).

19

2.2 I/O Automata

I/O automata are a labeled transition model for asynchronous concurrent systems [1, 61]. In

this section we review aspects of I/O automata that we build on in the rest of the thesis. We

encourage readers familiar with I/O automata to skip to Section 2.3. In this thesis we follow the

formal definitions and presentation of I/O automata that is typical in the literature [1, 61].

Given a function f : X → W we write dom(f) for X (i.e., the domain of f) and range(f)

forW (i.e., the range of f).

I/O automata are typically used to describe the behavior of a system interacting with its envi-

ronment. The interface between an automaton A and its environment is described by the action

signature Sig(A) of A. The signature Sig(A) is a triple of disjoint sets—Input(A),Output(A), and

Internal(A). We write acts(A) for Input(A) ∪ Output(A) ∪ Internal(A). We sometimes refer to

output and internal actions as locally-controlled actions and we write Local(A) for Output(A) ∪

Internal(A).

Formally, an I/O automaton A consists of:

1. an action signature, Sig(A);

2. a (possibly infinite) set of states, states(A);

3. a nonempty set of start states, start(A) ⊆ states(A);

4. a transition relation, trans(A)⊆ states(A)× acts(A)× states(A), with the property (called

input enabledness) that for every state q and input action a there is a transition (q, a, q′) ∈

trans(A); and

5. an equivalence relation Tasks(A) partitioning the set Local(A) into at most a countable

number of equivalence classes.

If A has a transition (q, a, q′) then we say that action a is enabled in state q. When only input

20

actions are enabled in q, then q is called a quiescent state. The set of all quiescent states of an

automaton A is denoted by quiescent(A). A task C is enabled in a state q if some action in C is

enabled in q.

An execution e of A is a finite sequence, q0, a1, q1, . . . , ar, qr, or an infinite sequence

q0, a1, q1, . . . , ar, qr, . . ., of alternating states and actions such that (qk, ak+1, qk+1) ∈ trans(A)

for k ≥ 0, and q0 ∈ start(A). A schedule is an execution without states in the sequence, and a

trace is a schedule that consists only of input and output actions. An execution, trace, or schedule

module describes the behavior exhibited by an automaton. An execution module E consists of a

set states(E), an action signature Sig(E), and a set execs(E) of executions. Schedule and trace

modules are similar, but do not include states. The sets of executions, schedules, and traces of an

I/O automaton X are denoted by execs(X), scheds(X), and traces(X). Similarly, the sets exe-

cutions, schedules, and traces of an execution module X are denoted by execs(X), scheds(X),

and traces(X). Sets of schedules and traces for schedule and tracemodules are denoted similarly.

Given a sequence s and a setX , s|X denotes the sequence which results from removing from

s all elements that do not belong inX . Similarly, for a set of sequences S, S|X = {(s|X) | s ∈

S}. The symbol · denotes the empty sequence. We write σ1; σ2 for the concatenation of two

schedules or traces,the first of which has finite length. When σ1 is a finite prefix of σ2, we write

σ1 ⪯ σ2, and in the case of a strict finite prefix σ1 ≺ σ2. Given a set of actions Σ (e.g., acts(A),

Input(A), etc.) we write (Σ)⋆ to denote the set of finite sequences of actions and (Σ)ω to denote

the set of infinite sequences of actions. The set of all finite and infinite sequences of actions is

(Σ)∞ = (Σ)⋆ ∪ (Σ)ω. Given two sequences s and t we write s||t to denote the set that contains

all interleavings of s and t.

The I/O automata definition also includes the equivalence relation Tasks(A). This is used in

the definition of fairness. Fairness means that the automaton will give fair turns to each of its

tasks while executing.

21

An execution e of an I/O automaton A is said to be fair if for each class C of Tasks(A): (1) if

e is finite, then C is not enabled in the final state of e, or (2) if e is infinite, then e contains either

infinitely many events fromC or infinitely many occurrences of states in whichC is not enabled.

Fairness eliminates the need to model a scheduler in the system. Specifically, when reasoning

about practical systems, instead of explicitly modeling a scheduler one can simply reason about a

fair version of the system. The type of fairness that I/O automata define is called “weak fairness”,

and is only one of the many different types of fairness [63].

Given an automaton or a module Awe denote the sets of fair executions, schedules and traces

by fairexecs(A), fairscheds(A) and fairtraces(A).

An automaton that models a complex system can be constructed by composing automata that

model the system’s components. When composing automata (or modules) Si, where i belongs

to some index set I , the automata’s signatures are called compatible if their output actions are

disjoint and the internal actions of each automaton are disjoint with all actions of other automata.

More formally, The actions signatures Si : i ∈ I are called compatible if for all i, j ∈ I , i ̸= j:

1. Output(Si) ∩ Output(Sj) = ∅

2. Internal(Si) ∩ acts(Sj) = ∅

When the signatures are compatible we say that the corresponding automata (or modules) are

compatible too. The composition A =
∏

i∈I Ai of a set of compatible automata {Ai : i ∈ I} is

defined as:

1. states(A) =
∏

i∈I states(Ai)

2. start(A) =
∏

i∈I start(Ai),

3. Sig(A) =
∏

i∈I Sig(Ai) =(
Output(A) = ∪i∈IOutput(Ai),

Internal(A) = ∪i∈IInternal(Ai),

22

Input(A) = ∪i∈IInput(Ai)− ∪j∈IOutput(Aj)
)
,

4. trans(A) is equal to the set of triples (q, a, q′)2 such that for all i ∈ I

(a) if a ∈ acts(Ai) then (qi, a, q′i) ∈ trans(Ai), and

(b) if a ̸∈ acts(Ai) then qi = q′i

5. Tasks(A) = ∪i∈ITasks(Ai)

Similarly, we can define the composition of execution, schedule, and trace modules. Given

a countable collection of compatible schedule3 modules {Si, i ∈ I} we define the composed

schedule module S =
∏

i∈I Si:

1. Sig(S) =
∏

i∈I Sig(Si),

2. execs(S) is the set of schedules s such that the subsequence s′ of s consisting of actions of

Si, is a schedule of Si for every i ∈ I .

Unlike models such as CCS [64], composing two automata that share some actions (i.e.,

outputs of one automaton that are inputs to the other) causes those shared actions to be re-

garded as output actions of the composition. Those actions that are required to be internal

need to be explicitly classified as such using the hiding operation. If S is a signature and Φ ⊆

Output(S), then hideΦ(S) is defined to be the new signature S ′, where Input(S ′) = Input(S),

Output(S ′) = Output(S) − Φ, and Internal(S ′) = Internal(S) ∪ Φ. Given an I/O automa-

ton A and Φ ⊆ Output(A), hideΦ(A) is the automaton A′ obtained by replacing Sig(A) with

Sig(A′) = hideΦ(Sig(A)).

The operation of renaming, on the other hand, changes the names of actions, but not their

types (e.g., renaming does not change an input action a to an output action b; it changes an

input action a to an input action b). A renaming f is a total injective mapping between sets

2Note that q =
∏

i∈I qi and q
′ =

∏
i∈I q

′
i where qi, q′i ∈ states(Ai).

3In this section, for brevity, our analyses focus on schedules. Trace modules, used in later sections, have similar
definitions.

23

of actions. f is said to be applicable to an automaton if the domain of f contains the ac-

tions of the automaton. If f is applicable to an automaton A, then the automaton rename(A)

is the automaton with the states and start states of A; with the input, output and internal actions

rename(Input(A)), rename(Output(A)), rename(Internal(A)) respectively; with the transition re-

lation {(q, rename(a), q′) : (q, a, q′) ∈ trans(A)}; and the equivalence relation {(rename(a),

rename(a′)) : (a, a′) ∈ tasksA}. We define a renaming function f to be applicable to schedules

as follows: given a schedule s = a1; a2; . . . then f(s) = f(a1); f(a2);

24

2.3 Specifying Policies, Targets, and Monitors

In this section we define security policies and show how monitors and targets can be modeled

using I/O automata, building on the example of system-call interposition in Fig. 2.2. We begin

by specifying the system-call interposition using I/O automata in Section 2.3.1. Then, in Sec-

tion 2.3.2 we discuss the formalization choices of run-time monitor design using I/O automata,

and in Section 2.3.3 we specify how to define security policies in our framework. Next, in Sec-

tion 2.3.4, we shortly review two notable models of run-time enforcement mechanisms, security

and edit automata, and in Section 2.3.5 we explain how to encode monitors of previous frame-

works (i.e., security and edit automata) in our framework. Finally, in Section 2.3.6 we provide

some concluding remarks on the advantages of using our framework for formalizing enforcement

scenarios.

2.3.1 Modeling Targets and Monitors with I/O automata

In our framework we model targets (the entities to be monitored) and monitors as I/O automata.

We let the metavariables T and M range over targets and monitors respectively. Targets com-

posed with monitors are called monitored targets (e.g., the modified kernel in Fig. 2.1). A mon-

itored target can itself be a target for another monitor.

Suppose that an application’s actions are OpenFile, and CloseFile system calls; the kernel’s

actions are FD (to return a file descriptor) and the Kill system call. The application can make a

request to open a file fn, and the kernel returns a file descriptor fd in response to the request for fn.

The application can then read from or write to the file, and when it is done, close fd. Finally, aKill

action terminates the application and clears all requests. As noted by more recent work [59, 60],

the formalization of such situations, in which the target’s actions depend on results returned by

25

App Mon Kernel

FD
Kill()

OpenFile (fn)
CloseFile(fd)

WriteFile (fd,bytes)

(fd,fn) FD-Ker
Kill-Ker()

OpenFile-Ker(fn)
CloseFile-Ker(fd)

WriteFile-Ker (fd,bytes)

(fd,fn)

(3)(4)

(1) (2)

(a) Input/output-mediating monitor

App Mon Kernel

FD
Kill()

OpenFile (fn)
CloseFile(fd)

WriteFile (fd,bytes)

(fd,fn)

OpenFile-Ker(fn)
CloseFile-Ker(fd)

WriteFile-Ker (fd,bytes)

(b) Input-mediating monitor

Figure 2.2: I/O automata interface diagrams of kernel, application, and monitor

the environment, was outside the scope of original models of run-time monitors (e.g., security

automata [27] and edit automata [30]).

Let us assume we want to enforce a security policy4 that restricts the resources that an appli-

cation has access to–in our case file descriptors. One way to enforce this policy is to interpose

a monitor between the application and the kernel that keeps track of the number of open files

that an application has requested. Once that number exceeds the predefined threshold set by the

policy, the monitor terminates the application with a Kill action.

Fig. 2.2a shows I/O automata interface diagrams of the complete monitored system consisting

of the application and the monitored kernel.

The application’s and kernel’s interfaces differ only in that the input actions of the kernel are

output actions of the application and vice versa. This models the communication between the

application and the kernel when considered as a single system. Paths (2) and (3) in Fig. 2.2a

represent communication between the monitor and the kernel through the renamed actions of the

kernel (using the renaming operation of I/O automata, Section 2.2): e.g., OpenFile(x) becomes

OpenFile-Ker(x). Renaming models changing the target’s interface by adding hooks that allow

the monitor to intercept the target’s actions. In practice, this is often accomplished by rewriting

4Although the formal definition of security policies is given in Section 2.3.3, this section does not rely on this
definition and can be read independently.

26

Signature: Input: OpenFile(fn), where fn is a file_name
(type file_name = nat)
CloseFile(fd), where fd is a file_descriptor
Kill-Ker(), FD-Ker(fd,fn), where fd is a file_descriptor
(type file_descriptor = nat)
and fn is the corresponding file_name.

Output: Kill(), FD(fd,fn), where fd is a file_descriptor
(type file_descriptor = nat)
and fn is the corresponding file_name
OpenFile-Ker(fn), where fn is a file_name
(type file_name = nat)
CloseFile-Ker(fd), where fd is a file_descriptor.

States: req_list : List of elements of type file_name
close_list : List of elements of type file_descriptor
resp_list : List of elements of type ⟨file_descriptor, file_name⟩
kill : flag of type bool

Start States: req_list = nil
close_list = nil
resp_list = nil
counter = 0
kill = false

Figure 2.3: Signature and states of monitor I/O automaton enforcing “no more than n files open
per application”

the target. Finally, we also hide the communication between monitor and the kernel so that it

remains concealed from the application (denoted by the dotted line around the monitored kernel

automaton). This is because we model a monitoring process that is transparent to the application

(i.e., the application remains unaware that the kernel is monitored).

An I/O automaton definition for the monitor is shown in Fig. 2.3 and Fig. 2.4, using the

standard precondition-effect style of writing transition relations for I/O automata [1, 61].

Let us assume that we are at a point in the execution of the monitored system where the

application has met its quota of requested files. Then the next time that the application requests

to open a new file, e.g., named x, the monitor intercepts this request and kills the application.

This scenario is modeled as follows using the above. Assuming that σ denotes the execution of

27

Transitions: OpenFile(fn)
Effect: req_list = req_list@[fn]

counter = counter+ 1
if counter > n then kill = true

CloseFile(fd)
Effect: close_list = close_list@[fd]

counter = counter− 1
FD-Ker(fd,fn)

Effect: resp_list = resp_list@[⟨fd, fn⟩]
Kill-Ker()

Effect: kill = true
OpenFile-Ker(fn)

Precondition: ¬empty(req_list) and ∃(fn : file_name) ∈ req_list,
where empty is a predicate on lists that returns true whenever
its argument is an empty list

Effect: req_list = (req_list\fn), where (req_list\fn) denotes the
function that removes the element fn from list req_list

CloseFile-Ker(fd)
Precondition: ¬empty(close_list) and ∃(fd : file_descriptor) ∈ close_list
Effect: close_list = (close_list\fd), where (close_list\fd) denotes the

function that removes the element fd from list close_list
FD(fd,fn)

Precondition: ¬empty(resp_list) and
∃(⟨fd, fn⟩ : ⟨file_descriptor, file_name⟩) ∈ req_list

Effect: resp_list = (resp_list\⟨fd, fn⟩), where (resp_list\x) denotes the
function that removes the element x from list resp_list

Kill()
Precondition: kill = true
Effect: req_list = nil

close_list = nil
resp_list = nil
counter = 0
and kill = false.

Tasks: Each output action belongs to a unique task named after the action itself.

Figure 2.4: Transitions of monitor I/O automaton enforcing “no more than n files open per ap-
plication”

the system so far, then the schedule s that describes this scenario is s = σ;OpenFile(x);Kill().

Note that s is an example of a fair schedule. Fairness will be important when we discuss

transparency in Section 2.4.1 and Section 2.5.3. An example of an unfair schedule would be

28

t = σ;OpenFile(x). This schedule is not fair because, as shown in Fig. 2.4, when the monitor I/O

automaton receives the input action OpenFile(x), it goes to a state q where the counter is greater

than n, and thus the flag kill becomes true. This means that the automaton is at a state where the

local action Kill() is enabled. Since each action belongs to a unique task, this means that from

this state the task Kill() is enabled. Thus, the definition of fairness in Section 2.2 is violated, and

t is not a fair schedule. Note that in the case of s, where the last action is Kill(), the automaton

goes to a state where all lists, flag, and counter are reset. From such a state no local action, and

thus task, is enabled, so s satisfies the constraints of fairless.

2.3.2 Modeling Monitoring Decisions with I/O automata

In our system-call interposition example from Section 2.1 we described some choices for the

monitor designer tomake, such as (1) the interface to bemonitored, or vantage, (e.g., onlymediate

input actions), and (2) the trace modification capabilities of the monitor, or action. We next

describe how to express the above choices in our model.

Modeling the Monitored Interface. By appropriately restricting the renaming function ap-

plied to the target, we can model different monitoring architectures (e.g., input sanitization, Sec-

tion 2.1). For example, in Fig. 2.2b, we rename only the input actions of the kernel (i.e., Open-

File,CloseFile, and WriteFile). This allows us to model monitors that mediate inputs sent to the

target and can prevent, for example, SQL injections attacks. Similarly, by renaming only the

outputs of the target we can model monitors that only mediate output actions (and can prevent,

for example, cross-site scripting attacks). In these examples, the monitors are actively mediating

security relevant actions. This means that the monitor can choose to allow an action, block it, or

replace it. However, there is a class of security mechanisms that do not actively interfere with

observed traffic: IDSs. IDSs analyze traffic they intercept (or receive from already created logs)

29

Environment Monitor Application
a

b

R(a)

R(b)

x

(a) Actively observing IDS

Environment Channel

Monitor

Target

a

b

a
b

x

a

b

(b) Passively observing IDS

Figure 2.5: Designs of Intrusion Detection Systems

and try to identify instances of attacks. Although IDSs cannot prevent attacks, they are extremely

useful in identifying attacks that cannot be identified in real-time or analyzing patterns of received

traffic in order to create signatures of good or malicious traffic [50].

In Fig. 2.5a we see how to model an IDS that is interposed between the target application and

the environment. Note that we use renaming (as we discussed previously) to model the fact that

the monitor is interposed between the environment and the target application; however, we have

to model in the monitor’s transition relation the fact that the monitor must forward all actions it

receives. In addition, we have a new security relevant action x which models the alerts that the

IDS, typically, sends to the analyst. We are using an additional action x because typically the

alert action is not something that the target application or the environment can exhibit.

However, there are situations where IDSs are not interposed between the target application

and the monitor. For instance, an IDS could be placed at the spanning port of a switch where

traffic between the target application and the environment is sent to the monitor. This is depicted

in Fig. 2.5b. Note that no renaming is used, but the monitor has as inputs all the external actions of

the environment and the target application (thus modeling the fact that it can observe all security

relevant actions). As in the actively observing IDS, there is a new action x to model the alerts

that the IDS is producing.

30

Modeling Implementation Aspects of Monitors. As we described in Section 2.3.4 monitors

can have differing enforcement capabilities: if the target wants to execute some action that will

violate the policy, a monitor can either halt the target [27] or take some corrective action [34]. In

practice, there are additional choices that we can make regarding implementations of monitors:

whether the monitor can edit input before forwarding it to the target application; the extent to

which the monitor can ignore the application; and the extent to which the monitor can use the

application as an oracle or simulator to discover, in a controlled way, how it would respond

to different input actions. The added expressiveness of I/O automata allows us to model these

different implementation choices. However, if we focus on a uni-directional communication path

from the target to the monitor and then to the environment, then our framework can express types

of monitors defined in previous work such as security and edit automata (which we describe in

more detail in Section 2.3.4).

Returning to our example in Fig. 2.2: to model a monitor that halts the kernel once the kernel

outputs an FD-Ker(fd,fn) with an already-assigned file descriptor fd, we add a transition to the

monitor that, upon receipt of the “bad” action, takes the monitor to a specific halt state. Since the

monitor is input enabled, that transition can be made regardless of the state of the monitor. Once

the monitor goes into this halt state, the only enabled output action will be a halt action to kill

the kernel. The kernel will need to have this halt action as an input action, and an appropriate

transition to stop its execution. Since the monitor is input enabled, it may (even in the halt state)

receive invalid actions from the kernel until the kernel is halted. In previous models, for any

action that the target wanted to execute, the target would wait for the monitor to finish considering

that action before trying to execute the following one; in other words, the target and the monitor

were synchronized. However, in our framework the monitor does not always have such control

over the target (unless we are modeling a scenario where the target and the monitor are indeed

synchronized). These issues affect the policies that are enforceable by the monitor, since the

31

target might try to execute a series of invalid actions before the monitor gets a chance to take

corrective action. We revisit this point in Section 2.3.5 where we provide more technical details

on how to encode truncation and edit monitors using I/O automata.

2.3.3 Security Policies

Schneider defined a security policy as a predicate on (or equivalently, a set of) sets of action

sequences [27]. Moreover, he identified a specific class of policies that are enforceable by run-

time monitors, called properties. A policy P is a property if there exists a set of action sequences

P̂ such that for every set X , X ∈ P if and only if X ⊆ P̂ . Thus, the set P̂ uniquely identifies

the policy P , and instead of talking about a policy P one can talk about the property (induced by

the set) P̂ .

Following Schneider [27], we define a policy as a set of schedule5 modules, i.e., a set of pairs

where each pair’s first component is a signature– a triple of input, internal, and output actions–

and second component is a set of sequences of actions that belong to some set in the signature. In

our framework, a property (as a set of sequences of actions) corresponds to a schedule module.

We let the metavariables P and P̂ range over policies and their elements (i.e., schedule modules)

respectively.

The novelty of this definition of policy compared to previous ones [27] is that each element

of the policy is not a set of automaton runs, but, rather, a pair of a set of runs, i.e., schedules, and

a signature. The signature describes explicitly the actions that are relevant to a policy (i.e., the

security relevant actions), even if they do not appear in the specific set of runs. This is useful

in a number of ways. When enforcing a policy on a system composed of several previously

defined components, the signatures can clarify whether a policy that is being enforced on one

5Our analyses equally apply to execution and trace modules, but, for brevity, in this chapter, we discuss only
schedule modules.

32

component also reasons about (e.g., prohibits or simply does not care about) the actions of another

component.

For example, let us revisit our running example from Section 2.3.1. Let S1 be the signature

that containsOpen, FD, andClose system calls, i.e., S1 = {Open, FD,Close} andS2 the signature

that contains in addition the system call SocketRead, i.e., S2 = {Open, FD, Close, SocketRead}.

Moreover, let T1 and T2 be sets of schedules that contain the action sequence “Open;FD;Close”,

i.e., T1 = T2 = {⟨Open;FD;Close⟩}. Then M1 = ⟨S1, T1⟩, and M2 = ⟨S2, T2⟩ are schedule

modules. The set P = {M1,M2} is a policy ta describes that every file that is opened and

assigned a file descriptor must be eventually closed. Note that in the schedule module M1 all

system calls other than Open, FD, and Close are security irrelevant and thus permitted. Thus, if

the application tries to read from a socket then this action will be allowed. On the other hand,

the signature of the schedule moduleM2 contains the system call SocketRead, but any behavior

exhibiting this system call are prohibited, since there are no schedules in T2 that contain the action

SocketRead.

Our definition of a policy as a set of modules resembles that of a hyperproperty [65] and previ-

ous definition of policies (modulo the signature of each schedule module) and captures common

types of policies such as access control, noninterference, information flow, and availability.

2.3.4 Security, Truncation, Suppression, and Edit Automata

Twomodels of run-time enforcement mechanisms that have been extensively analyzed in the past

are security automata [27] (also referred to as truncation automata [30]) and edit automata [30].

In this section we shortly review them and provide some formal details of these models which

we use in Section 2.3.5 where we discuss how to translate them in I/O automata. Note that this

section assumes the definition of security policies as was given by Schneider [27]. This and the

next section can be skipped without affecting the readability and understanding of the rest of this

33

σ = a;σ′ γ(q, a) = q′

(q, σ)
a−→T (q′, σ′)

T step
σ = a;σ′ γ(q, a) = halt

(q, σ)
halt−−→T (q′, ·)

T halt

Figure 2.6: Operational semantics of truncation automata

σ = a;σ′ δ(q, a) = (q′, a′)

(q, σ)
a′−→E (q′, σ)

E ins
σ = a;σ′ δ(q, a) = (q′, ·)

(q, σ)
·−→E (q′, σ′)

E sup

Figure 2.7: Operational semantics of edit automata

chapter, especially for readers familiar with security and edit automata. However, the details will

be useful in the formal statements and proofs in Chapter 3 where we discuss how distributed

truncation automata may be able to simulate global suppression automata.

The two models of monitors differ on how they react to the sequence of actions that the target

wants to execute. Security automata are execution recognizers: if the target wants to execute

an action that is permitted by the security policy then the monitor forwards this action to the

environment; otherwise the monitor halts the target. Since security automata are equivalent to

truncation automata [30], we will discuss truncation automata here in order to minimize the use

of different formal definitions. Given an action set ΣAT
, a truncation automaton AT is defined

as a triple AT = ⟨Q, q0, γ⟩, where Q is the set of its states, q0 its start state, and γ its transition

function. Its operational semantics are presented in Fig. 2.6. Given a sequence of actions σ that

the target wants to execute, the transition function γ of a truncation automaton specifies how the

automaton moves from a state q through the first action a of σ to a state q′. The conclusions of

the two rules completely describe the behavior of the automaton: it can either exhibit the action

a and move on to examine the next action the target wants to execute, or halt the target.

Contrary to security automata, edit automata are execution transformers: given a sequence of

actions that the target wants to execute, the monitor can either insert some actions to the output

stream without consuming the inputs that the targets want to execute, or suppress, i.e., consume,

the current input action and examine the next one while outputting nothing to the environment.

34

σ = a; σ′ δ(q, a) = (q′, a)

(q, σ)
a−→E (q′, σ)

S step
σ = a;σ′ δ(q, a) = (q′, ·)

(q, σ)
·−→S (q′, σ′)

S sup

Figure 2.8: Operational semantics of suppression automata

Given an action set ΣAE
, an edit automaton AE is defined as a triple AE = ⟨Q, q0, γ⟩, where Q

is the set of its states, q0 its start state, and δ its transition function. This behavior is captured

formally by the rules in Fig. 2.7.

A special type of edit automata are suppression automata. The difference between edit and

suppression automata is that edit automata can insert arbitrary actions in the output stream, whereas

suppression automata can only insert the action that the target wants to execute. Thus, suppres-

sion automata can either allow good actions, or suppress bad actions. Suppression automata are

similar to truncation automata, but instead of halting the target once something bad is about to be

executed, as truncation automata do, they allow the target to continue operating. This behavior

is captured formally by the rules in Fig. 2.8.

Note that in these models the target is not formally specified (e.g., through specifying its

transition function).

2.3.5 Translating Security and Edit Automata to I/O automata

In this section we discuss how to translate monitors expressed in previous models to our model.

The translation has several steps, and care has to be taken to account for the added expressiveness

of I/O automata.

First, we extend the transition function of an automaton with transitions that model the input

enabledness of the I/O automata. Note that the operational semantics of truncation (Fig. 2.6,

suppression (Fig. 2.8), and edit automata Fig. 2.7), assume that the actions that the target wants

to execute are available to the monitor upon request.

35

Second, in truncation, suppression, and edit automata the actions that the target was sending

to the monitor belonged to the same action set as the actions that the monitor was forwarding to

the environment. However, in I/O automata, this is not possible since the input and output actions

must belong to disjoint sets. Thus, we define a bijection that maps the inputs of the corresponding

automata to fresh output actions.

The third step takes care of the implicit assumptions made by previous models and exposed

by our framework: a run-time monitor does not control how the target produces actions. More

specifically, in previous models, the target and the monitor are synchronized: after the target

tries to execute an action (an action that is intercepted by the monitor), the target blocks until

the monitor is ready to receive the next security relevant action. However, in our framework the

monitor does not have such a control over the target. For this reason, the monitors need to have

some data structure (e.g., a queue) to buffer the inputs from the target, and when given a turn to

execute local actions (i.e., by a scheduler formalized through fairness assumptions), the monitors

dequeue the corresponding actions and react according to their specified transition relation. Note,

that another approach would be to consider a specific type of fairness (instead of the one that I/O

automata use, i.e., weak fairness), that would give priority to the local actions of the monitor

and would allow inputs to arrive only when the monitor does not have more actions to execute.

However, in this chapter we adopt the former approach, i.e., we assume the fairness definition of

I/O automata and always provide monitors with queues to buffer input actions.

The final step, is specific to truncation automata: we assume that the target has a halt input

action that will guarantee its termination (as in our system call interposition, with the kill system

call).

Next, we show the results of applying the above translation to truncation automata, and edit

automata [30]. We will refer to the resulting I/O automata as truncation monitors and edit moni-

tors. Translations of other types of automata can be defined similarly. For instance, the result of

36

translating suppression automata, i.e., suppression monitors, are exactly the same as edit mon-

itors, with the only difference being that for every action α′ that the edit monitor has in the

transition relation, the suppression monitor has, instead, the action α.

For the translation of truncation automata to I/O automata we assume that the target can

be terminated by a stop action. Given a truncation automaton AT = ⟨Q, q0, γ⟩ that is defined

over some action set ΣAT
, we define a set ΣF containing fresh actions (i.e., ΣF ∩ ΣAT

= ∅)

such that |ΣF | = |ΣAT
|6 and a truncation monitor MT = ⟨Sig(MT), states(MT), start(MT),

RMT
,Tasks(MT)⟩, where:

1. Sig(MT) = ⟨Input(MT), Internal(MT),Output(MT)⟩, where:

(i) Input(MT) = ΣAT
,

(ii) Internal(MT) = ∅,

(iii) Output(MT) = {f(x) | x ∈ Input(MT)} ∪{stop}, where f : Input(MT)
1−1−−→
onto

ΣF .

2. states(MT) = (Q × ((Input(MT)))
⋆) ∪ {⟨halt, · ⟩}; i.e., the state of automaton together

with the queue to buffer inputs from the target, plus an additional halt state,

3. start(MT) = q0 × { · },

4. RMT
=

{⟨⟨q, σ⟩, ι, ⟨q, σ; ι⟩⟩ | ⟨q, σ⟩ ∈ states(MT) and ι ∈ Input(MT)}

∪ {⟨⟨q, α;σ⟩, f(α), ⟨q′, σ⟩⟩ | ⟨q, α;σ⟩ ∈ states(MT) and γ(q, α) = q′}

∪ {⟨⟨q, α;σ⟩, stop, ⟨halt, · ⟩⟩ | ⟨q, α;σ⟩ ∈ states(MT) and γ(q, α) = halt},

5. Each action in local(MT) defines a unique equivalence class.

Next, we show how to translate an edit automaton to an I/O automaton. Given an edit au-

tomaton AE = ⟨Q, q0, δ⟩ that is defined over some action set ΣAE
, we define a set ΣF containing

6|A| denotes the cardinality of the set A.

37

fresh actions (i.e., ΣF ∩ΣAE
= ∅) such that |ΣF | = |ΣAE

| and an edit monitorME = ⟨Sig(ME),

states(ME), start(ME), RME
,Tasks(ME)⟩, where:

1. Sig(ME) = ⟨Input(ME), Internal(ME),Output(ME)⟩, where:

(i) Input(ME) = ΣAE
,

(ii) Internal(ME) = ∅,

(iii) Output(ME) = {f(x) | x ∈ Input(ME)}, where f : Input(ME)
1−1−−→
onto

ΣF .

2. states(ME) = (Q× ((Input(ME)))
⋆); i.e., the state of automaton together with the queue

to buffer inputs from the target,

3. start(ME) = q0 × { · },

4. RME
=

{⟨⟨q, σ⟩, ι, ⟨q, σ; ι⟩⟩ | ⟨q, σ⟩ ∈ states(ME) and ι ∈ Input(ME)}

∪ {⟨⟨q, α;σ⟩, f(α′), ⟨q′, α;σ⟩⟩ | ⟨q, α;σ⟩ ∈ states(ME) and δ(q, α) = (q′, α′)}

∪ {⟨⟨q, α;σ⟩, · , ⟨q′, σ⟩⟩ | ⟨q, α;σ⟩ ∈ states(ME) and δ(q, α) = (q′, ·)},

5. Each action in local(ME) defines a unique equivalence class.

In both cases, a simple inductive argument suffices to show that when a truncation automaton

outputs a sequence of actions τ = τ0; τ1; . . . ; τn as a response to a sequence of input actions

σ = σ0;σ1; . . . ;σm, then a truncation monitor constructed as above will output the (equivalent

modulo renaming) sequence of actions τ ′ = f(τ0); f(τ1); . . . ; f(τn) as a response to the same

sequence of input actions σ. A similar argument applies to the translation of edit automata to edit

monitors.

38

2.3.6 Discussion

In Section 2.1 we discussed the importance of formally modeling sufficiently many details of

scenarios such as using interposition mechanisms for policy enforcement. In Section 2.3.2 and

Section 2.3.5 we discussed how to use I/O automata to model such details (for instance the tar-

get application and the asynchronous communication between the target and the monitor) that

previous models did not.

In this section we point out certain more general benefits of using expressive frameworks

like I/O automata for modeling enforcement scenarios. In particular, our model exposes many

details that often remain implicit or informal when reasoning about enforcement, including the

following.

1. Monitored interface/Target modification: The way a monitor is integrated with a target is

not expressed in security automata[27], edit automata [30], orMandatory Results Automata

(MRA) [59]. Our model makes this integration explicit through the renaming operation of

I/O automata. Two of the benefits of this ability are: (a) acknowledging that any target (or

its interface) needs to be re-written, even minimally, so that the security relevant actions

are intercepted by the monitor, and (b) providing an easy syntactic check for complete

mediation, e.g., if not all actions have been renamed in the transition relation of the tar-

get, then there exists a case where the execution of a security relevant action bypasses the

monitor. This captures the typical monitoring approach in which a monitor intercepts a tar-

get’s security-relevant actions, but does not otherwise modify a target’s state and behavior.

Tighter integration can be modeled by changing the target’s transition relation, but we do

not explore that in this thesis.

2. Complete mediation/instrumentation: Monitors typically assume that all security-relevant

actions of a target can be mediated. Our model takes a more nuanced view, which admits

39

that there may exist security relevant actions that the monitor cannot observe or mediate.

Such actions are either (1) labeled as internal to a target (and the I/O automata formalism

prevents them from being exposed to the monitor), or (2) different from anymonitor’s input

actions (and I/O automata composition prohibits communication between them). This way

we can model scenarios where, for example, a monitor installed by a non-administrator

user has only partial access to the kernel’s system calls.

Reasoning explicitly about these details allows us to close the gap between monitors in practice

and their theoretical abstractions while receiving a better insight about the space of policies that

are enforceable by monitors. It can also shed light on issues related to the design of monitors.

For example, attempting to encode a specific system in our framework can show that the monitor

is not sufficiently protected from a target; conversely, a system faithfully implemented based on

a model in our framework will inherit properties that are explicit in our model, including monitor

integrity. This reasoning also allows us to identify practical constraints in the formal analysis

of enforcement powers of monitors. For example, as we saw in the translation of the truncation

automata above, and as we will further analyze in Section 2.5, we must acknowledge that there

are security relevant aspects of the enforcement process that our outside the monitor’s control, for

example the ability to control the target by either synchronizing it with the monitor or controlling

its local actions.

40

2.4 Policy Enforcement

In this section we introduce two definitions of enforcement. The first defines enforcement with

respect to a specific target. This models scenarios in which the designer knows where the moni-

tor is being installed (e.g., installing a system call interposition monitor to a specific version of a

Linux kernel). The second one defines enforcement independently of the target. This models sce-

narios in which the monitor designer might not know apriori the targets to which the monitor will

be applied (e.g., when designing a system call interposition that enforces policies independently

of the underlying kernel).

2.4.1 Enforcement

In Section 2.3 we showed how monitoring can be modeled by renaming a target T so that its

security-relevant actions can be observed by a monitor M and by hiding actions that represent

communication unobservable outside of the monitored target. We now define enforcement for-

mally as a relation between the behaviors, i.e., sequences of actions, allowed by the policy7 and

the behaviors exhibited by the monitored target.

Definition 1. (Target-specific enforcement) Given a policy P , a target T , and a monitor M

we say that P is T-enforceable= on T by M if and only if there exists a module P̂ ∈ P , a

renaming function rename, and a hiding function hideΦ for some set of actionsΦ ⊆ Output(M)∪

Output(rename(T)) such that:

(scheds(hideΦ((M× rename(T))))|acts(P̂)) = scheds(P̂).

Here, hideΦ((M × rename(T))) is the monitored target: the target T is renamed so that its

security-relevant actions can be observed by the monitorM; hide is applied to their composition
7In this thesis we assume that for all policies P and for each module P̂ in P , there exists an I/O automaton A

such that Sig(A) = Sig(P̂) and scheds(P̂) ⊆ scheds(A).

41

to prevent communication between the monitor and the target from leaking outside the composi-

tion8. If a target does not need renaming, rename can be the identity function; if we do not care

about hiding all communication, the hiding function can apply to only some actions. For exam-

ple, suppose the monitored target from our running example (node with dotted lines in Fig. 2.2b)

is composed with an additional monitor that logs system-call requests and responses. We would

then keep the actions for system-call requests and responses visible to the logging monitor by not

hiding them in the initial monitored target.

Def. 1 binds the enforcement of a policy by a monitor to a specific target. We refer to this

type of enforcement as target-specific enforcement and to the corresponding monitor as a target-

specific monitor. However, some monitors may be able to enforce a property on any target. One

such example is an interposition mechanism that operates independently of the target kernel’s

version or type (e.g., a single monitor binary that can be installed in both Windows and Linux).

We call this type of enforcement generalized enforcement, and the corresponding monitor a gen-

eralized monitor9. More formally:

Definition 2. (Generalized enforcement) Given a policy P and a monitor M we say that P is

enforceable= by M if and only if for all targets T there exists a module P̂ ∈ P , a renaming

function rename, such that:

(scheds((M× rename(T)))|acts(P̂)) = scheds(P̂).

Different instances of Def. 1 and Def. 2 can be obtained by replacing schedules with traces

(trace enforcement), fair schedules, or fair traces (fair enforcement).

Alternative definitions of enforcement. Previous definitions of enforcement are based on the

notions of soundness and transparency [29, 30]. Soundness describes the property that the mon-
8Since Def. 1 reasons about schedules (i.e., internal actions as well as input and output), hideΦ is redundant.

We include it in this definition to expose the re-writing process that needs to happen for run-time enforcement in
practical scenarios, but we will omit it in the rest of the thesis.

9Monitors of previous models, such as [27] and [30], are generalized monitors.

42

itor will only perform valid actions, i.e., it is required that the monitor’s behavior (modeled as a

set of traces) is a subset of the behaviors that are allowed by the policy. Defining enforcement

as soundness, i.e., as a subset relation, can lead to some trivial cases: monitors could correctly

(i.e., soundly) enforce policies by simply doing nothing. Thus, to exclude such trivial cases, and

capture practical monitors that do not inhibit the correct behavior of the target, the requirement of

transparency was introduced: if the target wants to exhibit a correct sequence, then the monitor

is forced to output it.

All definitions of soundness and transparency that have been introduced so far are within

frameworks where policies reason only about the target’s behavior [27, 30]. Thus, in these frame-

works a policyP is a predicate over sequences of actions that the targetmight exhibit (i.e., a subset

of the sequences of actions that a target can exhibit). In such frameworks one explicitly states

transparency in the definition of enforcement by stating that if a target’s behavior s is allowed by

a policy P (i.e., if s ∈ P) then the monitor exhibits s.

In our framework, we take a more general view by allowing policies to describe howmonitors

are integrated with targets, and how monitors are allowed to react to target’s requests. Thus, en-

forcement is now implicit in the definition of a policy (i.e., in the sequences of actions that the pol-

icy allows). The latter view has also been adopted by Mandatory Results Automata (MRA) [59].

As discussed there, in frameworks that allowmore expressive policies, such as ours, transparency

does not need to be stated explicitly as a requirement in the definition of enforcement [59]; trans-

parency can be defined as a specific type of input/output relation (within the formal syntax of the

framework).

Although Def. 1 and Def. 2 may seem too restrictive using an equality relation instead of a

subset relation, we have found that when dealing with such more expressive policies, equality

captures better the intended notion of enforcement10. For instance, if we encode soundness and

10Since in this chapter we focus only on the equality relation, we will drop the “=” symbol from the use of

43

transparency in our framework, and use a subset relation to define enforcement, then the intended

semantics of enforcement are not correctly captured. Next, we illustrate how transparency can

be encoded in our framework and how a subset relation can break the intended semantics of

enforcement (defined through soundness and transparency).

From transparent enforcement to transparent policies. Themain idea behind encoding trans-

parency in our framework is the following: for every behavior t that is allowed by PT , we con-

struct a schedule that belongs to P such that the renamed target exhibits (the renamed) t, and the

monitor exhibits t. More specifically, given a monitor M , a renaming function ren, a target T ,

and a policy PT with PT = Sig(T), indicating the allowed behaviors of the target (i.e., policies

of previous frameworks) we say that a module P̂ of a policy P describing the monitored target

(M × ren(T)) is transparent if and only if for all t ∈ PT there exists a schedule s ∈ P̂ such that

s ∈ (ren(t) || t) (note that || is the interleaving operator defined in Section 2.2).

Note, that the above construction does not tell us anything about what additional schedules

P̂ contains. This is because our framework has have multiple ways to express what it means to

transparently enforce a policy. A question that illustrates this point is whether P̂ should contain

the schedule, s′ = ren(t), the schedule that the monitored target is exhibiting. Under the view of

old frameworks this is fine, since P̂ considers the target’s behavior t to be valid. However, one

might say that s′ should not be part of P̂ since it contradicts the intended semantics: s′ ∈ P̂ states

that the monitor can react to ren(t) by doing nothing, whereas s ∈ P̂ states that the monitor can

react by exhibiting t. However, only the latter describes transparency.

This distinction, and choice of semantics, is strongly related to the fairness assumptions that

we make in our model11. If we assume fairness we should not include s′ in P̂ . But, if we don’t,

then we include s′ as long as s belongs in P̂ : it is ok for the monitor to do less due to external

target-specific and generalized enforcement.
11A concrete example of fair and unfair schedules is presented at the end of Section 2.3.1

44

reasons, as long as the monitor wants to do the right thing.

We formalize these two different approaches through the notions of weak and strong trans-

parency.

Definition 3. (Weakly transparent module) Given a monitored target (M×ren(T)), and a sched-

ule module P̂T with Sig(P̂T) = Sig(T), a schedule module P̂ , with Sig(P̂) = Sig(M × ren(T)),

is weakly transparent for (M × ren(T)) w.r.t. P̂T if and only if

∀t ∈ P̂T : ∃s ∈ scheds(P̂) : ren−1(s|range(ren)) = (s|dom(ren)) = t.

Def. 3 states that a module is weakly transparent, w.r.t. some policy on the target, if and

only if for every schedule that belongs to these target’s behaviors there is some schedule in the

module such that if we take the subsequence that consists of actions of the monitored target and

we reverse the renaming then we will get another subsequence of that schedule that is exhibited

by the monitor.

Definition 4. (Strongly transparent module) Given a monitored target (M × ren(T)), and a

schedule module P̂T with Sig(P̂T) = Sig(T), a schedule module P̂ , with Sig(P̂) = Sig(M ×

ren(T)), is strongly transparent for (M × ren(T)) w.r.t. P̂T if and only if

∀t ∈ P̂T : ∀s ∈ scheds(P̂) :
(
ren−1(s|range(ren)) = t ⇒ (s|dom(ren)) = t

)
.

Def. 4 states that a module is strongly transparent, w.r.t. some policy on the target, if and only

if for every schedule t that belongs to the acceptable target’s behaviors and every schedule s that

the monitored target exhibits the following holds: if the sequence of actions that the renamed

target being monitored tries to execute and appear in s is equal to the renamed t, then the monitor

exhibits t as well. The correspondence is as the one in weak transparency: for every schedule

in the module if we take the subsequence that consists of actions of the monitored target and we

reverse the renaming then we will get another subsequence of that schedule that is exhibited by

the monitor (which is an acceptable behavior of the target).

Def. 3 and 4 defined transparency as a specific type of policy P over a monitored target given

45

a policy PT over the original target (that is now monitored). However, we did not relate PT and

P w.r.t. soundness. For example, if PT does not contain a schedule s, and thus disallows it,

we did not require from P to also exclude schedules in which the monitor exhibits s. The next

definition shows how to achieve this goal, assuming monitors that completely mediate target’s

security relevant actions:

Definition 5. (Sound module) Given a monitored target (M × ren(T)), and a schedule module

P̂T with Sig(P̂T) = Sig(T), a schedule module P̂ , with Sig(P̂) = Sig(M×ren(T)) and Sig(T) ⊆

Sig(M), is sound for (M × ren(T)) w.r.t. P̂T if and only if:

∀t ̸∈ P̂T : ̸ ∃s ∈ scheds(P̂) : (s|dom(ren)) = t.

Similar definitions can be expressed for partially-mediating monitors, but we do not pursue

them here further. Using Def. 5, 3 (or, 4), and the construction principles in Section 2.3.5, one

can fully embed previous frameworks (e.g., definitions of enforcement and edit automata [30])

in ours.

2.4.2 Comparing Enforcement Definitions

As a first example of meta-theoretic analysis in our framework, we compare the two definitions of

enforcement from Section 2.4.1, target-specific enforcement and generalized enforcement. One

might expect target-specific monitors to have an advantage in enforcement. If we have a monitor

that enforces a policy for any target (i.e., a generalized monitor) then that monitor also enforces

the policy for some target T . However, a monitor that is “customized” for enforcing a policy on a

specific target (e.g., Linux) might not be able to enforce the policy on every possible target (e.g.,

Windows).

Proposition 2.4.1. Given a monitorM then:

1. if a policy P is enforceable byM, then for any target T , P is T-enforceable on T byM,

46

and

2. there exists a policy P and a target T such that P is T-enforceable on T byM and P is

not enforceable byM.

Proof. The proof idea for (1) is to use the module P̂ ∈ P and renaming function with which

M generally enforces P and we apply them to any target T that we are given. Intuitively, the

universal quantification over targets in the right hand side of the implication is internalized on

the left hand side in the definition of generalized enforcement.

The idea for (2) is to choose a policy P that contains only one module P̂ . P̂ has as a signature

all possible actions and contains only the schedules that the monitor M can exhibit. Next we

choose as T the trivial automaton that exhibits no behavior. Clearly M specifically enforces P

on T . But, for any target that exhibits some internal actions, since these actions are not part of

P̂ ,M cannot generally enforce P .

More specifically, for (1), we assume that we have an arbitrary P that is enforceable by some

M. By Def. 2, this means that:

for all targetsT there exists amodule P̂ ∈ P , a renaming function rename, such that (scheds((M×

rename(T)))|acts(P̂)) = scheds(P̂). (A)

We have to show that for all targets T ′, P is T-enforceable on T ′ by M, which by Def. 1

means that we have to show that for some arbitrary T ′ there exists a module P̂ ′ ∈ P , a renaming

function rename′, such that (scheds((M× rename′(T ′)))|acts(P̂ ′)) = scheds(P̂ ′).

By (A) we know that there are P̂ and rename that correspond to any T , and thus for T ′. Use

the corresponding choices of P̂ and rename for T ′ and our claim follows from (A) immediately.

For (2), we must exhibit a P and a T such that P is T-enforceable on T by M and it is not

the case that P is enforceable byM.

Let P = {scheds(M)∪{⟨a⟩ | a ∈ Σ−acts(M)}}. Also, let T be the trivial automaton, i.e.,

47

the I/O automaton with the empty set for actions and just a single start state. Thus, scheds(T) =

{ · }. It is easy to see that P is T-enforceable enforceable on T by M, i.e., that there exists a

module P̂ ∈ P , a renaming function rename, such that (scheds((M× rename(T)))|acts(P̂)) =

scheds(P̂). P contains only one element, so P̂ = scheds(M)∪{⟨a⟩ | a ∈ Σ− acts(M)} which

contains all schedules thatM can produce. Moreover, let rename be the identity function. From

Thm. 8 we know that scheds((M× rename(T))) will be the pasting of the schedules of the two

components, and since the schedules of the component rename(T) is just the empty sequence,

scheds((M × rename(T))) = scheds(M). So we have to show that scheds(M)|acts(P̂)) =

scheds(M) ∪ {⟨a⟩ | a ∈ Σ− acts(M)}, which is trivially true.

To prove the second conjunct of the claim, i.e., that it is not the case that P is enforceable by

M, pick any T ′ that has as a signature only one output action, and produces some finite sequence

of repetitions of this action of length greater than 1; i.e., scheds(T ′) = {(a; a)n | n ≥ 1 and a ∈

Output(T ′)}. Note that no matter how we rename T ′, its renamed output actions will still be

an action of P̂ , since we added all actions that are not actions of the monitor (Σ − acts(M)).

Using Thm. 8 again, we see that the schedules of the composition will contain schedules of the

component rename(T ′), which means that there is some sequence s = (a; a) ∈ scheds(T ′),

where a ∈ acts(rename(T ′)). But s /∈ scheds(P̂) because s /∈ scheds(M) (sinceM and T ′ have

disjoint sets of output actions by definition of composition of I/O automata), and s /∈ {⟨a⟩ | a ∈

Σ− acts(M)} since s has length > 1. This concludes the proof of our claim.

Prop. 2.4.1 compares the two definitions of enforcement (Def. 1 and Def. 2) with respect to

the same monitor and shows that our definitions capture the intuitive notions of enforcement;

i.e., a monitor that enforces a policy without being tailored for a specific target should enforce

the policy on any target, while the inverse should not be true in general.

However, we can get a deeper insight when trying to characterize the two definitions of en-

48

forcement in general independently of a specific monitor. Surprisingly, in such a comparison the

two definitions turn out to be equivalent.

Theorem 2.4.1. Given a policy P and a target T , there exist monitorsM andM′ such that P

is T-enforceable on T byM if and only if P is enforceable byM′.

Proof. The proof idea is the following. For the left direction use M ′ as M . For the right direc-

tion, use as M ′ the monitored target M × rename(T) (which we know that exhibits behaviors

that belong toP) andα−rename any target that we try to enforce the policy on. More specifically:

(⇒ direction) We assume that we are given a policyP and a target T such thatP is T-enforceable

on T by somemonitorM. That is, we assume that there exists a module P̂ ∈ P , a renaming func-

tion rename, and a hiding function hide for some set of actions Φ such that (scheds(hideΦ((M×

rename(T))))|acts(P̂)) = scheds(P̂).

We have to show that P is enforceable by some monitor M′, or, by definition, that there

exists monitorM′ such that for all targets T ′ there exists a module P̂ ′ ∈ P , a renaming function

rename′, and a hiding function hide′ such that (scheds(hideΦ((M′ × rename(T ′))))|acts(P̂ ′)) =

scheds(P̂ ′).

Let:

1. M′ = hideΦ((M× rename(T))),

2. P̂ ′ = P̂ ,

3. rename′ be a function that maps a to a′ where a ∈ acts(T ′), a′ /∈ acts(P̂),

4. hide′� = hide∅.

Now it is easy to see that:

(scheds(hideΦ((M′ × rename(T ′))))|acts(P̂ ′)) = scheds(P̂ ′)

⇔ (scheds(hide∅((hideΦ((M× rename(T)))× rename(T ′))))|acts(P̂)) = scheds(P̂) (by substitution)

49

⇔ (scheds((hideΦ((M× rename(T))) × rename(T ′)))|acts(P̂)) = scheds(P̂) (by definition of hiding

and the fact that Φ = ∅)

⇔ (scheds(hideΦ((M× rename(T))))|actsP̂)× (scheds(rename(T ′))|acts(P̂)) = scheds(P̂) (by The-

orems 5 and 7 in App. A)

⇔ (scheds(hideΦ((M× rename(T))))|actsP̂)× · = scheds(P̂) (by definition of rename′ and operator

|)

⇔ (scheds(hideΦ((M× rename(T))))|actsP̂) = scheds(P̂) (by Theorem 7 in App. A)

Note that the last line is true from our assumption, so we are done.

(⇐ direction) We assume that we are given a policy P and a target T . Moreover we assume that

P is enforceable by some monitor M′. That is, by definition, we assume that for all targets T

there exists a module P̂ ∈ P , a renaming function rename, and a hiding function hide such that

(scheds(hideΦ((M× rename(T))))|acts(P̂)) = scheds(P̂)

We have to show that P is T-enforceable on T by some monitorM. That is, we have to show

that there exists a module P̂ ′ ∈ P , a renaming function rename, and a hiding function hide for

some set of actions Φ such that (scheds(hideΦ((M× rename(T))))|acts(P̂ ′)) = scheds(P̂ ′).

This is trivially true, since we can use the module, renaming function, hiding function, and

monitor from our assumptions. Since the subset relationship is satisfied for every target, it is also

trivially satisfied by T .

The left direction of the theorem is straightforward: any generalized monitor can be used

as a target-specific monitor. The right direction is more interesting since it suggests, perhaps

surprisingly, that it is possible to construct a generalized monitor from a target-specific one. More

specifically, once we have a monitor that enforces a policy on a specific target, we can use this

monitored target as the basis for a monitor on any other target. In that case, the only security-

relevant behavior of the system would be exhibited by the monitor (formally, every action in

50

every other target would be renamed to become security irrelevant). For example, suppose we

have different versions of a specific application installed on each of our machines. If we find

a patch (i.e., monitor) for one version, then Thm. 2.4.1 implies that instead of finding patches

for all other versions, we can simply distribute the patched version (i.e., monitored target) to all

machines andmodify the existing applications on thosemachines so that their behavior is ignored.

This approach might be relevant when reinstalling the patched version of the application on top

of other versions is more cost-efficient than finding patches for every other version. Thm. 2.4.1

also implies that if we can include enough of a target’s functionality in the monitor so that the

policy is enforced, then this monitor suffices to enforce the policy on any possible target.

Thm. 2.4.1 holds because Def. 1 and 2 place no restrictions on the renaming functions or how

a monitor is integrated with a target. In practice, the interactions between the monitor and the

target may, or should, be more constrained. For instance, in Section 2.1 we discussed that in

interposition-based mechanisms care must be taken when replicating kernel functionality to the

monitor (in fact it better be avoided). Thus, one might argue that it would be more natural to have

the only-if direction of the theorem fail, since it erases the distinction between target-specific and

generalized enforcement.

To erase the distinction between these two types of enforcement we introduce the notion of

maximal enforcement which restricts some elements in the definitions of target-specific and gen-

eralized enforcement. Intuitively, when talking about a monitor maximally enforcing a policy on

a target, we require the following restriction: when picking a module of the policy to compare our

monitored system with, we must pick one that maximally matches the signature of the monitor,

the target, and the range of the renaming function. The module of the policy that we pick has

to reason about how the monitor and the target are integrated together. Thus, we make explicit

the semantics of α−renaming: we cannot make security-relevant actions security-irrelevant by

α−renaming them to actions that our outside the signature of the module. This is to ensure that

51

we do not choose modules that do not care about the behavior of the original target, and thus al-

low everything the target wants to do. For example, assume we have a policy that reasons about

file operations and networking events. Moreover, assume the policy has two modules: one rea-

sons about file operations and the other reasons about networking events. Both modules allow

the empty sequence of actions; i.e., they allow scenarios in which the target does nothing. With

maximal enforcement, to check whether the policy is enforced by a firewall on the networking

interface of a target, we compare the behavior of the monitored target with the schedules of the

network module, and not the file module. Thus, if the target tries to send a packet to a blacklisted

address, and the firewall does not mediate that communication, for example due to insufficient

rights, then the firewall cannot enforce that policy. However, had we used the basic definition

of enforcement, then one could argue that the policy is enforceable since the firewall trivially

enforces it using the file module: no file operations are exhibited by the network interface and

thus nothing bad can happen.

Def. 6 and 7 formally express the above constraints.

Definition 6. (Target-specific Maximal enforcement) Given a policy P , a monitor M , a target

T , and a set of renaming functionsR we say that P is T-max-enforceable on T byM usingR if

and only if there exist ren ∈ R and P̂ ∈ P such that:

1. Sig(P̂) = Sig(M) ∪ Sig(T) ∪ range(ren), and

2.
(
scheds(M × ren(T)) | acts(P̂)

)
= scheds(P̂).

Definition 7. (GeneralizedMaximal enforcement) Given a policyP , a monitorM , a set of targets

T , and a set of renaming functions R we say that P is max-enforceable on T byM using R if

and only if ∀T ∈ T there exist ren ∈ R and P̂ ∈ P such that:

1. Sig(P̂) = Sig(M) ∪ Sig(T) ∪ range(ren), and

2.
(
scheds(M × ren(T)) | acts(P̂)

)
= scheds(P̂).

52

Using the definition of maximal enforcement we can show that the equivalence between gen-

eral and specific enforcement is no longer true12:

Theorem 2.4.2. There exist a policy P , a set of renaming functions R, a set of targets T , and a

target T ∈ T such that P is T-max-enforceable on T by some monitorM usingR, but P is not

max-enforceable on T by any monitorM ′ usingR.

Proof. The idea of the proof is to construct a policy P with two elements P̂1 and P̂2 that describe

two different targets, T1 and T2. But although P̂1 is enforceable, P̂2 is not (we construct a non-

enforceable policy by applying Thm. 2.5.1). Thus, by definition of maximal enforcement when

trying to enforceP onT1we have to pick P̂1which is enforceable, and thus specificallymaximally

soundly enforceable. Dually, when trying to enforce P on T2 we have to pick P̂2 which is not

enforceable, and thus P is not generally maximally soundly enforceable.

More specifically, given an I/O automatonA, letX (A) = {s | s contains only internal actions

of A }.

Let T1 and T2 be targets with Sig(T1) ̸= Sig(T2), scheds(T1) ̸= ∅, scheds(T2) ̸= ∅, and

X (T2) ̸= ∅.

Let T = {T1, T2},R = {id}, i.e., the only renaming function allowed is the identity function.

Now we construct the policy P = {P̂1, P̂2}, where P̂1 = ⟨Sig(T1), scheds(T1)⟩, and P̂2 =

⟨Sig(T2), scheds(T2) − X (T2)⟩, i.e., P̂2 disallows any schedule of T2 that contains only internal

actions of T2.

Now, pick T1 ∈ T . It is easy to see that there exists a monitorM , the trivial monitor with the

empty signature that does nothing, such that (1) Sig(P̂) = Sig(T1) ∪ Sig(M) ∪ range(id), and

(2) scheds(M × id(T1)) = scheds(P̂1). By simple syntactic manipulations we get (1) Sig(T1) =

Sig(T1), and (2) scheds(T1) = scheds(T1), which is trivially true.

12Note that Thm. 2.4.1 is implicitly universally quantified over all (sets of) renaming functions and targets. Thus,
Thm. 2.4.2 is indeed the negation of Thm. 2.4.1.

53

Now, it suffices to show that there is no monitor M ′ such that P is generally maximally

soundly enforceable by M ′. When trying to see whether P is enforceable for T2, the first con-

straint of the definition of general maximal enforcement forces us to choose P̂2: it is the only

module that matches the signature or T2.

But, by construction, P̂2 disallows any schedule that contains internal actions of T2, and T2

can exhibit such schedules. Moreover, since our only renaming function available is the identity,

there is no monitor M ′ that can prohibit these internal actions from happening: I/O automata

composition do not allow for one component automaton to control the local actions of any other

component. Thus, for anyM ′, the monitored targetM ′×id(T2)will exhibit schedules that belong

to X (T2) and thus the subset relation scheds(M ′ × id(T2)) = scheds(P̂2) does not hold. Thus P

is not generally maximally soundly enforceable, and this completes the proof of the theorem.

Thm. 2.4.2 does not allow for general and specific enforcement to imply each other. Thus, the

definition of maximal enforcement restricts the generality of the framework as was introduced

in the previous subsections. Maximal enforcement can be useful in two types of scenarios: (1) a

designer wants to reason about how the monitor and the target are integrated and thus the policy

needs to reason about the renaming function (e.g., α−rename is not allowed), and (2) scenarios

in which the monitor cannot implement (i.e., substitute for) every behavior of the target. For

example, if we have a policy that reasons about cryptographic operations and file operations, we

can build a monitor that faithfully reproduces the file operations that the target can perform, but

not a monitor that reproduces the cryptographic operations of the target (e.g., due to lack of access

to private cryptographic keys). In this case maximal enforcement can help us to reason about the

practical limitation of monitors when discussing about the enforceability of policies. On the

other hand, the patching example after Thm. 2.4.1 illustrates a practical scenario where the most

54

general framework is appropriate for modeling and reasoning about enforcement. Since our goal

is to introduce a framework that is general enough to accommodate as many practical scenarios as

possible (even seemingly degenerate ones), we rely on themonitor designer to impose appropriate

restrictions on monitors to better reflect on monitors under scrutiny.

55

2.5 Generally Enforceable Policies

The definitions and abstractions described thus far enable rigorous, detailed analyses of practical

monitored systems. They also allow meta-theoretic reasoning that furthers our understanding of

general limitations of practical monitors that fit this model. In this section we begin our analysis

by focusing on general enforcement and derive several such meta-theoretic results. In the next

section, we further our analysis by focusing on target-specific enforcement.

2.5.1 Auxiliary Definitions

I/O automata are input enabled, which as discussed in Section 2.2 means that all input actions

of an automaton A are enabled at all states of A. Several arguments can be made in favor of

or against input-enabledness. For example, one might argue that input-enabledness may lead

to better design of systems because one has to consider all inputs that may be received from

the environment [1]. On the other hand, this constraint might be too restrictive for practical

systems [66].

In our context, we believe that input-enabledness is a useful characteristic, since run-time

monitors are by nature input-enabled systems: the monitor may receive input at any time both

from the target and from the environment (e.g., keyboard or network). However, a monitor mod-

eled as an input-enabled automaton can enforce only those policies that allow the arrival of inputs

at any point during execution. This is reasonable; a policy that prohibits certain inputs cannot

be enforced by a monitor that cannot control those inputs. We later combine this and other con-

straints to describe the upper bound of enforceability in our setting.

We say that a module, or policy, is input forgiving (respectively, internal and output forgiv-

ing) if and only if it allows the empty sequence and allows each valid sequence to be extended

56

to another valid sequence by appending any, possibly infinite, sequence of input actions (respec-

tively, internal and output actions).

Definition 8. A schedule module P̂ is input forgiving if and only if:

(1) · ∈ scheds(P̂); and

(2) ∀s1 ∈ scheds(P̂) : ∀s2 ⪯ s1 : ∀s3 ∈ ((Input(P̂)))∞ : (s2; s3) ∈ scheds(P̂).

I/O automata’s definition of executions allows computation to stop at any point. Thus, the

behavior of an I/O automaton is safe; any prefix of a schedule exhibited by an automaton is also

a schedule of that automaton, and all successive extension of schedules are limit closed [1]:

Definition 9. A schedule module P̂ is a safety module if and only if:

1. scheds(P̂) ̸= ∅,

2. scheds(P̂) is prefix closed; i.e., if s ∈ scheds(P̂) and s′ ⪯ s, then s′ ∈ scheds(P̂), and

3. scheds(P̂) is limit closed; i.e., if s1, s2, . . . is an infinite sequence of finite sequences in

scheds(P̂), and for each i, si is a prefix of si+1, then the unique schedule s that is the limit

of si under the successive extension ordering is also in scheds(P̂).

These characteristics are unsurprising from the standpoint of models for distributed compu-

tation, but describe practically relevant details that are typically absent from models of run-time

enforcement. Our model, instead of making assumptions that might not hold in every practical

scenario (e.g., that all actions can be mediated) takes a more nuanced view, which admits that

there are aspects of enforcement outside the monitor’s control, such as security-relevant actions

that the monitor cannot observe or mediate, or the existence of scheduling strategies that might

not favor the monitor. When formally analyzing the policies enforceable by monitors, as in the

next section, the above definitions help us make precise these assumptions.

57

2.5.2 Upper Bounds of Enforceable Policies

Another constraint that affects the upper bounds of enforceability specific to monitoring is that

a monitored system cannot always ignore all behaviors of the target application. Some realistic

monitors decide what input actions the application sees, but otherwise do not interfere with the

application’s behavior—firewalls belong to this class of monitors. In such cases, a monitor can

soundly enforce a policy only if the policy allows all the behaviors that the target can exhibit

even if it receives no input. We call these policies quiescent forgiving (recall the definition of a

quiescent state from Section 2.2). Modules contained in such policies are also called quiescent

forgiving. This definition captures one type of limitation that was understood to be present in

run-time monitoring, but that was not formally expressed. Quiescent forgiving modules can be

defined more formally as follows:

Definition 10. A schedule module P̂ is quiescent forgiving for some T if and only if:

∀e ∈ execs(T) such that e = q0, a1, . . . , qn :(
qn ∈ quiescent(T) ∧

(
∀i ∈ N : 0 ≤ i < n : qi /∈ quiescent(T)

))
⇒(

sched(e)|acts(P̂)
)
∈ scheds(P̂) ∧ (∀i ∈ N : 0 ≤ i < n : (sched(q0, . . . , qi) | acts(P̂))

∈ scheds(P̂)).

The following theorem formalizes an upper bound: a policy that is not quiescent forgiving,

input forgiving, and prefix closed cannot be (precisely) enforced by any monitor.

Theorem 2.5.1. Given a policyP , a schedule module P̂ ∈ P , a target T , and a renaming function

rename, if there exists a monitorM such that

(scheds(M× rename(T))|acts(P̂)) = scheds(P̂),

then P̂ is input forgiving, safety, and quiescent forgiving for rename(T).

Proof. The proof is by contradiction. The main ideas are the following: if P̂ does not allow

certain inputs then it is not enforceable because the monitored target is an I/O automaton, and I/O

58

automata cannot block inputs: they always appear in the schedules of the monitored target. The

same argument holds for safety: I/O automata’s schedules are prefix closed (and limit closed),

thus P̂ has to be as well. Finally, since the monitor does not control the local actions that the target

will execute at the beginning of its execution, if the property forbids some of these schedules then

the monitor cannot enforce the policy.

More specifically, we fix a policy P , a module P̂ , a hiding function hideΦ(), and a renaming

function rename(), and we assume that there exists a monitorM such that(
scheds(hideΦ(M× rename(T)))|acts(P̂) ⊆ scheds(P̂)

)
. We have to show that P̂ is input

forgiving, prefix closed, and quiescent forgiving for rename(T).

For the sake of contradiction, assume that P̂ is not input forgiving, or not prefix closed, or

not quiescent forgiving for rename(T).

Case: P̂ is not input forgiving:

Since P̂ is not input forgiving, then either · /∈ scheds(P̂) or there exists an s1 ∈ scheds(P̂),

a finite prefix s2 of s1, and some sequence of input actions s3 such that (s2; s3) /∈ scheds(P̂). If

we assume the first case of · /∈ scheds(P̂) we derive a contradiction since the empty sequence

belongs to the schedules of any I/O automaton by definition of executions and schedules of I/O

automata. If we assume the latter case, then we know that s2 ∈ scheds(hideΦ(M× rename(T)))

by assumption. Let qn be the state that the monitored target is at after executing the last action

of s2. By definition, every state of an I/O automaton is input enabled. Thus qn is input enabled,

which means that ∀s′ ∈ ((Input(hideΦ(M × rename(T)))))∞: (s2; s′) ∈ scheds(hideΦ(M ×

rename(T))) (remember we assume no fairness thus it does not matter whether qn is quiescent

or not). But for s′ = s3 we get that (s2; s3) ∈ scheds(hideΦ(M× rename(T))) and that (s2; s3) /∈

scheds(P̂)which contradicts our assumption. Thus, in both cases we derived a contradiction, and

thus P̂ must be input forgiving.

Case: P̂ is not safety:

59

Since P̂ is not safety, then there exists some schedule s1 that belongs to the schedules of P̂ ,

but there exists some prefix s2 of s1 that does not belong to the schedule of P̂ , or more formally:

∃s1 ∈ (Σ)∞ :
(
s1 ∈ scheds(P̂)

)
∧
(
∃s2 ∈ (Σ)⋆ : s2 ⪯ s1 : s2 /∈ scheds(P̂)

)
.

Without loss of generality, assume s2 is the longest strict prefix of s1, i.e., it is the longest prefix

of s1 that does not belong to the schedules of P̂ , and that all prefixes of s2 belong to the schedules

of P̂ . If s2 = a1, . . . , an−1, an then let s−2 = a1, . . . , an−1 and s+2 = a1, . . . , an−1, an, an+1 ⪯ s1.

We know that s−2 ∈ scheds(P̂) by assumption, s+2 ∈ scheds(P̂) because if it was not in the

schedules of the property this would be the longest invalid prefix of s1 which contradicts our

choice of s2, and thus by assumption they both also belong to the schedules of the monitored

target hideΦ(M × rename(T)). Let qn be the state that the monitored target is after executing

an−1, and qn+1 be the state before executing an+1. In order for the automaton to transition from

qn to qn+1 it must execute some an. But then s−2 ; an = s2 ∈ scheds(hideΦ(M × rename(T))),

while we assumed that s2 /∈ scheds(P̂). This contradicts our original assumption, and thus P̂

must be prefix closed.

Case: P̂ is not quiescent forgiving:

Since P̂ is not quiescent forgiving for rename(T), then there exists some execution e =

q0, a1, . . . , qn of rename(T) with qn ∈ quiescent(T) and qi /∈ quiescent(T) for 0 ≤ i < n

such that either (sched(e)|acts(P̂)) /∈ scheds(P̂) or some prefix t of (sched(e)|acts(P̂)) does not

belong to the schedules of P̂ .

By Theorem 7we know that if sched(e) ∈ scheds(rename(T)), then sched(e)∈ scheds(hideΦ(M

× rename(T))). Thus, (sched(e)|actsP̂) ∈ scheds(hideΦ(M× rename(T))). But the fact that

(sched(e)|acts(P̂)) /∈ scheds(P̂) contradicts our assumption. With the same argument we can

show that even if we assume some prefix t of sched(e) we also derive a contradiction. Thus P̂

must be quiescent forgiving.

60

Thm. 2.5.1 reveals that monitors, regardless of their editing power, can enforce only safety

properties. Thus, in our context, even the equivalent of an edit monitor cannot enforce renewal

properties (as opposed to [30]), since when renewal properties are constrained by prefix closure

they collapse to safety properties. This is because, as mentioned above, our model of executions

allows computation to stop at any point. This is another helpful characteristic of our model; it

highlights that on systems in which execution may cease at any moment (e.g., due to a power

outage), only safety properties can be enforced.

In practice, monitors typically reproduce at most a subset of a target’s functionality. Hence, if

a monitor composed with an application is to exhibit the same range of behaviors as the unmon-

itored application, it will have to consult the target application in order to generate these behav-

iors. In the system-call interposition example, for instance, the monitor cannot return correct file

descriptors without consulting the kernel. Such monitors that regularly consult an application,

cannot precisely enforce (with respect to schedules) arbitrary policies even if they are quiescent

forgiving, input forgiving, and prefix-closed. This is because an input forwarded by the monitor

to an application might cause the application to execute internal or output actions (e.g., a buffer

overflow) that are not allowed by the policy and that the monitor cannot prevent, since these are

outside of the interface between the monitor and the target.

On the other hand, it is also common for themonitor (or system designer) to have some knowl-

edge about the target, even if it does not have access to its state. This knowledge can be exploited

to use simpler-than-expectedmonitors to enforce of (seemingly) complex policies. Although sim-

ilar observations have been made before (e.g., program re-writing [29], non-uniformity [30], use

of static analysis [67]), our framework can be used to formally extend them, as we demonstrate

in Section 2.6.

61

2.5.3 Lower Bounds of Transparently Enforceable Policies

In Section 2.4.1 we discussed how to encode the notion of transparent enforcement as a specific

type, or instantiation, of policy in our framework. Here we take a closer look at the constraints

under which such policies are enforceable.

As discussed in the previous section, in our basic framework monitors can only enforce safety

policies. Thus, if a monitor needs to exhibit more than one action to (strongly) transparently en-

force a policy, there is no guarantee that it will be able to do so. In contrast, previous models

(e.g., [30]) assumed that enabled actions of a monitor would always be performed. In our frame-

work, to achieve equivalent results we can either explicitly add similar guarantees about the runs

of the system through appropriate fairness constraints [63], or relax the requirements in the def-

inition of transparent enforcement (cf. weak and strong transparency). This is another instance

of our framework making explicit the (practical) assumptions and constraints that affect the en-

forcement of policies.

First, we provide definitions of target-specific and general fair enforcement. The following

definitions of enforcement compare the schedules of the policy with the fair schedules of the

monitored target; i.e., we only care about the final behaviors that the monitored target wants to

exhibit and not all steps that it has to take to reach them.

Definition 11. (Fair target-specific enforcement) Given a policy P , a target T , and a monitor

M we say that P is fairly T-enforceable on T byM if and only if there exists a module P̂ ∈ P ,

a renaming function rename, and a hiding function hide for some set of actions Φ such that

(fairscheds(hideΦ((M× rename(T))))|acts(P̂)) = scheds(P̂).

Definition 12. (Fair generalized enforcement) Given a policy P and a monitorM we say that P

is fairly enforceable byM if and only if for all targets T there exists a module P̂ ∈ P , a renaming

function rename, such that (fairscheds((M× rename(T)))|acts(P̂)) = scheds(P̂).

62

Using these definitions we can now characterize the policies that are transparently enforceable

by monitors, or equivalently, under which constraints monitors can enforce policies that encode

transparency.

If a policyP contains a module P̂ that is strongly transparent, then there is no monitor that can

precisely enforce P using P̂ without taking into account fairness: the schedules of the monitored

target will be prefix closed, whereas the schedules of the policy won’t; i.e., the equality relation

won’t hold. On the other hand, if a monitor fairly T-enforces policy using P̂ then the P̂ must

be be input and quiescent forgiving. It is easy to show that the last statement is non-trivial; i.e.,

there exists some strongly transparent P̂ that is fairly T-enforceable by some monitorM . These

observations are formalized in Thm. 2.5.2.

Theorem 2.5.2. Given a policy P , a schedule module P̂ ∈ P , a target T , a monitor M, a

schedule module P̂T , and a renaming function rename, such that P̂ is strongly transparent for

M × rename(T) w.r.t. P̂T then:

1. there is no monitorM that T-enforces P on T using P̂ , and

2. if there exists M that fairly T-enforces P on T using P̂ then P̂ is input forgiving, and

quiescent forgiving for rename(T).

Proof. The idea of the proof is as follows: since P̂ is strongly transparent then every schedule

that belongs to P̂ must be of even length (containing the behavior that the target wants to execute

and the behavior that the monitor forwards to the environment). But, the monitored target is an

I/O automaton which means that its schedules are prefix closed and thus it contains schedules of

odd length. Thus, there is no way for the set of schedules of the monitored target to be equal to set

of schedules of a strongly transparent P̂ . On the other hand, the fair schedules of the monitored

target can be of even length, and thus the only constraints that P̂ must adhere to is input and

quiescence forgiveness (for reasons described in Thm. 2.5.1).

63

More specifically, the proof is by contradiction. First, pick a policy P with only one non-

trivial element P̂ and a non-trivial module P̂T , i.e., scheds(P̂) ̸= ∅ and scheds(P̂T) ̸= ∅. Now,

let P̂ contain only transparent schedules, i.e., ∀t ∈ P̂T : ∃s ∈ scheds(P̂) : ren−1(s|range(ren)) =

(s|dom(ren)) = t, and P̂ does not contain any other schedules besides the ones specified above.

Proof of (1): Assume there exists monitorM that specifically precisely enforcesP on T using

P̂ . By Thm. 2.5.1, P̂ must be prefix closed. But also, by construction, ∀s ∈ scheds(P̂) : ∃t ∈

P̂T : ren−1(s|range(ren)) = (s|dom(ren)) = t.

Since scheds(P̂T) and scheds(P̂) are non-empty pick s ∈ scheds(P̂) such that ∃t ∈ P̂T such

that ren−1(s|range(ren)) = (s|dom(ren)) = t. Now since we assumed that P̂ is prefix closed,

then if s = a1; a2; . . . ; an; an+1, then s′ = a1; a2; . . . ; an must also belong to P̂ . But then it is easy

to see by a simple counting argument that there is no t′ ∈ P̂T such that ren−1(s′|range(ren)) =

(s′|dom(ren)) = t′: s′ contains one less action than s, whereas it should contain two less actions

for the above equality to hold.

Thus we have a contradiction, and no suchM can exist that specifically precisely enforce P

on T using P̂ .

Proof of (2): Similar to the proof of Thm. 2.5.1 for the cases of input-forgiving and quiescent

forgiving, but substituting occurrences of scheds() with fairscheds().

The requirement for fairness in order to enforce strongly transparent modules (and policies)

is not tight to the definition of precise enforcement (i.e., equality relation between sets of sched-

ules). It is required even when talking about sound enforcement (i.e., subset relation). However,

there is a corner case where we can soundly enforce a strongly transparent module without the

use of fairness; the monitored target exhibits no behavior at all and the module allows it. This

is an important point for the specification of security policies since there might be cases where

64

transparency is not correctly captured, for example, if a target is not violating the policy but is

blocking. In this situation the target does exhibit good behaviors but only if the monitor initiates

the computation, then one might argue that we are not transparent since we are prohibiting the

target from performing good actions. But, it depends on the specific scenario and semantics of

transparency and policies that the designer wants to capture to decide whether this corner case

should or should not be allowed. The following proposition formalizes this idea:

Proposition 2.5.1. Given a policy P , a schedule module P̂ ∈ P such that · ̸∈ scheds(P̂), a

target T , a monitor M, a schedule module P̂T with scheds(P̂T) ̸= ∅, and a renaming function

rename, then if P̂ is strongly transparent forM × rename(T) w.r.t. P̂T then there is no monitor

M that specifically soundly enforces P on T using P̂ .

Proof. As explained in the proof idea of Thm. 2.5.2, a monitored target may exhibit schedules

of odd length that can not belong in a strongly transparent module. The only corner case is when

the monitored target exhibits no schedules at all, which means that it exhibits the empty schedule

(which is of even length). Since the strongly transparent modules of the theorem do not contain

the empty schedule, then the policy is not even soundly enforceable.

More specifically, by Def. 4, of strong transparency, it is easy to see that every schedule that

belongs to P̂ and contains some behavior of the target that belongs to P̂T must have even length.

But as described in the proof of Thm. 2.5.2 since the schedules of the monitored target are prefix

closed (i.e., safety), the monitored target will exhibit schedules (of odd length) that do not belong

to P̂ . In Thm. 2.5.2 that was enough to contradict the theorem statement because we were proving

precise enforcement, i.e., equality. Here, there is one case that the monitor can soundly enforce

the policy (i.e., subset relation): the monitored target does nothing, i.e., it exhibits a schedule

65

with no actions (which has an even length, i.e., 0). But, by assumption · ̸∈ P̂ . Thus, this corner

case cannot happen under the assumptions of the theorem statement and we conclude that there

is no monitor that specifically soundly enforces P on T using P̂ .

As discussed above, we can transparently enforce a larger class of policies if we allow for a

weaker definition of transparency (i.e., weak transparency). A weakly transparent module may

range between the two extremes: strongly transparent modules and safety modules. These two

bounds are found when we take into account fairness, or the lack of it:

Theorem 2.5.3. Given a policy P , a schedule module P̂ ∈ P , a target T , a monitor M, a

schedule module P̂T , and a renaming function rename, such that P̂ is strongly transparent for

M × rename(T) w.r.t. P̂T then:

1. ifM T-enforces P on T using P̂ , then P̂ is input forgiving, safety, and quiescent forgiving

for rename(T), and

2. if M fairly T-enforces P on T using P̂ then P̂ is input forgiving, and quiescent forgiving

for rename(T).

Proof. Derived easily from Thm. 2.5.1, for (1), and 2.5.2, for (2).

66

2.6 Target-specifically Enforceable Policies

As discussed in Section 2.3, the expressiveness of our model allows multiple ways to define

monitors (e.g., a truncation monitor) that had a single natural definition in previous models. Due

to space limitations, rather than comprehensively analyzing the policies enforceable by specific

monitors, as done in previous work [27, 29, 30, 34, 59], we demonstrate how our framework

enables formal results that can be exploited by designers of run-time monitors who have knowl-

edge about the target application by using a novel analysis of how some knowledge of the target

can compensate (in terms of enforceability) for a narrower monitoring interface (i.e., incomplete

mediation).

We begin by showing how partially mediating monitors can be formally defined in our frame-

work. We will first define what it means for a monitored target to be input/output mediating and

input mediating. The definitions formalize the constraints on the renaming functions of the mon-

itored target, as they were described in Section 2.3.

Definition 13. A monitorM is input/output mediating if and only if for any target T there exists

a renaming function rename such that:

1. Output(rename(T)) ⊆ Input(M),

2. Input(rename(T)) ⊆ Output(M),

3. Internal(rename(T)) = Internal(T),

4. Output(T) ⊆ Output(M), and

5. Input(T) ⊆ Input(M).

Constraints (1-3) force the renaming function to match the interfaces of the target and the

monitor (i.e., it does not allow to arbitrarily rename the target interface) and ensure that all security

relevant input/output behavior of the target is completely mediated by the monitor. In particular,

67

constraint (1) ensures that all security relevant outputs will be received by the monitor, while

constraint (2) ensures that all the security relevant inputs to the target will come from the monitor.

Constraint (3) ensures that the security relevant actions of the target are not renamed so that we

can capture the fact that there are actions that are outside the monitor’s control. If we could

rename them to some internal actions of the monitor, then it would be possible to not exhibit

invalid internal actions because the monitor controls its own internal actions. Finally, constraints

(4) and (5) ensure that the monitor has the ability to input and output the actions that the original

target could.

Similarly to Definition 13 we can define a monitored target to be input mediating:

Definition 14. A monitor M is input mediating if and only if for any target T there exists a

renaming function rename such that:

1. Input(rename(T)) ⊆ Output(M),

2. Internal(rename(T)) = Internal(T),

3. Output(rename(T)) = Output(T), and

4. Input(T) ⊆ Input(M).

Constraint (1) ensures that all the security relevant inputs to the target will come from the

monitor. Constraints (2) and (3) ensure that the security relevant actions of the target are not

renamed so that we can capture the fact that there are actions that are outside themonitor’s control,

this time including the output actions of the target. Finally, constraint (4) ensures that the monitor

has the ability to input all the actions that the original target could.

In Section 2.3 we described two monitoring architectures: one in which the monitor mediates

the inputs and the outputs of the target, and another in which it mediates just the inputs. Intu-

itively, an input/output-mediating monitor should be able to enforce a larger class of policies than

an input-mediating one, since the former is able to control (potentially) more security-relevant

68

actions than the latter (i.e., the outputs of the target). In other words, there exist policies that are

enforceable by input/output mediating monitors, but not by input mediating monitors. This can

be expressed as follows:

Theorem 2.6.1. There exists a policy P that is enforceable by some input/output-mediatingM1

and not enforceable by some input-mediatingM2.

Proof. The idea of the proof is to construct a policy that prohibits certain (targets’) output actions.

It is easy to see that there exists a target (i.e., an I/O automaton) that exhibits exactly the actions

that the policy disallows. An input/output-mediating monitor can enforce that policy since it

mediates the output actions that the (renamed) target wants to execute and if they violate the

policy does not forward them to the environment. But an input-mediating monitor cannot (by

definition) prohibit the bad output actions from happening, and thus it cannot precisely enforce

the policy.

More specifically, take P = {P̂}, where acts(P̂) = Output(P̂) =
∪

i∈I Output(Ti) ∪∪
i∈I renamej∈J(Output(Ti)), scheds(P̂) = { · } ∪ {⟨a⟩ | a ∈ acts(P̂)}, and P̂ does not reason

about the communication between the monitor and the target where I is the set of all targets, and

J the set of all renaming functions (note that in the rest of the proof, for purposes of brevity of

presentation, we are assuming that the universes of Input, Output, Internal actions are disjoint,

and that renaming functions always map actions to fresh actions that are distinct from the Input,

Output, and Internal actions of the targets).

For proving the left conjunct of the theorem statement, we have to prove that there exists an

input/output-mediatingM1 such that for all targets T there exists a module P̂ ∈ P , a renaming

function rename, such that (scheds((M1 × rename(T)))|acts(P̂)) = scheds(P̂).

Let M1 be the input/output-mediating monitor that has as elements of its signature the fol-

lowing sets: Input(M1) = {
∪

i∈I Input(Ti)} ∪ {
∪

i∈I renamej∈J (Output(Ti))}, Output(M1) =

69

{
∪

i∈I Output(Ti)} ∪ {
∪

i∈I renamej∈J(Input(Ti))}, Internal(M1) = ∅, where I is the set of all

targets, and J the set of all renaming functions.

Moreover, let scheds(M1) contain no schedules that include more than one output actions

from the subset {
∪

i∈I Output(Ti)}, i.e., the monitor does not exhibit any output behavior to the

environment that contains more than one action. This is easy to do: just exhibit the first valid

output action that the target wants to execute, and suppress all future attempts. Now it is easy

to see that for all targets T there exists a module P̂ ∈ P , a renaming function rename, such

that (scheds((M1 × rename(T)))|acts(P̂)) = scheds(P̂): assume otherwise, i.e., there exists a

schedule s ∈ scheds((M1 × rename(T))) that is not an element of scheds(P̂). Since scheds(P̂)

contains all possible sequences of length one that contain the output actions of all targets (and all

their possible renamings), the only way for (s | acts(P̂)) not to be an element of the schedules

of P̂ is to contain output actions and have length larger than 1. However, this is impossible by

(1) construction of the monitor, and (2) assumption that the policy does not reason about the

communication between the monitor and the target (by Def. 13, all output actions of the target

are mediated by the monitor and thus considered part of their communication).

For proving the right conjunct of the theorem statement, we have to prove that it is not the

case that there exists an input-mediating M2 such that for all targets T there exists a mod-

ule P̂ ∈ P , a renaming function rename, such that (scheds((M2 × rename(T)))|acts(P̂)) =

scheds(P̂). In other words, we have to prove that for all input-mediatingM2, there exists a tar-

get T , such that for all modules P̂ ∈ P , and for all renaming functions rename: (scheds((M2 ×

rename(T)))|acts(P̂)) ̸= scheds(P̂).

To prove the claim, take any target T such that ∃s ∈ scheds(T), and s contains more than

two output actions. Let s′ be the schedule of the renamed target rename(T) that corresponds to

s. Then, by Thm. 8 s′ is contained in (scheds((M2 × rename(T))) (since the output actions of

the target and the monitor are disjoint). Also, s, and thus s′ contain more than two output actions.

70

Moreover, by definition of P̂i, acts(P̂) = Output(P̂i) ⊇ Output(rename(T)), for any rename

function. And since every element P̂i of P does not contain any schedules with more than two

output actions, (s′ | acts(P̂)) /∈ scheds(P̂). This concludes the proof of the claim.

It follows from Thm. 2.6.1 that an input/output-mediating monitor enforces strictly more poli-

cies than an input-mediating monitor.

Corollary 2.6.1. {P | P is enforceable by some input-mediatingM1} ⊊ {P | P is enforceable

by some input/output-mediatingM2}.

The subset direction is straightforward: for any input-mediating monitorM1 we can construct

an input-output mediating monitor M2 that echoes to the environment every output action that

it intercepts. It is clear that for any target T , M1 and M2 will have equivalent behaviors. The

not-equal direction follows from Thm. 2.6.1.

If we instantiate in Cor. 2.6.1 monitorM1 with a truncation monitor TM1 and monitorM2 with

a truncation monitor TM2 , we get the following result.

Corollary 2.6.2. Given an input-mediating truncation monitor TM1 and input/output-mediating

truncation monitor TM2 , {P | P is enforceable by TM1} ⊊ {P | P is enforceable by TM2}.

Cor. 2.6.2 illustrates how differences in the implementation of monitors with seemingly equal

power, or capabilities, (according to certain previous models [30]), affect the enforceability of

security policies.

In fact, when taking into consideration implementation details of monitors we have to revisit

previous results on enforceability of policies by monitors with different operational semantics.

For example, it has been proven that edit monitors can enforce a strict superset of policies that

truncation monitors enforce [30]. However, this relation does not hold if we consider how the

monitors are implemented (i.e., what interface of the target they monitor):

71

Corollary 2.6.3. There exist a safety policyP , an input/output mediating truncation monitorMT ,

and an input-mediating edit monitorME such that P is enforceable byMT but not enforceable

byME .

Thm. 2.6.1 and Corollaries 2.6.1- 2.6.3 establish that some policies are generally enforceable

by input/output mediating monitors but not by input mediating monitors. However, for some

targets and policies the two architectures are equivalent in enforcement power. The following

theorem characterizes the targets and policies for which this equivalence holds.

Theorem 2.6.2. Given a policy P , a schedule module P̂ ∈ P , a target T , an input/output-

mediating monitor M1 with renaming function rename1, and an input-mediating monitor M2

with renaming function rename2, such that:

(C1) Let X = input(rename1(T)) ∪ output(rename1(T)) ∪ input(rename2(T)) in

[X ∩ acts(P̂) = ∅] ∨ [∀s /∈ scheds(P̂) : (s = σ; a) ⇒ (a /∈ X)],

(C2) scheds(P̂) ⊆ scheds(T), and

(C3) ∀s ∈ scheds(T) : [(s = σ; a; b) ∧ (a, b ∈ Local(T))] ⇒

[s ∈ scheds(P̂)] ∨ [(s /∈ scheds(P̂)) ⇒ (σ; a) /∈ scheds(P̂)],

thenM1 T-enforces P on T using P̂ if and only ifM2 T-enforces P on T using P̂ .

Proof. The constraints of the theorem are explained below. The main proof of the theorem is by

construction. The proof idea is as follows: for the right direction we constructM2 by removing

from M1 any transitions that deal with outputs that the target wants to execute, and connect

together the transition graph, if disconnected components were created from the removal of the

transitions. For the left direction, we constructM1 by usingM2 as a basis and adding transitions

that (1) intercept output actions that the target wants to execute, and (2) forward these intercepted

72

actions to the environment. More specifically:

(⇒ direction) We assume that we have some arbitrary policyP and target T , and an input/output-

mediatingM1 that specifically precisely enforces P on T . We need to show that there exists an

input-mediatingM2 that specifically precisely enforces P on T .

We construct M2 by (a) taking the restriction of M1 that deals only with inputs from the

environment, i.e., we ignore the part ofM1 that receives input actions from T and outputs output

actions to environment, and (b) for every input i that belongs to the set of inputs that invalidate

extensions we simply remove the corresponding transitions: in other words, for every i that in-

validates executions, and for every transition of the form ⟨q, i, q′⟩, we remove all transitions of the

form ⟨q′, a, q′′⟩, where a is a local action (we keep input actions because of input-enabledness).

We will show that ifM1 specifically precisely enforces P on T under the above constraints, then

M1 specifically precisely enforces P on T also.

First we will show that the part ofM1 that receives inputs from T and outputs actions to the

environment does not do anything non-trivial (under the given constraints), i.e., it either outputs

nothing or it simply forwards valid actions that T wants to execute. We do a case analysis on

the actions that T might execute and prove that the output-mediating part ofM1 is trivial. First,

observe that by (C3), M1 cannot arbitrarily add actions that T might not execute. Second, if T

wants to output some action a that obeys the policy, then because of the precise enforcement con-

straint,M1 will have to (eventually) output it. Thus in the case ofM1, a is eventually exhibited

by itself, whereas in M2, a will be exhibited directly by T . Finally,if T wants to output some

action a that disobeys the policy, then a can either be preceded by some input or not. If it is not

preceded by some input, then it must be part of quiescent behavior. But since P is enforceable,

then by Thm. 2.5.1 it must be quiescent forgiving, i.e., it must be valid – contradiction. So a

must be preceded by some input. But, by (C2), there is some input i that precedes a after which

all extensions are invalid. Thus, i will be the last action appearing on the schedule. This means

73

that since T can still communicate withM1,M1 will suppress all the security relevant behavior

following i (i.e., it will trivially output nothing).

Note that the latter is equivalent to not forwarding i to T (or any future inputs) and just con-

tinue execution by receiving inputs from the environment. This is exactly the construction that

corresponds to (b). So under the given constraints the two monitors will both precisely enforce

P on T .

(⇐ direction)

We assume that we have some arbitrary policy P and target T , and an input-mediating M2

that specifically precisely enforces P on T . We need to construct an input/output-mediatingM1

that specifically precisely enforces P on T .

We useM2 to constructM1. Specifically, we use the same transition relation asM2 which

we extend in a manner similar to the construction of a truncation monitor from a truncation au-

tomaton (Section 2.3), i.e., we add a special state and a queue that buffers the inputs that theM1

receives from T . Specifically, once M1 receives some output rename(a) from T , it records the

state it was before starting to receive inputs. If more inputs follow, it adds them to the queue.

Once it has finished forwarding to the environment all the outputs that T wanted to execute (i.e.,

forward a for each rename(a) received), it returns to the original state to continue execution (as

M2).

Since P does not reason about the communication between the monitor and the target, it is

easy to see that (scheds((M2×rename(T)))|acts(P̂)) = (scheds((M1×rename(T)))|acts(P̂)).

Every schedule that (M2 × rename(T)) produces is a schedule of (M1 × rename(T)), since

by construction M2 does not add any new schedules, and dually, every schedule that (M1 ×

rename(T)) produces is a schedule of (M2 × rename(T)), since by construction M2 does not

remove any schedules.

74

Constraint C1 ensures that the policy does not reason about the communication between the

monitor and the target. If the policy prohibited some communication for one monitor but not

the other, then the first monitor would have an unfair advantage over the second. For instance,

if the policy prohibited the input mediating monitor to forward certain inputs to the target, then

the target would not exhibit valid behaviors that depend on these blocked inputs. Constraint

C2 ensures that the input/output-mediating monitor does not have an unfair advantage over the

input mediating one, just because the policy requires from the monitor to output actions, even if

the target would never perform them. Constraint C3 ensures that every behavior that the target

exhibits and violates the policy must be preceded by an input action. This way, an input mediating

monitor can enforce the policy by not forwarding the actions that will cause the bad behaviors.

Note that by Thm. 2.5.1 the schedule module must be safety, and thus we are guaranteed that

once a behavior of the target becomes invalid, it stays so for all possible extensions.

Thm. 2.6.2 is an illustration of how our framework can help in making sound decisions for

designing and implementing run-timemonitors in practice. For example, suppose we have a Unix

kernel and want to enforce the policy that a secret file cannot be (a) deleted or (b) displayed to

guest users. A monitor designer who wants to precisely enforce that policy cannot in general use

an input-mediating monitor. Although it can enforce (a) by not forwarding commands like “rm

secret-file”, it cannot enforce (b), because it does not know whether the kernel can, for example,

correctly identify guest users and not display secret files to them. However, the designer can

check if the specific kernel meets the constraints of Thm. 2.6.2. If it does, e.g., the kernel does

not display any secret files while booting (i.e., quiescence forgiving), and does not display secret

files to guest users, e.g., through a correct access-control mechanism (i.e., C3), then an input-

mediatingmonitor suffices to enforce the policy. The correctness of such design choicesmight not

always be obvious, and the above example demonstrates how our framework can aid in making

more informed decisions. Moreover, such decisions can have benefits both in efficiency (by

75

not monitoring the kernel’s output sequence at run time), and in security (since the TCB/attack

surface of the monitor is smaller).

Precise enforcement is useful in situations where we want to guarantee that the monitor ex-

hibits certain behaviors that may not be exhibited by the monitored target; e.g., always append to

a file the date of modification before closing it (where append and close actions belong to the sig-

nature of the target), or log certain security relevant events (where logging actions do not belong

to the signature of the target). In the first case, if we allow for transparent and sound enforcement,

a monitor could simply buffer the open and writes to the file, and once a close action was issued

it could simply discard the particular sequence of actions.

76

2.7 Related Work

The first model of run-time monitors, security automata, was based on Büchi Automata and in-

troduced by Schneider [27]. Since then, several similar models have been proposed that extend

or refine the class of enforceable policies based on the enforcement capabilities (i.e., operational

semantics) [30], computational powers (e.g., finite or infinite state) of monitors [68], or refine-

ments of the notion of enforcement [69]. In Section 2.3.5 we showed how to encode truncation

(i.e., security) and edit automata in our framework. Moreover, in Section 2.4.1 we explained

why our definition of policies is more expressive than previous ones (since it allows to define

how a monitor responds to the inputs from a target or the environment). As an instance of this

expressiveness we showed how to encode the definition of sound and transparent enforcement

(often referred to as effective= enforcement [30, 69]) as a special class of policies in our frame-

work. This process can be extended to allow for encoding additional definitions of enforcement,

such as that of late effective= enforcement which extends soundness and transparency with the

requirement that the output of the monitor is always some prefix of the input that it received [69].

Another track of extensions of Schneider’s work includes frameworks that model additional

aspects of the monitoring and enforcement process, as opposed to the abilities and powers of the

monitors themselves. These frameworks are orthogonal to the models of computational exten-

sions. We can classify the majority of these frameworks into three categories: (1) Static Infor-

mation, (2) Interaction, and (3) Incomplete Mediation.

Static information. Some frameworks extend Schneider’s work to account for information

that is not available to the monitor at run-time, e.g., information about the target obtained by, for

example, static analysis (also identified as non-uniformity [30]). Hamlen et al. described a model

based on Turing Machines [29], with which they compared the classes of policies enforceable by

77

several types of enforcement mechanisms, such as static analysis and inlined monitors. Chabot

et al. used Rabin automata to derive in-lined monitors that enforce policies on specific targets,

and showed that non-uniform truncation monitors (i.e., monitors that consider only a subset of all

possible executions that a target might exhibit) are strictly more powerful than uniform truncation

monitors [67]. Our framework is more general than the above as it allows to formally reason about

the communication between the target and the monitor.

Interaction. Another line of frameworks focuses on modeling the interaction and communi-

cation interface between the target and the monitor. Such frameworks, either revise the com-

putational models, or adopt alternate ones, such as the Calculus of Communicating Systems

(CCS) [64] and Communicating Sequential Processes (CSP) [70], to more conveniently reason

about applications, the interaction between applications and monitors, and enforcement in dis-

tributed systems. An example of revising existingmodels isMandatory Results Automata (MRA)

which model the (synchronous) communication between the monitor and the target [59, 71].

MRA’s, however, do not model the target explicitly, and thus results about enforceable policies

in target-specific environments might be difficult to derive. Among the works building on CCS or

CSP isMartinelli andMatteucci’s model of run-timemonitors based on CCS [72]. Like ours, their

model captures the communication between the monitor and the target, but their main focus is on

synthesizing run-time monitors from policies. In contrast, we focus on a meta-theoretical analy-

sis of enforcement in a more expressive framework. Basin et al. proposed a practical language,

based on CSP and Object-Z (OZ), for specifying security automata [73]. This work focuses on

the synchronization between a single monitor and target application, although the language is

expressive enough to capture many other enforcement scenarios. In our work we focus more on

showing how such a more expressive framework can be used to derive meta-theoretical results on

enforceable policies in different scenarios, instead of focusing on the (complementary aspect) of

78

showing how to faithfully translate and model practical scenarios in such frameworks. Gay et al.

introduced service automata, a framework based on CSP for enforcing security requirements in

distributed systems at run time [60]. Although CSP provides the abstractions necessary to reason

about specific targets and the communication with the monitor, such investigation and analysis

is not the focus of that work.

Incomplete mediation. Concurrently with our work, Basin et al. introduced a model to rea-

son about actions that (truncation) monitors cannot modify [74]. For instance, a monitor cannot

control time, and thus if we model time as a specific type of actions (e.g., clock tick actions) a

monitor can observe but not suppress them. In our context, an instance of uncontrollable actions

are input actions to an I/O automaton: since I/O automata are input enabled they cannot prevent

inputs from arriving. Both Basin et al. and we have derived to similar theoretical results, namely

that a policy is enforceable only if it does not prohibit sequences of actions that terminate in

uncontrollable actions (cf. input forgiveness, Def. 8). Uncontrollable actions (e.g., clock ticks)

can be encoded in our framework as input actions to the monitored target from the environment,

and using a fairness definition that interleaves clock ticks appropriately with other actions. In

addition, our framework allows for: (1) reasoning about (partial) knowledge about the target’s

behavior, (2) encoding more powerful monitors than truncation automata (e.g., edit automata),

and (3) modeling actions that the monitor cannot even observe (either through incomplete re-

writing/mediation or internal actions of the target). Although there are scenarios where encoding

unobservable actions as uncontrollable ones suffices for certain formal analyses, faithful formal

modeling of practical scenarios may require both types of actions explicitly.

Previous work on run-time monitoring has focused individually on just one of the above

categories (i.e., static information, interaction, or incomplete mediation). Our work uses I/O

automata to establish an automata-based framework that allows reasoning about all these three

79

categories, and presents several results that belong to more than one of the above categories, thus

extending each of the above previous work individually.

Another area of research that is related to our work is assume-guarantee reasoning [75, 76,

77, 78]. A major problem in proving through model checking that a distributed system satisfies a

given specification is the state explosion problem: the number of reachable states to be explored

is exponential in the number of concurrent tasks in the system [79]. Assume-guarantee reasoning

is a compositional reasoning technique that can be used to deal with the state explosion problem:

the user first proves the correctness of individual components of the system, and then, by using

appropriate proof rules, she can combine the individual proofs to derive a proof that the system as

a whole satisfies the required property. For instance, a proof rule might say that if componentX

guarantees propertyB assuming propertyA (written as ⟨A⟩X ⟨B⟩), and component Y guarantees

property C assuming property B (written as ⟨B⟩ Y ⟨C⟩), then we can conclude that the parallel

composition of X and Y (written as X || Y) satisfies property C assuming property A (i.e.,

⟨A⟩X || Y ⟨C⟩). Of course, in order to use such a proof rule, onemust first show that the particular

rule is sound (and complete).

As we described in Section 2.3.1, one way that our work differs from previous work in run-

time monitoring is the ability to (explicitly) model the target application. Specifically, we defined

enforcement (Section 2.4.1) as a set relation between the traces of a property and the traces of a

monitored target (i.e., a target composed with a monitor). Thus, given a monitor, a target, and a

security policy, one could use assume-guarantee reasoning to prove that the specific monitored

target (i.e., the two components interacting) satisfies the given property.

The focus of this chapter was on comparing classes of monitors and classes of policies (Sec-

tion 2.5 and Section 2.6)—as opposed to showing how to verify concrete instances of enforcement

scenarios. Thus, the work in this chapter is closer to work where proof rules of assume-guarantee

80

reasoning are proven sound or complete (e.g., [80])—as opposed to work that shows how to

use such proof rules in practice (e.g., [76]). Assume-guarantee reasoning could be used as an

alternative approach to prove results similar to ours, but some of the insight of the results, e.g.,

the constraints under which two types of monitors with different enforcement capabilities are

equivalent (Theorem 2.6.2), might not be obvious from the rules themselves.

Finally, another area of research that is related to our work focuses on designing sound proof

rules for assume-guarantee reasoning in the presence of adversaries whose programs (or mod-

els) are not available for analysis [77, 78]. Protocol composition logic (PCL) considers network

adversaries that interact with cryptographic protocols and can modify messages on the network

subject to certain constraints imposed by security properties of cryptographic primitives [77].

SystemM considers richer adversaries who can supply code over higher-order interfaces exposed

by a trusted system [78]. In these settings, the protocol or trusted system acts like a monitor to

enforce specific kinds of safety policies in the presence of powerful adversaries. The main differ-

ence from our work is that these papers do not provide a characterization of bounds of classes of

enforceable security policies by classes of monitors under assumptions about targets (as we did

in this chapter); instead, they develop deductive systems to support assume-guarantee reasoning

for a class of systems (monitors) in the presence of a class of adversaries (targets).

81

2.8 Conclusion

Formal models for run-time monitors have helped improve our understanding of the powers

and limitations of enforcement mechanisms [27, 30], and aided in their design and implementa-

tion [81, 82]. However, these models often fail to capture many details and complexity relevant

to real-world run-time monitors, such as how monitors integrate with targets, and the extent to

which monitors can control targets and their environment.

In this chapter, we introduced a general framework, based on I/O automata, for reasoning

about policies, monitoring, and enforcement. This framework provides abstractions for reason-

ing aboutmany practically relevant details important for run-time enforcement, and yields a richer

view of monitors and applications than is typical in previous analyses of run-timemonitoring. For

example, our framework supports modeling practical systems with security-relevant actions that

the monitor cannot mediate, rather than assuming complete mediation. Moreover, we show how

this framework can be used for meta-theoretic analysis of enforceable security policies. In partic-

ular, we derived results that describe upper bounds on enforceable policies that are independent

of the particular choice of monitor (Thm. 2.5.1). We also identified constraints under which mon-

itors with different monitoring and enforcement capabilities (i.e., monitors that see only a subset

of the target’s actions; and monitors that have more or less ability to correct a target’s invalid

behavior) can enforce the same classes of policies (Thm. 2.6.2).

82

Chapter 3

Distributed Enforcement

3.1 Introduction

As we discussed in Section 1, policy enforcement in practice relies on the use of multiple security

mechanisms for two reasons. First, mechanisms may have different capabilities, for instance

different domain (e.g., network traffic, application logs) or vantage, and thus employing multiple

security mechanisms allows us to get a more complete view of the network activity and identify

more attacks (e.g., a successful remote exploit). Second, typically, attackers rely on several steps

in order to perform their attacks, and these steps might be identified by different mechanisms due

to, for instance, different domain (e.g. detect a SQL-based worm that scans for port 1433 and

then tries to login in on a SQL server). The attacker’s temporal behavior can only be identified

by correlating information from all these security mechanisms (in the previous SQL-based worm

example we will need to temporally order and correlate information from a NIDS and SQL server

logs). Although many existing approaches perform such a correlation and analysis at a central

location (e.g., [52, 83, 84, 85, 86]), they face two potential limitations: (1) they become a single

point of failure, and (2) they can get overwhelmedwith the amount of data that they need to collect

83

and analyze. Thus, in order to achieve better fault tolerance, communication efficiency, and

computational efficiency, two types of alternative solutions have been introduced: (1) hierarchical

enforcement [87, 88, 89], and (2) decentralized enforcement [90, 91, 92, 93, 94, 95].

In hierarchical approaches, security mechanisms are organized in a hierarchical fashion. At

the lowest level of the hierarchy, each mechanism is responsible for a subset of the nodes on the

network. At this level mechanisms collect data, perform some analysis, and forward the results to

monitors at higher levels, which further analyze the data [87, 88, 89]. For instance, let us assume

a monitored network where monitors are organized hierarchically into two levels. At the lowest

level of the hierarchy, each security mechanism is responsible for monitoring only a small subset

of the nodes in the network. A port scanning attack can be detected efficiently as follows: once

a monitor at the lower level detects that a particular source IP address has scanned the ports of

some of the nodes it is monitoring, it forwards this information (the source IP, the scanned ports,

and the number of hosts that were scanned) to the monitor at the top level. The monitor at the

top level collects information from the monitors at the lower level. Once that monitor detects

that a particular source IP address exceeds a predefined threshold of scanned hosts, it notifies

all other monitors that an attack is in progress. Note that if a monitor at the lower level detects

that the predefined threshold has been exceeded (e.g., because all the nodes that it monitors were

attacked) it can immediately notify all other nodes for the attack, thus achieving an even more

efficient detection process.

Decentralized approaches originated from security mechanisms that required co-operation

and coordination (e.g., distributed IDS [90, 91, 92, 93, 94, 95] and distributed firewalls [96,

97]). Security mechanisms are distributed over the network, and each part of the mechanism is

operating independently of the other, collecting and analyzing data locally. Once a node realizes

that this data might be relevant to some other agents, it forwards the appropriate information to

them, so that they can (collaboratively) identify the attack. For instance, let us assume that in a

84

decentralized monitoring architecture a monitorM installed at a node of the network realizes that

a particular IP address is actively scanning for port 1433. Then,M can directly notify a monitor

installed at the SQL server to block all traffic from that particular source IP address.

Both hierarchical and decentralized approaches require communication and coordination among

the monitoring entities, and thus they must implement certain distributed algorithms in order to

achieve their goals. As explained in Section 1, it is of both practical and theoretical importance

to characterize the policies that these mechanisms can enforce. This is the goal of this chapter.

We start in Section 3.2 by discussing some key differences between centralized and distributed

systems. These differences provide the intuition behind the constraints that we formalize in the

characterization of enforceable policies in distributed systems. Next, in Section 3.3 we present

some motivating examples of multi-step and distributed attacks that will be used throughout the

chapter to illustrate key concepts and ideas. In addition we discuss how multi-step attacks can

naturally be modeled as state transition systems, e.g., I/O automata.

In Section 3.4 we explore and present the main characterization of enforceable policies in

asynchronous distributed systems. First, in Section 3.4.1 we present our formal framework, i.e.,

we show how to model distributed systems and monitors using I/O automata, security policies,

and what it means to enforce a security policy over a distributed system. Then, in Section 3.4.2

we explain how to reduce the question of which policies are enforceable in distributed systems

to the question of which global monitors1 can be decentralized over a given distributed system.

In Section 3.4.3 we present some basic decentralization algorithms that work under some very

strong assumptions about communication among nodes. Section 3.4.4 presents one of our key

1Wewill use the terms global monitor and centrally specified monitor to refer to a (possibly hypothetical) monitor
that can monitor directly all traffic in a distributed system. Of course in practice such a monitor might not exist (e.g.,
due to physical limitations and constraints), but as we explain in Section 3.4.2, it provides a nice abstraction for
specifying the intended monitoring behavior without having to worry about details of the underlying communication
network. We call such a monitor global because often in the literature of distributed enforcement, a central monitor
or centralized monitor is a monitor that, in a network of multiple communicating monitors, takes all enforcement
decisions.

85

contributions, namely a blueprint for designing algorithms that can decentralize monitors over

distributed systems. The details of the steps of the blueprint are analyzed in Section 3.4.5, Sec-

tion 3.4.6, and Section 3.4.7. Specifically, in Section 3.4.6 we present two novel decomposition

algorithms that transform a global monitor into two important types of distributed enforcement

architectures: centralized and decentralized.

Next, in Section 3.5.1, we discuss how our results of decomposing a global monitor into

centralized and decentralized architectures over asynchronous distributed systems relate to the

enforcement of security policies in synchronous systems. In Section 3.6 we discuss approaches

for hierarchical enforcement of security policies in synchronous and asynchronous networks, and

we give a first characterization of the policies that are (efficiently) enforceable in a hierarchical

manner. Next, in Section 3.7 we present another important contribution of this work, namely that

in distributed systems, and under certain constraints, it is possible to simulate the global behavior

of powerful monitors using weaker monitors that interact with each other. Finally, in Section 3.8

we present related work on decentralized and hierarchical enforcement of security policies, and

we conclude in Section 3.9.

86

3.2 Differences Between Centralized and Distributed Systems

In order to understand decentralized algorithms and how monitors can distributedly enforce se-

curity policies, it will be constructive to explore first what are the key differences between dis-

tributed systems and centralized systems2. Centralized systems have full knowledge and imme-

diate access to all information and context that is relevant to the computation: input is known,

intermediate steps of the computation are known, and in general the state of the computation

(e.g., contents of CPU, memory, and disk) is known and available. Of course access to the state

is not instantaneous, i.e., accessing the disk is less instant than accessing the memory. But all

the information that centralized systems need to perform their computations, is available to them:

their computation does not depend on information that is not present within the system, i.e., in-

formation that is not immediately accessible. Moreover, centralized systems execute at most one

atomic (i.e., indivisible) activity at a time. At the most granular level of a centralized system,

that atomic activity is usually a CPU instruction, but by adopting a more coarse-grained view

(e.g., in single-tasking operating systems) atomic activities could also include system calls or the

execution of a single program.

On the other hand, distributed systems are composed from multiple atomic entities. These

entities attempt to compute a global function by executing (in parallel) their own atomic activi-

ties, while coordinating through some (shared) underlying communication medium. The entities

may be located on different physical locations and have different characteristics (e.g., CPU speed,

memory size, and disk size). In addition, the communication medium that entities use to coor-

dinate might be different depending on the scenario at hand. For example, the communication

medium could be fast and reliable (e.g., shared memory systems) or slow and unreliable (e.g.,

2The presentation and the material in this section follow corresponding presentation and material from [1]
and [98].

87

multi-hop asynchronous networks).

This nature of distributed systems has several important consequences [98]:

1. Global knowledge: Information that is necessary by each entity to make progress towards

the common goal (i.e., computing the global function) may not be immediately available:

inputs might arrive on different nodes and local processors might take steps that are not

known to the rest of the system.

2. Global ordering: Steps by different local processors might be taken at the same time. This

means that computation steps can no longer be totally ordered, but instead must be partially

ordered.

3. Global time: In centralized systems there exists a global clock and all steps the system

takes can be totally ordered. However, in distributed systems such a global clock might

not exist. Each node has its own clock, and these local clocks might proceed at different

speeds3. If we combine this with the difference in processors’ speeds and communication

latency, the system might not be able to order events happening on two different nodes,

even if these events happen at different (real and absolute) times.

4. Failures: In an event of a failure in a centralized system, e.g., power failure, the system stops

its operation. In a distributed system, because nodes are in different physical locations, if

one entity fails the rest of the distributed system may continue its operation4.

These characteristics of and differences between centralized and distributed systems guide

the formal models that have been introduced for each system respectively. Typically, models for

centralized systems (e.g., Turing Machines [31]) consider them to be single, atomic, controlling

units. On the other hand, due to the large design space of distributed systems (nature of commu-

3Even if nodes try to synchronize using common global clocks (e.g., atomic clocks), or try to synchronize their
clocks using some protocol (e.g., NTP), there is still some margin of error. Although for some applications this might
be an acceptable error for synchronization, in general, it might not be.

4In this thesis we don’t deal with failures, and we leave it as a topic for future research.

88

nication medium, existence of global clock, types of failures, etc.), several models for distributed

systems have been introduced in the literature [1]. Two of the most general models for distributed

systems are message passing and shared memory models [1, 98, 99].

Message-passing model. In the message-passing model communication is modeled explicitly:

whenever two nodes want to communicate, they need to send messages through certain commu-

nication channels. The message-passing model is useful for modeling communication networks

and has been commonly used to study issues that depend on communication, e.g., what algo-

rithms and protocols can we use to simulate a broadcast service if the underlying network offers

only point-to-point communication5. Message passing models can be further classified to two

models: the synchronous model and the asynchronous model.

Synchronous model. In the synchronous model all nodes are operating in synchrony: first they

all send messages to their neighbors; then they receive messages from their neighbors; and finally

they perform some local computation. All these steps are considered to be done in a single round

(i.e., instance). Message transmission and local computation are assumed to take negligible time.

Asynchronous model. In the asynchronous model there is no global clock in order to achieve

synchronization. Nodes need to exchange messages in order to make decisions, and they do not

know what the state of a message is until they have received it. Thus, they cannot infer using,

e.g., timeouts if a message was sent by some other node, or if a message was lost. Notice that

in the synchronous model all nodes in the network can exchange complete information within

a bounded time – O(diam) rounds (where diam is the diameter of the network), whereas in the

asynchronous model such a communication might require unbounded time.

5In this thesis we focus on models where the communication model is assumed to be point-to-point.

89

Non-determinism. Non-determinism is a feature that is common to both models [1, 98]. How-

ever, it needs to be emphasized that it is being used tomodel different realities. In the synchronous

model steps might be taken by different nodes at the same round and thus we must use a partial

order in order to model the occurrence of events. Here, non-determinism captures this within-

round partial order. Rounds, on the other hand, are totally ordered. In the asynchronous model

steps are not assumed to be taken at the same time-slot, i.e., round; this is due to differences

in speeds of local computations and message transmission delays. These differences cannot be

predicted. Thus, even though nodes might be executing steps deterministically, the occurrence

of these events might differ with different runs of the system. As a result, the executions of a

system in the asynchronous model is non-deterministic: unless events are causally related (i.e.,

one event triggers another one) then all their interleavings are possible and need to be considered.

Shared-memory model. In the shared memory model communication amongst nodes (typi-

cally called processes [1]) happens implicitly through writing and reading to a memory that is

shared (i.e., accesible) by all nodes. The shared memory model is useful for modeling parallel

architectures, where communication is not the issue and the focus is on how nodes can syn-

chronize in order to solve a problem collaboratively, e.g., algorithms and protocols to simulate

having access to a read-modify-write shared variables when the underlying hardware provides

only read-write shared variables.

Thus, one benefit of the shared memory model is that it abstracts away from communication

issues and, compared to the message passing model, it is much closer to the centralized model.

This means that solutions written in the shared memory model might be simpler than the ones

written in the message passing model, since there is one less complexity to consider – communi-

cation.

The message passing model and shared memory model have been used to model and solve

90

different problems. Even though the shared memory model might seem less expressive, since

it deals with less complexity (i.e., communication) than the message passing model, they are

essentially the same: there are algorithms that can transform solutions from one model to the

other (and vice versa) [1]. In this thesis we take advantage of this fact. Although we use message

passing model to express distributed enforcement scenarios, we use the shared memory model to

either directly express centralized monitors or transform centralized monitors to an intermediate

representation before de-centralizing them. Monitors are simpler to specify this way, because

they are written as if there was a shared (i.e., centralized) memory. Then, we use algorithms to

decompose6 these centralized monitors to distributed ones, that behave in exactly the same way

(in a way that will be made more formal next). Of course, since these monitors are assumed to be

centralized, the issues that we discussed previously (transmission delays, global time, immediate

global information knowledge, and faults) will limit the extent to which such transformations are

possible.

6We will be using the terms decompose and decentralize interchangeably.

91

3.3 Multi-step and Distributed Attacks

One of the motivations for decentralized policy enforcement is to better identify attackers by

correlating information about their activities. Attackers rarely choose to perform random (or un-

correlated) attacks because they can be detected easily [50]; it is much more difficult to identify

determined attackers that employ intelligent strategies towards achieving their goals [50]. Typ-

ically, intelligent attackers rely on several stages in order to perform their attacks and remain

unnoticed, e.g., reconnaissance, intrusion, privilege escalation, and goal steps [51]. In order for

the attacker to move to the next stage of a multi-step attack, she must complete successfully the

previous ones; e.g., an intrusion attack stepwill rely on the information received from a completed

reconnaissance attack step.

Next we describe a few simple motivating example attack scenarios that have been discussed

in previous work of distributed and decentralized security policy enforcement [83, 87, 94, 95].

Attack #1. A doorknob attack is an attack where the intruder tries to check for vulnerable

hosts by trying a small number of user accounts and passwords on a large number of computers

(different combination of username/password on each host) [83, 87, 95]. Since the attacker at-

tempts only a few logins on each host the attack might not be detected by each host individually;

information needs to be correlated and either the attempts must be traced back to the same source,

or some patterns in the behavior of the attacker must be identified.

Doorknob attacks belong to a larger class of attacks, called coordinated attacks. Coordinated

attacks are multi-step attacks, where the attacker is distributing the steps of the attack over mul-

tiple sessions in order to speed up the attack or avoid detection [87].

92

Attack #2. Network browsing is an attack inwhich the attacker is accessing a number of files

on many different computers within a short period of time [95]. Similarly to doorknob attacks,

because the activity on individual hosts is small, an alarm might not be raised, unless information

is correlated. Of course, some pre-processing can happen locally at the nodes themselves before

information is correlated. This might minimize the amount of data transfered, e.g., in the case

that the analysis happens at a central location.

Attack #3. Worms are programs that use resources on onemachine to attack other machines,

and propagate themselves across a network [87]. Due to the way that worms propagate, the traffic

they generate forms a tree-like pattern of similar activities [87]. This pattern can be used to detect

such attacks, but it requires a global view of the network or correlating information frommultiple

nodes.

Attack #4. This example is a variation of the Apache chunked-encoding exploit attack de-

scribed in Section 1 [94]: the attacker first scans each host on a subnet for an open port 80 and

8080; then, when a webserver has been identified, the attacker attempts to send some malicious

HTTP traffic. Note that in attacks #1, #2, and #3, similar events from several hosts were com-

municated and aggregated to detect suspicious patterns and raise alarms. Attack #4 can be used

to illustrate how communication among hosts can also help in the prevention of attacks. Specifi-

cally, one way to prevent the multi-step attack #4 is through communication and synchronization

among the monitoring components: once a monitor on a host (other than the webserver) detects

the port scanning activity, it notifies the webserver with the suspicious IP. When the monitor at

the webserver later receives traffic exactly from that source, it can take appropriate remedial ac-

tions, such as raising alerts, or responding to the HTTP requests in a different way than it would

normally do for legitimate traffic.

93

Attack #5. A variation of attack #4 is a hypothetical variant of the CodeRed worm [94]. In

this attack the attacker not only scans for open ports 80 and 8080, but also sends a HINFO request

to the DNS server in order to identify the type of operating system the web server is running (so

that Microsoft machines are targeted more accurately). In this attack, the (monitor at the) web

server raises an alarm only if it receives HTTP traffic from an IP address that performed both

a port scan and contacted the DNS server; otherwise it processes the received HTTP traffic as

normal.

Each of the aforementioned examples describes the sequence of steps that the attacker takes

towards achieving her goal. In addition, some of the examples, e.g., attacks #4 and #5, specify

the steps that the monitoring agents should take in order to prevent the attacker’s end goal. In the

other examples, the steps that the monitors take are implicit: agents allow all traffic, including

malicious, and when they have enough information to determine that an attack has happened an

alarm is raised.

Note that the above examples specifywhat constitutes an attack andwhat the monitors should

do, but they do not describe how the monitoring agents will achieve their goals (i.e., meet their

specifications). For instance, in attack #5, it is assumed that the webserver has immediate access

to all the information necessary to make its decision. However, as we discussed in Section 3.2,

immediate access to global knowledge is a property of centralized systems, that distributed sys-

tems may not have. In particular, if we wanted to design a decentralized solution for enforcing

this policy, it is not clear whether this task would be achievable, and how (e.g., whichmechanisms

should be used, how should they communicate, etc). For instance, in order for the webserver to

know whether to block or allow traffic from a specific IP address it must receive information

from other monitoring agents, including the one at the DNS server. But, the DNS server might

not be available to provide the relevant information to the webserver: the attacker could attack

the DNS server itself to render it inaccessible after she has received the appropriate information.

94

Thus, the webserver needs to decide whether to allow an HTTP request without having access

to all necessary information. If the webserver waits until the DNS server is available again, then

a legitimate request might not be serviced on time, leading, effectively, to a denial-of-service

attack. Essentially, the legitimate request is treated as if it was an attack (i.e., a false positive).

On the other hand, if the webserver allows the request, then an attacker could complete her at-

tack, thus the request is treated as a legitimate one (i.e., a false negative). So it seems, that a

decentralized architecture cannot avoid having false positives or false negatives, even though in

a (hypothetical) centralized system, this policy would be enforceable since the monitor would

have immediate access to the global knowledge.

In this particular example there is a solution: the DNS server will not respond to the attacker

until after the webserver has been notified. But this solution requires a monitoring architecture

where the monitors can delay events, i.e., they can actively mediate events in the network. This

means that an IDS would be unable to enforce7 this policy; at best it could detect the attack, but

only after the attack has happened.

Aswementioned, the above example attacks, and the policies they implicitly describe, assume

that global knowledge is immediately available. This was a property of centralized systems, that

distributed systems may not have. Thus, for the rest of this chapter we will refer to such attacks

and policies as centrally specified.

Centrally specified policies are simpler to describe because (1) we do not have to reason

about how the policies are enforced, and (2) we can make the (strong) assumption that global

knowledge is immediately available. However, as we discussed in Section 3.2, this assumption

may not always hold in distributed systems. Thus, a goal is to keep the convenience and simplicity

7Remember that whether a mechanism detects or prevents an attack is specified in the policy itself. Thus, when
we say that an IDS cannot enforce a policy, this could mean two things: (1) the IDS cannot make the correct detection
decision, or (2) the IDS cannot prevent or deter an attack. Even though the second case might seem straightforward,
it emphasizes the point that terms like enforcement, policies, etc., must be carefully defined because often they might
be used in ambiguous ways, e.g., when theory is used to analyze what practical mechanisms can do.

95

of specifying policies (and attacks) in a centralized manner, while knowing whether these policies

are enforceable in a decentralized manner, and with what types of mechanisms. In this chapter

we provide a principled way to provide answers to questions such as: Are all policies that are

enforceable in centralized systems also enforceable in a decentralized manner? If not, what is

the characterization of policies that are enforceable? What mechanisms are required in order

for centrally specified policies to be enforceable in a decentralized manner? Does knowing the

attacker’s strategy (i.e., the multi-step specification of attacks) help us enforce more policies?

3.3.1 Multi-step Attack Specification Using Preconditions and Postcondi-

tions

As the above examples illustrated, multi-step attacks are sequences of actions (which may be

attacks themselves) that take the system from an initial state to a final compromised state [100].

These sequences of security relevant actions include the actions that the attacker takes and poten-

tially the actions that the system takes to respond to the attacker. Thus, these sequences describe

policies as they were defined in Section 2.3.3, even though sometimes the steps that the moni-

tored systems take are implicit in the informal description of the policy. For instance, in attack

#5, the security relevant actions that the attacker takes are the scan(IP, port), DNS_query, and

HTTP_request actions. The actions that the (monitored) system can take are the responses to

the attacker’s actions, namely response(IP, port), response(DNS_query), and HTTP_response.

Finally, the (monitored) system has an additional raise_alarm action which is exhibited in the

case of an attack. So, an attack scenario could be modeled with the following sequence of ac-

tions: ⟨scan(IP, port), response(IP, port), DNS_query, response(DNS_query), HTTP_request,

raise_alarm⟩.

Multistep attacks can be specified using preconditions and postconditions, i.e., state transi-

96

tions. A precondition describes the necessary conditions for the step to be taken and a postcon-

dition describes the effect, or the conditions that hold, after the step is taken. A key idea of

approaches that are based on preconditions and postconditions is that postconditions of certain

attacks can be used as preconditions for other attacks, and thus larger scenarios can be built from

the specification of individual steps [95].

An interesting characteristic of multi-step attacks and policies, compared to arbitrary se-

quences of steps, is that the attacker and the monitored system interleave steps: the attacker

block after taking a step because she needs the returned result, before executing her next attack –

and dually for the monitored system. In other words, the attacker and the monitored system take

turns executing actions, and until one of them is done processing, the other one is blocked. This

observation motivates the following assumptions.

Assumptions in modeling multi-step attacks and policies. For the rest of this chapter we

will assume that the attackers and the monitored system, i.e., the implementation of the security

policy, are causal: after the attacker sends a (single) input to a node, she blocks until themonitored

system produces a response8. After the monitored system produces a response, it goes back to the

state of receiving input (on that particular node). Note that we allow the attacker to send multiple

(single) inputs to multiple nodes. Thus, we allow concurrent behavior among different nodes, but

we assume sequential behavior (i.e., sequences of inputs and outputs) on single nodes. Example

attacks #1− #5 meet this assumption.

Preconditions and postconditions (and state transitions) have been used to describe sequential

specifications in many areas of computer science including concurrent object specification [101,

8Even though in most of our examples attackers block after sending single inputs, it might be useful for some
scenarios to allow blocking after receiving (finite) sequences of inputs. Although it is not hard to extend the theory
presented in this chapter to account for such cases, we chose to avoid the added complexity to present the key ideas
and results in a reasonable and simple way.

97

102], security policy specification [103, 104, 105], and multi-step and distributed attacks signa-

ture specification [49, 95, 100, 106, 107, 108, 109].

In fact, preconditions and postconditions can be used not only for the specification of misuse

detection systems, but also for the description of policies in specification-based detection sys-

tems. Misuse detection systems, attempt to identify attacks by detecting pre-specified patterns

of bad behaviors, as the examples described above. Specification based detection systems rely

on pre-determined specifications of valid behaviors, e.g., specifications derived from RFCs or

other descriptions of protocols such as the IP, ARP, TCP and UDP [110]. Any deviation from

these behaviors constitutes an attack, and thus attacks can be detected even if they have not been

previously known [111].

In this thesis, we use I/O automata (and PIOA) to model targets, monitors, and security poli-

cies. Our definition of security policies (Section 2.3.3) allows us to describe both specification-

based approaches (through transparency) and misuse-based approaches (through response ac-

tions, such as raising alarms). For instance, Fig. 3.1 depicts the transitions of an I/O automaton

specification for attack #5.

There is a straightforward translation from the semantic framework of I/O automata to the de-

scription of distributed algorithms using preconditions and effects (i.e, postconditions). In fact, it

is typical to use precondition and effects to describe I/O automata without distinguishing between

the two levels of description (i.e, semantic and syntactic) [1, 112]. We too follow this approach

in this thesis. Due to this fact, our framework can serve as the basis for an attack specification

language with formally specified semantics. Although specification languages for I/O automata

have already been introduced in the literature [112, 113, 114], we leave the translation of our

framework to a concrete implementation of a specification language as future work.

In conclusion, state transitions using preconditions and postconditions can be used:

1. to represent multistep attacks, either explicitly, by defining specific sequences of transi-

98

Transitions: scan(IP,port)
// T1 is a set containing the source IP addresses
// that have been identified scanning
Effect: T1.append(source_address)

DNS_query
// T2 is a set containing the source IP addresses that
// have been identified contacting the DNS server
Effect: T2.append(source_address)

HTTP_request
// Req_list is a set containing pending HTTP requests
Effect: Req_list.append(source_address)

response(IP,port)
Precondition: T1.contains(source_address)
Effect: None

response(DNS_query)
Precondition: T1.contains(source_address)
Effect: None

raise_alarm
Precondition: T1.contains(Req_list.head())

&& T2.contains(Req_list.head())
Effect: None

HTTP_response
Precondition: !T1.contains(Req_list.head())

|| !T2.contains(Req_list.head())
Effect: req_list.removeHead()

Figure 3.1: I/O automaton transitions for attack #5.

tions as attacks [100], or implicitly, by defining a set of atomic bad transitions that can be

combined in valid ways (i.e., matching preconditions and postconditions) to create arbitrary

sequences [95];

2. to implement detection tools, where the monitor simulates the transition system that defines

the attack or the valid behavior [100]; or

3. to verify or prioritize alerts by recognizing pre-specified patterns that are known to be

irrelevant, e.g., detecting Apache exploits even though the network has only Microsoft

web servers [95].

99

3.3.2 Theoretical andPractical Limitations ofAttackDetectionUsing State-

transition-based Signatures

Accurate detection of attacks using signature specification is not trivial in practice for several

reasons, including the following:

1. Misuse signatures need to characterize exactly the steps that attackers will take. This not

only requires expert knowledge, but also gives the opportunity to attackers to evade detec-

tion by (perhaps even slightly) changing the steps they take [92, 115].

2. Some security relevant actions that are important in the detection process might be missed,

e.g., because the monitor is overwhelmed with incoming traffic resulting to dropped pack-

ets [50, 92]).

3. In specification-based detection approaches, differences in implementations of the same

protocol might lead to false positives or false negatives in the detection process [110, 116,

117, 118].

4. Specification of distributed attacks might require reasoning about concurrent events and

race conditions which are notoriously hard to do in practice [92, 119].

It is well known to partitioners of computer and network security that detecting attacks with

misuse and specification-based approaches without false positives or false negatives is almost im-

possible in practice [50]. It is important to emphasize that these false positives and false negatives

are due to the aforementioned limitations of specifying attacks, and, potentially, due to bugs in the

implementation of underlying detection mechanisms. This means that if signatures were accurate

and complete, then by definition (or by design) misuse and specification-based detection systems

would provide zero false positives and false negatives [26, 110, 116, 117, 118]. However, in this

thesis we show that this claim holds, in general, only for centrally specified signatures: even if

100

we assume correct and complete signatures, it might be impossible to design (and thus imple-

ment) a decentralized monitoring architecture that detects attacks described by these signatures

without false positives and false negatives. More specifically, if we consider all the attacks that

can be specified and detected in centralized systems without any false positives and negatives,

then the attacks that can be detected without any false positives and negatives in a decentralized

manner form a strict subset. This result extends the existing list of impossibility results for secu-

rity mechanisms: e.g., it is impossible, in general, to construct a security mechanism that through

static analysis will identify all viruses without false positives or false negatives [29, 120]; it is

impossible to construct an execution monitor, or run-time monitor, that will enforce policies that

do not belong to the class of computable safety properties [27, 29, 30]; and it is impossible, in

general, to construct decentralized monitors that can enforce centrally specified policies without

any false positives and false negatives.

101

3.4 Asynchronous Enforceability

3.4.1 Definitions

3.4.1.1 Modeling Distributed Systems

An asynchronous distributed system can be thought as a directed graphG = (V,E), where V are

the vertices of the graph and correspond to the nodes of the system, and E are the edges of the

graph and correspond to the communication channels between pairs of nodes. We are assuming

systems that correspond to arbitrary connected graphs, i.e., we do not assume that our systems are

necessarily complete (i.e., every pair of distinct vertices is connected by a unique edge). Nodes

ofG communicate over channels associated with directed edges. To model the asynchrony of the

system we model both nodes and channels as I/O automata. We assume a fixed message alphabet

M .

Node Automata. Each node i in the system is modeled as a (deterministic) I/O automaton Ni.

The set of all node automata is denoted as N̂ . EachNi has output actions of the form send(m, j)i,

where j is an outgoing neighbor of i, andm is a message (i.e.,m ∈ M); and input actions of the

form receive(m, j)i, where j is an incoming neighbor of i. Ni does not have any other external

actions.

Channel Automata. The channel associated with each directed edge (i, j) of G is modeled as

an I/O automaton Ci,j . The input actions of Ci,j are {send(m, j)i | m ∈ M ∧ i ̸= j}. The output

actions of Ci,j are {receive(m, i)j | m ∈ M ∧ i ̸= j}. Although channels could be modeled as ar-

bitrary I/O automata, which would allow arbitrary behaviors (e.g., reordering or lossy channels),

here we assume that channels are reliable FIFO channels [1].

102

Environment

Environment

Environment

Channel1

Channel2

Channel3

N1

N2

N3

N4

C
ha
nn
el

7

C
ha
nn
el

4
C
ha
nn
el

5
C
ha
nn
el

6

(a) Distributed system with channels

Environment

Environment

Environment

Channel1

Channel2

Channel3

M1

N1

N2

M3 N ′
3

M4 N ′
4

C
ha
nn
el

7

C
ha
nn
el

4
C
ha
nn
el

5
C
ha
nn
el

6

(b) Monitored distributed system

Figure 3.2: Decentralized monitoring

Environment Automaton. Sometimes we will model the environment as an I/O automaton,

denoted E , which models the external world with which the distributed system interacts. This

can be useful, for example, to formally state assumptions about the environment, such as the one

from Section 3.3 where the attacker is assumed to be causal.

In addition, we use I/O automata CE,j and Ci,E to model (as channels) the communication of

the system with the outside world (i.e., the environment E). This is depicted in Fig. 3.2a, where

each box (channel or Ni is an I/O automaton). The set of all channel automata is denoted as Ĉ.

Distributed System. The distributed system is modeled as the composition of the above au-

tomata:

103

DS =
∏
Ni∈N̂

Ni ×
∏

Ci,j∈Ĉ

Ci,j (1)

3.4.1.2 Modeling Monitored Distributed Systems

A monitored system is a distributed system MS, where there is an underlying system DS of n

nodes, and a set of m monitors, m ≤ n, that are attached to the nodes of DS. A monitor can be

attached to the underlying node either by completely mediating, partially mediating, or passively

observing security relevant actions.

As we discussed in Section 3.2, the design space for distributed systems and distributed mon-

itors is very large. Thus, in our definitions, analyses, and results we will make some assumptions

that, we believe, are relevant in practice. For instance, we assume that monitoring cannot change

the architecture of the underlying network. Even though in some cases changing the network

architecture is desirable (or even necessary if we want to enforce a specific policy that is not en-

forceable in the existing architecture), in general, such a task is undesirable (or even impossible),

especially for distributed systems where the nodes are located in geographically separate loca-

tions. In this thesis we will assume that when we are trying to enforce a policy on a distributed

system, we cannot add, remove, or change communication channels in any way, i.e., the network

infrastructure will remain the same regardless of the type of monitoring we do on the network.

Since will not be further concerned with communication channels, for notational convenience, in

equation (1), we can consider the communication channels as a single I/O automaton C which is

the result of composing all communication channels Ci:

C =
∏
Ci∈Ĉ

Ci. (2)

Using (2), equation (1) becomes:

DS =
∏
Ni∈N̂

Ni × C. (3)

Each monitor i is modeled as an I/O automaton Mi. The set of monitors is denoted as M̂ =

104

{Mi | 1 ≤ i ≤ m,m ≤ n}. Since some nodes ofDSmight not be monitored, we denote the set of

monitored nodes as M̂N, and the set of unmonitored nodes as ÛN. To model the attachment of a

monitor to a node automatonNi, wewill use themodel of Section 2.3.1, where amonitored node is

modeled through appropriate renaming and hiding functions, asMNi = hideiΦi
Mi × renamei(Ni).

Notice that since the only external actions of Ni are actions to send and receive messages from

channels, the same holds for MNi. This models the fact that the attached monitors must respect

the underlying network architecture of DS.

The monitored system MS is described by the following equation, which builds on equation

(3):

MS =

 ∏
Ni∈M̂N,Mi∈M̂

hideiΦi
Mi × renamei(Ni)

×

 ∏
Ni∈ÛN

Ni

× (C). (4)

The first component of the compositionMS is the composition of the monitored nodes∏
Ni∈M̂N,Mi∈M̂ hideiΦi

Mi × renamei(Ni), the second component is the composition of the unmon-

itored nodes
∏

Ni∈ÛNNi, and finally the last component is the composition of the communication

channels C.

In Fig. 3.2b we show the model of a monitored version of the distributed system depicted in

Fig. 3.2a:

• M1 models an IDS that is partially and passively monitoring the communication of N1

(through a spanning port on Channel1 and a network tap on Channel7);

• N2 is an unmonitored node;

• M3 models an IPS that is actively monitoring N3 by complete mediation. The external ac-

tions ofM3 contain all the external actions ofN3 (now labeledN ′
3), and all the α−renamed

actions of rename(N ′
3).

• M4 is another IPS that partially and actively monitors the communication of N4 (now la-

beled N ′
4), through Channel3.

105

3.4.1.3 Policies and Enforcement

To define policies and enforcement in distributed systems we build on the definitions of secu-

rity policies and enforcement from Section 2.3. However, even from the simple enforcement

scenarios that the framework in Section 2.3 could model it was clear that the definitions of poli-

cies and enforcement can get quite complex. One reason for this complexity is the many design

choices available, e.g., target-specific vs generalized enforcement, different fairness assumptions.

Distributed systems and distributed enforcement add additional complexity to the analysis of en-

forcement scenarios. Thus, in order to simplify the presentation of the results in this section we

are going to make the following assumptions:

1. We focus on traces of distributed systems and not schedules, i.e., we will not deal with

enforcing policies on the internal communication of the system.

2. We focus on unfair traces, i.e., we will not make any fairness assumptions. However, in

some places we will discuss on the effect that a fairness assumption would have in the

presented content or results.

3. We focus on policies that consist only of a single set of trace modules, i.e., we are restricting

our attention to properties [27, 30].

4. We focus on target-specific enforcement, i.e., on enforcing policies on particular target

distributed systems.

The main results of this section will still hold if we remove some of the above constraints. For

instance, if we want to reason about the internal communication of the distributed system (i.e.,

reason about schedules and not just traces), we can temporarily un-hide internal communication

by making all internal actions output actions. Then, we can apply the results and algorithms of

this section (since we are dealing only with input and output actions, i.e., traces), and finally,

re-hide the output actions that were original internal.

106

Environment

Environment

Channel

Channel

N1

N2

C
ha
nn
el

(a) Distributed system

Environment

Environment

M

Channel

Channel

N1

N2

C
ha
nn
el

(b) Global monitor

Figure 3.3: Global enforcement

Typically, designing central algorithms is easier than distributed algorithms [1, 104, 119].

This is because central algorithms view the system as a single atomic object, and thus do not

have to deal with complexities of interaction and concurrency. In our case, as we will see in

the next section, central algorithms (i.e., monitors in our case) are also useful for analyzing the

constraints under which policies are enforceable in distributed systems.

Our first definition of enforcement will consider the distributed system to be a single entity.

To differentiate the terminology between this case and the case where multiple monitors enforce

a policy on a distributed system but only one makes the enforcement decisions, typically called

centralized enforcement, we will refer to the former enforcement as global enforcement.

Remember that in the following definitions policies are schedule modules and we focus on

traces (not schedules).

Definition 15. (Global Enforcement) Given a policy P̂ , a distributed system DS, and a moni-

tor M , we say that P̂ is globally enforceable on DS by M if and only if there exists a renam-

ing function rename and a hiding function hideΦ for some set of actions Φ ⊆
(
Output(M) ∪

Output(rename(DS))
)
such that:(

traces(hideΦ(M × rename(DS))) | acts(P̂)
)
= traces(P̂)

107

Environment

Environment

Channel

Channel

M1
N1

M2
N2

C
ha
nn
el

Figure 3.4: Distributed message-passing monitors

Next, we define what it means for a set of monitors to enforce a policy on a distributed sys-

tem. Note that this definition covers both centralized and decentralized enforcement. In both

cases, monitors are needed to be attached to nodes so that security-relevant actions are reported

appropriately; in the first case, all but one nodes are dummy forwarding nodes that send all secu-

rity relevant actions to a central monitor (i.e., location) in order to make enforcement decisions,

whereas in the second case every monitor is capable of making enforcement decisions by itself,

thus enforcing the policy in a decentralized manner.

Definition 16. (Distributed Enforcement) Given a policy P̂ , a distributed system DS, and a set

of monitors M̂ such that the monitors are less or equal to the number of nodes in DS, we say that

P̂ is distributedly enforceable on DS by M̂ if and only if there exist renaming functions renamei,

and hiding functions hideiΦi
for some set of actions Φi ⊆

(
Output(Mi) ∪ Output(rename(Ni))

)
,

with 1 ≤ i ≤ |M̂ | such that:(
traces(MS) | acts(P̂)

)
= traces(P̂), where

MS =

 ∏
Ni∈M̂N,Mi∈M̂

hideiΦi
Mi × renamei(Ni)

×

 ∏
Ni∈ÛN

Ni

× (C).

We will refer to the monitor in Def. 15 as global monitor, and to the monitors in Def. 16 as

distributed monitors. Fig. 3.3a depicts a distributed system, Fig. 3.3b depicts an instance of a

108

global monitor for that system, and Fig. 3.4 depicts an instance of distributed monitors.

109

3.4.2 Reduction to Decomposability

We mentioned in Section 3.3 that a goal of this chapter is to analyze the policies that are enforce-

able in distributed systems. Previous work that characterized the enforceable security policies by

specific types of (centralized) monitors [27, 29, 30], typically followed the following four steps:

(1) formally define security policies (typically as sets of traces), (2) define a formal model of

monitors (e.g., security automata [27] or edit automata [30]), (3) define what it means for a mon-

itor to enforce a security policy (e.g., soundness and transparency [27, 29, 30]), and (4) identify

the constraints that a set of traces (i.e., a policy) must satisfy in order to be enforceable by the

particular model of monitors.

This thesis follows a similar process. Previous sections have already covered the first three

steps. However, for the last step we are taking a different approach: instead of directly char-

acterizing the policies enforceable by a specific model of monitors, we characterize the global

monitors (as defined in Def. 15) that can be decomposed to a set of monitors that can enforce (as

defined in Def. 16) the same policies as the given global monitors. Pictorially, we are charac-

terizing the monitors depicted in Fig. 3.3b that can be transformed into the monitors depicted in

Fig. 3.4. We follow this approach for two main reasons:

1. Any characterization of enforceable policies by monitors in centralized systems (e.g., Sec-

tions 2.5 and 2.6, and [27, 29, 30]) is orthogonal to the characterization of enforceable poli-

cies in distributed systems. Intuitively, since centralized systems can simulate distributed

systems, if something is not enforceable in centralized systems, then it is also not enforce-

able in distributed systems (we formalize this argument later in this section); on the other

hand, there are policies that are enforceable in centralized systems that are not enforce-

able in distributed systems, since distributed systems might not be able to precisely simu-

late centralized systems (Section 3.1). Our approach to characterizing enforceable policies

110

through decomposing global monitors allows us to focus on exactly the details that make

the second simulation impossible; thus, we avoid reformulating and reproving enforceabil-

ity limits of centralized systems (e.g., computability [29, 30], and input-forgiveness – see

Section 2.5.1), that, due to the first simulation, would also apply to distributed systems.

2. The constructive proofs of the decomposition theorems are essentially decomposition al-

gorithms, which can be used to distribute a centrally specified policy over a distributed

system. Previous work has introduced a large number of specification languages that can

be used to express (centralized) security policies as centralized automata (i.e., global mon-

itors) [103, 104, 105, 108, 121]. As we discussed, such work provides a simpler means

to specifying security policies [1, 104, 119]. Our formal characterization of the global

monitors that can be decomposed to distributed monitors, provides (through the proofs of

the theorems) provably correct algorithms to decentralize policies expressible in the above

languages. To the best of our knowledge, we are the first to provide formal proofs of

correctness for decentralizing algorithms of security policies that can be specified in such

expressive languages (i.e., arbitrary centralized state machines).

The following theorem formally expresses the correctness (soundness and completeness) of

our approach.

Theorem 3.4.1. A policy P̂ is distributedly enforceable on a distributed system DS if and only if

there exists a global monitorM such that:

1. P̂ is globally enforceable on DS byM

2. there exist monitors {M}i = {M1, . . . ,Mn}, one for each node of the system, such that

traces(M) = traces(ΠiMi)

Proof. Case: ⇒ If a policy P̂ is distributedly enforceable then by Def. 16 there exist monitors

M1, . . . ,Mn, renaming functions renamei, and hiding functions hideiΦi
for some set of actions

111

Φi ⊆ Output(Mi) ∪ Output(rename(Ni)), with 1 ≤ i ≤ |M̂ | such that:(
traces(MS) | acts(P̂)

)
= traces(P̂), where MS is defined in equation (4).

Then, we can construct the global monitor by taking the composition of the monitors, and

through associativity and commutativity of renaming and hiding [1], constructM = ΠiMi. This

construction meets both requirements.

Case: ⇐ If there exists a monitor M that globally enforces P̂ on DS then there exists a re-

naming function rename and a hiding function hideΦ for some set of actions Φ ⊆ Output(M) ∪

Output(rename(DS)) such that:(
traces(hideΦ(M × rename(DS))) | acts(P̂)

)
= traces(P̂).

In addition we know that there exist monitors {M}i = {M1, . . . ,Mn}, one for each node of

the system, such that traces(M) = traces(ΠiMi). We can place M1, . . . ,Mn over N1, . . . , Nn,

and partition the renaming function rename and hiding function hideΦ to n sub-functions, one for

each nodeNi, based on the signature of the node. Then we can apply these sub-functions onNi’s

to complete the proof.

The proof of Theorem 3.4.1 formalizes appropriate transformations between global and dis-

tributed monitors through algebraic manipulations of I/O automata.

112

3.4.3 Basic Decomposition

In Section 3.1 we mentioned that one approach to enforce security policies in distributed sys-

tems is to decentralize the enforcement decisions to individual nodes. This approach can help

us achieve better fault-tolerance, communication efficiency, and computational efficiency. In

decentralized architectures, security mechanisms are distributed over the network, collecting and

analyzing data locally, independently of each other. Only when a node realizes that some of its

data might be relevant to some other agents, it forwards the appropriate information to them, so

that they can collaboratively identify the attack. These approaches are different from centralized

approaches, where a single (centralized) node is identified as the enforcement decision point, and

all other nodes blindly send data to the central node and wait to be told (by the central node) what

action to take.

In this section we present two algorithms that decompose global monitors to a set of decen-

tralized monitors that can be placed on the nodes of a distributed system. However, we make

a very strong assumption: the distributed system has no underlying network architecture. This

means that nodes communicate through shared actions: every time a nodes takes a step, i.e., it

executes an action, this is immediately seen by all other nodes. This assumption can be though of

as implying that nodes communicate through an instant broadcast communication medium. This

assumption allows us to achieve two goals. First, we present decomposition algorithms and prove

them correct without having to deal with complexities such as asynchronicity and communication

channels. These algorithms can be seen as intermediate steps in a hierarchical step-wise process

of decomposing a global monitor: we first decompose a global monitor to a set of distributed

monitors that meet the interfaces of the nodes of a given network. Then, in later steps (i.e., more

concrete implementations) we can deal with additional complexity (e.g., asynchronous networks

in Section 3.4.4, synchronous networks in Section 3.5, etc.). Second, we identify certain fun-

113

damental conditions that decomposition algorithms must meet. Specifically, we show that the

instant broadcast assumption is both necessary and sufficient for decomposing global monitors

to distributed monitors that are placed on different physical locations. This means that when,

in later sections, we consider more practical networks (e.g., asynchronous point-to-point), the

algorithms that decompose global monitors must simulate the instant broadcast; otherwise the

distributed monitors will not be able to enforce the same policy as the global monitor.

We assume that we are given an arbitrary I/O automaton A which represents the global mon-

itor. An example automaton is depicted in Fig. 3.5a. We are also given a set of disjoint external9

signatures Si, one for each node i in the network, i.e., for all i and j such that i ̸= j, Si ̸= Sj .

The external signature Si models the external interface of node i: if node i has input events I and

output events O, then Si = I ∪O. We also assume that the union of all the external signatures Si

is the complete signature of the I/O automaton A, i.e., Sig(A) =
∪
Si. Fig. 3.5b shows such an

example of two signatures. The goal is to decompose A into a set of automata Ai, one for each

signature Si, such that the traces of the composition of Ai are the same as the traces of A. As we

said in the introduction of this section, we assume that no renaming is allowed and there are no

communication channels: automata communicate instantly through shared actions. The interface

of such a goal decomposition is shown in Fig. 3.5c.

3.4.3.1 Deterministic Automata

In this section we assume that A is a deterministic automaton. This means that A has only one

start state, and for every action π there is at most one π-transition from each state.

Note that non-determinism typically refers to state non-determinism: from a given state and

for a given action there is more than one end state. Thus, our assumption thatA is a deterministic

9The algorithms presented in this section work for internal actions as well: we can temporarily change internal
actions to output actions, apply the transformations, and finally hide them to make them internal again.

114

A

i1

i2

o1

o2

(a) Centralized automaton

S1

S2

i1

i2

o1

o2

(b) Signatures

A1

A2

i1

i2

o1

o2

o1o2

(c) Decomposed automaton

Figure 3.5: Decomposing centralized automaton given a signature

automaton refers to state determinism. However, in I/O automata there is another form of non-

determinism: more than one local action can be enabled from a given state. Of course, in practice,

the automaton can execute only one action of the possible ones. This non-determinism is useful

when I/O automata are used as specifications (rather than implementations), describing what

allowed behaviors a more refined automaton must meet. In a centralized automaton A this non-

determinism is resolved by a scheduler (i.e., an external entity) that decides the step to be taken.

The idea in the following decomposition algorithm is to lift the choices that a scheduler takes,

from actions, to components. Thus, if one component is scheduled to take a local step, then that

step is broadcasted and the rest of the components skip the actions they wanted to take, and move

to the next state. Note that because of the assumption of determinism this state is unique for all

automata, and thus no divergence is possible.

DetDecompAlgorithm: We assume that we are given a (centralized) I/O automatonA and a set

of signatures Si that meet the constraints we described previously. The decomposition algorithm

works by following the next steps:

1. Extend each Si by adding to the set of its input actions the output actions of every other

node Sj , i.e., Input(Si) =
∪
Output(Sj), j ̸= i.

2. Extend each Si by adding to the set of its input actions the input actions of every other node

115

Sj , i.e., Input(Si) =
∪
Input(Sj), j ̸= i.

3. Make n copies ofA one for each node i. Consider the setXi = Output(A)−Output(Si). Xi

contains the output actions of all nodes other than i, which after step 1 are input actions to

node i. At each copyAi, at each state where an action ofXi is not enabled, add a transition

to the same state, i.e., a self-loop.

Step one, intuitively, ensures that every time that a node outputs something to the environ-

ment, it broadcasts it to the rest of the nodes as well. Notice that the broadcast, at this level of

abstraction (i.e., under our assumptions), is instant. Step two ensures that the input from the en-

vironment is broadcast to all nodes. Thus, all nodes receive the same input sequence from the

environment, and this happens at the same time at all nodes. Finally, the third step is a technical

fix that ensures that the automata at each node are input-enabled: since we extended A’s input

actions at the first step, we have to ensure that these new input actions are enabled from each

state of the automaton. Fig. 3.6 depicts the result of applying this transformation to a centralized

automaton that outputs first a b and then a c, after receiving at-least one input i.

Essentially, the above decomposition algorithm allows all automata to take transitions in syn-

chrony. By step two, inputs from the environment are received by all automata at the same time.

By steps one and three, whenever an automaton takes a transition with an output action, that

action is sent to the environment and also broadcasted at the same time to all other automata,

which transition on the received action. The synchrony of stepping by decomposed automata is

illustrated in Fig. 3.7 for the trace ib. In the beginning, automata are in the same state, as depicted

in Fig. 3.6b. First, i is received by both automata and they move to state q1 (depicted by bold

arrows) in Fig. 3.7a. From there, the top automaton is given a chance to take a local action: it

outputs b while it moves to state q2. But this action is seen by both the environment and the bot-

tom automaton, which also moves to state q2, as depicted in Fig. 3.7b. Thus, the two automata

remain synchronized: they are always in the same state that the original global automaton would

116

q0 q1 q2 q3

i i i

i b ci
b

c

(a) Centralized automaton C

D1

D2

q0 q1 q2 q3

b i b, i b, i

i b c

q0 q1 q2 q3

c c, i i c, i

i b c

b c

i

i

b

c

(b) Decomposed automata D1 and D2

Dashed arrows: transitions with input actions
Solid arrows: transitions with output actions
Ellipse: automaton’s interface
Circles: states
Bold circles: start states

Figure 3.6: Applying DetComp algorithm to decompose centralized automaton C to automata
D1 and D2

be when exhibiting the same trace ib (as shown in Fig. 3.6a).

Theorem 3.4.2. Given an automaton A the DetDecomp algorithm produces a set of automata

Ai, such that Sig(Ai) = Si and traces(A) = traces(ΠAi).

Proof. The proof is by simulation. In the first case we give a simulation relation f from ΠAi to

A, and in the second case a simulation relation g from A to ΠAi. Then the results follow from

Theorem 8.12 in [1] which says that if there is a simulation relation from an automaton A to an

automaton B, then traces(A) ⊆ traces(B). To show that f is a simulation relation from A to B

we have to show that the following two conditions are met [1]:

1. If s ∈ start(A), then f(s) ∩ start(B) ̸= ∅.

2. If s is a reachable state of A, u ∈ f(s) is a reachable state of B, and (s, π, s′) ∈ trans(A),

then there is an execution fragment α ofB starting with u and ending with some u′ ∈ f(s′),

such that trace(α) = trace(π).

117

D1

D2

q0 q1 q2 q3

b i b, i b, i

i b c

q0 q1 q2 q3

c c, i i c, i

i b c

b c

i

i

b

c

(a) Step 1: Automata D1 and D2 receive input i and
transition

D1

D2

q0 q1 q2 q3

b i b, i b, i

i b c

q0 q1 q2 q3

c c, i i c, i

i b c

b c

i

i

b

c

(b) Step 2: D1 transitions and exhibits b andD2 tran-
sitions by receiving b

Dashed arrows: transitions with input actions
Solid arrows: transitions with output actions
Bold arrows: Action and transition the automaton takes currently
Ellipse: automaton’s interface
Circles: states
Bold circles: states the automaton transitions to after taking the current transition

Figure 3.7: Decomposed automata D1 and D2 stepping through trace ib

Case 1: traces(A) ⊇ traces(ΠAi). If q(ΠAi) = ⟨q1, . . . , qn⟩ is a state of ΠAi and qA is a state

of A we define (q(ΠAi), qA) ∈ f provided that qA is the state such that q(ΠAi)i
= qA for all i, i.e.,

q(ΠAi) = ⟨qA, . . . , qA⟩ (Note that this is well defined since f ⊆ states(A)× states(B).)

Now we check the two conditions verifying that f is a simulation relation. For the first con-

dition, since A has only one start state qA, the constructed composed automaton will have only

one start state, namely ⟨qA, . . . , qA⟩. Thus, the first constraint is met.

Now, for the second condition, i.e., the step condition, suppose that q(ΠAi) is a reachable state

of ΠAi, qA ∈ f(q(ΠAi)) is a reachable state of A, and (q(ΠAi), π, q
′
(ΠAi)

) is a step of ΠAi. Note

that any reachable state q(ΠAi) of ΠAi will be of the form q(ΠAi) = ⟨qA, . . . , qA⟩ for some state

qA of A. This can be proven by an inductive argument using the construction of the DetComp

algorithm: the base case, i.e., the start state is easy to see. For the inductive argument, notice that

by construction (and as we explained previously) all automata move to the same state regardless

118

of the action executed.

Now, we prove the step condition by considering cases based on the type of action performed:

1. π is an input action.

Let q(ΠAi) = ⟨qA, . . . , qA⟩ (for the reason we explained above). Since π is broadcasted,

and since every Ai is deterministic, all components will take the same transition, assume

(qA, π, q
′
A), and end up in the same state q′A. This is the same step that A takes from qA =

f(q(ΠAi)) to q′A, and thus the requirement that the traces exhibited by the two automata are

equal is met, since trace(π) = trace(π).

2. π is an output action.

Let q(ΠAi) = ⟨qA, . . . , qA⟩ and let π be the action of one of the components, say Ak. Then

Ak will take the step (qA, π, q
′
A). But, by construction, π is also an input action of all

other components, which will also move from their state qA to q′A. This is because the

transition relation for every Ai is exactly the same; the only thing that differs is the type of

some actions which for an Ai might be an output action, but for the rest is an input action.

However, this typing of actions does not affect how the components transition from one

state to another. Thus, ΠAi moves from s = ⟨q, . . . , q⟩ to s′ = ⟨q′, . . . , q′⟩. A can also

move from q = f(s) to q′ by taking a π step, which preserves the correspondance.

Case 2: traces(A) ⊆ traces(ΠAi). This case is similar to the previous, by taking g the inverse

of f , i.e., if q(ΠAi) = ⟨q1, . . . , qn⟩ is a state ofΠAi and qA is a state ofAwe define (qA, q(ΠAi)) ∈ g

provided that q(ΠAi)i
= qA for all i, i.e., q(ΠAi) = ⟨qA, . . . , qA⟩ (Note that, as with f , g is well

defined because g ⊆ states(A)× states(B).)

119

q0 q1 q2 q3
a b c

a

b

c

(a) Closed action-deterministic centralized automa-
ton C

D1

D2

q0 q1 q2 q3

c a, c a a, c

a b c

q0 q1 q2 q3

b b b

a b c

a c b

a

c

b

(b) Decomposed automata D1 and D2 for closed
action-deterministic centralized automaton C and
signatures S1 = {a, c} and S2 = {b}

Dashed arrows: transitions with input actions
Solid arrows: transitions with output actions
Ellipse: automaton’s interface
Circles: states
Bold circles: start states

Figure 3.8: Decomposing a closed action-deterministic centralized automaton

Closed action-deterministic automata. In the introduction of this section we mentioned the

distinction between state non-determinism and action non-determinism. The first type of non-

determinism refers to cases where an automaton may have multiple end states for a given state

and action. The second type refers to a property that I/O automata have, namely that from a given

state more than one local action might be enabled. In the DetDecomp algorithm we assumed that

the centralized automata are state deterministic. However, if we strengthen the assumption of

state determinism we can apply some simple optimizations in the DetDecomp algorithm. Specif-

ically, we strengthen state determinism assumption in two ways: (1) we assume that the central-

ized automaton is closed, i.e., there are no inputs to the automaton: Input(A) = ∅; and (2) we

assume that the centralized automaton is action deterministic, i.e., from each state there is at most

one local action enabled. Although these two assumptions might seem very restrictive, they are

important because they correspond to many policies and decentralization algorithms discussed in

120

the literature (e.g., serializable signatures [91, 92]). For instance, if we compose an automaton

that models the monitored system, with an automaton that models the attacker, then the result

composed automaton is a closed automaton (i.e., the first assumption is met). As we mentioned

in Section 3.4.1 such a composition is useful when we have some formally stated assumptions

about the attacker, such as the causality assumption from Section 3.3.

A closed action-deterministic automaton implies that there is no concurrency in the system.

Thus, we do not need to worry about synchronizing the decomposed automata. Specifically,

since, from each state q only one local action is enabled, say π, then only one automaton can

take that step and move to some state q′. But this also holds for the (new) state q′: only one

automaton can transition from q′ to some state q′′ by taking an action, say π′. This means that the

automaton that takes the first action, π, does not need to broadcast the action to all other automata;

it only needs to notify the automaton that will take the next action, i.e., π′. This means that (1)

less messages need to be exchanged, and (2) no concurrency-control algorithm is needed, since

automata remain synchronized through simple notifications. An example decomposed closed

action-deterministic automaton is depicted in Fig. 3.8. Note that whenever D1 wants to output

action a, then this action is only sent to D2 (even if there were more automata in the system).

Also, after action a is sent, D1 will move from state q1 only if D2 takes the b step. This means

that even if a was not simultaneously output to the environment and sent to D2, we could still

achieve the same behavior: D1 sends a to the environment first, and then notifies D2.

In Section 3.3.1 we assumed that the attacker can send inputs to multiple nodes at the same

time (even though she blocks at each node until the node responds). This means that the closed

action-determinism assumption does not hold, since we allow concurrency among the nodes of

a (monitored) distributed system. Thus, the whole system can be modeled as a closed action-

deterministic automaton only if the attacker restricts her activity to one action per step. For

instance, attack #4 can be represented as a single straight-line program, but attack #5 must be

121

represented as two straight-line programs – the attacker can concurrently scan hosts for open

ports and query the DNS server.

3.4.3.2 Non-Deterministic Automata

In the previous section we discussed a decomposition algorithm for deterministic centralized au-

tomata. However, as we mentioned in Section 3.4.3.1, I/O automata can be non-deterministic

both in terms of states and local actions. Non-determinism in I/O automata is useful for declaring

specifications (rather than implementations), i.e., describing what allowed behaviors a more re-

fined automaton must meet. In the context of security, non-deterministic automata could be used,

for instance, for collaborative detection of attacks among different organizations [122, 123]. For

example, non-determinism could be used by an organization to describe (abstractly) an attack

detected in its network, while hiding the details of its network architecture; this signature could

then be shared with other organizations while ensuring that the signature (1) is applicable to net-

work architectures of the other organizations (e.g., using appropriate decomposition algorithms

like the ones we describe in this chapter) and (2) provides confidentiality to the organization shar-

ing the information [122]. Another example where non-determinism can be useful is to specify

multi-step attacks where the execution of a single step (i.e., an attack) can (non-deterministically)

either succeed or fail. For instance, a non-deterministic signature could specify that the detection

of an exploit for Microsoft IIS could lead to either a compromised state or an ignore state [109].

Whenever this signature is refined (i.e., applied) on a specific network this non-determinism can

then be resolved based on the type of the web server the specific network uses: if the web server

in the network is a Linux based server, then a Microsoft IIS exploit will be unsuccessful and thus

the detection process will lead to a unsuccessful state. From this state the detection mechanism

can decide to either not notify the security analyst or log the attack as not severe. This approach

can greatly help in not distracting or overwhelming the analyst with alerts, which in turn can help

122

the analyst to prioritize and focus on other more severe or successful attacks [50, 109].

In this section, we present a decomposition algorithm that assumes that the centralized au-

tomaton is non-deterministic. This means that the automaton can have multiple start states, and

each action can transition the automaton to potentially multiple states. TheDetDecomp algorithm

we presented in Section 3.4.3.1 does not work for non-deterministic automata: whenever one of

the automata broadcasts the local action it took, the rest of the automata do not know to which

state the automaton moved; thus the components of the transformed automaton might diverge,

i.e., end up on different states. Note, that this is an issue only for local actions. If the automata

diverge while (or before) receiving inputs then the automata are going to exhibit the same be-

havior regardless of the states they are in; this is because inputs are broadcast and automata are

input-enabled and thus all components are going to receive (and exhibit) the same sequence of

inputs.

As we discussed in Section 3.4.3.1 the idea behind the DetDecomp algorithm was to lift the

scheduler from choosing local actions to choosing components. However, for non-deterministic

automata we have to make additional guarantees because as we explained above, the components

might end up in different states. Thus, we need to make sure that components do not diverge

whenever a local action is broadcasted. The idea that we are going to use next is the following:

instead of making sure that every component automaton is in the same state after every step (as we

did in the DetDecomp algorithm), we will make sure that every automaton either is in a possibly

consistent state, or it has definitely diverged, in which case it will be sacrificed. More specifically,

each component automaton will be a (slightly modified) copy of the centralized non-deterministic

automaton. To illustrate the key idea, let us assume that one automaton is chosen to execute a

local action, and this action is broadcasted to the rest of the automata. If some of the recipient

automata are at a state from which the local action they receive is not enabled in the (original)

centralized automaton (i.e., if the original automaton was at the state the the recipient is then this

123

p0 p1 p2
i c

i i

q0 q1 q2
i b

i i

i

b

c

(a) Centralized non-deterministic automaton C

D1

D2

p0 p1 p2

dead

i c

i i

c
c

q0 q1 q2
i b

i i

c
c

c

p0 p1 p2

dead

i c

i i

b
b

b

q0 q1 q2
i b

i i

b

b

i

i

b

c

cb

(b) Decomposed automata D1 and D2

Dashed arrows: transitions with input actions
Solid arrows: transitions with output actions
Ellipse: automaton’s interface
Circles: states
Bold circles: start states

Figure 3.9: Applying NonDetDecomp algorithm to decompose non-deterministic centralized au-
tomaton C to automata D1 and D2

local action would not have been enabled), then this means that at some point in their execution

they diverged, and thus they are going to move to a state, from which they cannot take any more

local actions (i.e., they sacrifice themselves for making a wrong choice in the past). Next we

discuss more details, and the implementation, of this idea.

NonDetDecompAlgorithm: We assume that we are given a (centralized) non-deterministic

I/O automaton A, and a set of disjoint external signatures Si, one for each node i in the network,

i.e., for all i and j such that i ̸= j, Si ̸= Sj . The external signature Simodels the external interface

of node i: if node i has input events I and output events O, then Si = I ∪ O. We also assume

124

that the union of all the external signatures Si is the complete signature of the I/O automaton A,

i.e., Sig(A) =
∪
Si.

The goal is to decompose A into a set of automata Ai, one for each signature Si such that the

traces of the composition of Ai are the same as the traces of A. The decomposition algorithm

works by following the next steps:

1. Extend each Si by adding to the set of its input actions the output actions of every other

node Sj , i.e., Input(Si) =
∪
Output(Sj), j ̸= i.

2. Extend each Si by adding to the set of its input actions the input actions of every other node

Sj , i.e., Input(Si) =
∪
Input(Sj), j ̸= i.

3. Make n copies of A, one for each node i and add a state, named dead to each Ai. Consider

the set Xi = Output(A) − Output(Si). Xi contains the output actions of all nodes other

than i, which after step 1 are input actions to node i. At each copy Ai, at each state where

an action of Xi is not enabled, add a transition to the dead state.

Fig. 3.9 depicts the application of the above transformation to a global non-deterministic

automaton A, which after receiving an input i it can either output a b or a c (depending on the

start state it was in). Fig. 3.10 depicts how the decomposed automaton steps through the trace ib.

In Fig. 3.10a the two automata start in different states, and after receiving i they end up in states q1

and p1, respectively. From there, if the top automaton is scheduled, depicted in Fig. 3.10b, then it

steps to state q2 while broadcasting b to both the environment and the bottom automaton. Finally,

the bottom automaton instantly receives b and moves to the dead state. This way, it is blocked

from outputting a c which would invalidate the specification of the global automaton (since the

trace ibc cannot be produced by A).

Theorem3.4.3. Given an automatonA theNonDetDecomp algorithm produces a set of automata

Ai, such that Sig(Ai) = Si and traces(A) = traces(ΠAi).

125

D1

D2

p0 p1 p2

dead

i c

i i

c
c

q0 q1 q2
i b

i i

c
c

c

p0 p1 p2

dead

i c

i i

b
b

b

q0 q1 q2
i b

i i

b

b

i

i

b

c

cb

(a) Step 1: Automata D1 and D2 receive input i and
transition

D1

D2

p0 p1 p2

dead

i c

i i

c
c

q0 q1 q2
i b

i i

c
c

c

p0 p1 p2

dead

i c

i i

b
b

b

q0 q1 q2
i b

i i

b

b

i

i

b

c

cb

(b) D1 transitions and exhibits b and D2 transitions to
the dead state after receiving b, since it had diverged
(when it was at a different start state)

Dashed arrows: transitions with input actions
Solid arrows: transitions with output actions
Bold arrows: Action and transition the automaton takes currently
Ellipse: automaton’s interface
Circles: states
Bold circles: beginning and end states in the automaton’s current transition

Figure 3.10: Decomposed non-deterministic automata D1 and D2 stepping through trace ib

Proof. The proof is by simulation. In the first case we give a simulation relation f from ΠAi to

A, and in the second case a simulation relation g from A to ΠAi. Then the results follow from

Theorem 8.12 in [1] which says that if there is a simulation relation from an automaton A to an

automaton B, then traces(A) ⊆ traces(B). To show that f is a simulation relation from A to B

we have to show that the following two conditions are met [1]:

1. If s ∈ start(A), then f(s) ∩ start(B) ̸= ∅.

2. If s is a reachable state of A, u ∈ f(s) is a reachable state of B, and (s, π, s′) ∈ trans(A),

126

then there is an execution fragment α ofB starting with u and ending with some u′ ∈ f(s′),

such that trace(α) = trace(π).

Case 1: traces(A) ⊇ traces(ΠAi). If q(ΠAi) = ⟨q1, . . . , qn⟩ is a state of ΠAi and qA is a state

of A we define (q(ΠAi), qA) ∈ f provided that qA appears in the n-tuple q(ΠAi), i.e., there exists i,

1 ≤ i ≤ n, such that qi = qA. Note that the state q(ΠAi) = ⟨q1, . . . , qn⟩, where qi = dead for all i,

is not a reachable state of ΠAi. This can be proven by an inductive argument on the construction

of the decomposition algorithm: the base case is trivial. For the inductive step, assume that there

are some qi’s that are not equal to dead (which may be more than one). Then, if an input transition

is taken, by construction, all qi’s will move to q′i’s that are also not dead. If a local transition is

taken, then at least one qi will transition to a q′i that is not dead, namely the component that takes

the local transition. Thus the claim is proven.

Now we check the two conditions verifying that f is a simulation relation. The start condition

is trivial, since every start state q(ΠAi) ofΠAi is a tuple that consists only of elements of start(A).

Thus if q(ΠAi) ∈ start(ΠAi) then f(q(ΠAi)) ∩ start(A) ̸= ∅, since, by definition of f , f(q(ΠAi))

contains only elements of start(A).

Now, for the step condition, suppose that q(ΠAi) is a reachable state of ΠAi, qA ∈ f(q(ΠAi))

is a reachable state of A, and (q(ΠAi), π, q
′
(ΠAi)

) is a step of ΠAi. We consider cases based on the

type of action performed:

1. π is an input action.

Let q(ΠAi) = ⟨q1, . . . , qn⟩ and, without loss of generality, let qA = q1. Since π is broad-

casted, all components in the composition will transition from state qi to some state q′i.

This includes the first component that will transition from q1 to some state q′1. Thus the

composed automaton will move to a state q′(ΠAi)
= ⟨q′1, . . . , q′n⟩. But since A is input en-

abled (as an I/O automaton) then its transition relation will contain the transition (q1, π, q′1).

127

Thus, we have that q1 ∈ f(q(ΠAi)), q′1 ∈ f(q(ΠAi)) (with both q1 and q′1 reachable states),

(q1, π, q
′
1) ∈ trans(A), and thus (q1, π, q′1) ∈ execfragms(A). But, trace((q1, π, q′1)) = π =

trace(π), thus this case holds.

2. π is an output action.

Let q(ΠAi) = ⟨q1, . . . , qn⟩ and, without loss of generality, let π be an output action of com-

ponent A1. Since π is broadcasted to all other components Ai, i ̸= 1, then by the third

step of the NonDetDecomp algorithm there are two cases: first, if Ai originally had a π-

transition enabled from the state that it is in, i.e., qi, then (by construction) Ai it will move

to the end state q′i of that particular transition; second, if Ai did not have a π-transition en-

abled from the state that it is in, i.e., qi, then (by construction) it will move to a dead state.

Thus the composed automaton will move to some state q′(ΠAi)
= ⟨q′1, . . . , q′n⟩, where some

of the q′i’s, for i ̸= 1, could be dead states. Note that the transition (q1, π, q
′
1) of compo-

nent A1 is a transition that the original automaton A could have taken. Moreover, by the

definition of f , q′1 ∈ f(q′(ΠAi)
) since q′1 ∈ states(A). Thus, we have that q1 ∈ f(q(ΠAi)),

q′1 ∈ f(q(ΠAi)) (with both q1 and q′1 reachable states), (q1, π, q′1) ∈ trans(A), and thus

(q1, π, q
′
1) ∈ execfragms(A). But, trace((q1, π, q′1)) = π = trace(π), thus this case also

holds.

Case 2: traces(A) ⊆ traces(ΠAi). This case is similar to the previous, by using as g the

inverse of f , i.e., if q(ΠAi) = ⟨q1, . . . , qn⟩ is a state of ΠAi and qA is a state of A we define

(qA, q(ΠAi)) ∈ g provided that there exists i such that q(ΠAi)i
= qA (Note that, as with f , g is well

defined because g ⊆ states(A)× states(B).) Intuitively, this case holds because of our inductive

claim that the state q(ΠAi) = ⟨q1, . . . , qn⟩, where qi = dead for all i, is not a reachable state of

ΠAi. Thus, the simulation essentially holds because there is always a component Ai of ΠAi that

will be operational (i.e., not in a dead state) and, by construction, can behave as A.

128

For the rest of this chapter, we will focus on deterministic automata (as they were formally de-

fined in this section). However, the ideas that we will explore can be applied in non-deterministic

cases, as long as the principles that we discuss in this section are taken into account, e.g., the use

of dead states.

129

3.4.4 A Blueprint for Decomposition Algorithms

In Section 3.4.2 we showed how to reduce the problem of characterizing the enforceable policies

in distributed systems to the problem of characterizing the global monitors that can be decom-

posed over a distributed system (Theorem 3.4.1). Then, in Section 3.4.3, we presented two algo-

rithms that decompose global monitors to a set of decentralized monitors that can be placed on

the nodes of a distributed system. The algorithms were proven correct under the assumption that

all events in the system (inputs and outputs) are broadcasted and delivered instantly to all nodes.

Pictorially, these algorithms can take us from global monitors of Fig. 3.3b to distributed monitors

of Fig. 3.4. Although these algorithms provide us with some useful insight on how to decentral-

ize global monitors, the strong assumptions about the network do not make them very useful in

the general case of point-to-point asynchronous networks. In this section we will explore and

identify the conditions under which such instant broadcast communication can be implemented

(or simulated) in typical asynchronous message-passing systems.

We have broken down the process of decentralizing global monitors over distributed system

into three high-level transformation steps. Although we could present a single algorithm that per-

forms the transformation from a global monitor to distributed monitors. The three steps provide a

blueprint that describes how to decentralize global monitors in an incremental and modular way.

This approach has three main benefits:

1. It allows us to present the constraints in the decentralized algorithms in a simpler way.

2. It provides modularity in the final decentralized algorithm: each step requires to transform

the monitor from a given model to another while maintaining some behavioral equivalence.

Any algorithm thatmeets the given constraints can be used to implement this transformation

step. Thus, different algorithms for each step can be combined together to create a larger

number of decentralized algorithms.

130

Environment

Environment

M

Channel

Channel

N1

N2

C
ha
nn
el

(a) Original global monitorM

Environment

Environment

DM

Channel

Channel

N1

N2

C
ha
nn
el

(b) Blueprint step 1: global monitor M transformed to
distributed monitor DM

Figure 3.11: First transformation step of the blueprint for decomposition algorithms

3. It provides modularity in the proving of the correctness of a decentralized algorithm. If we

substitute a component (i.e., implementation of a step) of a given algorithm with another

implementation, it suffices to show that this new implementation meets the specification

of the step it implements; the rest of the proof, for the other steps, remains the same. This

can greatly simplify the proving process of decentralized algorithms.

The three steps of the blueprint are depicted in Fig. 3.12. The solid arrows show the order of

the transformations between steps. The dashed arrows show the background, constraints, and

algorithms that are discussed in each step.

Step 1: Global monitor to distributed monitor. In the first step we do not really make any

changes to the monitor itself. Intuitively, in this step we push the global monitor inside the

distributed system, transforming the global monitor into a component we call the distributed

monitor10. Pictorially, we transform a global monitor M as shown in Fig. 3.11a to a distributed

10As we discussed in Section 3.4.2 the distributed monitor can be seen as composition of the distributed monitors
(modulo I/O automata algebraic manipulations).

131

monitor DM as shown in Fig. 3.11b. The changes in this transformation are only syntactic: we

just rename the actions of the monitor, e.g., the input actions from the environment (Fig. 3.11a)

are renamed to input actions from the channels (Fig. 3.11b). Even though this step is trivial from

a transformational perspective, it is very important from a characterization perspective. This step

allows us to identify a key limitation of decomposing global monitors over a distributed system:

we cannot always simulate a total order (centralized systems – global monitor) using a partial

order (distributed systems – distributed monitor). More specifically, notice that in Fig. 3.11a the

global monitor M can directly communicate with the environment. Thus, if the environment

sends an event a through the top interface, and then an event b through the bottom interface, the

monitor is going to receive the two events in exactly this order. However, as shown in Fig. 3.11b,

the distributed monitor DM has to communicate through communication channels with the envi-

ronment. Thus, for the same sequence of events, i.e., ab, if the bottom communication channel is

slower than the top, then DM is going to receive the sequence ba, instead of ab. This means that

DM can not be certain for the order that the environment sent the events.

Step 2: Distributed monitor to distributed shared memory monitor. In the second step,

the high level idea is to consider the monitor (or parts of the monitor) as a shared variable (or

multiple shared variables) in the shared memory model. In the shared memory model system, an

I/O automaton contains a number of processes that (1) communicate with the environment and

(2) directly access one or more shared variables. Thus, in this step we transform a monitor as the

one shown in Fig. 3.11b to a monitor like the one in Fig. 3.13a. As we discussed in Section 3.2 the

shared memory model is more complex than centralized models, since it allows for concurrency,

but it is simpler than message passing models because it abstracts away from communication

issues. After we transform the monitor from an I/O automaton to an I/O automaton of the shared

memory model, we will have reduced the problem of decentralizing a monitor over a distributed

132

Global monitor
(Figure 3.11a)

Distributed monitor
(Figure 3.11b)

Shared memory model

Distributed shared memory monitor
(Figure 3.13a)

Atomic object model

Broadcast message passing model

Distributed message-passing monitors
(Figure 3.13b)

(S
ec
tio
n
3.
4.
5)

(S
ec
tio
n
3.
4.
6)

(S
ec
tio
n
3.
4.
7)

Input-reordering
constraint

(Section 3.4.5.1)

(Section 3.4.6.1)

(Section 3.4.7.1)

Monotonicity
constraint

(Section 3.4.6.2)

Transformation algorithms
(Section 3.4.6.4)

Transformation algorithms
(Section 3.4.7.3)

Transformation algorithms [99]

Figure 3.12: Blueprint – Steps to decentralize global monitor

133

Environment

Environment

SM

M1

M2

M3

M4

Channel

Channel

N1

N2

C
ha
nn
el

SM(DM)

(a) Blueprint step 2: distributedmonitorDM transformed
to distributed shared memory monitor SM

Environment

Environment

Channel

Channel

SM
M1 M2

N1

M3 M4

N2

C
ha
nn
el

(b) Blueprint step 3: distributed shared mem-
ory monitor SM transformed to distributed
message-passing monitors

Figure 3.13: Second and third transformation steps of the blueprint for decomposition algorithms

system to the problem of a simulating a shared variable in a message passing model (which

we do in step 3 – Section 3.4.7). In order to keep the presentation simple, as we mentioned

in Section 3.4.3, we are going to assume that the monitor is deterministic, and we will make

comments about non-deterministic issues whenever necessary11.

Although the first step of the blueprint, as we discussed previously, is more important from

a characterization perspective than a transformational perspective, the second step is important

from both perspectives. This is because in the second step the main part of the decomposition

occurs. Essentially, we step from a centralized systems model to a distributed systems model.

From a characterization perspective, this means that we have to account for the differences

between the two models (see Section 3.2), which includes the issue of global knowledge. For

example, in Fig. 3.13a, if we assume that SM is the component that takes the enforcement de-

cisions, then a decision taken at a given instance in time and pertains to what action M1 should

11In general, non-deterministic monitors can be simulated by using the algorithms that we present in this thesis,
and extending them by resolving the non-determinism through appropriate agreement protocols, where, for instance,
the local monitors resolve the non-determinism by asking a dedicated component.

134

output, does not take into account any input that might have arrived in the meantime at another

node, e.g., M4. Thus, the decisions will always be made without the most current information

(i.e., inputs received). We discuss this issue more in Section 3.4.6.2.

From a transformation perspective this second step of the blueprint is also important because

the distributed monitor (from step 1) has to be transformed to a (decomposed) shared memory

system monitor – a non-trivial step. In Section 3.4.6.4 we present two (novel) algorithms to

achieve this transformation. The first one transforms the distributed monitor to a centralized

shared memory system monitor, i.e., the enforcement decisions are taken at a central location

(e.g., in Fig. 3.13a the decisions are taken by SM and the Mi’s simply forward events they re-

ceive). The second algorithm transforms the distributed monitor to a decentralized shared mem-

ory system monitor, i.e., the enforcement decisions are taken by multiple components (e.g., in

Fig. 3.13a the decisions are taken by theMi’s and SM acts as a synchronization reference point).

Step 3: Distributed shared memory monitor to distributed message-passing monitors. Fi-

nally, the goal of the third step is to simulate the shared variable(s) of the previous step over

a message passing model. This is the final step of the transformation, where we transform a

distributed shared memory monitor, as the one in Fig, 3.13a, to a decentralized monitor in the

message passing model, as shown in Fig. 3.13b. There are a lot of algorithms that achieve this

goal in the literature [1]. In this thesis, and for completeness purposes, we discuss an algorithm

that places the shared variable on one of the nodes of the network, and every other node forwards

requests to this dedicated node which, in turn, applies the requests to the shared variable and re-

turns the responses to the appropriate senders [1]. In addition, we briefly mention some variations

of this basic algorithm where variables are place on more than one nodes, such as the well-known

replicated state machine algorithm that places a copy of the shared variable on every node and

ensures that all copies are in consistent state through the use of logical time [1, 99, 124, 125].

135

These algorithms assume broadcast communication channels which does not meet our require-

ments for point-to-point communication. However, there are several algorithms12 to simulate

broadcast channels over point-to-point message passing models [99].

12Since these algorithms are not essential in the reading of this thesis, the interested reader can find more infor-
mation in [99].

136

3.4.5 Transformation of Global Monitors to Distributed Monitors

In distributed systems the nodes do not (explicitly) control the actions they receive from the

environment.This lack of control, combined with the fact that information takes time to propagate

in distributed systems (see Section 3.2), can result in the inability of nodes to globally order the

inputs they receive in the order that the environment sent them. For instance, the monitor in

Fig. 3.11a can arrange the actions received through the two interfaces (i.e., the top and bottom

environment) in the same order that they were sent: if the environment sends an input a through

the top interface and then a second input b through the bottom interface then themonitor will know

the order in which the environment sent the inputs. On the other hand, the monitor in Fig. 3.11b

may not be able to infer the original order of inputs because of the intermediate communication

channels: if the top channel is slower than the bottom then it is possible that the input from the

bottom interface arrives first, i.e., the monitor will observe the sequence ba instead of the one

originally sent, ab. So, in this case the monitor cannot know with certainty the order in which the

environment sent the inputs. The fundamental issue is that the communication channels are two

distinct entities and they cannot simulate the (atomic) monitor in Fig. 3.11a in terms of receipt of

inputs. In this section we formalize this issue as the property of input reordering.

3.4.5.1 Input reordering automata

To look a little bit closer at this issue, let us consider a centralized I/O automaton A with inputs

a and b and outputs x and y that exhibits the following behavior: if input a is received first, then

the automaton outputs the sequence xy; else, if if input b is received first, then the automaton

outputs the sequence yx (i.e., the reverse output sequence). The transition relation of such an

automaton is depicted in Fig. 3.14. Dashed arrows represent transitions with input actions and

concrete arrows represent transitions with output actions.

137

q0

q1 q2 q3

q4 q5 q6

a

b

a, b a, b a, b

a, b a, b a, b

x y

y x

Circles: states
Dashed arrows: transitions with input actions
Solid arrows: transitions with output actions

Figure 3.14: Transition relation of an automaton that is not input reordering

Suppose that wewant to decompose this automaton to two automataA1 andA2with signatures

{a, x} and {b, y} respectively. Since the outputs ofAmust be output by different nodes, i.e., x by

A1 and y byA2,A1 andA2 must coordinate in order to simulate the behavior ofA and produce the

correct sequences of outputs. In order to output the correct sequence of actions,A1 andA2 need to

synchronize and agree on the order that the inputs were sent by the environment (since a and b are

received by different nodes). One natural way to decompose A into A1 and A2 is to use a similar

technique to the one that we used in Section 3.4.3: make two copies of the transition relation

of Fig. 3.14, one for each automaton, and extend their transition relations with communication

transitions that notify the other automaton (1) what input they received, and (2) what output action

they have decided to exhibit. Fig. 3.15 shows one such decomposition. For instance, when A1

receives an input a then it moves to state q10 . From that state it notifies A2 by performing an

internal communication action msg(a). A2 receives this action13 and moves to state q1. Notice

13We have simplified the self-loops on each state as follows: input transitions that are labeled with a have the
implicit label msg(a), and input transitions that are labeled with b have the implicit label msg(b). This was done to
declutter the state-transition diagrams; it does not mean that a and b are broadcasted and received by both automata.

138

q0

q10 q1 q2 q3 q7

q4 q5 q6 q8

a

b

y

a, b, y a, b, y a, b a, b, y a, b, y

a, b a, b, y a, b, y a, b, y

msg(a) x msg(x) y

y x msg(x)

q0

q1 q2 q3 q7

q40 q4 q5 q6 q8

a

b

x

a, b a, b, x a, b, x a, b, x

a, b, x a, b, x a, b a, b, x a, b, x

x y msg(y)

msg(b) y msg(y) x

A1

A2

a

b

x

y

msg(a)
msg(x)

msg(b)
msg(y)

Ellipse: automaton’s interface
Circles: states
Dashed arrows outside ellipses: input actions sent by the environment
Solid arrows outside ellipses: output actions sent to the environment
Dashed arrows between ellipses: actions for communication between automata
Dashed arrows inside ellipses: transitions with input actions
Solid arrows inside ellipses: transitions with output actions

Figure 3.15: Decomposed automata A1 and A2 of the automaton whose transition relation is
depicted in Fig. 3.14

that A2 has only input actions enabled in q1 and the only way to move to state q2 is to receive a

msg(x) action from A1. This means that A2 blocks until A1 has output x. When A1 outputs x it

notifies A2 which updates its state to q2, from which it finally outputs y. This behavior meets the

139

specification of A which said that if a is received first then the automaton outputs the sequence

xy.

The issue that we discussed above, i.e., the automata cannot infer the order in which the

environment sent the inputs, can be illustrated by the following scenario. Let us assume that

both automata are in their start states and consider the global state of the system, i.e., ⟨q0, q0⟩.

Moreover, let us assume that the environment sends actions a and b and while the environment

sends the actions the automata do not get a chance to execute a local action. After A1 receives

a it moves to state q10 and the global state becomes ⟨q10 , q0⟩. Then, A2 receives b and moves to

state q40 and the global state becomes ⟨q10 , q40⟩. Notice that from this global state both automata

will notify each other while proceeding to exhibit their respective output action. Intuitively, A1

thinks that a happened first, while A2 thinks that b happened first. No matter what protocol or

algorithm we try to design so that A1 and A2 infer the correct ordering of inputs we will run into

the same problem: a and b happened concurrently from the perspective of the distributed system.

Even if the automata coordinate to agree on a sequence (e.g., they agree that a happened first)

this might not be the sequence that the environment actually sent. Note that the two automata

could coordinate on what output sequence to produce. This means that if they agree to output xy

then this is what the environment will receive. As we will see in Section 3.4.6.4 this will give

the automata an opportunity to synchronize and coordinate (under specific assumptions about the

environment).

The following definition formalizes the above intuition.

Definition 17. (Input reordering) Given an automatonA and a partition S of the external actions

of A, we say that A is input reordering with respect to S if and only if for every trace t of A, for

all partitions Si in S, and for every trace t′ ̸= t of A such that:

1. t|Si = t′|Si, and

2. t|Output(A) = t′|Output(A),

140

the set of traces that extend t is equal to the set of traces that extend t′.

Constraint (1) says that the two traces must agree on the local ordering of events from each

node’s perspective. Constraint (2) says that the two traces must agree on the output actions of the

global automaton. In other words, if we consider a given trace of the automaton and we consider

all possible traces that we can construct by rearranging the actions of the trace while respecting

(1) the ordering of actions that happen locally at each component, and (2) the global ordering of

outputs, then the traces that extend each of these constructed traces must be the same set. For

instance, let us consider two components with signatures {a, x} and {b, y}, where x and y are

output actions. Let us also consider the global trace of the two automata t = abxy. The local

sequences of the components are ax and by, and the global output sequence is xy. Then the valid

rearrangements according to Definition 17 are the traces:

1. t1 = axby: the local orderings ax and by are preserved, and the global output ordering xy

is also preserved, and

2. t2 = baxy: the local orderings ax and by are preserved, and the global output ordering xy

is also preserved.

Note that the sequence byax is not a valid rearrangement. Although it maintains the local

orderings by and ax, it violates the global output sequence ordering since y appears before x.

Definition 17 does not require that all local sequences are interleaved (i.e., both inputs and

outputs). To illustrate why consider the following example: the centralized automaton A is ex-

hibiting the following behavior: output x after you receive a, output y after your receive b, and

output k if the output sequence is xy or output l if the output sequence is yx. Now let us assume

that we want to decompose A into two automata with signatures {a, x, k} and {b, y, l}. Notice

that our example behavioral specification of A meets the requirements of the definition of input

reordering: a and b can be interchanged and lead to same output sequences, but x and y cannot:

141

xy leads to xyk and yx leads to yxl. We do not require that the two automata’s output actions

are interleaved because the automata can execute an agreement protocol and output the correct

sequence of events. A simple example agreement protocol is to have the automaton with the

lowest id output first. In our example, whenA2 receives an input b it will askA1 if it has received

any input actions. If A1 responds positively then A2 will back off, and wait for A1 to output x.

Thus the automata will output the sequence xyk, which is correct regardless of whether the input

sequence was ab or ba. It A1 responds negatively then A1 will wait for A2 to output y first, and

the two automata will output the sequence yxl. Note that the output sequence yxl is also correct,

even if A1 receives an a while its negative response to A2 is in transit. Thus, the nodes can agree

on a sequence of outputs and exhibit the correct behavior of the specification of the centralized

automaton A.

The following theorem formally expresses the fact that input reordering is a necessary condi-

tion for decomposing a single automaton over a distributed system.

Theorem 3.4.4. Assume an automaton A with non-empty sets of input and output actions and

a partition P of its actions (i.e., P = P1 ∪ . . . ∪ Pn, and Pi ∩ Pj = ∅, 1 ≤ i, j ≤ n, i ̸= j)

such that at least two of the partitions are non-empty. If there exist automata A1, . . . , An whose

signatures are equal to the signatures of the partitions (i.e., Sig(Ai) = Sig(Pi), 1 ≤ i ≤ n) and

traces(ΠiAi) = traces(A), then A is input reordering with respect to P .

Proof sketch. The proof is by contradiction. Assume thatA is not input reordering with respect to

P . Then thismeans that there are two traces t and t′ ofA andΠiAi, and (without loss of generality)

two components S1 and S2 such that the inputs of t and t′ from S1 and S2 are the same, the output

sequences of ΠiAi are also the same for t and t′, but the extensions of t and t′ are not the same.

Since I/O automata are input enabled, the last statement implies that, without loss of generality,

t and t′ must differ on some output action x (i.e., w.l.o.g., there exists an extension of t that

contains x, but no extension of t′ contains x). Notice that t and t′ must have some input actions

142

of S1 and S2 in different order, otherwise they are the same trace. Since one of the traces leads to

outputting xwhen the other does not then the two traces must go through a different state at some

point (potentially, from the beginning if the automaton is non-deterministic). If the automaton is

non-deterministic, then the two components must agree on their start state otherwise they might

diverge and then the assumption about t and t′ does not hold. Thus, the only other case is for the

two traces to go on a different state due to an ordering of input actions of S1 and S2. But since we

can construct an environment and a scheduler that moves both components with input actions at

the same time, then the composed automaton (by definition of I/O automata composition) must

move to the same state. Which means that the automata cannot distinguish between the ordering

of the two input sequences. Thus, the trace extensions of the two automata are going to be the

same, since they are going to be at the same state, which contradicts our assumption. Thus, A

has to be input reordering with respect to P .

As an application of Theorem 3.4.4 consider figures Fig. 3.11a and Fig. 3.11b. Let (1) automa-

ton A be the global monitor M in Fig. 3.11a, (2) automaton A1 be the communication channel

between M and N1, (3) automaton A2 be the communication channel between M and N2, and

(4) automaton A3 be the distributed monitor DM in Fig. 3.11b. The inputs of A are the inputs

of A1 and A2, and the outputs of A are the outputs of A3. Thus, if the external behavior of the

composition of A1, A2, and A3 is the same as the behavior of A, then A is input reordering. Or,

equivalently, if A is not input reordering, then there is no way for the composition of A1, A2, and

A3 to exhibit the same external behavior as A. In other words, if the global monitor in Fig. 3.11a

is not input reordering then there is no distributed monitor (as the one depicted in Fig. 3.11b,

i.e., with more than one intermediate communication channels) that can enforce the same policy.

Thus, input reordering is a first characterization of the global monitors that can be decomposed

over a distributed system. Moreover, since Definition 17 is behavioral, i.e., defined over traces,

143

input reordering is also a necessary condition for a policy to be enforceable over a distributed

system (by the discussion in Section 3.4.2.

144

3.4.6 Transformation of DistributedMonitors to Distributed SharedMem-

ory Monitors

In this section we show how to transform an I/O automaton A (e.g., Fig. 3.11b), which models

a global monitor M , to a behaviorally equivalent I/O automaton SM(A) in the shared memory

model (e.g., Fig. 3.13a). We show that under certain constraints our transformation preserves

the external behavior of A and thus SM(A) can substitute for A in a monitored system that uses

M as the monitor. As discussed in Section 3.4.4, one of the reasons we have broken down the

process of decentralizing global monitors over distributed system into three high-level transfor-

mation steps is to allow for modularity in the construction of decomposition algorithms. In this

section we will see the first instance of this benefit. Namely, we will present two different al-

gorithms that transform A to two (different) I/O automata in the shared memory model: the first

one corresponds to centralized enforcement scenarios, i.e., the enforcement decisions happen at a

single node in the distributed system; the second one corresponds to de-centralized enforcement

scenarios, where decisions are made at different nodes in the distributed system.

We begin with a short description of the asynchronous shared memory model that was orig-

inally introduced by Lynch [1] (Section 3.4.6.1). Then we describe one more fundamental lim-

itation of distributed enforcement, monotonicity (Section 3.4.6.2). Finally, we describe the two

algorithms that transform an I/O automaton that models a global monitor to an automaton in the

shared memory system (Section 3.4.6.4). The reader familiar with the shared memory model can

skip to Section 3.4.6.2, whereas the interested reader may refer to Lynch [1] for a more detailed

presentation of the shared memory model.

145

3.4.6.1 Asynchronous Shared Memory

In this section we discuss shared memory systems, as they were originally defined by Lynch [1].

The familiar reader can skip this section; the interested reader can refer to Lynch [1] for a more

detailed presentation.

An asynchronous shared memory system is modeled as an I/O automaton (we will use the

meta-variableA to refer to a shared memory automaton) with specific structure [1]. The automa-

ton consists of a (finite) set of n processes, where each process is a state machine (i.e., not an I/O

automaton). Processes can interact with each other through a (finite) set of shared variables, and

with the environment through a designated port, porti, 1 ≤ i ≤ n. The interactions of a shared

memory automaton are depicted in Fig. 3.16.

Each process i has a set of states, statesi, and a subset starti, of start states. Each shared

variable x in the system has an associated set of values, valuesx, with a subset intialx of initial

values. Each state of the system automaton consists of a pair (statesi, valuesx), for each process

i and shared variable x. Start states are defined similarly.

Each action of the automaton A is associated with a process i. The only input and output

actions of each process i (and A’s) are the ones that are associated with the process’s port (i.e.,

the actions that are used for communication between the environment and the process through

the corresponding port). The rest of the actions of each process i (and A’s) are internal actions.

Some of these internal actions may be used for interacting with a shared variable; the rest are

used for local computation.

Transitions that contain internal actions π of a process i that are associated with local com-

putation involve only the state of i, i.e., such transitions are triples of the form ((s, v), π, (s′, v)),

where s, s′ ∈ statesi, and v is any value that a shared variable x can have. Otherwise, if a transi-

tion contains an action π used to access shared variable x, then only the state of i and value of x

146

ports processes variables

1

2

n

x

y

1

2

n

...

Figure 3.16: An asynchronous shared memory system (Diagram adopted from Lynch [1])

users processes variables

U1

U2

Un

1

2

n

x

y
...

...

Figure 3.17: Users and shared memory system (Diagram adopted from Lynch [1])

are involved in the transition. Whether π is enabled depends only on the state of i and not on the

value of x.

147

Environment. Similarly to Section 3.4.1, sometimes it will be useful to model the environment

as an I/O automaton. In particular, we will assume that each process i of the automaton A inter-

acts through its port with a user automaton Ui, as depicted in Fig. 3.17. For instance, consider

attack #4 in Section 3.3: the attacker first scans the network to identify running web servers,

and once she has the results of the scan, she sends malicious HTTP traffic to the appropriate IP

addresses. This causal behavior of the attacker, i.e., that the exploitation phase precedes, and

depends on the results of, the scanning phase can be modeled as follows. The attacker is modeled

as an I/O automaton (e.g., U1 in Fig. 3.17) with output actions scan and exploit(IP), input actions

scan_result(IP), and a transition relation that blocks after executing the scan action, waits until the

input action scan_result(IP) is received, and finally proceeds by outputting the action exploit(IP)

(if a vulnerable IP is received). Because the users Ui and A are I/O automata, we can compute

their composition and reason about the behavior of the interaction. This will be useful, as we will

see next, to model assumptions about the causal behavior of the attackers, and reason about the

correctness of decomposition algorithms.

Shared Variable Types [1]. The definition of a shared memory system allows a process to

access variables in arbitrary ways. However, typically, in practice, variables can be accessed

only through a pre-specified interface of invocations and responses [1]. In order to restrict the

operations through which a shared variable can be accessed, the notion of a variable type is

introduced. A variable type consists of [1]:

1. a set V of values,

2. an initial value v0 ∈ V ,

3. a set of invocations,

4. a set of responses, and

148

5. a function f : invocations× V → responses× V .

When it is said that a shared variable x in a shared memory system A is of a given variable

type, it means that [1]:

1. valuesx = V ,

2. initialx = {v0}, and

3. all the transitions involving xmust be describable in terms of the invocations and responses

allowed by the type.

In this thesis, we will use three types of variable types for describing decomposition algo-

rithms: (1) read/write shared variables (with values V , invocations read and write(v), v ∈ V ,

and responses v ∈ V and ack); (2) read-modify-write shared variables (with a single read-modify-

write operation); and (3) shared variables where f is some arbitrary function. The first two vari-

able types will be useful to model the state of a centralized monitor as a shared variable (i.e.,

shared state). After the centralized monitor is decomposed to local monitors, each local moni-

tor will use the shared variable as a (shared) global state. The third type will be used to model

the centralized monitor itself as the shared variable (since the monitor is essentially a function

mapping inputs to outputs), and then by using algorithms that simulate shared memory systems

over networks, the monitored distributed systemwill be simulating the centralized monitor. Next,

we describe how read/write and read-modify-write shared variables are expressed using variable

types (as they were originally described by Lynch [1]).

It is instructive to see how an automaton’s transition can be though of as an access to a read-

modify-write variable (this will be one of the insights that will guide one of our decomposition

algorithms). A transition of an automaton is a tripple (s, π, s′), denoting that the automaton from

a state swill execute action π and move to the new state s′. If we think the states of the automaton

as a shared variable, then the transition of the automaton can be though of as reading the shared

149

q q′
π

q q′
h(q) = q′

Figure 3.18: State transitions as accesses to read-modify-write variables

variable/state (i.e., s), modifying the state to s′ using a function h (i.e., π), and writing the result

of h(s) = s′, to the shared variable/state (i.e., s′). Fig. 3.18 depicts this relationship.

Executions and traces of variable types [1]. Executions of a variable type are defined as

finite sequences v0, a1, b1, v1, a2, b2, v2, . . . , vr or infinite sequences v0, a1, b1, v1, a2, b2, v2, . . .,

where: (1) v’s are the values in V , (2) v0 is the initial vale of the variable type, (3) the a’s

are invocations, (4) the b’s are responses, and (5) the quadruples vk, ak+1, bk+1, vk+1 satisfy the

function of the type, i.e., (bk+1, vk+1) = f(ak+1, vk).

150

3.4.6.2 Monotonicity

In Section 3.4.5 we presented one of the fundamental limitations of distributed systems: a system

does not (explicitly) control the actions it receives from the environment.This limitation guided us

to identify one of the first constraints that global monitors must meet in order to be decomposable

over a distributed system: input reordering.

In this section we deal with another fundamental limitation of distributed systems, global

knowledge (see Section 3.2): even though a centralizedmonitor has immediate access to all global

information that it needs to make a decision, e.g., output an action, distributed monitors do not.

For example, consider an automaton A whose transition relation is depicted in Fig 3.19. The

automaton can output x if it receives exactly one a, but if it receives more than one a before

it is given a chance to take a local action, then A will output y. Essentially, the information

and knowledge about inputs received travels instantly in centralized systems and is immediately

available. This, however might not be the case in distributed systems. Assume for example,

that we need to decompose this automaton to two automata A1 and A2 with signatures {a} and

{x, y} respectively (i.e., A1 is responsible for input, and A2 is responsible for output). Such a

decomposition is shown in Fig 3.20. Note that whenever A1
14 receives an a it needs to forward

this information to A2 through a message msg(a).

The problem in this example is that the automata A1 and A2 in Fig. 3.20 transition indepen-

dently. To be more precise, there is an external scheduler, outside the control of A1 and A2,

that decides which automaton’s turn it is. So if A1 is scheduled first to execute an action then

if it receives an a it will transition to q1. From there, assume that the scheduler schedules A1

again. This means that A1 will output msg(a), essentially propagating the information that an a

14Notice, that A1 has redundant states, since all it does is send message msg(a) every time it receives an a from
the environment. However, we wanted to illustrate the relation between A1 and A2 as they move through states.

151

q0 q1 q2

q3 q4

a

a a

a

a

x

y

Circles: states
Dashed arrows: transitions with input actions
Solid arrows: transitions with output actions

Figure 3.19: Transition relation of a centralized automaton A that is not monotone

was received to A2
15. After A2 receives the message it will be in state q1. Note that the trace so

far, i.e. the sequence of external actions, is a. At this point, if A2 is scheduled it will output x,

by transitioning to q3, and the trace of the system will be ax. This trace is a valid trace of A in

Fig. 3.19. However, if, while A2 is in state q1, A1 is scheduled and A1 receives a second a then

it will move to state q2 and the observed trace will be aa. If A2 is scheduled again, since it is still

in state q1, it will output x and the observable trace will be aax. But this is not a valid trace of A;

it should have been, aay. This means that if A1 and A2 were decomposing a central IDS A then

they would either miss an attack or misclassify a correct behavior, as compared to A.

The problem is that since inputs are not broadcasted atomically, as we assumed in Sec-

tion 3.4.3, inconsistencies might arise like the one above. Note that this problem is fundamental

because we require that the set of traces of the centralized monitor is equal to the set of traces of

the decentralized monitors (Sections 2.4.1 and 3.4.1.3). More concretely, A2 cannot wait in q1

to see if more input will arrive because if no input arrives then A2 will not output anything (the

15We assume that the message is received instantly, even though a more appropriate modeling would include some
communication channel. However, even without communication channels the argument still holds.

152

q0 q1 q2

msg(a) msg(a)

a
a a

q0 q1 q3

q2 q4
msg(a)

msg(a) msg(a)

msg(a)

msg(a)

x

y

A1

A2

a

msg(a)

x

y

Ellipse: automaton’s interface
Circles: states
Dashed arrows outside ellipses: input actions received by the environment
Solid arrows outside ellipses: output actions sent to the environment
Dashed arrows between ellipses: actions for communication between automata
Dashed arrows inside ellipses: transitions with input actions
Solid arrows inside ellipses: transitions with output actions

Figure 3.20: Decomposed automata A1 and A2 that attempt to simulate automaton A depicted in
Fig. 3.19

153

same holds if A1 was waiting before sending a message – it does not know if the environment is

done sending inputs). In addition, A1 cannot send notifications saying that I do not have more

input because by the time this message is sent, more input might arrive. This is very similar to

the situation we faced in Section 3.3 and example #5: if the webserver receives an HTTP request

and the DNS server is unavailable (or responds extremely slowly) then either the webserver will

have to make a false positive (by either not responding until the DNS server is online again, or

choosing to fail-safe and treat the request as malicious – in both cases, a denial of service to a le-

gitimate user), or a false negative (by assuming that the request is valid). The three (fundamental)

problems here are: (1) information takes time to travel, (2) global knowledge is not immediately

accessible, and (3) the environment cannot be trusted.

This leads us to the definition of monotonicity. Monotonicity formally captures the situation

described above. It essentially says that whenever a local node is at a state that it can commit to an

output (based on input it has already received), e.g., x in our previous example, then this output is

still valid even if more inputs arrive in the future (i.e., it cannot be invalidated by future inputs).

This is very similar to the notion of monotone functions where, for example, if f is a monotone

function and f(a) = x then for all extensions t of a, x is a prefix of f(t), e.g., f(aa) = xx is

valid output but f(aa) = y is not.

In our case, however, we cannot use the previous definition of monotonicity directly. The

problem is that locally the automaton can be non-monotone, as we saw in Fig. 3.19. Local in-

formation is always instantly accesible. Thus, our definition of monotonicity should capture this

scenario, by allowing non-monotone transitions that are local but prohibiting non-monotone tran-

sitions for remote input16. More formally, given an automaton A and a partition S of the actions

16The situation is a little bit more complicated. Specifically, the global monitor in Fig. 3.11a receives actions
from the environment instantly and it receives actions from the nodes of the distributed system through channels.
Whenever we push the monitor inside the distributed system (Section 3.4.5), the situation is reversed: the monitor
can receive actions from the nodes of the system instantly but it receives actions from the environment through the
channels. This means that although a global monitor can be non-monotone w.r.t. the environment, the decentralized

154

of A we say that A is monotone with respect to S if and only if for all partitions Si in S, if we are

given any trace t of A then there does not exist a trace u of A such that:

1. u|(S − Si) = (t|(S − Si)); ((Input(S − Si))
∗), where the set (S − Si) denotes the actions

of the system excluding the actions of node i; the equality says that (with respect to remote

actions of node i) u is equal to t extended by remote inputs,

2. t|Input(Si) = u|Input(Si), i.e., t and u have the same inputs from Si, and

3. t|Output(Si) ⪯̸ u|Output(Si), i.e., the outputs of u that belong to Si are not a prefix of the

outputs of t that belong to Si.

In constraint (1) we do not require that u is an extension with respect to outputs of t as well

because nodes have control over their outputs and thus they could synchronize appropriately. For

example, if one node has actions {a, k, l}, where a is input and k, l are outputs, and another node

has only output actions {x, y, z, w}, then the traces akx and aaly, can be decomposed, because

the non-monotone behavior is local to the first node (i.e., on a output k, on aa output l instead),

which can then notify appropriately the other node. That is, on k, send a message msg(k) which

will result to x, and on l, send a message msg(l) which will result to y. However, if we had two

additional required traces, aalaz, and aalaaw, then the problem we discussed previously arises.

The following theorem formally characterized the above informal discussion.

Theorem 3.4.5. Given an automaton A with non-empty sets of input and output action and a

partition of its actionsP = P1∪. . .∪Pn such that at least two of the partitions are non-empty, then

monitor cannot. To be more specific, using the example of Fig. 3.19, when the monitor receives inputs from the
environment it can exhibit the correct behavior ax, and aay. But when the monitor receives the inputs from com-
munication channels then it might output x upon receiving a, but it could be that the second a is in transit; i.e., the
observed input is aa, and the observed output will be x – and this violates the specification. However, this is more
of a technical issue. For instance, we can solve this problem by assuming that some components of the decentralized
monitor are placed directly between the environment and the communication channels. Another option is to assume
that the monitor never communicates instantly with nodes; there is always some channel between them. This means
that we assume that monitors are globally monotone, i.e., no component is non-monotone. Although next we give the
general definition of monotonicity, for the rest of this chapter we will assume that all monitors are globally monotone
in order to present the rest of the results in a simpler way.

155

if there exist automata A1, . . . , An whose signatures match the partitions and traces(ΠiAi) =

traces(A) then A is monotone with respect to P .

Proof. The proof is by contradiction. Assume thatA is notmonotone and such automataA1, . . . , An

exist. Without loss of generality assume that we have two partitions: the first contains input ac-

tions, and the second contains output actions.

Take any state q of A, where (1) an input and an output transition lead to different states (e.g.,

producing actions a and x respectively), (2) the input belongs to an Ai and output belongs to an

Aj , i ̸= j, and (3) from the state that the input transition leads, another output of Aj is enabled,

say y. Such a state exists because we assumed that A is not monotone.

Since the sets of traces are equal, there exist two simulation relations (i.e., a bisimulation)

that relate states of ΠiAi with A and state of A with ΠiAi. Now let Aj be at the state that the

local output action is enabled (i.e., the corresponding global state of A is q). From that state,

either Aj must block waiting for more input from Ai, in which case A can produce a trace that

includes x, but ΠiAi will not. On the other hand, if Aj takes the transition to output x we can

always construct an environment and a scheduler that will schedule Ai and send one more input

a, before Aj has a chance to output. Thus, ΠiAi will produce a trace that A will not. We can see

that in both cases the equality of sets of traces does not hold and thus A has to be monotone.

Notice that if the set of inputs of A is empty, then the automaton is trivially monotone. This

justifies the simplicity of the closed action-deterministic automata decomposition algorithm we

discussed in Section 3.4.3.1.

From a security perspective, the theorem says that a centrally specified security policy can

be enforced in a distributed system only if it is monotone. If the policy is not monotone then we

need to either output less traces or more traces than the centrally specified policy. If we output

less traces then we will either miss some attacks (by not outputting alerts) or result in a denial of

156

service situation (if the user does not receive a valid response). On the other hand, if we allow

more traces then either we will allow some attacks to happen or we will admit that some of the

responses we send to the users might not be correct.

Monotonicity formally characterizes the design choices of solutions that have been introduced

in previous work of distributed intrusion detection [91, 92]. More specifically, in previous work

distributed attacks are specified as transition graphs [91, 92]. The nodes of the graph are distin-

guished into two types: positive and negative. Positive nodes represent events that are necessary

for the attack to take place. On the other hand, negative nodes represent those events which can-

cel out positive events. Specifically, while events are received by each monitoring component

the component goes through the transition graph. If the component reaches a positive node then it

raises an alarm. However, if additional events arrive, after the component has reached a positive

node, it is possible for the transition system to move from a positive node to a negative node.

When reaching to a negative node the component marks the previous alarm as a false alarm. As

the authors describe, enforcement components might reach a state where they cannot be sure if

an attack has happened or not (e.g., because not all security relevant actions have been received).

In this case, if the corresponding component does not take action there is a risk of more damage

to the system. Thus, the solution the authors recommend is to take action as if the attack is real

and if later it is realized that the observed events did not constitute an attack then a notification

is generated indicating that the previous alarm was a false alarm. Note that this policy (i.e., en-

forcement) specification is monotone: on input a output x, but if later another input a arrives,

output another action y, with the semantics that y cancels out (the already output) x.

157

3.4.6.3 Input Reordering and Causality Assumptions

In Section 3.4.5.1 we discussed a fundamental constraint that we need to consider when decen-

tralizing a global monitor: input reordering. The idea behind the constraint is that if we receive

input on n different nodes then we cannot (always) know how to order the (local) sequences that

happen on each node (even though we can trivially order events arriving at a single node).

The goal of this section is to transform a monitor from the I/O automaton model to the shared

memory system model (as the one depicted in Fig. 3.17). More concretely, if we ignore com-

munication channels (since we assumed that we cannot monitor them), our goal is to transform

a distributed monitor (as depicted in Fig. 3.21a) to a distributed shared memory monitor (as de-

picted in Fig. 3.21b). Note that: (1) the monitor in Fig. 3.21a is the same monitor as the monitor

depicted in Fig. 3.11b but without the communication channels, and (2) in Fig. 3.21b we have

moved N1 and N2 to the left so that the monitored system resembles the generic shared memory

system depicted in Fig. 3.17.

Note thatDM (Fig. 3.21a) must be input reordering because even thoughDM can totally order

the events it receives, the components in the distributed shared memory monitor (Fig. 3.21b)

might not be able to. However, in our case we can relax the constraints of input reordering

because of our causality assumption (see Section 3.3.1). More concretely, we can use causality

to order events exchanged between some part of the environment and a node. For instance, in

Fig. 3.21b due to the causality assumption we can order events exchanged between (a) the top

environment and N1, and (b) the bottom environment and N2. Thus, instead of instantiating

the definition of input reordering using the signatures of each component that the shared memory

monitor interacts with, i.e., top environment, bottom environment,N1, andN2, we can instantiate

it with only two signatures: (a) the signature of the composition of the top environment and N1,

and (b) the signature of the composition of the bottom environment and N2. This means that

158

Environment

Environment

DM

N1

N2

(a) Monitor DM

Environment

Environment

SM

M1

M2

M3

M4

N1

N2

SM(A)

(b) Monitor DM transformed to
distributed shared memory monitor
SM

Figure 3.21: Transformation of monitor DM to distributed shared memory monitor SM

input reordering does not apply on each of the components interacting with the distributed shared

memory monitor but rather it applies among the pairs of nodes and environments. For instance,

in example #5 even if the monitor receives the DNS request after the DNS response it can order

the events because of the causality assumption. As we will discuss in Section 3.5, without the

causality assumption a monitor might not be able to enforce the described policy, e.g., because it

might not be able to order the events between nodes and the environment accurately. Of course, in

practice, there are often implicit causality assumptionswhich can help to order events; for instance

an HTTP response is always preceded by a request. However, these causality assumptions are

essentially protocol specifications which, as we discussed in Section 3.3.2, might not always be

available or correctly implemented. So care needs to be taken about the causality assumptions

made and the way they are used in the decentralizing of the monitors.

Another point that needs to be emphasized is the choice of the component that we choose to

decentralize. In our framework, there are two choices: (a) decentralize the monitor, e.g.,DM in

Fig. 3.21a; and (b) decentralize the monitored target, e.g., the circled component in Fig. 3.11b. In

159

the first case, as we discussed preciously, we can assume a weaker version of input reordering. In

the second case, however, the input reordering of the environment components suffices. This is

because when we consider the monitored target as a unit (i.e., as a composed automaton) we know

by the definition of composition (Section 2.2) that there are no inputs between the communicating

components; i.e., the inputs of the monitor from the target are now outputs and thus under our

control. As we will discuss in the next section, in order for our decentralized algorithms to work

we need to control the order that local actions happen which is achieved by implementing a step-

wise simulation of each local component. But, since we assumed that we are decentralizing the

monitored target which includes the nodes of the underlying system we need to directly control

the actions of the nodes of the systems. This will be possible only if we adopt a solution that

attaches the monitor to the nodes using, for instance, inlining or re-writing [29, 103, 104]. Since

in this thesis we are not considering these types of monitoring we will continue by assuming that

we are decomposing the monitor, and not the monitored target, and we will adopt the weak input

reordering assumption for the rest of the chapter.

160

3.4.6.4 Algorithms for TransformingDistributedMonitors toDistributed SharedMemory

Monitors

In this section we present two algorithms that transform input reordering and monotone dis-

tributed monitors from the I/O automaton model to the shared memory model, i.e., to an I/O

automaton where n processes access shared variables and interact with n users. The users of

the shared memory system will be the environment and the (renamed) nodes of the distributed

systems that will be trying to execute security relevant actions; the processes of the shared mem-

ory system will be the monitoring components that are intercepting these actions and (together

with the shared variables) simulate the behavior of the distributed monitor. The first algorithm

encodes the transition relation of the distributed monitor to the shared variable, essentially trans-

forming the distributed monitor to a centralized monitoring architecture. The second algorithm

encodes to the shared variable the global state of the monitor while each of the process simulates

some part of the transition relation of the distributed monitor. The output of this second algorithm

corresponds to a decentralized monitoring architecture.

Monitor as shared variable. In the first algorithm, which we will denote by SMC(A), the

shared variable SM is essentially a state machine that performs the same computation as A. Be-

cause A is an I/O automaton, it has input and local actions. In order to express A as a shared

variable type, i.e., a state machine, each transition of A must be encoded as a pair of invoca-

tions and responses. Thus, SM will be simulating A in a step-wise manner. An input action i, is

encoded as an invocation apply(i), with corresponding responses ack and ⊥. The response ack

denotes that the input has been processed by the shared variable, whereas the response⊥ denotes

that the monitor is unable to accept the input and the process should try again (we will explain

next why this is needed). Every local action o is encoded as an invocation output(?), with corre-

sponding responses resp(o), which denotes the output action that monitor wants to output, and⊥

161

which means that the process should query the monitor again next. Finally, SM has as part of its

state an extra variable lock, which is being used to indicate that the monitor has sent to a process

an action to be output and its waiting for the acknowledgement from that process. Whenever SM

receives an output(?) and responds with a resp(o) it sets the lock. For any invocation apply(i) or

output(?) it receives from a process while the lock is set it responds with ⊥. When it receives an

invocation output(!), meaning that the output was sent by the process, then the lock is released

and the step-simulation of A is continued.

Each process Pi (of the shared memory model) acts as an interface between the environment

and the shared variable. For each component of the environment Ui, there is a Pi that has the

corresponding actions of A, i.e.,
∪

i ExtSig(Pi) = ExtSig(A). In addition, each Pi has internal

actions to communicate with the shared variable and input and output buffers as part of its state.

Each Pi receives input from the environment and places it in its input buffer. Note that the users

that interact with each Pi can be either an attacker or some node of the distributed system. In

addition, note that there might be cases where certain nodes of the distributed system do not pro-

duce outputs, unless they receive some input first. For example, the webserver in example #5

never issues a request; it just waits for information that the DNS server and other monitoring

components might send and it responds to these inputs. However, in order for our transformation

algorithms to work correctly we need the users of the shared memory system (including the dis-

tributed system’s nodes) to initiate communication. Thus, we modify each node of the network

that must receive input before producing output to issue a dummy request indicating that it is

ready to receive input. Then, after a user sends its inputs to the shared memory system, it is Pi’s

turn to execute local actions (while the user waits for results). This is because of our assumption

that the attacker, i.e., the user, and the monitored system are causal (Section 3.3).

Each Pi tries to apply the input action in its input buffer to the shared variable; if the shared

variable responds with ⊥ then the Pi goes into a loop and keeps trying. Otherwise, it goes into a

162

state from which, in a busy-wait fashion, it asks the shared variable for an output action. When

the shared variable responds with an output action Pi places it in the output buffer. In the mean-

time the shared variable is locked, i.e., not accepting any more requests from other Pis, and waits

for the acknowledgement that the output has been produced. This acts a synchronization mecha-

nism so that the outputs of the system can be ordered (see Section 3.4.5.1). Then, Pi removes the

output action from the buffer and sends it to the environment. Finally, Pi sends an output(!) invo-

cation to the shared variable so that the variable can continue with its simulation. This algorithm

contains a lot of busy-waiting in order to synchronize but this is because of the nature of shared

memory systems where invocation and responses happen in a single step. As we will discuss in

Section 3.4.7.3, when the shared memory system is transformed to decentralized monitors over

a network the monitors we can use a publish-subscribe approach to avoid this busy waiting and

reduce communication.

Next we describe in a more detail the construction and structure of each process Pi:

1. States: Pi maintains two buffers: one for the received inputs, inp_buffer, and one for the

pending outputs, out_buffer. In addition, it has a variable state which can take the values i,

q, or o. The value of the variable indicates if Pi is waiting for input from the environment,

querying the shared variable for output, or ready to output the shared variable’s suggestion.

Initially, state is set to i and the buffers are empty.

2. Actions:

• For each input action i of A that is an output of Ui, Pi has an input action i that as an

effect places i in inp_buffer.

• For each input action i, Pi has a local action apply(i). The precondition of apply(i) is

that i is in the head of inv_buffer. If the response from the shared variable is ⊥ then

Pi stays in the same state. Otherwise, the effect is that input action i is applied on

163

shared variable SM and then removed from inv_buffer. Finally, state is set to q.

• A local action output(?), which asks SM what output action to perform next. The

precondition of output(?) is that the state flag is q, q. If the response from the shared

variable is⊥, then Pi stays in the same state. Otherwise, the effect is appending to the

resp_buffer the response of SM which is the output action o that should be performed

next. Also, state becomes o.

• For each output action o ofA that is an input action of Ui, SM(A) has a corresponding

action o. The precondition of each o is that state is o and that resp_buffer is non-empty.

The effect of the action removes o from resp_buffer.

• A local action output(!). The precondition of the action is that state is o and that

resp_buffer is empty. The effect of the action changes state to i.

In order for our substitution to work, we need to show that the composition of all users with the

distributed monitorA, i.e.,
∪

i Ui×A, has the same behavior as the composition of the users with

the transformed automaton, i.e.,
∪

i Ui × SMC(A). This can be proven by simulation relations.

The simulation relation from
∪

i Ui×A to
∪

i Ui×SMC(A) in order to prove that traces(
∪

i Ui×

A) ⊆ traces(
∪

i Ui × SMC(A)) is easy to see: each state of
∪

i Ui × A is related to the states of∪
i Ui × SMC(A) that have exactly the same components.

In the other direction, without loss of generality, let us assume that we have two users, U1 and

U2. Then the states of
∪

i Ui × A are of the form q = ⟨u1,m, u2⟩, where u1 is a state of U1, m

is a state of A, and u2 is a state of U2. Similarly, the states of
∪

i Ui × SMC(A) are of the form

q = ⟨u1, (p1, v), (p2, v), u2⟩ where p1 is the state of P1, p2 is the state of P2, and v is the value

of the shared variable. The idea is that v, the value of the shared variable, will be related with

m, i.e., the state that A would be in. In particular, the simulation relation betweenm-values and

v-values must respect monotonicity and input reordering. For, instance, if the shared memory

164

system moves from state q = ⟨u1, (p1, v), (p2, v), u2⟩ to state q′ = ⟨u1, (p1, v
′), (p2, v

′), u2⟩, then

by definition, either v′ = v, or v′ will be related to the same set of states that v was related too

such that input reordering and monotonicity are preserved. First, it is clear that both automata

start in equivalent states. Next, it is easy to see that for every step that
∪

i Ui × A takes, there

is an equivalent step in
∪

i Ui × SMC(A). The only interesting case is when
∪

i Ui × SMC(A)

performs internal actions that access the shared variable and change the value of v to some value

v′. By construction, that internal action can either be an apply(i) or output(?). In the former

case, the input reordering property is applied to derived the trace equivalence, whereas in the

latter case the monotonicity property is applied. The fact that the order of outputs is preserved is

guaranteed by construction, by the locking mechanism. This is because, whenever one process

is assigned to output something, all other processes requesting for outputs are blocked, until the

shared variable receives an acknowledgement from that process. This completes the argument

that the two composed automata have equal trace behaviors.

Monitor as process. In this second algorithm, which we will denote by SMD(A), the logic of

the enforcement is distributed among the processes Pi’s. As before, the signatures of each Pi

correspond to the signature of each Ui that accesses the monitor. The shared variable SM is a

Read-Modify-Write variable and maintains the state that the system is in, together with a state

lock. The shared variable will be the synchronization primitive between processes. We, again,

make the assumption that the nodes of the system that wait for some input before producing output

are modified to issue a dummy request indicating that they are ready to receive input.

The idea of this algorithm is very similar to the previous algorithm. The main difference is

that instead of having the shared variable simulate the monitorA the simulation is done locally by

each Pi in a decentralized manner: each Pi simulates the actions that correspond to its signature.

Specifically, each Pi maintains as state an input buffer inp_buffer, an output buffer out_buffer,

165

and a variable statewhich can take the values i, q, or o, initially set to i. After an input in received

by a Pi it is enqueued at the inp_buffer and the state becomes q. Whenever the automaton gets

a chance to perform a local action it tries to get access to the shared variable SM. If it cannot it

keeps trying; otherwise it reads the state lock; if it is set if releases the variable SM and tries again.

If lock is not set, then it (1) reads the state q that SM is in, (2) applies (locally) the transition that

corresponds to the head of the inp_buffer, e.g., (q, i, q′), (3) moves to the new state, e.g., q′, (4)

removes i from the head of the input buffer inp_buffer, (5) writes to SM the new state, e.g., q′,

and (6) changes its variable state to o. Note that because SM is a Read-Modify-Write variable,

this is a valid step: steps (2) - (4) are the modify part of the access. If, on the other hand, p is

in a state that it can perform an output action, it performs the following steps: it first tries to get

access to the shared variable SM. If it cannot, it keeps trying; otherwise it reads the state lock; if

it is set if releases the SM and tries again. If lock is not set then it performs the following steps:

(1) it reads the value of SM, i.e., the current global state q, (2) it goes locally to the read state q

and checks if there is an enabled output action. If there is none, it releases the lock – this means

that it is not its turn to output. If an output action is enabled then it places o to the output buffer,

sets the lock and releases SM; (3) it outputs the action o and tries to get access to SM again; when

it does, it (4) writes the end state q′ to the SM, releases the lock, changes its local state to i, and

releases SM.

To show that the composition of all users with the distributed monitor A, i.e.,
∪

i Ui ×A, has

the same behavior as the composition of the users with the transformed automaton, i.e.,
∪

i Ui ×

SMD(A), we can use a similar argument and simulation relations to the ones used in proving the

behavior equivalence for
∪

i Ui × SMC(A).

Discussion. One drawback of the second algorithm (i.e., the one that pushes the logic of the

monitor to the processes) is that it needs to use more shared variables due to the need for more

166

concurrency control and thus more messages need to be exchanged. On the other hand, one

advantage of the second algorithm is that the shared variables can consume less space and thus this

approach might be preferable when space is an issue or when the state can be dynamically moved

around the system so that communication is minimized. For example, if part of the network

becomes inactive then the shared variable can be moved closer to the active part of the network

thus improving performance and reducing communication costs.

167

3.4.7 Transformation ofDistributed SharedMemoryMonitors toDistributed

Message-Passing Monitors

In this section we discuss how a monitor expressed in the shared memory model can be trans-

formed to a monitor in the asynchronous network model. The presentation of the material is brief

and, in a way, incomplete; the goal of this section is to give a high-level overview of the main

ideas in the transformation from a shared memory model to an asynchronous network model,

while discussing any details that are necessary in order to have complete correctness proofs, e.g.,

how the assumptions of Thm. 3.4.6 are satisfied in our framework (i.e., definitions and assump-

tions of Section 3.3 and Section 3.4). The familiar reader can skip this section; the interested

reader can refer to Lynch [1] for a more detailed presentation.

In Section 3.4.7.1 we discuss atomic objects and an algorithm that substitutes shared variables

in shared memory systems with atomic objects. The definition of atomic objects that we discuss

in this section and the related substitution algorithm were originally introduced by Lynch [1]. We

include them here because they are important to understand how shared memory systems can be

simulated over asynchronous networks; in fact, many proofs of algorithms that simulate shared

memory systems or shared variables over asynchronous send/receive networks (as the ones pre-

sented in Section 3.4.7.3) are reduced to proofs that use atomic objects. Then, in Section 3.4.7.2

we discuss how the assumptions made by the substitution algorithm of Section 3.4.7.1 are met

in our framework (i.e., definitions and assumptions of Section 3.3 and Section 3.4). This is im-

portant in order to have complete correctness proofs of the decomposition process from a global

monitor to distributed message-passing monitors (Section 3.4.4). Finally, in Section 3.4.7.3 we

discuss a basic algorithm (originally introduced by Lynch [1]) that simulates a shared memory

system over an asynchronous network by placing the shared variable on a single node. We also

discuss a few variations that place the shared variable on multiple nodes thus achieving better

168

fault-tolerance (these variations were also introduced by Lynch [1]). Although these algorithms

(the basic one and its variations) are not part of the contributions of this thesis, they are included

here because, as discussed in Section 3.4.4, they are necessary to transform a distributed shared

memory monitor, as the one in Fig, 3.13a, to a decentralized monitor in the message passing

model, as shown in Fig. 3.13b.

3.4.7.1 Atomic Objects

In this section we discuss atomic objects, as they were originally defined by Lynch [1]. The

material in this section is not new, and the familiar reader can skip this section; we include a

discussion of atomic objects here because they are important to understand how shared memory

systems can be simulated over asynchronous networks.

An atomic object (or linearizable object) is similar to a shared variable [1]. The main differ-

ence is that a process accesses a shared variable through an invocation and response atomically;

however, accesses to an atomic object by a process (i.e., pairs of invocations and responses) can

be interleaved with accesses from other processes. The main property of atomic objects is that,

even though accesses from different processes can be interleaved, the processes are not aware

of the interleaving: they think that they are accessing shared variables (atomically). This is

very useful in asynchronous distributed systems, because by using atomic objects, and related

algorithms, users of the distributed system obtain a view of the system that looks like a single,

centralized object. As we have discussed before, in this thesis we use the results and algorithms

of atomic objects for decentralizing global security policies. We also look at the assumptions

under which these algorithms are correct, and how they affect the enforceability of centralized

security polices—i.e., when atomic objects are not implementable by distributed algorithms.

169

Atomic object definition. Given a variable type T (Section 3.4.6.1), an atomic object A of

type T is an I/O automaton that meets the following requirements [1]:

1. External Interface: A is accessed by n user automataUi through n ports (one port for each

user automaton). For each port i,A has some input actions ai (corresponding to invocations

a of T), and some output actions bi (corresponding to responses b of T).

2. Well-formedness: For every execution of A×U , where U = ΠUi, the sequences of invo-

cations and responses between every Ui andA are alternating, and start with an invocation.

3. Atomicity: If α is a well-formed execution of A × U , then for every pair of matching

invocation and responses in α we can place a serialization point ∗π somewhere between

them, such that if we move the pairs adjacently to their corresponding serialization points,

the resulting sequence still consists of valid invocations and responses of the variable type

T 17.

4. Failure-free termination: Every invocation in A× U has a response.

Relationship between atomic objects and shared variables. An important relationship be-

tween atomic objects and shared variables is that there exist algorithms that substitute shared

variables with atomic objects, without the users noticing any difference in the behavior of the un-

derlying system [1]. Next we describe such a substitution, that was first introduced by Lynch [1].

Assume that we are given an automaton A defined in the shared memory model that interacts

with n user automata Ui. Also assume that there are functions turni (one for each port i) that

take as input a finite execution α of A × U and output either system or user, indicating whether

the action that should extend α should originate from A or U . Finally, assume that we are given

17Note that our definition of atomicity is simpler than the one introduced by Lynch [1], as it mentions onlymatching
invocations and responses (whereas Lynch’s original definition mentions incomplete operations as well). This is
because in this thesis we do not consider failures or faults and thus there is no reason to consider cases of incomplete
operations.

170

atomic objects Bx, one for each shared variable x of A: each Bx has the same type with the

shared variable x that it corresponds to. Now the construction is described. First, automata Pi

are defined, one automaton for each process i. Each Pi has as inputs the inputs of A on port i and

the responses of each Bx on port i, and as outputs the outputs of A on port i and the invocations

for each Bx on port i. Pi’s transition relation simulates the transitions of each process i with the

difference that for each access to a shared variable x, Pi: (a) stops the simulation of process i,

(b) issues an invocation to Bx, (c) waits to receive a response from Bx, and (d) continues the

simulation of the process after it has received the response. Finally, the automaton Trans(A) is

constructed by composing together the automata Pi and the automata Bx.

The following theorem (introduced by Lynch [1]) formalizes the fact that the users cannot dis-

tinguish between a shared memory system that uses shared variables and the transformed system

(as described above) that uses atomic objects.

Theorem 3.4.6. [1]. Suppose that α is any execution of the system Trans(A)×U . Then there is

an execution α′ of A× U such that α and α′ are indistinguishable to U , i.e., α|U = α′|U .

ImplementingRead-Modify-Write atomic objects in terms ofRead/write variables [1]. The

second algorithm in Section 3.4.6.4 used a Read-Modify-Write shared variable, as opposed to a

regular Read/Write variable. Thus, a result that will be important in the transformation algorithms

from shared memory models to asynchronous networks in Section 3.4.7.3, is the implementation

of a Read-Modify-Write atomic object in the shared memory model with Read/Write shared vari-

ables (or objects). An algorithm that achieves such an implementation is introduced by Lynch [1]

and relies on using several read/write shared variables and lockout-free mutual exclusion algo-

rithms (e.g., PetersonNP [1]). The main idea is to use the mutual exclusion algorithm in order to

allow processes to access a variable atomically through many distinct steps (using a lock), thus

simulating a single read-modify-write access.

171

3.4.7.2 Substitution of Shared Variables by Atomic Objects in Distributed Shared Mem-

ory Monitors

Theorem 3.4.6 is important in proving that algorithms from the shared memory model can be

transformed to algorithms in the asynchronous network model. Essentially, this theorem con-

nects the two last steps of our blueprint (Section 3.4.4). In order to apply this theorem in our

context we have to verify that our transformation algorithms in Section 3.4.6.4 meet the technical

assumption of the existence of a turni function. It is easy to see that the assumption is met by

the assumptions made in the algorithms, and specifically the causality assumption of Section 3.3.

There is only one instance where the turni function does not operate as expected: after a process

of the shared memory system has produced an output, it needs to release the lock that it has on the

shared variable. Thus, at this point the system is enabled (releasing the lock), and so is the envi-

ronment (since the user received its response and can proceed with the next request). However,

this does not affect the correctness of the theorem (with respect to traces): keeping the proof of

the theorem as is, we can rearrange the events of the execution α such that the release of the lock

happens before the sending of the input from the user, which would be the behavior of a valid

turni function. The reason that this re-arrangement is valid, and does not change the behavior of

the system, is that the received input is buffered locally; thus it does not have any effect globally;

when the process is scheduled again, it first releases the lock and then tries to apply the input to

the shared variable. Thus the behavior is the same as if the user was waiting for the release of the

lock before sending input.

172

3.4.7.3 Transformation from the Shared Memory Model to the Network Model

In this section we discuss how to transform an automaton A expressed in the shared memory

model to a set of automata that can be placed on the nodes of a given distributed system in a way

that they have the same external behavior with A. The transformations discussed in this section

were introduced by Lynch [1] and are not part of the contributions of this thesis. We include them

here because they are necessary to transform a distributed shared memory monitor, as the one in

Fig, 3.13a, to a decentralized monitor in the message passing model, as shown in Fig. 3.13b.

Let us assume that A interacts with n users through n ports. Remember that the algorithms

presented in Section 3.4.6.4 that transformed global monitors to the shared memory model, by

construction, made sure that the n users are essentially the nodes that the monitors need to be

attached to, and the processes of A are the monitoring components. In addition, it is assumed

that there exists a function turni, as was explained in Section 3.4.7.1. As we discussed in Sec-

tion 3.4.7.2, our causality assumptions from Section 3.3.1 are in accordance with this assumption.

The goal is to construct an asynchronous message-passing system B, with n nodes ni, that

behaves similarly to A. More specifically, for any trace t of B × U , where U = ΠUi, there

should be a trace t′ of A× U , such that t = t′18. The final monitored system will be the compo-

sition of each user Ui, i.e., the node of the underlying distributed system, with node ni, i.e., the

corresponding monitoring component19.

SimpleShVarSim algorithm [1]. The idea of the algorithm is to place the shared variables of

A at some node ni of B. Each node ni will simulate the corresponding process Pi of A, but

each time Pi tries to access a shared variable x, ni: (a) sends an appropriate message to the node

18Note that our presentation is simpler from [1] because we do not deal with failures in this thesis, and because
we are using traces. However, the results still hold.

19In addition, as discussed in Section 2.3.1, some renaming and hiding might be necessary to achieve the final
monitored system.

173

that owns the variable (including a local message if x is hosted on ni itself), (b) blocks until it

receives a response, and (c) continues the simulation after the response is received. When a node

ni receives a message (including a local one) to access a variable x it hosts, it applies the request

to x and sends the response with a message to the originator of the request20. The correctness of

this transformation relies on atomic objects and Thm. 3.4.6 (which is the reason that we included

Section 3.4.7.1 in this Chapter).

In the SimpleShVarSim algorithm each variable is placed on a single node without any re-

quirements on the location of the variables. Depending on the underlying distributed system and

policy that needs to be enforced, the location of the variables might affect the efficiency of en-

forcement [1]. Thus, in practice, the location of the variables might have to be chosen carefully.

A framework that can help with such decisions is presented in Chapter 4.

In Section 3.4.6.4 we mentioned that our algorithms include a lot of busy-waiting because

the monitoring components had to repeatedly access the shared variable in order to (1) guarantee

synchronization and (2) simulate the behavior of a centralized I/O automaton. The SimpleShVar-

Sim algorithm can be modified in order to improve communication complexity, by implementing

a publish-subscribe paradigm, where the nodes that try to access the variable subscribe for noti-

fications from the node that hosts the variable, and the node that hosts the variable publishes any

changes to the value of the variable [1].

The advantage of SimpleShVarSim algorithm is its simplicity. However, sometimes it might be

necessary to allow more than one nodes to host a single shared variable, e.g., for fault-tolerance

reasons. In this case, an algorithm that will ensure atomicity of concurrent accesses is needed

(similarly to Section 3.4.7.2), in order to ensure that all nodes maintain consistent copies of the

variables [1]. For example, the replicated state machine algorithm places a copy of the shared

20A more detailed description of the algorithm, together with pseudocode for each process, and the proof of
correctness can be found in [1].

174

variable on every node, and ensures that all copies are in consistent state through the use of logical

time [1, 99, 124, 125]. By using logical time, nodes can agree on the order of events and thus

all requests made to a shared variable are applied in the same order by each node. This way,

all nodes maintain consistent copies of the shared variable and the distributed system gives the

illusion to the users that there is a single copy of the shared variable.

175

3.5 Synchronous Enforceability

In Section 3.4 we identified certain characteristics of the security policies that are enforceable in

asynchronous distributed systems, i.e., input reordering (see Section 3.4.5.1) and monotonicity

(see Section 3.4.6.2), by characterizing which global monitors (i.e., centrally specified policies)

can be decomposed over asynchronous distributed systems. This characterization was construc-

tive in the sense that we presented a blueprint for constructing algorithms that decompose global

monitors over distributed systems. Specifically, we gave two example algorithms: the first one

corresponded to centralized enforcement, where all enforcement decisions are made at a single

monitor in the monitored distributed system, and the second one corresponded to decentralized

enforcement, where decisions are made locally by each monitor. As discussed in Section 3.4.6.4

and Section 3.4.7.3 in order for the distributed monitors to correctly simulate the global monitor

the decomposition algorithms must provide the distributed monitors with the ability to control

concurrency. It is well known that concurrency control algorithms, such as locking or logical

clocks, can be very expensive in terms of messages exchanged and communication [1, 126]. The

same is true for fault-tolerant algorithms which make use of redundancy in order to recover from

faults, e.g., by maintaining multiple copies of shared variables (Section 3.4.7.3). Remember that

fault tolerance was one of the key motivations for decentralized and hierarchical enforcement (as

we discussed in Section 3.1 and Section 1).

Previous work in decentralized security policy enforcement has introduced decomposition

algorithms that are simpler than the ones presented in this thesis [91, 92, 93, 94, 95]. Thus, one

could think that our goal to characterize the security policies enforceable in distributed systems

led us to introduce algorithms that are (unnecessarily) complicated. However, this is not the

case. The reason that previous work has introduced simpler algorithms than ours is because they

assumed that the underlying distributed system is synchronized (e.g., they relied on the Network

176

Time Protocol [127] (NTP) to synchronize the nodes of the system). Given that most algorithms

in decentralizing security policies are assuming that the underlying network is synchronous, in

this section we discuss how our results of Section 3.4 are affected by assuming a synchronous

underlying communication network. First, in Section 3.5.1 we give a brief description of the

formal model of synchronous networks since it is quite different from the model of asynchronous

networks (the interested reader may refer to Lynch [1] for a more detailed presentation). Next, in

Section 3.5.2 we discuss how the characteristics of synchronous networks affect our main results

of Section 3.4.

3.5.1 Background (Synchronous Networks)

In this section we briefly present the model for synchronous network systems (which is different

than the asynchronous network model) as it was originally introduced by Lynch [1]. A more

detailed presentation can be found in [1].

Synchronous Network Systems. A synchronous network system is defined as a collection of

n processes located at the n nodes of a directed network graphG = (V,E), i.e., n = |V | [1]. For

each node i, out-nbrsi denotes the set of nodes in the digraph G that are connected to i through

edges that have i as source, and in-nbrsi denotes the set of nodes that are connected to i through

edges that have i as the destination. The length of the shortest directed path from i to j in G is

denoted as distance(i, j), and the diameter of the network is denoted as diam. A fixed message

alphabetM is assumed, with null indicating that no message is sent.

A process is associated with each node i ∈ V , which consists of:

• a (possibly infinite) set of states statesi,

• a nonempty subset of statesi, start states starti,

177

• a message-generation function msgsi, from statesi × out− nbrsi toM ∪ {null}, and

• a state-transition function transi, from statesi and vectors of elements of M ∪ {null} to

statesi.

Each edge (i, j) in G has a corresponding channel that can carry at most one message at a

time.

The system executes by performing the following steps: (1) each process computes the mes-

sages to send to the outgoing neighbors by applying its message-generation function to its current

state, and places thesemessages to the corresponding channels; (2) each process removes themes-

sages from the channels, and moves to a new state by applying its state-transition function to its

current state and the incoming messages.

These two steps define a round. There are no limits on the amount of computation taken by

the message-generation and state-transition functions.

3.5.2 Decentralize Monitors in Synchronous Networks

As we discussed in Section 3.4, one of the aspects of distributed systems (Section 3.2) that de-

centralized algorithms have to deal with is the lack of global time and global ordering (i.e., partial

order instead of total order). The effects of global time and ordering in enforceable policies was

discussed in Section 3.4.5 (input reordering), and in Section 3.4.3 (closed action-deterministic

automata).

Algorithms that decentralize global monitors over synchronized distributed systems can be

simpler because in synchronous networks the issues of global time and ordering are simpler

to deal with than asynchronous networks. For instance, some decentralizing algorithms make

the assumption that the components of distributed systems communicate through a synchronous

bus [128]. This means that a node can receive events from all other nodes at a single instant in

178

time, i.e., in a round, as it was formally defined in Section 3.5.1 (note that this is not exactly

instant broadcast as we assumed in Section 3.4.3). Other solutions (e.g., [92, 95, 109]) rely

on synchronization protocols, such as NTP, to achieve synchronization and simulate rounds of

synchronous networks.

Input reordering is one of the constraints that was introduced due to the existence of partial

ordering of events, i.e., concurrency. Input reordering is still a constraint on decomposable mon-

itors (and enforceable policies) in synchronous networks but it only applies within rounds. Since

every action can be tagged with the number of the round it occurred, the components can know

the exact ordering of actions unless two actions happen in the same round (which means that they

will have the same timestamp). Thus, the only policies that are not enforceable are the policies

that require that different orderings of concurrent events lead to different outcomes. For example,

let us consider a variation of the example attack #5 discussed in Section 3.3. Let us assume that

a network IDS is observing traffic and is trying to detect attack #5. Let us also assume that the

IDS observes the following four events: an HTTP request to the webserver, an HTTP response

from the webserver, a request to the DNS server, and a response to the DNS server. Even though

the IDS might be able to order the four events into two pairs, a HTTP request/response and a

DNS request/response, it might not be able to order the two pairs. Thus, the IDS does not know

if the DNS traffic preceded the HTTP traffic (i.e., an attack), or if the HTTP traffic preceded

the DNS traffic (i.e., not an attack)21. To overcome this problem we suggested a solution (see

Section 3.3) that used synchronization between the HTTP server and the DNS server in order to

decide whether the DNS request happened before the HTTP request22. However, such a situa-

tion will never occur in a synchronous system since all events are ordered, i.e., the monitors can

classify exactly when the requests were made and decide whether the HTTP request happened

21As we discussed in Section 3.3 the situation might be more difficult if we do not have protocol specifications,
or causality assumptions, that allow us to order events between a node and the environment.

22Note that if the two events happen concurrently then the trace represents a valid behavior.

179

before or after the DNS response was sent back. Thus, in synchronous networks causality as-

sumptions are not explicitly needed for ordering events since the ordering can be inferred from

the timestamps that the events have. This means that there are policies that are not enforceable

in asynchronous networks (e.g., due to lack of causality assumptions) but are enforceable in syn-

chronous networks. This argument can be also seen by the relationship between logical clocks

and real-time clocks: even though there are several variations of logical clocks to order events

in asynchronous networks, they cannot exactly represent the real-time temporal behavior of the

system [129].

Monotonicity (see Section 3.4.6.2), on the other hand, is still a valid constraint of decompos-

able global monitors in synchronous networks. Information, and thus global knowledge, takes

time to propagate through the network and thus a node that is about to output an event is always at

risk that some security relevant input, that might invalidate its output, has been (recently) received

by some remote node.

Despite the simplicity that synchronous networks offer, we decided to focus on asynchronous

system in this thesis for the following reasons:

1. Many real-world systems are not synchronous (they use other means of synchronization,

such as logical and vector clocks) [130, 131, 132]. Our algorithms and results are appli-

cable in such systems, e.g., identifying bad behaviors (either in real-time or by analyzing

audit-logs), whereas algorithms for synchronous networks will not correctly simulate the

intended global behavior since the assumptions of real-time ordering are not met.

2. Many decentralization algorithms rely on NPT to achieve synchronization (e.g., [92, 95,

109]). However, it was recently shown that NTP is susceptible to attacks which can lead

to the nodes being desynchronized [133, 134]. If an attacker were to attack the NTP pro-

tocol then the decentralized algorithms would not give correct results [109]. Our approach

and algorithms are applicable in cases where the NTP is attacked or when timestamps in

180

logs are not appropriately maintained. This point is also important for the evaluation of

decentralized IDS. Typically IDSs are evaluated using datasets from previously organized

evaluations [51, 135, 136]. Some of these datasets contain multi-step attacks and were

used to evaluate IDSs that were correlating attack information [51]. But in addition to the

existing criticism that these datasets have received, e.g., for not representing real world

traffic [109], it must be emphasized that these datasets did not include attacks on the syn-

chronization protocols (i.e., NTP). Thus, evaluations of decentralization algorithms and

systems using the above datasets might not be a good indicator of their performance when

used in the real-world and in fact might give a false sense of security.

3. Our results in Section 3.4 provide an upper bound of the policies enforceable in distributed

systems, both synchronous and asynchronous. This is useful in cases where, for exam-

ple, after an attack it is realized that the timestamps of the logged actions are not correct,

e.g., because NTP was attacked, then our results can characterize the attacks that can be

identified using the existing logs.

181

3.6 Hierarchical Enforceability

Enforcing security policies over distributed systems using decentralized monitors can achieve

better fault-tolerance, communication efficiency and computational efficiency [91, 92, 93, 94,

95, 96]. In Section 3.5 we explained that it is simpler to decentralize a security policy over a

synchronous distributed system, as compared to an asynchronous system. We also argued that

designing algorithms for decentralizing security policies over asynchronous systems has several

advantages, such as their application (1) to real-world systems that are by nature asynchronous

(e.g., [130, 131, 132], and (2) in situations where determined attackers disrupt the protocols that

are being used by distributed systems to achieve synchrony (e.g., attacks against the network time

protocol [133, 134]).

Hierarchical enforcement is another approach that has been suggested to achieve better fault-

tolerance, communication efficiency and computational efficiency in enforcing security policies

over distributed systems [87, 88, 89, 92, 137]. In hierarchical enforcement security mechanisms

are organized in hierarchical fashion: at the lowest level of the hierarchy mechanisms are respon-

sible to collect data from a subset of the nodes on the network; the security mechanisms perform

some analysis on the collected data and forwards the results to mechanisms at higher levels, which

further analyze the data. Since data are analyzed at each level of the hierarchy, mechanisms at

higher levels have less analysis to perform and thus reduced computational load. In addition, the

analysis performed at each level can reduce the data that need to be sent further up the hierarchy

thus reducing the overall communication load as well.

The motivation behind hierarchical approaches was the detection of attacks similar to the

example attacks #1−#3 in Section 3.3 [87]. Hierarchical enforcement designs are very promising

in enforcing security policies over distributed systems. Thus, designing algorithms that transform

global monitors to equivalent distributed monitors that operate in a hierarchical fashion is highly

182

desirable.

In asynchronous systems there is a limitation that can (significantly) reduce the benefits of

hierarchical enforcement approaches: nodes in asynchronous systems typically use logical time

in order to synchronize [124]. Since such synchronization is needed to order events on different

nodes (e.g., simulating a shared memory system over an asynchronous network [1]), all nodes,

regardless of what level in the hierarchy they belong to, need to exchange the same amount of

information. It may seem that solutions such as hierarchical clocks [138] could be used to exploit

the hierarchical structure of the mechanisms in order to minimize the amount of information that

needs to be exchanged among nodes for synchronization. However, it has been shown that any

attempt to minimize the amount of information used for representing logical time (e.g., hierar-

chical clocks) results in a loss of accuracy in the causal relationship that can be expressed by the

corresponding solutions [139]. In fact, in order for nodes to achieve an accurate view of the causal

relationship of events in the system, vector clocks need to be used [140, 141]: logical clocks may

not provide an ordering of events that is isomorphic to the real causal relationship [129]. Since

vector clocks require a larger representation than logical clocks, more information needs to be

exchanged among nodes. Thus, any solution that does not use vector clocks, e.g., uses hierar-

chical clocks instead, will have the drawback that it will order events in a way that may not be

consistent with the real causal relationship. Thus, policies that depend on the real causal rela-

tionship of events will not be enforceable in a hierarchical manner unless the same amount of

information is exchanged among nodes (which defeats the premise of decreased computational

and communication load).

The problem of transforming global monitors to (efficient) hierarchical distributed monitors

has a more fundamental limitation than representation of logical time: such a transformation is,

in general, infeasible. The reason is that there are algorithms, i.e., centrally-specified security

policies, that require that nodes exchange all the information they have in order to enforce the

183

global policy. Such algorithms include algorithms that require the evaluation of a predicate over

the global state of the system, e.g., identifying if the system has reached to a deadlock [1]. In

these cases, a node cannot reduce the information it forwards to other nodes by doing a local

computation on the information it receives from other nodes.

Despite the above negative results, hierarchical approaches can still be used to efficiently

enforce (some) global distributed policies. For instance, it is known that there exist non-trivial

global algorithms that can be computed over a distributed system in constant time, i.e., indepen-

dently of the size of the network [98, 142, 143], and efficient (and fault-tolerant) data structures

for distributed systems that could be used in hierarchical settings, such as conflict-free replicated

data types [144]; such data structures could be used for example to store the state of a global

monitor, similarly to the way it was done in Section 3.4.4.

Next, we present a result that characterizes a set of centrally-specified security policies that

can be efficiently enforced hierarchically over a distributed system. Let us consider the hierar-

chical structure of the monitored system as a spanning tree. Spanning trees of networks can be

used to broadcast information over the nodes of a distributed system in O(diam) rounds, by us-

ing, for example, a flooding algorithm that propagates the information from the root of the tree

to its leafs [1]. The reverse operation, i.e., propagating information from the leafs up the tree

towards the root, is called convergecast [98, 99]. Convergecast can be used, for example, to send

an acknowledgement from the leafs of the spanning tree to the root that they received the infor-

mation that the root broadcasted. During this process, a node at a given level can wait to receive

all acknowledgements from its children and then send a single acknowledgement to its parent

node. Thus, if we assume a network of seven nodes where the root node R has two children

and each child has also two children, by sending acknowledgments using a convergecast R will

receive only two acknowledgements, instead of six. The example of sending acknowledgements

to a broadcast operation using convergecast is an instance of a global semigroup function [98]. A

184

global semigroup function f has the following properties: it is (1) associative, (2) commutative,

and (3) the representation of f(x) is small compared to the representation of the input x. Due

to the associativity and commutative properties, these functions can be computed by each node

of the tree independently from other nodes at the same level. In addition, because of property

(3), the size of the messages that are propagated up the tree will remain small. Functions that are

global semigroup functions include addition, maximum and logical conditions [98].

Examples #1, #2 and #3 that were used as motivating examples for hierarchical enforcement

approaches (e.g., [87]) are instances of global semigroup functions. For instance, doorknob at-

tacks (i.e., example #1) can be detected by keeping a counter of each IP address that contacts a

host; hosts can then add their counters and once the counter for a particular IP address exceeds

a threshold an alarm is raised. Attacks #2 and #3 can be detected in a similar manner. Other at-

tacks, such as port scanning and IP scanning also fall under this category of attacks. Thus, global

semigroup functions are a first characterization of policies that are efficiently enforceable in a

hierarchical manner.

185

3.7 Distributed Security Automata

In Section 2.3 we showed how to encode truncation (i.e., security) automata [27, 145] and sup-

pression automata [145] to corresponding monitors in our framework. A truncation monitor in-

tercepts the security relevant actions that a target application wants to execute and takes one of

the following two actions: if the attempted action will not violate the security policy then the

monitor outputs the action verbatim; otherwise, the monitor halts the target application. This

means that after the application tries to take a bad step it is not allowed to take any further steps

even if future steps could have been valid. Suppression monitors operate in a similar way to

truncation monitors but they suppress intercepted security relevant actions that will violate the

security policy and allow the target application to continue executing. Thus, even though both

truncation and suppression monitors enforce safety policies [145], a suppression monitor can be

more permissive by allowing an application to exhibit more correct behavior than a truncation

monitor. Truncation monitors can be simpler than suppression monitors because, intuitively, they

have less bookkeeping to do. This can also been seen by the fact that truncation monitors have

simpler operational semantics than suppression monitors [145].

It is important to note that in a distributed system where multiple truncation monitors are

installed, if the monitors need to simulate the behavior of a global truncation monitor then they

must be able to communicate. For example, consider a distributed system with three monitored

components A, B, and C, with signatures Sig(A) = {a}, Sig(B) = {b}, and Sig(C) = {c}. Let

us assume, that the sequence ⟨a, b, c⟩ is not allowed by the policy, whereas the sequences ⟨a⟩ and

⟨a, b⟩ are allowed. If the underlying system tries to execute sequence ⟨a, b, c, a⟩, then once node

C intercepts the action c it needs to notify node A that the computation has been invalidated and

must be stopped. Thus, nodes need to communicate and synchronize.

An interesting question is whether communication between automata is considered security

186

relevant and, in particular, whether it is considered part of their operational semantics. For in-

stance, let us consider two truncation automata that communicate trough actions send and receive.

If neither of these actions is security relevant (i.e., an action that the target would exhibit and the

monitor would intercept), it is not clear whether the automata should be classified as truncation

automata (since they either accept security relevant actions or halt the target) or as edit automata

(since they can exhibit actions to the output stream that were not previously intercepted). How-

ever, if we compose the truncation automata and hide their communication then the result will be

a truncation automaton: it will either accept an action or halt the system. For this reason in this

section we will assume that communication between automata is not considered security relevant

and not part of their enforcement-related operational semantics.

We mentioned that in order for the distributed truncation monitors to simulate a global trun-

cation monitor they need to communicate. However, if the distributed truncation monitors do not

communicate with each other then theymay be able to simulate the behavior of a global (stronger)

suppression monitor. This is because if one of the truncation monitors halts the execution of its

local node, the rest of the nodes in the system can continue to operate. Thus, it seems that dis-

tributed truncation monitors may be able to simulate monitors with more complex behavior. This

idea is formalized in the following theorem.

Theorem 3.7.1. Given n truncation monitors T1, . . . , Tn, there exists suppression monitor S such

that traces(S) = traces(ΠiTi).

Proof sketch. Let S be the composition of Ti’s. Consider that each Ti intercepts actions from an

applicationAi. Thus, the suppression monitor S receives actions from the applicationA = ΠiAi.

This means that a truncation monitor T that interacts with application A, will terminate A, if a

bad action is sent by a componentAi. On the other hand, S will terminate the specificAi, but the

rest of the components will continue operating. Thus S is indeed a suppression monitor.

187

Thm. 3.7.1 describes suppression monitors that can enforce policies that contain traces with

the following property: if a security relevant action a invalidates a trace t, then no valid extension

of t contains a. Intuitively, this means that if we terminate the component that tried to exhibit

action a after trace t then we can still obtain the rest of the valid behaviors of the system (i.e.,

the extensions of t). More concretely, let us assume that we have a system with two components:

componentA exhibiting action a, and componentB exhibiting action b. A policy that allows only

b’s can be enforced even if component A is terminated because all valid traces, i.e., sequences of

b’s, can be exhibited by component B which is still operating.

However, there is a class of suppression monitors that cannot be described by Thm. 3.7.1.

Consider a policy that considers two actions a and b. Let us assume that all sequences of a’s are

valid, but sequences of b’s are allowed to appear only if an a action had been output. For this

policy there is a suppression monitor S that upon receiving the sequence ⟨b, a, b⟩ can produce

the sequence ⟨a, b⟩ by suppressing the first b and allowing the second one. But no combination

of truncation monitors can achieve this result because a local truncation monitor would have to

terminate the component that produces the b’s. This idea can be formally stated as follows:

Theorem 3.7.2. There exists a suppression monitor S that cannot be implemented using a finite

number of truncation monitors.

Proof sketch. The proof is by construction, formalizing the details of the previous example in a

straightforward manner.

Note that Thm. 3.7.2 places a cardinality constraint on the number of truncation monitors

that can be used in the implementation. This is because one possible solution to the problem of

allowing actions that were previously prohibited is to have multiple truncation monitors for each

node. Thus, if a bad action is detected the truncation monitor trivially halts the target by doing

nothing, and notifies another truncation monitor to take over (remember that communication is

188

allowed between truncation monitors). Because the I/O automata model requires that composed

automata have disjoint output actions (see Section 2.2), this would require some modification

in the theory, e.g., consider some set of actions as equivalent. But, even if we assume that we

have equivalent output actions, another practical limitation is that there are cases where we would

need an infinite number of truncation monitors (e.g., if an action a needs to be blocked and then

allowed, infinitely often). This might be possible in practice in environments where truncation

monitors can be generated dynamically, i.e., every time a truncation monitor terminates another

one is created at run-time to take over23; but this cannot be done statically, i.e., we cannot create

a mechanism with infinitely many components. Based on the previous theorems and discussion

we have the following corollary:

Corollary 3.7.1. Given a security policyP and a distributed signature S then a suppression mon-

itor globally enforces P if and only if there exist (potentially infinite) communicating truncation

monitors that globally enforce P .

Note that in order to simulate the enforcement capabilities of a suppression monitor over a

distributed system using truncation monitors then the constraints analyzed in Section 3.4 must be

met (in addition to the ones discussed in this section). Similar results can be proven for simulating

edit monitors using distributed suppression (i.e., truncation) and insertion monitors [145].

23Such scenarios can be modeled using dynamic I/O automata [146].

189

3.8 Related Work

In Section 2.7 we discussed some previous work on formal frameworks for run-time monitors.

This work characterized the enforceable policies by run-time monitors expressible in the respec-

tively introduced frameworks (e.g., security automata and safety policies [27]). However, as

we mentioned, these frameworks modeled and characterized enforceable policies by individual

monitors. To the best of our knowledge, we are the first to characterize the security policies that

are enforceable by run-time monitors in distributed systems, including centralized, decentralized

and hierarchical monitoring architectures. Even though no work, to the best of our knowledge,

has characterized the enforceable security policies over distributed systems, there is a large body

of work that discusses algorithms and architectures to enforce security policies over distributed

systems. We discuss some of this related work next.

Distributed monitoring of policies specified in temporal logics. An area of research related

to decentralized (distributed) monitoring that has received attention focuses on automatically

synthesizing monitors from security policies that are specified in some temporal logic. Al-

though there is work on evaluating LTL formulas using centralized monitors (e.g., distributed

systems [147], and multi-threaded applications [148]), we will discuss related work that focuses

on synthesis of decentralized or hierarchical architectures. Sen et al. introduced Past Time Dis-

tributed Temporal Logic (PT-DTL) to specify and monitor violations of safety properties in dis-

tributed systems [149]. PT-DTL is a temporal logic that is a based on Past Time Linear Temporal

Logic (PT-LTL); PT-LTL is used for specifying and monitoring violations of safety properties of

software systems [149]. In order for a monitor to evaluate a formula written in PT-LTL, the global

state of the system has to be computed, which in distributed systems might require the exchange

of a large number of messages. PT-DTL allows to specify safety properties of synchronous dis-

190

tributed message passing systems. In order to avoid the expensive exchange of messages among

all nodes in the network (in order to compute the global state of the system) PT-DTL contains

an epistemic operator @ that allows a monitor to take into account the last known state of just a

given remote node (specified through the @ operator). Thus, in the evaluation of a formula only

the nodes that are explicitly mentioned in the formula need to be contacted. The algorithm uses

vector clocks to synchronize the processes. A more general logic, i.e., Linear Temporal Logic

(LTL), was used by Bauer and Falcone to specify policies that can be automatically decentralized

over a synchronous distributed system [128]. Their algorithm assumes that (1) messages can

be totally ordered and (2) nodes can send messages to all other nodes within a single instance,

i.e., if a message is send at time t, it is received by the recipient at time t + 1. Extending this

work, Falcone et al. present an algorithm for monitoring policies expressed in a subset of LTL

formulas assuming a global clock but lifting the assumption that messages are received within

a single round after they are sent [150]. A similar approach, but for a hierarchical monitoring

architectures (instead of decentralized) is introduced by Colombo and Falcone [151]. A decen-

tralized algorithm for monitoring LTL specifications over asynchronous systems (i.e., without

the assumption of a global clock) is introduced by Mostafa and Bonakdarpour [152]. Due to the

inability to totally order events in the system their algorithm relies on vector clocks to evaluate the

global predicates defined by the LTL formulas, similarly to previous work on evaluating global

predicates over asynchronous distributed systems [1, 129]. Although the algorithms in the papers

described above bear some similarities with the some of algorithms presented in this chapter (e.g.,

the decentralized algorithms for synchronous systems and PT-DTL are similar to our algorithm

for closed action-deterministic automata from Section 3.4.3) the main differences are that (1) our

algorithms work on a larger class of centrally specified policies (i.e., arbitrary I/O automata, not

just safety-LTL specifications) and (2) the main focus of our work is not too provide efficient al-

gorithms for decentralizing algorithms but to use algorithms as means to characterize enforceable

191

security policies.

Distributed intrusion detection systems and firewalls. Detecting attacks in distributed sys-

tems can be achieved by collecting information from all nodes of the distributed system (e.g.,

audit logs) at a central location and then analyzing the data at this central location. Several pa-

pers have described such approaches, e.g., [52, 83, 84, 85, 86]; however, as we did with related

work on temporal logics, we will focus on related work that presents hierarchical or decentralized

approaches to detecting attacks.

Staniford-Chen et al. present a hierarchical approach to detecting large-scale attacks such as

sweeps, worms and coordinated attacks [87]. Their approach constructs at run-time a graph that

represents the causal relationship of events in the network. The graphs are specified through

appropriate rule sets which include combining conditions that allow to merge graphs to larger

graphs. The monitors are organized in a hierarchical fashion: lower levels in the hierarhcy con-

struct graphs which they forward to the higher levels in the hierarchy; however, the forwarded

graphs are reduced versions that contain only essential information about the graph. Then, mon-

itors at the higher level can collect (reduced) graphs from their children in order to detect attacks.

Their algorithm assumes a synchronous, non-faulty network. A similar approach is suggested

in NetStat, a network-based intrusion detection system [88]. Debar an Wespi propose a hierar-

chical architecture of probes and aggregation and correlation components that can collect alerts

at lower levels and correlate and aggregate them at higher levels. The analysts can observe the

more condensed view of the security traffic in the network at the higher levels and thus more

efficiently detect attacks [89].

Cooperating security managers was one of the first systems to implement a decentralized

approach in detecting attacks over a network [90]. However, the focus of the system was to de-

tect only a specific type of attacks, namely users’ login chains. Cards is a distributed system

192

for detecting in a decentralized manner a larger class of multi-step attacks [91, 92, 93]. Cards

uses signatures, i.e., event patterns, to specify attacks that may occur across multiple systems.

It also uses positive and negative events in order to classify attacks as true positives (positive

events) or false positives (negative events). The papers focus on a specific type of signatures,

called serializable signatures, that describe sequences of events that can be totally ordered (i.e.,

closed action-deterministic automata from Section 3.4.3) Another system for decentralizing at-

tack patterns over a distributed system was introduced by Kruegel et al. [94, 95]. The authors

recognize that the use of peer-to-peer monitoring systems to enforce policies that specify arbitrar-

ily complex patterns could result in a potential message explosion among the monitoring agents.

Thus, the authors focus on a less expressive policy specification language that allows policies

that can be specified as tree patterns. In addition to distributed intrusion detection systems, de-

centralized architectures for enforcing security policies have also been suggested for distributed

firewalls [96, 97]. The algorithms introduced in the above papers assume a synchronous network.

Our algorithms and analyses are designed for asynchronous systems (for reasons described in

Section 3.5). However, we discuss the relationship of enforcement in asynchronous systems to

enforcement in synchronous systens (Section 3.5) and to hierarchical enforcement approaches

(Section 3.6).

Common knowledge in distributed systems. Two high-level conclusions that one can derive

from our results in Section 3.4 and Section 3.5 are the following: (1) not every centralized (i.e.,

globalmonitor) can be simulated over a distributed system, and (2) if wemake timing assumptions

about the underlying distributed system, then we can enforce more security policies.

These conclusions are not technical consequences of the framework that we have introduced

(i.e., I/O automata, and our definitions of monitors, targets, and enforcement), but are rather

expressions (within our framework) of fundamental limitations of distributed systems.

193

Halpern and Moses showed that common knowledge in distributed systems (i.e., facts that

are “publicly known” by all members of the system) with unreliable channels or asynchronous

communication cannot be obtained [153]. Since common knowledge is a necessary condition to

perform many tasks that require coordination, the authors concluded that there are tasks that can

be (trivially) performed in centralized systems but are impossible to perform in distributed sys-

tems. However, as the authors discuss, many real-world problems do not require strong notions

of common knowledge in order to be solved, and this is why there are many practical implemen-

tations of, e.g., distributed agreement and coordination protocols. Our results are very similar to

the ones of Halpern and Moses. The main differences are that (1) we used a different formalism

to express and derive these fundamental results, and (2) we have characterized (through mono-

tonicity and input-reordering) the weaker notion of common knowledge that suffices to perform

centralized tasks in a distributed manner (i.e., distributedly enforce a centralized security policy).

Halpern and Moses also showed that knowledge that can be obtained in distributed systems

with bounded-delay communication channels (called ϵ−common knowledge, where ϵ represents

an upper bound on the guaranteed delivery of messages) is weaker than the general notion of

common knowledge: if common knowledge can be obtained, then ϵ−common knowledge can

be obtained as well; but the converse is not true [153]. If we consider ϵ to be the diameter of the

distributed system, then ϵ also represents the upper bound of message delivery in synchronous

networks. Thus, our second result, namely that timing assumptions help us enforce more security

policies, is another perspective of Halpern and Moses’ result: if a policy can be enforced in an

asynchronous system, then it can be enforced in a synchronous systems as well; but the converse

is not true (since the policy might not be input-reordering across multiple rounds).

194

3.9 Conclusions

Formal models for run-time monitors have helped us improve our understanding of the powers

and limitations of enforcement mechanisms [27, 30] and have aided in the design and implemen-

tation of security policy specification languages [81, 82, 104, 105]. However, these models are

not suitable for analyzing the enforcement capabilities of monitors in distributed systems.

In this chapter we extended the formal framework we introduced in Chapter 2 to allow mod-

eling and reasoning about enforcing security policies in distributed systems. We first discussed

some key differences between centralized and distributed systems which provide some intuition

behind the limitations of enforcing security policies in a distributed manner (Section 3.2). We

also presented some motivating examples of multi-step and distributed attacks that guided our

assumption that attackers are causal (Section 3.3).

Next, we discussed how to characterize the security policies that are enforceable in asyn-

chronous distributed systems (Section 3.4). The characterization was based on the constructive

characterization of the centrally-specified monitors that can be decomposed over a given dis-

tributed system (Section 3.4.2). In this characterization we identified two key constraints: input

reordering and monotonicity and we presented two novel algorithms that can be used to decom-

pose centrally-specified monitors over distributed systems (Sections 3.4.4-3.4.7). Then, we dis-

cussed how our characterization of enforceable policies in asynchronous distributed systems is

affected by assuming that there is a global clock in our system (Section 3.5.1). Synchronous sys-

tems model practical situations where, for instance, protocols such as NTP are used to allow a

finer-grained ordering of events in the system. We also gave a first characterization of the policies

that are (efficiently) enforceable in a hierarchical manner (Section 3.6). Finally, we illustrated

how in distributed systems it may be possible to simulate the global behavior of powerful moni-

tors using weaker’ monitors that interact with each other (Section 3.7) and we discussed related

195

work (Section 3.8).

196

Chapter 4

Probabilistic-Cost Enforcement

In Chapter 3 we discussed how multiple monitors can be used to enforce policies over distributed

systems. Three of the monitoring architectures that we focused on were: centralized monitors

(all enforcement decisions are made by a single node on the network), decentralized monitors

(enforcement decisions can be made by any node on the system), and hierarchical monitors (the

monitors form a tree, and decisions are made by monitors at higher levels in the hierarchy).

These three architectures have different benefits and drawbacks. For instance, centralized

monitors are single points of failure, but they can be very efficient in terms of communication:

all necessary information to enforce a policy is maintained at a single location, and there is no

need for monitors to synchronize and exchange state information (as for instance in decentral-

ized architectures). As another example, as we discussed in Section 3.6, there are certain policies

where hierarchical monitors can be very efficient in terms of computational and communication

resources, but in other cases such architectures might not be as efficient as, for example, central-

ized monitors.

The efficiency of a distributed monitoring architecture does not only depend on the nature of

the security policy that needs to be enforced. In practice, other factors that affect the design choice

197

of the architecture to be implemented include: the underlying architecture of the distributed sys-

tem, probabilistic knowledge that the security engineer might have about the environment (e.g.,

what is the probability that an attack might happen), and probabilistic knowledge the security

engineer might have about the system itself (e.g., what is the probability that a node might crash).

In Section 3.4.4 we presented a blueprint for designing different decomposition algorithms.

However, this blueprint did not account for the efficiency of the different algorithms that could

be derived. In this chapter we provide the technical basis that allows the comparison of different

monitoring architectures. Specifically, we extend our basic framework of Chapter 2, using Proba-

bilistic I/O Automata [154, 155]. We show how to use our new framework to assign probabilities

and costs to different monitors, how to use these probabilities and costs to calculate the expected

costs of monitors, and how to compare different monitoring designs. It is important to note that

this framework is orthogonal to the framework of Chapter 3, i.e., it can be used to calculate the

expected cost of different distributed monitoring architectures. Even though in this chapter we

focus on introducing the (sound) technical machinery needed to reason about the expected cost

of different monitoring designs, as future work, we plan to show how this framework can be

used to compare different distributed monitoring designs, and design algorithms that optimally

decompose centralized monitors.

4.1 Introduction

In Section 3.3.1we described one type of intrusion detection systems: specification-based IDSs [110,

116]. These systems use a formal specification of the good behaviors of a monitored system (e.g.,

a TCP protocol state machine [110]) to classify the intercepted traffic as either good (if it obeys the

specification) or bad (if it does not meet the specification). In Section 3.3.2 we mentioned that, in

practice, specification-based detection approaches may lead to false positives or false negatives

198

because the same protocol might be implemented in different ways by vendors [110, 116, 118]

Differences in protocols’ implementations by different operating systems have been exploited

by attackers in order to evade detection by IDSs [156]. Attackers purposefully create traffic that

is interpreted in different ways by end hosts that run different operating systems. Since the IDS

might not know what is the operating system of the destination of an intercepted sequence of

packets, it will not know whether the traffic constitutes an attack or not. One solution to this

problem is to convert such ambiguous flows to unambiguous ones, so that there is only one well-

behaved flow, interpreted identically by all endpoints [40]. This can be achieved by interposing a

security mechanism between the external and the internal network that performs this conversion.

Two examples of run-time enforcement mechanisms that perform such a task are transport

layer proxies and TCP scrubbers [40]. Both of these mechanisms convert ambiguous TCP flows

to unambiguous ones, but they perform the conversion in different ways. Transport layer proxies

interpose between a client and a server and create two connections: one between the client and

the proxy, and one between the proxy and the server. On the other hand, TCP scrubbers leave the

bulk of the TCP processing to the end points: they maintain the current state of the connection

and a copy of packets sent by the external host but not acknowledged by the internal receiver.

Fig. 4.1 (adapted from [40]) depicts the differences between the two mechanisms in a specific

scenario. Although both mechanisms correctly enforce the same high-level “no ambiguity” pol-

icy, the proxy requires twice the amount of buffering as the scrubber, which suggests that the

proxy is more costly (in terms of computational resources) [40].

Previous work started looking at cost as a metric to classify and compare such monitors.

Drabik et al. introduced a framework that calculated the overall cost of enforcement based on

costs assigned to the enforcement actions performed by the monitor [157]; this framework can be

used to calculate and compare the cost of different monitors’ implementations. This framework

provides means to reason about cost-aware enforcement, but its enforcement model does not

199

Source DestinationProxy Source DestinationScrubber

ACK
reply

ACK
request

ACK

reply

request

ACK request

ACK

ACK

replyBuffering

reply

ACK

Figure 4.1: TCP transport layer proxies and scrubbers. The circled portions represent the amount
of time that data is buffered.

capture interactions between the target and its environment, including the monitor; recent work

has shown that capturing such interactions can be valuable [36]. In addition, in practice the cost of

running an application may depend on the ordering of its actions, whichmay in turn depend on the

scheduling strategy. Finally, one might also wish to ensure that a monitor enforces a cost policy,

which defines which costs are acceptable; practical cost policies can depend on a probabilistic

model of the system’s behavior, e.g., take into account the likelihood of particular events. For

example, a security policy that describes how to protect a system against different attacks might

depend on the probability that these attacks, e.g., a DDOS attack or insider attack, will occur

against that particular system.

The main contribution of this chapter is a formal framework that enables us to (1) model

monitors that interact with probabilistic targets and environments (i.e., targets and environments

whose behavior we can characterize probabilistically), (2) check whether such monitors enforce

a given security policy, and (3) calculate and compare their cost of enforcement. More precisely:

1. Our framework is based on probabilistic I/O automata [154, 155]. This allows us to reason

200

about partially ordered events in distributed and concurrent systems, and the probabilities

of events and sequences of events.

2. We extend probabilistic I/O automata with abstract schedulers to allow fair comparison of

systems where a policy is enforced on a target by different monitors.

3. We define cost security policies and cost enforcement, richer notions of (boolean) security

policies and enforcement [27]. Cost security policies assign a cost to each trace, allowing

richer classification of traces than just as bad or good. We also show how to encode boolean

security policies as cost security policies.

4. Finally, we show how to use our framework to compare monitors’ implementations and we

identify the sufficient conditions for constructing cost-optimal monitors.

201

4.2 Background

We introduce our notation in Section 4.2.1 and then in Section 4.2.2 briefly review probabilistic

I/O automata (PIOA) [154, 155], which we build on in this chapter: more details can be found in

standard PIOA references, e.g., [154, 155]. In Section 4.2.3 we extend PIOA by introducing the

notion of abstract schedulers, which we use in the cost comparison of monitors in Section 4.5.

Finally, in Section 4.2.4 we show how to use PIOA to model practical scenarios through a running

example that we will use in the rest of the paper to illustrate the main ideas of our framework.

4.2.1 Preliminaries

We write R≥0 and R+ for the sets of nonnegative real numbers and positive real numbers respec-

tively. Given a function f : X → Y , we write dom(f) for the domain of f , i.e, X , and range(f)

for the range of f , i.e., Y . Given some X ′ ⊆ X , we write f ↾ X ′ for the function whose domain

is X ′ and range is {f(x) | x ∈ X ′}.

A σ−field over a set X is a set F ⊆ 2X that contains the empty set and is closed under

complement and countable union. A pair (X,F) where F is a σ−field over X , is called a

measurable space. A measure on a measurable space (X,F) is a function µ : F → [0,∞]

that is countably additive: for each countable family {Xi}i of pairwise disjoint elements of F ,

µ(∪iXi) = Σiµ(Xi).

A probability measure on (X,F) is a measure on (X,F) such that µ(X) = 1. A sub-

probability measure on (X,F) is a measure on (X,F) such that µ(X) ≤ 1. A discrete prob-

ability measure on a set X is a probability measure µ on (X, 2X), such that, for each C ⊆ X ,

µ(C) =
∑

c∈C µ({c}). A discrete sub-probability measure on a set X is a sub-probability mea-

sure µ on (X, 2X), such that, for each C ⊆ X , µ(C) =
∑

c∈C µ({c}). We define Disc(X)

202

and SubDisc(X) to be, respectively, the set of discrete probability measures and discrete sub-

probability measures on X . In the sequel, we often omit the set notation when we refer to the

measure of a singleton set.

A support of a probability measure µ is a measurable set C such that µ(C) = 1. If µ is a

discrete probability measure, then we denote by supp(µ) the set of elements that have non-zero

measure (thus supp(µ) is a support of µ). We let δ(x) denote theDirac measure for x, the discrete

probability measure that assigns probability 1 to {x}.

A signed measure on (X,F) is a function ν : F → [−∞,∞] such that: (1) ν(∅) = 0, (2)

ν assumes at most one of the values ±∞, and (3) for each countable family {Xi}i of pairwise

disjoint elements of F , ν(∪iXi) = Σiµ(Xi) with the sum converging absolutely if ν(∪iXi) is

finite.

Given two discretemeasuresµ1, µ2 on (X, 2X) and (Y, 2Y), respectively, we denote byµ1×µ2

the product measure, that is, the measure on (X×Y, 2X×Y) such that µ1×µ2(x, y) = µ1(x)·µ2(y)

(i.e., component-wise multiplication) for each x ∈ X , y ∈ Y .

If {ρi}i∈I is a countable family of measures on (X,FX) and {ρi}i∈I is a family of non-

negative values, then the expression Σi∈Ipiρi denotes a measure ρ on (X,FX) such that for each

C ∈ FX), ρ(C) = Σi∈Ipi · ρi(C).

A function f : X → Y is said to be measurable from (X,FX)→ (Y,FY) if the inverse image

of each element of FY is an element of FX ; that is, for each C ∈ FY , f−1(C) ∈ FX . Note that,

if FX is 2X , then any function f : X → Y is measurable (X,FX) → (Y,FY) for any (Y,FY).

Given measurable f from (X,FX) → (Y,FY) and a measure µ on (X,FX), the function f(µ)

defined on FY by f(µ)(C) = µ(f−1(C)) for each C ∈ Y is a measure on (Y,FY) and is called

the image measure of µ under f . If FX = 2X , FY = 2Y , and µ is a sub-probability measure,

then the image measure f(µ) is a sub-probability satisfying f(µ)(Y) = µ(X).

203

4.2.2 Probabilistic I/O Automata

An action signatureS is a triple of three disjoint sets of actions: input, output, and internal actions

(denoted as Input(S), Output(S), and Internal(S)). The external actions External(S)=Input(S)

∪ Output(S) model the interaction of the automaton with the evironment. Given a signature S

we write acts(S) for the set of all actions contained in the signature, i.e., acts(S) = Input(S) ∪

Output(S) ∪ Internal(S).

A probabilistic I/O automaton (PIOA) P is a tuple (Sig(P), states(P), q̄P , trans(P)), where:

(1) Sig(P) is an action signature; (2) states(P) is a (possibly infinite) set of states; (3) q̄P is a

start state, with q̄P ∈ states(P); and (4) trans(P) ⊆ states(P) × acts(P) × Disc(states(P)) is a

transition relation, whereDisc(states(P)) is the set of discrete probability measures on states(P).

Given a PIOAP , we write acts(P) for acts(Sig(P)). We assume thatP satisfies the following

conditions: (i) Input enabling: For every state q ∈ states(P) and input action α ∈ Input(P),

α is enabled1 in q; and (ii) Transition determinism: For every state q ∈ states(P) and action

α ∈ acts(P), there is at most one µ ∈ Disc(states(P)) such that (q, α, µ) ∈ trans(P). If there

exists exactly one such µ, it is denoted by µq,α, and we write tranq,α for the transition (q, α, µq,α).

A non-probabilistic execution e of P is either a finite sequence, q0, a1, q1, a2, . . . , ar, qr,

or an infinite sequence q0, a1, q1, a2, . . . , ar, qr, . . . of alternating states and actions such that:

(1) q0 = q̄P , and (2) for every non-final i, there is a transition (qi, ai+1, µ) ∈ trans(P) with

qi+1 ∈ supp(µ).

We write fstate(e) for q0, and, if e is finite, we write lstate(e) for the last state of e. The trace

of an execution e, written traces(e), is the restriction of e to the set of external actions of P . We

say that t is a trace of P if there is an execution e of P such that traces(e) = t. We write laction(t)

for the last action of t, when t is finite. We use execs(P) and traces(P) (resp., execs∗(P) and

1If a PIOA P has a transition (q, α, µ) ∈ trans(P) then we say that action α is enabled in state q.

204

traces∗(P)) to denote the set of all (resp., all finite) executions and traces of an PIO automaton

P .

The symbol · denotes the empty sequence. We write e1; e2 for the concatenation of two

executions the first of which has finite length and lstate(e1) = fstate(e2). When σ1 is a finite

prefix of σ2, we write σ1 ⪯ σ2, and, if a strict finite prefix, σ1 ≺ σ2. Given a finite set A,

(A)⋆ denotes the set of finite sequences of elements ofA and (A)ω the set of infinite sequences of

elements ofA. The set of all finite and infinite sequences of elements ofA is (A)∞ = (A)⋆∪(A)ω.

Thus, for A = Σ (Σ)⋆ denotes the set of finite sequences of actions and (Σ)ω the set of infinite

sequences of actions. The set of all finite and infinite sequences of actions is (Σ)∞ = (Σ)⋆∪(Σ)ω.

An automaton that models a complex system can be constructed by composing automata that

model the system’s components. When composing automata Pi, where i ∈ I and I is finite their

signatures are called compatible if their output actions are disjoint and the internal actions of

each automaton are disjoint with all actions of the other automata. More formally, the actions

signatures Pi : i ∈ I or called compatible if for all i, j ∈ I: (1)Output(Pi)∩Output(Pj) = ∅; (ii)

Internal(Pi) ∩ acts(Pj) = ∅. When the signatures are compatible we say that the corresponding

automata and modules are compatible too. The composition P =
∏

i∈I Pi of a set of compatible

automata {Pi : i ∈ I} is defined as:

1. Sig(P) =
∏

i∈I Sig(Pi) =
(
Output(P) = ∪i∈IOutput(Pi), Internal(P) = ∪i∈IInternal(Pi),

Input(P) = ∪i∈IInput(Pi)− ∪j∈IOutput(Pj)
)
;

2. states(P) =
∏

i∈I states(Pi);

3. q̄P =
∏

i∈I q̄Pi
;

4. trans(P) is equal to the set of triples (q, a,
∏

i∈I µi) such that:

(a) a is enabled in some qi ∈ q, and

(b) for all i ∈ I if a ∈ acts(Pi) then (qi, a, µi) ∈ trans(Pi), otherwise µi = δ(qi).

205

Schedulers. Nondeterministic choices inP are resolved using a scheduler. A scheduler forP is

a function σ : execs∗(P) → SubDisc(trans(P)) s.t., if (q, a, µ) ∈ supp(σ(e)) then q = lstate(e).

Thus, σ decides (probabilistically) which transition (if any) to take after each finite execution e.

Since this decision is a discrete sub-probability measure, it may be the case that σ chooses to halt

after e with non-zero probability: 1− σ(e)(trans(P)) > 0.

A scheduler σ together with a finite execution e generates a measure ϵσ,e on the σ−field

FP generated by cones of executions, where the cone Ce′ of a finite execution e′ is the set of

executions that have e′ as prefix. The construction of the σ−field is standard [154]. The measure

of a cone ϵσ,e(Ce′) is defined recursively as:

1. 0, if e′ ̸⪯ e and e ̸⪯ e′;

2. 1, if e′ ⪯ e;

3. ϵσ,e(Ce′′)µσ(e′′)(a, q), if e′ is of the form e′′ a q, e ⪯ e′′. Here, µσ(e′′)(a, q) is defined to be

σ(e′′)(tranlstate(e′′),a)µlstate(e′′),a(q), that is, the probability that σ(e′′) chooses a transition

labeled by a and that the new state is q.

Standardmeasure theoretic arguments ensure that ϵσ,e is a probability measure. For full details

the reader is referred to [154]. The measure of a cone of an execution e corresponds, intuitively,

to the probability for e to happen.

We note that the trace function is a measurable function from FP to the σ−field FPT
gen-

erated by cones of traces. Thus, given a probability measure ϵ on FP , we define the trace dis-

tribution of ϵ, denoted tdist(ϵ) to be the image measure of ϵ under trace, i.e., for each cone of

traces Ct, trace(ϵ)(Ct) = ϵ(trace−1(Ct)). We denote by tdists(P) the set of trace distributions of

(probabilistic executions of) P .

206

4.2.3 Abstract Schedulers

In this section we introduce abstract schedulers, a novel extension of PIOA and one of the con-

tributions of this thesis. Abstract schedulers are used in the cost comparison of monitors (Sec-

tion 4.5). Given a signature S, an abstract scheduler τ for S is a function τ : (External(S))∗ →

SubDisc(External(S)). τ decides (probabilistically) which action appears after each finite trace2

t. Note that an abstract scheduler τ assigns probabilities to all possible (finite) traces over the

given signature.

An abstract scheduler τ together with a finite trace t generate a measure ζτ,t on the σ−field

FPT
generated by cones of traces, where the cone Ct′ of a finite trace t′ is the set of traces that

have t′ as prefix. The measure of a cone ζτ,t(Ct′) is defined recursively as:

1. 0, if t′ ̸⪯ t and t ̸⪯ t′;

2. 1, if t′ ⪯ t;

3. ζτ,t(Ct′′)τ(t′′)({a}), if t′ is of the form t′′; a, t ⪯ t′′.

Standard measure theoretic arguments ensure that ζτ,t is well defined and a probability mea-

sure.

Refining abstract schedulers. Abstract schedulers give us (sub-)probabilities for all possible

traces over a given signature. However, a given PIOA P might exhibit only a subset of all those

possible traces. Thus, we would like to have a way to refine an abstract scheduler τ to a scheduler

σ that corresponds to the particular PIOA P and is “similar” to τ w.r.t. assigning probabilities.

This similarity can be made more precise as follows. First, if an abstract scheduler τ assigns a

zero probability to a trace t, then this means that t cannot happen (e.g., the system stops due to

overheating). Thus, even if t is a trace that P can exhibit, we would like σ to assign it a zero
2Note that the term “trace” is overloaded: it refers to either the result of applying the function trace to an execution

e or to a sequence of external actions. It will be clear from the context to which of the two cases we refer each time.

207

probability. Second, assume we have a trace t that can be extended with actions a, b, or c, and

an abstract scheduler τ that assigns a non-zero probability to all traces t;X , with X ∈ {a, b, c}

and τ(t)(X) = 1, i.e., τ does not allow for the system to stop after t. If t; a is a trace that P

can exhibit, we would like σ to assign it the same probability as τ . However, if P cannot exhibit

that trace, σ should assign it a zero probability. But then σ would be a sub-probability measure,

i.e., it would allow for P to halt, whereas τ does not. To solve this problem, we proportionally

re-distribute the probabilities that τ assigns to the traces that P can exhibit. These two cases are

formalized as follows.

Given an abstract scheduler τ over a signature S, and a PIOA P with Sig(P) = S, we define

the refinement function refn(τ, P) = τ ′, where τ ′ : (External(S))∗ → SubDisc(External(S)),

i.e., a function that maps an abstract scheduler and a PIOA to another abstract scheduler, as

follows:

Let t = t′; a ∈ (External(S))∗ in

• if t ̸∈ traces(P), then τ ′(t′)({a}) = 0;

• if τ(t′)({a}) = 0, then τ ′(t′)({a}) = 0;

• otherwise, τ ′(t′)({a}) = τ(t′)({a})(
τ(t′)(A)

)
+
(
1−τ(t′)(External(S))

) ,
where A = {x ∈ External(S) | t′; x ∈ traces(P)}.

Given an abstract scheduler τ and a PIOA P , standard measure theoretic arguments ensure

that if τ together with a finite trace t generate a probability measure ζτ,t on the σ−field FPT
gen-

erated by cones of traces, so does the abstract scheduler refn(τ, P), i.e., it generates a probability

measure ζ ′refn(τ,P),t on the σ−field FPT
.

We now formalize the relationship between schedulers and abstract schedulers. Given an

abstract scheduler τ over a signatureS, and a PIOAP with Sig(P) = S, a scheduler σ is derivable

from τ iff σ is a scheduler for P such that for all executions e ∈ execs(P) the trace distributions

208

Server

C1

...

Cn

open
1 (x), close

1 (x)
fd
1 (x), ack

1 (x)

fdn
(x)

, a
ckn

(x)

op
en

n
(x
),
clo

sen
(x
)

(a) Clients and server

M

C1

Cn

... Server

open
1 (x), close

1 (x)

fd
1 (x), deny

1 (x),

ack
1 (x)

fdn
(x
),
de
ny

n
(x
),

ac
kn
(x
)

op
en

n
(x
),
cl
os
en
(x
)

fdMi(x), ackMi(x),
1 ≤ i ≤ n

openMi
(x), closeMi

(x),
1 ≤ i ≤ n

(b) Clients and monitored server

Figure 4.2: Diagrams of interposing a Monitor between Clients and Server

of ϵσ,e are equal to the probability measures of trace(e) assigned by the refinement of τ on P , i.e.,

for all executions e, e′′ ∈ execs(P), tdist(ϵσ,e)(Ce′′) = ζ ′refn(τ,P),trace(e)(Ctrace(e′′)).

4.2.4 Running Example Modeled Using PIOA

To illustrate how our framework can be used to model enforcement scenarios we will consider a

running example of a file server S, illustrated in Fig. 4.2a.

Clients (C1 through Cn in the figure) can request to open or close a particular file. The server

responds to the requests by returning a file descriptor or an acknowledgment that the file was

closed successfully. Given a security policy P stating that at most one client at a time can access

a particular file, a monitor is interposed between the clients and the server to enforce P as shown

in Fig. 4.2b. The monitor has the ability to deny access to a file requested by a client. A system

consists of communicating clients, monitor, and server.

We now show how to model the running example (Fig. 4.2b) using PIOA. Each client Ci

requests to open a file x through an openi(x) output action. Once he receives a file descriptor

through an fdi(x) input action, he requests to close the file through an closei(x) action. When he

receives an acknowledgment that the file was closed, he enters a state from which he stops re-

209

Signature: Input: fdi(x), where x
is a filename

acki(x), where x
is a filename

denyi(x), where x
is a filename

Output: openi(x), where x
is a filename

closei(x), where x
is a filename

States: p ∈ {0, 1, 2, 3}
Start States: p = 0
Transitions: fdi(x)

Effect: p := 2

acki(x)
Effect: p = 1, i.e., the client stops
requesting to open the file

denyi(x)
Effect: p ∈ {0, 1}, with µ(0) = 0.1,
and µ(1) = 0.9 if i is even, i.e.,
even-indexed clients request to
open the file, if access is denied,
with probability 0.1, whereas odd-
indexed ones with 0.9

openi(x)
Precondition: p = 0
Effect: p := 1

closei(x)
Precondition: p = 2
Effect: p := 3

Figure 4.3: Clienti PIOA definition

questing access to the file. If, however, he is denied access to the file, he decides probabilistically

to either enter a state from which it will request to open the file again, or stop requesting.

The pseudocode3 for Ci is depicted in Fig. 4.3 and a state diagram in Fig. 4.4a. The ellipse

represents the communication interface of the automaton and the circles the automaton’s states.

Inputs are depicted as arrows entering the automaton, and we only show the effect of the action,

i.e., the automaton’s end state. Each output action is depicted with two arrows: (1) a straight

arrows between states, to depict the precondition and effect on states; and (2) a dashed arrow to

show that action becomes visible outside the automaton. The server S implements a stack of size

one: it replies with a file descriptor or an acknowledgment of closing a file for the latest request.

This means that if a scheduler allows two requests to arrive before the server is given a chance

to reply, then the first request is ignored and the last request is served. The pseudocode for S is

depicted in Fig. 4.5 and a state diagram in Fig. 4.4b.

To further illustrate some of the capabilities of our framework we introduce two example

types of monitor:

• MDENY always denies access to a file that is already open;

3We use the precondition pseudocode style that is typical in I/O automata papers (e.g., [154]).

210

0

2

1

3

fdi(x)

acki(x), denyi(x)denyi(x)

openi(x) openi(x)

closei(x) closei(x)

(a) Client PIOA state transition diagram

〈〉

〈op,Mi, x〉

〈cl ,Mi, x〉

openMi
(x)

closeMi
(x)

open
i (x) ope

ni(x
)

clo
se i
(x
) closei(x)

(b) Server PIOA state transition diagram

Figure 4.4: State transition diagrams if Client and Server

Signature: Input: openMi
(x), where x

is a filename
closeMi

(x), where x
is a filename

Output: fdMi
(x), where x

is a filename
ackMi

(x), where x
is a filename

States: p = ⟨x, y⟩, where
x ∈ {op, cl}, y ∈ {Mi}0≤i≤n

Start States: p = nil
Transitions: openMi

(x)
Effect: p := ⟨op,Mi, x⟩

closeMi
(x)

Effect: p := ⟨cl,Mi, x⟩
fdMi

(x)
Precondition: p = ⟨op,Mi, x⟩
Effect: p := nil

ackMi
(x)

Precondition: p = ⟨cl,Mi, x⟩
Effect: p := nil

Figure 4.5: Server PIOA definition

• MPROB uses probabilistic information about future requests to make decisions. More pre-

cisely, a client i is always granted a request to open a file that is available. Otherwise, if

the file is unavailable, i.e., a client j has already opened it, the monitor checks whether (1)

after force-closing the file for j, j will ask to re-open the file with probability less than 0.5;

and (2) after denying access to i, i will re-ask with probability greater than 0.5. If both

hold, the monitor gives access to i; otherwise it denies access.

The pseudocode forMDENY is depicted in Fig. 4.6. The pseudocode forMPROB is depicted in

Fig. 4.8. To point out the high level differences in the two monitors with repsect to deciding when

to accept or deny a request we provide high-level decision diagrams in Fig. 4.7a and Fig.4.7b.

Let us now consider the composed system Π = C1 × . . . × Cn ×M × S. The states of the

211

Signature: Input: openi(x),closei(x),
fdMi

(x), ackMi
(x),

where x is a filename
Output: openMi

(x), closeMi
(x),

fdi(x), acki(x), denyi(x),
where x is a filename

States: p: list (of triples) of requests
from clients to monitor

q: list (of triples) of responses
from monitor to clients

r: list (of pairs) of active
connections

Start States: p = q = r = nil
Transitions: openi(x)

Effect: p := p@[⟨op, i, x⟩]
closei(x)

Effect: p := p@[⟨cl, i, x⟩]
fdMi

(x)
Effect: q := q@[⟨fd,Mi, x⟩]

ackMi
(x)

Effect: q := q@[⟨ack,Mi, x⟩]
openMi

(x)
Precondition: p = ⟨op, i, x⟩ :: p′

∧ ̸ ∃⟨x, j⟩ ∈ r, j ̸= i
Effect: p := p′

r := r@[⟨x, i⟩]
closeMi

(x)
Precondition: p = ⟨cl, i, x⟩ :: p′
Effect: p := p′

r := r\[⟨x, i⟩]
fdi(x)

Precondition: q = ⟨fd,Mi, x⟩ :: q′
Effect: q := q′

acki(x)
Precondition: q = ⟨ack,Mi, x⟩ :: q′
Effect: q := q′

denyi(x)
Precondition: p = ⟨op, i, x⟩ :: p′

∧∃⟨x, j⟩ ∈ r, j ̸= i
Effect: p := p′

Figure 4.6: MDENY PIOA definition

composed system will be n + 2− tuples of the form qΠ = ⟨qC1 , . . . , qCn , qM , qS⟩. Two example

executions forMDENY are:

• eMDENY = qΠ0 open1(x) qΠ1 openM1
(x) qΠ2 fdM1

(x) qΠ3 fd1(x) qΠ4 open2(x) qΠ5 deny2(x)

qΠ6 open2(x) qΠ7 deny2(x) qΠ8

• e′MDENY
= qΠ0 open1(x) qΠ1 openM1

(x) qΠ2 fdM1
(x) qΠ3 fd1(x) qΠ4 open3(x) qΠ5 deny3(x)

qΠ6 open3(x) qΠ7 deny3(x) qΠ8

The corresponding traces are:

• tMDENY = trace(eMDENY) = open1(x) openM1
(x) fdM1

(x) fd1(x) open2(x) deny2(x) open2(x)

deny2(x)

• t′MDENY
= trace(e′MDENY

) = open1(x) openM1
(x) fdM1

(x) fd1(x) open3(x) deny3(x) open3(x)

deny3(x)

In tMDENY client C1 asks to open file x and he is assigned the file, and after that client C2 asks

to open the same file and is denied access by the monitor. t′MDENY
is a similar scenario, with the

difference that the client that asks access to x the second time is C3, i.e., an odd-indexed client.

212

qi+1qi

Is x open?

qi+1 qi+3qi+1 qi+2

Ye
s No

openi(x)

denyi(x) openMi(x)

(a) MonitorMDENY

qi+1qi

Is x open?

Is probability of j asking again > 0.5
and probability of i asking again < 0.5

qi+1 qi+3

qi+1 qi+2

qi+1 qi+4

qi+4 qi+5

qi+5 qi+6

Ye
s No

openi(x)

Ye
s No

denyi(x)

openMi(x)

denyj(x)

closej(x)

openMi
(x)

(b) MonitorMPROB

Figure 4.7: Decision Diagrams

Let us consider the scheduler σ that schedules transitions based on the following high-level

pattern:
(
[C1, . . . , Cn]; M

∗; S; M∗;
)ω

. This pattern says that σ chooses probabilistically one

of the clients to execute some transition, and then, deterministically, the monitors gets a chance

to execute as many actions as it needs, then the server responds with one transition, and finally

the monitor gets again the chance to do as much work as it needs. This pattern repeats finitely,

or infinitely, many times.

Let us assume that σ chooses each client to take a turn with probability P (Ci) =
1
n
. Then the

probability of eMDENY is given by the measure ϵσ,q̄ on the cone of executions that have eMDENY as

prefix, i.e., ϵσ,q̄(CeMDENY
). It is easy to calculate that ϵσ,q̄(CeMDENY

) = 0.1
n2 . We calculate the proba-

bilities of tMDENY and t′MDENY
as follows. We know that tdist(ϵσ,q̄)(CtMDENY

) = trace(ϵσ,q̄)(CtMDENY
)

= ϵσ,q̄(trace−1(CtMDENY
)). Note that, from the PIOA definitions of (the states of) the compo-

nents of Π, there is a bijective mapping between the execution eMDENY and the trace tMDENY , i.e.,

the set of executions that trace−1 maps CtMDENY
to, is the cone CeMDENY

. Thus, the probability of

CtMDENY
= 0.1

n2 . The same holds for calculating the probability of t′MDENY
.

213

Signature: Same asMDENY
States: Same asMDENY and

force = ⟨x, y, z⟩, where
x ∈ {0, 1, 2, 3}, 0 ≤ y, z ≤ n

Start States: Same asMDENY and
force = ⟨0, _, _⟩

Transitions: Same asMDENY with the
following changes:

openi(x)
Effect: if ∃⟨x, j⟩ ∈ r, j ̸= i

∧ probability of j asking again < 0.5
∧ probability of i asking again > 0.5

then force := ⟨1, i, j⟩
else p := p@[⟨op, i, x⟩]

openMi
(x)

Precondition:
(
p = ⟨op, i, x⟩ :: p′

∧(̸ ∃⟨x, _⟩ ∈ r
∨force = ⟨3, i, x⟩

)
Effect: p := p′

r := r@[⟨x, i⟩]
force := ⟨0, _, _⟩

closeMi
(x)

Precondition: q = ⟨ack,Mi, x⟩ :: q′
∨force = ⟨2, x, i⟩

Effect: q := q′

force := ⟨3, x, i⟩
acki(x)

Precondition: q = ⟨ack,Mi, x⟩ :: q′
Effect: q := q′

denyi(x)
Precondition: (p = ⟨op, i, x⟩ :: p′

∧∃⟨x, j⟩ ∈ r, j ̸= i
∨force = ⟨1, x, i⟩

Effect: p := p′

force := ⟨2, x, i⟩

Figure 4.8: MPROB PIOA definition

If we were to consider the execution e′′MDENY
= eMDENY open2(x) qΠ5 openM2

(x) qΠ6 , i.e., C2

tries to access the file again and the monitor gives access to the file, then ϵσ,q̄(Ce′′MDENY
) = 0

(similarly for t′′MDENY
= tMDENY ; open2(x)).

214

4.3 Probabilistic Cost of Automata

In this section we develop the framework to reason about the cost of an automaton P.

A cost function assigns a real number to every trace over a signature S, i.e., every possible

sequence of external actions of S. More formally:

Definition 18. A cost function cost over a signature S is a signed measure on the σ−field FP̃T

generated by cones of traces of an automaton P̃ with Sig(P̃) = S that generates all possible

traces over its signature4, i.e., cost : FP̃T
→ [−∞,∞].

Remember that a cone Ct of a finite trace t is the set of traces that have t as prefix. Thus, there

is a one-to-one correspondence between traces and the cones (of traces) they infer. Although

traces are the subject of our analysis, cones are their (sound) mathematical representation.

Note that in this chapter we use the word cost to refer to both expenses and profits. For

instance, one can use positive values of costs to possibly represent something you pay (i.e., an

expense) and negative values of costs to represent something you gain (i.e., profit). The use of

the word when describing practical examples will be clear from the context.

We calculate the expected cost of a trace, called probabilistic cost, by multiplying the proba-

bility of the trace with its cost. More formally:

Definition 19. Given a scheduler σ and a cost function cost, the probabilistic cost of a cone of a

trace Ct is defined as pcostσ(Ct) =
(
ϵσ,q̄(trace−1)(Ct)

)
cost(Ct).

Probabilistic costs of traces can be used to assign expected costs to automata: the probabilistic

(i.e., expected) cost of an automaton is the set of probabilistic costs of its traces. However, it

is often useful for the cost to be a single number, rather than a set. For example, we might

want to build a monitor that does not allow a system to overheat, i.e., it never goes above a

4Given a signature S one can construct such an automaton P̃ by using a single state and a self-looped labeled
transition for each action in the signature.

215

threshold temperature. In this case the cost of an automaton (e.g., the composition of the monitor

automaton with the system automaton) could be the maximal cost of all traces. Similarly, we

might want to build a monitor that cools down a system, i.e., lowers a system’s temperature below

a threshold, infinitely often. Here we could assign the cost of an automaton to be the minimal cost

that appears infinitely often in its (infinite) set of traces, and check whether that cost is smaller

than the threshold. It is clear that it can be beneficial to abstract the function that maps sets of

probabilistic costs of traces to single numbers. We formalize this as follows.

Definition 20. Given a scheduler σ and a cost function cost, the probabilistic cost of a PIOA P

is defined as pcostFσ(P) = Ft∈traces(P)(pcostσ(Ct)).

Note that the definition is parametric in the function F.

As an example, consider the infinite set v = {v0, v1, . . .}, where each vi is the probabilistic

cost of some trace of P (ranging over a finite set of possible costs); then, F could be (following

definitions of Chatterjee et al. [158]):

• Sup(v) = sup{vn | n ≥ 0}, or

• LimInf(v) = liminfn→∞vn = limn→∞inf{vi | i ≥ n}.

Sup chooses the maximal number that appears in v (e.g., the maximal temperature that a

system can reach). LimInf function chooses the minimal number that appears infinitely often in

v (e.g., the temperature that the system goes down to infinitely often).

For the rest of the chapter we will assume that F’s arguments are sets of pairs ⟨t, c⟩, where

the first component t is a trace and the second component c is (typically) the expected cost of t.

This assumption will simplify the presentation and analysis of our results.

Note that if we were to assign costs to actions r1 and r2, e.g., 2 and 5 respectively, then cost

can assign different numbers to their interleavings that might not clearly relate to the costs of the

actions, e.g., cost(r1; r2) = 0 and cost(r2; r1) = 20.

216

Next, we show how one can define the cost of a system given cost functions for its compo-

nents.

Assume that we have cost functions for the clients, the monitor, and the server (resp. costCi
,

costM , and costS). The cost of a trace t of the systemΠ (i.e., the composition of the clients, moni-

tor, and server) is the sum of the probabilistic costs of each component, whenever that component

is allowed to take a step in the trace.

More formally5:

• Cost(C ·)
6 = costCi

(C ·) + costM(C ·) + costS(C ·).

• Cost(Ct) = Cost(Ct′) + diffX(Ct′;a), where X ∈ {Ci,M, S}, t = t′; a, a ∈ acts(X), and

diffX(t′; a) = costX(Ct′;a)− costX(Ct′).

The probabilistic cost of an trace and the probabilistic cost of an automaton are now defined,

as above, using the cost function Cost.

One can alternately define the cost of a system based on costs assigned to smaller components.

For example, we can define cost functions over individual actions (or transitions) and use them

to define the cost of an trace, and the cost of an automaton. In this case, the cost of traces would

be independent of the interleaving of transitions (unless we define costs over transitions and use

some coding trick, e.g., allow states to encode the trace history). This approach is similar to the

definition of Cost so we do not pursue it here. Note that such an approach can be used to embed

the framework of Drabik et.al. in ours [157].

5We use addition as the function between costs of actions in the trace. One can define appropriate cost functions
by using other functions G from costs to costs, but we do not pursue it in this thesis.

6Remember, · denotes the empty trace.

217

4.4 Cost Security Policy Enforcement

In this section we define security policies and what it means for a monitor to enforce a security

policy on a system.

Cost security policies. A monitor M is a PIOA. A monitor mediates the communication be-

tween system components Si which are also PIOA. Thus, the the output actions of each Si are

inputs to the monitor, and the monitor has corresponding outputs that it forwards to the other

components. More formally, given an index set I and a set of components {Si}, i ∈ I , we as-

sume that acts(Si) ∩ acts(Sj) = ∅, for all i, j ∈ I , i ̸= j. Our goal is to model and reason about

the external behavior of the monitored system. Thus, we also assume that Internal(Si) = ∅, for

all i ∈ I . Since the system components Si are compatible, we will refer to their composition

Πi∈ISi as system S. A monitored system is the PIOA that results from composingM with S.7

The cost function defined in Section 4.3 describes the impact of a monitor on a system. A

cost function is not necessarily bound to a specific security policy, which allows for the analysis

of the same monitor against different policies. In practice, a monitor’s purpose is to ensure that

some policy is respected by the monitored system. In the running example, the monitor’s role

is to ensure that a file is not simultaneously open by two clients. Furthermore, since each deny

action comes with a cost, it is desirable for the cost of monitoring to be limited. This motivates

the need to define a cost security policy.

Definition 21. Given a (monitored) system (M ×S), a cost security policy Pol over Sig(M ×S)

is a cost function over Sig(M × S), i.e., a signed measure Pol on the σ−field FP̃T

8 generated by

cones of traces of the system, i.e., Pol : FP̃T
→ [−∞,∞].

7By assumption,M and S are compatible. In scenarios where this is not the case, one can use renaming to make
the automata compatible [36, 154, 155].

8Remember P̃ is the automaton that has the same signature as (M × S), in this case, and produces all possible
traces over its signature.

218

When we talk about the signature, actions, etc. of Pol, we refer to the signature, actions, etc

of P . Cost security policies associate a cost with each trace. For instance, if a trace t corresponds

to a particular enforcement interaction between a monitor and a client, then Pol(Ct) = 10 could

describe that such enforcement (i.e., t) is allowed only if its cost is less than 10. Our definition

of policies extends that of security properties [27]: security properties are predicates, i.e., binary

functions, on sets of traces, whereas we focus on policies that are functions whose range is the

real numbers (as opposed to {0, 1}). We leave the investigation of enforcement for securities

policies defined as sets of sets of traces (e.g., [27, 36, 159]) for future work.

Definition 22. Given a cost security policy Pol and a scheduler σ the probabilistic cost security

policy pPolσ under σ is defined as pPolσ(Ct) =
(
ϵσ,q̄(trace−1)(Ct)

)
Pol(Ct).

Cost security policy enforcement. In Section 4.3 we showed how to calculate the expected

cost of a trace of an automaton, and the expected cost of an automaton. In the previous paragraph

we defined the notion of a (probabilistic) cost security policy. We will now define what does it

mean for a monitor to enforce a cost security policy on a system.

Definition 23. Given a scheduler σ, a cost function cost, a policy Pol, a function F, a monitor

M , and a system S (compatible withM), we say thatM n−enforces≤ (resp., n−enforces≥) Pol

on S under σ, F, and cost if and only if the probabilistic cost of the monitored system differs by

at most n from the probabilistic cost that the policy assigns to the traces of the monitored system,

i.e.,:(
pcostFσ(M × S)

)
−

(
Ft∈traces(M×S)pPolσ(Ct)

)
≤ n (resp., ≥ n), i.e.,(

Ft∈traces(M×S)pcostσ(Ct)
)
−

(
Ft∈traces(M×S)pPolσ(Ct)

)
≤ n (resp., ≥ n).

We say that a monitor M enforces≤ (resp., enforces≥) a security policy P on a system S

under a function F, a scheduler σ, and a cost function cost if and only ifM 0−enforces≤ (resp.,

0−enforces≥) P on S under F, σ, and cost.

219

The definition of enforcement says that a monitor M enforces a policy Pol on a system S if

the probabilistic cost of the monitored system under some scheduler σ and cost function cost is

less or equal (resp. greater or equal) than the cost that the policy assigns to the behaviors that the

monitored system can exhibit. We define enforcement using two comparison operators because

different scenarios might assign different semantics to the meaning of enforcement: One might

use a monitor to maximize the value of a monitored system with respect to some base value, e.g.,

in our running example, we may want to give access to as many unique clients as possible since

the server is making extra money by delivering advertisements to them; thus, the monitor has

motive to give priority to every new request for accessing a file. In other cases, one might use

a monitor to minimize the cost of the monitored system with respect to some allowed cost, e.g.,

we might want to minimize the state that the monitor and the server keep to provide access to

files, in which case caching might be cost-prohibitive. Without loss of generality in this thesis

we focus on ≤; similar results hold for ≥.

Enforcement is defined with respect to a global function F. F transforms the costs of all

traces of a monitored system to a single value. As described in Section 4.3, this value could

represent the minimum cost of all traces, their average, sum, etc. Thus, F can model situations

where an individual trace might have cost that is cost-prohibited by the policy (e.g., overheating

temporarily), but the monitored system as a whole is still within the acceptable range (i.e., before

and after the overheating the system cools down enough).

In the previous instantiation of our running example, there might exist some trace t where

cost(t) > Pol(t) > −∞, typically when a client keeps asking for a file that is denied. Although

this would intuitively mean that the cost security policy is not respected for that particular trace, it

might be the case thatM enforces Pol, as long as Pol is globally respected, which could happen,

e.g., if the probability of t is small enough. This illustrates a strength of our framework: we

can allow for some local deviations, as long as they do not impact the global properties, i.e.,

220

overall expected behavior, of the system. If we wish to constrain each traces, we can define

local enforcement, which requires that the cost of each trace of the monitored system is below

(or above) a certain threshold, as opposed to enforcement which requires that the value of some

function computed over all traces of the monitored system is below (or above) a certain threshold.

Note that local enforcement can be expressed through a function F that universally quantifies the

cost difference from the threshold over all traces of the monitored system. Local enforcement

could be useful, for example, to ensure that a system never overheats even momentarily, whereas

enforcement would be useful if we want to have probabilistic guarantees of the system; e.g., we

accept a 0.001% probability that the system will become unavailable due to overheating.

A question a security designer might have to face is whether it is possible, given a boolean

security policy that describes what should not happen and a cost policy that describes the maxi-

mal/minimal allowed cost, to build a monitor that satisfies both. This problem can help illuminate

a common cost/security tradeoff: the more secure a mechanism is, the more costly it usually is.

There is a close relationship between boolean security policies (e.g., [27]) and cost security

policies: given a boolean security policy there exists a cost security policy such that if the cost

security policy is n−enforceable then the boolean security policy is enforceable as well (and vice

versa). Specifically, given a boolean security policy P , we write PolP for the function such that

pPolP (Ct) = 0 if P (t) holds, and −∞ otherwise. Given a predicate P , if we instantiate function

F with the function that returns the least element of a set and function cost with the function that

maps every (trace) cone to 0, and ifM 0−enforces≤ PolP , then any trace belongs to P . In other

words, our framework is a generalization of the traditional enforcement model.

In the other direction, since cost security policies are more expressive than boolean security

policies, we need to pick a bound that will serve as a threshold to classify traces as acceptable

or not. Given a probabilistic cost security policy pPol, a cost function cost, a scheduler σ and

a bound n ∈ R, we say that a trace t satisfies Polcost,n,σ, and write Polcost,n,σ(t) if and only if

221

pPol(Ct) ≥ pcostσ(Ct)− n.

Expressing cost security policies as boolean security policies allows one to embed in our

framework a notion of sound enforcement [30]: a monitor is a sound enforcer for a system S

and security policy P if the behavior of the monitored system obeys P . As described above, one

encodes P in our framework as PolP , which returns −∞ if a trace violates P and 0 otherwise.

Sound enforcement can be expressed as 0−enforcement≤ using a global function FP that assigns

−∞ to the cost of the automaton composition that represents the monitored system if some trace

has cost −∞, and 0 otherwise. Specifically, if a monitor soundly enforces P on a system, all its

traces will belong to P and PolP will map them all to 0, which when applied to FP , will result in

a global cost of 0. If the monitor is not sound, then the global cost will be −∞. Thus, a monitor

soundly enforces a boolean security policy P if and only if the monitor 0−enforces≤ the cost

security policy PolP under FP and cost(_) = 0.

Transparent cost enforcement. Assume that we are given a scheduler σ, a cost function cost,

a function F, a policy Pol, and a system S and we want to n−enforce≤ Pol on S under σ, F, and

cost. As we explained in the introduction, different monitors may be able to achieve this goal.

One such choice might be a monitor that acts as a sink: it never forwards messages between

the system’s components. Thus,interaction-intensive systems, i.e., systems that rely heavily on

interaction to achieve their goals, will only exhibit a minimal behavior. As such, the cost of such

a monitored system will be (close to) zero (assuming that components limit their non-interactive

actions–cf. quiescent forgiveness in [36]). However, such monitors are unlikely to be useful in

practice.

Previous work on run-time enforcement has identified (similar) situations where trivial mon-

itors enforce (boolean) policies by consuming all inputs and denying all actions the target system

wants to execute [30, 82, 103]. Transparency is one notion that aids in ruling out such uninterest-

222

ing cases: if the target system wants to perform an action that obeys the policy, then the monitor

must allow it. Most definitions of transparency that have been introduced so far are within frame-

works where policies reason only about the target’s behavior [27, 30]: a policy is a predicate over

traces of the target (i.e., a subset of the traces that the target might exhibit) and not over traces

that the monitored target can exhibit through the interaction of the monitor with the target.

In this chapter we take a (more general) view, that has been recently introduced, which allows

policies to describe how monitors are allowed to react to target’s requests [36, 59] (in addition to

considering policies which reason about cost). Thus, enforcement is now implicit in the definition

of a policy (i.e., in the traces that the policy allows). This means that we can define transparency

as a specific type of interaction between the target and the monitor.

Since our definition of policies is more expressive than previous ones with respect to the

interaction between the target and the monitor, to talk about transparent enforcement we first

need to encode previous definitions of policies (i.e., sets of traces by a target) in our framework

(see Section 2.4.1). Themain idea is as follows: given a policy that describes which target’s traces

are allowed, we build a policy (over the monitored target) in which every valid trace of the target

is forwarded by the monitor to the environment (and vice versa). The way that the forwarding

can be achieved by the monitor depends on the notion of fairness that we assume in the model: if

the monitor is not allowed to finish forwarding the valid trace of the target then it will not achieve

transparent enforcement, even though the same monitor under different circumstances would be

transparent. Thus, we need to choose a notion of transparency depending on whether we assume

fairness in our model or not (see Section 2.4.1). In the framework of this chapter (weak) fairness

can be encoded by schedulers that do not assign zero probabilities to steps of an automaton from

a given state (if such steps are defined in the transition relation of the automaton). Once we

have encoded (boolean) policies of targets and a notion of transparent enforcement as a (boolean)

policy over monitored targets, we can use the translation described previously to derive a cost

223

policy and talk about cost transparent enforcement. This process has some technical nuances but

it is straightforward to implement and we will not pursue it more in this thesis.

224

4.5 Cost Comparison

Given a system S, a function F, a scheduler σ and a monitorM , pcostFσ(M) and pcostFσ(M × S)

are values in [−∞,∞], and as such provide a way to compare monitors.

Tomeaningfully comparemonitors, we need to fix the variables onwhich the cost of amonitor

depends, i.e., functions F and cost, and the scheduler σ. Difficulties arise when trying to fix

a scheduler for two different monitors (and thus monitored systems), even if they are defined

over the same signature. States of the monitors, and thus their executions, will be syntactically

different and we cannot directly define a single scheduler for both. Moreover, since schedulers

assign probabilities to specific PIOA and their transitions, one scheduler cannot be defined for

two different monitors.

To overcome this difficulty we rely on the abstract schedulers introduced in Section 4.2.3.

Namely, to compare two monitored systems we use a single abstract scheduler which we then

refine into schedulers for each monitored system.9

Abstract schedulers allow us to fairly compare two monitors, but additional constraints are

needed to eliminate impractical corner cases. To this end we introduce fair abstract schedulers.

Definition 24. An abstract scheduler τ over the signature of a class of monitored targetsM×S is

fair (w.r.t. comparing monitors) if and only if (1) the monitors get a chance to respond to targets’

actions infinitely often (i.e., the monitors are not starved), and (2) for every trace t of a monitored

target, every extension t′ of t by a monitor’s actions, i.e., t′ = t; a with a ∈ External(M), is

assigned the same probability by τ .

Constraint (1) ensures that a fair abstract scheduler will not starve the monitor, i.e., the moni-

9An abstract scheduler τ also provides a meaningful way to compare monitors with different signatures: calculate
the union S of the signatures of the two monitors and (1) use a τ with signature S, and (2) extend each monitor’s
signature to S. This is useful when comparing monitors of different capabilities, e.g., a truncation and an insertion
monitor [145], where the insertion monitor might exhibit additional actions, e.g., logging.

225

tor will always eventually be given a chance to enforce the policy. Constraint (2) ensures that the

abstract scheduler is not biased towards a specific monitoring strategy. For example, an unfair

scheduler could assign zero probability to arbitrary monitoring actions (e.g., the scheduler stops

insertionmonitors [145]) and non-zero probability to monitors that output valid target actions ver-

batim (i.e., the scheduler allows suppression monitors [145]). Such a scheduler would be unlikely

to be helpful in performing a realistic comparison of the costs of enforcement of an insertion and

a suppression monitor. There might be scenarios where such schedulers are appropriate10, but in

this thesis we pursue only the equiprobable scenario.

Definition 25. Given a system S, a function F, a cost function cost, two monitors M1 and M2

with Sig(M1) = Sig(M2), an abstract scheduler τ over Sig(M1 × S), two schedulers σ1 (for

M1 ×S) and σ2 (forM2 ×S) derivable from τ , and a well-order� we say thatM2 is less costly

than a monitorM1 and writeM2 �M1, if and only if pcostFσ2
(M2 × S)� pcostFσ1

(M1 × S).

Definition 26. A monitorM is cost optimal for a system S and a well order � if and only if for

all monitorsM ′ with Sig(M) = Sig(M ′),M �M ′.

The next proposition states that for any system S a cost optimal monitor exists.

Proposition 4.5.1. Given a system S there is a cost optimal monitorM (for some well-order�).

Proof. There are countably many monitors (since there are countably many I/O automata). Thus,

there are countably many monitored systems (for the given system S). Moreover, it is known

(from set theory) that every countable set can be well-ordered by some well-order �. By defini-

tion of well-orders every subset of monitored systems will have a least element under �. Thus,

the least element M × S of the set of all possible monitors for S exists, and M is cost optimal

for S.

10This is a similar situation with having various definitions for fairness [63].

226

Note that although for every system S we can find a cost optimal monitor M , M is cost

optimal for a specific well-order � which might not be the standard well-order ≤. For example,

if the expected costs of monitored systems take values from the natural numbers then there exists

an optimal monitor under≤. On the other hand, if the expected costs of monitored systems range

over the integers, or real numbers, then there might not exist a cost optimal monitor under ≤

(although a cost optimal monitor might exist for a different well order �11).

Proposition 4.5.1 guarantees that a cost-optimal monitor exists (for given system S, function

F, cost function cost, and abstract scheduler τ). However, wemight not be able to find or construct

such a cost-optimal monitor. One reason for this inability can be, for example, that F is not be

differentiable. However, for many practical purposes functions F for which we can find optimal

monitors will be used. One such class of functions is monotone functions. Monotone functions

map arguments to values in such a way that they preserve some order, i.e., if two arguments are

ordered under some ordering, then so are the corresponding values when the function is applied

on the arguments. For instance, the function that maps traces of a system to CPU cycles or

power consumption is monotone: the more time the system runs, i.e., the longer the trace of the

system, the more CPU cycles and power are consumed. Another example is the function that

maps valid executions of a monitor that mediates communication between a client and a server

to profits for the server: the longer a valid execution, the more profit the server will make. This

function is relevant in scenarios where some Service Level Agreement exists between a client and

a server, and we want to maximize the well-behaved interaction amongst them (cf. transparency–

Section 4.4). Next we formally define monotone functions F (remember that we assume that F’s

arguments are sets of pairs ⟨t, c⟩, where the first component t is a trace and the second component

c is (typically) the expected cost of t).

11For instance, since there are countably many monitors, one can use a bijection that maps monitors to natural
numbers and the standard well-ordering of the natural numbers.

227

Definition 27. Given two sets X, Y of pairs of traces and real numbers, i.e., X, Y ∈ 2(Σ)∞×R,

we write X ⊑ Y if and only ∀⟨t1, c1⟩ ∈ X : ⟨t1, c1⟩ ∈ Y , and ∃⟨t2, c2⟩ ∈ Y : ∀⟨t3, c3⟩ ∈ X :

⟨t3, c3⟩ ⊑ ⟨t2, c2⟩, where ⟨ti, ci⟩ ⊑ ⟨tj, cj⟩ if and only if ti ⪯ tj and ci � cj .

We say that a function F : 2(Σ)∞×R → R is monotone if and only if it is monotone under the

ordering ⊑, i.e., if X ⊑ Y then F(X)� F(Y).

The next theorem formalizes the intuition that when dealing with monotone functions we can

exploit knowledge about the scheduler and the cost function to build cost optimal monitors.

Theorem 4.5.1. Given:

1. a finite-state system S,

2. a cost assignment map of each action of S to a real value such that for every input action

i of map(i) = 0,

3. a cost function cost that is defined recursively based on map such that the cost of a trace t

is the sum of the values of the actions that appear on t,

4. a weakly fair12 abstract scheduler τ , and

5. a function F that is monotone and continuous (i.e., it preserves limits),

we can construct a cost optimal monitor for the standard ordering ≤ of real numbers.

Proof. First we define the signature ofM to contain (1) as input actions the output actions of S,

and (2) as output actions the input actions of S. Since S has finitely many states we can detect (1)

whether it contains any cycles, and (2) the cost of each cycle. Assuming that S contains cycles,

we construct a monitor that complements every positive-value cycle k of S, i.e., the transition

relation of M produces all possible cycles k that have a positive sum of costs. Since M and S

contain complementary input and output actions, the composition M × S will exhibit all those

cycles.
12As described in Section 4.4, weakly fair schedulers are the schedulers that do not assign zero probabilities to

steps of an automaton from a given state (if such steps are defined in the transition relation of the automaton).

228

Since the abstract scheduler is weakly fair, it is easy to see that this will also hold for the

refined scheduler σ for (M×S) (by definition of refinement). This guarantees that (M×S)will

contain infinite traces. In fact,M × S will contain all possible infinite traces that S can produce

and whose costs will diverge to +∞.

Finally, every other monitorM ′ will either (1) contain less cycles with positive cost thanM ,

and thus will diverge (if they do) slower, or (2) contain negative cycles in addition to the positive

ones which will have the same effect as the previous point, or (3) may contain additional self loops

of output actions since they are under the monitor’s control: by the second and third constraint

of the theorem the only actions that have a cost are the outputs of the system, i.e., the outputs of

anyM ′ will have a zero impact on the cost of a trace. Thus, in conclusion, by the monotonicity

of F,M will be optimal as compared to every otherM ′.

Thm. 4.5.1 provides a generic description of the conditions sufficient for constructing a cost-

optimal monitor. In the constructive proof of Thm. 4.5.1 we try to find a monitorM such that the

(finite-state) monitored system (M×S) contains as many cycles as possible. The cycles together

with the constraint that the scheduler is weakly fair guarantee the existence of infinite traces. The

monotonicity of F and the recursive additive definition of the cost function cost guarantee that

the monitor that contains the most highest-value cycles will be cost optimal. One might argue

that Thm. 4.5.1 contains many (severe) restrictions. However, this is something unavoidable.

Cost-enforcement and cost-optimality depend on many functions that need to be optimized in

synchrony: there is no generic algorithm that will work for every (arbitrary) choice of functions.

On the other hand, a positive interpretation of Thm. 4.5.1, based on the previous discussion about

monotone functions, is that in (many) practical applications we have to deal with simple enough

functions, and thus we can construct (verifiable) optimal monitors.

229

Running example. Typically, when a monitor modifies the behavior of the system some cost

is incurred (e.g., the usability of the system decreases, computational resources are consumed).

For instance, in the running example, one way monitors can modify the behavior of the system

is by denying an access to a client. If we assume that each deny action incurs a cost of 1, then we

can define a function costD that associates with each trace the cost n, where n is the number of

denies that appear in the trace.

Moreover, let us assume that (1) F is Sup, and (2) the abstract scheduler τ follows the pattern(
[C1, . . . , Cn]; M

∗; S; M∗
)∞

as described in Section 4.2.4. Assuming we have two clients C1

and C2, our monitored system is Π = C1 ×C2 ×M × S. IfM isMDENY, then we refine τ to the

scheduler σMDENY ; dually, the scheduler for MPROB will be σMPROB . The probabilistic cost of the

monitored system withMDENY is supt∈traces(ΠMDENY)
(pcostσMDENY

(Ct)), and similarly forMPROB.

We first observe that with such a cost function, the maximal (i.e., best) reachable cost is 0,

meaning that no deny action is returned. It follows that the cost-optimal monitor never denies

any action, and, clearly, this monitor does not generally respect the requirement that at most one

client at a time should have access to a particular file.

Second, we observe that if we assume that C1 and C2 ask for a file after a denied request with

probability p1 and p2 respectively, with p1 < p2, thenC1 is less likely to ask again for a file which

has been denied. In this case, it is better to deny an access to C1 rather than to C2, in order to

limit the number of deny actions. Hence, with such a system, we haveMPROB ≤ MDENY.

Finally, observe that the last result is sound only under the assumption that schedulers σMDENY

and σMPROB are compatible with τ . If that was not the case, then σMDENY could starve C2 (or σMPROB

could starve C1). This would give MDENY an unfair advantage over MPROB, and we would have

as a result thatMDENY ≤ MPROB. Such unfair comparisons are ruled out by requiring schedulers

to be compatible.

230

N−step optimality. In practice, the risk (cost-benefit) analysis is a dynamic process: proba-

bilities for attacks to happen (arrival of inputs) are re-evaluated based on the current state of the

system (e.g., sudden publicity, or increase in the value of the company), costs might have changed

(e.g., the state of the art cryptographic protocols might require more computational resources),

and such changes affect the optimality of an enforcement system. Thm. 4.5.1 gives us a generic

description of what conditions are sufficient for constructing a cost-optimal monitor.

However, the assumption of having schedulers and cost functions that have valid information

about the future might be too ambitious. Next, we present a special case of the theorem where

we only have information about n−steps ahead in the future, where n ∈ N. Before we state the

modified theorem, we need to first adjust our basic definitions so they reason about the partial

knowledge that we may have.

Given a scheduler σ intuitively we construct a n−step scheduler σn by restricting the knowl-

edge that σ may have about the probabilities of actions to happen after an execution that has

length at most n. More formally:

Definition 28. Given a scheduler σ, an n−step scheduler σn is a function σn : execs∗(P) →

SubDisc(trans(P)) defined as:

• σn(e) = σ(e), if |traces(e)| ≤ n,

• supp(σn(e)) = ∅, otherwise.

Note that a n−step scheduler σn is still a scheduler but with less information than the orig-

inal scheduler σ. Thus, the definition of a measure of cone and trace remain the same as in

Section 4.2.2.

The definition of an n−step abstract scheduler follows that of a n−step scheduler:

Definition 29. Given an abstract scheduler τ over a signature S, an n−step abstract scheduler

τn is a function τn : (External(S))∗ → SubDisc(External(S)) defined as:

• τn(t) = τ(t), if |t| ≤ n,

231

• supp(τn(t)) = ∅, otherwise.

Given a cost function cost, a n−step cost function costnassigns a real number to every trace

over a signature S that has length at most n, and 0 otherwise. More formally:

Definition 30. Given a cost function cost over a signature S, a n−step cost function costn over

S is defined as

• costn(t) = cost(t), if |t| ≤ n,

• costn(t) = 0, otherwise.

We calculate the n−step probabilistic cost of a trace as described in Section 4.3, i.e., by

multiplying the probability of the trace with its cost. Note that when a trace has length larger than

n then its n−step probabilistic cost will be zero. Although we could have defined the (expected)

cost of such a trace to be undefined (e.g.,⊥) rather than a concrete value, we set up our definitions

in such a way that this value does not cause any conflicts when the expected costs of traces with

length less than n is also zero. In the alternative case we would have to adjust many definitions

and calculations, e.g., those of measures, with significant notational overhead.

Definition 31. Given a function F, we define the n−step restriction of F to be the restriction of

F to the traces that have length at most n, and write F ↾n.

Definition 32. Given a system S, a function F, a n−step cost function costn, two monitors M1

and M2 with Sig(M1) = Sig(M2), an n−step abstract scheduler τn over Sig(M1 × S), two

n−step schedulers σ1 (for M1 × S) and σ2 (for M2 × S) derivable from τn, and a well-order

� we say thatM2 is n−step less costly than a monitorM1 and writeM2 �n M1, if and only if

pcostF↾nσ2
(M2 × S)� pcostF↾nσ1

(M1 × S).

Definition 33. A monitor M is n−step cost optimal for a system S and a well order � if and

only if for all monitorsM ′ with Sig(M) = Sig(M ′),M �n M
′.

Now we are ready to state the equivalent of Thm. 4.5.1 for the case where our information

232

and knowledge is limited for just n−steps:

Theorem 4.5.2. Given a number n ∈ N and:

1. a finite-state system S,

2. a n− step cost function costn,

3. a n−step abstract scheduler τn, and

4. a function F,

we can construct a n−step cost optimal monitor for the standard ordering ≤ of real numbers.

Proof. One can (inefficiently) enumerate all possible values for traces that the system can exhibit

for n−steps and find the actions that themonitor needs to exhibit in order to be cost optimal. Since

the traces that the monitors needs to exhibit to be n−step optimal are finite (both in length and car-

dinality), one can easily build a monitor that exhibits those (finitely many) traces by interleaving

fresh states amongst each of those traces.

Note that a lot of the constraints of Thm. 4.5.1 have been relaxed. The lack of knowledge

arbitrarily far in the future can actually help us to constrain and enumerate the variables that

affect cost optimality and thus build an optimal monitor.

Although n−step cost-optimal monitors are practically relevant, they are limited in their ca-

pability to optimize the cost of the monitored system on a longer interval than they are supposed

to. For example one cannot iterate an n−step cost-optimal monitor and expect to have the same

results as using a (infinite-horizon) cost-optimal monitor.

233

4.6 Related Work

In Section 2.7 we discussed several previous formal models of run-time monitors that build on

the original model of run-time monitors, i.e., security automata [27]. Although these models are

richer and orthogonal revisions to security automata and related computational and operational

extensions, they maintain the same view of (enforceable) security policies: binary predicates over

sets of executions. In this chapter we take a richer view of security policies than binary predicates,

assigning costs and probabilities to traces and define cost-security policies and cost-enforcement,

which as shown in Section 4.4 is a strict extension of binary security policies and enforcement.

Ray and Ligatti introduced the notion of gray security policies [160]. Gray security policies

are similar to our cost security policies: they are extensions of security policies from predicates on

individual executions, to functions that assign real numbers to executions (and sets of executions).

Thus, similarly to our work, gray security policies allow for the quantification of security policies.

The main difference between our work and the work on gray security policies is the focus of the

meta-theoretical analysis. The work on gray security policies focuses on casting previous well-

known results in security policies (e.g., the decomposition of properties to safety properties and

liveness properties) in the context of the new quantitative notion of security policies. In contrast,

our work focuses on comparing the expected cost of different monitoring designs. Thus, besides

usingmeasure theory as the basis of our framework (which is necessary for assigning probabilities

to uncountable spaces [155]), we introduce concepts, such as abstract schedulers (Section 4.2.3),

that allow us to compare monitoring designs in a fair manner.

Drábik et al. introduced the notion of calculating the cost of an enforcement mechanism based

on a relatively simple enforcement model which does not include input/output actions or a de-

tailed calculation of the execution probabilities [157]. To some extent, the notion of cost security

policy defines a threshold characterising the maximal/minimal cost reachable, while taking the

234

probability of reaching this threshold into account. Such a notion of threshold is also used by

Cheng et al. where accesses are associated with a level of risk, and decisions are made accord-

ing to some predefined risk thresholds, without detailing how such policies can be enforced at

runtime [161]. In the context of runtime enforcement, Bielova and Massacci proposed to apply a

distance metrics to capture the similarity between traces, and we could consider the cost required

to obtain one trace from another as a distance metrics [162]. An important aspect of this work is

to consider that a property might not be locally respected, i.e., for a particular execution, as long

as the property holds globally. This possibility is also considered by Drabik et al. which quanti-

fies the tradeoff correctness/transparency for non-safety boolean properties [163]. Caravagna et

al. introduced the notion of lazy controllers, which use a probabilistic modelling of the system in

order to minimize the number of times when a system must be controlled, without considering

input/output interactions between the target and the environment as we do [164]. These lines of

work are in the scope of going towards a notion of quantitative enforcement where enforcement

mechanisms are quantitatively evaluated and decisions made using quantitative analysis, rather

than the binary adherence to a policy, in the context of process algebra [165].

Finally, the idea of optimal monitor is considered by Easwaran et al. in the context of soft-

ware monitoring, where correcting actions are associated with rewards and penalties within a

Directed Acyclic Graph, using dynamic programming to find the optimal solution [166]. Simi-

larly, Markov Decision Process (MDPs) can be used to model access control systems [167], and

the optimal policy can be derived by solving the corresponding optimisation problem. A poten-

tial lead for future work would therefore be to focus on Probabilistic I/O Automata (PIOA) that

correspond to MDPs (since PIOA subsume MDPs [168]), in order to reuse the computation of

optimal policy of the latter within the expressive framework of the former.

235

4.7 Conclusion

In this chapter we introduced a formal framework based on probabilistic I/O automata to model

and reason about interactive run-time monitors. In our framework we can formally reason about

probabilistic knowledge monitors have about their environment and combine it with cost infor-

mation to minimize the overall cost of the monitored system. We have used this framework to

(1) calculate expected costs of monitors (Section 4.3), (2) define cost security policies and cost

enforcement, richer notions of traditional definitions of security policies and enforcement [27]

(Section 4.4), and (3) order monitors according to their expected cost and show how to build an

optimal one (Section 4.5).

236

Chapter 5

Conclusion

Enforcing security policies and detecting attacks in practice requires the collaborative use of

a variety of security mechanisms such as firewalls, network-based intrusion detection systems,

host-based intrusion detection systems, intrusion prevention systems, netflow data analysis, spam

filters, antivirus software, and audit logs and tools [50]. Formal frameworks for modeling and

analyzing such security mechanisms are of great importance for both theoretical and practical rea-

sons. From a theoretical perspective, there are two main advantages. First, formal frameworks

for security mechanisms can be used to analyze the intrinsic limits of different types of security

mechanisms by characterizing the class of security policies that these mechanisms can enforce.

Such a characterization can lead to a taxonomy of security policies based on mechanisms’ formal

semantics [27]. Second, formal frameworks can be used to provide formal semantics to policy

specification languages that can be used to define our security goals and describe what are the

behaviors of the system, or the network, that are, and are not, allowed. From a practical perspec-

tive there are two main advantages. First, the knowledge of the classes of security policies that

different mechanisms can enforce can help security engineers to make sound and efficient design

decisions. For example a security engineer can choose the appropriate type of mechanisms to

237

enforce a given security policy, or reevaluate the given security goals if a policy is not enforce-

able with the security mechanisms available to the engineer. Second, formal frameworks can be

used in the verification of systems’ designs, and the formal semantics of security policy specifi-

cation languages can be used in the building of certified compilers which can generate efficient

mechanisms that provably enforce the given security policies.

Previous work introduced several formal frameworks for security mechanisms and character-

ized the policies enforceable by mechanisms modeled in these frameworks [27, 28, 29, 30, 120].

In this thesis we took some additional steps towards the characterization of security policies that

practical security mechanisms can enforce. We summarize our key contributions in Section 5.1.

However, the space of security policies and security mechanisms is very large and there are prac-

tical scenarios that cannot be modeled in existing frameworks, including the one presented in this

thesis. In Section 5.2 we discuss some potential future steps that can be taken towards expanding

the currently available characterization of clases of enforceable security policies.

5.1 Summary of Contributions

As outlined in Section 1, in this thesis we have made the following principal contributions.

In Chapter 2 we introduced a (basic) formal framework based on Input/Output automata that

can be used to model target applications, various types of monitors (e.g., partially mediating

ones), and the environment that the monitored targets operate. We also illustrated how different

monitors can be modeled in this framework. In our framework we extended previous definitions

of security policies to support more fine-grained reasoning of policy enforcement (e.g., enforce-

ment that requires monitors to enforce the security policy by modifying the intercepted traffic)

and we identified a set of upper bounds of policies that are enforceable by monitors that can

be modeled in our framework, namely input forgiveness, safety, and quiescent forgiveness. Fi-

238

nally, we demonstrated how to use our framework to derive new meta-theoretical results, such as

the comparison of enforcement capabilities of monitors with different monitoring interfaces and

the characterization of the class of security policies that monitors can enforce regardless of their

monitoring interface.

In Chapter 3 we extended the previous basic framework by introducing a framework that

allows modeling distributed systems with arbitrary architectures and distributed monitors. We

used our framework to characterize the security policies that are enforceable in asynchronous

and synchronous distributed systems. To characterize these policies we analyzed which central-

ized monitors can be simulated by distributed monitors. Specifically, we provided a blueprint for

decomposing centrally specified monitors to monitors that are distributed over a message-passing

network and enforce the same policies as the original centralized monitors. To illustrate how the

blueprint can be used to design such decomposition algorithms we described two different al-

gorithms that can be used to instantiate the blueprint. These two algorithms correspond to two

widely implemented types of distributed enforcement: centralized enforcement (where a single

monitored node in the distributed system makes all the enforcement decisions) and decentralized

enforcement (where multiple nodes in the distributed system are responsible for making enforce-

ment decisions). We then provided a characterization of the security policies that are enforceable

by monitors that operate in a hierarchical manner. Finally, we identified the constraints under

which monitors with simple capabilities (e.g., truncation automata) can be used in a cooperative

manner to simulate monitors with seemingly more capabilities (e.g., suppression automata).

Finally, in Chapter 4 we introduced a formal framework based on Probabilistic Input/Output

automata that enabled us to formally reason about the expected cost of different monitoring de-

signs. One of our key contributions was the concept of abstract schedulers which allows fair

comparison of systems, where a policy is enforced on a target by different monitors. Another

contribution was the definition of cost security policies and cost enforcement, richer notions of

239

(boolean) security policies and enforcement. Cost security policies assign a cost to each trace

allowing a richer classification of traces than just good or bad. We also showed how to encode

boolean security policies as cost security policies. Finally, we showed how to use our framework

to comparemonitor’s implementations andwe identified the sufficient conditions for constructing

cost-optimal monitors.

5.2 Future Work

This section describes some possibilities for extending our work in the future.

Models of systems. Previous formal frameworks focused on monitors and systems that could

be expressed in centralized models [27, 28, 29, 30]. Centralized models (e.g., Turing machines)

are not expressive enough to model and reason about key characteristics of distributed systems

such as interaction, concurrency and parallelism. In this thesis we extended previous work by

introducing a framework that allows expressing distributed systems and monitors. However,

there are systems whose properties of interest cannot be expressed in our framework because

distributed models are not sufficient to model these systems’ key characteristics. One such ex-

ample is time: real-time systems and monitors, e.g., security monitors for vehicles, need more

expressive frameworks than ours, e.g., frameworks based on Timed I/O Automata [33]. Another

example of a more expressive model that could serve as the basis for a formal framework of

enforcement mechanisms is Dynamic I/O Automata (DIOA) [146]. As we mentioned in Sec-

tion 3.7, DIOA could be used to model monitors that have the ability to generate new monitors

(i.e., automata) at run-time. This would be useful to model distributed enforcement mechanisms

that can dynamically generate new monitors in order to more efficiently handle large amounts of

traffic.

240

Finally, as we mentioned in Section 3.2, one aspect of distributed systems that we did not

investigate in this thesis is failures. There are different types of failures both for nodes (e.g.,

stopping and byzantine failures) and communication channels (e.g., message loss, message du-

plication, and message reordering). Similarly to applications making different assumptions about

the underlying timing model (i.e., synchronous or asynchronous – see Section 3.5) and thus corre-

sponding to different class of enforceable policies, applications may also make different assump-

tions about failures and thus it is important to have results for these different types of models as

well.

Models of enforcement mechanisms. Orthogonal to the modeling of systems is the model-

ing of security mechanisms with different monitoring and enforcement abilities. Although we

demonstrated how we can formalize some common security mechanisms (e.g., resource usage

monitors and intrusion detection systems) in our frameworks (see Chapter 2), there are secu-

rity mechanisms that cannot be (directly) expressed in our framework. One such example is

inlined reference monitors [82, 103, 104]. Inlined reference monitors are run-time monitors that

are inlined in the target application and have direct access to the state of the target application.

Although one could model such mechanisms in the shared memory model (see Section 3.4.6.1)

as two processes having access to a shared variable, where the shared variable represents the

memory of the monitored application, there are details that one needs to be careful, and formally

reason, about. For instance, if the part of the shared memory that the monitor keeps its state

at is accessible by the target application, then the target application could corrupt this state and

circumvent the monitor. Such a model would need (new) composition operators to define not

only how to compose a monitor with a target application (modeling the inlining process), but

also how to compose multiple monitored applications together. Moreover, it would have to be

proven that these composition operators preserve the non-circumvention property that a sound

241

inlining technique should have [103]. Work that is related to inlining models includes (1) moni-

toring algorithms that have been used for, e.g., taking consistent global snapshots and detecting

stable properties in distributed systems [1], and (2) the superposition operation in the Unity pro-

gramming language [169].

Security policies’ representations. In Chapter 2 we formally defined security policies as sets

of schedule modules, i.e., sets of sets of traces [27, 159]. In Chapters 3 and 4 we focused on

a specific class of policies, namely propreties [27, 30, 159]. Previous work has identified that

properties are not expressive enough to model some common security policies such as informa-

tion flow and real time availability [27, 159]. Thus, in addition to more expressive frameworks

for modeling systems and monitors, future work can focus on characterizing the enforcement of

such additional security policies by, e.g., distributed monitors.

Security policy specification languages. In Section 3.3.1 wementioned that previous work has

introduced a large number of specification languages that can be used to express (centralized)

security policies using preconditions and postconditions or, equivalently, centralized automata

(i.e., global monitors) [49, 95, 100, 103, 104, 105, 106, 107, 108, 109].

In this thesis, we used I/O automata (and PIOA) to model targets, monitors, and security

policies. There is a straightforward translation from the semantic framework of I/O automata to

the description of distributed algorithms using preconditions and effects (i.e, postconditions). In

fact, it is typical to use precondition and effects to describe I/O automata without distinguishing

between the two levels of description (i.e, semantic and syntactic) [1, 112]. Due to this fact, we

mentioned that our framework can serve as the basis for an attack specification language with

formally specified semantics. Although specification languages for I/O automata have already

been introduced in the literature [112, 113, 114], an interesting avenue for future research would

242

be to formalize such an attack specification language in a verification system (e.g., COQ [170]

or Isabelle/HOL [171]) so that properties of this language can be formally proven, and certified

compilers that generate efficient mechanisms that provably enforce a given policy can be built.

243

244

Bibliography

[1] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996. (doc-

ument), 2.1, 2.2, 2.3.1, 2.5.1, 2.5.1, 2, 3.2, 3.2, 3.2, 3.3.1, 3.4.1.1, 3.4.1.3, 2, 3.4.2, 3.4.3.1,

3.4.3.2, 3.4.4, 3.4.6, 3.4.6.1, 3.16, 3.17, 3.4.6.1, 3.4.6.1, 3.4.6.1, 3.4.6.1, 3.4.7, 3.4.7.1,

3.4.7.1, 3.4.7.1, 17, 3.4.6, 3.4.7.1, 3.4.7.3, 3.4.7.3, 18, 20, 3.5, 3.5.1, 3.5.1, 3.6, 3.8, 5.2,

5.2

[2] Seth Fiegerman. Yahoo says 500 million accounts stolen. CNNMoney, September 2016.

http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/. 1

[3] Jon M. Chang. Passwords and email addresses leaked in Kickstarter hack attack. ABC

News, February 2014. http://abcnews.go.com/Technology/passwords-email-

addresses-leakedkickstarter-hack/story?id=22553952. 1

[4] JosephBonneau. TheGawker hack: How amillion passwordswere lost. Light Blue Touch-

paper Blog, December 2010. http://www.lightbluetouchpaper.org/2010/12/15/

the-gawkerhack-how-a-million-passwords-were-lost/. 1

[5] Jose Pagliery. Cyber thieves siphon tax forms from ADP payroll data. CNNMoney, May

2016. http://money.cnn.com/2016/05/03/technology/adp-w2-forms-stolen/.

1

[6] Vodafone customers’ bank details ’accessed in hack’ company says. The Gurdian, Oc-

tober 2015. https://www.theguardian.com/business/2015/oct/31/vodafone-

245

http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/
http://abcnews.go.com/Technology/passwords-email-addresses-leakedkickstarter-hack/story?id=22553952
http://abcnews.go.com/Technology/passwords-email-addresses-leakedkickstarter-hack/story?id=22553952
http://www.lightbluetouchpaper.org/2010/12/15/the-gawkerhack-how-a-million-passwords-were-lost/
http://www.lightbluetouchpaper.org/2010/12/15/the-gawkerhack-how-a-million-passwords-were-lost/
http://money.cnn.com/2016/05/03/technology/adp-w2-forms-stolen/
https://www.theguardian.com/business/2015/oct/31/vodafone-customers-bank-details-accessed-in-hack-company-says
https://www.theguardian.com/business/2015/oct/31/vodafone-customers-bank-details-accessed-in-hack-company-says

customers-bank-details-accessed-in-hack-company-says. 1

[7] Gregory Wallace. Target credit card hack: What you need to know. CNNMoney, Decem-

ber 2013. http://money.cnn.com/2013/12/22/news/companies/target-credit-

card-hack/. 1

[8] Kevin McCoy. Cyber hack got access to over 700000 IRS accounts. USA To-

day, February 2016. http://www.usatoday.com/story/money/2016/02/26/cyber-

hack-gained-access-more-than-700000-irs-accounts/80992822/. 1

[9] Elizabeth Snell. Centene Healthcare Data BreachAffects 950K Patients. HealthITSecurity,

January 2016. http://healthitsecurity.com/news/centene-healthcare-data-

breach-affects-950k-patients. 1

[10] Tim Greene. Hackers compromise 1.8 million medical records from healthcare provider

Premera. Networked World, March 2015. http://www.networkworld.com/article/

2898497/security0/hackers-compromise-18-million-medical-records-

from-healthcare-provider-premera.html. 1

[11] Frank Gluck. 21st Century Oncology data breach prompts multiple lawsuits.

news-press.com, July 2016. http://www.news-press.com/story/news/

2016/07/22/21st-century-oncology-data-breach-prompts-multiple-

lawsuits/87386068/. 1

[12] Sam Frizell. What Leaked Emails Reveal About Hillary Clinton’s Campaign. Time,

October 2016. http://time.com/4523749/hillary-clinton-wikileaks-leaked-

emails-john-podesta/. 1

[13] Polly Mosendz. Wikileaks Continues Publicizing Emails Of CIA Chief John Bren-

nan. Newsweek, October 2015. http://www.newsweek.com/wikileaks-continues-

publicizing-emails-cia-chief-john-brennan-387316. 1

[14] Sam Biddle. More Embarrassing Emails: The Sony Hack B-Sides. Gawker,

246

https://www.theguardian.com/business/2015/oct/31/vodafone-customers-bank-details-accessed-in-hack-company-says
http://money.cnn.com/2013/12/22/news/companies/target-credit-card-hack/
http://money.cnn.com/2013/12/22/news/companies/target-credit-card-hack/
http://www.usatoday.com/story/money/2016/02/26/cyber-hack-gained-access-more-than-700000-irs-accounts/80992822/
http://www.usatoday.com/story/money/2016/02/26/cyber-hack-gained-access-more-than-700000-irs-accounts/80992822/
http://healthitsecurity.com/news/centene-healthcare-data-breach-affects-950k-patients
http://healthitsecurity.com/news/centene-healthcare-data-breach-affects-950k-patients
http://www.networkworld.com/article/2898497/security0/hackers-compromise-18-million-medical-records-from-healthcare-provider-premera.html
http://www.networkworld.com/article/2898497/security0/hackers-compromise-18-million-medical-records-from-healthcare-provider-premera.html
http://www.networkworld.com/article/2898497/security0/hackers-compromise-18-million-medical-records-from-healthcare-provider-premera.html
http://www.news-press.com/story/news/2016/07/22/21st-century-oncology-data-breach-prompts-multiple-lawsuits/87386068/
http://www.news-press.com/story/news/2016/07/22/21st-century-oncology-data-breach-prompts-multiple-lawsuits/87386068/
http://www.news-press.com/story/news/2016/07/22/21st-century-oncology-data-breach-prompts-multiple-lawsuits/87386068/
http://time.com/4523749/hillary-clinton-wikileaks-leaked-emails-john-podesta/
http://time.com/4523749/hillary-clinton-wikileaks-leaked-emails-john-podesta/
http://www.newsweek.com/wikileaks-continues-publicizing-emails-cia-chief-john-brennan-387316
http://www.newsweek.com/wikileaks-continues-publicizing-emails-cia-chief-john-brennan-387316

April 2015. http://gawker.com/more-embarrassing-emails-the-sony-hack-b-

sides-1698557943. 1

[15] Andy Greenberg. Hackers Remotely Kill a Jeep on the Highway — With Me in It.

Wired, July 2015. https://www.wired.com/2015/07/hackers-remotely-kill-

jeep-highway/. 1

[16] Lucas Mearian. Update: Chrysler recalls 1.4M vehicles after Jeep hack. Comput-

erworld, July 2015. http://www.computerworld.com/article/2952186/mobile-

security/chrysler-recalls-14m-vehicles-after-jeep-hack.html. 1

[17] Joe Davidson. Next cyberattack front could be your car. Washington Post,

May 2016. https://www.washingtonpost.com/news/powerpost/wp/2016/05/18/

next-cyberattack-front-could-be-your-car/. 1

[18] Christoph Steitz and Eric Auchard. German nuclear plant infected with computer

viruses operator says. Reuters, April 2016. http://www.reuters.com/article/us-

nuclearpower-cyber-germany-idUSKCN0XN2OS. 1

[19] Eduard Kovacs. Attackers Alter Water Treatment Systems in Utility Hack: Report. Secu-

rityweek, March 2016. http://www.securityweek.com/attackers-alter-water-

treatment-systems-utility-hack-report. 1

[20] John Leyden. Water treatment plant hacked chemical mix changed for tap supplies.

The Register, March 2016. http://www.theregister.co.uk/2016/03/24/water_

utility_hacked/. 1

[21] Michael B Kelley. The Stuxnet Attack On Iran’s Nuclear Plant Was ’Far More

Dangerous’ Than Previously Thought. Business Insider, November 2013.

http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-

previous-thought-2013-11. 1

[22] KimWillsher. French fighter planes grounded by computer virus. The Telegraph, February

247

http://gawker.com/more-embarrassing-emails-the-sony-hack-b-sides-1698557943
http://gawker.com/more-embarrassing-emails-the-sony-hack-b-sides-1698557943
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.computerworld.com/article/2952186/mobile-security/chrysler-recalls-14m-vehicles-after-jeep-hack.html
http://www.computerworld.com/article/2952186/mobile-security/chrysler-recalls-14m-vehicles-after-jeep-hack.html
https://www.washingtonpost.com/news/powerpost/wp/2016/05/18/next-cyberattack-front-could-be-your-car/
https://www.washingtonpost.com/news/powerpost/wp/2016/05/18/next-cyberattack-front-could-be-your-car/
http://www.reuters.com/article/us-nuclearpower-cyber-germany-idUSKCN0XN2OS
http://www.reuters.com/article/us-nuclearpower-cyber-germany-idUSKCN0XN2OS
http://www.securityweek.com/attackers-alter-water-treatment-systems-utility-hack-report
http://www.securityweek.com/attackers-alter-water-treatment-systems-utility-hack-report
http://www.theregister.co.uk/2016/03/24/water_utility_hacked/
http://www.theregister.co.uk/2016/03/24/water_utility_hacked/
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11

2009. http://www.telegraph.co.uk/news/worldnews/europe/france/4547649/

French-fighter-planes-grounded-by-computer-virus.html. 1

[23] Robert A. Guth, Daniel Machalaba. Computer Viruses Disrupt Railroad, and Air Traf-

fic. The Wall Street Journal, August 2003. http://www.wsj.com/articles/

SB106140797740336000. 1

[24] Mary Kay Mallonee. Hackers publish contact info of 20000 FBI employees. CNN, Febru-

ary 2016. http://www.cnn.com/2016/02/08/politics/hackers-fbi-employee-

info/. 1

[25] Leith Huffadine. Australian government told to ’harden up’ as it’s revealed Chinese

hackers target the defence force and other departments ’on a daily basis’. Daily

Mail Australia, August 2016. http://www.dailymail.co.uk/news/article-

3762761/Austrade-Defence-Science-Technology-Group-hacked-China-

cyber-attacks-sponsored-Beijing.html. 1

[26] Matt Bishop. Computer Security: Art and Science. Addison-Wesley Professional, 2002.

1, 2.1, 3.3.2

[27] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3:30–50,

February 2000. 1, 1, 1, 1, 2, 2.1, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 1, 9, 2.4.1, 2.6, 2.7, 2.8, 3.3.2,

3, 3.4.2, 1, 3.7, 3.8, 3.9, 3, 4.4, 4.4, 4.4, 4.6, 4.7, 5, 5.2, 5.2

[28] M. Viswanathan andM.Kim. Foundations for the run-timemonitoring of reactive systems:

Fundamentals of theMaC language. In International Conference on Theoretical Aspects of

Computing (ICTAC), volume 3407 of LNCS, pages 543–556, Guiyang, China, September

20-24 2004. 1, 5, 5.2

[29] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for en-

forcement mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006. 1, 2.4.1,

2.5.2, 2.6, 2.7, 3.3.2, 3.4.2, 1, 3.4.6.3, 5, 5.2

248

http://www.telegraph.co.uk/news/worldnews/europe/france/4547649/French-fighter-planes-grounded-by-computer-virus.html
http://www.telegraph.co.uk/news/worldnews/europe/france/4547649/French-fighter-planes-grounded-by-computer-virus.html
http://www.wsj.com/articles/SB106140797740336000
http://www.wsj.com/articles/SB106140797740336000
http://www.cnn.com/2016/02/08/politics/hackers-fbi-employee-info/
http://www.cnn.com/2016/02/08/politics/hackers-fbi-employee-info/
http://www.dailymail.co.uk/news/article-3762761/Austrade-Defence-Science-Technology-Group-hacked-China-cyber-attacks-sponsored-Beijing.html
http://www.dailymail.co.uk/news/article-3762761/Austrade-Defence-Science-Technology-Group-hacked-China-cyber-attacks-sponsored-Beijing.html
http://www.dailymail.co.uk/news/article-3762761/Austrade-Defence-Science-Technology-Group-hacked-China-cyber-attacks-sponsored-Beijing.html

[30] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety policies.

ACM Trans. Inf. Syst. Secur., 12(3):19:1–19:41, January 2009. 1, 1, 1, 2, 2.1, 2.3.1, 2.3.4,

2.3.4, 2.3.5, 1, 2.4.1, 9, 2.4.1, 2.5.2, 2.5.3, 2.6, 2.6, 2.7, 2.7, 2.8, 3.3.2, 3, 3.4.2, 1, 3.9, 4.4,

4.4, 5, 5.2, 5.2

[31] Michael Sipser. Introduction to the Theory of Computation. International Thomson Pub-

lishing, 1st edition, 1996. 1, 3.2

[32] Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-

sachusetts, 1994. 1

[33] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory of

Timed I/O Automata (Synthesis Lectures in Computer Science). Morgan & Claypool Pub-

lishers, 2006. 3, 5.2

[34] Jay Ligatti, Lujo Bauer, and David Walker. Enforcing non-safety security policies with

program monitors. In European Symposium on Research in Computer Security (ES-

ORICS), volume 3679, pages 355–373, 2005. 1, 2, 2.3.2, 2.6

[35] James P. Anderson. Computer security technology planning study. Technical Report ESD-

TR-73-51, Air Force Electronic Systems Division, 1972. 1

[36] Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti. Enforcing more with less:

Formalizing target-aware run-timemonitors. InProceedings of the 8th InternationalWork-

shop on Security and Trust Management, volume 7783 of Lecture Notes in Computer Sci-

ence, pages 17–32, 2013. 2, 1.1, 4.1, 7, 4.4, 4.4

[37] Timothy Fraser, Lee Badger, andMark Feldman. Hardening COTS Software with Generic

SoftwareWrappers. In Proceedings of the 1999 IEEE Symposium on Security and Privacy,

pages 2–16, 1999. 1, 2.1

[38] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis Ormandy,

Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A sandbox for portable,

249

untrusted x86 native code. In IEEE Symposium on Security and Privacy, pages 79–93.

IEEE, 2009. 1

[39] William Enck, Machigar Ongtang, Patrick Drew McDaniel, et al. Understanding android

security. IEEE security & privacy, 7(1):50–57, 2009. 1

[40] G. Robert Malan, David Watson, Farnam Jahanian, and Paul Howell. Transport and appli-

cation protocol scrubbing. In Proceedings of INFOCOM 2000, pages 1381–1390, 2000.

1, 4.1, 4.1

[41] Niels Provos. Improving host security with system call policies. In Proceedings of the

12th Conference on USENIX Security Symposium - Volume 12, SSYM’03, pages 257–272,

Berkeley, CA, USA, 2003. USENIX Association. 1

[42] William R Cheswick, Steven M Bellovin, and Aviel D Rubin. Firewalls and Internet

security: repelling the wily hacker. Addison-Wesley Longman Publishing Co., Inc., 2003.

1

[43] Elizabeth D Zwicky, Simon Cooper, and D Brent Chapman. Building internet firewalls.

O’Reilly Media, Inc., 2000. 1

[44] New Open Source Intrusion Detector Suricata Released. Slashdot, Decem-

ber 2009. https://linux.slashdot.org/story/09/12/31/2143250/New-Open-

Source-Intrusion-Detector-Suricata-Released. 1

[45] Gene H Kim and Eugene H Spafford. The design and implementation of tripwire: A file

system integrity checker. In Proceedings of the 2nd ACM Conference on Computer and

Communications Security, pages 18–29. ACM, 1994. 1

[46] Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the

13th USENIX Conference on System Administration, LISA ’99, pages 229–238, Berkeley,

CA, USA, 1999. USENIX Association. 1

[47] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna Sperotto,

250

https://linux.slashdot.org/story/09/12/31/2143250/New-Open-Source-Intrusion-Detector-Suricata-Released
https://linux.slashdot.org/story/09/12/31/2143250/New-Open-Source-Intrusion-Detector-Suricata-Released

and Aiko Pras. Flow monitoring explained: from packet capture to data analysis with

netflow and ipfix. IEEE Communications Surveys & Tutorials, 16(4):2037–2064, 2014. 1

[48] Justin Mason. Filtering spam with spamassassin. In HEANet Annual Conference, page

103, 2002. 1

[49] Giovanni Vigna, William Robertson, Vishal Kher, and Richard A. Kemmerer. A stateful

intrusion detection system for world-wide web servers. In Proceedings of the 19th Annual

Computer Security Applications Conference, ACSAC ’03, pages 34–43, Washington, DC,

USA, 2003. IEEE Computer Society. 1, 3.3.1, 5.2

[50] Michael Collins. Network Security Through Data Analysis. O’Reilly Media, 2014. 1,

2.3.2, 3.3, 2, 3.3.2, 3.4.3.2, 5

[51] Joshua Haines, Dorene Kewley Ryder, Laura Tinnel, and Stephen Taylor. Validation of

sensor alert correlators. IEEE Security and Privacy, 1(1):46–56, January 2003. 1, 3.3, 2

[52] Cristina Abad, Jed Taylor, Cigdem Sengul, William Yurcik, Yuanyuan Zhou, and Ken

Rowe. Log correlation for intrusion detection: A proof of concept. In Computer Security

Applications Conference, pages 255–264. IEEE, 2003. 1, 3.1, 3.8

[53] Yannis Mallios, Lujo Bauer, Dilsun Kirli Kaynar, Fabio Martinelli, and Charles Morisset.

Probabilistic cost enforcement of security policies. In Proceedings of the 9th International

Workshop on Security and Trust Management, volume 8203 of Lecture Notes in Computer

Science, pages 144–159, 2013. 1.1

[54] Yannis Mallios, Lujo Bauer, Dilsun Kaynar, Fabio Martinelli, and Charles Morisset. Prob-

abilistic cost enforcement of security policies. Journal of Computer Security, 23(6):759–

787, 2015. 1.1

[55] David A.Wagner. Janus: an approach for confinement of untrusted applications. Technical

Report UCB/CSD-99-1056, EECS, University of California, Berkeley, 1999. 2.1

[56] Tal Garfinkel. Traps and pitfalls: Practical problems in system call interposition based

251

security tools. In Network and Distributed Systems Security Symposium, volume 3, pages

163–176, 2003. 2.1, 2.1

[57] Robert N. M. Watson. Exploiting concurrency vulnerabilities in system call wrappers. In

Proceedings of the First USENIX Workshop on Offensive Technologies, WOOT ’07, pages

2:1–2:8, 2007. 2.1

[58] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and future

directions. ACM Comput. Surv., 28(4):626–643, December 1996. 2.1

[59] Jay Ligatti and Srikar Reddy. A theory of runtime enforcement, with results. In Computer

Security - ESORICS 2010, volume 6345 of Lecture Notes in Computer Science, pages 87–

100, 2010. 2.1, 2.3.1, 1, 2.4.1, 2.6, 2.7, 4.4

[60] Richard Gay, Heiko Mantel, and Barbara Sprick. Service automata. In Proceedings of

the 8th international conference on Formal Aspects of Security and Trust, pages 148–163,

2012. 2.1, 2.3.1, 2.7

[61] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algo-

rithms. In Proceedings ACM Symposium on Principles of Distributed Computing, pages

137–151, New York, NY, USA, 1987. ACM. 2.1, 2.2, 2.3.1

[62] Jerome H Saltzer and Michael D Schroeder. The protection of information in computer

systems. Proceedings of the IEEE, 63(9):1278–1308, 1975. 2.1

[63] M.Z. Kwiatkowska. Survey of fairness notions. Information and Software Technology,

31(7):371 – 386, 1989. 2.2, 2.5.3, 10

[64] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982. 2.2, 2.7

[65] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In IEEE Computer Security

Foundations Symposium, pages 51–65, 2008. 2.3.3

[66] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the 8th

European software engineering conference, pages 109–120, 2001. 2.5.1

252

[67] Hugues Chabot, Raphael Khoury, and Nadia Tawbi. Extending the enforcement power of

truncation monitors using static analysis. Computers and Security, 30(4):194 – 207, 2011.

2.5.2, 2.7

[68] Philip W. L. Fong. Access control by tracking shallow execution history. In Proceedings

of the 2004 IEEE Symposium on Security and Privacy, pages 43–55, 2004. 2.7

[69] Nataliia Bielova and Fabio Massacci. Do you really mean what you actually enforced?

International Journal of Information Security, 10(4):239–254, 2011. 2.7

[70] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential

processes. Journal of the ACM, 31:560–599, June 1984. 2.7

[71] Egor Dolzhenko, Jay Ligatti, and Srikar Reddy. Modeling runtime enforcement with

mandatory results automata. International Journal of Information Security, 14(1):47–60,

February 2015. 2.7

[72] FabioMartinelli and IlariaMatteucci. Throughmodeling to synthesis of security automata.

Electron. Notes Theor. Comput. Sci., 179:31–46, July 2007. 2.7

[73] David Basin, Ernst-Ruediger Olderog, and Paul E. Sevinc. Specifying and analyzing secu-

rity automata using CSP-OZ. In Proceedings ACM Symposium on Information, Computer

and Communications Security (ASIACCS), pages 70–81, 2007. 2.7

[74] David Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zălinescu. Enforceable security

policies revisited. ACM Trans. Inf. Syst. Secur., 16(1):3:1–3:26, June 2013. 2.7

[75] Cliff B. Jones. Tentative steps toward a development method for interfering programs.

ACM Transactions on Programming Languages and Systems (TOPLAS), 5(4):596–619,

1983. 2.7

[76] Dimitra Giannakopoulou, Corina S Pasareanu, and Jamieson M Cobleigh. Assume-

guarantee verification of source code with design-level assumptions. In Proceedings of

the 26th international conference on software engineering, pages 211–220. IEEE Com-

253

puter Society, 2004. 2.7

[77] Anupam Datta, Ante Derek, John C Mitchell, and Arnab Roy. Protocol composition logic

(pcl). Electronic Notes in Theoretical Computer Science, 172:311–358, 2007. 2.7

[78] Limin Jia, Shayak Sen, Deepak Garg, and Anupam Datta. A logic of programs with

interface-confined code. In 2015 IEEE 28th Computer Security Foundations Symposium,

pages 512–525. IEEE, 2015. 2.7

[79] Jamieson M Cobleigh, George S Avrunin, and Lori A Clarke. Breaking up is hard to

do: an investigation of decomposition for assume-guarantee reasoning. In Proceedings of

the 2006 international symposium on Software testing and analysis, pages 97–108. ACM,

2006. 2.7

[80] John Rushby. Formal verification of mcmillan’s compositional assume-guarantee rule.

Computer Science Laboratory SRI International, 2001. 2.7

[81] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: a retro-

spective. In Workshop on New security paradigms, pages 87–95, New York, NY, USA,

2000. ACM. 2.8, 3.9

[82] Kevin Hamlen. Security policy enforcement by automated program-rewriting. PhD thesis,

Cornell University, 2006. 2.8, 3.9, 4.4, 5.2

[83] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan, L. Todd Heber-

lein, Che lin Ho, Karl N. Levitt, Biswanath Mukherjee, Stephen E. Smaha, Tim Grance,

Daniel M. Teal, and Doug Mansur. Dids (distributed intrusion detection system) - motiva-

tion, architecture, and an early prototype. In In Proceedings of the 14th National Computer

Security Conference, pages 167–176, 1991. 3.1, 3.3, 3.3, 3.8

[84] JR Winkler. A unix prototype for intrusion and anomaly detection in secure networks. In

Proceedings of the 13th National Computer Security Conference, pages 115–124, 1990.

3.1, 3.8

254

[85] Harold S Javitz and Alfonso Valdes. The sri ides statistical anomaly detector. In Research

in Security and Privacy, 1991. Proceedings., 1991 IEEE Computer Society Symposium on,

pages 316–326. IEEE, 1991. 3.1, 3.8

[86] KathleenA Jackson, DavidHDuBois, andCathyAStallings. An expert system application

for network intrusion detection. Technical report, Los Alamos National Lab., NM (United

States), 1991. 3.1, 3.8

[87] Stuart Staniford-Chen, Steven Cheung, Richard Crawford, Mark Dilger, Jeremy Frank,

James Hoagland, Karl Levitt, Christopher Wee, Raymond Yip, and Dan Zerkle. Grids-a

graph based intrusion detection system for large networks. In Proceedings of the 19th

national information systems security conference, volume 1, pages 361–370. Baltimore,

1996. 3.1, 3.3, 3.3, 3.3, 3.6, 3.8

[88] Giovanni Vigna and Richard A Kemmerer. Netstat: A network-based intrusion detection

system. Journal of computer security, 7(1):37–71, 1999. 3.1, 3.6, 3.8

[89] HervéDebar andAndreasWespi. Aggregation and correlation of intrusion-detection alerts.

In International Workshop on Recent Advances in Intrusion Detection, pages 85–103.

Springer, 2001. 3.1, 3.6, 3.8

[90] Gregory B White, Eric A Fisch, and Udo W Pooch. Cooperating security managers: A

peer-based intrusion detection system. IEEE network, 10(1):20–23, 1996. 3.1, 3.8

[91] Jiahai Yang, Peng Ning, X Sean Wang, and Sushil Jajodia. Cards: A distributed system

for detecting coordinated attacks. In Information Security for Global Information Infras-

tructures, pages 171–180. Springer, 2000. 3.1, 3.4.3.1, 3.4.6.2, 3.5, 3.6, 3.8

[92] Peng Ning, Sushil Jajodia, and Xiaoyang Sean Wang. Abstraction-based intrusion detec-

tion in distributed environments. ACM Transactions on Information and System Security

(TISSEC), 4(4):407–452, 2001. 3.1, 1, 2, 4, 3.4.3.1, 3.4.6.2, 3.5, 3.5.2, 2, 3.6, 3.8

[93] Peng Ning, Sushil Jajodia, and Xiaoyang Sean Wang. Design and implementation of a de-

255

centralized prototype system for detecting distributed attacks. Computer Communications,

25(15):1374–1391, 2002. 3.1, 3.5, 3.6, 3.8

[94] Christopher Kruegel and Thomas Toth. Distributed pattern detection for intrusion detec-

tion. In Proceedings of the Network and Distributed System Security Symposium. Citeseer,

2002. 3.1, 3.3, 3.3, 3.3, 3.5, 3.6, 3.8

[95] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion detection and corre-

lation: challenges and solutions, volume 14. Springer Science & Business Media, 2004.

3.1, 3.3, 3.3, 3.3, 3.3.1, 3.3.1, 1, 3, 3.5, 3.5.2, 2, 3.6, 3.8, 5.2

[96] Steven M Bellovin. Distributed firewalls. Journal of Login, 24(5):37–39, 1999. 3.1, 3.6,

3.8

[97] Sotiris Ioannidis, Angelos D Keromytis, Steve M Bellovin, and Jonathan M Smith. Imple-

menting a distributed firewall. In Proceedings of the 7th ACM conference on Computer

and communications security, pages 190–199. ACM, 2000. 3.1, 3.8

[98] David Peleg. Distributed computing. SIAM Monographs on discrete mathematics and

applications, 5, 2000. 2, 3.2, 3.2, 3.2, 3.6

[99] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and

advanced topics, volume 19. John Wiley & Sons, 2004. 3.2, ??, 3.4.4, 12, 3.4.7.3, 3.6

[100] Koral Ilgun, Richard A Kemmerer, and Phillip A Porras. State transition analysis: A

rule-based intrusion detection approach. IEEE transactions on software engineering,

21(3):181–199, 1995. 3.3.1, 3.3.1, 1, 2, 5.2

[101] Maurice PHerlihy and JeannetteMWing. Linearizability: A correctness condition for con-

current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),

12(3):463–492, 1990. 3.3.1

[102] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 13(1):124–149, 1991. 3.3.1

256

[103] Úlfar Erlingsson. The inlined reference monitor approach to security policy enforcement.

PhD thesis, Cornell University, Ithaca, NY, USA, 2004. 3.3.1, 2, 3.4.6.3, 4.4, 5.2, 5.2

[104] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with polymer. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 305–314, New York, NY, USA, 2005. ACM. 3.3.1, 3.4.1.3, 2,

3.4.6.3, 3.9, 5.2, 5.2

[105] Irem Aktug and Katsiaryna Naliuka. Conspec – a formal language for policy specification.

Science of Computer Programming, 74(1-2):2 – 12, 2008. Special Issue on Security and

Trust. 3.3.1, 2, 3.9, 5.2

[106] Peng Ning, Yun Cui, and Douglas S Reeves. Constructing attack scenarios through cor-

relation of intrusion alerts. In Proceedings of the 9th ACM conference on Computer and

communications security, pages 245–254. ACM, 2002. 3.3.1, 5.2

[107] Frédéric Cuppens and Alexandre Miege. Alert correlation in a cooperative intrusion de-

tection framework. In IEEE Symposium on Security and Privacy, pages 202–215. IEEE,

2002. 3.3.1, 5.2

[108] Giovanni Vigna, Fredrik Valeur, and Richard A Kemmerer. Designing and implementing

a family of intrusion detection systems. ACM SIGSOFT Software Engineering Notes,

28(5):88–97, 2003. 3.3.1, 2, 5.2

[109] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel, and Richard A Kemmerer. Compre-

hensive approach to intrusion detection alert correlation. IEEETransactions on dependable

and secure computing, 1(3):146–169, 2004. 3.3.1, 3.4.3.2, 3.5.2, 2, 5.2

[110] R Sekar, Ajay Gupta, James Frullo, Tushar Shanbhag, Abhishek Tiwari, Henglin Yang,

and Sheng Zhou. Specification-based anomaly detection: a new approach for detecting

network intrusions. In Proceedings of the 9th ACM conference on Computer and commu-

nications security, pages 265–274. ACM, 2002. 3.3.1, 3, 3.3.2, 4.1

257

[111] Calvin Ko, Manfred Ruschitzka, and Karl Levitt. Execution monitoring of security-critical

programs in distributed systems: A specification-based approach. In IEEE Symposium on

Security and Privacy, pages 175–187. IEEE, 1997. 3.3.1

[112] Leen Helmink, Martin Paul Alexander Sellink, and Frits W Vaandrager. Proof-checking

a data link protocol. In International Workshop on Types for Proofs and Programs, pages

127–165. Springer, 1993. 3.3.1, 5.2

[113] Stephen J Garland and Nancy A Lynch. Using i/o automata for developing distributed

systems. Foundations of Component-Based Systems, 13:285–312, 2000. 3.3.1, 5.2

[114] Myla Archer, Hongping Lim, Nancy Lynch, Sayan Mitra, and Shinya Umeno. Specify-

ing and proving properties of timed i/o automata using tempo. Design Automation for

Embedded Systems, 12(1-2):139–170, 2008. 3.3.1, 5.2

[115] Sandeep Kumar. Classification and detection of computer intrusions. PhD thesis, Purdue

University, 1995. 1

[116] Prem Uppuluri and R Sekar. Experiences with specification-based intrusion detection.

In International Workshop on Recent Advances in Intrusion Detection, pages 172–189.

Springer, 2001. 3, 3.3.2, 4.1

[117] Tao Song, Calvin Ko, ChinyangHenry Tseng, Poornima Balasubramanyam, Anant Chaud-

hary, and Karl N Levitt. Formal reasoning about a specification-based intrusion detection

for dynamic auto-configuration protocols in ad hoc networks. In International Workshop

on Formal Aspects in Security and Trust, pages 16–33. Springer, 2005. 3, 3.3.2

[118] Robin Berthier and William H Sanders. Specification-based intrusion detection for ad-

vanced metering infrastructures. In Dependable Computing (PRDC), 2011 IEEE 17th Pa-

cific Rim International Symposium on, pages 184–193. IEEE, 2011. 3, 3.3.2, 4.1

[119] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming Wu,

M Frans Kaashoek, and Zheng Zhang. D3s: Debugging deployed distributed systems. In

258

NSDI, volume 8, pages 423–437, 2008. 4, 3.4.1.3, 2

[120] Fred Cohen. Computational aspects of computer viruses. Computers & Security, 8(4):297–

298, 1989. 3.3.2, 5

[121] Steven T Eckmann, Giovanni Vigna, and Richard A Kemmerer. Statl: An attack language

for state-based intrusion detection. Journal of computer security, 10(1, 2):71–103, 2002.

2

[122] Dingbang Xu and Peng Ning. Privacy-preserving alert correlation: A concept hierar-

chy based approach. In Proceedings of the 21st Annual Computer Security Applications

Conference, ACSAC ’05, pages 537–546, Washington, DC, USA, 2005. IEEE Computer

Society. 3.4.3.2

[123] Michael E Locasto, Janak J Parekh, Angelos DKeromytis, and Salvatore J Stolfo. Towards

collaborative security and p2p intrusion detection. In Proceedings from the Sixth Annual

IEEE SMC Information Assurance Workshop, pages 333–339. IEEE, 2005. 3.4.3.2

[124] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM

Transactions on Programming Languages and Systems (TOPLAS), 6(2):254–280, 1984.

3.4.4, 3.4.7.3, 3.6

[125] Fred B Schneider. Implementing fault-tolerant services using the state machine approach:

A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990. 3.4.4, 3.4.7.3

[126] Nancy A Lynch, Michael Merritt, and Ronald R Yager. Atomic transactions: in concurrent

and distributed systems. Morgan Kaufmann Publishers Inc., 1993. 3.5

[127] David L Mills. Internet time synchronization: the network time protocol. IEEE Transac-

tions on communications, 39(10):1482–1493, 1991. 3.5

[128] Andreas Bauer and Ylies Falcone. Decentralised ltl monitoring. In International Sympo-

sium on Formal Methods, pages 85–100. Springer, 2012. 3.5.2, 3.8

[129] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed

259

computations: In search of the holy grail. Distributed computing, 7(3):149–174, 1994.

3.5.2, 3.6, 3.8

[130] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In Pro-

ceedings of the 7th symposium on Operating systems design and implementation, pages

335–350. USENIX Association, 2006. 1, 3.6

[131] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-

gels. Dynamo: amazon’s highly available key-value store. ACM SIGOPS Operating Sys-

tems Review, 41(6):205–220, 2007. 1, 3.6

[132] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam Shah.

Serving large-scale batch computed data with project voldemort. In Proceedings of the

10th USENIX conference on File and Storage Technologies, pages 18–18. USENIX As-

sociation, 2012. 1, 3.6

[133] Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Goldberg. Attacking the

network time protocol. In Network and Distributed System Security Symposium, 2016. 2,

3.6

[134] Aanchal Malhotra and Sharon Goldberg. Attacking ntp’s authenticated broadcast mode.

ACM SIGCOMM Computer Communication Review, 46(1):12–17, 2016. 2, 3.6

[135] Richard P Lippmann, David J Fried, Isaac Graf, Joshua W Haines, Kristopher R Kendall,

David McClung, Dan Weber, Seth E Webster, Dan Wyschogrod, Robert K Cunningham,

et al. Evaluating intrusion detection systems: The 1998 darpa off-line intrusion detec-

tion evaluation. In DARPA Information Survivability Conference and Exposition, 2000.

DISCEX’00. Proceedings, volume 2, pages 12–26. IEEE, 2000. 2

[136] R Durst, T Champion, E Miller, L Spagnuolo, and B Witten. Testing and evaluating com-

puter intrusion detection systems. Communications of the ACM, 42(9):15–15, 1999. 2

260

[137] Phillip A Porras and Peter G Neumann. Emerald: Event monitoring enabling response

to anomalous live disturbances. In Proceedings of the 20th national information systems

security conference, pages 353–365, 1997. 3.6

[138] Ravi Prakash and Mukesh Singhal. Dependency sequences and hierarchical clocks: ef-

ficient alternatives to vector clocks for mobile computing systems. Wireless Networks,

3(5):349–360, 1997. 3.6

[139] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems.

Information Processing Letters, 39(1):11–16, 1991. 3.6

[140] Friedemann Mattern. Virtual time and global states of distributed systems. Parallel and

Distributed Algorithms, 1(23):215–226, 1989. 3.6

[141] Colin J Fidge. Timestamps in message-passing systems that preserve the partial ordering.

1988. 3.6

[142] Dana Angluin. Local and global properties in networks of processors. In Proceedings of

the twelfth annual ACM symposium on Theory of computing, pages 82–93. ACM, 1980.

3.6

[143] Jukka Suomela. Survey of local algorithms. ACM Computing Surveys (CSUR), 45(2):24,

2013. 3.6

[144] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free repli-

cated data types. In Symposium on Self-Stabilizing Systems, pages 386–400. Springer,

2011. 3.6

[145] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mechanisms for

run-time security policies. International Journal of Information Security, 4(1–2):2–16,

2005. 3.7, 3.7, 9, 4.5

[146] Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata, a formal model for

dynamic systems. In ACM Symposium on Principles of Distributed Computing, pages

261

314–316, New York, NY, USA, 2001. ACM. 23, 5.2

[147] Thierry Massart and Cédric Meuter. Efficient online monitoring of ltl properties for asyn-

chronous distributed systems. Université Libre de Bruxelles, Tech. Rep, 2006. 3.8

[148] Koushik Sen, Grigore Roşu, and Gul Agha. Online efficient predictive safety analysis

of multithreaded programs. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 123–138. Springer, 2004. 3.8

[149] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Efficient decentralized moni-

toring of safety in distributed systems. InProceedings of the 26th International Conference

on Software Engineering, pages 418–427. IEEE Computer Society, 2004. 3.8

[150] Ylies Falcone, Tom Cornebize, and Jean-Claude Fernandez. Efficient and generalized

decentralized monitoring of regular languages. In International Conference on Formal

Techniques for Distributed Objects, Components, and Systems, pages 66–83. Springer,

2014. 3.8

[151] Christian Colombo and Yliès Falcone. Organising ltl monitors over distributed systems

with a global clock. In International Conference on Runtime Verification, pages 140–155.

Springer, 2014. 3.8

[152] Menna Mostafa and Borzoo Bonakdarpour. Decentralized runtime verification of ltl

specifications in distributed systems. In Parallel and Distributed Processing Symposium

(IPDPS), 2015 IEEE International, pages 494–503. IEEE, 2015. 3.8

[153] Joseph Y Halpern and YoramMoses. Knowledge and common knowledge in a distributed

environment. Journal of the ACM (JACM), 37(3):549–587, 1990. 3.8

[154] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira,

and Roberto Segala. Task-structured probabilistic I/O automata. Technical Report MIT-

CSAIL-TR-2006-060, MIT, 2006. 4, 1, 4.2, 4.2.2, 4.2.2, 3, 7

[155] R. Canetti, Ling Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala.

262

Task-structured probabilistic i/o automata. In Proceedings of 8th International Workshop

on Discrete Event Systems, pages 207–214, 2006. 4, 1, 4.2, 7, 4.6

[156] Thomas Ptacek, Timothy Newsham, and Homer J. Simpson. Insertion, evasion, and denial

of service: Eluding network intrusion detection. Technical report, DTIC Document, 1998.

4.1

[157] Peter Drábik, Fabio Martinelli, and Charles Morisset. Cost-aware runtime enforcement of

security policies. In Proceedings of the 8th International Workshop on Security and Trust

Management (STM 2012), pages 1–16, 2013. 4.1, 4.3, 4.6

[158] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative lan-

guages. In Proceedings of the 17th International Conference on Computer Science Logic

(CSL), pages 385–400, 2008. 4.3

[159] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur.,

18(6):1157–1210, September 2010. 4.4, 5.2

[160] Donald Ray and Jay Ligatti. A theory of gray security policies. In Proceedings of the

European Symposium on Research in Computer Security (ESORICS), September 2015.

4.6

[161] Pau-Chen Cheng, Pankaj Rohatgi, Claudia Keser, Paul A. Karger, Grant M. Wagner, and

Angela Schuett Reninger. Fuzzy multi-level security: An experiment on quantified risk-

adaptive access control. In Proceedings of the 2007 IEEE Symposium on Security and

Privacy, pages 222–230, 2007. 4.6

[162] N. Bielova and F. Massacci. Predictability of enforcement. In Proceedings of the Inter-

national Symposium on Engineering Secure Software and Systems, pages 73–86, 2011.

4.6

[163] Peter Drábik, Fabio Martinelli, and Charles Morisset. A quantitative approach for inexact

enforcement of security policies. In Proceedings of the 15th international conference on

263

Information Security, ISC’12, pages 306–321, 2012. 4.6

[164] Giulio Caravagna, Gabriele Costa, and Giovanni Pardini. Lazy security controllers. In

Proceedings of the 8th International Workshop on Security and Trust Management (STM

2012), pages 33–48, 2013. 4.6

[165] Fabio Martinelli, Ilaria Matteucci, and Charles Morisset. From qualitative to quantitative

enforcement of security policy. In Proceedings of the 6th international conference on

Mathematical Methods, Models and Architectures for Computer Network Security: com-

puter network security, MMM-ACNS’12, pages 22–35, 2012. 4.6

[166] Arvind Easwaran, Sampath Kannan, and Insup Lee. Optimal control of software ensuring

safety and functionality. Technical Report MS-CIS-05-20, University of Pennsylvania,

2005. 4.6

[167] Fabio Martinelli and Charles Morisset. Quantitative access control with partially-

observable markov decision processes. In Proceedings of the second ACM conference

on Data and Application Security and Privacy, CODASPY ’12, pages 169–180, 2012. 4.6

[168] Mariëlle Stoelinga. An introduction to probabilistic automata. Bulletin of the EATCS,

78(176-198):2, 2002. 4.6

[169] Jayadev Misra and KM Chandy. Parallel program design: a foundation. Addison-W esley,

1988. 5.2

[170] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:

Coq’Art: the calculus of inductive constructions. Springer Science & Business Media,

2013. 5.2

[171] Tobias Nipkow, Lawrence C Paulson, andMarkusWenzel. Isabelle/HOL: a proof assistant

for higher-order logic, volume 2283. Springer Science & Business Media, 2002. 5.2

264

	1 Introduction
	1.1 Dissertation Structure and Contributions

	2 Target-aware Enforcement
	2.1 Introduction
	2.2 I/O Automata
	2.3 Specifying Policies, Targets, and Monitors
	2.3.1 Modeling Targets and Monitors with I/O automata
	2.3.2 Modeling Monitoring Decisions with I/O automata
	2.3.3 Security Policies
	2.3.4 Security, Truncation, Suppression, and Edit Automata
	2.3.5 Translating Security and Edit Automata to I/O automata
	2.3.6 Discussion

	2.4 Policy Enforcement
	2.4.1 Enforcement
	2.4.2 Comparing Enforcement Definitions

	2.5 Generally Enforceable Policies
	2.5.1 Auxiliary Definitions
	2.5.2 Upper Bounds of Enforceable Policies
	2.5.3 Lower Bounds of Transparently Enforceable Policies

	2.6 Target-specifically Enforceable Policies
	2.7 Related Work
	2.8 Conclusion

	3 Distributed Enforcement
	3.1 Introduction
	3.2 Differences Between Centralized and Distributed Systems
	3.3 Multi-step and Distributed Attacks
	3.3.1 Multi-step Attack Specification Using Preconditions and Postconditions
	3.3.2 Theoretical and Practical Limitations of Attack Detection Using State-transition-based Signatures

	3.4 Asynchronous Enforceability
	3.4.1 Definitions
	3.4.1.1 Modeling Distributed Systems
	3.4.1.2 Modeling Monitored Distributed Systems
	3.4.1.3 Policies and Enforcement

	3.4.2 Reduction to Decomposability
	3.4.3 Basic Decomposition
	3.4.3.1 Deterministic Automata
	3.4.3.2 Non-Deterministic Automata

	3.4.4 A Blueprint for Decomposition Algorithms
	3.4.5 Transformation of Global Monitors to Distributed Monitors
	3.4.5.1 Input reordering automata

	3.4.6 Transformation of Distributed Monitors to Distributed Shared Memory Monitors
	3.4.6.1 Asynchronous Shared Memory
	3.4.6.2 Monotonicity
	3.4.6.3 Input Reordering and Causality Assumptions
	3.4.6.4 Algorithms for Transforming Distributed Monitors to Distributed Shared Memory Monitors

	3.4.7 Transformation of Distributed Shared Memory Monitors to Distributed Message-Passing Monitors
	3.4.7.1 Atomic Objects
	3.4.7.2 Substitution of Shared Variables by Atomic Objects in Distributed Shared Memory Monitors
	3.4.7.3 Transformation from the Shared Memory Model to the Network Model

	3.5 Synchronous Enforceability
	3.5.1 Background (Synchronous Networks)
	3.5.2 Decentralize Monitors in Synchronous Networks

	3.6 Hierarchical Enforceability
	3.7 Distributed Security Automata
	3.8 Related Work
	3.9 Conclusions

	4 Probabilistic-Cost Enforcement
	4.1 Introduction
	4.2 Background
	4.2.1 Preliminaries
	4.2.2 Probabilistic I/O Automata
	4.2.3 Abstract Schedulers
	4.2.4 Running Example Modeled Using PIOA

	4.3 Probabilistic Cost of Automata
	4.4 Cost Security Policy Enforcement
	4.5 Cost Comparison
	4.6 Related Work
	4.7 Conclusion

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Future Work

	Bibliography

