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Abstract

We study several problems in discrete geometry and extremal combinatorics.

Discrete geometry studies the combinatorial properties of finite sets of simple

geometric objects. One theme of the field is geometric Ramsey theory. Given m

geometric objects, we want to select a not too small subset forming a configura-

tion that is “regular” in some sense.

The first problem that we study is a colored variant of the point selection problem

in discrete geometry. Given d+1 disjoint n-point sets, P
0

, . . . , P
d

, in Rd, a colorful

simplex is the convex hull of d+1 points each of which comes from a distinct P
i

.

We establish a “positive-fraction theorem” that asserts the existence of a point

common to at least 2d

(d+1)(d+1)!

nd+1 colorful simplices.

Extremal combinatorics studies the maximum or minimum size of discrete struc-

tures under given constraints. For a graph H, define the Turán number ex(n,H)

as the maximum number of edges that an H-free graph on n vertices can have.

When H is bipartite, the problem of pinning down the order of magnitude of

ex(n,H) remains in general as one of the central open problems in combina-

torics.

The second and the third problems respectively consider the Tuán number for

two classes of graphs: cycles of even length and complete bipartite graphs. For

cycles of even length C
2k

, we show that for ex(n,C
2k

)  80
p
k log k·n1+1/k+O(n).

For complete bipartite graphs K
s,t

, motivated by the algebraic constructions of

the extremal K
s,t

-free graphs, we restrict our attention algebraically constructed

graphs. We conjecture that every algebraic hypersurface that gives rise to a K
s,t

-

free graph is equivalent, in a suitable sense, to a hypersurface of low degree. We

establish a version of this conjecture for K
2,2

-free graphs.
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Chapter 1

Introduction

Discrete geometry studies the combinatorial properties of finite sets of points, lines, circles,

planes, or other simple geometric objects. For example, one can ask, “what is the maximum

number of incidences between m points and n lines?”, or “what is the minimum possible

number of distinct distances occurring among n points in the plane?”. We refer the interested

readers to the book of Matoušek [Mat02].

One theme of the field is geometric Ramsey theory. Given m geometric objects, we

want to select a not too small subset forming a configuration that is “regular” in some

sense. In many cases, we obtain “positive-fraction theorems”: the regular configuration has

size at least ⌦(m). Consider n points in Rd in general position, and draw all the m =
�

n

d+1

�

simplices with vertices at the given points. The point selection problem asks for a point of Rd

common to as many simplices as possible. In the early eighties, Bárány [Bár82] established

a “positive-fraction theorem” that asserts the existence of a point common to at least c
d

·m
of these simplices, where c

d

> 0 is a constant depending only on d. Gromov [Gro10] made a

major breakthrough in improving the lower bound of c
d

by introducing a topological proof

method. Later Krasev [Kar12] found a very short and elegant proof of Gromov’s bound.

The problem that we study in Chapter 2 is a colored variant of the point selection

problem. Given d+1 disjoint n-point sets, P
0

, . . . , P
d

, in Rd, a colorful simplex is the convex

hull of d+1 points each of which comes from a distinct P
i

. The colored point selection problem

asks for a point of Rd covered by at least c0
d

· nd+1 of the colorful simplices. As it generalizes

the original point selection problem, one can show that c
d

 c0
d

. Karasev [Kar12] indeed

proved that c0
d

� 1

(d+1)!

. Based on his method that combines probabilistic and topological

arguments, we improve his result to c0
d

� 2d

(d+1)(d+1)!

matching Gromov’s bound for c
d

.

Extremal combinatorics studies the maximum or minimum size of discrete structures

under given constraints. The basic statement of extremal combinatorics is Mentel’s theo-

rem [Man07], proved in 1907, which states that any graph on n vertices with no triangle
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contains at most n2/4 edges. The natural generalization of this theorem to clique is proved

by Turán [Tur41] in 1941. Turán’s theorem states that, on a given vertex set, the graph with

the most edges with no clique of size t is the complete and balanced (t � 1)-partite graph,

in that the part sizes are as equal as possible.

For a graph F , define the Turán number ex(n, F ) as the maximum number of edges that

a graph on n vertices can have without containing a copy of F . For general graphs F , we

still do not known how to compute the Turán number exactly, but if we are satisfied with an

approximate answer, the theory becomes quite simple: Erdős and Stone [ES46] showed in

1946 that if the chromatic number �(H) = t, then ex(n,K
r

) 
�
1� 1

t�1

� �
n

2

�
+ o(n2). When

F is not bipartite, this gives asymptotic result for the Turán number. When F is bipartite,

the problem of pinning down the order of magnitude of ex(n, F ) remains in general as one

of the central open problems in combinatorics. Most of the study of ex(n, F ) for bipartite F

has been concentrated on trees, complete bipartite graphs, and cycles of even length.

We address the cycles of even length C
2k

in Chapter 3. A general bound of ex(n,C
2k

) 
�
k

· n1+1/k + O(n), for some unspecified constant �
k

, was asserted by Erdős [Erd64, p.33].

The first proof was by Bondy and Simonovits [BS74, Lemma 2], who showed the bound for

�
k

= 20k. This was improved by Verstraëte [Ver00] to �
k

= 8(k�1) and by Pikhurko [Pik12]

to �
k

= k � 1. Pikhurko asked whether lim
k!1 �

k

/k can be 0. Inspired by the proof of

Pikhurko, we answer this question in the positive by improving �
k

to 80
p
k log k.

In the final chapter, Chapter 4, we further study the Turán number for complete bipartite

graphs K
s,t

. So which graphs are K
s,t

-free with a maximum number of edges? The question

was considered by Füredi in his unpublished manuscript [Für88] asserting that every K
2,2

-

free graph with q vertices (for q � q
0

) and 1

2

q(q + 1)2 edges is obtained from a projective

plane via a polarity with q + 1 absolute elements. Motivated by the algebraic constructions

that match the upper bounds in the cases that ex(n,K
s,t

) has been solved asymptotically, we

restrict our attention to algebraic bipartite graphs defined over algebraically closed fields. We

conjecture that every algebraic hypersurface that gives rise to a K
s,t

-free graph is equivalent,

in a suitable sense, to a hypersurface of low degree. We establish a version of this conjecture

for K
2,2

-free graphs.

In the following chapters, backgrounds and motivations of the problems will be discussed

in more details in their own introductions.
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Chapter 2

A slight improvement to the colored

Bárány’s theorem

2.1 Introduction

Let P ⇢ Rd be a set of n points. Every d + 1 of them span a simplex, for a total of
�

n

d+1

�

simplices. The point selection problem asks for a point contained in as many simplices as

possible. Boros and Füredi [BF84] showed for d = 2 that there always exists a point in R2

contained in at least 2

9

�
n

3

�
� O(n2) simplices. A short and clever proof of this result was

given by Bukh [Buk06]. Bárány [Bár82] generalized this result to higher dimensions:

Theorem 2.1 (Bárány [Bár82]). There exists a point in Rd that is contained in at least

c
d

�
n

d+1

�
�O(nd) simplices, where c

d

> 0 is a constant depending only on the dimension d.

This general result, the Bárány’s theorem, is also known as the first selection lemma. We

will henceforth denote by c
d

the largest possible constant for which the Bárány’s theorem

holds true. Bukh, Matoušek and Nivasch [BMN10] used a specific construction called the

stretched grid to prove that the constant c
2

= 2

9

in the planar case found by Boros and

Füredi [BF84] is the best possible. In fact, they proved that c
d

 d!

(d+1)

d . On the other hand,

Bárány’s proof in [Bár82] implies that c
d

� (d + 1)�d, and Wagner [Wag03] improved it to

c
d

� d

2
+1

(d+1)

d+1 .

Gromov [Gro10] further improved the lower bound on c
d

by topological means. His

method gives c
d

� 2d

(d+1)(d+1)!

. Matoušek and Wagner [MW14] provided an exposition of the

combinatorial component of Gromov’s approach in a combinatorial language, while Karasev

[Kar12] found a very elegant proof of Gromov’s bound, which he described as a “decoded

and refined” version of Gromov’s proof.
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The exact value of c
d

has been the subject of ongoing research and is unknown, except for

the planar case. Basit, Mustafa, Ray and Raza [BMRR10] and successively Matoušek and

Wagner [MW14] improved the Bárány’s theorem in R3. Král’, Mach and Sereni [KMS12]

used flag algebras from extremal combinatorics and managed to further improve the lower

bound on c
3

to more than 0.07480, whereas the best upper bound known is 0.09375.

However, in this chapter, we are concerned with a colored variant of the point selection

problem. Let P
0

, . . . , P
d

be d + 1 disjoint finite sets in Rd. A colorful simplex is the convex

hull of d + 1 points each of which comes from a distinct P
i

. For the colored point selection

problem, we are concerned with the point(s) contained in many colorful simplices. Karasev

proved:

Theorem 2.2 (Karasev [Kar12]). Given a family of d+ 1 absolutely continuous probability

measures m = (m
0

, . . . ,m
d

) on Rd, an m-simplex1 is the convex hull of d+1 points v
0

, . . . , v
d

with each point v
i

sampled independently according to probability measure m
i

. There exists

a point of Rd that is contained in an m-simplex with probability p
d

� 1

(d+1)!

. In addition, if

two probability measures coincide, then the probability can be improved to p
d

� 2d

(d+1)(d+1)!

.

By a standard argument which we will provide immediately, a result on the colored point

selection problem follows:

Corollary 2.3. If P
0

, . . . , P
d

each contains n points, then there exists a point that is con-

tained in at least 1

(d+1)!

· nd+1 colorful simplices.

Our result drops the additional assumption in theorem 2.2, hence improves corollary 2.3:

Theorem 2.4. There is a point in Rd that belongs to an m-simplex with probability p
d

�
2d

(d+1)(d+1)!

.

Corollary 2.5. There exists a point that is contained in at least 2d

(d+1)(d+1)!

· nd+1 colorful

simplices.

Proof of corollary 2.5 from the Theorem 2.4. Given d+1 sets P
0

, . . . , P
d

in Rd each of which

contains n points. Let  : Rd ! R be the bump function defined by  (x
1

, . . . , x
d

) =
Q

d

i=1

 (x
i

), where  (x) = e�1/(1�x

2
)

1|x|<1

, and set  
n

(x
1

, . . . , x
d

) = nd (nx
1

, . . . , nx
d

) for

n 2 N. It is a standard fact that  and  
n

are absolutely continuous probability measures

supported on [�1, 1]d and [�1/n, 1/n]d respectively.

For each n 2 N and 0  k  d, definem(n)

k

(x) := 1

n

P
p2Pk

 
n

(x�p) for x 2 Rd. Note that

m(n)

k

is an absolutely continuous probability measure supported on the Minkowski sum of P
k

1An m-simplex is actually a simplex-valued random variable.
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Figure 2.1: 3 red points, 3 green points and 3 blue points are placed in the plane. The point

marked by a square is contained in 6 (= 2

9

· 33) colorful triangles.

and [�1/n, 1/n]d. Let m(n) be the family of d + 1 probability measures m(n)

0

, . . . ,m(n)

d

. By

the Theorem 2.4, there is a point p(n) of Rd that belongs to an m

(n)-simplex with probability

at least 2d

(d+1)(d+1)!

.

Because no point in a certain neighborhood of infinity is contained in any m

(n)-simplex,

the set {p(n) : n 2 N} is bounded, and consequently the set has a limit point p. Suppose

p is contained in N colorful simplices. Let ✏ > 0 be the distance from p to all the colorful

simplices that do not contain p. Choose n large enough such that 1/n⌧ ✏ and
��p(n) � p

��⌧ ✏.

By the choice of n, if p is not contained in a colorful simplex spanned by v
0

, . . . , v
d

, then

p(n) is not contained the convex hull of v0
0

, . . . , v0
d

for all v0
i

2 v
i

+ [�1/n, 1/n]d. This implies

that the probability that p(n) is contained in an m

(n)-simplex is at most N

n

d+1 . Hence p is the

desired point contained in N � 2d

(d+1)(d+1)!

· nd+1 colorful simplices.

Readers who are familiar with Karasev’s work [Kar12] would notice that our proof of the

Theorem 2.4 heavily relies on his arguments. The author is deeply in debt to him.

2.2 Proof of the Theorem 2.4

In this section, we provide the proof of the Theorem 2.4. The topological terms in the proof

are standard, and can be found in [Mat03]. In addition to the notion of an m-simplex, in the

proof, we will often refer to an (m
k

, . . . ,m
d

)-face which means the convex hull of d� k + 1

points v
k

, . . . , v
d

with each point v
i

sampled independently according to probability measure

m
i

. An m-simplex and an (m
k

, . . . ,m
d

)-face are both set-valued random variables.

Proof of the Theorem 2.4. To obtain a contradiction, we suppose that for any point v in

Rd, the probability that v belongs to an m-simplex is less than p
d

:= 2d

(d+1)(d+1)!

. Since this

5



Figure 2.2: The bird’s-eye view of a triangulation of S2 with a 2-simplex containing 1 and

the cone over part of the triangulation.

probability, as a function of point v, is continuous and uniformly tends to 0 as v goes to

infinity, there is an ✏ > 0 such that v is contained in an m-simples with probability at most

p
d

� ✏ for all v in Rd.

Let Sd := Rd [ {1} be the one-point compactification of the Euclidean space Rd. Take

� = ✏/d. Choose a finite triangulation2 T of Sd with one of the d-simplices containing 1
such that for 0 < k  d, any k-face of T intersects an (m

k

, . . . ,m
d

)-face with probability less

than � and that the measure of any d-face of T under (m
d�1

+m
d

) /2 is less than �. This

can be done by taking a su�ciently fine triangulation of S2 with one d-simplex having 1 in

its relative interior.

We use cone(·) as the cone functor3 with apex O. A triangulation T of Sd naturally

extends to a triangulation cone(T ) of cone(Sd). We denote the k-skeleton4 of T and cone(T )

by T k and cone(T )k respectively.

We are going to define a continuous map f : cone(T )d ! Sd. Put f(x) = x for all

x 2 Sd = kT k ⇢
��cone(T )d

��, and set f(O) =1. We proceed to define f on cone(�) for all

2A triangulation T of a topological space X is a simplicial complex K, homeomorphic to X,

together with a homeomorphism h : kKk ! X. Since the finite triangulation of interest is an

extension of the triangulation of a d-simplex X in Rd and h is an identity map, we will freely use

topological notions such as “a k-face (as a subset of Sd)” instead of “the image of a k-face in K

under h”. With such abuse of language, we can avoid going back and forth between the simplicial

complex and the topological space.
3The cone over a space X is the quotient space cone(X) := (X ⇥ [0, 1]) / (X ⇥ {1}). The apex

is the equivalence class {(x, 1) : x 2 X}.
4The k-skeleton of a simplicial complex � consists of all simplices of � of dimension at most k.

6



the k-faces � of T inductively on dimension k of � while we maintain the property that the

image of the boundary of cone(�) under f , that is f(@cone(�)), intersects an (m
k

, . . . ,m
d

)-

face with probability at most (k + 1)!(p
d

� ✏ + k�). We say f is economical over a k-face

� of T d�1 if f and � satisfy the above property. Unlike Karasev [Kar12], our inductive

construction of f follows the same pattern until k = d � 2 instead of d � 1. The main

innovation of this proof is a di↵erent construction for k = d� 1, which enables us to remove

the additional assumption in theorem 2.2.

Note that for any 0-face � in T , f(@cone(�)) = f({�, O}) = {�,1}. According to the

assumption at the beginning of the proof, f(@cone(�)) intersects an (m
0

, . . . ,m
d

)-face, that

is, an m-simplex, with probability at most p
d

� ✏. Therefore f is economical over 0-faces of

T . This finishes the first step.

Suppose f is already defined on cone(T )k and it is economical over k-faces of T . We

are going to extend the domain of f to cone(T )k+1. Indeed, we only need to define f on

cone(�) for every k-face � of T .

Take any k-face � of T . Suppose convex hull of v
k

, . . . , v
d

, denoted by conv(v
k

, . . . , v
d

),

is an (m
k

, . . . ,m
d

)-face. Notice that the following statements are equivalent:

1. f(@cone(�)) intersects conv(v
k

, . . . , v
d

);

2. for some v 2 f(@cone(�)), the ray with initial point v in the direction vv
k

v intersects

conv(v
k+1

, . . . , v
d

).

We call the union of such rays the shadow of f(@cone(�)) centered at v
k

. Since f is economical

over �, the probability for an (m
k

, . . . ,m
d

)-face to meet f(@cone(�)) is at most (k+1)!(p
d

�
✏ + k�), and so there exists v�

k

2 Rd such that the shadow of f(@cone(�)) centered at v�
k

intersects conv(v
k+1

, . . . , v
d

) with probability at most (k + 1)!(p
d

� ✏+ k�).

Now, we define f on cone(�). First, let g be the homeomorphism from cone(�) onto

the cone over @cone(�) with apex c such that g is an identity on @cone(�). This can be

done because cone(�) is homeomorphic to a (k + 1)-simplex � and it is easy to find a

homeomorphism from � to cone(@�) that keeps @� fixed.

e
0

e
1

e
0

e
1

e
0

e
1

c
e
0

e
1

c

Figure 2.3: An illustration of an 1-simplex �, @�, cone(@�) and a homeomorphism from �

to cone(@�).

Next, note that every point w in cone(�) except c is on a line segment [v, c) for a unique

point v on @cone(�). If t = vw/wc 2 [0,1), then put h(w) = vf(v)+t·vv�
k

f(v). In addition,

7



set h(c) =1. The function h maps [v, c) onto [f(v), v�
k

) linearly and then takes the inversion

centered at v�
k

with radius v�
k

f(v) so that [f(v), v�
k

) gets mapped onto the ray with the initial

point f(v) in the direction vv�
k

f(v). Evidently, h is a continuous map from cone(@cone(�))

onto the shadow of f(@cone) centered at v�
k

that coincides with f on @cone(�).

vc
w

@cone(�)

v�
1

f(v) h(w)w0

f(@cone(�))

Figure 2.4: The illustration shows a cone over part of @cone(�) with apex c and a point v

on the boundary, and how a point w on the line segment [v, c) are mapped under h.

Define f on cone(�) to be the composition of g and h:

@cone(�)
� _

✏✏

= // @cone(�)
� _

✏✏

f // f(@cone(�))
� _

✏✏
cone(�)

g // cone (@cone(�)) h // the shadow of f(@cone(�)) centered at v�
k

.

According to the commutative diagram above, f is well-defined on cone(�) in the sense that

it is compatible with its definition on cone(T )k. We use the phrase “fill in the boundary of

cone(�) against the center v�
k

” to represent the above process that extends the domain of f

from @cone(�) to cone(�).

To complete the inductive step, we must demonstrate that f is economical over (k + 1)-

faces of T . Pick any (k+1)-face ⌧ of T . Let �
0

, . . . , �
k+1

be the k-faces of ⌧ . Observing that

f(@cone(⌧)) = f(⌧ [ cone(@⌧)) = ⌧ [ f(cone(�
0

))[ . . .[ f(cone(�
k+1

)) and that f(cone(�
i

))

is the shadow of f(@cone(�
i

)) centered at v�i
k

which intersects an (m
k+1

, . . . ,m
d

)-face with

probability at most (k+1)!(p
d

�✏+k�), we obtain that the probability for an (m
k+1

, . . . ,m
d

)-

face to intersect f(@cone(⌧)) is dominated by �+(k+2)(k+1)!(p
d

� ✏+ k�)  (k+2)!(p
d

�
✏+ (k + 1)�).

We have so far defined a continuous map f on cone(T )d�1 such that for any (d � 1)-

face � of T the probability for an (m
d�1

m
d

)-face to intersect D := f(@cone(�)) is at most

d!(p
d

� ✏ + (d � 1)�). We write f(X)mod2 := {y 2 f(X) : |f�1(y) \X| = 1 (mod 2)}
for the set of points in f(X) whose fibers in X have an odd number of points. Set m̄ :=

(m
d�1

+m
d

)/2. We are going to define f on cone(�) such that m̄ (f(cone(�))mod2) is less

than 1��

d+1

.
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c

Figure 2.5: An illustration of the partition, the result of filling in against c, and

f(cone(�))mod2.

Fix a point s in Rd \D. For any point t in Rd \D, if a generic piecewise linear path from

s to t intersects with D an odd number of times, then put t in B, otherwise put it in A. Here

the number of intersections of a piecewise linear path L and D might not be the cardinality

of L\D. Instead, the number of intersections is precisely
P

x2L\D |f�1(x) \ @cone(�)|, that
is, it takes the multiplicity into account. Thus we have partitioned Rd \ D into A and B

such that any generic piecewise linear path from a point in A to a point in B meets D an

odd number of times. Suppose a := m
d�1

(A), b := m
d

(A) and x := m̄(A) = (a + b)/2. The

probability that an (m
d�1

m
d

)-face intersects with D is at least a(1 � b) + (1 � a)b. Hence

a(1� b)+ (1� a)b < d!(p
d

� ✏+(d� 1)�) < 2
�
1��

d+1

� �
1� 1��

d+1

�
. Because a(1� b)+ (1� a)b =

(a+ b)� 2ab � (a+ b)� (a+ b)2/2 = 2x(1� x), either x or 1� x is less than 1��

d+1

. In other

words, one of m̄(A) and m̄(B) is less than 1��

d+1

. We may assume that m̄(B) < 1��

d+1

.

Fix a point c 2 A. Again, we fill in the boundary of cone(�) against the center c. For

any generic point x 2 A, the line segment [c, x] intersects with D an even number of times.

For every v on @cone(�), the ray with the initial point f(v) in the direction vcf(v) covers x

once if and only if the line segment [c, x] intersects with D at f(v). Because f(cone(�)) is

the union of such rays, the number of times that x is covered by f(cone(�)) is exactly the

number of intersections between [c, x] and D. This implies that x is not in f(cone(�))mod2.

Therefore f(cone(�))mod2 is a subset of B [D almost surely. Noticing that m̄(D) = 0, the

extension of f has the desired property m̄ (f(cone(�))mod2) < 1��

d+1

.

Pick any d-face ⌧ of T . Suppose the (d � 1)-faces of ⌧ are �
0

, . . . , �
d

. By a parity

argument, we have

f(@cone(⌧))mod2 = [⌧ [ f(cone(�
0

)) [ . . . [ f(cone(�
d

))]mod2

⇢ ⌧ [ f(cone(�
0

))mod2 [ . . . [ f(cone(�
d

))mod2.
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Therefore m̄ (f(@cone(⌧))mod2) is less than � + (d + 1) 1��

d+1

= 1, and so the degree of f on

@cone(⌧), denoted by deg (f, @cone(⌧)), is even. Because

X

⌧

deg (f, @cone(⌧)) = 2
X

�

deg (f, cone(�)) + deg (f, T ) = deg (f, T ) (mod 2),

where the first sum and the second sum are over all d-faces and all (d � 1)-faces of T
respectively, we know that deg (f, T ) is even, which contradicts with the fact that f is

identity on T .
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Chapter 3

A bound on the number of edges in

graphs without an even cycle

3.1 Introduction

Let ex(n, F ) be the largest number of edges in an n-vertex graph that contains no copy of

a fixed graph F . The systematic study of ex(n, F ) was started by Turán [Tur41] over 70

years ago, and it has developed into a central problem in extremal graph theory (see surveys

[FS13, Kee11, Sid95]).

The function ex(n, F ) exhibits a dichotomy: if F is not bipartite, then ex(n, F ) grows

quadratically in n, and is fairly well understood; if F is bipartite, ex(n, F ) is subquadratic,

and for very few F the order of magnitude is known. The simplest classes of bipartite graphs

are trees, complete bipartite graphs, and cycles of even length. Most of the study of ex(n, F )

for bipartite F has been concentrated on these classes. In this chapter, we address the even

cycles. For an overview of the status of ex(n, F ) for complete bipartite graphs see [BBK13].

For a thorough survey on bipartite Turán problems see [FS13].

The first bound on the problem is due to Erdős [Erd38] who showed that ex(n,C
4

) =

O(n3/2). Thanks to the works of Erdős and Rényi [ER62], Brown [Bro66, Section 3], and

Kövari, Sós and Turán [KST54] it is now known that

ex(n,C
4

) = (1/2 + o(1))n3/2.

The current best bounds for ex(n,C
6

) for large values of n are

0.5338n4/3 < ex(n,C
6

)  0.6272n4/3

due to Füredi, Naor and Verstraëte [FNV06].
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A general bound of ex(n,C
2k

)  �
k

n1+1/k, for some unspecified constant �
k

, was asserted

by Erdős [Erd64, p. 33]. The first proof was by Bondy and Simonovits [BS74, Lemma 2],

who showed that ex(n,C
2k

)  20kn1+1/k for all su�ciently large n. This was improved by

Verstraëte [Ver00] to 8(k � 1)n1+1/k and by Pikhurko [Pik12] to (k � 1)n1+1/k + O(n). The

principal result of the chapter is an improvement of these bounds:

Theorem 3.1. If G is an n-vertex graph that contains no C
2k

and n � (2k)8k
2
, then

ex(n,C
2k

)  80
p

k log k · n1+1/k + 10k2n.

It is our duty to point out that the improvement o↵ered by the Theorem 3.1 is of uncertain

value because we still do not know if n1+1/k is the correct order of magnitude for ex(n,C
2k

).

Only for k = 2, 3, 5 are constructions of C
2k

-free graphs with ⌦(n1+1/k) edges known [Ben66,

Wen91, LU95, MM05]. We stress again that the situation is completely di↵erent for odd

cycles, where the value of ex(n,C
2k+1

) is known exactly for all large n [Sim68].

Our proof is inspired by that of Pikhurko [Pik12]. Apart from a couple of lemmas that

we quote from [Pik12], the present chapter is self-contained. However, we advise the readers

to at least skim [Pik12] to see the main idea in a simpler setting.

Pikhurko’s proof builds a breadth-first search tree, and then argues that a pair of adjacent

levels of the tree cannot contain a ⇥-graph1. It is then deduced that each level must be at

least �/(k� 1) times larger than the previous, where � is the (minimum) degree. The bound

on ex(n,C
2k

) then follows. The estimate of �/(k � 1) is sharp when one restricts one’s

attention to a pair of levels.

In our proof, we use three adjacent levels. We find a ⇥-graph satisfying an extra technical

condition that permits an extension of Pikhurko’s argument. Annoyingly, this extension

requires a bound on the maximum degree. To achieve such a bound we use a modification

of breadth-first search that avoids the high-degree vertices.

What we really prove in this chapter is the following:

Theorem 3.2. Suppose k � 4. If G is a biparite n-vertex graph of minimum degree at least

2d+ 5k2, where

d � max(20
p

k log k · n1/k, (2k)8k), (3.1)

then G contains C
2k

.

Theorem 3.1 follows from Theorem 3.2 and two well-known facts: every graph contains

a bipartite subgraph with half of the edges, and every graph of average degree d
avg

contains

a subgraph of minimum degree at least 1

2

d
avg

.

1We recall the definition of a ⇥-graph in Section 3.3
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The rest of the chapter is organized as follows. We present our modification of breadth-

first search in Section 3.2. In Section 3.3, which is the heart of the chapter, we explain

how to find ⇥-graphs in triples of consecutive levels. Finally, in Section 3.4 we assemble the

pieces of the proof.

3.2 Graph exploration

Our aim is to have vertices of degree at most �d for some k ⌧ � ⌧ d1/k. The particular

choice is fairly flexible; we choose to use � := k3.

Let G be a graph, and let x be any vertex of G. We start our exploration with the set

V
0

= {x}, and mark the vertex x as explored. Suppose V
0

, V
1

, . . . , V
i�1

are the sets explored

in the first i steps respectively. We then define V
i

as follows:

1. Let V 0
i

consist of those neighbors of V
i�1

that have not yet been explored. Let Bg
i

be

the set of those vertices in V 0
i

that have more than �d unexplored neighbors, and let

Sm
i

= V 0
i

\ Bg
i

.

2. Define

V
i

=

8
<

:
V 0
i

if |Bg
i

| > 1

2k

|V 0
i

| ,

Sm
i

if |Bg
i

|  1

2k

|V 0
i

| .

The vertices of V
i

are then marked as explored.

We call sets V
0

, V
1

, . . . levels of G. A level V
i

is big if |Bg
i

| > 1

2k

|V 0
i

|, and is normal otherwise.

Lemma 3.3. If �  �d, and G is a bipartite graph of minimum degree at least �, then each

v 2 V
i+1

has at least � neighbors in V
i

[ V 0
i+2

.

Proof. Fix a vertex v 2 V (G). We will show, by induction on i, that if v 62 V
1

[ · · ·[V
i

, then

v has at least � neighbors in V (G) \ (V
1

[ · · · [ V
i�1

). The base case i = 1 is clear. Suppose

i > 1. If v 2 Bg
i

, then v has �d � � neighbors in the required set. Otherwise, v is not in V 0
i

and hence has no neighbors in V
i�1

. Hence, v has as many neighbors in V (G)\(V
1

[· · ·[V
i�1

)

as in V (G) \ (V
1

[ · · · [ V
i�2

), and our claim follows from the induction hypothesis.

If v 2 V
i+1

, then the neighbors of v are a subset of V
1

[ · · · [ V
i

[ V 0
i+2

. Hence, at least �

of these neighbors lie in V
i

[ V 0
i+2

.

3.2.1 Trilayered graphs

We abstract out the properties of a triple of consecutive levels into the following definition.

A trilayered graph with layers V
1

, V
2

, V
3

is a graph G on a vertex set V
1

[ V
2

[ V
3

such

that the only edges in G are between V
1

and V
2

, and between V
2

and V
3

. If V 0
1

⇢ V
1

,
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V 0
2

⇢ V
2

and V 0
3

⇢ V
3

, then we denote by G[V 0
1

, V 0
2

, V 0
3

] the trilayered subgraph induced by

three sets V 0
1

, V 0
2

, V 0
3

. Because the graph G that has been explored is bipartite, there are no

edges inside each level. Therefore any three sets V
i�1

, V
i

, V 0
i+1

from the exploration process

naturally form a trilayered graph; these graphs and their subgraphs are the only trilayered

graphs that appear in this chapter.

We say that a trilayered graph has minimum degree at least [A : B,C : D] if each vertex

in V
1

has at least A neighbors in V
2

, each vertex in V
2

has at least B neighbors in V
1

, each

vertex in V
2

has at least C neighbors in V
3

, and each vertex in V
3

has at least D neighbors

in V
2

.

V
1

V
2

V
3

A
!

 
B

C
!

 
D

Figure 3.1: A schematic drawing of a tyilayered graph.

3.3 ⇥-graphs

A ⇥-graph is a cycle of length at least 2k with a chord. We shall use several lemmas from

the previous works.

Lemma 3.4 (Lemma 2.1 in [Pik12], also Lemma 2 in [Ver00]). Let F be a ⇥-graph and

1  l  |V (F )| � 1. Let V (F ) = W [ Z be an arbitrary partition of its vertex set into

two non-empty parts such that every path in F of length l that begins in W necessarily ends

in W . Then F is bipartite with parts W and Z.

Lemma 3.5 (Lemma 2.2 in [Pik12]). Let k � 3. Any bipartite graph H of minimum degree

at least k contains a ⇥-graph.

Corollary 3.6. Let k � 3. Any bipartite graph H of average degree at least 2k contains a

⇥-graph.

For a graph G and a set Y ⇢ V (G), let G[Y ] denote the graph induced on Y . For

disjoint Y, Z ⇢ V (G), let G[Y, Z] denote the bipartite subgraph of G that is induced by the

bipartition Y [ Z.
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3.3.1 Well-placed ⇥-graphs

Suppose G is a trilayered graph with layers V
1

, V
2

, V
3

. We say that a ⇥-graph F ⇢ G is well-

placed if each vertex of V (F ) \ V
2

is adjacent to some vertex in V
1

\ V (F ). The condition

ensures that, for each vertex v of F in V
2

there exists a path from the root x to v that avoids

F .

Lemma 3.7. Suppose G is a trilayered graph with layers V
1

, V
2

, V
3

such that the degree of

every vertex in V
2

is at least 2d + 5k2, and no vertex in V
2

has more than �d neighbors in

V
3

. Suppose t is a nonnegative integer, and let F = d · e(V
1

, V
2

)/8k |V
3

|. Assume that

F � 2, (3.2a)

e(V
1

, V
2

) � 2kF |V
1

| , (3.2b)

e(V
1

, V
2

) � 8k(t+ 1)2(2�k)2k�1 |V
1

| , (3.2c)

e(V
1

, V
2

) � 8(et/F )tk |V
2

| , (3.2d)

e(V
1

, V
2

) � 20(t+ 1)2 |V
2

| . (3.2e)

Then at least one of the following holds:

1. There is a ⇥-graph in G[V
1

, V
2

].

2. There is a well-placed ⇥-graph in G[V
1

, V
2

, V
3

].

The proof of Lemma 3.7 is in two parts: finding trilayered subgraph of large minimum

degree (Lemmas 3.8 and 3.9), and finding a well-placed ⇥-graph inside that trilayered graph

(Lemma 3.10).

3.3.2 Finding a trilayered subgraph of large minimum degree

The disjoint union of two bipartite graphs shows that a trilayered graph with many edges

need not contain a trilayered subgraph of large minimum degree. We show that, in contrast,

if a trilayered graph contains no ⇥-graph between two of its levels, then it must contain a

subgraph of large minimum degree. The next lemma demonstrates a weaker version of this

claim: it leaves open a possibility that the graph contains a denser trilayered subgraph. In

that case, we can iterate inside that subgraph, which is done in Lemma 3.9.

Lemma 3.8. Let a,A,B,C,D be positive real numbers. Suppose G is a trilayered graph with

layers V
1

, V
2

, V
3

and the degree of every vertex in V
2

is at least d + 4k2 + C. Assume also

that

a · e(V
1

, V
2

) � (A+ k + 1) |V
1

|+B |V
2

| . (3.3)

Then one of the following holds:
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1. There is a ⇥-graph in G[V
1

, V
2

].

2. There exist non-empty subsets V 0
1

⇢ V
1

, V 0
2

⇢ V
2

, V 0
3

⇢ V
3

such that the induced

trilayered subgraph G[V 0
1

, V 0
2

, V 0
3

] has minimum degree at least [A : B,C : D].

3. There is a subset eV
2

⇢ V
2

such that e(V
1

, eV
2

) � (1� a)e(V
1

, V
2

), and
���eV

2

���  D |V
3

| /d.

Proof. We suppose that alternative 1 does not hold. Then, by Corollary 3.6, the average

degree of every subgraph of G[V
1

, V
2

] is at most 2k.

Consider the process that aims to construct a subgraph satisfying 2. The process starts

with V 0
1

= V
1

, V 0
2

= V
2

and V 0
3

= V
3

, and at each step removes one of the vertices that violate

the minimum degree condition on G[V 0
1

, V 0
2

, V 0
3

]. The process stops when either no vertices

are left, or the minimum degree of G[V 0
1

, V 0
2

, V 0
3

] is at least [A : B,C : D]. Since in the latter

case we are done, we assume that this process eventually removes every vertex of G.

Let R be the vertices of V
2

that were removed because at the time of removal they had

fewer than C neighbors in V 0
3

. Put

E 0 := {uv 2 E(G) : u 2 V
2

, v 2 V
3

, and v was removed before u},

S := {v 2 V
2

: v has at least 4k2 neighbors in V
1

}.

Note that |E 0|  D |V
3

|. We cannot have |S| � |V
1

| /k, for otherwise the average degree of

the bipartite graph G[V
1

, S] would be at least 4k

1+1/k

� 2k. So |S|  |V
1

| /k.
The average degree condition on G[V

1

, S] implies that

e(V
1

, S)  k(|V
1

|+ |S|)  (k + 1) |V
1

| .

Let u be any vertex in R\S. Since it is connected to at least (d+4k2+C)�4k2 = d+C

vertices of V
3

, it must be adjacent to at least d edges of E 0. Thus,

|R \ S|  |E 0| /d  D |V
3

| /d.

Assume that the conclusion 3 does not hold with eV
2

= R \ S. Then e(V
1

, R \ S) <

(1� a)e(V
1

, V
2

). Since the total number of edges between V
1

and V
2

that were removed due

to the minimal degree conditions on V
1

and V
2

is at most A |V
1

| and B |V
2

| respectively, we
conclude that

e(V
1

, V
2

)  e(V
1

, S) + e(V
1

, R \ S) + A |V
1

|+B |V
2

|

< (k + 1) |V
1

|+ (1� a)e(V
1

, V
2

) + A |V
1

|+B |V
2

| ,

implying that

a · e(V
1

, V
2

) < (A+ k + 1) |V
1

|+B |V
2

| .

The contradiction with (3.3) completes the proof.
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Remark 3.1. The next lemma can be eliminated at the cost of obtaining the bound ex(n,C
2k

) =

O(k2/3n1+1/k) in place of ex(n,C
2k

) = O(
p
k log k ·n1+1/k). To do that, we can set B ⇡ k2/3,

D ⇡ k1/3 and a = 1/2. One can then show that when applied to trilayered graphs arising

from the exploration process the alternative 3 leads to a subgraph of average degree 2k.

The two remaining alternatives are dealt by Corollary 3.6 and Lemma 3.10. However, it is

possible to obtain a better bound by iterating the preceding lemma.

Lemma 3.9. Let C be a positive real number. Suppose G is a trilayered graph with layers V
1

,

V
2

, V
3

, and the degree of every vertex in V
2

is at least d+4k2+C. Let F = d · e(V
1

, V
2

)/8k |V
3

|,
and assume that F and e(V

1

, V
2

) satisfy (3.2) for some integer t � 1. Then one of the

following holds:

1. There is a ⇥-graph in G[V
1

, V
2

].

2. There exist numbers A,B,D and non-empty subsets V 0
1

⇢ V
1

, V 0
2

⇢ V
2

, V 0
3

⇢ V
3

such that the induced trilayered subgraph G[V 0
1

, V 0
2

, V 0
3

] has minimum degree at least

[A : B,C : D], with the following inequalities that bind A, B, and D:

B � 5, (B � 4)D � 2k, A � 2k(�D)D�1. (3.4)

Proof. Assume, for the sake of contradiction, that neither 1 nor 2 hold. With hindsight, set

a
j

= 1

t�j+1

for j = 0, . . . , t� 1. We shall define a sequence of sets V
2

= V (0)

2

◆ V (1)

2

◆ · · · ◆
V (t)

2

inductively. We denote by

d
i

:= e(V
1

, V (i)

2

)/
���V (i)

2

���

the average degree from V (i)

2

into V
1

. The sequence V (0)

2

, V (1)

2

, . . . , V (t)

2

will be constructed

so as to satisfy

e(V
1

, V (i+1)

2

) � (1� a
i

)e(V
1

, V (i)

2

), (3.5)

d
i+1

� d
i

· Fa
i

iY

j=0

(1� a
j

). (3.6)

Note that (3.5) and the choice of a
0

, . . . , a
i

imply that

e(V
1

, V (i)

2

) � e(V
1

, V
2

)

t+ 1
. (3.7)

The sequence starts with V (0)

2

= V
2

. Assume V (i)

2

has been defined. We proceed to define

V (i+1)

2

. Put

A =
a
i

e(V
1

, V (i)

2

)

2 |V
1

| � k � 1, B = 1

4

a
i

d
i

+ 5, D = min

✓
2k,

8k

a
i

d
i

◆
.
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With help of (3.7) and (3.2c) it is easy to check that the inequalities (3.4) hold for this choice

of constants.

In addition,

(A+ k + 1) |V
1

|+B
���V (i)

2

��� = 3

4

a
i

e(V
1

, V (i)

2

) + 5
���V (i)

2

���
(3.2e)

 3

4

a
i

e(V
1

, V (i)

2

) + 1

4(t+1)

2 e(V1

, V
2

)

(3.7)

 a
i

e(V
1

, V (i)

2

).

So, the condition (3.3) of Lemma 3.8 is satisfied for the graph G
h
V
1

, V (i)

2

, V
3

i
. By Lemma 3.8

there is a subset V (i+1)

2

⇢ V (i)

2

satisfying (3.5) and
���V (i+1)

2

���  D |V
3

| /d.

Next we show that the set V (i+1)

2

satisfies inequality (3.6). Indeed, we have

d
i+1

=
e(V

1

, V (i+1)

2

)���V (i+1)

2

���
� (1� a

i

)e(V
1

, V (i)

2

)

D |V
3

| /d � (1� a
i

)a
i

d
i

d

8k |V
3

|e(V1

, V (i)

2

)

(3.5)

� (1� a
i

)a
i

d
i

d · e(V
1

, V
2

)

8k |V
3

|

i�1Y

j=0

(1� a
j

) = d
i

· Fa
i

iY

j=0

(1� a
j

).

Iterative application of (3.6) implies

d
t

� d
0

F t

t�1Y

j=0

a
j

(1� a
j

)t�j � d
0

F t

t�1Y

j=0

e�1

t� j + 1
= d

0

(F/e)t

(t+ 1)!
. (3.8)

If we have
���V (t)

2

��� < |V
1

|, then the average degree of induced subgraph G
h
V
1

, V (t)

2

i
is

greater than

e(V
1

, V (t)

2

)/ |V
1

|
(3.7)

� e(V
1

, V
2

)/(t+ 1) |V
1

|
(3.2c)

� 2k,

which by Corollary 3.6 leads to outcome 1.

If
���V (t)

2

��� � |V
1

| and d
t

� 4k, then the average degree of G
h
V
1

, V (t)

2

i
is at least d

t

/2 � 2k

because d
t

is the average degree of V (t)

2

into V
1

, again leading to the outcome 1. So, we may

assume that d
t

< 4k. Since (t+ 1)!  2tt we deduce from (3.8) that

d
0

< 4k(t+ 1)!(e/F )t  8k(et/F )t.

This contradicts (3.2d), and so the proof is complete.
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3.3.3 Locating well-placed ⇥-graphs in trilayered graphs

We come to the central argument of the chapter. It shows how to embed well-placed ⇥-

graphs into trilayered graphs of large minimum degree. Or rather, it shows how to embed

well-placed ⇥-graphs into regular trilayered graphs; the contortions of the previous two

lemmas, and the factor of
p
log k in the final bound, come from authors’ inability to deal

with irregular graphs.

Lemma 3.10. Let A,B,D be positive real numbers. Let G be a trilayered graph with layers

V
1

, V
2

, V
3

of minimum degree at least [A : B, d + k : D]. Suppose that no vertex in V
2

has

more than �d neighbors in V
3

. Assume also that

B � 5 (3.9)

(B � 4)D � 2k � 2 (3.10)

A � 2k(�D)D�1. (3.11)

Then G contains a well-placed ⇥-graph.

Proof. Assume, for the sake of contradiction, that G contains no well-placed ⇥-graphs.

Leaning on this assumption, we shall build an arbitrary long path P of the form

V
1

V
2

V
3

•v
0

•

•

•

•

•

•

•

•v
1

•

•

•

•

•

•

•

•v
2

Figure 3.2: An arbitrary long path P .

where, for each i, vertices v
i

and v
i+1

are joined by a path of length 2D that alternates

between V
2

and V
3

. Since the graph is finite, this would be a contradiction.

While building the path, we maintain the following property:

Every v 2 P \ V
2

has at least one neighbor in V
1

\ P . (3.12)

We call a path satisfying (3.12) good.

We construct the path inductively. We begin by picking v
0

arbitrarily from V
1

. Suppose

a good path P = v
0

! v
1

! · · · ! v
l�1

has been constructed, and we wish to find a path

extension v
0

! v
1

! · · · ! v
l�1

! v
l

.
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There are at least about A ways to extend the path by a single vertex. The idea of the

following argument shows that many of these extensions can be extended to another vertex,

and then another, and so on.

For each i = 1, 2, . . . , 2D � 1 we shall define a family Q
i

of good paths that satisfy

1. Each path in Q
i

is of the form v
0

! v
1

! · · · ! v
l�1

! u, where v
l�1

! u is a

path of length i that alternates between V
2

and V
3

. The vertex u is called a terminal

of the path. The set of terminals of the paths in Q
i

is denoted by T (Q
i

). Note that

T (Q
i

) ⇢ V
2

for odd i and T (Q
i

) ⇢ V
3

for even i.

2. For each i, the paths in Q
i

have distinct terminals.

3. For odd-numbered indices, we have the inequality

|Q
2i+1

| � �3k + A

✓
1

�

◆
i Y

ji

✓
1� j

D

◆
. (3.13)

4. For even-numbered indices, we have the inequality

e(T (Q
2i

), V
2

) � d |Q
2i�1

| . (3.14)

Let t := dB/2e. We will repeatedly use the following straightforward fact, which we call

the small-degree argument : whenever Q is a good path and u 2 V
2

\ Q is adjacent to the

terminal of Q, then u is adjacent to fewer than t vertices in V
1

\Q. Indeed, if vertex u were

adjacent to v
j1 , vj2 , . . . , vjt 2 V

1

\ Q with j
1

< j
2

< . . . < j
k

, then v
j2 ! u (along path Q)

and the edge uv
j2 would form a cycle of total length at least

2D(t� 2) + 2 � 2D(B/2� 2) + 2
(3.10)

� 2k.

As uv
j3 is a chord of the cycle, and u is adjacent to v

j1 that is not on the cycle, that would

contradict the assumption that G contains no well-placed ⇥-graph.

The set Q
1

consists of all paths of the form Pu for u 2 V
2

\ P . Let us check that the

preceding conditions hold for Q
1

. Vertex v
l�1

cannot be adjacent to k or more vertices in

P \ V
2

, for otherwise G would contain a well-placed ⇥-graph with a chord through v
l�1

. So,

|Q
1

| � A� k. Next, consider any u 2 V
2

\ P that is a neighbor of v
l�1

. By the small-degree

argument vertex u cannot be adjacent to t or more vertices of P \ V
1

, and Pu is good.

Suppose Q
2i�1

has been defined, and we wish to define Q
2i

. Consider an arbitrary path

Q = v
0

! v
1

! · · · ! v
l�1

! u 2 Q
2i�1

. Vertex u cannot have k or more neighbors

in Q \ V
3

, for otherwise G would contain a well-placed ⇥-graph with a chord through u.

Hence, there are at least d edges of the form uw, where w 2 V
3

\Q. As we vary u we obtain

a family of at least d |Q
2i�1

| paths. We let Q
2i

consist of any maximal subfamily of such
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paths with distinct terminals. The condition (3.14) follows automatically as each vertex of

T (Q
2i�1

) has at least d neighbors in T (Q
2i

).

Suppose Q
2i

has been defined, and we wish to define Q
2i+1

. Consider an arbitrary path

Q = v
0

! v
1

! · · · ! v
l�1

! u 2 Q
2i

. An edge uw is called long if w 2 P , and w

is at a distance exceeding 2k from u along path Q. If uw is a long edge, then from u to Q

there is only one edge, namely the edge to the predecessor of u on Q, for otherwise there

is a well-placed ⇥-graph. Also, at most i neighbors of u lie on the path v
l�1

! u. Since

deg u � D, it follows that there are at least (1 � i/D) deg u short edges from u that miss

v
l�1

! u. Thus there is a set W of at least (1 � i/D)e(T (Q
2i

), V
2

) walks (not necessarily

paths!) of the form v
0

! v
1

! · · · ! v
l�1

! uw such that v
l�1

! uw is a path and w

occurs only among the last 2k vertices of the walk.

From the maximum degree condition on V
2

it follows that walks in W have at least

(1� i/D)e(T (Q
2i

), V
2

)/�d distinct terminals. A walk fails to be a path only if the terminal

vertex lies on P . However, since the edge uw is short, this can happen for at most 2k possible

terminals. Hence, there is a Q
2i+1

⇢W of size

|Q
2i+1

| � (1� i/D)e(T (Q
2i

), V
2

)/�d� 2k (3.15)

that consists of paths with distinct terminals. It remains to check that every path in Q
2i+1

is good. The only way that Q = v
0

! · · · ! v
l�1

! uw 2 Q
2i+1

may fail to be good is if

w has no neighbors in V
1

\ Q. By the small-degree argument w has fewer than t neighbors

in V
1

. Since w has at least B neighbors in V
1

and B � t + 2, we conclude that w has at

least two neighbors in V
1

outside the path. Of course, the same is true for every terminal of

a path in Q
2i+1

. The condition (3.13) for Q
2i+1

follows from (3.15), (3.14) and from validity

of (3.13) for Q
2i�1

.

Note thatQ
2D�1

is non-empty. Let Q = v
0

! · · · ! v
l�1

! u 2 Q
2D�1

be an arbitrary

path. Note that since 2D � 1 is odd, u 2 V
2

. By the property of terminals of V
i

(odd i)

that we noted in the previous paragraph, there are two vertices in V
1

\Q that are neighbors

of u. Let v
l

be any of them, and let the new path be Qv
l

= v
0

! · · · ! v
l�1

! uv
l

. This

path can fail to be good if there is a vertex w on the path Q that is good in Q, but is bad

in Qv
l

. By the small-degree argument, w is adjacent to fewer than t vertices in Q \ V
1

that

precede w in Q. The same argument applied to the reversal of the path Qv
l

shows that w is

adjacent to fewer than t vertices in Q\ V
1

that succeeds w in Q. Since 2t� 2 < B, the path

Qv
l

is good.

Hence, it is possible to build an arbitrarily long path in G. This contradicts the finiteness

of G.
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Lemma 3.7 follows from Lemmas 3.9 and 3.10 by setting C = d+ k, in view of inequality

4k2 + k  5k2. We lose k2 � k here for cosmetic reason: 5k2 is tidier than 4k2 + k.

3.4 Proof of Theorem 3.2

Suppose that G is a bipartite graph of minimum degree at least 2d + 5k2 and contains no

C
2k

. Pick a root vertex x arbitrarily, and let V
0

, V
1

, . . . , V
k�1

be the levels obtained from the

exploration process in Section 3.2.

Lemma 3.11. For 1  i  k�1, the graph G[V
i�1

, V
i

, V
i+1

] contains no well-placed ⇥-graph.

Proof. The following proof is almost an exact repetition of the proof of Claim 3.1 from

[Pik12] (which is also reproduced as Lemma 3.12 below).

Suppose, for the sake of contradiction, that a well-placed ⇥-graph F ⇢ G[V
i�1

, V
i

, V
i+1

]

exists. Let Y = V
i

\ V (F ). Since F is well-placed, for every vertex of Y there is a path

avoiding V (F ) of length i to the vertex x. The union of these paths forms a tree T with x

as a root. Let y be the vertex farthest from x such that every vertex of Y is a T -descendant

of y. Paths that connect x to Y branch at y. Pick one such branch, and let W ⇢ Y be the

set of all the T -descendants of that branch. Let Z = V (F ) \ W . From W 6= V
i

\ V (F ) it

follows that Z is not an independent set of F , and so W [ Z is not a bipartition of F .

Let ` be the distance between x and y. We have ` < i and 2k � 2i + 2` < 2k  |V (F )|.
By Lemma 3.4 in F there is a path P of length 2k� 2i+ 2` that starts at some w 2 W and

ends in z 2 Z. Since the length of P is even, z 2 Y . Let P
w

and P
z

be unique paths in T

that connect y to respectively w and z. They intersect only at y. Each of P
w

and P
z

has

length i� `. The union of paths P, P
w

, P
z

forms a 2k-cycle in G.

The same argument (with a di↵erent Y ) also proves the next lemma.

Lemma 3.12 (Claim 3.1 in [Pik12]). For 1  i  k � 1, neither of G[V
i

] and G[V
i

, V
i+1

]

contains a bipartite ⇥-graph.

The next step is to show that the levels V
0

, V
1

, V
2

, . . . increase in size. We shall show by

induction on i that

e(V
i

, V
i+1

) � d |V
i

| , (3.16)

e(V
i

, V
i+1

)  2k |V
i+1

| , (3.17)

e(V
i

, V 0
i+1

)  2k
��V 0

i+1

�� , (3.18)

|V
i+1

| � (2k)�1d |V
i

| , (3.19)

|V
i+1

| � d

2

400k log k

|V
i�1

| . (3.20)
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To prove Theorem 3.2, we only need (3.20); the remaining inequalities play auxiliary roles in

derivation of (3.20). Clearly, these inequalities hold for i = 0 since each vertex of V
1

sends

only one edge to V
0

.

Proof of (3.16). By Lemma 3.3 the degree of every vertex in V
i

is at least 2d+ 4k, and so

e(V
i

, V 0
i+1

) � (2d+ 4k) |V
i

|� e(V
i�1

, V
i

)
induc.

� (2d+ 2k) |V
i

| .

We next distinguish two cases depending on whether V
i+1

is big (in the sense of the definition

from Section 3.2). If V
i+1

is big, then e(V
i

, V
i+1

) = e(V
i

, V 0
i+1

), and (3.16) follows. If V
i+1

is

normal, then Corollary 3.6 and Lemma 3.12 imply that

e(V
i

,Bg
i+1

)  k(|V
i

|+
��Bg

i+1

��)  k
�
|V

i

|+ 1

2k

��V 0
i+1

���  k |V
i

|+ 1

2

e(V
i

, V 0
i+1

)

and so

e(V
i

, V
i+1

) = e(V
i

, V 0
i+1

)� e(V
i

,Bg
i+1

) � 1

2

e(V
i

, V 0
i+1

)� k |V
i

| � d |V
i

|

implying (3.16).

Proof of (3.17). Consider the graph G[V
i

, V
i+1

]. Inequality (3.16) asserts that the average

degree of V
i

is at least d � 2k. If (3.17) does not hold, then the average degree of V
i+1

is at

least 2k as well, contradicting Corollary 3.6 and Lemma 3.12.

Proof of (3.18). The argument is the same as for (3.17) withG[V
i

, V 0
i+1

] in place ofG[V
i

, V
i+1

].

Proof of (3.19). This follows from (3.17) and (3.16).

Proof of (3.20) in the case V
i

is a normal level. We assume that (3.20) does not hold and

will derive a contradiction. Consider the trilayered graph G[V
i�1

, V
i

, V 0
i+1

]. Let t = 2 log k.

Suppose momentarily that the inequalities (3.2) in Lemma 3.7 hold. Then since V
i

is normal,

each vertex in V
i

has at most �d neighbors in V 0
i+1

, and so Lemma 3.7 applies. However,

the lemma’s conclusion contradicts Lemmas 3.11 and 3.12. Hence, to prove (3.20) it su�ces

to verify inequalities (3.2a–3.2d) with F = d · e(V
i�1

, V
i

)/8k
��V 0

i+1

��.
We may assume that

F � 2e2 log k, (3.21)

and in particular that (3.2a) holds. Indeed, if (3.21) were not true, then inequality (3.16)

would imply
��V 0

i+1

�� � (d2/16e2k log k) |V
i�1

|, and thus

|V
i+1

| � (1� 1

k

)
��V 0

i+1

�� � (d2/32e2k log k) |V
i�1

| ,
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and so (3.20) would follow in view of 32e2  400.

Inequality (3.2b) is implied by (3.19). Indeed,

e(V
i�1

, V
i

) = 8k
��V 0

i+1

��F/d � 8k |V
i+1

|F/d
(3.19)

� 4F |V
i

|
(3.19)

� 2k�1dF |V
i�1

| ,

and d � k2 by the definition of d from (3.1).

Inequality (3.2c) is implied by (3.1) and (3.16).

Next, suppose (3.2d) were not true. Since F/t � e2 by (3.21), we would then conclude

|V
i+1

|
(3.19)

� (2k)�1d |V
i

|�d(16k2)�1(F/et)te(V
i�1

, V
i

)

� d(16k2)�1e2 log ke(V
i�1

, V
i

)
(3.16)

� 1

16

d2 |V
i�1

| ,

and so (3.20) would follow.

Finally, (3.2e) is a consequence of (3.16).

Proof of (3.20) in the case V
i

is a big level. We have

|V
i+1

| � 1

2

��V 0
i+1

�� (3.18)

� (4k)�1e(V
i

, V 0
i+1

) � (4k)�1e(Bg
i

, V 0
i+1

) � (4k)�1�d |Bg
i

|

� (8k2)�1�d |V
i

|
(3.19)

� (16k3)�1�d2 |V
i�1

| = 1

16

d2 |V
i�1

| ,

and so (3.20) holds.

Proof of Theorem 3.2. If k is even, then k/2 applications of (3.20) yield

|V
k

| � dk

(400k log k)k/2
.

If k is odd, then (k � 1)/2 applications of (3.20) yield

|V
k

| � dk�1

(400k log k)(k�1)/2

|V
1

| � dk

(400k log k)(k�1)/2

.

Either way, since |V
k

| < n we conclude that d < 20
p
k log k · n1/k.
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Chapter 4

Bipartite algebraic graphs without

quadrilaterals

4.1 Introduction

The Turán number ex(n, F ) is the maximum number of edges in an F -free graph1 on n

vertices. The first systematic study of ex(n, F ) was initiated by Turán [Tur41], who solved

the case when F = K
t

is a complete graph on t vertices. Turán’s theorem states that, on

a given vertex set, the K
t

-free graph with the most edges is the complete and balanced

(t� 1)-partite graph, in that the part sizes are as equal as possible.

For general graphs F , we still do not know how to compute the Turán number exactly, but

if we are satisfied with an approximate answer, the theory becomes quite simple: Erdős and

Stone [ES46] showed that if the chromatic number �(F ) = t, then ex(n, F ) = ex(n,K
t

) +

o(n2) =
�
1� 1

t�1

� �
n

2

�
+ o(n2). When F is not bipartite, this gives an asymptotic result

for the Turán number. On the other hand, for all but few bipartite graphs F , the order

of ex(n, F ) is not known. Most of the research on this problem focused on two classes of

graphs: complete bipartite graphs and cycles of even length. A comprehensive survey is by

Füredi and Simonovits [FS13].

Suppose G is a K
s,t

-free graph with s  t. The Kövari–Sós–Turán theorem [KST54]

implies an upper bound ex(n,K
s,t

)  1

2

s
p
t� 1 · n2�1/s + o(n2�1/s), which was improved by

Füredi [Für96b] to

ex(n,K
s,t

)  1

2
s
p
t� s+ 1 · n2�1/s + o(n2�1/s).

Despite the lack of progress on the Turán problem for complete bipartite graphs, there are

certain complete bipartite graphs for which the problem has been solved asymptotically, or

1We say a graph is F -free if it does not have a subgraph isomorphic to F .
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even exactly. The constructions that match the upper bounds in these cases are all similar

to one another. Each of the constructions is a bipartite graph G based on an algebraic

hypersurface2 H. Both partite sets of G are Fs

p

and the edge set is defined by: u ⇠ v if and

only if (u, v) 2 H. In short, G =
�
Fs

p

,Fs

p

, H(F
p

)
�
, where H(F

p

) denotes the F
p

-points of H.

Note that G has n := 2ps vertices.

In the previous works of Erdős, Rényi and Sós [ERS66], Brown [Bro66], Füredi [Für96a],

Kollár, Rónyai and Szabó [KRS96] and Alon, Rónyai and Szabó [ARS99], various hypersur-

faces were used to define K
s,t

-free graphs. Their equations were

x
1

y
1

+ x
2

y
2

= 1, for K
2,2

; (4.1a)

(x
1

� y
1

)2 + (x
2

� y
2

)2 + (x
3

� y
3

)2 = 1, for K
3,3

; (4.1b)

(N
s

� ⇡
s

)(x
1

+ y
1

, x
2

+ y
2

, . . . , x
s

+ y
s

) = 1, for K
s,t

with t � s! + 1; (4.1c)

(N
s�1

� ⇡
s�1

)(x
2

+ y
2

, x
3

+ y
3

, . . . , x
s

+ y
s

) = x
1

y
1

, for K
s,t

with t � (s� 1)! + 1, (4.1d)

where ⇡
s

: Fs

p

! F
p

s is an F
p

-linear isomorphism and N
s

(↵) is the field norm, N
s

(↵) :=

↵(p

s�1)/(p�1).

Clearly, the coe�cients in (4.1a) and (4.1b) are integers and even independent of p.

With some work, one can show that both (4.1c) and (4.1d) are polynomial equations of

degree  s with coe�cients in F
p

. Therefore each equation in (4.1) can be written as

F (x, y) := F (x
1

, . . . , x
s

, y
1

, . . . , y
s

) = 0 for some F (x, y) 2 F
p

[x, y] of bounded degree. The

previous works directly count the number of F
p

solutions to F (x, y) = 0 and yield |H(F
p

)| =
⇥(p2s�1) = ⇥(n2�1/s), for each prime3 p.

Definition 1. Given two sets P
1

and P
2

, a set V ⇢ P
1

⇥ P
2

is said to contain an (s, t)-grid

if there exist S ⇢ P
1

, T ⇢ P
2

such that s = |S|, t = |T | and S ⇥ T ⇢ V . Otherwise, we say

that V is (s, t)-grid-free.

Observe that every F (x, y) derived from (4.1) is symmetric in x
i

and y
i

for all i. We

know that (u, v) 2 H if and only if (v, u) 2 H for all u, v 2 Fs

p

. The resulting bipartite graph

G =
�
Fs

p

,Fs

p

, H(F
p

)
�
would be an extremal K

s,t

-free graph if H(F
p

) had been (s, t)-grid-free.

So which graphs are K
s,t

-free with a maximum number of edges? The question was

considered by Zoltán Füredi in his unpublished manuscript [Für88] asserting that every

K
2,2

-free graph with q vertices (for q � q
0

) and 1

2

q(q+1)2 edges is obtained from a projective

2An algebraic hypersurface in a space of dimension n is an algebraic subvariety of dimension

n� 1. The terminology from algebraic geometry used throughout the article is standard, and can

be found in [Sha13].
3We need p ⌘ 3 (mod 4) for (4.1b) to get the correct number of F

p

points on H. If p ⌘ 1

(mod 4), then the right hand side of (4.1b) should be replaced by a quadratic non-residue in F
p

.
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plane via a polarity with q + 1 absolute elements. This loosely amounts to saying that all

extremal K
2,2

-free graphs are defined by generalization of (4.1a).

However, classification of all extremal K
s,t

-free graphs seems out of reach. We restrict

our attention to algebraically constructed graphs. Given a field F and a hypersurface H

defined over F, it is natural to ask when H(F) is (s, t)-grid-free. Because the general case

is di�cult, we work with algebraically closed fields K in this chapter. Denote by Ps(K) the

s-dimensional projective space over K. We are interested in hypersurfaceH in Ps(K)⇥Ps(K).

Since standard machinery from model theory, to be discussed in Section 4.5, allows us to

transfer certain results over C (the field of complex numbers) to algebraically closed fields

of large characteristic, our focus will be on the K = C case. We use Ps for the s-dimensional

complex projective space and As := Ps\{x
0

= 0} for the s-dimensional complex a�ne space.

Note that even if H contains (s, t)-grids, one may remove a few points from the projective

space to destroy all (s, t)-grids in H. For example, the homogenization of (4.1b) is

(x
1

y
0

� x
0

y
1

)2 + (x
2

y
0

� x
0

y
2

)2 + (x
3

y
0

� x
0

y
3

)2 = x2

0

y2
0

.

The equation defines hypersurface H in P3 ⇥ P3. Let V := {x
0

= x2

1

+ x2

2

+ x2

3

= 0} be a

variety in P3. Since V ⇥ P3 ⇢ H, H contains a lot of (3, 3)-grids. However, H \ (A2 ⇥ A2)

is (3, 3)-grid-free.

Definition 2. A set V ⇢ Ps⇥Ps is almost-(s, t)-grid-free if there are two nonempty Zariski-

open sets X, Y ⇢ Ps such that V \ (X ⇥ Y ) is (s, t)-grid-free.

Suppose the defining equation of H, say F (x, y), is of low degree in y. Heuristically, for

generic distinct u
1

, . . . , u
s

2 Ps, by Bézout’s theorem, one would expect {F (u
1

, y) = · · · =
F (u

s

, y) = 0} to have few points. So we conjecture the following.

Informal conjecture. Every almost-(s, t)-grid-free hypersurface is equivalent, in a suitable

sense, to a hypersurface whose degree in y is bounded by some constant d := d(s, t).

The right equivalence notion depends on X and Y in Definition 2. We shall discuss

possible notions of equivalence in Section 4.2, and make three specific conjectures. Results

in support of these conjectures can be found in Section 4.3 and Section 4.4.

Before we make our conjectures precise, we note that an analogous situation occurs

for C
2t

-free graphs. The upper bound ex(n,C
2t

) = O(n1+1/t) first established by Bondy–

Simonovits [BS74] has been matched only for t = 2, 3, 5. The t = 2 case was already

mentioned above because C
4

= K
2,2

. The constructions for t = 3, 5 are also algebraic (see

[Ben66, FNV06] for t = 3 and [Ben66, Wen91] for t = 5). Also, a conjecture in a similar
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spirit about algebraic graphs of girth eight was made by Dmytrenko, Lazebnik and Williford

[DLW07]. It was recently resolved by Hou, Lappano and Lazebnik [HLL15].

The chapter is organized as follows. In Section 4.2 we flesh out the informal conjecture

above, in Section 4.3 we briefly discuss the s = 1 case, in Section 4.4 we partially resolve

the s = t = 2 case, and finally in Section 4.5, we consider algebraically closed fields of large

characteristic.

4.2 Conjectures on the (s, t)-grid-free case

Given a field F, we denote by F[x] the set of homogeneous polynomials in F[x] and by

F
hom

[x, y] the set of polynomials in F[x, y] that are separately homogeneous in x and y.

We might be tempted to guess the following instance of the informal conjecture.

False conjecture A. If H is almost-(s, t)-grid-free, then there exists F (x, y) 2 C
hom

[x, y]

of degree  d in y for some d = d(s, t) such that H = {F = 0}.

Unfortunately, Conjecture A is false because of the following example.

Example 4.1. Consider H
0

:= {x
0

y
0

+ x
1

y
1

+ x
2

y
2

= 0} and H
1

defined by

x
0

yd
0

+ x
1

yd�1

0

y
1

+ x
2

�
yd�1

0

y
2

+ yd
0

f(y
1

/y
0

)
�
= 0, (4.2)

where f is a polynomial of degree d. One can check that both H
0

and H
1

\ {y
0

= 0} are

(2, 2)-grid-free, whereas equation (4.2) can be of arbitrary large degree in y.

Behind Example 4.1 is the birational automorphism � : P2 99K P2 defined by

�(y
0

: y
1

: y
2

) :=
�
yd
0

: yd�1

0

y
1

: yd�1

0

y
2

+ yd
0

f(y
1

/y
0

)
�
.

Note that id⇥� is a biregular map4 fromH
1

\{y
0

= 0} toH
0

\{y
0

= 0}. Composition with the

automorphism increased the degree of H
0

in y while preserving almost-(2, 2)-grid-freeness.

Here is another example illustrating the relationship between birational automorphisms and

(s, t)-grid-free hypersurfaces.

Example 4.2. Define H
2

:= {x
0

y
1

y
2

+ x
1

y
0

y
2

+ x
2

y
0

y
1

= 0}. One can also check that H
2

\
{y

0

y
1

y
2

= 0} is (2, 2)-grid-free. Behind this example is the standard quadratic transformation

� from P2 to itself given by �(y
0

: y
1

: y
2

) = (y
1

y
2

: y
0

y
2

: y
0

y
1

). Note that id⇥� is a biregular

map from H
2

\ {y
0

y
1

y
2

= 0} to H
0

\ {y
0

y
1

y
2

= 0}.

Let Cr (Ps) be the group of birational automorphisms on Ps, also known as the Cremona

group. Evidently, the almost-(s, t)-grid-freeness is invariant under Cr (Ps)⇥ Cr (Ps).

4A biregular map is a regular map whose inverse is also regular.
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Proposition 4.1. If V
1

⇢ Ps ⇥ Ps is an almost-(s, t)-grid-free set, then so is V
2

:= (�
X

⇥
�
Y

)V
1

for all �
X

, �
Y

2 Cr (Ps).

Remark 4.1. Though little is known about the structure of the Cremona group in 3 dimen-

sions and higher, the classical Noether–Castelnuovo theorem says that the Cremona group

Cr (P2) is generated by the group of projective linear transformations and the standard

quadratic transformation. The proof of this theorem, which is very delicate, can be found

in [AC02, Chapter 8].

We say that sets V
1

, V
2

⇢ Ps ⇥ Ps are almost equal if there exist nonempty Zariski-open

sets X, Y ⇢ Ps such that V
1

\ (X⇥Y ) = V
2

\ (X⇥Y ). We believe that the only obstruction

to Conjecture A is the Cremona group.

Conjecture B. Suppose H is an irreducible hypersurface in Ps ⇥ Ps. If H is almost-(s, t)-

grid-free, then there exist � 2 Cr (Ps) and F (x, y) 2 C
hom

[x, y] of degree  d in y for some

d = d(s, t) such that H is almost equal to {F � (id⇥ �) = 0}.

Remark 4.2. The conjecture is false if the irreducibility of H is dropped. Take H
0

and H
1

from Example 4.1 and set f(y) = yd in (4.2), where d can be arbitrarily large. Because

both H
0

and H
1

are almost-(2, 2)-grid-free, we know that H
0

[H
1

is almost-(2, 3)-grid-free.

However, one can show5 that for any � 2 Cr (Ps), the degree of (id⇥�)(H
0

[H
1

) in y is � d.

In fact, we believe in an even stronger conjecture.

Conjecture C. Suppose H is an irreducible hypersurface in Ps⇥Ps. Let X, Y be nonempty

Zariski-open subsets of Ps. If H \ (X ⇥ Y ) is (s, t)-grid-free, then there exist Y 0 ⇢ Ps, a

biregular map � : Y ! Y 0 and F (x, y) 2 C
hom

[x, y] of degree  d in y for some d = d(s, t)

such that H \ (X ⇥ Y ) = {F � (id⇥ �) = 0} \ (X ⇥ Y ).

We prove Conjecture C if s = 1 and if s = t = 2, Y = P2 (see Section 4.3 and 4.4

respectively).

One special case is when H \ (As ⇥As) is (s, t)-grid-free. In this case, H can be seen as

an a�ne algebraic hypersurface in 2s-dimensional a�ne space. The group of automorphisms

of As, denoted by Aut (As), is a subgroup of the Cremona group. In this special case, we

make a stronger conjecture.

5Let R
1

= P
1

/Q
1

, R
2

= P
2

/Q
2

be rational functions such that ��1 = (1 : R
1

: R
2

) and set

d
1

= degP
1

= degQ
1

, d
2

= degP
2

= degQ
2

. On the one hand, H 0
0

:= (id ⇥ �)H
0

is defined by

x
0

+x
1

R
1

+x
2

R
2

= 0, and so deg
y

H 0
0

� d
2

. On the other hand, H 0
1

is defined by x
0

+x
1

R
1

+x
2

(R
2

+

Rd

1

) = 0 and so deg
y

H 0
1

= dd
1

+ d
2

� degG, where G = gcd
⇣
Qd

1

Q
2

, P
1

Qd�1

1

Q
2

, Qd

1

P
2

+ P d

1

Q
2

⌘
.

Since G = gcd
⇣
Qd�1

1

Q
2

, Qd

1

P
2

+ P d

1

Q
2

⌘
, it follows that G divides Q2

2

. Hence we estimate that

degG  2d
2

and deg
y

H 0
1

� dd
1

� d
2

� d� d
2

. So, deg
y

(H 0
0

[H 0
1

) � d.
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Conjecture D. Suppose H is an irreducible a�ne hypersurface in As ⇥ As. If H is (s, t)-

grid-free, then there exist � 2 Aut (As) and F (x, y) 2 C[x, y] of degree  d in y for some

d = d(s, t) such that H = {F � (id⇥ �) = 0}.

Remark 4.3. An automorphism � 2 Aut (As) is elementary if it has a form

� : (x
1

, . . . , x
i�1

, x
i

, x
i+1

, . . . , x
s

) 7! (x
1

, . . . , x
i�1

, cx
i

+ f, x
i+1

, . . . , x
s

),

where 0 6= c 2 C, f 2 C[x
1

, . . . , x
i�1

, x
i+1

, . . . , x
s

]. The tame subgroup is the subgroup

of Aut (As) generated by all the elementary automorphisms, and the elements from this

subgroup are called tame automorphisms, while non-tame automorphisms are called wild. In

Example 4.1, we used a tame automorphism to make a counterexample to Conjecture A. It

is known [Jun42, vdK53] that all the elements of Aut (A2) are tame. However, in the case

of 3 dimensions, the following automorphism constructed by Nagata (see [Nag72]):

�(x, y, z) =
�
x+ (x2 � yz)z, y + 2(x2 � yz)x+ (x2 � yz)z, z

�

was shown [SU03, SU04] to be wild. See also [Kur10]. We note that the question on the

existence of wild automorphisms remains open for higher dimensions.

4.3 Results on the (1, t)-grid-free case

As for the s = 1 case, one is able to fully characterize (1, t)-grid-free hypersurfaces. We

always assume that H is a hypersurface in P1 ⇥ P1 and X, Y are nonempty Zariski-open

subsets of P1 throughout this section.

Theorem 4.2. Suppose H = {F = 0}, where F (x, y) 2 C
hom

[x, y]. Let

F (x, y) = f(x)g(y)h
1

(x, y)r1h
2

(x, y)r2 . . . h
n

(x, y)rn (4.3)

be the factorization of F such that h
1

, h
2

, . . . , h
n

are distinct irreducible polynomials depend-

ing on both x and y. Let d
i

be the degree of h
i

in y. Then H \ (X ⇥ Y ) is (1, t)-grid-free if

and only if {f = 0} \X = ; and |{g = 0} \ Y |+ d
1

+ d
2

+ · · ·+ d
n

< t.

Proof. Clearly, if H\(X⇥Y ) is (1, t)-grid-free, then {f = 0}\X is empty. For fixed u 2 P1,

consider the following n+ n+ n+ n+
�
n

2

�
systems of equations in y:

deg h
i

(u, y) < d
i

, i = 1, 2, . . . , n;

y 2 P1 \ Y and h
i

(u, y) = 0, i = 1, 2, . . . , n;

h
i

(u, y) = @
y

h
i

(u, y) = 0, i = 1, 2, . . . , n;

h
i

(u, y) = g(y) = 0, i = 1, 2, . . . , n;

h
i

(u, y) = h
j

(u, y) = 0, i 6= j.
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Since h
i

’s are irreducible and distinct, Bézout’s theorem tells us that each of these systems

has no solution in P1 for a generic u. So for a generic u 2 P1, F (u, y) = 0 has exactly

M := |{g = 0} \ Y | + d
1

+ d
2

+ · · · + d
n

distinct solutions in Y . The conclusion follows as

M is the maximal number of distinct solutions.

The informal conjecture thus holds when s = 1 as Theorem 4.2 implies:

Corollary 4.3. If H \ (X ⇥ Y ) is (1, t)-grid-free, then there exists F (x, y) 2 C
hom

[x, y] of

degree < t in y such that H \ (X ⇥ Y ) = {F = 0} \ (X ⇥ Y ).

Proof. Let H = {F = 0}, and let f, g and h
1

, h
2

, . . . , h
n

be the factors of F as in (4.3).

Suppose m := |{g = 0} \ Y | and {g = 0} \ Y = {v
1

, v
2

, . . . , v
m

}. Let g
i

(y) 2 C
hom

[y] be

linear such that {g
i

= 0} = {v
i

}. By Theorem 4.2,

F̃ (x, y) := g
1

(y)g
2

(y) . . . g
m

(y)h
1

(x, y)h
2

(x, y) . . . h
n

(x, y)

is of degree m+ d
1

+ d
2

+ . . . d
n

< t in y. Clearly, F̃ = F on X ⇥ Y .

Conjectures B, C and D follow from the corollary in the s = 1 case. The birational

map � becomes trivial in those conjectures since Cr (P1) consists only of projective linear

transformations.

4.4 Results on the (2, 2)-grid-free case

Throughout the section we assume that H is a hypersurface in P2⇥P2 and X is a nonempty

Zariski-open subset of P2.

Theorem 4.4. If H \ (X ⇥ P2) is (2, 2)-grid-free, then there exists F (x, y) 2 C
hom

[x, y] of

degree  2 in y such that H \ (X ⇥ P2) = {F = 0} \ (X ⇥ P2).

The theorem resolves Conjecture C for s = t = 2, Y = P2. Note that the birational map

� : Y ! Y 0 in the conjecture becomes trivial since biregular automorphisms of P2 are linear.

Our argument uses a reduction to an intersection problem of plane algebraic curves.

The key ingredient is a theorem by Moura [Mou04] on the intersection multiplicity of plane

algebraic curves.

Theorem 4.5 (Moura [Mou04]). Denote by I
v

(C
1

, C
2

) the intersection multiplicity of alge-

braic curves C
1

and C
2

at v. For a generic point v on an irreducible algebraic curve C
1

of

degree d
1

in P2,

max
C2

{I
v

(C
1

, C
2

) : C
1

6⇢ C
2

, degC
2

 d
2

} =

8
<

:

1

2

(d2
2

+ 3d
2

) if d
1

> d
2

;

d
1

d
2

� 1

2

(d2
1

� 3d
1

+ 2) if d
1

 d
2

.
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Corollary 4.6. For a generic point v on an algebraic curve C in P2, any algebraic curve C 0

with v 2 C 0 intersects with C at another point unless C is irreducible of degree  2.

Proof. Suppose C has more than one irreducible components. Let C
1

and C
2

be any two of

them. Since C
1

\ C
2

is finite, we can pick a generic point v on C
1

\ C
2

. Now any algebraic

curve C 0 containing v intersects C at another point on C
2

. So, C is irreducible.

Let d and d0 be the degrees of C and C 0 respectively. By Theorem 4.5, one can check

that I
v

(C,C 0) < dd0 for a generic point v 2 C for all d > 2. From Bézout’s theorem, we

deduce that C intersects C 0 at another point unless d  2.

In our proof of Theorem 4.4, we think of H as a family of algebraic curves in P2, each

of which is indexed by u 2 X and is defined by C(u) := {v 2 P2 : (u, v) 2 H}. We call

algebraic curve C(u) the section of H at u. A hypersurface H is (2, 2)-grid-free if and only

if C(u) and C(u0) intersect at  1 point for all distinct u, u0 2 X. The last piece that we

need for our proof is a technical lemma on generic sections of irreducible hypersurfaces.

Lemma 4.7. Suppose H
1

and H
2

are two di↵erent irreducible hypersurfaces in P2 ⇥ P2

defined by h
1

(x, y), h
2

(x, y) 2 C
hom

[x, y]\ (C
hom

[x][C
hom

[y]) respectively. Denote the section

of H
i

at u by C
i

(u) for i = 1, 2. For generic u 2 P2, C
1

(u) and C
2

(u) share no common

irreducible components, and moreover, each C
i

(u) is a reduced6 algebraic curve.

Proof of Theorem 4.4 assuming Lemma 4.7. Suppose H \ (X ⇥ P2) is (2, 2)-grid-free. Take

an arbitrary u 2 X and consider algebraic curve C(u) in P2. We claim that every v 2 C(u) is

an intersection of C(u) and C(u0) for some u0 2 X \ {u}. Define D(v) := {F (x, v) = 0}\X.

Since P2 \X is Zariski-closed, the set D(v) is either empty or infinite. However, u 2 D(v)

and the claim is equivalent to |D(v)| � 2.

Now pick a generic v 2 C(u). We know that point v is an intersection of C(u) and C(u0)

for some u0 2 X \ {u} and it is the only intersection because H \ (X ⇥P2) is (2, 2)-grid-free.

We apply Corollary 4.6 to C(u) and C(u0) and get that C(u) is irreducible of degree  2.

Suppose H is defined by F (x, y) 2 C
hom

[x, y] and

F (x, y) = f(x)g(y)h
1

(x, y)r1h
2

(x, y)r2 . . . h
n

(x, y)rn

is the factorization of F such that h
1

, h
2

, . . . , h
n

are distinct irreducible polynomials in

C
hom

[x, y] \ (C
hom

[x] [ C
hom

[y]). The set {f = 0} \ X is either empty or infinite. So,

for H \ (X ⇥ P2) to be (2, 2)-grid-free we must have {f = 0} \X = ;. Similarly, we know

that {g = 0} = ;, that is, g(y) is a nonzero constant.

6The algebraic curve C
i

(u) is reduced in the sense that its defining equation h
i

(u, y) is square-

free.
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Without loss of generality, we may assume that f(x) = g(y) = 1 and that F (x, y) is

square-free, that is, r
1

= r
2

= · · · = r
n

= 1. Let C
i

(u) be the section of H
i

:= {h
i

= 0}
at u for i = 1, 2, . . . , n. From Lemma 4.7, we know that, for a generic u 2 X, C

i

(u) and

C
j

(u) have no common irreducible components for all i 6= j. Therefore C(u) = [n
i=1

C
i

(u)

has at least n irreducible components, and so n = 1. Now C(u) = C
1

(u) = {h
1

(u, y) = 0}
for all u 2 X. By Lemma 4.7, h

1

(u, y) is square-free for generic u. This and the fact that

C(u) is irreducible of degree  2 imply that deg h
1

(u, y)  2 for a generic u 2 X, and so

deg
y

h
1

(x, y)  2.

Proof of Lemma 4.7. Let d
1

, d
2

be the degrees of h
1

, h
2

in y respectively. Suppose on the

contrary that C
1

(u) and C
2

(u) share common irreducible components for a generic u 2 P2.

So, h
1

(u, y) and h
2

(u, y) have a common divisor in C[y]. Therefore there exist two nonzero

polynomials gu
1

(y) 2 C
hom

[y] of degree < d
2

and gu
2

(y) 2 C
hom

[y] of degree < d
1

such that

h
1

(u, y)gu
1

(y) + h
2

(u, y)gu
2

(y) = 0. (4.4)

By treating the coe�cients of gu
1

(y) and gu
2

(y) as variables, we can view equation (4.4)

as a homogeneous system of M :=
�
d1+d2+1

2

�
linear equations involving N :=

�
d1+1

2

�
+
�
d2+1

2

�

variables. Note that the coe�cient in the ith equation of the jth variable, say c
ij

, is a

polynomial of u, that is, c
ij

= c
ij

(u) for some c
ij

(x) 2 C[x] that depends on h
1

, h
2

only.

Because the system of linear equations has a nontrivial solution and clearly M > N , the

rank of its coe�cient matrix (c
ij

(u)) is < N . Using the determinants of all N ⇥N minors of

matrix (c
ij

(u)), we can rewrite the statement that matrix (c
ij

(u)) is of rank < N as L :=
�
M

N

�

polynomial equations of entries in the matrix, say

P
k

(c
ij

(u)) = 0, for all k 2 [L], (4.5)

where P
k

(c
ij

(x)) is a polynomial of x independent of u. Since (4.5) holds for a generic u 2 P2,

we have

P
k

(c
ij

(x)) = 0 in C[x], for all k 2 [L], (4.6)

Reversing the argument above, we can deduce that the rank of matrix (c
ij

(x)), over the

quotient field C(x), is < N , and so there exist two nonzero polynomials gx
1

(y) 2 C(x)
hom

[y]

of degree < d
2

and gx
2

(y) 2 C(x)
hom

[y] of degree < d
1

such that

h
1

(x, y)gx
1

(y) + hx

2

(x, y)g
2

(y) = 0. (4.7)

Multiplying (4.7) by the common denominator of gx
1

(y) and gx
2

(y), we get two nonzero

polynomials g
1

(x, y) 2 C[x, y] of degree < d
2

in y and g
2

(x, y) 2 C[x, y] of degree < d
1

in y such that

h
1

(x, y)g
1

(x, y) + h
2

(x, y)g
2

(x, y) = 0, (4.8)
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which is impossible as gcd (h
1

, h
2

) = 1 and deg
y

h
1

(x, y) = d
1

> deg
y

g
2

(x, y).

It remains to prove that C
1

(u) is reduced for generic u. Because h
1

(x, y) /2 C
hom

[x], the

polynomial h0
1

(x, y) := @h
1

(x, y)/@y
0

might be assumed to be nonzero. Again, we assume, on

the contrary, that h
1

(u, y) is not square-free for a generic u 2 P2. This implies that h
1

(u, y)

and h0
1

(u, y) have a common divisor. The same linear-algebraic argument, applied to h
1

and

h0
1

instead of h
1

and h
2

, then yields a contradiction.

We can adapt the proof of Theorem 4.4 to the case when P2 \ Y is finite. In this case,

we obtain a weaker result though.

Proposition 4.8. Suppose P2 \Y = {v
1

, v
2

, . . . , v
n

}. If H \ (X⇥Y ) is (2, 2)-grid-free, then

either

1. there exists F (x, y) 2 C
hom

[x, y] of degree  2 in y such that H \ (X ⇥ Y ) = {F =

0} \ (X ⇥ Y ),

2. or there exists i 2 [n] such that P2 ⇥ {v
i

} ⇢ H.

Sketch of a proof. We follow the proof of Theorem 4.4 up to the point where we apply

Corollary 4.6. Note that X
i

:= {u 2 P2 : v
i

2 C(u)} is Zariski-closed for all i 2 [n]. If none

of those X
i

’s equals P2, then for a generic u 2 P2, C(u) does not pass through any of the

points in P2 \ Y . The rest of the proof of Theorem 4.4 still holds and we end in the first

case. Otherwise X
i

= P2 for some i 2 [n], which corresponds to the second case.

4.5 Fields of finite characteristic

A standard model-theoretic argument allows us to transfer statements over fields of charac-

teristic 0 to the fields of large characteristic.

Theorem 4.9. Let � be a sentence in the language of rings. The following are equivalent.

1. � is true in complex numbers.

2. � is true in every algebraically closed field of characteristic zero.

3. � is true in all algebraically closed fields of characteristic p for all su�ciently large

prime p.

The theorem is an application of the compactness theorem and the completeness of the

theory of algebraically closed field of fixed characteristic. We refer the readers to [Mar02,

Section 2.1] for further details of the theorem and related notions.

As quantifiers over all polynomials are not part of the language of rings, one has to limit

the degree of hypersurface H and the complexity of the open set X in Theorem 4.4. We now

formulate the analog over the fields of large characteristic.
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Theorem 4.10. Let K be an algebraically closed field of large characteristic, let H be a

hypersurface in P2(K) ⇥ P2(K) of bounded degree, and let X be a Zariski-open subset of

P2(K) of bounded complexity (i.e. X is a Zariski-open subset of P2(K) that can be described

by some first order predicate in the language of rings of bounded length). If H is (2, 2)-

grid-free in X ⇥ P2(K), then there exists F (x, y) 2 K
hom

[x, y] of degree  2 in y such that

H \ (X ⇥ P2) = {F = 0} \ (X ⇥ P2).

The proof essentially rewrites Theorem 4.4 as a sentence in the language of rings to which

Theorem 4.9 is applicable. We skip the tedious but routine proof.
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[FS13] Zoltán Füredi and Miklós Simonovits. The history of degenerate (bipar-

tite) extremal graph problems. In Erdös centennial, volume 25 of Bolyai

Soc. Math. Stud., pages 169–264. János Bolyai Math. Soc., Budapest, 2013.

arXiv:1306.5167[math.CO].
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[Für96a] Zoltán Füredi. New asymptotics for bipartite Turán numbers. J. Combin. Theory

Ser. A, 75(1):141–144, 1996.
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